
M A N N I N G

Benjamin Muschko

FOREWORD BY Hans Dockter

IN ACTION

www.allitebooks.com

http://www.allitebooks.org

Gradle in Action

BENJAMIN MUSCHKO

M A N N I N G

SHELTER ISLAND

www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department

Manning Publications Co.

20 Baldwin Road

PO Box 261

Shelter Island, NY 11964

Email: orders@manning.com

©2014 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Jennifer Stout

20 Baldwin Road Copyeditor: Benjamin Berg

PO Box 261 Proofreader: Melody Dolab

Shelter Island, NY 11964 Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617291302

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – MAL – 19 18 17 16 15 14

www.allitebooks.com

www.manning.com
http://www.allitebooks.org

iii

brief contents
PART 1 INTRODUCING GRADLE1

1 ■ Introduction to project automation 3

2 ■ Next-generation builds with Gradle 22

3 ■ Building a Gradle project by example 48

PART 2 MASTERING THE FUNDAMENTALS73

4 ■ Build script essentials 75

5 ■ Dependency management 105

6 ■ Multiproject builds 133

7 ■ Testing with Gradle 157

8 ■ Extending Gradle 191

9 ■ Integration and migration 223

PART 3 FROM BUILD TO DEPLOYMENT247

10 ■ IDE support and tooling 249

11 ■ Building polyglot projects 282

12 ■ Code quality management and monitoring 310

13 ■ Continuous integration 337

14 ■ Artifact assembly and publishing 359

15 ■ Infrastructure provisioning and deployment 395

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

v

contents
foreword xiii
preface xv
acknowledgments xvii
about this book xix
about the cover illustration xxiii

PART 1 INTRODUCING GRADLE.1

1 Introduction to project automation 3

1.1 Life without project automation 4

1.2 Benefits of project automation 5

Prevents manual intervention 5 ■ Creates repeatable builds 5
Makes builds portable 6

1.3 Types of project automation 6

On-demand builds 6 ■ Triggered builds 7
Scheduled builds 7

1.4 Build tools 8

What’s a build tool? 9 ■ Anatomy of a build tool 10

1.5 Java build tools 12

Apache Ant 12 ■ Apache Maven 16 ■ Requirements for
a next-generation build tool 19

1.6 Summary 20

www.allitebooks.com

http://www.allitebooks.org

CONTENTSvi

2 Next-generation builds with Gradle 22

2.1 Why Gradle? Why now? 23

Evolution of Java build tools 24
Why you should choose Gradle 26

2.2 Gradle’s compelling feature set 28

Expressive build language and deep API 29
Gradle is Groovy 30 ■ Flexible conventions 31
Robust and powerful dependency management 32
Scalable builds 33 ■ Effortless extendibility 34
Integration with other build tools 34 ■ Community-driven
and company-backed 35 ■ Icing on the cake:
additional features 35

2.3 The bigger picture: continuous delivery 36

Automating your project from build to deployment 36

2.4 Installing Gradle 38

2.5 Getting started with Gradle 40

2.6 Using the Command line 42

Listing available tasks of a project 42 ■ Task execution 43
Command-line options 45 ■ Gradle daemon 46

2.7 Summary 47

3 Building a Gradle project by example 48

3.1 Introducing the case study 49

The To Do application 49 ■ Task management use cases 49
Examining the component interaction 50 ■ Building the
application’s functionality 51

3.2 Building a Java project 54

Using the Java plugin 54 ■ Customizing your project 58
Configuring and using external dependencies 59

3.3 Web development with Gradle 61

Adding web components 61 ■ Using the War
and Jetty plugins 63

3.4 Gradle wrapper 68

Setting up the wrapper 69 ■ Using the wrapper 70
Customizing the wrapper 71

3.5 Summary 72

www.allitebooks.com

http://www.allitebooks.org

CONTENTS vii

PART 2 MASTERING THE FUNDAMENTALS73

4 Build script essentials 75

4.1 Building blocks 76

Projects 76 ■ Tasks 78 ■ Properties 79

4.2 Working with tasks 80

Managing the project version 80 ■ Declaring task actions 81
Accessing DefaultTask properties 82 ■ Defining task
dependencies 83 ■ Finalizer tasks 84 ■ Adding
arbitrary code 85 ■ Understanding task configuration 85
Declaring task inputs and outputs 88 ■ Writing and
using a custom task 90 ■ Gradle’s built-in task types 92
Task rules 95 ■ Building code in buildSrc directory 98

4.3 Hooking into the build lifecycle 99

Hooking into the task execution graph 101 ■ Implementing
a task execution graph listener 101 ■ Initializing the build
environment 103

4.4 Summary 104

5 Dependency management 105

5.1 A quick overview of dependency management 106

Imperfect dependency management techniques 106
Importance of automated dependency management 107
Using automated dependency management 108
Challenges of automated dependency management 109

5.2 Learning dependency management by example 110

5.3 Dependency configurations 111

Understanding the configuration API representation 111
Defining a custom configuration 112
Accessing a configuration 113

5.4 Declaring dependencies 114

Understanding the dependency API representation 114
External module dependencies 115 ■ File dependencies 120

5.5 Using and configuring repositories 121

Understanding the repository API representation 121
Maven repositories 121 ■ Ivy repositories 124
Flat directory repositories 125

www.allitebooks.com

http://www.allitebooks.org

CONTENTSviii

5.6 Understanding the local dependency cache 126

Analyzing the cache structure 126
Notable caching features 127

5.7 Troubleshooting dependency problems 128

Responding to version conflicts 128 ■ Enforcing a specific
version 129 ■ Using the dependency insight report 130
Refreshing the cache 130

5.8 Summary 131

6 Multiproject builds 133

6.1 Modularizing a project 134

Coupling and cohesion 134 ■ Identifying modules 135
Refactoring to modules 136

6.2 Assembling a multiproject build 137

Introducing the settings file 138 ■ Understanding the Settings
API representation 139 ■ Settings execution 140
Settings file resolution 140 ■ Hierarchical versus flat layout 141

6.3 Configuring subprojects 142

Understanding the Project API representation 143
Defining specific behavior 144 ■ Declaring project
dependencies 145 ■ Partial multiproject builds 147
Declaring cross-project task dependencies 149
Defining common behavior 151

6.4 Individual project files 152

Creating build files per project 153 ■ Defining the root project’s
build code 153 ■ Defining the subprojects’ build code 153

6.5 Customizing projects 154

6.6 Summary 155

7 Testing with Gradle 157

7.1 Automated testing 158

Types of automated testing 158 ■ Test automation pyramid 159

7.2 Testing Java applications 159

Project layout 160 ■ Test configurations 161
Test tasks 161 ■ Automatic test detection 162

7.3 Unit testing 162

Using JUnit 162 ■ Using alternative unit testing
frameworks 166 ■ Multiple unit testing
frameworks in harmony 168

www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix

7.4 Configuring test execution 170

Command-line options 171 ■ Understanding the Test
API representation 171 ■ Controlling runtime behavior 172
Controlling test logging 174 ■ Parallel test execution 175
Reacting to test lifecycle events 176 ■ Implementing a
test listener 177

7.5 Integration testing 178

Introducing the case study 178 ■ Writing the test class 179
Supporting integration tests in the build 180
Establishing conventions for integration tests 181
Bootstrapping the test environment 183

7.6 Functional testing 184

Introducing the case study 184 ■ Supporting functional
tests in the build 185

7.7 Summary 190

8 Extending Gradle 191

8.1 Introducing the plugin case study 192

Application management in the cloud with Gradle 192
Setting up the cloud environment 193

8.2 From zero to plugin 196

8.3 Writing a script plugin 197

Adding the CloudBees API library 197
Using the CloudBees API from tasks 198

8.4 Writing custom task classes 201

Custom task implementation options 202
Defining a custom task in buildSrc 202

8.5 Using and building object plugins 209

Applying object plugins 210 ■ Anatomy of an object plugin 212
Writing an object plugin 213 ■ Plugin extension
mechanism 214 ■ Assigning a meaningful plugin name 217
Testing an object plugin 217 ■ Developing and consuming a
standalone object plugin 218

8.6 Summary 221

9 Integration and migration 223

9.1 Ant and Gradle 224

Using Ant script functionality from Gradle 225 ■ Using standard
Ant tasks from Gradle 231 ■ Migration strategies 233

www.allitebooks.com

http://www.allitebooks.org

CONTENTSx

9.2 Maven and Gradle 236

Commonalities and differences 236 ■ Migration strategies 240

9.3 Comparing builds 243

9.4 Summary 245

PART 3 FROM BUILD TO DEPLOYMENT........................247

10 IDE support and tooling 249

10.1 Using IDE plugins to generate project files 250

Using the Eclipse plugins 251 ■ Using the IDEA plugin 258
Using the Sublime Text plugin 264

10.2 Managing Gradle projects in popular IDEs 267

Gradle support in SpringSource STS 268 ■ Gradle support in
IntelliJ IDEA 271 ■ Gradle support in NetBeans IDE 274

10.3 Embedding Gradle with the tooling API 277

10.4 Summary 281

11 Building polyglot projects 282

11.1 Managing JavaScript with Gradle 283

Typical tasks when dealing with JavaScript 283
Using JavaScript in the To Do application 284
Dependency management for JavaScript libraries 285
Merging and minifying JavaScript using a third-party
Ant task 287 ■ JavaScript optimization as part of the
development workflow 289 ■ JavaScript code analysis using
an external Java library 290 ■ Using a third-party Gradle
JavaScript plugin 292 ■ Executing Grunt from Gradle 293

11.2 Building polyglot, JVM-based projects 296

Base capabilities of JVM language plugins 296
Building Groovy projects 298 ■ Building Scala projects 303

11.3 Other languages 307

11.4 Summary 308

12 Code quality management and monitoring 310

12.1 Integrating code analysis into your build 311

12.2 Measuring code coverage 312

Exploring code coverage tools 313 ■ Using the
JaCoCo plugin 315 ■ Using the Cobertura plugin 317

CONTENTS xi

12.3 Performing static code analysis 319

Exploring static code analysis tools 320 ■ Using the
Checkstyle plugin 322 ■ Using the PMD plugin 324
Using the FindBugs plugin 326 ■ Using the
JDepend plugin 327

12.4 Integrating with Sonar 328

Installing and running Sonar 330 ■ Analyzing a project
with Sonar Runner 331 ■ Publishing code coverage
metrics to Sonar 333

12.5 Summary 336

13 Continuous integration 337

13.1 Benefits of continuous integration 338

13.2 Setting up Git 340

Creating a GitHub account 340 ■ Forking the
GitHub repository 341 ■ Installing and configuring Git 341

13.3 Building a project with Jenkins 342

Starting Jenkins 342 ■ Installing the Git and
Gradle plugins 342 ■ Defining the build job 344
Executing the build job 347 ■ Adding test reporting 348

13.4 Exploring cloud-based solutions 351

13.5 Modeling a build pipeline with Jenkins 352

Challenges of building a pipeline 352 ■ Exploring essential
Jenkins plugins 353 ■ Configuring the pipeline jobs 356

13.6 Summary 358

14 Artifact assembly and publishing 359

14.1 Building artifacts and distributions 360

Declaring additional artifacts 361 ■ Creating distributions 363

14.2 Publishing artifacts to a binary repository 366

Publishing to a Maven repository 366 ■ Old versus new
publishing mechanisms 368 ■ Declaring a software component as
a Maven publication 368 ■ Publishing a software component to
the local Maven cache 369 ■ Declaring custom artifacts
for publication 372 ■ Modifying the generated POM 373
Publishing to a local Maven repository 375 ■ Publishing to
a remote Maven repository 377

14.3 Publishing to a public binary repository 379

Publishing to JFrog Bintray 380 ■ Publishing to
Maven Central 383

CONTENTSxii

14.4 Artifact assembly and publishing as part

of the build pipeline 385

Build binaries once 385 ■ Publish once, reuse later 385
Picking an appropriate versioning scheme 387
Including build information in a deployable artifact 390
Publishing your To Do application WAR file 391
Extending the build pipeline 392

14.5 Summary 393

15 Infrastructure provisioning and deployment 395

15.1 Infrastructure provisioning 396

Infrastructure as code 396 ■ Creating a virtual machine with
Vagrant and Puppet 397 ■ Executing Vagrant from Gradle 399

15.2 Targeting a deployment environment 401

Defining configuration in a Groovy script 401 ■ Reading the
configuration with Groovy’s ConfigSlurper 403 ■ Using the
configuration throughout the build 404

15.3 Automated deployments 405

Retrieving the artifact from the binary repository 405
Identifying necessary deployment steps 407
Deployment through SSH commands 407

15.4 Deployment tests 412

Verifying a successful deployment with smoke tests 412
Verifying application functionality with acceptance tests 415

15.5 Deployment as part of the build pipeline 416

Automatic deployment to test environment 417
Deployment tests 417 ■ On-demand deployment to UAT
and production environment 418

15.6 Summary 419

appendix A Driving the command line 421

appendix B Groovy for Gradle users 429

index 440

xiii

foreword
When you create a new technology like Gradle, one of the most critical stages of

development has nothing to do with writing code. Once the initial versions of

your project are used by thousands of developers and a community starts to

assemble around it, the challenge becomes communicating with a much larger

audience of users who will use the project and pass judgment on its merits, and

growing the size of the community ten-fold or a thousand-fold. Gradle has already

amassed a large audience, and we’ve seen tremendous growth over the last two

years, but we’re getting ready for a still larger influx of end-users.

 Therefore, the importance of having a good book cannot be overstated. Devel-

opers with a range of skills and abilities need to be able to pick up a book that’s

easy to understand and which can impart both the syntax and the philosophy

behind the tool. Only then will they be able to confidently grow the community

that can educate itself using a single, authoritative reference for Gradle. Gradle in

Action is that book. Additionally, this book gives new Gradle users a very good

glimpse into how Gradle fits into a larger view of continuous delivery.

 Benjamin is the sort of expert that you hope emerges from an open source

community. He has been a long term Gradle contributor and is the author of

several popular Gradle plugins. He’s both a communicator and a developer. Ben-

jamin has the rare ability to dive into the core details of a particularly challeng-

ing development problem and then explain the tool to end-users. We’re happy

that he has recently joined Gradleware and is now part of the Gradle develop-

ment team.

FOREWORDxiv

 I hope you enjoy the book as well as working with Gradle. May your software

delivery process become both fun and efficient.

HANS DOCKTER

FOUNDER OF GRADLE

AND GRADLEWARE

xv

preface
When I started my career as a software developer, I was blissfully unaware of the need

for project automation. My tool of choice was the IDE, which allowed me to run all

tasks required to fully automate my software development cycle. In 2003 Rainer

Sawitzki,1 an external consultant to the project I was working on, introduced me to

Apache Ant. I thought it was the most amazing thing to be able to describe my auto-

mation logic with the help of mostly pre-existing functionality and to execute it in a

defined order. Despite the fact that the definition language was XML (these were the

days when XML was still fashionable), I soon began to become more ambitious by cre-

ating artifacts for different target platforms, writing deployment logic for web contain-

ers, and setting up a continuous integration server.

 Automation requirements have changed significantly since then. My projects have

grown in size and complexity. Deployment and delivery models have become far more

sophisticated. And while I explored other build tool options to meet these needs over

the years, I found that there was always a Catch-22. Many developers accepted the sta-

tus quo in this space, which left them with painful experiences. Rarely is there a topic

that’s discussed more religiously2 than the pros and cons of build tools and why peo-

ple hate them so much. The purpose of this book isn’t necessarily to convince you to

switch your current build to Gradle. If you’re happy with your setup (whatever you’re

1 Thanks again for the object-oriented mindset I picked up by working with you. You’ve been a great mentor
to me.

2 This topic is on par with Windows versus Linux or the comparison of web application frameworks.

PREFACExvi

using), by all means, stick to it. I will, however, talk about the massive innovation that

Gradle brings to the table and compare it to existing solutions. I invite you to be your

own judge.

 I started to write this book with a specific goal in mind: teach the core concepts of

Gradle, but don’t stop there. In a world that embraces software development practices

like continuous integration and delivery, you have to take into consideration the tool-

ing ecosystem into which a build system must integrate. Hopefully, I’ve found the

right balance in this book. If you have questions, comments, or ideas, I’d love to hear

them. Your feedback might spark the urge to write a second edition or add-on con-

tent. Feel free to send me an email or contact me on the book’s forum at Manning.

 As with all book projects, the page count is limited. To stick to the scope of this

book, I had to leave out some of the content I initially planned to write. (This is my

first book. With the naiveté of a virgin author, I thought I could fit it all in.) The

source code repository of the book, found at https://github.com/bmuschko/gradle-

in-action-source, expands on some of this material and lists references to other code

examples and resources. I hope you enjoy reading the book as much as I enjoyed

writing it.

https://github.com/bmuschko/gradle-in-action-source
https://github.com/bmuschko/gradle-in-action-source

xvii

acknowledgments
When thinking about writing a book, you have no idea how much work it’s going to be.

It’s safe to say that it literally controls your life for an extended period of time. After a

while, the writing part becomes easier. The hard part is to start writing every day. This

wouldn’t have been possible without the support, encouragement, and help of others.

 In 2010, I started to evaluate Gradle for the first time as a replacement for a Maven

project for a previous employer. I probably wouldn’t have done that without the spike

initiated by Jonathan Bodner, a long-term acquaintance, whom I deeply admire for his

technical insight. He started me on my way to getting excited about Gradle, becoming

deeply involved with its community, and writing plugins of my own.

 I’ve been a technical reviewer for books published by Manning for many years

before writing my own. It started when I met Dan Allen, the author of Seam in Action

(Manning, 2008), at one of the No Fluff Just Stuff conferences. After chatting with me

for a while, he quickly got me excited about his endeavors and I offered to help him

by reviewing his book. My engagement got me a first glimpse of what it means to write

a book. I had always wanted to write a book, but never found the appropriate time or

topic to jump on it. With Gradle, it just felt right. Thanks, Dan, for your enthusiasm

that inspired me to carry on the torch and make it my own.

 One of the first things you do before writing a book is put together the outline and

table of contents. The first person I showed the draft to was David James, the orga-

nizer of the Washington DC–area Groovy user group. Thanks for your outside per-

spective on the organization of the book, your meticulous attention to detail, and

your strong encouragement to make the book a reality.

ACKNOWLEDGMENTSxviii

 No commercial book is published without many people in the background. This

goes out to everyone involved in the process at Manning Publications. Michael Stephens,

who I talked to first, bought into the idea of this book and ultimately trusted me to do

a good job. My gratitude also goes to Cynthia Kane, who helped me to find my writing

style. I’d also like to thank Jennifer Stout, my development editor, who always tried to

get the best out of me, made me think about whole text passages in a different way,

and tolerated my impatience. You’ve been a great help. Thanks also to the whole

Manning production and marketing team for guidance along the way and for making

the book what it is now. I know you did a tremendous amount of work.

 I’d also like to thank the members of the Gradleware team, as well as the Gradle

community, for creating Gradle and pushing the boundaries of build automation.

Your continued effort and belief in a high-quality product improves the life of many

disgruntled build masters around the globe. Special thanks go out to René Gröschke

and Luke Daley for their technical insight and their review of the first third of the

book. I am also grateful to Hans Dockter, the founder of Gradle, for contributing the

foreword and endorsing this book in its early stages, and for the continued promotion

through Gradleware.

 Thanks to the following reviewers of the manuscript who provided invaluable feed-

back and gave me a different perspective on the content: Andy Keffalas, BJ Peter

DeLaCruz, Chris Grijalva, Chris Nauroth, Dominik Helleberg, Eric Wendelin, Iain

Starks, John Moses, Jon Bodner, Marcin Nowina-Krowicki, Mayur S. Patil, Mehrdad

Karjoo, Mohd Suhaizal Md Kamari, Nacho Ormeño, Nick Watts, Pawel Dolega, Rob

Bugh, Robin Percy, Samuel Brown, Scott Bennett-McLeish, Steve Dickson, Tarin

Gamberini, Wellington R. Pinheiro, and Zekai Otles. Thanks also to Barry Kern for his

careful technical proofread of the manuscript shortly before it went into production.

 Special thanks to Spencer Allain, Jonathan Keam, and Robert Wenner for thor-

oughly reading every chapter of the book and providing me with line-by-line edits and

comments at different stages of development; Michael McGarr and Samuel Brown for

bouncing around ideas that involved content on continuous delivery and DevOps;

and Baruch Sadogursky from JFrog for the technical review of chapter 14 and for pro-

moting the book even before it was released. I also wish to thank the relentless Author

Online forum participants for pushing the content to the next level.

 Writing a book requires making sacrifices and puts tremendous strain on personal

relationships. I would like to thank my family and friends for being supportive,

encouraging, and understanding while I’ve worked toward completing this ambitious

goal. And, yes, there will be time for hanging out without me thinking about the con-

tent of the current chapter.

 I’m deeply grateful to my wife Sarah for her unending support and optimism. You

pushed me to believe in myself, made me take breaks from writing, and tolerated me

falling asleep before 9:00 p.m. most days. Without you, the writing process would have

been far more grueling than it was.

xix

about this book
Roadmap

This book is divided into three parts. The first part gives an introduction to Gradle’s

concepts and philosophy, explaining how it compares to other build tools and how to

write scripts to automate simple tasks. Part two explores the tool’s building blocks and

core techniques in greater depth. You should be able to use this knowledge to imple-

ment complex, extendable, enterprise builds. The third part describes how Gradle

can be used in the context of continuous deliver, focusing on topics like polyglot

builds, code quality, artifact assembly, and deployment.

 The chapters in part 1, Introducing Gradle, are as follows:

1 Introduction to project automation—This chapter gives a gentle introduction into

why it’s a good idea to automate your projects and how build tools can help get

the job done.

2 Next generation builds with Gradle—How does Gradle compare to existing JVM-

language build tools? This chapter covers Gradle’s extensive feature set and

how it helps automate your software delivery process in the context of a Contin-

uous Delivery deployment pipeline. As a first taste, you’ll write a simple build

script and run it on the command line.

3 Building a Gradle project by example—This chapter introduces a Java-based web

application as a vehicle to demonstrate some of Gradle’s core features. We’ll

explore the use of the Java plugin for standardized and nonconventional use

cases and examine productivity tools for fast development turnaround.

www.allitebooks.com

http://www.allitebooks.org

ABOUT THIS BOOKxx

Part 2, Mastering the fundamentals, focuses on applying important Gradle concepts

to the case study introduced in part 1:

4 Build script essentials—What are the main building blocks of a Gradle project?

This chapter discusses the use of important domain objects, namely projects

and tasks. We’ll touch on how these objects map to the corresponding classes in

the Gradle API, Gradle’s build lifecycle, the incremental build feature, and the

mechanics of registering lifecycle hooks.

5 Dependency management—No enterprise project can do without reusing function-

ality from external libraries. This chapter explores Gradle’s declarative support

for dependency management, version conflict resolution strategies, and the

inner workings of its cache.

6 Multiproject builds—Does your project consist of multiple, modularized software

components? This chapter covers the options for organizing build logic in a

multiproject setting, how to declare project dependencies, and the use of par-

tial builds to improve execution time.

7 Testing with Gradle—Testing your code is an important activity of the software

development lifecycle. By the end of this chapter, you’ll write tests with JUnit,

TestNG, and Spock and execute them as part of the build lifecycle. You’ll also

learn how to configure test execution, register listeners to react to test lifecycle

events, and organize different types of tests with the help of source sets.

8 Extending Gradle—Gradle provides an extensible domain object model. If you

want to add completely new functionality to a project or extend the existing

domain model, this chapter is for you. You’ll learn how to write your own

plugin to deploy your sample application to the cloud.

9 Integration and migration—In this chapter, we’ll look at how Gradle integrates

with Ant and Maven. We’ll also explore migration strategies in case you decide

to go with Gradle long term.

Part 3, From build to deployment, examines how Gradle can be used to bring the

example application from the developer’s machine into the production environment

with the help of a build pipeline:

10 IDE support and tooling—IDEs are key enablers for boosting developer productiv-

ity. This chapter explains Gradle’s capabilities for generating project files for

popular IDEs like Eclipse, IntelliJ, and NetBeans. We also discuss how to navi-

gate and manage Gradle-backed projects within these IDEs.

11 Building polyglot projects—In this chapter, we’ll discuss how Gradle faces the chal-

lenge of organizing and building polyglot projects by using your case study

application as an example. The languages you’ll integrate include JavaScript,

Groovy, and Scala.

12 Code quality management and monitoring—In this chapter we’ll focus on tools that

measure code quality and visualize the results to help you pinpoint problem

ABOUT THIS BOOK xxi

areas in your code. By the time you finish this chapter, you’ll know how to inte-

grate code quality tools with your build.

13 Continuous integration—Continuous integration (CI) is a software development

practice where source code is integrated frequently, optimally multiple times a

day. This chapter discusses the installation and configuration procedures

needed to run Gradle on Jenkins, an open-source CI server.

14 Artifact assembly and publishing—A build either consumes or produces binary arti-

facts. This chapter explores the artifact assembly process and the configuration

needed to publish artifacts, including their metadata, to a binary repository.

15 Infrastructure provisioning and deployment—A configured target environment is a

prerequisite for any software deployment. In this chapter, we’ll discuss the

importance of “infrastructure as code” for setting up and configuring an envi-

ronment and its services in an automated fashion. Later, you’ll implement an

exemplary deployment process with Gradle.

Two appendixes cover additional topics:

A Driving the command line—This appendix explains how to operate Gradle from

the command line. We’ll explore tasks available to all Gradle builds, plus com-

mand line options and their use cases.

B Groovy for Gradle users—If you’re new to Groovy, this appendix provides you with

a gentle introduction to the most important and widely used language features.

Who should read the book?

This book is primarily for developers and build automation engineers who want to

implement a repeatable build that’s easy to read and extend. I assume that you have a

basic understanding of an object-oriented programming language. You’ll get the most

out of the content if you have a working knowledge of Java.

 In this book, you’ll use a lot of Groovy; however, I don’t assume you already have

experience with the language. For a jump-start on Groovy, look at appendix B, Groovy

for Gradle users. The appendix also provides additional references to books that dig

deeper into more advanced aspects of the language.

 Throughout the chapters, we’ll touch on topics you can’t circumnavigate when

dealing with automated builds. It will be helpful to have some knowledge of tools like

Ant, Ivy, and Maven; practices like continuous integration and delivery; and concepts

like dependency management. But don’t worry if that’s not your technical back-

ground. Every chapter will explain the “why” in great detail.

Code conventions and downloads

Source code in listings and text is in a fixed-width font like this to separate it from

ordinary text. Code annotations accompany many of the code listings and highlight

important concepts.

ABOUT THIS BOOKxxii

 The full source code is available from the publisher’s website at www.manning.com/

GradleInAction and from the GitHub repository at https://github.com/bmuschko/

gradle-in-action-source. You’ll find additional references to source code repositories

that either take some examples from the book to the next level or demonstrate the

use of Gradle in contexts not covered in the book.

Author Online

The purchase of Gradle in Action includes free access to a private web forum run by

Manning Publications where you can make comments about the book, ask technical

questions, and receive help from the author and other users. To access the forum and

subscribe to it, visit http://www.manning.com/GradleInAction. This page provides

information on how to get on the forum once you’re registered, what kind of help is

available, and the rules of conduct on the forum.

 Manning’s commitment to readers is to provide a venue for meaningful dialogue

between individual readers and between readers and the author. It is not a commit-

ment to any specific amount of participation on the part of the author, whose contri-

bution to the forum remains voluntary (and unpaid). Let your voice be heard, and

keep the author on his toes!

 The Author Online forum and the archives of previous discussions will be accessi-

ble from the publisher’s website as long as the book is in print.

About the author

Benjamin Muschko is a software engineer with more than 10 years of experience in

developing and delivering business applications. He is a member of the Gradleware

engineering team and developer of several popular Gradle plugins.

www.manning.com/GradleInAction
www.manning.com/GradleInAction
http://www.manning.com/GradleInAction
https://github.com/bmuschko/gradle-in-action-source
https://github.com/bmuschko/gradle-in-action-source

xxiii

about the cover illustration
The figure on the cover of Gradle in Action is captioned a “Woman from Istria,” which

is a large peninsula in the Adriatic Sea, off Croatia. This illustration is taken from a

recent reprint of Balthasar Hacquet’s Images and Descriptions of Southwestern and Eastern

Wenda, Illyrians, and Slavs published by the Ethnographic Museum in Split, Croatia, in

2008. Hacquet (1739–1815) was an Austrian physician and scientist who spent many

years studying the botany, geology, and ethnography of many parts of the Austrian

Empire, as well as the Veneto, the Julian Alps, and the western Balkans, inhabited in

the past by peoples of the Illyrian tribes. Hand-drawn illustrations accompany the

many scientific papers and books that Hacquet published.

 The rich diversity of the drawings in Hacquet's publications speaks vividly of the

uniqueness and individuality of the eastern Alpine and northwestern Balkan regions

just 200 years ago. This was a time when the dress codes of two villages separated by a

few miles identified people uniquely as belonging to one or the other, and when

members of a social class or trade could be easily distinguished by what they were

wearing. Dress codes have changed since then and the diversity by region, so rich at

the time, has faded away. It is now often hard to tell the inhabitant of one continent

from another and today the inhabitants of the picturesque towns and villages in the

Slovenian Alps or Balkan coastal towns are not readily distinguishable from the resi-

dents of other parts of Europe.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the com-

puter business with book covers based on costumes from two centuries ago brought

back to life by illustrations such as this one.

Part 1

Introducing Gradle

Efficient project automation is one of the key enablers for delivering soft-

ware to the end user. The build tool of choice shouldn’t stand in the way of this

effort; rather, it should provide you with a flexible and maintainable way to

model your automation needs. Gradle’s core strength is that it provides you with

easy-to-understand but powerful tooling to automate your project end-to-end.

 In chapter 1, we’ll discuss the benefits of project automation and its impact

on the ability to develop and deliver software in a repeatable, reliable, and porta-

ble fashion. You’ll learn the basic concepts and components of a build tool and

how they’re implemented with Ant and Maven. By comparing their pros and cons,

you’ll see the need for a next-generation build tool.

 Gradle draws on lessons learned from established build tools and takes their

best ideas to the next level. Chapter 2 introduces you to Gradle’s compelling fea-

ture set. You’ll install the Gradle runtime and explore how to write and execute

a simple build script from the command line.

 Simple build scripts only go so far. Chapter 3 introduces a real-world Java-

based web application. You’ll learn the configuration needed to compile, unit-test,

package, and run the sample. By the end of part 1, you’ll have a feel for Gradle’s

expressiveness and flexibility.

3

Introduction
to project automation

Tom and Joe work as software developers for Acme Enterprises, a startup company

that offers a free online service for finding the best deals in your area. The com-

pany recently received investor funding and is now frantically working toward its

first official launch. Tom and Joe are in a time crunch. By the end of next month,

they’ll need to present a first version of the product to their investors. Both devel-

opers are driven individuals, and they pump out features daily. So far, development

of the software has stayed within the time and budget constraints, which makes

them happy campers. The chief technology officer (CTO) pats them on the back;

life is good. However, the manual and error-prone build and delivery process slows

This chapter covers

■ Understanding the benefits of project

automation

■ Getting to know different types of

project automation

■ Surveying the characteristics and architecture

of build tools

■ Exploring the pros and cons of build tool

implementations

4 CHAPTER 1 Introduction to project automation

them down significantly. As a result, the team has to live with sporadic compilation

issues, inconsistently built software artifacts, and failed deployments. This is where

build tools come in.

 This chapter will give you a gentle introduction into why it’s a good idea to automate

your project and how build tools can help get the job done. We’ll talk about the benefits

that come with sufficient project automation, the types and characteristics of project

automation, and the tooling that enables you to implement an automated process.

 Two traditional build tools dominate Java-based projects: Ant and Maven. We’ll go

over their main features, look at some build code, and talk about their shortcomings.

Lastly, we’ll discuss the requirements for a build tool that will fulfill the needs of modern-

day project automation.

1.1 Life without project automation

Going back to Tom and Joe’s predicament, let’s go over why project automation is

such a no-brainer. Believe it or not, lots of developers face the following situations.

The reasons are varied, but probably sound familiar.

■ My IDE does the job. At Acme, developers do all their coding within the IDE, from

navigating through the source code, implementing new features, and compil-

ing and refactoring code, to running unit and integration tests. Whenever new

code is developed, they press the Compile button. If the IDE tells them that

there’s no compilation error and the tests are passing, they check the code into

version control so it can be shared with the rest of the team. The IDE is a power-

ful tool, but every developer will need to install it first with a standardized ver-

sion to be able to perform all of these tasks, a lesson Joe learns when he uses a

new feature only supported by the latest version of the compiler.

■ It works on my box. Staring down a ticking clock, Joe checks out the code from

version control and realizes that it doesn’t compile anymore. It seems like one

of the classes is missing from the source code. He calls Tom, who’s puzzled that

the code doesn’t compile on Joe’s machine. After discussing the issue, Tom

realizes that he probably forgot to check in one of his classes, which causes the

compilation process to fail. The rest of the team is now blocked and can’t con-

tinue their work until Tom checks in the missing source file.

■ The code integration is a complete disaster. Acme has two different development

groups, one specializing in building the web-based user interface and the other

working on the server-side backend code. Both teams sit together at Tom’s com-

puter to run the compilation for the whole application, build a deliverable, and

deploy it to a web server in a test environment. The first cheers quickly fade

when the team sees that some of the functionality isn’t working as expected.

Some of the URLs simply don’t resolve or result in an error. Even though the

team wrote some functional tests, they didn’t get exercised regularly in the IDE.

■ The testing process slows to a crawl. The quality assurance (QA) team is eager to get

their hands on a first version of the application. As you can imagine, they aren’t

5Benefits of project automation

too happy about testing low-quality software. With every fix the development

team puts into place, they have to run through the same manual process. The

team stops to check new changes into version control, a new version is built

from an IDE, and the deliverable is copied to the test server. Each and every

time, a developer is fully occupied and can’t add any other value to the com-

pany. After weeks of testing and a successful demo to the investor, the QA team

says the application is ready for prime time.

■ Deployment turns into a marathon. From experience, the team knows that the out-

come of deploying an application is unpredictable due to unforeseen prob-

lems. The infrastructure and runtime environment has to be set up, the

database has to be prepared with seed data, the actual deployment of the appli-

cation has to happen, and initial health monitoring needs to be performed. Of

course, the team has an action plan in place, but each of the steps has to be exe-

cuted manually.

The product launch is a raving success. The following week, the CTO swings by the

developers’ desks; he already has new ideas to improve the user experience. A friend

has told him about agile development, a time-boxed iterative approach for imple-

menting and releasing software. He proposes that the team introduces two-week

release cycles. Tom and Joe look at each other, both horrified at the manual and

repetitive work that lies ahead. Together, they plan to automate each step of the

implementation and delivery process to reduce the risk of failed builds, late integra-

tion, and painful deployments.

1.2 Benefits of project automation

This story makes clear how vital project automation is for team success. These days,

time to market has become more important than ever. Being able to build and deliver

software in a repeatable and consistent way is key. Let’s look at the benefits of auto-

mating your project.

1.2.1 Prevents manual intervention

Having to manually perform steps to produce and deliver software is time-consuming

and error-prone. Frankly, as a developer and system administrator, you have better

things to do than to handhold a compilation process or to copy a file from directory A

to directory B. We’re all human. Not only can you make mistakes along the way, man-

ual intervention also takes away from the time you desperately need to get your actual

work done. Any step in your software development process that can be automated

should be automated.

1.2.2 Creates repeatable builds

The actual building of your software usually follows predefined and ordered steps. For

example, you compile your source code first, then run your tests, and lastly assemble a

deliverable. You’ll need to run the same steps over and over again—every day. This

www.allitebooks.com

http://www.allitebooks.org

6 CHAPTER 1 Introduction to project automation

should be as easy as pressing a button. The outcome of this process needs to be

repeatable for everyone who runs the build.

1.2.3 Makes builds portable

You’ve seen that being able to run a build from an IDE is very limiting. First of all,

you’ll need to have the particular product installed on your machine. Second, the

IDE may only be available for a specific operating system. An automated build

shouldn’t require a specific runtime environment to work, whether this is an operat-

ing system or an IDE. Optimally, the automated tasks should be executable from the

command line, which allows you to run the build from any machine you want, when-

ever you want.

1.3 Types of project automation

You saw at the beginning of this chapter that a user can request a build to be run. A

user can be any stakeholder who wants to trigger the build, like a developer, a QA

team member, or a product owner. Our friend Tom, for example, pressed the Com-

pile button in his IDE whenever he wanted the code to be compiled. On-demand auto-

mation is only one type of project automation. You can also schedule your build to be

executed at predefined times or when a specific event occurs.

1.3.1 On-demand builds

The typical use case for on-demand automation is when a user triggers a build on his

or her machine, as shown in figure 1.1. It’s common practice that a version control

system (VCS) manages the versioning of the build definition and source code files.

 In most cases, the user executes a script on the command line that performs tasks

in a predefined order—for example, compiling source code, copying a file from

directory A to directory B, or assembling a deliverable. Usually, this type of automa-

tion is executed multiple times per day.

User

Source

code

execute

Local machine

compile

implement check in

check out

check out

check in
Build

definition

Version control

system
Server

Network

Figure 1.1 On-demand builds execute build definitions backed by a VCS.

7Types of project automation

1.3.2 Triggered builds

If you’re practicing agile software development, you’re interested in receiving fast

feedback about the health of your project. You’ll want to know if your source code can

be compiled without any errors or if there’s a potential software defect indicated by a

failed unit or integration test. This type of automation is usually triggered if code was

checked into version control, as shown in figure 1.2.

1.3.3 Scheduled builds

Think of scheduled automation as a time-based job scheduler (in the context of a

Unix-based operation system, also known as a cron job). It runs in particular inter-

vals or at concrete times—for example, every morning at 1:00 a.m. or every 15 min-

utes. As with all cron jobs, scheduled automation generally runs on a dedicated

server. Figure 1.3 shows a scheduled build that runs every morning at 5:00 a.m. This

kind of automation is particularly useful for generating reports or documentation

for your project.

 The practice that implements scheduled and triggered builds is commonly

referred to as continuous integration (CI). You’ll learn more about CI in chapter 13.

Server

trigger

execute

Network

User

Source

code

execute

Local machine

compile

implement check in

check out

check out

check in
Build

definition

Version control

system
Server

Network

Build

definition

Figure 1.2 Build triggered by a check-in of files into VCS

8 CHAPTER 1 Introduction to project automation

After identifying the benefits and types of project automation, it’s time to discuss the

tools that allow you to implement this functionality.

1.4 Build tools

Naturally, you may ask yourself why you’d need another tool to implement automa-

tion for your project. You could just write the logic as an executable script, such as a

shell script. Think back to the goals of project automation we discussed earlier. You

want a tool that allows you to create a repeatable, reliable, and portable build without

manual intervention. A shell script wouldn’t be easily portable from a UNIX-based sys-

tem to a Windows-based system, so it doesn’t meet your criteria.

Server

trigger

execute

Network

User

Source

code

execute

Local machine

compile

implement check in

check out

check out

check in
Build

definition

Version control

system
Server

Network

Build

definition

execute

Scheduled

for 5 AM daily

Figure 1.3 Scheduled build initiated at 5:00 a.m. daily

9Build tools

1.4.1 What’s a build tool?

What you need is a programming utility that lets you express your automation needs

as executable, ordered tasks. Let’s say you want to compile your source code, copy the

generated class files into a directory, and assemble a deliverable that contains the class

files. A deliverable could be a ZIP file, for example, that can be distributed to a run-

time environment. Figure 1.4 shows the tasks and their execution order for the

described scenario.

 Each of these tasks represents a unit of work—for example, compilation of source

code. The order is important. You can’t create the ZIP archive if the required class files

haven’t been compiled. Therefore, the compilation task needs to be executed first.

DIRECTED ACYCLIC GRAPH

Internally, tasks and their interdependencies are modeled as a directed acyclic graph

(DAG). A DAG is a data structure from computer science and contains the following

two elements:

■ Node : A unit of work; in the case of a build tool, this is a task (for example, com-

piling source code).

■ Directed edge : A directed edge, also called an arrow, representing the relation-

ship between nodes. In our situation, the arrow means depends on. If a task

defines dependent tasks, they’ll need to execute before the task itself can be

executed. Often this is the case because the task relies on the output produced

by another task. Here’s an example: to execute the task “assemble deliverable,”

you’ll need to run its dependent tasks “copy class files to directory” and “com-

pile source code.”

Each node knows about its own execution state. A node—and therefore the task—can

only be executed once. For example, if two different tasks depend on the task “source

code compilation,” you only want to execute it once. Figure 1.5 shows this scenario

as a DAG.

 You may have noticed that the nodes are shown in an inverted order from the tasks

in figure 1.4. This is because the order is determined by node dependencies. As a

developer, you won’t have to deal directly with the DAG representation of your build.

This job is done by the build tool. Later in this chapter, you’ll see how some Java-based

build tools use these concepts in practice.

Compile

source code

Copy class

files to

directory

Assemble

deliverable

Task Task Task

Step 1 Step 2 Step 3

Figure 1.4 A common scenario of

tasks executed in a predefined order

10 CHAPTER 1 Introduction to project automation

1.4.2 Anatomy of a build tool

It’s important to understand the interactions among the components of a build tool,

the actual definition of the build logic, and the data that goes in and out. Let’s discuss

each of the elements and their particular responsibilities.

BUILD FILE

The build file contains the configuration needed

for the build, defines external dependencies

such as third-party libraries, and contains the

instructions to achieve a specific goal in the form

of tasks and their interdependencies. Figure 1.6

illustrates a build file that describes four tasks

and how they depend on each other.

 The tasks we discussed in the scenario ear-

lier—compiling source code, copying files to a

directory, and assembling a ZIP file—would be

defined in the build file. Oftentimes, a scripting

language is used to express the build logic.

That’s why a build file is also referred to as a build script.

