
www.allitebooks.com

http://www.allitebooks.org

Getting Started with Oracle
WebLogic Server 12c:
Developer's Guide

Understand Java EE 6, JDK 7, and Oracle WebLogic
Server 12c concepts by creating a fully-featured
application with this step-by-step handbook

Fabio Mazanatti Nunes

William Markito Oliveira

P U B L I S H I N G

professional expert ise dist i l led

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Oracle WebLogic Server 12c:
Developer's Guide

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2013

Production Reference: 1190913

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-696-9

www.packtpub.com

Cover Image by J.Blaminsky (milak6@wp.pl)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Fabio Mazanatti Nunes

William Markito Oliveira

Reviewers
Daniel Amadei

Vinicius Rodrigo dos Santos

Wickes Potgieter

Acquisition Editors
Edward Gordon

Julian Ursell

Lead Technical Editor
Mayur Hule

Technical Editors
Aparna K

Sharvari Baet

Kanhucharan Panda

Copy Editors
Tanvi Gaitonde

Aditya Nair

Alfida Paiva

Kirti Pai

Laxmi Subramanian

Project Coordinators
Arshad Sopariwala

Venitha Cutinho

Proofreaders
Amy Guest

Jonathan Todd

Indexers
Tejal R. Soni

Mariammal Chettiyar

Mehreen Deshmukh

Monica Ajmera Mehta

Graphics
Abhinash Sahu

Sheetal Aute

Production Coordinator
Prachali Bhiwandkar

Cover Work
Prachali Bhiwandkar

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Fabio Mazanatti Nunes: With more than two decades of experience in
system design and development, Fabio worked in a wide range of projects and
architectures (mainframe, client-server, distributed architecture, and SOA) for
large corporations in Brazil, and for the last dozen years, he specialized in the
architecture and implementation of Java EE and SOA solutions, mainly using
BEA and Oracle products. You can find more material related to these topics
on his blog, http://mazanatti.info.

I'd like to thank my wife, Valesca, for her constant support and for
keeping calm and distracting the little ones while I was focused
on writing this book, my kids, Gabriela and Caio, for being such
wonderful people and a joy in my life, and my parents, for always
being there for us.

A great thank you to my friend and co-author, William, for not
letting my acid comments corrode his will to get this book done and
for being such a curious and committed individual, raising the bar
for everyone who happen to work with him.

I'd also like to thank the technical reviewers of the book, especially
my friends Vinicius Santos and Daniel Amadei for accepting this
tricky task and for being such nice lads to work with.

Finally, I'd like to mention the honey badger as our role model for
this project, because he just takes what he wants, and sometimes in
life, that's what we should do—in a positive way, of course!

www.allitebooks.com

http://www.allitebooks.org

William Markito Oliveira has more than 15 years of experience in software
development, including solution architecture and consulting. For the last few
years, he had focused on Service Oriented Architecture (SOA) solutions, Enterprise
Application Integration (EAI), and system optimization.

Currently, he is looking into cloud systems with specific focus on in-memory data
grid and Java EE. He is also a member of the Java EE Tutorial documentation team,
helping with write-ups and code examples about new Java EE technologies and
can be reached at Twitter (@william_markito) or through his blog, http://blog.
markito.info.

He has authored another book, The Java EE 6 Tutorial: Advanced Topics, Fourth Edition,
Addison-Wesley Professional, 978-0-13708-186-8.

I'd like to thank my wife Rebeca, as she was always supportive and
encouraged me several times during the writing, helping me by
distracting our little man when he tried to type his own words for
the book.

Antônio, my son, who also behaved and understood things beyond
his age, by letting me write the book while watching Toy Story
several times in a row. Love you both more than anything.

Also, a special mention to my family, especially my mother, father,
and stepfather. Regina, Antônio, and Vanderlei, thank you for giving
me the best and for always being supportive during my night hacks.

Thanks to the reviewers, who prevented us from publishing some
silly errors and gave us great ideas on how to write things in a clear
way, especially my friend and the best man, Daniel Amadei.

And of course, I'd like to thank the Honey Badger and Fabio, for
always being so inspirational and hustler on the way we look at
computers and programming in general.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Daniel Amadei is a Senior Principal Consultant working for Oracle Consulting
Services in Brazil and has more than 10 years of experience in the IT market, being a
specialized consultant and solutions architect for SOA and Enterprise Applications.
He has strong analytical and problem-solving abilities with solid experience in the
development and architecture of applications.

He is a specialist in SOA and EAI Oracle middleware products, web services and
related technologies, and the Java Platform, especially Java EE. He has been working
with Java since 1999, and SOA/EAI since 2007, and has, at the time of this book's
writing, eight certifications related to his specialties, including Oracle Certified
SOA Architect, Oracle SOA Foundation Practitioner, and Sun Certified Enterprise
Architect for J2EE.

You can write to him at daniel.amadei@gmail.com, and read about his works at
http://www.amadei.com.br.

I'd like to thank the authors for giving me the chance to learn a lot by
reviewing the book.

www.allitebooks.com

http://www.allitebooks.org

Wickes Potgieter has worked as a product specialist for over 12 years. His main
focus was on the BEA WebLogic suite of products, and after the Oracle acquisition
of BEA Systems, he focused on the Oracle Fusion Middleware suite of products. His
experience ranges from Solution Architecture, Infrastructure Design, administration,
development, pre-sales, and training to performance tuning of the Oracle Fusion
Middleware products, JVM, and custom applications. He specializes in Oracle
WebLogic Server, JRockit, Service Bus, SOA, AIA, BPM, BAM, Enterprise Manager
11g/12c, WebCenter, Identity & Access Management, and Application Performance
Management.

They have formed a specialized consulting company in 2003 with offices in the
United Kingdom and South Africa, covering customers in the EMEA region. They
are in partnership with Oracle Gold and have a team of specialized Oracle Fusion
Middleware consultants servicing customers both onsite and offsite.

The website of TSI-Systems is www.tsisystems.co.uk, and Wickes can be contacted
on wickes@tsisystems.co.uk.

I would like to thank my wife Mary Jane for her patience and for
assisting me through all the late nights. Thank you to all my friends
and family for constant encouragement.

www.allitebooks.com

http://www.allitebooks.org

Vinícius Rodrigo dos Santos has been working on software development since
1999 on high school projects and has developed his career focusing on middleware
and EAI ever since.

He has worked for companies as a Software Engineer in South America and North
America, creating and maintaining critical systems that served clients around the
world.

After dedicating the last 5 years almost exclusively to SOA, he is now focused on
multiplatform mobile development and cloud computing solutions.

The solutions he has worked with have served companies mainly focused on Vehicle
Engineering, Home Broker, Telecommunications, and the Government.

He now owns a startup named IstyaTech (http://www.istya.net) in Brazil that
serves customers on mobile and cloud computing solutions.

I would like to thank my parents, my mother Elisabete Brito dos
Santos and my father Raimundo Nonato dos Santos, for giving me
support in my young years so I could one day participate in a project
as satisfying as this one. Of course my special thanks goes to my
loving wife Cristiane Danna who has given me strength to carry on;
I love you.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your
book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise
on Twitter, or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Overview of WebLogic Server 12c
and Related Technologies	 7

Introducing Oracle WebLogic Server 12c	 7
WebLogic Server @ Oracle	 8
Most relevant features	 9

Overview of JDK 7	 10
The Project Coin	 12

The diamond operator	 12
The try-with-resources statement	 12
Strings in switch statements	 13
Manipulating binary integral literals	 14
Exception handling with multicatch statements	 14

Delving into Java EE 6	 15
Other technologies in the book	 16

Oracle Enterprise Pack for Eclipse	 17
Oracle Coherence	 17
PrimeFaces	 17
MySQL	 17

The Cloud Application Foundation (CAF)	 18
Oracle Traffic Director	 18
Oracle Tuxedo	 19
Oracle Virtual Assembly Builder	 19
Oracle Exalogic and WebLogic 12c	 19

Web resources	 20
Java and Java EE 6	 20
WebLogic 12c	 21
Coherence	 22
Other tools	 22

Summary	 22

Table of Contents

[ii]

Chapter 2: Setting Up the Environment	 23
About the directory structure	 23
Installing JDK 1.7	 24
Installing Oracle WebLogic Server	 26
Installing Oracle Enterprise Pack for Eclipse (OEPE)	 28
Installing MySQL	 28

Installing on Linux using a package manager	 28
Downloading and installing manually	 29
Disabling case sensitivity for tables on Unix/Linux	 30
Some Windows specifics	 30
Configuring MySQL databases	 32

Preparing PrimeFaces	 33
Downloading the binaries	 33
Creating a shared library	 34

Setting up a WebLogic domain	 36
Configuring Eclipse and OEPE	 38

Linking WebLogic's runtime environment	 38
Adding a reference to the PrimeFaces' shared library	 39
Linking WebLogic Server's instance	 40

Referencing MySQL databases	 42
Creating WebLogic data sources	 43
Adding database connections to Eclipse	 45

Using OpenLDAP	 47
Installing OpenLDAP	 47
Configuring an OpenLDAP server	 48
Loading sample entries and testing	 50

Web resources	 52
Summary	 53

Chapter 3: Java EE Basics – Persistence, Query,
and Presentation	 55

The business scenario – movie ticket system	 56
Business entities of the system	 58

Organizing projects in Eclipse	 60
Creating the StoreBO project	 60

Generating classes from database tables	 64
Creating named queries	 69
Tweaking the persistence.xml file	 70
Packing the project	 71

The Store web project	 75
Adding references to PrimeFaces' shared library	 76

Table of Contents

[iii]

Adding references to StoreBO	 77
Referencing the persistence configuration file	 78
Creating a named bean	 79
Configuring the Web descriptor	 82
Defining the test page	 83
Deploying and testing the application	 86

Web resources	 87
Summary	 88

Chapter 4: Creating RESTful Services with JAX-RS	 89
Creating Theater entities	 90

Customizing the generated entities	 94
Creating named queries	 94
Preventing cyclic references	 96
Formatting exhibitions' date and time	 98

Completing the persistence.xml file	 98
Packaging the library	 99

Creating the Theater web application	 100
Setting up the project	 101
Enabling JAX-RS	 103

Exposing RESTful Services through JAX-RS	 104
Coding the API	 105
Testing the web service	 108

Creating the REST client	 111
Configuring JAX-RS client libraries and optional package	 111
Creating the web service consumer	 113
Updating the SearchManager bean	 115
Updating the query page	 117

Structuring the web application	 118
Applying templates through Facelets	 118
Creating an entity listing page	 122

Web resources	 125
Summary	 126

Chapter 5: Singleton Bean, Validations, and SOAP
Web Services	 127

Using bean validation	 127
About built-in constraints	 128
Combining and grouping validation rules	 130
Creating a custom constraint	 132

Coding a constraint validator	 133
Showing validation messages	 134

Using the message component	 135

Table of Contents

[iv]

PrimeFaces's Growl	 137
Dealing with null and empty strings on JSF components	 138

Singleton session beans	 139
Implementing a singleton session bean	 140
Understanding how to use the startup annotation	 141

Establishing a startup and shutdown sequence	 142
Dealing with concurrency when using singletons	 143
Singleton applied to web services	 144

Persisting an object using JPA	 145
Understanding the available transaction contexts 	 145
Using container-managed transactions	 146
Using bean-managed transactions	 148
Acquiring a transaction context manually	 149

A brief intermission	 149
Web services and SOAP	 154

The reservation web service	 155
Testing the service provider	 157
Consuming the service	 161

Web resources	 166
Summary	 168

Chapter 6: Using Events, Interceptors, and
Logging Services	 169

Understanding interceptors	 169
Creating a log interceptor	 170
Interceptors and Aspect Oriented Programming	 174

Using asynchronous methods	 174
Understanding WebLogic's logging service	 177

Anatomy of a log message	 177
Redirecting standard output to a log file	 178
Integrating Log4J to WebLogic's logging services	 181
Accessing and reading log files	 182

Events	 183
Defining audit events	 184

Web resources	 190
Summary	 191

Chapter 7: Remote Access with JMS	 193
WebLogic clients	 194

Thin T3 client – wlthint3client.jar	 194
RMI thin client – wlclient.jar	 194
JMS thin client – wljmsclient.jar	 195

Table of Contents

[v]

JMS SAF client – wlsafclient.jar	 195
JMS T3 SAF client – wlsaft3client.jar	 196
Full client – wlfullclient.jar	 196
JMX client – wljmxclient.jar	 196

Java Messaging Service (JMS) and WebLogic	 198
The persistent store	 200
The JMS server	 202
The JMS module	 203
The JMS subdeployment	 204
The JMS queue	 205
The JMS connection factory	 206

Posting messages from a standalone client	 207
Creating the project	 208
Coding the message producer	 208
Queuing messages	 211

Consuming messages with an MDB	 215
Configuring thread limits for MDBs	 217
The Store-and-Forward client feature	 219

Creating the configuration file	 221
Encrypting the connection password	 223
Adjusting the configuration file	 223
Adjusting the code	 224
Testing the SAF client	 226
Web resources	 227

Summary	 228
Chapter 8: Adding Security	 229

Exploring Java SE and Java EE security	 230
WebLogic security	 230

Authentication providers and security realms	 232
Using an external LDAP server	 233

Configuring an OpenLDAP authentication provider	 235
Securing the web application	 238

Modifying the web.xml descriptor file	 238
Modifying the weblogic.xml descriptor file	 240
Creating and mapping a global role	 241

Creating the login form	 242
Testing the login procedure	 245

Protecting WebLogic resources	 247
Signing up a user and OpenLDAP	 248

Creating a user on the database	 249

Table of Contents

[vi]

Publishing a customer to a JMS queue	 253
Security policies for the JMS queue	 254
Updating the login bean	 256

From the JMS queue to the LDAP server	 258
Creating the LDAP client	 259
Creating the MDB	 261
Testing LDAP user provisioning	 263
Completing the application	 263

Web resources	 263
Summary	 264

Chapter 9: Servlets, Composite Components,
and WebSockets	 265

Overview of JavaServer Faces	 265
Using composite components	 266

Learning a few Servlet tricks	 269
Deprecated features	 269
Identifying the default name of a servlet	 269
Asynchronous request processing	 270
Creating dynamic components	 275

Using WebSockets	 277
Creating the server component	 277
Testing the component	 279
Using an encrypted connection	 280

Web resources	 281
Summary	 281

Chapter 10: Scaling Up the Application	 283
Introducing the Node Manager	 283
Defining machines	 284
Using Cluster and Managed Servers	 285

Creating a static cluster	 287
Creating a dynamic cluster	 290

Configuring a software load balancer	 293
Creating a new Managed Server for load balancing	 295
Enabling the load balancer	 296
Retargeting applications and resources	 297

Updating web.xml of clustered web applications	 298
Retargeting auxiliary components	 300
Making the application cluster friendly	 302
Changing deployment target from Eclipse	 303

Using a singleton service	 304
Creating a singleton service	 304
Adjusting the service client	 308

Table of Contents

[vii]

Using Oracle Coherence 	 309
Replicating sessions with Coherence*Web	 310

Creating a Coherence cluster	 311
Enabling Coherence*Web storage 	 312
Adjusting the application to use the cache	 313

Caching JPA objects with TopLink Grid	 315
Web resources	 316
Summary	 317

Chapter 11: Some WebLogic Internals	 319
Understanding deployment structures	 319

Packaging as an archived file	 320
Using an exploded archive directory	 320
Using a virtual application	 321
Configuring the deployment model	 322

Using FastSwap to reduce deployment time	 323
Packaging modules into an application	 325

Creating an application-scoped module	 326
Restricting access to an application-scoped resource	 327
Declaring data sources using annotations	 328

Using the Classloader Analysis Tool (CAT)	 330
Starting CAT	 330
Finding potential conflicts	 333

Using RESTful management services	 334
Enabling the management service	 335
Monitoring resources	 336
Formatting the response	 338

Web resources	 339
Summary	 340

Index	 341

Preface
Oracle WebLogic Server has been the most innovative and important application
server in the market since its conception in 1995. In release 12c, which brings
support for Java EE 6 platform and JDK 7, it provides developers and administrators
several new and powerful functionalities along with long-awaited improvements to
existing features.

With this book you will learn some of the basic WebLogic Server concepts such as
domains, managed servers and node managers, and dive into more practical topics
such as how to expose and consume web services and how to use and protect JMS
queues, exploring Java EE 6 APIs and features such as context dependency injection
(CDI), EJB 3.1, JPA 2.1, and others. This is done through an incremental development
of a business case, building up a sample application with very detailed steps and
screenshots, so readers can follow and apply them to real-world solutions.

What this book covers
Chapter 1, Overview of WebLogic Server 12c and Related Technologies, presents an
overview of the latest Java Development Kit (JDK) 7 and Java EE 6 technologies,
along with an introduction to the most relevant features of Oracle WebLogic 12c.
It also positions WebLogic Server 12c in the Oracle Cloud Application Foundation
(CAF) architecture.

Chapter 2, Setting Up the Environment, explains how to install and configure Oracle
WebLogic Server and an IDE (Eclipse OEPE), setting them up to be able to develop
and run the sample applications we will build throughout the book. We also set up
a database (MySQL) and an LDAP Server (OpenLDAP).

www.allitebooks.com

http://www.allitebooks.org

Preface

[2]

Chapter 3, Java EE Basics – Persistence, Query, and Presentation, defines the business
case used as a background to the technical features and implementation details that
will be covered throughout the remaining chapters, giving an overview of some
of the basic features of Java EE and WebLogic Server—how to create and use an
optional package, the creation of a web application and a persistence layer project,
including how to deploy and do sanity checks on them.

Chapter 4, Creating RESTful Services with JAX-RS, shows how to create and expose
an Enterprise JavaBean as a RESTful web service through the usage of JAX-RS
annotations, representing the business entities as JSON or XML instances leveraging
JAXB parsing.

Chapter 5, Singleton Bean, Validations, and SOAP Web Services, explains the concepts
of the validation framework, showing how to use the built-in rules and how to
create custom validations. The chapter demonstrates how to persist an entity to the
database and the transactional aspects involved in this operation. There is also the
development of a JAX-WS service and an example of a Java EE singleton bean.

Chapter 6, Using Events, Interceptors, and Logging Service, shows how to use Java
EE interceptors by creating a logging annotation that can be attached to classes or
methods, how to publish and observe events by using CDI, how to create and use
asynchronous methods on an EJB, and details about the logging services available in
WebLogic Server.

Chapter 7, Remote Access with JMS, explains the different modes of remote connection
presented by WebLogic Server, creating a standalone Java application to post
messages to a JMS Queue and then enhancements to avoid problems when the server
is down by keeping the message local using the SAF client.

Chapter 8, Adding Security, covers the basics of the Java EE Security model with
step-by-step instructions on how to configure it on a WebLogic server, creating an
authentication mechanism using LDAP, and integrating it on the sample application.

Chapter 9, Servlets, Composite Components, and WebSockets, shows how to create and
apply reusable web components by applying JSF templates, how to create and test a
WebSocket component, and includes a few tips about the new Servlet specification.

Chapter 10, Scaling Up the Application, explains how to create and configure a
WebLogic Server cluster using a software load balancer to distribute requests among
the servers, how to make session replication more scalable by using Coherence*Web,
and how to use the WebLogic Singleton Service.

Preface

[3]

Chapter 11, Some WebLogic Internals, covers a few features brought by WebLogic
Server and Java EE 6 that helps the development process by cutting deployment
time, optimizing class redefinitions without the need to restart the whole application,
finding classloader issues, and monitoring server resources in a simple way.

What you need for this book
The following are the software applications we will use to develop and test the
sample applications of this book:

•	 Oracle Java JDK Version 7u21 or newer
•	 Oracle WebLogic Server Version 12.1.2
•	 Oracle Enterprise Pack for Eclipse (OEPE) Version 12.1.2
•	 MySQL server and client packages, Version 5.1 or newer
•	 PrimeFaces Version 3.5
•	 OpenLDAP Version 2.4.x

We need to run at least one instance of Oracle WebLogic Server, the development
environment, Eclipse with OEPE (Oracle Eclipse Pack for Eclipse), MySQL server,
and OpenLDAP. You may be able to run all this on a machine with 2 GB of RAM,
but consider at least 4 GB to have a smoother experience.

Who this book is for
This book is intended for entry level and intermediate Java EE developers who want
to learn how to develop for and use Oracle WebLogic Server by showing how to apply
its concepts and features to a real-world scenario. The book is also intended for those
who want to learn about the new features of 12c and Java EE 6 releases, and how those
updates make things easier and more productive, both at design and runtime.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"You can find the logging configuration file at $JAVA_HOME/jre/lib/logging.
properties."

Preface

[4]

A block of code is set as follows:

package com.packt.store.log;

@Inherited
@InterceptorBinding
@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.METHOD, ElementType.TYPE})
public @interface Log {
 @Nonbinding
 LogLevel value() default LogLevel.FINEST;
}

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

package com.packt.store.log;

@Inherited
@InterceptorBinding
@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.METHOD, ElementType.TYPE})
public @interface Log {
 @Nonbinding
 LogLevel value() default LogLevel.FINEST;
}

Any command-line input or output is written as follows:

/oracle/jdk1.7.0_21/bin/java/java -jar wls_121200.jar

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"By clicking on the Print button the selected reservation will be printed."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

Overview of WebLogic
Server 12c and

Related Technologies
In this chapter, we're going to see some basic information about the subject of this
book, including:

•	 A brief history of Oracle WebLogic Server
•	 The most significant additions to Java SE Version 7
•	 New features of Java EE 6, the specification implemented by

the WebLogic Server
•	 The improvements added to Version 12.1.2, the latest release

of the product

Before we get into the new features of Oracle WebLogic Server 12c, let's do a quick
recap on how it all started.

Introducing Oracle WebLogic Server 12c
In a very brief history of WebLogic, we must remember that it came to Oracle
through the acquisition of BEA (Bill, Edward, Alfred). Although the name
WebLogic is widely associated with BEA, they didn't create the product.

Overview of WebLogic Server 12c and Related Technologies

[8]

In fact, WebLogic itself was a company formed in 1995 (same year as BEA) that
created a middle-tier server to enhance communication between applets and servers
providing implementations for SNMP, JDBC drivers, and ping. This server was
named Tengah but also had a codename, T3Server (the three-tier server) and used a
custom proprietary network protocol called T3. This server later evolved to be a Java
application server as we know today and right after BEA acquired WebLogic (the
company) in 1998, Tengah was officially renamed to WebLogic (Version 4.5). Later,
BEA acquired a high performance JVM (BEA JRockit, now Oracle JRockit) that was
certified against WebLogic and received various performance awards.

The last BEA release of WebLogic Server was Version 10.0, a full Java EE 5
application server.

WebLogic Server @ Oracle
After BEA's acquisition in 2008, Oracle announced WebLogic as the strategic
application server to replace Oracle Application Server (OC4J), and it also became
the foundation for Oracle Fusion Middleware and Oracle Fusion Applications, the
main families of Oracle products.

The first release under Oracle's brand was WebLogic Server 10gR3 (10.3.0), soon
followed by Version 11g. Here's a figure showing all 11g and 12c releases till now:

July
11g
(10.3.1)

April
11g R1 Ps2
(10.3.3)

January
11g R1 Ps3
(10.3.4)

December
12c
(12.0)

March
12c
(12.1.1)

20102009

November
11g R1 Ps1
(10.3.2)

2011

May
11g R1 Ps4
(10.3.5)

2012

February
11g R1
(10.3.6)

2013

July
12c
(12.1.2)

The focus of this book is WebLogic Sever 12c, which is approximately the eighth
release by Oracle and has lots of new and improved features, as shown in the
next section.

Chapter 1

[9]

Most relevant features
Here is a list of the most important features of Oracle WebLogic Server 12c Version
12.1.2, the most current version and the focus of this book:

•	 Full Java EE 6 support: WebLogic 12c is the first release to implement Java
EE 6 specification, delivering all its features. The next section of this chapter
is going to explain new and relevant additions to Java EE 6.

•	 Certified with JDK 6 and JDK 7: Through the use of JDK 7, developers can
leverage all language optimizations available in the new version of the JDK,
including features already converged from JRockit—the proprietary JDK that
came from BEA.

•	 JDBC Store for JTA logs: WebLogic supports JDBC Store to persist
transaction logs (TLOGs) in a database, and leverages replication and high
availability on the underlying database. It also simplifies disaster recovery
since the synchronization happens at the database level.

•	 Built-in Classloader Analysis Tool (CAT): WebLogic CAT is a web-
based application that can filter the different classloaders available (JVM,
application server, applications) showing the classes loaded by each one of
them. This functionality enables the analysis of common classloader issues
such as conflicts. The tool even offers suggestions on how to fix problems.

•	 Coherence 12.1.2: This release includes support for Coherence Servers
Management through WebLogic Management Framework, including
security and application deployment through GAR (Grid Archive) files.
It offers asynchronous backup, multiple Coherence REST applications,
integration with Oracle Universal Installer, and support for ECID (Execution
Context ID) for correlation with Oracle Fusion Middleware. Other than
these, it still offers WebLogic integration for HTTP session management
(Coherence*Web) and Oracle TopLink Grid as a JPA mechanism.

•	 Glassfish to WebLogic deployment descriptor support: WebLogic offers
support for Glassfish deployment descriptors so you can seamlessly deploy
web applications written for Glassfish Server on WebLogic Server.

•	 Enhanced WebLogic Maven support: In this release, one of the most
important changes is that it's not required to generate the WebLogic Maven
plugin anymore; there is now a bundled version under /wlserver/server/
lib/. Also, several new tasks were added to the plugin, including support
for server installation from zip files, domain creation, start/stop servers, and
execution of inline WLST scripts.

Overview of WebLogic Server 12c and Related Technologies

[10]

•	 WebSockets support: The newest release 12.1.2, brings support for
the WebSocket protocol, which provides two-way and full-duplex
communication over a single TCP connection between clients and the
server. With this, we can open a direct connection between a browser
and the server, receiving and sending information in an asynchronous
way, opening possibilities to create Rich Internet Applications (RIA).

•	 OSGi bundles: The OSGi architecture is now available as a WebLogic
feature, providing us a way to create a set of configurations to define our
own modules and use its API to, for instance, start and stop modules and
acquire data sources. The implementation that comes with WebLogic
Server is Apache Felix 4.0.3.

•	 Server templates and dynamic servers/clusters: To make Oracle's Cloud
Application Foundation more flexible, Version 12.1.2 of WebLogic Server
introduced these concepts that basically give us an easy way to scale up
a WebLogic domain. Up to this version, we had to manually create and
configure managed servers to distribute workload; now, we create a
server template once, setting up a few basic points of information such as
name prefix, and create a dynamic cluster based on this template. When
the workload reaches a peak, we just instruct the environment to fire up
additional servers based on these configurations, and it's done. It's quick
and easy.

•	 Dynamic clustered JMS Servers: Another improvement that involves ease
of configuration when dealing with dynamic clusters is that now a JMS
Server—the component used to deploy JMS resources such as queues and
topics to a server—can be targeted to a WebLogic cluster. Previous versions
only accepted a managed server as a target for such components, and now
management and migration tasks are a lot easier to perform.

Overview of JDK 7
Version 7 of JDK was a huge release for Java, providing great functionality for a wide
group of developers and platforms, and Oracle WebLogic Server has been certified
on this version since WebLogic 11g. Even though this isn't a brand new feature, it is
an important one, so let's check some of the main features of this release:

•	 For those who work at the JVM level, InvokeDynamic (JSR 292) is the big
name, providing extensions for dynamically-typed languages (such as
Ruby, Perl, and Groovy) to perform at almost the same level as a pure
Java program.

•	 The new class loader architecture introduces safe multithreaded class
loading, among other related improvements.

Chapter 1

[11]

•	 Concurrency and collections updates (JSR 166) create new classes that
support the fork/join structure, new synchronization barriers, and a
utility class ThreadLocalRandom that generates random numbers in
applications invoking it from multiple threads.

•	 New APIs for filesystem access, part of NIO.2 (JSR 203), with support
file metadata, symbolic links, multicast datagrams, and socket-channel
binding. Also, there is a new file system provider for zip/jar files and
enhancements to the Watch Service API that allows you to register for
file change notifications.

•	 SDP (Socket Direct Protocol) support: An implementation of a high
performance network protocol that streams data over InfiniBand
connections on Linux and Solaris. To enable SDP you just need to set
a JVM system property and a configuration file.

InfiniBand is a communications link used in high-performance
computing (HPC) systems and datacenters that delivers low
latency, scalable throughput between processor nodes and I/O
systems, with transmission speeds up to 300 GBps.

•	 On the security side, there are many important enhancements, including
support for Elliptic Curve Cryptography (ECC), TLS 1.1/1.2, and NLTM
(Microsoft's security protocol).

•	 The JDBC was upgraded to Version 4.1, enabling the developer to use
try-catch structures when dealing with the objects of Connection,
Statement, and ResultSet—no need to write finally blocks to release
these components anymore.

•	 Enhancements to the current MBeans (Management Beans) available at com.
sun.management to access information about CPU usage on the system and
the JVM.

•	 There was a minor update on the XML stack, including JAXP 1.4 (JSR 206),
JAXB 2.2a (JSR 222), and JAX-WS 2.2 (JSR 224).

That's a pretty extensive list but it leaves out tons of RFEs (Request
for Enhancement) that were addressed in JDK 7; the complete
list can be found at http://www.oracle.com/technetwork/
java/javase/jdk7-relnotes-418459.html#jdk7changes.

www.allitebooks.com

http://www.allitebooks.org

Overview of WebLogic Server 12c and Related Technologies

[12]

The Project Coin
The objective of Project Coin is to define a set of simple changes to the Java language
that would make the developer's life easier. Some of these changes make their way to
JDK 7, and some are expected to be released with Version 8.

Let's explore some of these enhancements with quick examples.

The diamond operator
Following the DRY (Don't Repeat Yourself) principle, the diamond operator (<>)
allows developers to have protection at compile time by inferring types from generic
collections without repeating the declared type. Before JDK 7, if we had to declare a
map that contains a list of Strings, it would look something like this:

Map<String, List<String>> words = new HashMap<String,
 List<String>>();

In JDK 7 it can be replaced with the following statement:

Map<String, List<String>> words = new HashMap<>();

The try-with-resources statement
The try-with-resources feature is also known as Automatic Resource Management
because it's focused on resources such as connections, files, input/output streams,
but in the end a so-called resource can be defined as an object that needs to be
closed after being used. Basically, any object that implements the java.lang.
AutoClosable interface can benefit from the try-with-resources statement.

The feature allows you to simplify resource management by closing one or more
resources that were declared within a try block right after their use, without having
to write code to release the resources (usually inside finally blocks), avoiding
insertion of potential leaks.

A quick example on how this feature can be applied to execute a query is as follows:

try (Statement st = con.createStatement()) {
 ResultSet rs = st.executeQuery(q);

 // Process the results
} catch (SQLException e) {
 logger.error(e);
}

Chapter 1

[13]

In the preceding example, a JDBC Statement is created within the try context and
then used by a SQL query. After execution, the Statement will be automatically
closed by JVM. In previous versions, we had to manually dispose of the Statement
resource when it was no longer necessary, confirming that it isn't null and then
releasing it.

The try-with-resources statement can still use finally
blocks just like the traditional try statement; the difference is that
any catch or finally block is now executed after the resources
declared have been closed.

Strings in switch statements
Strings in switch statements is a long-awaited feature that you should have already
asked yourself: Why don't we have strings in a Java switch statement? Some might
say it is a performance issue or something like that, but there's not much sense
discussing an optimization that sometimes even the Java compiler doesn't care about.
Besides, even cell phones are multi-core nowadays, so processing power really isn't a
factor here.

So, developers can have a good time when crafting their code now; if we need to test
against a list of possible Strings, we can use one switch statement and save many if
and else blocks:

for (Order order : orderList) {
 switch (order.getStatus()) {
 case "NEW":
 processNewOrder(order);
 break;
 case "PENDING":
 processPendingOrder(order);
 break;
 case "CLOSED":
 processClosedOrder(order);
 break;
 default:
 processErrorOrder(order);
 break;
 }
}

Of course it's a simple example, but remember that you would need to replace the
case blocks with several cumbersome if and else statements.

Overview of WebLogic Server 12c and Related Technologies

[14]

Manipulating binary integral literals
The use of binary number manipulation is common in some programming domains
(compression encoding, network protocols, or any other type of bitmapped
application), though, Java supported the use of only other numeric representations
such as decimal, hexadecimal, and octal.

The idea of adding some methods to let the programmer write the numbers directly
in binary format is much more practical, and avoids injection of bugs, because the
programmer doesn't need to keep in mind that a special variable with numbers in
hexadecimal is in fact a number to be translated to binary.

Exception handling with multicatch statements
Usually it's a common requirement to write code that needs to catch multiple
exceptions and deal with error handling using a common approach (the same piece of
code replicated a few times). Until JDK 7, the simplest option was to write a common
method to reuse the same error treatment (or re-throw the exception) for some
common exceptions or even use the finally block (which is pretty nasty—getting
your code executed even with no exceptions? Please don't!). With multicatch, it is
possible to catch multiple exceptions and avoid this duplicated code in catch clauses.

A common exception handling block from Java 6 would look like this:

try {
 // try-code throwing IOException or SQLException
} catch (IOException ex) {
 logger.severe(ex.getMessage());
 throw ex;
} catch (SQLException ex) {
 logger.severe(ex.getMessage());
 throw ex;
}

After JDK 7 the same code can be written like this:

try {
 // try-code throwing IOException or SQLException
} catch (IOException | SQLException ex) {
 logger.severe(ex.getMessage());
 throw ex;
}

Chapter 1

[15]

Delving into Java EE 6
This topic deserves special attention because of the huge impact Java EE 6 made
into the way we develop enterprise Java applications by adding new, powerful
technologies and features to its specification. Several topics are mentioned here,
and most of them will be demonstrated throughout the next chapters:

•	 Java API for RESTful Web Services (JAX-RS, JSR 311): This enables
lightweight web services' development following the Representational
State Transfer (REST) architectural paradigm. The concept of manipulating
resources through different networks using a standard protocol such
as HTTP, is a growing paradigm and an alternative to the traditional
SOAP-based services.

•	 Context and Dependency Injection for Java EE Platform (CDI, JSR 299):
This provides a built-in dependency injection mechanism for Java EE that
offers a set of services that bind several components (for example, EJB and
JSF Managed Beans) to lifecycle contexts. Another facility provided by CDI is
a loosely coupled event mechanism that works with annotation and simple
POJOs (Plain Old Java Object). In a nutshell, the main objective of CDI is
to create a unified programming model for EJB and JSF while keeping other
important services (transactions, for instance) available to all Java EE tiers.

•	 Bean validation (JSR 303): Developers tend to validate objects in many
layers. Sometimes they generate duplicated code and may even forget to
replicate a validation logic to one of the layers, which can lead to catastrophic
consequences. To solve such problems, the bean validation framework
provides a standard set of validation rules that can be shared by all layers; so
the same rule can be applied to the user interface (through JSF and managed
beans) and more internal tiers (attached to JPA, for instance), avoiding
duplicated code.

•	 Enterprise JavaBeans 3.1: In this update of the EJB specification, the main
focus was to make it simple and easy to use. The most noticeable change is
that EJBs now can be packaged in WAR files, removing the need to produce
specific packages for EJBs and combine them in an EAR file. But other
important features were added, such as the following:

°° Singleton beans: These are the EJBs that can primarily be shared and
support concurrent access, with the guarantee that the container will
have only a single instance per JVM

°° Embeddable API for Java SE: With some limitations, it runs client
code and EJB instances in the same JVM on SE environments using
an embeddable container

Overview of WebLogic Server 12c and Related Technologies

[16]

°° EJB Lite: Since Java EE 6 has the concept of profiles, specific vendors
can choose to implement the full container or the Lite version with a
subset of EJB API

•	 Servlet 3.0: Servlets are one of the main components of Java EE since its
initial release, but few changes were made to its specification since then,
except for adding filters and web application events. Servlet 3.0 adds
important changes into the API such as the following:

°° Support for annotations: It's now possible to declare a servlet by just
adding an annotation (@WebServlet) to a Java class. There are also
annotation for filters, listeners, and parameters.

°° Asynchronous processing: Servlets now allow asynchronous method
calls. This feature helps applications to scale up, since it releases
the caller while the processing is done by the server, allowing other
requests to be accepted by the released thread.

•	 Java Persistence API 2.0: JPA 2.0 has some major enhancements over the
previous version. These new features include new annotations for mappings,
enhancements to Java Persistence Query Language (JPQL), typed queries,
shared cache, integration with bean validation, and probably the most
powerful feature, Criteria API for dynamic strongly-typed query creation.

•	 Java Server Faces 2.0: JSF 2.0 brings some important features long awaited by
the community such as official integration with Facelets (an XML-based view
declaration language), more options for error handling, better integration
with Ajax, and many more. In this release, there is a new concept of resource
and how you can integrate the different kinds (stylesheets, images, and
JavaScript files). Componentization and composites form the main theme,
with an easy API that supports the creation of UI components for reuse.

Under the topic of Java EE 6, we could list and discuss several updates
and enhancements in other areas, but that would be out of the scope of
this book. We'll be showing examples on most of what we have seen
here during the construction of case studies and the main application
that will be built along with the book.

Other technologies in the book
To be able to develop the application throughout this book, other products and
technologies will be used. A few of them are discussed in the following sections.

Chapter 1

[17]

Oracle Enterprise Pack for Eclipse
Oracle Enterprise Pack for Eclipse (OEPE) is a set of plugins for the Eclipse IDE that
enables Java EE application development and leverages the toolset of Oracle specific
technologies for Oracle Fusion Middleware.

The following is a list of key features that OEPE supports:

•	 Oracle WebLogic Server (including WLST, SCA, and shared libraries)
•	 Oracle Cloud
•	 Oracle Database
•	 Object Relational Mapping (ORM)
•	 Spring 3.2 integration
•	 Oracle Coherence

Oracle Coherence
Coherence provides a replicated and distributed data management and caching
services, on top of a peer-to-peer clustering protocol, shared across multiple servers
but with very high throughput, low response times, and predictable scalability.

In this book we're going to show examples of Coherence*Web, which is an HTTP
session management module dedicated to managing the session state in clustered
environments. This module integrates with WebLogic Server and provides a
pluggable mechanism to scale up Java EE applications, having the benefit of not
requiring any application instrumentation or changes to be activated.

PrimeFaces
PrimeFaces is a popular, free, and open source JSF component suite that provides
several extensions and has a rich set of components, including an HTML editor and
animated charts. It's very lightweight (only one jar, less than 2 MB) with no required
dependencies other than JSF itself, making it a breeze to use and create Java EE web
user interfaces.

MySQL
Since the very early years of the Web, MySQL empowers millions of websites and
systems worldwide, being considered the world's most used open source database.
It is a relational database system and supports many high profile products such as
Wikipedia, Google, Twitter, Facebook, and YouTube.

Overview of WebLogic Server 12c and Related Technologies

[18]

MySQL offers a huge and rich set of features, but one of the most important features
is the cross-platform support. So you can run the same product on Microsoft
Windows, GNU/Linux, FreeBSD, or even Apple's OS X.

The Cloud Application Foundation (CAF)
WebLogic Server is part of Oracle Cloud Application Foundation (CAF), which is
defined as a superset of products provided by Oracle that enable the infrastructure
for building cloud environments for private or public clouds, hosting end-user
applications.

Here's a graphical representation of the CAF stack, followed by a description of
each component:

Oracle Traffic Director

JMS Java EE
Coherence

Weblogic Server

Virtual Assembly Builder

Tuxedo

Cloud Application Foundation

Oracle Traffic Director
Oracle Traffic Director is a high-speed, layer-7 (the application layer of the OSI
Model) load balancer that can be set as the main entry point for HTTP and HTTPS
traffic for large volumes, low latency, and mission-critical systems. It is optimized for
Oracle Exalogic Elastic Cloud and leverages InfiniBand fabric for more throughput.

It can be configured to do traffic routing and to offload SSL/TLS, acting as the
termination point for HTTPS requests, reducing the overhead of security processing
on the application server. Also, it can improve performance for clients through
content caching and reducing impact on the backend servers.

Chapter 1

[19]

Oracle Tuxedo
Oracle Tuxedo runs mission-critical C/C++/COBOL applications in x86 servers
or cloud environments, with ultra-high performance and linear scalability.
It provides service-oriented infrastructure to manage distributed transaction
processing, tracking participants, and monitoring XA two-phase commit, thus,
ensuring that transactions are all committed or rolled back properly.

Oracle Virtual Assembly Builder
Oracle Virtual Assembly Builder provides an easy way for system administrators
to configure new environments of multitier applications in cloud and virtualized
environments. It allows drawing blueprint diagrams of the application topology
and wire logical connections between the different appliances that compose
the architecture.

Oracle Exalogic and WebLogic 12c
Oracle Exalogic is an engineered system, which means that it provides the best-
of-breed components (storage, compute nodes, network, operating system, and
software products) that are tested, tuned, and optimized to deliver extremely high
performance. It can be considered as the evolution of Oracle Grid architecture as it
moves into a concept of a Private Cloud in a Box platform, ideal for consolidation
of mission-critical and cloud systems.

WebLogic 12c is fully supported on Oracle Exalogic and has many enhancements
that can be enabled through WebLogic's Administration Console. These
enhancements leverage the Exalogic architecture and tune WebLogic Server to
perform using the benefits of SDP API, for example.

SDP or Socket Direct Protocol is a low-level network technology that
provides higher throughput. It is supported by JDK 7 and can be used
for inter-process communication in WebLogic.

Other major features that can be enabled for Exalogic are as follows:

•	 Scattered reads and gathered writes: This feature allows us to increase
the efficiency during I/O in environments with high network throughput

•	 Lazy deserialization: This feature allows us to increase efficiency for
session replication

•	 Self-tuning thread pool optimization: This feature allows us to increase
efficiency of the self-tuning thread pool by aligning it with the Exalogic
processor architecture threading capabilities

Overview of WebLogic Server 12c and Related Technologies

[20]

This book will not discuss WebLogic 12c features that are specific to Exalogic
systems, but it is important to know what can be accomplished through the use
of Oracle-engineered systems.

Web resources
For further reading about the topics discussed in this chapter, here is a list of links
with documentation or tutorials freely available on the Internet.

Java and Java EE 6
•	 Your First Cup: An Introduction to the Java EE Platform

°° http://docs.oracle.com/javaee/6/firstcup/doc/

•	 The Java EE 6 Tutorial
°° http://docs.oracle.com/javaee/6/tutorial/doc/

•	 Java API docs
°° http://docs.oracle.com/javaee/6/api/

•	 Java EE 6 Specification
°° http://www.jcp.org/en/jsr/detail?id=316

•	 Java SE 7 Specification
°° http://download.oracle.com/otndocs/jcp/java_se-7-final-

eval-spec/index.html

•	 Support for Dynamically Typed Languages Specification
°° http://www.jcp.org/en/jsr/detail?id=292

•	 Class file Specification
°° http://www.jcp.org/en/jsr/detail?id=202

•	 Concurrency Utilities Specification
°° http://www.jcp.org/en/jsr/detail?id=166

•	 More New I/O APIs Specification
°° http://www.jcp.org/en/jsr/detail?id=203

•	 JAXB 2.0 Specification
°° http://www.jcp.org/en/jsr/detail?id=222

•	 JAX-WS 2.0 Specification
°° http://www.jcp.org/en/jsr/detail?id=224

•	 JAX-RS Specification
°° http://www.jcp.org/en/jsr/detail?id=311

Chapter 1

[21]

•	 JSR 206: JavaTM API for XML Processing (JAXP) 1.3
°° http://www.jcp.org/en/jsr/detail?id=206

•	 Context and Dependency Injection Specification
°° http://www.jcp.org/en/jsr/detail?id=299

•	 Bean Validation Specification
°° http://www.jcp.org/en/jsr/detail?id=303

•	 The WebSocket Protocol
°° http://tools.ietf.org/html/rfc6455

•	 Code Samples
°° http://www.oracle.com/technetwork/java/javaee/

documentation/code-139018.html

WebLogic 12c
•	 Documentation

°° http://docs.oracle.com/middleware/1212/wls/index.html

•	 Developing applications
°° http://docs.oracle.com/middleware/1212/wls/wls-

developdeploy.htm

•	 What's new
°° http://docs.oracle.com/middleware/1212/wls/NOTES/index.

html#NOTES254

•	 YouTube channel
°° http://www.youtube.com/user/OracleWebLogic

•	 WebLogic Server community
°° http://www.oracle.com/technetwork/middleware/weblogic/

community/index.html

•	 Creating dynamic clusters
°° http://docs.oracle.com/middleware/1212/wls/CLUST/

dynamic_clusters.htm

•	 Exalogic overview
°° http://www.oracle.com/us/products/middleware/exalogic/

oracle-exalogic-brochure-1934171.pdf

•	 Using the Maven plugin
°° http://docs.oracle.com/middleware/1212/wls/WLPRG/maven.

htm#WLPRG586

www.allitebooks.com

http://www.allitebooks.org

Overview of WebLogic Server 12c and Related Technologies

[22]

Coherence
•	 Developer's guide

°° http://docs.oracle.com/middleware/1212/coherence/
coherence-developdeploy.htm

•	 Knowledge base
°° http://coherence.oracle.com/display/COH/Oracle+Coherence

+Knowledge+Base+Home

•	 Coherence Incubator
°° http://coherence.oracle.com/display/INC10/Home

•	 Webcasts
°° http://www.oracle.com/technetwork/middleware/coherence/

coherence-webcasts-098958.html

Other tools
•	 Oracle Enterprise Pack for Eclipse

°° http://www.oracle.com/technetwork/developer-tools/
eclipse/overview/index.html

•	 MySQL
°° http://dev.mysql.com

•	 PrimeFaces
°° http://primefaces.org

Summary
This chapter presented an overview of the latest Java SDK 7, Java EE 6 technologies,
and Oracle WebLogic 12c features. Most of them will be covered in this book. It also
positions WebLogic Server 12c in the Cloud Application Foundation architecture,
showing how co-related products such as Oracle Coherence can be integrated into a
cohesive solution.

In the next chapter, we're going to set up the development environment with all
the necessary components to create the application that will be used to demonstrate
several features of WebLogic Server in the book.

Setting Up the Environment
In this chapter we're going to set up all the software required to implement and
execute the code that we will be writing along the book. More specifically, we're
going to:

•	 Install JDK Version 1.7, which will be used by the application server and the
development environment

•	 Install Oracle WebLogic Server and Eclipse OEPE binaries
•	 Install a MySQL RDBMS server and configure a database
•	 Create and configure a WebLogic domain
•	 Configure the Eclipse IDE to recognize the WebLogic Server
•	 Install and configure an OpenLDAP server

About the directory structure
While writing this book, a couple of Unix-like operating systems were used, more
specifically Mac OS X and Ubuntu. So, when referencing a directory path, the format
adopted is /some/folder. If you are a Windows user, the equivalent path would be
C:\some\folder.

The base folder used in the book is /opt/packt/. Inside it, we're going to add a few
more folders to accommodate the necessary components. Here's the basic structure
you have to create before moving on to the next section:

/opt/packt/

 |- domains

 |- etc

 |- install

 |- workspace

Setting Up the Environment

[24]

Of course, you don't need to follow the preceding definitions. If so, just remember to
change the references accordingly, when mentioned.

Microsoft Windows users: Whenever asked to choose a directory
name, remember to select or create one without spaces to avoid
potential problems later on.

Installing JDK 1.7
Since Oracle WebLogic Server 12c offers support to both Java SE 6 and 7, we're
going to use the newest version, so we can code using a few developer-friendly
features, such as the diamond operator and multicatch statements, as outlined
in the The Project Coin section in Chapter 1, Overview of WebLogic Server 12c and
Related Technologies.

1.	 Access the download page at http://www.oracle.com/technetwork/java/
javase/downloads/index.html

2.	 Click on the DOWNLOAD button at the top of the page, or the one in the
JDK column inside the Java Platform, Standard Edition table. At the time
of writing, the newest JDK version was 7u21.

Remember that we need a JDK, not a JRE.

3.	 On the next page, click on the Accept License Agreement option button
and select the appropriate package for your system inside the Java SE
Development Kit 7u21 table:

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com
. If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

Chapter 2

[25]

The main difference between a 32-bit and a 64-bit version is memory
addressing—the former can address up to 4 GB of memory, and the
latter, 16 exabytes. As we're not going to run stress tests or highly
demanding processes, the 32-bit version gives us plenty of room to
play with.

5.	 After the download completes, unpack the file into the desired folder—/opt/
packt/install is the directory adopted by the book—or if you chose an
executable file, double-click on it and follow the installation process.

6.	 We now have a functional JDK installed as a sub-folder of the install
directory. If you want, add a JAVA_HOME environment variable to your
system pointing to your JDK root—that would be /opt/packt/install/
jdk1.7.0_21 if you're following the book's pattern. You don't strictly need
to do this in order to follow the book.

It is recommended to create a JAVA_HOME environment variable for
most cases so you can update your Java versions without further
impacts. For the rest of the book, we're going to refer to Java's
installation folder as $JAVA_HOME.

Setting Up the Environment

[26]

Installing Oracle WebLogic Server
Oracle WebLogic Server's installation is pretty straightforward; we just need to pay
attention to the Java SDK selection in order to use the one we just installed.

1.	 Navigate to the download page at http://www.oracle.com/technetwork/
middleware/weblogic/downloads/index.html.

2.	 Click on the Accept License Agreement option button.
3.	 Right below the option box, there's a drop-down list with five entries. Select

the entry Generic WebLogic Server and Coherence installer (880MB) and
click on the Download File button.

Another option is to download the zip distribution; with barely one
fifth the size of the generic installer, it includes all core artifacts, leaving
out samples, the Derby database, and web server plugins, among other
features. Also, there's no way to apply patches to this installation.
If bandwidth is a concern, go ahead and get this file instead of the
generic one. Check the README.txt file inside the package for
instructions on how to install and configure a domain—the steps
described in this chapter don't apply.

4.	 You will be redirected to a login page where you must enter your Oracle
credentials (if you don't have one yet, sign up for an account now; you just
need to fill up a short form).

5.	 When the download is completed, execute the installer using the Java binary
installed in the previous section:
/oracle/jdk1.7.0_21/bin/java/java -jar wls_121200.jar

6.	 The first step of the installation asks you to set up an inventory, which is the
engine used by Oracle (along with OPatch) to apply upgrades and patches to
its software. Enter /opt/packt/inventory as Inventory Directory, select a
system group, and click on OK.

You may proceed and run the inventory script created in the folder you
entered, or just go ahead and continue the installation process—we're not
going to apply any patches to the installation, so this step is optional.

7.	 Click on Next on the Welcome screen.
8.	 Enter the installation directory for the software, /opt/packt/install, and

click on Next.

Chapter 2

[27]

The path you just entered is called Oracle Home, where the
WebLogic Server binaries will be installed. If you are familiar
with the previous versions of WebLogic, this is what was called
Middleware Home, and earlier still, it used to be the BEA Home.
In a nutshell, this folder is the root point where other Oracle
products, such as SOA Suite, can be installed later, using the
software that is already present as its starting point.
If you're using Windows, remember to choose a folder name with
no spaces in it. This is critical to run things smoothly.

9.	 On the Installation Type screen, you can choose between the default
WebLogic Server Installation and Complete Installation; the difference
between them is that the latter installs everything from the former plus the
samples for both WebLogic and Coherence. Now click on Next.

10.	 The Prerequisite Checks screen does a basic validation of the environment,
showing warning messages for those that don't pass; for instance, if you're
using Ubuntu, which is not a certified platform, a warning is shown, and can
be safely ignored. If no other warnings or errors are present, go ahead and
click on Next.

11.	 You may want to register with Oracle Support in order to receive security
updates. If you don't want to, just uncheck the I wish to receive security
updates via My Oracle Support option and click on Next.

12.	 A summary is presented. Go ahead and click on Install to start the
installation process.

If this sequence is going to be repeated frequently, you can create
a response file by clicking on the Save Response File button at the
bottom of the summary tree, and execute a silent install later. Get a
link to the official documentation in the Web resources section at the
end of the chapter.

13.	 After it finishes, uncheck the Automatically Launch the Configuration
Wizard checkbox and click on Finish to close the installer.

It is recommended to export an environment variable pointing to your
WebLogic's installation folder. Inside Oracle's documentation and
usually in real environments, this is referred to as MW_HOME (the
middleware home). For example: export MW_HOME=/opt/packt/
install. This is how we will refer to this folder from now on.

Setting Up the Environment

[28]

Installing Oracle Enterprise Pack for
Eclipse (OEPE)
The installation package we got doesn't come bundled with a development
environment (Oracle JDeveloper, NetBeans, or Eclipse/OEPE). To create the
book's applications, we decided to use Eclipse along with Oracle's application
server plugin, OEPE, which is a great tool for Java EE development, integrating
the IDE with WebLogic Server and other Java EE application servers. Perform the
following steps to install it:

1.	 Navigate to http://www.oracle.com/technetwork/developer-tools/
eclipse/downloads/index.html.

2.	 Click on the option button for Accept License Agreement, choose the Eclipse
version that runs on your system, and click on it to start the download.

3.	 After the download completes, unzip the installer in the directory $MW_HOME/
oepe and it's done.

OEPE's newest version, 12.1.2.1, is based on Eclipse 4.3 Kepler,
the most up-to-date version of Eclipse.

Installing MySQL
In order to explore Java Persistence, we need to install and configure a database
server, and MySQL is a logical choice, being widely adopted and lightweight.

The software is available to several operating systems: Microsoft Windows, Debian,
SUSE Linux Enterprise Server, Red Hat, Solaris, Mac OS X, and so on.

Installing on Linux using a package manager
If you are using a Linux distribution such as Ubuntu or Red Hat, most likely you
already have the software available, you just need to install it with a command like
this (you may want to update your repositories and packages to be sure that your
system is up-to-date):

sudo apt-get install mysql-server mysql-client

The stable version at the time of writing is 5.5.27, but most likely the
repositories have older versions, for instance, 5.1 on Ubuntu 11. This
version is pretty much enough to run the code we're going to explore
throughout the book, so you can go ahead and install it.

Chapter 2

[29]

The system is going to suggest a lot of other packages, but we don't need them. Just
press Y to start the procedure. When applying the changes, the installation procedure
will ask you to enter a password for user root (MySQL's administration user):

Downloading and installing manually
If your system doesn't provide a package manager, perform the following steps to
manually download and install the product:

1.	 Access MySQL's download page at http://dev.mysql.com/downloads/
mysql/.

2.	 At the Generally Available (GA) Releases tab, select your platform. The list
of available downloads will be updated automatically.

3.	 Find the package that best fits your needs and click on Download.
4.	 A login page is presented. If you don't have or don't want to create an

account, click on the No thanks, just start my download. link.

You have to download both MySQL Server and Client Utilities
packages, if the selected platform doesn't have a unified package.

5.	 The detailed installation procedure for every platform can be found at
http://dev.mysql.com/doc/refman/5.5/en/installing.html; just
follow the instructions.

Setting Up the Environment

[30]

Disabling case sensitivity for tables on Unix/
Linux
If you are using a UNIX or Linux distribution, most likely the filesystem you're using
differentiates between lower case and upper case in filenames.

As MySQL databases and tables persist as folders and files, respectively, we must
instruct MySQL to ignore these differences when handling table names by editing
the engine's configuration file—/etc/mysql/my.cnf is default—and adding the
following line inside the mysqld group:

lower_case_table_names=1

Restart the server with the appropriate command for your environment, and we're
good to go:

sudo service mysql restart

Some Windows specifics
If you are using Microsoft Windows, here are the points to note when running
its installer:

1.	 We will not use any special feature of the product, so selecting Standard
Configuration is good enough:

Chapter 2

[31]

2.	 You can set it to start at system startup by leaving both Install as Windows
Service and Launch the MySQL Server automatically flags enabled:

3.	 Finally, set a password for root access (MySQL's administrator user) and
write it down to use in the next section:

4.	 Click on Next, then Execute, and the installation process will begin. Close the
wizard by clicking on Finish.

www.allitebooks.com

http://www.allitebooks.org

Setting Up the Environment

[32]

Configuring MySQL databases
If you chose to set it up as a service, or if this is the nature of your platform, then
MySQL is already running upon completion of the installation procedure. To check
this, open a terminal and enter the following command to start MySQL Monitor:

mysql -u root -p

If a message resembling ERROR 2002 (HY000): Can't connect to local MySQL server
through socket '/var/run/mysqld/mysqld.sock' (2) shows up, you must start the
server by issuing the proper command for your platform:

sudo service mysql start

Then, run the first command again. Enter the password you typed when installing
MySQL, and you should be connected to the server.

By default, MySQL listener is bound to the loopback interface, so
only local access is allowed. If you want to access the database from
another machine, edit the configuration file (/etc/mysql/my.cnf
or equivalent) and change the line:

bind-address = 127.0.0.1

To point to the desired network address:
bind-address = 192.168.0.5

Save the file and restart MySQL.

We're going to simulate two different business entities (which is explained in detail
at the beginning of Chapter 3, Java EE Basics – Persistence, Query, and Presentation),
so we need to create two separate databases and users on MySQL by running the
following commands from MySQL Monitor:

create database store_db;

create database theater_db;

grant all on store_db.* to store_user@localhost identified by
 'store';

grant all on theater_db.* to theater_user@localhost identified by
 'theater';

flush privileges;

quit;

Chapter 2

[33]

In case you are planning to connect from a machine or host other than
localhost, change the command to:

grant all on store_db.* to store_user@'%' identified by
 'store';

grant all on theater_db.* to theater_user@'%' identified
 by 'theater';

We've just created the users, the databases, and granted the corresponding access.

