
www.allitebooks.com

http://www.allitebooks.org


Getting Started with OrientDB

A practical guide to learn, deploy, and customize 
OrientDB 

Claudio Tesoriero

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org


Getting Started with OrientDB

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the author, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2013

Production Reference: 2131113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-995-6

www.packtpub.com

Cover Image by Abhishek Pandey (abhishek.pandey1210@gmail.com)

www.allitebooks.com

http://www.allitebooks.org


Credits

Author
Claudio Tesoriero

Reviewers
Andrey Lomakin

Artem Orobets

Acquisition Editor
Kunal Parikh

Commissioning Editor
Harsha Bharwani

Technical Editors
Krishnaveni Haridas

Mrunmayee Patil

Project Coordinator
Deenar Satam

Proofreaders
Kelly Hutchinson

Joanna McMahon

Indexers
Tejal Soni

Priya Subramani

Graphics
Abhinash Sahu

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org


About the Author

Claudio Tesoriero is an OrientDB Certified Developer and a senior software 
engineer with 20 years of experience in Information Technology. He started his 
career with the Italian Ministry of the Treasury before moving on to work for  
the Bull Group (www.bull.com), where he got involved in projects developed 
for Telecom Italia (www.telecomitalia.it) and in R&D projects developed 
in collaboration with the Rome Tor Vergata University. He then worked for 
FutureSpace Spa (www.futurespace.it) and he participated in the implementation 
of various projects for the government administration at the time. Currently, he 
is the cofounder of BaasBox, a solution of Backend as a Service based on the Play! 
Framework and OrientDB.

First and foremost, I would like to thank Packt Publishing and all the 
staff, especially Miss Harsha Bharwani and Mr. Siddhant Shetty, for 
giving me the opportunity to write about OrientDB, which I think is 
one of the most powerful NoSQL databases currently available.

I would also like to thank Luca Garulli, CEO at Orient Technologies 
Ltd., for his great job on OrientDB and for the support and help he 
has given to me and other enthusiastic OrientDB fans, and of course 
for the great time we spent together during our dinners of pizza.

I would like to also say a big thank you to my wife Micol and my 
children Beatrice and Elisa for their patience and support.

www.allitebooks.com

http://www.allitebooks.org


About the Reviewers

Andrey Lomakin is working as a software architect in Return On  
Intelligence projects.

He is an active committer of the OrientDB project, he is an author of composite  
and hash indexes. He has implemented several improvements in the SQL engine, 
mostly related to index usage.

His main areas of expertise include high performance computing and modern  
approaches to the implementation of business logic in enterprise applications:  
EDA, CQRS, Qi4j, and so on.

I want to thank two people who have always supported me in my 
work on the OrientDB project.

They are my mother, and my best friend Marina Melnik.

Without their support, many already implemented features would 
still be in the planning stage.

www.allitebooks.com

http://www.allitebooks.org


Artem Orobets is a committer of the OrientDB community. He has provided 
contributions such as the introduction of composite indexes, improvements in index 
creation and processing speed, and improvements in query language.

He is currently working as a software engineer at Orient Technologies Ltd., where he 
designs and maintains OrientDB.

I would like to thank my parents, grandparents, and family. This 
book is dedicated to the friends who have supported me through my 
many endeavors, to those who have contributed to OrientDB, and 
also to those who have developed such an amazing project.

www.allitebooks.com

http://www.allitebooks.org


www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related 
to your book. 

Did you know that Packt offers eBook versions of every book published, with PDF 
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy. 
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign 
up for a range of free newsletters and receive exclusive discounts and offers on Packt 
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online  
digital book library. Here, you can access, read and search across Packt's entire 
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view nine entirely free books. Simply use your login credentials 
for immediate access.

www.allitebooks.com

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


Table of Contents
Preface	 1
Chapter 1: Installing OrientDB	 7

Standard Edition	 7
Graphed Edition	 8
Key/Value Edition	 8
Enterprise Edition	 9
Installing from the latest stable release	 9

Installing the Standard Edition	 9
Installing the Graphed Edition	 12

Compiling from the latest source snapshot	 13
Running the test suite	 15

Installing as a daemon/service	 15
Linux systems	 15
Windows systems	 16

Summary	 17
Chapter 2: Administering OrientDB	 19

Configuration	 21
orientdb-server-config.xml	 21
orientdb-dserver-config.xml	 22

The OrientDB console	 22
OrientDB data files	 24
Classes	 25

Abstract classes	 27
Security	 28

Rules	 28
Roles	 29
Users	 31
Server users	 32

www.allitebooks.com

http://www.allitebooks.org


Table of Contents

[ ii ]

Record-level security	 33
The OrientDB Studio	 35

The Database section	 37
The Query section	 38
The Document section	 38
The Functions section	 38
The Graph section	 38
The Raw access section	 39
The root user	 39

Back up / restore	 41
Using the console	 41
Using the OrientDB Studio	 42
Automatic backup	 42

Summary	 44
Chapter 3: Programming OrientDB	 45

Data types	 47
Extended SQL	 48

Creating a database	 49
Creating classes	 51
Inserting records	 51
Deleting records	 52
Reading and updating records	 52

Fields	 55
Schema-full classes and the mixed-mode schema	 58
Relationships	 61

One-to-one and one-to-many relationships	 61
Many-to-many relationships	 63
Traversing the relationships	 64
SQL functions	 68

The graph database	 69
Using the JDBC driver	 73
Other language drivers such as PHP	 74
The native Java API	 74

Opening a connection	 75
Connection pools	 76

Executing SQL queries	 76
Executing SQL commands	 78
Create, load, update, and delete a document	 78
Object database support	 79

RESTful APIs	 81
Transactions	 82



Table of Contents

[ iii ]

Transactions within REST calls	 82
Summary	 83

Chapter 4: Performance Tuning	 85
Caching	 85
General Optimizations	 88

The JVM optimization	 88
Memory and cache	 89
Mapping files	 89
Connections	 90
Transactions	 91

Massive insertions	 92
Datafile fragmentation	 93
The profiler	 93
Query tips	 94

The explain command	 94
Indexes	 95
Looking for @rid values	 96

Summary	 96
Chapter 5: Advanced Features	 97

Embedded mode	 98
Server-side code	 98

Server-side function features	 99
Creating a function	 99
Usage	 103

Java API	 104
RESTful calls	 104

Special variables	 104
Hooks	 107
Triggers	 108
Gremlin support	 109

Gephi	 110
Clustering	 112

How it works	 112
Replication	 113

Configuration and setup	 113
Sending e-mails through OrientDB	 115

Usage	 115
Summary	 116

Index	 117





Preface
In modern software applications, often there is the necessity to manage very large 
amounts of data. These are often unstructured and their schema may vary according 
to marketing rules or other external factors which you can't control. In this scenario, 
relational databases would not be the right choice.

This is where NoSQL databases come in, in particular the graph-based ones.

In graph databases, data is modeled like in a graph. Each piece of information is a 
node and links between them are edges.

They are a very young product and they were designed to satisfy modern necessities 
regarding the management of large amounts of data, often without a fixed schema 
or with a fluid schema that may vary very often even when the software is in 
production. Furthermore, this data could be related to each other in multiple ways.  
A great example of this is social networks.

They must manage billions of records and connect, traverse, and perform queries  
in a snap.

OrientDB is an open source document-graph NoSQL database born at the end of the 
last decade, but its algorithms and concepts have a long story that began in the late 
90s when its authors wrote an object database.

Now, OrientDB is a very strong, mature, and robust platform. It has reached  
Version 1.5.0 and its community and committers are very active, and they are already 
working on a new version. OrientDB is used in production by many companies.

Some of these companies are listed at https://github.com/nuvolabase/
orientdb/wiki/Production-Deployments.



Preface

[ 2 ]

What this book covers
This book is intended to be a beginner's guide to help you get started with OrientDB. 
It is a quick reference to the most common OrientDB tasks, from administrative ones 
to deployment, from designing a graph database to the different ways to perform 
queries and consume data.

Chapter 1, Installing OrientDB, provides an introduction to the OrientDB world as 
well as a quick guide to help you set up and run OrientDB.

Chapter 2, Administering OrientDB, explains the database architecture, data files 
structure, user management and security, and administration tools.

Chapter 3, Programming OrientDB, shows you how to perform operations against the 
database, covering the multiple modes supported by OrientDB to interact with it.

Chapter 4, Performance Tuning, gives some advice and tips for every possible use, 
since OrientDB can be used in several different scenarios.

Chapter 5, Advanced Features, covers several advanced features provided by OrientDB. 
And since it is a very active project, many of them are released and updated 
continuously. In this chapter, some of the features are discussed.

Appendix, contains quick references to the OrientDB embedded SQL-like parser  
and the native Java API interface as well as a list of the many configuration 
parameters available to control the server behavior. This appendix is available 
at http://www.packtpub.com/sites/default/files/downloads/9956OS_
Appendix.pdf.

To complete the book, a convenient list of links and references to useful online 
sources about OrientDB is provided as well. This list is available at http://www.
packtpub.com/sites/default/files/downloads/9956OS_OrientDB_1.5.0.pdf.

What you need for this book
To run OrientDB, it is necessary that you have a system capable to run at least  
Java SE 6.

To build from source code, it is necessary to have at least JDK 6, the Ant tool  
Version 1.6.5 or above, and Maven.

To get the source code, you can use Git, but this is not mandatory since the entire 
repository hosted by GitHub may be downloaded as a ZIP file.



Preface

[ 3 ]

Who this book is for
This book is great for database designers, developers, and systems engineers.

It is assumed that you are familiar with NoSQL concepts and have some experience 
with Java already.

For some topics like clustering, it's assumed that you have a basic knowledge of 
networking principles.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text are shown as follows: "Download the orientdb-1.3.0.tar.gz 
file from the OrientDB site and extract its content in a directory on your system."

A block of code is set as follows:

mail.send({
  profile: "default",
  to: "admin1@example.com,admin2@example.com",
  cc: "supervisor@example.com",
  subject: "Something happend!",
  message : "Alert! Something happend on OrientDB server!"
});

When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

ODocument doc = new ODocument();
for(int i=0; i< 9999999; i++){
  doc.reset(); //here you will reset the ODocument instance
  doc.setClassname("Author");
  doc.field("id", i);
  doc.field("name", "John");
  doc.save();
}



Preface

[ 4 ]

Any command-line input or output is written as follows:

ORIENTDB_DIR="YOUR_ORIENTDB_INSTALLATION_PATH"

ORIENTDB_USER="USER_YOU_WANT_ORIENTDB_RUN_WITH"

New terms and important words are shown in bold. Words that you see on the 
screen, in menus or dialog boxes for example, appear in the text like this: "Clicking 
on the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you.



Preface

[ 5 ]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do 
happen. If you find a mistake in one of our books—maybe a mistake in the text or the 
code—we would be grateful if you would report this to us. By doing so, you can save 
other readers from frustration and help us improve subsequent versions of this book. 
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list 
of existing errata, under the Errata section of that title. Any existing errata can be 
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.





Installing OrientDB
There are several editions of OrientDB Server, each of them meets some criteria, and 
you have to choose which one you need. Keep in mind, however, that the data files 
are compatible through the server versions, so you can switch from one version to 
another anytime.

The three available versions are:

•	 OrientDB Standard Edition
•	 OrientDB GraphEd Edition
•	 OrientDB Enterprise Edition

There was another version which was focused on the key/value pair's management. 
It was called OrientKV Server but now it has deprecated and is no longer supported. 
In fact, the other versions of OrientDB have the capability to manage the key/value 
indexes as well, so if you need to manage large associative arrays or very big hash 
tables, you can use them to do that.

Standard Edition
The Standard Edition is the "main" edition of OrientDB; the other ones are extensions 
of the Standard Edition and add some specific capabilities to it.

The Standard Edition is shipped with a rich set of out of the box features; all of them 
are immediately available after the server installation.

Some of these features are:

•	 Graph database support
•	 Document database support
•	 Object database support

www.allitebooks.com

http://www.allitebooks.org


Installing OrientDB

[ 8 ]

•	 Dictionary indexes support
•	 A SQL-like query language
•	 Transaction support
•	 Hooks (a sort of trigger, but at the system level rather than class level)
•	 Custom SQL function (to write your own functions in Java to expand the 

SQL parser)
•	 Stored procedures
•	 Plugin support to add features to the server's core
•	 REST interface
•	 Java API library
•	 Clustering
•	 Command-line administration console
•	 Web-based administration console (OrientDB Studio)

Graphed Edition
The Graphed Edition adds the TinkerPop Blueprints interface and the Gremlin 
query language to the Standard Edition.

Note that the Graphed Edition does not add the graph capabilities to OrientDB.

Relations through edges and other graph features are first-class capabilities in 
OrientDB, and are present in the Standard Edition too.

The Graphed Edition provides a layer on top of the OrientDB databases, so you can 
manage them through the Blueprints interface and provide the support to use the 
Gremlin language, if you want to use this de-facto query language for the graph 
databases instead of the OrientDB SQL-like language.

Key/Value Edition
The OrientDB Key Value server has not been supported since April 2011, and its 
source code was removed from the public repository in January 2013.

Its functionalities are available in the other versions.



Chapter 1

[ 9 ]

In fact, each new OrientDB database has a special structure called Dictionary. The 
scope of the dictionary is to provide key/value management features to implement, 
for example, lookup tables, caches, and logs. You can also define as many 
dictionaries as you like, as per you needs.

Enterprise Edition
The Enterprise Edition will be released in 2013 and will add enterprise-class  
features to the Standard Edition, like an advanced monitoring cockpit, a collection 
of metrics related to the servers and clusters, Business Intelligence capabilities, and 
professional support.

Installing from the latest stable release
To install OrientDB you have to download its latest stable release, and you must 
have a Java virtual machine (Java SE 6 or above) installed on your target system.

Since the JVM is the only requirement to run an OrientDB server, this means it can be 
installed on any system supported by the Java platform, even the Raspberry Pi!

You can find the binary packages on the OrientDB official site: www.orientdb.org.

Currently, the 1.3.0 version is available and you can find two packages under the 
download section:

•	 orientdb-1.3.0.tar.gz which is a standard edition
•	 orientdb-graphed-1.3.0.tar.gz which is a graph edition

Installing the Standard Edition
Download the orientdb-1.3.0.tar.gz file from the OrientDB site, and extract its 
content to a directory on your system.

Now you should have a directory tree similar to the structure shown as follows:

/orientdb-1.3.0

/benchmarks

/bin

/config

/databases

/lib

/log



Installing OrientDB

[ 10 ]

/www

 history.txt

 license.txt

 readme.txt

The following is an explanation for the preceding directory tree structure:

•	 benchmarks: scripts to perform several benchmark tests
•	 bin: scripts to run and to stop the server and the command-line console
•	 config: XML configuration files
•	 database: default path for the database files
•	 lib: the JAR files
•	 log: default path for the server logfiles
•	 www: the OrientDB Studio web application
•	 history.txt: the change logfile
•	 license.txt: the Apache 2 license
•	 readme.txt: instruction to build OrientDB from the source code

To run the server, just go into the bin directory, and launch the server.bat  
(on Windows OS) or server.sh (on Unix/Linux systems).

If you are using a Unix-based system, you may have to set the execution permission 
to the script files:

chmod +x ./bin/*.sh

If you plan to run OrientDB outside the bin directory, you have to set the  
bin path in the PATH environment variable, furthermore you have to set the 
ORIENTDB_HOME environment variable to the path's directory in which you  
extracted the tar.gz package.

The ORIENTDB_HOME variable is used by the scripts to guess the OrientDB position.

Now you can launch the server.

In the bin directory there are several scripts, for both Windows and Linux:

•	 aserver.*: just ignore them, they are experiments for the next releases
•	 console.*: run the command-line console
•	 dserver.*: run the server in distributed mode



Chapter 1

[ 11 ]

•	 orientdb.sh: script to run/stop OrientDB as a daemon on Unix-like systems
•	 server.*: run the server
•	 shutdown.*: shutdown the server in a clean way (that is, do not kill it)

Type server.bat (on Windows) or ./server.sh 
(on Unix/Linux).

You should have an output similar to this:

2013-04-19 09:20:21:600 INFO OrientDB Server v1.3.0 (build @BUILD@) is 
starting up... [OServer]

2013-04-19 09:20:22:936 INFO -> Loaded memory database 'temp' [OServer]

2013-04-19 09:20:23:148 INFO Listening binary connections on 0.0.0.0:2424 
[OServerNetworkListener]

2013-04-19 09:20:23:151 INFO Listening http connections on 0.0.0.0:2480 
[OServerNetworkListener]

2013-04-19 09:20:23:181 INFO Installing GREMLIN language v.2.2.0-SNAPSHOT 
[OGraphServerHandler]

2013-04-19 09:20:23:195 INFO OrientDB Server v1.3.0 is active. [OServer]

Now you can run the console to connect to the server and try some simple commands.

In another terminal window, go to the bin directory and launch the console script.

Type ? and see all the available commands:

The first command you have to supply is the connect command, to connect  
to a server:

connect remote:127.0.0.1/demo admin admin

The server replies:

Connecting to database [remote:127.0.0.1/demo] with user 'admin' ...OK

orientdb>

You can try the simple command:

info

OrientDB is shipped with a demo database, moreover, 
it starts an in-memory database called temp.



Installing OrientDB

[ 12 ]

To exit from the console, type:

exit

Now to shutdown the server, go to the bin directory and launch the shutdown script.

Installing the Graphed Edition
The procedure is similar to that used for the Standard Edition.

Go to the download page www.orientdb.org and grab the orientdb-graphed-
1.3.0.tar.gz file.

Once you have downloaded the file, unzip it in a convenient directory.

The tree structure is same as that of the Standard Edition. There are some differences 
in some of them:

•	 bin: there are the gremlin.* scripts to run the Gremlin scripts from 
command line, batches, and shells

•	 databases: there is the Tinkerpop demo database instead of the  
OrientDB one

•	 lib: in addition to the OrientDB libraries, there are also the libraries of the 
Tinkerpop Stack, and other necessary JARs

Again to run the server, just go into the bin directory, and launch the server.bat 
(on Windows OS) or server.sh (on Unix-like systems).

Remember to set the right execution permission to the script files:

chmod +x ./bin/*.sh

and to set the ORIENTDB_HOME environment variable.

Check if another instance of OrientDB is running. If 
so, terminate it to avoid the port binding conflicts.

Once the server is started, take a look at the last two output rows. Here you can see if 
the Gremlin language support is loaded:

2013-04-19 09:20:23:181 INFO Installing GREMLIN language v.2.2.0-SNAPSHOT 
[OGraphServerHandler]

2013-04-19 09:20:23:195 INFO OrientDB Server v1.3.0 is active. [OServer]



Chapter 1

[ 13 ]

Now you can run the console tool from another terminal window. Also, in this case, 
you should see a notice indicating that the Gremlin language support is available.

In other terminal, go to the bin directory and launch the console command:

OrientDB console v.1.3.0 (build 16) www.orientechnologies.com

Type help to display all the commands supported.

Installing extensions for GREMLIN language v.2.2.0-SNAPSHOT

orientdb>

OrientDB Graphed Edition is shipped with the Tinkerpop demo database.

Try to connect to the db:

connect remote:127.0.0.1/tinkerpop admin admin

And then try to execute the info command:

info

To exit from the console type:

exit

Compiling from the latest source 
snapshot
The source code is available through the GitHub platform at the URL  
http://github.com/nuvolabase/orientdb.

Since the build process will put the generated file in a directory called release, 
which will be a sibling of the source directory, I suggest you create a directory just 
for OrientDB. Inside that directory create a new directory to place the downloaded 
source code.

You can download the latest source code by selecting the master branch and 
downloading the master.zip file using the ZIP button.

Otherwise, you can clone the GIT repository on your machine using git. Type:

git clone git://github.com/nuvolabase/orientdb.git

To build OrientDB from source code you must have a JDK SE 6 or above, and the 
Ant Tool version 1.6.5 or above.



Installing OrientDB

[ 14 ]

You can download Ant from http://ant.apache.org/.

Please note that the ant executable directory must be included in the PATH 
environment variable.

Once you have downloaded the source code and installed the necessary tool, you can 
proceed to build OrientDB.

Go into the source code directory and type:

ant clean install

You can also launch the build.bat (or build.sh in Unix-like system), however 
these scripts call ant.

To build the Graphed Edition too, type:

ant clean installg

At the end of the build process you should have a screen shown as follows:

The generated files are in the release\orientdb-x.y.z-SNAPSHOT and release\
orientdb-graphed-x.y.z-SNAPSHOT directories, where x.y.z is the current version 
under development.



Chapter 1

[ 15 ]

Running the test suite
To run the test suite against a freshly-built OrientDB snapshot, you can type the 
following command:

ant test

After the test suite has finished (you should have 0 errors), in the database directory 
of the Standard Edition, you should have some databases created to run the tests, 
including the demo database.

There are another set of tests that need of Maven to be executed.