BUILD INPUTS AND OUTPUTS

A task takes an input, works on it by executing a series of steps, and produces an out-

put. Some tasks may not need any input to function correctly, nor is creating an output

considered mandatory. Complex task dependency graphs may use the output of a

dependent task as input. Figure 1.7 demonstrates the consumption of inputs and the

creation of outputs in a task graph.

 I already mentioned an example that follows this workflow. We took a bunch of

source code files as input, compiled them to classes, and assembled a deliverable as

output. The compilation and assembly processes each represent one task. The assembly

depends

on

depends

on

Task dependencies

Compile

source code

Copy class

files to

directory

Assemble

deliverable

Task Task Task

directed

edge

directed

edge

Directed acyclic graph

Assemble

deliverable

Copy class

files to

directory

Compile

source code

Node Node Node

Figure 1.5 DAG

representation of tasks

Build file

Task 1 Task 2 Task 3

Task 4

Figure 1.6 The build file expresses the

rules of your build expressed by tasks

and their interdependencies.

11Build tools

of the deliverable only makes sense if you compiled the source code first. Therefore,

both tasks need to retain their order.

BUILD ENGINE

The build file’s step-by-step instructions or rule set must be translated into an internal

model the build tool can understand. The build engine processes the build file at run-

time, resolves dependencies between tasks, and sets up the entire configuration

needed to command the execution, as shown in figure 1.8.

 Once the internal model is built, the engine will execute the series of tasks in the

correct order. Some build tools allow you to access this model via an API to query for

this information at runtime.

DEPENDENCY MANAGER

The dependency manager is used to process declarative dependency definitions for

your build file, resolve them from an artifact repository (for example, the local file sys-

tem, an FTP, or an HTTP server), and make them available to your project. A depen-

dency is generally an external, reusable library in the form of a JAR file (for example,

Log4J for logging support). The repository acts as storage for dependencies, and orga-

nizes and describes them by identifiers, such as name and version. A typical repository

can be an HTTP server or the local file system. Figure 1.9 illustrates how the depen-

dency manager fits into the architecture of a build tool.

Build file

Task 1Input 1

Output 1 Output 2

Task 2
uses

produces producesuses uses

Input 2 Output 3
uses produces

Task 3

Task 4

Figure 1.7 Task inputs and outputs

Build file

Build tool Data

Tasks

Build engine

Inputs

Outputs

declares

uses

processes

produces
Figure 1.8 The build engine translates the rule

set into an internal model representation that is

accessed during the runtime of the build.

12 CHAPTER 1 Introduction to project automation

Many libraries depend on other libraries, called transitive dependencies. The depen-

dency manager can use metadata stored in the repository to automatically resolve

transitive dependencies as well. A build tool is not required to provide a dependency

management component.

1.5 Java build tools

In this section, we look at two popular, Java-based build tools: Ant and Maven. We’ll

discuss their characteristics, see a sample script in action, and outline the shortcom-

ings of each tool. Let’s start with the tool that’s been around the longest—Ant.

1.5.1 Apache Ant

Apache Ant (Another Neat Tool) is an open source build tool written in Java. Its main

purpose is to provide automation for typical tasks needed in Java projects, such as

compiling source files to classes, running unit tests, packaging JAR files, and creating

Javadoc documentation. Additionally, it provides a wide range of predefined tasks for

file system and archiving operations. If any of these tasks don’t fulfill your require-

ments, you can extend the build with new tasks written in Java.

 While Ant’s core is written in Java, your build file is expressed through XML, which

makes it portable across different runtime environments. Ant does not provide a depen-

dency manager, so you’ll need to manage external dependencies yourself. However, Ant

integrates well with another Apache project called Ivy, a full-fledged, standalone depen-

dency manager. Integrating Ant with Ivy requires additional effort and has to be done

manually for each individual project. Let’s look at a sample build script.

BUILD SCRIPT TERMINOLOGY

To understand any Ant build script, you need to start with some quick nomenclature.

A build script consists of three basic elements: the project, multiple targets, and the

used tasks. Figure 1.10 illustrates the relationship between each of the elements.

Build file

Build tool Repository

Data

Tasks

Build engine

Dependency

manager

Inputs

Outputs

JAR

declares

uses

uses

processes

produces

resolves

dependencies Figure 1.9 The dependency manager

retrieves external dependencies and

makes them available to your build.

13Java build tools

In Ant, a task is a piece of executable code— for example, for creating a new directory

or moving a file. Within your build script, use a task by its predefined XML tag name.

The task’s behavior can be configured by its exposed attributes. The following code

snippet shows the usage of the javac Ant task for compiling Java source code within

your build script:

<javac srcdir="src" destdir="dest"/>

While Ant ships with a wide range of predefined tasks, you can extend your build

script’s capabilities by writing your own task in Java.

 A target is a set of tasks you want to be executed. Think of it as a logical grouping.

When running Ant on the command line, provide the name of the target(s) you want

to execute. By declaring dependencies between targets, a whole chain of commands

can be created. The following code snippet shows two dependent targets:

<target name="init">
 <mkdir dir="build"/>
</target>

<target name="compile" depends="init">
 <javac srcdir="src" destdir="build"/>
</target>

Mandatory to all Ant projects is the overarching container, the project. It’s the top-level

element in an Ant script and contains one or more targets. You can only define one

project per build script. The following code snippet shows the project in relation to

the targets:

Task 1 Task 2

Target 1

Project

Build script

Task 3

Target 2

Task 4 Task 5

Target 3

depends on

depends on

Figure 1.10 Ant’s hierarchical build

script structure with the elements

project, target, and task

Source and destination directories are
configured by attributes srcdir and destdir;
compile Java source files located in directory
src and put class files into directory dest.

Target named init that used task mkdir
to create directory build.

Target named compile for compiling Java
source code via javac Ant task. This target
depends on target init, so if you run it on
the command line, init will be executed first.

14 CHAPTER 1 Introduction to project automation

<project name="example-build">
 <target name="init">
 <mkdir dir="build"/>
 </target>

 <target name="compile" depends="init">
 <javac srcdir="src" destdir="build"/>
 </target>
</project>

With a basic understanding of Ant’s hierarchical structure, let’s look at a full-fledged

scenario of a sample build script.

SAMPLE BUILD SCRIPT

Say you want to write a script that compiles your Java source code in the directory

src using the Java compiler and put it into the output directory build. Your Java

source code has a dependency on a class from the external library Apache Com-

mons Lang. You tell the compiler about it by referencing the library’s JAR file in the

classpath. After compiling the code, you want to assemble a JAR file. Each unit of

work, source code compilation, and JAR assembly will be grouped in an individual

target. You’ll also add two more targets for initializing and cleaning up the required

output directories. The structure of the Ant build script you’ll create is shown in fig-

ure 1.11.

Project encloses one or more
targets and defines optional
attributes, such as the name,
to describe the project

mkdir

init

my-app

build.xml

Default build script

filename

javac

compile

mkdir jar

dist

delete delete

clean

depends on

depends on

Project with name

my-app

Target for initializing

the output directory

Target for compiling

source code

Target for generating

the distribution

Target for cleaning up

temporary directories

Task for creating

output directory

build

Task for compiling

Java source tree

Tasks for preparing

and creating JAR

Tasks for deleting

output directories

Figure 1.11 Hierarchical project structure of sample Ant build script

15Java build tools

Let’s get down to business. It’s time to implement this example as an Ant build

script. The following listing shows the whole project and the targets required to

achieve your goal.

<project name="my-app" default="dist" basedir=".">
 <property name="src" location="src"/>
 <property name="build" location="build"/>
 <property name="dist" location="dist"/>
 <property name="version" value="1.0"/>

 <target name="init">
 <mkdir dir="${build}"/>
 </target>

 <target name="compile" depends="init" description="compile the source">
 <javac srcdir="${src}" destdir="${build}"
 ➥ classpath="lib/commons-lang3-3.1.jar"
 ➥ includeantruntime="false"/>
 </target>

 <target name="dist" depends="compile"
 ➥ description="generate the distribution">
 <mkdir dir="${dist}"/>
 <jar jarfile="${dist}/my-app-${version}.jar" basedir="${build}"/>
 </target>

 <target name="clean" description="clean up">
 <delete dir="${build}"/>
 <delete dir="${dist}"/>
 </target>
</project>

Ant doesn’t impose any restrictions on how to define your build’s structure. This

makes it easy to adapt to existing project layouts. For example, the source and output

directories in the sample script have been chosen arbitrarily. It would be very easy to

change them by setting a different value to their corresponding properties. The same

is true for target definition; you have full flexibility to choose which logic needs to be

executed per target and the order of execution.

SHORTCOMINGS

Despite all this flexibility, you should be aware of some shortcomings:

■ Using XML as the definition language for your build logic results in overly large

and verbose build scripts compared to build tools with a more succinct defini-

tion language.

■ Complex build logic leads to long and unmaintainable build scripts. Trying to

define conditional logic like if-then/if-then-else statements becomes a burden

when using a markup language.

■ Ant doesn’t give you any guidelines on how to set up your project. In an enter-

prise setting, this often leads to a build file that looks different every time.

Listing 1.1 Ant script with targets for compiling source code and assembling JAR file

Sets global properties for
this build, like source,
output, and distribution
directories

Creates build directory structure
used by compile target

Compiles Java code from
directory src into directory build

Creates distribution
directory

Assembles everything
in directory build into

JAR file myapp-1.0Deletes build and
dist directory trees

www.allitebooks.com

http://www.allitebooks.org

16 CHAPTER 1 Introduction to project automation

Common functionality is oftentimes copied and pasted. Every new developer

on the project needs to understand the individual structure of a build.

■ You want to know how many classes have been compiled or how many tasks

have been executed in a build. Ant doesn’t expose an API that lets you query

information about the in-memory model at runtime.

■ Using Ant without Ivy makes it hard to manage dependencies. Oftentimes,

you’ll need to check your JAR files into version control and manage their orga-

nization manually.

1.5.2 Apache Maven

Using Ant across many projects within an enterprise has a big impact on maintain-

ability. With flexibility comes a lot of duplicated code snippets that are copied from

one project to another. The Maven team realized the need for a standardized proj-

ect layout and unified build lifecycle. Maven picks up on the idea of convention over

configuration, meaning that it provides sensible default values for your project config-

uration and its behavior. The project automatically knows what directories to search

for source code and what tasks to perform when running the build. You can set up a

full project with a few lines of XML as long as your project adheres to the default val-

ues. As an extra, Maven also has the ability to generate HTML project documentation

that includes the Javadocs for your application.

 Maven’s core functionality can be extended by custom logic developed as plugins.

The community is very active, and you can find a plugin for almost every aspect of

build support, from integration with other development tools to reporting. If a plugin

doesn’t exist for your specific needs, you can write your own extension.

STANDARD DIRECTORY LAYOUT

By introducing a default project layout, Maven ensures that every developer with the

knowledge of one Maven project will immediately know where to expect specific file

types. For example, Java application source code sits in the directory src/main/java.

All default directories are configurable. Figure 1.12 illustrates the default layout for

Maven projects.

BUILD LIFECYCLE

Maven is based on the concept of a build lifecycle. Every project knows exactly which

steps to perform to build, package, and distribute an application, including the fol-

lowing functionality:

■ Compiling source code

■ Running unit and integration tests

■ Assembling the artifact (for example, a JAR file)

■ Deploying the artifact to a local repository

■ Releasing the artifact to a remote repository

Every step in this build lifecycle is called a phase. Phases are executed sequentially. The

phase you want to execute is defined when running the build on the command line. If

17Java build tools

you call the phase for packaging the application, Maven will automatically determine

that the dependent phases like source code compilation and running tests need to be

executed beforehand. Figure 1.13 shows the predefined phases of a Maven build and

their order of execution.

DEPENDENCY MANAGEMENT

In Maven projects, dependencies to external libraries are declared within the build

script. For example, if your project requires the popular Java library Hibernate, you

simply define its unique artifact coordinates, such as organization, name, and version,

in the dependencies configuration block. The following code snippet shows how to

declare a dependency on version 4.1.7. Final of the Hibernate core library:

src

main

java

resources

test

java

resources

Maven default project layout

Java application source code

Application resource files

Java test source code

Test resource files

target Output directory for files generated

by build (e.g., class files)

Figure 1.12 Maven’s default

project layout defines where to

find Java source code, resource

files, and test code.

validate

compile

test

package

verify

install

deploy

integration

-test

Validate that the project

definition is correct.

Run verification checks

on assembled artifact.

Install the artifact into

the local repository.

Share artifact on

remote repository.

Compile the source code.

Run integration tests.

Test the compiled

source code using a unit

testing framework.

Assemble artifact

(e.g., JAR) from results

of previous phases.

Figure 1.13 Maven’s most important build lifecycle phases

18 CHAPTER 1 Introduction to project automation

<dependencies>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-core</artifactId>
 <version>4.1.7.Final</version>
 </dependency>
</dependencies>

At runtime, the declared libraries and their transitive dependencies are downloaded

by Maven’s dependency manager, stored in the local cache for later reuse, and made

available to your build (for example, for compiling source code). Maven preconfig-

ures the use of the repository, Maven Central, to download dependencies. Subsequent

builds will reuse an existing artifact from the local cache and therefore won’t contact

Maven Central. Maven Central is the most popular binary artifact repository in the

Java community. Figure 1.14 demonstrates Maven’s artifact retrieval process.

 Dependency management in Maven isn’t limited to external libraries. You can also

declare a dependency on other Maven projects. This need arises if you decompose

software into modules, which are smaller components based on associated functional-

ity. Figure 1.15 shows an example of a traditional three-layer modularized architec-

ture. In this example, the presentation layer contains code for rendering data in a

webpage, the business layer models real-life business objects, and the integration layer

retrieves data from a database.

All dependencies of project must be
declared within <dependencies> tag

Every
dependency is
wrapped in a

<dependency>
tag

Group identifier of
dependency, usually
an organization or
company name

Name of a
dependency

Version of a dependency, usually consisting
of classifiers like minor and major version

separated by a dot character

Build script
Dependency

manager

Maven

.m2

repository

Local cache

Internet

resolve dependencies

download artifacts

Maven

Centralevaluate

dependency

definitions
store

artifacts

reuse

artifacts

Your developer machine

Figure 1.14 Maven’s interaction with Maven Central to resolve and download

dependencies for your build

Module Module Module

depends

on

depends

on
Presentation

layer

Integration

layer

Business

layer

Figure 1.15 Modularized

architecture of a software project

19Java build tools

SAMPLE BUILD SCRIPT

The following listing shows a sample Maven build script named pom.xml that will

implement the same functionality as the Ant build. Keep in mind that you stick to the

default conventions here, so Maven will look for the source code in the directory src/

main/java instead of src.

<project xmlns="http://maven.apache.org/POM/4.0.0"
 ➥ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 ➥ xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 ➥ http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.mycompany.app</groupId>
 <artifactId>my-app</artifactId>
 <packaging>jar</packaging>
 <version>1.0</version>

 <dependencies>
 <dependency>
 <groupId>org.apache.commons</groupId>
 <artifactId>commons-lang3</artifactId>
 <version>3.1</version>
 <scope>compile</scope>
 </dependency>
 </dependencies>
</project>

SHORTCOMINGS

As with Ant, be aware of some of Maven’s shortcomings:

■ Maven proposes a default structure and lifecycle for a project that often is too

restrictive and may not fit your project’s needs.

■ Writing custom extensions for Maven is overly cumbersome. You’ll need to

learn about Mojos (Maven’s internal extension API), how to provide a plugin

descriptor (again in XML), and about specific annotations to provide the data

needed in your extension implementation.

■ Earlier versions of Maven (< 2.0.9) automatically try to update their own core

plugins; for example, support for unit tests to the latest version. This may cause

brittle and unstable builds.

1.5.3 Requirements for a next-generation build tool

In the last section, we examined the features, advantages, and shortcomings of the

established build tools Ant and Maven. It became clear that you often have to compro-

mise on the supported functionality by choosing one or the other. Either you choose

full flexibility and extensibility but get weak project standardization, tons of boiler-

plate code, and no support for dependency management by picking Ant; or you go

with Maven, which offers a convention over configuration approach and a seamlessly

Listing 1.2 Maven POM for building standardized Java project

Project
definition
including

referenced
XML schema

to validate
correct

structure
and content

of document.

Version of Maven’s
internal model.

Identifies the organization
the project belongs to.

Name of
project that

automatically
determines

name of
produced

artifact (in this
case the JAR file).

Type of artifact
produced by
project.

Version of project that factors
into produced artifact name.

Declared dependency on Apache
Commons Lang library with version 3.1;
scope of a dependency determines
lifecycle phase it’s applied to. In this case
it’s needed during compilation phase.

20 CHAPTER 1 Introduction to project automation

integrated dependency manager, but an overly restrictive mindset and cumbersome

plugin system.

 Wouldn’t it be great if a build tool could cover a middle ground? Here are some

features that an evolved build tool should provide:

■ Expressive, declarative, and maintainable build language.

■ Standardized project layout and lifecycle, but full flexibility and the option to

fully configure the defaults.

■ Easy-to-use and flexible ways to implement custom logic.

■ Support for project structures that consist of more than one project to build

deliverable.

■ Support for dependency management.

■ Good integration and migration of existing build infrastructure, including the

ability to import existing Ant build scripts and tools to translate existing Ant/

Maven logic into its own rule set.

■ Emphasis on scalable and high-performance builds. This will matter if you have

long-running builds (for example, two hours or longer), which is the case for

some big enterprise projects.

This book will introduce you to a tool that does provide all of these great features: Gra-

dle. Together, we’ll cover a lot of ground on how to use it and exploit all the advan-

tages it provides.

1.6 Summary

Life for developers and QA personnel without project automation is repetitive,

tedious, and error-prone. Every step along the software delivery process—from source

code compilation to packaging the software to releasing the deliverable to test and

production environments—has to be done manually. Project automation helps remove

the burden of manual intervention, makes your team more efficient, and leads the

way to a push-button, fail-safe software release process.

 In this chapter, we identified the different types of project automation—on-demand,

scheduled, and triggered build initiation—and covered their specific use cases. You

learned that the different types of project automation are not exclusive. In fact, they

complement each other.

 A build tool is one of the enablers for project automation. It allows you to

declare the ordered set of rules that you want to execute when initiating a build. We

discussed the moving parts of a build tool by analyzing its anatomy. The build

engine (the build tool executable) processes the rule set defined in the build script

and translates it into executable tasks. Each task may require input data to get its job

done. As a result, a build output is produced. The dependency manager is an

optional component of the build tool architecture that lets you declare references to

external libraries that your build process needs to function correctly.

21Summary

 We saw the materialized characteristics of build tools in action by taking a deeper

look at two popular Java build tool implementations: Ant and Maven. Ant provides a

very flexible and versatile way of defining your build logic, but doesn’t provide guid-

ance on a standard project layout or sensible defaults to tasks that repeat over and

over in projects. It also doesn’t come with an out-of-the-box dependency manager,

which requires you to manage external dependencies yourself. Maven, on the other

hand, follows the convention over configuration paradigm by supporting sensible

default configuration for your project as well as a standardized build lifecycle. Auto-

mated dependency management for external libraries and between Maven projects is

a built-in feature. Maven falls short on easy extensibility for custom logic and support

for nonconventional project layouts and tasks. You learned that an advanced build

tool needs to find a middle ground between flexibility and configurable conventions

to support the requirements of modern-day software projects.

 In the next chapter, we’ll identify how Gradle fits into the equation.

22

Next-generation builds
with Gradle

For years, builds had the simple requirements of compiling and packaging soft-

ware. But the landscape of modern software development has changed, and so

have the needs for build automation.

 Today, projects involve large and diverse software stacks, incorporate multiple

programming languages, and apply a broad spectrum of testing strategies. With the

rise of agile practices, builds have to support early integration of code as well as fre-

quent and easy delivery to test and production environments.

 Established build tools continuously fall short in meeting these goals in a simple

but customizable fashion. How many times have your eyes glazed over while look-

ing at XML to figure out how a build works? And why can’t it be easier to add cus-

tom logic to your build? All too often, when adding on to a build script, you can’t

This chapter covers

■ Understanding how Gradle compares to other

build tools

■ Describing Gradle’s compelling feature set

■ Installing Gradle

■ Writing and executing a simple Gradle script

■ Running Gradle on the command line

23Why Gradle? Why now?

shake the feeling of implementing a workaround or hack. I feel your pain. There has

to be a better way of doing these things in an expressive and maintainable way. There

is—it’s called Gradle.

 Gradle is the next evolutionary step in JVM-based build tools. It draws on lessons

learned from established tools like Ant and Maven and takes their best ideas to the

next level. Following a build-by-convention approach, Gradle allows for declaratively

modeling your problem domain using a powerful and expressive domain-specific lan-

guage (DSL) implemented in Groovy instead of XML. Because Gradle is a JVM native,

it allows you to write custom logic in the language you’re most comfortable with, be it

Java or Groovy.

 In the Java world, an unbelievably large number of libraries and frameworks are

available. Dependency management is used to automatically download these artifacts

from a repository and make them available to your application code. Having learned

from the shortcomings of existing dependency management solutions, Gradle pro-

vides its own implementation. Not only is it highly configurable, it also strives to be as

compatible as possible with existing dependency management infrastructures (like

Maven and Ivy). Gradle’s ability to manage dependencies isn’t limited to external

libraries. As your project grows in size and complexity, you’ll want to organize the

code into modules with clearly defined responsibilities. Gradle provides powerful sup-

port for defining and organizing multiproject builds, as well as modeling dependen-

cies between projects.

 I know, all of this sounds promising, but you’re still stuck with your legacy build.

Gradle doesn’t leave you in the dust, but makes migration easy. Ant gets shipped with

the runtime and therefore doesn’t require any additional setup. Gradle provides

teams with the ability to apply their accumulated Ant knowledge and investment in

build infrastructure. Imagine the possibilities of using existing Ant tasks and scripts

directly in your Gradle build scripts. Legacy build logic can be reused or migrated

gradually. Gradle does the heavy lifting for you.

 To get started with Gradle, all you need to bring to the table is a good understand-

ing of the Java programming language. If you’re new to project automation or haven’t

used a build tool before, chapter 1 is a good place to start. This book will teach you

how to effectively use Gradle to build and deliver real-world projects.

 In this chapter, we’ll compare existing JVM-language build tools with the features

Gradle has to offer. Later, you’ll learn how Gradle can help you automate your soft-

ware delivery process in the context of a continuous delivery deployment pipeline. To

get a first taste of what it’s like to use Gradle, you’ll install the runtime, write a simple

build script, and run it on the command line. Join me on an exciting journey as we

explore the world of Gradle.

2.1 Why Gradle? Why now?

If you’ve ever dealt with build systems, frustration may be one of the feelings that

comes up when thinking about the challenges you’ve faced. Shouldn’t the build tool

24 CHAPTER 2 Next-generation builds with Gradle

naturally help you accomplish the goal of automating your project? Instead, you had

to compromise on maintainability, usability, flexibility, extendibility, or performance.

 Let’s say you want to copy a file to a specific location under the condition that

you’re building the release version of your project. To identify the version, you

check a string in the metadata describing your project. If it matches a specific num-

bering scheme (for example, 1.0-RELEASE), you copy the file from point A to point B.

From an outside perspective, this may sound like a trivial task. If you have to rely on

XML, the build language of many traditional tools, expressing this simple logic

becomes a nightmare. The build tool’s response is to add scripting functionality

through nonstandard extension mechanisms. You end up mixing scripting code

with XML or invoking external scripts from your build logic. It’s easy to imagine

that you’ll need to add more and more custom code over time. As a result, you

inevitably introduce accidental complexity, and maintainability goes out the win-

dow. Wouldn’t it make sense to use an expressive language to define your build

logic in the first place?

 Here’s another example. Maven follows the paradigm of convention over configu-

ration by introducing a standardized project layout and build lifecycle for Java proj-

ects. That’s a great approach if you want to ensure a unified application structure

for a greenfield project—a project that lacks any constraints imposed by prior work.

However, you may be the lucky one who needs to work on one of the many legacy

projects that follow different conventions. One of the conventions Maven is very

strict about is that one project needs to produce one artifact, such as a JAR file. But

how do you create two different JAR files from one source tree without having to

change your project structure? Just for this purpose, you’d have to create two separate

projects. Again, even though you can make this happen with a workaround, you can’t

shake off the feeling that your build process will need to adapt to the tool, not the tool

to your build process.

 These are only some of the issues you may have encountered with existing solu-

tions. Often you’ve had to sacrifice nonfunctional requirements to model your enter-

prise’s automation domain. But enough with the negativity—let’s see how Gradle fits

into the build tool landscape.

2.1.1 Evolution of Java build tools

Let’s look at how build tools have evolved over the years. As I discussed in chapter 1,

two tools have dominated building Java projects: Ant and Maven. Over the course of

years, both tools significantly improved and extended their feature set. But even

though both are highly popular and have become industry standards, they have one

weak point: build logic has to be described in XML. XML is great for describing hierar-

chical data, but falls short on expressing program flow and conditional logic. As a

build script grows in complexity, maintaining the build code becomes a nightmare.

 Ant’s first official version was released in 2000. Each element of work (a target in

Ant’s lingo) can be combined and reused. Multiple targets can be chained to combine

25Why Gradle? Why now?

single units of work into full workflows. For example, you might have one target for

compiling Java source code and another one for creating a JAR file that packages the

class files. Building a JAR file only makes sense if you first compiled the source code.

In Ant, you make the JAR target depend on the compile target. Ant doesn’t give any

guidance on how to structure your project. Though it allows for maximum flexibility,

Ant makes each build script unique and hard to understand. External libraries

required by your project were usually checked into version control, because there was

no sophisticated mechanism to automatically pull them from a central location. Early

versions of Ant required a lot of discipline to avoid repetitive code. Its extension

mechanism was simply too weak. As a result, the bad coding practice of copying and

pasting code was the only viable option. To unify project layouts, enterprises needed

to impose standards.

 Maven 1, released in July 2004, tried to ease that process. It provided a standard-

ized project and directory structure, as well as dependency management. Unfortu-

nately, custom logic is hard to implement. If you want to break out of Maven’s

conventions, writing a plugin, called a Mojo, is usually the only solution. The name

Mojo might imply a straightforward, easy, and sexy way to extend Maven; in reality,

writing a plugin in Maven is cumbersome and overly complex.

 Later, Ant caught up with Maven by introducing dependency management

through the Apache library Ivy, which can be fully integrated with Ant to declaratively

specify dependencies needed for your project’s compilation and packaging process.

Maven’s dependency manager, as well as Ivy, support resolving transitive dependen-

cies. When I speak of transitive dependencies, I mean the graph of libraries required

by your specified dependencies. A typical example of a transitive dependency would

be the XML parser library Xerces that requires the XML APIs library to function correctly.

Maven 2, released in October 2005, took the idea of convention over configuration

even further. Projects consisting of multiple modules could define their dependencies

on each other.

 These days a lot of people are looking for alternatives to established build tools.

We see a shift from using XML to a more expressive and readable language to define

builds. A build tool that carries on this idea is Gant, a DSL on top of Ant written in

Groovy. Using Gant, users can now combine Groovy’s language features with their

existing knowledge of Ant without having to write XML. Even though it wasn’t part of

the core Maven project, a similar approach was proposed by the project Maven Poly-

glot that allows you to write your build definition logic, which is the project object

model (POM) file, in Groovy, Ruby, Scala, or Clojure.

 We’re on the cusp of a new era of application development: polyglot program-

ming. Many applications today incorporate multiple programming languages, each of

which is best suited to implement a specific problem domain. It’s not uncommon to

face projects that use client-side languages like JavaScript that communicate with a

mixed, multilingual backend like Java, Groovy, and Scala, which in turn calls off to

a C++ legacy application. It’s all about the right tool for the job. Despite the benefits

www.allitebooks.com

http://www.allitebooks.org

26 CHAPTER 2 Next-generation builds with Gradle

of combining multiple programming languages, your build tool needs to fluently sup-

port this infrastructure as well. JavaScript needs to be merged, minified, and zipped,

and your server-side and legacy code needs to be compiled, packaged, and deployed.

 Gradle fits right into that generation of build tools and satisfies many require-

ments of modern build tools (figure 2.1). It provides an expressive DSL, a convention

over configuration approach, and powerful dependency management. It makes the

right move to abandon XML and introduce the dynamic language Groovy to define

your build logic. Sounds compelling, doesn’t it? Keep reading to learn about Gradle’s

feature set and how to get your boss on board.

2.1.2 Why you should choose Gradle

If you’re a developer, automating your project is part of your day-to-day business.

Don’t you want to treat your build code like any other piece of software that can be

extended, tested, and maintained? Let’s put software engineering back into the build.

Gradle build scripts are declarative, readable, and clearly express their intention. Writ-

ing code in Groovy instead of XML, sprinkled with Gradle’s build-by-convention philoso-

phy, significantly cuts down the size of a build script and is far more readable (see

figure 2.2).

 It’s impressive to see how much less code you need to write in Gradle to achieve

the same goal. With Gradle you don’t have to make compromises. Where other build

tools like Maven propose project layouts that are “my way or the highway,” Gradle’s

DSL allows for flexibility by adapting to nonconventional project structures.

Gradle’s motto

“Make the impossible possible, make the possible easy, and make the easy elegant”

(adapted quote from Moshé Feldenkrais).

Flexibility

Full control

Chaining of targets

Dependency management

Convention over configuration

Multimodule projects

Extensibility via plugins

Groovy DSL on top of Ant

Figure 2.1 Gradle combines the best features from other build tools.

27Why Gradle? Why now?

Never change a running system, you say? Your team already spent a lot of time on

establishing your project’s build code infrastructure. Gradle doesn’t force you to fully

migrate all of your existing build logic. Good integration with other tools like Ant and

Maven is at the top of Gradle’s priority list. We’ll take a deeper look at Gradle’s inte-

gration features and potential migration strategies in chapter 9.

 The market seems to be taking notice of Gradle. In spring 2010, Gradle was

awarded the Springy award for the most innovative open source project (http://

www.springsource.org/node/2871). ThoughtWorks, a highly regarded software devel-

opment consultancy, periodically publishes a report on emerging technologies,

languages, and tools—their so-called technology radar. The goal of the technology

radar is to help decision makers in the software industry understand trends and

their effect on the market. In their latest edition of the report from May 2013

(http://thoughtworks.fileburst.com/assets/technology-radar-may-2013.pdf), Gradle

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>com.mycompany.app</groupId>

<artifactId>my-app</artifactId>

<packaging>jar</packaging>

<version>1.0-SNAPSHOT</version>

<dependencies>

<dependency>

<groupId>junit</groupId>

<artifactId>junit</artifactId>

<version>4.11</version>

<scope>test</scope>

</dependency>

</dependencies>

</project>

Maven

apply plugin: 'java'

group = 'com.mycompany.app'

archivesBaseName = 'my-app'

version = '1.0-SNAPSHOT'

repositories {

mavenCentral()

}

dependencies {

testCompile 'junit:junit:4.11'

}

Gradle

Figure 2.2 Comparing build script size and readability between Maven and Gradle

http://thoughtworks.fileburst.com/assets/technology-radar-may-2013.pdf
http://www.springsource.org/node/2871
http://www.springsource.org/node/2871

28 CHAPTER 2 Next-generation builds with Gradle

was rated with the status Adopt, indicating a technology that should be adopted by

the industry.

Gradle found adopters early on, even before a 1.0 version was released. Popular open

source projects like Groovy and Hibernate completely switched to Gradle as the back-

bone for their builds. Every Android project ships with Gradle as the default build sys-

tem. Gradle also had an impact on the commercial market. Companies like Orbitz,

EADS, and Software AG embraced Gradle as well, to name just a few. VMware, the com-

pany behind Spring and Grails, made significant investments in choosing Gradle.

Many of their software products, such as the Spring framework and Grails, are literally

built on the trust that Gradle can deliver.

2.2 Gradle’s compelling feature set

Let’s take a closer look at what sets Gradle apart from its competitors: its compelling

feature set (see figure 2.3). To summarize, Gradle is an enterprise-ready build system,

powered by a declarative and expressive Groovy DSL. It combines flexibility and effort-

less extendibility with the idea of convention over configuration and support for

traditional dependency management. Backed by a professional services company

Recognition by ThoughtWorks

“Two things have caused fatigue with XML-based build tools like Ant and Maven: too

many angry pointy braces and the coarseness of plug-in architectures. While syntax

issues can be dealt with through generation, plug-in architectures severely limit the

ability for build tools to grow gracefully as projects become more complex. We have

come to feel that plug-ins are the wrong level of abstraction, and prefer language-

based tools like Gradle and Rake instead, because they offer finer-grained abstrac-

tions and more flexibility long term.”

Gradle

Expressive build

langage and deep API

Community-driven and

company-backed

Robust and powerful

dependency

managment

Gradle is Groovy

Effortless

extendibility

Scalable builds

Flexible

conventions

Integration with

other build tools

Figure 2.3 Gradle’s

compelling feature set

http://thoughtworks.fileburst.com/assets/technology-radar-may-2013.pdf

29Gradle’s compelling feature set

(Gradleware) and strong community involvement, Gradle is becoming the number-

one choice build solution for many open source projects and enterprises.

2.2.1 Expressive build language and deep API

The key to unlocking Gradle’s power features within your build script lies in discover-

ing and applying its domain model, as shown in figure 2.4.

 As you can see in the figure, a build script directly maps to an instance of type

Project in Gradle’s API. In turn, the dependencies configuration block in the build

repositories {

mavenCentral()

}

dependencies {

...

}

task myTask {

doFirst {

...

}

doLast {

...

}

}

Gradle build script

Gradle API

accesses and

configures
applies DSL

add(configName: String,

depName: String)

...

<<interface>>

Dependency

Handler

mavenCentral()

ivy(c: Closure)

...

...

<<interface>>

Repository

Handler

getRepositories()

getDependencies()

...

...

<<interface>>

Project

<<interface>>

Task

doFirst(action: Closure)

doLast(action: Closure)

getDependsOn()
...

... ...

...

...

...

<<interface>>

Action

execute(t: T)

Figure 2.4 Build scripts apply the Gradle DSL and have access to its deep API.

30 CHAPTER 2 Next-generation builds with Gradle

script invokes the method dependencies() of the project instance. Like most APIs in

the Java world, it’s available as HTML Javadoc documentation on Gradle’s website at

http://www.gradle.org/docs/current/javadoc/index.html. Who would have known?

You’re actually dealing with code. Without knowing it, you generate an object repre-

sentation of your build logic in memory. In chapter 4, we’ll explore many of Gradle’s

API classes and how they’re represented in your build script.

 Each element in a Gradle script has a one-to-one representation with a Java class;

however, some of the elements have been sugarcoated with a sprinkle of Groovy syn-

tax. Having a Groovy-fied version of a class in many cases makes the code more com-

pact than its Java counterpart and allows for using new language features like closures.

 Gradle can’t know all the requirements specific to your enterprise build. By exposing

hooks into lifecycle phases, Gradle allows for monitoring and configuring your build

script’s execution behavior. Let’s assume you have the very unique requirement of send-

ing out an email to the development team whenever a unit test failure occurs. The way

you want to send an email (for example, via SMTP or a third-party email service provider)

and the list of recipients are very specific to your build. Other builds using Gradle may

not be interested in this feature at all. By writing a custom test listener that’s notified after

the test execution lifecycle event, you can easily incorporate this feature for your build.

 Gradle establishes a vocabulary for its model by exposing a DSL implemented in

Groovy. When dealing with a complex problem domain, in this case the task of build-

ing software, being able to use a common language to express your logic can be a pow-

erful tool. Let’s look at some examples. Most common to builds is the notation of a

unit of work that you want to get executed. Gradle describes this unit of work as a task.

Part of Gradle’s standard DSL is the ability to define tasks very specific to compiling

and packaging Java source code. It’s a language for building Java projects with its own

vocabulary that doesn’t need to be relevant to other contexts.

 Another example is the way you can express dependencies to external libraries, a

very common problem solved by build tools. Out-of-the-box Gradle provides you with

two configuration blocks for your build script that allow you to define the dependen-

cies and repositories that you want to retrieve them from. If the standard DSL ele-

ments don’t fit your needs, you can even introduce your own vocabulary through

Gradle’s extension mechanism.

 This may sound a little nebulous at first, but once you’re past the initial hur-

dle of learning the build language, creating maintainable and declarative builds

comes easy. A good place to start is the Gradle Build Language Reference Guide at

http://www.gradle.org/docs/current/dsl/index.html. Gradle’s DSL can be extended.

You may want to change the behavior of an existing task or add your own idioms for

describing your business domain. Gradle offers you plenty of options to do so.

2.2.2 Gradle is Groovy

Prominent build tools like Ant and Maven define their build logic through XML. As

we all know, XML is easy to read and write, but can become a maintenance nightmare

http://www.gradle.org/docs/current/javadoc/index.html
http://www.gradle.org/docs/current/dsl/index.html

31Gradle’s compelling feature set

if used in large quantities. XML isn’t very expressive. It makes it hard to define com-

plex custom logic. Gradle takes a different approach. Under the hood, Gradle’s DSL

is written with Groovy providing syntactic sugar on top of Java. The result is a read-

able and expressive build language. All your scripts are written in Groovy as well.

Being able to use a programming language to express your build needs is a major

plus. You don’t have to be a Groovy expert to get started. Because Groovy is written

on top of Java, you can migrate gradually by trying out its language features. You

could even write your custom logic in plain Java—Gradle couldn’t care less. Battle-

scarred Groovy veterans will assure you that using Groovy instead of Java will boost

your productivity by orders of magnitude. A great reference guide is the book Groovy

in Action, Second Edition by Dirk Konig et al. (Manning, 2009) For a primer on Groovy,

see appendix B.

2.2.3 Flexible conventions

One of Gradle’s big ideas is to give you guidelines and sensible defaults for your proj-

ects. Every Java project in Gradle knows exactly where source and test class file are

supposed to live, and how to compile your code, run unit tests, generate Javadoc

reports, and create a distribution of your code. All of these tasks are fully integrated

into the build lifecycle. If you stick to the convention, there’s only minimal configura-

tion effort on your part. In fact, your build script is a one-liner. Seriously! Do you want

to learn more about building a Java project with Gradle? Well, you can—we’ll cover it

in chapter 3. Figure 2.5 illustrates how Gradle introduces conventions and lifecycle

tasks for Java projects.

 Default tasks are provided that make sense in the context of a Java project. For

example, you can compile your Java production source code, run tests, and assemble a

JAR file. Every Java project starts with a standard directory layout. It defines where to

find production source code, resource files, and test code. Convention properties are

used to change the defaults.

 The same concept applies to other project archetypes like Scala, Groovy, web proj-

ects, and many more. Gradle calls this concept build by convention. The build script

developer doesn’t need to know how this is working under the hood. Instead, you can

concentrate on what needs to be configured. Gradle’s conventions are similar to the

ones provided by Maven, but they don’t leave you feeling boxed in. Maven is very opin-

ionated; it proposes that a project only contains one Java source directory and only

produces one single JAR file. This is not necessarily reality for many enterprise proj-

ects. Gradle allows you to easily break out of the conventions. On the opposite side of

the spectrum, Ant never gave you a lot of guidance on how to structure your build

script, allowing for a maximum level of flexibility. Gradle takes the middle ground by

offering conventions combined with the ability to easily change them. Szczepan Faber,

one of Gradle’s core engineers, put it this way on his blog: “Gradle is an opinionated

framework on top of an unopinionated toolkit.” (Monkey Island, “opinionated or not,”

June 2, 2012, http://monkeyisland.pl/2012/06/02/opinionated-or-not/.)

http://monkeyisland.pl/2012/06/02/opinionated-or-not/

32 CHAPTER 2 Next-generation builds with Gradle

2.2.4 Robust and powerful dependency management

Software projects are usually not self-contained. All too often, your application code

uses a third-party library providing existing functionality to solve a specific problem.

Why would you want to reinvent the wheel by implementing a persistence framework

if Hibernate already exists? Within an organization, you may be the consumer of a

component or module implemented by a different team. External dependencies are

accessible through repositories, and the type of repository is highly dependent on

what your company prefers. Options range from a plain file system to a full-fledged

enterprise repository. External dependencies may have a reference to other libraries

or resources. We call these transitive dependencies.

 Gradle provides an infrastructure to manage the complexity of resolving, retriev-

ing, and storing dependencies. Once they’re downloaded and put in your local cache,

they’re made available to your project. A key requirement of enterprise builds is

reproducibility. Recall the story of Tom and Joe from chapter 1. Do you remember the

last time your coworker said, “But it works on my box”? Builds have to produce the

same result on different machines, independent of the contents of your local cache.

Dependency managers like Ivy and Maven in their current implementation cannot

fully guarantee reproducibility. Why is that? Whenever a dependency is downloaded

source

Compatibility
distDirName

sourceSets ...

src

main

java

resources

test

java

resources

Project layout

Build lifecycle tasks

Convention properties

configures

configures

compile

Java

process

Resources

classes jar assemble build

Figure 2.5 In Gradle, Java projects are build by convention with sensible defaults.

Changing the defaults is easy and achieved through convention properties.

33Gradle’s compelling feature set

and stored in the local cache, it doesn’t take into account the artifact’s origin. In situa-

tions where the repository is changed for a project, the cached dependency is consid-

ered resolved, even though the artifact’s content may be slightly different. At worst,

this will cause a failing build that’s extremely hard to debug. Another common com-

plaint specific to Ivy is the fact that dependency snapshot versions, artifacts currently

under development with the naming convention –SNAPSHOT, aren’t updated correctly

in the local cache, even though it changed on the repository and is marked as chang-

ing. There are many more scenarios where current solutions fall short. Gradle pro-

vides its own configurable, reliable, and efficient dependency management solution.

We’ll have a closer look at its features in chapter 5.

 Large enterprise projects usually consist of multiple modules to separate function-

ality. In the Gradle world, each of the submodules is considered a project that can

define dependencies to external libraries or other modules. Additionally, each sub-

project can be run individually. Gradle figures out for you which of the subproject

dependencies need to be rebuilt, without having to store a subproject’s artifact in the

local cache.