Now, to create and populate the data structures, we're going to use the same
command, but pass a script as the parameter for each database. From the command
prompt run:

mysql -D store_db -u store_user -p < store_db.sql

mysql -D theater_db -u theater_user -p < theater_db.sql

Files store_db.sql and theater_db.sql are located in the
code bundle, available for download at the Packt Publishing
website www.packtpub.com.

You should not see any error messages while the script is running. When the scripts
end, the databases are configured and loaded with data.

Preparing PrimeFaces
PrimeFaces is a suite of components built on top of JSF 2.x, giving you lots of first-
class widgets to use on a Rich Internet Application (RIA) solution, such as charts
and mind maps. Its only requirement is to choose between Oracle Mojarra and
Apache MyFaces, both JSF 2.0 implementations, and to reference the chosen one. The
current implementation version at the time of writing is 3.5.

Oracle WebLogic Server 12c comes with a JSF 2.0 implementation
(Oracle Mojarra) enabled at its classpath, so we don't need to
download anything but PrimeFaces.

Downloading the binaries
To use PrimeFaces, we must download it from http://www.primefaces.org/
downloads.html. You can choose between Binary, Source, and Bundle packages.

Setting Up the Environment

[34]

To follow the book, getting the binaries is enough, but if you plan to
use PrimeFaces for real work, the Bundle option would be a good
idea, since it includes the binaries, source code, API Javadocs, and
taglib documentation.

The official documentation is a PDF available at http://www.primefaces.org/
documentation.html with details on every component of the framework. And
the most valuable source of information is the ShowCase page, with samples and
working code for every component, available at http://www.primefaces.org/
showcase/ui/.

PrimeFaces can be configured with JQuery's ThemeRoller (http://jqueryui.
com/themeroller/), and there are lots of predefined themes available at http://
primefaces.org/themes.html. You can also access the showcase mentioned
previously and see how the themes feel like by selecting different names from the
top left drop-down box.

Theme packages can be downloaded from http://repository.primefaces.org/
org/primefaces/themes/. Grab the themes that appeal to you by clicking on the
folder with the same name, then clicking again on the highest version number and
selecting the file with extension .jar.

Download at least one theme; we're going to use it in the next section
to compose a shared library—ui-lightness is the authors' choice.

Creating a shared library
Shared libraries are a handy way to make different types of resources available
between applications deployed on the same domain, avoiding the need to add them
inside each application package or to change the classpath (and the unavoidable
restart to make the new libraries available).

There is another way to share libraries called optional packages, where you can
deploy a single plain JAR file as a library, and reference it from your application. The
main difference between the two concepts is that a shared library can be a Java EE
module (have a few EJBs, for instance), and an optional package is a standard Java
library that can be shared by many applications without having to put the library
inside the deployment package or adding it to the server's classpath.

Chapter 2

[35]

As we're going to use PrimeFaces and at least one theme package,
the more sensible way to go is to construct a shared library.

For a full list of available modules, the differences between shared libraries and
optional packages, and detailed specs on how to build and reference them, refer to
http://docs.oracle.com/middleware/1212/wls/WLPRG/libraries.htm.

We're going to use /opt/packt/etc as the base folder to keep
files that do not directly relate to installation procedures or the
development workspace.

The following steps show how to create the shared library:

1.	 Create a folder to hold the contents of the library and a few subdirectories:
cd /opt/packt/etc

mkdir ./primeSL

cd primeSL

mkdir ./META-INF

mkdir ./WEB-INF

mkdir ./WEB-INF/lib

2.	 Copy the JAR files downloaded in the previous section—primefaces-
3.5.jar, ui-lightness-1.0.10.jar and any other themes you chose—to
the lib folder.

3.	 Create a file named MANIFEST.MF inside META-INF with the following
content:
Manifest-Version: 1.0
Extension-Name: primefaces
Specification-Version: 3.5
Implementation-Version: 3.5

4.	 Compress the contents of /opt/packt/etc/primeSL into a file named
primefacesSL.war:
cd /opt/packt/etc/primeSL

zip -r primeSL.war */*

Make sure that folders META-INF and WEB-INF are at the highest
level of the WAR file.

5.	 The shared library is ready to be deployed.

Setting Up the Environment

[36]

Now that we have the assembled package, here's some insight about the MANIFEST.MF
file we just created:

•	 The extension-name attribute is the name that we're going to use to
reference the shared library at our projects

•	 The specification-version attribute is used to indicate which version this
library exposes

•	 Finally, entry implementation-version is related to package versioning, so
the developer can pin to a specific build version, if necessary

Usually, this last entry is not declared, you only need to stick to a spec
version. If a new release of PrimeFaces, let's say version 3.5.1, is made
available, and we only declared specification-version, there's
no need to update MANIFEST.MF.

Setting up a WebLogic domain
As you may know, after finishing the installation of Oracle WebLogic Server, you
have the necessary binaries to start a container, but there is no configured server to
deploy your code yet (unless you installed the samples, but we're not going to use
them). To accomplish this, you have to create a domain consisting of one or more
server instances. Your code runs on these instances.

We're going to use a basic domain template, consisting of just one instance, since we
don't have any scalability or high availability requirements for the time being.

Concepts related to how to configure an Oracle WebLogic Server
environment—domains, clusters, machines, and so on—are covered
in Chapter 10, Scaling Up the Application. For now, we only have to
know that we need an instance to run the projects on, and it is part
of a domain, which is the component that OEPE links to.

To create it, follow the ensuing steps:

1.	 Start the Configuration Wizard script, config.cmd (Windows) or config.sh
(others), located at $MW_HOME/wlserver/common/bin/.

2.	 Leave the Create a new domain option, enter /opt/packt/domains/
tickets as Domain Location and click on Next:

Chapter 2

[37]

3.	 We are going to use only the Basic WebLogic Server Domain template:

Setting Up the Environment

[38]

4.	 Configure the administrator's name (login) and password and navigate to the
next page.

5.	 Leave the Development option selected under Domain Mode, make sure
that the 1.7 JDK we installed at the start of this chapter is selected and click
on Next twice.

6.	 On the Configuration Summary screen, click the Create button to start
the process.

By default, the server instance is bound to TCP port 7001. If you have
other software using this port, check Administration Server on the
Advanced Configuration screen, click on Next and change the Listen
port field to another value.

7.	 When the process is done, click on the Next button to show information
about the brand new domain, and click on Finish to close the wizard.

It is recommended to export an environment variable DOMAIN_HOME
that points to the domain you are currently working on, tickets
in this case. For example: export DOMAIN_HOME=/opt/packt/
domains/tickets.

Configuring Eclipse and OEPE
The next step is to configure the Eclipse IDE so it knows about Oracle WebLogic
Server's installation, the domain we created, and PrimeFaces' shared library.

Linking WebLogic's runtime environment
First, we're going to tell Eclipse where to find WebLogic's runtime environment:

1.	 Launch the Eclipse IDE by running the following command:
$MW_HOME/oepe/eclipse

Or open the shortcut created by the installation process.

2.	 Enter /opt/packt/workspace on the Workspace Launcher screen.
3.	 Open the Preferences screen using the menu – Window → Preference.
4.	 In the filter field, type server, click on the Runtime Environment entry

and then the Add... button.

Chapter 2

[39]

5.	 In the new window, type 12c in the filter field, select the entry Oracle
WebLogic Server 12c (12.1.2) and click on Next.

6.	 Fill the field WebLogic home with the path where you installed
the server—$MW_HOME/wlserver—and the other fields should be
filled automatically:

7.	 Click on Finish to close this window and return to the Preferences screen.

Adding a reference to the PrimeFaces' shared
library
Now we're going to set up the PrimeFaces shared library, so we can reference it from
our projects:

1.	 On the Preferences screen, type shared to filter the entries, and click on
Shared Libraries.

2.	 The list of configured shared libraries is going to show up. Click on Add...
to insert a new one.

Setting Up the Environment

[40]

3.	 On the pop-up window, type in the full path of your primeSL.war file, or
find it using the Browse... button.

The location of the file is /opt/packt/etc/primeSL/
primeSL.war if you're following the book's pattern.

4.	 The information we entered in the MANIFEST.MF file will be shown along
with the JAR files that compose the shared library:

5.	 Click on OK to confirm the procedure, and then click on OK again on the
Preferences window to close it.

Linking WebLogic Server's instance
In order to start and stop the server from within Eclipse, along other actions such as
package, deploy, and debug applications using the environment, we must inform the
IDE about WebLogic's configured domain and server. To accomplish this, perform
the following steps:

1.	 Navigate to Window | Show View | Other... and type server in the Filter
field; now double-click on the Servers entry.

2.	 The Servers tab is going to show up. Click on the No servers are available.
Click this link to create a new server… link inside it to open the Define a
New Server window.

Chapter 2

[41]

3.	 As we only have one runtime environment configured, Eclipse suggests it at
the first screen. Just click on Next.

4.	 Now, enter your domain path—the whole value of /$DOMAIN_HOME—and
click on Finish. Here's the final configuration:

We left the Local server type on this screen, meaning that OEPE has
direct access to the server. If you need to connect to a development
server, for instance, Remote is the way to go. Remember that OEPE
still needs to access WebLogic Server's modules and libraries to
compile your projects, so a local copy of it must be present, even
though you will deploy them to a remote server.

5.	 The new server is going to appear at the Servers tab. Right-click on it and
select the Properties entry from the context menu.

www.allitebooks.com

http://www.allitebooks.org

Setting Up the Environment

[42]

6.	 On the Properties window, click on Weblogic then Publishing, and select
Publish as an exploded archive from the Publishing mode group:

7.	 Click on OK to close the window, and it's done.

Referencing MySQL databases
The last step is to configure the data sources that the application is going to use at
WebLogic, and create links to these databases at Eclipse. This kind of connection is a
data source (DS) inside WebLogic Server.

In earlier versions of WebLogic Server, you were supposed to
configure both a connection pool and a data source. Now, both
concepts are contained within a data source, which is a logical
move—sharing a pool of connections but not the link to it (the data
source) may lead to problems, since no application could predict if
others were using the underlying pool, and worst yet, how.

Chapter 2

[43]

Creating WebLogic data sources
As we just finished enabling the domain at Eclipse, we can start the server from there:

1.	 In the Servers tab, right-click on the domain name and then Start from the
context menu, or if you prefer to start it manually, OEPE will synchronize to
show that the server is up and running.

2.	 The focus will switch to the Console tab. After 15 to 30 seconds, a message
stating that the server is running is going to show up (<BEA-000360><The
server started in RUNNING mode.>) and the focus will get back to the
Servers tab.

3.	 Right-click again on the server name, select Go To, and then Admin Console
to open a browser window pointing to the administration console.

The default address of the administration console is
http://localhost:7001/console.

4.	 Enter your administrator's credentials (the username and password you set
when creating the domain) and click on Login. The initial page shows you a
list of basically every resource you can configure. Find the link Data Sources
inside the Services group and click on it.

5.	 On the new page, click on New, then click on Generic Data Source and then
on Next.

6.	 Fill the fields as follows and click on Next:
°° Name: Store DS
°° JNDI Name: jdbc/tickets/store
°° Database Type: MySQL

7.	 Leave the default value for the driver, MySQL's Driver (Type 4) Versions:
using com.mysql.jdbc.Driver, and click on Next.

Oracle WebLogic Server already comes with a MySQL driver,
so we don't need any additional downloads in order to create a
Data Source that points to this database engine.

8.	 Select the Logging Last Resource option and go to the next page.

Setting Up the Environment

[44]

As we're using a driver that doesn't support global (distributed)
transactions—transactions that coordinate several resources as a single
unit—we will emulate its behavior by enabling the Emulate Two-Phase
Commit option.
The Logging Last Resource option is an alternative to this emulation
that brings performance and reliability improvements. For detailed
advantages and considerations about it, check the Web resources
section at the end of the chapter.

9.	 Enter the following values and click on Next:
°° Database Name: store_db
°° Host Name: localhost
°° Port: 3306 (this is the default value)
°° Database User Name: store_user
°° Password and Confirmation: store

10.	 There's no need to change any values here. Click on the Test Configuration
button at the top of the page and a message Connection test succeeded must
show up right above the test button. Click on Next.

If the test returned an error, you must check the message and figure
out what went wrong—an invalid credential, MySQL server is
down or a typo are the most likely causes.

11.	 Finally, select the server on which the resource is to be made available—
AdminServer is the only one on our domain—and click on Finish to commit
the changes.

12.	 Now, create another data source following the same steps, but changing
these fields:

°° Name: Theater DS
°° JNDI Name: jdbc/tickets/theater
°° Database Name: theater_db
°° Database User Name: theater_user
°° Password and Confirmation: theater

Chapter 2

[45]

You must have a list of data sources like the following one by now:

Adding database connections to Eclipse
Now we're going to inform Eclipse/OEPE about the databases, so we can use its
wizards later. Go back to Eclipse and execute the following steps:

1.	 Find or open the Data Source Explorer view (In the menu, navigate to
Window | Show View | Other | Data Source Explorer).

2.	 Right-click on Database Connections and select New... in the context menu.
3.	 Select MySQL, type MySQL – Store as Name then click on Next.
4.	 Click on the New Driver Definition button beside the Drivers dropdown.
5.	 Select MySQL JDBC Driver version "5.1" and go to the Jar List tab.
6.	 Select the entry mysql-connector-java-5.1.0-bin.jar and click on Remove

JAR/Zip, then click on Add JAR/Zip.
7.	 On the pop-up window, navigate to $MW_HOME and continue to the

subdirectory ./oracle_common/modules/mysql-connector-java-
commercial-5.1.22/.

8.	 Select the file mysql-connector-java-commercial-5.1.22-bin.jar and
click on OK.

9.	 The New Connection Profile window is going to pop up, change the
following fields:

°° Database: store_db
°° URL: jdbc:mysql://localhost:3306/store_db
°° User name: store_user
°° Password: store

Setting Up the Environment

[46]

°° Check Save password

10.	 Click on Test Connection, and you should see a Ping succeeded! message.

If this is not the case, go back, check if you entered the correct values
and run the test again. You may need to start up the MySQL Server.

11.	 Click on Finish.

Now we need to execute the same steps mentioned earlier, but this time pointing to
the Theater database. Here are the fields you need to change:

•	 Connection name: MySQL – Theater
•	 Database: theater_db
•	 URL: jdbc:mysql://localhost:3306/theater_db
•	 User name: theater_user
•	 Password: theater

Chapter 2

[47]

The last step is to create and configure an OpenLDAP server, which will be accessed
by WebLogic's instance when we discuss security features.

Using OpenLDAP
OpenLDAP is a cross-platform, free, and open source implementation of a
Lightweight Directory Access Protocol (LDAP) server, released under a BSD license.
It was started in 1998 and since then has had active development and constant
releases, being widely adopted by many commercial-grade systems and applications.

Although WebLogic server includes its own embedded LDAP server for default
security management, it's neither used nor recommended for application-specific
security management. That's when third-party LDAP servers and products are
recommended and offer much more flexibility and features for a real-world scenario.

Note that you can use WebLogic embedded LDAP for the examples in
this book, although we do recommend the experience of creating and
configuring an Authentication Provider outside WebLogic.

In this section we're going to provide general guidelines for OpenLDAP
configuration, but due to the way different operating systems package the software,
some configuration files may not be present at the same paths. Such differences may
not impact the ideas expressed in this section.

Installing OpenLDAP
The OpenLDAP software is available to several operating systems: Microsoft
Windows, Debian, SuSE Linux Enterprise Server, Red Hat, Solaris, Mac OS X,
and so on.

It can easily be installed through package managers such as RPM, APT, or MacPorts
on Linux and Mac using the following commands:

For Linux with APT:

sudo apt-get install slapd ldap-utils

For RPM-based systems:

sudo yum install openldap-servers openldap-clients nss_ldap

For Mac OSX:

sudo port install openldap

Setting Up the Environment

[48]

Windows users can download and install the executable package available at
http://userbooster.de/en/download/openldap-for-windows.aspx.

The installation may ask for a password that will be used for the rootdn
user, which is the main user for an OpenLDAP installation. Take note of
this password as we're going to use it later.
We are currently using version 2.4.35 but any 2.4+ release of OpenLDAP
will be sufficient for the features we're going to implement.

Configuring an OpenLDAP server
Under some distributions, OpenLDAP provides ldap.conf and slapd.conf files
with standard values. There are cases where these files must be copied or renamed
from default files that come as part of the distribution. For example, on a Mac OS X
system, the following files must be copied or renamed:

•	 /private/etc/openldap/ldap.conf.default to ldap.conf
•	 /private/etc/openldap/slapd.conf.default to slapd.conf
•	 /private/var/db/openldap/openldap-data/DB_CONFIG.example to DB_

CONFIG

On Ubuntu Linux, these steps can be skipped as the configuration files are already at
the /etc/ldap directory.

It's worth mentioning that there are even YouTube videos explaining
how to do the basic setup of an LDAP server on Ubuntu and other
popular Linux distributions. Refer to them if you have problems on
performing the basic operations and check this section again in order to
make the specific configurations for our usage.

Files ldap.conf and slapd.conf are the most important ones on an OpenLDAP
configuration, with DB_CONFIG being the file-based database that stores runtime
configuration such as users and groups.

After copying or renaming the files, open the ldap.conf (under /private/etc/
openldap on Mac or /etc/ldap/ldap.conf on Ubuntu/Linux) so we can set or
uncomment the BASE value used for an LDAP tree. Note that we're going to use
example.com as our base domain values:

Make sure you have the BASE uncommented
BASE dc=example,dc=com
#URI ldap://ldap.example.com ldap://ldap-master.example.com:666

Chapter 2

[49]

Use the command slappasswd to generate an encoded password or use the default
password secret when asked for a password on the next command. Depending on
your OS you may have already set this password during the installation.

Example:

$ slappasswd -s welcome1

{SSHA}Pcvcy4CpSL4BVLA0MWLtKM9XbV3Tw3q+

Note that this hash will change every time this command is executed.

Now we're going to use this hashed value on rootpw variable in the configuration
file. Also check or set suffix and rootdn values on slapd.conf as follows:

suffix "dc=example,dc=com"
rootdn "cn=Manager,dc=example,dc=com"
Use of strong authentication is encouraged
rootpw {SSHA}Pcvcy4CpSL4BVLA0MWLtKM9XbV3Tw3q+

Still in slapd.conf there is a section that includes schemas used by this instance
of OpenLDAP. Enable additional schemas to store other commonly required
information and structures under the directory service:

#
See slapd.conf(5) for details on configuration options.
This file should NOT be world readable.
#
include /private/etc/openldap/schema/core.schema
include /private/etc/openldap/schema/cosine.schema
include /private/etc/openldap/schema/nis.schema
include /private/etc/openldap/schema/inetorgperson.schema

On Ubuntu these steps can be done through the following commands:
ldapadd -Y EXTERNAL -H ldapi:/// -f /etc/ldap/schema/
 cosine.ldif

ldapadd -Y EXTERNAL -H ldapi:/// -f /etc/ldap/schema/
 inetorgperson.ldif

ldapadd -Y EXTERNAL -H ldapi:/// -f /etc/ldap/schema/
 nis.ldif

Setting Up the Environment

[50]

In order to test what we have configured so far, we need to restart the OpenLDAP
server by issuing a command like the following:

sudo /etc/init.d/slapd restart

Or as follows:

sudo /usr/libexec/slapd -d3

A common error when setting these under Linux environments
is when the starting script does not load your configuration files.
In order to prevent those problems take a quick look at the code
present under /etc/init.d/slapd.

Loading sample entries and testing
Now you can load the default entries from the export file provided with the book
bundle using the following command:

sudo ldapadd -c -D "cn=Manager,dc=example,dc=com" -W -f
 ldap_export.ldif

And after that you can list all the entries using a command like this:

ldapsearch -z 0 -b "dc=example,dc=com" -D "cn=Manager,
 dc=example,dc=com" -W "(objectclass=*)"

If you followed all the steps and imported the file we're providing with the book, the
output should look like this:

Enter LDAP Password:
extended LDIF
#
LDAPv3
base <dc=example,dc=com> with scope subtree
filter: (objectclass=*)
requesting: ALL
#

example.com
dn: dc=example,dc=com
objectClass: organizationalUnit
objectClass: dcObject
dc: example
ou: example

Chapter 2

[51]

people, example.com
dn: ou=people,dc=example,dc=com
objectClass: top
objectClass: organizationalUnit
ou: people

groups, example.com
dn: ou=groups,dc=example,dc=com
objectClass: top
objectClass: organizationalUnit
ou: groups

robert@example.com, people, example.com
dn: cn=robert@example.com,ou=people,dc=example,dc=com
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
cn: robert@example.com
sn: Robert
mail: robert@example.com
userPassword: XXXX

admin, groups, example.com
dn: cn=admin,ou=groups,dc=example,dc=com
objectClass: top
objectClass: groupOfNames
cn: admin
member: cn=superuser@example.com,ou=people,dc=example,dc=com
ou: admin

john@example.com, people, example.com
dn: cn=john@example.com,ou=people,dc=example,dc=com
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
cn: john@example.com
sn: john
userPassword:: XXXX

As with other commands in this section, the command to test may
change depending on your operating system.

www.allitebooks.com

http://www.allitebooks.org

Setting Up the Environment

[52]

And that's it, we now have every required piece of software installed and configured.

Web resources
•	 Oracle WebLogic Server Certification Matrix

°° http://www.oracle.com/technetwork/middleware/ias/
downloads/fusion-certification-100350.html

°° http://www.oracle.com/technetwork/middleware/fusion-
middleware/documentation/fmw-1212certmatrix-1970069.xls

•	 Exploded Deploy
°° http://docs.oracle.com/middleware/1212/wls/INTRO/

deploying.htm

•	 Creating Shared Java EE Libraries and Optional Packages
°° http://docs.oracle.com/middleware/1212/wls/WLPRG/

libraries.htm

°° http://blogs.oracle.com/jamesbayer/entry/weblogic_
server_shared_librari_1

•	 Logging Last Resource Transaction Option
°° http://docs.oracle.com/middleware/1212/wls/JDBCA/

transactions.htm

•	 Configuring Your Domain For Advanced Web Services Features
°° http://docs.oracle.com/middleware/1212/wls/WSGET/jax-ws-

setenv.htm#CACHCAJD

•	 Features and Standards Supported by WebLogic Web Services
°° http://docs.oracle.com/middleware/1212/wls/WSOVR/

weblogic-web-service-standards.htm

•	 PrimeFaces
°° http://www.primefaces.org/downloads.html

°° http://www.primefaces.org/documentation.html

°° http://www.primefaces.org/showcase/ui/

Chapter 2

[53]

•	 OpenLDAP
°° http://www.openldap.org/

°° http://www.openldap.org/doc/admin24/quickstart.html

•	 OpenLDAP for Windows
°° http://userbooster.de/en/download/openldap-for-windows.

aspx

•	 OpenLDAP configuration on Ubuntu

°° https://help.ubuntu.com/community/OpenLDAPServer

Summary
At this point, we have installed and configured the Oracle WebLogic Server,
an IDE (Eclipse OEPE), and the additional pieces of software needed to develop
our applications.

The following is a table with all paths and environment variables that you may
have defined in your environment in this chapter:

Variable Path
JAVA_HOME /opt/packt/install/jdk1.7.0_21
DOMAIN_HOME /opt/packt/domains/tickets
MW_HOME /opt/packt/install

In the next chapter, we're going to set up the projects that will evolve throughout
the book, develop the business entities, and use the libraries and packages we've
just created. These projects will be deployed to the server and we will run a simple
test to make sure everything is properly configured.

Java EE Basics –
Persistence, Query, and

Presentation
In the previous chapter, we set up all the necessary software to develop and execute
the applications that will be developed throughout the book. In this chapter, we will:

•	 Take a look at the business case used as a background to the technical
features and implementation

•	 Create an entity project to provide isolation and reuse of business entities,
defining a persistence layer

•	 Create a web project with a simple query page that would access the entities
we just created

•	 Deploy and run both projects to make sure every component—database,
application server, and libraries—is configured and working as expected

Java EE Basics – Persistence, Query, and Presentation

[56]

The business scenario – movie
ticket system
To explore the features delivered by the WebLogic Server and its associated
technologies/products, we're going to develop a system to search and reserve
movie tickets with two main business entities—the customer and the theater:

Theater

Reservation
Service

Show
Exhibitions Redeem

Ticket

Customer

Theater
Administrator

Search

Store

Reserve
Ticket

Browse
Movies

Browse
Theaters

Login

Sign-up

<users> <users>

The main focus of the business is to provide a central point for movie theater
customers to browse, search, and reserve tickets. In order to show up as a search
result, a theater location (or chain) must close a deal with us. By doing so, they
don't have to keep all the necessary structure to have an online presence, and we
get our income from a monthly fee paid by each theater plus a small percentage
of each ticket we sell.

Chapter 3

[57]

Some of the data, such as the list of movies and locations are located at the central
module, Store, and others, such as seat availability are held by each theater. Upon
closing a partnership, we hand over a small application module that the theater's
IT personnel must set up. So, when a customer queries about a specific exhibition,
the theater module is accessed by the store module to get up-to-date information on
available seats, and so on. When a reservation is made, the store sends the necessary
information to the selected theater so that it can mark the seat as taken. Here is a
high-level modular view of our solution:

Store
Module

Theater
Module

The basic use case scenario goes like this:

1.	 The customer accesses the web page to search for a movie, chooses between
the available criteria to compose the query, and submits it to the store module.

2.	 Some of the information (movie and theater data) is located at the store
module and is validated upon the arrival of the request. After checking for
data consistency, the local data is retrieved and a query to the appropriate
theater is issued.

3.	 The theater module receives the request, processes it by getting the necessary
information from its database, and sends the response back.

4.	 The store module receives the data and shows it to the customer. If he/she
wants to proceed and reserve the ticket, another command is sent to the store
module, which in turn sends the data to the theater module.

5.	 The remote module sends the request to the theater's proprietary system
and after the reservation is confirmed, a response is sent back to our store
module, which saves the transaction along with a unique control number.

6.	 A confirmation message is presented to the customer with the generated
control number. This is a proof that the transaction was completed
successfully. Upon arrival at the theater's booth, the customer presents the
control number to the clerk, who verifies the validity of the reservation using
his own system. If everything's ok, the customer pays for the tickets and the
entrance is granted.

Java EE Basics – Persistence, Query, and Presentation

[58]

Business entities of the system
When we think about a diagram with the main entities (domain model) of this
system, their definitions and relationships should look like this:

Neighbourhood

Id
Name

Theater

Id
Name
Address
City
Neighbourhood
Latitude
Longitude
PhoneNumber
References

Id
Name
description

Movie Feature

Seat
Id
Coordinates
Type
Base Price

Room Feature
Id
Name
Description

Exhibition
Id
Movie
Room

Preferences
Id
Type
References

Payment
Purchase
Method
Confirmation#
Date

State

Id
Name

City
Id
Name
State

Reference

Id
description

Id
Name
Description
Length
Features

Movie

Id
Name
Capacity
Features

Room

Purchase
Customer
Ticket
Amount

Customer
Id
Email
Password
Preferences

Ticket
Id
Customer
Exhibition
Seat

The preceding graphic is a fairly complete representation of the entities that a
real-world system would need to implement the business scenario we just presented.
As the goal of the book is to help the understanding and usage of the WebLogic
Server 12c, we're going to simplify the business model a little bit so that we can keep
the focus on what really matters.

Chapter 3

[59]

So, here is the set of entities we are going to use throughout the book:

Theater

Id
Name
Address
City
PhoneNumber

Exhibition
Id
Movie
Room
Date
Hour

Id
Name
Description
Length
Features

Movie

Id
Name
Capacity
Features

Room

Customer
Id
Email
Password

Ticket
Id
Customer
Exhibition
Seat

Seat
Id
Coordinates
Type
Base Price

The mapping of these entities to relational tables is pretty straightforward, but as
we have two modules, each module will use a subset of the tables as shown here:

Id
Name
Description
Length

Movie Customer
Id
Email
Password
Preferences

Ticket
Id
Theater
Customer
Exhibition
Seat

Theater

Id
Name
Address
City
PhoneNumber

Store

Seat
Id
Room
Type
Price

Exhibition
Id
Movie
Room
Date
Hour

Id
Name
Description
Length

Movie

Id
Name
Capacity

Room

Theater

Keep in mind that even with this simplified model, we will be able to present the
intended features of the application server. Having a complex model would just
demand repetitive coding effort. That said, let's discuss one last detail about the
project's structure using Eclipse before we start generating actual code.

Java EE Basics – Persistence, Query, and Presentation

[60]

Organizing projects in Eclipse
The application architecture points to two isolated modules: the central module,
which we will name Store and a remote module that each theater must set up and
run at its own installation, aptly named Theater. So, it is a natural decision to have
two projects, each implementing one module.

These two modules will be implemented as web applications, holding screens, web
services, and business logic. The business entities will reside in projects of their own.
This is a common pattern when mapping domain entities that virtually any project of
your company will have to access at some point in time. In the development phase,
this approach helps avoiding concurrency between developers editing source code
and isolates sensitive code if security is a concern. When the systems are up and
running, maintenance is also simplified. Instead of repackaging every module that
uses the common library, just one update is necessary.

Our entities are mostly isolated by modules, but we're going to apply this general
principle in order to show you how to configure/reference them so that two entity
projects will be deployed as Java optional packages. Here is a visual representation
of the projects we are going to create:

Theater StoreBO TheaterBOStore

Creating the StoreBO project
To implement even the most basic business functionality, the domain entities must
exist and be available. So, let's create the project StoreBO (BO means Business
Objects) that is going to hold the store's entities.

As we're going to use the Java Persistence API (JPA), it's
good to know that the default JPA implementation shipped
with Oracle WebLogic Server 12c is Oracle TopLink, which is
heavily based on EclipseLink. Up until the previous release
(11g), the default implementation was Kodo, which Oracle
bought along with other BEA products.

The Oracle Enterprise Pack for Eclipse gives us a couple of handy features to create
a JPA Project. By selecting this project type, we basically instructed Eclipse to add
the JPA facet to the project, enabling features such as a tool to map relational tables
to classes.

Chapter 3

[61]

Keep in mind that JPA 2.0, which is the layer that enables EJB
3.x persistence features, is not directly linked to Java EE—you
can use the persistence layer on a pure Java project without
having to use an application server.

Fire up your OEPE and perform the following steps:

1.	 Navigate to File | New | Project….
2.	 Type JPA in the textbox, select JPA Project and click on Next.
3.	 On the New JPA Project screen:

1.	 Enter StoreBO in Project name.
2.	 Target Runtime: select Oracle WebLogic Server 12c (12.1.2).

By doing this, we're telling Eclipse where it is supposed to
look for dependencies/libraries when Project Facets or Shared
Libraries are used.

3.	 Click on the Modify… button next to the Configuration dropdown
menu and make sure that the Java facet is set to Version 1.7, changing
it if necessary, then click on Finish.

4.	 Click on Next.
5.	 We don't need to change the default values for source folders, so just click

on Next.
6.	 On the JPA Facet screen:

1.	 Select EclipseLink 2.4.x/2.5.x as Platform.
2.	 Under JPA implementation, select Disable Library Configuration.
3.	 In the Persistent class management group, select Annotated classes

must be listed in persistence.xml.
4.	 Click on Finish.

7.	 Click Yes to open the JPA Perspective.

Java EE Basics – Persistence, Query, and Presentation

[62]

Let's take a closer look at the options presented by the JPA Facet screen:

The default value for Platform is Generic 2.0, which means Eclipse/OEPE will give
you the most basic configuration options when you open the persistence.xml
file to edit. The other options are for specific versions of EclipseLink—an Object-
Relation Mapping framework—giving you more graphical resources to edit the file.

Oracle WebLogic Server 12.1.2 ships with Oracle TopLink Version 12.1.2, which
is the base for this book and is built upon EclipseLink 2.4.2. So, we selected the
EclipseLink 2.4.x option to enable the features related to this version.

Chapter 3

[63]

EclipseLink 2.4.2 added a lot of new features, such as
support for NoSQL, REST, and JSON development.

Oracle Toplink

TopLink
Grid

Ec
lip

se
Li

nk

NoSQL

JPA Object-JSON

Object-XML
(JAXB)

Coherence

We disabled the configuration related to the JPA Implementation because OEPE
doesn't give us a direct option to use the libraries provided by WebLogic. We could
have selected User Library instead and installed one of the EclipseLink versions
shown, but that defeats the idea of using WebLogic modules.

After walking through the other options of this screen, we're going to add the
necessary module reference.

The Connection drop-down menu gives us the option to select one of the
connections listed in the Data Source Explorer. If you are not running your
application inside a Java EE container, you can set the transaction-type attribute as
RESOURCE_LOCAL, which means that the entity managers or data sources used by the
application are not capable of providing JTA services. Changing this property under
the connection tab will populate the related entries in the persistence.xml. A good
use case for this transaction type is unit testing.

According to the JPA 2.0 specification (JSR 317), the default value for this attribute
in the Java EE environment is JTA and the default value for the Java SE environment
is RESOURCE_LOCAL. Since we're going to use the WebLogic Server's Data Source to
access data, we can leave it as JTA or empty.

Finally, the Persistent class management option configures the persistence.xml
file to instruct the container to discover annotated beans by scanning the packages
that compose the deployment/project. This is controlled by the exclude-unlisted-
classes entry and the default behavior is to scan the packages. By setting the screen
option to Annotated classes must be listed in persistence.xml, we are telling the
container to stick to the classes listed in the file.

Java EE Basics – Persistence, Query, and Presentation

[64]

The package scanning feature is only supported by Java EE
application containers. So, if you plan to use Entities on standalone
applications, you must explicitly name them in persistence.
xml—the exclude-unlisted-classes tag is ignored.

The last step to configure the project is to reference WebLogic's persistence library,
so we can compile the generated classes:

1.	 Right-click on the project name and click on the last entry, Properties.
2.	 Click on Java Build Path in the tree.
3.	 Click on the Libraries tab and then the Add Library… button.
4.	 Select WebLogic System Libraries and click on Next.
5.	 Select the javax.persistence library and click on Finish.

If the library is not available, click on the Add button (the plus sign)
in the top-right portion of the screen, type javax.persistence in
the Module id field, and click on Finish.

6.	 Click on OK to close the Properties window.

Generating classes from database tables
With the project properly configured, we can use the database tables as a starting
point to create the entities.

Make sure the tables from the store_db database are loaded
and Eclipse's connection to MySQL is properly configured. These
procedures are explained in the Configuring MySQL databases section
in Chapter 2, Setting Up the Environment.

To generate the classes:

1.	 Right-click on the project name and select JPA Tools, then select Generate
Entities from Tables… from the submenu.

2.	 Select the MySQL - Store connection. If the connection is not yet active, the
button just below the Connection drop-down menu will be enabled. If this
is the case, click on it.

3.	 Select the store_db entry from the Schema drop-down menu, then select all
the business tables—customer, movie, theater, and ticket entries—and click
on Next:

Chapter 3

[65]

4.	 On the Table Associations screen, click on the New Association button and
do the following:

1.	 Select Simple association as Association kind.
2.	 Click on the button at the right side of Table 1 and select ticket.
3.	 Click on the button at the right side of Table 2 and select theater.

If you just type in the table names, the next screen will
not work as expected—you must select the table name
from the list.

4.	 Click on Next.
5.	 On the Join Columns screen, click on the Add button, change the

value of the column ticket to theaterRef and the column theater
to id, then click on Next.

6.	 The Association Cardinality asks you the type of relationship
between the tables. The default Many to one is the one we need,
Each theater has many ticket. Click on Finish.

Java EE Basics – Persistence, Query, and Presentation

[66]

5.	 We must execute the same preceding steps to create the second and
last relationship:

1.	 Click on New Association.
2.	 Select Simple association as Association kind.
3.	 Click on the button at the right side of Table 1 and select ticket, click

on the button at the right side of Table 2 and select customer, then
click on Next.

4.	 On the Join Columns screen, click on the Add button, change the value
of the column ticket to customerRef and column customer to id,
then click on Finish (the cardinality is already set up, Each customer
has many ticket). The list of associations should look like this:

* 1
ticket theater

Each theater has many ticket.

* 1
ticket customer

Each theater has many ticket.

5.	 Click on Next.
6.	 Select table for Key generator, and enter com.packt.domain.store

in the Package field.
7.	 Click on Finish.

We now have the base code to execute a query against the database. Let's check the
relevant pieces of code of one of the classes, Theater:

@Entity
@Table(name="theater")
public class Theater implements Serializable {

This is how you create a JPA entity—you just need to annotate your POJO class with
javax.persistence.Entity and javax.persistence.Table, and it's done.

Actually, if your class and the underlying table have exactly
the same name (down to capitalization, depending on the
database engine/configuration), you don't need to add the
@Table annotation.

Chapter 3

[67]

A few more details about the generated entity class that are implicit to the code we
just saw:

•	 The class must be public and top-level (can't be an inner class)
•	 The class can't be final
•	 The class must implement the Serializable interface—most likely, it will

be transferred between applications, network, or business layers, so as a best
practice, always implement this interface

•	 The class must have a no-argument constructor

Then we have the declaration of the primary key, which is also pretty
straightforward:

@Id
@GeneratedValue(strategy=GenerationType.TABLE)
private int id;

The Id annotation states that the field is a primary key, and @GeneratedValue
indicates the strategy and parameters the persistence provider must use to
generate unique identifiers when inserting a record. This is the same as declaring
a generated-value tag inside the orm.xml descriptor file. Use this file if you
don't want to annotate your classes or if you want to change a definition without
having to edit source code and repacking the binaries.

The possible strategies for @GeneratedValue and their
meanings are as follows:

AUTO (default): The persistence provider chooses the best
strategy considering the target database.

TABLE: A table is used to generate unique values. You can
use another annotation, TableGenerator, to override the
default values for table name, schema, and so on.

SEQUENCE: A database sequence is used to create the
primary keys. You can fine tune its behavior by using the
SequenceGenerator annotation.

IDENTITY: You must use this when the provider is not
supposed to generate a value, but instead read it back from
the database after inserting the record. Usually, the table
field is declared using a native mechanism; for example,
AUTO_INCREMENT or SERIAL on MySQL, or IDENTITY
on the Microsoft SQL Server.

Java EE Basics – Persistence, Query, and Presentation

[68]

Do you remember that we left out a couple of tables at the JPA Generate Entities
wizard? One of them, the SEQUENCE table, is the default table used by EclipseLink
when you select AUTO or TABLE as the strategy. This table must have a record prior to
issuing an insert command, depending on the strategy selected, with specific values:

Strategy Content of SEQ_NAME Column
AUTO SEQ_GEN

TABLE SEQ_GEN_TABLE

You can let the persistence provider worry about these details
by inserting the property eclipselink.ddl-generation
with value create-tables in persistence.xml. If any of
the referenced objects are missing, TopLink/EclipseLink will try
to create them.

This is okay to use when starting the development phase, but
for other environments such as quality assurance or production,
it is not a recommended practice.

The last snippet of code worth mentioning is the one that declares the relationship
between the Theater and Room entities:

//bi-directional many-to-one association to Ticket
@OneToMany(mappedBy="theater")
private List<Ticket> tickets;

On the last screen of the JPA wizard, you can select either java.
util.Set or java.util.List to materialize the relationships.
The main difference between them, in this context, is that the first
doesn't allow duplicates. List is the default value.

The JPA wizard's default behavior when creating relationships is to make them
bi-directional. So, if you check the Ticket.java file, you will find the reference
back to Theater:

@ManyToOne
@JoinColumn(name="theaterRef")
private Theater theater;

Chapter 3

[69]

To make the relationship uni-directional, in the JPA
Generate Entities wizard, once the association is created,
select it from the list of Table associations and uncheck the
proper checkbox. For the first relationship Ticket to Theater,
the text next to it is Generate a reference to a collection of
ticket in theater.

The basic entities and their mappings are ready. The usage of MySQL's auto_
increment and foreign keys were left out on purpose to show how relationships and
identities are manually created. In the next chapter, we're going to see how they are
taken into account when generating classes.

Creating named queries
A named query is also called a static query, in the sense that its declaration is
attached to the entity either by using the named query annotation or by named-
query tags inside a JPA mapping file that maps the entity.

As the queries are created inside entities and entities are tied
to a persistence unit, the name of each query must be unique
inside that persistence unit. A good practice is to prefix the
query name with the entity's name.

To keep things simple, let's see how we declare a query using annotations:
@Entity
@NamedQuery(name=Movie.findAll, query="SELECT M FROM Movie M")
public class Movie implements Serializable {
 public final static String findAll = "Movie.FindAll";
...

This code snippet returns all the Movie instances available. This is a very basic
query that we're going to use to check if all the persistence components are correctly
configured. There are several possibilities to explore when creating a query—inner
joins, aggregation functions, inheritance, subqueries, and so on—and we will use
some of them as we evolve our sample applications.

Remember that although there's a similarity with the Structured
Query Language (SQL), we're dealing with Java Persistence
Query Language (JPQL) constructs. So, the name of the object
referenced at the query—Movie—maps to the class Movie and
not the underlying table.

Java EE Basics – Persistence, Query, and Presentation

[70]

When we ask the persistence provider to execute a named query, we need to inform
the name of the desired query. You can have more than one NamedQuery annotation
inside a class, provided you group them using the @NamedQueries decoration:

@Entity
@NamedQueries({
 @NamedQuery(name=Movie.findAll, query="SELECT M FROM Movie M")
 @NamedQuery(name=Movie.findPremiere, query="SELECT M FROM ...")
})

To avoid errors, a good practice is to create a public static
final String variable to hold the query's name, use it to
declare the query and later to reference it.

There is a similar query declared inside the Theater class to retrieve all Theater
instances available:

@NamedQueries({
 @NamedQuery(name=Theater.findAll, query="SELECT T FROM Theater
 T")
})
public class Theater implements Serializable {
 public final static String findAll = "Theater.FindAll";
...

Tweaking the persistence.xml file
The last piece of configuration we have to tweak is the persistence.xml file used by
the persistence provider to identify which connections must be used to access each
entity and fine-tune its behavior.

Here are the file contents after creating the entities using the wizard:

<persistence version="2.0">
 <persistence-unit name="StoreBO">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider
 </provider>
 <class>com.packt.domain.store.Customer</class>
 <class>com.packt.domain.store.Movie</class>
 <class>com.packt.domain.store.Theater</class>
 <class>com.packt.domain.store.Ticket</class>
 </persistence-unit>
</persistence>

Chapter 3

[71]

The persistence unit's name is the same as the project StoreBO; no need to change it.
But, do you remember that we didn't select a connection when creating the project?
As the JPA Project wizard does not allow us to choose a WebLogic data source, we
now have to configure it:

1.	 Open the persistence.xml file inside the JPA Content project's tree node.
2.	 Click on the Connection tab.
3.	 Select JTA as Transaction type.
4.	 Enter jdbc/tickets/store in the JTA data source field.

As the entities were explicitly declared by the JPA wizard, we can disable package
scanning. To do so, perform the following steps:

1.	 Go to the first tab, General.
2.	 Expand the Managed Classes group.
3.	 Click on the Exclude unlisted classes checkbox.

Save the file, and it's done.

The package scanning feature is only supported by Java EE
application containers. So, if you plan to use Entities on standalone
applications, you must explicitly name them in persistence.
xml—the exclude-unlisted-classes tag is ignored.

Packing the project
Now we just have to pack the project and deploy it to the WebLogic Server as an
optional package.

An optional package has the same features of a shared library; it
just has a simpler structure, being a conventional JAR file—shared
libraries are EJB modules or applications.

To make the library adherent to the standard, create the MANIFEST.MF file inside the
src/META-INF folder and add these lines:

Manifest-Version: 1.0
Extension-Name: storeBO
Specification-Version: 1.0
Implementation-Version: 1.0.0

Java EE Basics – Persistence, Query, and Presentation

[72]

This is the same configuration we made when creating PrimeFaces' shared library
in the previous chapter, and it's the only requirement to make a plain JAR file an
optional package.

You may use the JAR Export wizard provided by Eclipse to generate the
package or create it using an Ant script as the example in the next info box, or
a compression application, such as WinZip or 7Zip. Either way, make sure the
packaged MANIFEST.MF file has exactly the same content (and sequence of lines)
as we just showed. Without the specific tags we added in that specific order, the
deployment will complete successfully but WebLogic will not be able to resolve
the dependency when deploying a project that references the optional package.

Here's a simple Ant script that can be used to create the package:
<?xml version="1.0" encoding="UTF-8"?>
<project>
 <property name="jarName" value="StoreBO.jar"/>
 <target name="clean">
 <delete dir="build"/>
 </target>
 <target name="compile">
 <mkdir dir="build/classes"/>
 <javac srcdir="src" destdir="build/classes"/>
 </target>
 <target name="jar">
 <mkdir dir="build/jar"/>
 <jar manifest="src/META-INF/MANIFEST.MF"
 destfile="build/jar/${jarName}"
 basedir="build/classes" />
 </target>
</project>

Chapter 3

[73]

The final package must have the structure depicted in the following figure:

Notice that we didn't add the persistence.xml file to the JAR package—the file
must be present in the EJB project using the entities, not here.

According to JPA 2.0 specifications, the JAR package or directory
holding the persistence.xml file is called the root of the
persistence unit, and it cannot be a JAR file external to the
application—or, more specifically, a referenced library. That's
why we have to add the persistence.xml file to the project
that uses the entities.

Based on the rule above, here are some of the places you can place the persistence.
xml file:

•	 The classes directory inside the WEB-INF/classes folder, when used by a
Web Project (WAR)

•	 A JAR file placed in WEB-INF/lib of a Web Project
•	 A JAR file inside APP-INF/lib of an Enterprise Project (EAR)

The APP-INF folder inside an EAR is a WebLogic-specific
feature that helps in sharing libraries among the modules of an
enterprise package. You can have a lib folder with several JARs
and a classes folder with individual classes.

Java EE Basics – Persistence, Query, and Presentation

[74]

If you're going to pack a persistence.xml file into a JAR, make sure it is inside the
META-INF folder, and that this folder is at the root of the package. Anywhere else, the
container will not find it.

The last step to complete the enablement of an optional package is to register it in
the WebLogic Server. To do so, access the WebLogic Administration Console and
perform the following steps:

1.	 Click on Deployments in Domain Structure.
2.	 Click on the Install button at the top of the Deployments list.
3.	 Click on the link upload your file(s) inside the Note phrase.
4.	 Click on the first Choose File button next to Deployment Archive.
5.	 Navigate to the folder where you saved the StoreBO.jar file, select it, click

on Open and Next on the main page.
6.	 The Path field shows the complete path to our JAR file. Click on Next.
7.	 This page shows the options to change the deployment strategy. But as the

default settings are just fine, we don't need to change any of them, so go
ahead and click on Next.

The deployment assistant is the same for any kind of
package—WAR, JAR, and so on—so we can ignore the
message at the top of the page (Issues were encountered
while parsing this deployment to determine module
type. Assuming this is a library deployment.).
WebLogic's guess is right.

8.	 Click the No, I will review the configuration later option and then click
on Finish. The wizard automatically targets the deployment to the single
instance available, AdminServer.

Remember that a resource always has to be targeted to one
or more WebLogic instances in order to be visible and active.
Automatic targeting is not a feature present for every resource
creation sequence, though - Data Sources, for instance, must
be explicitly targeted, or else they will not be available for use.

Chapter 3

[75]

After the deployment is completed, the Deployments screen is reloaded and
you should see the new module and its State as Active as shown in the
following screenshot:

If you see only the library name without the version info—the
numbers stating specification and implementation versions—go
back and check the MANIFEST.MF file of your package; the lines
are certainly mixed up.

If you followed the installation procedures in Chapter 2, Setting Up the Environment,
you may be thinking that if an optional package is basically the same as a shared
library, why didn't we create it the same way we did earlier using Eclipse/OEPE?

Well, the two main reasons:

•	 The way we reference a shared library from a project isn't the same way
we reference an optional package. We're going to see how it is done in the
next section.

•	 To show you how to deploy an optional package using WebLogic's
Administration Console, since there is no automatic deployment of an
optional package from Eclipse/OEPE.

Now that we have our entities available, let's create the main project and the basic
code to test the environment.

The Store web project
We're now going to create the structure of our central application and add a basic
query to make sure everything up to this point is running smoothly:

1.	 Click on the File menu, then navigate to New | Dynamic Web Project.

Java EE Basics – Persistence, Query, and Presentation

[76]

2.	 On the Dynamic Web Project screen:
1.	 Enter Store in the Project Name field.
2.	 The Target runtime should be Oracle WebLogic Server 12c (12.1.2)

already. If not, select this entry.
3.	 Select JavaServer Faces v2.1 Project from the Configuration drop-

down menu.
4.	 Click on Next.

3.	 Click on Next again—no need to change folder settings.
4.	 Change Context root to store.
5.	 Click on Next.
6.	 In JSF Capabilities, select Disable Library Configuration from the JSF

Implementation Library field, then remove the existing entry from URL
Mapping Patterns and create a new one with the value *.jsf.

WebLogic Server 12c comes with JSF 2.1 enabled by default as
part of its classpath (Mojarra 2.1.5 being the implementation).
So, we don't need to reference any libraries here—it's just
there, ready to be used.

7.	 Click on Finish.

Adding references to PrimeFaces'
shared library
As we already created the shared library within OEPE, we just need to add the
necessary references to the project. First, we make the library visible to the OEPE's
design-time compiler:

1.	 Right-click on the Store project, select Properties, then Java Build Path entry
at the tree, and click on the Libraries tab.

2.	 Click on the Add Library… button, select the WebLogic Shared Library
entry and click on Next.

3.	 Click the Browse… button, select primefaces from the list and click on OK.
4.	 The fields Name and Specification Version will be populated. Leave all the

fields as they are and click on Finish to add the library.
5.	 Click on OK to close the Properties window.

Chapter 3

[77]

Then, we must tell WebLogic Server that our project depends on this library so that
the proper linkage will be done when deploying and running the application. In
order to do so:

1.	 Open the weblogic.xml file of the project Store—you can find it in the
WebContent/WEB-INF folder.

2.	 Add the following lines inside the weblogic-web-app tag:
<wls:library-ref>
 <wls:library-name>primefaces</wls:library-name>
 <wls:specification-version>3.5</wls:specification-
 version>
 <wls:exact-match>true</wls:exact-match>
</wls:library-ref>

3.	 Save the file.

Adding references to StoreBO
To reference an optional package, the procedure is a little bit different. To do so:

1.	 Open the MANIFEST.MF file inside the folder WebContent/META-INF and
paste the following lines making sure that you don't leave empty lines
between the ones already there and the new ones:
Extension-List: storeBO
storeBO-Extension-Name: storeBO
storeBO-Specification-Version: 1.0
storeBO-Implementation-Version: 1.0.0

If you leave blank lines between entries on this file, the deployer
will not process the lines after the first blank one and java.lang.
IllegalStateException is likely to be raised, associated with a
somewhat misleading message, such as Could not find backup
for factory javax.faces.context.FacesContextFactory.
If you see it when deploying, check your MANIFEST.MF file.

2.	 Save the file.

With this setting, we are instructing WebLogic Server to link the optional package to
our application upon deployment.

Java EE Basics – Persistence, Query, and Presentation

[78]

But Eclipse's compiler does not process this configuration, so we need to add another
reference to be able to use the entities inside our code. The easiest way to accomplish
this is to create a dependency between the Store and StoreBO projects:

1.	 Right-click on the Store project, navigate to Properties | Java Build Path,
and click on the Projects tab.

2.	 Click on the Add… button.
3.	 Check the StoreBO project and click on OK.
4.	 Click on OK again to close the Properties screen.

And that's it. Now we can use the entities both during development and runtime.

Referencing the persistence configuration file
As mentioned before, we need to have an explicit reference to the persistence.
xml file inside our project to be able to use the declared persistence unit. Here's what
must be done:

1.	 Create for a META-INF folder inside the folder /Java Resources/src and
make sure you can see the new folder in Project Explorer.

2.	 Expand the src/META-INF folder of the project StoreBO.
3.	 Copy the persistence.xml file from StoreBO and paste it inside the META-

INF folder of the project Store.

This way, we make sure the persistence configuration will be found and processed as
it should.

You may want to create a link from one project to the other so
that you have just one physical copy of the file. To do so, when
doing a drag-and-drop action, hold the Ctrl and Shift keys down.
Be aware that the actual reference is bound to your operating
system, so the source project may not be 100% portable.

To enable data access and use these functionalities on a web page, we need to create
a class to run the necessary queries against the persistence layer we just enabled. The
next section shows how to accomplish this.

Chapter 3

[79]

Creating a named bean
The concept of Context and Dependency Injection (CDI) is not new to the Java EE
platform—the JSR that defines it, # 299, was bound to Java EE 5 and was called Web
Beans. Here's a quote from the specification that clearly explains how we're going to
use it:

"The use of these services significantly simplifies the task of creating Java EE
applications by integrating the Java EE web tier with Java EE enterprise services.
In particular, EJB components may be used as JSF managed beans, thus integrating
the programming models of EJB and JSF (King, 2009)."

Previously, when programming with JSF, you had to create managed beans that
were specific to this technology. With the introduction of CDI, we can integrate JSF
and EJB, unlocking all the features exposed by the EJB container, such as transaction
demarcation and concurrency.

You can still create managed beans by using the javax.
faces.bean.ManagedBean annotation, but keep in
mind that this is a JavaServer Faces mechanism. If you're
creating a new project or application, the best bet is to
use CDI over managed beans.

To expose a bean to be used by our JSF pages, we need to:

1.	 Annotate a class with javax.inject.Named.
2.	 Inform the container that the application/package where the bean resides is a

bean archive—this can be a library, EJB, or an application package, or even a
classpath directory, as long as a beans.xml file is present inside its META-INF
folder or inside the folder WEB-INF of a WAR file. By doing this, we instruct
the container to discover beans inside that package.

To accomplish the first item, perform the following steps:

1.	 Click on the File menu, then navigate to New | Class.
2.	 Type com.packt.store.search as Java package.
3.	 Enter SearchManager as the Class name and click on Finish.
4.	 In the class editor, enter the following lines:

import java.io.Serializable;
import javax.enterprise.context.SessionScoped;
import javax.inject.Named;

Java EE Basics – Persistence, Query, and Presentation

[80]

@Named("search")
@SessionScoped
public class SearchManager implements Serializable {	
}

5.	 Save the file.

By decorating the class with the Named annotation, we made it recognizable by the
container as a CDI-enabled bean. The decoration argument, "search", tells the
container by which name the bean will be referenced from JSF pages.

When you do not provide a value for @Named, the name of the
bean becomes a lower camel case version of the class name. The
bean we just created would be named searchManager.

As we will hold static lists to populate the page—theaters and movies—we changed
the scope of the bean to session by using the SessionScoped annotation so that we
don't need to go to the database every time a new request is made.

The default scope of a bean is Dependent, meaning that its
instantiation is bounded to the scope of the object which
carries a reference to it. For instance, when a JSF page refers
a dependent bean, it can be instantiated several times when
rendering the page, one for each JSF expression found.

There are other longer scopes, such as Request, Session,
Application, and so on. To check the complete list and
behavior of these scopes, refer to http://docs.oracle.
com/javaee/6/api/index.html?javax/enterprise/
context/SessionScoped.html.

The second and final step to enable CDI is to inform the container that the application/
package where the bean resides is a bean archive. For our web project, we just need to
create an empty beans.xml file inside the WebContent/WEB-INF/ folder.

Empty means completely empty—zero bytes. If you create the
file using Eclipse's New XML File wizard, which is a logical
choice considering the file type, you end up with the basic
<?xml> tag. If you don't remove it, upon deployment an
IllegalStateException error will be thrown.

There are definitions we can enter in the beans.xml file, but none of them are
relevant to our scenario; so we will let it empty by now—more on this in Chapter 6,
Using Events, Interceptors, and Logging Services , when we discuss interceptors.

Chapter 3

[81]

Here is the full code needed to execute a basic functionality test:

@Named("search")
@SessionScoped
public class SearchManager implements Serializable {
 @PersistenceContext(unitName="StoreBO")
 EntityManager em;

 private List<Theater> theaters;
 private List<Movie> movies;

 private int movie;
 private int theater;

 @SuppressWarnings("unchecked")
 public List<Theater> getTheaters() {
 if (theaters == null)
 theaters = em.createNamedQuery(Theater.findAll).
 getResultList();

 return theaters;
 }

 @SuppressWarnings("unchecked")
 public List<Movie> getMovies() {
 if (movies == null)
 movies = em.createNamedQuery(Movie.findAll).
 getResultList();

 return movies;
 }

 public int getTheater() {
 return theater;
 }

 public void setTheater(int theater) {
 this.theater = theater;
 }

 public int getMovie() {
 return movie;
 }

 public void setMovie(int movie) {
 this.movie = movie;
 }
}

Java EE Basics – Persistence, Query, and Presentation

[82]

The PersistenceContext annotation injects the persistence unit that goes by the
provided name into an Entity Manager, and with this instance we can query, create,
and delete object instances, among other actions.