So, if you want to execute these tests you must download Maven from  
http://maven.apache.org/download.cgi

and install it following the instruction provided in the readme.txt file within the 
installation package.

Once you have Maven on your system, you can type:

mvn clean test

Installing as a daemon/service
OrientDB can run as a background process. The setup process depends on the  
server platform.

Linux systems
OrientDB is shipped with a script that can be used to run OrientDB like a daemon.

It supports the start/stop/status parameters and can be configured to execute 
OrientDB with a specified user's credentials.

The script is orientdb.sh and is located in the /bin directory of the installation path.

You must open it and change the first lines:

ORIENTDB_DIR="YOUR_ORIENTDB_INSTALLATION_PATH"

ORIENTDB_USER="USER_YOU_WANT_ORIENTDB_RUN_WITH"

Set the installation path and the user as stated, save the script, and deploy like other 
scripts for the other daemon.

Different Linux distribution uses different ways to manage the start/stop process at 
the system bootstrap/shutdown.



Installing OrientDB

[ 16 ]

Windows systems
Since OrientDB is a Java application, it does not offer any native way to run as a 
Windows service.

However, there are some tools that can be wrapped with any executable so that it 
can be installed and managed as a Windows service.

The correct procedure to do this is illustrated at the wiki page https://github.
com/nuvolabase/orientdb/wiki/Wrapping-As-A-Windows-Service. The steps 
are as follows:

1.	 You must download the Apache Commons Daemon tools for your system. 
The latest version is available at: http://www.apache.org/dist/commons/
daemon/binaries/windows/.

2.	 Download and unzip it.
3.	 You will find a prunsrv.exe file in the root directory. This is the file for 

x86/32 bit systems. In the directory amd64 there is a version of the prunsrv.
exe file for x86/64 architectures, while the directory ia64 contains a version 
of the prunsrv.exe file for the Itanium machines.

4.	 Let's say you have installed OrientDB in the %ORIENTDB_HOME% directory, you 
have to create a new directory called %ORIENTDB_HOME%/service.

5.	 Copy to this new directory the two .exe files shipped with the Apache 
Commons Daemon tools: prunmgr.exe and prunsrv.exe, according to the 
architecture of your machine.

6.	 Rename prunsrv.exe to OrientDB.exe, and prunmgr.exe to OrientDBw.exe.
7.	 Copy to the same directory the file installService.bat.
8.	 In order to execute this script you must locate the jvm.dll file installed on your 

system. Generally this file is in the %JAVA_HOME%\jre\bin\server directory.
9.	 Assuming that Java is installed in the C:\Program Files\Java\

jdk1.6.0_37 path, and that OrientDB is installed in the C:\OrientDB\
releases\orientdb-1.4.0-SNAPSHOT directory, you must type the 
following command:
installService.bat "C:\Program Files\Java\jdk1.6.0_37\jre\bin\
server\jvm.dll" C:\OrientDB\releases\orientdb-1.4.0-SNAPSHOT

10.	 Now you can open the Windows Services Management Console and see 
OrientDB listed as a service.



Chapter 1

[ 17 ]

Summary
In this chapter, we had our first encounter with OrientDB. We have seen the 
available versions, have learned to build it from the latest available source code,  
and have run a server instance.

We have also seen how to deploy it as a Windows service.

In the next chapter, we will go into more detail about the OrientDB architecture. We 
will explore the first basic concepts, such as how the data are organized and stored 
on filesystem, the security framework, and how to perform administrative tasks 
using the embedded tools.

www.allitebooks.com

http://www.allitebooks.org




Administering OrientDB
Before starting to administer a server, you have to know how it is structured and 
how each component fits into the big picture.

The following diagram shows the OrientDB general architecture:

WEB Browser

OrientDB

Server
Console Studio

Binary

Protocol
Core

Handlers

REST

API

REST

API

Clients

Hazelcast

OrientDB

Server

OrientDB

Server

OrientDB

Server

Console

Drivers

Java API

Clients



Administering OrientDB

[ 20 ]

Each building block performs a specific task, which are as follows:

•	 Core: This is the core of the system. It is responsible to store, manage, and 
access the data. It has an embedded SQL-like parser and it can be extended 
through the handlers. Each server can manage many different databases.

•	 Handlers: These are the custom modules (also known as handlers or plugins) 
developed by Orient Technologies or other third-party developers. The 
plugins extend the main functionality of the core module. Some out of the 
box some plugins are provided, for example, the automatic backup plugin 
and the send email plugin.

•	 REST API: This block provides a REST interface to perform queries and 
other tasks against OrientDB. In this way you can send and receive data  
via a standard HTTP client and use JSON to represent data.

•	 Binary Protocol: This is the main interface and the best way to communicate 
with the server. It uses proprietary protocols to achieve the best results in 
terms of bandwidth consumption and speed. Of course, the clients must be 
able to manage these protocols.

•	 Hazelcast: OrientDB uses the Hazelcast technology as a transport layer to 
organize communication between nodes in a cluster. In fact OrientDB can 
also be deployed in a distributed, multi-master cluster architecture.

•	 OrientDB Console Studio: This is a web application embedded into the 
server, which allows administering OrientDB through a web browser. 
OrientDB Studio executes REST calls to perform its tasks.

•	 Console: This is an external tool provided with the OrientDB package. 
It allows us to connect to an OrientDB server, or even to connect to an 
OrientDB data file on a local filesystem and perform administrative tasks, 
queries, and other actions. It can also be used in batch scripts.

•	 Java API clients: They provide a set of JAR files to embed into the client 
applications. Their main intention is to abstract the underlying database and 
the network protocols to communicate with the server, exposing a coherent 
OOP interface. They use the binary protocol to communicate with the server.

•	 Binary Drivers: They are generally provided by the third-party developers. 
They include JDBC drivers and other non-Java language drivers.



Chapter 2

[ 21 ]

Configuration
You can configure OrientDB by editing the files located in the ORIENTDB_HOME/config 
directory. In this directory you will find the following files:

•	 default-distributed-db-config.json

•	 hazelcast.xml

•	 orientdb-dserver-config.xml

•	 orientdb-server-config.xml

•	 orientdb-server-log.properties

The main configuration files are orientdb-server-config.xml and orientdb-
dserver-config.xml, which are used to configure a standalone server and a cluster 
node, respectively. Please note that when OrientDB starts for the first time, it rewrites 
the config files, deleting from them all the comments! So I suggest you keep a backup 
of these files for future reference. Let's see their content.

orientdb-server-config.xml
The orientdb-server-config.xml file has the following sections:

•	 handlers: This section defines the handlers (plugins) and theirs parameters.
•	 network: This section defines which protocols are active, which ports are 

used, and other useful parameters for the HTTP protocol.
•	 storages: This section defines the default in-memory database and other 

databases located outside of the default path. For example, you may have a 
database located in a specific folder. You could define a new storage as follows:
<storage name="myNewDb" path="local:C:/OrientDB/alternative/
myNewDb"
           userName="admin" userPassword="admin"
           loaded-at-startup="true" 
/>

°° userName and userPassword are optional, if not provided the  
default pair admin/admin is used. If the database is not found  
at the specified location, a new one is created.

°° path is the location of the database. Please note that just before the 
directory location there is the storage type keyword. This could be 
local or memory. The first one indicates that the database is persisted 
on the filesystem, the second one indicates that the database must 
be kept in memory, and consequently any data will be lost when the 
server is stopped.



Administering OrientDB

[ 22 ]

°° name of the database is case sensitive.
°° loaded-at-startup indicates whether the database has to be 

mounted and opened at the startup or at the first connection request.

•	 users: This section defines the default users of the server.
•	 properties: This section can be used to set some OrientDB properties.

The users section is empty. But when OrientDB starts for the first time, it creates 
two default users: root and guest. The root user will have full access to all databases, 
status information, statistics, and other useful information. It is the most powerful 
user and because of this OrientDB generates a very long random password and puts 
it in the configuration file.

To access with the root credentials you must know the password placed in the XML 
configuration file. OrientDB also generates the guest user which can only perform a 
query to obtain the name of the available databases.

orientdb-dserver-config.xml
It is similar to the orientdb-server-config.xml file, but it has an additional 
handler to configure the Hazelcast plugin parameters.

•	 default-distributed-db-config.json and hazelcast.xml: These are 
additional parameters to configure a distributed server

•	 orientdb-server-log.properties: This is an additional configuration  
for logging

The OrientDB console
The first approach to OrientDB after starting it, is of course through its console. 
To start the console, if you followed the installation steps in Chapter 1, Installing 
OrientDB, all you have to do is just type as follows:

console

This is because you have to set both the ORIENTDB_HOME and the PATH shell variables, 
if you are using a *nix system, to set the execution flag of the *.sh files in the 
ORIENTDB_HOME/bin path.

Now you can connect to an instance of a running OrientDB server.

If you started the server, you should connect to it by typing (inside the console tool):

connect remote:localhost/demo admin admin



Chapter 2

[ 23 ]

The connect command follows the given pattern:

connect remote:<host>[:<port>] root <root-password>

Downloading the example code
You can download the example code files for all Packt books you have 
purchased from your account at http://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

The port is optional, if not specified the default value of 2480 is used. Using this 
command, you can connect to a remote server with root credentials. You don't need to 
specify any database. You can find the root password is in the XML configuration file.

Of course, you can't execute any query against a specific database, since you have not 
given a database name to connect to. The root username is required in many server 
scope administrative tasks.

Note that the default configuration files initially don't have any entry 
related to the root user. OrientDB will create it as soon it starts.

You can connect to a specific database providing the following command:

connect remote:<host>[:<port>]/<database> <user> <password>

This second command is used to connect to a remote database. You must provide a 
valid username and password. Once connected to a database you can execute queries 
against it.

Finally, there is a third way to connect to a database, which is as follows:

connect local:<path> <user> <password>

This third command is used to interact with a database without using a remote 
server (note the use of the local keyword instead of the remote one). In this case the 
console tool itself acts like a local server. You cannot use the root credentials because 
actually you're not using any server, you are just "mounting" the data files into the 
console. The console command is also used to execute commands against a server 
within a batch file. In this case you can include the following line into your script:

console "connect remote:localhost/demo admin admin;select * from profile"

Please note that the commands are separated by a semicolon. Of course, you can put 
all the commands to execute in a separated text file:

console commands.txt



Administering OrientDB

[ 24 ]

OrientDB data files
Each database is stored by default in a subdirectory in the <ORIENTDB_HOME>/
databases path. Since Version 1.3, it is possible to customize the default database 
path to set the value in the orientdb-server-config.xml section properties:

        <properties>
                <entry name="server.database.path" value="/var/
orientdb/databases" />
        </properties>

Before inspecting a database file, let's introduce the OrientDB cluster definition. 
In OrientDB, clusters are the main data structures used to organize data. In the 
relational world there is no concept similar to the OrientDB cluster. You may think 
a cluster as a way to group records. Clusters can have no schema and no columns, 
their records are called documents, and each document can be different from the 
others that belong to the same cluster. There are two kinds of clusters: physical 
and in-memory. The first ones are persistent, the second one are volatile and are 
destroyed when the server is shut down. Clusters are not only important from a 
conceptual point of view, but also from the point of view of the physical organization 
of files. In fact for each physical cluster, OrientDB creates one or more files. Generally 
each database consists of at least the following files:

•	 database.ocf: It is an internal dictionary file. It contains the physical 
location and names of other data files. You can move a database in a  
different path using the internal import/export tools provided by  
OrientDB, but not because of this.

•	 default.0.ocl: OCL files contain the pointers to the documents contained 
in the ODA files. Each cluster may have one or more OCL files. This is the 
first file of pointers for the default cluster.

•	 default.0.oda: ODA files store the content in the records. Each oda file can 
store data belonging to different clusters. Despite the name, this file does not 
have content only for the default cluster, and also for the other ones.

•	 default.och: OCH files (one per cluster) contain the "holes" generated in 
the OCL files by the delete and update commands. OrientDB will use these 
holes to reallocate the space for new records.

•	 default.odh: ODH (one per ODA file) files contain holes generated in ODA 
files by the delete commands.

•	 index.0.ocl: The index.* files are used to manage the indices created at 
schema level.

•	 index.och

•	 internal.0.ocl



Chapter 2

[ 25 ]

•	 internal.och

•	 manindex.0.ocl: The manindex.* files are used to manage the so  
called manual indices, that is, indices not related to the schema,  
for example, dictionaries.

•	 manindex.och

•	 ofunction.0.ocl: The ofunction.* files are used to store and manage 
server-side custom functions and code.

•	 ofunction.och

•	 orids.0.ocl: The ORIDS files are used to manage the Record IDs (RIDs). An 
RID is the unique record identifier.

•	 orids.och

•	 orole.0.ocl: The orole.* files contain information about users' roles  
and permissions.

•	 orole.och

•	 ouser.0.ocl: The ouser.* files contain information about database's users.
•	 ouser.och

•	 txlog.otx: This file, one per database, is used to keep track of the  
active transactions.

Classes
Classes are concepts at a higher layer of abstraction of clusters. The definition of 
"class" in the OrientDB world comes directly from the OOP paradigm. However, 
you can imagine a class similar to a table in the relational world: a structure to store 
records, they can have typed properties, for example, the tables' columns, but the 
similarities end here. In fact, classes could be of the following types:

•	 schema-full (that is, having strong typed mandatory properties)
•	 schema-less (that is, no defined properties)
•	 mixed-mode (that is, some properties could be defined and strong typed, 

others without a type, or even not defined)



Administering OrientDB

[ 26 ]

In the OrientDB world, the word documents, records, and objects are all synonyms 
and all of them indicate a generic entity that can be stored. When a class is defined, 
OrientDB creates a corresponding cluster and a pair of OCL-OCH files. As said, the 
OCH file contains the pointers to the records stored in the data segment files (ODA 
files). The OCH file contains the "holes" present in the OCL file due to the delete 
and update commands. However, records of a class could be stored in different 
clusters, if you want to do so. This is the case where you have a large dataset of 
records that could be convenient to partition. For example, the billing information 
broken down by year of issue.

Just to try a class-related command, let's enter into the console and connect to the 
demo database:

connect remote:localhost/demo admin admin

Now let's create a new class:

create class newclass

Now let's inspect what happened to the database:

info

OrientDB replies with a lot of database information. The first ones are related to 
the defined cluster. As you can see, there is a new cluster called, like our new class, 
newclass. In the report you can see the cluster name (equal to the class name), its 
unique ID, the cluster type (physical/in-memory), the number of records stored in, 
and the file size (not available through remote connection). If you continue to inspect 
the report provided by the info command, you will find the list of defined classes. 
Our new class is listed and the cluster ID is shown in the second column. You can 
obtain synthetic information about our new class as follows:

desc newclass

OrientDB associates a unique ID to each cluster. This is a very important information 
because all the records have a unique ID called RID, which is of the following form:

#<cluster-id>:<position>

RIDs are physical pointers to the records. This means that the operation of traversal 
and links following among documents are very fast, because there are no lookup 
overheads when the database engine has to access them. Note that, this maybe the 
greatest feature of OrientDB as compared to relational databases. Knowing the 
physical position of the records allows OrientDB to reach them without performing 
any index lookup. RDBMS, if an index is defined against a table's column, has to 
do an index lookup to know where the record is stored. This operation generally is 
executed O(log n) times, whereas OrientDB performs in O(1) time.



Chapter 2

[ 27 ]

Abstract classes
Like in the OOP paradigm, there is also the concept of abstract class in OrientDB. The 
abstract classes are not associated to any cluster (their cluster ID is -1), and cannot 
store any records, but are useful to define properties which every derived classes will 
have. An abstract class is created as follows:

create class MyAbstractClass abstract

To see information related to the new abstract class, enter the following code:

desc MyAbstractClass

OrientDB will show MyAbstractClass details. Note that the cluster ID is -1.

Let's define some properties:

create property MyAbstractClass.name string

Property created successfully with id=1

create property MyAbstractClass.birthDate datetime

Property created successfully with id=2

Now retype:

desc MyAbstractClass

As you can see now, OrientDB also shows the information related to the properties.

Now, if we define a new class which extends our abstract class, it will inherit all  
the properties:

create class MyConcreteClass extends MyAbstractClass
Class created successfully. Total classes in database now: 95
desc MyConcreteClass

Class................: MyConcreteClass

Super class..........: MyAbstractClass

Default cluster......: myconcreteclass (id=98)

Supported cluster ids: [98]

Properties:

---------+--------+-----------------+---------+--------+--------+-----+--
---+

NAME     | TYPE   |LINKED TYPE/CLASS|MANDATORY|READONLY|NOT NULL| MIN | 
MAX |

---------+--------+-----------------+---------+--------+--------+-----+--
---+ 

www.allitebooks.com

http://www.allitebooks.org


Administering OrientDB

[ 28 ]

birthDate|DATETIME|null             |false     |false  |false   |     |        
|

name     |STRING  |null             |false     |false  |false   |     |     
|

---------+--------+--------- -------+----------+-------+--------+-----+--
---+

Keep in mind that the class name is case insensitive, whereas the properties are  
case sensitive.

Security
Security is a very important topic for every software platform. OrientDB has a very 
robust and well-known security model based on users, roles, and rules. Each database 
has users, each user can have one or more roles, and finally each role has rules.

USERS

ROLES

RULES

Furthermore, an OrientDB server could have one or more root users.

Rules
Rules define security criteria against specific resources. A rule consists of a resource 
and an operation to be applied to the resource itself. The allowed operations are  
as follows:

•	 NONE: 0 bitmask #0000
•	 CREATE: 1 bitmask #0001



Chapter 2

[ 29 ]

•	 READ: 2 bitmask #0010
•	 UPDATE: 4 bitmask #0100
•	 DELETE: 8 bitmask #1000
•	 ALL: 15 bitmask #1111

Since the preceding operations are represented internally by a mask of bits, their 
combination can also be done. For example, if you would give to a role a permission 
to read, update, and delete a resource, you should use the code 2 + 4 + 8 = 14 
(bitmask #1110). The allowed resources are as follows:

•	 database

•	 database.class.*

•	 database.class.<class-name>

•	 database.cluster.*

•	 database.cluster.<cluster-name>

•	 database.command

•	 database.config

•	 database.hook.record

•	 database.bypassRestricted

•	 server.admin

Roles
OrientDB uses the roles to know if an operation is allowed to a specific user. Each 
role has one or more rules associated to it. The roles are stored into the ORole class. 
Let's start to explore how OrientDB manages the security. Start the console and 
connect to the demo database as the admin user as you did before:

connect remote:localhost/demo admin admin

And then type:

desc orole



Administering OrientDB

[ 30 ]

There are four properties defined as follows:

•	 name: This property defines the name of the role.
•	 mode: This property defines how the rules should be interpreted. It can  

be 0 or 1.
0 means "deny all but"… the rules. By default, all the operations are denied 
against all the resources, except for rules explicitly declared.
1 means "allow all but"… the rules. By default, all the operations are allowed 
against any resource, except for rules explicitly declared.

•	 rules: This property is a map of key/value pairs. The keys are the resources 
and the values are the operations allowed/denied (depends on the mode 
value) against the resources.

•	 inheritedRole: This property defines the roles that can extend other roles.
Now type:
select from orole

You should see the default roles. The default ORole's records should be  
as follows:

°° admin: It is the role of database administrators. A user that belongs 
to this role can do everything on any structure of the database.

°° writer: The users belonging to this role can read, create, update, and 
delete records. They can't access internal information.

°° reader: The users belonging to this role can read any record of  
any class.

To create a new role you have to provide a command as follows:

insert into orole (name,mode,rules) values ("mynewrole",1,{"database.
class.Person":0})

This means: create a new role with the name mynewrole, it will have access all 
resources but the Person class.



Chapter 2

[ 31 ]

Users
Users are stored in the OUser class, except for those defined in the XML config file 
(by default root and guest). Each user must have a password and at least one role. 
The roles associated with the user, define the rights it has against the database. By 
default, every new database has the following three users:

•	 admin: It's is the database administrator, password is admin. It can do 
everything on any structure of the database.

•	 writer: It can read, create, update, and delete records and its password is 
writer. It can't access internal information.

•	 reader: Its password is reader and can only read any record.

Again, connect via console to the demo database as admin, and type:

select from ouser

You will see the default users.

Now type:

desc ouser

Class................: OUser

Super class..........: OIdentity

Default cluster......: ouser (id=5)

Supported cluster ids: [5]

Properties:

--------+-------+-----------------+---------+--------+--------+---+---+

NAME    |TYPE   |LINKED TYPE/CLASS|MANDATORY|READONLY|NOT NULL |MIN |MAX 
|

--------+-------+-----------------+---------+--------+---------+---+----
--+

status  |STRING |null             |true     |false   |true     |   |   |

name    |STRING |null             |true     |false   |true     |   |   |

password|STRING |null             |true     |false   |true     |   |   |

roles   |LINKSET|ORole            |false    |false   |false    |   |   |

--------+-------+-----------------+---------+--------+---------+---+----
--+



Administering OrientDB

[ 32 ]

Create a new user as follows:

insert into ouser (name,password,status,roles) values ("mynewuser","my
password","ACTIVE",(select from orole where name="mynewrole"))

Now, disconnect from the console:

disconnect

And reconnect using the new mynewuser user. Since the mynewuser user belongs to 
the mynewrole role, which has a rule that does not permit access to the Person class, 
you will be able to perform any operation but not access the Person class.