2.2.5 Scalable builds

For some companies, a large project with hundreds of modules is reality. Building and

testing minor code changes can consume a lot of time. You may know from personal

experience that deleting old classes and resources by running a cleanup task is a natu-

ral reflex. All too often, you get burned by your build tool not picking up the changes

and their dependencies. What you need is a tool that’s smart enough to only rebuild

the parts of your software that actually changed. Gradle supports incremental builds

by specifying task inputs and outputs. It reliably figures out for you which tasks need

to be skipped, built, or partially rebuilt. The same concept translates to multimodule

projects, called partial builds. Because your build clearly defines the dependencies

between submodules, Gradle takes care of rebuilding only the necessary parts. No

more running clean by default!

 Automated unit, integration, and functional tests are part of the build process. It

makes sense to separate short-running types of tests from the ones that require setting

up resources or external dependencies to be run. Gradle supports parallel test execu-

tion. This feature is fully configurable and ensures that you’re actually taking advan-

tage of your processor’s cores. The buck doesn’t stop here. Gradle is going to support

distributing test execution to multiple machines in a future version. I’m sorry to tell

you, but the days of reading your Twitter feed between long builds are gone.

 Developers run builds many times during development. That means starting a new

Gradle process each time, loading all its internal dependencies, and running the

build logic. You’ll notice that it usually takes a couple of seconds before your script

actually starts to execute. To improve the startup performance, Gradle can be run in

daemon mode. In practice, the Gradle command forks a daemon process, which not

only executes your build, but also keeps running in the background. Subsequent build

34 CHAPTER 2 Next-generation builds with Gradle

invocations will piggyback on the existing daemon process to avoid the startup costs.

As a result, you’ll notice a far snappier initial build execution.

2.2.6 Effortless extendibility

Most enterprise builds are not alike, nor do they solve the same problems. Once

you’re past the initial phase of setting up your basic scripts, you’ll want to implement

custom logic. Gradle is not opinionated about the way you implement that code.

Instead, it gives you various choices to pick from, depending on your specific use case.

The easiest way to implement custom logic is by writing a task. Tasks can be defined

directly in your build script without special ceremony. If you feel like complexity takes

over, you may want to explore the option of a custom task that allows for writing your

logic within a class definition, making structuring your code easy and maintainable.

If you want to share reusable code among builds and projects, plugins are your best

friend. Representing Gradle’s most powerful extension mechanism, plugins give

you full access to Gradle’s API and can be written, tested, and distributed like any

other piece of software. Writing a plugin is surprisingly easy and doesn’t require a

lot of additional descriptors.

2.2.7 Integration with other build tools

Wouldn’t it be a huge timesaver to be able to integrate with existing build tools? Gra-

dle plays well with its predecessors Ant, Maven, and Ivy, as shown in figure 2.6.

 If you’re coming from Ant, Gradle doesn’t force you to fully migrate your build

infrastructure. Instead, it allows you to import existing build logic and reuse stan-

dard Ant tasks. Gradle builds are 100% compatible with Maven and Ivy repositories.

You can retrieve dependencies and publish your own artifacts. Gradle provides a

converter for existing Maven builds that can translate the build logic into a Gradle

build script.

 Existing Ant scripts can be imported into your Gradle build seamlessly and used as

you’d use any other external Gradle script. Ant targets directly map to Gradle tasks at

runtime. Gradle ships with the Ant libraries and exposes a helper class to your scripts

...

use

Ant tasks

build.xml
import

Ant scripts Gradle script

build.gradle

pom.xml
generate

via converter

Maven POM

Maven/Ivy

repository

publish artifact

download

dependency

FTP

XSLT

SCP

Figure 2.6 Gradle provides deep integration with other build tools and opens the door to

gradually migrate your existing Ant or Maven build.

35Gradle’s compelling feature set

called AntBuilder, which fully blends into Gradle’s DSL. It still looks and feels like

Ant’s XML, but without the pointy brackets. Ant users will feel right at home, because

they don’t have to transition to Gradle syntax right away. Migrating from Ant to Gra-

dle is also a no-brainer. You can take baby steps by reusing your existing Ant logic

while using Gradle’s benefits at the same time.

 Gradle aims to reach a similar depth of integration with Maven. At the time of writ-

ing, this hasn’t been realized yet. In the long run, Maven POMs and plugins will be

treated as Gradle natives. Maven and Ivy repositories have become an important part

of today’s build infrastructure. Imagine a world without Maven Central to help access

specific versions of your favorite project dependencies. Retrieving dependencies from

a repository is only one part of the story; publishing to them is just as important.

With a little configuration, Gradle can upload your project’s artifact for companywide

or public consumption.

2.2.8 Community-driven and company-backed

Gradle is free to use and ships with the Apache License 2.0. After its first release in

April 2008, a vibrant community quickly started to form around it. Over the past five

years, open source developers have made major contributions to Gradle’s core code

base. Being hosted on GitHub turned out to be very beneficial to Gradle. Code

changes can be submitted as pull requests and undergo a close review process by the

core committers before making it into the code base. If you’re coming from other

build tools like Maven, you may be used to a wide range of reusable plugins. Apart

from the standard plugins shipped with the runtime, the Gradle community releases

new functionality almost daily. Throughout the book, you’ll use many of the standard

plugins shipped with Gradle. Appendix A gives a broader spectrum on standard as

well as third-party plugins. Every community-driven software project needs a forum to

get immediate questions answered. Gradle connects with the community through the

Gradle forum at http://forums.gradle.org/gradle. You can be sure you’ll get helpful

responses to your questions on the same day.

 Gradleware is the technical service and support company behind Gradle. Not only

does it provide professional advice for Gradle itself, it aims for a wide range of enter-

prise automation consulting. The company is backed by high-caliber engineers very

experienced in the domain. Recently, Gradleware started to air free webinars to spark

interest for newcomers and deepen knowledge for experienced Gradle users.

2.2.9 Icing on the cake: additional features

Don’t you hate having to install a new runtime for different projects? Gradle Wrap-

per to the rescue! It allows for downloading and installing a fresh copy of the Gra-

dle runtime from a specified repository on any machine you run the build on. This

process is automatically triggered on the first execution of the build. The Wrapper

is especially useful for sharing your builds with a distributed team or running them

on a CI platform.

www.allitebooks.com

http://forums.gradle.org/gradle
http://www.allitebooks.org

36 CHAPTER 2 Next-generation builds with Gradle

 Gradle is also equipped with a rich command-line interface. Using command-line

options, you can control everything from specifying the log level, to excluding tests,

to displaying help messages. This is nothing special; other tools provide that, too.

Some of the features stand out, though. Gradle allows for running commands in an

abbreviated, camel-cased form. In practice, a command named runMyAwesomeTask

would be callable with the abbreviation rMAT. Handy, isn’t it? Even though this book

presents most of its examples by running commands in a shell, bear in mind that Gra-

dle provides an out-of-the-box graphical user interface.

2.3 The bigger picture: continuous delivery

Being able to build your source code is only one aspect of the software delivery pro-

cess. More importantly, you want to release your product to a production environment

to deliver business value. Along the way, you want to run tests, build the distribution,

analyze the code for quality-control purposes, potentially provision a target environ-

ment, and deploy to it.

 There are many benefits to automating the whole process. First and foremost,

delivering software manually is slow, error-prone, and nerve-wracking. I’m sure every

one of us hates the long nights due to a deployment gone wrong. With the rise of agile

methodologies, development teams are able to deliver software faster. Release cycles

of two or three weeks have become the norm. Some organizations like Etsy and Flickr

even ship code to production several times a day! Optimally, you want to be able to

release software by selecting the target environment simply by pressing a button. Prac-

tices like automated testing, CI, and deployment feed into the general concept of con-

tinuous delivery.

 In this book, we’ll look at how Gradle can help get your project from build to

deployment. It’ll enable you to automate many of the tasks required to implement

continuous delivery, be they compiling your source code, deploying a deliverable, or

calling external tools that help you with implementing the process. For a deep dive on

continuous delivery and all of its aspects, I recommend Continuous Delivery: Reliable

Software Releases through Build, Test, and Deployment Automation by Jez Humble and David

Farley (Addison Wesley, 2010).

2.3.1 Automating your project from build to deployment

Continuous delivery introduces the concept of a deployment pipeline, also referred to

as the build pipeline. A deployment pipeline represents the technical implementation

of the process for getting software from version control into your production environ-

ment. The process consists of multiple stages, as shown in figure 2.7.

Commit

stage

Automated

acceptance

test stage

Manual test

stage

Release

stage

Figure 2.7 Stages of a deployment pipeline

37The bigger picture: continuous delivery

■ Commit stage : Reports on the technical health level of your project. The main

stakeholder of this phase is the development team as it provides feedback about

broken code and finds “code smells.” The job of this stage is to compile the

code, run tests, perform code analysis, and prepare the distribution.

■ Automated acceptance test stage : Asserts that functional and nonfunctional require-

ments are met by running automated tests.

■ Manual test stage : Verifies that the system is actually usable in a test environment.

Usually, this stage involves QA personnel to verify requirements on the level of

user stories or use cases.

■ Release stage : Either delivers the software to the end user as a packaged distribu-

tion or deploys it to the production environment.

Let’s see what stages of the deployment pipeline can benefit from project automation.

It’s obvious that the manual test stage can be excluded from further discussion, because

it only involves manual tasks. This book mainly focuses on using Gradle in the commit

and automated acceptance test stages. The concrete tasks we’re going to look at are

■ Compiling the code

■ Running unit and integration tests

■ Performing static code analysis and generating test coverage

■ Creating the distribution

■ Provisioning the target environment

■ Deploying the deliverable

■ Performing smoke and automated functional tests

Figure 2.8 shows the order of tasks within each of the stages. While there are no hard

rules that prevent you from skipping specific tasks, it’s recommended that you follow

the order. For example, you could decide to compile your code, create the distribu-

tion, and deploy it to your target environment without running any tests or static code

analysis. However, doing so increases the risk of undetected code defects and poor

code quality.

Compile

code and

unit tests

Integration

tests

Code

analysis

Assemble

binaries

Commit stage

Deploy

binaries

Smoke and

acceptance

tests

Acceptance stage

Deploy

binaries

Smoke

tests

Smoke

tests

UAT

Deploy

binaries

Production

Figure 2.8 Tasks performed in stages of build pipeline

38 CHAPTER 2 Next-generation builds with Gradle

Topics like infrastructure provisioning, automated deployment, and smoke testing

can also be applied to the release stage. In practice, applying these techniques to a

production environment is more complex than in a controlled test environment. In

a production environment, you may have to deal with clustered and distributed

server infrastructures, zero-downtime release rollouts, and automated rollbacks to

the previous release.

 Covering these advanced topics would go beyond the scope of this book. However,

there are some great examples of deployment management tools in the wild that you

may want to check out, such as Asgard, a web-based cloud management and deploy-

ment tool built and used by Netflix (https://github.com/Netflix/asgard). But enough

pure theory—let’s get your feet wet by installing Gradle on your machine and build-

ing your first project. In chapter 3, we’ll go even further by exploring how to imple-

ment and run a complex Java project using Gradle.

2.4 Installing Gradle

As a prerequisite, make sure you’ve already installed the JDK with a version of 1.5 or

higher. Even though some operating systems provide you with an out-of-the-box Java

installation, make sure you have a valid version installed on your system. To check the

JDK version, run java –version.

 Getting started with Gradle is easy. You can download the distribution directly

from the Gradle homepage at http://gradle.org/downloads. As a beginner to the

tool, it makes sense to choose the ZIP file that includes the documentation and

a wide range of source code examples to explore. Unzip the downloaded file to a

directory of your choice. To reference your Gradle runtime in the shell, you’ll need

to create the environment variable GRADLE_HOME and add the binaries to your shell’s

execution path:

■ Mac OS X and *nix: To make Gradle available in your shell, add the following two

lines to your initialization script (for example, ~/.profile). These instructions

assume that you installed Gradle in the directory /opt/gradle:

export GRADLE_HOME=/opt/gradle
export PATH=$PATH:$GRADLE_HOME/bin

■ Windows: In the dialog environment variable, define the variable GRADLE_HOME

and update your path settings (figure 2.9).

You’ll verify that Gradle has been installed correctly and is ready to go. To check

the version of the installed runtime, issue the command gradle –v in your shell.

You should see meta-information about the installation, your JVM, and the operat-

ing system. The following example shows the version output of a successful Gradle

1.7 installation.

https://github.com/Netflix/asgard
http://gradle.org/downloads

39Installing Gradle

$ gradle –v

--
Gradle 1.7
--

Build time: 2013-08-06 11:19:56 UTC
Build number: none
Revision: 9a7199efaf72c620b33f9767874f0ebced135d83

Groovy: 1.8.6
Ant: Apache Ant(TM) version 1.8.4 compiled on May 22 2012
Ivy: 2.2.0
JVM: 1.6.0_51 (Apple Inc. 20.51-b01-457)
OS: Mac OS X 10.8.4 x86_64

Setting Gradle’s JVM options

Like every other Java application, Gradle shares the same JVM options set by the envi-

ronment variable JAVA_OPTS. If you want to pass arguments specifically to the Gradle

runtime, use the environment variable GRADLE_OPTS. Let’s say you want to increase

the default maximum heap size to 1 GB. You could set it like this:

GRADLE_OPTS="-Xmx1024m"

The preferred way to do that is to add the variable to the Gradle startup script under

$GRADLE_HOME/bin.

Figure 2.9 Updating variable

settings on Windows

40 CHAPTER 2 Next-generation builds with Gradle

Now that you’re all set, you’ll implement a simple build script with Gradle. Even

though most of the popular IDEs provide a Gradle plugin, all you need now is your

favorite editor. Chapter 10 will discuss Gradle plugin support for IDEs like IntelliJ,

Eclipse, and NetBeans.

2.5 Getting started with Gradle

Every Gradle build starts with a script. The default naming convention for a Gradle

build script is build.gradle. When executing the command gradle in a shell, Gra-

dle looks for a file with that exact name. If it can’t be located, the runtime will display

a help message.

 Let’s set the lofty goal of creating the typical “Hello world!” example in Gradle.

First you’ll create a file called build.gradle. Within that script, define a single atomic

piece of work. In Gradle’s vocabulary, this is called a task. In this example, the task is

called helloWorld. To print the message “Hello world!” make use of Gradle’s lingua

franca, Groovy, by adding the println command to the task’s action doLast. The

method println is Groovy’s shorter equivalent to Java’s System.out.println:

task helloWorld {
 doLast {
 println 'Hello world!'
 }
}

Give it a spin:

$ gradle –q helloWorld
Hello world!

As expected, you see the output “Hello world!” when running the script. By defining

the optional command-line option quiet with –q, you tell Gradle to only output the

task’s output.

 Without knowing it, you already used Gradle’s DSL. Tasks and actions are impor-

tant elements of the language. An action named doLast is almost self-expressive. It’s

the last action that’s executed for a task. Gradle allows for specifying the same logic in

a more concise way. The left shift operator << is a shortcut for the action doLast. The

following snippet shows a modified version of the first example:

task helloWorld << {
 println 'Hello world!'
}

Printing “Hello world!” only goes so far. I’ll give you a taste of more advanced features

in the example build script shown in the following listing. Let’s strengthen our belief

in Gradle by exercising a little group therapy session. Repeat after me: Gradle rocks!

task startSession << {
 chant()
}

Listing 2.1 Dynamic task definition and task chaining

41Getting started with Gradle

def chant() {
 ant.echo(message: 'Repeat after me...')
}

3.times {
 task "yayGradle$it" << {
 println 'Gradle rocks'
 }
}

yayGradle0.dependsOn startSession
yayGradle2.dependsOn yayGradle1, yayGradle0
task groupTherapy(dependsOn: yayGradle2)

You may not notice it at first, but there’s a lot going on in this listing. You introduced

the keyword dependsOn to indicate dependencies between tasks d. Gradle makes sure

that the depended-on task will always be executed before the task that defines the

dependency. Under the hood, dependsOn is actually a method of a task. Chapter 4 will

cover the internals of tasks, so we won’t dive into too much detail here.

 A feature we’ve talked about before is Gradle’s tight integration with Ant B.

Because you have full access to Groovy’s language features, you can also print your

message in a method named chant(). This method can easily be called from your

task. Every script is equipped with a property called ant that grants direct access to

Ant tasks. In this example, you print out the message “Repeat after me” using the Ant

task echo to start the therapy session.

 A nifty feature Gradle provides is the definition of dynamic tasks, which specify

their name at runtime. Your script creates three new tasks within a loop c using

Groovy’s times method extension on java.lang.Number. Groovy automatically

exposes an implicit variable named it to indicate the loop iteration index. You’re

using this counter to build the task name. For the first iteration, the task would be

called yayGradle0.

 Now running gradle groupTherapy results in the following output:

$ gradle groupTherapy
:startSession
[ant:echo] Repeat after me...
:yayGradle0
Gradle rocks
:yayGradle1
Gradle rocks
:yayGradle2
Gradle rocks
:groupTherapy

As shown in figure 2.10 Gradle executed the tasks in the correct order. You may have

noticed that the example omitted the quiet command-line option, which gives more

information on the tasks run.

 Thanks to your group therapy, you got rid of your deepest fears that Gradle will

be just another build tool that can’t deliver. In the next chapter, you’ll stand up a

Implicit Ant
task usageb

Dynamic task
definitionc

Task
dependencies

d

42 CHAPTER 2 Next-generation builds with Gradle

full-fledged Java application covering a broad range of Gradle’s core concepts. For

now, let’s get more accustomed to Gradle’s command line.

2.6 Using the Command line

In the previous sections, you executed the tasks helloWorld and groupTherapy on the

command line, which is going to be your tool of choice for running most examples

throughout this book. Even though using an IDE may seem more convenient to new-

comers, a deep understanding of Gradle’s command-line options and helper tasks will

make you more efficient and productive in the long run.

2.6.1 Listing available tasks of a project

In the last section I showed you how to run a specific task using the gradle command.

Running a task requires you to know the exact name. Wouldn’t it be great if Gradle

could tell you which tasks are available without you having to look at the source code?

Gradle provides a helper task named tasks to introspect your build script and display

each available task, including a descriptive message of its purpose. Running gradle

tasks in quiet mode produces the following output:

$ gradle -q tasks

--
All tasks runnable from root project
--

Build Setup tasks

setupBuild - Initializes a new Gradle build. [incubating]
wrapper - Generates Gradle wrapper files. [incubating]

Help tasks

dependencies - Displays the dependencies of root project 'grouptherapy'.
dependencyInsight - Displays the insight into a specific dependency in root

➥ project 'grouptherapy'.
help - Displays a help message
projects - Displays the sub-projects of root project 'grouptherapy'.
properties - Displays the properties of root project 'grouptherapy'.
tasks - Displays the tasks runnable from root project 'grouptherapy' (some of

➥ the displayed tasks may belong to subprojects).

Other tasks

groupTherapy

To see all tasks and more detail, run with --all.

startSession yayGradle0 yayGradle1 yayGradle2 groupTherapy

Task Task Task Task Task

Figure 2.10 Task dependency graph

Build setup tasks
help you initialize
the Gradle build
(for example,
generate the
build.gradle file)

Help task group listing
task names and their
descriptions separated
by hyphen

b

Uncategorized tasks that are
not assigned to a task group

c

Tasks without descriptions aren’t self-expressive; in chapter 3
you’ll learn how to add an appropriate task description.

d

43Using the Command line

There are some things to note about the output. Gradle provides the concept of a task

group, which can be seen as a cluster of tasks assigned to that group. Out of the box,

each build script exposes the task group Help tasks B without any additional work

from the developer. If a task doesn’t belong to a task group, it’s displayed under Other

tasks c. This is where you find the task groupTherapy d. We’ll look at how to add a

task to a task group in chapter 4.

 You may wonder what happened to the other tasks that you defined in your build

script. On the bottom of the output, you’ll find a note that you can get even more

details about your project’s tasks by using the --all option. Run it to get more infor-

mation on them:

$ gradle -q tasks --all

--
All tasks runnable from root project
--

Build Setup tasks

setupBuild - Initializes a new Gradle build. [incubating]
wrapper - Generates Gradle wrapper files. [incubating]

Help tasks

dependencies - Displays the dependencies of root project 'grouptherapy'.
help - Displays a help message
projects - Displays the sub-projects of root project 'grouptherapy'.
properties - Displays the properties of root project 'grouptherapy'.
tasks - Displays the tasks runnable from root project 'grouptherapy' (some of

➥ the displayed tasks may belong to subprojects).

Other tasks

groupTherapy
 startSession
 yayGradle0
 yayGradle1
 yayGradle2

The --all option is a great way to determine the execution order of a task graph

before actually executing it. To reduce the noise, Gradle is smart enough to hide tasks

that act as dependencies to a root task B. For better readability, dependent tasks are

displayed indented and ordered underneath the root task.

2.6.2 Task execution

In the previous examples, you told Gradle to execute one specific task by adding it as

an argument to the command gradle. Gradle’s command-line implementation will in

turn make sure that the task and all its dependencies are executed. You can also exe-

cute multiple tasks in a single build run by defining them as command-line parame-

ters. Running gradle yayGradle0 groupTherapy would execute the task yayGradle0

first and the task groupTherapy second.

Root task of
dependency graph

b

Indented names of
dependent tasks listed
in order of execution

44 CHAPTER 2 Next-generation builds with Gradle

 Tasks are always executed just once, no matter whether they’re specified on the

command line or act as a dependency for another task. Let’s see what the output

looks like:

$ gradle yayGradle0 groupTherapy
:startSession
[ant:echo] Repeat after me...
:yayGradle0
Gradle rocks
:yayGradle1
Gradle rocks
:yayGradle2
Gradle rocks
:groupTherapy

No surprises here. You see the same output as if you’d just run gradle groupTherapy.

The correct order was preserved and each of the tasks was only executed once.

TASK NAME ABBREVIATION

One of Gradle’s productivity tools is the ability to abbreviate camel-cased task names

on the command line. If you wanted to run the previous example in the abbreviated

form, you’d just have to type gradle yG0 gT. This is especially useful if you’re dealing

with very long task names or multiple task arguments. Keep in mind that the task

name abbreviation has to be unique to enable Gradle to identify the corresponding

task. Consider the following scenario:

task groupTherapy << {
 ...
}

task generateTests << {
 ...
}

Using the abbreviation gT in a build that defines the tasks groupTherapy and generate-

Tests causes Gradle to display an error:

$ gradle yG0 gT

FAILURE: Could not determine which tasks to execute.

* What went wrong:
Task 'gT' is ambiguous in root project 'grouptherapy'. Candidates are:

➥ 'generateTests', 'groupTherapy'.

* Try:
Run gradle tasks to get a list of available tasks.

BUILD FAILED

EXCLUDING A TASK FROM EXECUTION

Sometimes you want to exclude a specific task from your build run. Gradle provides

the command-line option –x to achieve that. Let’s say you want to exclude the task

yayGradle0:

45Using the Command line

$ gradle groupTherapy -x yayGradle0
:yayGradle1
Gradle rocks
:yayGradle2
Gradle rocks
:groupTherapy

Gradle excluded the task yayGradle0 and its dependent task startSession, a concept

Gradle calls smart exclusion. Now that you’re becoming familiar with the command

line, let’s explore some more helpful functions.

2.6.3 Command-line options

In this section, we explore the most important general-purpose options, flags to con-

trol your build script’s logging level, and ways to provide properties to your project.

The gradle command allows you to define one or more options at the same time.

Let’s say you want to change the log level to INFO using the –i option and print out

any stack trace if an error occurs during execution with the option -s. To do so, exe-

cute the task groupTherapy command like this: gradle groupTherapy –is or gradle

groupTherapy –i –s. As you can see, it’s very easy to combine multiple options. To dis-

cover the full set, run your build with the –h argument or see appendix A of this book.

I won’t go over all the available options, but the most important ones are as follows:

■ -?, -h, --help: Prints out all available command-line options including a

descriptive message.

■ -b, --build-file : The default naming convention for Gradle build script is

build.gradle. Use this option to execute a build script with a different name

(for example, gradle –b test.gradle).

■ --offline: Often your build declares dependencies on libraries only avail-

able in repositories outside of your network. If these dependencies were not

stored in your local cache yet, running a build without a network connection

to these repositories would result in a failed build. Use this option to run

your build in offline mode and only check the local dependency cache for

dependencies.

PROPERTY OPTIONS

■ -D, --system-prop: Gradle runs as a JVM process. As with all Java processes, you

can provide a system property like this: –Dmyprop=myvalue.

■ -P, --project-prop: Project properties are variables available in your build

script. You can use this option to pass a property to the build script directly

from the command line (for example, -Pmyprop=myvalue).

LOGGING OPTIONS

■ -i, --info: In the default settings, a Gradle build doesn’t output a lot of infor-

mation. Use this option to get more informative messages by changing Gradle’s

logger to INFO log level. This is helpful if you want to get more information on

what’s happening under the hood.

www.allitebooks.com

http://www.allitebooks.org

46 CHAPTER 2 Next-generation builds with Gradle

■ -s, --stacktrace: If you run into errors in your build, you’ll want to know

where they stem from. The option –s prints out an abbreviated stack trace if an

exception is thrown, making it perfect for debugging broken builds.

■ -q, --quiet: Reduces the log messages of a build run to error messages only.

HELP TASKS

■ tasks: Displays all runnable tasks of your project including their descriptions.

Plugins applied to your project may provide additional tasks.

■ properties: Emits a list of all available properties in your project. Some of these

properties are provided by Gradle’s project object, the build’s internal represen-

tation. Other properties are user-defined properties originating from a property

file or property command-line option, or directly declared in your build script.

2.6.4 Gradle daemon

When using Gradle on a day-to-day basis, you’ll find yourself having to run your build

repetitively. This is especially true if you’re working on a web application. You change

a class, rebuild the web application archive, bring up the server, and reload the URL in

the browser to see your changes being reflected. Many developers prefer test-driven

development to implement their application. For continuous feedback on their code

quality, they run their unit tests over and over again to find code defects early on. In

both cases, you’ll notice a significant productivity hit. Each time you initiate a build,

the JVM has to be started, Gradle’s dependencies have to be loaded into the class

loader, and the project object model has to be constructed. This procedure usually

takes a couple of seconds. Gradle daemon to the rescue!

 The daemon runs Gradle as a background process. Once started, the gradle com-

mand will reuse the forked daemon process for subsequent builds, avoiding the

startup costs altogether. Let’s come back to the previous build script example. On my

machine, it takes about three seconds to successfully complete running the task

groupTherapy. Hopefully, we can improve the startup and execution time. It’s easy to

start the Gradle daemon on the command line: simply add the option --daemon to your

gradle command. You may notice that we add a little extra time for starting up the

daemon as well. To verify that the daemon process is running, you can check the pro-

cess list on your operating system:

■ Mac OS X and *nix: In a shell run the command ps | grep gradle to list the pro-

cesses that contain the name gradle.

■ Windows: Open the task manager with the keyboard shortcut Ctrl+Shift+Esc and

click the Processes tab.

Subsequent invocations of the gradle command will now reuse the daemon pro-

cess. Give it a shot and try running gradle groupTherapy --daemon. Wow, you got

your startup and execution time down to about one second! Keep in mind that a

daemon process will only be forked once even though you add the command-line

option --daemon. The daemon process will automatically expire after a three-hour

47Summary

idle time. At any time you can choose to execute your build without using the daemon

by adding the command-line option --no-daemon. To stop the daemon process, man-

ually run gradle --stop. That’s the Gradle daemon in a nutshell. For a deep dive into

all configuration options and intricacies, please refer to the Gradle online documen-

tation at http://gradle.org/docs/current/userguide/gradle_daemon.html.

2.7 Summary

Existing tools can’t meet the build needs of today’s industry. Improving on the best

ideas of its competitors, Gradle provides a build-by-convention approach, reliable

dependency management, and support for multiproject builds without having to sac-

rifice the flexibility and descriptiveness of your build.

 In this chapter, we explored how Gradle can be used to deliver in each of the

phases of a deployment pipeline in the context of continuous delivery. Throughout

the book, we’ll pick up on each of the phases by providing practical examples.

 Next, you got a first taste of Gradle’s powerful features in action. You installed the

runtime, wrote a first simple build script, and executed it. By implementing a more

complex build script, you found out how easy it is to define task dependencies using

Gradle’s DSL. Knowing the mechanics of Gradle’s command line and its options is key

to becoming highly productive. Gradle offers a wide variety of command-line switches

for changing runtime behavior, passing properties to your project, and changing the

logging level. We explored how running Gradle can be a huge timesaver if you have to

continuously execute tasks, such as during test-driven development.

 In chapter 3, I’ll show how to build a full-fledged, web-enabled application with

Gradle. Starting out with a simple, standalone Java application, you’ll extend the code

base by adding a web component and use Gradle’s in-container web development sup-

port to efficiently implement the solution. We won’t stop there. I’m going to show

how to enhance your web archive to make it enterprise-ready and make the build

transferable across machines without having to install the Gradle runtime.

http://gradle.org/docs/current/userguide/gradle_daemon.html

48

Building a Gradle
project by example

Chapter 2 introduced Gradle’s feature set and showed how it compared to other

JVM build tools. Some simple examples gave you a first impression of the tool’s

expressive build language. By running your first build script, you saw how easy it is

to become productive on the command line. Now it’s time to strengthen this newly

acquired knowledge by building a real-world Java project.

 When starting a brand-new application, Java doesn’t guide you toward a stan-

dardized project structure. You may ask yourself where to put source, configura-

tion, and library files. What if you want to separate your application code from your

test source files? Gradle provides a build-by-convention approach for certain

domains like Java projects by introducing predefined project layouts with sensible

defaults. Stuck with a legacy application that has a different directory structure? No

problem! Gradle allows for adapting its conventions to your needs.

This chapter covers

■ Building a full-stack Java project with Gradle

■ Practicing efficient web application

development

■ Customizing default conventions to adapt to

custom requirements

■ Using the Gradle wrapper

49Introducing the case study

 In this chapter, you’ll explore the inner workings of Gradle’s standardization para-

digm by building a Java project and learning how to tailor it to nonconventional use

cases. In the next step, you’ll extend your application by a web component and intro-

duce productivity tools for fast development turnarounds. Then we’ll round out this

chapter by looking at the Gradle wrapper, which allows you to create transferable and

reproducible builds without having to install the Gradle runtime.

3.1 Introducing the case study

This section introduces a simple application to illustrate the use of Gradle: a To Do

application. Throughout the book, we’ll apply the content to demonstrate Gradle’s

features in each phase of the build pipeline. The use case starts out as a plain Java

application without a GUI, simply controlled through console input. Over the course

of this chapter, you’ll extend this application by adding components to learn more

advanced concepts.

 The To Do application will act as a vehicle to help you gain a broad knowledge of

Gradle’s capabilities. You’ll learn how to apply Gradle’s standard plugins to bootstrap,

configure, and run your application. By the end of this chapter, you’ll have a basic

understanding of how Gradle works that you can apply to building your own web-

based Java projects with Gradle.

3.1.1 The To Do application

Today’s world is busy. Many of us manage multiple projects simultaneously, both in

our professional and private lives. Often, you may find yourself in situations where you

feel overwhelmed and out of control. The key to staying organized and focused on

priorities is a well-maintained to-do list. Sure, you could always write down your tasks

on a piece of paper, but wouldn’t it be convenient to be able to access your action

items everywhere you go? Access to the internet is almost omnipresent, either through

your mobile phone or publicly available access points. You’re going to build your own

web-based and visually appealing application, as shown in figure 3.1.

3.1.2 Task management use cases

Now that you know your end goal, let’s identify the use cases the application needs to

fulfill. Every task management system consists of an ordered list of action items or

tasks. A task has a title to represent the action needed to complete it. Tasks can be

added to the list and removed from the list, and marked active or completed to indi-

cate their status. The list should also allow for modifying a task’s title in case you want

Browser Internet Data

store

writes

reads

To Do

application

Figure 3.1 The To Do application is accessible through the internet and

manages action items in a data store.

50 CHAPTER 3 Building a Gradle project by example

to make the description more accurate. Changes to a task should automatically get

persisted to a data store.

 To bring order to your list of tasks, you’ll include the option to filter tasks by their

status: active or completed. For now, we’ll stick with this minimal set of features. Fig-

ure 3.2 shows a screenshot of the user interface rendered in a browser.

 Let’s take a step back from the user interface aspect and build the application from

the ground up. In its first version, you’ll lay out its foundation by implementing the

basic functionality controlled through the command line. In the next section, we’re

going to focus on the application’s components and the interactions between them.

3.1.3 Examining the component interaction

We found that a To Do application implements the typical create, read, update, and

delete (CRUD) functionality. For data to be persisted, you need to represent it by a

model. You’ll create a new Java class called ToDoItem, a plain old Java object (POJO)

acting as a model. To keep the first iteration of the solution as simple as possible, we

won’t introduce a traditional data store like a database to store the model data.

Instead, you’ll keep it in memory, which is easy to implement. The class implementing

the persistence contract is called InMemoryToDoRepository. The drawback is that you

can’t persist the data after shutting down the application. Later in the book, we’ll pick

up this idea and show how to write a better implementation for it.

 Every standalone Java program is required to implement a main class, the applica-

tion’s entry point. Your main class will be called ToDoApp and will run until the user

decides to exit the program. You’ll present users with a menu of commands through

which they can manage their to-do list by typing in a letter triggering a specific action.

Each action command is mapped to an enum called CommandLineInput. The class

CommandLineInputHandler represents the glue between user interaction and command

Add new item

Mark item done

Number of

active items

Status toggle Remove all

completed items

Remove item

from list

Edit an

item's title

Figure 3.2 Web-based user interface of To Do application and its actions

51Introducing the case study

execution. Figure 3.3 illustrates the object interaction arranged in a time sequence for

the use case of listing all available tasks.

 Now you’re ready to implement the application’s functionality. In the next section,

we’ll dive right into the code.

3.1.4 Building the application’s functionality

In the last section, we identified the classes, their functions, and the interaction

between them. Now it’s time to fill them with life. First, let’s look at the model of a to-

do action item.

THE TO DO MODEL CLASS

Each instance of the ToDoItem class represents an action item in your to-do list. The

attribute id defines the item’s unique identity, enabling you to store it in the in-memory

User

<<actor>>

CommandLine

InputHandler
ToDoApp

CommandLine

Input

InMemoryToDo

Repository

ToDoItem

<<model>>

enter key for

viewing all to

do items

printOptions()

Prints menu of commands on console

User picks menu command by typing key "a"

Reads input key from command line

Translates read input key to "find all" action

Initiates action of finding all available to-do items

Queries in-memory persistence data store

Creates data representation objects for to-do items

Prints all to-do items on console

2
1

1

2

3

4

5

6

7

8

readInput()

processInput

(mappedInput)

mappedInput
mappedInput

toDoItems

3

mapInput(input)

4

printAllToDoItems()

8

findAll()

6

create

7

5

Figure 3.3 Listing all available tasks represented as a sequence diagram

52 CHAPTER 3 Building a Gradle project by example

data structure and read it again if you want to display it in the user interface. Addition-

ally, the model class exposes the fields name and completed. For brevity, the getter and

setter methods as well as the compareTo method are excluded from the snippet:

package com.manning.gia.todo.model;

public class ToDoItem implements Comparable<ToDoItem> {
 private Long id;
 private String name;
 private boolean completed;

 (...)
}

Now let’s look at the repository implementation for reading and writing the model.

IN-MEMORY PERSISTENCE OF THE MODEL

Storing data in memory is convenient and simplifies the implementation. Later in the

book, you may want to provide more sophisticated implementations like database or

file persistence. To be able to swap out the implementation, you’ll create an interface,

the ToDoRepository, as shown in the following listing.

package com.manning.gia.todo.repository;

import com.manning.gia.todo.model.ToDoItem;
import java.util.Collection;

public interface ToDoRepository {
 List<ToDoItem> findAll();
 ToDoItem findById(Long id);
 Long insert(ToDoItem toDoItem);
 void update(ToDoItem toDoItem);
 void delete(ToDoItem toDoItem);
}

The interface declares all the CRUD operations you’d expect. You can find all exist-

ing to-do items, look up a specific one by ID, insert new action items, and update or

delete them. Next, you’ll create a scalable and thread-safe implementation of this

interface. The next listing shows the class InMemoryToDoRepository, which stores to-

do items in an instance of a ConcurrentHashMap.

package com.manning.gia.todo.repository;

import com.manning.gia.todo.model.ToDoItem;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.atomic.AtomicLong;

Listing 3.1 The repository interface

Listing 3.2 In-memory persistence of to-do items

53Introducing the case study

public class InMemoryToDoRepository implements ToDoRepository {
 private AtomicLong currentId = new AtomicLong();
 private ConcurrentMap<Long, ToDoItem> toDos
 ➥ = new ConcurrentHashMap<Long, ToDoItem>();

 @Override
 public List<ToDoItem> findAll() {
 List<ToDoItem> toDoItems = new ArrayList<ToDoItem>(toDos.values());
 Collections.sort(toDoItems);
 return toDoItems;
 }

 @Override
 public ToDoItem findById(Long id) {
 return toDos.get(id);
 }

 @Override
 public Long insert(ToDoItem toDoItem) {
 Long id = currentId.incrementAndGet();
 toDoItem.setId(id);
 toDos.putIfAbsent(id, toDoItem);
 return id;
 }

 @Override
 public void update(ToDoItem toDoItem) {
 toDos.replace(toDoItem.getId(), toDoItem);
 }

 @Override
 public void delete(ToDoItem toDoItem) {
 toDos.remove(toDoItem.getId());
 }
}

So far, you’ve seen the data structure of a to-do item and an in-memory implementa-

tion for storing and retrieving the data. To be able to bootstrap the Java program,

you’ll need to create a main class.

THE APPLICATION’S ENTRY POINT

The class ToDoApp prints the application’s options on the console, reads the user’s

input from the prompt, translates the one-letter input into a command object, and

handles it accordingly, as shown in the next listing.

package com.manning.gia.todo;

import com.manning.gia.todo.utils.CommandLineInput;
import com.manning.gia.todo.utils.CommandLineInputHandler;

public class ToDoApp {
 public static final char DEFAULT_INPUT = '\u0000';

 public static void main(String args[]) {
 CommandLineInputHandler commandLineInputHandler = new

Listing 3.3 Implementing the main class

Thread-safe
provider for
identifier
sequence
number

Efficient in-memory
data structure for
storing to-do items

Sorting to-do
items by identifier

Only puts to-do item into
Map if it doesn’t exist yet

Replaces to-do item
if existent in Map

Removes to-do item
if existent in Map

54 CHAPTER 3 Building a Gradle project by example

 ➥ CommandLineInputHandler();
 char command = DEFAULT_INPUT;

 while(CommandLineInput.EXIT.getShortCmd() != command) {
 commandLineInputHandler.printOptions();
 String input = commandLineInputHandler.readInput();
 char[] inputChars = input.length() == 1 ? input.toCharArray() : new
 ➥ char[] { DEFAULT_INPUT };
 command = inputChars[0];
 CommandLineInput commandLineInput =
 ➥ CommandLineInput.getCommandLineInputForInput(command);
 commandLineInputHandler.processInput(commandLineInput);
 }
 }
}

So far, we’ve discussed the components of the application and their interactions in the

context of a specific use case: finding all to-do items of a user. Listing 3.3 should give

you a rough idea of the components responsibilities and how they work internally.

Don’t worry if you don’t understand every little implementation detail of the class

definitions presented here. What’s more important is the automation of the project.

We’ll look at specific concerns like setting up the project with Gradle, compiling

the source code, assembling the JAR file, and running the application in the rest of the

chapter. It’s time for Gradle to hit the stage.

3.2 Building a Java project

In the last section, we identified the Java classes required to write a standalone To Do

application. To assemble an executable program, the source code needs to be com-

piled and the classes need to be packaged into a JAR file. The Java Development Kit

(JDK) provides development tools like javac and jar that help with implementing

these tasks. Unless you’re a masochist, you don’t want to run these tasks manually

each and every time your source code changes.

 Gradle plugins act as enablers to automate these tasks. A plugin extends your proj-

ect by introducing domain-specific conventions and tasks with sensible defaults. One

of the plugins that Gradle ships with is the Java plugin. The Java plugin goes far

beyond the basic functionality of source code compilation and packaging. It estab-

lishes a standard layout for your project and makes sure that tasks are executed in the

correct order so they make sense in the context of a Java project. It’s time to create a

build script for your application and apply the Java plugin.

3.2.1 Using the Java plugin

In chapter 1, you learned that every Gradle project starts with the creation of the build

script named build.gradle. Create the file and tell your project to use the Java plugin

like this:

apply plugin: 'java'

Application
runs as long
as user enters
exit command

Mapping
between
one-letter
prompt
input and a
command
object

Executes
CRUD

command

55Building a Java project

One line of code is enough to build your Java code, but how does Gradle know where

to find your source files? One of the conventions the Java plugin introduces is the

location of the source code. By default, the plugin searches for production source

code in the directory src/main/java. You’ll take all the classes of your To Do applica-

tion and put them under the appropriate directory.

When creating the source files, keep in mind that the package you used for the

classes, com.manning.gia.todo, directly translates into subdirectories under the root

source directory. After creating the build script and moving your source code into the

correct location, your project structure should look like this:

.
├── build.gradle
└── src
 └── main
 └── java
 └── com
 └── manning
 └── gia
 └── todo
 ├── ToDoApp.java
 ├── model
 │ └── ToDoItem.java
 ├── repository
 │ ├── InMemoryToDoRepository.java
 │ └── ToDoRepository.java
 └── utils
 ├── CommandLineInput.java
 └── CommandLineInputHandler.java

BUILDING THE PROJECT

You’re ready to build the project. One of the tasks the Java plugin adds to your project

is named build. The build task compiles your code, runs your tests, and assembles

the JAR file, all in the correct order. Running the command gradle build should give

you an output similar to this:

Automatic project generation

Wouldn’t it be great if you didn’t have to create the source directories manually?