If you have only one persistence unit referenced by your
project, you don't need to set the unitName attribute.

The getTheaters and getMovies methods return a list of objects that will populate
the query screen using the named queries we created earlier, if the corresponding
variables, theaters and movies, aren't loaded yet. The other variables, theater and
movie, along with their getter and setter methods, must be created to hold the values
selected from each drop-down menu.

Configuring the Web descriptor
There are a lot of options available to configure the behavior of an application that
goes inside the web.xml file. As we're trying to do a basic sanity test right now, we
need to tweak it just a little bit:

1.	 Open the web.xml file located in the folder WebContent/WEB-INF.
2.	 Remove the list of welcome-file tags leaving just one entry, and change its

value to index.jsf.
3.	 Save the file.

We just instructed the container to process the index.jsf file when the user enters
the project's root URL, http://localhost:7001/store/.

Here's the content of web.xml at this point:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee/
 web-app_3_0.xsd" version="3.0">
 <display-name>Store</display-name>
 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>

Chapter 3

[83]

 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>*.jsf</url-pattern>
 </servlet-mapping>
 <welcome-file-list>
 <welcome-file>index.jsf</welcome-file>
 </welcome-file-list>
</web-app>

You may also instruct PrimeFaces to use one of the themes you may have
added to the shared library built in Chapter 2, Setting Up the Environment.
To do so, add this block of code just after the welcome-list tag,
referring to the theme that you packed into the shared library:

<context-param>
 <param-name>primefaces.THEME</param-name>
 <param-value>ui-lightness</param-value>
</context-param>

If you don't do so, PrimeFaces will use the Aristo theme, which comes
packed within its base library, primefaces-3.5.jar.

Defining the test page
Finally, edit (or create) the index.xhtml file under the WebContent folder and enter
the following code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html lang="en" xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:p="http://primefaces.org/ui">

<h:head />

<h:body>
 <p:fieldset legend="Basic Query">
 <p:panelGrid columns="2">
 <h:outputLabel for="theater" value="Theater:" />

Java EE Basics – Persistence, Query, and Presentation

[84]

 <p:selectOneMenu id="theater"
 style="width: 350px;"
 value="#{search.theater}">
 <f:selectItem itemLabel="Select one"
 itemValue="0" />
 <f:selectItems value="#{search.theaters}"
 var="n"
 itemLabel="#{n.name}"
 itemValue="#{n.id}" />
 </p:selectOneMenu>

 <h:outputLabel for="movie" value="Movie:" />
 <p:selectOneMenu id="movie"
 style="width: 350px;"
 value="#{search.movie}">
 <f:selectItem itemLabel="Select one"
 itemValue="0" />
 <f:selectItems value="#{search.movies}"
 var="n"
 itemLabel="#{n.name}"
 itemValue="#{n.id}" />
 </p:selectOneMenu>
 </p:panelGrid>
 </p:fieldset>
</h:body>
</html>

If you don't want to type the entire page's code, go ahead
and get the accompanying source code from the Packt
Publishing's website, www.packtpub.com.

The relevant pieces of code here are:

•	 The declarations at the top of the file, where we tell which tag libraries we're
going to use on this page. This is the basic set defined by JavaServerFaces
and PrimeFaces:
<html lang="en" xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:p="http://primefaces.org/ui">

Chapter 3

[85]

•	 The JSF's <h:head> tag must be declared so that PrimeFaces can inject its
dependencies into the page.

If you declare HTML's basic <head> tag or forget to
include the <h:head> tag, you will see a lot of text that
wasn't supposed to be there.

•	 The <p:fieldset> entry is a PrimeFaces tag used to group fields, with
support for skinning and events. We use it here to give a more polished look
to our query page.

•	 PrimeFaces's <p:panelGrid> tag allows us to easily create a table—we
just need to define the number of columns (2, in your sample), and it will
distribute the tags declared inside it, one inside each cell, creating a new line
after processing each pair of tags. This component has support for header,
footers, colspan, and rowspan (ways to group cells horizontally or vertically).

•	 The two blocks that define the dropdown boxes for Theater and Movie—
the <p:selectOneMenu> tag. Each drop-down menu has a reference to our
bean and uses a getter to retrieve the data—the search.theaters entry
will be translated to searchManager.getTheaters(), which is the method
we implemented. The properties name and id of each entry are also defined
inside the Theater class.

•	 Finally, each selectOneMenu component is attached by its id parameter to
a variable of the bean that will have the key of the selected entry upon form
submission (this will be done in a later chapter).

Java EE Basics – Persistence, Query, and Presentation

[86]

You may have noticed that the page extension is .xhtml, although
we are calling it using the prefix .jsf. This is due to the JSF
engine, which translates the request to an internal suffix, .xhtml
being the default value.

You may change this behavior by adding the following lines of
code into your web.xml file, declaring the extension that suits
your needs better:

<context-param>
 <param-name>javax.faces.DEFAULT_SUFFIX</param-
name>
 <param-value>.jsf</param-value>
</context-param>
<context-param>
 <param-name>javax.faces.FACELETS_VIEW_MAPPINGS
 </param-name>
 <param-value>*.jsf</param-value>
</context-param>

Deploying and testing the application
To run the application, we must tell Eclipse that the configured WebLogic Server is
the target container to deploy and run it. To do so, perform the following steps:

1.	 Open the Servers view and navigate to Window | Show View | Servers.
2.	 Right-click on the server name and click on the Add and Remove… entry

from the context menu.
3.	 Select the Store project from the Available list and click on Add >.
4.	 Click on the Finish button.

The window will close and the deployment will start automatically. You should see
the status Publishing at the end of the line in the Servers view. If everything goes
well, the status will change to Synchronized.

Chapter 3

[87]

You can now navigate to http://localhost:7001/store/ using a browser, or
right-click on the Store project, select Run As from the context menu, and then click
on Run on Server. A browser page will open inside Eclipse showing the query page:

Take a look at the dropdown boxes; they should have a few entries each. This
means that every component—shared library, optional package, persistence data,
and configuration—is working as expected.

Web resources
Here are some references to help you get into the details of the features and
resources covered in this chapter.

•	 Oracle TopLink Documentation
°° http://www.oracle.com/technetwork/middleware/toplink/

overview/index.html

•	 Using Oracle TopLink with WebLogic Server
°° http://docs.oracle.com/middleware/1212/toplink/TLADG/

tlandwls.htm

•	 Oracle TopLink Grid with Oracle Coherence
°° http://docs.oracle.com/middleware/1212/coherence/COHIG/

tlg_integrate.htm

•	 Oracle TopLink JPA Certification
°° http://www.oracle.com/technetwork/middleware/ias/jpa-

082702.html

Java EE Basics – Persistence, Query, and Presentation

[88]

•	 EclipseLink JPA User's Guide
°° http://wiki.eclipse.org/EclipseLink/UserGuide/JPA

•	 JSR 317: Java Persistence API, Version 2.0
°° http://download.oracle.com/otndocs/jcp/persistence-2.0-

fr-oth-JSpec/

•	 Java EE 6 Tutorial – Persistence API
°° http://docs.oracle.com/javaee/6/tutorial/doc/bnbpz.html

•	 Enterprise JavaBeans (EJBs)
°° http://docs.oracle.com/middleware/1212/wls/INTRO/ejbs.

htm

•	 Java EE 6 Tutorial – Singleton Example
°° http://docs.oracle.com/javaee/6/tutorial/doc/gipvi.html

Summary
We have completed a brief view of some of the basic features of Java EE and the
WebLogic Server—how to create and use an optional package, the definition and
coding of a persistence layer, how to wrap everything up into a web project, and
deploying and testing the project.

In the next chapter, we will check how to communicate with other modules using
remote services exposed with the REST architecture.

Creating RESTful
Services with JAX-RS

At this point we already have the business case defined, a web application reading
information from a database and every needed component running in WebLogic
Server. Some other inner concepts are well developed and exemplified, such as
modularization (web module, entities module) and dependency injection with CDI.

The objective of this chapter is to enhance the application created in the previous
chapter, Store, by adding more information to the search page based on a remote
call to a new application, Theater, which exposes a RESTful web service that
provides movie exhibition dates.

By definition, a web service is designed to support machine-to-machine
communication in a platform-independent way. The decision to design
such services using REST or SOAP standards are beyond the scope of
this book, although readers will get an example of each type of service
and can compare the benefits and drawbacks of each approach.

So, in this chapter we're going to:

•	 Create two new projects, TheaterBO and Theater, to hold the entities of
this business domain and expose the interfaces consumed by the central
module, respectively

•	 Develop a RESTful Web Service with JAX-RS while adjusting the entities
to be able to produce XML or JSON output along the way using JAXB

•	 Extend the Store project to consume and display data from the new web
service using JAX-RS Client API

Creating RESTful Services with JAX-RS

[90]

Creating Theater entities
In Chapter 3, Java EE Basics – Persistence, Query, and Presentation, we have already
created a JPA project that has entities from the Store module. Now we need to create
a similar project for the Theater module, mapping entities of the corresponding
database schema. We're going to do it using a few other concepts of Java Persistence
API (JPA). Let's get started.

Before proceeding, make sure you have already loaded the tables
into the databases and configured OEPE's (Eclipse) connection to
MySQL. These procedures are explained in Chapter 2, Setting Up
the Environment.

1.	 In Eclipse, create a new JPA project and perform the following steps:
1.	 Enter TheaterBO as the Project name.
2.	 Remember to set the Target runtime to point to your WebLogic 12c

Runtime configuration.
3.	 At the JPA Facet configuration page, select the same JPA library

and implementation you already used in Chapter 3, Java EE Basics
– Persistence, Query, and Presentation—that would be EclipseLink
2.4.x/2.5.x for Platform.

4.	 Select Disable Library Configuration in JPA Implementation Type.
5.	 Set the connection to MySQL - Theater.
6.	 Finish the wizard.

2.	 Add a reference to WebLogic's persistence library, so we can compile the
generated classes:

1.	 Right-click on the project name and click on the last
entry, Properties.

2.	 Click on Java Build Path in the tree.
3.	 Click on the Libraries tab and then click on the Add

Library… button.
4.	 Select the entry WebLogic System Libraries and click on Next.
5.	 Select the javax.persistence library and click on Finish.

Chapter 4

[91]

6.	 If the library is not available, click on the add icon (the plus sign) in
the top-right portion of the screen, type javax.persistence in the
Module Id field, and click on Finish to close this window and get
back to the Properties window:

7.	 Click on OK to close the window.

3.	 Right-click on the project name and select JPA Tools, then select Generate
Entities from Tables… from the submenu.

4.	 Now select the MySQL - Theater connection. Make sure you have not
selected the MySQL - Store connection. If the connection is not yet active,
the button just below the connection drop-down menu will be enabled.
If that's the case, click on it to activate the connection.

Creating RESTful Services with JAX-RS

[92]

5.	 Select the theater_db entry from the Schema drop-down menu, then select
tables exhibition, movie, room, seat, and theater and click on Next:

6.	 On the Table Associations screen, the associations are already in place
because in this schema all the relationships are set at the database level with
the declaration of foreign keys:

Chapter 4

[93]

7.	 Click on Next.
8.	 Select auto for Key generator, java.util.List as Collection properties type

and enter com.packt.domain.theater in the Package field:

We are using auto for key generator to let the JPA layer decide which
strategy to use when dealing with keys. Because the theater database
schema is using MySQL's AUTO_INCREMENT feature to declare primary
keys, it will use the identity approach, which lets the database engine
deal with key generation.

9.	 Click on Finish.

Creating RESTful Services with JAX-RS

[94]

At this point, your project should look like the following screenshot:

Customizing the generated entities
The entities are in place, but we need to customize some of them in order to use as
a base for a web service call and to avoid marshaling issues. In fact, we are going to
show the usage of JAXB and JPA integration as shown in the following diagram—the
data layer (materialized by the entities) is responsible for the conversion between
object instances and XML or JSON using the corresponding framework:

Database

JA
X-

R
S

 /
JA

X-
W

s

<XML />

{JSON}

Data Layer

JPA

JAXB

JAXB

Object

Creating named queries
In order to query for instances of this business entity, we are going to add a few
named queries. We also have to mark the entity as an XML element, so it can be
processed by JAXB.

First, let's add the named queries that will support our use case. So, open the
Exhibition class and add this block of code after the @Entity decoration:

@NamedQueries({
 @NamedQuery(name=Exhibition.findAll,
 query="SELECT r FROM Exhibition r"),

Chapter 4

[95]

 @NamedQuery(name=Exhibition.findById,
 query="SELECT r FROM Exhibition r WHERE r.id = :id"),
 @NamedQuery(name=Exhibition.findByMovie,
 query="SELECT r FROM Exhibition r WHERE
 r.movie.id = :movieId")
 })

Also, add the names of the queries:

public final static String findAll = "Exhibition.findAll";
public final static String findById = "Exhibition.findById";
public final static String findByMovie = "Exhibition.findByMovie";

As we're going to expose this entity through a web service, we need to decorate the
class with a JAXB annotation, java.xml.bind.annotation.XmlRootElement, so the
engine can process the instance as a JAXB object when generating the web service's
response. This must be done only to top-level entities of a request or response— for
instance, even though the Movie entity will be a part of our response, we don't need
to mark it. Just add the following line after @Table:

@XmlRootElement(name="Exhibition")

This annotation states that this class can be represented as an XML or JSON
document through the use of JAXB and its binding providers, such as EclipseLink
MOXy, the default JAXB provider of WebLogic Server 12c.

The same concepts applied to RESTful services using JAX-RS on this
chapter can easily be reused for SOAP-based services through JAX-WS,
Java API for XML Web Services. In other words, entities annotated with
XmlRootElement will produce XML documents through JAXB and
these documents can be used as input or output for both SOAP and
RESTful services.

After adding these customizations to the class, your code should look like this:

@Entity
@NamedQueries({
 @NamedQuery(name=Exhibition.findAll,
 query="SELECT r FROM Exhibition r"),
 @NamedQuery(name=Exhibition.findById,
 query="SELECT r FROM Exhibition r WHERE r.id = :id"),
 @NamedQuery(name=Exhibition.findByMovie,
 query="SELECT r FROM Exhibition r WHERE
 r.movie.id = :movieId")
 })
@XmlRootElement(name="Exhibition")
public class Exhibition implements Serializable {

Creating RESTful Services with JAX-RS

[96]

 public final static String findAll = "Exhibition.findAll";
 public final static String findById = "Exhibition.findById";
 public final static String findByMovie =
 " Exhibition.findByMovie";
...

Preventing cyclic references
We have to do a simple modification to two entities, Movie and Room, in order
to prevent a very common issue with JAXB and XML parsing: cyclic references
or bidirectional relationships. In standard JAXB this is not supported and one
side of the relationship must be marked with @XmlTransient, but some JAXB
implementations are also trying to solve this issue with extensions, such as
EclipseLink MOXy.

Following the database model, for each Exhibition instance we have references to
both Movie and Room via @ManyToOne relationships. And Movie and Room both
have a list of all exhibitions pointing back to the Exhibition entity, a @OneToMany
relationship. The object graph generated by default for a given Exhibition object and
its references would look like this:

Exhibition

Movie Room

...

Exhibition... Exhibition Exhibition... Exhibition

Movie Room Movie Room

...

The solution for this situation is to mark the field and method you don't want JAXB to
parse with the XmlTransient annotation, found in the javax.xml.bind.annotation
package. So, in this specific case, we need to modify the Movie and Room classes to
instruct JAXB to not go over their list of exhibitions. Update your code by decorating
both the variable declaration and their getter methods with @XmlTransient:

@Entity
public class Movie implements Serializable {
...

Chapter 4

[97]

 @XmlTransient
 @OneToMany(mappedBy="movie")
 private List<Exhibition> exhibitions;
...
 @XmlTransient
 public List<Exhibition> getExhibitions() {
 return this.exhibitions;
 }
 ...

And:

@Entity
public class Room implements Serializable {
 ...
 @XmlTransient
 @OneToMany(mappedBy = "room")
 private List<Exhibition> exhibitions;
 ...
 @XmlTransient
 public List<Exhibition> getExhibitions() {
 return this.exhibitions;
 }
 ...

We also need to execute the same procedure to adjust the relationship between
Seat and Room—when marshaling a Seat instance, JAXB must not include the
referenced Room instance. To do so, open the Seat class and mark the Room reference
with @XMLTransient, also add @XMLRootElement to the class declaration while you
are at it:

@Entity
@Table("Seat")
@XmlRootElement(name="Seat")
public class Seat implements Serializable {
 ...
 @XmlTransient
 @ManyToOne
 @JoinColumn(name = "roomRef")
 private Room room;
 ...
 @XmlTransient
 public Room getRoom() {
 return this.room;
 }
 ...

Creating RESTful Services with JAX-RS

[98]

Formatting exhibitions' date and time
In order to show a user-friendly exhibition time on the query page, we are going
to change the getDate method of the Exhibition class to join the date and time
information (available as separate attributes, date and hour) and return the result.
Also, the hour is saved in military format, so we need to break it down to hours and
minutes before joining it to the date.

Open the source code of Exhibition and change the contents of getDate() from the
following code:

public Date getDate() {
 return this.date;
}

To this:

public Date getDate() {
 Calendar cal = Calendar.getInstance();
 cal.setTime(this.date);
 cal.set(Calendar.HOUR_OF_DAY, this.hour / 100);
 cal.set(Calendar.MINUTE, this.hour % 100);

 return cal.getTime();
}

After these changes, the entities are good to go, we just need to create the proper
descriptors before packaging the project for deployment.

Completing the persistence.xml file
The persistence.xml file needs some tweaking but nothing different from what
you already did in Chapter 3, Java EE Basics – Persistence, Query, and Presentation, so
we're not going into all the details here. Just remember that you need to update the
JTA data source accordingly. Here is how your file should look like:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0"
 xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">
 <persistence-unit name="TheaterBO" transaction-type="JTA">
 <jta-data-source>jdbc/tickets/theater</jta-data-source>
 <class>com.packt.domain.theater.Exhibition</class>
 <class>com.packt.domain.theater.Movie</class>
 <class>com.packt.domain.theater.Room</class>

Chapter 4

[99]

 <class>com.packt.domain.theater.Seat</class>
 </persistence-unit>
</persistence>

Packaging the library
This project will be used as a library and shared between both web projects, Store
and Theater. In order to avoid having duplicated JAR files, we're going to deploy the
entity project as an optional package just like we have done with the StoreBO project
in Chapter 3, Java EE Basics – Persistence, Query, and Presentation. To do that, create a
MANIFEST.MF file inside the src/META-INF folder and add the following lines:

Manifest-Version: 1.0
Extension-Name: theaterBO
Specification-Version: 1.0
Implementation-Version: 1.0.0

After creating the MANIFEST.MF file, you can export the project to a JAR file using
Eclipse's Export wizard—it is a very simple procedure, but to avoid problems with
the manifest file, remember to mark the Add Directory Entries option, especially, the
Use existing manifest from workspace option pointing to the file you just created, as
shown in the following screenshot:

Creating RESTful Services with JAX-RS

[100]

Make sure the packaged MANIFEST.MF file has exactly the same content and sequence
as we created inside the project. Without the specific tags we added, and in that
particular order, the deployment will work, but the reference by other projects will not.

As an alternative to Eclipse's Export wizard we have created a
build.xml Ant script that you can use to generate the JAR. You will
find this script in the code bundle available at the Packt Publishing
website, www.packtpub.com. A similar script was explained in
Chapter 3, Java EE Basics – Persistence, Query, and Presentation.

To complete the optional package creation procedure, we need to publish it into
the WebLogic Server. To do so, access the WebLogic Administration Console and
perform the following steps:

1.	 Click on Deployments at Domain Structure.
2.	 Click on the Install button at the top of the Deployments list.
3.	 Click on the link upload your file(s) inside the Note phrase.
4.	 Click on the first Choose File button next to Deployment Archive.
5.	 Navigate to the folder where you saved the TheaterBO.jar file, select it, and

click on Open and Next on the main page.
6.	 The Path field shows the complete path to our JAR file. Click on Next.
7.	 This page shows options to change the deployment strategy, but as the

default settings are just fine, we don't need to change any of them, so just
click on Next.

8.	 Click on Finish and conclude the deployment wizard.

If you see only the library name without the version info, go back and
check the MANIFEST.MF file of your package—the lines are certainly
mixed up or not well formatted.

Creating the Theater web application
We are now going to create the web application that will stay in the movie theater,
so the Store application, our central module, will interact with all the movie theaters
through this application. Essentially, it will be responsible to validate and consume
tickets, showing available movie exhibitions and seats.

Chapter 4

[101]

A RESTful Web Service, as defined by JSR-311, will provide this interaction. The
Java API that implements Representational State Transfer (REST) Web Services is
JAX-RS. Oracle WebLogic 12c comes with Jersey 1.9, which is the JAX-RS reference
implementation and also includes JSON APIs for processing and streaming data.

Despite what many believe, JAX-RS was introduced in Java EE 5 but
was only set as an official component in Java EE 6.

There is no official definition of what is a RESTful Web Service, unlike SOAP,
which is completely specified by W3C and other organizations such as OASIS or
WS-I. But a slight difference is that REST is an architectural style, while SOAP is a
protocol. Also, even though RESTful Web Services are not completely specified, the
technologies involved are—HTTP, URI, XML, or JSON.

The important concepts that define what a RESTful Web Service looks like are:

•	 Resource: Any meaningful concept or data structure that can be addressed.
This resource is defined with Internet media types such as JSON or XML

•	 Vocabulary: REST uses an HTTP-based vocabulary as method names. GET,
POST, PUT, and DELETE are the most common ones

Setting up the project
Here are the steps to create the Theater application:

1.	 Click on the File menu, then navigate to New | Dynamic Web Project.
2.	 On the Dynamic Web Project screen, enter Theater as the Project name.
3.	 The Target runtime should be Oracle WebLogic Server 12c (12.1.2)

already. If not, select it.
4.	 Select JavaServer Faces v2.1 Project from the Configuration

drop-down menu.
5.	 Click on Next.
6.	 Click on Next again—no need to change folder settings.
7.	 Change Context root to theater and click on Next.
8.	 On the JSF Capabilities screen, make sure you have the Type set to

"Disable Library Configuration" and that the URL mapping patterns
has *.jsf listed.

9.	 Click on Finish.

Creating RESTful Services with JAX-RS

[102]

Now, add a reference to the PrimeFaces shared library by modifying the
weblogic.xml descriptor inside the folder WebContent/WEB-INF and by
including it on the build path of the project, just like we've done in Chapter 3,
Java EE Basics – Persistence, Query, and Presentation. Your file should look like this:

<?xml version="1.0" encoding="UTF-8"?><wls:weblogic-web-app
xmlns:wls="http://xmlns.oracle.com/weblogic/weblogic-web-app"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd
http://xmlns.oracle.com/weblogic/weblogic-web-app
http://xmlns.oracle.com/weblogic/weblogic-web-app/1.5/weblogic-
web-app.xsd">
 <wls:weblogic-version>12.1.2</wls:weblogic-version>
 <wls:context-root>theater</wls:context-root>
 <wls:library-ref>
 <wls:library-name>primefaces</wls:library-name>
 <wls:specification-version>3.5</wls:specification-version>
 <wls:exact-match>true</wls:exact-match>
 </wls:library-ref>
</wls:weblogic-web-app>

We also need to add a reference to optional package TheaterBO by editing the
MANIFEST.MF file inside WebContent/META-INF and setting it as follows:

Manifest-Version: 1.0
Extension-List: theaterBO
theaterBO-Extension-Name: theaterBO
theaterBO-Specification-Version: 1.0
theaterBO-Implementation-Version: 1.0.0

The next step is to make the entities visible to OEPE's compiler:

1.	 Right-click on the Theater project, select Properties, then select Java Build
Path entry from the tree, and click on the Projects tab.

2.	 Click on the Add… button.
3.	 Check the TheaterBO project and click on OK.
4.	 Click on OK again to close the Properties screen.

The last step is the configuration of the project's persistence layer:

1.	 Create a META-INF folder inside /Java Resources/src and make sure you
can see the new folder from Project Explorer.

2.	 Open the src/META-INF folder of the project TheaterBO.
3.	 Copy the persistence.xml file from TheaterBO to the META-INF folder of

project Theater.

Chapter 4

[103]

Enabling JAX-RS
In order to enable JAX-RS in our web project:

1.	 Open the project's Properties window and go to the Java Build Path section.
2.	 Click on the Libraries tab and click on Add External JARs….
3.	 Browse to the WebLogic 12c installation directory and go to the modules

folder—/$MW_HOME/oracle_common/modules.
4.	 Select jersey.core-1.17.1.jar and jersey.json-1.17.1.jar files:

5.	 Click on OK to close the Properties window.

Note that these files will not be included in the package when
you generate or deploy the project. Just like JavaServer Faces
(JSF), JAX-RS is part of WebLogic container and you don't need
to configure or deploy any extra library on the server to enable
JAX-RS support. We only need to add this setting during the
development time in order to compile the project.

6.	 Open the web.xml file and add the following entries as the last ones inside
the web-app tag:
<servlet>
 <servlet-name>JAX-RS Application</servlet-name>
 <servlet-class>
 com.sun.jersey.spi.container.servlet.ServletContainer
 </servlet-class>

Creating RESTful Services with JAX-RS

[104]

 <load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
 <servlet-name>JAX-RS Application</servlet-name>
 <url-pattern>/api/*</url-pattern>
</servlet-mapping>

These entries load the Jersey Servlet Container class and create the URL mapping
that will host all RESTful services on the application, /api/*.

The Theater application is now completely set and ready for development.

Exposing RESTful Services through
JAX-RS
At this point we need to create a Stateless Session Bean (EJB) that will query
exhibition data through the JPA entities and return such information. Before
getting into it, let's take a quick look at the types of beans supported by Java EE 6
and their definitions:

•	 Stateless: This is the same definition we find for EJB 2.x—components that
aren't supposed to keep information between calls. The container keeps a
bean pool, and any bean instance can serve an incoming request, being very
lightweight to keep and having good scalability due to its ability to serve
multiple clients.

•	 Stateful: When multiple interactions between system and user is needed, this
kind of bean keeps consistent state through the conversation. As it holds data
from a specific user, more instances have to be created to serve more users.
Under heavy loads, it can degrade performance.

•	 Message-driven: The focus of this kind of bean is asynchronous processing—
instead of calling its methods, we bound it to a JMS Queue or JMS Topic
and publish messages to it, so it behaves like an event listener, the event
being a JMS message.

•	 Singleton: New on EJB 3.1, the name is pretty clear about what this kind of
functionality this bean offers. By default, all methods of this type of bean are
thread-safe (synchronized) and transactional. You can tune this behavior
with annotations Lock and AccessTimeout, or even disable the container's
control with annotation ConcurrencyManagement with value BEAN.

Chapter 4

[105]

Another new feature related to beans is the no-interface view, which
improves the local client view concept of EJB 3.0. Now, we don't have
to create a separate interface to expose the methods of a bean—the
public methods of a Session Bean are automatically exposed as its local
business interface, making development easier. To use it, you either
explicitly decorate your bean with @LocalBean or leave it without any
interface-related decoration (@LocalBean, @Local, and @Remote) to
implicitly use the no-interface strategy.

Let's get back to our code and create the stateless bean that is going to be exposed as
a web service:

1.	 Create a Java class named ExhibitionBean.java under the package
com.packt.theater.services.

2.	 Decorate the class with the Stateless annotation.
3.	 Add a reference to the persistence context through the PersistenceContext

annotation:

 @PersistenceContext(unitName = "TheaterBO")
 private EntityManager em;

The session bean is now capable of interacting with the database through the
persistence context we have declared and we can simply write Java methods to
retrieve JPA objects, using named queries, for example. In the next section we're
going to expose this stateless session bean as a RESTful service and how to write a
REST client that will call this service from the Store application.

Coding the API
We're going to expose three basic functionalities as part of the RESTful API for the
Theater application: list all exhibitions, list one exhibition, and retrieve an exhibition
by movie. To support such operations, let's look at what must be done to the
ExhibitionBean class:

1.	 Decorate the class declaration with a java.ws.rs.Path annotation. This
annotation specifies the relative path for a resource or method that is going to
be exposed through REST:
@Stateless
@Path("/exhibition")
public class ExhibitionBean {
...

Creating RESTful Services with JAX-RS

[106]

2.	 Create a Java method that is going to execute the named query that returns
all exhibitions. This method of the API returns XML or JSON objects and
that's what the decoration @Produces defines. We also use an HTTP verb,
@GET, since this operation will not have any side-effect (it will not change
any entity state on the server side):
@GET
@Produces({ MediaType.APPLICATION_XML,
 MediaType.APPLICATION_JSON })
public List<Exhibition> getAllExhibitions() {
 @SuppressWarnings("unchecked")
 List<Exhibition> result = em.createNamedQuery
 ("Exhibition.findAll")
 .getResultList();

 if (result.size() > 0)
 return result;
 else
 throw new WebApplicationException
 (Response.Status.NO_CONTENT);
}

Notice that this method does not define a @Path tag, so it will be
used as the default method for the class—a request to the base path,
http://<server>:<port>/theater/api/exhibition, will be
handled by this method.

3.	 Add another Java method that will receive an exhibition ID and return
information about a single object. To consume a parameter JAX-RS uses
the annotation PathParam and since this parameter will be part of the
URL we need to use the Path annotation to differentiate from the default
path of the service:
@GET
@Path("{id}")
@Produces({ MediaType.APPLICATION_XML, MediaType.APPLICATION_JSON
})
public Exhibition getExhibition(@PathParam("id") int id) {
 try {
 Exhibition entity = (Exhibition) em
 .createNamedQuery("Exhibition.findById")
 .setParameter("id", id)
 .getSingleResult();
 return entity;
 } catch (NoResultException nre) {

Chapter 4

[107]

 throw new WebApplicationException
 (Response.Status.NOT_FOUND);
 }
}

The following is how a request to this method must be done:
http://<server>:<port>/theater/api/exhibition/{id}.

4.	 And now add the most important method of this service that will receive a
movie ID and return a list of available exhibitions for that movie. In order to
provide such functionality we will add another path for the method, /q, and
pass the movie ID as a URL parameter that can be read through the annotation
QueryParam of JAX-RS. The complete method is shown as follows:
@GET
@Path("/q")
@Produces({ MediaType.APPLICATION_XML,
 MediaType.APPLICATION_JSON })
public List<Exhibition> getAllExhibitionsByMovie
 (@QueryParam("movie") int movieId) {
 if (movieId > 0) {
 Query query = em.createNamedQuery
 (Exhibition.findByMovie);
 query.setParameter("movieId", movieId);

 @SuppressWarnings("unchecked")
 List<Exhibition> result = query.getResultList();

 if (result.size() > 0)
 return result;
 else
 throw new WebApplicationException
 (Response.Status.NOT_FOUND);
 }
 else
 throw new WebApplicationException
 (Response.Status.BAD_REQUEST);

Note that if a request is made to http://<server>:<port>/
theater/api/exhibition/q without a parameter or with a
parameter but no value, a BAD REQUEST error code (HTTP 400)
will be returned. Remember that HTTP status codes are heavily
used for RESTful web services since they are a standard and have
meaningful descriptions.

Creating RESTful Services with JAX-RS

[108]

5.	 To deploy the application, open the Servers view accessing the menu
Window, then navigate to Show View | Servers.

6.	 Right-click on the server name and click on the Add and Remove… entry
from the context menu.

7.	 Select the Theater project from the Available list and click on Add >.
8.	 Click on the Finish button.

Testing the web service
After the successful deployment, test the application accessing the following URLs
from a browser:

•	 http://localhost:7001/theater/api/exhibition/

Chapter 4

[109]

•	 http://localhost:7001/theater/api/exhibition/4

•	 http://localhost:7001/theater/api/exhibition/q?movie=5

Creating RESTful Services with JAX-RS

[110]

To complete the testing, we can call the service API from a command-line utility such
as cURL, setting the accept HTTP header to application/json, which will change
the web service's response, as shown in the following screenshot:

To force a RESTful service support only one media type (only JSON or
only XML, for example), you can modify the Produces annotation and
set the appropriate media type. Actually the supported media types are
listed in the Java docs of Jersey API at https://jersey.java.net/
apidocs/latest/jersey/index.html.

You can check the RESTful APIs exposed by an application accessing the
autogenerated Web Application Description Language (WADL) file at the API's
root URL to get information about it. For the module we just coded, that address
would be http://localhost:7001/theater/api/application.wadl:

Chapter 4

[111]

The application.wadl file is generated by Jersey and contains all the basic
information about the service such as operations, supported media types for each
operation, HTTP verbs, and input/output data.

Creating the REST client
Now that there is a service that provides a list of movie exhibitions available on
the Theater module, we need to update the Store module to consume this API
and display the retrieved information on the query page. Here's a graphical
representation of this functionality:

JSON or
XML

Store
Theater

The JAX-RS RI defines a client API for RESTful Web Services clients and the base
class for this is com.sun.jersey.api.client.Client. This is the main class we're
going to use to develop our client in the next section.

Configuring JAX-RS client libraries and
optional package
Before starting the creation of the client, we need to add some Jersey libraries to the
project classpath since they provide the client API and JSON classes that we're going
to use:

1.	 Open the Properties for Store window and go to the Java Build Path section.
2.	 Click on the Libraries tab and click on Add External JARs….
3.	 Browse to the WebLogic 12c installation directory and go to the modules

folder at $MW_HOME/oracle_common/modules.

Creating RESTful Services with JAX-RS

[112]

4.	 Select files jersey.core-1.17.1.jar, jersey.json-1.17.1.jar, and
jersey.client-1.17.1.jar and click on OK:

5.	 Click on OK to close the Properties for Store window.

Also, we need to add references to TheaterBO to properly manipulate the response
of our REST Web Service. As we did with StoreBO in the previous chapter, we need
to add a reference to the project for design-time compilation, and some tags to the
project's MANIFEST.MF file to link them at runtime. Let's do so:

1.	 To add a project reference, right-click on the Store project and select
Properties, then Java Build Path and finally Projects. Click on Add…
and select the TheaterBO project.

2.	 Now, open the Store's project MANIFEST.MF file inside WebContent/META-
INF, add a reference to the Extension-List, and then add the package
details. Here's how your file should look after this step:
Manifest-Version: 1.0
Class-Path:
Extension-List: storeBO theaterBO
storeBO-Extension-Name: storeBO
storeBO-Specification-Version: 1.0

Chapter 4

[113]

storeBO-Implementation-Version: 1.0.0
theaterBO-Extension-Name: theaterBO
theaterBO-Specification-Version: 1.0
theaterBO-Implementation-Version: 1.0.0

3.	 Save the file.

The Store project is now ready and you can start implementing the web service client.

Creating the web service consumer
Now that the Store project has the correct libraries, we can create the client that is
going to consume the API exposed at http://localhost:7001/theater/api/
exhibition/q. In order to achieve this, we must:

1.	 Create a named bean that is going to act as a proxy between our
SearchManager bean and the Theater API.

2.	 Instantiate the JAX Client handler and retrieve an actual handler to call the
remote methods, represented by a WebResource object.

3.	 Define and code the proxy method that is going to receive a movie ID from
SearchManager, build the query, and execute it.

So, in the Store project, create a new Java class named TheaterClient under the
package com.packt.theater.client, decorate it with @Named and add a method to
retrieve a JAX-RS handler:

private WebResource getClient() {
 final Client client = Client.create();
 return client.resource(ENDPOINT);
}

The endpoint referenced above is going to be retrieved from a deployment
descriptor, web.xml, using CDI. Add these lines just after the class declaration:

@Resource(lookup="theaterServiceEndpoint")
private String ENDPOINT;

Now, open your web.xml file and add this block at the end of the web-app tag:

<env-entry>
 <env-entry-name>theaterServiceEndpoint</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>http://localhost:7001/theater/api
 </env-entry-value>
</env-entry>

Creating RESTful Services with JAX-RS

[114]

As we will simulate just one Theater module when running the projects,
there's no need to worry about finding out the right recipient for a request
(which theater), so we won't have such a logic in our project, that is, we
will use a fixed endpoint address. In a real-world scenario, we should
have several entries here, each pointing to a different partner.

The last step is to create a method, getExhibitionByMovie, that receives a movie
ID as parameter and returns a list of exhibitions, executing the call to the REST
Web Service exposed by the Theater module. Here's how the final code of the
TheaterClient class should look like:

@Named
public class TheaterClient {
 @Resource(lookup="theaterServiceEndpoint")
 private String ENDPOINT;

 private WebResource getClient() {
 final Client client = Client.create();
 return client.resource(ENDPOINT);
 }

 public List<Exhibition> getExhibitionByMovie(int movieId) {
 if (null == ENDPOINT) {
 return null;
 }

 final List<Exhibition> exhibition = (List<Exhibition>)
 getClient()
 .path("exhibition")
 .path("q")
 .queryParam("movie", String.valueOf(movieId))
 .accept(MediaType.APPLICATION_XML)
 .get(ClientResponse.class)
 .getEntity(new GenericType<List<Exhibition>>() {});

 return exhibition;
 }
}

Now, we must change the SearchManager bean to call the brand new client proxy
and add variables to deal with this new data.

Chapter 4

[115]

Updating the SearchManager bean
The SearchManager class already has methods that list theaters (getTheaters)
and movies (getMovies), and now we need to update the bean to include a
method that will call TheaterClient and receive a list of available exhibitions
of the selected movie:

1.	 Open class SearchManager and add two attributes, one to hold the list of
exhibitions and another to hold the value of the selected entry from the
exhibition drop-down menu (don't worry, it doesn't exist just yet, we're
going to create it shortly), along with their respective getters and setters:
private List<Exhibition> exhibitions;
private int exhibition;

2.	 Inject an instance of TheaterClient into it, marking it as transient to
avoid problems later when serializing the instance of SearchManager:
@Inject
private transient TheaterClient theaterClient;

3.	 Create a method that will handle any changes in the Movie drop-down
menu, so every time you select a different movie, this method will be called
and the list of exhibitions will be populated or refreshed:

public void handleMovieChange() {
 if (movie != 0)
 exhibitions = new
 TheaterClient().getExhibitionByMovie(movie);
 else
 exhibitions = null;
}

The complete class should look like this:

@Named("search")
@SessionScoped
public class SearchManager implements Serializable {
 private static final long serialVersionUID = 1L;

 @PersistenceContext(unitName="StoreBO")
 EntityManager em;

 @Inject
 private transient TheaterClient theaterClient;

Creating RESTful Services with JAX-RS

[116]

 private List<Theater> theaters;
 private List<Movie> movies;
 private List<Exhibition> exhibitions;

 private int movie;
 private int theater;
 private int exhibition;

 // Change listener for Movie selectOneMenu
 public void handleMovieChange() {
 if (movie != 0) {
 exhibitions = theaterClient.getExhibitionByMovie(movie);
 } else {
 exhibitions = null;
 }
 }

 @SuppressWarnings("unchecked")
 public List<Theater> getTheaters() {
 if (theaters == null)
 theaters = em.createNamedQuery(Theater.findAll).
 getResultList();

 return theaters;
 }

 @SuppressWarnings("unchecked")
 public List<Movie> getMovies() {
 if (movies == null)
 movies = em.createNamedQuery(Movie.findAll).
 getResultList();

 return movies;
 }
}

// Other getters and setters omitted

Chapter 4

[117]

Updating the query page
The web page that displays the search form needs to be updated with the exhibition
dates retrieved from the Theater module. To accomplish this without refreshing
the whole page, we will rely on some Ajax (Asynchronous JavaScript and XML)
features provided by JavaServer Faces. This can be accomplished by firing an Ajax
call when the user selects an entry from the Movies drop-down menu:

1.	 Open the index.xhtml file and add a form named queryForm between tags
p:fieldset and p:panelGrid—this is needed so that the Ajax engine can
capture events:
 <p:fieldset legend="Basic Query">
 <h:form id="queryForm">
 <p:panelGrid columns="2">
 ...
 </p:panelGrid>
 </h:form>

2.	 Add a p:ajax component inside the p:selectOneMenu tag that shows the
movie list. This component needs to inform which method should be called
(that is, the event listener), and which component must be updated upon
event execution. The component should look like this:
<p:selectOneMenu id="movie" value="#{search.movie}"
 style="width: 350px;">
 <f:selectItem itemLabel="Select one" itemValue="0" />
 <f:selectItems value="#{search.movies}" var="n"
 itemLabel="#{n.name}" itemValue="#{n.id}" />
 <p:ajax process="@this" update="exhibition"
 listener="#{search.handleMovieChange}" />
</p:selectOneMenu>

3.	 Add another p:selectOneMenu tag to list the exhibitions. It's very important
to set the ID of this component to exhibition since it's the value configured
in the Ajax event listener in the previous step:
<h:outputLabel for="exhibition" value="Exhibition:" />
<p:selectOneMenu id="exhibition"
 value="#{search.exhibition}" style="width: 350px;">
 <f:selectItem itemLabel="Select one" itemValue="0" />
 <f:selectItems value="#{search.exhibitions}" var="n"
 itemLabel="#{n.date}" itemValue="#{n.id}"/>
</p:selectOneMenu>

4.	 Save all files and redeploy (publish) the Store application.

Creating RESTful Services with JAX-RS

[118]

The resulting page should look like this:

The Exhibition drop-down menu is being populated by the results returned by the
exhibition RESTful web service, hosted by the Theater application. Every time
the movie list changes, a new call is made and the exhibition list is refreshed. For a
real-world scenario, many considerations would need to be taken into account, such
as latency, caching, security, and other strategies. Some of these strategies will be
explored in the following chapters.

Structuring the web application
Up to this point, the application has only one page and a simple form, which would
not be acceptable as the interface provided for our fictional customers. To fix that
we're going to add a few more pages and templates to make the application look
better and leverage what we have already learned from the previous chapters and
also by adding some JSF Facelets and PrimeFaces components.

Applying templates through Facelets
Let's create a template with the basic components of an application such as header,
menu, main page, and so on. On OEPE, open the Store web project and perform the
following actions:

1.	 Create a new folder under the WEB-INF directory named templates.
2.	 Now we need to create the basis for our template, which will basically consist

of two files: template.xhtml and top.xhtml.

Chapter 4

[119]

3.	 The main part of template.xhtml is to the define areas (variables) that will
be replaced by other pages, using the inner structure declared at each of
them. In our example, we have only two areas: header and content. They're
defined by the <ui:insert> tag of Facelets as follows:
...
<p:layout fullPage="true">
 <p:layoutUnit position="north">
 <ui:insert name="header" >
 <ui:include src="top.xhtml" />
 </ui:insert>
 </p:layoutUnit>
 <p:layoutUnit position="south" style="border:0px">
 <p:notificationBar position="bottom" effect="slide"
 widgetVar="bar" styleClass="top" />
 </p:layoutUnit>
 <p:layoutUnit position="center" style="border:0px">
 <ui:insert name="content" >
 <ui:include src="index.xhtml" />
 </ui:insert>
 </p:layoutUnit>
</p:layout>
...

The complete code of template.xhtml is part of the code
bundle of this chapter, available at the Packt Publishing
website, www.packtpub.com.

4.	 The top.xhtml file renders the menu for the application and eventually the
logo and login information. This file is included by default in template.
xhtml. Here is the relevant portion of code from this file:
...
<ui:composition>
<h:form>

 <h:graphicImage
 value="resources/images/movieStoreLogo.png"
 style="margin: 0px auto;margin-left:5%;" height="15%"
 width="15%" />

 <p:panelGrid columns="2" id="loginPanel"
 style="float: right; right:50%; margin-right:10%;
 padding:0px; font-size:10px; border:none;">
 <p:inputText id="loginUser">

Creating RESTful Services with JAX-RS

[120]

 <p:watermark for="loginUser"
 value="user@mail.com" />
 </p:inputText>
 <p:password id="loginPass">
 </p:password>
 <div />
 <p:row>
 <p:commandButton value="Login" />
 <p:commandButton value="Sign up" />
 </p:row>
 </p:panelGrid>
 <p:megaMenu style="height:90%; font-size:12px;">
 <p:menuitem value="Home" url="/" />
 <p:menuitem value="Theaters"
 url="/theaters/theaters.jsf" />
 <p:menuitem value="Movies" url="/movies/movies.jsf"
 />

 <f:facet name="options">
 <p:inputText id="searchText"
 style="padding: 4px; margin:0px;
 font-size: 12px; margin-right:10px" />
 <p:watermark for="searchText" value="Search..." />
 <p:splitButton value="Search" actionListener="#"
 style="margin:0px; font-size: 10px;">
 <p:menuitem value="by Exhibition dates"
 actionListener="#" />
 <p:menuitem value="by Movies"
 actionListener="#" />
 <p:menuitem value="by Theaters"
 actionListener="#" />
 <p:separator />
 <p:menuitem value="Advanced Search" url="#" />
 </p:splitButton>
 </f:facet>
 </p:megaMenu>

</h:form>
</ui:composition>

The complete code of top.xhtml is part of the code bundle of this
chapter, available at the Packt Publishing website, www.packtpub.com.

Chapter 4

[121]

5.	 Open index.xhtml and replace the content of the <body> tag with the
following code:
<ui:composition
 template="/WEB-INF/templates/template.xhtml">
 <ui:define name="title">Home</ui:define>
 <ui:define name="content">
 <h:form>
 <p:panel header="In Theaters">
 <p:ring id="basic" value="#{movie.movies}"
 var="item">
 <p:outputPanel style="text-align:center;"
 layout="block">
 #{item.name}
 <p:rating />
 </p:outputPanel>
 </p:ring>
 </p:panel>
 </h:form>
 </ui:define>
</ui:composition>

6.	 Save all files and publish the project. Access the index page and you will see
the current application:

Creating RESTful Services with JAX-RS

[122]

Some functionalities like the login or signup are not yet implemented and we will
learn how to do so in the next chapters. But with the knowledge acquired from
Chapter 3, Java EE Basics – Persistence, Query, and Presentation, and this chapter, we
can create the Theater and Movie listing pages. To demonstrate, we're going to show
how to create one for Theater and leave the creation of the Movie listing page as an
exercise to the reader, although the complete code for all this is available at the Packt
Publishing website, www.packtpub.com.

Remember that PrimeFaces themes can be set or changed by modifying
the value of primefaces.THEME context param on web.xml. The
themes must be available to the application classpath, as we are
bundling ours with the shared library.

Creating an entity listing page
We are going to build a generic example that will leverage our template and
create a listing page for Theaters.

Start by creating an abstract class named AbstractRepository under the
com.packt.store package. The important methods of the class are shown
in the following code snippet:

...
public abstract class AbstractRepository<T> {
 private Class<T> entityClass;
 public AbstractRepository() { }
...
 public AbstractRepository(final Class<T> entityClass) {
 this.entityClass = entityClass;
 }

 protected abstract EntityManager getEntityManager();

 public T find(Object id) {
 return getEntityManager().find(entityClass, id);
 }

 public List<T> findAll() {
 CriteriaQuery<T> cq = (CriteriaQuery<T>)
 getEntityManager().getCriteriaBuilder().createQuery();
 cq.select(cq.from(entityClass));
 return getEntityManager()
 .createQuery(cq).getResultList();
 }
...

Chapter 4

[123]

The complete code of AbstractRepository is part of the code
bundle of this chapter, available at the Packt Publishing website,
www.packtpub.com.

Note that we have a method that lists all entities, findAll(), and another method
that returns an entity given an ID, find(). These are basic methods that will be
reused on several points throughout the application.

Now create a named CDI bean TheaterManager under com.packt.store.theater
package that will be bound to the web page. This class will extend the abstract
repository class by only implementing a very few necessary methods. The following
is the complete code:

@Named("theater")
@RequestScoped
public class TheaterManager extends AbstractRepository<Theater> {

 private List<Theater> theaters;
 @PersistenceContext(unitName = "StoreBO")
 EntityManager em;

 public TheaterManager() {
 super(Theater.class);
 }

 @PostConstruct
 public void init() {
 theaters = this.findAll();
 }

 @Override
 protected EntityManager getEntityManager() {
 return em;
 }

 public List<Theater> getTheaters() {
 return theaters;
 }
}

Creating RESTful Services with JAX-RS

[124]

Now the last part is the web page, so under WebContent create a new folder named
theaters. In this folder, create a file named theaters.xhtml; it will just define the
value of the content area of the template. Here is the example:

<ui:composition template="/WEB-INF/templates/template.xhtml">
<ui:define name="title">Theaters</ui:define>
<ui:define name="content">
 <p:panel header="Theaters">
 <h:form>
 <p:dataList value="#{theater.theaters}" var="item"
 itemType="none"
 paginator="true" rows="5" paginatorAlwaysVisible="false"
 paginatorPosition="bottom">
 <p:fieldset styleClass="fdsetNoBorder"
 legend="#{item.name}"
 toggleSpeed="500" style="margin:10px">
 <h:panelGrid columns="2" cellpadding="10">
 <h:outputText value="City: #{item.city}" />
 </h:panelGrid>
 </p:fieldset>
 </p:dataList>
 </h:form>
 </p:panel>
</ui:define>
</ui:composition>
...

Save all files and publish the project. Then access the index page of the Store
application and click on the Theaters link on the menu. You should see a list of current
theaters on the system, built by reusing the code and concepts we've learned so far:

Chapter 4

[125]

Now to create the same kind of listing page for movies will be very easy and we
encourage the reader to do so. In the following chapters, we're going to assume
that you have the application working and we're going to enhance it by adding
extra features.

Web resources
•	 JSON (JavaScript Object Notation)

°° http://www.json.org/

•	 Jersey 1.17 User Guide
°° https://jersey.java.net/documentation/1.17/index.html

•	 Jersey site
°° http://jersey.java.net

Creating RESTful Services with JAX-RS

[126]

•	 Community Wiki for Project Jersey
°° http://wikis.sun.com/display/Jersey/Main

•	 Jersey 1.17 API Javadoc
°° http://jersey.java.net/apidocs/latest/jersey/overview-

summary.html

•	 JSR-311 JAX-RS Specification
°° http://jcp.org/en/jsr/summary?id=311

•	 JSR-311 JAX-RS Project
°° http://jsr311.java.net/

•	 JSR-311 JAX-RS API Javadoc
°° http://jsr311.java.net/nonav/javadoc/index.html

•	 The Java EE 6 Tutorial—Building RESTful Web Services With JAX-RS
°° http://download.oracle.com/javaee/6/tutorial/doc/giepu.

html

•	 Representational State Transfer (REST) in Architectural Styles and the Design
of Network-based Software Architectures (Dissertation by Roy Fielding)

°° http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_
arch_style.htm

Summary
In this chapter we have learned how to create and expose an Enterprise Java Bean
(EJB) as a RESTful web service through usage of JAX-RS annotations. We also
created JPA entities and exposed those classes as XML and JSON objects through
JAXB, composing the RESTful web service. Finally, we've updated the search page
to consume the exposed API by showing how to create a RESTful client using
Jersey's (JAX-RS RI) client API.

In the next chapter we're going to learn how to use JAX-WS to expose and
invoke SOAP web services and how to create validations using the bean
validation framework.

Singleton Bean, Validations,
and SOAP Web Services

Now that we saw how to expose and consume web services using REST, let's see
how to use another popular technology, SOAP, to achieve the same results.

There's a wide (and sometimes wild) discussion about which one is
better, and we aren't endorsing any of them by setting this specific
order—the architectural factors and implications of such decisions
are out of scope of this book.

Also, we already accessed the persistence layer provided by the server to connect
and retrieve information from a database. In this chapter we will use this mechanism
to insert data, detailing the transactional aspects involved, and will declare the bean
validation rules to check the values being passed to the database.

Some of these functionalities will be encapsulated by a singleton bean, another new
feature of Java EE 6 that makes the developer's life easier but brings a few details that
must be considered to achieve the expected results.

Using bean validation
The bean validation specification, defined by JSR 303, is a new addition to Java EE 6
and sets a single validation framework—instead of declaring a set of validations for
input mechanisms and another set in the model layer, now we can use a consistent
group of constraints and apply them at both view and model levels.

Singleton Bean, Validations, and SOAP Web Services

[128]

A validation is composed of one or more constraints and can be applied to virtually
any element—examples being a class, a method, an attribute, or even another
constraint (a structure called constraint composition) depending on the scope of the
constraint (its @Target decoration).

All validation constraints can be defined inside a validation.xml file or as
annotations packaged with your application. We will focus on annotations as they
are easier to read.

The rules defined in the validation.xml file have precedence over any constraint
annotations a class may have.

About built-in constraints
The specification defines a fixed set of constraints as described in the following table:

Constraint Description Applies to
@AssertTrue The value must be True:

@AssertTrue
Boolean isInitialized;

Boolean

boolean

@AssertFalse The value must be False:
@AssertFalse
Boolean isBlocked;

Boolean

boolean

@Null The value must be null:
@Null
String restrictions;

Everything but
primitives

@NotNull The value must not be null:
@NotNull
String productName;

Everything but
primitives

@Min The value must be equal to or higher than the
specified minimum:

@Min(21)
Integer age;

BigDecimal and
BigInteger

byte, short, int,
long, and their
respective wrappers

@Max The value must be equal to or lower than the
specified maximum:

@Max(10)
short pendingProducts;

BigDecimal and
BigInteger

byte, short, int,
long, and their
respective wrappers

Chapter 5

[129]

Constraint Description Applies to
@DecimalMin The value must be equal to or greater than the

specified value (represented as a string):
@DecimalMin("100.00")
String insuranceTotal;

BigDecimal and
BigInteger

String

byte, short, int,
long, and their
respective wrappers

@DecimalMax The value must be lower than or equal to the
specified value (represented as a string):

@DecimalMax("1000.00")
BigDecimal allowance;

BigDecimal and
BigInteger

String

byte, short, int,
long, and their
respective wrappers

@Digits The value must comply to the maximum
digits defined for both integer and
fraction portions:

@Digits(integer=7,fraction=2)
String grandTotal;

BigDecimal and
BigInteger

String

byte, short, int,
long, and their
respective wrappers

@Size The size of the object must be inside the range
specified by the min and max values:

@Size(min=1, max=100)
Map relationships;

String

Collection

Map

Array

@Future The value must be greater than the current
date:

@Future
Date exhibitionDate;

Date

Calendar

@Past The value must be lower than the current
date:

@Past
Date birthDate;

Date

Calendar

@Pattern The value must match the regular expression
(follows Java conventions defined at java.
util.regex.Pattern):

@Pattern(regexp="^[A-Z]+$")
String capitalOnly;

String

Singleton Bean, Validations, and SOAP Web Services

[130]

Combining and grouping validation rules
All these built-in constraints—and custom constraints that we're about to create—
can be combined to create complex validations; all we need to do is attach all the
necessary constraints to a variable:

@NotNull
@Min(10)
@Digits(integer=5)
Long counter;

But you can't declare two annotations of the same type for the same object. When
you need to do this, you must use the List format—actually, this is another
annotation that extends all the built-in constraints—and pass an array of rules
of the same type as its value:

@Pattern.List({ @Pattern(regexp="[a-z]*"),
 @Pattern(regexp="[A-Z]*")})
String name;

This is all good if you want to apply every single rule every time you check an object,
and basically this is the expected behavior when applying validation to the user
input via JSF.

But suppose you have a business entity that must be checked against specific rules
depending on some entity's attribute. You can't create the validation set dynamically
at runtime, which is when you have details about the object that must be checked. So,
to solve this, you must use validation groups.

Every constraint exposes a groups attribute that can receive a list of Java interfaces,
and this can be used to segregate rules. Notice that the definition of the interface is
not used by the validation framework, only its name.

To illustrate the usage of groups, let's say we have a customer entity, and an
individual can be a regular or a premium customer. This profile will define how many
items can be set in the quantity attribute. To implement this scenario, we could use
just three classes:

public class Customer {
 int quantity;

 public int getQuantity() {
 return quantity;
 }
 public void setQuantity(int quantity) {

Chapter 5

[131]

 this.quantity = quantity;
 }
}

public class RegularCustomer extends Customer { }

public class PremiumCustomer extends Customer { }

As the group structure deals with interfaces, we need to attach the class definitions
to the interfaces to be able to define the validation rules. So, let's create two empty
interfaces and attach them to the classes we just created:

public interface Regular { }

public interface Premium { }

public class RegularCustomer implements Regular
 extends Customer { }

public class PremiumCustomer implements Premium
 extends Customer { }

We can now go back to the customer class and define the business constraints—a
regular customer can add up to 10 items with no minimum value, and a premium
customer can get up to 30 items but must get at least 10 items:

public class Customer {
 @Min.List({ @Min(value=10, groups={ Premium.class })})

 @Max.List({ @Max(value=10, groups={ Regular.class }),
 @Max(value=30, groups={ Premium.class })})
 int quantity;

To test the code, we're going to create a regular customer, instantiate a validator
object—this object gives us a direct way to access the validation framework—and
call the validate method to pass the customer and the interface whose rules must
be checked:

import javax.validation.*;

Customer regular = new RegularCustomer();
regular.setQuantity(20);

ValidatorFactory vf = Validation.buildDefaultValidatorFactory();
Validator validator = vf.getValidator();

Singleton Bean, Validations, and SOAP Web Services

[132]

Set<ConstraintViolation<Customer>> violations =
 validator.validate(regular, Regular.class);

for (ConstraintViolation<Customer> violation : violations) {
 System.out.println(violation.getMessage());
}

Another decoration, @GroupSequence, can be used when you have
overlapping groups and want to set a specific order to perform the
checks. Remember that this annotation can only be attached to interfaces
and classes.