Users can be temporarily disabled by acting on the status property.

It can assume two values: ACTIVE or SUSPENDED

To disable a user, just update the status field:

update ouser set status="SUSPENDED" where name = "reader"

In this case, the reader user cannot connect to the server until its status reverts 
to ACTIVE. Passwords are stored in the SHA-256 hash format. To change a user's 
password, you don't need to calculate the hash code by yourself. This is done 
transparently by the server:

update ouser set password="newpass" where name="reader"

Server users
The server users are special users defined in the XML config file. They are not 
counted in the databases' OUser classes because they act at server level and are not 
related to a single dtabase. The server users are defined in the users section of the 
orientdb-dserver-config.xml and orientdb-server-config.xml file. When 
OrientDB starts for the first time, it creates two entries: one for the root user and one 
for the guest user. Root can do anything and access any resource; guest can only 
connect and obtain the list of current databases. You can of course declare how many 
users as you want, but I suggest to leave the default ones so that OrientDB can use 
them. For example, OrientDB Console Studio uses the guest user to list the available 
databases on the login screen.



Chapter 2

[ 33 ]

Available resources are as follows:

•	 server.info: This resource retrieves information and statistics about  
the server

•	 server.listDatabases: This resource retrieves the list of available databases
•	 server.dbList: This resource retrieves the previous one, but used when the 

binary protocol is used (that is, the command-line console)
•	 database.create: This resource creates a new database
•	 database.drop: This resource can drop an existing database
•	 database.passthrough: This resource can access all the databases, even if 

the user is not present in the OUser classes
•	 *: This resource can access all the previous resources

Record-level security
Record level security is one of the most powerful features of OrientDB. Using this 
functionality, developers can apply a fine access control and security permissions to 
any single record of a class. By default all users that have the permission to access 
the records of a class can act on them, reading, updating and deleting (despite of 
who created them). By activating this functionality on a class, each record will have 
additional fields that will indicate to the db engine whether a user could access it 
and with what privileges. To have the record security level, a class must extend the 
ORestricted abstract class. Enter into the console and connect to the demo database 
as the admin user and type as follows:

desc ORestricted

Class................: ORestricted

Default cluster......: null (id=-1)

Supported cluster ids: [-1]

Base classes.........: CMSDocument

Properties:

---------------+---------+-------------------+-----------+----------+----
------+-----+-----+

 NAME          | TYPE    | LINKED TYPE/CLASS | MANDATORY | READONLY | NOT 
NULL | MIN | MAX |

---------------+---------+-------------------+-----------+----------+----
------+-----+-----+

 _allowDelete  | LINKSET | OIdentity         | false     | false    | 
false    |     |     |



Administering OrientDB

[ 34 ]

 _allowUpdate  | LINKSET | OIdentity         | false     | false    | 
false    |     |     |

 _allowRead    | LINKSET | OIdentity         | false     | false    | 
false    |     |     |

 _allow        | LINKSET | OIdentity         | false     | false    | 
false    |     |     |

---------------+---------+-------------------+-----------+----------+----
------+-----+-----+

You can see that there are four properties defined, each one is a LINKSET (that is a 
set of links to other documents) of RID belonging to the OIdentity class:

desc OIdentity

Class................: OIdentity

Default cluster......: null (id=-1)

Supported cluster ids: [-1]

Base classes.........: ORole, OUser

The OIdentity class is an internal abstract class extended by the ORole and  
OUser classes.

This means that the LINKSET fields of ORestricted may contain link to users or 
roles or both.

This is a very important concept, since it means that you could allow a specific user 
to act on a record or even to all users belonging to a role.

In the demo database there is already a class that extends ORestricted: CMSDocument.

In fact if you type desc cmsdocument you will see that it extends ORestricted and 
owns all the fields of ORestricted'.

What happens under the hood is that OrientDB injects a hook when the following 
operations are executed against the class that extends ORestricted:

•	 Create: This command is executed when a new record is created, the current 
db user is put in the _allow field. It will have full access to the record.

•	 Read: This command is executed when a document is read, the engine checks 
if the current user or one of its roles is listed in the _allow or _allowRead 
fields. If not, the record is skipped.



Chapter 2

[ 35 ]

•	 Update: This command is executed when a document is updated, a check 
against the _allow and _allowUpdate is performed.

•	 Delete: This command is executed when a document is deleted, a check 
against the _allow and _allowDelete is performed.

It is possible to change the default behavior of OrientDB.

By using the custom properties onCreate.fields and onCreate.identityType you 
can instruct OrientDB about how it must operate when a new record is created:

•	 onCreate.fields: This property allows you to specify the name of the fields 
to set when a record is created. For example, by default it is _allow, but you 
can specify any other allowed field, that is, _allowRead, _allowUpdate, _
allowDelete, or even their combination.

•	 onCreate.identityType: This property allows you to indicate if the user's 
RID will be put in the _allow field or its role. Since a user could have 
multiple roles, only the first one will be inserted.

For example:

alter class cmsdocument custom onCreate.identityType=role;
alter class cmsdocument custom onCreate.fields=_allowRead,_
allowUpdate;

The OrientDB Studio
OrientDB comes with a powerful web-based GUI console.

It is embedded in the server. So, to access to it, all you have to do is to start your 
browser and open the following link:

http://<OrientDB-host>:2480

If you are running the server on localhost you can access through the following link:

http://localhost:2480



Administering OrientDB

[ 36 ]

The port 2480 is defined in the XML config file and can be changed.

As you can see, you can choose an existing database or even create a new one. You 
could also log in as root and access a special section for the server management. 
Select the demo database and connect as admin.

After you log in you can see a toolbar in the top of the screen. Through the toolbar 
placed on the top of the screen, you can change section and access the Studio 
features. The first one is the Database section, which is the default one.



Chapter 2

[ 37 ]

The Database section
The Database section looks as follows:

As you can see in the preceding screenshot, the screen is split into the  
following subsections:

•	 The name of the current database
•	 The toolbar
•	 The tabs to access to the subsections of the sections selected by clicking on a 

toolbar button
•	 The list of the defined classes of the current database
•	 The defined properties of the selected class in the section 4
•	 The defined indexes of the selected class in the section 4

www.allitebooks.com

http://www.allitebooks.org


Administering OrientDB

[ 38 ]

The tabs allow to access and work on various aspects of database management.

In the first one you can see and modify the schema, define a new class, drop or edit 
an existing one.

The second one, Structure, shows the physical structure of the database, listing all 
the files, their position into the filesystem. You can add or drop in clusters.

Under Security are listed the users and roles.

In the Configuration tab are listed all the defined properties, for example, locale, 
time zone, and so on.

The Query section
In the Query section you can execute any SQL or Gremlin query (if you are running 
the Graphed version). In the bottom part of the screen you will see the reply from  
the server. Note that you cannot perform schema-related command, for example, 
create class.

The Document section
In the Document section, you can see and modify the content of a given document. 
You have to know its RID, or you can click directly on an RID in the result pane of 
the Query section. Unfortunately if a field contains an embedded object, its content 
cannot be edited.

The Functions section
In the Functions section, you can see, create, and edit the server functions. They are a 
sort of stored procedures written in JavaScript. This is explained later in this book.

The Graph section
The Graph section is perhaps the most curious tool of the Console Studio. You have 
to know an RID, or from the Document section click on the Graph button. In this 
section, you may see all the connections (links and graph edges) that a specified 
document has with other documents. To try this on the screen, come back to the first 
query and type the following query:

select from actor



Chapter 2

[ 39 ]

Now click on an RID, and then on the Graph button. You will see the node you 
selected and its connections. You can change and modify various graph parameters 
on the right of the graph.

The Raw access section
This section allows us to query the server using the HTTP REST API. The server 
response is shown in the bottom panel. The HTTP REST protocol API is discussed 
later in this book.

The root user
A root user has access to a special screen of the OrientDB Studio.

Since the authentication with the server is done via basic auth, many browsers cache 
the credentials until the session with the server is closed. This often can be achieved 
by closing the browser and reopening it.



Administering OrientDB

[ 40 ]

Once you have restarted the browser, open the Studio and click on the Server icon 
on the right of the home page:

After this, click on the Refresh button. A popup should appear asking for the  
user credentials. You have to enter the root user credentials as defined in the  
XML config file.

The screen is split into the following tabs:

•	 Active connections: This tab shows the active connections and  
related properties

•	 Configuration: This tab shows the server-side properties and their values as 
defined in the properties section in the XML config file

•	 Database pool: This tab shows the status of the connection pool
•	 Used Storages: This tab shows the used storages

These tabs are used to show the server status and health.



Chapter 2

[ 41 ]

Back up / restore
OrientDB does not have any real backup and restore procedures, but rather they 
have the import/export ones. The export/import procedure is useful when you 
plan to upgrade your version of OrientDB. In fact, since the compatibility between 
different engine versions is not guaranteed, to move a database from an engine to 
a new one, it is recommended to do an export from the old system and an import 
into the new one. To import/export a database you can use both the command-line 
console and the OrientDB Studio.

Using the console
Using the console, you will be able to export an entire database or only its schema.  
To do export a database fully, you have to connect as admin and execute the 
following command:

export database <output-file>

For example:

export database demo.json

The database is exported and gzipped. The compressed gzipped file contains a text 
file which has all the database info, schema, and data in JSON format. This file can be 
imported back into a new fresh database. This means that you have to create a new 
database and then you will be able to import the backup. To export only the database 
schema without the data, execute the following command:

export schema <output-file>

To import a previously exported database, you need to create a new database. For 
example, from the console type the following command:

create database remote:localhost/newdemo root <root-password> local

After the creation, you should automatically connect to the new database. If you type 
info, you should see a line as follows:

Current database: newdemo (url=remote:localhost/newdemo)

Total size: 4,09Kb

Now you can perform the import as follows:

import database <input-file> 



Administering OrientDB

[ 42 ]

For example:

import database demo.json.gz

There is a well-known issue when you try to import a database from 
an old version of OrientDB into a newer version. You may have an 
error as follows:

Imported cluster 'XXX' has id=X different from the 
original: Y

To avoid this problem you must drop the ORids class before 
performing the import.

Using the OrientDB Studio
Of course, you can perform the export/import within the OrientDB Studio as well. 
Enter into the Studio and connect to the desired database with the admin credentials. 
Now you have to go into the database section and select the Import/Export tab. You 
will see a screen with two tabs.

In the first tab there are two buttons, one for the export procedure and one to  
import a previously generated export file. By clicking on the Export Database  
button a GZIP file is generated and downloaded. To import a backup you have  
to click on the Import Database button.

By default, a very small file can be uploaded (100 KB). You can change this 
parameter by modifying the XML config file. In the section properties create  
an entry as follows:

<entry name="network.http.maxLength" value="<max-length-in-bytes>" />

You have to restart the server after this change. Note that the import procedure 
accepts only JSON files. Therefore, you must unzip the exported file before 
uploading it.

Automatic backup
Since the export procedure could be run within the command-line console, you could 
place a script that performs the backup operation and schedule it via cron in the*nix 
system or via scheduled tasks in Windows. However, there is another way to achieve 
this result.



Chapter 2

[ 43 ]

OrientDB is shipped with a special handler that provides the automatic backup 
functionality. In the XML config file there should be a section as follows:

<handler class="com.orientechnologies.orient.server.handler.
OAutomaticBackup">

   <parameters>

   <parameter name="enabled" value="false" />

  <!-- parameter name="firstTime" value="03:00:00" / -->

  <parameter name="delay" value="4h" />

  <parameter name="target.directory" value="backup" />

  <parameter name="target.fileName" value="${DBNAME}-
${DATE:yyyyMMddHHmmss}.json" /><!-- ${DBNAME} AND ${DATE:} VARIABLES ARE 
SUPPORTED -->

  <parameter name="db.include" value="" /><!-- DEFAULT: NO ONE, THAT 
MEANS ALL DATABASES. USE COMMA TO SEPARATE MULTIPLE DATABASE NAMES -->

  <parameter name="db.exclude" value="" /><!-- USE COMMA TO SEPARATE 
MULTIPLE DATABASE NAMES -->

  </parameters>

</handler>

To enable the handler, change the value of the enabled property to true.

The complete list of the available parameters is as follows:

•	 enabled: This parameter activates or deactivates the handler (values are 
true or false).

•	 firstTime: This optional parameter is used to specify the time of the first 
backup. If not specified, the first backup will be done at the server startup 
time adding the delay parameter.

•	 delay: This mandatory parameter defines the delay time.
You can use different suffixes to specify different measures:

°° ms for milliseconds: The handler will perform a backup every  
ms millisecond.

°° s for seconds: The handler will perform a backup every s second.
°° m for minutes: The handler will perform a backup every m minute.
°° h for hours: The handler will perform a backup every h hour.
°° d for days: The handler will perform a backup every d day. 1d means 

every day.



Administering OrientDB

[ 44 ]

•	 target.directory: This parameter defines the target backup directory, the 
default value is "backup". If it does not exist, it will be created.

•	 target.fileName: This parameter defines the target backup filename. It can 
be configured using the following placeholders:

°° ${DBNAME}: This is used to configure the current database name
°° ${DATE}: This is used to configure the current date followed by the 

Java DateTime format

•	 db.include: This parameter defines the database comma-separated list to be 
included in the backup. (Empty means all databases)

•	 db.exclude: This parameter defines the database comma-separated list to be 
excluded from the backup. (Empty means none)

Once you have configured the handler, you must stop and restart the server. 
OrientDB will print the handler configuration to show that the plugin is active,  
up and running:

INFO Automatic backup plugin installed and active: delay=14400000ms, 
firstTime=null, targetDirectory=backup/ [OAutomaticBackup]

INFO OrientDB Server v1.3.0 is active. [OServer]

Summary
In this chapter, we have seen how to administer an OrientDB server, how to organize 
its data structure, and how to use the tools distributed in the server.

In the next chapter, we will learn how to build a database, perform queries, and use 
the Java API to build programs that uses OrientDB-like database.



Programming OrientDB
The first thing you have to do when you have to design an OrientDB database is to 
choose the right kind of database you will use.

OrientDB could be used similar to a document database, an object database, or a 
graph database.

Basically you have to choose between types of "document" and "graph", this is 
because some features may not be present in all kinds of databases.

When you choose the database type, keep in mind the following diagram:

G
ra

ph
ed

 E
di

tio
n

S
ta

nd
ar

d 
Ed

iti
on

Storage

Document

Graph Object

Application

Tinkerpop
Stack



Programming OrientDB

[ 46 ]

The first choice you have to make is whether you want to use a GraphDB or not.

If yes, then you have to decide if you will use the Gremlin language and the 
Tinkerpop stack or not. In this case you must use the Graphed Edition.

Another important consideration you have to evaluate is if you will be using OrientDB 
like an object database or not. As you can see in the preceding diagram, the graph 
and the object layer are on the same level. This means that each of them have specific 
features that cannot be used jointly. However keep in mind the following things:

•	 If you use the Standard Edition, you can always switch to the Graphed 
Edition, because they are fully compatible with each other.

•	 If you use a graph or an object database, you can always access the 
underlying document database layer. If you choose a document database, 
you will always use it as an object database within Java to persist and 
retrieve the data as POJO.

The following diagram helps you choose that:

Graphed Edition
with Graph database

Standard Edition
with Graph database

Graph DB?

Yes No

Standard Edition with
Document database

Tinkerpop
Stack?

Yes No



Chapter 3

[ 47 ]

Data types
When a class is created into OrientDB, by default it is schema-less. This means that 
each record belonging to a class could have different fields (or properties in the 
OrientDB terminology) of any supported data type, and could even mean that two 
or more records could have same fields but with different value types. This behavior 
is by design. Of course, OrientDB also supports schema-full classes, that is, we 
can explicitly declare all or some fields and define the data type for them, specify 
whether they allow null values and whether they are mandatory or optional. Both 
schema modes have pros and cons.

The schema-less mode has the pro that it could be useful in those cases where we 
don't know which value will be inserted at the design time.

This is the case, for example, for a field that could store an arbitrary input from the 
user. This means that different records of the same class can store different value 
types in the same field. The mode with schema is just the opposite: OrientDB will 
check further record insertions validating the value type against the class schema, 
raising an error if the value is not of the expected type. This is very useful if we 
want data integrity. Possible property data types are given in the following table 
(remember that record, object, document are synonyms):

Type Description Value range
Simple types
binary An array of bytes Range is not available
boolean Possible values are: true/false Values are false (stored as 0) and 

true (stored as 1)
byte A single byte Range is from -128 to 127
date Any date as year, month and day. 

The default format is yyyy-mm-dd
Range is not available

double A high precision decimal number Range is from 4.9e-324 to 
1.7976931348623157e+308

embedded A document object embedded in a 
field

Range is not available

float A decimal number Range is from 1.4e-45f to 
3.4028235e+38f

integer An integer number Range is from -2,147,483,648 to 
2,147,483,647

long A big integer number Range is from 
-9,223,372,036,854,775,808 to 
9,223,372,036,854,775,807

short A small integer number Range is from -32,768 to 32,767

www.allitebooks.com

http://www.allitebooks.org


Programming OrientDB

[ 48 ]

Type Description Value range
string A string Value is a string that can contain 

up to 100.000 chars
link A link to another document; it 

stores only the RID in the form of 
cluster:position

Range is from -1 to 
32767:9223372036854775807
(this means that you can have up 
to 32767 clusters, each of them can 
contain more than 90.000 billions 
of records)

Container types
embeddedlist A list of embedded ordered 

objects.
Range is up to 41,000,000 items

embeddedset A set of embedded unordered 
objects.

Range is up to 41,000,000 items

embeddedmap A map of key/value pairs. The 
values could be objects. The keys 
are strings.

Range is up to 41,000,000 items

linklist An ordered list of RIDs pointing to 
other records

Range is up to 41,000,000 items

linkset An unordered set of RIDs pointing 
to other records. RIDs cannot be 
duplicated.

Range is up to 41,000,000 items

linkmap A map of key/value pairs. The 
values must be valid RIDs. The 
keys are strings.

Range is up to 41,000,000 items

Extended SQL
The OrientDB extended SQL is a proprietary extension of the SQL language.  
It seems similar to SQL, but it is actually not ANSI SQL compliant. However, if 
you know SQL you will be comfortable with it. The simplest way in which we can 
interact with an OrientDB server is through a command-line console, using the SQL. 
So let's start with it.

Be sure to have your OrientDB server up and running, and connect to it through  
the console, using the root credentials. Remember, the root password is stored  
in the XML config file:

C:\ >console

OrientDB console v.1.3.0 (build 16) www.orientechnologies.com



Chapter 3

[ 49 ]

Type 'help' to display all the commands supported.

orientdb> connect remote:localhost root <your root password>

Connecting to remote Server instance [remote:localhost] with user 
'root'...OK

orientdb>

Creating a database
Now let's create a simple DB, for example a minimalistic blog, with a class for the 
categories, another one for the posts, and a final one for the comments. So the first 
thing to do is to create a new fresh database.

Let's first try a document implementation of the database, and then a graph 
approach. To create a database, you must use the create database command.  
To get the complete list of the console's commands, type help inside it. The syntax  
of the create database command is as follows:

create database <database-url> <user> <password> <storage-type>  
[<db-type>]

Where:

•	 database-url: Is the URL of the database to be created in the <mode>:<path> 
format. In our case it is: remote:localhost/<database name>.

•	 user: Is the root username.
•	 password: Is the root password.
•	 storage-type: Indicates if the database must be persisted or kept in memory 

(in this case, all data will be lost when the server stops). This parameter can be: 
local (for the persistent one) or memory. The default is local.

•	 db-type: Is the type of the database. Possible values are document or graph. 
By default, it is document.

So in the console, let's create our document database as follows:

orientdb> create database remote:localhost/minimalblog root  
<your root password>

 local document

Creating database [remote:localhost/minimalblog] using the storage type 
[local]...

Disconnecting from remote server [remote:localhost/]...OK



Programming OrientDB

[ 50 ]

Connecting to database [remote:localhost/minimalblog] with user 
'admin'...OK

Database created successfully.

Current database is: remote:localhost/minimalblog

orientdb>

OrientDB created a new document database called minimalblog and the console 
automatically connects to it as admin. In fact, every new database has three default 
roles and three default users as follows:

Role Username Password Description
admin admin admin The database (not the server!) administrator
writer writer writer It can read, write, update, and delete any 

record of any class
reader reader reader It can read any record of any class

The first thing to do is to change the default passwords. To do so, we must update 
the password field of the OUser class.

For example:

orientdb>update OUser set password="newadminpass" where name="admin"

Updated 1 record(s) in 0,003000 sec(s).

orientdb>update OUser set password="newreaderpass" where name="reader"

Updated 1 record(s) in 0,003000 sec(s).

orientdb>update OUser set password="newwriterpass" where name="writer"

Updated 1 record(s) in 0,003000 sec(s).