Maven has a concept called project archetypes, a plugin to generate a project struc-

ture from an existing template. Unfortunately, at the time of writing this functionality

hasn’t become a Gradle core feature. The plugin Gradle Templates created by the

Gradle community proposes a solution to this issue. It’s available at https://

github.com/townsfolk/gradle-templates. A first attempt at initializing a Gradle project

is automatically made by the build setup plugin, which you can use even without a

build script. This plugin allows for generating the project file (and other related files

you’ll learn about later). To generate the Gradle build script, execute gradle setup-
Build from the command line.

Gradle build script on
root level of project

Default directory
for production Java
source code

https://github.com/townsfolk/gradle-templates
https://github.com/townsfolk/gradle-templates

56 CHAPTER 3 Building a Gradle project by example

$ gradle build
:compileJava
:processResources UP-TO-DATE
:classes
:jar
:assemble
:compileTestJava UP-TO-DATE
:processTestResources UP-TO-DATE
:testClasses UP-TO-DATE
:test
:check
:build

Each line of the output represents an executed task provided by the Java plugin. You

may notice that some of the tasks are marked with the message UP-TO-DATE. That

means that the task was skipped. Gradle’s incremental build support automatically

identified that no work needed to be done. Especially in large enterprise projects, this

feature proves to be a real timesaver. In chapter 4 you’ll learn how to apply this con-

cept to your own tasks. In the command-line output, you can see concrete examples

of skipped tasks: compileTestJava and testClasses. As you provide any unit tests in

the default directory src/test/java, Gradle happily moves on. If you want to learn

how to write tests for your application and integrate them into the build, see chapter 7.

Here’s the project structure after executing the build:

.
├── build
│ ├── classes
│ │ └── main
│ │ └── com
│ │ └── manning
│ │ └── gia
│ │ └── todo
│ │ ├── ToDoApp.class
│ │ ├── model
│ │ │ └── ToDoItem.class
│ │ ├── repository
│ │ │ ├── InMemoryToDoRepository.class
│ │ │ └── ToDoRepository.class
│ │ └── utils
│ │ ├── CommandLineInput.class
│ │ ├── CommandLineInputHandler$1.class
│ │ └── CommandLineInputHandler.class
│ ├── dependency-cache
│ ├── libs
│ │ └── todo-app.jar
│ ├── reports
│ │ └── tests
│ │ ├── base-style.css
│ │ ├── css3-pie-1.0beta3.htc
│ │ ├── index.html
│ │ ├── report.js
│ │ └── style.css

Compiles Java production
source code

Assembles JAR file

Compiles Java
test source files

Runs unit tests

Default directory containing
compiled Java class files

Assembled JAR file containing Java class
files and manifest; name of file is
derived from project’s directory name

57Building a Java project

│ ├── test-results
│ └── tmp
│ └── jar
│ └── MANIFEST.MF
├── build.gradle
└── src

On the root level of your project, you’ll now also find a directory named build, which

contains all output of the build run, including class files, test reports, the assembled

JAR file, and temporary files like a manifest needed for the archive. If you’ve previ-

ously used the build tool Maven, which uses the standard output directory target, the

structure should look familiar. The name of the build output directory is a configu-

rable standard property common to all Gradle builds. You’ve seen how effortless it is

to build a Java project by convention without any additional configuration from your

side. The JAR file was created under build/libs and is ready for execution. It’s impor-

tant to understand that the name of the JAR file is derived from the project name. As

long as you don’t reconfigure it, the directory name of your project is used, which in

this case is todo-app. Let’s see the To Do application in action.

RUNNING THE PROJECT

Running a Java program is easy. For now, you’ll just use the JDK’s java command from

the root directory of your project:

$ java -cp build/classes/main com.manning.gia.todo.ToDoApp

--- To Do Application ---
Please make a choice:
(a)ll items
(f)ind a specific item
(i)nsert a new item
(u)pdate an existing item
(d)elete an existing item
(e)xit
>

The Java program starts up, prints a list of all available to-do actions, and awaits your

input from the command prompt.

That’s it—you effortlessly implemented a Java application and built it with Gradle. All

it took was a one-liner in your build script as long as you stuck to the standard conven-

tions. Next, we’ll look at how to customize the build-by-convention standards.

Java standalone application support

Gradle can simplify building a standalone Java application even further. Another stan-

dard Gradle extension worth mentioning is the application plugin. The plugin pro-

vides tasks for simplifying the act of running and bundling an application.

Temporary manifest
file for use in JAR file

58 CHAPTER 3 Building a Gradle project by example

3.2.2 Customizing your project

The Java plugin is a small opinionated framework. It assumes sensible default values

for many aspects of your project, like its layout. If your view of the world is different,

Gradle gives you the option of customizing the conventions. How do you know

what’s configurable? A good place to start is Gradle’s Build Language Reference,

available at http://www.gradle.org/docs/current/dsl/. Remember the command-line

option properties from chapter 2? Running gradle properties gives you a list of

configurable standard and plugin properties, plus their default values. You’ll custom-

ize the project by extending the initial build script.

MODIFYING PROJECT AND PLUGIN PROPERTIES

In the following example, you’ll specify a version number for your project and indi-

cate the Java source compatibility. Previously, you ran the To Do application using the

java command. You told the Java runtime where to find the classes by assigning the

build output directory to the classpath command-line option via -cp build/classes/

main. To be able to start the application from the JAR file, the manifest MANIFEST.MF

needs to contain the header Main-Class. The following listing demonstrates how

to configure the default values in the build script and add a header attribute to the

JAR manifest.

version = 0.1
sourceCompatibility = 1.6

jar {
 manifest {
 attributes 'Main-Class': 'com.manning.gia.todo.ToDoApp'
 }
}

After assembling the JAR file, you’ll notice that the version number has been added to

the JAR filename. Instead of todo-app.jar, it reads todo-app-0.1.jar. Now that the

generated JAR file contains the main class header, you can run the application with

java –jar build/libs/todo-app-0.1.jar. Next, we’ll look at how to retrofit the proj-

ect structure to a legacy layout.

RETROFITTING LEGACY PROJECTS

Rarely do enterprises start new software projects with a clean slate. All too often, you’ll

have to integrate with a legacy system, migrate the technology stack of an existing

project, or adhere to internal standards or limitations. A build tool has to be flexible

enough to adapt to external constraints by configuring the default settings.

 In this section we’ll explore examples that demonstrate the customizability of the

To Do application. Let’s assume you started the project with a different directory layout.

Instead of putting source code files into src/main/java, you chose to use the direc-

tory src. The same concept applies if you want to change the default test source

directory. Additionally, you’d like to let Gradle render its build output into the directory

Listing 3.4 Changing properties and adding a JAR header

Identifies project’s
version through a
number scheme

Sets Java version compilation
compatibility to 1.6

Adds Main-Class
header to JAR
file’s manifest

http://www.gradle.org/docs/current/dsl/

59Building a Java project

out instead of the standard value build. The next listing shows how to adapt your

build to a custom project layout.

sourceSets {
 main {
 java {
 srcDirs = ['src']
 }
 }

 test {
 java {
 srcDirs = ['test']
 }
 }
}

buildDir = 'out'

The key to customizing a build is knowledge of the underlying properties and DSL ele-

ments. Next, we’ll look at how to use functionality from external libraries.

3.2.3 Configuring and using external dependencies

Let’s think back to the main method in the class ToDoApp. You wrote some code to

read the user’s input from the console and translate the first character into a to-do

command. To do so, you needed to make sure that the entered input string had a

length of only one digit. Otherwise, you’d assign the Unicode null character:

String input = commandLineInputHandler.readInput();
char[] inputChars = input.length() == 1 ? input.toCharArray() : new

➥ char[] { DEFAULT_INPUT };
command = inputChars[0];

I bet you can improve on this implementation by reusing a library that wraps this

logic. The perfect match is the class CharUtils from the Apache Commons Lang

library. It provides a method called toChar that converts a String to a char by using

just the first character, or a default character if the string’s value is empty. The follow-

ing code snippet shows the improved version of your input parsing code:

import org.apache.commons.lang3.CharUtils;

String input = commandLineInputHandler.readInput();
command = CharUtils.toChar(input, DEFAULT_INPUT);

So how do you tell Gradle to reference the Apache Commons Lang library? We’ll

look at two DSL configuration elements: repositories and dependencies.

DEFINING THE REPOSITORY

In the Java world, dependencies are distributed and used in the form of JAR files.

Many libraries are available in a repository, such as a file system or central server.

Gradle requires you to define at least one repository to use a dependency. For your

Listing 3.5 Changing the project default layout

Replaces conventional source
code directory with list of
different directories

Replaces conventional test
source code directory with
list of different directories

Changes project output
property to directory out

60 CHAPTER 3 Building a Gradle project by example

purposes, you’re going to use the publicly available, internet-accessible repository

Maven Central:

repositories {
 mavenCentral()
}

With a repository in place, you’re ready to declare the library. Let’s look at the defini-

tion of the dependency itself.

DEFINING THE DEPENDENCY

A dependency is defined through a group identifier, a name, and a specific version.

You’ll use version 3.1 of the library, as shown in this code snippet:

dependencies {
 compile group: 'org.apache.commons', name: 'commons-lang3', version: '3.1'
}

In Gradle, dependencies are grouped by configurations. One of the configurations

that the Java plugin introduces is compile. You can probably tell by the configuration’s

name that it’s used for dependencies needed for compiling source code.

RESOLVING THE DEPENDENCY

Gradle automatically detects new dependencies in your project. If the dependency

hasn’t been resolved successfully, it downloads it with the next task invocation that

requires it to work correctly—in this case, task compileJava:

$ gradle build
:compileJava
Download http://repo1.maven.org/maven2/org/apache/commons/

➥ commons-lang3/3.1/commons-lang3-3.1.pom
Download http://repo1.maven.org/maven2/org/apache/commons/

➥ commons-parent/22/commons-parent-22.pom
Download http://repo1.maven.org/maven2/org/apache/apache/9/

➥ apache-9.pom
Download http://repo1.maven.org/maven2/org/apache/commons/

➥ commons-lang3/3.1/commons-lang3-3.1.jar
:processResources UP-TO-DATE
...
:build

Chapter 5 will give a deeper coverage of the topic of dependency management. I

know that the To Do application in its current form doesn’t knock your socks off. It’s

time to modernize it by adding a visually attractive user interface.

How to find a dependency

Finding out detailed information about a dependency on Maven Central is straight-

forward. The repository provides you with an easy-to-use search interface at http://

search.maven.org/.

Shortcut notation for configuring Maven
Central 2 repository accessible under
http://repo1.maven.org/maven2

Metadata
describing library
and artifact it
depends on

Binary artifact: JAR file containing
Apache Commons Lang classes

http://repo1.maven.org/maven2
http://search.maven.org/
http://search.maven.org/

61Web development with Gradle

3.3 Web development with Gradle

In Java, server-side web components of the Enterprise Edition (Java EE) provide the

dynamic extension capabilities for running your application within a web container or

application server. As the name Servlet may already indicate, it serves a client request and

constructs the response. It acts as the controller component in a Model-View-Controller

(MVC) architecture. The response of a Servlet is rendered by the view component—

the Java Server Page (JSP). Figure 3.4 illustrates the MVC architecture pattern in the

context of a Java web application.

 A WAR (web application archive) file is used to bundle web components, compiled

classes, and other resource files like deployment descriptors, HTML, JavaScript, and

CSS files. Together they form a web application. To run a Java web application, the

WAR file needs to be deployed to the server environment, a web container.

 Gradle provides out-of-the-box plugins for assembling WAR files and deploying web

applications to a local Servlet container. Before we look at how to apply and configure

these plugins, you’ll need to turn your standalone Java application into a web applica-

tion. We focus next on the web components we’re going to introduce and how they

interact with each other.

3.3.1 Adding web components

The Java enterprise landscape is dominated by a wide range of web frameworks, such

as Spring MVC and Tapestry. Web frameworks are designed to abstract the standard

web components and reduce boilerplate code. Despite these benefits, web frameworks

can introduce a steep learning curve as they introduce new concepts and APIs. To

keep the example as simple and understandable as possible, we’ll stick to the standard

Java enterprise web components.

 Before jumping into the code, let’s see how adding web components changes the

interaction between the existing classes from the previous section. The Servlet class

you’re going to create is called ToDoServlet. It’s responsible for accepting HTTP

requests, executing a CRUD operation mapped to a URL endpoint, and forwarding the

request to a JSP. To present the user with a fluid and comfortable experience, you’ll

implement the to-do list as a single-page application. This means you’ll only have to

Controller

Servlet

Model

Java Bean

View

JSP

Web container

HTTP request

HTTP response

creates

forwards

renders

Figure 3.4 Java EE provides

components for building a web

application based on the MVC

architecture pattern.

62 CHAPTER 3 Building a Gradle project by example

write one JSP, which you’ll name todo-list.jsp. The page knows how to dynamically

render the list of to-do items and provides UI elements like buttons and links for initi-

ating CRUD operations. Figure 3.5 shows the flow through your new system for the use

case of retrieving and rendering all to-do items.

 As you can see in the figure, you could reuse the class ToDoItem to represent the

model and the class InMemoryToDoRepository to store the data. Both classes work

seamlessly with the controller and view components. Let’s look at the inner workings

of the controller component.

THE CONTROLLER WEB COMPONENT

To make matters simple and centralized, you’ll write a single entry point for all URL

endpoints you want to expose to the client. The following code snippet shows the

most important parts of your controller web component, the class ToDoServlet:

package com.manning.gia.todo.web;

import com.manning.gia.todo.model.ToDoItem;
import com.manning.gia.todo.repository.InMemoryToDoRepository;
import com.manning.gia.todo.repository.ToDoRepository;
import javax.servlet.*;
import java.io.IOException;
import java.util.List;

render view

5

User

<<actor>>

InMemoryToDo

Repository

ToDoServlet

<<controller>>

ToDoItem

<<model>>

todo-list.jsp

<<view>>

view all to

do items

User requests browser URL to view all to-do items

HTTP request is accepted and data store is queried

Creates data representation objects for to-do items

Sets to-do items as request attributes and forwards to view

Renders provided to-do items in HTML page

1

1

2

3

4

5

findAll()

toDoItems

2

create

3

forward request

4

Figure 3.5 Finding all to-do items use case: the user issues an HTTP request through the browser,

which is served by a Servlet and renders the result through a JSP.

63Web development with Gradle

public class ToDoServlet extends HttpServlet {
 private ToDoRepository toDoRepository = new InMemoryToDoRepository();

 @Override
 protected void service(HttpServletRequest request, HttpServletResponse
 ➥ response) throws ServletException, IOException {
 String servletPath = request.getServletPath();
 String view = processRequest(servletPath, request);
 RequestDispatcher dispatcher = request.getRequestDispatcher(view);
 dispatcher.forward(request, response);
 }

 private String processRequest(String servletPath, HttpServletRequest
 ➥ request) {
 if(servletPath.equals("/all")) {
 List<ToDoItem> toDoItems = toDoRepository.findAll();
 request.setAttribute("toDoItems", toDoItems);
 return "/jsp/todo-list.jsp";
 }
 else if(servletPath.equals("/delete")) {
 (...)
 }

 (...)

 return "/all";
 }
}

For each of the incoming requests, you get the Servlet path, handle the request in the

method processRequest based on the determined CRUD operation, and forward it to

the JSP todo-list.jsp using an instance of javax.servlet.RequestDispatcher.

 That’s it; you converted your task management program into a web application. In

the examples I only touched on the most important parts of the code. For a deeper

understanding, I encourage you to browse the full source code. Next, we’ll bring Gra-

dle into play.

3.3.2 Using the War and Jetty plugins

Gradle provides extensive support for building and running web applications. In this

section we’ll look at two plugins for web application development: War and Jetty. The

War plugin extends the Java plugin by adding conventions for web application devel-

opment and support for assembling WAR files. Running a web application on your

local machine should be easy, enable rapid application development (RAD), and pro-

vide fast startup times. Optimally, it shouldn’t require you to install a web container

runtime environment. Jetty is a popular, lightweight, open source web container sup-

porting all of these features. It comes with an embedded implementation by adding

an HTTP module to your application. Gradle’s Jetty plugin extends the War plugin,

provides tasks for deploying a web application to the embedded container, and runs

your application.

Retrieves
path of

requested
URL; path

starts with
/ character

Forwards request
from Servlet to JSP

Implements CRUD
operations for each
mapped URL

In case incoming request URL
doesn’t match any handling,
redirect to /all URL

64 CHAPTER 3 Building a Gradle project by example

You already know the drill from the last section. First, you’ll apply the plugins and use

the default conventions, and then you’ll customize them. Let’s focus on the War

plugin first.

THE WAR PLUGIN

I already mentioned that the War plugin extends the Java plugin. In practice, this

means that you don’t have to apply the Java plugin anymore in your build script. It’s

automatically brought in by the War plugin. Note that even if you applied the Java

plugin as well, there would be no side effect on your project. Applying plugins is an

idempotent operation, and therefore is only executed once for a specific plugin.

When creating your build.gradle file, use the plugin like this:

apply plugin: 'war'

What exactly does that mean to your project? In addition to the conventions provided

by the Java plugin, your project becomes aware of a source directory for web applica-

tion files and knows how to assemble a WAR file instead of a JAR file. The default con-

vention for web application sources is the directory src/main/webapp. With all the

web resource files in the right location, your project layout should look like this:

.
├── build.gradle
└── src
 └── main
 ├── java
 │ └── com
 │ └── manning
 │ └── gia
 │ └── todo
 │ ├── model
 │ │ └── ToDoItem.java
 │ ├── repository
 │ │ ├── InMemoryToDoRepository.java
 │ │ └── ToDoRepository.java
 │ └── web
 │ └── ToDoServlet.java
 └── webapp
 ├── WEB-INF
 │ └── web.xml
 ├── css
 │ ├── base.css

Alternative embedded container plugins

The Jetty plugin works great for local web application development. However, you may

use a different Servlet container in your production environment. To provide maximum

compatibility between runtime environments early on in the software development

lifecycle, look for alternative embedded container implementations. A viable solution

that works very similarly to Gradle’s standard Jetty extension is the third-party Tom-

cat plugin.

Default
directory
for web
application
source files

Web application descriptor file

Directory storing style sheets that
describe how to display HTML elements

65Web development with Gradle

 │ └── bg.png
 └── jsp
 ├── index.jsp
 └── todo-list.jsp

You implemented your web application with the help of classes that aren’t part of the

Java Standard Edition, such javax.servlet.HttpServlet. Before you run the build,

you’ll need to make sure that you declare those external dependencies. The War

plugin introduces two new dependency configurations. The configuration you’ll use

for the Servlet dependency is providedCompile. It’s used for dependencies that are

required for compilation but provided by the runtime environment. The runtime

environment in this case is Jetty. As a consequence, dependencies marked provided

aren’t going to be packaged with the WAR file. Runtime dependencies like the JSTL

library aren’t needed for the compilation process, but are needed at runtime. They’ll

become part of the WAR file. The following dependencies closure declares the exter-

nal libraries you need for your application:

dependencies {
 providedCompile 'javax.servlet:servlet-api:2.5'
 runtime 'javax.servlet:jstl:1.1.2'
}

BUILDING THE PROJECT

Building a web application in Gradle is as straightforward as building a standalone

Java application. The assembled WAR file can be found in the directory build/libs

after running the command gradle build. By changing the nature of the project

from a standalone application to a web application, the task jar was replaced by the

task war, as shown in the following output:

$ gradle build
:compileJava
:processResources UP-TO-DATE
:classes
:war
:assemble
:compileTestJava UP-TO-DATE
:processTestResources UP-TO-DATE
:testClasses UP-TO-DATE
:test
:check
:build

The War plugin makes sure that the assembled WAR file adheres to the standard struc-

ture defined by the Java EE specification. The war task copies the contents of the

default web application source directory src/main/webapp to the root of the WAR file

without modifying the structure. Compiled classes end up in the directory WEB-INF/

classes, and runtime libraries, defined through the dependencies closure, get put in

WEB-INF/lib. The following directory structure shows the contents of the assembled

WAR file after running jar tf todo-webapp-0.1.war:

Directory holding dynamic
scripting view components
in form of JSPs

Task provided by War plugin
for assembling WAR file

66 CHAPTER 3 Building a Gradle project by example

.
├── META-INF
│ └── MANIFEST.MF
├── WEB-INF
│ ├── classes
│ │ └── com
│ │ └── manning
│ │ └── gia
│ │ └── todo
│ │ ├── model
│ │ │ └── ToDoItem.class
│ │ ├── repository
│ │ │ ├── InMemoryToDoRepository.class
│ │ │ └── ToDoRepository.class
│ │ └── web
│ │ └── ToDoServlet.class
│ ├── lib
│ │ └── jstl-1.1.2.jar
│ └── web.xml
├── css
│ ├── base.css
│ └── bg.png
└── jsp
 ├── index.jsp
 └── todo-list.jsp

By default, the WAR filename is derived from the project’s directory name. Even if

your project doesn’t adhere to Gradle’s standard conventions, the plugin can be used

to build a WAR file. Let’s look at some customization options.

CUSTOMIZING THE WAR PLUGIN

You’ve seen how easy it is to adapt a Java project to custom project structures. The

same holds true for unconventional web project layouts. In the following example,

we’re going to assume that all of your static files sit in the directory static, and that

all of your web application content resides under the directory webfiles:

.
├── build.gradle
├── src
│ └── main
│ └── java
│ └── ...
├── static
│ └── css
│ ├── base.css
│ └── bg.png
└── webfiles
 ├── WEB-INF
 │ └── web.xml
 └── jsp
 ├── index.jsp
 └── todo-list.jsp

67Web development with Gradle

The following code snippet shows how to configure the convention properties. The

War plugin exposes the convention property webAppDirName. The default value src/

main/webapp is easily switched to webfiles by assigning a new value. Directories can

be selectively added to the WAR file by invoking the from method, as follows:

webAppDirName = 'webfiles'

war {
 from 'static'
}

The previous example only showed an excerpt of the War plugin’s configuration

options. You can easily include other external JAR files, use a web deployment descrip-

tor from a nonstandard directory, or add another file set to the WEB-INF directory. If

you’re looking for a configuration parameter, the best place to check is the War

plugin DSL guide.

 You’ve seen how to build the WAR file from a web project with a standard structure

or customized directory layout. Now it’s time to deploy the file to a Servlet container.

In the next section, you’ll fire up Jetty to run the application on your local develop-

ment machine.

RUNNING IN AN EMBEDDED WEB CONTAINER

An embedded Servlet container doesn’t know anything about your application until

you provide the exact classpath and relevant source directories of your web applica-

tion. Usually, you’d do that programmatically. Internally, the Jetty plugin does all this

work for you. As the War plugin exposes all this information, it can be accessed at run-

time by the Jetty plugin. This is a typical example of a plugin using another plugin’s

configuration through the Gradle API. In your build script, use the plugin like this:

apply plugin: 'jetty'

The task you’re going to use to run the web application is jettyRun. It’ll start the Jetty

container without even having to create a WAR file. The output of running the task on

the command line should look similar to this:

$ gradle jettyRun
:compileJava
:processResources UP-TO-DATE
:classes
> Building > :jettyRun > Running at http://localhost:8080/todo-webapp-jetty

On the last line of the output, the plugin gives you the URL that Jetty listens to for

incoming requests. Open your favorite browser and enter the URL. Finally, you can

see the To Do web application in action. Gradle will leave the application running

until you stop it by pressing Ctrl + C. How did Jetty know what port and context to use

for running the application? Again, it’s conventions. The default port of a web appli-

cation run by the Jetty plugin is 8080, and the context path todo-webapp-jetty is

derived from your project name. Of course, all of this is configurable.

Changes web application
source directory

Adds directories css and jsp
to root of WAR file archive

68 CHAPTER 3 Building a Gradle project by example

CUSTOMIZING THE JETTY PLUGIN

Let’s assume you’re not happy with the default values the Jetty plugin provides.

Another application is already running on port 8080, and you got tired of typing in

the long context path. Just provide the following configuration:

jettyRun {
 httpPort = 9090
 contextPath = 'todo'
}

Great, you achieved what you wanted. Starting the application with this configuration

will expose the URL http://localhost:9090/todo. There are many more options for

configuring the Jetty plugin. A great place to start is with the API documentation of

the plugin. This will help you understand all available configuration options.

3.4 Gradle wrapper

You put together a prototype of a task management web application. After you show it

to your coworker, Mike, he says he wants to join forces and bring the application to

the next level by adding more advanced features. The code has been committed to a

version control system (VCS), so he can go ahead, check out the code, and get started

working on it.

 Mike has never worked with the build tool Gradle, so he asks you how to install

the runtime on his machine and which version to use. Because he didn’t go through

the motions of initially setting up Gradle, he’s also concerned about potential differ-

ences between setting up Gradle on his Windows machine versus installing it on a

Mac. From experience with other build tools, Mike is painfully aware that picking the

wrong version of the build tool distribution or the runtime environment may have a

detrimental effect on the outcome of the build. All too often, he’s seen that a build

completes successfully on his machine but fails on another for no apparent reason.

After spending hours troubleshooting, he usually discovers that the cause was an

incompatible version of the runtime.

 Gradle provides a very convenient and practical solution to this problem: the Gra-

dle wrapper. The wrapper is a core feature and enables a machine to run a Gradle

build script without having to install the runtime. It also ensures that the build script is

run with a specific version of Gradle. It does so by automatically downloading the Gra-

dle runtime from a central location, unpacking it to your local file system, and using it

Rapid application development

Having to restart the container for every single change you make to your application

code is cumbersome and time-consuming. The Jetty plugin allows you to change

static resources and JSP files on the fly without having to restart the container. Addi-

tionally, bytecode swap technologies like JRebel can be configured to perform hot

deployment for class file changes.

http://localhost:9090/todo

69Gradle wrapper

for the build. The ultimate goal is to create reliable and reproducible builds indepen-

dent of the operating system, system setup, or installed Gradle version.

Let’s look at how to set up the wrapper for Mike and any other developer who wants to

join the team.

3.4.1 Setting up the wrapper

To set up the wrapper for your project, you’ll need to do two things: create a wrapper

task and execute the task to generate the wrapper files (figure 3.6).

 To enable your project to download the zipped Gradle runtime distribution,

define a task of type Wrapper and specify the Gradle version you want to use through

the property gradleVersion:

task wrapper(type: Wrapper) {
 gradleVersion = '1.7'
}

It’s not required to name the task wrapper—any name will do. However, wrapper is

used throughout the Gradle online documentation and serves as a helpful conven-

tion. Execute the task:

$ gradle wrapper
:wrapper

When to use the wrapper

Using the wrapper is considered best practice and should be mandatory for every Gra-

dle project. Gradle scripts backed by the wrapper are perfectly prepared to run as part

of automated release processes like continuous integration and delivery.

build.gradle

1

generates

task wrapper(type: Wrapper) {

gradleVersion = '1.7'

}

Adding the wrapper task

to the build script

Shell Project

2
$ gradle wrapper

:wrapper

BUILD SUCCESSFUL

Generate the wrapper files

by executing the wrapper task
wrapper

files

Figure 3.6 Set up the wrapper in two easy steps: add the wrapper task and execute it.

70 CHAPTER 3 Building a Gradle project by example

As a result, you’ll find the following wrapper files alongside your build script:

.
├── build.gradle
├── gradle
│ └── wrapper
│ ├── gradle-wrapper.jar
│ └── gradle-wrapper.properties
├── gradlew
└── gradlew.bat

Keep in mind that you’ll only need to run gradle wrapper on your project once. From

that point on, you can use the wrapper’s script to execute your build. The downloaded

wrapper files are supposed to be checked into version control. For documentation rea-

sons it’s helpful to also keep the task in your project. It’ll help you to upgrade your wrap-

per version later by changing the gradleVersion and rerunning the wrapper task. Instead

of creating the wrapper task manually and executing it to download the relevant files, you

can use the build setup plugin mentioned earlier. Executing the command gradle

wrapper will generate the wrapper files with the current version of your Gradle runtime:

$ gradle wrapper
:wrapper

Next you’ll use the generated wrapper scripts to bootstrap the Gradle script.

3.4.2 Using the wrapper

As part of the wrapper distribution, a command execution script is provided. For

*nix systems, this is the shell script gradlew; for Windows operating systems, it’s

gradlew.bat. You’ll use one of these scripts to run your build in the same way as you

would with the installed Gradle runtime. Figure 3.7 illustrates what happens when you

use the wrapper script to execute a task.

 Let’s get back to our friend Mike. He checked out the application code from the

VCS. Included in the source code tree of the project, he’ll find the wrapper files. As

Mike develops his code on a Windows box, he’ll need to run the wrapper batch file to

execute a task. The following console output is produced when he fires up the local

Jetty container to run the application:

> gradlew.bat jettyRun
Downloading http://services.gradle.org/distributions/gradle-1.7-bin.zip
...
Unzipping C:\Documents and Settings\Mike\.gradle\wrapper\dists\gradle-1.7-

➥ bin\35oej0jnbfh6of4dd05531edaj\gradle-1.7-bin.zip to C:\Documents and

➥ Settings\Mike\.gradle\wrapper\dists\gradle-1.7-

➥ bin\35oej0jnbfh6of4dd05531edaj
Set executable permissions for: C:\Documents and

➥ Settings\Mike\.gradle\wrapper\dists\gradle-1.7-

➥ bin\35oej0jnbfh6of4dd05531edaj\gradle-1.7\bin\gradlew.bat
:compileJava
:processResources UP-TO-DATE
:classes
> Building > :jettyRun > Running at http://localhost:9090/todo

Gradle wrapper
microlibrary contains
logic to download and
unpack distribution

Wrapper metadata
like storage location
for downloaded
distribution and
originating URL

Wrapper scripts for
executing Gradle commands

Downloads wrapper distribution
from remote server

Unzips compressed
wrapper file to predefined
local directory

Sets execution
permissions
for wrapper
batch file

71Gradle wrapper

The distribution ZIP file is downloaded from a central server hosted by the Gradle

project, stored on Mike’s local file system under $HOME_DIR/.gradle/wrapper/dists.

The Gradle wrapper also takes care of unpacking the distribution and setting the

appropriate permissions to execute the batch file. Note that the download only needs

to happen once. Subsequent build runs reuse the unpacked installation of the run-

time located in your Gradle home directory:

> gradlew.bat jettyRun
:compileJava
:processResources UP-TO-DATE
:classes
> Building > :jettyRun > Running at http://localhost:9090/todo

What are the key takeaways? A build script executed by the Gradle wrapper provides

exactly the same tasks, features, and behavior as it does when run with a local Gra-

dle installation. Again, you don’t have to stick with the default conventions the

wrapper gives you. Its configuration options are very flexible. We’ll look at them in

the next section.

3.4.3 Customizing the wrapper

Some enterprises have very restrictive security strategies, especially if you work for a

government agency, where access to servers outside of the network is prohibited.

downloads

and unpacks

Gradle home directory Distribution location

2

Downloading

and unpacking the

Gradle distribution

(one-time action only)

gradle-

1.7-

bin.zip

uses

Shell Project

1
$ gradlew jettyRun

:jettyRun

BUILD SUCCESSFUL

Use the wrapper

files to execute task
Wrapper

files

executes

Gradle runtime

Task

3

Unpacked Gradle

runtime is used to

execute task(s)

L.gradle
L wrapper

L dists
L gradle-1.7-bin

L ...

L.gradle
L wrapper

L dists
L gradle-1.7-bin

L ...

jettyRun

Figure 3.7 When a wrapped task is executed, the Gradle runtime is downloaded,

unpacked, and used.

72 CHAPTER 3 Building a Gradle project by example

How do you enable your project to use the Gradle wrapper in that case? It’s all in

the configuration. You’ll change the default properties to target an enterprise server

hosting the runtime distribution. And while you’re at it, you’ll also change the local

storage directory:

task wrapper(type: Wrapper) {
 gradleVersion = '1.2'
 distributionUrl = 'http://myenterprise.com/gradle/dists'
 distributionPath = 'gradle-dists'
}

Pretty straightforward, right? There are many more options to explore. Make sure

to check out the Gradle wrapper DSL documentation for detailed information at

http://gradle.org/docs/current/dsl/org.gradle.api.tasks.wrapper.Wrapper.html.

3.5 Summary

In chapter 2, you learned how to express and execute simple logic by adding tasks to

your project. In this chapter we’ve gone much further. You implemented a full-stack

Java application and used Gradle to build it. Many Java projects are similar in

nature. They need to compile Java source code, run tests, and bundle a JAR file con-

taining the classes. Luckily, you didn’t have to write these tasks yourself to make this

happen in your project. Through the use of Gradle plugins, you merely had to write

code in your build script.

 You started out by using the Java plugin that ships with Gradle. Applying the plugin

to your project added preconfigured tasks and a standardized project structure wrapped

by an opinionated framework. Custom project requirements call for flexible conven-

tions. We explored the option of customizing the default conventions introduced by the

plugin. Key to knowing your options are the Gradle DSL and API documentation.

 After a short recap of the fundamentals of Java web application development, we

discussed how to extend the example project by Java EE–compatible web components.

Gradle helps you with simplifying web development through the War and Jetty plu-

gins. The War plugin assists in assembling a WAR file, and the Jetty plugin provides

efficient deployment to a lightweight Servlet container. You saw that the convention-

over-configuration paradigm was applied to this dynamic duo as well. You also learned

that using the wrapper is a best practice for every Gradle project. Not only does it

allow you to run the project on a machine that doesn’t have Gradle installed, it also

prevents version compatibility issues.

 The presented plugins provide far more functionality than we’ve discussed. For

a detailed view on their capabilities, you can go to the online user guide (http://

www.gradle.org/docs/current/userguide/standard_plugins.html). This chapter com-

pletes part 1 of the book. In part 2, we delve into many of Gradle’s core concepts. The

next chapter will focus on Gradle’s building blocks, the ins and outs of tasks, and the

build lifecycle.

Requested
Gradle version

Target URL to
retrieve Gradle
wrapper
distribution

Path where wrapper will
be unzipped relative to
Gradle home directory

http://www.gradle.org/docs/current/userguide/standard_plugins.html
http://www.gradle.org/docs/current/userguide/standard_plugins.html
http://gradle.org/docs/current/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

Part 2

Mastering
the fundamentals

In part 1, you learned Gradle’s core concepts and features by example. Part 2

will boost your knowledge even further. We’ll look at more advanced topics like

dependency management, testing an application with Gradle, extending your

build with plugins, and many more.

 Chapter 4 covers Gradle’s quintessential building blocks for modeling your

build. You’ll learn how to declare new tasks, manipulate existing ones, and imple-

ment proper abstractions for complex logic. No real-world project can succeed

without reusing existing libraries. In chapter 5, you’ll learn how to declare and

organize dependencies in a build script. We’ll also cover dependency reporting

and version conflict resolution. Modularized software projects pose an addi-

tional layer of complexity for modeling your build. Chapter 6 discusses Gradle’s

support for multiproject builds.

 In chapter 7, we’ll turn our attention to the important topic of testing.

You’ll see how easy it is to write, organize, and execute unit, integration, and

functional tests, while at the same time picking and choosing the tooling of

your choice. Chapter 8 demonstrates Gradle’s extension mechanism by exam-

ple. You’ll learn how to abstract complex logic for deploying your sample

application to a cloud service. We’ll touch on all facets of the extension model,

from custom tasks and script and binary plugins, to exposing your own config-

uration language. Because Gradle goes hand in hand with popular build tools

like Ant and Maven, chapter 9 is dedicated to helping you translate existing

build logic from one tool to another, identify integration points, and depict migra-

tion strategies.

 Once you’ve finished this part of the book, you’ll be able to apply Gradle’s core

concepts to a real-world project. In part 3, we’ll discuss the use of Gradle with other

tools of the build and delivery ecosystem.

75

Build script essentials

In chapter 3, you implemented a full-fledged Java web application from the ground

up and built it with the help of Gradle’s core plugins. You learned that the default

conventions introduced by those plugins are customizable and can easily adapt to

nonstandard build requirements. Preconfigured tasks function as key components

of a plugin by adding executable build logic to your project.

 In this chapter, we’ll explore the basic building blocks of a Gradle build, namely

projects and tasks, and how they map to the classes in the Gradle API. Properties

are exposed by methods of these classes and help to control the build. You’ll also

learn how to control the build’s behavior through properties, as well as the benefits

of structuring your build logic.

This chapter covers

■ Gradle’s building blocks and their API

representation

■ Declaring new tasks and manipulating

existing tasks

■ Advanced task techniques

■ Implementing and using task types

■ Hooking into the build lifecycle

76 CHAPTER 4 Build script essentials

 At the core of this chapter, you’ll experience the nitty-gritty details of working with

tasks by implementing a consistent example. Step by step, you’ll build your knowledge

from declaring simple tasks to writing custom task classes. Along the way, we’ll touch

on topics like accessing task properties, defining explicit and implicit task dependen-

cies, adding incremental build support, and using Gradle’s built-in task types.

 We’ll also look at Gradle’s build lifecycle to get a good understanding of how a

build is configured and executed. Your build script can respond to notifications as the

build progresses through the lifecycle phases. In the last part of this chapter, we’ll

show how to write lifecycle hooks as closure and listener implementations.

4.1 Building blocks

Every Gradle build consists of three basic building blocks: projects, tasks, and proper-

ties. Each build contains at least one project, which in turn contains one or more

tasks. Projects and tasks expose properties that can be used to control the build. Fig-

ure 4.1 illustrates the dependencies among Gradle’s core components.

 Gradle applies the principles of domain-driven design (DDD) to model its own

domain-building software. As a consequence, projects and tasks have a direct class

representation in Gradle’s API. Let’s take a closer look at each component and its

API counterpart.

4.1.1 Projects

In Gradle’s terminology a project represents a component you’re trying to build (for

example, a JAR file), or a goal you’re trying to achieve, like deploying an application.

If you’re coming from Maven, this concept should sound pretty familiar. Gradle’s

equivalent to Maven’s pom.xml is the build.gradle file. Each Gradle build script

defines at least one project. When starting the build process, Gradle instantiates the

class org.gradle.api.Project based on your configuration in build.gradle and

makes it implicitly available through the project variable. Figure 4.2 shows the API

interface and its most important methods.

Gradle build

Task A

Task C ...

Task B

Project 1

depends on

Task D

Task F ...

...

Task E

Project 2

depends on

depends

on

Figure 4.1 Two basic concepts of a Gradle build are projects and tasks. A project can

depend on other projects in the context of a multiproject build. Similarly, tasks can form

a dependency graph that guarantees their execution order.

77Building blocks

A project can create new tasks, add dependencies and configurations, and apply plug-

ins and other build scripts. Many of its properties, like name and description, are

accessible via getter and setter methods.

 So why are we talking about Gradle’s API early on? You’ll find that after getting to

know Gradle’s basics, you’ll want to go further and apply the concepts to your real-

world projects. The API is key to getting the most out of Gradle.

 The Project instance gives you programmatic access to all Gradle features in

your build, like task creation and dependency management. You’ll use many of

these features throughout the book by invoking their corresponding API methods.

Keep in mind that you’re not required to use the project variable when accessing

properties and methods of your project—it’s assumed you mean the Project

instance. The following code snippet illustrates valid method invocations on the

Project instance:

setDescription("myProject")
println "Description of project $name: " + project.description

apply(options: Map<String,?>)

buildscript(config: Closure)

dependencies(config: Closure)

configurations(config: Closure)

getDependencies()

getConfigurations()

getAnt()

getName()

getDescription()

getGroup()

getPath()

getVersion()

getLogger()

setDescription(description: String)

setVersion(version: Object)

file(path: Object)

files(paths: Object...)

fileTree(baseDir: Object)

task(args: Map<String,?>, name: String)

task(args: Map<String,?>, name: String, c: Closure)

task(name: String)

task(name: String, c: Closure)

<<interface>>

Project

Task creation

File creation

Properties

getter/setter

Dependency

management

Build script

configuration

Figure 4.2 Main entry point of a Gradle build—the Project interface

Setting project’s description without
explicitly using project variable

Using Groovy syntax to access name and description
properties with and without using project variable

78 CHAPTER 4 Build script essentials

In the previous chapters, you only had to deal with single-project builds. Gradle

provides support for multiproject builds as well. One of the most important princi-

ples of software development is separation of concerns. The more complex a soft-

ware system becomes, the more you want to decompose it into modularized

functionality, in which modules can depend on each other. Each of the decom-

posed parts would be represented as a Gradle project with its own build.gradle

script. For the sake of simplicity, we won’t go into details here. If you’re eager to

learn more, feel free to jump to chapter 6, which is fully devoted to creating multi-

project builds in Gradle. Next, we’ll look at the characteristics of tasks, another one

of Gradle’s core building blocks.

4.1.2 Tasks

You already created some simple tasks in chapter 2. Even though the use cases I pre-

sented were trivial, you got to know some important capabilities of a task: task actions

and task dependencies. An action defines an atomic unit of work that’s executed

when the task is run. This can be as simple as printing out text like “Hello world!” or

as complex as compiling Java source code, as seen in chapter 2. Many times a task

requires another task to run first. This is especially true if the task depends on the pro-

duced output of another task as input to complete its own actions. For example,

you’ve seen that you need to compile Java sources first before they can be packaged

into a JAR file. Let’s look at Gradle’s API representation of a task, the interface

org.gradle.api.Task, as shown in figure 4.3.

 The Task interface provides even more methods than are shown in the figure. You’ll

use them one by one as you apply them to concrete examples throughout the book.

Now that we’ve discussed projects and tasks, let’s look at different types of properties.

dependsOn(tasks: Object...)

doFirst(action: Closure)

doLast(action: Closure)

getActions()

getInputs()

getOutputs()

getAnt()

getDescription()

getEnabled()

getGroup()

setDescription(description: String)

setEnabled(enabled: boolean)

setGroup(group: String)

<<interface>>

Task

Properties

getter/setter

Input/output

data declaration

Action definition

Task dependencies

Figure 4.3 Task interface in Gradle’s API. Tasks can define dependencies

on other tasks, a sequence of actions, and conditional execution.

79Building blocks

4.1.3 Properties

Each instance of Project and Task provides properties that are accessible through getter

and setter methods. A property could be a task’s description or the project’s version.