Creating a custom constraint
If you need to declare validations that aren't covered by a specific built-in constraint
or a combination of them, you can create your own constraints.

Another scenario where a custom constraint is a valid option is
when you have a complex combination of built-in constraints that is
frequently applied—creating a custom constraint to encapsulate it
makes the developer's life easier, reduces the chance of an error, and
improves code maintenance.

Here's an example of a custom constraint that just wraps two built-in constraints.
Apart from the @NotNull and @Pattern decorations that specifies the validation
rule, everything else just composes the minimum set of instructions needed to
define a constraint:

import java.lang.annotation.*;
import javax.validation.*;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Pattern;

@Constraint(validatedBy={})
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.FIELD)

@NotNull
@Pattern(regexp = "[0-9]{1,3}.[0-9]{1,3}.[0-9]{1,3}.[0-9]{1,3}")
public @interface IP {
 String message() default "";
 Class<?>[] groups() default {};
 Class<? extends Payload>[] payload() default {};
}

Chapter 5

[133]

The regular expression declared here is a simplification of a real-world
check—the number of groups and alternatives of a valid expression
would not add to the point being illustrated, so we decided to use a
simpler one.

The @Constraint decoration is the most important one because it defines this
piece of code as a constraint to the container. As this custom constraint is just
a composition of built-in constraints, an empty array is all we need to pass to
validatedBy.

As constraints are checked at runtime, the @Retention decoration must be set to
RUNTIME. The @Target decoration indicates which type of elements can be decorated
with the custom constraint; for example, only fields (attributes) are allowed to have
it, hence its FIELD value is decorated.

The message, groups, and payload methods are mandatory when defining a
validation constraint. If you forget any of them, your code will compile and
deploy, but when the WebLogic tries to check it at runtime, a javax.validation.
ConstraintDefinitionException error will pop up.

You may have noticed that the message method has an empty string as its default
value. This is because we don't have the actual code attached to this constraint—the
built-in constraints will generate the output messages, so any text you enter here will
not be used.

Coding a constraint validator
If your validation needs are more complex and some code is necessary, you
can create one or more classes that implement the javax.validation.
ConstraintValidator interface and list them in the validatedBy attribute
in @Constraint.

In the class declaration, you must state which constraint this code will be bound
to and to which type of data. Here's how the same IP validation would look like
if we use Java code instead of the built-in constraints:

import javax.validation.ConstraintValidator;
import javax.validation.ConstraintValidatorContext;

public class IPValidator implements ConstraintValidator<IP, String>
{
 private IP constraint;

 // Lazy pattern, not designed for real situations

Singleton Bean, Validations, and SOAP Web Services

[134]

 private static String IP_PATTERN =
 "(?>[0-9]{1,3}.)(?>[0-9]{1,3}.)([0-9]{1,3}.)([0-9]{1,3}.)";

 @Override
 public void initialize(IP constraint) {
 this.constraint = constraint;
 }

 @Override
 public boolean isValid(String ipAddress,
 ConstraintValidatorContext cvc) {
 if (null == ipAddress)
 return false;

 return ipAddress.matches(IP_PATTERN);
 }
}

As our IP rule can only be applied to strings, the validator declaration reflects this
decision as ConstraintValidator<IP, String>.

You have to create a Validator class for each and every type of value
it can be attached to, or you can declare a generic one, <IP, Object>,
and check the value type at runtime inside its isValid method.

The initialize method receives the parameters set at the annotation, and this
information can be stored to be used later by the isValid method; for example, to
organize the sequence of checks based on the groups attribute.

Showing validation messages
When you attach constraints to bean attributes and these attributes are linked to a
form, the validation phase is started upon the form's submission. If one or more of
the constraints aren't met, the associated message(s) is returned to the view.

To exemplify this, let's attach a basic rule to the attributes of our SearchManager
class in the project Store:

public class SearchManager {
 ...
 @Min(value = 1, message = "Please select a movie")
 private int movie;

 @Min(value = 1, message = "Please select a theater")

Chapter 5

[135]

 private int theater;

 @Min(value = 1, message = "Please select an exhibition")
 private int exhibition;

This set of constraints will guarantee that when the search method executes,
the user selected an entry of each available dropdown: theater, movie, and
exhibition.

We have a couple options to show the messages returned by JSF:

•	 JSF's message component, either attached to a field or as an
independent area

•	 PrimeFaces's Growl component

Consider using some of these restrictions on POJOs at StoreBO and
TheaterBO. That way, you can easily apply some common restrictions
for business objects. You can also save a layer hop to validate some of
these restrictions that are actual database constraints, and every project
that consumes these beans will share these basic validations. For instance,
you can add the following validations to the Ticket class::

…
@NotNull(message="Control numbers can't be null.")
private String control;

@NotNull(message="An exhibition must be assigned to the
ticket.")
private int exhibitionRef;

@NotNull(message="Seat(s) must be assigned to the
ticket.")
private int seatRef;
…

Using the message component
You can attach a message component to each field of a form, so each one will show
the messages related to its linked field. Just add an h:message tag with the name of
the target component to its for attribute:

 <h:message for="movie" />

Singleton Bean, Validations, and SOAP Web Services

[136]

To be able to submit the form and run validations, we need to add a command
button inside queryForm, along with an HTML break to keep the screen aligned:

<p:commandButton id="query" update="queryForm" value="Search Seats"
action="#{search.query}"/>

Here's a snippet of the code from the index.xhtml file of the Store project showing
how to use it:

<h:form id="queryForm">
 <p:panelGrid columns="3">
 <h:outputLabel for="movie" value="Movie:" />
 <p:selectOneMenu id="movie" value="#{search.movie}">
 ...
 </p:selectOneMenu>
 <h:message for="movie" />
 ...
 <p:commandButton id="query" update="queryForm" value="Search Seats"
action="#{search.query}"/>

Remember to target the update attribute of your command button,
or else you're not going to see any messages.

The downside of this approach is that you have to code individual entries and
obviously must consider them as screen components—to accommodate the message
tags, we had to raise the number of columns of the panelGrid tag defined earlier.
Conversely, when you have a screen with too many fields, using it brings better
visual feedback to the user, despite the extra effort to format the page output.

The rendered screen with some validation messages would look similar to the
following screenshot:

Chapter 5

[137]

PrimeFaces also exposes a message component that works the same
way as the JSF implementation; however, it shows an icon next to the
message and applies a different style to the message's text, making it
more graphically appealing.

You can also set a message area, which is not attached to a specific field, like this:

<h:form id="queryForm">
 <p:messages />
 ...

This is how the same messages would be shown using this component:

You can customize a component's style by adding your own stylesheet and
overriding PrimeFaces' definitions. The appropriate tags you should change are
detailed in the framework's documentation.

PrimeFaces's Growl
Growl is name of the notification system adopted by Apple's Mac OS X, and also the
name of a PrimeFaces's component based on it that shows messages in an overlay.

In order to use the component, just add a reference to it inside your command's
target update component—the form, in our example:

<h:form id="queryForm">
<p:growl showDetail="false"/>

Singleton Bean, Validations, and SOAP Web Services

[138]

And here's how the messages would be shown:

The showDetail attribute is set to false to avoid message repetition inside each
box—each FaceMessage has a summary attribute and a detail attribute, and the
bean validation framework sets both of them with the same value.

The book's example application will use PrimeFaces's Growl component.

Dealing with null and empty strings on JSF
components
If you plan to use bean validations along with JSF, there's something you must
remember; when you attach a bean element to a JSF text component such as
InputText, the element is initialized with an empty string. So, if you mark such
an element with a @Null or @NotNull constraint, the resulting check would be
inaccurate.

To avoid this scenario, you must add a parameter to the application's web.xml file:

<context-param>
 <param-name>
 javax.faces.INTERPRET_EMPTY_STRING_SUBMITTED_VALUES_AS_NULL
 </param-name>
 <param-value>true</param-value>
</context-param>

By doing this, you're instructing the JSF engine that it must handle empty strings
as null.

Chapter 5

[139]

Singleton session beans
This new kind of bean helps developers create components that implement the
pattern that gives its name—no need to declare class methods and attributes to
create them anymore.

Its behavior is a crossover between stateless and stateful beans, as it holds its state
between calls but isn't expected to keep the state consistent in case of a server
shutdown. As just one instance of such a bean is available at any given time, the
client state must not be kept by it for obvious reasons.

The application container guarantees that one bean instance is loaded per JVM. This
means that each Managed Server—an instance of WebLogic Server—will load and
keep only one instance of the class in memory. If your WebLogic domain has just one
instance, the bean is truly singleton in the sense that only one instance will receive
every single request. But, the most common scenario is to have a cluster of managed
servers so you end up with several instances in memory, each receiving the requests
generated by the JVM running it:

Single Instance
...

Bean

Managed
Server

Bean

Managed
Server

Bean

Managed
Server

Bean

Managed
Server

Cluster

One strategy to ensure that just one bean instance is loaded onto the entire cluster is
to target the application containing it to just one managed server.

Targeting is the way you tell WebLogic Server where an application
should run—this structure is used on other kinds of resources, such
as Data Sources and JMS. You can target a component to specific
servers or a cluster, which is a logical aggregation of servers.

But pinning an application to just one server raises a reliability-related issue. We
now have a Single Point of Failure (SPOF); if this WebLogic instance goes down for
some reason, for example, system overload due to request saturation (also known
as denial-of-service attacks), the singleton will no longer be available. Request
saturation occurs when a massive amount of requests are targeted to a server on a
scale that it can't handle, and eventually the server goes down.

Singleton Bean, Validations, and SOAP Web Services

[140]

Let's see how to use a singleton session bean to implement a business rule that must
have controlled access.

The scenario described here doesn't consider shared singleton session
beans. If you have such a component packaged as a shared library
referenced by multiple projects, each one will have an instance of the
bean on its classloader. For such usage, a singleton service is a better
approach as we're going to see in Chapter 10, Scaling Up the Application.

Implementing a singleton session bean
We're going to create a class that will generate control identifiers to attach to a ticket,
so when a customer presents the ticket at the theater counter, there's a way to check
its validity.

The most basic way to expose a class as a singleton is to decorate it with javax.ejb.
Singleton. So, create a new class named ReservationCodeBean inside the package
com.packt.util of the project Store, and mark it as a singleton.

To generate the identifier, we're going to use a simple structure where we
concatenate the current date and time with a sequential number owned by the bean.
For this, we need a numeric variable named counter and a method named generate
that will create and return the identifier:

package com.packt.util;

import java.text.SimpleDateFormat;
import java.util.Date;
import javax.ejb.Singleton;

@Singleton
public class ReservationCodeBean {
 private int counter = 0;
 private SimpleDateFormat now =
 new SimpleDateFormat("yyyyMMdd-hhmmss");

 public String generate() {
 String control = String.format("%1$s-%2$06d",
 now.format(new Date()), ++counter);

 return control;
 }
}

A call to this method will return a string like 20130615-091654-000001.

Chapter 5

[141]

For now, that's all we have to do in this class. We will get back to it later in this
chapter, while finishing up the reservation process.

The next section details how the startup and shutdown sequences of singleton
session beans can be defined.

Understanding how to use the startup
annotation
A class annotation you can use with singleton beans is javax.ejb.Startup, which
tells the container to call the method marked with @PostConstruct upon activation
of the application—notice that this doesn't mean the application is deployed in the
sense that it is already available to receive and process requests. To understand this,
let's take a look at the graph showing the relevant states of an application inside the
WebLogic Server:

Install

New
Prepare

Prepared

Delete

Stop-All

Active

Start-All

Start-Admin

Admin

Stop-Admin

When you ask WebLogic to deploy a package, it is received by the deployer module
and enters the New state. The Prepared state is reached when the application is
distributed to all the servers that are going to host it, and all the servers accepted it,
checked the package, and confirmed it as valid.

At this point, we can instruct the deployer to execute a full start, which is the
commonly desired final state, or to serve only administrative requests; these
are calls to the components using specific credentials so we can check whether
everything is okay before releasing the application for general use.

This transition from Prepared to Admin or Active state is the point where the
@PostConstruct methods of a class decorated with @Startup are called.
Conversely, when a command to stop the application is issued, the @PreDestroy
methods are called before the transition to the Prepared state.

Singleton Bean, Validations, and SOAP Web Services

[142]

The examples used in this section refer to the components of our
applications to make them easier to understand, but we don't need
any of them to execute our business scenario.

Establishing a startup and shutdown sequence
You can attach singleton beans decorated with @Startup to another bean using the
javax.ejb.DependsOn annotation, effectively creating a bean load sequence:

@Singleton
@DependsOn({"InitialBean" })
public class ReservationCodeBean {
…

When executing the shutdown procedure, the server calls the @PreDestroy methods
following the reverse sequence so the dependencies are still available:

Startup

Initial
Bean

DependsOn

ReservationCode
Bean

Shutdown

If a cyclic reference happens to be introduced by @DependsOn, an
error message carrying the exception weblogic.application.
naming.ReferenceResolutionException will be presented
upon deployment, stating the names of the offending beans.

This works fine if your bean depends on just one other bean, as described earlier. If
you declare more than one bean, the container doesn't guarantee that the declaration
sequence will be followed. Consider this dependency list:

@Singleton
@DependsOn({"InitialBean", "LoggingBean", "AuditBean" })

The beans will be loaded in no specific order; the only commitment made by the
container is that it will load all the dependencies before the topmost bean, and that's
it. If a predefined sequence is really needed, you must chain the dependencies;
something similar to the following:

@Singleton
@DependsOn({ "InitialBean" })

Chapter 5

[143]

public class ReservationCodeBean { … }

@Singleton
@DependsOn({ "LoggingBean", "AuditBean" })
public class InitialBean { ... }

This is the only way to guarantee specific load and destroy sequences.

Dealing with concurrency when using
singletons
The default behavior of a singleton session bean, which has synchronized access to
all of its methods, is the consequence of default values set up by the container, and it
may not fit every business need.

To understand what can be changed, here's how the code we just created would
look like with explicit declaration of all concurrency-related tags that represent the
default behavior:

@Singleton
@ConcurrencyManagement(ConcurrencyManagementType.CONTAINER)
@AccessTimeout(1000) // Default unit: milliseconds
public class ReservationCodeBean {
 …
 @Lock(LockType.WRITE)
 public String getNextId() {
 …

By setting the ConcurrencyManagement annotation to CONTAINER, the responsibility
of the synchronization demarcation is transferred to the container. Also, the Lock
annotation attached to each method is set to LockType.WRITE, which is the most
restrictive strategy of locking—every call to the method is supposed to change its
state, so all access must be serialized.

The most common scenario is to have a couple of methods that need a more
restrictive lock. These are the ones that actually alter the bean's state; others that
don't are methods that just read some data. If this is the case, decorate access
methods with @Lock and the value, LockType.READ:

@Lock(LockType.WRITE)
public void updateData(String key, String value) {
 ...
}

@Lock(LockType.READ)

Singleton Bean, Validations, and SOAP Web Services

[144]

public String getData(String key) {
 return value;
}

By doing this, concurrent accesses to the read methods are allowed, improving the
overall response time.

Remember that even operations marked as LockType.READ are subject
to contention—when a request to an operation marked with WRITE is
received, the whole bean is locked to execute it.

The last related annotation is AccessTimeout, which controls how long a request
must wait for the lock to release. If time is exceeded, the container raises a
ConcurrentAccessTimeoutException exception.

There is no default value to this parameter inside the WebLogic Server.
If you don't explicitly declare @AccessTimeout, the more generic JTA
timeout value is used. This is the maximum time a transaction can be
held open by a request, and it applies to the whole container.

On the other end of the spectrum, if you set @ConcurrencyManagement as BEAN,
the container leaves all of the responsibility of synchronization to the developer,
who must resort to Java features in order to accomplish this—mark blocks
with synchronized or volatile keywords, for instance, or use classes such as
ConcurrentHashMap or ConcurrentLinkedQueue if the scenario allows it (as
concurrent collections aren't always a viable alternative to synchronized blocks).

If you set the concurrency management to BEAN, none of the @Lock or
@AccessTimeout declarations will be used by the container, and you won't
get any errors when compiling or deploying it. So you may think that the
annotations are effective but they are not, and you get no warnings about it,
so be careful.

Singleton applied to web services
If you need to limit the consumption of a web service, one easy way to accomplish
this is to annotate it with @Singleton; automatically, just one thread of each
managed server will be allocated to process it.

Keep in mind that this is a rather radical solution. When you enable it, all consumers
will have to wait for their turn to execute its target operation, so in practice, you're
creating a queue. If the business process takes some time to finish and the queue is
long, timeouts can happen, leading to undesired effects.

Chapter 5

[145]

Persisting an object using JPA
Up to this point, we configured and used the persistence layer to connect and retrieve
information from the database but have not tried to store data into it. This is a pretty
straightforward procedure that involves the Entity Manager component—the same
one we used in Chapter 3, Java EE Basics – Persistence, Query, and Presentation,—to read
data from MySQL, and also a transaction, which is something we haven't seen yet.

The concept is pretty widespread nowadays, so there's no need to have painstaking
explanations here but just a quick refresher. We use transactions to coordinate efforts
on disparate resources—which obviously must support it—so we have a consistent
unit of work. The ACID concept (atomicity, consistency, isolation, and durability)
states the primary attributes that must be observed when a transaction is used:

•	 All or none of the participating resources are committed
•	 If an error happens, no resource is updated
•	 The changes being made inside a transaction aren't visible to resources

outside of it
•	 If a transaction finishes as expected and is committed, the participating

resources must ensure that the data will be persisted so that even when a
failure occurs, its state is correctly kept

When using an application server such as WebLogic, we can access its transaction
manager via the Java Transaction API (JTA); by doing this, we have access to
the resources mapped by the container that supports transactions, for example a
JMS queue, a data source, a local EJB, or even a remote EJB (hosted at another
WebLogic Server).

Understanding the available transaction
contexts
If the code that must deal with a transaction happens to be inside an EJB, you can
use container-managed transactions (CMT), meaning that you don't have to acquire
and control the transaction manually—the container takes care of all boilerplate
procedures involved in this process.

For a complete list of transaction context availability in constructors and
EJB interface methods such as afterBegin() or ejbCreate(), refer
to the Web resources section at the end of this chapter for the Programming
JTA for Oracle WebLogic Server entry.

Singleton Bean, Validations, and SOAP Web Services

[146]

On the other hand, you can take control of everything by disabling the container's
transaction control and deal with the transaction manager, and an actual transaction,
through code; this mode is called bean-managed transaction (BMT).

You can declare which mode will be used by decorating the bean
with the TransactionManagement annotation and setting its value to
TransactionManagementType.CONTAINER or TransactionManagementType.BEAN.

CMT is the default setting when no explicit annotations are found by the
application server.

Using container-managed transactions
So, if container-managed transactions (CMT) is the way to go, you don't need to
use @TransactionManagement because it already is the default strategy.

For each method, you can use another annotation, TransactionAttribute, to tell
the container how a transaction should be set up when a request to the method
is made, if this is the case. You must set its value with an entry from the enum
TransactionAttributeType that fits your requirement. Here's a list of possible
values and a description of how each one works:

Value Description
REQUIRED If the caller already has a transaction context, the method

participates in it. If not, a new transaction is created and finished
upon completion of the method. This is the default value.

MANDATORY If a transaction context is passed along by the caller, the method is
executed using it. If not, an exception is raised.

NOT_SUPPORTED The caller should not pass a transaction context. If a transaction
happens to be present, the container suspends it and creates
a new one. At the end of the execution, the local transaction is
finished and the original one is resumed.

SUPPORTS It has the same behavior as REQUIRED if a transaction context
has been received, and same as NOT_SUPPORTED when no caller
transaction is found.

NEVER The method states that it will not accept or create a transaction. If
the caller passes one, an exception is thrown.

REQUIRES_NEW A new transaction context is always created. What is done inside
this transaction is committed before passing the control back to
the caller. If a context is present, the manager suspends it before
passing the control to the method and resumes it after the method
finishes.

Chapter 5

[147]

To demonstrate the CMT feature, we're going to create and save a Ticket instance in
the generate method of ReservationCodeBean, the one that generates the control
number we will send as part of the SOAP web service call we're about to create:

1.	 Open the singleton session bean ReservationCodeBean from the
Store project.

2.	 Inject an Entity Manager to get access to the persistence layer:
@PersistenceContext(unitName = "StoreBO")
private EntityManager em;

3.	 The controlled number returned by the generate method is sensitive
information, so we're going to annotate it to create a new transaction
each time it's called. This way, it doesn't participate in previously
opened transactions, avoiding data tampering. Also, we're going to
assign two parameters to the method's signature that is necessary to
create the Ticket instance:
@TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
public String generate(int theaterRef, int exhibitionRef)

4.	 After the generation of the control number, we create and load an instance
of the class Ticket with the necessary data:
// Create an instance
Ticket ticket = new Ticket();

// Create Mandatory reference (Ticket --> Theater)
Theater theater = new Theater();
theater.setId(theaterRef);

// Set
ticket.setTheater(theater);
ticket.setExhibitionRef(exhibitionRef);
ticket.setControl(control);

5.	 We are all set; now we just need to instruct the entity manager to save
the object:
// Save
em.persist(ticket);

6.	 The method still returns the generated control number, so there is no need
to change the return instruction.

7.	 As soon as the method exits, the transaction is committed, and a new record
in the table Ticket (inside the store_db database) is created.

Singleton Bean, Validations, and SOAP Web Services

[148]

The @TransactionAttribute decoration is the single line of code
that mentions a transaction, and even this one isn't mandatory for our
use case.

Using bean-managed transactions
As said earlier, this mode leaves all of the responsibility of acquiring and releasing a
transaction to the bean's code. There are some helpers that can be used to ease these
procedures, but it is the developer's burden to code it all.

To reach the same outcome of the previous section, the code should look as follows:

1.	 The class must be decorated with TransactionManagement and the
value BEAN:
@Singleton
@TransactionManagement(TransactionManagementType.BEAN)
public class ReservationCodeBean {
 ...

2.	 As we are coding an EJB, we still can use CDI to get a persistence context:
@PersistenceContext
private EntityManager em;

3.	 We also need to inject a UserTransaction component so we can demarcate
our transaction:
@Resource
private UserTransaction ut;

4.	 The load procedure for Theater and Ticket instances remains unchanged.
When the data is ready to be saved, we must start a transaction, save the
objects, and then commit the transaction. The catch block checks whether
there is an active transaction that must be rolled back:
// Save
try {
 ut.begin();
 em.persist(ticket);
 ut.commit();
} catch (Exception e) {
 try {
 if (Status.STATUS_ACTIVE == ut.getStatus()) {
 ut.rollback();
 }
 } catch (Exception rbe) {

Chapter 5

[149]

 rbe.printStackTrace();
 }
}

Not that much work, but you do have to put some extra effort when compared
to CMT. The decision of using bean-managed transactions is usually taken when
several business steps must be executed as a whole, but some of them must be
committed even though the bigger transaction must be rolled back if an error occurs.
Also, keep in mind that not participating in a global transaction can be both a
strength and a weakness, depending on the business scenario you must implement.

If a javax.persistence.TransactionRequiredException
error pops up when you try to run your bean-managed transaction
business method, go back and check the code. Most likely, you must
have forgotten to acquire a transaction context.

Acquiring a transaction context manually
We discussed the usage of transactions inside the context of EJBs, but you can also
acquire and use transactions where CDI isn't available. WebLogic exposes a helper
class to make this process easier:

import weblogic.transaction.TransactionHelper;
…
TransactionHelper th = TransactionHelper.getTransactionHelper();
UserTransaction anotherUT = th.getUserTransaction();

The other pieces of code—opening and closing a transaction and saving an object—
are exactly the same.

A brief intermission
Before we get into the SOAP web service implementation, we need to complement
the applications to execute a seat query using the existing REST web service and
display the results on the query page. Once this is done, we can pick up from there
and develop our SOAP service. So, to get this done, follow these steps:

1.	 Open ExhibitionBean of the Theater project, add a method that will receive
the exhibition ID chosen by the user, and return a list of seat types that are
linked to that specific exhibition:
@GET
@Path("{id}/seats")
@Produces({ MediaType.APPLICATION_XML, MediaType.APPLICATION_JSON })

Singleton Bean, Validations, and SOAP Web Services

[150]

public List<Seat> getSeatsByExhibition(
 @PathParam("id") int id) {
 String jpql = "SELECT s FROM Seat s, Exhibition e "
 + "WHERE (s.room.id = e.room.id) "
 + "AND (e.id = ?1)";

 if (id != 0) {
 Query query = em.createQuery(jpql);
 query.setParameter(1, id);

 @SuppressWarnings("unchecked")
 List<Seat> result = query.getResultList();

 if (result.size() > 0)
 return result;
 else
 throw new WebApplicationException(
 Response.Status.NOT_FOUND);
 }

 throw new WebApplicationException(
 Response.Status.NO_CONTENT);
}

The structure of this method is the same as another method of this
class, getExhibition. We just need to change its path, the query,
and the type being retrieved.
A call to this API would look similar to the following: http://
localhost:7001/theater/api/exhibition/4/seats.

2.	 Go to the Store project, and add a consumer for this new method in the
TheaterClient class:
public List<Seat> getSeatsByExhibition(int exhibitionId) {
 final List<Seat> seats = (List<Seat>) getClient()
 .path("exhibition")
 .path(String.valueOf(exhibitionId))
 .path("seats")
 .accept(MediaType.APPLICATION_XML)
 .get(ClientResponse.class)
 .getEntity(new GenericType<List<Seat>>() {});

 return seats;
}

Chapter 5

[151]

In Chapter 4, Remote Access – Creating RESTful Services with JAX-RS,
we added annotations XMLRootElement and XMLTransient
to the Seat class. As explained there, this must be done to avoid
cyclic references when JAX-RS is creating the query response.

Again, this new method follows the same structure of the other method already in
the class, getExhibitionsByMovie, so it's basically a copy and paste operation with
a few tweaks to the code.

1.	 Now that we have both the service's provider and consumer, let's adjust
the component connected to the JSF page, SearchManager, to expose this
information to the page by adding the following code snippets:
// Variable to hold the list of seats
private List<Seat> seats;
// current quantity of seats
private String[] quantities;

// Getter and setters
public void setSeats(List<Seat> seats) {
 this.seats = seats;
}

public List<Seat> getSeats() {
 return seats;
}

public String[] getQuantities() {
 return quantities;
 }

 public void setQuantities(String[] quantities) {
 this.quantities = quantities;
}

// The method that will call the reservation service
public void reserve() {
}

// Helper method to translate the seat type
private String getSeatDescription(int type) {
 switch (type) {
 case 1:
 return "Regular";

Singleton Bean, Validations, and SOAP Web Services

[152]

 case 2:
 return "Comfort";
 case 3:
 return "Disability";
 default:
 return "Unknown";
 }
}

2.	 Also, in SearchManager, replace the contents of the method query with this
single line that executes the call and sets the variable with the result:
public void query() {
 if (exhibition != 0) {
 seats =
 theaterClient.getSeatsByExhibition(exhibition);

 /*
 * Set the variable that holds the selection
 * done by the user to zero
 */
 quantities = new String[seats.size()];

 for (int i = 0; i < seats.size(); i++) {
 quantities[i] = "0";
 }
 } else {
 seats = null;
 }
}

3.	 The last step is to change our query page—that would be the search.xhtml
(previously index.xhtml) file of the Store project—to show the information
retrieved. We're going to add this block of code just below the query button:

<p:spacer width="100" height="10" rendered="#{!empty search.
seats}" />
<p:spacer width="100" height="10" rendered="#{!empty search.
seats}" />

<h:outputLabel for="seats"
 value="Available seats:"

Chapter 5

[153]

 rendered="#{!empty search.seats}" />
<p:dataTable id="seats"
 var="seat"
 value="#{search.seats}"
 rowIndexVar="index"
 rendered="#{!empty search.seats}">
 <p:column headerText="Type">
 <h:outputText
 value="#{search.getSeatDescription(seat.type)}" />
 </p:column>
 <p:column headerText="Price">
 <h:outputText value="#{seat.price}">
 <f:convertNumber type="currency"
 currencySymbol="" />
 </h:outputText>
 </p:column>
 <p:column headerText="Quantity">
 <p:spinner id="spinnerBasic"
 value="#{search.quantities[index]}"
 min="0" max="99"
 maxlength="2" size="3" />
 </p:column>
</p:dataTable>

<p:commandButton id="reserve" update="queryForm"
 value="Reserve Seats"
 action="#{ search.reserve}"
 rendered="#{!empty search.seats}" />

The rendered attribute prevents components from being rendered
on the screen when they aren't needed, so we use it to show the
second part of the screen only after the user actually executes a query
for available seats.

Singleton Bean, Validations, and SOAP Web Services

[154]

4.	 Save all the files, publish both Store and Theater projects and navigate to the
search page, http://localhost:7001/store/search.jsf. Select the entries
from the three dropdowns and click on Search Seats. A new table showing
the types of seats available should appear after it:

Now that we have the seat query up and running, we can proceed to the next section
where we're going to expose and consume a SOAP web service.

Web services and SOAP
The Simple Object Access Protocol (SOAP) is present in probably 97.32 percent (an
educated guess) of all the web service-related products available today, although it
isn't mandatory to assemble a service. As it plays such an important role to integrate
systems, let's take a look at how this is accomplished using WebLogic Server 12c.

To illustrate the usage of SOAP, we will expose a service from the Theater project
that makes a seat reservation. This web service will be consumed by the Store project
once the user has decided which and how many of each seat type he/she wants for a
specific exhibition.

Chapter 5

[155]

The reservation web service
To create and expose a web service, we just need to annotate a POJO class with
javax.jws.WebService. By default, all public methods of the class are automatically
exposed as operations.

We're going to create a service in the Theater project that will receive a reservation
request and pass it to the partner's system to register it. Then, we subtract the
number of seats received from the available seats of the given exhibition.

The update of the Exhibition instance is going to be done inside a
UserTransaction that we must manually acquire. Also, the find instruction to
retrieve the instance using the persistence layer is going to be marked with the
PESSIMISTIC_WRITE lock mode. So, only one instance of the web service is able to
update the entity at a given moment (all others will wait for the release of the entry).

The communication with the partner's system will not be implemented
since our focus is on how to expose and consume a web service.

Let's implement the web service:

1.	 Create a new class named ReservationBean in the package com.packt.
theater.services of the project Theater, and add a javax.jws.
WebService annotation to the class definition:
@WebService(serviceName="ReservationService",
 targetNamespace="http://com.packt.wls12c")
public class ReservationBean {
}

The serviceName parameter defines the name by which the service
will be known, not exactly a revealing statement. But what happens
when you don't declare it? Your service's name will be a contraction of
the class name plus the suffix, Service. For our class, this would be
ReservationBeanService.
The default targetnamespace value is the class' package converted
to a URL - http://services.theater.packt.com/ using the
same example.

Singleton Bean, Validations, and SOAP Web Services

[156]

2.	 We need just one operation that will receive the exhibition ID along with a
list of seat types and quantities:
public String execute(@WebParam(name="exhibitionId")
 int exhibitionId,
 @WebParam(name = "reservationCode")
 String reservationCode,
 @WebParam(name="seats")
 Map<Integer, Integer> seats) throws
ReservationException {
}

The WebParam annotation is used here to give meaningful
names to the parameters—when an explicit name attribute isn't
declared, the parameters are called arg0, arg1, and so on. The
ReservationException class is a simple POJO that extends
the Exception class. We need a specific class like that in order
to generate SoapFault messages when exceptions occur in the
service. For more details, check the code bundle of this chapter.

3.	 As we're going to update an Exhibition instance, we need to inject a
persistence context:
@PersistenceContext
EntityManager em;

4.	 At this operation, we should communicate with the partner's backend system
to proceed with the seat reservation and update the related Exhibition
instance to subtract the number of seats passed onto the request - the first
step can't be implemented as there is no system to connect to, so here is the
logic for the remaining steps:
// Find the total number of seats for this reservation
int seatsTotal = 0;

for (Iterator<Entry<Integer, Integer>> it =
 seats.entrySet().iterator(); it.hasNext();) {
 seatsTotal = seatsTotal + it.next().getValue();
}

// and subtract then from the Exhibition instance
UserTransaction ut = TransactionHelper.
 getTransactionHelper().
 getUserTransaction();

//
// The find method _must_ be inside the transaction!
//

Chapter 5

[157]

try {
 ut.begin();

 Exhibition exhibition = em.find(Exhibition.class,
 exhibitionId,
 LockModeType.PESSIMISTIC_WRITE);

 if (null == exhibition) {
 throw new ReservationException("Exhibition not found");
 }

 exhibition.setAvailableSeats(
 exhibition.getAvailableSeats() –
 seatsTotal);
 ut.commit();
} catch (Exception e) {
 e.printStackTrace();
 throw new ReservationException();
}
return ReservationBean.OK;

To keep things simple, we are considering the sum of all seats received,
regardless of its kind. A real-world application must process this
information accordingly.

5.	 Save the file and publish the Theater project. To check whether the service
is ready for use, open your browser and go to http://localhost:7001/
theater/ReservationService?WSDL. If you get the XML definition of the
service, we're good to go.

Another possible strategy to deal with the locking of an instance of
Exhibition is to decorate the entity with @Version instead of
retrieving it with the PESSIMISTIC_WRITE flag. This approach uses a
table column to deal with concurrency. It can be more effective because
we're instructing the entity to behave in a certain way instead of leaving
the decision to the consumers, as is the case shown here.

Testing the service provider
WebLogic Server gives us a pretty useful utility to call services, the WebLogic
Universal Test Client (ws_utc). This is a web-based application that you can
use to test services exposed by WebLogic as well as external endpoints.

Singleton Bean, Validations, and SOAP Web Services

[158]

This feature is only available when WebLogic Server is running in the
development mode. We're not supposed to mess around with production
servers, so when such environments are configured, its mode flag is set to
production and a few productivity features are disabled.

To start it, type http://localhost:7001/ws_utc/ in your browser, and after a
message stating that the package is being deployed, a screen like this will show up:

If you need to find the address of a web service exposed by WebLogic Server, you
can open the administration console (http://localhost:7001/console), select
Deployments in the navigation tree, and expand the desired package to see the list
of available services under the Web Services group:

Chapter 5

[159]

By clicking on a web service's name, you can access pages to check and configure
several parameters such as security credentials and policies, and advanced features
such as reliable messaging and buffering. Click on the Testing tab, and expand the
box besides the service name to get the service's WSDL address:

After you enter the service's WSDL address, the operations exposed by the service
are listed. Click on the Test button of the operation you want to run:

Singleton Bean, Validations, and SOAP Web Services

[160]

A new screen is loaded with a form mapping the entries from the request element.
Click on the Raw Message button to switch to the textbox where we can edit an XML
payload; here's a valid payload to use (change the values of the generated XML to
match the following ones):

<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns1:execute xmlns:ns1="http://com.packt.wls12c">
 <exhibitionId>3</exhibitionId>
 <reservationCode>1234-1234-1234</reservationCode>
 <seats>
 <entry>
 <key>1</key>
 <value>5</value>
 </entry>
 </seats>
 </ns1:execute>
 </soap:Body>
</soap:Envelope>

Click on the Invoke button at the bottom of the screen; the Test Results block will be
loaded right below the Invoke button, showing both request and response XML files.
Check whether the return node in the response block is set to ok:

Chapter 5

[161]

In the Settings tab, you can change several aspects of a call; for
instance, the credentials passed when an HTTP username token is
required, or setting a callback address when the service provider
processes the WS-Addressing entries.

To execute the same call again with the same payload, just click on the Invoke button
one more time. To test other methods or to use another payload, click on the name of
the desired operation in the Operations tree on the left-hand side of the screen:

Consuming the service
We just checked that the service implementation is working as it should be, so now
it's time to code the service call from our Store module. To do so, we must perform
either of the following:

•	 Build a call by instantiating and loading the objects that represent the service
and its payload. This is called a dynamic invocation.

•	 Create Java classes that act as a stub to the service provider. As this solution
involves creating structures that must match the service's and having them
pinned to our code—either by having the actual source added to the project
or by packing the stub inside a JAR library—it is referred to as a static
invocation method.

There are external tools such as Apache Axis, but we will keep our
scope to the features provided by WebLogic Server and the JDK.

The most common way to consume a web service is to create a stub for it. This way
we don't have to manually create all the boilerplate code needed to map the service's
operations, its data structures, and the actual invocation to the provider.

To create the classes, we can use the wsimport command-line tool provided by the
JDK. This tool gives us the option to create a JAR file with the generated classes or
to keep the code and insert it into our project. Let's use the latter option so you can
check how it works by browsing the Java source.

Singleton Bean, Validations, and SOAP Web Services

[162]

Open a command prompt or terminal, and enter the following command—as a
single line—with the necessary replacements for your environment:

/opt/packt/install/jdk1.7.0_21/bin/wsimport -keep \

 -Xnocompile \

 -p com.packt.util.gen \

 -d /opt/packt/workspace/Store/src/ \

 http://localhost:7001/theater/ReservationService?WSDL

The parameters in the preceding code tell the utility:

•	 To keep the sources instead of erasing them after compilation, use the
-keep argument.

•	 That a specific package name must be used when creating the classes use the
–p argument.

•	 The root directory where the files are to be written with the –d argument. As
we are adding the source to our Store project, the value is the root source of
the project, /opt/packt/workspace/Store/src/.

•	 That we don't need the compiled objects, hence the -Xnocompile option.

If you go to Eclipse and press F5 to refresh the project, a new package com.packt.
util.gen will appear. The Execute and ExecuteResponse classes are wrappers to
the request and response payloads respectively. The ReservationBean class is the
wrapper to the actual service provider, and ReservationService is the client we're
going to use to code our call.

Don't worry if you feel like this is too much information, because it
is! All you need to know is that ReservationService is the proxy
that must be used to call the service.

So, open the SearchManager class and make the following changes:

1.	 Start by adding a reference to the ReservationService class:
private transient ReservationService reservationService;

2.	 Then, we need to make the WSDL location of our web service configurable
and dynamic, just like we already did for the RESTful service. Add an entry
in the web.xml file as follows:
<env-entry>
 <env-entry-name>reservationServiceEndpoint</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>

Chapter 5

[163]

 <env-entry-value>
http://localhost:7001/theater/ReservationService?WSDL
 </env-entry-value>
</env-entry>

3.	 Then we can add a lookup for this resource entry through @Resource:
@Resource(lookup = "reservationServiceEndpoint")
private String RESERVATION_SVC_ENDPOINT;

4.	 And finally let's create an init() method marked with @PostContruct so it
will be executed after all the injected resources are ready. In this method, we
are going to set the service endpoint to the resource:
@PostConstruct
public void init() {
 try {
 reservationService = new ReservationService(
 new URL(RESERVATION_SVC_ENDPOINT));
 } catch (MalformedURLException e) {
 e.printStackTrace();
 }
}

5.	 Locate the reserve method in the same class and insert the code to load a
Seats instance that we're going to pass as part of the request. The definition
of this class is inside the Execute class file that maps the input structure of
the operation:
 public void reserve() {
 Seats seats = new Seats();

 List< com.packt.util.gen.Execute.Seats.Entry>
 entries = seats.getEntry();

 for (int i = 0; i < quantities.length; i++) {
 String quantity = quantities[i];

 if (0 < Integer.parseInt(quantity)) {
 Entry entry = new Entry();
 entry.setKey(this.seats.get(i).getType());
 entry.setValue(Integer.parseInt(quantity));
 entries.add(entry);
 }
 }

Singleton Bean, Validations, and SOAP Web Services

[164]

6.	 A control code must be generated and the reservation must be added to the
central database. This is done by a call to the generate method of the class
ReservationCodeBean, which also must be injected here:
@Inject
private transient ReservationCodeBean controlBean;
 …
 public String reserve() {
 …
 String reservationCode =
 controlBean.generate(this.theater,
 this.exhibition);

7.	 As an instance of ReservationService is created after the bean
initialization, we just need to get the declared port—the concrete reference
to the service's endpoint—and call the desired operation, execute. By doing
this, we're actually consuming the service:
String response = reservationService.getReservationBeanPort().
 execute(this.getExhibition(),
 reservationCode, seats);

8.	 Now, check the response received from the service provider and whether the
process returned an ok literal. We must show a confirmation message to the
user and redirect them to the reservation page, so they can print a receipt that
must be presented at the theater's booth to redeem the reservation. Simply
add the following:
...
if (response.equals("ok")) {
 FacesContext context = FacesContext.getCurrentInstance();
 context.getExternalContext().getFlash().setKeepMessages
(true);

 FacesContext.getCurrentInstance().addMessage(
 null,
 new FacesMessage(
 "New reservation of " +
 quantities.length +
 " seats completed. Number is " +
 reservationCode));

 resetSearch();
 return "reservation?faces-redirect=true";
} else {
... // error treatment

Chapter 5

[165]

9.	 The code in the last step adds a confirmation message, resets the search
data, and redirects the user to the reservation page where the system keeps
a history of all the reservations made by a customer. Note that at this point,
we don't have an authenticated customer yet, so it's showing data from all of
them. So let's create a reservation.xhtml page:
<ui:composition template="/WEB-INF/templates/template.xhtml">
 <ui:define name="title">Reservations</ui:define>
 <ui:define name="content">
 <h:form>
 <p:growl showDetail="false" />
 <p:panel id="tpanel" header="Reservations">
 <p:dataGrid columns="3" value="#{ticket.tickets}"
 emptyMessage="You have no reservations yet." var="item">
 <p:panelGrid style="font-size:12px" columns="2" id="div-
#{item.id}">
 <h:outputLabel for="control" value="Code:" />
 <h:outputText id="control" value="#{item.control}" />
 <h:outputLabel for="tname" value="Theater:" />
 <h:outputText id="tname" value="#{item.theater.name}" />
 <h:outputLabel for="exhib" value="Exhibition:" />
 <h:outputText id="exhib" value="#{exhibition.find(item.
exhibitionRef).date}">
 <f:convertDateTime pattern="MMM dd, yyyy hh:mm a" />
 </h:outputText>
 </p:panelGrid>
 <p:commandButton icon="ui-icon-print" style="font-
size:12px;" id="print"
 value="Print" type="button">
 <p:printer target="div-#{item.id}" />
 </p:commandButton>
 </p:dataGrid>
 </p:panel>
 </h:form>
 </ui:define>
</ui:composition

10.	 The final step is to create the resetSearch method referenced by the
reserve method:
public void resetSearch() {
 this.theater = 0;
 this.movie = 0;
 this.exhibition = 0;
 this.seats = null;
}

Singleton Bean, Validations, and SOAP Web Services

[166]

Now, save all the files, publish both Theater and Store projects to WebLogic
Server, and execute the business scenario. Here's how the reservation page and the
confirmation message would look like after a successful reservation:

From this page, a customer can see the history of reservations. Also, by clicking on
the Print button, the selected reservation will be printed; the entries are ordered, and
the newest ones are showed first.

If you want to check whether the web service ran as expected, check the contents of
the exhibition table of the theater_db database—the available_seats column
should have its value updated by the subtraction of the number of seats sent by the
page. Also, each successful submission should create a new entry in the table ticket
of the database store_db.

Web resources
The following are a list of web resources you can check:

•	 Principled Design of the Modern Web Architecture
°° http://www.ics.uci.edu/~taylor/documents/2002-REST-TOIT.

pdf

Chapter 5

[167]

•	 SOAP 1.2 specification
°° http://www.w3.org/TR/soap12-part1/

•	 Enterprise JavaBeans (EJBs)
°° http://docs.oracle.com/middleware/1212/wls/INTRO/ejbs.

htm

•	 Be careful with singleton session bean
°° http://www.jbesolutions.com/blog/?p=17

•	 Tuning WebLogic Server EJBs
°° http://docs.oracle.com/middleware/1212/wls/PERFM/ejb_

tuning.htm

•	 Bean validation specification website
°° http://beanvalidation.org/

•	 Bean validation with custom constraints and grouping
°° http://workingonbits.com/2011/02/28/custom-constraints-

with-bean-validation/

•	 Programming JTA for Oracle WebLogic Server
°° http://docs.oracle.com/middleware/1212/wls/WLJTA/index.

html

•	 Javadoc of TransactionAttributeType
°° http://docs.oracle.com/javaee/6/api/javax/ejb/

TransactionAttributeType.html

•	 Developing web service clients
°° http://docs.oracle.com/middleware/1212/wls/WSGET/jax-ws-

client.htm

•	 Developing RESTful web service clients
°° http://docs.oracle.com/middleware/1212/wls/RESTF/

develop-restful-client.htm

•	 Developing advanced features of JAX-WS web services
°° http://docs.oracle.com/middleware/1212/wls/WSGET/part_4.

htm

•	 Javadoc of Class TransactionHelper
°° http://docs.oracle.com/middleware/1212/wls/WLAPI/

weblogic/transaction/TransactionHelper.html

Singleton Bean, Validations, and SOAP Web Services

[168]

Summary
In this chapter we covered the basic usage of the validation framework, its built-in
validations, and how to expand it by creating custom constraints. We also covered
how to insert records to a database using JPA and JTA along with considerations
about transaction isolation and the different ways of dealing with a transaction.
Furthermore, we looked at how to expose web services using SOAP; how to generate
a web service client with WebLogic's utility, adding it to our business scenario; and
how to implement and configure singleton session beans to control concurrency.

In the next chapter, we will take a tour of the event system available to Java EE
applications, understanding and using events and interceptors, among other features.

Using Events, Interceptors,
and Logging Services

In this chapter, we are going to briefly introduce two concepts of Java EE
development: interceptors and events. We will also see how to integrate these
concepts with WebLogic services. It's a common misunderstanding that these
technologies are complex and difficult to use, but after working with examples of
this chapter, it will become clear that they are powerful yet easy to use. Along the
way, we will cover WebLogic Server's logging services, which shows us how to
configure the framework, how to write messages to it, and how to read them using
the administration console.

Understanding interceptors
Interceptors are defined as part of the EJB 3.1 specification (JSR 318), and are used to
intercept Java method invocations and lifecycle events that may occur in Enterprise
Java Beans (EJB) or Named Beans from Context Dependency Injection (CDI).

The three main components of interceptors are as follows:

•	 The Target class: This class will be monitored or watched by the interceptor.
The target class can hold the interceptor methods for itself.

•	 The Interceptor class: This interceptor class groups interceptor methods.
•	 The Interceptor method: This method will be invoked according to the

lifecycle events.

As an example, a logging interceptor will be developed and integrated into the Store
application. Following the hands-on approach of this book, we will see how to apply
the main concepts through the given examples without going into a lot of details.

Using Events, Interceptors, and Logging Services

[170]

Check the Web Resources section to find more documentation
about interceptors.

Creating a log interceptor
A log interceptor is a common requirement in most Java EE projects as it's a simple yet
very powerful solution because of its decoupled implementation and easy distribution
among other projects if necessary. Here's a diagram that illustrates this solution:

mark a method

intercepted m
ethod

calls a service

link

public void search(params)
public List<Movies> getMovies()
...

<<Target Class>>
SearchManager

<<Service>>
LogService

<<Annotation>>
@Log

<<Interceptor>>
LogInterceptor

Log and LogInterceptor are the core of the log interceptor functionality; the former
can be thought of as the interface of the interceptor, it being the annotation that will
decorate the elements of SearchManager that must be logged, and the latter carries
the actual implementation of our interceptor. The business rule is to simply call a
method of class LogService, which will be responsible for creating the log entry.

Here's how to implement the log interceptor mechanism:

1.	 Create a new Java package named com.packt.store.log in the project Store.
2.	 Create a new enumeration named LogLevel inside this package. This

enumeration will be responsible to match the level assigned to the annotation
and the logging framework:
package com.packt.store.log;

public enum LogLevel {

Chapter 6

[171]

 // As defined at java.util.logging.Level
 SEVERE, WARNING, INFO, CONFIG, FINE, FINER, FINEST;

 public String toString() {
 return super.toString();
 }
}

We're going to create all objects of this section—LogLevel, Log,
LogService, and LogInterceptor—into the same package,
com.packt.store.log. This decision makes it easier to
extract the logging functionality from the project and build an
independent library in the future, if required.

3.	 Create a new annotation named Log. This annotation will be used to mark
every method that must be logged, and it accepts the log level as a parameter
according to the LogLevel enumeration created in the previous step:
package com.packt.store.log;

@Inherited
@InterceptorBinding
@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.METHOD, ElementType.TYPE})
public @interface Log {
 @Nonbinding
 LogLevel value() default LogLevel.FINEST;
}

As this annotation will be attached to an interceptor, we have to
add the @InterceptorBinding decoration here. When creating
the interceptor, we will add a reference that points back to the Log
annotation, creating the necessary relationship between them.
Also, we can attach an annotation virtually to any Java element.
This is dictated by the @Target decoration, where we can set any
combination of the ElementType values such as ANNOTATION_
TYPE, CONSTRUCTOR, FIELD, LOCAL_VARIABLE, METHOD,
PACKAGE, PARAMETER, and TYPE (mapping classes, interfaces,
and enums), each representing a specific element. The annotation
being created can be attached to methods and classes or interface
definitions.

Using Events, Interceptors, and Logging Services

[172]

4.	 Now we must create a new stateless session bean named LogService that is
going to execute the actual logging:
@Stateless
public class LogService {
 // Receives the class name decorated with @Log
 public void log(final String clazz, final LogLevel level, final
String message) {
 // Logger from package java.util.logging
 Logger log = Logger.getLogger(clazz);
 log.log(Level.parse(level.toString()), message);
 }
}

5.	 Create a new class, LogInterceptor, to trap calls from classes or methods
decorated with @Log and invoke the LogService class we just created—the
main method must be marked with @AroundInvoke—and it is mandatory that
it receives an InvocationContext instance and returns an Object element:
@Log
@Interceptor
public class LogInterceptor implements Serializable {
 private static final long serialVersionUID = 1L;

 @Inject
 LogService logger;

 @AroundInvoke
 public Object logMethod(InvocationContext ic) throws
 Exception
 {
 final Method method = ic.getMethod();

 // check if annotation is on class or method
 LogLevel logLevel = method.getAnnotation(Log.class)
 != null ?
 method.getAnnotation(Log.class).value() :
 method.getDeclaringClass().getAnnotation(Log.class).value();

 // invoke LogService
 logger.log(ic.getClass().getCanonicalName(),
 logLevel, method.toString());
 return ic.proceed();
 }
}

Chapter 6

[173]

As we defined earlier, the Log annotation can be attached to methods
and classes or interfaces by its @Target decoration; we need to
discover which one raised the interceptor to retrieve the correct
LogLevel value.
When trying to get the annotation from the class shown in the
method.getDeclaringClass().getAnnotation(Log.class)
line, the engine will traverse through the class' hierarchy searching
for the annotation, up to the Object class if necessary. This happens
because we marked the Log annotation with @Inherited. Remember
that this behavior only applies to the class's inheritance, not interfaces.
Finally, as we marked the value attribute of the Log annotation as
@Nonbinding in step 3, all log levels will be handled by the same
LogInterceptor function. If you remove the @Nonbinding line,
the interceptor should be further qualified to handle a specific log
level, for example @Log(LogLevel.INFO), so you would need to
code several interceptors, one for each existing log level.

6.	 Modify the beans.xml (under /WEB-INF/) file to tell the container that our
class must be loaded as an interceptor—currently, the file is empty, so add all
the following lines:
<beans xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/beans_1_0.xsd">
 <interceptors>
 <class>com.packt.store.log.LogInterceptor</class>
 </interceptors>
</beans>

7.	 Now decorate a business class or method with @Log in order to test what
we've done. For example, apply it to the getTheaters() method in
SearchManager from the project Store. Remember that it will be called every
time you refresh the query page:
 @Log(LogLevel.INFO)
 public List<Theater> getTheaters() {
 ...
 }

8.	 Make sure you have no errors in the project and deploy it to the current
server by right-clicking on the server name and then clicking on the Publish
entry.

Using Events, Interceptors, and Logging Services

[174]

9.	 Access the theater's page, http://localhost:7001/theater/theaters.
jsf, refresh it a couple of times, and check the server output. If you have
started your server from Eclipse, it should be under the Console tab:

Nov 12, 2012 4:53:13 PM com.packt.store.log.LogService log
INFO: public java.util.List com.packt.store.search.SearchManager.
getTheaters()

Let's take a quick overview of what we've accomplished so far; we created an
interceptor and an annotation that will perform all common logging operations for
any method or class marked with such an annotation. All log entries generated from
the annotation will follow WebLogic's logging services configuration.

Interceptors and Aspect Oriented
Programming
There are some equivalent concepts on these topics, but at the same time, they
provide some critical functionalities, and these can make a completely different
overall solution. In a sense, interceptors work like an event mechanism, but in reality,
it's based on a paradigm called Aspect Oriented Programming (AOP). Although
AOP is a huge and complex topic and has several books that cover it in great detail,
the examples shown in this chapter make a quick introduction to an important AOP
concept: method interception.

Consider AOP as a paradigm that makes it easier to apply crosscutting
concerns (such as logging or auditing) as services to one or multiple
objects. Of course, it's almost impossible to define the multiple contexts
that AOP can help in just one phrase, but for the context of this book
and for most real-world scenarios, this is good enough.

Using asynchronous methods
A basic programming concept called synchronous execution defines the way our
code is processed by the computer, that is, line-by-line, one at a time, in a sequential
fashion. So, when the main execution flow of a class calls a method, it must wait until
its completion so that the next line can be processed.

Of course, there are structures capable of processing different portions
of a program in parallel, but from an external viewpoint, the execution
happens in a sequential way, and that's how we think about it when
writing code.

Chapter 6

[175]

When you know that a specific portion of your code is going to take a little while
to complete, and there are other things that could be done instead of just sitting
and waiting for it, there are a few strategies that you could resort to in order to
optimize the code. For example, starting a thread to run things in parallel, or posting
a message to a JMS queue and breaking the flow into independent units are two
possible solutions.

If your code is running on an application server, you should know
by now that thread spawning is a bad practice—only the server
itself must create threads, so this solution doesn't apply to this
specific scenario.

Another way to deal with such a requirement when using Java EE 6 is to create one
or more asynchronous methods inside a stateless session bean by annotating either
the whole class or specific methods with javax.ejb.Asynchronous.

If the class is decorated with @Asynchronous, all its methods
inherit the behavior.

When a method marked as asynchronous is called, the server usually spawns a
thread to execute the called method—there are cases where the same thread can
be used, for instance, if the calling method happens to end right after emitting the
command to run the asynchronous method.

Either way, the general idea is that things are explicitly going to be processed in
parallel, which is a departure from the synchronous execution paradigm. To see how
it works, let's change the LogService method to be an asynchronous one; all we
need to do is decorate the class or the method with @Asynchronous:

@Stateless
@Asynchronous
public class LogService {
 …

As the call to its log method is the last step executed by the interceptor, and its
processing is really quick, there is no real benefit in doing so. To make things more
interesting, let's force a longer execution cycle by inserting a sleep method into the
method of LogService:

public void log(final String clazz,final LogLevel level,final String
message) {
 Logger log = Logger.getLogger(clazz);
 log.log(Level.parse(level.toString()), message);

Using Events, Interceptors, and Logging Services

[176]

 try {
 Thread.sleep(5000);
 log.log(Level.parse(level.toString()), "reached end of method");
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
}

Using Thread.sleep() when running inside an application server is
another classic example of a bad practice, so keep away from this when
creating real-world solutions.

Save all files, publish the Store project, and load the query page a couple of times.
You will notice that the page is rendered without delay, as usual, and that the
reached end of method message is displayed after a few seconds in the Console
view. This is a pretty subtle scenario, so you can make it harsher by commenting out
the @Asynchronous line and deploying the project again—this time when you refresh
the browser, you will have to wait for 5 seconds before the page gets rendered.

Our example didn't need a return value from the asynchronous method, making it
pretty simple to implement. If you need to get a value back from such methods, you
must declare it using the java.util.concurrent.Future interface:

@Asynchronous
public Future<String> doSomething() {
 …
}

The returned value must be changed to reflect the following:

return new AsyncResult<String>("ok");

The javax.ejb.AsyncResult function is an implementation of the
Future interface that can be used to return asynchronous results.

There are other features and considerations around asynchronous methods, such as
ways to cancel a request being executed and to check if the asynchronous processing
has finished, so the resulting value can be accessed. For more details, check the
Creating Asynchronous methods in EJB 3.1 reference at the end of this chapter.

Chapter 6

[177]

Understanding WebLogic's logging
service
Before we advance to the event system introduced in Java EE 6, let's take a look at
the logging services provided by Oracle WebLogic Server.

By default, WebLogic Server creates two log files for each managed server:

•	 access.log: This is a standard HTTP access log, where requests to web
resources of a specific server instance are registered with details such as
HTTP return code, the resource path, response time, among others

•	 <ServerName.log>: This contains the log messages generated by the
WebLogic services and deployed applications of that specific server instance

These files are generated in a default directory structure that follows the pattern
$DOMAIN_NAME/servers/<SERVER_NAME>/logs/.

If you are running a WebLogic domain that spawns over more than one machine,
you will find another log file named <DomainName>.log in the machine where the
administration server is running. This file aggregates messages from all managed
servers of that specific domain, creating a single point of observation for the whole
domain.

As a best practice, only messages with a higher level should be
transferred to the domain log, avoiding overhead to access this file.
Keep in mind that the messages written to the domain log are also
found at the managed server's specific log file that generated them,
so there's no need to redirect everything to the domain log.