Note that OrientDB automatically applies the SHA-256 algorithm to the passwords, 
so they are not stored in plain text. You can verify this simply by executing the 
following statement:

select from OUser

For this reason, I suggest you write the password of the new users we just created.

Class names are case insensitive whereas the names of 
the fields are case sensitive!



Chapter 3

[ 51 ]

Creating classes
Since we are creating a minimalistic blog example, now we would have  
a Categories class, a Posts class, and an Authors class. To create these  
classes, we will use the create class command:

orientdb> create class Categories

Class created successfully. Total classes in database now: 7

orientdb> create class Posts

Class created successfully. Total classes in database now: 8

orientdb> create class Authors

Class created successfully. Total classes in database now: 9

OrientDB has created three classes and three related clusters with the same name as 
that of the classes. You can explore the database structure using the commands: info 
clusters and desc <class name>.

Inserting records
By default, all classes are schema-less, that is, we can "throw in" anything we want 
without any previous declaration. For example we could create a post like this:

orientdb> insert into posts (title,text) values ("My very first post", 
"This is the very first post I wrote!")

Inserted record 'Posts#9:0{title:My very first post,text:This is the very 
first post I wrote!} v0' in 0,265000 sec(s).

As you can see, the OrientDB console replies showing us the result of the insert 
command. It writes the name of the cluster, the Record ID (RID) of the record 
(#9:0), and a JSON-like string representing that the record is inserted. Note that 
this output is not a valid JSON string, it is just a reminder of what the database has 
performed. You can even perform several inserts with a single statement. In this case, 
you can declare the tuples one by one:

orientdb> insert into posts (title,text) values ("title1", "text1") 
("title2","text2") ("title3","text3")

Inserted record '[Posts#9:16{title:title1,text:text1} v0, Posts#9:17{t
itle:title2,text:text2} v0, Posts#9:18{title:title3,text:text3} v0]' in 
0,031000 sec(s).



Programming OrientDB

[ 52 ]

Deleting records
To delete a single record or group of records, you can use the Delete statement that 
acts exactly the same as in Standard SQL. If you want to delete all records of a class 
or of a cluster, you can use the Truncate command.

When you delete a record, its RID becomes available to be reassigned to 
a new record, so you must pay great attention to manage deletions.

Reading and updating records
To read the inserted records there is, of course, the select command:

select [<projections>] from <target> [where <conditions>] [group by 
<field>] [order by <fields> [asc|desc]] [skip <numRecords>] [limit 
<MaxRecords>]

Where:

•	 projections: They are the fields used to retrieve each record. Note that 
if you want to retrieve all the fields, you can omit the * character that is 
mandatory in SQL standard. The projections could contain any supported 
SQL functions and a special operator, LET.

•	 target: Is the database object on which we execute the query. It can be a 
class, a cluster, a RID, or a set of RIDs. This is very important. If you want to 
perform a query on a single RID or a set of them, you can perform the query 
directly on it/them. This is much faster than a query on a class. For example: 
select from #23:1 is much faster than select from Posts where @
rid=#23:1.

•	 where: This specifies the conditions to be applied to select the records.
•	 group by: This is similar as in standard SQL, which allows us to specify a 

field to group by. Note that at the moment, only one field is supported.
•	 order by: This is similar as in standard SQL, which allows us to specify  

a list of fields to use as a criteria for sorting. It is possible to indicate the 
sorting criteria for each of them (ASC to specify ascending order or DESC  
for descending order).



Chapter 3

[ 53 ]

•	 skip and limit: These can be used in paginations. The first one allows us to 
skip a number of records, meanwhile the second one allows us to specify the 
number of records to return.

For example:

orientdb> select from posts

---+---------+--------------------+--------------------

  #| RID     |title               |text

---+---------+--------------------+--------------------

  0|     #9:0|My very first post  |This is my very first post I wrote!

  1|     #9:1|title1              |text1

  2|     #9:2|title2              |text2

  3|     #9:3|title3              |text3

---+---------+--------------------+--------------------

4 item(s) found. Query executed in 0.076 sec(s).

Let me explain the output:

In the first column there is a simple counter. It is added by the console tool, it is not a 
records field. In the second column, there are records' RIDs. This is the record ID and 
it univocally identifies each record. Other fields are the ones that we have inserted. 
Now let's execute the following command:

orientdb> select title from Posts

---+---------+--------------------

  #| RID     |title

---+---------+--------------------

  0|    #-2:1|My very first post

  1|    #-2:2|title1

  2|    #-2:3|title2

  3|    #-2:4|title3

---+---------+--------------------

4 item(s) found. Query executed in 0.037 sec(s).



Programming OrientDB

[ 54 ]

What happened to the RIDs?

This is a very important concept in the OrientDB programming and may cause 
you many issues if you do not handle it properly. The RIDs are not simply logical 
identifiers, but they are physical pointers to a file indicating where the records' data 
begins. When you execute a select command providing a projection, the returned 
records aren't the ones stored on files; but they are virtual records built at the runtime 
and have no physical pointers. In these cases, OrientDB returns negative RIDs. To 
obtain the RIDs of the parsed records, you can use the special @rid keyword:

orientdb> select @rid as RealRid,title from Posts

---+---------+--------------------+--------------------

  #| RID     |RealRid             |title

---+---------+--------------------+--------------------

  0|    #-2:1|#9:0                |My very first post

  1|    #-2:2|#9:1                |title1

  2|    #-2:3|#9:2                |title2

  3|    #-2:4|#9:3                |title3

---+---------+--------------------+--------------------

4 item(s) found. Query executed in 0.032 sec(s).

As you can see, we can use aliases in query statements. Other special field names are 
as follows:

•	 @class: This specifies the class of the record.
•	 @version: This specifies the version number of the record. Every time a 

record is updated, its version number changes. This is useful for checking 
concurrent conflicts.

•	 @size: This specifies the record size in bytes.
•	 @type: This specifies the record type. It can be document or binary. The 

binary records are used to store blob objects.
•	 @this: This specifies the record itself.

Try it yourself by executing:

select @class,@rid,@version,@size,@type from Posts

To update one or more properties, we can use the update statement:

update <class>|<RID> set|increment [<field-name> = <field-value>] [, 
<field-name> = <field-value>]* [where  <conditions>] [limit <max-
records>]



Chapter 3

[ 55 ]

Where:

•	 class/cluster: Is the class or the cluster name
•	 field-name: Is the field(s) name to be updated
•	 field-value: Is the new value to be assigned
•	 conditions: Is the filter condition to select the records to update
•	 limit: Limits the update to only the records that satisfy the where condition

Note that the update command can have the set or increment keywords in it. The 
set command operates the same as in the standard SQL, the keyword increment 
allows you to increment the field value by the specified number. This is useful for 
counters. You can use negative numbers to decrement the value. Note that since 
we are using schema-less classes, we can update the fields with a new and different 
value type.

For example:

orientdb> update #9:0 set title=2
Updated 1 record(s) in 0,003000 sec(s).

In this example, I updated the RID #9:0 which should be the first record belonging 
to the Posts class and I set the title field with an integer value. OrientDB has no 
objection to this. Like in the select statements, updates performed directly on RID or 
a set of them are more efficient than selecting them by a where condition.

Fields
By default OrientDB tries to infer the fields type by their content. So if we try to 
execute the following statements:

create class Examples;

insert into examples (num) values (2) (3) (4);

select sum(num) from Examples;

---+---------+--------------------

  #| RID     |sum

---+---------+--------------------

  0|    #-2:0|9

---+---------+--------------------

1 item(s) found. Query executed in 0.022 sec(s).



Programming OrientDB

[ 56 ]

We can see that OrientDB understands that the inserted fields are numbers and  
when we execute a sum() on the num fields, it replies correctly. If we insert a  
new record as follows:

insert into examples (num) values ("5")

OrientDB inserts the record and interprets it like a string. In fact, if we execute the 
query again, we will obtain the same result: 9.

OrientDB will skip non-numeric values.

Embedded documents
A particular field type is the embedded document. This type allows us to associate 
any valid document object expressed as a valid JSON string with a property. Let's  
see the code:

orientdb> insert into examples (embedded) values 
({"name":"James","age":23})

Inserted record 'Examples#12:4{embedded:{age=23, name=James}} v0' in 
0,001000 sec(s).

Execute the following query to see the result:

orientdb> select from Examples
---+---------+--------------------
  #| RID     |num
---+---------+--------------------
  0|    #12:0|4
  1|    #12:1|3
  2|    #12:2|2
  3|    #12:3|5
  4|    #12:4|null                |{age=23, name=James}
---+---------+--------------------+--------------------
5 item(s) found. Query executed in 0.028 sec(s).

The last field has no column name due to a limitation of the console tool, because  
at the start of the execution, it cannot know the names of all the fields that will  
be retrieved.

orientdb> select from 12:4
---+---------+--------------------
  #| RID     |embedded
---+---------+--------------------
  0|    #12:4|{age=23, name=James}
---+---------+--------------------
1 item(s) found. Query executed in 0.018 sec(s).



Chapter 3

[ 57 ]

A very important thing to point out about the embedded records is that they have 
no RIDs and they live within the scope of the parent record. If you delete the parent 
record, its embedded records get deleted. The best thing about the embedded 
records is that you can use their own fields in projections and selections in query 
statements. For example:

orientdb> select from Examples where embedded.age=23
---+---------+--------------------
  #| RID     |embedded
---+---------+--------------------
  0|    #12:4|{age=23, name=James}
---+---------+--------------------
1 item(s) found. Query executed in 0.111 sec(s).

You can of course embed a document inside an embedded document.

Containers
Containers are special fields that can contain a set of other fields. There are three 
kinds of containers, and each of them can contain embedded documents or RIDs that 
point to non-embedded records. The RIDs contained in record fields are also called 
links. This is because they establish a physical link between records. The containers 
could be as follows:

•	 set: This is an unordered set of elements. An element cannot be inserted 
more than once.

•	 list: This is an ordered sequence of elements. An element could be present 
more than once.

•	 map: This is a set of key/value pairs, where keys are strings and values could 
be any of the allowed values, even other containers.

Like other field types, OrientDB also tries to guess the container type.

To identify a container value you must use the square brackets, similar to the JSON 
syntax. So we can write the following statement:

orientdb> insert into Examples (embset) values ([{"name":"John","age":
24},{"name":"Barbara","age":23}])

Inserted record 'Examples#12:5{embset:[2]} v0' in 0,078000 sec(s).

www.allitebooks.com

http://www.allitebooks.org


Programming OrientDB

[ 58 ]

Let's see it:

orientdb> select from Examples where embset is not null
---+---------+--------------------
  #| RID     |embset
---+---------+--------------------
  0|    #12:5|[2]
---+---------+--------------------
1 item(s) found. Query executed in 0.014 sec(s).

The console does not show the contents of the container field but only its cardinality. 
To show its content we can use the flatten() function as follows:

select flatten(embset) from Examples where embset is not null

The flatten() function must be the only parameter in the 
projection. You cannot mix record fields and the flatten() 
function in the same projection.

Schema-full classes and the mixed-mode 
schema
So far, we have seen how to use the classes in the schema-less mode. OrientDB  
gives us the possibility to specify the field type to create a constraint in the schema. 
We can even declare whether a class must be schema-full, that is, every field must  
be declared; or mixed-mode, that is, in the insert commands, we can use the  
non-declared fields and at the same time, we can also have a check by the OrientDB 
engine against the declared ones. To create a class field or property, we need to use 
the create property command:

create property <class>.<property> <type> [<linked type>|<linked 
class>]

Where:

•	 class is the class name
•	 property is the property name
•	 type is the property type
•	 linked_type is used only if the type is a link or a container
•	 linked_class is used only if the type is a link or a container

In our minimal blog example, we can code as follows:

create property Posts.pubDate date



Chapter 3

[ 59 ]

This means that we want to create a date property on the Posts class.

Now if we try to insert an invalid value (that is an invalid date) in the pubDate field, 
OrientDB will throw an exception. Let's try it:

orientdb> insert into Posts (title,text,pubDate) values ("This is the 
title","This is the text","This is the date")

Error: com.orientechnologies.orient.core.exception.
OQueryParsingException: Error on conversion of date 'This is the date' 
using the format: yyyy-MM-dd HH:mm:ss
orientdb>

OrientDB cannot cast the string value, This is the date in a valid date value, and 
suggests the correct string format:

orientdb> insert into Posts (title,text,pubDate) values ("This is the 
title","This is the text","2013-01-29 13:24:45")
Inserted record 'Posts#9:12{title:This is the title,text:This is the 
text,pubDate:Tue Jan 29 00:00:00 CET 2013} v0' in 0,001000 sec(s).

Note that the time in the server response is gone! This is because we chose a date 
type instead of datetime, so pay attention when you choose the fields' data type. In 
our example, our Posts class is now in the mixed-mode schema because we inserted 
records with fields that were not previously declared. If we want to avoid this, we 
could force the schema-full mode for the Posts class:

ALTER CLASS Posts STRICTMODE true

Now it is impossible to execute the commands as follows:

orientdb> insert into Posts (title,text,pubDate) values ("This is the 
title","This is the text","2013-01-29 13:24:45")
Error: com.orientechnologies.orient.core.exception.
OCommandExecutionException: Error on execution of command: OCommandSQL 
[text=insert into Posts (title,text,pubDate) values ("This is the 
title","This is the text","2013-01-29 13:24:45")]
Error: com.orientechnologies.orient.core.exception.
OValidationException: Found additional field 'title'. It cannot be 
added because the schema class 'Posts' is defined as STRICT

We must declare each field we intend to use. Note the old records are still there. The 
ALTER CLASS command is not retroactive. So we have to execute the following:

orientdb> create property Posts.title string
Property created successfully with id=1
orientdb> create property Posts.text string
Property created successfully with id=2



Programming OrientDB

[ 60 ]

After we have created the properties, we can declare more constraints on them  
using the alter property command. We can declare a field as mandatory, or  
not-nullable, or declare a range for the number fields:

  alter property <class>.<property> <attribute-name> <attribute-value>

As stated in the OrientDB wiki page:

Class is the class owner of the property

•	 property is the name of the property to be altered
•	 attribute-name is the attribute name to be altered

Supported attribute names are as follows:
°° linkedclass is the linked class name if the field is a link. To remove 

the attribute, set it to NULL.
°° linkedtype is the linked type name between those supported. To 

remove the attribute, set it to NULL.
°° min is the minimum value constraint. It accepts strings, numbers, or 

dates as values according to the field type. To remove the attribute, 
set it to NULL.

°° mandatory is a boolean value, set it to true if the property  
is mandatory.

°° max is the maximum value constraint. It accepts strings, numbers, or 
dates as values according to the field type. To remove the attribute, 
set it to NULL.

°° name is the class name.
°° notnull is a boolean value. Set it to false to allow null values.
°° regexp defines a regular expression as constraint. The field value will 

be validated against the specified regexp parameter. To remove the 
attribute, set it to NULL.

°° type is the new type between those supported. To remove the 
attribute, set it to NULL. These changes do not affect data that 
is already saved, so keep in mind that the new type should be 
compatible with the previous one.

°° attribute-value is the new attribute value to set according to  
the attribute-name.



Chapter 3

[ 61 ]

You can also define your own custom attributes which are useful, for  
example, to represent UML stereotypes. Syntax is name = value.  
For example: stereotype = icon.

You cannot alter more than one attribute at a time.

Relationships
The concept of relationship in OrientDB is different from the world of relational 
databases. Since OrientDB is not a relational database, the relational JOIN operator 
makes no sense. Furthermore, when you build a relationship in OrientDB, you can 
establish a physical connection between the documents. This means that a JOIN 
operation has no computational cost to retrieve a related document from a given one. 
This makes OrientDB very fast when managing relationships between millions of 
records. In OrientDB, there are two kinds of relationships, which are as follows:

•	 Referenced: They are used to create associations between documents
•	 Embedded: They are stronger relationships, similar to a composition in a 

UML diagram

The embedded relationship is useful to model links between documents that have 
a life cycle dependency, that is, the embedded document cannot exist without the 
embedding one.

One-to-one and one-to-many relationships
To create this kind of relationship you have to create a field of the link data type. 
This data type in fact accepts RIDs as values. In this way you can physically create 
a link between documents. In our example of a minimal blog, we can have a 1:n 
relationship between authors and posts, where one author will write several posts. 
We can model this by executing the following command:

orientdb> create property Posts.author link Authors
Property created successfully with id=3
orientdb> alter property Posts.author mandatory=true
Property updated successfully
orientdb> alter property Posts.author notnull=true
Property updated successfully



Programming OrientDB

[ 62 ]

The Posts class schema should appear as follows:

orientdb> desc posts
Class................: Posts
Default cluster......: posts (id=9)
Supported cluster ids: [9]
Properties:
--------+------+------------------+---------+--------+---------+---+-
--+
 NAME   |TYPE  | LINKED TYPE/CLASS|MANDATORY|READONLY| NOT 
NULL|MIN|MAX|
--------+------+------------------+---------+--------+---------+---+-
--+
 pubDate|DATE  | null             |false    |false   | false   |   |   
|
 author |LINK  | Authors          |false    |false   | false   |   |   
|
 title  |STRING| null             |false    |false   | false   |   |   
|
 text   |STRING| null             |false    |false   | false   |   |   
|
--------+------+------------------+---------+--------+---------+--
orientdb>

You may want to do exactly the opposite, that is, to reference all the posts written 
by an author within the Author class. In this case, you can use the link containers, 
field data type, which are linklist, linkset, and linkmap. This is an important 
choice to be made during the analysis phase of your application. OrientDB is quick 
in following the links between documents, but this is only true in one direction. So 
in our blog example, if we think that the application will perform queries from posts 
to obtain their authors, we can use the link field in the Posts class. If vice versa, the 
application more often will execute queries on authors to know their posts. We can 
consider using a linklist field in the Authors class.

We can use both approaches but we must pay attention 
to the management of inversion relationships because 
OrientDB does not manage them. It is our task to keep the 
relationships in a consistent state.



Chapter 3

[ 63 ]

Embedded relationships
The embedded 1:1 relationship is realized by embedding a document in a field 
of its owner. The embedded documents have no RIDs and follow the life cycle of 
the embedding document. To realize a 1:n embedded relationship, you can use 
one of the embedded container field type, that is, embeddedlist, embeddedset, or 
embeddedmap (if you want to associate a key to any embedded record). In our blog 
example, we can imagine that the comments of an article are embedded into the 
article itself. In fact, if a post is deleted, the comments also should be deleted. In our 
case, the code as follows:

orientdb> create property Post.comments embeddedlist
Property created successfully with id=3

I chose the embeddedlist type because I want to preserve the insert order in the list. 
If I had chosen the embeddedset type, this order could not be guaranteed.

Many-to-many relationships
In a many-to-many relationship, a graph database expresses all its potential and 
shows a great difference compared to the relational ones. This relationship can  
exist only between records that are not embedded.

Referenced relationships
The n:m relationship (also known as many-to-many relationship) between two 
entities are modeled in a relational database using a third table that contains the 
primary keys of both tables. In OrientDB this approach is not necessary. In fact, you 
can use the link containers fields similar to the ones in the one-to-many relationship; 
in this case, on both sides of the relationship. Always keep in mind that OrientDB 
doesn't support inversion relationships. In our blog example, we can assume that in 
a category there can be many posts, and that a post can belong to many categories. In 
this case, we could create a many-to-many relationship in the following way:

orientdb> create property Posts.categories linklist Categories
Property created successfully with id=5
orientdb> create property Categories.posts linklist Posts
Property created successfully with id=1



Programming OrientDB

[ 64 ]

Traversing the relationships
If you have an embedded or referenced many-to-one or one-to-one relationship, 
you could traverse the relationship just using the '.' object notation exactly like 
you do with objects, or if you have experience with Hibernate (in Hibernate Query 
Language (HQL)). So in our minimal blog database, to select the Author of a Post, 
we would write the following:

select author.name from Post where @rid=#xx:yy

Where:

•	 author: Is the Posts field name of the link to the Author class
•	 name: Is the field of the Author class which contains the Author name
•	 @rid: Is the implicit field representing the record ID
•	 #xx:yy: Is the RID value of the post, which we are selecting

For performance reasons, we could write the same statement in the following way:

select author.name from #xx:yy

In OrientDB, there is also the Traverse command. It is a powerful command especially 
used to perform queries on graphs, but it is also useful in a document database.

•	 It can be used to traverse many-to-one or many-to-many relationships 
because it can traverse all the links present in container fields, in addition  
to the linked one.

•	 In fact, it retrieves all the linked documents crossing the defined relationships 
among them with just one statement. The syntax is:
traverse [<fields>|*|any()|all()] from <target> [while 
<condition>] [limit <max-records>]

Where:
°° fields, *, any(), all(): Here we can specify the name of the 

properties that contain the links. If we use *, any(), or all(), all the 
fields are traversed.