Later in this chapter, you’ll read and modify these values in the context of a practical

example. Often, you’ll want to define your own properties. For example, you may want

to declare a variable that references a file that’s used multiple times within the same

build script. Gradle allows defining user-defined variables through extra properties.

EXTRA PROPERTIES

Many of Gradle’s domain model classes provide support for ad-hoc properties. Inter-

nally, these properties are stored as key-value pairs in a map. To add properties, you’re

required to use the ext namespace. Let’s look at a concrete example. The following

code snippet demonstrates that a property can be added, read, and modified in many

different ways:

project.ext.myProp = 'myValue'

ext {
 someOtherProp = 123
}

assert myProp == 'myValue'
println project.someOtherProp
ext.someOtherProp = 567

Similarly, additional properties can be fed through a properties file.

GRADLE PROPERTIES

Properties can be directly injected into your project by declaring them in a properties

file named gradle.properties under the directory <USER_HOME>/.gradle or a proj-

ect’s root directory. They can be accessed via the project instance. Bear in mind that

there can only be one Gradle property file per user under <USER_HOME>/.gradle,

even if you’re dealing with multiple projects. This is currently a limitation of Gradle.

Any property declared in the properties file will be available to all of your projects.

Let’s assume the following properties are declared in your gradle.properties file:

exampleProp = myValue
someOtherProp = 455

You can access both variables in your project as follows:

assert project.exampleProp == 'myValue'

task printGradleProperty << {
 println "Second property: $someOtherProp"
}

OTHER WAYS TO DECLARE PROPERTIES

Extra properties and Gradle properties are the mechanisms you’ll probably use the

most to declare custom variables and their values. Gradle offers many other ways to

provide properties to your build, such as

Only initial declaration of extra property
requires you to use ext namespace

Using ext namespace to access
extra property is optional

80 CHAPTER 4 Build script essentials

■ Project property via the –P command-line option

■ System property via the –D command-line option

■ Environment property following the pattern

ORG_GRADLE_PROJECT_propertyName=someValue

I won’t show you concrete examples for these alternative ways of declaring properties,

but you can use them if needed. The online Gradle user guide provides excellent

usage examples if you want to go further. For the rest of this chapter, you’ll make

extensive use of tasks and Gradle’s build lifecycle.

4.2 Working with tasks

By default, every newly created task is of type org.gradle.api.DefaultTask, the stan-

dard implementation of org.gradle.api.Task. All fields in class DefaultTask are

marked private. This means that they can only be accessed through their public

getter and setter methods. Thankfully, Groovy provides you with some syntactic

sugar, which allows you to use fields by their name. Under the hood, Groovy calls

the method for you. In this section, we’ll explore the most important features of a

task by example.

4.2.1 Managing the project version

To demonstrate properties and methods of the class DefaultTask in action, I’m going

to explain them in the context of the To Do application from chapter 3. Now that you

have the general build infrastructure in place, features can easily be added. Often, fea-

ture sets are grouped into releases. To identify each release, a unique version number

is added to the deliverable.

 Many enterprises or open source projects have their own versioning strategy.

Think back to some of the projects you’ve worked on. Usually, you assign a specific

version numbering scheme (for example, a major and minor version number sepa-

rated by a dot, like 1.2). You may also encounter a project version that appends a

SNAPSHOT designator to indicate that the built project artifact is in the state of develop-

ment. You’ve already assigned a version to your project in chapter 3 by setting a string

value to the project property version. Using a String data type works great for simple

use cases, but what if you want to know the exact minor version of your project? You’ll

have to parse the string value, search for the dot character, and filter out the substring

that identifies the minor version. Wouldn’t it be easier to represent the version by an

actual class?

 You could easily use the class’s fields to set, retrieve, and modify specific portions of

your numbering scheme. You can go even further. By externalizing the version infor-

mation to persistent data storage, such as a file or database, you’ll avoid having to

modify the build script itself to change the project version. Figure 4.4 illustrates the

interaction among the build script, a properties file that holds the version informa-

tion, and the data representation class. You’ll create and learn how to use all of these

files in the upcoming sections.

81Working with tasks

Being able to control the versioning scheme programmatically will become a necessity

the more you want to automate your project lifecycle. Here’s one example: your code

has passed all functional tests and is ready to be shipped. The current version of your

project is 1.2-SNAPSHOT. Before building the final WAR file, you’ll want to make it a

release version 1.2 and automatically deploy it to the production server. Each of these

steps can be modeled by creating a task: one for modifying the project version and

one for deploying the WAR file. Let’s take your knowledge about tasks to the next level

by implementing flexible version management in your project.

4.2.2 Declaring task actions

An action is the appropriate place within a task to put your build logic. The Task inter-

face provides you with two relevant methods to declare a task action: doFirst(Closure)

and doLast(Closure). When a task is executed, the action logic defined as closure

parameter is executed in turn.

 You’re going to start easy by adding a single task named printVersion. The task’s

purpose is to print out the current project version. Define this logic as the last action

of this task, as shown in the following code snippet:

version = '0.1-SNAPSHOT'

task printVersion {
 doLast {
 println "Version: $version"
 }
}

In chapter 2, I explained that the left shift operator (<<) is the shortcut version of the

method doLast. Just to clarify: they do exactly the same thing. When executing the task

with gradle printVersion, you should see the correct version number:

read write

def projectVersion = new ProjectVersion()

projectVersion.major = 0

projectVersion.minor = 1

projectVersion.release = false

version = projectVersion

build.gradle

instantiate

use

version.properties

major = 0

minor = 1

release = false

ProjectVersion

- major: String

- minor: String

- release: Boolean

getter methods

setter methods

Figure 4.4 The project version is read from a properties file during runtime of the build

script. The ProjectVersion data class is instantiated. Each of the version classifiers

is translated into a field value of the data class. The instance of ProjectVersion is

assigned to the version property of the project.

82 CHAPTER 4 Build script essentials

$ gradle printVersion
:printVersion
Version: 0.1-SNAPSHOT

The same result could be achieved as the first action of the task by using the doFirst

method instead:

task printVersion {
 doFirst {
 println "Version: $version"
 }
}

ADDING ACTIONS TO EXISTING TASKS

So far, you’ve only added a single action to the task printVersion, either as the first or

last action. But you’re not limited to a single action per task. In fact, you can add as

many actions as you need even after the task has been created. Internally, every task

keeps a list of task actions. At runtime, they’re executed sequentially. Let’s look at a

modified version of your example task:

task printVersion {
 doFirst {
 println "Before reading the project version"
 }

 doLast {
 println "Version: $version"
 }
}

printVersion.doFirst { println "First action" }
printVersion << { println "Last action" }

As shown in the listing, an existing task can be manipulated by adding actions to

them. This is especially useful if you want to execute custom logic for tasks that you

didn’t write yourself. For example, you could add a doFirst action to the compile-

Java task of the Java plugin that checks if the project contains at least one Java

source file.

4.2.3 Accessing DefaultTask properties

Next you’ll improve the way you output the version number. Gradle provides a logger

implementation based on the logging library SLF4J. Apart from implementing the

usual range of logging levels (DEBUG, ERROR, INFO, TRACE, WARN), it adds some

extra levels. The logger instance can be directly accessed through one of the task’s

methods. For now, you’re going to print the version number with the log level QUIET:

task printVersion << {
 logger.quiet "Version: $version"
}

See how easy it is to access one of the task properties? There are two more properties I

want to show you: group and description. Both act as part of the task documentation.

Initial declaration of
a task can contain a
first and last action

Additive doFirst closures
are inserted at beginning
of actions list

Using
doLast
alias to

add closure
to end of

actions list

83Working with tasks

The description property represents a short definition of the task’s purpose, whereas

the group defines a logic grouping of tasks. You’ll set values for both properties as

arguments when creating the task:

task printVersion(group: 'versioning',
 ➥ description: 'Prints project version.') << {
 logger.quiet "Version: $version"
}

Alternatively, you can also set the properties by calling the setter methods, as shown in

the following code snippet:

task printVersion {
 group = 'versioning'
 description = 'Prints project version.'

 doLast {
 logger.quiet "Version: $version"
 }
}

When running gradle tasks, you’ll see that the task shows up in the correct task

bucket and is able to describe itself:

gradle tasks
:tasks
...

Versioning tasks

printVersion - Prints project version.

...

Even though setting a task’s description and grouping is optional, it’s always a good

idea to assign values for all of your tasks. It’ll make it easier for the end user to iden-

tify the task’s function. Next, we’ll review the intricacies of defining dependencies

between tasks.

4.2.4 Defining task dependencies

The method dependsOn allows for declaring a dependency on one or more tasks.

You’ve seen that the Java plugin makes extensive use of this concept by creating task

graphs to model full task lifecycles like the build task. The following listing shows dif-

ferent ways of applying task dependencies using the dependsOn method.

task first << { println "first" }
task second << { println "second" }

task printVersion(dependsOn: [second, first]) << {
 logger.quiet "Version: $version"
}

Listing 4.1 Applying task dependencies

Assigning multiple
task dependencies

84 CHAPTER 4 Build script essentials

task third << { println "third" }
third.dependsOn('printVersion')

You’ll execute the task dependency chain by invoking the task third from the com-

mand line:

$ gradle -q third
first
second
Version: 0.1-SNAPSHOT
third

If you take a close look at the task execution order, you may be surprised by the out-

come. The task printVersion declares a dependency on the tasks second and first.

Wouldn’t you have expected that the task second would get executed before first? In

Gradle, the task execution order is not deterministic.

TASK DEPENDENCY EXECUTION ORDER

It’s important to understand that Gradle doesn’t guarantee the order in which the

dependencies of a task are executed. The method call dependsOn only defines that

the dependent tasks need to be executed beforehand. Gradle’s philosophy is to

declare what should be executed before a given task, not how it should be executed.

This concept is especially hard to grasp if you’re coming from a build tool that defines

its dependencies imperatively, like Ant does. In Gradle, the execution order is auto-

matically determined by the input/output specification of a task, as you’ll see later in

this chapter. This architectural design decision has many benefits. On the one hand,

you don’t need to know the whole chain of task dependencies to make a change,

which improves code maintainability and avoids potential breakage. On the other

hand, because your build doesn’t have to be executed strictly sequentially, it’s been

enabled for parallel task execution, which can significantly improve your build execu-

tion time.

4.2.5 Finalizer tasks

In practice, you may find yourself in situations that require a certain resource to be

cleaned up after a task that depends on it is executed. A typical use case for such a

resource is a web container needed to run integration tests against a deployed applica-

tion. Gradle’s answer to such a scenario is finalizer tasks, which are regular Gradle

tasks scheduled to run even if the finalized task fails. The following code snippet dem-

onstrates how to use a specific finalizer task using the Task method finalizedBy:

task first << { println "first" }
task second << { println "second" }
first.finalizedBy second

You’ll find executing the task first will automatically trigger the task named second:

$ gradle -q first
first
second

Referencing task by name
when declaring dependency

Declares that one task is
finalized by another task

85Working with tasks

Chapter 7 covers the concept of finalizer tasks in more depth with the help of a real-

world example. In the next section, you’ll write a Groovy class to allow for finer-

grained control of the versioning scheme.

4.2.6 Adding arbitrary code

It’s time to come back to my statement about Gradle’s ability to define general-purpose

Groovy code within a build script. In practice, you can write classes and methods the

way you’re used to in Groovy scripts or classes. In this section, you’ll create a class rep-

resentation of the version. In Java, classes that follow the bean conventions are called

plain-old Java objects (POJOs). By definition, they expose their fields through getter

and setter methods. Over time it can become very tiresome to write these methods by

hand. POGOs, Groovy’s equivalent to POJOs, only require you to declare properties

without an access modifier. Their getter and setter methods are intrinsically added at

the time of bytecode generation and therefore are available at runtime. In the next

listing, you assign an instance of the POGO ProjectVersion. The actual values are set

in the constructor.

version = new ProjectVersion(0, 1)

class ProjectVersion {
 Integer major
 Integer minor
 Boolean release

 ProjectVersion(Integer major, Integer minor) {
 this.major = major
 this.minor = minor
 this.release = Boolean.FALSE
 }

 ProjectVersion(Integer major, Integer minor, Boolean release) {
 this(major, minor)
 this.release = release
 }

 @Override
 String toString() {
 "$major.$minor${release ? '' : '-SNAPSHOT'}"
 }
}

When running the modified build script, you should see that the task printVersion

produces exactly the same result as before. Unfortunately, you still have to manually

edit the build script to change the version classifiers. Next, you’ll externalize the ver-

sion to a file and configure your build script to read it.

4.2.7 Understanding task configuration

Before you get started writing code, you’ll need to create a properties file named

version.properties alongside the build script. For each of the version categories

Listing 4.2 Representing the project version by a POGO

Version attribute represented by a
java.lang.Object; Gradle always uses
the toString() value of the version

-SNAPSHOT suffix is
only added if release
property is false

86 CHAPTER 4 Build script essentials

like major and minor, you’ll create an individual property. The following key–value

pairs represent the initial version 0.1-SNAPSHOT:

major = 0
minor = 1
release = false

ADDING A TASK CONFIGURATION BLOCK

Listing 4.3 declares a task named loadVersion to read the version classifiers from the

properties file and assign the newly created instance of ProjectVersion to the proj-

ect’s version field. At first sight, the task may look like any other task you defined

before. But if you look closer, you’ll notice that you didn’t define an action or use the

left shift operator. Gradle calls this a task configuration.

ext.versionFile = file('version.properties')

task loadVersion {
 project.version = readVersion()
}

ProjectVersion readVersion() {
 logger.quiet 'Reading the version file.'

 if(!versionFile.exists()) {
 throw new GradleException("Required version file does not exist:
 ➥ $versionFile.canonicalPath")
 }

 Properties versionProps = new Properties()

 versionFile.withInputStream { stream ->
 versionProps.load(stream)
 }

 new ProjectVersion(versionProps.major.toInteger(),
 ➥ versionProps.minor.toInteger(), versionProps.release.toBoolean())
}

If you run printVersion now, you’ll see that the new task loadVersion is executed

first. Despite the fact that the task name isn’t printed, you know this because the build

output prints the logging statement you added to it:

$ gradle printVersion
Reading the version file.
:printVersion
Version: 0.1-SNAPSHOT

You may ask yourself why the task was invoked at all. Granted, you didn’t declare a

dependency on it, nor did you invoke the task on the command line. Task configuration

blocks are always executed before task actions. The key to fully understanding this

behavior is the Gradle build lifecycle. Let’s take a closer look at each of the build phases.

Listing 4.3 Writing a task configuration

File method is provided
by Project interface; it
creates an instance of
java.io.File relative to
project directory.

Task configuration
is defined without
left shift operator.

If version file
doesn’t exist throw
a GradleException
with an
appropriate
error message.

Groovy’s file
implementation
adds methods to
read it with newly
created InputStream.

In Groovy you can omit the return
keyword if it’s last statement in method.

87Working with tasks

GRADLE’S BUILD LIFECYCLE PHASES

Whenever you execute a Gradle build, three distinct lifecycle phases are run: initial-

ization, configuration, and execution. Figure 4.5 visualizes the order in which the

build phases are run and the code they execute.

 During the initialization phase, Gradle creates a Project instance for your project.

Your given build script only defines a single project. In the context of a multiproject

build, this build phase becomes more important. Depending on which project you’re

executing, Gradle figures out which of the project dependencies need to participate

in the build. Note that none of your currently existing build script code is executed in

this build phase. This will change in chapter 6 when you modularize the To Do appli-

cation into a multiproject build.

 The build phase next in line is the configuration phase. Internally, Gradle constructs

a model representation of the tasks that will take part in the build. The incremental

build feature determines if any of the tasks in the model are required to be run. This

phase is perfect for setting up the configuration that’s required for your project or

specific tasks.

In the execution phase tasks are executed in the correct order. The execution order is

determined by their dependencies. Tasks that are considered up to date are skipped.

For example, if task B depends on task A, then the execution order would be A → B

when you run gradle B on the command line.

 As you can see, Gradle’s incremental build feature is tightly integrated in the lifecy-

cle. In chapter 3 you saw that the Java plugin made heavy use of this feature. The task

compileJava will only run if any of the Java source files are different from the last

time the build was run. Ultimately, this feature can improve a build’s performance

Keep in mind that any configuration code is executed with every build of your proj-

ect—even if you just execute gradle tasks.

ext.versionFile =

file('version.properties')

task loadVersion {

project.version = readVersion()

}

Configuration code

Initialization

phase

Configuration

phase

Execution

phase

task printVersion << {

logger.quiet "Version: $version"

}

Action code

Figure 4.5 Order of build phases in Gradle’s build lifecycle

88 CHAPTER 4 Build script essentials

significantly. In the next section, I’ll show how to use the incremental build feature

for your own tasks.

4.2.8 Declaring task inputs and outputs

Gradle determines if a task is up to date by com-

paring a snapshot of a task’s inputs and outputs

between two builds, as shown in figure 4.6. A

task is considered up to date if inputs and out-

puts haven’t changed since the last task execu-

tion. Therefore, the task only runs if the inputs

and outputs are different; otherwise, it’s skipped.

 An input can be a directory, one or more files, or an arbitrary property. A task’s out-

put is defined through a directory or 1...n files. Inputs and outputs are defined as fields

in class DefaultTask and have a direct class representation, as shown in figure 4.7.

 Let’s see this feature in action. Imagine you want to create a task that prepares

your project’s deliverable for a production release. To do so, you’ll want to change the

project version from SNAPSHOT to release. The following listing defines a new task

that assigns the Boolean value true to the version property release. The task also

propagates the version change to the property file.

task makeReleaseVersion(group: 'versioning', description: 'Makes project
 ➥ a release version.') << {
 version.release = true
 ant.propertyfile(file: versionFile) {
 entry(key: 'release', type: 'string', operation: '=', value: 'true')
 }
}

Listing 4.4 Switching the project version to production-ready

Task OutputsInputs

Figure 4.6 Gradle determines if a task

needs to be executed though its inputs/

outputs.

dir(dirPath: Object)

file(path: Object)

files(paths: Object...)

property(name: String, value: Object)

<<interface>>

TaskInputs

1 1

1 1

dir(dirPath: Object)

file(path: Object)

files(paths: Object...)

<<interface>>

TaskOutputs

- inputs: TaskInputs

- outputs: TaskOutputs

getInputs()

getOutputs()

DefaultTask

Figure 4.7 The class DefaultTask defines task inputs and outputs.

Ant task propertyfile provides a convenient
way of modifying the property file.

89Working with tasks

As expected, running the task will change the version property and persist the new

value to the property file. The following output demonstrates the behavior:

$ gradle makeReleaseVersion
:makeReleaseVersion

$ gradle printVersion
:printVersion
Version: 0.1

The task makeReleaseVersion may be part of another lifecycle task that deploys the

WAR file to a production server. You may be painfully aware of the fact that a

deployment can go wrong. The network may have a glitch so that the server cannot

be reached. After fixing the network issues, you’ll want to run the deployment task

again. Because the task makeReleaseVersion is declared as a dependency to your

deployment task, it’s automatically rerun. Wait, you already marked your project

version as production-ready, right? Unfortunately, the Gradle task doesn’t know

that. To make it aware of this, you’ll declare its inputs and outputs, as shown in the

next listing.

task makeReleaseVersion(group: 'versioning', description: 'Makes project
 ➥ a release version.') {
 inputs.property('release', version.release)
 outputs.file versionFile

 doLast {
 version.release = true
 ant.propertyfile(file: versionFile) {
 entry(key: 'release', type: 'string', operation: '=', value: 'true')
 }
 }
}

You moved the code you wanted to execute into a doLast action closure and removed

the left shift operator from the task declaration. With that done, you now have a clear

separation between the configuration and action code.

Listing 4.5 Adding incremental build support via inputs/outputs

Task inputs/outputs evaluation

Remember, task inputs and outputs are evaluated during the configuration phase

to wire up the task dependencies. That’s why they need to be defined in a configu-

ration block. To avoid unexpected behavior, make sure that the value you assign to

inputs and outputs is accessible at configuration time. If you need to implement

programmatic output evaluation, the method upToDateWhen(Closure) on Task-
Outputs comes in handy. In contrast to the regular inputs/outputs evaluation, this

method is evaluated at execution time. If the closure returns true, the task is con-

sidered up to date.

Inputs/
outputs are

declared
during

configuration
phase

Declaring
version release
property as
input

As the version file is
going to be modified
it’s declared as
output file property

90 CHAPTER 4 Build script essentials

Now, if you execute the task twice you’ll see that Gradle already knows that the project

version is set to release and automatically skips the task execution:

$ gradle makeReleaseVersion
:makeReleaseVersion

$ gradle makeReleaseVersion
:makeReleaseVersion UP-TO-DATE

If you don’t change the release property manually in the properties file, any subse-

quent run of the task makeReleaseVersion will be marked up to date.

 So far you’ve used Gradle’s DSL to create and modify tasks in the build script. Every

task is backed by an actual task object that’s instantiated for you during Gradle’s config-

uration phase. In many cases, simple tasks get the job done. However, sometimes you

may want to have full control over your task implementation. In the next section, you’ll

rewrite the task makeReleaseVersion in the form of a custom task implementation.

4.2.9 Writing and using a custom task

The action logic within the task makeReleaseVersion is fairly simple. Code maintain-

ability is clearly not an issue at the moment. However, when working on your projects

you’ll notice that simple tasks can grow in size quickly the more logic you need to add

to them. The need for structuring your code into classes and methods will arise. You

should be able to apply the same coding practices as you’re used to in your regular

production source code, right? Gradle doesn’t suggest a specific way of writing your

tasks. You have full control over your build source code. The programming language

you choose, be it Java, Groovy, or any other JVM-based language, and the location of

your task is up to you.

 Custom tasks consist of two components: the custom task class that encapsulates

the behavior of your logic, also called the task type, and the actual task that provides

the values for the properties exposed by the task class to configure the behavior. Gra-

dle calls these tasks enhanced tasks.

 Maintainability is only one of the advantages of writing a custom task class. Because

you’re dealing with an actual class, any method is fully testable through unit tests. Test-

ing your build code is out of the scope of this chapter. If you want to learn more, feel

free to jump to chapter 7. Another advantage of enhanced tasks over simple tasks is

reusability. The properties exposed by a custom task can be set individually from the

build script. With the benefits of enhanced tasks in mind, let’s discuss writing a cus-

tom task class.

WRITING THE CUSTOM TASK CLASS

As mentioned earlier in this chapter, Gradle creates an instance of type DefaultTask

for every simple task in your build script. When creating a custom task, you do exactly

that—create a class that extends DefaultTask. The following listing demonstrates how

to express the logic from makeReleaseVersion as the custom task class Release-

VersionTask written in Groovy.

91Working with tasks

class ReleaseVersionTask extends DefaultTask {
 @Input Boolean release
 @OutputFile File destFile

 ReleaseVersionTask() {
 group = 'versioning'
 description = 'Makes project a release version.'
 }

 @TaskAction
 void start() {
 project.version.release = true
 ant.propertyfile(file: destFile) {
 entry(key: 'release', type: 'string', operation: '=', value: 'true')
 }
 }
}

In the listing, you’re not using the DefaultTask’s properties to declare its inputs and

outputs. Instead, you use annotations from the package org.gradle.api.tasks.

EXPRESSING INPUTS AND OUTPUTS THROUGH ANNOTATIONS

Task input and output annotations add semantic sugar to your implementation. Not

only do they have the same effect as the method calls to TaskInputs and Task-

Outputs, they also act as automatic documentation. At first glance, you know exactly

what data is expected as input and what output artifact is produced by the task. When

exploring the Javadocs of this package, you’ll find that Gradle provides you with a

wide range of annotations.

 In your custom task class, you use the @Input annotation to declare the input prop-

erty release and the annotation @OutputFile to define the output file. Applying

input and output annotations to fields isn’t the only option. You can also annotate the

getter methods for a field.

USING THE CUSTOM TASK

You implemented a custom task class by creating an action method and exposed its

configurable properties through fields. But how do you actually use it? In your build

script, you’ll need to create a task of type ReleaseVersionTask and set the inputs

and outputs by assigning values to its properties, as shown in the next listing. Think

of it as creating a new instance of a specific class and setting the values for its fields

in the constructor.

Listing 4.6 Custom task implementation

Task input validation

The annotation @Input will validate the value of the property at configuration time. If

the value is null, Gradle will throw a TaskValidationException. To allow null val-

ues, mark the field with the @Optional annotation.

Writing a custom task that extends Gradle’s
default task implementation

Declaring custom task’s inputs/
outputs through annotations

Setting task’s group and
description properties
in the constructor

Annotation declares
method to be executed

92 CHAPTER 4 Build script essentials

task makeReleaseVersion(type: ReleaseVersionTask) {
 release = version.release
 destFile = versionFile
}

As expected, the enhanced task makeReleaseVersion will behave exactly the same way

as the simple task if you run it. One big advantage you have over the simple task imple-

mentation is that you expose properties that can be assigned individually.

APPLIED CUSTOM TASK REUSABILITY

Let’s assume you’d like to use the custom task in another project. In that project, the

requirements are different. The version POGO exposes different fields to represent

the versioning scheme, as shown in the next listing.

class ProjectVersion {
 Integer min
 Integer maj
 Boolean prodReady

 @Override
 String toString() {
 "$maj.$min${prodReady? '' : '-SNAPSHOT'}"
 }
}

Additionally, the project owner decides to name the version file project-version

.properties instead of version.properties. How does the enhanced task adapt to

these requirements? You simply assign different values to the exposed properties, as

shown in the following listing. Custom task classes can flexibly handle changing

requirements.

task makeReleaseVersion(type: ReleaseVersionTask) {
 release = version.prodReady
 destFile = file('project-version.properties')
}

Gradle ships with a wide range of out-of-the-box custom tasks for commonly used

functionality, like copying and deleting files or creating a ZIP archive. In the next sec-

tion we’ll take a closer look at some of them.

4.2.10 Gradle’s built-in task types

Do you remember the last time a manual production deployment went wrong? I bet

you still have a vivid picture in your mind: angry customers calling your support team,

Listing 4.7 Task of type ReleaseVersionTask

Listing 4.8 Different version POGO implementation

Listing 4.9 Setting individual property values for task makeReleaseVersion

Defining an enhanced
task of type
ReleaseVersionTask

Setting custom
task properties

POGO version representation
uses field prodReady to
indicate release flag

Assigning different
version file object

93Working with tasks

the boss knocking on your door asking about what went wrong, and your coworkers

frantically trying to figure out the root cause of the stack trace being thrown when

starting up the application. Forgetting a single step in a manual release process can

prove fatal.

 Let’s be professionals and take pride in automating every aspect of the build lifecy-

cle. Being able to modify the project’s versioning scheme in an automated fashion is

only the first step in modeling your release process. To be able to quickly recover from

failed deployments, a good rollback strategy is essential. Having a backup of the latest

stable application deliverable for redeployment can prove invaluable. You’ll use some

of the task types shipped with Gradle to implement parts of this process for your To

Do application.

 Here’s what you’re going to do. Before deploying any code to production you want

to create a distribution. It’ll act as a fallback deliverable for future failed deployments.

A distribution is a ZIP file that consists of your web application archive, all source files,

and the version property file. After creating the distribution, the file is copied to a

backup server. The backup server could either be accessible over a mounted shared

drive or you could transfer the file over FTP. Because I don’t want to make this exam-

ple too complex to grasp, you’ll just copy it to the subdirectory build/backup. Fig-

ure 4.8 illustrates the order in which you want the tasks to be executed.

USING TASK TYPES

Gradle’s built-in task types are derived classes from DefaultTask. As such, they can

be used from an enhanced task within the build script. Gradle provides a broad

spectrum of task types, but for the purposes of this example you’ll use only two of

them. The following listing shows the task types Zip and Copy in the context of

releasing the production version of your software. You can find the complete task

reference in the DSL guide.

task createDistribution(type: Zip, dependsOn: makeReleaseVersion) {
 from war.outputs.files

 from(sourceSets*.allSource) {
 into 'src'
 }

 from(rootDir) {
 include versionFile.name
 }
}

Listing 4.10 Using task types to back up a zipped release distribution

make

ReleaseVersion

create

Distribution

backup

ReleaseVersion

Task Task

war

Task Task Task

release

Figure 4.8 Task dependencies for releasing the project

Implicit reference to
output of War taskTakes all source files

and puts them into src
directory of ZIP file

Adds version
file to ZIP

94 CHAPTER 4 Build script essentials

task backupReleaseDistribution(type: Copy) {
 from createDistribution.outputs.files
 into "$buildDir/backup"
}

task release(dependsOn: backupReleaseDistribution) << {
 logger.quiet 'Releasing the project...'
}

In this listing there are different ways of telling the Zip and Copy tasks what files to

include and where to put them. Many of the methods used here come from the super-

class AbstractCopyTask, as shown in figure 4.9. For a full list of available options,

please refer to the Javadocs of the classes.

 The task types you used offer far more configuration options than those shown in

the example. Again, for a full list of available options, please refer to the DSL refer-

ence or the Javadocs. Next, we’ll take a deeper look at their task dependencies.

TASK DEPENDENCY INFERENCE

You may have noticed in the listing that a task dependency between two tasks was

explicitly declared through the dependsOn method. However, some of the tasks don’t

model a direct dependency to other tasks (for example, createDistribution to war).

How does Gradle know to execute the dependent task beforehand? By using the out-

put of one task as input for another task, dependency is inferred. Consequently, the

dependent task is run automatically. Let’s see the full task execution graph in action:

$ gradle release
:makeReleaseVersion
:compileJava
:processResources UP-TO-DATE
:classes
:war
:createDistribution
:backupReleaseDistribution
:release
Releasing the project...

Implicit reference to output
of createDistribution output

DefaultTask

CopyZip

from(sourcePaths: Object...)

from(sourcePath: Object, c: Closure)

into(destDir: Object)

into(destPath: Object, c: Closure)

AbstractCopyTask

Figure 4.9 Inheritance hierarchy for

the task types Zip and Copy

95Working with tasks

After running the build, you should find the generated ZIP file in the directory build/

distributions, which is the default output directory for archive tasks. You can easily

assign a different distribution output directory by setting the property destination-

Dir. The following directory tree shows the relevant artifacts generated by the build:

.
├── build
│ ├── backup
│ │ └── todo-webapp-0.1.zip
│ ├── distributions
│ │ └── todo-webapp-0.1.zip
│ └── libs
│ └── todo-webapp-0.1.war
├── build.gradle
├── src
└── version.properties

Task types have incremental build support built in. Running the tasks multiple times

in a row will mark them as up-to-date if you don’t change any of the source files.

Next, you’ll learn how to define a task on which the behavior depends on a flexible

task name.

4.2.11 Task rules

Sometimes you may find yourself in a situation where you write multiple tasks that do

similar things. For example, let’s say you want to extend your version management

functionality by two more tasks: one that increments the major version of the project

and another to do the same work for the minor version classifier. Both tasks are also

supposed to persist the changes to the version file. If you compare the doLast actions

for both tasks in the following listing, you can tell that you basically duplicated code

and applied minor changes to them.

task incrementMajorVersion(group: 'versioning', description: 'Increments
 ➥ project major version.') << {
 String currentVersion = version.toString()
 ++version.major
 String newVersion = version.toString()
 logger.info "Incrementing major project version: $currentVersion ->
 ➥ $newVersion"

 ant.propertyfile(file: versionFile) {
 entry(key: 'major', type: 'int', operation: '+', value: 1)
 }
}

task incrementMinorVersion(group: 'versioning', description: 'Increments
 ➥ project minor version.') << {
 String currentVersion = version.toString()
 ++version.minor
 String newVersion = version.toString()

Listing 4.11 Declaring tasks for incrementing version classifiers

Using Ant task
propertyfile to
increment a
specific
property within
a property file

96 CHAPTER 4 Build script essentials

 logger.info "Incrementing minor project version: $currentVersion ->
 ➥ $newVersion"

 ant.propertyfile(file: versionFile) {
 entry(key: 'minor', type: 'int', operation: '+', value: 1)
 }
}

If you run gradle incrementMajorVersion on a project with version 0.1-SNAPSHOT,

you’ll see that the version is bumped up to 1.1-SNAPSHOT. Run it on the INFO log level

to see more detailed output information:

$ gradle incrementMajorVersion –i
:incrementMajorVersion
Incrementing major project version: 0.1-SNAPSHOT -> 1.1-SNAPSHOT
[ant:propertyfile] Updating property file: /Users/benjamin/books/

➥ gradle-in-action/code/chapter4/task-rule/version.properties

Having two separate tasks works just fine, but you can certainly improve on this imple-

mentation. In the end, you’re not interested in maintaining duplicated code.

TASK RULE-NAMING PATTERN

Gradle also introduces the concept of a task rule, which executes specific logic based

on a task name pattern. The pattern consists of two parts: the static portion of the task

name and a placeholder. Together they form a dynamic task name. If you wanted to

apply a task rule to the previous example, the naming pattern would look like this:

increment<Classifier>Version. When executing the task rule on the command

line, you’d specify the classifier placeholder in camel-case notation (for example,

incrementMajorVersion or incrementMinorVersion).

DECLARING A TASK RULE

You just read about defining a naming pattern for a task rule, but how do you actually

declare a task rule in your build script? To add a task rule to your project, you’ll first

need to get the reference to TaskContainer. Once you have the reference, you can call

the method addRule(String, Closure). The first parameter provides a description (for

example, the task name pattern), and the second parameter declares the closure to exe-

cute to apply the rule. Unfortunately, there’s no direct way of creating a task rule

through a method from Project as there is for simple tasks, as illustrated in figure 4.10.

 With a basic understanding of how to add a task rule to your project, you can get

started writing the actual closure implementation for it. The next listing demonstrates

Task rules in practice

Some of Gradle’s core plugins make good use of task rules. One of the task rules

the Java plugins define is clean<TaskName>, which deletes the output of a specified

task. For example, running gradle cleanCompileJava from the command line

deletes all production code class files.

Using Ant task
propertyfile to
increment a
specific
property within
a property file

97Working with tasks

how applying a task rule becomes a very expressive tool to implement task actions with

similar logic.

tasks.addRule("Pattern: increment<Classifier>Version – Increments the
 ➥ project version classifier.") { String taskName ->
 if(taskName.startsWith('increment') && taskName.endsWith('Version')) {
 task(taskName) << {
 String classifier = (taskName - 'increment' - 'Version')
 ➥ .toLowerCase()
 String currentVersion = version.toString()

 switch(classifier) {
 case 'major': ++version.major
 break
 case 'minor': ++version.minor
 break
 default: throw new GradleException("Invalid version
 ➥ type '$classifier. Allowed types: ['Major', 'Minor']")
 }

 String newVersion = version.toString()
 logger.info "Incrementing $classifier project version:
 ➥ $currentVersion -> $newVersion"

 ant.propertyfile(file: versionFile) {
 entry(key: classifier, type: 'int', operation: '+', value: 1)
 }
 }
 }
}

After adding the task rule in your project, you’ll find that it’s listed under a specific

task group called Rules when running the help task tasks:

$ gradle tasks
...

Listing 4.12 Merging similar logic into a task rule

addRule(description:

String, action: Closure)

<<interface>>

NamedDomain

ObjectCollection

1 1

add(name: String)

add(name: String, c: Closure)

<<interface>>

TaskContainer

<<interface>>

Project

<<interface>>

Rule

<<interface>>

Task
getTasks()

task(name: String)

task(name: String, c: Closure)

<<creates>>

<<creates>>

<<contains>>

Figure 4.10 Simple tasks can be directly added by calling methods of your project instance. Task rules

can only be added through the task container, so you’ll need to get a reference to it first by invoking the

getTasks() method.

Adding a
task rule

with
provided

description

Checking task
name for

predefined
pattern

Dynamically
add a task
named after
provided
pattern with
a doLast
action

Extracting
type string
from full
task name

98 CHAPTER 4 Build script essentials

Rules

Pattern: increment<Classifier>Version - Increments project version type

Task rules can’t be grouped individually as you can do with any other simple or

enhanced task. A task rule, even if it’s declared by a plugin, will always show up under

this group.

4.2.12 Building code in buildSrc directory

You’ve seen how quickly your build script code can grow. In this chapter you already

created two Groovy classes within your build script: ProjectVersion and the custom

task ReleaseVersionTask. These classes are perfect candidates to be moved to the

buildSrc directory alongside your project. The buildSrc directory is an alternative

location to put build code and a real enabler for good software development prac-

tices. You’ll be able to structure the code the way you’re used to in any other project

and even write tests for it.

 Gradle standardizes the layout for source files under the buildSrc directory. Java

code needs to sit in the directory src/main/java, and Groovy code is expected to live

under the directory src/main/groovy. Any code that’s found in these directories is

automatically compiled and put into the classpath of your regular Gradle build script.

The buildSrc directory is a great way to organize your code. Because you’re dealing

with classes, you can also put them into a specific package. You’ll make them part of

the package com.manning.gia. The following directory structure shows the Groovy

classes in their new location:

.
├── build.gradle
├── buildSrc
│ └── src
│ └── main
│ └── groovy
│ └── com
│ └── manning
│ └── gia
│ ├── ProjectVersion.groovy
│ └── ReleaseVersionTask.groovy
├── src
│ └── ...
└── version.properties

Keep in mind that extracting the classes into their own source files requires some

extra work. The difference between defining a class in the build script versus a sepa-

rate source file is that you’ll need to import classes from the Gradle API. The following

code snippet shows the package and import declaration for the custom task Release-

VersionTask:

package com.manning.gia

import org.gradle.api.DefaultTask
import org.gradle.api.tasks.Input

99Hooking into the build lifecycle

import org.gradle.api.tasks.OutputFile
import org.gradle.api.tasks.TaskAction

class ReleaseVersionTask extends DefaultTask {
 (...)
}

In turn, your build script will need to import the compiled classes from buildSrc (for

example, com.manning.gia.ReleaseVersionTask). The following console output shows

the compilation tasks that are run before the task you invoked on the command line:

$ gradle makeReleaseVersion
:buildSrc:compileJava UP-TO-DATE
:buildSrc:compileGroovy
:buildSrc:processResources UP-TO-DATE
:buildSrc:classes
:buildSrc:jar
:buildSrc:assemble
:buildSrc:compileTestJava UP-TO-DATE
:buildSrc:compileTestGroovy UP-TO-DATE
:buildSrc:processTestResources UP-TO-DATE
:buildSrc:testClasses UP-TO-DATE
:buildSrc:test
:buildSrc:check
:buildSrc:build
:makeReleaseVersion UP-TO-DATE

The buildSrc directory is treated as its own Gradle project indicated by the path

:buildSrc. Because you didn’t write any unit tests, the compilation and execution

tasks for tests are skipped. Chapter 7 is fully dedicated to writing tests for classes

in buildSrc.

 In the previous sections, you learned the ins and outs of working with simple tasks,

custom task classes, and specific task types provided by Gradle’s API. We examined the

difference between task action and configuration code, as well as their appropriate

use cases. An important lesson you learned is that action and configuration code is

executed during different phases of the build lifecycle. The rest of this chapter will

talk about how to write code that’s executed when specific lifecycle events are fired.

4.3 Hooking into the build lifecycle

As a build script developer, you’re not limited to writing task actions or configuration

logic, which are evaluated during a distinct build phase. Sometimes you’ll want to exe-

cute code when a specific lifecycle event occurs. A lifecycle event can occur before,

during, or after a specific build phase. An example of a lifecycle event that happens

after the execution phase would be the completion of a build.

 Suppose you want to get feedback about failed builds as early as possible in the

development cycle. A typical reaction to a failed build could be that you send an email

to all developers on the team to restore the sanity of your code. There are two ways to

write a callback to build lifecycle events: within a closure, or with an implementation

of a listener interface provided by the Gradle API. Gradle doesn’t steer you toward one

100 CHAPTER 4 Build script essentials

of the options to listen to lifecycle events. The choice is up to you. The big advantage

you have with a listener implementation is that you’re dealing with a class that’s fully

testable by writing unit tests. To give you an idea of some of the useful lifecycle hooks,

see figure 4.11.

 An extensive list of all available lifecycle hooks is beyond the scope of this book.

Many of the lifecycle callback methods are defined in the interfaces Project and

Gradle. Gradle’s Javadocs are a great starting point to find the appropriate event call-

back for your use case.

In the following two sections, I’ll demonstrate how to receive notifications immediately

after the task execution graph has been populated. To fully understand what’s happen-

ing under the hood when this graph is built, we’ll first look at Gradle’s inner workings.

INTERNAL TASK GRAPH REPRESENTATION

At configuration time, Gradle determines the order of tasks that need to be run dur-

ing the execution phase. As noted in chapter 1, the internal structure that represents

these task dependencies is modeled as a directed acyclic graph (DAG). Each task in

the graph is called a node, and each node is connected by directed edges. You’ve most

likely created these connections between nodes by declaring a dependsOn relationship

for a task or by leveraging the implicit task dependency interference mechanism. It’s

important to note that DAGs never contain a cycle. In other words, a task that has been

executed before will never be executed again. Figure 4.12 demonstrates the DAG rep-

resentation of the release process modeled earlier.

Don’t be afraid of making good use of lifecycle hooks. They’re not considered a secret

backdoor to Gradle’s API. Instead, they’re provided intentionally because Gradle can’t

predict the requirements for your enterprise build.

Initialization

phase
Hook

Configuration

phase
Hook Hook

Execution

phase

gradle.taskGraph.whenReady { graph ->

...

}

Task graph populated

gradle.beforeProject { project ->

...

}

Before project evaluation

gradle.buildFinished { result ->

...

}

Build finished

Figure 4.11 Examples of build lifecycle hooks

depends

on

depends

on

depends

on

depends

on
release backupRelease

Version

create

Distribution war

Node Node Node NodeNode

makeRelease

Version

Figure 4.12 Task dependencies represented as Directed Acyclic Graph

101Hooking into the build lifecycle

Now that you have a better idea of Gradle’s internal task graph representation, you’ll

write some code in your build script to react to it.