Anatomy of a log message
Here's a typical entry of a log file:

####<Jul 15, 2013 8:32:54 PM BRT> <Alert> <WebLogicServer> <sandbox-
lap> <AdminServer> <[ACTIVE] ExecuteThread: '0' for queue: 'weblogic.
kernel.Default (self-tuning)'> <weblogic> <> <> <1373931174624> <BEA-
000396> <Server shutdown has been requested by weblogic.>

Using Events, Interceptors, and Logging Services

[178]

The description of each field is given in the following table:

Text Description
Fixed, every log message starts with this

sequence
<Jul 15, 2013 8:32:54 PM BRT> Locale-formatted timestamp
<Alert> Message severity
<WebLogicServer> WebLogic subsystem—other examples are

WorkManager, Security, EJB, and Management
<sandbox-lap> Physical machine name
<AdminServer> WebLogic Server name
<[ACTIVE] ExecuteThread: '0'
for queue: 'weblogic.kernel.
Default (self-tuning)'>

Thread ID

<weblogic> User ID
<> Transaction ID, or empty if not in a transaction

context
<> Diagnostic context ID, or empty if not

applicable; it is used by the Diagnostics
Framework to correlate messages of a specific
request

<1373931174624> Raw time in milliseconds
<BEA-000396> Message ID
<Server shutdown has been
requested by weblogic.>

Description of the event

The Diagnostics Framework presents functionalities to monitor, collect,
and analyze data from several components of WebLogic Server.

Redirecting standard output to a log file
The logging solution we've just created is currently using the Java SE logging
engine—we can see our messages on the console's screen, but they aren't being
written to any log file managed by WebLogic Server. It is this way because of the
default configuration of Java SE, as we can see from the following snippet, taken
from the logging.properties file used to run the server:

"handlers" specifies a comma separated list of log Handler
classes. These handlers will be installed during VM startup.

Chapter 6

[179]

Note that these classes must be on the system classpath.
By default we only configure a ConsoleHandler, which will only
show messages at the INFO and above levels.
handlers= java.util.logging.ConsoleHandler

You can find this file at $JAVA_HOME/jre/lib/
logging.properties.

So, as stated here, the default output destination used by Java SE is the console.
There are a few ways to change this aspect:

•	 If you're using this Java SE installation solely to run WebLogic Server
instances, you may go ahead and change this file, adding a specific WebLogic
handler to the handlers line as follows:
handlers= java.util.logging.ConsoleHandler,weblogic.logging.
ServerLoggingHandler

•	 Tampering with Java SE files is not an option (it may be shared among other
software, for instance); you can duplicate the default logging.properties
file into another folder $DOMAIN_HOME being a suitable candidate, add the
new handler, and instruct WebLogic to use this file at startup by adding this
argument to the following command line:
-Djava.util.logging.config.file=$DOMAIN_HOME/logging.properties

•	 You can use the administration console to set the redirection of the standard
output (and error) to the log files. To do so, perform the following steps:

1.	 In the left-hand side panel, expand Environment and select Servers.
2.	 In the Servers table, click on the name of the server instance you

want to configure.
3.	 Select Logging and then General.

Using Events, Interceptors, and Logging Services

[180]

4.	 Find the Advanced section, expand it, and tick the Redirect stdout
logging enabled checkbox:

5.	 Click on Save to apply your changes.

If necessary, the console will show a message stating that the server must be
restarted to acquire the new configuration.

If you get no warnings asking to restart the server, then the configuration
is already in use. This means that both WebLogic subsystems and any
application deployed to that server is automatically using the new values,
which is a very powerful feature for troubleshooting applications without
intrusive actions such as modifying the application itself—just change the
log level to start capturing more detailed messages!

Chapter 6

[181]

Notice that there are a lot of other logging parameters that can be configured, and
three of them are worth mentioning here:

•	 The Rotation group (found in the inner General tab): The rotation feature
instructs WebLogic to create new log files based on the rules set on this
group of parameters. It can be set to check for a size limit or create new files
from time to time. By doing so, the server creates smaller files that we can
easily handle. We can also limit the number of files retained in the machine
to reduce the disk usage.

If the partition where the log files are being written to reaches
100 percent of utilization, WebLogic Server will start behaving
erratically. Always remember to check the disk usage; if possible,
set up a monitoring solution such as Nagios to keep track of this
and alert you when a critical level is reached.

•	 Minimum severity to log (also in the inner General tab): This entry sets the
lower severity that should be logged by all destinations. This means that even
if you set the domain level to debug, the messages will be actually written
to the domain log only if this parameter is set to the same or lower level. It
will work as a gatekeeper to avoid an overload of messages being sent to
the loggers.

•	 HTTP access log enabled (found in the inner HTTP tab): When WebLogic
Server is configured in a clustered environment, usually a load-balancing
solution is set up to distribute requests between the WebLogic managed
servers; the most common options are Oracle HTTP Server (OHS) or
Apache Web Server. Both are standard web servers, and as such, they
already register the requests sent to WebLogic in their own access logs. If
this is the case, disable the WebLogic HTTP access log generation, saving
processing power and I/O requests to more important tasks.

Integrating Log4J to WebLogic's logging
services
If you already have an application that uses Log4J and want it to write messages
to WebLogic's log files, you must add a new weblogic.logging.log4j.
ServerLoggingAppender appender to your lo4j.properties configuration file.

This class works like a bridge between Log4J and WebLogic's logging framework,
allowing the messages captured by the appender to be written to the server log files.

Using Events, Interceptors, and Logging Services

[182]

As WebLogic doesn't package a Log4J implementation, you must add its JAR to
the domain by copying it to $DOMAIN_HOME/tickets/lib, along with another file,
wllog4j.jar, which contains the WebLogic appender. This file can be found inside
$MW_HOME/wlserver/server/lib. Restart the server, and it's done!

If you're using a *nix system, you can create a symbolic link instead
of copying the files—this is great to keep it consistent when a path
changing these specific files must be applied to the server.

Remember that having a file inside $MW_HOME/wlserver/server/lib doesn't mean
that the file is being loaded by the server when it starts up; it is just a central place to
hold the libraries. To be loaded by a server, a library must be added to the classpath
parameter of that server, or you can add it to the domain-wide lib folder, which
guarantees that it will be available to all nodes of the domain on a specific machine.

Accessing and reading log files
If you have direct access to the server files, you can open and search them using
a command-line tool such as tail or less, or even use a graphical viewer such as
Notepad. But when you don't have direct access to them, you may use WebLogic's
administration console to read their content by following the steps given here:

1.	 In the left-hand side pane of the administration console, expand Diagnostics
and select Log Files.

2.	 In the Log Files table, select the option button next to the name of the log you
want to check and click on View:

Chapter 6

[183]

The types displayed on this screen, which are mentioned at the start of
the section, are Domain Log, Server Log, and HTTP Access. The others
are resource-specific or linked to the diagnostics framework. Check the
Web resources section at the end of this chapter for further reference.

3.	 The page displays the latest contents of the log file; the default setting shows
up to 500 messages in reverse chronological order. The messages at the top of
the window are the most recent messages that the server has generated.

Keep in mind that the log viewer does not display messages that have
been converted into archived log files.

Events
The Observer Pattern is a very popular software design pattern in every object
oriented programming language. The concept is that an object, the subject, will
be monitored by one or more objects, the observer(s), which will be notified when
specific state changes happen on the subject. The state change is called an event and
this pattern is at the core of most event-handling systems.

Events are part of Java SE since its very beginning and have always been standard
in common UI frameworks such as AWT, Swing, and JavaFX. By contrast, Java EE
never had a specific JSR to attend to such requirements until the JSR 299 (Context and
Dependency Injection for Java EE) release that defines an event-handling mechanism
which is completely integrated with Java EE and easy to use.

In order to show an example of this mechanism, we're going to create an
auditing module for the Store application, which is very similar to what has been
accomplished by the logging interceptor in the previous section, illustrating key
concepts of event handling in Java EE 6.

Check the Web Resources section of this chapter to find more
documentation on Events and CDI.

Using Events, Interceptors, and Logging Services

[184]

Defining audit events
Defining auditing can be very tricky, but in the context of our example, it means
displaying additional information for a specific function or method call. In a sense,
it will be very similar to a log entry, but for the sake of the example, the audit entry
will have more information, such as method parameters and possibly the response of
the method call. The solution is illustrated by the following diagram:

mark a method

intercepted m
ethod

building

public void search(params)
public List<Movies> getMovies()
...

<<Target Class>>
SearchManager

<<Annotation>>
@Log

<<Interceptor>>
AuditInterceptor

observes pu
bli

sh
<<POJO>>

Event<AuditEvent>

<<POJO>>
AuditLogHandler<<POJO>>

AuditLogHandler<<POJO>>
AuditLogHandler

The details of the solution and how to create its components are given as follows:

1.	 Start by creating a new Java package named com.packt.store.audit in the
Store project.

Creating a single package that holds all the necessary classes for
the solution will make it easier to extract and use it as a library in
the future. All the further classes will be created in this package,
unless explicitly said otherwise.

2.	 Create a new class named AuditEvent. This class defines the event data's
structure:
package com.packt.store.audit;

public class AuditEvent {
 private final long timestamp = System.currentTimeMillis();
 private String message;

Chapter 6

[185]

 private Object[] params = null;

 public AuditEvent(String message, Object[] params) {
 this.message = message;
 this.params = params;
 }

 public String toString() {
 StringBuilder sb = new StringBuilder();

 sb.append("[").append(new Date(timestamp)).append("] - ")
 .append(message);

 if (getParams() != null) {
 sb.append("- Param value(s): ");

 for (Object o : params)
 sb.append(o).append(",");
 sb.deleteCharAt(sb.length() - 1);
 }
 return sb.toString();
 }
 // getters and setters
}

3.	 Create a new annotation named Audit. It will be the binder between the
interceptor and our code, marking the classes or methods that must be
audited. This is the same concept we saw when implementing the log
interceptor:
package com.packt.store.audit;

//imports omitted for brevity

@Inherited
@InterceptorBinding
@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.METHOD, ElementType.TYPE})
public @interface Audit {
}

Using Events, Interceptors, and Logging Services

[186]

4.	 Let's create two more annotations, @Enter and @Exit, which will act as
event qualifiers. A CDI qualifier is a special annotation that can be applied
to a class or field to indicate the kind of bean we're working with. In our
example, CDI qualifiers will differentiate the events and qualify them into
two categories, representing the entry and exit points of a method:
package com.packt.store.audit;

//imports omitted for brevity

@Qualifier
@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.METHOD, ElementType.FIELD, ElementType.
PARAMETER, ElementType.TYPE})
public @interface Enter {
}

package com.packt.store.audit;

//imports omitted for brevity

@Qualifier
@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.METHOD, ElementType.FIELD, ElementType.
PARAMETER, ElementType.TYPE})
public @interface Exit {
}

Remember to create each annotation into separate files.

5.	 Create a new class named AuditHandler. This class will simply print the
audit message to the standard output, but a creative reader can actually
implement anything here, such as publishing the message to a JMS queue
or making a web service call. Note that we're using qualifiers to filter which
event the methods should listen to:
package com.packt.store.audit;

// imports omitted for brevity

@Stateless
@Named
public class AuditHandler {

Chapter 6

[187]

 private static final String PREFIX = " [AUDIT] ";
 private static final String ENTER = "[Entering]";
 private static final String EXIT = "[Exiting]";

 public void logEnter(@Observes @Enter AuditEvent event) {
 System.out.println(PREFIX + ENTER + event);
 }
 public void logExit(@Observes @Exit AuditEvent event) {
 System.out.println(PREFIX + EXIT + event);
 }
}

6.	 Create a new class named AuditInterceptor, which will be the actual
interceptor that traps the messages from the annotated classes or
methods and forwards them as CDI events. The events are observed by
AuditHandler, but there are no dependencies in compile or design time
between the two classes:
package com.packt.store.audit;

//imports omitted for brevity

@Audit
@Interceptor
public class AuditInterceptor implements Serializable {
 private static final long serialVersionUID = 1L;

 @Inject @Enter
 // The Event referenced here is javax.enterprise.event.Event
 Event<AuditEvent> enterEvent;
	
 @Inject @Exit
 Event<AuditEvent> exitEvent;

 @AroundInvoke
 public Object auditMethod(InvocationContext ic) throws
Exception {
 enterEvent.fire(new AuditEvent(ic.getMethod().toString(),
 (ic.getParameters().length > 0 ?
ic.getParameters() : null)));

 Object obj = ic.proceed();

 exitEvent.fire(new AuditEvent(ic.getMethod().toString(),
 (ic.getParameters().length > 0 ?

Using Events, Interceptors, and Logging Services

[188]

 ic.getParameters() : null)));

 return obj;
 }
}

Note the usage of the @Enter and @Exit qualifiers in the event objects.
If you compare this interceptor implementation to the one created for
the logging mechanism, you will notice that it isn't calling the handler
directly as we did before, it just publishes events that will be consumed
by components that the interceptor doesn't have to know about. This is
one benefit of this approach, decoupling the producers and consumers
and creating a more flexible structure.

7.	 Modify the beans.xml file (under /WEB-INF/) to tell the container that the
AuditInterceptor class must be loaded as an interceptor:
<beans xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/beans_1_0.xsd">
 <interceptors>
 <class>com.packt.store.log.LogInterceptor</class>
 <class>com.packt.store.audit.AuditInterceptor</class>
 </interceptors>
</beans>

Keep in mind that if you decorate an element with multiple interceptors,
the sequence of execution will follow the order in which they were
declared in the beans.xml file.

8.	 Save all files, making sure you have no missing imports or build errors in
the project.

9.	 Open the SearchManager class and add the @Audit decorator to this class.
This will perform the audit functionality on every method of the class:
@Named("search")
@SessionScoped
@Audit
public class SearchManager implements Serializable {
…

Chapter 6

[189]

In a real-world scenario, auditing the whole class can bring a serious
performance overhead, but to test and demonstrate our implementation,
it's just fine. You may want to remove the annotation after testing it, as
we will use this class frequently throughout the book.

10.	 Save and publish the Store application to the running server.
11.	 Browse to http://localhost:7001/store/index.jsf and check the

output of the server to see the audit entries. If the server was started from
Eclipse, you can see them on the Console tab:

<Nov 17, 2012 9:25:03 PM BRST> <Notice> <Stdout> <BEA-000000> <[
AUDIT][Exiting][Sat Nov 17 21:25:03 BRST 2012] - public java.
util.List com.packt.store.search.SearchManager.getTheaters()>
<Nov 17, 2012 9:25:03 PM BRST> <Notice> <Stdout> <BEA-000000> <[
AUDIT][Exiting][Sat Nov 17 21:25:03 BRST 2012] - public int
com.packt.store. search.SearchManager.getTheater()>
<Nov 17, 2012 9:25:03 PM BRST> <Notice> <Stdout> <BEA-000000> <[
AUDIT][Entering][Sat Nov 17 21:25:03 BRST 2012] - public java.
util.List com.packt.store. search.SearchManager.getMovies()>
<Nov 17, 2012 9:25:03 PM BRST> <Notice> <Stdout> <BEA-000000> <[
AUDIT][Exiting][Sat Nov 17 21:25:03 BRST 2012] - public java.
util.List com.packt.store. search.SearchManager.getMovies()>
<Nov 17, 2012 9:25:03 PM BRST> <Notice> <Stdout> <BEA-000000> <[
AUDIT][Entering][Sat Nov 17 21:25:03 BRST 2012] - public int
com.packt.store. search.SearchManager.getMovie()>
<Nov 17, 2012 9:25:03 PM BRST> <Notice> <Stdout> <BEA-000000> <[
AUDIT][Exiting][Sat Nov 17 21:25:03 BRST 2012] - public int
com.packt.store. search.SearchManager.getMovie()>

Let's review what we have done in this section. We created another interceptor in
the Store application to handle audit entries based on a new annotation, @Audit,
which can be applied to classes and methods. The interceptor uses CDI events to
communicate with a simple handler, which, in this example, only writes a message to
the standard output of WebLogic Server. These events can be listened to by multiple
classes if needed, so based on what you've learned, you can create a JMS or a web
service handler that can send specific audit messages to these components.

Note that the AuditHandler class in this example is an EJB, and that
the processing of the @Observer decoration occurs by default in the
same thread as the event publisher (our business class). In order to
decouple the caller thread from the called object, we just need to add
the @Asynchronous decoration to AuditHandler.

Using Events, Interceptors, and Logging Services

[190]

Web resources
The following are a few web resources that you can refer to:

•	 JavaBeans tutorial
°° http://docs.oracle.com/javase/tutorial/javabeans/

•	 JavaBeans specification
°° http://www.oracle.com/technetwork/java/javase/

documentation/spec-136004.html

•	 Java logging overview
°° http://docs.oracle.com/javase/7/docs/technotes/guides/

logging/overview.html

•	 Using logging services for application monitoring
°° http://docs.oracle.com/middleware/1212/wls/LOGSV/index.

html

•	 Understanding WebLogic logging services
°° http://docs.oracle.com/middleware/1212/wls/WLLOG/

logging_services.htm

•	 Configuring WebLogic logging services
°° http://docs.oracle.com/middleware/1212/wls/WLLOG/config_

logs.htm

•	 Overview of the WLDF (Diagnostics Framework) architecture
°° http://docs.oracle.com/middleware/1212/wls/WLDFC/

architecture.htm

•	 Monitoring WebLogic JDBC resources
°° http://docs.oracle.com/middleware/1212/wls/JDBCA/

monitor.htm

•	 WebLogic log message format
°° http://docs.oracle.com/middleware/1212/wls/WLLOG/

logging_services.htm#i1180710

•	 Annotations
°° http://java.sun.com/docs/books/jls/

Chapter 6

[191]

•	 Java EE 6 tutorial – Interceptors
°° http://docs.oracle.com/javaee/6/tutorial/doc/gkeed.html

•	 Java EE 6 tutorial – CDI Events
°° http://docs.oracle.com/javaee/6/tutorial/doc/gkhic.html

•	 Creating asynchronous methods in EJB 3.1
°° http://www.oracle.com/webfolder/technetwork/tutorials/

obe/java/asyncMethodOfEJB/AsyncMethodEJB.html

•	 Observer pattern
°° http://en.wikipedia.org/wiki/Observer_pattern

•	 Interceptors Javadoc

°° http://docs.oracle.com/javaee/6/api/javax/interceptor/
package-summary.html

Summary
In this chapter, you've learned about Java EE interceptors by creating a logging
annotation that can be attached to classes or methods, how to publish and observe
events by using CDI, how to create and use asynchronous methods in EJB, and
details about the logging services enabled by WebLogic Server.

In the next chapter, we're going to see how to connect remote clients to a WebLogic
Server application by explaining and using several JMS features, including an offline
message sender.

Remote Access with JMS
Until this point, we have only used modules deployed to WebLogic Server to
exchange information, mostly relying on the HTTP protocol using RESTful or SOAP
based web services, but there are scenarios when you need some other functionalities
on your messaging layer, such as transparent persistence, ways to send messages
to multiple clients, and recovery alternatives for lost messages. Well, there are
numerous features that can be leveraged by servers and clients depending on specific
messaging needs. In this chapter, we are going to focus on a situation when you
don't have the necessary infrastructure—or business demand—to run an application
server instance on both sides. When this is the case, we can create a standalone Java
client and use some of the features made available by WebLogic to enable remote
communication between the server and the standalone module, which in this context
is called a remote client.

In this chapter we will:

•	 Understand the different modes of remote connection presented by
WebLogic

•	 See the concepts of Java Messaging Service (JMS) and create components to
expose a JMS queue at the server

•	 Create a standalone Java client that post messages to this queue and a
message-driven bean that will consume them

•	 Introduce the Store-and-Forward (SAF) client feature of WebLogic Server
that allows a client application to post messages to a queue even when a
connection to the server isn't available.

Remote Access with JMS

[194]

WebLogic clients
Before we dive into the details of JMS, let's take a quick look at some of the client
modules that are available for use when creating applications that access WebLogic
Server's features but are attached to JVMs that aren't running a WebLogic Server
instance. A client module library is just a JAR library that enables a set of WebLogic
features such as access to EJBs, JMS components, and others. While developing an
application that will access WebLogic, you must choose a client that's best for your
scenario and distribute it along with your binaries.

In the following sections, we will see the most commonly adopted client libraries,
along with their description.

Thin T3 client – wlthint3client.jar
T3 is the proprietary transport protocol used by WebLogic Server to carry data
between its nodes, and can also be used by clients to communicate with the server.
With this library attached to your project, you can execute the most common EJB-
related actions such as JNDI lookup, transaction participation and queuing and
consuming JMS messages.

This should be the preferred way to connect to a server, as it implements some
features that greatly improve communication - for example, it keeps an open
connection between two points by sending regular heartbeats, and uses packet
multiplexing to increase network efficiency.

Only when you need very specific features, such as administrative operations
(to shut down an instance, or deploy a package, for instance), or when the scope
of features you need is very narrow (for example, just to post or consume a JMS
message) should you resort to other client libraries.

RMI thin client – wlclient.jar
The RMI thin client doesn't use the T3 protocol, leaving all RMI-related work to the
Java SE where the application is running, so you have a smaller set of functionalities
than the one exposed by the Thin T3 client and a not-so-optimized channel of
communication. The RMI-related work is done by the Java SE's Java Remote Method
Protocol (JRMP) protocol.

The most common need that justifies the RMI client over the T3 one is when you
have to use SSL over an HTTP channel to communicate with the server, as the T3
client doesn't support this configuration.

Chapter 7

[195]

If the requirement is to cryptograph all communication, you could
use the T3S protocol variant, which opens an SSL-enabled T3
channel between the client and the server (where client can be a
remote client or another server node).

JMS thin client – wljmsclient.jar
The JMS thin client is an add-on to the RMI client, wlclient.jar, which adds JMS
features on top of it, again, using the JSE's RMI stack.

To use this client, you must add a reference to the wljmsclient.jar file. This library
depends on another one, wlclient.jar, but you don't need to explicitly reference
the latter as the former has a classpath link to it. By default, they are located at
the same location inside the WebLogic Server installation - /server/lib, so the
reference is automatically satisfied. If this is not the case, you must reference both
manually.

JMS SAF client – wlsafclient.jar
When using a JMS remote client, a direct connection to WebLogic must be present
in order to publish messages to a queue or topic; if this is not the case, the client
application must deal with this scenario, probably storing the messages locally until
the connection is available again, inserting an unnecessary development overhead.

To help developers deal with this problem, WebLogic Server has a feature called
Store-and-Forward (SAF) that takes care of the messages when a connection is not
available, and automatically transmits them when communication is back online.

This behavior is the same as the WebLogic Server's SAF agent feature
that allows a server to store and transfer messages between other
servers even when the destination isn't available.

To enable this feature, the client must use a specific library, wlsafclient.jar; it is
an add-on to the JMS thin client described earlier that enables the SAF client feature.
So, in order to use it, you also have to package the wljmsclient.jar and wlclient.
jar libraries along with your code. Again, the libraries have internal references to
each other, so if you add a reference to wlsafclient.jar from its original folder, the
dependencies are automatically satisfied.

We will see how to implement a SAF client later in this chapter.

Remote Access with JMS

[196]

JMS T3 SAF client – wlsaft3client.jar
The JMS T3 SAF client's role is exactly the same as that of the previous one, that
is, the JMS SAF client, wlsafclient.jar, the difference being that it adds the SAF
client features to the T3 thin client.

Full client – wlfullclient.jar
The full client has the most complete set of features you can wish for. It actually has
most of the modules that compose the WebLogic Server packaged as a single library.
There are some exceptions; for instance, the cryptoj.jar library has a self-integrity
check that would fail if changed.

If you have any prior experience with WebLogic client development, you probably
attached the weblogic.jar library to your client package. This library is still
available, but the official recommendation is to generate and use the wlfullclient.
jar file if none of the other clients fit your needs.

When you install WebLogic Server, this library doesn't exist, so you have to run a
utility in order to create it:

1.	 Open a command prompt or terminal, and go to the folder $MW_HOME/
wlserver/server/lib.

2.	 Run the following command:
java –jar wljarbuilder.jar

3.	 After more than 4000 messages, the execution finishes and you have a brand
new wlfullclient.jar file with 60 MB of binary code.

It is indeed a large file, so you may want to double-check your needs to see if any
of the other clients works for you—if you need to create an applet, for instance, this
client is most definitely not the best way to go, due to its size. To its advantage, the
full client is more scalable than its little brothers and covers more WebLogic features,
although you will seldom need all its power.

JMX client – wljmxclient.jar
The JMX client is the last client module and is a very specific one as it is targeted to
clients that want to access WebLogic's MBeans. MBeans are components that expose
information about the application server and its components and allow the consumer
to change some of them.

Chapter 7

[197]

An MBean is a Java framework to expose components that can be used
to manage Java platform resources. To give you an idea of the potential
of this client, think about what you can accomplish using WebLogic's
administration console. There's a lot of functionality there, right?
The console is just a frontend to the same MBeans we can access and
manage using JMX.

Here's a sample code showing how to use this client library to open a connection to
a WebLogic instance, and to query the name and state of the servers of the domain it
connected to:

void run() throws Exception {
 JMXConnector connector;
 MBeanServerConnection conn;

 // Create the appropriate context parameters
 Hashtable<String, String> env = new Hashtable<>();

 env.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
 "weblogic.management.remote");
 env.put(Context.SECURITY_PRINCIPAL, "weblogic");
 env.put(Context.SECURITY_CREDENTIALS, "welcome1");

 // Create a JMX connection
 JMXServiceURL url = new JMXServiceURL("t3",
 "localhost",
 7001,
 "/jndi/weblogic.management.mbeanservers.domainruntime");

 // Open the connection
 connector = JMXConnectorFactory.connect(url, env);
 conn = connector.getMBeanServerConnection();

 // Query and print objects
 ObjectName drs = new ObjectName(
 "com.bea:Name=DomainRuntimeService," +
 "Type=weblogic.management.mbeanservers.domainruntime." +
 "DomainRuntimeServiceMBean");

 ObjectName[] servers = (ObjectName[]) conn.getAttribute(drs,
 "ServerRuntimes");

 for(ObjectName server: servers) {
 System.out.print("Instance " +
 conn.getAttribute(server, "Name"));
 System.out.println(" is " +

Remote Access with JMS

[198]

 conn.getAttribute(server,"State"));
 }

 // Shutdown
 connector.close();
}

Most of the code deals with the opening of a properly configured connection to
the server, then we query MBean objects and its values using the getAttribute
method, and finally close the connection. Remember that T3 uses heartbeats to
keep a connection alive, so it's a good practice to always release it at the end of
your process.

As it happens with the JMS client module, this one also needs the wlclient.jar
library explicitly referenced or available in the same folder of wljmxclient.jar in
order to function properly.

For a complete list of features and limitations of each client, check
the Web resources section.

Java Messaging Service (JMS) and
WebLogic
Now that we are familiar with some of the most common ways to connect to a
WebLogic Server, let's take a look at one of the features enabled by them, the Java
Message Service (JMS) module.

JMS is a Java API that makes the sharing of information between systems or modules
possible by sending and receiving messages in an asynchronous way.

WebLogic Server's JMS implementation is compliant with JMS 1.1, and its provider
exposes both the message models that are defined by the specification, point-to-
point and publish/subscribe, which translate to queue and topic components. The
basic difference between them is that a message sent to a queue is consumed by only
one listener, no matter how many of them are attached to the queue. By contrast, a
topic delivers a message to all its subscribers (the clients attached to it) whether they
are online or not, depending on their configuration.

When using WebLogic's JMS, you must first create the destination queue or topic
you are planning to use. This may sound a little obvious, but there are tools that
automate these procedures and make them transparent for you, hence the statement.

Chapter 7

[199]

Also, WebLogic's JMS implementation demands you to create and configure
several other components in a specific order so that you can create your queue
or topic. The following is a diagram that represents the most common components
an application uses:

Connection Factory

Queue

Topic

JMS Module

JMS Server

JMS Subdevelopment

Persistent
Store

JMS Subdevelopment

The components shown in the preceding diagram are discussed in the further
sections. The following is a quick description of these components:

•	 A persistent store holds the messages waiting for delivery inside a file or
database, instead of keeping all messages in memory.

•	 A JMS module is a logical container for components, such as queues, topics,
and connection factories, which can be used by an application.

•	 A JMS server makes a bridge between JMS components and the underlying
deployment structure, defining attributes such as which persistent store must
be used by the components, if any, and logging parameters.

•	 A JMS subdeployment groups components from a JMS module into
deployable units that can be targeted to a specific JMS server.

•	 A JMS queue will receive messages to be consumed by our application.

After checking the details of each component and how to create them, we will
code the remote client project to post messages and the MDB that will consume
the messages.

The business scenario that we will use to illustrate these functionalities is this: when
our partner (the theater) needs to send new exhibition dates and times to our Theater
module, it will do so using the remote client we're about to write. This client will
receive information about the new exhibition as command-line arguments and post
them to the queue that we're going to create in a later section. Finally, in the Theater
module, a Message Driven Bean (MDB) will receive it and persist the new entity
using the server's persistence layer.

Remote Access with JMS

[200]

The persistent store
WebLogic's persistent store is a service that provides physical storage to several
other services and features such as JTA, the Timer EJB, and several components of
the JMS system module.

A persistent store can be configured to use databases or files, having the same set
of features for both options. Using files as persistence keeps things simple, as you
don't need to configure and maintain an RDBMS and the access is local, but it may
be harder to migrate the file store—to enable the store on another server—in case of
failure. For this specific requirement, the database store is a lot easier to deal with,
but you'll have extra processing and network traffic.

As a file store has less processing and network overhead when compared to a
database store, it's generally the fastest option. Of course, this will depend on the
hardware you have available—a SATA HDD is no match to a network attached
storage (NAS) connected via a fiber channel, or to a high-performance system
hosting your database.

Using a shared NAS to keep the persistent stores from all servers can be
a timesaver when you have to migrate a file store from one WebLogic
instance to another, since all nodes have access to the same NAS.

So while defining one over the other, we have to consider all requirements and
constraints of the project. Available hardware, expected network usage, databases,
and disaster-recovery expectations are the basic items to be checked.

When you use WebLogic's JMS module, there are situations where a persistent store
is mandatory, but this is not the case when you only need to enable a JMS queue—
the behavior will be exactly the same, but instead of saving the messages to a file or
database, they will be kept in memory. That said, there are a couple of things you
need to know:

•	 Depending on the volume and size of your messages and the throughput
of the consumers, you may get into a resource starvation scenario, that is,
if the heap size of your JVMs isn't enough to hold all messages, the garbage
collector starts to kick in frequently, leading to CPU peaks. Eventually, your
system enters an overload condition, it can't recover itself, and you have to
bounce it.

•	 Once you restart the server, as the messages exist solely in memory, they are
gone for good. A sudden power outage also can make you lose them all.

Chapter 7

[201]

The book's business scenario doesn't specify if we should tolerate loss of messages,
so let's assume that we can't afford it. If a new exhibition entry is lost, the customer
will not see it, and our partners aren't going to be happy with this, so better be safe
than sorry, right?

The following steps are necessary to create a file-based persistent store:

1.	 Open the administration console by going to http://localhost:7001/
console, then log in, and click on the Services entry in the navigation tree,
and then on the subentry, click on Persistent Stores.

2.	 Click on the New button at the top of the list of persistent stores and then
select Create FileStore from the menu.

3.	 Set the value of Name to FileStore-Tickets, leave the value of Target as
it is—we don't have any other configured instances—and set the Directory
field to ./ticketFS.

You can specify either an absolute path or a relative one in the
Directory field. The root for the relative path that we used in the
preceding steps will be the domain folder /opt/packt/domains/
tickets if you're following the structure defined in this book.

4.	 Click on OK to finish the wizard and create the resource.

Remote Access with JMS

[202]

Starting with Version 12.1.2 of WebLogic, we can now target a persistent
store to a cluster; that means that we don't need to create one persistent
store for each server of a cluster, and associate one and only one JMS
server to each store. When a persistent store is targeted to a cluster,
WebLogic creates its file inside every managed server folder, making this
procedure an easy task.

If you want to use a database store, there are a couple of things to remember:

•	 You must first create a data source that will be attached to the persistent
store. This data source can't use an XA driver, and you can't enable the
Supports Global Transactions flag of the non-XA data source you create.

•	 Just one table named WLStore is needed. If the system detects that the table
doesn't exist upon startup, it tries to create it. If the user configured at the
data source doesn't have the necessary permissions, the operation fails and
the store will not be available.

If this is the case (the connection user doesn't have the permission to
create objects), locate the com.bea.core.store.jdbc_3.0.0.0.jar
file available in the modules subfolder of your WebLogic installation.
Open it, get the script that corresponds to your database server at path
/weblogic/store/io/jdbc/ddl, adjust the name of the table to
WLStore, and run it with the necessary credentials.
Remember that you must give read and write permissions to the
configured data source user on this table.

The JMS server
This component is a container for destination-related resources and acts as a link
between them and the underlying environment; for example, the persistence store
we just created must be linked to a JMS server, so when we send messages to our
queue, it can use this configuration and persist the messages, if this is the case.

This component is also responsible for maintaining the state of durable subscribers,
and is the unit used by the server migration feature to migrate data from a failed
managed server to another one, avoiding loss of messages.

Until Version 12.1.1, a JMS server should be pinned to a specific managed
server for increasing the administrative management. Since Version
12.1.2, JMS servers (and persistent stores, as already mentioned) can be
targeted to a cluster, making the process of creating and starting new
managed servers a breeze.

Chapter 7

[203]

Let's create a JMS server to use with our code:

1.	 In the administration console, click on the Services entry in the navigation
tree, then expand the Messaging entry, and click on JMS Servers.

2.	 Click on the New button just above the list of JMS Servers.
3.	 Enter JMSServer-Tickets as Name, select FileStore-Tickets as Persistent

Store, and click on Next.

If you click on the Finish button on this screen, your server will
remain untargeted, and even though it's apparently OK, you will
not be able to use it later.

4.	 Select the only entry available, AdminServer, as the target for the JMS
Server, and then click on Finish.

The JMS module
A JMS module is a logical group of JMS components such as queues, topics, and
connection factories. It's inside a module that these components are defined, but
we must target the component to make it available and active—just existing inside a
module doesn't mean it can be used.

There are two kinds of JMS modules:

•	 The system module: The modules created from the administration console
or related technologies—by accessing MBeans through code or scripts, for
instance—are named system modules. The components created inside them
are visible to all applications targeted to the same WebLogic servers and can
be shared by them.

•	 The application module: The declaration of such a module is done as a
deployable package—all definitions go inside deployment descriptors,
which are XML files—processed at deployment time. The package can be
installed as a standalone module, which enables other applications to access
the resources declared by it, or as a packaged module that exposes the
components only to other modules deployed along with it—for instance, a
EAR with a JMS module that declares a JMS queue and an EJB module with
an MDB that consumes it. The components created by an application module
aren't accessible via the administration console.

The general recommendation concerning which kind of module you should
use is this: always choose the system module option. Although the appeal of
flexibility given by the application module looks nice, it comes with a cost—no JMX
management—that simply doesn't justify it.

Remote Access with JMS

[204]

Keep in mind that if you choose to create an application module, you still
need to create components outside it—at least the JMS Servers—and if
persistence is needed, the persistence stores also must be created through
the administration console or a script.

If component isolation is a strong requirement, you can resort to the security
model provided by WebLogic to accomplish this. We discuss this topic in Chapter 8,
Adding Security.

We're going to create a system module to use in our projects:

1.	 In the administration console, click on the Services entry in the navigation
tree, then expand the Messaging entry, and click on JMS Modules.

2.	 Click on the New button just above the list of JMS Modules.
3.	 Enter JMSModule-Tickets as Name and click on Next, leaving the other

fields empty.
4.	 Click on the checkbox beside the AdminServer entry to deploy the module

to this server and click on Next.
5.	 Leave the checkbox next to the question Would you like to add resources

to this JMS system module? unchecked, and click on Finish.

Just one more resource must be created before we can finally declare our queue.

The JMS subdeployment
The JMS subdeployment component works as the link between the logical
group where it exists (a JMS module) and one or more physical destinations
(JMS servers). You can have several subdeployments inside a JMS module, each
targeting one or more different JMS servers, which by its turn can be targeted to
different WebLogic servers.

Although using a subdeployment can be an optional step when dealing
with JMS resources, doing so is a best practice that helps management
by targeting groups of components at once. Also, there are resources
that must be explicitly bound to a subdeployment, such as the queue
that we're going to set up shortly.

So, before we create a queue, we must have a subdeployment to be its target. This is
how we define one:

1.	 In the administration console, click on the Services entry in the navigation
tree, then expand the Messaging entry, and click on JMS Modules.

Chapter 7

[205]

2.	 Click on the name of the module we just created, JMSModule-Tickets.
3.	 When the Settings page shows up, click on the Subdeployments tab at

the top of the page.
4.	 Click on the New button, type PersistentSD in the Name field, and

click on Next.
5.	 Bind the component to the JMSServer-Tickets JMS server and

click on Finish.

If you're wondering why you saw both WebLogic's AdminServer
and JMSServer-Tickets JMS server on the target step, this is because
there are JMS components that don't need to be explicitly bounded
to a JMS server to be available, for instance the connection factories.
Queues don't fall in this category. You can create a queue and target it
to a subdeployment that points to a WebLogic Server, and no errors or
warnings will be shown, but the resource will never be available.
So, as a best practice, always target your subdeployments to JMS Servers.

The JMS queue
A JMS queue is the channel between a message producer and a consumer in a
point-to-point model. A few things about its behavior and configuration:

•	 A message is delivered at the most to one consumer, even when multiple
consumers are listening to the same queue.

•	 You can set the duration for which a message must be held waiting
for consumption before it gets discarded. This is referred to as the
time-to-live limit.

•	 If a queue receives a message but there are no consumer(s) listening to it,
the message is held in the queue. It waits for a consumer to show up until
the configured time-to-live limit expires.

•	 You can set the expiration policy value of a queue with one of the following:

°° Redirect: The message is posted to another queue previously created
and pointed by at the Error Destination parameter of the original one

°° Log: The message is written to the JMS Server's log file. In order to be
effective, you must also tick the Enable Message Logging checkbox
inside the Logging tab of your queue

°° Discard: The message is just dropped. This is the default behavior

Remote Access with JMS

[206]

If you attach a message-driven bean to a queue, by default its onMessage
method is called by the container in the context of a transaction. So if
something goes wrong and the method throws an exception, the message
is kept in the queue, and its redelivery policies are processed, that is,
the redelivery limit is checked, and if not reached, the message is made
available to consumers after the redelivery delay interval.

To create the queue that will receive new exhibition instances, follow these steps:

1.	 In the administration console, click on the Services entry on the navigation
tree, then expand the Messaging entry, and click on JMS Modules.

2.	 Click on the name of our module, JMSModule-Tickets.
3.	 Click on the New button, select the Queue option on the next page, and click

on Next.
4.	 Enter ExhibitionQueue as Name and jms.tickets.exhibition as JNDI

Name, then click on Next.
5.	 In the Subdeployments dropdown, select the PersistentSD entry and click

on Finish.

You are now back on the JMS module's settings page, with the queue you just
created listed in the Summary of Resources table. There are lots of other parameters
and configurations that we can change, such as quotas and limits, security
constraints, and logging, but the creation wizard only asks for the basic set of
information it needs to do its job. If you want to, go ahead and click on the queue
name to explore the available options.

We don't need to alter any of them, so at this point, we're all set to start posting
messages to the queue.

The JMS connection factory
Another kind of resource you can create inside a JMS module is the JMS connection
factory. When you post a message to a queue, several aspects of the produced
message are read from the connection, such as the message's priority, transactional
behavior, and persistence configuration.

One of the most important flags of a connection factory dictates if the resource is able
to participate in global transactions, or in other words, if it's an XA-enabled resource.
If the posting or consumption of a queue or topic is one step inside a complex
business function that must be committed or rolled back as a single unit, then you
must use an XA connection factory. You do so by checking the XA Connection
Factory Enabled option presented by its creation wizard.

Chapter 7

[207]

When a WebLogic domain is configured, two default JMS connection factories are
created, and they can be retrieved using these JNDI names:

•	 weblogic.jms.ConnectionFactory

•	 weblogic.jms.XAConnectionFactory

The configurations of both are basically the same, except for one pretty obvious
detail: XAConnectionFactory is an XA-enabled resource. All other parameters have
the same default values you get when you create your own JMS connection factory.

As the piece of code we're about to write has very basic demands, we don't need
to create a specific JMS connection factory. Instead, we will use the non-XA default
connection factory, weblogic.jms.ConnectionFactory. The only step in our
business scenario is to post a single message, so support for distributed transactions
isn't necessary.

When developing a real project, always create your own JMS connection
factories. This way, you can control your factories by changing its
parameters, which is something you can't do when using WebLogic's
default ones. Even if you could, as they're global resources, other
applications may use them, so you would influence their behavior as well.

Posting messages from a standalone
client
The necessary code to write messages to a WebLogic Server queue doesn't have
to use any WebLogic specific classes, just plain regular javax.jms.* and javax.
naming.* components.

There are some classes and interfaces provided by WebLogic that help us access
WebLogic-specific features, but as they address very specialized scenarios, chances
are you're not going to use them very often. They are inside the weblogic.jms.
extensions package, and you can find their Javadoc at http://docs.oracle.com/
middleware/1212/wls/WLAPI/weblogic/jms/extensions/package-summary.html.

As said earlier in this chapter, the business functionality we're going to implement
will act as a bridge between the partner's system and the Theater module deployed
at their installations, and will receive information about new exhibition dates that
must be uploaded to our module.

Remote Access with JMS

[208]

To accomplish this, we will create a standalone Java project named RemoteClient
and add a Java class that will read the command-line arguments that represent the
new exhibition, pack them inside an Exhibition class instance, and post it to a
message queue.

Creating the project
The following are the steps to set up the environment that our code needs:

1.	 Open Eclipse IDE, select menu entries File, New…, and Project…. Then, type
Java in the Wizards text field, click on the Java Project entry, and then on the
Next button.

2.	 Type RemoteClient as Project Name, make sure you're using JDK 1.7 in the
JRE group (change it if necessary), and click on Next.

3.	 Click on the Libraries tab and then on the Add External JARs… button.
4.	 Navigate to /$MW_HOME/wlserver/server/lib and select the

wlthint3client.jar file.
5.	 As we're going to instantiate the Exhibition class, we also need to add a

reference to its package, TheaterBO.jar, in the same way. Click on the Add
External JARs… button, then navigate to the location where you saved the
TheaterBO.jar file that is deployed as a shared library.

If you don't remember where the deployed TheatherBO.jar file is,
open WebLogic's administration console, go to the Deployments page,
and click on the theaterBO(1.0,1.0.0) entry. The Overview tab will be
loaded, and the Path line will tell you where to find it.

6.	 Click on Finish. You may choose to open the Java perspective.

Coding the message producer
As there are no specific needs regarding the message producer, we will write the
code inside the main method of our class.

1.	 Create a package named com.packt.client inside the RemoteClient
project, and add a class named Enqueue inside this package.

2.	 We will declare the address and component names as static constants inside
the class as follows:
static final String WLS_ADDRESS =
 "t3://localhost:7001";

Chapter 7

[209]

static final String WLS_CTX_FACTORY =
 "weblogic.jndi.WLInitialContextFactory";
static final String JMS_QUEUE_FACTORY =
 "weblogic.jms.ConnectionFactory";
static final String JMS_QUEUE_NAME =
 "jms.tickets.exhibition";

3.	 Create the public main method that is going to hold all the logic; also, it is
going to throw the superclass Exception, so we save a few try/catch blocks:
public static void main(String args[]) throws Exception {
}

4.	 We first need to acquire a remote connection to WebLogic Server. You may
need to change the username and password to be able to connect to your
server:
Context ct;
Hashtable<String, String> env = new Hashtable<>();

env.put(Context.PROVIDER_URL, WLS_ADDRESS);
env.put(Context.INITIAL_CONTEXT_FACTORY,
 WLS_CTX_FACTORY);
env.put(Context.SECURITY_PRINCIPAL, "weblogic");
env.put(Context.SECURITY_CREDENTIALS, "welcome1");

// Get a server connection
ct = new InitialContext(env);

5.	 Now we create and load instances of Movie, Room, and Exhibition using
command-line arguments as attribute values:
/*
 * Argument sequence and format:
 * 0: Movie Id
 * 1: Room Id
 * 2: Exhibition date - MM.DD.YYYY
 * 3: Exhibition time - HHMM
 */
Movie movie = new Movie();
movie.setId(Integer.parseInt(args[0]));

Room room = new Room();
room.setId(Integer.parseInt(args[1]));

Exhibition exhibition = new Exhibition();

Remote Access with JMS

[210]

exhibition.setMovie(movie);
exhibition.setRoom(room);
exhibition.setDate(new SimpleDateFormat("MM.dd.yyyy").
 parse(args[2]));
exhibition.setHour(Integer.parseInt(args[3]));

6.	 These are the declarations of all JMS components we will need, all from the
package javax.jms:
QueueConnectionFactory qcf;
QueueConnection qc = null;
QueueSession qs = null;
QueueSender sender = null;

Queue queue;
ObjectMessage msg;

7.	 And here we grab the necessary JMS resources, create a sender, and post
the message. This whole block is wrapped inside a try/catch block that's
supposed to deal with any problems that may arise. At the end, there's a
finally block to close the JMS resources, as they don't support Java 7's
try-with-resources feature yet:
try {
 // Set up JMS components
 qcf = (QueueConnectionFactory) ct.lookup(JMS_QUEUE_FACTORY);
 qc = qcf.createQueueConnection();
 qs = qc.createQueueSession(false,
 Session.AUTO_ACKNOWLEDGE);

 // Get a handle to the JMS queue
 queue = (javax.jms.Queue) ct.lookup(JMS_QUEUE_NAME);

 // Create ...
 msg = qs.createObjectMessage();
 msg.setObject(exhibition);

 // ... and send the message
 sender = qs.createSender(queue);
 sender.send(msg);
} catch(Exception e) {
 e.printStackTrace();
} finally {
 // Doesn't support try-with-resources yet...
 try { sender.close(); } catch (Exception e) { }

Chapter 7

[211]

 try { qc.close(); } catch (Exception e) { }
 try { qs.close(); } catch (Exception e) { }
 try { ct.close(); } catch (Exception e) { }
}

8.	 Save everything and check and correct any compilation errors.

You will see an error mark at the top of the class. If you hover the
mouse over it, the message The type javax.persistence.TemporalType
cannot be resolved. It is indirectly referenced from required .class
files will pop up. This class is used by the TheaterBO package, but
as we aren't dealing with the persistence layer here, we can ignore the
error. Compilation and execution will run as expected.

The code is ready to generate messages. Let's post a few entries!

Queuing messages
We're going to execute the client from Eclipse, so we need to create a
run configuration:

1.	 Just run the class for the first time and Eclipse will create a configuration
for you: right-click on the class' name, then select Run As and then
Java Application. An exception will be displayed, as we don't have any
command-line arguments yet—just ignore it.

2.	 Right-click on the class name again, and then select Run As and the Run
Configurations… option in the context menu.

3.	 In the Run Configurations window, find the Java Application entry at the list
to the left, and then click on at the subentry with our class' name, Enqueue.

4.	 Click on at the Arguments tab, and enter the 5 1 01.01.2013 1400
sequence in the Program arguments box.

The sequence of the parameters represents the movie ID, room ID,
and exhibition's date, in the format MM.DD.YYYY and time.

5.	 Click on Run. If the execution finishes without errors, your message will
most likely be waiting for consumption at the queue.

Remote Access with JMS

[212]

As we still don't have a consumer attached to the queue, you can check it and see
that there are messages waiting for delivery:

1.	 Access WebLogic's administration console, and on the navigation tree click
on Services, Messaging, and then JMS Modules.

2.	 Click on the name of our module, JMSModule-Tickets, and then on the
queue's name, ExhibitionQueue.

3.	 Click on the Monitoring tab and you can check how many consumers the
queue has, the number of current and total messages, along with other data:

The Messages Pending column shows the messages that cannot be
consumed because they are still part of a receive transaction. The
Messages Current column shows how many messages are available
to the consumers, and Messages Total indicates how many messages
have been received by this queue.

4.	 You can drill down and see the messages by checking the box next to the
name and then clicking on the Show Messages button:

Chapter 7

[213]

Notice the buttons just above the message table. Other than checking the messages
already in the queue, you can:

•	 Create new messages from the administration console.
•	 Delete selected messages or all messages from the queue.
•	 Move some or all the messages from this queue to another one.
•	 Import and export messages to and from XML files with a specific format.

These functionalities don't work with object messages unless the classes
inside the payload are available from the server classpath.

As we post object messages, if you click on the message ID, a screen with the
warning Unable to view message, reason = java.class.ClassNotFoundException:
com.packt.domain.theater.Exhibition shows up. You must add the class' package
to WebLogic's classpath, and the easiest way to accomplish this is to drop the
TheaterBO.jar file for our example into the /lib folder of the target domain,
$ DOMAIN_HOME/tickets, and restart the server.

Remote Access with JMS

[214]

This is how the detail screen should look like if you do this:

When you already have a consumer that is attached to a queue and needs to check the
messages coming through it, you can stop the queue's consumption. Also, you can
pause the production and/or insertion of messages of a given queue, for instance, to
avoid an overload situation. Let's define these administration-related terms:

•	 Production: This is used for posting messages into the queue. When it's
paused, no producer can post messages.

•	 Insertion: This does the same as the previous flag, but also blocks messages
that are in flight, for instance, messages that are waiting to be inserted in the
queue because its quota has been reached, or messages with a delivery time
header that hasn't been reached yet.

•	 Consumption: The messages are received and put in the queue as usual,
but the engine doesn't notify any consumers about them, so there's no
message delivery.

These pauses—production, insertion, and consumption—are held until
the server goes down. If you restart a WebLogic node, all states are set
back to enabled, or more specifically, to the default value for each state,
which you can configure in the Configuration tab, the General inner
tab, and the Advanced group of a destination component.

Chapter 7

[215]

Here's the screen where we can pause or resume the production and/or
consumption of our queue:

Now that we confirmed that there's a message or two waiting in the queue, let's code
a bean to consume them.

Consuming messages with an MDB
The last thing we must do to complete our business scenario is to retrieve the posted
messages from the queue and create a new exhibition line in the database by using
the persistence layer. To do so, follow these steps:

1.	 Right-click on the Theater project's name, select New… in the top of the
context menu, and then select Other….

2.	 Type Message in the search field, select the Message-Driven Bean (EJB 3.x)
entry, and click on Next.

Remote Access with JMS

[216]

3.	 Configure the fields as shown in the following screenshot:

4.	 Click on Finish.

As a message carries an instance of class Exhibition, we will just extract and pass it
to a persistence manager that will save the entity in following manner:

1.	 Add a reference to inject the default persistence context:
@PersistenceContext
EntityManager em;

2.	 In the onMessage method, we retrieve the object from the message and
persist it. As the object is already an instance of exhibition, we didn't have to
cast it, but let's do it for clarity and to print a message to the console:
ObjectMessage om = (ObjectMessage) message;

try {
 Exhibition ex = (Exhibition) om.getObject();

 // Print the object received to the console
StringBuilder msg = new StringBuilder();
 msg.append(ex.getMovie().getId())
 .append(", ")

Chapter 7

[217]

 .append(ex.getRoom().getId())
 .append(", ")
 .append(ex.getDate())
 .append(", ")
 .append(ex.getHour());

 logger.info(msg.toString());

 em.persist(ex);

} catch (JMSException e) {
 e.printStackTrace();
}

3.	 Save the file; now go to the Servers tab and release the changes to the server
by clicking on Publish.

If everything went OK, you should see messages similar to the following in the
Console tab, along with the normal output from the server:

5, 1, Tue Jan 01 00:00:00 BRST 2013, 1400
5, 1, Tue Jan 01 00:00:00 BRST 2013, 1400

You can also check for new records in the exhibition table of the database
theater_db.

This covers the common usage of JMS queues, showing how to produce and
consume messages. Let's check some parameters that we can set when using
WebLogic Server to deal with JMS consumers.

Configuring thread limits for MDBs
When using WebLogic's JMS system, there's a rather long list of parameters that are
specific to this application server and control several aspects of our components,
such as caching, security, and thread usage.

Some of these elements can be attached to a bean with annotations, some can only
be declared inside a specific descriptor file, and some are available both ways. The
following is a list of WebLogic-specific elements that you can apply to a bean only
through a descriptor file, weblogic-ejb-jar.xml:

•	 dispatch-policy: This element attaches the MDB to a work manager, which
is a way to share computational resources among WebLogic components.

Remote Access with JMS

[218]

•	 initial-beans-in-free-pool: This element tells the bean system how
many beans should be created and put in the pool when the application
is started. When WebLogic creates a message-driven bean, 16 instances
are created. These can be seen in the Consumers Current column on the
administration's queue monitoring screen.

•	 max-beans-in-free-pool: This parameter sets the limit of instances that
can be held in a bean pool. The default value, 1000, is a pretty high number,
if you consider that it applies to only one MDB.

•	 security-role-assignment: When you secure a bean, a role is attached to
it, and this element maps the virtual role to the WebLogic's security layer.
This topic will be explored in Chapter 8, Adding Security.

For a complete list of elements declared by annotations and deployment
descriptors, check the product's online documentation at http://docs.
oracle.com/middleware/1212/wls/EJBPG/ejb_jar_ref.htm.

As we know beforehand that our ExhibitionConsumer bean isn't required to deal
with heavy loads, we can set a lighter configuration to it by attaching both initial-
beans-in-free-pool and max-beans-in-free-pool elements to it.

In order to accomplish this, we need to create a weblogic-ejb-jar.xml descriptor
file inside the Theater project:

1.	 Right-click on the Project Explorer tab and click on New, then on Other….
2.	 Type Weblogic in the search field, select Oracle Weblogic EJB Module

Descriptor, and click on Next.
3.	 Navigate to the Theater/WebContent/WEB-INF folder and click on Finish.

Some OEPE features haven't been updated to comply with the JEE 6
specification; hence a warning appears stating that the descriptor file
must be placed inside an EJB Project. You can ignore this warning.

Now you can edit the file's source and add the following lines of code inside the
existing weblogic-ejb-jar tag—remember to change it to allow the insertion
of children:

 <wls:weblogic-enterprise-bean>
 <wls:ejb-name>ExhibitionConsumer</wls:ejb-name>
 <wls:message-driven-descriptor>
 <wls:pool>
 <wls:max-beans-in-free-pool>3</wls:max-beans-in-free-pool>

Chapter 7

[219]

 <wls:initial-beans-in-free-pool>1</wls:initial-beans-in-
 free-pool>
 </wls:pool>
 </wls:message-driven-descriptor>
 </wls:weblogic-enterprise-bean>

You could use the Design view to edit the file, but as this feature
hasn't been updated yet, it will report errors that aren't actually
there, so it may confuse you more than help.

Actually, there's a way to attach these two elements as annotations: we could use
the weblogic.ejbgen.MessageDriven decorator, which is WebLogic-specific and
explicitly exposes configuration elements, as opposed to javax.ejb.MessageDriven
where we have to declare them as a list of ActivationConfigProperty annotations.

Our bean definition would look like something similar to the following code:

@weblogic.ejbgen.MessageDriven (
 ejbName = "ExhibitionConsumer",
 destinationJndiName = "jms.tickets.exhibition",
 destinationType = "javax.jms.Queue",
 initialBeansInFreePool = "1",
 maxBeansInFreePool = "3")

Thing is, as it happens with the EJB Module Descriptor wizard, the wizard
associated with EJBGen—WebLogic's proprietary extension to EJB—doesn't
acknowledge that we can create a bean inside a web project. That's because the
EJBGen module is still bounded to EJB Version 2.1, so we can't use this feature in our
projects.

The Store-and-Forward client feature
Since Version 9.2, Weblogic Server has this neat feature called the Store-and-Forward
(SAF) client, which enables a JMS remote client to keep messages locally whenever
a connection problem occurs with the server. When the connection is re-established,
the messages are delivered.

From a developer's viewpoint, this behavior is almost transparent—our code will
complete the procedure without any errors, as if the message were actually delivered
to its destination queue. This is a great feature to use when network outages are
frequent, or even when you only have a specific time window to communicate with
the server—instead of dealing with all the batching details from inside your code,
you just delegate this responsibility to the JMS transport.

Remote Access with JMS

[220]

Also, the changes you have to apply to your code in order to enable the SAF client
are pretty simple. The following is a typical set of parameters that we must declare in
order to acquire a server connection and use a JMS queue:

Context.INITIAL_CONTEXT_FACTORY=weblogic.jndi.WLInitialContextFactory
Context.SECURITY_PRINCIPAL=weblogic
Context.SECURITY_CREDENTIALS=welcome1
Context.PROVIDER_URL=t3://localhost:7001

QUEUE_CONNECTION_FACTORY=jms/yourQueueConnectionFactory
QUEUE_NAME=jms/yourQueue

The preceding lines aren't the actual code, just key/value pairs showing
parameters that are usually declared (or read from a properties file) to
open a remote connection and acquire a queue.