°° target: It could be a class name, a list of clusters, a RID (or a list of 
RIDs), or even another traverse command or a select statement.

°° condition: It is similar to a where clause in the select statement. 
This is the condition to be applied to evaluate whether it follows  
a link or not.

°° max-records: It is the maximum number of records to be retrieved.



Chapter 3

[ 65 ]

•	 OrientDB manages the recursions and keeps track of the already visited 
documents to avoid retraversing.

•	 Suppose that we want to know all the authors who have written at least one 
post, starting from the categories class, we write the following statement:
traverse posts from Categories

To execute the preceding statement, first let's populate our database.

•	 Clean up the Posts class as follows:
truncate class Posts

•	 Populate the Categories class as follows:
insert into categories (name) values ("cars") ("bike") 
("motorbike")

•	 Populate the Authors class as follows:
insert into Authors (name) values ("john") ("mary") ("jane")

•	 Retrieve the Authors' RIDs:
orientdb> select from authors
---+---------+--------------------
  #| RID     |name
---+---------+--------------------
  0|    #15:0|john
  1|    #15:1|mary
  2|    #15:2|jane
---+---------+--------------------
3 item(s) found. Query executed in 0.098 sec(s).

Note that the RIDs could be different on your system depending 
on the execution order of the class creation statements.

•	 Populate the Posts class:
insert into Posts (title,text,pubDate,author) values ("A very good 
car","This is a very good car",sysdate(),#15:0) ("A smart bike","A 
bike very cool!",sysdate()
,#15:1) ("Another supercar","Remember the old days?...", 
sysdate(),#15:0)

•	 The sysdate() function returns the current server date. The last value of 
each tuple is the Author RID, so adjust it if in your system the Author class 
has a different ID other than 15.



Programming OrientDB

[ 66 ]

Now we have three posts, let's see them. We need their RIDs to put in the Categories 
class. This is because we have chosen to model the database in the following way:

orientdb> select from posts

---+---------+--------------------+--------------------+--------------
------+--------------------
  #| RID     |title               |text                |pubDate             
|author
---+---------+--------------------+--------------------+--------------
------+--------------------
  0|     #9:0|A very good car     |This is a very good car|2013-02-05 
23:00:00 |#15:0
  1|     #9:1|A smart bike        |A bike very cool!   |2013-02-05 
23:00:00 |#15:1
  2|     #9:2|Another supercar    |Remeber old days?...|2013-02-05 
23:00:00 |#15:0
---+---------+--------------------+--------------------+----------
3 item(s) found. Query executed in 0.064 sec(s).

Now let's insert the Posts into the categories:

update Categories add posts = #9:0 where name="cars"
update Categories add posts = #9:2 where name="cars"
update Categories add posts = #9:1 where name="bike"

Our database is ready, so we can execute a traverse command:

traverse all() from Categories
orientdb> traverse all() from categories

---+---------+--------------------+--------------------
  #| RID     |name                |posts
---+---------+--------------------+--------------------
  0|     #8:0|cars                |[2]
  1|     #9:0|null                |null                |A very good 
car     |This is a very good car|2013-02-05 23:00:00 |#15:0
  2|    #15:0|john                |null                |null                
|null                |null                |null
  3|     #9:2|null                |null                |Another 
supercar    |Remeber old days?...|2013-02-05 23:00:00 |#15:0



Chapter 3

[ 67 ]

  4|     #8:1|bike                |[1]                 |null                
|null                |null                |null
  5|     #9:1|null                |null                |A smart bike        
|A bike very cool!   |2013-02-05 23:00:00 |#15:1
  6|    #15:1|mary                |null                |null                
|null                |null                |null
  7|     #8:2|motorbike           |null                |null                
|null                |null                |null
---+---------+--------------------+--------------------+----------
8 item(s) found. Traverse executed in 0.217 sec(s).

Let's see what happened. The traverse command starts from the Categories class 
and for each record, it follows the available links. However, the exploration of the 
links does not stop at the linked record, but goes further to its link and so on. In fact, 
you can see in the server reply that all nodes were traversed. Traverse provides 
some context variables to help us. They are as follows:

•	 $parent:It accesses the parent of the actual record
•	 $current: It retrieves the current record
•	 $depth: It retrieves the current depth of nesting
•	 $path: It retrieves the path of the current record from the root of traversing

For example to see how the recursion of the traverse command works, try to 
execute the following code:

orientdb> select $path from (traverse all() from categories)
---+---------+--------------------
  #| RID     |$path
---+---------+--------------------
  0|    #-2:1|#8:0
  1|    #-2:2|#8:0.posts.#9:0
  2|    #-2:3|#8:0.posts.#9:0.author.#15:0
  3|    #-2:4|#8:0.posts.#9:2
  4|    #-2:5|#8:1
  5|    #-2:6|#8:1.posts.#9:1
  6|    #-2:7|#8:1.posts.#9:1.author.#15:1
  7|    #-2:8|#8:2
---+---------+--------------------
8 item(s) found. Query executed in 0.028 sec(s).



Programming OrientDB

[ 68 ]

To select only the authors who have written at least one article execute the  
following code:

orientdb> select from (traverse all() from categories) where @
class="Authors"
---+---------+--------------------
  #| RID     |name
---+---------+--------------------
  0|    #15:0|john
  1|    #15:1|mary
---+---------+--------------------
2 item(s) found. Query executed in 0.016 sec(s).

To select only the authors who have written at least one article in the category cars, 
execute the following code:

orientdb> select from (traverse * from (select from categories where 
name="cars")) where @class="Authors"
---+---------+--------------------
  #| RID     |name
---+---------+--------------------
  0|    #15:0|john
---+---------+--------------------
1 item(s) found. Query executed in 0.027 sec(s).

SQL functions
OrientDB supports many functions to use in the select statement in both projections 
and selections. You can find a complete and updated list of these functions in the 
official documentation wiki page at https://github.com/nuvolabase/orientdb/
wiki/SQL-Where.

This page is kept up to date as new functions are developed. One important thing  
to note is that you can extend the SQL parser capabilities by implementing your 
own functions. Once you write a new function, you will be able to use it in your 
SQL statements. You can write functions in Java or in JavaScript. However, there are 
some conceptual differences between these two approaches. The first one is written 
in Java in your application and basically expands the parser syntax; the second one is 
deployed in a special cluster into the database itself and is available to any client, not 
only in your application. It could be used via the console tool via REST API calls, and 
so on. You could see them like a sort of stored procedures. To write a custom SQL 
function in Java, you must register it to the database engine.



Chapter 3

[ 69 ]

This is the code of the coalesce() function that I wrote for OrientDB and that is 
available since Version 1.3.0:

OSQLEngine.getInstance().registerFunction("coalesce", 
  new OSQLFunctionAbstract("coalesce", 1, 1000) {
  
    @Override
    public String getSyntax() {
      return "Returns the first non-null parameter or null 
if all parameters are null. Syntax: coalesce(<field|value> 
[,<field|value>]*)";
      }
    
    @Override
    public Object execute(OIdentifiable iCurrentRecord, ODocument 
iCurrentResult,final Object[] iParameters, OCommandContext iContext)   
{
      int length=iParameters.length;
      for (int i=0;i<length;i++){
        if (iParameters[i]!=null) return iParameters[i];
      }
      return null;
    }
  }
);

Basically, you must extend OSQLFunctionAbstract and override the execute() 
method. To the constructor, you have to pass the name of the function and the 
minimum and maximum number of parameters that the function will accept. The 
coalesce() function returns the first non-null value among its parameters, and 
could accept at least one parameter, up to 1,000.

The graph database
Until now, we have seen the document database features. Let's see what they 
are while we operate on graph databases. The first thing to do is to create a new 
database. We must specify that we want a graph database instead of a normal 
document database as follows:

orientdb> create database remote:localhost/cities root <root_pass> 
local graph
Creating database [remote:localhost/cities] using the storage type 
[local]...
Disconnecting from remote server [remote:localhost/minimalblog]...OK
Disconnecting from the database [minimalblog]...OK



Programming OrientDB

[ 70 ]

Connecting to database [remote:localhost/cities] with user 'admin'...
OK
Database created successfully.
Current database is: remote:localhost/cities

I created a new database called cities. What I want to do is to build a graph whose 
vertices are European cities, connected by edges whose weights are the distances in 
km among them.

Rome

Paris

Berlin London

Madrid

930

1267
1054

We have created a database, so let's inspect it by using the info command. We can 
note that there are two new classes; with their respective clusters as follows:

•	 OGraphVertex: This is used to declare the vertices of the graph
•	 OGraphEdge: This is used to connect the vertices between them

Each vertex has a pair of predefined fields in and out, which are linkset. Each edge 
has a pair of fields in and out which are links. This means that each vertex could be 
linked to many edges, but each edge must have just two linked vertices:

Vertex A out in Edge Vertex Bout in



Chapter 3

[ 71 ]

Both OGraphVertex and OGraphEdge are no more than Documents classes which 
have special meaning for the OrientDB engine. As their records are like other 
documents, we can of course declare new properties on them. We can also create 
new classes that extend them, creating more specialized vertices and edges. 
Furthermore, we can use two letters as aliases to indicate the OGraphVertex and 
OGraphEdge classes. They are V and E. We have already made this introduction,  
so let's populate our database.

First of all, let's create the nodes. To create a vertex we must use the following command:

create vertex

Don't use the insert statement!

orientdb> create vertex set city="Rome"
Created vertex 'V#8:0{city:Rome} v0' in 0,058000 sec(s).
orientdb> create vertex set city="London"
Created vertex 'V#8:1{city:London} v0' in 0,001000 sec(s).
orientdb> create vertex set city="Berlin"
Created vertex 'V#8:2{city:Berlin} v0' in 0,001000 sec(s).
orientdb> create vertex set city="Madrid"
Created vertex 'V#8:3{city:Madrid} v0' in 0,001000 sec(s).
orientdb> create vertex set city="Paris"
Created vertex 'V#8:4{city:Paris} v0' in 0,001000 sec(s).

Now let's create the edges by using the create edge command. Since our graph is 
bidirectional, we have to create two edges for each pair of nodes as follows:

create edge from #8:0 to #8:4 set distance=1106
create edge from #8:4 to #8:0 set distance=1106
create edge from #8:4 to #8:3 set distance=1054
create edge from #8:3 to #8:4 set distance=1054
create edge from #8:3 to #8:1 set distance=1267
create edge from #8:1 to #8:3 set distance=1267
create edge from #8:1 to #8:2 set distance=930
create edge from #8:2 to #8:1 set distance=930
create edge from #8:2 to #8:0 set distance=1183
create edge from #8:0 to #8:2 set distance=1183

Note that the RIDs used in the preceding statements are the 
output of the previous vertices of the create statements. They 
could be different in your database.



Programming OrientDB

[ 72 ]

So now we have five vertices and 10 edges. You can visualize the graph using the 
OrientDB Studio as follows:

1.	 Open your browser and open the link http://localhost:2480/studio.
2.	 Select the cities database and provide the admin credentials (by default 

admin/admin).
3.	 Go to the Query tab and execute the query.
4.	 Select from V.
5.	 Click on the first value of the column @rid.
6.	 Now click on the Graph button.

You will see a graph. Try to make the following selections:

1.	 In the Depth field enter 10.
2.	 Under Fields select city and distance.
3.	 Now click on Reload and then on Circular Layout.

You should see something like the following screenshot:



Chapter 3

[ 73 ]

You can use the Traverse command to perform operations on the database. For 
example, to find all the cities linked to a given one:

select city from (traverse V.out, E.in from #8:0 while $depth < 3 ) 
where @class="OGraphVertex" and $dept > 1

Here, #8:0 is the starting vertex RID. The nested traverse command returns all 
vertices and edges starting from #8:0 and stops the traversal operation when it 
reaches the depth of two. The external where clause filters only the vertices (the 
traverse returns the edges too), and excludes the root node. OrientDB provides  
the dijkstra() function to calculate the minimal path between two nodes:

select flatten(dijkstra(#8:0,#8:3,"distance"))

Now we will print the node traversed to go from #8:0 to #8:3, covering the 
minimum distance.

Using the JDBC driver
The JDBC driver is a separated open source project. You can find it at https://
github.com/nuvolabase/orientdb-jdbc and it is maintained by the same team 
that developed the OrientDB engine. Currently, the JAR file can be downloaded at 
the typesafe maven repository which is located in http://repo.typesafe.com/
typesafe/snapshots/com/orientechnologies/orientdb-jdbc/1.0-SNAPSHOT/.

To use the driver, you must deploy its JAR file in CLASSPATH. After this step, you  
can use it like any other JDBC driver to execute SQL queries and commands.  
For example:

/* declare admin credentials */
Properties credentials = new Properties();
credentials.put("user", "admin");
credentials.put("password", "newadminpass");

/* obtain a connection */
Connection conn = (OrientJdbcConnection) DriverManager.getConnection("
jdbc:orient:remote:localhost/minimalblog", credentials);

/* perform a query */
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("SELECT title, text, pubDate from 
Posts order by pubDate desc");

/* consume the resultset */



Programming OrientDB

[ 74 ]

SimpleDateFormat dateFormatter = new SimpleDateFormat("MMMMM dd, 
yyyy");
while (rs.next()) { 
  String title = rs.getString("title");
  String text = rs.getString("text");
  Timestamp timestamp = rs.getTimestamp("pubDate");
  String date= dateFormatter.format((java.util.Date) timestamp);
  System.out.printf("%s\n%s\n%s\n\n\n", date, title, text);
}
rs.close();
stmt.close();
conn.close();

Note that we know the fields' type because Posts is a schema-full class.

Other language drivers such as PHP
Currently, there is more than one library project that implements drivers for 
the PHP language. Two of them are: OrientDB-PHP at https://github.com/
AntonTerekhov/OrientDB-PHP and orientdb-odm at https://github.com/
doctrine/orientdb-odm.

I mentioned both of them because they have different approaches to implementing 
the data exchange between the PHP page and the OrientDB server. The first one uses 
the OrientDB binary protocol, the same used by the console tool, and the second one 
uses the OrientDB REST APIs, and could be useful when you can only use HTTP. 
Take a look at the pages and feel free to choose the one that best fits your needs.

The native Java API
Of course, the "preferred" way to communicate and interact with OrientDB is using 
its native JAVA APIs. In Appendix (available at http://www.packtpub.com/sites/
default/files/downloads/9956OS_Appendix.pdf), you will find a quick reference 
to the common APIs. To use the APIs you must include the following libraries in 
your classpath:

•	 orient-commons-*.jar

•	 orientdb-core-*.jar

•	 orientdb-client-*.jar

•	 orientdb-enterprise-*.jar

•	 orientdb-object-.jar (only if you use the object interface)
•	 javassist.jar (only if you use the object interface)



Chapter 3

[ 75 ]

•	 blueprints-core-*.jar (only if you use the Tinkerpop interface)
•	 blueprints-orient-graph-*.jar (only if you use the Tinkerpop interface)
•	 pipes-*.jar (only if you use the Tinkerpop interface)
•	 gremlin-java-*.jar (only if you use the Tinkerpop gremlin language)
•	 gremlin-groovy-*.jar (only if you use the Tinkerpop gremlin language)
•	 groovy-*.jar (only if you use the Tinkerpop gremlin language)

Depending on which type of database you need to connect to, you must use a 
different connection class:

•	 ODatabaseDocumentTx for Document databases
•	 OGraphDatabase for Graph databases
•	 OrientGraph for working with the Tinkerpop blueprints implementation
•	 OObjectDatabaseTx for object databases

Opening a connection
Basically all you have to do to obtain a connection to the server is to use the  
aforementioned classes.

If you plan to work in a multithreaded environment, you must pay attention  
when using the connection classes. In fact, these are not thread-safe and each 
thread needs a new connection instance. Each database instances share the schema, 
the index manager, and the security manager. The accesses to these resources are 
synchronized among the instances. However, when you open a connection to a 
database, the connection instance is set into the current ThreadLocal space. This 
means that everything related to the management of the correct connection instance 
is hidden to the developers. To open a connection:

•	 For a document database we can open a connection as follows:
ODatabaseDocumentTx db = new ODatabaseDocumentTx("remote:localho
st/minimalblog").open("admin", "newadminpass");

•	 For a graph database we can open a connection as follows:
OGraphDatabase database = new OGraphDatabase("remote:localhost/
cities").open("admin", "admin");

•	 For an object database as follows:
OObjectDatabaseTx db = new OObjectDatabaseTx ("remote:localhost/
minimalblog").open("admin", "newadminpass");



Programming OrientDB

[ 76 ]

•	 A Tinkerpop implementation of the graph database is as follows:
OrientGraph graph = new OrientGraph("remote:localhost/
cities","admin","admin");

Connection pools
In a multithreaded environment (such as a web application), you can use the 
connection pool instead of explicitly declaring, opening, and closing connections. 
This is useful since the OrientDB connection pooling class can manage multiple 
connections at the same time, and assign and reuse a previously opened connection, 
which means better performance:

ODatabaseDocument database = ODatabaseDocumentPool.global().
acquire("remote:localhost/minimalblog", "admin", "newadminpass");

For Graph databases:

OGraphDatabase database = OGraphDatabasePool.global().
acquire("remote:localhost/cities", "admin", "admin");

To close a connection, just use the close() method:

database.close();

If you are using a connection pool, the connections will not be closed but  
will become available to other threads. By default, the number of connections  
available in the pool is 20.

Executing SQL queries
One of the most useful APIs is certainly the one which allows you to execute SQL 
statements just like in the console. In this way, you can try the queries in the console 
and then put them in your Java code. To execute queries, you have to use the 
OSQLSynchQuery class:

OSQLSynchQuery<ODocument> query = new OSQLSynchQuery<ODocument>(" 
select from posts");

The ODocument class is the main class that you will use to manipulate the records 
of an OrientDB database. It maps a single record (or just a document) of any class. 
When you write a query, you can also use prepared statements for both positional 
parameters and with named parameters:

OSQLSynchQuery<ODocument> queryPos = new OSQLSynchQuery<ODocument>("se
lect from posts where @rid=?");



Chapter 3

[ 77 ]

Or:

OSQLSynchQuery<ODocument> queryPar = new OSQLSynchQuery<ODocument>("se
lect from posts where @rid=:recordId");

You will pass the parameter's value when you execute the queries.

When you need to retrieve a single record, it is much faster to avoid the 
where clause. You can select a record directly by its RID as follows:

select from #3:4

In Java, the fastest way is to use the load() API:
ODocument record = database.load(rid);

where database is the current open connection, and rid is 
an instance of the ORecordID class.

To execute a query, you have to invoke the execute() method of the 
OCommandRequest class exposed by the database connection class. So if database  
is the name of your object connection, you should execute the following code:

List<ODocument> result = database.command(query).execute();

If you have positional parameters, you must list them as execute() parameters, as 
in the following case:

List<ODocument> result = database.command(queryPos).execute(new 
ORecordId("#23:1"));

If you have named parameters, you must prepare Map to pass to the execute() method:

Map<String,Object> params = new HashMap<String,Object>();
params.put("recordId", new ORecordId("#23:1"));
List<ODocument> result = database.command(queryPar).execute(params);

You will have a list of the ODocument objects as a result, and you can cycle through it 
to extract the record information:

for (ODocument doc: result){
  String title = doc.field("title");
   String text = doc.field("text");
   System.out.printf("%s\n%s\n\n\n", title, text);
}



Programming OrientDB

[ 78 ]

A fluent API is also available, but it is generally much slower than SQL 
queries. OrientDB does not perform any optimization when executing 
these APIs and does not use indices to access data.

Executing SQL commands
You can, of course, execute updates and deletions as well. In these cases you have to 
use the OCommandSQL class instead of OSQLSynchQuery. So for example, the following 
code deletes a record belonging to the Posts class:

OCommandSQL deleteAPost = new OCommandSQL("delete from Posts where @
rid=#23:0");
int recordsDeleted = db.command(deleteAPost).execute();

Create, load, update, and delete a document
To work with documents via Java API, the right way is using the ODocument class 
and its methods. To create a new Post in our minimal blog example, perform the 
following steps:

1.	 Open a connection:
ODatabaseDocumentTx db = new ODatabaseDocumentTx("remote:localho
st/minimalblog").open("admin", "newadminpass");

2.	 Create a post:
ODocument post = new ODocument("Posts");
post.field( "title", "A post with ODocument" );
post.field( "text", "is very simple" );
post.field( "pubDate ", new Date() );
post.save();

3.	 Close the connection:
db.close();

As you can see, there is no need to specify the opened connection object to save the 
new record. This is completely transparent to the developer. In a similar way, you 
can update or delete a post. Supposing there is a valid opened connection, then we 
can update the pubDate field of a loaded post as follows:

ODocument post = database.load((ORecordId)OSQLHelper.
parseValue("#23:1", null));
post.field( "pubDate ", new Date() );
post.save();



Chapter 3

[ 79 ]

To delete it:

post.delete();

In these examples, we used the load() method to load a document from the 
database by its RID, and the OSQLHelper class to convert a string into an RID.  
When you use a graph database, you must pay attention while you create vertices 
and edges because there are specific APIs to do these kinds of operations. We can 
create a vertex as follows:

ODocument city = database.createVertex("city");

We can create an edge between vertices as follows:

ODocument edge= database.createEdge( cityOne, cityTwo);

However, note that edges and vertices are always instances of the ODocument class. To 
remove edges and vertices don't use the ODocument.delete() method, as this could 
generate inconsistency in the graph. Use the removeEdge() and removeVertex() 
functions of the database class instead.