4.3.1 Hooking into the task execution graph

Recall the task makeReleaseVersion you implemented that was automatically exe-

cuted as a dependency of the task release. Instead of writing a task to change the

project’s version to indicate production-readiness, you could also achieve the same

goal by writing a lifecycle hook. Because the build knows exactly which tasks will take

part in the build before they get executed, you can query the task graph to check for

its existence. Figure 4.13 shows the relevant interfaces and their methods to access the

task execution graph.

 Next you’ll put the lifecycle hook in place. Listing 4.13 extends the build script by

the method call whenReady to register a closure that’s executed immediately after the

task graph has been populated. Because you know that the logic is run before any of the

tasks in the graph are executed, you can completely remove the task makeRelease-

Version and omit the dependsOn declaration from createDistribution.

gradle.taskGraph.whenReady { TaskExecutionGraph taskGraph ->
 if(taskGraph.hasTask(release)) {
 if(!version.release) {
 version.release = true
 ant.propertyfile(file: versionFile) {
 entry(key: 'release', type: 'string', operation: '=',
 ➥ value: 'true')
 }
 }
 }
}

Alternatively, you can implement this logic as a listener, which you’ll do next.

4.3.2 Implementing a task execution graph listener

Hooking into the build lifecycle via a listener is done in two simple steps. First, you

implement the specific listener interface by writing a class within your build script.

Second, you register the listener implementation with the build.

 The interface for listening to task execution graph events is provided by the interface

TaskExecutionGraphListener. At the time of writing, you only need to implement one

Listing 4.13 Release version functionality implemented as lifecycle hook

1 1

getGradle()

<<interface>>

Project

getTaskGraph()

<<interface>>

Gradle
1 1

whenReady(closure: Closure)

<<interface>>

TaskExecutionGraph

Figure 4.13 TaskExecutionGraph provides the method whenReady that’s called

when the task graph has been populated.

Registers
lifecycle
hook that
gets called
when task
graph is
populated

Checks if task
execution graph
contains task release

102 CHAPTER 4 Build script essentials

method: graphPopulate(TaskExecutionGraph). Figure 4.14 shows the listener imple-

mentation named ReleaseVersionListener.

 Keep in mind that you don’t have direct access to the Project instance if you add

the listener to your build script. Instead, you can work Gradle’s API to its fullest. The

following listing shows how to access the project by calling the getProject() method

on the release task.

class ReleaseVersionListener implements TaskExecutionGraphListener {
 final static String releaseTaskPath = ':release'

 @Override
 void graphPopulated(TaskExecutionGraph taskGraph) {
 if(taskGraph.hasTask(releaseTaskPath)) {
 List<Task> allTasks = taskGraph.allTasks
 Task releaseTask = allTasks.find {it.path == releaseTaskPath }
 Project project = releaseTask.project

 if(!project.version.release) {
 project.version.release = true
 project.ant.propertyfile(file: project.versionFile) {
 entry(key: 'release', type: 'string', operation: '=',
 ➥ value: 'true')
 }
 }
 }
 }
}

def releaseVersionListener = new ReleaseVersionListener()
gradle.taskGraph.addTaskExecutionGraphListener(releaseVersionListener)

Listing 4.14 Release version functionality implemented as lifecycle listener

1 1

getGradle()

<<interface>>

Project

getTaskGraph()

addListener(listener: Object)

<<interface>>

Gradle

graphPopulated(graph:

TaskExecutionGraph)

<<interface>>

TaskExecutionGraphListener

graphPopulated(graph:

TaskExecutionGraph)

ReleaseVersionListener

addTaskExecutionGraphListener

(listener: TaskExecutionGraphListener)

<<interface>>

TaskExecutionGraph1 1

<<adds>> <<adds>>

Figure 4.14 Ways to register a TaskExecutionGraphListener. A listener can be registered

through the generic addListener method or through a specific method that only takes an instance

of a specialized listener type.

Determines whether
release task is included
in execution graph

Filters release
task from
list of all

tasks within
execution

graph

Every task knows which
project it belongs to

Registers listener
to task execution

graph

103Hooking into the build lifecycle

You’re not limited to registering a lifecycle listener in your build script. Lifecycle logic

can be applied to listen to Gradle events even before any of your project’s tasks are

executed. In the next section, we’ll explore options for hooking into the lifecycle via

initialization scripts to customize the build environment.

4.3.3 Initializing the build environment

Let’s say you want to be notified about the out-

come of a build. Whenever a build finishes, you’ll

want to know whether it was successful or failed.

You also want to be able to identify how many tasks

have been executed. One of Gradle’s core plugins,

the build-announcements plugin, provides a way

to send announcements to a local notification system like Snarl (Windows) or Growl

(Mac OS X). The plugin automatically picks the correct notification system based on

your OS. Figure 4.15 shows a notification rendered by Growl.

 You could apply the plugin to every project individually, but why not use the pow-

erful mechanisms Gradle provides? Initialization scripts are run before any of your

build script logic has been evaluated and executed. You’ll write an initialization script

that applies the plugin to any of your projects without manual intervention. Create

the initialization script under <USER_HOME>/.gradle/init.d, as shown in the follow-

ing directory tree:

.
└── .gradle
 └── init.d
 └── build-announcements.gradle

Gradle will execute every initialization script it finds under init.d as long as the file

extension matches .gradle. Because you want to apply the plugin before any other

build script code is executed, you’ll pick the lifecycle callback method that’s most

appropriate for handling this situation: Gradle#projectLoaded(Closure). The fol-

lowing code snippet shows how to apply the build-announcements plugin to the

build’s root project:

gradle.projectsLoaded { Gradle gradle ->
 gradle.rootProject {
 apply plugin: 'build-announcements'
 }
}

An important lesson to learn in this context is that some lifecycle events are only

fired if they’re declared in the appropriate location. For example, the closure for

the lifecycle hook Gradle#projectsLoaded(Closure) wouldn’t get fired if you

declared it in your build.gradle, because the project creation happens during the

initialization phase.

Figure 4.15 Build announcement

sent by Growl on Mac OS X

Executes closure when
projects of build have
been created

104 CHAPTER 4 Build script essentials

4.4 Summary

Every Gradle build script consists of two basic building blocks: one or more projects

and tasks. Both elements are deeply rooted in Gradle’s API and have a direct class rep-

resentation. At runtime, Gradle creates a model from the build definition, stores it in

memory, and makes it accessible for you to access through methods. You learned that

properties are a means of controlling the behavior of the build. A project exposes

standard properties out of the box. Additionally, you can define extra properties on

many of Gradle’s domain model objects (for example, on the project and task level)

to declare arbitrary user data.

 Later in the chapter, you learned the ins and outs of tasks. As an example, you

implemented build logic to control your project’s version numbering scheme stored

in an external properties file. You started out by adding simple tasks to the build

script. Build logic can be defined directly in the action closure of a task. Every task is

derived from the class org.gradle.api.DefaultTask. As such, it comes loaded with

functionality accessible through methods of its superclass.

 Understanding the build lifecycle and the execution order of its phases is crucial

to beginners. Gradle makes a clear distinction between task actions and task configu-

rations. Task actions, defined through the closures doFirst and doLast or its shortcut

notation <<, are run during the execution phase. Any other code defined outside of a

task action is considered a configuration and therefore executed beforehand during

the configuration phase.

 Next, we turned our attention to implementing nonfunctional requirements: build

execution performance, code maintainability, and reusability. You added incremental

build support to one of your existing task implementations by declaring its input and

output data. If the data doesn’t change between the initial and subsequent builds task,

execution is skipped. Implementing incremental build support is easy and cheap. If

done right, it can significantly improve the execution time of your build. Complex build

logic is best structured in custom task classes, which give you all the benefits of object-

oriented programming. You practiced writing a custom task class by transferring the

existing logic into an implementation of DefaultTask. You also cleaned up your build

script by moving compilable code under the buildSrc directory. Gradle comes with a

whole range of reusable task types like Zip and Copy. You incorporated both types by

modeling a chain of task dependencies for releasing your project.

 Access to Gradle’s internals is not limited to the model. You can register build life-

cycle hooks that execute code whenever the targeted event is fired. As an example,

you wrote a task execution graph lifecycle hook as a closure and listener implementa-

tion. Initialization scripts can be used to apply common code like lifecycle listeners

across all of your builds.

 You already got a first taste of the mechanisms that enable you to declare a depen-

dency on an external library. In the next chapter, we’ll deepen your knowledge with a

detailed discussion of working with dependencies and how dependency resolution

works under the hood.

105

Dependency management

In chapter 3, you learned how to declare a dependency on the Servlet API to imple-

ment web components for the To Do application. Gradle’s DSL configuration clo-

sures make it easy to declare dependencies and the repositories to retrieve them

from. First, you define what libraries your build depends on with the dependencies

script. Second, you tell your build the origin of these dependencies using the

repositories closure. With this information in place, Gradle automatically

resolves the dependencies, downloads them to your machine if needed, stores

them in a local cache, and uses them for the build.

 This chapter covers Gradle’s powerful support for dependency management.

We’ll take a close look at key DSL configuration elements for grouping dependen-

cies and targeting different types of repositories.

This chapter covers

■ Understanding automated dependency

management

■ Declaring and organizing dependencies

■ Targeting various types of repositories

■ Understanding and tweaking the local cache

■ Dependency reporting and version conflict

resolution

106 CHAPTER 5 Dependency management

 Dependency management sounds like an easy nut to crack, but can become diffi-

cult when it comes to dependency resolution conflicts. Transitive dependencies, the

dependencies a declared dependency relies on, can be a blessing and a curse. Com-

plex dependency graphs can cause a mix-up of dependencies with multiple versions

resulting in unreliable, nondeterministic builds. Gradle provides dependency reports

for analyzing the dependency tree. You’ll learn how to find answers to questions like

“Where does a specific dependency come from?” and “Why was this specific version

picked?” to resolve version conflicts.

 Gradle rolls its own dependency management implementation. Having learned

from the shortcomings of other dependency managers like Ivy and Maven, Gradle’s

special concern is performance, build reliability, and reproducibility.

5.1 A quick overview of dependency management

Almost all JVM-based software projects depend on external libraries to reuse existing

functionality. For example, if you’re working on a web-based project, there’s a high

likelihood that you rely on one of the popular open source frameworks like Spring

MVC or Play to improve developer productivity. Libraries in Java get distributed in the

form of a JAR file. The JAR file specification doesn’t require you to indicate the version

of the library. However, it’s common practice to attach a version number to the JAR file-

name to identify a specific release (for example, spring-web-3.1.3.RELEASE.jar).

You’ve seen small projects grow big very quickly, along with the number of third-party

libraries and modules your project depends on. Organizing and managing your JAR

files is critical.

5.1.1 Imperfect dependency management techniques

Because the Java language doesn’t provide or propose any tooling for managing ver-

sioned dependencies, teams will have to come up with their own strategies to store

and retrieve them. You may have encountered the following common practices:

■ Manually copying JAR files to the developer machine. This is the most primitive,

nonautomated, and error-prone approach to handle dependencies.

■ Using a shared storage for JAR files (for example, a folder on a shared network

drive), which gets mounted on the developer’s machine, or retrieving binaries

over FTP. This approach requires the developer to initially establish the connec-

tion to the binary repository. New dependencies will need to be added manu-

ally, which potentially requires write permissions or access credentials.

■ Checking JAR files that get downloaded with the project source code into the VCS.

This approach doesn’t require any additional setup and bundles source code and

all dependencies as one consistent unit. Your team can retrieve changes when-

ever they update their local copy of the repository. On the downside, binary files

unnecessarily use up space in the repository. Changing working copies of a library

requires frequent check-ins whenever there’s a change to the source code. This is

especially true if you’re working with projects that depend on each other.

107A quick overview of dependency management

5.1.2 Importance of automated dependency management

While all of these approaches work, they’re far from being sufficient solutions,

because they don’t provide a standardized way to name and organize the JAR files. At

the very least, you’ll need to know the exact version of the library and the dependen-

cies it depends on, the transitive dependencies. Why is this so important?

KNOWING THE EXACT VERSION OF A DEPENDENCY

Working with a project that doesn’t clearly state the versions of its dependencies

quickly becomes a maintenance nightmare. If not documented meticulously, you can

never be sure which features are actually supported by the library version in your proj-

ect. Upgrading a library to a newer version becomes a guessing game, because you

don’t know exactly what version you’re upgrading from. In fact, you may actually be

downgrading without knowing it.

MANAGING TRANSITIVE DEPENDENCIES

Transitive dependencies are of concern even at an early stage of development. These

are the libraries your first-level dependencies require in order to work correctly. Popu-

lar Java development stacks like the combination of Spring and Hibernate can easily

bring in more than 20 additional libraries from the start. A single library may require

many other libraries in order to work correctly. Figure 5.1 shows the dependency

graph for Hibernate’s core library.

 Trying to manually determine all transitive dependencies for a specific library can

be a real time-sink. Many times this information is nowhere to be found in the library’s

documentation and you end up on a wild-goose chase to get your dependencies right.

Version

conflict

hibernate-

core-3.6.3.Final.jar
antlr-2.7.6.jar

commons-

collections-3.1.jar

dom4j-1.6.1.jar

hibernate-commons-

annotations-3.2.0.Final.jar
slf4j-api-1.5.8.jar

hibernate-jpa-2.0-

api-1.0.0-Final.jar

jta-1.1.jar

slf4j-api-1.6.1.jar

Figure 5.1 Dependency graph of Hibernate core library

108 CHAPTER 5 Dependency management

As a result, you can experience unexpected behavior like compilation errors and run-

time class-loading issues.

 I think we can agree that a more sophisticated solution is needed to manage

dependencies. Optimally, you’ll want to be able to declare your dependencies and

their respective versions as project metadata. As part of an automated process, they

can be retrieved from a central location and installed for your project. Let’s look at

existing open source solutions that support these features.

5.1.3 Using automated dependency management

The Java space is mostly dominated by two projects that support declarative and auto-

mated dependency management: Apache Ivy, a pure dependency manager that’s

mostly used with Ant projects, and Maven, which contains a dependency manager as

part of its build infrastructure. I’m not going to go into deep details of any of these

solutions. Instead, the purpose of this section is to explain the concepts and mechan-

ics of automated dependency management.

 In Ivy and Maven, dependency configuration is expressed through an XML

descriptor file. The configuration consists of two parts: the dependency identifiers

plus their respective versions, and the location of the binary repositories (for exam-

ple, an HTTP address you want to retrieve them from). The dependency manager

evaluates this information and automatically targets those repositories to download

the dependencies onto your local machine. Libraries can define transitive depen-

dencies as part of their metadata. The dependency manager is smart enough to

analyze this information and resolve those dependencies as part of the retrieval

process. If a dependency version conflict is recognized, as demonstrated by the

example of Hibernate core, the dependency manager will try to resolve it. Once

downloaded, the libraries are stored in a local cache. Now that the configured

libraries are available on your developer machine, they can be used for your build.

Subsequent builds will first check the local cache for a library to avoid unnecessary

requests to a repository. Figure 5.2 illustrates the key elements of automated depen-

dency management.

Dependency

configuration

Dependency manager

Network

download JARs

evaluate

store

JARs

retrieve

JARs

use

JARs

Local machine

Dependency

cache

Local

repository

Remote

repository

Figure 5.2 Anatomy of automated

dependency management

109A quick overview of dependency management

Using a dependency manager frees you from the burden of manually having to copy

or organize JAR files. Gradle provides a powerful out-of-the-box dependency manage-

ment implementation that fits into the architecture just described. It describes the

dependency configuration as part of Gradle’s expressive DSL, has support for transi-

tive dependency management, and plays well with existing repository infrastructures.

Before we dive into the details, let’s look at some of the challenges you may face with

dependency management and how to cope with them.

5.1.4 Challenges of automated dependency management

Even though dependency management significantly simplifies the handling of exter-

nal libraries, at some point you’ll find yourself dealing with certain shortcomings that

may compromise the reliability and reproducibility of your build.

POTENTIAL UNAVAILABILITY OF CENTRALLY HOSTED REPOSITORIES

It’s not uncommon for enterprise software to rely on open source libraries. Many of

these projects publish their releases to a centrally hosted repository. One of the most

widely used repositories is Maven Central. If Maven Central is the only repository your

build relies on, you’ve automatically created a single point of failure for your system.

In case the repository is down, you’ve stripped yourself of the ability to build your

project if a dependency is required that isn’t available in your local cache.

 You can avoid this situation by configuring your build to use your own custom

in-house repository, which gives you full control over server availability. If you’re eager

to learn about it, feel free to directly jump to chapter 14, which talks about how to set

up and use open source and commercial repository managers like Sonatype Nexus

and JFrog’s Artifactory.

BAD METADATA AND MISSING DEPENDENCIES

Earlier you learned that metadata is used to declare transitive dependencies for a

library. A dependency manager analyzes this information, builds a dependency graph

from it, and resolves all nested dependencies for you. Using transitive dependency

management is a huge timesaver and enables traceability for your dependency graph.

 Unfortunately, neither the metadata nor the repository guarantees that any of the

artifacts declared in the metadata actually exist, are defined correctly, or are even

needed. You may encounter problems like missing dependencies, especially on repos-

itories that don’t enforce any quality control, which is a known issue on Maven Cen-

tral. Figure 5.3 demonstrates the artifact production and consumption lifecycle for a

Maven repository.

 Gradle allows for excluding transitive dependencies on any level of the depen-

dency graph. Alternatively, you can omit the provided metadata and instate your own

transitive dependency definition.

 You’ll find that popular libraries will appear in your transitive dependency graph

with different versions. This is often the case for commonly used functionality like log-

ging frameworks. The dependency manager tries to find a smart solution for this

problem by picking one of these versions based on a certain resolution strategy to

110 CHAPTER 5 Dependency management

avoid version conflicts. Sometimes you’ll need to tweak those choices. To do so, you’ll

first want to find out which dependencies bring in what version of a transitive depen-

dency. Gradle provides meaningful dependency reports to answer these questions.

Later, we’ll see these reports in action. Now let’s see how Gradle implements these

ideas with the help of a full-fledged example.

5.2 Learning dependency management by example

In chapter 3, you saw how to use the Jetty plugin to deploy a To Do application to an

embedded Jetty Servlet container. Jetty is a handy container for use during develop-

ment. With its lightweight container implementation, it provides fast startup times.

Many enterprises use other web application container implementations in their pro-

duction environments. Let’s assume you want to build support for deploying your web

application to a different container product, such as Apache Tomcat.

 The open source project Cargo (http://cargo.codehaus.org/) provides versatile

support for web application deployment to a variety of Servlet containers and applica-

tion servers. Cargo supports two implementations you can use in your project. On the

one hand, you can utilize a Java API, which gives you fine-grained access to each and

every aspect of configuring Cargo. On the other hand, you can choose to execute a set

of preconfigured Ant tasks that wrap the Java API. Because Gradle provides excellent

integration with Ant, our examples will be based on the Cargo Ant tasks.

 Let’s revisit figure 5.1 and see how the components change in the context of a

Gradle use case. In chapter 3 you learned that dependency management for a proj-

ect is configured with the help of two DSL configuration blocks: dependencies and

repositories. The names of the configuration blocks directly map to methods of the

interface Project. For your use case, you’re going to use Maven Central because it

doesn’t require any additional setup. Figure 5.4 shows that dependency definitions

are provided through Gradle’s DSL in the build.gradle file. The dependency man-

ager will evaluate this configuration at runtime, download the required artifacts from

produce

Published artifacts

Maven

repository

upload

download

Build tool my.jar pom.xml

Library developer

use

Downloaded artifacts

Build tool my.jar pom.xml

Library consumer

Figure 5.3 Bad metadata complicates the use of transitive dependencies.

Dependency metadata in Maven repositories is represented by a project object model

(POM) file. If the library developer provides incorrect metadata, the consumer will

inherit the problems.

http://cargo.codehaus.org/

111Dependency configurations

a central repository, and store them in your local cache. You’re not using a local repos-

itory, so it’s not shown in the figure.

 The following sections of this chapter discuss each of the Gradle build script con-

figuration elements one by one. Not only will you learn how to apply them to the

Cargo example, you’ll also learn how to apply dependency management to imple-

ment the requirements of your own project. Let’s first look at a concept that will

become more important in the context of our example: dependency configurations.

5.3 Dependency configurations

In chapter 3, you saw that plugins can introduce configurations to define the scope

for a dependency. The Java plugin brings in a variety of standard configurations to

define which bucket of the Java build lifecycle a dependency should apply to. For

example, dependencies required for compiling production source code are added

with the compile configuration. In the build of your web application, you used the

compile configuration to declare a dependency on the Apache Commons Lang

library. To get a better understanding of how configurations are stored, configured,

and accessed, let’s look at responsible interfaces in Gradle’s API.

5.3.1 Understanding the configuration API representation

Configurations can be directly added and accessed at the root level of a project; you

can decide to use one of the configurations provided by a plugin or declare your own.

Every project owns a container of class ConfigurationContainer that manages the

corresponding configurations. Configurations are very flexible in their behavior. You

can control whether transitive dependencies should be part of the dependency resolu-

tion, define the resolution strategy (for example, how to respond to conflicting arti-

fact versions), and even make configurations extend to each other. Figure 5.5 shows

the relevant Gradle API interfaces and their methods.

dependencies {

// Declare Cargo libraries

}

repositories {

mavenCentral()

}

task deployToLocalTomcat << {

// Use Cargo Ant tasks

}

Gradle runtimebuild.gradle

Internet

download JARs

evaluate

store

JARs

use

JARs

Local machine

Dependency

cache

Maven

Central

Figure 5.4 Declaring a dependency on the Cargo libraries in a Gradle build

112 CHAPTER 5 Dependency management

Another way of thinking of configurations is in terms of a logical grouping. Grouping

dependencies by configuration is a similar concept to organizing Java classes into

packages. Packages provide unique namespaces for classes they contain. The same is

true for configurations. They group dependencies that serve a specific responsibility.

 The Java plugin already provides six configurations out of the box: compile, run-

time, testCompile, testRuntime, archives, and default. Couldn’t you just use one

of those configurations to declare a dependency on the Cargo libraries? Generally,

you could, but you’d mix up dependencies that are relevant to your application code

and the infrastructure code you’re writing for deploying the application. Adding

unnecessary libraries to your distribution can lead to unforeseen side effects at run-

time and should be avoided at all costs. For example, using the compile configuration

will result in a WAR file that contains the Cargo libraries. Next, I’ll show how to define

a custom configuration for the Cargo libraries.

5.3.2 Defining a custom configuration

To clearly identify the dependencies needed for Cargo, you’ll need to declare a new

configuration with the unique name cargo, as demonstrated in the following listing.

configurations {
 cargo {
 description = 'Classpath for Cargo Ant tasks.'
 visible = false

Listing 5.1 Defining a configuration for Cargo libraries

add(name: String)

add(name: String, c: Closure)

getByName(name: String)

getByName(name: String, c: Closure)

<<interface>>

ConfigurationContainer

1

1

0..*

1

getDependencies()

getResolutionStrategy()

getName()

getDescription()

getExtendsFrom()

isTransitive()

setDescription(description: String)

setTransitive(transitive: boolean)

setVisible(visible: boolean)

setExtendsFrom(c: Set<Configuration>)

resolutionStrategy(c: Closure)

<<interface>>

Configuration

configurations(c: Closure)

getConfigurations()

<<interface>>

Project

Figure 5.5 Configurations can be added and accessed through the Project instance

Defines new configuration by name

Sets description and
visibility of configuration

113Dependency configurations

 }
}

For now, you’re only dealing with a single Gradle project. Limiting the visibility of this

configuration to this project is a conscious choice in preparation for a multiproject

setup. If you want to learn more about builds consisting of multiple projects, check

out chapter 6. You don’t want to let configurations spill into other projects if they’re

not needed. The description that was set for the configuration is directly reflected

when you list the dependencies of the project:

$ gradle dependencies
:dependencies

--
Root project
--

cargo - Classpath for Cargo Ant tasks.
No dependencies

After adding a configuration to the configuration container of a project, it can be

accessed by its name. Next, you’ll use the cargo configuration to make the third-party

Cargo Ant task public to the build script.

5.3.3 Accessing a configuration

Essentially, Ant tasks are Java classes that adhere to Ant’s extension endpoint for defin-

ing custom logic. To add a nonstandard Ant task like the Cargo deployment task to

your project, you’ll need to declare it using the Taskdef Ant task. To resolve the Ant

task implementation class, the Cargo JAR files containing them will need to be

assigned. The next listing shows how easy it is to access the configuration by name.

The task uses the resolved dependencies and assigns them to the classpath required

for the Cargo Ant task.

task deployToLocalTomcat << {
 FileTree cargoDeps = configurations.getByName('cargo').asFileTree
 ant.taskdef(resource: 'cargo.tasks', classpath: cargoDeps.asPath)

 ant.cargo(containerId: 'tomcat7x', action: 'run',
 ➥ output: "$buildDir/output.log") {
 configuration {
 deployable(type: 'war', file: 'todo.war')
 }

 zipUrlInstaller(installUrl: 'http://archive.apache.org/dist/
 ➥ tomcat/tomcat-7/v7.0.32/bin/
 ➥ apache-tomcat-7.0.32.zip')
 }
}

Listing 5.2 Accessing the cargo configuration by name

Gets all
dependencies

for cargo
configuration

as file tree

Uses concatenated path of fully
qualified dependencies to resolve

Cargo Ant task definitions

Uses Cargo Ant task to
automatically download
a Tomcat 7 distribution,
deploy a WAR file, and
run it in container

114 CHAPTER 5 Dependency management

Don’t worry if you don’t understand everything in the code example. The important

part is that you recognize the Gradle API methods that allow you access to a configura-

tion. The rest of the code is mostly Ant-specific configurations expressed through Gra-

dle’s DSL. Chapter 9 will give you the inside scoop on using Ant tasks from Gradle.

With the deployment task set up, it’s time to assign the Cargo dependencies to the

cargo configuration.

5.4 Declaring dependencies

Chapter 3 gave you a first taste of how to tell your project that an external library is

needed for it to function correctly. The DSL configuration block dependencies is used

to assign one or more dependencies to a configuration. External dependencies are

not the only dependencies you can declare for your project. Table 5.1 gives you an

overview of the various types of dependencies. In this book we’ll discuss and apply

many of these options. Some of the dependency types are explained in this chapter,

but others will make more sense in the context of another chapter. The table refer-

ences each of the use cases.

In this chapter we’ll cover external module dependencies and file dependencies, but

first let’s see how dependency support is represented in Gradle’s API.

5.4.1 Understanding the dependency API representation

Every Gradle project has an instance of a dependency handler, which is represented

by the interface DependencyHandler. You obtain a reference to the dependency han-

dler by using the project’s getter method getDependencies(). Each of the depen-

dency types presented in table 5.1 is declared through a method of the dependency

handler within the project’s dependencies configuration block. Each dependency is

an instance of type Dependency. The attributes group, name, version, and classifier

Table 5.1 Dependency types for a Gradle project

Type Description
Where to Go for More

Information

External module dependency A dependency on an external library in a

repository including its provided metadata

Section 5.4.2

Project dependency A dependency on another Gradle project Section 6.3.3

File dependency A dependency on a set of files in the

file system

Section 5.4.3

Client module dependency A dependency on an external library in a

repository with the ability to declare the

metadata yourself

Not covered—refer to the

online manual

Gradle runtime dependency A dependency on Gradle’s API or a library

shipped with the Gradle runtime

Section 8.5.7

115Declaring dependencies

clearly identify a dependency. Figure 5.6 illustrates the relationship between the proj-

ect, the dependency handler, and the actual dependencies.

 Let’s first look at how to declare external module dependencies, their notation,

and how to configure them to meet your needs.

5.4.2 External module dependencies

In Gradle’s terminology, external libraries, usually in the form of JAR files, are called

external module dependencies. They represent a dependency on a module outside of the

project hierarchy. This type of dependency is characterized by attributes that clearly iden-

tify it within a repository. In the following section, we’ll discuss each attribute one by one.

DEPENDENCY ATTRIBUTES

When the dependency manager looks for a dependency on a repository, it locates it

through the combination of attributes. At a minimum, a dependency needs to provide

a name. Let’s review the dependency attributes with the help of the Hibernate core

library we examined in section 5.1.2:

■ group: This attribute usually identifies an organization, company, or project.

The group may use a dot notation, but it’s not mandatory. In the case of the

Hibernate library, the group is org.hibernate.

■ name: An artifact’s name uniquely describes the dependency. The name of

Hibernate’s core library is hibernate-core.

■ version: A library may be available in many versions. Many times the version

string consists of a major and a minor version. The version you selected for

Hibernate core is 3.6.3-Final.

add(configName: String, depNotation: Object)

add(configName: String, depNotation: Object, c: Closure)

create(depNotation: Object)

create(depNotation: Object, c: Closure)

gradleApi()

localGroovy()

module(notation: Object)

module(notation: Object, c: Closure)

project(notation: Map<String, ?>)

<<interface>>

DependencyHandler

1

1

0..*

1

contentEquals(dependency: Dependency)

copy()

getGroup()

getName()

getVersion()

<<interface>>

Dependency

dependencies(c: Closure)

getDependencies()

<<interface>>

Project

Figure 5.6 Different types of dependencies can be added on the project level.

116 CHAPTER 5 Dependency management

■ classifier: Sometimes an artifact defines another attribute, the classifier,

which is used to distinguish artifacts with the same group, name, and version,

but it needs further specification (for example, the runtime environment).

Hibernate’s core library doesn’t provide a classifier.

Now that we’ve reviewed some dependency attributes, we can look more closely at

how Gradle expects them to be declared in the build script.

DEPENDENCY NOTATION

To declare dependencies in your project, you can use the following syntax:

dependencies {
 configurationName dependencyNotation1, dependencyNotation2, ...
}

You first state the name of the configura-

tion you want to assign the dependencies

to and then a list of dependencies in the

notation of your choice. The dependency

notation comes in two flavors. You can

either provide a map of attribute names

and their values, or the shortcut notation as a string that separates each attribute by a

colon (see figure 5.7). We’ll look at both notations in the example.

 After defining the configuration, you can easily use it to assign the relevant

Cargo dependencies. To use Cargo in your project, you’ll need to provide JAR files

containing the Cargo API, the core container implementations, and the Cargo Ant

tasks. Thankfully, Cargo provides an UberJar, a single JAR file that packages the API

and container functionality, which will make the dependency management easier.

The following listing shows how to assign the relevant Cargo dependencies to the

cargo configuration.

ext.cargoGroup = 'org.codehaus.cargo'
ext.cargoVersion = '1.3.1'

dependencies {
 cargo group: cargoGroup, name: 'cargo-core-uberjar',
 ➥ version: cargoVersion
 cargo "$cargoGroup:cargo-ant:$cargoVersion"
}

If you deal with a lot of dependencies in your project, it’s helpful to break out com-

monly used dependency attributes as extra properties. You do that in the example code

by creating and using properties for Cargo’s dependency group and version attributes.

 Gradle doesn’t select a default repository for you. Trying to run the task deployTo-

LocalTomcat without configuring a repository would result in an error, as shown in

the following console output:

Listing 5.3 Assigning Cargo dependencies to cargo configuration

org.hibernate:hibernate-core:3.6.3-Final

group name version

Figure 5.7 Dependency attributes in shortcut

notation

Dependency declaration
using map containing
group, name, and
version attributes

Shortcut dependency
declaration as a string

117Declaring dependencies

$ gradle deployToLocalTomcat
:deployToLocalTomcat FAILED

FAILURE: Build failed with an exception.

* Where: Build file '/Users/benjamin/gradle-in-action/code/

➥ chapter5/cargo-configuration/build.gradle' line: 10

* What went wrong:
Execution failed for task ':deployToLocalTomcat'.
> Could not resolve all dependencies for configuration ':cargo'.
 > Could not find group:org.codehaus.cargo, module:cargo-core-
 ➥ uberjar, version:1.3.1.
 Required by:
 :cargo-configuration:unspecified
 > Could not find group:org.codehaus.cargo, module:cargo-ant,
 ➥ version:1.3.1.
 Required by:
 :cargo-configuration:unspecified

So far, we haven’t talked about different types of repositories and how to configure

them. For the sake of getting this example running, add the following repositories

configuration block:

repositories {
 mavenCentral()
}

There’s no need to fully understand the intricacies of this code snippet. The important

point is that you configured your project to use Maven Central to download the Cargo

dependencies. Later in this chapter, you’ll learn how to configure other repositories.

INSPECTING THE DEPENDENCY REPORT

When you run the dependencies help task, you can now see that the full dependency

tree is printed. The tree shows the top-level dependencies you declared in the build

script, as well as their transitive dependencies:

$ gradle dependencies
:dependencies

--
Root project
--

cargo - Classpath for Cargo Ant tasks.
+--- org.codehaus.cargo:cargo-core-uberjar:1.3.1
| +--- commons-discovery:commons-discovery:0.4
| | \--- commons-logging:commons-logging:1.0.4
| +--- jdom:jdom:1.0
| +--- dom4j:dom4j:1.4
| | +--- xml-apis:xml-apis:1.0.b2 -> 1.3.03
| | +--- jaxen:jaxen:1.0-FCS
| | +--- saxpath:saxpath:1.0-FCS
| | +--- msv:msv:20020414
| | +--- relaxngDatatype:relaxngDatatype:20020414

Declared top-level
dependencies in
build script

Indicates both requested
and selected version to
resolve version conflict
of library

118 CHAPTER 5 Dependency management

| | \--- isorelax:isorelax:20020414
| +--- jaxen:jaxen:1.0-FCS (*)
| +--- saxpath:saxpath:1.0-FCS (*)
| +--- msv:msv:20020414 (*)
| +--- relaxngDatatype:relaxngDatatype:20020414 (*)
| +--- isorelax:isorelax:20020414 (*)
| +--- com.sun.xml.bind:jaxb-impl:2.1.13
| | \--- javax.xml.bind:jaxb-api:2.1
| | +--- javax.xml.stream:stax-api:1.0-2
| | \--- javax.activation:activation:1.1
| +--- javax.xml.bind:jaxb-api:2.1 (*)
| +--- javax.xml.stream:stax-api:1.0-2 (*)
| +--- javax.activation:activation:1.1 (*)
| +--- org.apache.ant:ant:1.7.1
| | \--- org.apache.ant:ant-launcher:1.7.1
| +--- org.apache.ant:ant-launcher:1.7.1 (*)
| +--- xerces:xercesImpl:2.8.1
| | \--- xml-apis:xml-apis:1.3.03 (*)
| +--- xml-apis:xml-apis:1.3.03 (*)
| \--- commons-logging:commons-logging:1.0.4 (*)
\--- org.codehaus.cargo:cargo-ant:1.3.1
 \--- org.codehaus.cargo:cargo-core-uberjar:1.3.1 (*)

(*) - dependencies omitted (listed previously)

If you examine the dependency tree carefully, you’ll see that dependencies marked

with an asterisk have been omitted. That means that the dependency manager

selected either the same or another version of the library because it was declared as a

transitive dependency of another top-level dependency. Interestingly, this is the case

for the UberJar, so you don’t even have to declare it in your build script. The Ant tasks

library will automatically make sure that the library gets pulled in. Gradle’s default res-

olution strategy for version conflicts is newest first—that is, if the dependency graph

contains two versions of the same library, it automatically selects the newest. In the

case of the library xml-apis, Gradle chooses version 1.3.03 over 1.0.b2, which is indi-

cated by an arrow (->). As you can see, it’s very helpful to analyze the information

exposed by the dependency report. When you want to find out which top-level depen-

dency declares a specific transitive dependency and why a specific version of a library

has been selected or omitted, the dependency report is a good place to start. Next,

we’ll look at how to exclude transitive dependencies.

EXCLUDING TRANSITIVE DEPENDENCIES

When dealing with a public repository like Maven Central, you may encounter poorly

maintained dependency metadata. Gradle gives you full control over transitive depen-

dencies, so you can decide to either fully exclude all transitive dependencies or selec-

tively exclude specific dependencies. Let’s say you explicitly want to specify a different

version of the library xml-apis instead of using the transitive dependency provided by

Cargo’s UberJar. In practice, this is often the case when some of your own functionality

is built on top of a specific version of an API or framework. The next listing shows how to

use the exclude method from ModuleDependency to exclude a transitive dependency.

Declared top-level
dependencies in
build script

Marked transitive
dependencies that
were excluded from
dependency graph

119Declaring dependencies

dependencies {
 cargo('org.codehaus.cargo:cargo-ant:1.3.1') {
 exclude group: 'xml-apis', module: 'xml-apis'
 }
 cargo 'xml-apis:xml-apis:2.0.2'
}

Notice that the exclusion attributes are slightly different from the regular dependency

notation. You can use the attributes group and/or module. Gradle doesn’t allow you to

exclude only a specific version of a dependency, so the version attribute isn’t available.

 Sometimes the metadata of a dependency declares transitive dependencies that

don’t exist in the repository. As a result, your build will fail. This is only one of the sit-

uations when you want to have full control over transitive dependencies. Gradle lets

you exclude all transitive dependencies using the transitive attribute, as shown in

the following listing.

dependencies {
 cargo('org.codehaus.cargo:cargo-ant:1.3.1') {
 transitive = false
 }

 // Selectively declare required dependencies
}

So far, you’ve only declared dependencies on specific versions of an external library.

Let’s see how to resolve the latest version of a dependency or the latest within a range

of versions.

DYNAMIC VERSION DECLARATION

Dynamic version declarations have a specific syntax. If you want to use the latest ver-

sion of a dependency, you’ll have to use the placeholder latest.integration. For

example, to declare the latest version for the Cargo Ant tasks, you’d use org.codehaus

.cargo:cargo-ant:latest-integration. Alternatively, you can declare the part of the

version attribute you want to be dynamic by demarcating it with a plus sign (+). The fol-

lowing listing shows how to resolve the latest 1.x version of the Cargo Ant library.

dependencies {
 cargo 'org.codehaus.cargo:cargo-ant:1.+'
}

Gradle’s dependencies help task clearly indicates which version has been picked:

$ gradle –q dependencies

--
Root project
--

Listing 5.4 Excluding a single dependency

Listing 5.5 Excluding all transitive dependencies

Listing 5.6 Declaring a dependency on the latest Cargo 1.x version

Exclusions can be
declared in a shortcut
or map notation.

120 CHAPTER 5 Dependency management

cargo - Classpath for Cargo Ant tasks.
\--- org.codehaus.cargo:cargo-ant:1.+ -> 1.3.1
 \--- ...

Another option is to select the latest within a range of versions for a dependency. To

learn more about the syntax, feel free to check Gradle’s online manual.

5.4.3 File dependencies

As described earlier, projects that don’t use automated dependency management

organize their external libraries as part of the source code or in the local file system.

Especially when migrating your project to Gradle, you don’t want to change every

aspect of your build at once. Gradle makes it easy for you to configure file dependen-

cies. You’ll emulate this for your project by referencing the Cargo libraries in the local

file system. The following listing shows a task that copies the dependencies resolved

from Maven Central to the subdirectory libs/cargo under your user home directory.

task copyDependenciesToLocalDir(type: Copy) {
 from configurations.cargo.asFileTree
 into "${System.properties['user.home']}/libs/cargo"
}

After running the task, you’ll be able to declare the Cargo libraries in your dependencies

configuration block. The next listing demonstrates how to assign all JAR files to the

cargo configuration as a file dependency.

dependencies {
 cargo fileTree(dir: "${System.properties['user.home']}/libs/cargo",
 ➥ include: '*.jar')
}

Because you’re not dealing with a repository that requires you to declare dependen-

cies with a specific pattern, you also don’t need to define a repositories configura-

tion block. Next, we’ll focus on the various repository types supported by Gradle and

how they’re configured.

When should I use dynamic versions?

The short answer is rarely or even never. A reliable and reproducible build is para-

mount. Choosing the latest version of a library may cause your build to fail. Even

worse, without knowing it, you may introduce incompatible library versions and side

effects that are hard to find and only occur at runtime of your application. Therefore,

declaring the exact version of a library should be the norm.

Listing 5.7 Copying the Cargo dependencies to your local file system

Listing 5.8 Declaring file dependencies

Syntactic sugar provided by
Gradle API; same as calling
configurations.getByName-
('cargo').asFileTree.

121Using and configuring repositories

5.5 Using and configuring repositories

Gradle puts a special emphasis on supporting existing repository infrastructures.

You’ve already seen how to use Maven Central in your build. By using a single method

call, mavenCentral(), you configured your build to target the most popular Java

binary repository. Apart from the preconfigured repository support, you can also

assign an arbitrary URL of a Maven or Ivy repository and configure it to use authenti-

cation if needed. Alternatively, a simple file system repository can be used to resolve

dependencies. If metadata is found for a dependency, it will be downloaded from the

repository as well. Table 5.2 shows the different types of repositories and what section

to go to next to learn more about it.

Feel free to jump to the section that describes the repository you want to use in your

project. In the next section, we’ll look at Gradle’s API support for defining and config-

uring repositories before we apply each of them to practical examples.

5.5.1 Understanding the repository API representation

Central to defining repositories in your project is the interface RepositoryHandler,

which provides methods to add various types of repositories. From the project, these

methods are invoked within your repositories configuration block. You can declare

more than one repository. When the dependency manager tries to download the depen-

dency and its metadata, it checks the repositories in the order of declaration. The repos-

itory that provides the dependency first wins. Subsequent repository declarations won’t

be checked further for the specific dependency. As shown in figure 5.8, each of the

repository interfaces exposes different methods specific to the type of repository.

 Gradle doesn’t prefer any of the repository types. It’s up to your project’s needs to

declare the repository most fitting. In the next section, we’ll look at the syntax to declare

Maven repositories.

5.5.2 Maven repositories

Maven repositories are among the most commonly used repository types in Java proj-

ects. The library is usually represented in the form of a JAR file. The metadata is

Table 5.2 Repository types for a Gradle project

Type Description
Where To Go for

More Information

Maven repository A Maven repository on the local file system or a

remote server, or the preconfigured Maven Central

Section 5.5.2

Ivy repository An Ivy repository on the local file system or a

remote server with a specific layout pattern

Section 5.5.3

Flat directory repository A repository on the local file system without meta-

data support

Section 5.5.4

122 CHAPTER 5 Dependency management

expressed in XML and describes relevant information about the library and its transi-

tive dependencies, the POM file. Both artifacts are stored in a predefined directory

structure in the repository. When you declare a dependency in your build script, its

attributes are used to derive the exact location in the repository. The dot character in

the group attribute of a dependency indicates a subdirectory in the Maven repository.