To enable the JMS SAF client, we basically use the same set of parameters by
dropping one and changing the other three:

Context.INITIAL_CONTEXT_FACTORY=
 weblogic.jms.safclient.jndi.InitialContextFactoryImpl
Context.SECURITY_CREDENTIALS=packt
Context.PROVIDER_URL=file:/opt/packt/etc/SAFClient.xml

QUEUE_CONNECTION_FACTORY=jms/yourQueueConnectionFactory
QUEUE_NAME=jms/yourQueue

The following is a description of the changes:

•	 The PROVIDER_URL parameter must point to a configuration file generated by
a command-line utility, ClientSAFGenerate. We're going to set up this file
just after this block.

•	 The INITIAL_CONTEXT_FACTORY parameter must point to a class named
weblogic.jms.safclient.jndi.InitialContextFactoryImpl that knows
how to parse the file provided by Context.PROVIDER_URL.

•	 The SECURITY_PRINCIPAL parameter declares the username necessary to
establish a connection to the server. When using the SAF client, though, this
information is inside the XML file referred by PROVIDER_URL, so we don't
need to use it when acquiring the server connection.

•	 The SECURITY_CREDENTIALS parameter usually holds the user's password
that will open the connection. When using the SAF client, this credential
is also put inside the XML file, but we still need this entry—it will hold a
password key that the engine must use to decrypt the password inside the
configuration file.

Chapter 7

[221]

We don't need to change anything else in the code other than these set of parameters,
so the portion of code that deals with acquiring a handle to the JMS queue and posts
a message to it remains unchanged.

When using the SAF client, there's one caveat that you must be aware
of: the messages you post will always reach the local repository first,
and then they will be delivered to the appropriate server. By default,
the SAF client holds the message for 20 seconds before trying to send it
to the server.
So, if your client isn't designed to stay in memory, for instance,
listening to a TCP port for incoming messages, you must tweak this
configuration to avoid having all messages kept at the local store. We
will see how to do it shortly.

One final observation: the SAF client doesn't participate in distributed transactions
(XA). If your design has this kind of requirement, you can either use the SAF client
knowing that it runs local transactions (it doesn't influence any XA transactions that
may be in course) or not use it at all.

The following is the sequence of steps we must execute in order to enable the
SAF client:

1.	 Create the configuration file that points to the queue(s) we want to use.
2.	 Encrypt the connection password.
3.	 Edit the configuration file and add the encrypted password.
4.	 Add a reference to the SAF client in our code.

Let's do it.

Creating the configuration file
Almost all the information that the SAF client needs to connect to a server is located
inside a configuration file created by the ClientSAFGenerate utility. Here's how we
create it:

1.	 Open a terminal or a command prompt, and run the domain configuration
script, setDomainEnv.sh (on Windows, setDomainEnv.cmd), to set up the
environment—you can find it inside the bin folder of your domain:
$ cd $DOMAIN_HOME/tickets/bin
$ source ./setDomainEnv.sh

Remote Access with JMS

[222]

2.	 Now, go to /config/jms inside the domain—WebLogic Server creates one
file for each JMS system module that you declare and saves them inside the
subfolder of your domain:
$ cd ../config/jms
$ ls –w1
jmsmodule-tickets-jms.xml

3.	 Issue the following command to create the configuration file, adjusting the
parameters according to your installation (check whether the output folder
exists before running the command):
$ java weblogic.jms.extensions.ClientSAFGenerate
 -url t3://localhost:7001
 -username weblogic
 -moduleFile jmsmodule-tickets-jms.xml
 -outputFile /opt/packt/etc/SAFClient.xml

If you need to map more than one JMS module, use the same
command but add a -existingClientFile parameter pointing
to the already created configuration file to append the new values,
and keep everything else as is.

Leave the terminal open, we will use it again later. The utility doesn't connect to the
server to gather information, as the URL and username parameters could imply—
they are used to create the appropriate entries in the configuration file—so take extra
care when typing them.

If everything went well, the /opt/packt/etc/SAFClient.xml file has been created
with a reference to our destination queue and information about the connection:

 <saf-imported-destinations name="jmsmodule-tickets">
 <saf-queue name="ExhibitionQueue">
 <remote-jndi-name>jms.tickets.exhibition</remote-jndi-name>
 <local-jndi-name>jms.tickets.exhibition</local-jndi-name>
 </saf-queue>
 <saf-remote-context>RemoteContext0</saf-remote-context>
 </saf-imported-destinations>
 <saf-remote-context name="RemoteContext0">
 <saf-login-context>
 <loginURL>t3://localhost:7001</loginURL>
 <username>weblogic</username>
 </saf-login-context>
 </saf-remote-context>
</weblogic-client-jms>

Chapter 7

[223]

If you're using a cluster, you may want to set the loginURL
entry to address all your WebLogic servers—for instance,
t3://node1:7001, node2:7011, and so on. If the first node
is down for some reason, the client tries to reach the next one
and then the next, until a connection is established.

Encrypting the connection password
We must encrypt the connection password inside the configuration file, but the
utility that generates it doesn't accept a password parameter, so we must create it
using another application:

1.	 At the same terminal opened in the previous section, run this command:
 java -Dweblogic.management.allowPasswordEcho=true

 weblogic.jms.extensions.ClientSAFEncrypt

2.	 It will ask you to enter Password Key—this is a password that we will pass
to the SAF client so it can decrypt the connection password. Enter a value—
we will use packt—and hit Enter.

3.	 Now, in the Password prompt, enter the user's actual password—welcome1
if you're following the book standard—and hit Enter.

4.	 The encrypted password will be shown; copy it so we can place the whole
tag inside the configuration file:
<password-encrypted>{Algorithm}AES/CBC/PKCS5Padding{Salt}
OMDCZlaTWng={IV}KCcjtoVJqxYeQXvmKukpmg=={Data}
Sm1TYOAlERODdHKHqKvGwaNU/YZuJXIhn/THV9+yel8=</password-encrypted>

5.	 You can encrypt other passwords or type quit to exit the utility. As we have
just one value, go ahead and finish it.

Adjusting the configuration file
There are three things we must add to the configuration file, SAFClient.xml, so
open it with a text editor and proceed with the following changes:

1.	 Paste the whole password-encrypted generated tag just below
the username tag:
<saf-remote-context name="RemoteContext0">
 <saf-login-context>
 <loginURL>t3://localhost:7001</loginURL>
 <username>weblogic</username>

Remote Access with JMS

[224]

 <password-encrypted>{Algorithm} … </password-encrypted>
 </saf-login-context>
</saf-remote-context>

2.	 As we adopted one of the default WebLogic's JMS connection factory,
we need to add its declaration to the configuration file, just before the
saf-imported-destinations tag:
 <connection-factory name="wls.default">
 <jndi-name>weblogic.jms.ConnectionFactory</jndi-name>
 <transaction-params>
 <xa-connection-factory-enabled>false
 </xa-connection-factory-enabled>
 </transaction-params>
 </connection-factory>

When you create your own JMS connection factories, they exist inside
a JMS module, as you may remember. As the ClientSAFGenerate
utility maps a JMS module, you won't have to execute this extra step
to add a JMS connection factory to the configuration file.

3.	 As our remote client has a very short lifespan, we must change SAF's
posting delay to 0, so as soon as a message is sent from our code, it will
try to deliver the message to the server. To do it, add this block of tags
after the connection-factory block we just inserted:
<saf-agent>
 <default-retry-delay-base>0</default-retry-delay-base>
</saf-agent>

4.	 Save and close the file.

We just have to change a few lines of code of our Enqueue class to be able to use
the SAF client feature.

Adjusting the code
As said earlier, we need to change three connection parameters: provider_url,
the user password, A.K.A security credentials, and the JNDI connection
factory. The following are the current relevant lines of code:

static final String WLS_ADDRESS =
 "t3://localhost:7001";
static final String WLS_CTX_FACTORY =

Chapter 7

[225]

 "weblogic.jndi.WLInitialContextFactory";

env.put(Context.SECURITY_CREDENTIALS, "welcome1");

They must be changed to something similar to the following code:

// Points to the configuration file
static final String WLS_ADDRESS =
 "file:/opt/packt/etc/SAFClient.xml";

// Must have this exact value – it's the SAF Context Factory
static final String WLS_CTX_FACTORY =
 "weblogic.jms.safclient.jndi.InitialContextFactoryImpl";

// The password you use to encrypt the login password
env.put(Context.SECURITY_CREDENTIALS, "packt");

Also, we can comment the line that attaches a user to the context, as this information
is already in the configuration file:

// env.put(Context.SECURITY_PRINCIPAL, "weblogic");

If you want, you can leave the line as it is, but remember that this
information is not considered. The SAF client expects to find a
username tag in the configuration file, and an exception will be
thrown if this condition isn't satisfied.

We now have to add the SAF T3 client library to the project's classpath:

1.	 Open the Project Properties window for the project RemoteClient.
2.	 Click on Java Build Path present in the list to the left.
3.	 Click on the Libraries tab, then on Add External JARs….
4.	 Navigate to the server library folder, the same folder where you found the

wlthint3client.jar library, select and click on wlsaft3client.jar, and
then click on Enter.

5.	 Click on OK in the Project Properties window.

And we're good to go.

Remote Access with JMS

[226]

Testing the SAF client
This is the easiest part, just run the remote client a couple of times!

When the application is started, you will see a group of messages in the console
stating that the SAF client has been initialized:

<Thu Dec 13 12:05:56 BRST 2012> <Info> <Store> <WL-280008> <Opening
the persistent file store "SAFSTORE0V" for recovery: directory=/
opt/packt/etc/stores/default requestedWritePolicy="Direct-Write"
fileLockingEnabled=true driver="NIO".>
<Thu Dec 13 12:05:57 BRST 2012> <Info> <Store> <WL-280009>
<The persistent file store "SAFSTORE0V" (91256ed7-83b7-
4b9d-a9c5-61831fe5bb74) has been opened: blockSize=512
actualWritePolicy="Direct-Write(single-handle-buffered)"
explicitIOEnforced=false records=11.>
<Thu Dec 13 12:05:58 BRST 2012> <Info> <Messaging> <WL-282003> <The
messaging kernel ClientSAFAgent0 will use up to 318,155,434 bytes of
memory before paging begins.>
<Thu Dec 13 12:05:58 BRST 2012> <Info> <Messaging> <WL-282001>
<The messaging kernel ClientSAFAgent0 is beginning recovery of its
persistent state.>
<Thu Dec 13 12:05:58 BRST 2012> <Info> <Messaging> <WL-282002> <The
messaging kernel ClientSAFAgent0 has recovered 0 persistent messages.>
<Thu Dec 13 12:05:58 BRST 2012> <Info> <Messaging> <WL-282003> <The
messaging kernel ClientSAFAgent0 will use up to 318,155,434 bytes of
memory before paging begins.>

Then, after a few seconds, another message will be printed stating that the client
acquired a connection to the server:

Agent "ClientSAFAgent0" got connected to RemoteContext0 while
processing messages for ExhibitionQueue

To test the feature, you can stop WebLogic Server and post a few messages, then
start it and run the remote client one more time. When you do this, the client
will print recurrent error messages, but that's fine. Notice that one of the console
messages prints the number of JMS messages being held by the SAF client:

<WL-282002> <The messaging kernel ClientSAFAgent0 has recovered 4
persistent messages.>

Chapter 7

[227]

Web resources
The following are few web resources that you can refer to:

•	 Overview of standalone clients
°° http://docs.oracle.com/middleware/1212/wls/SACLT/basics.

htm

•	 WebLogic JMS Thin Client
°° http://docs.oracle.com/middleware/1212/wls/SACLT/

wlthint3client.htm

•	 WebLogic Server MBean reference
°° http://docs.oracle.com/middleware/1212/wls/WLMBR/index.

html

•	 Understanding WebLogic JMS
°° http://docs.oracle.com/middleware/1212/wls/JMSPG/fund.

htm

•	 JMS 1.1 specification
°° http://www.oracle.com/technetwork/java/docs-136352.html

•	 API reference: package weblogic.jms.extensions
°° http://docs.oracle.com/middleware/1212/wls/WLAPI/

weblogic/jms/extensions/package-summary.html

•	 Programming standalone clients for Oracle WebLogic Server
°° http://docs.oracle.com/middleware/1212/wls/SACLT/index.

html

•	 Reliably sending messages using the JMS SAF Client
°° http://docs.oracle.com/middleware/1212/wls/SACLT/saf_

client.htm

•	 Weblogic EJBGen reference
°° http://docs.oracle.com/middleware/1212/wls/EJBPG/ejbgen.

htm

•	 Using batching with message-driven beans

°° http://docs.oracle.com/middleware/1212/wls/WLMDB/
batching.htm

Remote Access with JMS

[228]

Summary
At this point, you have knowledge of several client libraries that you can attach to
your remote code when dealing with WebLogic, the concepts that involve creation
and usage of JMS resources and how to actually create these components, post, and
consume messages to a JMS queue, and the possibilities that the SAF client enables
when you need to make a remote client more resilient to unexpected events such as
network outages.

In the next chapter, we will explore some of the security-related features WebLogic
Server gives us, such as using an LDAP server as a repository for user provisioning,
authentication, and authorization.

Adding Security
Security is one of the most important aspects of any application, so we dedicated
an entire chapter to this topic; even so, it would be presumptuous to say that this
chapter covers all details regarding the subject; instead, the approach will be to
bring some of the most common situations of security on Java EE and describe
how to implement them through Oracle WebLogic features.

We will explore the security concerns associated with the EJB and Web containers
of Java EE. In this context, you can specify the security constraints basically in
two ways:

•	 Declarative: Through the use of descriptors, annotations, and XML files
•	 Programmatic: Hardcoded in an application component or Java class

It's also important to clarify some terminology and define what and how some of
these terms will be used through this chapter. The most important ones are:

•	 Authentication: Authentication is a word that derives from the word
genuine or real in Greek, according to Wikipedia. In the Java EE platform,
it's the act to prove that a specific user is who he claims to be through the
use of passwords, tokens, or certificates, according to what was specified
as an authentication method for this server or container.

•	 Authorization: Authorization is very different from authentication because
although you have proved who you are (through authentication), you may
not have permission to do what you intend on the system and your action
will mostly be denied, or not authorized.

•	 Subjects and principals: After a successful authentication process, the
authorized user will receive an identity that is basically defined as a set of
principals, which can be bound to other users or groups in the system. This
set is a formal definition of a subject and will be stored and re-used every
time the container needs to check the user identity and its permissions.

Adding Security

[230]

Other important terms used by security are data integrity, auditing, quality of
service, and confidentiality. Also, some may define authentication and authorization
as access control rules, and that most of the security constraints to protect data can
be achieved through cryptography, hashing, and other advanced techniques.

Most of these concepts are implemented and can be applied using standard Java
APIs and some specifics can depend on proprietary implementation of the Java
EE container. The Java platform provides APIs for access control through the Java
Authentication and Authorization Service (JAAS) and cryptography through the
Java Cryptography Extension (JCE). These two APIs will be used in this chapter to
implement the security requirements for our application.

These concepts are discussed in much more detail in the Java EE Tutorial's Security
chapter and the Java Authentication and Authorization Service reference guide; both
links can be found in the Web resources section of this chapter.

Exploring Java SE and Java EE security
In Java, we have distinct security frameworks for Java SE and Java EE. Java SE uses
policy files and JAAS, but Java EE offers declarative security through deployment
descriptors such as web.xml, ejb-jar.xml; annotations; and transport security
through HTTP Basic/Form authentication, SSL, SAML, and others.

A key difference between both security frameworks is that, by default, the Java
SE security framework doesn't propagate security context across different JVMs.
This concept is almost a native requirement for secure Java EE applications,
which needs to propagate security contexts, principals, and subjects across several
layers, applications, or even physical machines (clusters) in order to provide high
availability and failover for security concepts such as authentication or authorization.

In order to minimize such problems, the Java Authentication Service Provider
Interface for Containers (JASPIC) specification extended the JAAS model,
implementing message authentication mechanisms that can be integrated into
containers or runtimes. However, keep in mind that the applications still have
to use some proprietary descriptors or libraries to perform more complex security
tasks, and this varies for each application server.

WebLogic security
Oracle WebLogic supports and fully implements both Java SE and EE security
models using JDK APIs such as JASPIC, JAAS, JSSE, or JCE for remote and even
internal authentication. So, if the client is an EJB, a servlet, or an applet, the same
mechanisms will be used to authenticate and authorize its execution.

Chapter 8

[231]

WebLogic Server

Servlet

Engine

Security Realm

Users, Groups,

Security Roles,

and Policies

WebLogic

Resources

The authentication can be performed through these models:

•	 Username/Password: The most traditional model, which requires a
user ID and password to authorize and provide access to a protected
resource. It can be enhanced to use a certificate (SSL) or HTTPS to
provide transport-level security.

•	 Certificate: During HTTPS/SSL requests, the client can verify whether
the digital certificate is authentic and if the Secure Socket Layer (SSL)
connection was established. WebLogic also supports two-way SSL
authentication through a specific authentication provider (provided both
client and server present a valid certificate).

•	 Digest: This is a very sophisticated method to authenticate and prevent
replay attacks. When the client sends a request to the server, this model will
return a token or challenge to inform the client it supports that mechanism.
Then, the client must generate a hash that usually is a complement of
password, nonce (an arbitrary number that can be used only one time), and
timestamp. The server also stores a small cache of used passwords, so older
requests are rejected since the hash will not match or would be already used
by a successful authentication.

•	 Perimeter: Perimeter authentication relies on external systems or agents
exchanging tokens with a WebLogic domain's Identity Assertion. Common
examples of such a mechanism are Simple and Protected GSS-API
Negotiation Mechanism (SPNEGO), Security Assertion Markup Language
(SAML), or even Virtual Private Networks (VPNs). These authentication
methods are much more complex and out of the scope of this book.

Adding Security

[232]

The Java Authentication Service Provider Interface for Containers
(JASPIC) specification (JSR 196) defines a model or a Service Provider
Interface (SPI) through authentication providers for Java EE application
servers, which is applicable for protocols (SOAP, JMS, and HTTP) and
processing runtimes, extending the JAAS model. The authentication
provider model will be explained with further details in the next section.

Authentication providers and security realms
Authentication can be performed using the methods described in the previous
section, and we can even combine them; for instance, using a digital certificate to
establish an SSL connection and passing a valid username/password credential
through it. An authentication provider can be configured based on these types:

•	 An embedded LDAP server – this is the default WebLogic authentication
provider

•	 An external LDAP server – this supports any LDAP v2/v3 server, including
some proprietary implementations

•	 An external database system (DBMS) – this supports any database system
already supported as a WebLogic JDBC data source

•	 A simple text file – this is not recommended for a production environment

WebLogic Domain

Providers

LDAP

SQL

OID

Kerberos

Username/Password/Token

Subject

JA
A
S

R
e
a
lm

LDAPv2/v3

DB

Kerberos

File

C
li
e
n
t

As already mentioned, WebLogic follows the JAAS security model and as a result
of a successful authentication on any of these providers, the return will be a Subject
with the appropriate principals according to what is set on the user profile in the
data store (an LDAP or database server, for instance).

Chapter 8

[233]

Authentication providers have a special and very important attribute
named Control Flag. WebLogic uses this attribute in case it has
multiple authentication providers, which loads permissions from
different stores (so it can check if, for example, a user exists in all
providers and give it the appropriate identity and permissions). Another
common scenario is when we have multiple stores and they can act as
redundant options. So WebLogic will attempt to load the permissions
using the default provider and then, if it's not available, move to the
second on the list. The possible values for this attribute are:

•	 REQUIRED: This value is always called, irrespective of the
authentication passing or failing; the authentication process will
continue down the list of providers.

•	 REQUISITE: The authentication must pass this provider,
irrespective of the authentication passing or failing; the next
providers will be executed, but they can fail if this one succeeds.

•	 SUFFICIENT: This value is not always required, but if it succeeds,
other providers will not be executed. If it fails, authentication will
continue down the list of providers.

•	 OPTIONAL: The user can fail on this provider without further
implications. However, if all providers are set to OPTIONAL, at
least one of the providers must succeed.

WebLogic can have multiple security realms; however, you can have only one realm
active for a domain. In the security realm, you can specify multiple authentication
providers, and at least one of them must be active. Each authentication provider holds
a LoginModule that performs the actual authentication, and if the realm uses multiple
authentication providers, they will store multiple principals for the same subject.

It's also possible to implement custom authentication providers (with
LoginModule) when the default authentication providers of WebLogic
don't meet the security requirements of your application. Such custom
providers are out of the scope of this book, but a link with an example
can be found in the Web resources section of this chapter.

Using an external LDAP server
In our use case, we are going to set up an authentication provider to integrate with
an external OpenLDAP server. This will provide the key functionalities we need to
secure our web application and illustrate with an example a common requirement of
most enterprise applications.

Adding Security

[234]

The setup of the OpenLDAP server and the initial load of users were
performed in Chapter 2, Setting Up the Environment. You can check
using some of the command-line utilities provided by OpenLDAP.
For example, ldapsearch -H ldap://localhost:389 -D
"cn=Manager,dc=example,dc=com" -W.

WebLogic Domain

<provider>

OpenLDAP

Username/Password/Token

Subject m
yR

e
a
lm

OpenLDAP

Server

C
li
e
n
t

Web App

web.xml weblogic.xml

As the preceding diagram shows, our web application client will send username and
password information, which will be processed by the WebLogic server against the
active security realm; named myrealm by default. As we are using a standard Java
EE web application, the web.xml deployment descriptor will be used to specify a
few things:

•	 Security constraint: What should be protected and by which role
•	 Login configuration: Which authentication method will be utilized and

(depending on the type) where the user will be redirected to authenticate in
case of any errors

•	 Security roles: Declares the available roles for this application

But, as said, we still have to declare some security settings that are specific to the
WebLogic implementation, and here is where a proprietary deployment descriptor
comes in handy to connect the missing dots. We have to use the weblogic.xml file to
specify the security roles assignments. It is a match between a security role declared
in the web.xml file and the principals (users, groups, or other roles) available in the
WebLogic Server security realm.

Besides the settings on the application, it's necessary to set up the authentication
provider and adjust the proper connection settings to the OpenLDAP server. The
configuration will be executed through the WebLogic console, but you can also use
WLST scripts.

Chapter 8

[235]

Configuring an OpenLDAP authentication
provider
To configure a new authentication provider, follow these steps:

1.	 Open the Security Realms page from the navigation tree and
click on myrealm.

2.	 In the Settings section for the myrealm page, click on the Providers tab.
The page will list DefaultAuthenticator and DefaultIdentityAsserter,
which are used by WebLogic natively in a standard installation.

3.	 Click on New, and on the creation page use these values:
°° Name: StoreLDAP
°° Type: OpenLDAPAuthenticator

4.	 Click on OK.
5.	 You should see the Authentication Providers page again with the provider

we've just created. Click on StoreLDAP.

6.	 In the Settings section for the StoreLDAP page, change the control flag
value to SUFFICIENT. Click on Save after this change.

7.	 Still under the Configuration tab, select the Provider Specific tab.
8.	 If you kept the default values specified in Chapter 2, Setting Up the

Application, to set up an OpenLDAP server, apply the following settings.
Otherwise, replace them with your specified values. Also, if a property
is not specifically changed, you can keep the default value.

°° Host: localhost
°° Port: 389
°° Principal: cn=Manager,dc=example,dc=com

Adding Security

[236]

°° Credential: welcome1
°° Confirm Credential: welcome1
°° User Base DN: ou=people, dc=example, dc=com
°° User From Name Filter: (&(cn=%u)(objectclass=inetOrgPerson))
°° User Object Class: inetOrgPerson
°° Group Base DN: ou=groups, dc=example, dc=com
°° Group From Name Filter: (&(cn=%g)

(objectclass=groupOfNames))

°° Static Group Object Class: groupOfNames
°° Static Member DN Attribute: member
°° Static Group DN from Member DN Filter: (&(member=%M)

(objectclass=groupOfNames))

Click on Save after you finish.

9.	 After saving, WebLogic will warn you that a restart is required for the
changes to take effect. So restart your server.

All security-related changes on WebLogic will have one of two possible
characteristics: they're effective immediately, meaning you don't need
to activate a change session, or may require a restart to take effect. Keep
this in mind when doing any security changes, since this can help you
troubleshoot your modifications. In general, the WebLogic console will
mark items that require a restart with a yellow triangle and display a
message after saving, indicating the need for a restart.

10.	 Now browse back to the Providers list page (Security Realms | myrealm |
Providers). Click on the Reorder button. The order presented on this page is
the exact order that authentication providers will be executed in at runtime.
Change the ordering so that StoreLDAP is the first on the list. Click on OK
when done.

Chapter 8

[237]

This concludes the OpenLDAP configuration on WebLogic. Now we have to do
a few changes on the application's configuration in order to specify the security
constraints, roles, and groups.

To double check if your configuration is correct, go to the myrealm page again and
click on the Users & Groups tab. You should see a list of the available users on all
providers, as well as a list of all groups. You can identify the source of each entry by
checking the Provider column.

Adding Security

[238]

Consider using the Record feature of the WebLogic console in order
to save the configuration steps in a WLST script. This can be re-used
when setting up other environments and also save some time if you
need to reinstall your own.
To start recording, click on the Record button on the WebLogic
console toolbar at the top of the console.

Click on the button again to finish the recording, and WebLogic will
display a message with the name and directory of the WLST script
just recorded.

Securing the web application
Now that the authentication provider is set, we have to modify the deployment
descriptors of the application to set the security properties and create a login page
to let users authenticate themselves.

Modifying the web.xml descriptor file
We first need to set the security constraints by editing web.xml:

1.	 Open the WEB-INF/web.xml file of the Store web application.
2.	 Paste the following lines right after the servlet-mapping tag:

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>protected</web-resource-name>
 <url-pattern>/reservation.jsf</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>User</role-name>
 </auth-constraint>
 </security-constraint>
 <login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>/login.jsf</form-login-page>
 <form-error-page>/login.jsf</form-error-page>

Chapter 8

[239]

 </form-login-config>
 </login-config>
 <security-role>
 <role-name>User</role-name>
 </security-role>

Here's the explanation of each block of the preceding code snippet:

•	 The security-constraint tag defines where security will be applied.
You need to declare a combination of HTTP methods, URL patterns, and
role constraints. In our use case, we're protecting a specific URL pattern, /
reservation.jsf, and telling that only users with an abstract role named
User can proceed as per the auth-constraint tag. We say abstract because
these roles don't actually have to match the roles at WebLogic Server. This
match will be done later with another deployment descriptor, weblogic.xml.

By default, all HTTP methods will be blocked since we're not explicitly
specifying which ones must be secured. Here is how the same security
constraint would look like protecting only POST and GET requests:

 <url-pattern>/reservation.jsf</url-pattern>
 <http-method>POST</http-method>
 <http-method>GET</http-method>

•	 The login-config tag plays a very important role in the security process: it
defines the authentication method, which in our case is FORM, and then points
to where the the login and error pages will be available. These are the pages
that users will be redirected to, to perform a login or in case any error occurs.
It can also enforce SSL access by specifying the transport-guarantee tag,
which can be NONE, CONFIDENTIAL, or INTEGRAL.

A brief description of the available authentication methods is as follows:
BASIC: HTTP 1.0/1.1 basic authentication; a browser-controlled pop up
will be displayed to input username/password.
FORM: A custom web page will be used to perform the authentication
through an HTML <form>. JSF or JSP pages are valid examples.
CLIENT-CERT: Uses digital certificates to authenticate.
DIGEST: An advanced version of the HTTP basic authentication that
leverages MD5 hashing.

Adding Security

[240]

•	 The security-role tag is used to declare all abstract roles available for
the web application. If we have some specific resources (constraints) for
administrators and customers (groups) of the application, these rules must be
declared here. Remember that you can name it anything you want, but later
the value will be used in the weblogic.xml descriptor to match the abstract
role and a real group in the LDAP server.

Modifying the weblogic.xml descriptor file
After setting web.xml, we need to tie the roles declared there and the principals in
the WebLogic server, or, to be more precise, on the OpenLDAP server.

1.	 Open the WEB-INF/weblogic.xml file of the Store web application.
2.	 Add the following lines right after the </wls:library-ref> tag:

<wls:security-role-assignment>
 <wls:role-name>User</wls:role-name>
 <wls:externally-defined />
</wls:security-role-assignment>

3.	 Save the file.

Simple, isn't it? Now let's see the explanation in detail.

The security-role-assignment tag can be used to define the match of abstract
roles of a web application and the actual roles of WebLogic authentication providers.
So a valid example could be as follows:

<wls:security-role-assignment>
 <wls:role-name>User</wls:role-name>
 <wls:principal-name>weblogic</wls:principal-name>
</wls:security-role-assignment

This would actually let only the WebLogic user (yes, the WebLogic administrator
user; not recommended but vastly used) be a valid one for the application.
Alternatively, you could point to any group available to the WebLogic security
realm. Instead, with the externally defined element, we are pointing to a role that
we need to set up from the WebLogic console. This extra step will provide a lot of
flexibility since any group, users, or conditions that this role may map are defined
from the WebLogic console, allowing us to modify the mapping without having to
redeploy the application.

Chapter 8

[241]

Creating and mapping a global role
In order to accomplish this step, follow these instructions:

1.	 Log in to the WebLogic console and click on Security Realms and
then myrealm.

2.	 Click on the Roles and Policies tab.

3.	 On the Roles table, expand the Global Roles tree and click on Roles.

4.	 On the Global Roles page, click on New.
5.	 Use the following information:

°° Name: User
°° Provider Name: XACMLRoleMapper

When done, click on OK.

6.	 Then, back on the Global Roles page, click on the User role we just created.

Adding Security

[242]

7.	 At the Edit Global Role page, you will see a couple of buttons that can let
you compose a set of rules that defines what this role actually maps. Click on
Add Conditions.

8.	 On the predicate list, select Group and click on Next.
9.	 In the Group Argument Name textbox, type in users. This is the name of

the group from the OpenLDAP server that holds all common users of our
application. Click on Add and then on Finish.

10.	 The Role Conditions section should look as shown in the following
screenshot. If everything looks good, click on Save.

It's also possible to create scoped roles instead of global ones. They will
be tied specifically to an instance of a WebLogic resource, such as EJB
methods or a specific branch of the JNDI tree. In case of conflicts, the
role of the narrower scope will override the broader.

Creating the login form
The only missing part now is the login form. In the web.xml file, we've specified
a login and an error page that will be used by the web container to perform the
authentication process or redirect in case of errors. A managed bean will be created
to perform the actual authentication using the HttpServlet API and the login()
method, available in Java EE 6. Let's get started.

1.	 In the Store project, create a new JSF file named login.xhtml. The page
will contain a web form with username and password fields with the proper
binding to the managed bean.

Chapter 8

[243]

2.	 Replace the body content of the page with the following code:
<ui:define name="content">
<center>
 <p:panel header="Login" style="width: 450px;" >
 <h:form>
 <p:growl id="messages" autoUpdate="true"
 closable="true" />
 <p:panelGrid columns="2"
 rendered="#{request.userPrincipal ==
 null}"
 style="border:0">
 <p:outputLabel value="E-mail" for="email" />
 <p:inputText id="email" required="true"
 value="#{login.customer.email}"
 label="E-mail" />
 <p:outputLabel value="Password" for="password" />
 <p:password id="password" required="true"
 value="#{login.customer.password}"
 label="Password" />
 <p:commandButton value="Login"
 action="#{login.login}" />
 </p:panelGrid>

 <h:panelGrid rendered="#{request.userPrincipal !=
 null}">
 <h:outputLabel value="#{request.userPrincipal}" />
 <p:commandButton value="Logout"
 action="#{login.logout}" />
 </h:panelGrid>
 </h:form>
</p:panel>
</center>
</ui:define>

Note the usage of the rendered property in some components.
This allows the page to dynamically decide if the component
must be rendered or not.

3.	 Create a new package named com.packt.store.security.
4.	 Still in the security package, create a class and name it LoginBean.

Adding Security

[244]

5.	 Copy and paste the following code. The code defines the login() and
logout() methods referenced by the login.xhtml page that will be used to
process the authentication.
@Named
@RequestScoped
public class LoginBean implements Serializable {
 private static final long serialVersionUID = 1L;

 private Customer customer = new Customer();

 private FacesContext context =
 FacesContext.getCurrentInstance();
 private HttpServletRequest request =
 (HttpServletRequest)
 context.getExternalContext().getRequest();

 public String login() {
 try {
 request.login(customer.getEmail(), customer.getPassword());
 addSuccessMessage(String.format("Welcome back,
 %s!", customer.getEmail()));

 return "index?faces-redirect=true";
 } catch (ServletException ex) {
 ex.printStackTrace();
 addErrorMessage("Wrong username or password,
 please try again.");
 return "login?faces-redirect=true";
 }
 }

 public String logout() throws ServletException {
 request.logout();
 addSuccessMessage("You have logged out.");

 return "login?faces-redirect=true";
 }
 ... // getters and setters

Chapter 8

[245]

Note that addSuccessMessage() and addErrorMessage()
are just helper methods to create FacesMessages in the current
FacesContext. Their code is part of the code bundle.

6.	 Save and close your open files and deploy the application. Your login form
should look similar to the following screenshot:

Testing the login procedure
As we have explicitly protected only the reservation.jsf page in web.xml, to test
you just need to hit the URL http://localhost:7001/store/reservation.jsf.
You will be redirected to the Login page and requested to input credentials of a valid
user from LDAP. If any error occurs, you will be kept at the Login page and an error
message will be displayed. On a successful login, the application will load the main
page and you should see the principal name on the page header.

In order to check the security details of your web application using the WebLogic
console, follow these steps:

1.	 In the left-hand side menu, click on Deployments and then select the Store
application from the deployment list.

Adding Security

[246]

2.	 The Settings section for the Store application page will be displayed. Click
on the Security tab. This tab shows various security settings but some of
them are not available because this application is using the DD Only security
model. So only the Roles, Policies, and Security settings declared by the
web.xml and weblogic.xml deployment descriptors are valid, but this page
is a good place to check if what has been set in the descriptors looks good.

3.	 To see a list of protected URLs in the web application, click on the URL
Patterns tab and then Policies. But remember that you can't modify it from
the console; that can be done only through deployment descriptors.

Chapter 8

[247]

Protecting WebLogic resources
WebLogic lets you define a set of rules to protect resources on the application or even
on the server. These rules are called security policies and they leverage the WebLogic
security framework using Authentication Providers, Users, and Groups. This model is
extended by introducing conditions, which not only defines who can access a resource
but also when; sometimes, a combination of other conditions can be used to let the user
access the resources. Some examples of these policies are as follows:

•	 A user in a specific group can call any EJB method during business hours
•	 Only users with the admin role can edit JDBC resources
•	 Only one specific user can post messages on a JMS queue

And to illustrate one of these examples, we're going to implement a sign-up user
case for the Store application using a protected JMS queue in the next section.

Here is a comprehensive list of the main resources that can be secured in WebLogic:

•	 Administrative resources – Secures actions such as checking server logs,
unlocking users, and uploading deployment files

•	 Application resources – Secures any valid Java EE module such as web
applications and EJB modules

•	 EJB resources – Secures any specific bean or business method

Adding Security

[248]

•	 Java Database Connectivity (JDBC) resources – A set of administrative
actions that can manage a JDBC pool

•	 Java Messaging Service (JMS) Resources – Actions such as send or receive
a message

•	 Java Naming and Directory Interface (JNDI) Resources – Protect actions
such as lookups or modifications on the JNDI tree

•	 JMX Resources – Useful to secure JMX connections from clients that need to
monitor or manage WebLogic

•	 Server Resources – Secure actions that change server status
•	 URL Resources – The traditional URL pattern protection specified in

deployment descriptors
•	 Web Service Resources – Protects web services and its operations from web

service clients

The security policies can be created using the WebLogic console,
usually by clicking on the Security tab of the specified resource. As
an alternative, these policies can be created through WLST scripts or
even using eXtensible Access Control Markup Language (XACML)
documents. For more details on these advanced features, check the
WebLogic documentation.

Signing up a user and OpenLDAP
The following diagram illustrates the overall security solution we're going to set up
and use in this chapter:

WebLogic Domain

OpenLDAP

Server

C
li
e
n
t

LDAP API

JDBC

Bean

MDB

JPA

Store

Database

JMS

Chapter 8

[249]

Now let's walk through the actions involved.

1.	 A visitor clicks on the Sign-up button and submits the form to create
a new user.

2.	 A JavaBean will interact with the JPA object and create the entry on
the database.

3.	 Concurrently, this JavaBean publishes a message on the JMS queue,
possibly a protected WebLogic resource.

4.	 Later, a Message Driven Bean (MDB) listening on the queue reads the
message and submits the user information to the LDAP server, completing
the user-provisioning process.

Due to the protected resource feature of the WebLogic server, this JMS queue can't
be used by other systems, unless of course they match the security policy that will
be created to protect the JMS queue.

Now that the solution is clear, let's do the implementation starting with the
database step.

Creating a user on the database
We are going to implement a sign-up process so new users can register themselves
on the system.

1.	 Add a Sign-up button to the login form we've just created in the previous
section of this chapter. Right after the Login button in login.xhtml, add
the following:
<p:commandButton id="signupBtn"
 value="Not a user? Sign-up"
 onclick="signupDlg.show()"
 immediate="true" />

2.	 Then, after the </center> tag, create a PrimeFaces dialog box. This dialog
will be displayed when a user clicks on the Sign-up button. Copy and paste
the following code:
<p:dialog id="dialog" header="User Sign-up" widgetVar="signupDlg">
 <h:form>
 <h:panelGrid columns="2" cellpadding="5">
 <h:outputLabel for="name" value="Name" />
 <p:inputText id="name" required="true" value="#{login.
customer.name}"
 label="name" />

Adding Security

[250]

 <h:outputLabel for="email" value="E-mail" />
 <p:inputText id="email" required="true"
 value="#{loginBean.customer.email}"
 label="email" />

 <h:outputLabel for="password"
 value="Password:" />
 <h:inputSecret id="password" required="true"
 value="#{loginBean.customer.password}"
 label="password" />

 <f:facet name="footer">
 <p:commandButton id="signup" value="Sign-up"
 oncomplete="handleSignup(xhr, status, args)"
 actionListener="#{loginBean.signup}" />
 </f:facet>
 </h:panelGrid>
 </h:form>
 </p:dialog>

3.	 As you might have noticed, we're using some JavaScript calls in order to
show or hide the dialog. In order to do that, copy and paste the following
code right after the </p:dialog> tag:
<script type="text/javascript">
 function handleSignup(xhr, status, args) {
 if (args.validationFailed) {
 jQuery('#dialog').effect("shake", {
 times : 2
 }, 100);
 } else {
 signupDlg.hide();
 jQuery('#signupBtn').fadeOut();
 }
 }
 </script>

4.	 We need a service bean that will interact with the JPA and perform
transaction handling. Create a new class named CustomerBean under the
package com.packt.store.customer and extend our AbstractRepository
class in order to have standard CRUD operations.
@Stateless
public class CustomerBean extends AbstractRepository<Customer> {

 @PersistenceContext(unitName = "StoreBO")

Chapter 8

[251]

 private EntityManager em;

 @Override
 protected EntityManager getEntityManager() {
 // TODO Auto-generated method stub
 return em;
 }
 }

5.	 Open the LoginBean.java class and let's inject the EJB created earlier as a
new class attribute.
@EJB
CustomerBean customerBean;

6.	 Before creating the signup() method, we need to hash the password we're
going to store on the database and on the LDAP server later. So let's create a
generatePassword() method that will do just that using SHA-1, a common
hashing algorithm.
private String generatePassword(String text) {
 MessageDigest md;
 try {
 md = MessageDigest.getInstance("SHA-1");
 byte[] hash = new byte[40];
 md.update(text.getBytes("iso-8859-1"), 0,
 text.length());
 hash = md.digest();
 return "{SHA}" + DatatypeConverter.printBase64Binary(hash));
 } catch (NoSuchAlgorithmException e) {
 e.printStackTrace();
 } catch (UnsupportedEncodingException e) {
 e.printStackTrace();
 }

 return text;
}

The javax.xml.bind.DatatypeConverter class is part
of the JDK since Version 1.6.

Adding Security

[252]

7.	 Still at LoginBean, create a signup() method. Here we're going to save the
new user to the database using the data received from the sign-up form.
public void signup() {
 try {
 customer
 .setPassword(
 generatePassword(
 customer.getPassword()));

 customerBean
 .create(getCustomer());

 addSuccessMessage("Thanks! Your user should be ready in a few
seconds. Try to log in using the form below.");
 } catch (Exception ex) {
 ex.printStackTrace();
 addErrorMessage("An unknown error occurred and your user was
not created.");
 }
}

We're not doing any specific validations on the data received at this
step because it was done through the Bean Validations framework at
the entity level.

8.	 Save all files and deploy.
9.	 Access the URL http://localhost:7001/store/login.jsf. Your Login

form should look similar to the following screenshot. When you click on the
Sign-up button, a dialog will be displayed and you can type your e-mail and
password to create a new user on the system.

Chapter 8

[253]

The system is inserting a new entry in the customer table of the store_db schema
of MySQL. But there are still some flaws in this implementation that we're going
to fix in the next sections. For example, this new entry in the customer table is not
even being considered for authentication since we're using only the OpenLDAP
authentication provider and the information is only at the database for now. Let's
complete the solution by publishing the message to the JMS queue and getting the
data into the LDAP server asynchronously.

Publishing a customer to a JMS queue
In this section, we are going to publish a JMS message with a Customer object that
will be used to create a new customer on the system.

1.	 Create a JMS queue using the WebLogic console or WLST. This was already
explained in Chapter 7, Remote Access with JMS. Name it UserQueue and use
jms.userQueue as the JNDI name.

2.	 Open the class LoginBean and add two Java EE resources as class
properties; we're going to inject a JMS queue and a connection factory
through the CDI mechanism.
@Resource(mappedName = "jms.userQueue")
private Queue queue;

@Resource(mappedName = "weblogic.jms.XAConnectionFactory")
private ConnectionFactory connectionFactory;

3.	 Still at LoginBean, create a new method called publish() as shown in
the following code snippet:

public void publish(Customer entity) throws JMSException {
 Connection con = null;
 Session session = null;
 MessageProducer sender = null;

 try {
 con = connectionFactory.createConnection();
 session = con.createSession(true,
 Session.AUTO_ACKNOWLEDGE);
 sender = session.createProducer(queue);
 Message message =
 session.createObjectMessage(entity);

Adding Security

[254]

 sender.send(message);
 session.commit();

 } catch (JMSException e) {
 // do something with exception
 e.printStackTrace();
 throw e;
 } finally {
 // Doesn't support try-with-resources yet...
 try { sender.close(); } catch (Exception e) { }
 try { session.close(); } catch (Exception e) { }
 try { con.close(); } catch (Exception e) { }
 }
}

At this point, the method is ready to publish the ObjectMessage message containing
a Customer object to the JMS queue. But we still need to protect the queue so
that unauthorized users are unable to publish messages to it. This is a common
requirement in enterprise environments where multiple applications share the same
instance of the application server but have security concerns.

Security policies for the JMS queue
WebLogic provides security policies that are very useful for such situations,
allowing a fine control of specific functions on a resource. For example, we're
going to create a policy that allows only users from admin group to publish a
message on a JMS queue.

1.	 Open the WebLogic administration console, expand Services, then
Messaging, and click on JMS Modules.

2.	 Click on the JMSModule-Tickets module and select jms.userQueue.
3.	 In Settings for jms.userQueue page, click on the Security tab and then

Policies.
4.	 Here you can compose conditions and the method you want to protect.

The methods available are according to the resource. In this case, a JMS
queue has three methods: browse, send, and receive.

Chapter 8

[255]

5.	 For this example, select the method send on the Methods combobox. It's
important to select the method before adding the conditions, since you can
have different conditions for each method.

6.	 Click on Add Conditions and select the predicate Group. Click on Next.
7.	 Type admin as group name, click on Add, and then Finish.
8.	 At this point, you should be redirected to the settings page for the queue and

can double-check the changes. If everything looks good, click on Save. The
following screenshot shows what the policy should look like:

Adding Security

[256]

Updating the login bean
Now update the LoginBean class to use our new method and publish the customer
to the JMS queue. First, let's check if the security policy we've created really works.

1.	 Open the LoginBean file, comment the call to the create() method of
CustomerService, and add a call to the publish() method we've created.
 public void signup() {
 //service.create(getCustomer());

 publish(getCustomer());
 addSuccessMessage("Thanks! Your user should be ready in a few
seconds. Try to login in the form below.");

2.	 Save all files and deploy the application.
3.	 Open http://localhost:7001/store/login.jsf and click on Not a User?

Sign-up, fill the form, and click on Sign-up to submit.

4.	 Now take a look at the server logs from Eclipse or at the domain's log
directory. Click on the Console tab if you're using Eclipse. You should
see the following messages, confirming that the send action is denied to
anonymous users:
...
Caused by: weblogic.jms.common.JMSSecurityException: Access
denied to resource: type=<jms>, application=myModule,
destinationType=queue, resource=jms/userQueue, action=send

Chapter 8

[257]

 at weblogic.jms.dispatcher.Request.handleThrowable(Request.
java:87)
 at weblogic.jms.dispatcher.Request.getResult(Request.java:52)
 at weblogic.jms.frontend.FEProducer.
sendRetryDestination(FEProducer.java:1072)
 at weblogic.jms.frontend.FEProducer.send(FEProducer.java:1426)
 at weblogic.jms.frontend.FEProducer.invoke(FEProducer.java:1487)
 at weblogic.messaging.dispatcher.Request.wrappedFiniteStateMachi
ne(Request.java:961)
 ...

5.	 So let's configure the necessary resources to authenticate using the
application administration user before publishing the message. Start by
creating two new entries in the web.xml descriptor with the administrator
user that is already in the preloaded users of our OpenLDAP configuration.
<env-entry>
 <env-entry-name>signupUser</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>superuser@example.com</env-entry-
 value>
 </env-entry>

 <env-entry>
 <env-entry-name>signupPassword</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>welcome1</env-entry-value>
 </env-entry>

6.	 Now add these resources to the LoginBean class attributes.
@Resource(lookup = "signupUser")
private String signupUser;

@Resource(lookup = "signupPassword")
private String signupPassword;

7.	 Then add the authentication needed to publish the message. Replace the
signup() method body with the following code:
public void signup() {
 try {
 getCustomer()
 .setPassword(
 generatePassword(getCustomer().getPassword()));
 request.login(signupUser, signupPassword);

 publish(getCustomer());

Adding Security

[258]

 customerBean.create(getCustomer());
 addSuccessMessage("Thanks! Your user should be ready in a few
seconds. Try to log in using the form below.");
 } catch (Exception ex) {
 ex.printStackTrace();
 addErrorMessage("An unknown error occurred and your user was
not created.");
 } finally {
 try {
 request.logout();
 } catch (ServletException e) {
 e.printStackTrace();
 }
 }
}

A very important note
Do not use hardcoded passwords in the production code.

8.	 Access the Login page and the Sign-Up form again. Try to create a new
user, but this time no errors should occur since superuser@example.com is
a valid user that is a member of the admin group, which complies with the
security policy.

9.	 To complete the test, check the messages on jms.userQueue from the
Monitoring tab, according to the instructions in the Queuing messages
section in Chapter 7, Remote Access with JMS.

Note that it's not possible to check the content of the message since it's an
ObjectMessage message, not a text message. In order words, there is
a serialized Customer object in the message and the WebLogic console
can't read this object from the Monitoring tab. Still, you can see the
message size and count to confirm that there is a valid message in there.

From the JMS queue to the LDAP server
Even though the first part of the sign-up process is done, we need to consume the
message from the JMS queue and send it to the LDAP server. The consumption part
is pretty straightforward, as already presented in the Consuming messages with an
MDB section in Chapter 7, Remote Access with JMS.

Chapter 8

[259]

Creating the LDAP client
To build the LDAP client, we're going to rely on a few APIs provided by the JDK
used to access Java Naming and Directory Interface (JNDI) objects, since both
models define the same mechanisms of having hierarchical namespaces and objects
trees, which can also hold attributes and other related information.

For more details about this API, check JNDI as an LDAP API in the
Web resources section of this chapter.

Let's create the LDAP client using the JNDI APIs that will be used from the MDB
we will create in the next section.

1.	 Create a new class named LDAPClient.
@Named
public class LDAPClient {

2.	 Create some properties in the class that we're going to need in order to
connect to the LDAP server. This is the same information you have already
used to set up the authentication provider in the WebLogic server.
final static String ldapServerName = "localhost";
final static String rootdn =
 "cn=Manager,dc=example,dc=com";
// This is not recommended for production code
final static String rootpass = "welcome1";
final static String rootContext =
 "ou=people,dc=example,dc=com";

// create getters/setters for this property
private DirContext ldapCtx;

Note that the values of ldapServerName and rootpass could be
externalized into the web.xml file just like we already did in many
other areas of the application. This is just an example.

3.	 Create a method named connect() that consumes the properties
we've defined.
public DirContext connect() throws NamingException {
 Properties env = new Properties();

 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.ldap.LdapCtxFactory");

Adding Security

[260]

 // Consider SSL
 env.put(Context.PROVIDER_URL, "ldap://" +
 ldapServerName + "/" + rootContext);
 env.put(Context.SECURITY_AUTHENTICATION, "simple");
 env.put(Context.SECURITY_PRINCIPAL, rootdn);
 env.put(Context.SECURITY_CREDENTIALS, rootpass);

 setLdapCtx(new InitialDirContext(env));
 return getLdapCtx();
 }

4.	 Now let's add more two methods: createUser() and
prepareUserObject(). These will create the object that will be sent to the
LDAP server, extracting data from the customer entity.

public void createUser(Customer customer) throws NamingException {

 Attributes attrs = prepareUserObject(customer);
 try {
 getLdapCtx().bind("cn=" + customer.getEmail(), null, attrs);
 log.info("User created in LDAP server");
 } catch (NameAlreadyBoundException nae) {
 log.severe("User already exists on LDAP server.");
 throw nae;
 } catch (NamingException ex) {
 log.severe("Unknown error occurred with LDAP communication");
 throw ex;
 }
}

private Attributes prepareUserObject(Customer customer) {
 Attributes attrs = new BasicAttributes(true);
 Attribute basicObjectClass = new BasicAttribute("objectclass");

 basicObjectClass.add("inetOrgPerson");
 basicObjectClass.add("organizationalPerson");
 basicObjectClass.add("person");
 basicObjectClass.add("top");

 attrs.put(basicObjectClass);
 attrs.put("sn", customer.getEmail());
 attrs.put("userPassword", customer.getPassword());

 return attrs;
}

Chapter 8

[261]

This creates the LDAP client and exposes it to be injected on any other class through
CDI, since it's using the @Named annotation. Also note that the createUser() method
already connects to LDAP and creates the user.

Creating the MDB
The final part is to create a message bean (MDB) that will consume the message from
the queue jms.userQueue and, through the LDAP client, send the customer to the
LDAP server.

1.	 Create a new Message Driven Bean (MDB) named UserConsumer in the
com.packt.store.security package with the following properties:
...
@MessageDriven(name = "UserConsumer",
 activationConfig = {
 @ActivationConfigProperty(
 propertyName = "destinationType",
 propertyValue = "javax.jms.Queue")},
 mappedName = "jms.userQueue")
public class UserConsumer implements MessageListener {
 Logger log = Logger
 .getLogger(UserConsumer
 .class.getCanonicalName());
 ...

2.	 Inject the LDAPClient and MessageDrivenContext classes as follows:
 @Inject
 private LDAPClient client;

 @Resource
 private MessageDrivenContext mdc;

3.	 In the onMessage() method, we will use the LDAP client class to redirect the
user to the LDAP server:
public void onMessage(Message inMessage) {
 ObjectMessage msg = null;

 try {
 if (inMessage instanceof ObjectMessage) {
 msg = (ObjectMessage) inMessage;
 Customer customer = (Customer) msg.getObject();
 client.createUser(customer);
 } else {
 log.severe("Message of wrong type: "
 + inMessage.getClass().getName());

Adding Security

[262]

 }
 } catch (JMSException je) {
 mdc.setRollbackOnly();
 je.printStackTrace();
 } catch (NamingException e) {
 mdc.setRollbackOnly();
 e.printStackTrace();
 }
}

4.	 Save all files and deploy the application.

The usage of MessageDrivenContext is important to avoid message
loss. Through this context class, we can call setRollbackOnly() and
return the message to the queue and retry in case of errors. Through
the WebLogic console, you can set a number of rules such as number of
retries, delays, and even an error destination queue that the container
will use to send messages that exceed the number of retries. All these
settings are under the Delivery Failure tab of the queue.

Chapter 8

[263]

Testing LDAP user provisioning
Now, to test the whole solution, perform the sign-up process again to submit a
new message to the queue, but this time it will also be consumed and published
to the LDAP server. So, right after the success message, you can try to log in to the
application with you brand new user.

Remember that you are actually performing authentication against the LDAP
server and have the same information duplicated into the database. This can lead
to complex maintenance, but at the same time, you now also have a way to set up
authentication on the database if needed or in a failure scenario, where your LDAP
server might be down and you set up the database as a second option to authenticate
using what you've learned so far in this chapter.

Completing the application
The application has a login form as part of the top.xhtml file in the templates
folder, under WEB-INF. So use all you have learned in this chapter in order to make
that form functional. It's just a matter of wiring up the components with the classes,
as we have done in login.xhtml.

Web resources
The following is a list of resources:

•	 JNDI as an LDAP API
°° http://docs.oracle.com/javase/tutorial/jndi/ldap/jndi.

html

•	 WebLogic security realms
°° http://docs.oracle.com/middleware/1212/wls/SCOVR/realm_

chap.htm

•	 The Java Authentication and Authorization Service (JAAS) reference guide
°° http://docs.oracle.com/javase/7/docs/technotes/guides/

security/jaas/JAASRefGuide.html

•	 Java EE 6 Tutorial – security mechanisms
°° http://docs.oracle.com/javaee/6/tutorial/doc/bnbwy.html

•	 LDAP v3 models
°° http://docs.oracle.com/javase/jndi/tutorial/ldap/models/

v3.html

Adding Security

[264]

•	 Security fundamentals
°° http://docs.oracle.com/middleware/1212/wls/SCOVR/

concepts.htm

•	 Understanding WebLogic resources security
°° http://docs.oracle.com/middleware/1212/wls/ROLES/

understdg.htm

•	 SHA-1
°° http://en.wikipedia.org/wiki/SHA-1

•	 Authentication
°° http://en.wikipedia.org/wiki/Authentication

Summary
In this chapter you've learned some of the basics of the Java security model with
step-by-step instructions on how to configure it on the WebLogic server. We have
also created an authentication mechanism on the example application, including a
sign-up process for user self-registration. There were examples of how to protect
Java EE resources and the configuration of an LDAP client.

This chapter presented a solution for user provisioning in multiple stores leveraging
Java EE 6 native APIs and WebLogic services that can help protect and manage
security in many ways. It illustrates the usage of the WebLogic security framework
and how to protect Java EE applications and resources.

In the next chapter we're going to explore web technologies such as Servlets, Java
Server, Faces, and Web Sockets.

Servlets, Composite
Components, and

WebSockets
Our applications are fully operational by now, using several WebLogic Server
features that enable us to expose and consume web services and JMS queues, secure
access to these components, read and write business entities from and to a database,
and so on.

In this chapter, we're going to check out some features of the presentation layer:

•	 A very interesting JavaServer Faces resource that helps us improve
development speed and composite components and provides a way to create
and use reusable pieces of code by applying templates

•	 Deprecated and new features of Servlet 3.0, such as asynchronous request
processing and dynamic component creation

•	 How to open a direct communication channel between server and browser
with WebSockets, a new feature introduced by Version 12.1.2

Overview of JavaServer Faces
The main presentation layer technology of Java EE 6 is JSF Version 2.0, which brings
a couple of interesting enhancements to the previous version (Version 1.2), such as:

•	 Composite components that give us the flexibility to combine existing UI tags
with new ones

•	 Native Ajax support

Servlets, Composite Components, and WebSockets

[266]

JSF 2.0 has been around for quite some time now, so its features have matured
before getting packaged into WebLogic Server 12c, giving us a solid and reliable
implementation.

WebLogic Server has native support for JSF Version 2.1 and JSTL 1.2, and these
libraries are enabled by default when a server is started; it is available from the
classpath. Although the framework is enabled by default, we added it as a shared
library to our environment in Chapter 2, Setting Up the Environment, mostly to show
how it is done. Also, this approach avoids having to deal with server configuration
when you need to update the library, so use it whenever possible.

The JavaServer Faces implementation that is shipped with Oracle
WebLogic Server 12c is the Oracle Mojarra JavaServer Faces 2.0,
which is the reference implementation of this technology.

There's also a shared library for JSF 1.2, in case you're porting an application that
needs an older version. You just need to deploy this package that can be found inside
/wlserver/common/deployable-libraries of your WebLogic Server installation.

Using composite components
With this JavaServer Faces feature, we can create (compose) new reusable
components, which are pretty much like small templates, by aggregating other
existing JSF components, such as the ones available in PrimeFaces that gives us
a flexible and quick way to group these in a common reusable unit that can even
be shared as a component library between projects for speeding up development.
Basically, this is all done through the Facelets framework, so any XHTML page can
be converted into a composite component having input data, validators, converters,
or even listeners.