Object database support
OrientDB uses the Javassist library to offer support for object-document mapping. 
This feature is not available for graph databases but only for document ones. This is 
a specific design choice made because the wrapping operations have performance 
costs, and the OrientDB team wants to keep the graph implementation as fast as 
possible. For our minimal blog example, we must create a package for the models, 
that is, the classes that will be mapping the ones on the db: one for the categories, one 
for the posts, and one for authors. When we need to use the object mapping inside 
our Java project, we need to declare the mapping models as follows:

//open a connection
OObjectDatabaseTx db = new OObjectDatabaseTx ("remote:localhost/
minimalblog").open("admin", "newadminpass");
//register the model classes
db.getEntityManager().registerEntityClasses("model");

Here, model is the package containing the mapping class. At this point we can 
execute queries, for example:

//load a category
OSQLSynchQuery<Categories> getCarCategory = new OSQLSynchQuery<Categor
ies>("select from categories where name=?");
List<Categories> resCategories = db.command(getCarCategory).
execute("cars");



Programming OrientDB

[ 80 ]

This retrieves the cars category.

The following code retrieves the author "john":

//load an author
OSQLSynchQuery<Authors> getAuthor = new 
OSQLSynchQuery<Authors>("select from authors where name=?");
List<Authors> resAuthors = db.command(getAuthor).execute("john");

Now we can create a new post as follows:

john = resAuthors.get(0);
//get a proxied object instance
Posts post = db.newInstance(Posts.class);
  post.setTitle("Post created via object-document mapping");
  post.setText("This is a very important example");
  post.setPubDate(new Date());
  post.setCategories(resCategories);
  post.setAuthor(john);
  db.save( post );

And do not forget to close the connection:

db.close();

OrientDB supports part of the JPA 2.x specification; so you may want to use the JPA 
annotation to manage cascade deleting. For example, we could have in the Authors 
class containing a list of Posts. We want to ensure that when an author is deleted, 
their posts also should be deleted:

public class Authors {
...
  @OneToMany(orphanRemoval = true)
  //or @OneToMany(cascade = { CascadeType.REMOVE })
  List<Posts> posts;
...
}

Remember that OrientDB does not manage the reverse relationship so it is your 
responsibility to maintain the database's consistency. To work, this annotation 
example needs a posts field to be declared against the Authors database class,  
and each time a new post is created, its RID to be put in this field.



Chapter 3

[ 81 ]

RESTful APIs
OrientDB has an embedded HTTP server and exposes a set of REST APIs. So it can 
be queried via HTTP protocol and JSON data. The REST protocol uses the main four 
HTTP methods: GET, POST, PUT, and DELETE. The returned data format is JSON and 
even JSONP could be used. By default, this feature is on. You can enable or disable 
it by changing the XML config file. In this file you can change the port as well. The 
OrientDB Studio uses this feature of this protocol to communicate with the server, 
so if you disable it, the Studio will not work. In the configurations file you will find a 
network section which contains the following two listeners:

•	 One for the binary protocol
•	 One for the HTTP protocol

In particular you will find:

<listener ip-address="0.0.0.0" port-range="2480-2490" protocol="http">
   <commands>
       <command pattern="GET|www GET|studio/ GET| GET|*.htm GET|*.html 
GET|*.xml GET|*.jpeg GET|*.jpg GET|*.png GET|*.gif GET|*.js GET|*.
css GET|*.swf GET|*.ico GET|*.txt GET|*.otf GET|*.pjs GET|*.svg" 
implementation="com.orientechnologies.orient.server.network.protocol.
http.command.get.OServerCommandGetStaticContent">
          <parameters>
                            <entry name="http.cache:*.htm *.html" 
value="Cache-Control: no-cache, no-store, max-age=0, must-
revalidate\r\nPragma: no-cache"/>
                            <entry name="http.cache:default" 
value="Cache-Control: max-age=120"/>
          </parameters>
      </command>
   </commands>
   <parameters>
       <parameter name="network.http.charset" value="utf-8"/>
    </parameters>
</listener>

You can specify a range of TCP ports. OrientDB will try to bound on the first 
available in this range. In the parameter section, you can specify the charset you 
want to use to transfer data. I suggest you to not change other parameters. On 
the OrientDB official wiki site there is a full explanation of the REST protocol 
implemented by OrientDB. You can find the details of it at https://github.com/
nuvolabase/orientdb/wiki/OrientDB-REST.



Programming OrientDB

[ 82 ]

Transactions
OrientDB supports ACID transaction. This means that inside a transaction, all 
operations succeeded are committed or all the transactions are rolled back. There 
is no support for nested transactions, so each database connection instance could 
have at the most one opened transaction at a time. Transactions are optimistic 
and managed in the client scope, no locks are created on the server. Since every 
record has a version number field (the @version implicit field) maintained by the 
database engine when the transaction is committed, OrientDB checks the value of 
the @version field of the modified document. If it finds some mismatch (that is, 
someone else in the meantime has changed the record), it throws an exception and 
the transaction will be rolled back. To manage transactions via Java API, there are the 
following three database methods:

•	 begin(): This method opens a new transaction. If there was an opened 
transaction, this one is rolled back.

•	 commit(): This method persists the changes. If something goes wrong, the 
transaction is rolled back.

•	 rollback(): This method rolls back the changes

Transactions within REST calls
You can also perform transactions via the REST protocol. This does not mean that 
you can execute more calls within a transaction. A REST call is always atomic and 
leaves the database in an consistent state. Basically, you can execute more than a 
single operation in just one request. To do so you can use the batch command. The 
endpoint is as follows:

http://<orientdb-server>:<port>/batch/<database>

The action is POST and the body payload is a JSON string which must be in the 
following form:

{ "transaction" : true, 
     "operations" : [ 
              { "type" : "<cud>", 
          "record" : {
                     ....
                   }         
              }
        ]
 }



Chapter 3

[ 83 ]

Here, cud is a character stating the kinds of operations to perform, which are  
as follows:

•	 c: It specifies the create operation
•	 u: It specifies the update operation
•	 d: It specifies the delete operation

And record contains the fields of the record. For updates and deletes you must 
specify the RID in the form of "@rid":"#23:1".

Summary
In this chapter we have seen different ways to perform queries and other operations 
such as updates and deletions against data.

In the next chapter we will see some tips and suggestions to improve performance 
and to perform a fine tuning of an OrientDB server.





Performance Tuning
The database performance is the very first priority for the OrientDB team, and 
because of this they persistently improve the engine and make modifications and 
updates based on the feedbacks and needs of users. Because of this, there are many 
aspects you can consider when you want to tune your OrientDB server. This is 
because depending on how you use it, there are different interventions you have to 
do. Instead of making just a list of the available options, I think it's better to start with 
a general introduction to some basic concepts about how OrientDB uses the memory 
and how it manages the I/O.

Caching
OrientDB uses two caches: the level 1 cache acts at thread level, while the level 2 
cache acts at the JVM level. The following schema describes these concepts:



Performance Tuning

[ 86 ]

JVM Thread 1 JVM Thread 2 JVM Thread n

Database Instance

Level 1 Cache

Level 2 Cache

OrientDB JVM

O.S.

File System

Data Files

Storage Manager

Database Instance

Level 1 Cache

Database Instance

Level 1 Cache

According to how your application works, you can act on the caches to improve 
performance. For example: if you do many reads you can leave all as it is, but if you 
are in a multi-threaded scenario and you perform many writes, you may consider 
disable the level 1 cache. Or, again, if you are in a multi-JVM scenario, you may 
consider disabling the level 2 cache also. Another consideration is the strategy used 
to read/write data files. OrientDB uses Java New I/O (NIO, JSR 51) API. This means 
that OrientDB although is written in Java, it can use the low-level I/O operations of 
modern operating systems.



Chapter 4

[ 87 ]

Furthermore, OrientDB uses the memory mapped files, because of which access to 
the filesystem are minimized. Many aspects of OrientDB behavior are configurable 
through configuration parameters. These parameters can be set in the following ways:

•	 By using the command line at startup using Java options: you can use  
the -D option to define one or more values for configuration properties:  
java -Dcache.level1.size=100 ..... 

•	 By putting the configuration value into the XML config file: in  
the configuration XML, you can put your chosen value inside the 
<properties> section:
  <properties>
    <entry name="cache.level1.size" value="100" />
  </properties>

•	 At runtime, by calling the OGlobalConfiguration API:
OGlobalConfiguration.CACHE_LEVEL1_SIZE.setValue(iValue)

•	 Via console using the config command:
config set cache.level1.size 100

You can see the current configuration as well:
°° At server startup via Java parameter:

java -Denvironment.dumpCfgAtStartup=true ...

°° Via OGlobalConfiguration Java API:
OGlobalConfiguration.dumpConfiguration(System.out);

°° Via the console config command:
config

There are literally dozens of configuration parameters. In Appendix (available 
at http://www.packtpub.com/sites/default/files/downloads/9956OS_
Appendix.pdf) you will find an exhaustive list of these parameters.

When you use the Java API in your client application, many 
configuration parameters could also be set in the client. This 
means that you can have up to four caches, for example, two 
on the client JVM and two on the server.



Performance Tuning

[ 88 ]

In fact, when you use the OrientDB Java libraries in your application to connect to an 
OrientDB server, the scenario is similar to that shown in the following diagram:

Level 1 Client Cache Level 1 Client Cache Level 1 Client Cache

Level 2 Client Cache

Client Application JVM

Thread 1 Thread 2 Thread n

Level 1 Client Cache Level 1 Client Cache Level 1 Client Cache

Level 2 Client Cache

OrientDB Server JVM

Thread 1 Thread 2 Thread n

General Optimizations
Optimizations can be made at several levels and can involve different components 
from the JVM to the application code.

The JVM optimization
The OrientDB online documentation suggests some default parameters to pass to the 
JVM at startup. They are -XX:+AggressiveOpts and -XX:CompileThreshold=200. 
You can, of course, try other values and other options. You can find a complete list in 
the Oracle JVM official Java HotSpot VM Options page at http://bit.ly/9PKM2D.



Chapter 4

[ 89 ]

Memory and cache
OrientDB uses more than one cache: one for each opened connection and one shared 
among the connections. Furthermore, OrientDB uses the memory mapped files to 
speed up the data access. This means that the trick here is to find the right balance 
among the caches, the memory mapping and the heap memory used by the JVM. To 
set up the memory that will be used by the memory mapped files, you can use the 
file.mmap.maxMemory configuration property. For example, on a 32-bit machine 
the maximum memory addressable is 4 GB, which means that you can set the heap 
value and the virtual memory so that their sum is 4 GB. Keep in mind, however, that 
if your server does not have enough memory, OrientDB can be swapped by O.S. 
and you can experience some performance degradation. In a 64-bit architecture, by 
default, OrientDB automatically set the file.mmap.maxMemory value as:

(maxOsMemory - maxProcessMemory) / 2

You can find this instruction in the OGlobalConfiguration.java file in the 
autoConfig() method. Furthermore, you can enable/disable level 1 cache,  
level 2 cache, or both. You can also set the number of records that will be  
stored in each level as follows:

•	 cache.level1.size: This sets the number of records to be stored in the  
level 1 caches (default -1, no limit)

•	 cache.level2.size: This sets the number of records to be stored in the  
level 2 cache (default -1, no limit)

•	 cache.level1.enabled: This is a boolean value, it enables/disables the  
level 1 cache (default, true)

•	 cache.level2.enabled: This is a boolean value, it enables/disables the  
level 2 cache (default, true)

Mapping files
OrientDB uses NIO to map data files in memory. However, you can change the way 
this mapping is performed. This is achieved by modifying the file access strategy.

•	 Mode 0: It uses the memory mapping for all the operations.
•	 Mode 1 (default): It uses the memory mapping, but new reads are  

performed only if there is enough memory, otherwise the regular  
Java NIO file read/write is used.

•	 Mode 2: It uses the memory mapping only if the data has been  
previously loaded.



Performance Tuning

[ 90 ]

•	 Mode 3: It uses memory mapping until there is space available, then use 
regular JAVA NIO file read/write.

•	 Mode 4: It disables all the memory mapping techniques.

To set the strategy mode, you must use the file.mmap.strategy configuration 
property.

Connections
When you have to connect with a remote database you have some options to 
improve your application performance. You can use the connection pools, and  
define the timeout value to acquire a new connection. The pool has two attributes:

•	 minPool: It is the minimum number of opened connections
•	 maxPool: It is the maximum number of opened connections

When the first connection is requested to the pool, a number of connections 
corresponding to the minPool attribute are opened against the server. If a thread 
requires a new connection, the requests are satisfied by using a connection from the 
pool. If all the connections are busy, a new one is created until the value of maxPool 
is reached. Then the thread will wait, so that a connection is freed. Minimum and 
maximum connections are defined by using the client.channel.minPool (default 
value 1) and client.channel.maxPool (default value 5) properties. However, you 
can override these values in the client code by using the setProperty() method of 
the connection class. For example:

database = new ODatabaseDocumentTx("remote:localhost/demo"); 
database.setProperty("minPool", 10); 
database.setProperty("maxPool", 50); 
database.open("admin", "admin");

You can also change the connection timeout values. In fact, you may experience 
some problem, if there are network latencies or if some server-side operations 
require more time to be performed. Generally these kinds of problems are shown in 
the logfile with warnings:

WARNING: Connection re-acquired transparently after XXXms and Y 
retries: no errors will be thrown at application level 



Chapter 4

[ 91 ]

You can try to change the network.lockTimeout and the network.socketTimeout 
values. The first one indicates the timeout in milliseconds to acquire a lock against 
a channel (default is 15000), the second one indicates the TCP/IP socket timeout 
in milliseconds (default is 10000). There are some other properties you can try to 
modify to resolve network issues. These are as follows:

•	 network.socketBufferSize: This is the TCP/IP socket buffer size in bytes 
(default 32 KB)

•	 network.retry: This indicates the number of retries a client should do to 
establish a connection against a server (default is 5)

•	 network.retryDelay: This indicates the number of milliseconds a client will 
wait before retrying to establish a new connection (default is 500)

Transactions
If your primary objective is the performance, avoid using transactions. However, if it 
is very important for you to have transactions to group operations, you can increase 
overall performance by disabling the transaction log. To do so just set the tx.useLog 
property to false.

If you disable the transaction log, OrientDB cannot 
rollback operations in case JVM crashes.

Other transaction parameters are as follows:

•	 tx.log.synch: It is a Boolean value. If set, OrientDB executes a synch  
against the filesystem for each transaction log entry. This slows down  
the transactions, but provides reliability on non- reliable devices. Default 
value is false.

•	 tx.commit.synch: It is a Boolean value. If set, it performs a storage synch 
after a commit. Default value is true.



Performance Tuning

[ 92 ]

Massive insertions
If you want to do a massive insertion, there are some tricks to speed up the 
operation. First of all, do it via Java API. This is the fastest way to communicate  
with OrientDB. Second, instruct the server about your intention:

db.declareIntent( new OIntentMassiveInsert() );

//your code here....

db.declareIntent( null );

Here db is an opened database connection.

By declaring the OIntentMassiveInsert() intent, you are instructing OrientDB 
to reconfigure itself (that is, it applies a set of preconfigured configuration values) 
because a massive insert operation will begin. During the massive insert, avoid 
creating a new ODocument instance for each record to insert. On the contrary, just 
create an instance the first time, and then clean it using the reset() method:

  ODocument doc = new ODocument();
  for(int i=0; i< 9999999; i++){
    doc.reset(); //here you will reset the ODocument instance
    doc.setClassName("Author");
    doc.field("id", i);
    doc.field("name", "John");
    doc.save();
  }

This trick works only in a non-transactional context.

Finally, avoid transactions if you can. If you are using a graph database and you 
have to perform a massive insertion of vertices, you can still reset just one vertex:

ODocument doc = db.createVertex();
...
doc.reset();
...

Moreover, since a graph database caches the most used elements, you may  
disable this:

db.setRetainObjects(false);



Chapter 4

[ 93 ]

Datafile fragmentation
Each time a record is updated or deleted, a hole is created in the datafiles structure. 
OrientDB tracks these holes and tries to reuse them. However, many updates and 
deletes can cause a fragmentation of datafiles, just like in a filesystem. To limit 
this problem, it is suggested to set the oversize attribute of the classes you create. 
The oversize attribute is used to allocate more space for records once they are 
created, so as to avoid defragmentation upon updates. The oversize attribute 
is a multiplying factor where 1.0 or 0 means no oversize. The default values are 
0 for document, and 2 for vertices. OrientDB has a defrag algorithm that starts 
automatically when certain conditions are verified. You can set some of these 
conditions by using the following configuration parameter:

•	 file.defrag.holeMaxDistance: It defines the maximum distance in bytes 
between two holes that triggers the defrag procedure. The default is 32 KB,  
-1 means dynamic size. The dynamic size is computed in the ODataLocal 
class in the getCloserHole() method, as Math.max(32768 * (int)  
(size / 10000000), 32768), where size is the current size of the file.

The profiler
OrientDB has an embedded profiler that you can use to analyze the behavior of the 
server. The configuration parameters that act on the profiler are as follows:

•	 profiler.enabled: This is a boolean value (enable/disable the profiler), the 
default value is false.

•	 profiler.autoDump.interval: It is the number of seconds between profiler 
dump. The default value is 0, which means no dump.

•	 profiler.autoDump.reset: This is a boolean value, reset the profile at every 
dump. The default is true.

The dump is a JSON string structured in sections. The first one is a huge collection of 
information gathered at runtime related to the configuration and resources used by 
each object in the database. The keys are structured as follows:

•	 db.<db-name>: They are database-related metrics
•	 db.<db-name>.cache: They are metrics about databases' caching
•	 db.<db-name>.data: They are metrics about databases' datafiles, mainly 

data holes
•	 db.<db-name>.index: They are metrics about databases' indexes
•	 system.disk: They are filesystem-related metrics



Performance Tuning

[ 94 ]

•	 system.memory: They are RAM-related metrics
•	 system.config.cpus: They are the number of the cores
•	 process.network: They are network metrics
•	 process.runtime: They provide process runtime information and metrics
•	 server.connections.actives: They are number of active connections

The second part of the dump is a collection of chronos. A chrono is a log of an 
operation, for example, a create operation, an update operation, and so on. Each 
chrono has the following attributes:

•	 last: It is the last time recorded
•	 min: It is the minimum time recorded
•	 max: It is the maximum time recorded
•	 average: It is the average time recorded
•	 total: It is the total time recorded
•	 entries: It is the number of times the specific metric has been recorded 

Finally, there are sections about many counters.

Query tips
In the following paragraphs some useful information on how to optimize the queries 
execution is given.

The explain command
You can see how OrientDB accesses the data by using the explain command  
in the console. To use this command simply write explain followed by the  
select statement:

orientdb> explain select from Posts

A set of key-value pairs are returned. Keys mean the following:

•	 resultType: It is the type of the returned resultset. It can be collection, 
document, or number.

•	 resultSize: It is the number of records retrieved if the resultType  
is collection.

•	 recordReads: It is the number of records read from datafiles.
•	 involvedIndexes: They are the indices involved in the query.



Chapter 4

[ 95 ]

•	 indexReads: It is the number of records read from the indices.
•	 documentReads: They are the documents read from the datafiles.  

This number could be different from recordReads, because in a  
scanned cluster there can be different kinds of records.

•	 documentAnalyzedCompatibleClass: They are the documents analyzed 
belonging to the class requested by the query. This number could be different 
from documentReads, because a cluster may contain several different classes.

•	 elapsed: This time is measured in nanoseconds, it is the time elapsed to 
execute the statement.

As you can see, OrientDB can use indices to speed up the reads.

Indexes
You can define indexes as we do in a relational database using the create index 
statement or via Java API using the createIndex() method of the OClass class:

create index <class>.<property> [unique|notunique|fulltext] [field 
type]

Or for composite index (an index on more than one property):

create index <index_name> on <class> (<field1>,<field2>) 
[unique|notunique|fulltext]

If you create a composite index, OrientDB will use it also when in a 
where clause you don't specify a criteria against all the indexed fields. 
So you can avoid this to build an index for each field you use in the 
queries if you have already built a composite one. This is the case of 
a partial match search and further information about it can be found 
in the OrientDB wiki at https://github.com/nuvolabase/
orientdb/wiki/Indexes#partial-match-search.

Generally, the indexes don't work with the like operator. If you want to perform the 
following query:

select from Authors where name like 'j%'

And you want use an index, you must define on the field name a FULLTEXT index.