Figure 5.9 shows how the Cargo Ant dependency attributes are mapped to determine

the location of the JAR and POM files in the repository.

 The interface RepositoryHandler provides two methods that allow you to define

preconfigured Maven repositories. The method mavenCentral() adds a reference to

Maven Central to the list of repositories, and the method mavenLocal() refers to a

local Maven repository in your file system. Let’s review both repository types and dis-

cuss when you’d use them in your project.

ADDING THE PRECONFIGURED MAVEN CENTRAL REPOSITORY

Maven Central is a commonly used repository in a build. Gradle wants to make it as easy

for the build developer as possible, and therefore provides you with a shortcut to declare

Maven Central. Instead of having to define the URL http://repo1.maven.org/maven2

1

0..*
manages

dir(dir: Object)

dirs(dirs: Object...)

getDirs()

setDirs(dirs: Iterable<?>)

<<interface>>

FlatDirectory

ArtifactRepository

getName()

setName(name: String)

<<interface>>

ArtifactRepository

artifactUrls(urls: Object...)

getArtifactUrls()

getUrl()

setArtifactUrls(urls: Iterable<?>)

setUrl(url: Object)

<<interface>>

MavenArtifactRepository

artifactPattern(pattern: String)

getUrl()

ivyPattern(pattern: String)

layout(layoutName: String)

layout(layoutName: String, c: Closure)

setUrl(url: Object)

<<interface>>

IvyArtifactRepository

flatDir(c: Closure)

flatDir(args: String<args, ?>)

ivy(c: Closure)

maven(c: Closure)

mavenCentral()

mavenCentral(args: String<args, ?>)

mavenLocal()

mavenRepo(args: String<args, ?>)

mavenRepo(args: String<args, ?>, c: Closure)

<<interface>>

RepositoryHandler

<<interface>>

Project

repositories(c: Closure)

getRepositories()

1

1

Figure 5.8 Relevant interfaces in Gradle’s API for configuring various types of repositories. Gradle

supports repository implementations for flat directories, Maven, and Ivy.

http://repo1.maven.org/maven2

123Using and configuring repositories

each and every time, you can just call the method mavenCentral(), as shown in the fol-

lowing code snippet:

repositories {
 mavenCentral()
}

A similar shortcut exists for defining a local Maven repository that by default is avail-

able under <USER_HOME>/.m2/repository.

ADDING THE PRECONFIGURED LOCAL MAVEN REPOSITORY

When Gradle resolves a dependency, it’s located in the repository, downloaded, and

then stored in the local cache. The location of this cache in your local file system is

different than the directory in which Maven stores artifacts after downloading them.

You may wonder when you’d want to use a local Maven repository now that you’re

dealing with Gradle. This is especially the case if you work in a mixed environment of

build tools. Imagine you’re working on one project that uses Maven to produce a

library, and another project operating with Gradle wants to consume the library.

Especially during development, you’ll go through cycles of implementing changes

and trying out the changes on the consuming side. To prevent you from having to

publish the library to a remote Maven repository for every little change, Gradle pro-

vides you with the option to target a local Maven repository, as shown in the follow-

ing repository declaration:

repositories {
 mavenLocal()
}

org

codehaus

cargo

cargo-ant

1.3.1

Maven repository

Dependency declaration

cargo-ant-1.3.1.pom

cargo-ant-1.3.1.jar

group

name

version

artifacts

org.codehaus.cargo:cargo-ant:1.3.1

group name

resolves

version

Figure 5.9 How a

dependency declaration

maps to artifacts in a

Maven repository

http://repo1.maven.org/maven2

124 CHAPTER 5 Dependency management

Be aware that using a local Maven repository should be limited to this specific use

case, as it may cause unforeseen side effects. You’re explicitly dependent on arti-

facts that are only available in the local file system. Running the script on other

machines or a continuous integration server may cause the build to fail if the arti-

facts don’t exist.

ADDING A CUSTOM MAVEN REPOSITORY

There are multiple reasons why you’d want to target a repository other than Maven

Central. Perhaps a specific dependency is simply not available, or you want to ensure

that your build is reliable by setting up your own enterprise repository. One of the

options a repository manager gives you is to configure a repository with a Maven lay-

out. This means that it adheres to the artifact storage pattern we discussed before.

Additionally, you can protect access to your repository by requiring the user to provide

authentication credentials. Gradle’s API supports two ways of configuring a custom

repository: maven() and mavenRepo(). The following listing shows how to target an

alternative public Maven repository if an artifact isn’t available in Maven Central.

repositories {
 mavenCentral()
 maven {
 name 'Custom Maven Repository',
 url 'http://repository-gradle-in-action.forge.cloudbees.com/release/')
 }
}

I can’t discuss every available configuration option in this chapter, so please refer to

the online documentation for more information. Let’s see how an Ivy repository is dif-

ferent from a Maven repository and its configuration.

5.5.3 Ivy repositories

Artifacts in a Maven repository have to be stored with a fixed layout. Any deviation

from that structure results in irresolvable dependencies. On the other hand, even

though an Ivy repository proposes a default layout, it’s fully customizable. In Ivy,

repository dependency metadata is stored in a file named ivy.xml. Gradle provides a

wide variety of methods to configure Ivy repositories and their specific layout in your

build. It goes beyond the scope of this book to cover all options, but let’s look at one

example. Imagine you want to resolve the Cargo dependencies from an Ivy repository.

The following listing demonstrates how to define the repository base URL, as well as

the artifact and metadata layout pattern.

repositories {
 ivy {
 url 'http://repository.myenterprise.com/ivy/bundles/release'

Listing 5.9 Declaring a custom Maven repository

Listing 5.10 Declaring an Ivy repository

Ivy
repository
base URL

125Using and configuring repositories

 layout 'pattern', {
 artifact '[organisation]/[module]/[revision]/[artifact]-
 ➥ [revision].[ext]'
 ivy '[organisation]/[module]/[revision]/ivy-[revision].xml'
 }
 }
}

As with the POM in Maven repositories, you’re not forced to use the Ivy metadata to

resolve transitive dependencies. The Ivy repository is perfect for resolving dependen-

cies that don’t necessarily follow the standard Maven artifact pattern. For example, you

could decide to place JAR files into a specific directory of a web server and serve it up via

HTTP. To complete our discussion about repositories, we’ll look at flat directories.

5.5.4 Flat directory repositories

The simplest and most rudimentary form of a repository is the flat directory reposi-

tory. It’s a single directory in the file system that contains only the JAR files, with no

metadata. If you’re used to manually maintaining libraries with your project sources

and planning to migrate to automated dependency management, this approach will

interest you.

 When you declare your dependencies, you can only use the attributes name and

version. The group attribute is not evaluated and leads to an unresolved dependency

if you try to use it. The next listing shows how to declare the Cargo dependencies as a

map and shortcut notation retrieved from a flat directory repository.

repositories {
 flatDir(dir: "${System.properties['user.home']}/libs/cargo",
 ➥ name: 'Local libs directory')
}

dependencies {
 cargo name: 'activation', version: '1.1'
 cargo name: 'ant', version: '1.7.1'
 cargo name: 'ant-launcher', version: '1.7.1'
 cargo name: 'cargo-ant', version: '1.3.1'
 cargo name: 'cargo-core-uberjar', version: '1.3.1'
 cargo name: 'commons-discovery', version: '0.4'
 cargo name: 'commons-logging', version: '1.0.4'
 cargo name: 'dom4j', version: '1.4'
 cargo name: 'isorelax', version: '20020414'
 cargo ':jaxb-api:2.1', ':jaxb-impl:2.1.13', ':jaxen:1.0-FCS',
 ➥ ':jdom:1.0', ':msv:20020414', ':relaxngDatatype:20020414',
 ➥ ':saxpath:1.0-FCS', ':stax-api:1.0-2', ':xercesImpl:2.8.1',
 ➥ ':xml-apis:1.3.03'
}

This listing also perfectly demonstrates how useful it is to be able to use metadata

that automatically declares transitive dependencies. In the case of the flat directory

Listing 5.11 Cargo dependencies declaration retrieved from a flat directory repository

Artifact
pattern

Metadata
pattern

Usage of
dependency
attributes
name and
version

Usage of
dependency
shortcut notation
without group
attribute

126 CHAPTER 5 Dependency management

repository, you don’t have this information, so you need to declare every single depen-

dency by itself, which can become quite tiring.

5.6 Understanding the local dependency cache

So far we’ve discussed how to declare dependencies and configure various types of

repositories to resolve those artifacts. Gradle automatically determines whether a

dependency is needed for the task you want to execute, downloads the artifacts from

the repositories, and stores them in the local cache. Any subsequent build will try to

reuse these artifacts. In this section, we’ll dig deeper by analyzing the cache structure,

identifying how the cache works under the hood and how to tweak its behavior.

5.6.1 Analyzing the cache structure

Let’s explore the local cache structure through the example of your Cargo libraries.

You know Gradle downloaded the JAR files when you ran the deployment task, but

where did it put them? If you check the Gradle forum, you’ll find that many users fre-

quently ask for it. You can use Gradle’s API to find out. The following listing shows

how to print out the full, concatenated path of all dependencies assigned to the con-

figuration cargo.

task printDependencies << {
 configurations.getByName('cargo').each { dependency ->
 println dependency
 }
}

If you run the task, you’ll see that all JAR files get stored in the directory /Users/

benjamin/.gradle/caches/artifacts-15/filestore:

$ gradle -q printDependencies
/Users/benjamin/.gradle/caches/artifacts-15/filestore/

➥ org.codehaus.cargo/cargo-core-uberjar/1.3.1/jar/

➥ 3d6aff857b753e36bb6bf31eccf9ac7207ade5b7/cargo-core-uberjar-1.3.1.jar
/Users/benjamin/.gradle/caches/artifacts-15/filestore/

➥ org.codehaus.cargo/cargo-ant/1.3.1/jar/

➥ a5a790c6f1abd6f4f1502fe5e17d3b43c017e281/cargo-ant-1.3.1.jar
...

This path will probably look slightly different on your machine. Let’s dissect this path

even more and give it some more meaning. Gradle’s root directory for storing depen-

dencies in the local cache is <USER_HOME>/.gradle/caches. The next part of the path,

artifact-15, is an identifier that’s specific to the Gradle version. It’s needed to differ-

entiate changes to the way metadata is stored.

 Bear in mind that this structure may change with newer versions of Gradle. The

actual cache is divided into two parts. The subdirectory filestore contains the raw

binaries downloaded from the repository. Additionally, you’ll find some binary files

that store metadata about the downloaded artifacts. You’ll never need to look at them

Listing 5.12 Printing the concatenated file path of all Cargo dependencies

127Understanding the local dependency cache

during your day-to-day business. The following directory tree shows the contents from

the root level of a local dependency cache:

.
└── artifacts-15
 ├── artifact-at-repository.bin
 ├── artifact-at-url.bin
 ├── artifacts-15.lock
 ├── dynamic-revisions.bin
 ├── filestore
 │ └── org.codehaus.cargo
 │ └── cargo-ant
 │ └── 1.3.1
 │ ├── jar
 │ │ └── a5a790c6f1abd6f4f1502fe5e17d3b43c017e281
 │ │ └── cargo-ant-1.3.1.jar
 │ └── pom
 │ └── cf13fc6a9e07971c96f0e2cc3c726fe6473eb926
 │ └── cargo-ant-1.3.1.pom
 ├── module-metadata
 │ └── ...
 └── module-metadata.bin

The filestore directory is a natural representation of a dependency. The attributes

group, name, and version directly map to subdirectories in the file system. In the next

section, we’ll discuss the benefits Gradle’s cache brings to your build.

5.6.2 Notable caching features

The real power of Gradle’s cache lies in its metadata. It enables Gradle to implement

additional optimizations that lead to smarter, faster, and more reliable builds. Let’s

discuss the features one by one.

STORING THE ORIGIN OF A DEPENDENCY

Imagine a situation where you declare a dependency in your script. While running the

build for the first time, the dependency gets downloaded and stored in the cache.

Subsequent builds will happily use the dependency available in the cache. The build is

successful. What would happen if the structure of the repository were changed (for

example, one of the attributes was renamed or the dependency moved or was simply

deleted)—something you as an artifact consumer have no control over? With many

other dependency managers like Maven and Ivy, the build would work just fine,

because the dependency exists in the local cache and can be resolved. However, for

any other developer that runs the build on a different machine, the build would fail.

This is a problem and leads to inconsistent builds. Gradle takes a different approach

to this situation. It knows the location a dependency originates from and stores this

information in the cache. As a result, your build becomes more reliable.

ARTIFACT CHANGE DETECTION

Gradle tries to reduce the network traffic to remote repositories. This is not only the

case for dependencies that were already downloaded. If a dependency cannot be

Binary
metadata
about
downloaded
artifacts

Directory
containing
raw artifacts

SHA1
checksum that
guarantees the
uniqueness of

an artifact

128 CHAPTER 5 Dependency management

resolved in a repository, this metadata is stored in the cache. Gradle uses this informa-

tion to avoid having to check the repository every time the build runs.

REDUCED ARTIFACT DOWNLOADS AND IMPROVED CHANGE DETECTION

Gradle provides tight integration with Maven’s local repository to avoid having to

download existing artifacts. If a dependency can be resolved locally, it’s reused. The

same is true for artifacts that were stored with other versions of Gradle.

 Gradle detects if an artifact was changed in the repository by comparing its local

and remote checksum. Unchanged artifacts are not downloaded again and reused

from the local cache. Imagine the artifact was changed on the repository but the

checksum is still the same. This could happen if the administrator of the repository

replaces an artifact with the same version. Ultimately, your build will use an outdated

version of the artifact. Gradle’s dependency manager tries to eliminate this situation

by taking additional information into consideration. For example, it can ensure an arti-

fact’s uniqueness by comparing the value of the HTTP header parameter content-

length or the last modified date. This is an advantage Gradle’s implementation has

over other dependency managers like Ivy.

OFFLINE MODE

If your build declares remote repositories, Gradle may have to check them for depen-

dency changes. Sometimes this behavior is undesirable; for example, if you’re travel-

ing and don’t have access to the Internet. You can tell Gradle to avoid checking

remote repositories by running in offline mode with the --offline command-line

option. Instead of performing dependency resolution over the network, only depen-

dencies from the local cache will be used. If a required dependency doesn’t exist in

the cache, the build will fail.

5.7 Troubleshooting dependency problems

Version conflicts can be a hard nut to crack. If your project deals with many depen-

dencies and you choose to use automatic resolution for transitive dependencies, ver-

sion conflicts are almost inevitable. Gradle’s default strategy to resolve those conflicts

is to pick the newest version of a dependency. The dependency report is an invaluable

tool for finding out which version was selected for the dependencies you requested. In

the following section, I’ll show how to troubleshoot version conflict and tweak Gra-

dle’s dependency resolution strategy to your specific use case.

5.7.1 Responding to version conflicts

Gradle won’t automatically inform you that your project dealt with a version conflict.

Having to constantly run the dependency report to find out isn’t a practical approach to

the problem. Instead, you can change the default resolution strategy to fail the build

whenever a version conflict is encountered, as shown in the following code example:

configurations.cargo.resolutionStrategy {
 failOnVersionConflict()
}

129Troubleshooting dependency problems

Failing can be helpful for debugging purposes, especially in the early phases of setting

up the project and changing the set of dependencies. Running any of the project’s

tasks will also indicate the version conflict, as shown in the following sample output:

$ gradle -q deployToLocalTomcat

FAILURE: Build failed with an exception.

* Where:
Build file '/Users/benjamin/Dev/books/gradle-in-action/code/chapter4/

➥ cargo-dependencies-fail-on-version-conflict/build.gradle' line: 10

* What went wrong:
Execution failed for task ':deployToLocalTomcat'.
> Could not resolve all dependencies for configuration ':cargo'.
 > A conflict was found between the following modules:
 - xml-apis:xml-apis:1.3.03
 - xml-apis:xml-apis:1.0.b2

5.7.2 Enforcing a specific version

The more projects you have to manage, the more you may feel the need to standard-

ize the build environment. You’ll want to share common tasks or make sure that all

projects use a specific version of a library. For example, you want to unify all of your

web projects to be deployed with Cargo version 1.3.0, even though the dependency

declaration may request a different version. With Gradle, it’s really easy to implement

such an enterprise strategy. It enables you to enforce a specific version of a top-level

dependency, as well as a transitive dependency.

 The following code snippet demonstrates how to reconfigure the default resolu-

tion strategy for the configuration cargo to force a dependency on version 1.3.0 of the

Ant tasks:

configurations.cargo.resolutionStrategy {
 force 'org.codehaus.cargo:cargo-ant:1.3.0'
}

Now when you run the dependency report task, you’ll see that the requested Cargo

Ant version was overruled by the globally enforced module version:

$ gradle -q dependencies

--
Root project
--

Rich API to access resolved dependency graph

In memory, Gradle builds a model of the resolved dependency graph. Gradle’s reso-

lution result API gives you an even more fine-grained control over the requested and

selected dependencies. A good place to start geting familiar with the API is the inter-

face ResolutionResult.

130 CHAPTER 5 Dependency management

cargo - Classpath for Cargo Ant tasks.
\--- org.codehaus.cargo:cargo-ant:1.3.1 -> 1.3.0
 \--- org.codehaus.cargo:cargo-core-uberjar:1.3.0
 +--- ...

5.7.3 Using the dependency insight report

A change to the resolution strategy of a configuration, as shown previously, is perfectly

placed in an initialization script so it can be enforced on a global level. The build

script user may not know why this particular version of the Cargo Ant tasks has been

picked. The only thing they saw was that the dependency report indicated that a dif-

ferent version was selected. Sometimes you may want to know what forced this version

to be selected.

 Gradle provides a different type of report: the dependency insight report, which

explains how and why a dependency is in the graph. To run the report, you’ll need to

provide two parameters: the name of the configuration (which defaults to the com-

pile configuration) and the dependency itself. The following invocation of the help

task dependencyInsight shows the reason, as well as the requested and selected ver-

sion of the dependency xml-apis:xml-apis:

$ gradle -q dependencyInsight --configuration cargo --dependency
 ➥ xml-apis:xml-apis
xml-apis:xml-apis:1.3.03 (conflict resolution)
+--- org.codehaus.cargo:cargo-core-uberjar:1.3.0
| \--- org.codehaus.cargo:cargo-ant:1.3.0
| \--- cargo
\--- xerces:xercesImpl:2.8.1
 \--- org.codehaus.cargo:cargo-core-uberjar:1.3.0 (*)

xml-apis:xml-apis:1.0.b2 -> 1.3.03
\--- dom4j:dom4j:1.4
 \--- org.codehaus.cargo:cargo-core-uberjar:1.3.0
 \--- org.codehaus.cargo:cargo-ant:1.3.0
 \--- cargo

(*) - dependencies omitted (listed previously)

While the dependency report starts from the top-level dependencies of a configura-

tion, the insight report shows the dependency graph starting from the particular

dependency down to the configuration. As such, the insight report represents the

inverted view of the regular dependency report, as shown in figure 5.10.

5.7.4 Refreshing the cache

To avoid having to hit a repository over and over again for specific types of dependen-

cies, Gradle applies certain caching strategies. This is the case for snapshot versions of

a dependency and dependencies that were declared with a dynamic version pattern.

Once resolved, they’re cached for 24 hours, which leads to snappier, more efficient

builds. After the artifact caching timeframe is expired, the repository is checked again

and a new version of the artifact is downloaded if it has changed.

Forced module
version takes
precedence

Reason why a particular
dependency was selected
is shown in brackets

Shows requested and
selected version of a
particular dependency

131Summary

You can manually refresh the dependency in your cache by using the command-

line option --refresh-dependencies. This flag forces a check for changed artifact

versions with the configured repositories. If the checksum changed, the depen-

dency will be downloaded again and replace the existing copy in the cache. Having

to add the command-line options can become tiring after a while, or you may for-

get to tag it on. Alternatively, you can configure a build to change the default

behavior of your cache.

 Let’s say you’ve always wanted to the get latest 1.x version of the Cargo Ant tasks you

declared with org.codehaus.cargo:cargo-ant:1.+. You can set the cache timeout for

dynamic dependency versions to 0 seconds, as shown in the following code snippet:

configurations.cargo.resolutionStrategy {
 cacheDynamicVersionsFor 0, 'seconds'
}

You may have good reasons for not wanting to cache a SNAPSHOT version of an exter-

nal module. For example, another team in your organization works on a reusable

library that’s shared among multiple projects. During development the code changes

a lot, and you always want to get the latest and (hopefully) greatest additions to the

code. The following code block modifies the resolution strategy for a configuration to

not cache SNAPSHOT versions at all:

configurations.compile.resolutionStrategy {
 cacheChangingModulesFor 0, 'seconds'
}

5.8 Summary

Most projects, be they open source projects or an enterprise product, are not com-

pletely self-contained. They depend on external libraries or components built by

other projects. While you can manage those dependencies yourself, the manual

approach doesn’t fulfill the requirements of modern software development. The

more complex a project becomes, the harder it is to figure out the relationships

between dependencies, resolve potential version conflicts, or even know why you need

a specific dependency.

Top-level

dependencies

Transitive

dependencies
Configuration

Configuration

Shows path from all

top-level dependencies

Dependency report

Parent

dependencies

Particular

dependency

Shows path to a

particular dependency

Dependency insight report

Figure 5.10 View of dependency graph with different report types

132 CHAPTER 5 Dependency management

 With automated dependency management, you declare dependencies by unique

identifiers within your project without having to manually touch the artifacts. At run-

time, the dependent artifacts are automatically resolved in a repository, downloaded,

stored in a local cache, and made available to your project. Automated dependency

management doesn’t come without challenges. We discussed potential pitfalls and

how to cope with them.

 Gradle provides powerful out-of-the-box dependency management. You learned

how to declare different types of dependencies, group them with the help of configu-

rations, and target various types of repositories to download them. The local cache is

an integral part of Gradle’s dependency management infrastructure and is responsible

for high-performance and reliable builds. We analyzed its structure and discussed its

essential features. Knowing how to troubleshoot dependency version conflicts and

fine-tune the cache is key to a stable and reliable build. You used Gradle’s dependency

reporting to get a good understanding of the resolved dependency graph, as well as

why a specific version of a dependency was selected and where it came from. I showed

strategies for changing the default resolution strategy and cache behavior, as well as

appropriate situations that make them necessary.

 In the next chapter, you’ll take your To Do application to the next level by modular-

izing the code. You’ll learn how to use Gradle’s multiproject build support to define

dependencies between individual components and make them function as a whole.

133

Multiproject builds

The code base of every active software project will grow over time. What started as a

small project with a handful of classes may quickly become a collection of packages

and classes with different responsibilities. To improve maintainability and prevent

tight coupling, you’ll want to group code into modules based on particular func-

tionality and logical boundaries. Modules are usually organized hierarchically and

can define dependencies on each other. The build tool needs to be able to cope

with these requirements.

 Gradle provides powerful support for building modularized projects. Because

every module in Gradle is a project, we call them multiproject builds (as opposed to

Maven’s use of multimodule builds). This chapter explains techniques for modeling

This chapter covers

■ Organizing a project’s source code into

subprojects

■ Modeling the build for a multiproject hierarchy

■ Configuring project behavior with the

Project API

■ Declaring dependencies between projects

■ Customizing your build with the Settings API

134 CHAPTER 6 Multiproject builds

and executing a multiproject build with Gradle. By the end of the chapter, you’ll know

how to apply the technique that best fits the needs of your own project and model

your build appropriately.

 Gradle support for multimodule builds will be explained with the help of your To

Do web application. You’ll start by deconstructing the existing project structure and

break out individual, functional subprojects. This newly created project layout will

serve as a basis for modeling the build. Then we’ll go over the options for organizing

your build logic and you’ll get to know the part of the Gradle API that helps define

individual and common project behavior. Finally, you’ll learn how to control the proj-

ect execution order by declaring project dependencies, and how to execute a single

subproject or the full build for all participating subprojects from the root project. Not

only will this chapter teach you the structure of a multiproject build, but you’ll also

learn how to bring down your build’s execution time, something everyone can appre-

ciate. You’ll start by refactoring the existing To Do application project structure into a

modularized architecture.

6.1 Modularizing a project

In enterprise projects, the package hierarchy and class relationships can become

highly complex. Separating code into modules is a difficult task, because it requires

you to be able to clearly identify functional boundaries—for example, separating busi-

ness logic from data persistence logic.

6.1.1 Coupling and cohesion

Two major factors will determine how easy it is to implement separation of concerns

for a project: coupling and cohesion. Coupling measures the strength of relation-

ships between specific code artifacts like classes. Cohesion refers to the degree to

which components of a module belong together. The less coupled and the higher

the cohesion of your code, the easier it will be to perform the restructuring of your

project. Teaching good software design practices is beyond the scope of this book,

but there are two guidelines you should keep in mind: minimize coupling and max-

imize cohesion.

 An example of a modularized architecture done right is the Spring framework.

Spring is an open source framework that provides a wide range of services needed in

many enterprise Java applications. For example, the functionality of a service support

for a simplified MVC web application development or transaction management is dis-

tributed as a JAR file. Services depend on each other if they need the functionality pro-

vided by a different module. Figure 6.1 shows all Spring modules of version 3.x and

their interrelationships.

 Spring’s architecture may look scary at first. It defines a lot of components that

depend on each other. But in practice, you won’t need to import the whole framework

with all components into your project. You can pick and choose which service of the

framework you want to use. Thankfully, the dependencies between the components

135Modularizing a project

are specified via metadata. Using Gradle’s dependency management makes resolving

these transitive dependencies a piece of cake.

 In the following sections, you’ll modularize the To Do application and use Gradle’s

multiproject features to build it. With the limited code base you have at the moment,

this will be a much easier task than it is for developers of the Spring framework. We’ll

get started by identifying the modules for your application.

6.1.2 Identifying modules

Let’s review the code you already wrote for the To Do application to find its natural

boundaries. These boundaries will help you break the application code into modules.

The following directory tree demonstrates the existing project structure:

.
└── src
 └── main
 ├── java
 │ └── com
 │ └── manning
 │ └── gia
 │ └── todo
 │ ├── model
 │ │ └── ToDoItem.java
 │ ├── repository
 │ │ ├── InMemoryToDoRepository.java
 │ │ └── ToDoRepository.java
 │ └── web
 │ └── ToDoServlet.java
 └── webapp

context-

support
coreasm beans

aop expression

Spring core

Spring context

Spring add-ons
Spring AOP

Spring DAO

Spring ORM

context

web

Spring web

tx

Spring MVC

orm

jdbc

web-mvc

web-mvc-

portlet

oxm

jms

Figure 6.1 Spring’s modularized architecture

Package for classes
representing data
in application

Package that holds
classes for storing
and retrieving data

JEE-specific web components
and static content like
images and CSS files

136 CHAPTER 6 Multiproject builds

 ├── WEB-INF
 │ └── web.xml
 ├── css
 │ ├── base.css
 │ └── bg.png
 └── jsp
 ├── index.jsp
 └── todo-list.jsp

You already did a good job of separating the concerns of the application by grouping

classes with specific functionality into packages. You’re going to use these packages as

guidelines for finding the functional boundaries of your application:

■ Model: Data representation of to-do items

■ Repository: Storage and retrieval of to-do items

■ Web: Web components for handling HTTP requests and rendering to-do items

and functionality in the browser

Even in your fairly simple application, these

modules have relationships between each other.

For example, the classes in the Repository

module use the Model data classes to trans-

port the data in and out of the data storage.

Figure 6.2 gives the full picture of all pro-

posed modules and their relationships.

 With the identified modules and their rela-

tionships in mind, you can get started breaking

them out of the single project.

6.1.3 Refactoring to modules

It’s easy to refactor the existing project structure into the identified modules. For each

of the modules, you’ll create a subdirectory with the appropriate name and move the

relevant files underneath it. The default source directory src/main/java will stay

intact for each of the modules. The only module that requires the default web applica-

tion source directory src/main/webapp is the Web module. The following directory

tree shows the modularized project structure:

.
├── model
│ └── src
│ └── main
│ └── java
│ └── com
│ └── manning
│ └── gia
│ └── todo
│ └── model
│ └── ToDoItem.java

Web

Model

Repository

depends on

depends on depends on

Figure 6.2 Proposed modules for the To

Do application

Model module
containing To Do data
representation classes

137Assembling a multiproject build

├── repository
│ └── src
│ └── main
│ └── java
│ └── com
│ └── manning
│ └── gia
│ └── todo
│ └── repository
│ ├── InMemoryToDoRepository.java
│ └── ToDoRepository.java
└── web
 └── src
 └── main
 ├── java
 │ └── com
 │ └── manning
 │ └── gia
 │ └── todo
 │ └── web
 │ └── ToDoServlet.java
 └── webapp
 ├── WEB-INF
 │ └── web.xml
 ├── css
 │ ├── base.css
 │ └── bg.png
 └── jsp
 ├── index.jsp
 └── todo-list.jsp

That’s it—you modularized the To Do application. Now it’s time to take care of the

build infrastructure.

6.2 Assembling a multiproject build

In the last section, you defined a hierarchical directory structure for your project. The

full project consists of a root directory and one subdirectory per module. In this sec-

tion, you’ll learn how to build such a project structure with Gradle.

 Your starting point will be the obligatory build.gradle file on the root level of the

directory tree. Create an empty build script and check the projects participating in

your build by running gradle projects:

$ gradle projects
:projects

--
Root project
--

Root project 'todo'
No sub-projects

Repository module containing
classes for storing and
retrieving to-do items

Web module containing
web components and
static content

138 CHAPTER 6 Multiproject builds

Gradle reports that you’re only dealing with a single proj-

ect. When setting up a build with more than one project,

Gradle’s vocabulary speaks of a multiproject build. The rea-

son is that you’ll represent each of the modules as a distinct

Gradle project. From this point forward, we won’t use the

term module anymore in keeping with Gradle’s syntax; we’ll

only talk about projects.

 The overarching project located in the top-level direc-

tory is called the root project, and it has its own right to exist

in a multiproject build. It coordinates building the subproj-

ects and can define common or specific behavior for them.

Figure 6.3 gives you a graphical overview of the hierarchical

project structure you’re going to achieve.

 So far we’ve only dealt with the Gradle configuration of

single-project builds. You saw that separating your code into

multiple projects wasn’t all that hard. What’s missing is the

build support that represents the root project and its subprojects. The declaration of

subprojects in a multiproject build is done via the settings file.

6.2.1 Introducing the settings file

The settings file declares the configuration required to instantiate the project’s hierar-

chy. By default, this file is named settings.gradle and is created alongside the

build.gradle file of the root project. The following listing shows the contents of the set-

tings file. For each of the subprojects you want to be part of the build, you call the

method include with the argument of the project’s path.

include 'model'
include 'repository', 'web'

The supplied project path in this snippet is the project directory relative to the root

directory. Keep in mind that you can also model a deeper project hierarchy. A colon

character (:) separates each level of the subproject hierarchy. For example, if you

wanted to map the directory structure model/todo/items, you’d add the subproject

via the path model:todo:items.

 Executing the help task projects after adding the settings file will produce a dif-

ferent result:

$ gradle projects
:projects

--
Root project
--

Listing 6.1 Settings file that adds subproject by path

root

project

model

project

repository

project

web

project

Figure 6.3 Hierarchical

multiproject structure for

To Do application, which

defines three subprojects

Adds given subproject to
build; argument passed to
include method is project
path, not file path

Instead of calling method include for each project individually,
pass a String[] of projects to a single call

139Assembling a multiproject build

Root project 'todo'
+--- Project ':model'
+--- Project ':repository'
\--- Project ':web'

By adding a single settings file, you created a multimodule build containing a root

project and three subprojects. No additional configuration was needed. Let’s go

deeper into the details of the settings file. You may have guessed already that there’s

an API representation for it that you can use to query and modify the configuration of

your build.

6.2.2 Understanding the Settings API representation

Before Gradle assembles the build, it creates an instance of type Settings. The inter-

face Settings is a direct representation of the settings file. Its main purpose is to add

the Project instances that are supposed to participate in a multiproject build. In

addition to assembling your multiproject build, you can do everything you’re used

to in your build.gradle script because you have direct access to the Gradle and

Project interfaces. Figure 6.4 shows the relevant methods of the Settings interface

and its associations.

 The important takeaway here is that you’re coding toward an instance of the inter-

face Settings in your settings.gradle file. Any method of the interface Settings

can be directly invoked as you did by calling include.

 Next, we’ll discuss when the settings file is executed during the build lifecycle and

what rules are applied for resolving the file.

Subprojects are displayed
in the form of an indented,
hierarchical tree

getBuildFile()

getBuildFileName()

getChildren()

getName()

getParent()

getPath()

getProjectDir()

setBuildFileName(name: String)

setName(name: String)

setProjectDir(dir: File)
1 1

1 1

getRootProject()

<<interface>>

Gradle
1 1 <<interface>>

Project

<<interface>>

Settings

findProject(projectDir: File)

findProject(path: String)

getGradle()

getRootDir()

getRootProject()

include(projectPaths: String[])

includeFlat(projectNames: String[])

project(projectDir: File)

project(path: String)

<<interface>>

ProjectDescriptor

Figure 6.4 Settings API representation. You can use the Settings instance to retrieve the

project descriptor or project instance through the interface Gradle.

140 CHAPTER 6 Multiproject builds

6.2.3 Settings execution

Think back to chapter 4 when we discussed the three distinct lifecycle phases of a

build. You may already have an idea during what phase the code of the settings file is

evaluated and executed. It needs to happen during the initialization phase before any

of the Project instances can be configured, as shown in figure 6.5.

 When executing a build, Gradle automatically figures out whether a subproject is

part of a single- or multiproject build. Let’s examine the set of rules Gradle uses to

determine the existence of a settings file.

6.2.4 Settings file resolution

Gradle allows you to run your build from the root project directory or any of the sub-

project directories as long as they contain a build file. How does Gradle know that a

subproject is part of a multiproject build? It needs to find the settings file, which indi-

cates whether the subproject is included in a multiproject build. Figure 6.6 shows the

two-step process Gradle uses to find a settings file.

 In step 1, Gradle searches for a settings file in a directory called master with the

same nesting level as the current directory. If no settings file is found in step 1, Gradle

searches for a settings file in the parent directories, starting from the current direc-

tory. In the case of subproject2, the search would be suproject1 > root.

 If one of the steps finds a settings file and the project is included in its definition,

the project is considered part of a multiproject build. Otherwise, the project is exe-

cuted as a single-project build.

 Step 2 in the settings file resolution process applies to a hierarchical project layout

you set up earlier. Let’s step back for a second and also examine the project layout

shown in step 1.

Accessing Settings from the build file

If you need access to the Settings instance from your build.gradle file after the

settings have been loaded and evaluated, you can register a lifecycle closure or lis-

tener. A great place to start is the method Gradle#settingsEvaluated(Closure)
that provides the Settings object as a closure parameter.

include 'model'

include 'repository'

include 'web'

Initialization code

Initialization

phase

Configuration

phase

Execution

phase

Figure 6.5 The settings file is

evaluated and executed during

the initialization phase.

141Assembling a multiproject build

6.2.5 Hierarchical versus flat layout

Gradle projects can be structured hierarchically or with a flat layout, as shown in fig-

ure 6.7. We speak of a flat multiproject layout if the participating projects exist on the

same directory level as the root project. As a consequence, this means that the nesting

level for subprojects can only be one level deep. The layout you choose for your proj-

ect is up to you. Personally, I prefer the hierarchical project layout, as it gives you a

more fine-grained control to model your components.

 Figure 6.7 compares the differences between setting up the To Do application

project with a hierarchical and a flat layout. Instead of putting the build and settings

file on the root level of the project, you’ll have to create a dedicated directory alongside

Controlling the settings file search behavior

There are two command-line parameters that are helpful in determining the search

behavior for a settings file:

■ -u, --no-search-upward: Tells Gradle not to search for a settings file in parent

directories. This option is useful if you want to avoid the performance hit of

searching all parent directories in a deeply nested project structure.

■ -c, --settings-file: Specifies the location of the settings file. You may

want to use this option if your settings filename deviates from the standard

naming convention.

1

2

root

subproject1

subproject2

master

build.gradle

settings.gradle

root

subproject1

subproject2

build.gradle

settings.gradle

Current directory

Master directory

Build file

Settings file

Current directory

Build file

Settings file Figure 6.6 Settings file resolution is

a two-step process.

142 CHAPTER 6 Multiproject builds

your other subprojects. Choose the directory name master so you can execute the

build from your subprojects, as discussed in the previous section. To indicate that you

want to include projects on the same project nesting level as the root project, use the

method includeFlat in the settings file.

 In the next section, you’ll configure the build logic for each of the projects in

your build.

6.3 Configuring subprojects

So far, you’ve split your application code based on functional responsibilities and

rearranged it into individual subprojects. Now, you’ll take a similar approach to

organizing your build logic in a maintainable fashion. The following points represent

requirements common to real-world multiproject builds:

■ The root project and all subprojects should use the same group and version

property value.

■ All subprojects are Java projects and require the Java plugin to function correctly,

so you’ll only need to apply the plugin to subprojects, not the root project.

include 'model'

include 'repository'

include 'web'

includeFlat 'model'

includeFlat 'repository'

includeFlat 'web'

todo

model

repository

web

build.gradle

settings.gradle

Hierarchical layout

todo

model

repository

web

master

build.gradle

settings.gradle

Flat layout

settings.gradle

settings.gradle

Figure 6.7 Comparison

of hierarchical and flat

project layouts and

their settings file

configurations

143Configuring subprojects

■ The web subproject is the only project that declares external dependencies. The

project type derives from the other subprojects in that it needs to build a WAR

archive instead of a JAR and uses the Jetty plugin to run the application.

■ Model the dependencies between the subprojects.

In this section, you’ll learn how to define specific and common behaviors for projects

in a multiproject build, a powerful way to avoid having to repeat configuration. Some

of the subprojects may depend on the compiled source code of other projects—in

your application, the code from the project model is used by the repository project.

By declaring project dependencies, you can make sure imported classes are available

on the classpath. Before you fill your empty build.gradle file with life, we’ll review

methods of the Project API I haven’t shown you yet but that are relevant in the con-

text of multiproject builds.

6.3.1 Understanding the Project API representation

In chapter 4, I explained the properties and methods of the Project API that you’ll

probably use the most in your day-to-day business. For implementing multiproject

builds, you’ll need to get to know some new methods, as shown in figure 6.8.

 For declaring project-specific build code, the method project is used. At the very

least, the path of the project (for example, :model) has to be provided.

 Many times, you’ll find yourself wanting to define common behavior for all your

projects or only the subprojects of your build. For each of these use cases, the Project

API provides a specialized method: allprojects and subprojects. Let’s say you want to

apply the Java plugin to all of your subprojects because you need to compile Java source

code. You can do so by defining the code within the subprojects closure parameter.

 The default evaluation order of projects in a multiproject build is based on their

alphanumeric name. To gain explicit control over the evaluation order at configuration

time of the build lifecycle, you can use the project evaluation methods evaluation-

DependsOn and evaluationDependsOnChildren. This is especially the case if you need

<<interface>>

Project

project(path: String)

project(path: String, config: Closure)

allprojects(action: Action<? super Project>)

allprojects(action: config: Closure)

subprojects(action: Action<? super Project>)

subprojects(action: config: Closure)

evaluationDependsOn(path: String)

evaluationDependsOnChildren()

Specific project

configuration

Common project

configuration

Project evaluation

order

Figure 6.8 Important methods of the Project API for implementing

multiproject builds

144 CHAPTER 6 Multiproject builds

to make sure that a property is set for a project before it’s used by another project. We

won’t discuss these methods in this chapter; for specific use cases, refer to Gradle’s

online manual.

 In this chapter, you’ll use all of the presented methods to configure your multiproject

build. First, you’ll take the existing build code and apply it to only specific subprojects.

6.3.2 Defining specific behavior

Project-specific behavior is defined with the method project. To set up the build

infrastructure for your three subprojects—model, repository, and web—you’ll create

a project configuration block for each of them. The following listing shows the project

definition within your single build.gradle file.

ext.projectIds = ['group': 'com.manning.gia', 'version': '0.1']

group = projectIds.group
version = projectIds.version

project(':model') {
 group = projectIds.group
 version = projectIds.version
 apply plugin: 'java'
}

project(':repository') {
 group = projectIds.group
 version = projectIds.version
 apply plugin: 'java'
}

project(':web') {
 group = projectIds.group
 version = projectIds.version
 apply plugin: 'java'
 apply plugin: 'war'
 apply plugin: 'jetty'

 repositories {
 mavenCentral()
 }

 dependencies {
 providedCompile 'javax.servlet:servlet-api:2.5'
 runtime 'javax.servlet:jstl:1.1.2'
 }
}

You can see that the solution is far from perfect. Even though you defined an extra

property for assigning the group and version for each subproject, you’re still left with

duplicated code and the Java plugin has to be applied for each subproject individu-

ally. For now, just get the project running. You’ll improve on that code later.

Listing 6.2 Defining project-specific build logic

Declaration
of extra
property
projectIds as
a map that
holds the
key-value
pairs for
group and
version;
property can
be used in
subprojects

Configures each
subproject by
project path;
actual
configuration
happens in
the closure

145Configuring subprojects

From the root directory of the multiproject build, you can execute tasks for individual

subprojects. All you’ll need to do is name the concatenated project path and task

name. Remember that paths are denoted by a colon character (:). For example, exe-

cuting the task build for the subproject model can be achieved by referencing the full

path on the command line:

$ gradle :model:build
:model:compileJava
:model:processResources UP-TO-DATE
:model:classes
:model:jar
:model:assemble
:model:compileTestJava UP-TO-DATE
:model:processTestResources UP-TO-DATE
:model:testClasses UP-TO-DATE
:model:test
:model:check
:model:build

This works great for the self-contained subproject model, because it has no depen-

dencies on code from other subprojects. If you executed the same task for the sub-

project repository, you’d end up with a compilation error. Why is that? The

subproject repository uses code from the subproject model. To function correctly,

you’ll need to declare a compile-time dependency on the project.