A composite component is declared by using a few extra markup tags. Here's an
example of a simple one:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:composite="http://java.sun.com/jsf/composite">
<head />

<body>
 <composite:interface>
 <composite:attribute name="label" required="true"/>

Chapter 9

[267]

 <composite:attribute name="value" required="false"/>
 </composite:interface>

 <composite:implementation>

 <h:outputText value="#{cc.attrs.label}" style="font-weight:bold"
/>: <h:inputText value="#{cc.attrs.value}" style="width: 300px;"
/>

 </composite:implementation>
</body>
</html>

The preceding declaration creates a component that expects two parameters, label
and value, and the output is a span tag with an input field preceded by its label. We
just need to declare the attributes expected by the component and their names in the
interface tag and the necessary code in the implementation tag.

The name you give the file, which must have the .xhtml suffix, will be used as the
tag name; field is going to be the name of the sample composite. Also, you have to
save it inside a specific folder named components that is inside the resources folder
of your project:

This way, it will be recognized automatically by both Eclipse (at development time)
and WebLogic Server (at runtime).

Servlets, Composite Components, and WebSockets

[268]

You can create subfolders inside the components folder; the entire
directory tree is checked in order to discover the composite tags.

To use the new tag, we have to add a namespace declaration on our JSF page that
reflects the folder structure created inside the component folder. For your example,
the namespace would be http://java.sun.com/jsf/composite/components as
the tag is at the base folder. Here's the complete declaration using the index.xhtml
file of the Store project as its basis:

<html lang="en" xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:p="http://primefaces.org/ui"
 xmlns:store="http://java.sun.com/jsf/composite/components">

You can use any prefix you want to reference your folder, so we will use store—the
name of the project—as the alias.

With this declaration in place, go ahead and use the tag in your page. Here's what it
would look like:

<store:field label="Some field" value="initial value"/>

After declaring the namespace in the page, OEPE recognizes it as a component folder
and enables code completion for tag names declared in it. Unfortunately, there's no
autocomplete for the tags' attributes yet.

That's it; just publish the project and open the page to check the result. This is a
pretty easy feature to use, giving developers a very quick and easy way to create
complex user interface components.

In another practical example, we have created a <store:login/> component that's
capable of rendering the login form on the login.xhtml page and on the top.xhtml
page. So, in cases where the same components and logic are used in different places,
you have an opportunity to leverage the composite components. This example is part
of the code bundle of this chapter.

There are other features associated with composites, such as
listeners, actions, and validators that you can explore—take a look
at http://javaserverfaces.java.net/nonav/docs/2.0/
pdldocs/facelets/composite/tld-summary.html to learn
more about them.

Chapter 9

[269]

Learning a few Servlet tricks
The Java Servlet API has been around for quite some time now—more than 10
years—and is the base for technologies such as JavaServer Pages, the one we just
discussed. WebLogic Server 12c comes with Java Servlet 3.0, defined by JSR 315,
which brings some new features, such as:

•	 Annotations support, which helps in easing the task of configuring
components

•	 Dynamic component registration
•	 Asynchronous request processing

Deprecated features
Up to Version 11g, WebLogic Server provides proprietary annotations to ease the
development of servlets—instead of declaring them in the web.xml configuration
file, you could use the @WLServlet, @WLFilter, and @WLInitParam decorations to
set the attributes of servlets and filters. These annotations are deprecated in Version
12c as we can now use the standard ones defined by Servlet 3.0 specifications: @
WebServlet, @WebFilter, and @InitParam, respectively.

If you're migrating @WLServlet to @WebServlet decorations,
remember that the runAs attribute of the former is now implemented
through a specific annotation, javax.security.RunAs. All other
attributes have direct correspondence.

The weblogic.servlet.http.AbstractAsyncServlet class that enables us
to write asynchronous servlets is also deprecated and you're supposed to use
the asyncSupported attribute of @WebServlet, which defines a servlet, or the
corresponding entry at the web.xml deployment descriptor async-supported
(which is part of the servlet tag).

Identifying the default name of a servlet
As happens with most annotations, there's always the possibility of overriding the
parameters via the deployment descriptor, specifically the web.xml file, when dealing
with a web application. This is also true for the @WebServlet decoration, but there's a
detail about it that can pass unnoticed and give us a headache down the road.

Servlets, Composite Components, and WebSockets

[270]

What happens is that the name parameter of the annotation @WebServlet is optional.
You can declare your servlet as shown in the following code (without a name entry):

package com.packt.servlets;

import javax.servlet.annotation.WebInitParam;
import javax.servlet.annotation.WebServlet;

@WebServlet(
 urlPatterns = { "/StoreFront" },
 initParams = { @WebInitParam(name = "maxValue", value = "1000") }
public StoreFront {
 …
}

The container will fill the name attribute for you and this is done by using the fully
qualified class name. So, the sample servlet above will be named com.packt.
servlets.StoreFront by WebLogic Server.

As we usually name the servlet with just the class name, StoreFront, when we
create the deployment descriptors entry to map the servlet, most likely we will do
something similar to this:

<servlet>
 <servlet-name>StoreFront</servlet-name>
 <servlet-class>com.packt.servlets.StoreFront</servlet-class>
 <init-param>
 <param-name>autoApproveThreshold</param-name>
 <param-value>3000</param-value>
 </init-param>
</servlet>

If this is the case, we will end up with two servlets available—StoreFront and com.
packt.servlets.StoreFront—each with its own set of initial parameters. This can
lead to unpredictable behavior.

As a best practice, always declare a name attribute when adding
decorations such as @WebServlet or @WebService, as each one
uses a different algorithm to decide how to name a component.

Asynchronous request processing
As said earlier, there's a new Servlet 3.0 feature that enables us to asynchronously
process a request. The following diagram shows a basic scheme of how it works:

Chapter 9

[271]

request Asynchronous
Servlet

start

response

WebLogic Server

Runnable
ClassC

lie
nt

The client makes a request to the asynchronous servlet and it doesn't know a
thing about the servlet's characteristic—from its point of view, it's just a regular
synchronous request/response invocation. When the servlet receives the request, it
must create an asynchronous context, which is the component that deals with the
associated structure, and inform the context about which piece of software will be
responsible for actually processing the request. This component does its work and
produces the response that the client is waiting for.

The servlet acts as a dispatcher, setting up the necessary environment and
forwarding the request to the actual processor. Here's a very simple implementation
of such a servlet:

@WebServlet(name = "AsyncServlet",
 urlPatterns = { "/async" },
 asyncSupported = true)

public class AsyncServlet extends HttpServlet {
 @Override
 protected void service(HttpServletRequest req,
 HttpServletResponse resp)
 throws ServletException, IOException
 {
 AsyncContext ctx = req.startAsync();
 ctx.start(new SomeBasicTask(ctx));
 }
}

Notice that the WebServlet annotation has an asyncSupported
attribute set to true to tell the container about our intention—if we don't
do so, at runtime, an IllegalStateException exception is thrown.

Servlets, Composite Components, and WebSockets

[272]

In the service method, we acquired the asynchronous context via the
startAsync request method and then passed a Runnable instance to the
start method, passing the context as a constructor parameter. Here's the
general structure of this executor class:

public class SomeBasicTask implements Runnable {
 private AsyncContext ctx;

 public SomeTask(AsyncContext ctx) {
 this.ctx = ctx;
 }

 @Override
 public void run() {
 // Do some long running work

 // Set up the result
 ctx.getResponse().setContentType("text/html");

 try {
 ctx.getResponse().getWriter().write("done");
 } catch (IOException ioe) { }

 // Wrap up processing
 ctx.complete();
 }
}

As you may have noticed, the result output is generated here, accessing the response
object via the asynchronous context. You could put something into the response
buffer from the servlet; but if the goal is to release its thread as soon as possible, this
doesn't make sense, so try to keep the output generation in the executor class.

The single most relevant line in this class is the ctx.complete() call. This method
tells the container that the processing is done and it can release the connection to the
client. If you don't do so, the connection will be kept open indefinitely, which brings
us two problems:

•	 The client will wait for a signal that tells that the execution will require more
time for completion, basically until a timeout, bringing sluggishness into
your application.

•	 The TCP socket will be kept open at WebLogic Server. Eventually, they will
be recycled, but this is not an optimal scenario.

Chapter 9

[273]

Make sure that your execution flow always sends a call to
asyncContext.complete() to avoid server contention
and client locks.

We can also attach a listener to the asynchronous context we're dealing with and get
notifications about the context's state. The list of events published by the context that
can be captured by a javax.servlet.AsyncListener instance are as follows:

•	 onStartAsync: This event is raised when the container starts the
asynchronous context.

•	 onTimeout: When the configured timeout value is reached, this event is
raised. From this event you can release the client's connection or notify it
about the current status of the execution.

•	 onError: When the thread throws an exception, the listener is notified
through this event.

•	 onComplete: This event is raised when the execution is completed without
any errors.

This listener is especially useful when we configure the context's timeout to avoid
keeping the client locked for more than the usual time the request takes to get
processed. When this is the case, the onTimeout method is called, and we can inform
the client about it.

Here's the servlet updated to set a timeout limit and to deal with the corresponding
event:

public class AsyncServlet extends HttpServlet
 implements javax.servlet.AsyncListener {
 @Override
 protected void service(HttpServletRequest req,
 HttpServletResponse resp)
 throws ServletException, IOException
 {
 AsyncContext ctx = req.startAsync();
 ctx.setTimeout(2000);
 ctx.addListener(this);
 ctx.start(new SomeBasicTask(ctx));
 }
 @Override
 public void onTimeout(AsyncEvent ae) throws IOException {
 // Format some response …

Servlets, Composite Components, and WebSockets

[274]

 // … and release the client's connection
 ae.getAsyncContext().complete();
 }

 // Other listener methods suppressed
}

Notice that even when we send a response to the client and
complete the context, the spawned thread will continue to run
until its processing is complete.

A point worth mentioning is that WebLogic Server's default timeout value is
120 seconds, which is a rather large time to keep a user/client waiting for a
response. This value can be overridden individually by the setTimeout method
of AsyncContext or at the application level at the weblogic.xml deployment
descriptor:

<wls:async-descriptor>
 <wls:timeout-secs>5</wls:timeout-secs>
</wls:async-descriptor>

Another parameter we can configure via weblogic.xml is the interval at which the
asynchronous mechanism will check if a timeout situation has been reached for
every context created. The element that defines this value is named timeout-check-
interval-secs.

The default check interval value is 30 seconds, so if you set
up timeouts shorter than this, chances are the engine will not
generate the onTimeout events.

If you set up a 10-seconds timeout and leave the default check interval, your
code may end up waiting for about 30 seconds to get the onTimeout event or be
completed before that. Here's a graphical representation of this scenario:

Check interval: 30s

10s elapsed

asyncContext.set Timeout(10s);
asyncContext.strat(process);

request.startAsync();

asyncContext.complete();

Check timeout

Chapter 9

[275]

Keep in mind that the timeout is attached to the start of the
asynchronous context, not its start() or dispatch() methods.
You can have an async context with no associated operation that
will receive a timeout event in the same way.

If you need to control the timeout of short processes, consider adjusting the timeout
check interval value to a smaller value at weblogic.xml:

<wls:async-descriptor>
 <wls:timeout-secs>5</wls:timeout-secs>
 <wls:timeout-check-interval-secs>1</wls:timeout-check-interval-
secs>
</wls:async-descriptor>

Creating dynamic components
Another nice new feature of Java EE 6, or more specifically Servlet 3.0, is the
possibility to dynamically create and bind servlets, filters, and listeners. This is a
somewhat advanced procedure, but it is good to know about as it can be very handy
if you ever need to create a more flexible structure to load your servlets. Let's say
you need to create a structure that reads servlet binding information from a data
source; when a mapping has to be changed, you don't have to change the deployed
application—by just restarting the deployment, the new mapping will be processed
and available.

Here's a sample servlet created at the Store project, referencing the project's entity
manager and a singleton bean of the same project to test context injection:

public class DynamicServlet extends HttpServlet {
 @Inject
 ControlGeneratorBean cgb;

 @PersistenceContext(unitName = "StoreBO")
 EntityManager em;

 @Override
 protected void service(HttpServletRequest req,
 HttpServletResponse resp)
 throws ServletException, IOException {

 List<Movie> movies = em.createNamedQuery(Movie.findAll).
 getResultList();

 for (Movie movie : movies) {

Servlets, Composite Components, and WebSockets

[276]

 System.out.println(movie.getName());
 }

 System.out.println("Next control # is " +
 cgb.getNextId(2, 0, 0));
 }
}

Notice that the servlet doesn't have the WebServlet annotation; this is because
if you declare it with the same name as the dynamic procedure, the annotation
engine will process the class upon deployment and the dynamic registration will
not be considered.

We can't register a servlet from another servlet because, at this point, the servlet
context—the engine that instantiates and controls this kind of component—is
already closed to changes. So, we do it using a servlet context listener that has its
contextInitialized method called when the application is deployed, as shown
in the following code:

@WebListener
public class DynamicSetupListener implements ServletContextListener {
@Override
public void contextInitialized(ServletContextEvent event) {
 ServletRegistration.Dynamic servlet =
event.getServletContext().addServlet("DynamicServlet",
 "com.packt.store.DynamicServlet");

 servlet.addMapping("/dynamic");
}
}

As the listener is decorated with @WebListener, we don't need to change any
deployment descriptors; the package is scanned upon deployment and the listener is
found and processed accordingly.

After publishing the project, go to the appropriate address—for the sample code, this
would be http://localhost:7001/store/dynamic—and the list of movies will be
printed at the console window.

Even though the official documentation states that no dependency
injection is done for dynamic components, the tests done using the
preceding sample code showed that the annotations are processed.
The statement can be found in the Limitations section on the WebLogic
Annotation for Web Components page at http://docs.oracle.com/
middleware/1212/wls/WBAPP/annotateservlet.htm.

Chapter 9

[277]

Using WebSockets
The WebSocket protocol, defined by IETF's RFC 6455, is a TCP-based protocol that
enables two-way communication between a web page running on a browser and a
server; even though it uses a single socket connection, both ends of the channel can
send and receive information simultaneously, thanks to the full-duplex nature of the
protocol. This connection is controlled by your application's code, unlike the HTTP
protocol, where the browser itself manages the connections. This control is possible
by the use of W3C's WebSocket API, which declares an interface to use the protocol.

With this feature we can directly communicate with a server in real time, bringing a
whole new level of possibilities and sophistication to what can be accomplished on
web applications.

To check which browser version has WebSocket support, access
http://caniuse.com/websockets and look for the Current
line on the table.

Let's see how to implement and test a really simple WebSocket that receives a
message from a client and echoes it back.

Creating the server component
There are two ways to create a WebSocket: you can either extend the
WebSocketReader class or implement the WebSocketListener interface. Either
one will get you to the same point, but as WebSocketReader already implements
this interface, you just have to override what you will actually use instead of
implementing all 13 methods of the interface. So, extending WebSocketReader
should be the preferred way to go.

Here's the complete code of a class that extends WebSocketReader; we just need to
override the onMessage method to echo the received message back to the client:

@WebSocket(pathPatterns = {"/wsock"},
 timeout = 30,
 maxConnections = 1000,
 maxMessageSize = 4096)
public class WebSocketListener extends WebSocketAdapter {
 @Override
 public void onMessage(WebSocketConnection connection,
 String payload) {
 try {
 connection.send(payload);
 } catch (IllegalStateException e) {

Servlets, Composite Components, and WebSockets

[278]

 } catch (IOException e) {
 try {
 connection.close(ClosingMessage.SC_GOING_AWAY);
 } catch (IOException ioe) { }
 }
 }
}

A few pointers about this code:

•	 The WebSocket annotation declares the basic functionality of the WebSocket:
°° The pathPatterns attribute declares the relative URL that will be

mapped by the component and accepts several entries

You can set the path as a wildcard, in which case anything that matches
the prefix you gave will be directed to that WebSocket, or you can
create a terminal path that must match exactly, as we did here.

°° The timeout indicates for how many seconds the server should hold
an idle connection before closing and releasing it

•	 You can limit the size of the messages received by the component by setting
the maxMessageSize attribute. The value is expressed in bytes and only
applies to incoming messages from the client; this is useful to keep the
consumption of server resources in check, as the server automatically closes
the offending connection when a message larger than the maximum value
is received.

When defining the value for this parameter, remember that the
WebSocket protocol has a 6-byte header when messages are sent from
client to server; this can be neglected if your maximum size is set to 4
KB, but if really short messages are expected, the header's size must
be taken into account.

•	 If an error occurs when trying to send a message to the client, the connection
is closed passing ClosingMessage.SC_GOING_AWAY that indicates to the
client that the server is deliberately closing the connection. There are other
informative values defined by this interface that can be used by the client to
take specific actions when being disconnected from the server.

Chapter 9

[279]

Testing the component
To test the component we just created, we're going to use a web page that is already
available that connects to a server and sends messages to it:

1.	 Open the URL http://www.websocket.org/echo.html in your browser.
2.	 The Echo Test page will be loaded and displayed. After a few seconds, a

green box should be rendered just after the Try it out phrase, stating that
your browser supports WebSocket:

3.	 Enter your WebSocket's implementation address, ws://localhost:7001/
store/wsock, in Location and click on Connect.

4.	 A connection is opened and the text CONNECTED should be rendered
inside the Log box.

If you implemented a WebSocket using the WebSocketListener
interface, make sure that your accept method is returning true.

5.	 You can now start sending information to the server by entering it in the
Message field and clicking on the Send button.

6.	 As the server is echoing the message received, this is what you should see in
the Log field:

Servlets, Composite Components, and WebSockets

[280]

7.	 If you stop sending messages for 30 seconds, a timeout event will occur, the
server will close the connection, and the browser will be notified; just wait
and a DISCONNECTED message will be printed inside the Log box.

Using an encrypted connection
The WebSocket specification creates two new schemes to address a resource: ws:
and wss:. We used the first one in the previous section where an unsecured
connection was opened; the second one uses an encrypted channel to send and
receive messages.

To use the secured connection, you must first enable HTTPS in WebLogic. Open the
server's Configuration screen, find the SSL Listen Port Enabled field under the subtab
General, enable it, change the SSL Listen Port to 7002, and save the configuration:

You don't need to restart the server. Just go back to the browser, adjust the port
number at the Location field, check the box Use secure WebSocket (TLS), click
on Connect, and start sending messages to the server:

If you want to see what a JavaScript client code would look like,
just scroll down on the page and check the full code of the test
page in the Creating your own test section.

Chapter 9

[281]

It's really easy to use WebSockets and this opens up lots of possibilities when
creating Rich Internet Applications (RIA). But, keep in mind that you have a limited
number of connections available at any given time, so if the projected usage of your
application is high, you have to carefully design how it will use this feature.

Web resources
The following are a few web resources that you can refer to:

•	 Asynchronous context in Servlets
°° http://docs.oracle.com/javaee/6/api/javax/servlet/

AsyncContext.html

•	 The weblogic.xml deployment descriptor elements
°° http://docs.oracle.com/middleware/1212/wls/WBAPP/

weblogic_xml.htm

•	 JavaServer Faces technology
°° http://www.oracle.com/technetwork/java/javaee/

javaserverfaces-139869.html

•	 Application events and event listener classes in Servlets
°° http://docs.oracle.com/middleware/1212/wls/WBAPP/app_

events.htm

•	 Using WebSockets
°° http://docs.oracle.com/middleware/1212/wls/WLPRG/

websockets_sse.htm

•	 The WebSocket protocol

°° http://tools.ietf.org/html/rfc6455

Summary
In this chapter, we checked out some of the resources provided by the presentation
layer of WebLogic Server, exploring how to create composite components that can
be reused by the application, how to dynamically instantiate servlets, some details
about the way the servlet engine works, how to process requests asynchronously,
and how to create and test a WebSocket component.

Servlets, Composite Components, and WebSockets

[282]

In the next chapter, we will see how to configure an application so it can scale up and
support heavy loads. Some of the features we will explore are:

•	 Configuration of a WebLogic cluster to scale up applications
•	 Creating a singleton service
•	 Session Replication with Oracle Coherence (Coherence*Web)
•	 Using Oracle Coherence along with JPA to speed up access to entities

Scaling Up the Application
Most applications must eventually deal with increased workload; some will scale
up by adding more memory or CPU to a server and others will scale out by adding
more nodes and servers to handle the application load. Here, we're going to cover
some of the basic principles to scale your application running on WebLogic Server
and understand how to leverage services offered by the container among other tools
and products of the WebLogic Suite, such as Coherence.

Scalability is the main theme of this chapter, but inherent in that is high availability;
this is a technique to ensure that your application will keep running with an
acceptable response time, even when multiple aspects may try to compromise its
scalability; for instance, having a huge number of users accessing your application
at a given time or simply when one of your servers fail and you need to redirect all
requests to the only working node.

To start, we are going to check out the tools and services WebLogic provides to help
you manage more than one server and the kinds of changes that can be applied to an
application to scale it up.

Introducing the Node Manager
One of the first changes we need to do in order to scale an application is to make the
environment where it runs more flexible to accommodate the necessary changes,
which usually involves creating WebLogic components such as clusters, servers, and
machines. In order to interact with multiple (remote) machines, it's recommended
that you set up the WebLogic Node Manager process. The Node Manager is a small
Java process that runs standalone and can perform basic operations on WebLogic
Server instances like start, stop, and restart.

Scaling Up the Application

[284]

Until Version 12.1.1, you could have only one Node Manager running on a specific
machine and all requests to start or stop Managed Server applications from different
domains were sent to it. The concept is really nice, having just one component
running to deal with all resources available on that machine. But things would
usually get tangled and this topology proved hard to maintain; for instance, different
domains are managed by different groups, each having their own patching and
downtime schedule.

So, starting with Version 12.1.2, Node Managers are attached to a domain. The most
notable effect of this change is that now the script to start the Node Manager is located
inside the domain $DOMAIN_HOME/bin/startNodeManager.sh on our environment.

As the Node Manager is now part of the domain, all we have to do to enable it is fire
up its start script using the following steps:

1.	 Open a command shell and go to the folder $DOMAIN_HOME/bin.
2.	 Run the startNodeManager.sh script (or startNodeManager.cmd in

Windows) and it's done.

The script will output several items of configuration information and the most
relevant is the last one, stating that our domain is mapped by it:

Domain name mappings:

tickets -> /opt/packt/domains/tickets

Defining machines
Machines represent physical computers or servers that can have multiple WebLogic
instances. On every machine you want to use the Node Manager facilities, you need
to start a Node Manager instance.

Machines are also important to define replication groups for HTTP sessions when
using cluster and backup instances for JMS servers, singleton services, and other
critical WebLogic services.

Here's a representation of a cluster that spans over two machines:

Chapter 10

[285]

Machine A

Node
Manager Admin

Server

Server 1

Server 2

Machine B

Cluster

Node
Manager Server 3

Server 4

Server 5

For the examples we're going to run in this book, only one physical machine is
enough. In fact, it can be your own computer or laptop since the Node Manager
process ensures negligible memory and CPU consumption and with 8 GB of RAM,
you can easily run at least two WebLogic Managed Servers simultaneously. Let's set
up our machine:

1.	 Open the WebLogic console at http://localhost:7001/console.
2.	 In the left menu, expand the Environment section and then click on

Machines.
3.	 Click on the New button and fill the information using these values:

°° Name: localMachine
°° Machine OS: Unix (choose according to your Operating System)

4.	 Click on Next and on the Node Manager properties screen, enter these
properties:

°° Type: Plain
°° Listen Address: localhost
°° Listen Port: 5556

5.	 Click on Finish.

Using Cluster and Managed Servers
For those who don't have English as their mother language, it can be surprising to
discover that the word 'cluster' is actually a noun and a verb; it means a group of
similar objects growing closely together (noun) and, also, congregating or being part
of a group (verb). Of course, nowadays, the term is popular as computer clusters
have become widespread.

Scaling Up the Application

[286]

Based on that, WebLogic Server cluster or clusters basically means that a group
of servers will work together, running at the same time, toward some predefined
architectural goals. Clusters can be created to cater to different needs of users, such
as scalability, reliability, performance, load balancing, failover, and management.
Note that WebLogic clusters can be defined by multiple machines and servers
(Managed Servers) but they may also be seen as one single WebLogic Server for
applications and clients.

Clustering is a key concept in application scalability and needs to be used in order to
scale out (horizontally) by adding more machines to a system or scale up (vertically)
by adding more servers or resources to the system. Today, with cloud computing,
preparing your application to be scalable in both ways is mandatory and can be a
successful factor in determining the number of users or requests your application
can handle.

Thanks to the Java EE application server model, clustering is native to most of the
Java EE and WebLogic components, for example:

•	 Servlets (JSF and JSP pages)
•	 Enterprise JavaBeans (Stateless and Stateful beans)
•	 Java Message Service (JMS) objects (queues, connection factories)
•	 Java Management Extensions (JMX) and Remote Method Invocation

(RMI) objects
•	 Java Database Connectivity (JDBC) data sources and connections

Application developers must be aware that clustering will modify the
behavior of the application at runtime and should design the application
taking this into consideration. For example, accessing a file when you
have only one server and one machine is something easy and simple to
do with a Java EE application, but doing this on a clustered environment
in a consistent manner may incur different techniques considering that
you may need to access the same file or different files from different
physical machines.
Also, it's a common mistake to think that by simply clustering an
application, you may end up with higher performance. There are cases
when applications can run slower on clustered environments due to the
heavy exchange of data between nodes; this is an indication that a session
is being used without proper considerations such as the size of the objects
in the session, and its replication is causing a performance bottleneck.

Chapter 10

[287]

Clustering an environment or an application requires a detailed analysis of multiple
technologies, such as network topologies, sizing, security, application architecture,
and so on. Take these into consideration for any real or production system. In this
book, we're creating a development environment according to the demo application's
needs, for example.

Creating a static cluster
Now, assuming that the machine and Node Manager configurations are in place,
follow these steps to create the cluster:

1.	 Access the WebLogic console at http://localhost:7001/console.
2.	 In the left menu, expand the Environment section and then click on Clusters.
3.	 In the Clusters table, click on New, and then select Cluster from the pop-up

menu.
4.	 On the Create a New Cluster screen, enter ticketsCluster in the Name

field and leave all other values unchanged.

5.	 Click on OK to create the cluster.

Scaling Up the Application

[288]

6.	 Click the cluster name and navigate to the Servers tab.
7.	 Under the Servers tab click on the Add button.
8.	 In the Add a Server to Cluster window, click on Create a new server and

add it to this cluster and then click on Next.
9.	 Enter the following values and then click on Finish:

°° Server name: ticketMS_A
°° Server Listen Address: localhost
°° Server Listen Port: 8001

10.	 Click on server name under the Servers tab and set the Machine
drop-down to localMachine; notice that the Cluster drop-down is
already set to ticketsCluster. Click on Save to conclude this step.

11.	 Using the breadcrumbs at the top of WebLogic console, get back to
the Servers tab and repeat the process from steps 6 through 8 using
the following values:

°° Server name: ticketMS_B
°° Server Listen Address: localhost
°° Server Listen Port: 9001

Chapter 10

[289]

After the last step, you should have the configuration shown in the following
screenshot:

This concludes the cluster configuration. Now, let's start the servers.

Make sure you have the Node Manager up and running. Without
Node Manager, none of the following commands will work.

1.	 On the Cluster Settings page, click on the Control tab.
2.	 In the Managed Server Instances in this Cluster (Filtered - More Columns

Exist) table, select both the servers and notice that buttons will become
available. Click on Start.

3.	 The State column of the table will change from SHUTDOWN to
STARTING. Wait a few seconds and refresh the page; the state should now
be RUNNING.

4.	 Under the Domain Structure menu on the left, expand Environment and
click on Servers. You should see all two servers with the state RUNNING.

Congratulations, you have successfully set up and started a WebLogic cluster. To
accomplish the steps performed here, WebLogic's administration instance sends
instructions to the Node Manager asking it to start the Managed Server instances
and, among other details, to exchange some metadata stating that they belong to a
specific cluster, ticketsCluster.

Scaling Up the Application

[290]

Creating a dynamic cluster
Another way to accomplish the same outcome as in the previous section is by
creating a dynamic cluster and two dynamic servers. This is a concept introduced
in Version 12.1.2 of the product and is closely aligned to the Cloud Application
Foundation (CAF) initiative. In a nutshell, it gives us a more flexible and quick way
to create a WebLogic cluster by just defining the number of servers available. The
servers can follow a server template and all other settings, such as listen addresses,
ports, and machines are associated properly. This cluster can then shrink or increase
the number of servers by just adjusting the maximum number of servers.

To illustrate how this works, let's see how to create and configure the components
necessary to set up a dynamic cluster.

The steps described here are not necessary to configure the
remaining components of this chapter; they're just to show how
easy it is to create a dynamic cluster and servers.
Of course, if you didn't create the cluster and Managed Servers
as outlined in the previous section, you can use the following
sequence that is way simpler—just remember to adjust the port
values accordingly.

1.	 At the administration console's home page, click on Configure a Dynamic
Cluster, located in the Helpful Tools list.

2.	 In the Clusters table, click on New, and then select Dynamic Cluster from
the pop-up menu.

3.	 Enter ticketsCluster in the Name field and then click on Next.

Chapter 10

[291]

4.	 The parameters in this page are specific to this kind of cluster; you must enter
the number of Managed Servers you want available and the name prefix you
want to use. Set the number to 2, enter tickets- as the prefix, and then click
on Next.

5.	 Now we must tell WebLogic which machines will be part of this dynamic
cluster; as we just have one machine available, leave the first option selected
and then click on Next.

6.	 We're now asked to inform the initial list of port numbers that must be used
by the dynamic servers of this cluster; again, leave the default values and
then click on Next.

7.	 A summary screen is shown, with all the information we entered as shown in
the following screenshot:

8.	 Click on Finish to create the dynamic cluster.

Scaling Up the Application

[292]

We covered three concepts associated with this feature by completing the dynamic
cluster creation wizard:

•	 Server templates: They hold the common information necessary to configure
a dynamic server and are attached to only one dynamic cluster definition.

•	 Dynamic servers: These are Managed Servers created based on a server
template and participating on a dynamic cluster. Some of its states aren't
directly accessible to the administrator; for instance, we cannot create or
delete a dynamic server by selecting it from the Servers table and clicking on
Delete as we would with a regular server.

•	 Dynamic cluster: Putting it simply, a dynamic cluster is one that aggregates
dynamic servers based on the same server template. So, it has the features of
a regular cluster and also a little more information about how to configure
and distribute dynamic servers over the machines bound to it.

Here are a few comments related to these concepts and the dynamic cluster wizard
we just executed:

•	 WebLogic dynamic servers aren't started and stopped automatically by the
server itself—the elasticity of the solution goes as far as helping us to create
and remove nodes easily, but someone must decide how many instances
must be started or stopped to cope with request peaks.

•	 When the cluster is created, the instances aren't started right away, so you
could have entered 100 in the Number of Dynamic Servers field; they will
be created, but nothing else will be done, so you can go back later and change
this value to a more realistic one.

•	 The instances are distributed among the machines you selected previously,
automatically, at the end of the cluster creation process and every time you
change the number of dynamic servers of the cluster. If you need to create or
retire a machine, go to the Cluster Configuration tab, then click on the subtab
Servers, and change the Machine Name Match Expression field accordingly.

•	 We created both dynamic servers and a server template at the end of the
dynamic cluster wizard. You can create templates by accessing the Server
Templates entry under Cluster from the Domain Structure tree and, after that,
create a dynamic cluster and instruct the wizard to use an existing template.

•	 Finally, if you want to shrink or expand the cluster by removing or adding
dynamic servers, you must change the values in the Number of Dynamic
Servers field at the cluster's Servers configuration page.

Chapter 10

[293]

Here's the list of servers, showing static and dynamic ones together:

If you start one of the dynamic servers and click on its name after it starts running,
you will see that there are only two tabs available, Monitoring and Control, both
closely related to the current state of the server; neither of them has configuration
parameters, only informational values.

All configuration parameters that we can tweak on a standard server are attached to
the server template used to create the dynamic cluster; the server doesn't have any
proprietary values (other than name, port number, and such, which are controlled by
the cluster, not the server itself). So, if you want to change anything, such as logging,
debugging, protocols, keystores, and so on, you are supposed to do that on the
server template. And this is great because all dynamic servers will be using the same
values, making administration a breeze.

Configuring a software load balancer
Although WebLogic Server is an application server used mostly for dynamic content
and Java EE applications, it is also a fully-featured web server that's capable of
serving static files as HTML and images. A WebLogic instance can even be used as a
load balancer to distribute requests between clustered servers and do the necessary
failover routing when a server becomes unavailable. In order to leverage such built-
in functionalities, you must set up weblogic.servlet.proxy.HttpClusterServlet
to act as your default web application for the domain. Here are the steps:

1.	 Create a new dynamic web application in Eclipse named
HttpClusterServlet.

2.	 Open or create a web.xml deployment descriptor under the WEB-INF folder.

Scaling Up the Application

[294]

3.	 Copy and paste the following content inside web.xml:
...
<servlet>
 <servlet-name>HttpClusterServlet</servlet-name>
 <servlet-class>
 weblogic.servlet.proxy.HttpClusterServlet
 </servlet-class>
 <init-param>
 <param-name>WebLogicCluster</param-name>
 <param-value>localhost:8001|localhost:9001</param-
 value>
 </init-param>
 <init-param>
 <param-name>verbose</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>DebugConfigInfo</param-name>
 <param-value>ON</param-value>
 </init-param>
</servlet>
<servlet-mapping>
 <servlet-name>HttpClusterServlet</servlet-name>
 <url-pattern>/</url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>HttpClusterServlet</servlet-name>
 <url-pattern>*.jsf</url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>HttpClusterServlet</servlet-name>
 <url-pattern>*.html</url-pattern>
</servlet-mapping>

4.	 Now, edit weblogic.xml under WEB-INF and change the context-root
value to /:
<?xml version="1.0" encoding="UTF-8"?>
<wls:weblogic-web-app... >
 <wls:weblogic-version>12.1.2</wls:weblogic-version>
 <wls:context-root>/</wls:context-root>
</wls:weblogic-web-app>

5.	 Save both files.
6.	 Export the application as a war file named HttpClusterServlet.war.

Chapter 10

[295]

Let's focus on explaining the set of parameters required by the HttpClusterServlet
that we added in step 3 previously:

•	 WebLogicCluster: It is the most important parameter because it's where
the servers that will be part of the cluster are defined. For example,
localhost:8001|localhost:9001.

•	 DebugConfigInfo: If it's set to ON you will be able to query information about
the cluster by adding a special URL parameter, ?__WebLogicBridgeConfig.
The use of this parameter is discouraged for production systems.

•	 servlet-mapping: Notice that we're explicitly mapping the servlet to match
specific URL patterns. Only requests made with these extensions will be load
balanced through HttpClusterServlet.

Creating a new Managed Server for load
balancing
In this section, we propose the creation of a new Managed Server that will be
responsible exclusively for load balancing and will host the HttpServerCluster
application. Also note that this server will not be part of the cluster and doesn't
need to have the same memory sizing as other managed nodes since it will not
handle application objects and it only hosts one servlet.

Here's a diagram of the proposed topology:

tickets domain

AdminServer

loadBalancer

ticketsCluster

ticketMS_A

ticketMS_B

To create this new WebLogic Server instance, follow these steps:

1.	 Open the WebLogic console at http://localhost:7001.
2.	 Under the domain structure (left menu) expand Environment and

click on Servers.

Scaling Up the Application

[296]

3.	 Click on New and then enter the following values:
°° Server Name: loadBalancer
°° Server Listen Port: 8888

4.	 Make sure the server is marked as a standalone server and then
click on Finish.

5.	 Back on the Servers table, check the loadBalancer checkbox under the
Servers heading.

6.	 Set the Machine drop-down to localMachine.
7.	 Save the changes and start the server using the button under the Control tab.

The preceding steps are optional, so if you don't have available
memory to start another server, you can use the AdminServer as
a load-balancer server by deploying the HttpServletCluster
application on it. Just remember to use the AdminServer port in
the steps of the following sections.

Enabling the load balancer
Next, you must enable the WebLogic Plug-In Enabled property under the
Advanced tab in the cluster configuration section; this action will allow WebLogic
to use its own proprietary header to balance requests received through a WebLogic
Proxy Plug-In.

If you're going to configure an external load balancer—Apache
HTTP Server, Oracle HTTP Server, and Oracle Traffic Director
among others—remember that you must enable the WebLogic
Plug-in just like we did here.

Chapter 10

[297]

Now deploy the HttpServletCluster.war application and use the loadBalancer
server as target. To check that the configuration is right, access the URL http://
localhost:8888/?__WebLogicBridgeConfig and check that an output like the one
shown in the following screenshot is generated:

In the next section, we're going to update the application in order to enable the
necessary settings for deployment on the cluster.

Retargeting applications and resources
Although we have the cluster and servers up and running, our applications and
resources are still deployed only on the Admin server and that's not acceptable
anymore. In WebLogic, these resources can be targeted to a specific server, a whole
cluster, or even part of the cluster.

Scaling Up the Application

[298]

Here's what the configuration should look like:

<managed server>
ticketMS_B

Data sources

JMS resources

Applications

<managed server>
ticketMS_A

Data sources

JMS resources

Applications

AdminServer

Data sources

JMS resources

Applications

There are a couple of options to achieve these changes and we're going to explore
some of the available ones.

Updating web.xml of clustered web applications
One of the key features of Java EE web applications running on a cluster is HTTP
Session replication. This functionality can be briefly described as the mechanism of
sharing applications' state (HTTP session) between multiple servers and machines,
having the application server responsible for decisions regarding where (in which
server) the HTTP session will be stored; this usually means defining two servers
that will be responsible for a session—the primary one, which will get the incoming
requests of that specific session, and a backup server, which will receive the requests
in case of the primary server failing.

In order to enable HTTP session replication, WebLogic does not follow the Java
EE deployment descriptor web.xml. It instead uses its own runtime deployment
descriptor, weblogic.xml, to enable HTTP session replication. Let's enable the
standard mechanism of session replication on our web applications, performing the
following steps:

1.	 On Eclipse, in the Store web project, open the weblogic.xml file under
WEB-INF folder.

2.	 Go to the Design tab of weblogic.xml.
3.	 Expand the Session section on the left and then click on Persistent Store.

Chapter 10

[299]

4.	 From Store type select Replicated if clustered.
5.	 On the left, click on Session Disposal and change the Session Timeout value

according to your specific needs. We are going to set it to 300 seconds.

6.	 Save the file and check the Source tab. The steps performed here will add the
following lines to the weblogic.xml content:
<wls:session-descriptor>
 <wls:timeout-secs>300</wls:timeout-secs>
 <wls:persistent-store-type>
 replicated_if_clustered
 </wls:persistent-store-type>
</wls:session-descriptor>

7.	 Repeat the complete process for the Theater web application.

Also, edit web.xml and add a context-param tag in order to enable the JSF
application state to be stored on the client. This will prevent some issues with Ajax
processing and will decrease the server memory usage with a slight increase in the
network bandwidth usage. Add the following parameter:

<context-param>
 <param-name>javax.faces.STATE_SAVING_METHOD</param-name>
 <param-value>client</param-value>
</context-param>

Scaling Up the Application

[300]

Do not attempt to deploy the application now since we still have to update the
target of other resources such as JDBC data sources and JMS queues, which will be
performed in the next sections.

As stated in the documentation, WebLogic Server does not use the
<distributable> element of web.xml.

Note that WebLogic has five different session persistence
mechanisms: Memory (non-replicated), File system, JDBC-based,
Cookie-based, and In-memory (across a cluster). For clustered
environments, In-memory and JDBC-based persistence are the
best options since they offer effective replication mechanisms.

Retargeting auxiliary components
Let's retarget the data sources to the cluster so that we can later do this with the
applications that use them:

1.	 Access the WebLogic console at http://localhost:7001/console.
2.	 On the left menu, expand Services and then click on Data Sources.
3.	 Select Store DS and then click on the Targets tab.
4.	 Un-check the AdminServer checkbox and then check ticketsCluster.
5.	 Click on Save.

Repeat the process for the other data source, Theater One DS.

After this procedure, WebLogic Server will destroy the data source created on
AdminServer and create a new connection pool and JDBC data source on each
Managed Server of ticketsCluster.

Chapter 10

[301]

Repeat the process in this section with the JMS resources that are
part of the application: JMS Servers, sub-deployments, queues,
and connection factories should all be retargeted to the cluster.

Now, let's adjust the shared libraries and optional packages. In order to do so, follow
these steps:

1.	 In Eclipse, under the Servers tab, right-click on the server and click on Add
and Remove.

2.	 Click on Remove All and then click on Finish. This will remove the Theater
and Store applications from the Admin server, which is required since they
reference the shared libraries storeBO and theaterBO.

3.	 Open the WebLogic console and, on the left menu, click on Deployments.
4.	 In the Deployments table, click on storeBO and then click on the tab Targets.
5.	 You should see a list of servers and clusters available on the domain. Un-

check AdminServer and check ticketsCluster.

6.	 Click on Save.

Now, go back to the deployments page and repeat steps 4 through 6 for components
TheaterBO and primefaces.

It's very important to change the target of all deployable resources on
the application server. If you get any errors during this process, try to
first un-deploy both applications, Store and Theater, and then retarget
all resources.

In this section, we've performed the steps to change the target for all shared libraries
we created. Now, we just need to adjust the targeting of the web applications.

Scaling Up the Application

[302]

Making the application cluster friendly
Until now, the application has been deployed only to a single server, although some
features such as HTTPSession were used, the session was not being distributed to
different servers. Since the session serialization process is triggered only during
the distribution, a common mistake is when a developer leaves non-serializable
items on a session-scoped bean, where the application will behave fine without
distributed sessions, but issues will arise when the application is used on a clustered
environment with distributed sessions.

Other situations related to concurrency can also appear, such as how to serialize
database access or distributed transactions. In order to prevent some of these issues,
some measures are necessary to be taken while using this application and most of
them are pretty easy to apply. For example:

1.	 Open SearchManager.java and remove the EntityManager injection. By
default, EntityManager is not serializable and at this point we actually don't
need it here since we already have dedicated beans, such as TheaterManager
and MovieManager that are request-scoped and can be safely injected here.
...
// at SearchManager.java
@Inject
private TheaterManager theaterManager;
@Inject
private MovieManager movieManager;

...

2.	 Edit the search.xhtml page in order to use TheaterManager and
MovieManager in the box components.

3.	 Make sure every attribute used in a session-scoped bean is serializable. For
example, TheaterClient needs to implement the Serializable interface
and use the @Dependent scope to make sure that every instance of this bean
is bound to the lifecycle of the parent object.

4.	 And the last step is to replace all host entries in the web.xml file for
theaterServiceEndpoint and reservationServiceEndpoint with
localhost:8888, which is our software load-balancer address.

As a general rule, if you are planning to have your application
use distributed sessions, consider revisiting the basics
about Java Serialization and understand the concepts and
requirements related.

Chapter 10

[303]

Changing deployment target from Eclipse
To retarget the applications, we could perform the same procedure used to adjust the
shared libraries, but, for didactic reasons, we're going to illustrate how to change a
deployment target from Eclipse in the following steps:

1.	 Under the Servers tab, right-click on the tickets server and then click on
Properties.

2.	 In the Properties window, expand the WebLogic entry and then expand
Publishing.

3.	 Under Publishing, select Advanced. You should see the ticketsCluster and
loadBalancer entries on the left side and AdminServer on the right.

4.	 Select AdminServer (on the right) and click on the red X icon.
5.	 Select ticketsCluster (on the left) and click on the yellow arrow.
6.	 Click on Ok to close the window and save the changes.
7.	 Right-click on the server again and click on Add and Remove….
8.	 Select the Store and Theater applications and click on Add. Then

click on Finish.
9.	 Wait a few seconds and both applications will be available on both

Managed Servers. In order to test them, access the following URLs:

°° http://localhost:8001/store/

°° http://localhost:9001/store/

Scaling Up the Application

[304]

Finally, to test the load balancer, open the URL http://localhost:8888/
store/, which will distribute the requests to the Managed Servers present at its
configuration.

Using a singleton service
Java EE provides singletons through the use of the @Singleton annotation. In
practice, this annotation will guarantee that your class will be loaded only once per
JVM or per application server instance. Although this is a powerful feature, if your
business scenario can't cope with this behavior (duplicate component instances,
one per JVM), you need another approach; the singleton service offered by
WebLogic can offer an elegant solution for such cases. This feature guarantees that
a given singleton class will have only one instance across a cluster, automatically
managing failover and migration to another server instance in case of failure.

In the singleton ReservationCodeBean class there is a functionality that generates
control numbers used to identify the reservations. The actual implementation
is perfectly fine for a single server application, but running this application on
multiple servers will end up creating several instances of ReservationCodeBean,
one per JVM and each with its own counter variable, which may generate duplicate
control numbers.

This functionality will be moved to a WebLogic singleton service, which will make it
a cluster-wide singleton providing the necessary business function in a safe manner.

Creating a singleton service
To enable this new service, we're going to create a simple JAR file to hold it and then
set it up as a domain library. Follow these steps:

1.	 On Eclipse, create a new Java project named TokenService.
2.	 Since this service will be remotely called through an RMI call, it's necessary

to implement the java.rmi.Remote interface. Create a new Java Interface
named ITokenService under the com.packt.store.services package
using the following content:
public interface ITokenService extends Remote {
 public static final String JNDI_ENTRY = "TokenService";
 public String generate() throws RemoteException;
}

Chapter 10

[305]

3.	 It's also required to implement the weblogic.cluster.singleton.
SingletonService interface so WebLogic can manage the class. Create
a new Java class named TokenService under the same package, with the
following content:
public class TokenService implements ITokenService,
 SingletonService {

 // ideally would be moved to an external source, like a
 DB
 private int counter = 0;

 private Logger logger = Logger.getLogger(
 TokenService.class.getCanonicalName());
 private SimpleDateFormat now = new
 SimpleDateFormat("yyyyMMdd-hhmmss");

 @Override
 public String generate() {
 return String.format("%1$s-%2$06d", now.format(new
 Date()), ++counter);
 }

 @Override
 public void activate() {
 logger.fine("Attempting to bind TokenService...");

 Context jndiCtx = null;
 try {
 jndiCtx = new InitialContext();
 jndiCtx.rebind(JNDI_ENTRY, this);

 logger.info("TokenService activated on this server.");
 } catch (NamingException e) {
 logger.severe("Error during TokenService activation: " +
e.getMessage());
 } finally {
 if (jndiCtx != null)
 try {
 jndiCtx.close();
 } catch (NamingException e) {
 e.printStackTrace();
 }
 }
 }

Scaling Up the Application

[306]

 @Override
 public void deactivate() {
 logger.fine("Attempting to unbind TokenService...");

 Context jndiCtx = null;
 try {
 jndiCtx = new InitialContext();
 jndiCtx.unbind(JNDI_ENTRY);

 logger.fine("TokenService was deactivated on this server.");
 } catch (NamingException e) {
 e.printStackTrace();
 } finally {
 if (jndiCtx != null)
 try {
 jndiCtx.close();
 } catch (NamingException e) {
 e.printStackTrace();
 }
 }
 }

Besides the activate() and deactivate() methods,
the content of the generate() method was extracted
from ReservationCodeBean.

4.	 Some of the required classes are missing on the classpath. To fix it, add
weblogic.jar into the build path of the application. The file can be found
under $MW_HOME/wlserver/server/lib.

5.	 Export this Java project as a JAR file using Eclipse. This project doesn't have
any special requirements like a MANIFEST file does, for example. Save the
JAR file as TokenService.jar.

6.	 The file must be available to the WebLogic classpath, so copy TokenService.
jar into the tickets domain /lib folder.

If you are running the solution using different physical
machines, the JAR file must be physically copied to all
of them.

7.	 Restart all running WebLogic servers so they can load the singleton class into
the server classloader.

Chapter 10

[307]

8.	 Open the WebLogic console at http://localhost:7001/console.
9.	 Under domain structure (left menu) expand Environment and then

click on Clusters.
10.	 Click on ticketsCluster, browse to the Migration tab, and change the

Migration Basis field to Consensus.

When running services or applications on a cluster, WebLogic tries to
balance instances of these subsystems into all server instances of such a
cluster. There are some other services that must run pinned to a single
instance and, depending on the runtime situation, they migrate these
services to a different server. But, there must be a way to store and keep
the information about who owns that particular component; to avoid a
Single Point Of Failure (SPOF), WebLogic offers two options for leasing
these services: Database leasing and Consensus leasing. Database leasing
would require a High Availability (HA) database, such as Oracle RAC,
but for our examples we're going to use Consensus, which is basically a
less sophisticated mechanism that relies on Node Manager information
about the health of our servers.

11.	 Still on the ticketsCluster page, click on the Singleton Services tab.
12.	 Click on the New button and use the following values:

°° Singleton Service Name: TokenService
°° Class Name: com.packt.store.services.TokenService

13.	 Click on Next and, in the next screen, select which server will be the
preferred or primary server for this service. Every time the environment is
restarted, the service will bind to this selected server. Select ticketMS_A,
as shown in the following screenshot:

Scaling Up the Application

[308]

14.	 Click on Finish. You should have the following singleton service settings:

At this point, you can check the ticketMS_A log file and you should see the
activation log message indicating that the configuration was successful and that the
service is currently running on this server. In order to test the failover capabilities,
kill or shutdown the ticketMS_A Managed Server and monitor the ticketMS_B log.

Jun 10, 2013 1:56:32 PM com.packt.store.services.TokenService activate
INFO: ReservationService activated on this server.

Adjusting the service client
Now, we need to modify the ReservationCodeBean class to consume the singleton
service. This is a very straightforward process:

1.	 Open Eclipse, right-click on the project the Store, and select Properties from
the context menu.

2.	 Click on Java Build Path on the left of the window and then click on the
Libraries tab on the right side of the window.

3.	 Click on Add External JARs… and look for the TokenService.jar file.
4.	 Click on OK to confirm and close the Properties window.
5.	 Open the ReservationCodeBean class and create an attribute as follows:

ITokenService tokenService;

Chapter 10

[309]

6.	 Still in the class, add the following method:
 private String getControlNumber() throws Exception {
 if (tokenService == null) {
 try {
 Context ctx = new InitialContext();
 tokenService = (ITokenService)
 ctx.lookup(TokenService.JNDI_ENTRY);
 } catch (NamingException ex) {
 ex.printStackTrace();
 throw new Exception("Control number was not
 generated!");
 }
 }

 return tokenService.generate();
 }

7.	 Now, in the generate() method, replace the code at the control variable
with a call to getControlNumber():
String control = this.getControlNumber();

8.	 Save and close the file.
9.	 Publish the Store web application.

At this point, the Store web application, deployed on multiple nodes, will consume
the singleton service TokenService that is primarily hosted on ticketMS_A
Managed Server. If ticketMS_A goes offline due to a failure or simply during a
normal shutdown process, the service will be migrated to ticketMS_B automatically
and any new request to the bean will be able to find it, even if the bean is on a
different server now.

Using Oracle Coherence
Oracle Coherence is a distributed data grid solution, keeping data available
in memory, and using sophisticated distribution algorithms and protocols to
synchronize and transfer information between its nodes. This model gives us
amazing access times by having data readily available and improved reliability by
distributing the data between several instances and machines, adding redundancy
to avoid loss of information.

The most recent version of WebLogic, 12.1.2, comes with the newest Coherence
version, also numbered 12.1.2, and tighter integration between the two products;
Coherence is now enabled by default at the server's classpath, working as a regular
subsystem like JMS, for instance.

Scaling Up the Application

[310]

If you are familiar with previous versions of WebLogic Server
using Coherence, the concept of a Coherence Server has been
dropped, and now what we have is a regular WebLogic Managed
Server with Coherence enabled in it. This makes management
simpler, normalizing the server concept.

Also, we are able to create and configure Coherence clusters from the administration
console (and related technologies such as JMX and WLST). Finally, there's a
new deployment package, Grid ARchive (GAR), that encapsulates Coherence
configuration files, for instance, cache declarations and operational parameters, into
a consistent unit, making administrative tasks more streamlined.

For more details on this, check out the documentation at
http://docs.oracle.com/middleware/1212/wls/
WLCOH/create-application.htm.

Replicating sessions with Coherence*Web
As you may recall, we configured the web applications to use in-memory HTTP
Session replication when configuring a WebLogic cluster. Another alternative for
session replication on WebLogic is to use Coherence*Web. This module enables
WebLogic session data to be distributed (replicated) among multiple machines,
which is basically the same functionality provided by the in-memory session
replication feature, but using Coherence as the engine. This allows different
applications and even servers to access session data, and, as we can configure
standalone Coherence servers to be part of a cluster (each running on their own
JVM instance), the application server heap space isn't cluttered with session data.

Coherence*Web can be used with several other application servers,
such as Oracle Glassfish and Apache Tomcat among others. For a
complete list of benefits and the possibilities of Coherence*Web,
check out the product's documentation at http://docs.oracle.
com/middleware/1212/coherence/COHCW/start.htm.

Chapter 10

[311]

We are going to configure an in-process topology for Coherence*Web, meaning that
Coherence is going to share the JVM of a WebLogic server, running as its subsystem.

Up to Version 12.1.1, this integration wasn't available out of the box.
It was possible to set it up, but the process involved copying libraries
around. Now, coherence.jar and coherence-web.jar (the files
that enable Coherence*Web) are loaded by default at server startup,
making the configuration process easier.

To use this feature, we need to enable a Coherence cluster, configure a WebLogic
instance to be Coherence's data repository, and, finally, we must adjust the web
application that will use this mechanism.

Creating a Coherence cluster
To show how to use Coherence*Web, we're going to use the default cluster
configuration provided by Coherence.

Using the default configuration is a great way to get up and running
quickly, but keep in mind that for real-world systems this is not
an option; aspects like environment isolation and network latency
must be addressed by specific configurations. You can find more
information about the parameters available by checking the official
documentation at http://docs.oracle.com/cd/E24290_01/
coh.371/e22837/cluster_setup.htm.

These are the steps to add a Coherence cluster to the domain:

1.	 At the administration console, expand the Environment section at the
Domain Structure box and then click on Coherence Clusters.

2.	 On the Summary screen, click on New.
3.	 Enter sessionDataCluster in the Name field and then click on Next.
4.	 We don't need to change the way Coherence instances communicate, so just

click on Next here.

Scaling Up the Application

[312]

5.	 Add both the loadBalancer server (or AdminServer if you didn't create the
dedicated instance) and WebLogic's ticketsCluster cluster to it by selecting
the appropriate entries.

6.	 Click on Finish and it's done.

Another way to create a basic Coherence cluster is by selecting the entry
WebLogic Coherence Cluster Extension when creating or updating a
domain using the Configuration Wizard (config.sh or config.cmd).
You just have to add the servers to the cluster afterwards.

Enabling Coherence*Web storage
Another change introduced by Version 12.1.2 is that every WebLogic Server is
now potentially also a Coherence node; as the libraries are enabled at the server's
classpath, all we have to do to start using Coherence is to add a server to a
Coherence cluster.

The most important configuration associated with this step is deciding if that specific
server will hold data in it or if it will act as a client in relation to data; in other words,
we have to decide if the instance will have local storage enabled. Also, there's a
specific Coherence*Web parameter that indicates if the node will act as a storage tier
for this feature.

Chapter 10

[313]

When a server is added to a Coherence cluster, local storage is enabled by default
and Coherence*Web storage isn't. To edit Coherence-related parameters of a specific
server, the following steps must be followed:

1.	 In the administration console, select the desired server from the Servers list.
2.	 In the Configuration tab, click on the last inner tab Coherence.
3.	 As we want to store all data into the node loadBalancer, we must configure

it to allow Coherence*Web by enabling the parameter Coherence Web Local
Storage Enabled.

4.	 If the servers are already running, restart them.

Adjusting the application to use the cache
Now that we already have a server configured to store session data, we need to
modify the application deployment descriptors and change the actual HTTP session
state replication mechanism to use Coherence*Web:

1.	 Start Eclipse and open the file weblogic.xml under /WebContent/WEB-INF
in the project Store.

Scaling Up the Application

[314]

2.	 Change the value of the entry persistent-store-type to coherence-web
to instruct WebLogic to use Coherence*Web and add a new tag, coherence-
cluster-ref, to reference the cluster we created in the previous section.
<wls:session-descriptor>
 <wls:persistent-store-type>
 coherence-web
 </wls:persistent-store-type>
</wls:session-descriptor>

<wls:coherence-cluster-ref>
 <wls:coherence-cluster-name>
 sessionDataCluster
 </wls:coherence-cluster-name>
</wls:coherence-cluster-ref>

3.	 Save the file.
4.	 Make sure that the server configured as Coherence*Web storage

is running; at least one node of the Coherence cluster we specified at the
deployment descriptor must be up when deploying an application that uses
it or else the deployment procedure will fail.

5.	 Deploy the project to the cluster.

In order to test that your sessions are now stored on an external cache server, put
some information on the session, shutdown one or both Managed Servers, and start
them again. Since the data persists outside these servers, the cache kept the data,
even though the application went down.

Due to the resource limitations of a normal developer workstation or
laptop (physical memory, basically), the example used only one node
to hold session data. On a production system, or when the memory or
number of servers aren't constraints, you can follow the same procedures
to scale the cache to use multiple nodes, giving it better performance and
increased reliability. As Coherence's is naturally a distributed data grid,
having more nodes will contribute to the overall experience.

Chapter 10

[315]

Caching JPA objects with TopLink Grid
TopLink Grid is a feature that enables Java Persistence API (JPA) to use Coherence to
cache object instances, bringing performance gains to an application.