FULLTEXT indices permit to index string fields. However keep in mind that indices 
slow down the insert, update, and delete operations.



Performance Tuning

[ 96 ]

Looking for @rid values
If you perform a query where you have the @rid value in the where condition, you 
can speed up your statement by omitting the where keyword.

For example, instead of:

select from posts where @rid = #15:2

Execute the following statement:

select from #15:2

If you have a set of RIDs:

select from [#15:2, #15:3, #15:3]

Summary
In this chapter we have seen some strategies that try to optimize both the OrientDB 
server installation and queries.

In the next chapter we are going to explore some advanced features of OrientDB, 
such as triggers, stored functions, hooks, and clustering.



Advanced Features
The information described in this chapter is related to the latest source code snapshot 
available on the GitHub repository at the time of writing this book. Since OrientDB 
is a very active project with many contributors, many features are added constantly 
and can make documentation obsolete and deprecated. The features listed in this 
chapter are as follows:

•	 Embedded mode: The OrientDB engine can be embedded in your own Java 
application. This means that you can bring all the power of a graph database 
directly into your application. This is the most powerful use of OrientDB, 
because to use its functionalities, you don't need to connect to a remote 
server, so you have no network latency or bottleneck.

•	 Server-side code: You can write your own functions in JavaScript and invoke 
them in SQL statements via REST or by using the Java API. In this way you 
can even put business logic into the server.

•	 Hooks: Hooks help you in extending the core of the engine, implementing 
new functionality depending on your needs.

•	 Triggers: As in a classical relational database, you can define functions that 
are automatically executed on specific events such as insert, update, and 
delete, not only at class level, but even at record level. This means that you 
can define different triggers for different records of the same class.

•	 Clustering: You can deploy a cluster of OrientDB nodes for load balancing 
purposes or to set up a high availability environment.



Advanced Features

[ 98 ]

Embedded mode
You can embed the OrientDB core into your own Java project and use a local 
database without the need for a remote DB server. To use OrientDB in embedded 
mode you must include the following libraries in your project:

•	 orient-commons-xxxx.jar

•	 orientdb-core-xxxx.jar

•	 orientdb-server-xxxx.jar

You can use the OrientDB Java API to interact with the database and perform  
any kind of operation against it. You can access the database in the ./db  
directory as follows:

final OGraphDatabase db = new OGraphDatabase ("local:./db") ; 
if (!db.exists()) {
  //the db does not exist, let's create it
db.create();  //after the creation, the db is automatically opened
} else db.open("admin","admin");

Remember to close the connection when you finish using it. 

In a thread you can retrieve an already opened connection as follows:

OGraphDatabase db = new OGraphDatabase   ((ODatabaseRecordTx)
ODatabaseRecordThreadLocal.INSTANCE.get());

Keep in mind, however, that connections are not thread safe, as stated in the official 
wiki page located at https://github.com/orientechnologies/orientdb/wiki/
Document-Database#multi-threading.

Server-side code
One of the most powerful features of OrientDB is the possibility to write your own 
custom server-side code. You can imagine these pieces of code as being similar 
to that of stored procedures. The language used is JavaScript. In fact, OrientDB 
embeds the Rhino interpreter. To write your own server-side function you can use 
the OrientDB Studio which has an IDE, or you can use the console tool. In fact, the 
JavaScript functions are stored in the special OFunction class and you can insert, 
update, or delete functions like any other records belonging to a class.



Chapter 5

[ 99 ]

Server-side function features
Server-side functions have a set of interesting characteristics. Some of them are  
as follows:

•	 They can be written in JavaScript or SQL. You can write your own functions 
in plain JavaScript or in SQL statements.

•	 They can be invoked via Java API, REST calls, and OrientDB Studio.
•	 They call each other. The JavaScript functions can call each other, and 

therefore you can build your server-side logic.
•	 They support recursion.
•	 They have automatic mapping of parameters by position and name.  

You can pass, of course, parameters to the functions and use both  
position and name notation.

Creating a function
To create a function, the most convenient way is to use the OrientDB Studio. After you 
are logged in as administrator, you have to click on the Functions tab on the toolbar:

You should see the following IDE (you may be prompted to re-enter your  
admin credentials):



Advanced Features

[ 100 ]

The IDE is split into several sections:

•	 Section 1: This is the list of the stored functions. Initially it is empty.
•	 Section 2: This is the toolbar you can use to create, update, and save  

your functions.
•	 Section 3: In this section, you can choose the functions' language. JavaScript 

and SQL are now supported, and more languages are coming soon.
•	 Section 4: This is the name of your stored function.
•	 Section 5: The idempotent checkbox specifies if the function is or is  

not idempotent; that is, whether the function has any side effects. This  
is a very important flag because if you want to call this function via  
HTTP, you check it as Idempotent. In fact, this is used to avoid calling  
non-idempotent functions using the HTTP GET method.

•	 Section 6: Here you can specify the function's parameters.
•	 Section 7: This is the body of the function.
•	 Section 8: This is the Run button. If the function accepts parameters, you can 

insert them between the brackets.
•	 Section 9: This is the output.

Let's try to write a simple function. Let's make a function that accepts two numbers 
and returns the sum. You have to specify the name of the function, the name of the 
two parameters by clicking twice on the + symbol next to the Parameters label, and 
write the body of the function, for example:

return a+b;

Here, a and b are the parameters. Then you need to enable the Idempotent checkbox 
and click on the Save button.

Note that every time you make a change to a property of the 
function (the body, a parameter, or something else) you must save 
it. Otherwise the server always executes the previous version.



Chapter 5

[ 101 ]

You should have something similar to the following screenshot:

Now specify the two parameter values, for example 1 and 2, and click on the Execute 
button. The result of the function call should appear:

{"result":[{"@type":"d","@version":0,"value":"12"}]} 

The first thing we can note is that the result is in JSON format. The @type property 
specifies which kind of result we have; in this case d means document, the @version 
value is always 0, the value property is the actual result of the function. But here, 
seemingly there is a problem, because 1 + 2 is not 12. This happens because all the 
parameters are treated like strings. So we need to modify our function body:

return Number(a)+Number(b);

Click on the Save button, and then rerun the function. Now the result is a  
bit different:

{"result":[{"@type":"d","@version":0,"value":3.0,"@
fieldTypes":"value=d"}]}



Advanced Features

[ 102 ]

Now value is correct, and we have the new field @fieldTypes that specifies that 
the value field is a number. If you open a console and perform a query on the 
OFunction class, you will see your function stored in it:

orientdb> select from OFunction

-+----+----------+----+---------------------------+----------+---------

#|RID |language  |name|code                       |idempotent|parameters

-+----+----------+----+---------------------------+----------+---------

0|#6:0|Javascript|sum |return Number(a)+Number(b);|true      |[2]

-+----+----------+----+---------------------------+----------+---------

1 item(s) found. Query executed in 0.024 sec(s).

Let's make an example with the SQL language. Let's make a function that returns all 
the DB users:

1.	 Click on the New button.
2.	 Select SQL as the language.
3.	 Choose a name, for example getUsers.
4.	 Select the Idempotent checkbox.
5.	 Write the SQL statement as the function body:

select from ouser

6.	 Save the function.
7.	 Run the function by clicking on the Execute button.



Chapter 5

[ 103 ]

8.	 In the text area you should see the result in JSON format.

Usage
You can call a server-side function via Java API or HTTP Rest. In fact, every stored 
function is exposed by the embedded REST server.



Advanced Features

[ 104 ]

Java API
The functions are available through the Function Library APIs. To use the sum() 
function declared previously, you can write some code similar to the following example:

OFunction sum = db.getMetadata().getFunctionLibrary().
getFunction("sum");
Number result = (Number) sum.execute(1, 2);

Here, db is an open database connection.

RESTful calls
Each stored function is automatically exposed by the embedded REST server. To call 
an idempotent function, you have to do an HTTP GET request to the URL:

http://<server-host>:<server-port>/function/<db-name>/<function-
name>/<parameters>

In our example it is:

http://localhost:2480/function/function_demo/sum/1/2

If the function is not idempotent you cannot use the GET action, but you can use POST.

OrientDB implements the basic auth protocol. This means that if you 
want to do a REST call, you must supply the authorization header 
encoded in base64.

Special variables
Inside the JavaScript server-side functions some implicit variables are available so 
that you can easily interact with the database. They are as follows:

•	 db: The current document database instance
•	 gdb: The current graph database instance (if the current database is a  

graph db)

The preceding objects have the following useful methods:

•	 query(): This method performs a SQL query against the current database 
instance. You can pass the query and the parameters as well. For example:
db.query ("select from ouser where name=?","admin");

•	 begin(), commit(), rollback(): These methods are used to perform 
transaction-related operations.



Chapter 5

[ 105 ]

•	 save(): This method persists an object. You have to pass the object to persist. 
The object could have the special OrientDB fields such as @class to specify 
the class, @version to allow OrientDB to perform a check on concurrent 
modifications. For example:
db.save ({"@class":"author", name: "Jenny"});

If you enable the e-mail plugin, you will also have a method that is used to 
send e-mails (this will be discussed later).

•	 send(): This method sends an e-mail using the specified parameters.
If you plan to call your functions via REST, you have some other  
implicit variables.

•	 request: This is the HTTP request object. Its methods are as follows:
°° getContent(): This method returns the request content
°° getUser(): This method returns the current user
°° getContentType(): This method returns the content type specified 

into the request
°° getHttpVersion(): This method returns the request's HTTP version
°° getHttpMethod(): This method returns the HTTP request method
°° getIfMatch(): This method returns the request's IF-MATCH header
°° isMultipart(): This method checks whether the request has  

a multipart
°° getArguments(): This method returns the request's arguments 

passed in REST form. For example, /1/2
°° getArgument(<position>): This method returns the request's 

argument by position, or null if not found
°° getParameters(): This method returns the request's parameters
°° getParameter(<name>): This method returns the request's 

parameter by name, or null if not found
°° hasParameters(<name>*): This method returns the number of 

parameters found between those passed
°° getSessionId(): This method returns the session ID
°° getURL(): This method returns the request's URL

•	 response: This is the HTTP response object. Its methods are as follows:
°° setHeader(<header>): This method sets the response additional 

headers. To specify multiple headers you use the line breaks.



Advanced Features

[ 106 ]

°° setContentType(<contentType>): This method sets the  
response content type. If it is null or you don't set it, it will  
be automatically guessed.

°° setCharacterSet(<characterSet>): This method sets the response 
character set.

°° writeStatus(<httpCode>, < reason>): This method sets the 
response status as the HTTP code and reason.

°° writeHeaders(<header>, <keepAlive>): This method writes the 
response headers specifying it to use keepAlive or not. keepAlive is 
optional, the default is true.

°° writeLine(<content>): Writes a line in the response. A line feed 
will be appended at the end.

°° writeContent(<content>): This method writes content directly.
°° writeRecords(<records>, <fetchPlan>): This method writes a 

list of records in the response, specifying a fetchPlan parameter to 
serialize nested records. The records are serialized in JSON format. 
fetchPlan is optional. Records are instances of OIdentifiable, and 
generally they are results of a db.query() call.

°° writeRecord(<record>, <fetchPlan>): This method writes 
a single record in the response, specifying a fetchPlan value to 
serialize nested records. The record is serialized in JSON format. 
fetchPlan is optional. record is an instance of OIdentifiable,  
and generally it is the result of a db.query() call.

°° send(<code>, <reason>,< contentType>, <content>, 
<additionalHeaders>, <keepAlive>): This method sends the 
complete HTTP response in one call. additionalHeaders and 
keepAlive are optional.

°° sendStream(<code>,< reason>, <contentType>, <content>,< 
size>): This method sends the complete HTTP response in one call 
specifying a stream as content.

°° flush(): This method flushes the content of the response.

Finally there is the util object that has additional helper methods. At this 
moment only one method is available:

°° exists(<parameter>): This method returns true if the specified 
parameter has been passed to the function.



Chapter 5

[ 107 ]

Hooks
Hooks are pieces of Java code that are "injected" at the lowest level of the db engine. 
They allow us to intercept the CRUD operation before or after they are performed and 
also allows us to perform additional operations on data before they are persisted, or 
before they are returned to the client. To write a hook, you have to write a Java class 
implementing the ORecordHook interface or just extend the ORecordHookAbstract 
class; both belong to the orientdb-core-xxx.jar library. The ORecordHookAbstract 
class has several methods and you can override only the ones you are interested 
in. Otherwise you can implement the ORecordHook interface and then write all the 
required methods. For example, you can mask the password field from the OUser class.

You may write a hook that intercepts the select from that class and drops the 
password field from the read records before they are returned to the client. Your 
code could be something like the following:

public class HidePassword extends ORecordHookAbstract {
  @Override
  public void onRecordAfterRead(ORecord<?> iRecord) {
    super.onRecordAfterRead(iRecord);
    if (iRecord instanceof ODocument){
      ODocument doc = (ODocument)iRecord;
      if (doc.getClassName()!=null && doc.getClassName() 
.equalsIgnoreCase("OUser")){
        doc.removeField("password");
      }
    }
  }//onRecordAfterRead method
} //HidePassword class

To register your hook in the engine you must modify the class, compile its class, and 
put your .jar file in the ORIENTDB_HOME/lib directory. After this, you must modify 
the config file by inserting the following line:

<hook class="my.best.class.ever.HidePassword" position="REGULAR"/>

position indicates the order of the hooks' execution. It can be:

•	 FIRST: This hook will be the first one to be executed.
•	 EARLY: This hook will be executed just after the first.
•	 REGULAR: No order is specified; the hook will be called but there is no 

guarantee that it will be executed before or after another one.
•	 LATE: This hook will be executed after the REGULAR ones.
•	 LAST: This hook will be executed as the last one.



Advanced Features

[ 108 ]

Triggers
Since Version 1.4.0, OrientDB supports triggers both on classes and records.  
This means that you can define triggers when an operation occurred against 
a specified class, or even against a specified record. Triggers can intercept the 
following eight events:

•	 onBeforeCreate

•	 onAfterCreate

•	 onBeforeRead

•	 onAfterRead

•	 onBeforeUpdate

•	 onAfterUpdate

•	 onBeforeDelete

•	 onAfterDelete

They can run a specified stored function if the events occur. Inside the databases 
there is a new abstract class named OTriggered; every class that extends it can use 
this feature. Let's take a look at an example. We want to log the date and time when 
a new record is inserted or updated, adding a field to the inserted/updated record. 
The first thing to do is to write a new stored function:

•	 Name: logDate
•	 Body:

var now=new Date();
var nowInString = now.getFullYear() + "/" + now.getMonth() + "/" 
+ now.getDate() + " " + now.getHours() + ":" + now.getMinutes() + 
"."+now.getMilliseconds();
doc.field("__log",nowInString);
return "RECORD_CHANGED";

When a function is called in a trigger context, a new implicit variable is available. 
The doc variable is an instance of the ODocument class and maps the record that 
triggers the function. In our case we use the doc variable to add a new field, __log, 
into the document. Note also the returned string. This says to OrientDB that the 
trigger modified the document. Allowed values are as follows:

•	 RECORD_NOT_CHANGED

•	 RECORD_CHANGED

If no value is returned, RECORD_NOT_CHANGED is assumed.



Chapter 5

[ 109 ]

The returned value must be a string.

Next we have to create our new class:

create class Logged extends OTriggered

Now let's declare the trigger:

alter class Logged custom onBeforeCreate=logDate

Don't include the function name between quotes.
insert into Logged (text) values ("text")

Inserted record 'Logged#10:0{text:text,__log:2013/2/30 
22:23.604} v0' in 0,021000 sec(s).

Let's verify the inserted record:

select from Logged

---+---------+--------------------+--------------------

  #| RID     |text                |__log               

---+---------+--------------------+--------------------

  0|    #10:0|text                |2013/2/30 22:23.604 

---+---------+--------------------+--------------------

Gremlin support
Gremlin is a specialized language for working with graph database engines. 
OrientDB supports the Gremlin language. To use the Gremlin language you  
must use the Graphed Edition. In the ORIENTDB_HOME/bin directory you will  
find the gremlin.sh tool (.bat for Windows platforms). Remember to set the 
environment variable, ORIENTDB_HOME, before launching the shell tool. Once you 
have run gremlin.sh (you must run it from the ORIENTDB_HOME/bin directory),  
you can connect to an OrientDB server, or connect to a local database stored in the 
local filesystem:

orientdb-graphed-1.3.0\bin>gremlin

         \,,,/

         (o o)

-----oOOo-(_)-oOOo-----

gremlin>



Advanced Features

[ 110 ]

To connect to the local example database, run the following code:

g = new OrientGraph("local:/orientdb-graphed-1.3.0/db/
tinkerpop","admin","admin");

To connect to a remote database you must use the following remote protocol:

g=new OrientGraph("remote:localhost/tinkerpop","admin","admin");

Once you have connected to a database, you will be able to perform any query or 
operation allowed by Gremlin.

Gephi
Gephi is a graphical tool that allows us to explore and manipulate a graph database 
in a visual manner. OrientDB supports the JSON streamed Gephi data format. To use 
Gephi with OrientDB, you must download Gephi from http://gephi.org/users/
download and install it. You must also run the OrientDB server. Gephi will use the 
OrientDB embedded HTTP REST server to retrieve the necessary data. To use Gephi, 
perform the following steps:

1.	 Start an OrientDB server instance.
2.	 Open Gephi.
3.	 Navigate and click on the Tools | Plugins menu.
4.	 Click on the Available Plugins tab.
5.	 Select the Graph Streaming plugin and install it (this is necessary only once).
6.	 Go to the Overview view (click on the Overview top-left button).
7.	 Click on the Streaming tab on the left.
8.	 Click on the green + button.
9.	 Insert as Source URL, the query you want to execute. For example,  

http://localhost:2480/gephi/tinkerpop/sql/select%20from%20v/100.
10.	 Select the JSON format.
11.	 Enable Use Basic Authentication and provide the right credentials  

(for example, admin/admin).



Chapter 5

[ 111 ]

12.	 Click on the OK button.

As you can see, the URL provided returns a set of information. You can explore it by 
trying to run the URL on a browser. The format of the URL is as follows:

http://<host>:<port>/gephi/<database>/<language>/<query>[/<limit>]

This can be broken down as follows:

•	 host: This is the host where OrientDB is installed.
•	 port: This is the configured port of the OrientDB instance.
•	 database: This is the database to query.
•	 language: This is the language used to write the query—it can be  

sql or gremlin.
•	 query: This is the query itself to run against the database.
•	 limit: This is an optional parameter to specify the maximum number of 

records to return. By default this is 20. -1 means no limit, so use it carefully.



Advanced Features

[ 112 ]

Clustering
OrientDB can be deployed in a cluster architecture. It uses the Hazelcast open source 
project to manage the clustering. OrientDB currently supports the multi-master 
replication, in which each node of the cluster owns an exact replica of the database 
and can perform all kinds of operations against it. Of course, OrientDB manages 
the conflicts that could happen when more than one node wants to update the same 
information. Currently the clustering implementation is under heavy refactoring by 
the project team due to the implementation of the auto-sharing support.

It is very important to know that replication works only for already 
created databases. Schema-related commands are not executed in 
a distributed environment. This means that you cannot create a 
new database in a node and see it in other nodes. Only data that is 
replicated across the cluster's nodes.

How it works
When OrientDB is configured to work in a cluster (this can be achieved through the 
configuration file), it tries to join to the cluster sending an IP multicast message in 
broadcast. If the cluster exists, the new node joins in, otherwise it becomes the first 
node of a new cluster. In the configuration file, there will be the cluster name and a 
password as well. The password is used to encrypt the broadcast message, so that 
the password itself does not cross the network. In this way, you may have several 
clusters on the same network, because only the cluster that can decrypt the message 
can reply to the message and allows the new node to join the cluster. Obviously all 
the nodes belonging to a cluster also have to know the same cluster name and the 
same password. OrientDB clients always know about the cluster layout, so when a 
new node joins the cluster, the new configuration is broadcasted to all active clients. 
In this way, clients know which other nodes can be queried, in case the node they are 
connected to becomes unavailable.



Chapter 5

[ 113 ]

Replication
When a node has to do some non-idempotent operation against a database, it writes 
the operation on its own operation log, and then performs it. Because an OrientDB 
cluster is a multi-master cluster, the node communicates to other nodes that the 
operation is done. What happens next depends on the cluster configuration. Data 
propagation, in fact, can be made synchronously or asynchronously. The first one 
guarantees that databases are always consistent and synchronized, because the 
first node always waits for the answers of the other nodes before sending back the 
acknowledgement to the client. This, however, is expensive in terms of response 
time. The second mode, the asynchronous one, on the contrary is the fastest but 
does not guarantee the consistency of databases across the cluster because a few 
milliseconds can elapse between updates. Each operation is tracked by a unique 
identifier. This is important because if a node leaves the cluster, it loses the new 
updates eventually made by other nodes. When it rejoins in, it sends to other nodes 
belonging to the cluster, the identifier of the last operation performed to the other 
nodes belonging to the cluster before leaving the cluster. Other nodes check this 
identifier against their operation log and if it is not the same, they resend all newer 
operations to the node allowing its alignment.