As you may remember, TopLink is WebLogic's JPA implementation, so enabling this
cache function basically involves deciding which kind of caching is a best fit for the
business scenario and configuring it.

There are a few different strategies that can be used when attaching Coherence to the
JPA layer. Here's a quick description of each one:

•	 Grid Cache: This is the simplest way to integrate JPA and Coherence, where
the latter acts as an L2 cache; data is read from the database and stored at the
cache and subsequent queries can use data from there, speeding up response
times.

•	 Grid Read: On this topology, Coherence is promoted to a more central role,
being the source of data when JPA runs a query. The cache is loaded with
object instances read from the database and the idea is that they should
remain there longer, eventually serving all queries using only in-memory
data. When an instance is updated, JPA does it first at the database, and then
automatically updates Coherence.

The main difference between Grid Cache and Grid Read is that the
former assumes that data can't be preloaded to Coherence, building
the cache on the fly, and the latter relies on having the data in-
memory, possibly using a mechanism to populate the cache.

•	 Grid Entity: This is an evolution of the Grid Read topology, where all queries
and updates are made directly to Coherence. Insertions and updates are sent
to Coherence, and this layer propagates them to the database, ideally using
its write-behind capability to get even better response times.

If you want to read details about each topology, check out
the following document: http://docs.oracle.com/
middleware/1212/coherence/COHIG/tlg_integrate.htm.

Scaling Up the Application

[316]

The following figure shows how such a configuration would work; Coherence would
be at the front of the database, intercepting and serving requests from or to it.

ticketMS_B

Store

EntityManager

ticketMS_A

Store

EntityManager

Coherence Server

Database

Since this is considered an advanced feature of a more complex WebLogic topology,
the configuration of such features is out of the scope of this book, but at the following
URL you can find documentation and step-by-step instructions on how to enable it:
http://docs.oracle.com/cd/E24290_01/coh.371/e23131/toc.htm.

This integration between JPA and Coherence is a powerful feature when scaling up
your application, but keep in mind that a new set of considerations must be taken,
such as how many Coherence instances must be set up, how to distribute the load
over them, for how long a specific object must be kept in the cache, how to invalidate
it, and so on.

Web resources
The following are a few web resources that you can refer to:

•	 TopLink Grid home page
°° http://www.oracle.com/technetwork/middleware/ias/tl-

grid-097210.html

Chapter 10

[317]

•	 TopLink Grid documentation
°° http://www.oracle.com/technetwork/middleware/toplink/

documentation/index.html

•	 Accessing data caches from applications
°° http://docs.oracle.com/middleware/1212/wls/COHWL/coh_

wls.htm

•	 Active Cache—Coherence integration with CDI
°° http://docs.oracle.com/middleware/1212/coherence/COHTU/

activecache.htm

•	 Singleton design pattern
°° http://en.wikipedia.org/wiki/Singleton_pattern

•	 Service migration
°° http://docs.oracle.com/middleware/1212/wls/CLUST/

service_migration.htm

•	 WebLogic clusters & Multi-tier architectures
°° http://docs.oracle.com/middleware/1212/wls/CLUST/setup.

htm

•	 Java EE XML schemas for DDs

°° http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/
javaee/index.html

Summary
In this chapter, you've learned how to create a cluster with two Managed Servers,
the procedure to migrate a Java EE Singleton to a Singleton Service, how to
use WebLogic Server as a load balancer through the HttpClusterServlet
component, how to set up and use Coherence*Web to scale out HTTP Sessions,
and how to integrate your JPA entities with TopLink Grid. By doing all this, we
were able to scale up a web application by leveraging several WebLogic services
and functionalities. This content is very important for production systems and
applications that want to provide high availability and high performance.

In the next chapter, we're going to see features of WebLogic that speed up the
development process, how to monitor server resources by using a Representational
State Transfer (REST) API and how to troubleshoot classpath problems using the
Classloader Analysis Tool (CAT).

Some WebLogic Internals
Now that we have seen how to scale and optimize our application, let's take a look at
some features of WebLogic Server that help the developer in his/her job of creating,
delivering, and testing applications. More specifically, we're going to check:

•	 The different kinds of packaging, and how to benefit from them at
development time

•	 How to optimize redeployment by enabling the FastSwap feature
•	 How to package modules (a JDBC data source, for instance) into an

application
•	 How to troubleshoot classloader problems using WebLogic's Classloader

Analysis Tool (CAT)
•	 How to monitor WebLogic resources using WebLogic's RESTful management

service

Understanding deployment structures
There are different ways to package and deploy an application, and each one has a
specific set of benefits and challenges. When using Eclipse to publish projects, as we
have been doing here, the archived file model is the only format that can't be used
by the IDE—we can choose either from the exploded archive directory or the split
development directory (also known as a virtual application).

Let's check each available option and when they can be used.

Some WebLogic Internals

[320]

Packaging as an archived file
This is the most common way of packaging one or more projects—just create a JAR,
WAR, or EAR file with all application resources and compiled code inside, and
deploy it to the server. From Eclipse, we can create a deployment unit by using the
Export… context menu of a project.

Using an exploded archive directory
This option is pretty close to the archived file one—the structure is basically the
same, but instead of using a single packaged file, we use a folder with the same
contents. The benefit of using it is that we have direct access to the files, and some
of them can be changed directly without the packaging procedure. Static files such
as images and web pages (the Store project's .xhtml files, for instance) can be
changed without the need to redeploy the application; just save the file, and it's
already available.

The downside of this approach while developing the application is that the IDE must
duplicate all files and folder structures to make them available to WebLogic, and this
step can take some time, depending on the size of the projects involved.

We can use this structure even when deploying to a production
environment, as it's a WebLogic Server feature. If the application
requires constant changes to static files, this is the best way to go,
as there's no downtime associated to a deploy procedure.

When you look up your application at WebLogic's administration console, there's no
noticeable difference between this approach and an archived file—you need to check
the Path field in the Overview tab of a specific deployment in order to know which
one is being used. It would look something like the following screenshot:

Chapter 11

[321]

An archived file deploy would list /opt/packt/deploy/Store.war
as Path.

Using a virtual application
The last option, also called split development directory, uses the same concept of
the previous one, exploded archive directory, but doesn't have the copy operation
overhead—the deployment creates a direct reference to the current development
directories instead of creating a stage area. Direct updates to static files are also
immediately available to the server.

This configuration is applied to a server, so it changes the way in which all Oracle
Enterprise Pack for Eclipse (OEPE) projects are targeted to that specific server; these
projects will be bundled as a single enterprise application (EAR) when deployed to
WebLogic, hence the name virtual application. This rule applies to Java EE projects
that aren't explicitly bound to EAR projects—in this case, the EARs are created and
deployed as usual. The following screenshot shows how both projects, store and
theater, are presented as a single deployment on WebLogic's administration console
while using this strategy:

Some WebLogic Internals

[322]

Configuring the deployment model
By default, OEPE uses the virtual application model. If you want to change it to use
exploded archives, the following steps can be performed:

1.	 Right-click on the server name in the Servers view and select the last
entry, Properties.

2.	 The configuration screen will show up. Expand the WebLogic entry on the
left-hand side, and then click on Publishing.

3.	 Select the appropriate option under the Publishing mode group on the top
of the Publishing screen, and click on OK to close the window and redeploy
the projects using the selected approach.

We are changing the server configuration, so this behavior is applied
to all projects attached to that server. This can be obvious, but it can
also be overlooked and forgotten, hence the reminder.

Chapter 11

[323]

Using FastSwap to reduce deployment
time
To speed up the deployment process, we can enable the FastSwap feature,
instructing the container to update bytecode without dropping the existing instances
of the affected classes or reloading the classloader. This means that a class binary can
be loaded into the container's memory without dropping the class' instances that are
already in use—it's like updating a static file using the exploded directory archive
(explained in the previous section) and making it immediately available to the
container, but we're actually replacing binaries.

Remember that this doesn't mean you don't have to publish a project
after changing the source code—FastSwap only makes the deployment
process quicker, but you still have to command Eclipse to execute the
deployment procedure (if automatic publishing is disabled, obviously).

Not every change made to a class is a candidate to use the FastSwap feature, though.
Here are a few requirements and constraints we need to observe to use this feature:

•	 The application must be deployed as an exploded archive—this is configured
when you map the server in OEPE, as we just saw in the previous section

•	 Classes inside packaged files aren't eligible to use it
•	 Changing enums isn't supported

The complete list of supported changes and limitations can be found
here: http://docs.oracle.com/cd/E24329_01/web.1211/
e24443/deployunits.htm#i1054385

To show how to enable FastSwap, let's do it for the project theater:

1.	 Open the weblogic.xml file located in the folder /WebContent/WEB-INF.
2.	 In the Outline tree, click on General, and then click on FastSwap.

Some WebLogic Internals

[324]

3.	 Check the Enable class redefinition checkbox as shown in the following
screenshot:

4.	 Save the file.

The other parameters available on the FastSwap configuration screen are:

•	 Refresh interval (seconds): This value sets the interval at which FastSwap's
engine will check for changes in the application classes, and fire up
redefinition tasks, if needed. This parameter is only applied when using
automatic publishing and an exploded archive deployment. The default
value is 10 seconds.

•	 Redefinition task limit: This sets the maximum number of redefinition tasks
(the act of changing the bytecode) that can be monitored by JMX interfaces.
Only the most recent tasks are kept available—when this limit is reached
and a new redefinition task is created, the oldest task being monitored is
discarded.

The configuration we just changed will create the fast-swap tag in the project's
weblogic.xml file as follows:

<wls:weblogic-web-app>
 <wls:weblogic-version>12.1.1</wls:weblogic-version>
 <wls:context-root>store</wls:context-root>
 ...
 <wls:fast-swap>
 <wls:enabled>true</wls:enabled>
 </wls:fast-swap>
</wls:weblogic-web-app>

Chapter 11

[325]

While publishing a module, you should see messages similar to the ones shown in
the following screenshot in Eclipse's Error Log window, stating that the FastSwap
feature is active:

If you make a change to a class that is not supported by FastSwap, an error message
is shown, and the regular deployment procedure is executed.

There is an issue with FastSwap and Contexts and Dependency
Injection (CDI) that renders some projects unable to use the
FastSwap feature—if a project contains classes annotated with
ApplicationScoped or SessionScoped, for instance, the
deployment procedure may raise an error and abort. At the
time of writing, there was no definition about this issue being a
problem or a design decision (bug # 13572166 at Oracle Support).

Packaging modules into an application
First, let's define what a module is on the context at hand; apart from the usual Java
EE modules deployed in WebLogic Server—our applications and shared libraries,
for instance—there are modules that group server resources such as JDBC and JMS
components.

When we create a data source using WebLogic's administration console, we're
actually creating a module inside the domain's configuration folder. This structure is
read at the server's startup procedure to configure it properly.

You can check the folder /opt/packt/domains/tickets/
config/jdbc to see the JDBC modules, Ticket and Theater,
defined in our server.

Some WebLogic Internals

[326]

There are two kinds of such modules, classified according to the way they are
defined: globally-scoped (also called system modules) and application-scoped. The
first is the most commonly found and used module—resources are created using
WebLogic's administration console or WebLogic Scripting Tool (WLST) scripts, and
are available to any application deployed and targeted to the same servers of the
module. The other module, application-scoped modules, refers to modules that are
declared as part of a Java EE application. As you are packing everything together,
there's no need to instruct WebLogic administrators or operators to create the
resources before deploying the application.

While looking up these application-scoped resources using WebLogic's administration
console, you will not find them at the usual places—as they are part of a deployment,
you will find them listed inside the deployment that defines it. The following
screenshot shows the structure of an enterprise application that packages a data source
and a web module:

When you click on the resource name, the configuration pages specific to
its category, in our example, data source, are shown. From this point on,
there's no difference between a global- or application-scoped resource,
meaning that you have all configuration options available to both scopes.

Creating an application-scoped module
To create this kind of module, the easiest way is to define everything you need using
WebLogic's administration console, and then copy the generated XML files to your
application, which must be an Enterprise Application (EAR). You can create a new
folder inside it, and keep all module declarations inside it.

Chapter 11

[327]

Remember that the system modules' declarations are created into
specific folders using /opt/packt/domains/tickets/config/ as
the root. Basically, you will work with the jms and jdbc subfolders.

Then, you just need to add a reference to the module from within the weblogic-
application.xml descriptor file, shown as follows:

<wls:module>
 <wls:name>StoreDS</wls:name>
 <wls:type>JDBC</wls:type>
 <wls:path>jdbc/StoreDS-jdbc.xml</wls:path>
</wls:module>

The previous sample shows that a folder jdbc has been created in the project's root,
and the module descriptor StoreDS-jdbc.xml can be found there.

The –jdbc suffix at the end of the filename is a requirement. If you
forget to add it, the deployment procedure will fail with the message
"Data source descriptor filename [name] does not
have the required suffix "-jdbc.xml"".

Restricting access to an application-scoped
resource
Even though we declare modules inside an application, it doesn't mean that the
resources cannot be accessed by other applications. For JDBC data sources, for
instance, the visibility depends on a parameter, scope, as shown in the following
code snippet, which is taken from the configuration file and changed to reflect it:

<jdbc-data-source-params>
 <jndi-name>Ticket_DS</jndi-name>
 <scope>Application</scope>
</jdbc-data-source-params>

The default value for the scope parameter is Global, meaning that all
applications running on the same server as the application declaring the
resource have access to it.

Some WebLogic Internals

[328]

You can use this setting to restrict external access to the resource, but there are a few
collaterals that can make even the application defining the resource unable to use it.

•	 If you reference the app-scoped data source from a persistence.xml file,
the JNDI name resolution will fail, so it cannot be used when declaring JPA
persistence units

•	 References (either by lookup or the @Resource injection) will only work
when used inside enterprise beans, and the relationship between classes and
resources must be explicitly declared using the ejb-jar.xml and weblogic-
ejb-jar.xml deployment descriptors

So, if you are considering this option to make access to a resource more secure (as
there's no possibility of access from other applications) by setting the scope of the
application, you may want to check the security features provided by WebLogic,
leaving the scope with its default value.

For more details on how to secure access to a resource, check
Chapter 8, Adding Security.

Declaring data sources using annotations
The limitation involving web projects can be tackled with another feature, if all
you need is to declare a data source; the annotations DataSourceDefinition and
DataSourceDefinitions allow us to create a data source without resorting to the
application-scoped module feature.

Here's how a web service declaring a data source pointing to our store database
would look like:

import javax.annotation.Resource;
import javax.annotation.sql.DataSourceDefinition;

@DataSourceDefinition(
 name = "java:module/env/jdbc/tickets",
 className = "com.mysql.jdbc.Driver",
 portNumber = 3306,
 serverName = "localhost",
 databaseName = "store_db",
 user = "store_user",
 password = "store",
 properties={"create=false", "weblogic.TestTableName=SQL SELECT
 1"})

Chapter 11

[329]

@WebServlet(value="/hello")
public class SomeServlet extends HttpServlet {
 private static final long serialVersionUID = 1L;

 @Resource(lookup = "java:module/env/jdbc/tickets")
 DataSource ds;

 public void service(ServletRequest req, ServletResponse res)
 throws IOException, ServletException {
 Connection con;

 try {
 con = ds.getConnection();
 ...
 con.close();
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }
}

Notice that we used the prefix module to declare the JNDI name. There are a few
different prefixes we can use, each defining a different level of visibility for the
resource.

Prefix Meaning
java:comp The resource is available only to the component that declares it.
java:module The component can be accessed by other components in the same

module, a web project, for instance.
java:app All modules inside an application, an EAR for instance, can access

the component.
java:global Any application running on the same server(s) can reference and

use the component.
This is the same visibility you have if you declare the resource
using the administration console, but with the downside of not
having the corresponding management and monitoring pages
available.

Some WebLogic Internals

[330]

As usual, you can declare the same object using deployment descriptors. As the
previous sample is from a web project, this block could be added to the web.xml
descriptor file:

<data-source>
 <name>java:module/env/jdbc/tickets</name>
 <class-name>com.mysql.jdbc.Driver</class-name>
 <server-name>localhost</server-name>
 <port-number>3306</port-number>
 <database-name>store_db</database-name>
 <user>store_user</user>
 <password>store</password>
 <property>
 <name>create</name>
 <value>false</value>
 </property>
 <property>
 <name>weblogic.TestTableName</name>
 <value>SQL SELECT 1</value>
 </property>
</data-source>

This feature cannot be used in pure named beans—only enterprise beans, servlets,
and web services support it.

Using the Classloader Analysis Tool
(CAT)
One feature of WebLogic Server that helps developers to pinpoint class conflicts
and other classloader issues is the Classloader Analysis Tool (CAT). Here's the
description of what it does, taken from its main page:

CAT is a small web application that is designed to help application developers
understand, analyze, and resolve classloading issues in their applications.

It does so by showing all applications and modules on the server where you're
running CAT, and from there, you can drill down and check which classes were
loaded by each classloader, searching for potential conflicts.

Starting CAT
In order to use CAT, there are a few points that must be observed:

•	 Your server must be running in the development mode. By default, CAT is
not enabled on production servers

Chapter 11

[331]

•	 You cannot run CAT on servers running over IBM SDK for Java, as some
functions depend on implementation provided by HotSpot

•	 A console credential is required to access it, so if you're not able to access the
administration console, you will not be able to access CAT either

If all the previously mentioned requirements apply, just open a browser and direct
it to http://localhost:7001/wls-cat to load the application. The package is
deployed on demand, so wait for a few seconds for this process, and a credential pop
up will be displayed, asking for the username and password, and the main page will
be loaded.

Another way to start it is by going to the Testing tab of any deployed application
and clicking on the Classloader Analysis Tool link:

In the top-left corner, you can see a list of the modules and applications enabled on
the server where CAT is running, something like the following screenshot:

Some WebLogic Internals

[332]

From this tree, you can check the classloaders of each application. Clicking on Store.
war under Store and then clicking on Classloader Tree on the blue ribbon will show
us details of all classloaders attached to this specific module:

System classloaders are named after those that involve JVM and
WebLogic Server core classloaders. Application classloaders are
related to Java EE applications and libraries deployed to WebLogic.

The previous screenshot shows basic information of each classloader. If you click on
the detailed link on the top blue ribbon, the same list will be presented, along with
all libraries loaded by each one. It is great to do a visual check of which libraries are
being loaded, but the volume of output can be overwhelming, making it difficult to
sort out all the information, so another feature can be used to check for conflicts, as
explained in the next section.

Chapter 11

[333]

Finding potential conflicts
An easier way to look for conflicts is to use CAT's Analyze Conflicts function. To
do so, you just need to click on the module name you want to analyze, then on the
Analyze Conflicts link on the blue ribbon. And it's done!

To show how it works, we left the file StoreBO.jar in the domain's lib folder (we
added it in Chapter 7, Remote Access with JMS, to be able to see what's inside a JMS
message), and we also have a shared library exposing the same classes, and this
shared library is explicitly referenced by the Store's web application. When we ask
WebLogic to check for possible conflicts, the output generated would look like the
following screenshot:

Some WebLogic Internals

[334]

A list with all classes from the library is presented. To check on which files carry a
specific class, just click on the class' name to show its details:

Just by looking at the paths of the libraries, we can tell that the first reference comes
from the domain lib (/opt/packt/domains/ticket/lib/…), and the other is a
standalone deployment (…/AdminServer/upload/StoreBO.jar…). As the classes are
being loaded from the domain library, any changes to the shared library (the one we
are supposed to use) aren't going to be reflected, and errors may arise—for instance,
if there's a new version of a class with a couple more methods that the application
can't find, MethodNotFoundException errors are likely to happen.

CAT is a very handy feature, even more so when you don't have full control of the
server, and several projects and applications are running and applying changes to it
simultaneously.

Using RESTful management services
Starting with WebLogic Server 12c, there is a feature that enables us to monitor
several aspects of a running domain, including its clusters, server instances,
applications, and data sources, without resorting to the administration console or
management scripts.

For a full list of resources that can be monitored through RESTful
management services, check the documentation at http://docs.
oracle.com/cd/E24329_01/web.1211/e26722/toc.htm.

Chapter 11

[335]

WebLogic Server provides an address that can be queried to get information about
specific components. The general format of this URL is http(s)://[host]:[port]/
management/tenant-monitoring/[path] where:

•	 If the server is configured to enforce SSL communication, you must use
https to access the service

•	 The host and port values must point to the host and port where the
administration server is running

•	 The path parameter will tell WebLogic which kind of resource you want to
monitor, and also name a specific resource, such as servers/AdminServer or
only servers to list all servers available

Enabling the management service
To enable the service, open the administration console and perform the
following steps:

1.	 Go to the navigation tree—the Domain Structure box—and then click on the
domain name, tickets.

2.	 Click on the Configuration tab, and then click on General.
3.	 Scroll down to show the Advanced link, and then click on it.
4.	 Scroll down to the end of the page and locate the Enable RESTful

Management Services entry.
5.	 Click on its checkbox, and then click on Save.
6.	 The page will be reloaded, and a message stating that the server must be

restarted will be presented.

7.	 Click on the Control tab on the same page, click on the checkbox right next to
the AdminServer entry, and then click on Shutdown and Force Shutdown
Now from the pop-up menu, or just go to Eclipse's Server view and
command a restart from there.

With the server running again, we can proceed and test the management services.

Some WebLogic Internals

[336]

Monitoring resources
When you first access the URL, the server asks for a user credential. This user must
belong to either the Administrators or the Monitors group to get proper access. Type
http://localhost:7001/management/tenant-monitoring/servers in a new
browser window and enter the appropriate credentials. A page with the following
content will be presented:

This command lists all servers of the domain. If you want to see details about a
specific server, just add a slash at the end of the URL and type the name of the
instance you want to check— for example, http://localhost:7001/management/
tenant-monitoring/servers/AdminServer. The resulting page will show the
basic information already presented—name, state, and health, along with several
other entries.

As you may have noticed, there are two ways of querying the management service—
by a collection and by a specific item. The collection view is a condensed one,
showing all available objects of that specific kind, for instance, servers.

Chapter 11

[337]

When querying for a specific item, remember that the resource
name appended to the end of the URL is case-sensitive.

Here's a list of all currently available resources—collections and items that can be
monitored:

•	 /servers

•	 /server/[server name]

•	 /clusters

•	 /cluster[cluster name]

•	 /applications

•	 /application/[application name]

•	 /datasources

•	 /datasource/[data source name]

Each resource query returns a specific set of information. For instance, a query to a
named data source returns this set of live data, among others:

•	 activeConnectionsCurrentCount

•	 currCapacity

•	 numAvailable

•	 numUnavailable

•	 prepStmtCacheAccessCount

•	 prepStmtCacheCurrentSize

•	 prepStmtCacheHitCount

•	 prepStmtCacheMissCount

•	 waitingForConnectionCurrentCountx

•	 connectionsTotalCount

Check the official documentation at http://docs.oracle.com/middleware/1212/
wls/RESTS/index.html to get a complete list of item attributes and their meaning.

If you want to show the same level of information for a specific entry
when listing the collections, just add a parameter, format=full,
to the query http://localhost:7001/management/tenant-
monitoring/servers?format=full.

Some WebLogic Internals

[338]

Hopefully, in the future, the development team will add more resources to this list,
JMS being the most missed of them.

Formatting the response
As this feature is enabled by Jersey, the JAX-RS reference implementation, the
output can be generated as plain HTML—the format we used here is JSON or
XML. To receive the response as JSON or XML, you must set the Accept header to
application/json or application/xml respectively.

You can't change this flag using the standard features of a browser, so if you don't
use a plugin like Tamper Data for Firefox or Request Maker for Google Chrome,
you may want to know that WebLogic provides a web client that allows us to test
these other formats in an easy way. To use it, just point your browser to http://
localhost:7001/management/ajaxtest.html.

The host and port must point to the administration server of the domain, as we are
already using it to access the RESTful management services.

You just need to enter the query's URL, as you did before, and select the appropriate
response data type. Here's how the same query would look like using the Ajax client
to retrieve a JSON structure:

Chapter 11

[339]

Keep in mind that this client is provided as is, so there is no support
available. It must be used only for testing purposes.

Web resources
The following are a few web resources that you can refer to:

•	 Packaging applications and modules for deployment & using FastSwap
°° http://docs.oracle.com/middleware/1212/wls/DEPGD/

deployunits.htm

•	 Creating a split development directory environment
°° http://docs.oracle.com/middleware/1212/wls/WLPRG/

splitcreate.htm

•	 Configuring JDBC application modules for deployment
°° http://docs.oracle.com/middleware/1212/wls/JDBCA/

packagedjdbc.htm

•	 Understanding JMS resource configuration
°° http://docs.oracle.com/middleware/1212/wls/JMSAD/

overview.htm

•	 Using DataSource resource definitions
°° http://docs.oracle.com/middleware/1212/wls/JDBCP/ds_

annotation.htm

•	 Annotation type DataSourceDefinition
°° http://docs.oracle.com/javaee/6/api/javax/annotation/

sql/DataSourceDefinition.html

•	 Understanding WebLogic Server application classloading
°° http://docs.oracle.com/middleware/1212/wls/WLPRG/

classloading.htm

•	 Using RESTful management services with Oracle WebLogic Server

°° http://docs.oracle.com/middleware/1212/wls/RESTS/index.
html

Some WebLogic Internals

[340]

Summary
In this chapter, we covered a few features brought by WebLogic Server and Java EE
6 that help the development process by cutting deployment time, optimizing class
redefinitions without the need to restart the whole application, finding classloader
issues, and how to monitor server resources in a simple way.

The purpose of the book is to refresh or introduce Java EE 6 concepts implemented
by WebLogic Server 12c, by showing how to apply them in a real-world scenario,
presenting product-specific features that would be relevant to make things easier and
more productive, both during design and runtime.

So, we covered topics such as persistence configuration and usage, the mechanics
of sending and receiving asynchronous messages by using JMS and remote clients,
how to create and use events, interceptors, and validations rules, how to secure
an application, the main techniques used to scale up your code to process larger
quantities of requests, and how to use communication channels such as Web
Services, RESTful clients, and WebSockets, among other things.

There is still a plethora of features and details to explore, but you're on the right track
to build enterprise-grade applications by using the book's content as a starting point.
Happy coding!

Index
Symbols
<ServerName.log> file 177
@WebServlet annotation 16

A
accept HTTP header 110
access control rules 230
access.log file 177
AccessTimeout annotation 104
ACID concept 145
ActivationConfigProperty annotation 219
Administration Console 19
Ajax (Asynchronous JavaScript and XML)

117
anatomy, log message 177, 178
annotations

URL 190
annotation support 16
Annotation type DataSource Definition

URL 339
AOP

and interceptors 174
Apache MyFaces 33
Apache Web Server 181
API reference

URL 227
application

deploying 319
making, cluster friendly 302
modules, packing into 325, 326

application module 203
application-scoped module

creating 326

application-scoped resource
access, restricting 327

application.wadl file 111
archived file

packaging as 320
Aristo theme 83
Aspect Oriented Programming. See AOP
asynchronous context 271
asynchronous methods

URL 191
using 175, 176

asynchronous request processing, Servlet
270-274

asyncronous
processing 16

audit events
defining 184-189

authentication 229
authentication providers

about 232, 233
configuring 232

authorization 229
AUTO_INCREMENT feature 93
auto_increment keys 69
Automatic Resource Management. See

try-with-resources feature
auxiliary components

retargeting 300, 301
AWT 183

B
BAD REQUEST error code (HTTP 400) 107
batching

using with message-driven beans, URL 227

[342]

BEA Home 27
Bean

validating 15
bean archive 79, 80
bean-managed transaction (BMT)

about 146
using 148

beans, Java EE 6
message-driven 104
singleton 104
stateful 104
stateless 104

beans.xml file 80
bean validation

built-in constraints 128, 129
custom constraint, creating 132, 133
dealing, with empty strings on JSF

components 138
rules, combining 130, 131
rules, grouping 130, 131
using 127
validation messages, displaying 134

bidirectional relationships 96
Bill, Edward, Alfred (BEA) 7
binaries

downloading 34
binary integral literals

manipulating 14
build.xml Ant script 100
built-in constraints

@AssertFalse 128
@AssertTrue 128
@DecimalMax 129
@DecimalMin 129
@Digits 129
@Future 129
@Max 128
@Min 128
@NotNull 128
@Null 128
@Past 129
@Pattern 129
@Size 129

business entities, movie ticket system 58, 59

C
CAF

about 18
Oracle Exalogic 19
Oracle Exalogic features 19
Oracle Traffic Director 18
Oracle Tuxedo 19
Oracle Virtual Assembly Builder 19
stack, graphical representation 18
WebLogic 12c 19

case sensitivity
disabling 30

CAT
about 330
potential conflicts, finding 333, 334
starting 330, 332

catch block 13
CDI Events

URL 191
CDI qualifier 186
certificate 231
classes

generating, from database tables 64-68
Classloader Analysis Tool. See CAT
client module library 194
ClientSAFGenerate utility 221
Cloud Application Foundation (CAF) 290
clustered web applications

web.xml, updating 298, 299
clustering 286
CMT

about 146
demonstrating 147
using 146

Coherence cluster
adding, to domain 311
creating 311

coherence integration
with CDI, URL 317

Coherence*Web
about 17
sessions, replicating with 310, 311

Coherence*Web storage
enabling 312, 313

[343]

components, interceptors
interceptor class 169
interceptor method 169
target class 169

component, WebSockets
testing 279, 280

composite component
about 266
using 267, 268

ConcurrencyManagement annotation 104
confidentiality 230
configuration, Eclipse IDE 38
configuration, MySQL databases 32, 33
configuration, OEPE 38
configuration, OpenLDAP 48-50
configuration, web descriptor 82, 83
connection-factory block 224
connection pool 42
constraint composition 128
constraint validator

coding 133, 134
container-managed transactions. See CMT
Context Dependency Injection (CDI) 169
context injection

for Java EE Platform 15
Contexts and Dependency Injection (CDI)

79, 325
CRUD operations 250
cryptography 230
cURL 110
custom authentication 233
custom constraint

creating 132, 133
customer

publishing, to JMS queue 253, 254
cyclic references

about 96
preventing 96, 97

D
database

user, creating on 249-252
database tables

classes, generating from 64-68
data caches

accessing from applications, URL 317

data integrity 230
data source (DS) 42, 63
DataSource resource definitions

URL 339
data sources

declaring, with annotations 328-330
DebugConfigInfo 295
dependency injection 89

for Java EE Platform 15
deployment model

configuring 322
deployment target

from Eclipse, changing 303
deprecated features, Servlet 269
diamond operator 12
digest 231
directory structure 23
dispatch-policy element 217
distributed transactions. See XA
dynamic cluster

creating 290-292
dynamic cluster creation wizard

dynamic cluster 292
dynamic servers 292
server templates 292

dynamic components, Servlet 275, 276
dynamic invocation 161

E
Eclipse IDE

configuring 38
MySQL database connections,

adding to 45-47
PrimeFaces shared library,

referencing to 39, 40
projects, organizing in 60
WebLogic runtime environment,

linking 38, 39
WebLogic Server instance, linking 40-42

EclipseLink
about 60
versions 62

EclipseLink 2.4.2 62, 63
EclipseLink MOXy 96
EJB 3.1

about 15

[344]

features 15
EJB 3.1 features

EJB Lite 16
embeddable API for Java SE 15
singleton beans 15

EJB 3.1 specification (JSR 318) 169
EJBGen module 219
encrypted connection, WebSockets

using 280
Enterprise Java Beans (EJB) 169
entity listing page

creating 122-125
Entity Manager 82
error destination queue 262
event qualifiers 186
events 169, 183
exception

handling, multicatch statements used 14
exception handling

example 14
exploded archive directory

using 320, 321
external LDAP server

using 233, 234

F
Facelets

about 16, 266
templates, applying through 118-121

FastSwap
configuration screen, parameters 324
enabling, steps for 323, 324
URL 339
using, to reduce deployment time 323

fast-swap tag 324
finally block 13, 14
foreign keys 69, 92
Full client 196

G
generated entities

customizing 94
cyclic references, preventing 96, 97
date, formatting for exhibition 98

named queries, creating 94, 95
time, formatting for exhibition 98

generic collections 12
getAttribute method 198
getMovies method 82
getTheaters method 82
global role

creating 241, 242
login form, creating 242-245
login procedure, testing 245, 246
mapping 241, 242

Grid Cache 315
Grid Entity 315
Grid Read 315
Growl

about 137
used, for displaying messages 137, 138

Growl component 135

H
hashing 230
High Availability (HA) database 307
HTTP Basic/Form authentication 230

I
identity approach 93
InfiniBand 11
initial-beans-in-free-pool element 218
INITIAL_CONTEXT_FACTORY

parameter 220
installation, JDK 1.7 24, 25
installation, MySQL 28, 29
installation, OEPE 28
installation, OpenLDAP 47, 48
installation, Oracle WebLogic Server 26, 27
interceptor class 169
interceptor method 169
interceptors

about 80, 169
and AOP 174
components 169
URL 191

Interceptors Javadoc
URL 191

[345]

J
JAAS 232
JAR Export wizard 72
JASPIC 230, 232
java:app prefix 329
java:comp prefix 329
java:global prefix 329
java:module prefix 329
Java Authentication and Authorization

Service (JAAS) 230
Java Authentication Service Provider Inter-

face for Containers. See JASPIC
JavaBeans specification

URL 190
JavaBeans tutorial

URL 190
Java Cryptography Extension (JCE) 230
Java EE 6

about 15
features 15

Java EE 6 features
Bean validation 15
EJB 3.1 15
Java EE Platform context injection 15
Java EE Platform dependency injection 15
Java Server Faces 2.0 16
JPA 2.0 16
JSF 2.0 16
RESTful Web Services Java API 15
Servlet 3.0 16

Java EE security
exploring 230

Java EE XML schemas
for DDs, URL 317

JavaFX 183
java.lang.AutoClosable interface 12
Java logging overview

URL 190
Java Message Service. See JMS
Java optional package 60
Java Persistence API 2.0. See JPA 2.0
Java Persistence API (JPA) 60, 90
Java Persistence Query Language. See JPQL
Java Remote Method Protocol (JRMP) 194
JavaServer Faces

composite components, using 266-268

overview 265, 266
Java Servlet 3.0 269
Java SE security

exploring 230
Java Transaction API (JTA) 145
javax.ejb.AsyncResult function 176
JAXB 89
JAX-RS

about 101
enabling, in web project 103
RESTful Services, exposing through 104,

105-108
JAX-RS Client API

about 89
persistence.xml file, completing 98

JAX-RS client libraries
configuring 111-113

JDBC application modules
URL 339

JDBC resources, WebLogic
URL 190

JDK 1.7
installing 24, 25
URL, for downloading 24

JDK 7
features 10, 11
overview 10
Project Coin 12-14

Jersey 1.9 101
JMS

about 198
and WebLogic 198
connection factory 206, 207
module 203, 204
persistent store 200-202
queue 205
server 202, 203
subdeployment 204

JMS 1.1 specification
URL 227

JMS connection factory 206, 207
JMS module

about 199, 203
application module 203
packaged module 203
standalone module 203
system module 203

[346]

JMS queue
about 145, 199, 205, 206
customer, publishing to 253, 254
security policies 254, 255

JMS Queue 104
JMS resource configuration

URL 339
JMS SAF client

about 195
enabling 220

JMS server
about 199, 202
creating, to use with code 203

JMS subdeployment 199, 204
JMS T3 SAF client 196
JMS thin client 195
JMS Topic 104
JMX client 196-198
JPA

used, for persisting object 145
JPA 2.0 16
JPA facet 60
JPA objects

caching, with TopLink Grid 315
JPA Project 60
JPQL 16, 69
JSF 2.0 266
JSF 2.1 76
JSR 303 127
JSR-311 101
JSR 315 269
JSR 317 63
JSTL 1.2 266

K
Kodo 60

L
LDAP server 47
LDAP user provisioning

testing 263
library

packaging 99, 100
Lightweight Directory Access Protocol. See

LDAP server

Linux
MySQL, installing on 28

local client view 105
Lock annotation 104
Log4J

integrating, to logging service 181
log file

accessing 182, 183
creating, for managed server 177
reading 182, 183
standard output, redirecting to 178-181

logging services, for application monitoring
URL 190

logging service, WebLogic
about 177
anatomy, of log message 177, 178
Log4J, integrating 181
log files, accessing 182, 183
log files, reading 182, 183
standard output, redirecting to

log file 178-181
URL 190

login bean
updating 256-258

login form
creating 242-245

login procedure
testing 245, 246

log interceptor
about 170
creating 170
implementing 170-174

log message
anatomy 177, 178

log message format, WebLogic
URL 190

loopback interface 32

M
machines

defining 284, 285
managed beans 79
Managed Server 139
Management Beans. See MBeans
MANIFEST.MF file 71, 72, 75
max-beans-in-free-pool parameter 218

[347]

MBeans 11
MDBs

about 249
creating 261, 262
messages, consuming from 215-217
thread limits, configuring for 217-219

message
consuming, from JMS queue 258-261
sending, to LDAP server 258-261

message component 135
used, for displaying messages 135, 137

Message Driven Bean. See MDBs
messages

consuming, with MDB 215-217
consumption 214
insertion 214
posting, from standalone client 207, 208
producer, coding 208-211
production 214
project, creating 208
queuing 211-215
sending through JMS SAF client,

URL for 227
Messages Current column 212
Messages Pending column 212
method interception 174
Microsoft Windows

MySQL, installing on 30-32
Middleware Home 27
miltary format 98
modularization 89
modules

application-scoped module, creating 326
application-scoped resource, access

restricting 327, 328
data sources, declaring with annotations

328-330
packaging, into application 325, 326

Mojarra 2.1.5 76
movie ticket system

about 56, 57
business entities 58, 59
business scenario 56, 57
projects organizing, in Eclipse IDE 60
StoreBO project, creating 60-64
Store web project 75, 76

MySQL
about 17
case sensitivity, disabling 30
downloading 29
installing 28, 29
installing on Linux, package manager

used 28
installing, on Microsoft Windows 30-32
URL, for downloading 29
URL, for installation 29

MySQL database connections
adding, to Eclipse IDE 45-47

MySQL databases
configuring 32, 33
referencing 42
WebLogic data source, creating 43-45

N
named bean

creating 79-82
Named Beans 169
named query

about 69
creating 69, 70, 94, 95

network attached storage (NAS) 200
Node Manager 283, 284
no-interface view 105
nonce 231

O
object

persisting, JPA used 145
Object-Relation Mapping framework 62
Observer Pattern

about 183
URL 191

OEPE
about 17, 321
configuring 38
features, supporting 17
installing 28
URL, for downloading 28

onMessage method 216
OpenLDAP

about 47

[348]

configuring 48-50
installing 47, 48
using 47

OpenLDAP authentication provider
configuring 235-238

OpenLDAP server
using 233

optional package 71
optional packages 34
Oracle Cloud Application Foundation. See

CAF
Oracle Coherence

about 17, 309, 310
application adjusting, for cache usage 313,

314
Coherence cluster, creating 311, 312
Coherence*Web storage, enabling 312, 313
sessions, replicating with Coherence*Web

310, 311
Oracle Exalogic

about 19
features 19

Oracle Home 27
Oracle HTTP Server (OHS) 181
Oracle Mojarra 33
Oracle Mojarra JavaServer Faces 2.0 266
Oracle TopLink 60
Oracle TopLink Version 12.1.2 62
Oracle Traffic Director 18
Oracle Tuxedo 19
Oracle Virtual Assembly Builder 19
Oracle WebLogic Server

installing 26, 27
standalone clients, URL 227
URL, for downloading 26

Oracle WebLogic Server 12.1.2 62
OSI Model 18

P
packaged module 203
package manager

used, for installing MySQL on Linux 28
perimeter authentication 231
persistence configuration file

referencing 78

persistence.xml file
about 70, 71, 73, 74, 78, 98
completing 98
tweaking 70, 71

persistent store 199-202
point-to-point 198
POJOs (Plain Old Java Object) 15
PrimeFaces

about 17, 33
binaries, downloading 33
shared library, creating 34, 36
URL 52
URL, for documentation 34
URL, for downloading 33

PrimeFaces shared library
referencing 39, 40, 76, 77

PrimeFaces themes 122
principals 229
Private Cloud in a Box platform 19
Project Coin

enhancements 12
objective 12

Project Coin enhancements
binary integral literals, manipulating 14
diamond operator 12
exception handling, multicatch statements

used 14
 switch statement Strings 13
try-with-resources feature 12, 13

projects
organizing, in Eclipse IDE 60

PROVIDER_URL parameter 220
publish/subscribe 198

Q
quality of service 230
query page

updating 117, 118

R
Redefinition task limit parameter 324
Refresh interval (seconds) parameter 324
Representational State Transfer. See REST
ReservationCodeBean class 304
reservation web service 155-157

[349]

resource 101
resource concept 16
resources, RESTful management services

monitoring 336, 337
REST 15, 101
REST client

creating 111
JAX-RS client libraries, configuring 111,

112, 113
query page, updating 117, 118
SearchManager bean, updating 115
web service consumer, creating 113, 114

RESTful management services
about 334, 335
enabling 335
resources, monitoring 336, 337
response, formatting 338
with Oracle WebLogic Server, URL 339

RESTful Services
exposing, through JAX-RS 104-108

RESTful web service 89
RESTful Web Services Jave API 15
RFE(Request for Enhancement) 11
Rich Internet Applications (RIA) 33, 281
RMI thin client 194

S
SAF. See Store-and-Forward client feature
SAML 230
sample entries

loading 50, 52
testing 50, 52

scalability 283
SDP 19
SDP support 11
SearchManager bean

updating 115
seat query

executing, REST web service used 149, 150,
152, 154

Secure Socket Layer (SSL) 231
security 229
Security Assertion Markup Language

(SAML) 231
security constraints specifications

declarative 229

programmatic 229
SECURITY_CREDENTIALS parameter 220
security policies

about 247
for JMS queue 254, 255

SECURITY_PRINCIPAL parameter 220
security realms 232, 233
security-role-assignment element 218
security roles assignments 234
server component, WebSockets

creating 277, 278
service migration

URL 317
service provider

testing 157-161
Service Provider Interface (SPI) 232
Servlet 3.0

about 16
modifications 16

Servlet 3.0 modifications
annotation support 16
asynchronous processing 16

servlet context listener 276
servlet-mapping 295
Servlet, tricks

about 269
asynchronous request processing 270, 272,

274
deprecated features 269
dynamic components, creating 275, 276
name, identifying 269, 270

shared library
about 266
creating 34, 36

ShowCase 34
URL 34

Simple and Protected GSS-API Negotiation
Mechanism (SPNEGO) 231

Simple Object Access Protocol. See SOAP
Single Point of Failure (SPOF) 139, 307
singleton

applying, to web services 144
singleton bean 127
singleton design pattern

URL 317
singleton service

about 140

[350]

creating 304-308
service client, adjusting 308, 309
using 304

singleton session beans
about 139
dealing, with concurrency 143, 144
implementing 140
startup annotation, using 141, 142

SOAP
about 127
and web service 154

Socket Direct Protocol. See SDP
soft load balancer

configuring 293-295
enabling 296, 297
Managed Server, creating for 295

split development directory environment
URL 339

SSL 230
standalone client

messages, posting from 207, 208
URL 227

standard output
redirecting, to log file 178-181

startup annotation
using 141, 142

Stateless Session Bean 104
static cluster

creating 287, 288
servers, starting 289

static invocation method 161
static query. See named query
Store 60
Store-and-Forward client feature

about 219
code, adjusting 224, 225
configuration file, adjusting 223, 224
configuration file, creating 221, 222
connection password, encrypting 223
JMS SAF client, enabling 220, 221
testing 226

StoreBO project
classes generating, from database tables 64,

66, 68
creating 60-64
named query, creating 69, 70

packing 71-75
persistence.xml file, tweaking 70, 71
referencing to 77, 78

Store web project
about 75, 76
deploying 86
named bean, creating 79-82
persistence configuration file, referencing

78
PrimeFaces shared library, referencing to

76, 77
StoreBO project, referencing to 77, 78
testing 86
test page, defining 83-86
web descriptor, configuring 82, 83

Strings, switch statement
about 13
example 13

Structured Query Language (SQL) 69
subject 229
Swing 183
synchronous execution 174
system module

about 203
creating, to use in projects 204

T
T3 client 194
T3 network protocol 8
T3Server (three-tier server) 8
target class 169
targeting 139
templates

applying, through Facelets 118-121
test page

defining 83-86
Theater 60
Theater entities

creating 90-94
generated entities, customizing 94
library, packaging 99, 100

Theater module 199
Theater web application

creating 100-102
JAX-RS, enabling 103, 104

[351]

Theme packages
URL, for downloading 34

ThemeRoller 34
URL 34

Thin T3 client. See T3 client
thread limits

configuring, for MDBs 217-219
ThreadLocalRandom class 11
time-to-live limit 205
token 231
TopLink Grid

about 315, 316
documentation, URL 317
home page, URL 316

transaction context
acquiring, manually 149

transaction contexts 145, 146
try block 12
try statement 13
try-with-resources feature

about 12
example 12

U
unitName attribute 82
unit testing 63
user

creating, on database 249-252
signing up 248

V
validation 128
validation messages

displaying 134
validation rules

combining 130, 131
grouping 130, 131

validation.xml file 128
validator object 131
virtual application

about 319
using 321

Virtual Private Networks (VPNs) 231
vocabulary 101

W
web application

entity listing page, creating 122-125
global role, creating 241, 242
global role, mapping 241, 242
securing 238
structuring 118
templates, applying through

Facelets 118-121
weblogic.xml descriptor file, modifying 240
web.xml descriptor file, modifying 238-240

Web Application Description Language
(WADL) 110

web beans 79
web descriptor

configuring 82, 83
WebLogic

and JMS 198
history 8
log files, creating for managed server 177
logging service 177

WebLogicCluster 295
WebLogic clusters & Multi-tier architectures

URL 317
WebLogic data source

creating 43-45
WebLogic domain

setting up 36-38
Weblogic EJBGen reference

URL 227
WebLogic JMS

URL 227
WebLogic JMS Thin Client

URL 227
WebLogic resources

protecting 247
WebLogic runtime environment

linking 38, 39
WebLogic Scripting Tool. See WLST
WebLogic security

about 230, 231
authentication providers 232
security realms 232, 233

WebLogic Server 335

[352]

WebLogic Server 12c
about 8, 19
features 9

WebLogic Server 12c features
built-in CAT 9
certified with JDK 6 9
certified with JDK 7 9
Coherence 12.1.2 9
dynamic clustered JMS Servers 10
dynamic clusters 10
enhanced WebLogic Maven support 9
full Java EE 6 support 9
Glassfish to WebLogic deployment

descriptor support 9
JDBC Store for JTA logs 9
OSGi bundles 10
server templates 10
WebSockets support 10

WebLogic Server application classloading
URL 339

WebLogic Server instance
linking 40-42

WebLogic Server MBean reference
URL 227

WebLogic Universal Test Client (ws_utc)
157

weblogic.xml descriptor file
modifying 240

web project
JAX-RS, enabling 103

web resources
about 52, 53, 87, 125, 126, 190, 316
Coherence links 22
Java EE 6 links 20
Java links 20
other tools 22
WebLogic 12c links 22

web service
about 89
and SOAP 154
consuming 161-166
singleton, applying 144
testing 108, 110

web service consumer
creating 113, 114

WebSockets
about 277
component, testing 279, 280
encrypted connection, using 280
server component, creating 277, 278
using 277

web.xml deployment descriptor 234
web.xml descriptor file

modifying 238-240
web.xml file 86
wlclient.jar. See RMI thin client
WLDF architecture

URL 190
wlfullclient.jar. See Full client
wljmsclient.jar. See JMS thin client
wljmxclient.jar. See JMX client
wlsafclient.jar. See JMS SAF client
wlsaft3client.jar. See JMS T3 SAF client
WLST 326
wlthint3client.jar. See T3 client
WS-Addressing entries 161

X
XA 221
XAConnectionFactory 207
XA-enabled resource 206

Thank you for buying
Getting Started with Oracle WebLogic

Server 12c: Developer's Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Oracle Enterprise Manager 12c
Administration Cookbook
ISBN: 978-1-84968-740-9 Paperback: 324 pages

Over 50 practical recipes to install, configure, and
monitor your Oracle setup using Oracle Enterprise
Manager

1.	 Recipes for installing, configuring, and getting
up and running with Oracle Enterprise
Manager

2.	 Set up automatic discovery, create and clone
databases, and perform provisioning

3.	 Monitor Oracle Fusion Middleware,
and remotely use incident and problem
management using iPad/iPhone

Oracle APEX 4.2 Reporting
ISBN: 978-1-84968-498-9 Paperback: 428 pages

Learn how to build complex reporting solutions using
Oracle APEX

1.	 Provides an introduction to the APEX
architecture and is a step-by-step guide to
setting up the APEX environment on Weblogic

2.	 Integrations of the reports with the most
popular reporting technologies and generation
of exotic and typical reports alike

3.	 Packed with complex APEX applications
to help you learn newer ways of fulfilling
reporting requirements in APEX

Please check www.PacktPub.com for information on our titles

OCA Oracle Database 11g:
Database Administration I: A
Real-World Certification Guide
ISBN: 978-1-84968-730-0 Paperback: 582 pages

Learn how to become an Oracle-certified database
administrator

1.	 Prepare for Oracle Database Administration I
certification

2.	 Learn real world skills in database
administration

3.	 Written in an example driven format with step-
by-step real world examples

Oracle Data Integrator 11g
Cookbook
ISBN: 978-1-84968-174-2 Paperback: 352 pages

Over 60 field-tested recipes for successful data
integration projects with Oracle Data Integrator

1.	 Clear, step-by-step recipes to walk you through
some of the most advanced features of Oracle
Data Integrator

2.	 Covers everything from administration,
to development, to deployment, including
advanced coding techniques using the Oracle
Data Integrator SDK

3.	 Numerous code samples, screenshots,
diagrams, and best practice recommendations

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Overview of WebLogic
Server 12c and
Related Technologies
	Introducing Oracle WebLogic Server 12c
	WebLogic Server @ Oracle
	Most relevant features

	Overview of JDK 7
	The Project Coin
	The diamond operator
	The try-with-resources statement
	Strings in switch statements
	Manipulating binary integral literals
	Exception handling with multicatch statements

	Delving into Java EE 6
	Other technologies in the book
	Oracle Enterprise Pack for Eclipse
	Oracle Coherence
	PrimeFaces
	MySQL

	The Cloud Application Foundation (CAF)
	Oracle Traffic Director
	Oracle Tuxedo
	Oracle Virtual Assembly Builder
	Oracle Exalogic and WebLogic 12c

	Web resources
	Java and Java EE 6
	WebLogic 12c
	Coherence
	Other tools

	Summary

	Chapter 2: Setting Up the Environment
	About the directory structure
	Installing JDK 1.7
	Installing Oracle WebLogic Server
	Installing Oracle Enterprise Pack for Eclipse (OEPE)
	Installing MySQL
	Installing on Linux using a package manager
	Downloading and installing manually
	Disabling case sensitivity for tables on Unix/Linux
	Some Windows specifics
	Configuring MySQL databases

	Preparing PrimeFaces
	Downloading the binaries
	Creating a shared library

	Setting up a WebLogic domain
	Configuring Eclipse and OEPE
	Linking WebLogic's runtime environment
	Adding a reference to the PrimeFaces' shared library
	Linking WebLogic Server's instance

	Referencing MySQL databases
	Creating WebLogic data sources
	Adding database connections to Eclipse

	Using OpenLDAP
	Installing OpenLDAP
	Configuring an OpenLDAP server
	Loading sample entries and testing

	Web resources
	Summary

	Chapter 3: Java EE Basics – Persistence, Query, and Presentation
	The business scenario – movie
ticket system
	Business entities of the system

	Organizing projects in Eclipse
	Creating the StoreBO project
	Generating classes from database tables
	Creating named queries
	Tweaking the persistence.xml file
	Packing the project

	The Store web project
	Adding references to PrimeFaces'
shared library
	Adding references to StoreBO
	Referencing the persistence configuration file
	Creating a named bean
	Configuring the Web descriptor
	Defining the test page
	Deploying and testing the application

	Web resources
	Summary

	Chapter 4: Creating RESTful
Services with JAX-RS
	Creating Theater entities
	Customizing the generated entities
	Creating named queries
	Preventing cyclic references
	Formatting exhibitions' date and time

	Completing the persistence.xml file
	Packaging the library

	Creating the Theater web application
	Setting up the project
	Enabling JAX-RS

	Exposing RESTful Services through
JAX-RS
	Coding the API
	Testing the web service

	Creating the REST client
	Configuring JAX-RS client libraries and optional package
	Creating the web service consumer
	Updating the SearchManager bean
	Updating the query page

	Structuring the web application
	Applying templates through Facelets
	Creating an entity listing page

	Web resources
	Summary

	Chapter 5: Singleton Bean, Validations, and SOAP Web Services
	Using bean validation
	About built-in constraints
	Combining and grouping validation rules
	Creating a custom constraint
	Coding a constraint validator

	Showing validation messages
	Using the message component
	PrimeFaces's Growl

	Dealing with null and empty strings on JSF components

	Singleton session beans
	Implementing a singleton session bean
	Understanding how to use the startup annotation
	Establishing a startup and shutdown sequence

	Dealing with concurrency when using singletons
	Singleton applied to web services

	Persisting an object using JPA
	Understanding the available transaction contexts
	Using container-managed transactions
	Using bean-managed transactions
	Acquiring a transaction context manually

	A brief intermission
	Web services and SOAP
	The reservation web service
	Testing the service provider
	Consuming the service

	Web resources
	Summary

	Chapter 6: Using Events, Interceptors, and Logging Services
	Understanding interceptors
	Creating a log interceptor
	Interceptors and Aspect Oriented Programming

	Using asynchronous methods
	Understanding WebLogic's logging service
	Anatomy of a log message
	Redirecting standard output to a log file
	Integrating Log4J to WebLogic's logging services
	Accessing and reading log files

	Events
	Defining audit events

	Web resources
	Summary

	Chapter 7: Remote Access with JMS
	WebLogic clients
	Thin T3 client – wlthint3client.jar
	RMI thin client – wlclient.jar
	JMS thin client – wljmsclient.jar
	JMS SAF client – wlsafclient.jar
	JMS T3 SAF client – wlsaft3client.jar
	Full client – wlfullclient.jar
	JMX client – wljmxclient.jar

	Java Messaging Service (JMS) and WebLogic
	The persistent store
	The JMS server
	The JMS module
	The JMS subdeployment
	The JMS queue
	The JMS connection factory

	Posting messages from a standalone client
	Creating the project
	Coding the message producer
	Queuing messages

	Consuming messages with an MDB
	Configuring thread limits for MDBs
	The Store-and-Forward client feature
	Creating the configuration file
	Encrypting the connection password
	Adjusting the configuration file
	Adjusting the code
	Testing the SAF client
	Web resources

	Summary

	Chapter 8: Adding Security
	Exploring Java SE and Java EE security
	WebLogic security
	Authentication providers and security realms

	Using an external LDAP server
	Configuring an OpenLDAP authentication provider

	Securing the web application
	Modifying the web.xml descriptor file
	Modifying the weblogic.xml descriptor file
	Creating and mapping a global role
	Creating the login form
	Testing the login procedure

	Protecting WebLogic resources
	Signing up a user and OpenLDAP
	Creating a user on the database
	Publishing a customer to a JMS queue
	Security policies for the JMS queue
	Updating the login bean

	From the JMS queue to the LDAP server
	Creating the LDAP client
	Creating the MDB
	Testing LDAP user provisioning
	Completing the application

	Web resources
	Summary

	Chapter 9: Servlets, Composite Components, and WebSockets
	Overview of JavaServer Faces
	Using composite components

	Learning a few Servlet tricks
	Deprecated features
	Identifying the default name of a servlet
	Asynchronous request processing
	Creating dynamic components

	Using WebSockets
	Creating the server component
	Testing the component
	Using an encrypted connection

	Web resources
	Summary

	Chapter 10: Scaling Up the Application
	Introducing the Node Manager
	Defining machines
	Using Cluster and Managed Servers
	Creating a static cluster
	Creating a dynamic cluster

	Configuring a software load balancer
	Creating a new Managed Server for load balancing
	Enabling the load balancer
	Retargeting applications and resources
	Updating web.xml of clustered web applications
	Retargeting auxiliary components
	Making the application cluster friendly
	Changing deployment target from Eclipse

	Using a singleton service
	Creating a singleton service
	Adjusting the service client

	Using Oracle Coherence
	Replicating sessions with Coherence*Web
	Creating a Coherence cluster
	Enabling Coherence*Web storage
	Adjusting the application to use the cache

	Caching JPA objects with TopLink Grid

	Web resources
	Summary

	Chapter 11: Some WebLogic Internals
	Understanding deployment structures
	Packaging as an archived file
	Using an exploded archive directory
	Using a virtual application
	Configuring the deployment model

	Using FastSwap to reduce deployment time
	Packaging modules into an application
	Creating an application-scoped module
	Restricting access to an application-scoped resource
	Declaring data sources using annotations

	Using the Classloader Analysis Tool (CAT)
	Starting CAT
	Finding potential conflicts

	Using RESTful management services
	Enabling the management service
	Monitoring resources
	Formatting the response

	Web resources
	Summary

	Index