Configuration and setup
The configuration of clusters and nodes takes place entirely in the configuration  
file of each node. OrientDB distribution comes with three configuration files in  
the ORIENTDB_HOME/config directory: 

•	 orientdb-server-config.xml: This is the default config file for a 
standalone server

•	 orientdb-dserver-config.xml: This is the default config file for 
distributed deployment

•	 orientdb-aserver-config.xml: This is the default config file for 
distributed deployment with the auto-sharing feature

The orientdb-dserver-config.xml file is the one we use. The third one at the 
moment is experimental and under development. There are two other files to  
keep in mind when deploying and configuring a cluster:

•	 hazelcast.xml

•	 default-distributed-db-config.json



Advanced Features

[ 114 ]

The first file to look is orientdb-dserver-config.xml. Here you'll find the 
configuration section for the Hazelcast plugin with its default parameters:

•	 alias: This allows you to specify an alias name for the node; if it is not 
specified, the node will be called <ip-address>:<port>.

•	 enabled: This value is false, and the Hazelcast plugin is disabled for this node.
•	 configuration.hazelcast: This is the external file containing additional 

parameters for Hazelcast.
•	 configuration.db.default: This is an external configuration file for 

specific replication parameters.
•	 alignment.startup: This specifies if the node should be aligned at startup.
•	 alignment.timer: This specifies a delay in milliseconds between  

automatic realignment.
•	 conflict.resolver.impl: This is the class used to manage the conflict 

that will occur. By default the com.orientechnologies.orient.server.
distributed.conflict.ODefaultReplicationConflictResolver class is 
used. You can write your own class. In this case your class must implement 
the OReplicationConflictResolver interface.

The second file to look is the one defined in the configuration.hazelcast 
property; by default it is ${ORIENTDB_HOME}/config/hazelcast.xml.

The relevant section in this file is the group one. In this section, you must specify the 
name of the cluster and the password used to encrypt the broadcast message sent to 
join the cluster. All the nodes belonging to the same cluster must have the same name 
and password. The third file is, by default, ${ORIENTDB_HOME}/config/default-
distributed-db-config.json. In this file it is possible to define the behavior of the 
node for each database, class, and other related stuffs. The default configuration file 
instructs the node to keep all the clusters synchronised except the internal one and 
the indices (this is because indices are rebuilt locally by each node). However, you can 
customize this behavior. One important feature for clusters is the possibility to share 
the second level cache. By default, this cache is shared between connection instances 
inside the same JVM, however; it is possible to disable this kind of cache and use 
a new kind of cache that is shared among all the connection instances belonging 
to the same cluster. To achieve this, you have to uncomment the related line in the 
properties section inside the orientdb-dserver-config.xml file.



Chapter 5

[ 115 ]

Sending e-mails through OrientDB
Since Version 1.2.0, OrientDB ships with an e-mail plugin. This plugin allows you 
to send e-mails directly from the database. This is useful, for example, inside a hook 
to send an e-mail to the administrator if some conditions occur. To send e-mails you 
must enable the plugin in the configuration file(s). The default configuration file, 
orientdb-server-config.xml, comes with a default configuration. The plugin 
accepts a set of parameters:

•	 profile.<profile-name>.mail.smtp.host: This is the SMTP server to  
be used

•	 profile.<profile-name>.mail.smtp.port: This is the TCP port to be used 
to communicate with the SMTP server

•	 profile.<profile-name>.mail.smtp.auth: This is set to true if the SMTP 
server requires authentication

•	 profile.<profile-name>.mail.smtp.starttls.enable: This is set to true 
if the server supports TLS

•	 profile.<profile-name>.mail.smtp.user: This specifies the username to 
be used to send the e-mails

•	 profile.<profile-name>.mail.smtp.password: This is the user password
•	 profile.<profile-name>.mail.date.format: This is the date format to  

be used

More than one profile parameter is supported. You can configure more profiles  
(for example, more than one SMTP server, user, password, and so on).

Usage
To send a message you must prepare a map with the required fields. They are  
as follows:

•	 profile: This is the profile to be used to send the e-mail.
•	 to: This is the recipient address. It can also be a list of comma-separated 

addresses.
•	 cc: This is the carbon copy address. Similar to the to field, it can also be a list 

of comma-separated addresses.
•	 bcc: This is the blind carbon copy address. Similar to the to field, it can also 

be a list of comma-separated addresses.
•	 subject: This is the subject of the message.



Advanced Features

[ 116 ]

•	 message: This is the body of the message. The content could be in HTML.
•	 attachments: This allows us to attach files. This is an array of filenames.

You can send e-mails either in stored JavaScript functions or via Java code. In 
JavaScript, the e-mail plugin defined and configured in the config file injects a new 
implicit variable into the function body, so you can simply write something as follows:

mail.send({
  profile: "default",
  to: "admin1@example.com,admin2@example.com",
  cc: "supervisor@example.com",
  subject: "Something happend!",
  message : "Alert! Something happend on OrientDB server!"
});

In Java, you must prepare the map and then use the OMailPlugin class (located in 
the orientb-server-xxxx.jar library):

OMailPlugin plugin = OServerMain.server().getPlugin("mail");
Map<String, Object> message = new HashMap<String, Object>();
message.put("profile", "default");
message.put("to",      "admin1@example.com,admin2@example.com");
message.put("cc",      "supervisor@example.com");
message.put("subject", "Something happend!");
message.put("message", "Alert! Something happend on OrientDB 
server!");
plugin.send(message);

Summary
In this chapter we have seen some of the advanced features shipped with OrientDB. 
We have seen how to write server-side code, how to deploy a cluster, how to send 
e-mails, and how to visually display the data organized in a graphical representation.

In the next chapter, there is a quick reference to the most common and useful SQL 
statements, and also a Java API reference.

Furthermore, several configuration parameters available in OrientDB are listed and 
explained in Appendix. This appendix is available at http://www.packtpub.com/
sites/default/files/downloads/9956OS_Appendix.pdf.

Also you can find a list of references at http://www.packtpub.com/sites/
default/files/downloads/9956OS_OrientDB_1.5.0.pdf.



Index
Symbols
$current variable  67
$depth variable  67
$parent variable  67
$path variable  67
@class field  54
@RIDs  96
@size field  54
@this field  54
@type field  54
@version field  54, 82

A
Abstract classes  27
advanced features, OrientDB

clustering  97, 112
embedded mode  97, 98
hooks  97, 107
server-side code  97, 98
triggers  97, 108

alter property command  60
Apache Commons Daemon  16
attribute-value attribute  60
Author class  62
Authors class  51
autoConfig() method  89
automatic backup  42, 43

B
backup

console, using  41
OrientDB Studio, using  42

begin() method  82, 104
binary  47

binary drivers  20
binary protocol  20
boolean  47
byte  47

C
cache optimization  89
caches

about  85, 87
level 1 cache  85, 86
level 2 cache  85, 86

Categories class  51, 66
characteristics, server-side functions  99
classes

about  25, 26
Abstract classes  27

close() method  76
clustering

about  97, 112
replication  113
working  112

clusters
configuring  113, 114
setting up  113

coalesce() function  69
commit() method  82, 104
config command  87
configuration parameters, profiler  93
connect command  23
connection pools  76
console

about  20
used, for backup  41
used, for restore  41

console command  23



[ 118 ]

containers  57, 58
Container Types

embeddedlist  48
embeddedmap  48
embeddedset  48
linklist  48
linkmap  48
linkset  48

core  20
create class command  51
create database command  49
create property command  58

D
database.ocf file  24
database performance  85
Database section  37, 38
datafile fragmentation  93
data types  47
date  47
db.exclude parameter  44
db.include parameter  44
default.0.ocl file  24
default.0.oda file  24
default-distributed-db-config.json 

parameter  22
default.och file  24
default.odh file  24
delay parameter  43
Depth field  72
dictionary  9
dijkstra() function  73
Document section  38
double  47

E
emails

sending, through OrientDB  115
embedded  47
embedded document  56, 57
embeddedlist  48
embeddedmap  48
embedded mode 97, 98
embeddedset  48
emebedded relationships  61
enabled parameter  43

Enterprise Edition, OrientDB Server  9
execute() method  69, 77
execute() parameter  77
exists(<parameter>) method  106
explain command  94
extended SQL

about  48
classes, creating  51
database, creating  49, 50
graph database  69-73
mixed-mode  58-60
records, deleting  52
records, inserting  51
records, reading  52-55
records, updating  52-55
schema-full classes  58-60

F
fields

about  55, 56
containers  57, 58
embedded document  56, 57

file.defrag.holeMaxDistance  93
file.mmap.strategy configuration  

property  90
filesystem optimization  89, 90
firstTime parameter  43
flatten() function  58
float  47
flush() method  106
Functions section  38

G
general optimizations

about  88
cache  89
connections  90, 91
filesystem  89, 90
JVM optimization  88
memory  89
transactions  91

Gephi
about  110
URL, for downloading  110
using, with OrientDB  110, 111

getArgument(<position>) method  105



[ 119 ]

getArguments() method  105
getContent() method  105
getContentType() method  105
getHttpMethod() method  105
getHttpVersion() method  105
getIfMatch() method  105
getParameter(<name>) method  105
getParameters() method  105
getSessionId() method  105
getURL() method  105
getUser() method  105
GitHub platform  13
Graph button  39, 72
graph database  69-73
Graphed Edition, OrientDB Server

about  8
installing  12, 13

Graph section  38
Gremlin  109
Gremlin query language  8

H
handlers  20, 21
hasParameters(<name>*) method  105
Hazelcast  20
Hazelcast open source project  112
hazelcast.xml parameter  22
Hibernate Query Language (HQL)  64
hooks  97, 107
HTTP request object

methods  105
HTTP response object

methods  105

I
increment keyword  55
index.0.ocl file  24
indexes

defining  95
index.och file  24
inheritedRole property  30
insert command  58
installation, OrientDB

from latest stable release  9
integer  47
internal.0.ocl file  24

internal.och file  25
isMultipart() method  105

J
Java API

server-side functions, calling via  104
Java API clients  20
Java New I/O (NIO, JSR 51) API  86
JDBC driver

URL  73
using  73, 74

JVM optimization  88

K
Key/Value Edition, OrientDB Server  8

L
level 1 cache  85, 86
level 2 cache  85, 86
link  48
linkedclass attribute  60
linkedtype attribute  60
linklist  48
linklist field  62
linkmap  48
linkset  48
list element  57
load() method  79
local keyword  23
long  47

M
mandatory attribute  60
manindex.0.ocl file  25
manindex.och file  25
many-to-many relationship

about  63
referenced relationship  63

map element  57
massive insertions  92
max attribute  60
memory mapped files  89
memory optimization  89
min attribute  60



[ 120 ]

mixed-mode  58-60
mode property  30

N
name attribute  60
name property  30
Native Java API

about  74, 75
connection, opening  75, 76
document, creating  78, 79
document, deleting  78, 79
document, loading  78, 79
document, updating  78, 79
object database  79, 80
SQL commands, executing  78
SQL queries, executing  76-78

network  21
notnull attribute  60

O
OCommandRequest class  77
OCommandSQL class  78
ODatabaseDocumentTx class  75
ODocument class  76
ODocument.delete() method  79
ODocument object  77
ofunction.och file  25
OGraphDatabase class  75
OGraphEdge class  70
OGraphVertex class  70
OIdentity class  34
onCreate.fields property  35
onCreate.identityType property  35
one-to-many relationship  61, 62
one-to-one relationship  61, 62
OObjectDatabaseTx class  75
orids.0.ocl file  25
orids.och file  25
OrientDB

classes  25, 26
configuring  21
console  22
datafiles  24, 25
emails, sending through  115
emebedded relationships  61

Gephi, using with  110, 111
installing, as daemon  15
installing, as service  15
installing, from latest stable release  9
referenced relationships  61
security  28
setting up, on Linux systems  15
setting up, on Windows systems  16
URL  9

orientdb-1.3.0.tar.gz file  9
OrientDB architecture

about  19
binary drivers  20
binary protocol  20
console  20
core  20
handlers  20
Hazelcast  20
Java API clients  20
OrientDB Console Studio  20
REST API  20

orientdb-aserver-config.xml file  113
OrientDB, configuring

orientdb-dserver-config.xml  22
orientdb-server-config.xml  21

OrientDB Console Studio  20
orientdb-dserver-config.xml  

file  21, 22, 32, 113
orientdb-graphed-1.3.0.tar.gz file  9
orientdb-odm

URL  74
OrientDB-PHP

URL  74
OrientDB Server

about  7
Enterprise Edition  9
Graphed Edition  8
Key/Value Edition  8
Standard Edition  7

orientdb-server-config.xml file
about  21, 32, 113
handlers  21
network  21
properties  22
storages  21
users  22

orientdb-server-log.properties parameter  22



[ 121 ]

OrientDB snapshot
test suite, running against  15

OrientDB Studio
about  35, 36
Database section  37, 38
Document section  38
Functions section  38
Graph section  38
Query section  38
Raw access section  39
root user  39, 40
used, for backup  42
used, for restore  42

OrientGraph class  75
OrientKV Server  7
orole.0.ocl file  25
ORole class  29
orole.och file  25
OSQLHelper class  79
OSQLSynchQuery class  76
ouser.0.ocl file  25
OUser class  31, 50
ouser.och file  25

P
password field  50
Person class  30
Posts class  55, 59, 65
posts field  80
profiler

about  93
configuration parameters  93

properties  22
pubDate field  59, 78

Q
query() method  104
Query section  38
query tips

@RIDs  96
about  94
explain command  94
indexes  95

R
Raspberry PI  9
Raw access section  39
Record ID (RID)  51
record level security  33-35
referenced relationships  61, 63
Refresh button  40
regexp attribute  60
regexp parameter  60
relationships

many-to-many relationship  63
one-to-many relationship  61, 62
one-to-one relationship  61, 62
SQL functions  68, 69
traversing  64-68

REST API  20
RESTful API  81
restore

console, using  41
OrientDB Studio, using  42

REST protocol
URL  81

REST server
server-side functions, calling via  104

roles  29, 30
rollback() method  82, 104
root user  39, 40
rules  28, 29
rules property  30

S
save() method  105
schema-full classes  58-60
security

about  28
record level security  33-35
roles  29, 30
rules  28, 29
server users  32
users  31, 32

select command  52, 54
send(<code>, <reason>,< contentType>, 

<content>, <additionalHeaders>, 
<keepAlive>) method  106



[ 122 ]

send() method  105
sendStream(<code>,< reason>, 

<contentType>, <content>,< size>) 
method  106

server-side code
about  97, 98
usage  103

server-side function
calling, via Java API  104
calling, via REST server  104
characteristics  99
creating  99-102
special variables  104

server users  32
setCharacterSet(<characterSet>) method  106
setContentType(<contentType>)  

method  106
set element  57
setHeader(<header>) method  105
short  47
Simple Types

binary  47
boolean  47
byte  47
date  47
double  47
embedded  47
float  47
integer  47
link  48
long  47
short  47
string  48

source snapshot
compiling  13, 14

special variables, server-side function  104
SQL functions  68, 69
Standard Edition, OrientDB Server

about  7
features  7, 8
installing  9-11

status field  32

status property  32
storages  21
string  48
sysdate() function  65

T
target.directory parameter  44
target.fileName parameter  44
test suite

running, against OrientDB snapshot  15
TinkerPop Blueprints interface  8
title field  55
transactions

about  82
within REST Calls  82

traverse command  66, 67
Traverse command  73
triggers  97, 108
Truncate command  52
txlog.otx file  25
type attribute  60

U
users  22, 31, 32

W
where clause  73
where condition  55
Windows Services Management Console  16
writeContent(<content>) method  106
writeHeaders(<header>, <keepAlive>) 

method  106
writeLine(<content>) method  106
writeRecord(<record>, <fetchPlan>)  

method  106
writeRecords(<records>, <fetchPlan>) 

method  106
writeStatus(<httpCode>, < reason>)  

method  106



Thank you for buying  
Getting Started with OrientDB

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective 
MySQL Management" in April 2004 and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution based books 
give you the knowledge and power to customize the software and technologies you're using 
to get the job done. Packt books are more specific and less general than the IT books you have 
seen in the past. Our unique business model allows us to bring you more focused information, 
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, 
cutting-edge books for communities of developers, administrators, and newbies alike. For 
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to 
continue its focus on specialization. This book is part of the Packt Open Source brand, home 
to books published on software built around Open Source licences, and offering information 
to anybody from advanced developers to budding web designers. The Open Source brand 
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open 
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals 
should be sent to author@packtpub.com. If your book idea is still at an early stage and you 
would like to discuss it first before writing a formal book proposal, contact us; one of our 
commissioning editors will get in touch with you. 
We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.



Microsoft SQL Server 2012 
Integration Services: An Expert 
Cookbook
ISBN: 978-1-84968-524-5             Paperback: 564 pages

Over 80 expert recipes to design, create, and deploy 
SSIS packages

1.	 Full of illustrations, diagrams, and tips with 
clear step-by-step instructions and real time 
examples

2.	 Master all transformations in SSIS and their 
usages with real-world scenarios

3.	 Learn to make SSIS packages re-startable and 
robust; and work with transactions

4.	 Get hold of data cleansing and fuzzy operations 
in SSIS

Java Persistence with MyBatis 3
ISBN: 978-1-78216-680-1            Paperback: 132 pages

A practical guide to MyBatis, a simple yet powerful 
Java Persistence Framework!

1.	 Detailed instructions on how to use MyBatis 
with XML and Annotation-based SQL Mappers

2.	 An in-depth discussion on how to map complex 
SQL query results such as One-To-Many and 
Many-To-Many using MyBatis ResultMaps

3.	 Step-by-step instructions on how to integrate 
MyBatis with a Spring framework

Please check www.PacktPub.com for information on our titles



Microsoft SQL Server 2012 
Security Cookbook
ISBN: 978-1-84968-588-7            Paperback: 322 pages

Over 70 practical, focused recipes to bullet-proof your 
SQL Server database and protect it from hackers and 
security threats

1.	 Practical, focused recipes for securing your SQL 
Server database

2.	 Master the latest techniques for data and 
code encryption, user authentication and 
authorization, protection against brute force 
attacks, denial-of-service attacks, and SQL 
Injection, and more

3.	 A learn-by-example recipe-based approach 
that focuses on key concepts to provide the 
foundation to solve real world problems

Getting Started with NoSQL
ISBN: 978-1-84969-498-8            Paperback: 142 pages

Your guide to the world and technology of NoSQL

1.	 First hand, detailed information about NoSQL 
technology

2.	 Learn the differences between NoSQL and 
RDBMS and where each is useful

3.	 Understand the various data models for NoSQL

4.	 Compare and contrast some of the popular 
NoSQL databases on the market 

Please check www.PacktPub.com for information on our titles


	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
Installing OrientDB
	Standard Edition
	Graphed Edition
	Key/Value Edition
	Enterprise Edition
	Installing from the latest stable release
	Installing the Standard Edition
	Installing the Graphed Edition

	Compiling from the latest source snapshot
	Running the test suite

	Installing as a daemon/service
	Linux systems
	Windows systems

	Summary

	Chapter 2:
Administering OrientDB
	Configuration
	orientdb-server-config.xml
	orientdb-dserver-config.xml

	The OrientDB console
	OrientDB data files
	Classes
	Abstract classes

	Security
	Rules
	Roles
	Users
	Server users
	Record-level security

	The OrientDB Studio
	The Database section
	The Query section
	The Document section
	The Functions section
	The Graph section
	The Raw access section
	The root user

	Back up / restore
	Using the console
	Using the OrientDB Studio
	Automatic backup

	Summary

	Chapter 3:
Programming OrientDB
	Data types
	Extended SQL
	Creating a database
	Creating classes
	Inserting records
	Deleting records
	Reading and updating records
	Fields

	Schema-full classes and the mixed-mode schema
	Relationships
	One-to-one and one-to-many relationships
	Many-to-many relationships
	Traversing the relationships
	SQL functions

	The graph database

	Using the JDBC driver
	Other language drivers (PHP)
	The native Java API
	Opening a connection
	Connection pools

	Executing SQL queries
	Executing SQL commands
	Create, load, update, and delete a document
	Object database support

	RESTful APIs
	Transactions
	Transactions within REST calls

	Summary

	Chapter 4:
Performance Tuning
	Caching
	General Optimizations
	The JVM optimization
	Memory and cache
	Mapping files
	Connections
	Transactions


	Massive insertions
	Datafile fragmentation
	The profiler
	Query tips
	The explain command
	Indexes
	Looking for @rid values

	Summary

	Chapter 5:
Advanced Features
	The embedded mode
	Server-side code
	Functions features
	Creating a function
	Usage
	Java API
	RESTful calls

	Special variables

	Hooks
	Triggers
	Gremlin support
	Gephi

	Clustering
	How it works
	Replication

	Configuration and setup

	Sending e-mails through OrientDB
	Usage

	Summary

	Index