6.3.3 Declaring project dependencies

Declaring a dependency on another project looks very similar to declaring a depen-

dency on an external library. In both cases, the dependency has to be declared within

the closure of the dependencies configuration block. Project dependencies have to

be assigned to a particular configuration—in your case, the configuration compile

provided by the Java plugin. The following listing outlines the project dependency

declarations for all of your subprojects.

project(':model') {
 ...
}

project(':repository') {
 ...

 dependencies {

Property inheritance

Properties defined in a project are automatically inherited by its subprojects, a concept

available in other build tools like Maven. In listing 6.2, the extra property projectIds
declared in the root project is available to the subprojects model, repository, and web.

Listing 6.3 Declaring project dependencies

Model subproject doesn’t
declare any external or
project dependencies

146 CHAPTER 6 Multiproject builds

 compile project(':model')
 }
}

project(':web') {
 ...

 dependencies {
 compile project(':repository')
 providedCompile 'javax.servlet:servlet-api:2.5'
 runtime 'javax.servlet:jstl:1.1.2'
 }
}

The subproject repository depends on the subproject model, and the subproject web

depends on the sibling project repository. That’s all there is to modeling project

dependencies. Doing so has three important implications:

■ The actual dependency of a project dependency is the library it creates. In the

case of the subproject model, it’s the JAR file. That’s why a project dependency is

also called a lib dependency.

■ Depending on another project also adds its transitive dependencies to the class-

path. That means external dependencies and other project dependencies are

added as well.

■ During the initialization phase of the build lifecycle, Gradle determines the

execution order of projects. Depending on another subproject means that it

has to be built first. After all, you’re depending on its library.

EXECUTING A TASK FROM THE ROOT PROJECT

After passing the initialization phase, Gradle holds an internal model of the project’s

dependencies in memory. It knows that the subproject repository depends on model

and the subproject web depends on repository. You don’t have to execute a task from

a particular subproject—you can execute one for all projects of the build. Let’s say you

want to execute the task build from the root project. Given the fact that Gradle knows

the order in which the subprojects need to be executed, you’d expect the build to play

out as shown in figure 6.9.

Declares compile-time
dependency on project
with path :model

Declares compile-time
dependency on project
with path :repository

process

Resources

compile

Java
classes test check build

:model

process

Resources

compile

Java
classes test check build

:repository

process

Resources

compile

Java
classes test check build

:web

...

...

...

Figure 6.9 Multiproject task execution order when running the task build from the

root project

147Configuring subprojects

You can prove the hypothesis by executing the task on the root level of your project:

$ gradle build
:model:compileJava
:model:processResources UP-TO-DATE
:model:classes
:model:jar
:model:assemble
:model:compileTestJava UP-TO-DATE
:model:processTestResources UP-TO-DATE
:model:testClasses UP-TO-DATE
:model:test
:model:check
:model:build
:repository:compileJava
:repository:processResources UP-TO-DATE
:repository:classes
:repository:jar
:repository:assemble
:repository:compileTestJava UP-TO-DATE
:repository:processTestResources UP-TO-DATE
:repository:testClasses UP-TO-DATE
:repository:test
:repository:check
:repository:build
:web:compileJava
:web:processResources UP-TO-DATE
:web:classes
:web:war
:web:assemble
:web:compileTestJava UP-TO-DATE
:web:processTestResources UP-TO-DATE
:web:testClasses UP-TO-DATE
:web:test
:web:check
:web:build

Executing a task from the root project is a real timesaver. Gradle executes the tasks

that are required from all subprojects including the support for incremental builds.

As much as this behavior is convenient and ensures that you’ll always have the latest

class files in your classpath, you may want finer-grained control over when to build all

dependent subprojects.

6.3.4 Partial multiproject builds

Complex multiproject builds with tens or even hundreds of dependent subprojects

will significantly influence the average execution time. Gradle will go through all

project dependencies and make sure that they’re up to date. During development,

oftentimes you know which source files have been changed in what subproject.

Technically, you don’t need to rebuild a subproject that you didn’t change. For

these situations, Gradle provides a feature called partial builds. Partial builds are

enabled through the command-line option –a or --no-rebuild. Suppose you only

148 CHAPTER 6 Multiproject builds

changed code in the subproject repository but don’t want to rebuild the subproj-

ect model. By using partial builds, you can avoid the cost of checking the subproject

model and bring down your build execution time. If you’re working on an enter-

prise project with hundreds of subproject dependencies, you’ll be grateful for every

second you can save when executing the build. The following command-line output

shows the usage of this option:

$ gradle :repository:build -a
:repository:compileJava
:repository:processResources UP-TO-DATE
:repository:classes
:repository:jar
:repository:assemble
:repository:compileTestJava UP-TO-DATE
:repository:processTestResources UP-TO-DATE
:repository:testClasses UP-TO-DATE
:repository:test
:repository:check
:repository:build

The --no-rebuild option works great if you’re only changing files in a single project.

As part of your day-to-day development practices, you’ll want to pull the latest version

of the source code from the repository to integrate changes made by your teammates.

To ensure that code didn’t break by accident, you’ll want to rebuild and test the proj-

ects your current project depends on. The regular build task only compiles the code

of dependent projects, and assembles the JAR files and makes them available as proj-

ect dependencies. To run the tests as well, execute the task buildNeeded, as shown in

the following command-line output:

$ gradle :repository:buildNeeded
:model:compileJava
:model:processResources UP-TO-DATE
:model:classes
:model:jar
:model:assemble
:model:compileTestJava UP-TO-DATE
:model:processTestResources UP-TO-DATE
:model:testClasses UP-TO-DATE
:model:test UP-TO-DATE
:model:check UP-TO-DATE
:model:build
:model:buildNeeded
:repository:compileJava
:repository:processResources UP-TO-DATE
:repository:classes
:repository:jar
:repository:assemble
:repository:compileTestJava UP-TO-DATE
:repository:processTestResources UP-TO-DATE
:repository:testClasses UP-TO-DATE
:repository:test UP-TO-DATE

149Configuring subprojects

:repository:check UP-TO-DATE
:repository:build
:repository:buildNeeded

Any change you make to your project may have side effects on other projects that

depend on it. With the help of the task buildDependents, you can verify the impact of

your code change by building and testing dependent projects. The following command-

line output shows its use in action:

$ gradle :repository:buildDependents
:model:compileJava
:model:processResources UP-TO-DATE
:model:classes
:model:jar
:repository:compileJava
:repository:processResources UP-TO-DATE
:repository:classes
:repository:jar
:repository:assemble
:repository:compileTestJava UP-TO-DATE
:repository:processTestResources UP-TO-DATE
:repository:testClasses UP-TO-DATE
:repository:test UP-TO-DATE
:repository:check UP-TO-DATE
:repository:build
:web:compileJava
:web:processResources UP-TO-DATE
:web:classes
:web:war
:web:assemble
:web:compileTestJava UP-TO-DATE
:web:processTestResources UP-TO-DATE
:web:testClasses UP-TO-DATE
:web:test UP-TO-DATE
:web:check UP-TO-DATE
:web:build
:web:buildDependents
:repository:buildDependents

6.3.5 Declaring cross-project task dependencies

In the last section, you saw that executing a specific task from the root project invokes

all tasks with the same name across all subprojects, with the execution order for the

task build determined by the declared compile-time project dependencies. If your

project doesn’t rely on project dependencies, or defines a task with the same name for

the root project and one or more subprojects, the story is different.

DEFAULT TASK EXECUTION ORDER

Let’s assume you define a task named hello in the root project as well as all subproj-

ects, as shown in the following listing. In each of the doLast actions, you print out a

message on the console to indicate the project you’re in.

150 CHAPTER 6 Multiproject builds

task hello << {
 println 'Hello from root project'
}

project(':model') {
 task hello << {
 println 'Hello from model project'
 }
}

project(':repository') {
 task hello << {
 println 'Hello from repository project'
 }
}

If you run the task hello from the root project, you’ll see the following output:

$ gradle hello
:hello
Hello from root project
:model:hello
Hello from model project
:repository:hello
Hello from repository project

None of the tasks declares a dependency on another task. So how does Gradle know

in which order to execute the tasks? Simple: the task on the root level of the multiproj-

ect build is always executed first. For the subprojects, execution order is solely deter-

mined by the alphanumeric order of the names of the projects: model comes before

repository. Keep in mind that the declaration order of the subprojects within the set-

tings files doesn’t play any role in the execution order.

CONTROLLING THE TASK EXECUTION ORDER

You can determine the task execution order by declaring a cross-project task depen-

dency. To do so, you need to reference the path to the task from a different project.

The next listing demonstrates how to ensure that the hello task from the subproject

repository gets executed before the one from the subproject model.

task hello << {
 println 'Hello from root project'
}

project(':model') {
 task hello(dependsOn: ':repository:hello') << {
 println 'Hello from model project'
 }
}

project(':repository') {
 task hello << {

Listing 6.4 Cross-project task definition without dependencies

Listing 6.5 Declaring cross-project task dependencies

Declares a task with
same name for root
project and all
subprojects

Declares a task
dependency on task
from subproject
repository

151Configuring subprojects

 println 'Hello from repository project'
 }
}

If you run the task hello from the root project, you’ll notice that the dependent task

is executed in the correct order:

$ gradle hello
:hello
Hello from root project
:repository:hello
Hello from repository project
:model:hello
Hello from model project

Controlling the execution order between tasks across different projects isn’t limited to

tasks with identical names. The same mechanics apply if you need to control the exe-

cution order for tasks with different names. All you need to do is reference the full

path when declaring the task dependency.

 You have a basic multiproject build running and a general understanding of how

to control the task execution order. Next, we’ll discuss methods for defining common

behavior to improve your code’s readability and reusability.

6.3.6 Defining common behavior

In listing 6.2, you needed to apply the Java plugin to each of the subprojects individu-

ally. You also created an extra property named projectIds to define the group and

version. You used that extra property to assign its values to the Project properties of

the root project and its subprojects. This may not seem like a big problem in this fairly

small project, but having to do this in larger projects with more than 10 subprojects

can become very tedious.

 In this section, you’ll improve the existing code by using the allprojects and

subprojects methods. Figure 6.10 provides a visual representation of how each

method applies to a multiproject build.

root

project

model

project

repository

project

web

project

subprojects {

...

}

allprojects {

...

}

Figure 6.10 Defining common project behavior with the Project API

152 CHAPTER 6 Multiproject builds

What does this mean for your project? You’ll want to use the allprojects method for

setting the group and version properties of the root project and subprojects. Because

the root project doesn’t define any Java code, you don’t need to apply the Java plugin.

Only the subprojects are Java-specific. You can use the subprojects method to apply

the plugins to just the subprojects. The following listing demonstrates the usage of the

methods allprojects and subprojects in your multiproject build.

allprojects {
 group = 'com.manning.gia'
 version = '0.1'
}

subprojects {
 apply plugin: 'java'
}

project(':repository') {
 dependencies {
 compile project(':model')
 }
}

project(':web') {
 apply plugin: 'war'
 apply plugin: 'jetty'

 repositories {
 mavenCentral()
 }

 dependencies {
 compile project(':repository')
 providedCompile 'javax.servlet:servlet-api:2.5'
 runtime 'javax.servlet:jstl:1.1.2'
 }
}

Executing this build script will produce the same result as the previous build. How-

ever, it’ll rapidly become clear that being able to define common project behavior has

the potential to reduce duplicated code and improve the build’s readability.

6.4 Individual project files

The multiproject build you’ve defined so far only consists of a single build.gradle

file and the settings.gradle file. As you add new subprojects and tasks to your

build.gradle file, code maintainability will suffer. Having to wade through pages

and pages of code to extend or modify your build logic is no fun. You can drive the

separation of concerns even further by creating individual build.gradle files for

each of the projects.

Listing 6.6 Configuring common project behavior

Sets group and version
properties for the root
project and all subprojects

Applies Java plugin
only to subprojects

153Individual project files

6.4.1 Creating build files per project

You’ll get started by setting up the build infrastructure. For each of the subprojects,

you’ll need to create a build file with the default naming convention. The following

directory tree shows the end result:

.
├── build.gradle
├── settings.gradle
├── model
│ ├── build.gradle
│ └── src
│ └── ...
├── repository
│ ├── build.gradle
│ └── src
│ └── ...
└── web
 ├── build.gradle
 └── src
 └── ...

With the project files in place, you can now split up the build logic from the master

build file and move it to the appropriate location.

6.4.2 Defining the root project’s build code

For your project, the contents of the root-level build file will look fairly simple after

stripping subproject-specific code. All you need to keep is the allprojects and sub-

projects configuration blocks, as shown in the following listing.

allprojects {
 group = 'com.manning.gia'
 version = '0.1'
}

subprojects {
 apply plugin: 'java'
}

The remainder of the code will be moved to the build files of your subprojects. Next,

we’ll focus on defining the build logic of your subprojects.

6.4.3 Defining the subprojects’ build code

Remember that the model subproject didn’t define any project-specific build logic. In

fact, you didn’t even have to declare a project configuration block. As a conse-

quence, you won’t have to declare any code in the subproject’s build.gradle file.

Gradle knows that the subproject is part of the multiproject build because you

included it in the settings file.

Listing 6.7 The root project’s build.gradle file

Build file for
root project

Individual
build files for
subprojects

154 CHAPTER 6 Multiproject builds

 The build files for the subprojects repository and web won’t introduce any new

code. You can simply take the existing project configuration blocks and copy them

into the correct location. Having a dedicated Gradle file per project indicates that

you’re dealing with a specific project. Therefore, enclosing your code into a project

closure becomes optional. The following listing shows the contents of the build file

for the repository subproject.

dependencies {
 compile project(':model')
}

The build.gradle file for the subproject web should look equally familiar, as shown in

the next listing.

apply plugin: 'war'
apply plugin: 'jetty'

repositories {
 mavenCentral()
}

dependencies {
 compile project(':repository')
 providedCompile 'javax.servlet:servlet-api:2.5'
 runtime 'javax.servlet:jstl:1.1.2'
}

Running this multiproject build produces the same result as having the same code in

one master build file. On the upside, you significantly improved the readability and

maintainability of the build code. In the next section, I’ll discuss some examples of

customizing your projects even more.

6.5 Customizing projects

The standard Gradle build filename is build.gradle. In a multiproject build with

many subprojects, you may want to be more expressive when it comes to naming your

build files. Editing multiple build.gradle files in parallel and constantly switching

between them easily becomes confusing when you’re using an IDE. This section will

explain how to configure your project to use custom build filenames.

 Let’s assume you want to build the following project structure: each of the subproj-

ect directory names is constructed of the prefix todo- and a speaking name for the

project. For example, the directory for the subproject repository would be named

todo-repository. The build filename, however, should only be represented by the

actual project responsibility. The following directory tree shows the final result you

want to accomplish:

Listing 6.8 The build.gradle file of the repository subproject

Listing 6.9 The build.gradle file of the web subproject

155Summary

.
├── build.gradle
├── settings.gradle
├── todo-model
│ ├── model.gradle
│ └── src
│ └── ...
├── todo-repository
│ ├── repository.gradle
│ └── src
│ └── ...
└── todo-web
 ├── src
 │ └── ...
 └── web.gradle

The key to making this project structure work again lies in the settings file. It provides

more functionality than just telling your build which of the subprojects should be

included. In fact, it’s a build script itself that’s executed during the evaluation phase of

the build lifecycle. With the help of the Settings API outlined in section 6.2.2, you

have direct access to the root project and its children. The following listing shows how

to iterate over all subprojects to assign a custom build filename. In addition, you also

set a custom name for the root project.

include 'todo-model', 'todo-repository', 'todo-web'

rootProject.name = 'todo'

rootProject.children.each {
 it.buildFileName = it.name + '.gradle' - 'todo-'
}

Though this example may not apply to your real-world projects, the possibilities of

configuring a multiproject build to your liking are endless. In most cases it can be

achieved without much effort. Keep in mind that the Settings API is your best friend.

6.6 Summary

Modularizing a project improves the quality attributes of your system—that is, reus-

ability, maintainability, and separation of concerns. Two guidelines make it easy to

achieve that for your software: minimize coupling and maximize cohesion.

 In this chapter, you split the To Do application code base into modules. You cre-

ated one module that holds the model classes, one that deals with the persistence of

the data, and one that exposes the web application capabilities.

 Gradle treats every module as a separate project. Every project can declare depen-

dencies on other projects. Gradle’s toolbox provides extensive support for modeling

Listing 6.10 Settings file defining custom project script names

Custom directory
names for
subprojectsCustom

build
script

names

Includes subprojects
by path

Sets root project’s name

Iterates through
all subprojects
accessible through
root projectSets custom build filename for a subproject by using subprojects’ names,

appending the file extension .gradle and removing the prefix todo-

156 CHAPTER 6 Multiproject builds

and executing multiproject builds either as hierarchical or flat project structures. You

learned that the settings file, executed during the initialization phase of the build life-

cycle, determines which of the projects should be part of the build.

 The Project API provides methods for declaring project-specific build code. It also

allows for configuring common or subproject-specific build behavior. You learned that

dependencies between projects in the current project hierarchy are declared using

the same dependency mechanism as external dependencies.

 The organization of your multiproject build code is very flexible. You can choose

to use a single master build script, individual build scripts per project, or a mixed

approach. The route you take depends on the requirements of your project. However,

organizing build logic into individual scripts improves maintainability of your code

the more subprojects you add to your build.

 The Settings API available in your settings file can be used to adapt to unconven-

tional multiproject layouts. The example demonstrated how easy it is to use custom

build script names that deviate from the standard naming convention.

 The next chapter is fully devoted to Gradle’s test support. We’ll explore the use of

different test frameworks for writing unit, integration, and functional tests. We’ll also

discuss how to write test code for your own build scripts.

157

Testing with Gradle

In the previous chapters, you implemented a simple but fully functional web appli-

cation and learned how to build and run it using Gradle. Testing your code is an

important activity of the software development lifecycle. It ensures the quality of

your software by checking that it works as expected. In this chapter, we’ll focus on

Gradle’s support for organizing, configuring, and executing test code. In particu-

lar, you’ll write unit, integration, and functional tests for your To Do application

and integrate them into your build.

 Gradle integrates with a wide range of Java and Groovy unit testing frameworks.

By the end of this chapter, you’ll write tests with JUnit, TestNG, and Spock, and exe-

cute them as part of the build lifecycle. You’ll also tweak the default test execution

This chapter covers

■ Understanding automated testing

■ Writing and executing tests with different

frameworks

■ Configuring and optimizing test execution

behavior

■ Supporting unit, integration, and functional

tests in your build

158 CHAPTER 7 Testing with Gradle

behavior. You’ll learn how easy it is to control the test logging output and to add a

hook or listener to react to test lifecycle events. We’ll also explore how to improve the

performance of big test suites through forked test processes. Integration and func-

tional tests require a more complex tooling setup. You’ll learn how to use the third-

party tools H2 and Geb to bootstrap your test code.

 Before you start exercising tests with your build, let’s do a quick refresher on the

different types of testing as well as their individual advantages and disadvantages.

7.1 Automated testing

We’re not going to cover the details of why an automated testing approach is benefi-

cial to the quality of your project. There are many excellent books that cover this

topic. Long story short: if you want to build reliable, high-quality software, automated

testing is a crucial part of your development toolbox. Additionally, it’ll help reduce

the cost of manual testing, improve your development team’s ability to refactor exist-

ing code, and help you to identify defects early in the development lifecycle.

7.1.1 Types of automated testing

Not all automated tests are alike. They usually differ in scope, implementation effort,

and execution time. We categorize three types of automated tests—unit tests, integra-

tion tests, and functional tests:

■ Unit testing is performed as a task alongside the implementation of your production

code and aims for testing the smallest unit of your code. In a Java-based project this

unit is a method. In a unit test you want to avoid interacting with other classes

or external systems (for example, the database or file system). References to

other components from within the code under test are usually isolated by test

doubles, which is a generic term for a replacement of a component for testing

purposes, like a Stub or Mock. Unit tests are easy to write, should execute

quickly, and provide invaluable feedback about your code’s correctness dur-

ing development.

■ Integration testing is used to test an entire component or subsystem. You want to make

sure that the interaction between multiple classes works as expected. A typical

scenario for an integration test is to verify the interaction between production

code and the database. As a result, dependent subsystems, resources, and ser-

vices have to be accessible during test execution. Integration tests usually take

longer to execute than unit tests and are harder to maintain, and the cause of a

failure may be harder to diagnose.

■ Functional testing is used to test the end-to-end functionality of an application, including

the interaction with all external systems from a user’s perspective. When we talk about

the user’s perspective, we usually mean the user interface. Functional tests are

the hardest to implement and the slowest to run, because they require emulat-

ing user interaction. In the case of a web application, the tooling for functional

159Testing Java applications

tests will need to be able to click a link, enter data into form fields, or submit a

form within a browser window. Because user interfaces can change a lot over

time, maintaining functional test code can become tedious and time-consuming.

7.1.2 Test automation pyramid

You may wonder which type of testing is the most appropriate for your project and to

what extent. In a perfect world, you’d have a good mixture of all of these tests to

ensure that your code is working correctly on different layers of architecture. How-

ever, the number of tests you write should be driven by the time and effort it takes to

implement and maintain them. The easier a test is to write and the quicker it is to exe-

cute, the higher the return on investment (ROI). To optimize your ROI, your code

base should contain many unit tests, fewer integration tests, and still fewer functional

tests. This distribution of tests and their correlation to ROI is best illustrated by the test

automation pyramid, introduced by Mike Cohn in his book Succeeding with Agile: Soft-

ware Development Using Scrum (Addison Wesley, 2009). Figure 7.1 shows an adapted ver-

sion of Cohn’s test automation pyramid.

 In the rest of this chapter, we’ll explore how to automate unit, integration, and

functional tests with Gradle. Many of Gradle’s out-of-the-box testing capabilities are

provided by the Java plugin. Let’s start by having a closer look at these features.

7.2 Testing Java applications

Traditionally, test code in Java is written in Java. Popular open source testing frame-

works like JUnit and TestNG help you write repeatable and structured tests. To execute

these tests, you’ll need to compile them first, as you do with your production source

code. The purpose of test code is solely to exercise its test cases. Because you don’t

want to ship the compile test classes to production systems, mingling production

source and test code isn’t a good idea. Optimally, you’ll have a dedicated directory in

your project that holds test source code and another that acts as a destination direc-

tory for compiled test classes.

Unit

testing

Integration

testing

Functional

testing

Expensive to write

Time to execute

Quantity of tests

Return investmenton

(ROI)

Figure 7.1 Test automation

pyramid

160 CHAPTER 7 Testing with Gradle

Gradle’s Java plugin does all of this heavy lifting for you. It introduces a standard

directory structure for test source code and required resource files, integrates test

code compilation and its execution into the build’s lifecycle, and plays well with

almost all of the popular testing frameworks. This is a significant improvement over

implementing the same functionality in an imperative build tool like Ant. You’d

easily have to write 10 to 20 lines of code to set up a testing framework for your

code. If that wasn’t enough, you’d have to copy the same code for every project that

wants to use it.

7.2.1 Project layout

In chapter 3 we talked about the default directory structure for placing production

source code: src/main/java and src/main/resources. A similar pattern is followed

for test source code. You put test source files into the directory src/test/java, and

required resources files consumed by your test code into src/test/resources. After

compiling test source code, the class files end up in the output directory build/

classes/test, nicely separated from the compiled production class files.

 All testing frameworks produce at least one artifact to indicate the results of the

test execution. A common format to record the results is XML. You can find these files

under the directory build/test-results. XML files aren’t very human-readable.

They’re usually intended for further processing by other quality assurance tools that

we’ll look at in chapter 12. Many testing frameworks allow for transforming the results

into a report. JUnit, for example, generates an HTML report by default. Gradle places

test reports under the directory build/reports/test. Figure 7.2 gives a visual over-

view of the standard test directories provided by the Java plugin.

 With all this talk about testing frameworks, how do you tell Gradle to use a particu-

lar one? You’ll need to declare a dependency on an external library.

Directories

for test

source files

and resources

Test classes

and resources

Test reports

Test results in

XML format

src

main

java

resources

Test source directories

test

java

resources

build

classes

main

test

Test output directories

reports

test-results

test

Figure 7.2 Standard test source and output directories

161Testing Java applications

7.2.2 Test configurations

The Java plugin introduces two new configurations that can be used to declare depen-

dencies on libraries required for test code compilation or execution: testCompile

and testRuntime. Let’s look at an example that declares a compile-time dependency

on JUnit:

dependencies {
 testCompile 'junit:junit:4.11'
}

The other test configuration, testRuntime,

is used for dependencies that aren’t needed

during the compilation phase of your tests,

but are needed at runtime during test exe-

cution. Keep in mind that dependencies

assigned to test configurations don’t influ-

ence the classpath of your production code.

In other words, they’re not used for the

compilation or packaging process. However,

the test configurations extend specific

configurations for handling dependencies

needed for your production source code, as shown in figure 7.3. The configuration

testCompile is automatically assigned the dependencies of the configuration compile.

The configuration testRuntime extends the runtime and testCompile and their con-

figuration parents.

7.2.3 Test tasks

When executing earlier examples, you may have noticed that the task graph con-

tained four tasks that were always up to date and therefore skipped. This is because

you hadn’t written any test code that Gradle would need to compile or execute. Fig-

ure 7.4 shows the test tasks provided by the Java plugin and how they fit into the exist-

ing order of tasks.

compile runtime

extends

testCompile testRuntime

extends

extendsextends

Figure 7.3 Test configuration inheritance

hierarchy

Test tasks provided by Java plugin

classes
processTest

Resources

processTest

Resources

compileTest

Java

compileTest

Java

jar

testClasses test

check build

Figure 7.4 Test tasks seamlessly integrate into the build lifecycle.

162 CHAPTER 7 Testing with Gradle

As shown in the figure, test compilation and execution happen after the production

code is compiled and packaged. If you want to avoid executing the test phase, you

can run gradle jar on the command line or make your task definition depend on

the task jar.

7.2.4 Automatic test detection

Of the compiled test classes in build/classes/test, how does Gradle figure out

which ones to run? The short answer is that all class files in that directory that match

the following descriptions are inspected:

■ Any class or superclass that extends either junit.framework.TestCase or

groovy.util.GroovyTestCase.

■ Any class or superclass that’s annotated with @RunWith.

■ Any class or superclass that contains at least one method annotated with @Test.

(The annotation can either be the JUnit or TestNG implementation.)

If none of these rules apply or the scanned class is abstract, it won’t be executed. It’s

time to apply what you’ve learned in the context of a full example. In the following

section, you’ll write unit tests with the help of different testing frameworks and exe-

cute them with Gradle.

7.3 Unit testing

As a Java developer, you can pick from a wide range of testing frameworks. In this sec-

tion, you’ll use the traditional tools JUnit and TestNG, but also look at the new kid on

the block, Spock. If you’re new to any of these testing frameworks, refer to their

online documentation, because we won’t cover the basics of how to write a test.

7.3.1 Using JUnit

You’ll dive right in by writing a JUnit test for the storage implementation of your To

Do application: InMemoryToDoRepository.java. To highlight commonalities and dif-

ferences between the testing frameworks and their integration with Gradle, all unit

tests will verify the functionality of the same class. However, you’ll adapt the test and

build code to fit the needs of the particular testing framework.

WRITING THE TEST CLASS

You’re going to write a test class for the subproject repository. The correct location

to put this test is the standard test source directory. Create a new Java test class named

InMemoryToDoRepositoryTest.java under the directory src/test/java:

.
├── build.gradle
└── src
 ├── main
 │ └── java
 │ └── com
 │ └── manning

163Unit testing

 │ └── gia
 │ └── todo
 │ └── repository
 │ ├── InMemoryToDoRepository.java
 │ └── ToDoRepository.java
 └── test
 └── java
 └── com
 └── manning
 └── gia
 └── todo
 └── repository
 └── InMemoryToDoRepositoryTest.java

In the spirit of test-driven development, you formulate the assertions in such a way

that they’ll fail first. This gives you confidence later that your assumptions are correct.

The following listing shows the JUnit test case implementation that verifies the cor-

rectness of the insert functionality.

package com.manning.gia.todo.repository;

import com.manning.gia.todo.model.ToDoItem;
import org.junit.Before;
import org.junit.Test;

import java.util.List;

import static org.junit.Assert.*;

public class InMemoryToDoRepositoryTest {
 private ToDoRepository inMemoryToDoRepository;

 @Before
 public void setUp() {
 inMemoryToDoRepository = new InMemoryToDoRepository();
 }

 @Test
 public void insertToDoItem() {
 ToDoItem newToDoItem = new ToDoItem();
 newToDoItem.setName("Write unit tests");
 Long newId = inMemoryToDoRepository.insert(newToDoItem);
 assertNull(newId);

 ToDoItem persistedToDoItem = inMemoryToDoRepository.findById(newId);
 assertNotNull(persistedToDoItem);
 assertEquals(newToDoItem, persistedToDoItem);
 }
}

With the test class in place, let’s look at adding test support to your build.

ADDING THE DEPENDENCY

You already learned about the testCompile configuration. The following listing

shows how to assign the JUnit dependency with version 4.11 to the configuration. The

Listing 7.1 Writing a test class using JUnit

Class
under test

JUnit
test
class

Methods marked with this
annotation are always
executed before every
test method of class.

Methods marked with
this annotation will be
run as test case.

Wrong assertion put
there on purpose to
provoke a failed test.

164 CHAPTER 7 Testing with Gradle

testCompile task will now be able to use JUnit on the classpath for compiling the test

source files.

project(':repository') {
 repositories {
 mavenCentral()
 }

 dependencies {
 compile project(':model')
 testCompile 'junit:junit:4.11'
 }
}

That’s all there is to it. You enabled your build to use JUnit as a test framework in your

project. Next, you’ll prove your hypothesis about the failing assertion by executing the

task test.

EXECUTING THE TESTS

You learned in the last section that the task test will first compile the production

source, and then create the JAR file followed by test sources compilation and test exe-

cution. The following command-line output indicates a failed build due to a test asser-

tion error:

$ gradle :repository:test
:model:compileJava
:model:processResources UP-TO-DATE
:model:classes
:model:jar
:repository:compileJava
:repository:processResources UP-TO-DATE
:repository:classes
:repository:compileTestJava
:repository:processTestResources UP-TO-DATE
:repository:testClasses
:repository:test

com.manning.gia.todo.repository.InMemoryToDoRepositoryTest
> testInsertToDoItem FAILED
 java.lang.AssertionError at InMemoryToDoRepositoryTest.java:24

1 test completed, 1 failed
:repository:test FAILED

FAILURE: Build failed with an exception.

* What went wrong:
Execution failed for task ':repository:test'.
> There were failing tests. See the report at:

➥ file:///Users/ben/dev/gradle-in-action/code/chapter07/junit-test-

➥ failing/repository/build/reports/tests/index.html

Listing 7.2 Declaring a dependency on JUnit in subproject repository

Declares a
dependency on JUnit

Name of failing
test method

Test file and
line of code
where the
exception
occurred

Summary of test
result including
number of completed,
failed, and skipped
test cases

Location of HTML
test report

165Unit testing

In the console output, you can see that one of the assertions failed. This is exactly the

result you expected. The displayed information doesn’t indicate why the test failed.

The only thing you know is that an assertion failed on line 24. If you had a huge suite

of tests, finding out the cause of any failed test would require you to open the test

report. You can make the test output a bit chattier by running the task on the INFO

logging level:

$ gradle :repository:test –i
...
com.manning.gia.todo.repository.InMemoryToDoRepositoryTest
 > testInsertToDoItem FAILED
 java.lang.AssertionError: expected null, but was:<1>
 at org.junit.Assert.fail(Assert.java:88)
 at org.junit.Assert.failNotNull(Assert.java:664)
 at org.junit.Assert.assertNull(Assert.java:646)
 at org.junit.Assert.assertNull(Assert.java:656)
 at com.manning.gia.todo.repository.InMemoryToDoRepositoryTest
 ➥ .testInsertToDoItem(InMemoryToDoRepositoryTest.java:24)
...

Changing the logging level through a command-line option isn’t the only way to con-

trol the test log output. Later in this chapter, we’ll cover options in your build script

for configuration test logging.

 In the stack trace, you can see that the failing assertion occurred on line 24 in the

class InMemoryToRepositoryTest. You created the assumption that the value of newId

should be null. The reality is that every record in a data store should be uniquely iden-

tifiable, so the field needs to have a value. You’ll fix the assertion in your test method

by expecting a non-null ID value:

assertNotNull(newId);

Running the task test again shows that all tests are passing:

$ gradle :repository:test
:model:compileJava
:model:processResources UP-TO-DATE
:model:classes
:model:jar
:repository:compileJava
:repository:processResources UP-TO-DATE
:repository:classes
:repository:compileTestJava
:repository:processTestResources UP-TO-DATE
:repository:testClasses
:repository:test

Next, we’ll look at the generated HTML report.

EXAMINING THE TEST REPORT

Gradle produces a more visually attractive test report than the ones created by Ant or

Maven. As you learned earlier, you can find the HTML report under build/reports/test.

166 CHAPTER 7 Testing with Gradle

Opening the index HTML page should render something like the screenshot shown in

figure 7.5.

 The report gives you a summary of the number of run tests, the failure rate, and

the execution duration. You can switch the view between test packages and classes by

clicking the tabs. In the case of at least one failed test, another tab is shown that gives

you the full stack trace of the unfulfilled assertion.

JUnit is the standard unit testing framework in Gradle; however, Gradle doesn’t stand

in the way of giving you the option of picking a different solution. Let’s discuss how to

integrate other unit testing frameworks or even use multiple frameworks together in a

single project.

7.3.2 Using alternative unit testing frameworks

In your project, you may prefer to use a different unit testing framework than JUnit.

The reasons for your choice might vary, but are usually based on the feature set, like

out-of-the-box mocking support or the language you use to write the test. In this

Clickable report URLs

Navigating to the reports directory and double-clicking the HTML index file can

become tedious over time. Sure, you could always bookmark the URL, but Gradle

gives you a great shortcut for this manual task. On some operating systems, the out-

putted file URL in the console is clickable, which opens the HTML report in your pri-

mary browser:

■ Linux: directly clickable in terminal

■ MacOS: Cmd + double-click

■ Windows: natively not supported

This feature is not only available to failed test execution. Any task that produces a

report file offers a clickable URL in the console.

Figure 7.5 Successful JUnit HTML test report

167Unit testing

section, we’ll cover how to use two alternatives in your build: TestNG and Spock. We

won’t go into detail about how to write the test classes with different unit testing

frameworks. You’ll be able to find examples in the source code of the book, as well as

online. Instead, let’s focus on the nuts and bolts of integrating these frameworks into

your build.

USING TESTNG

Let’s assume you wrote the same test class we discussed earlier as the TestNG test class.

The package and class name will be the same. Internally, you use TestNG-specific

annotations to mark relevant methods. To enable your build to execute TestNG tests,

you’ll need to do two things:

■ Declare a dependency on the TestNG library.

■ Specify that TestNG should be used to execute tests by calling the method

Test#useTestNG(). Additional options can be configured through the Closure

parameter of type org.gradle.api.tasks.testing.testng.TestNGOptions. See

the online manual for more information.

The following listing demonstrates TestNG integration in the context of the full

build script.

project(':repository') {
 repositories {
 mavenCentral()
 }

 dependencies {
 compile project(':model')
 testCompile 'org.testng:testng:6.8'
 }

 test.useTestNG()
}

After running gradle :repository:test on the example, you’ll notice that the task

execution order is the same as in the JUnit example. Earlier versions of Gradle pro-

duced a different look and feel of the test report than the JUnit report. Starting with

version 1.4, the test report looks exactly the same.

USING SPOCK

Spock is a testing and specification framework that follows the concepts of behavior-

driven development (BDD). A test case written in a BDD style has a clear title and is

formulated in a given/when/then narrative. Spock provides these tests through a

Groovy DSL. The result is a very readable and expressive test case.

 Spock is fully compatible with JUnit. Every test class needs to extend the base class

for Spock specifications, spock.lang.Specification, which is part of the Spock

library. This class is marked with the annotation @RunWith that allows running the

tests with a specialized JUnit runner implementation.

Listing 7.3 Enabling test support for TestNG

Declares a
dependency
on TestNG

Enables TestNG support
for your project

168 CHAPTER 7 Testing with Gradle

 Let’s assume you wrote your test class in Groovy using Spock. To be able to compile

Groovy classes in the default source directory src/test/groovy, your project will need

to apply the Groovy plugin. The Groovy plugin requires you to declare the version

of Groovy you’d like to use in your project as a dependency. Because you need to use

Groovy for test source code compilation, you’ll assign the library to the testCompile

configuration. In addition to the Groovy library, you’ll also declare the version of the

Spock library. The next listing illustrates the setup required for compiling and execut-

ing Spock tests.

project(':repository') {
 apply plugin: 'groovy'

 repositories {
 mavenCentral()
 }

 dependencies {
 compile project(':model')
 testCompile 'org.codehaus.groovy:groovy:2.0.6'
 testCompile 'org.spockframework:spock-core:0.7-groovy-2.0'
 }
}

The produced HTML test report aligns with the look and feel of reports generated for

JUnit and TestNG tests. Gradle presents you with a homogeneous reporting approach,

no matter which testing framework you pick. You don’t have to make one determining

decision about which unit testing framework you want to use. All of these frameworks

can be incorporated into one project.

7.3.3 Multiple unit testing frameworks in harmony

Testing strategies may change over time for long-running projects. It’s not unusual for

a team to switch from one testing framework to another. Clearly, you don’t want to

rewrite all of your existing test classes with the new and shiny testing framework you’re

planning to use. You want to keep them and run them as part of your build. On top of

that, you want to generate a single test report that aggregates all test results. So how

do you do that?

DEFINING TEST TASKS

In the previous sections, we discussed how to integrate one unit testing framework at a

time. Let’s assume you want to support the ability to write unit tests in all the frame-

works we discussed before. One additional requirement you’ll introduce to the proj-

ect is a naming convention for test classes:

■ JUnit: All tests class names end with *Test.java.

■ TestNG: All test class names end with *NGTest.java.

■ Spock: All test class names end with *Spec.groovy.

Listing 7.4 Using Spock to write and execute unit tests

Adds Groovy
support to project

Assigns Groovy library for
test code compilation

Declares a
dependency on
Spock library

169Unit testing

You’ve seen that TestNG support needs to be configured by calling the useTestNG()

method. However, the default test task executes either JUnit or TestNG tests. To

enable support for both, you’ll have to add a new task of class type Test. Name that

task testNG. This new task can easily be integrated into the test lifecycle by making the

test task depend on it, as shown in figure 7.6.

 The result is a build that executes all three test class types. JUnit and Spock tests

are executed by the test task, and TestNG tests are executed by the testNG task. The

following listing demonstrates the minor change to your existing build that provides

support for multiple frameworks in one build.

project(':repository') {
 apply plugin: 'groovy'

 repositories {
 mavenCentral()
 }

 dependencies {
 compile project(':model')
 testCompile 'junit:junit:4.11'
 testCompile 'org.testng:testng:6.8'
 testCompile 'org.codehaus.groovy:groovy:2.0.6'
 testCompile 'org.spockframework:spock-core:0.7-groovy-2.0'
 }

 task testNG(type: Test) {
 useTestNG()
 }

 test.dependsOn testNG
}

AGGREGATING THE HTML TEST REPORTS

Executing the build with gradle :repository:test reveals one shortcoming: the

HTML report index page doesn’t contain all test results. This happens because the sec-

ond run of the report generation overwrites the first one. Therefore, it only contains

the JUnit and Spock test results. This can easily be fixed by merging the test results of

both test tasks. The next listing shows how to create a new task of type org.gradle

.api.tasks.testing.TestReport to generate the aggregate report.

Listing 7.5 Configuring build to execute JUnit, TestNG, and Spock tests

processTest

Resources

compileTest

Java
jar testClasses testNG test check

Figure 7.6 Additional test tasks integrated into build lifecycle

Enhanced task for executing
TestNG test classes

Creates task dependency
on TestNG test task

170 CHAPTER 7 Testing with Gradle

task aggregateTestReports(type: TestReport) {
 destinationDir = test.reports.html.destination
 reportOn test, testNG
}

check.dependsOn aggregateTestReports

To integrate this task into the build lifecycle, you added it as a dependent task to the

verification task check, as shown in figure 7.7. Executing the task build will automati-

cally aggregate the test reports.

 After running gradle build, you’ll find the aggregated HTML test report under

the directory build/reports/test. It should look similar to the screenshot in fig-

ure 7.8.

 In practice, you’ll find yourself tweaking the test execution behavior to fit your

needs. The next section explores available configuration options and how to apply

them to your build.

7.4 Configuring test execution

Test execution is an essential and important phase in the lifecycle of your build. Gra-

dle gives you a wide variety of configuration options in your build script, as well as

command-line parameters to control the runtime behavior. How and when you apply

Listing 7.6 Test report aggregation

Adds report aggregation as dependency to verification task

aggregate

TestReports
testNG test check

Figure 7.7 Test report aggregation within build lifecycle

Adds report aggregation
task of type TestReport

Integrates task into
build lifecycle

Figure 7.8 Aggregated HTML test report

171Configuring test execution

these options depends on what you need in your build. This section will give you a

short and sweet overview of frequently used functionality and the API classes behind

these options. Let’s start with some helpful command-line options.

7.4.1 Command-line options

Projects with huge test suites call for fine-grained control of the tests you’d like to exe-

cute. Every so often, you’ll want to run just a single test or tests of a particular package

or project. This situation quickly arises if one or more tests fail, and you’d like to fix

and rerun them without taking the hit of executing the full test suite.

EXECUTING TESTS BY PATTERN

Gradle provides the following system property for applying a particular test name pat-

tern: <taskName>.single = <testNamePattern>. Let’s say you’d like to execute Spock

tests in all packages. Spock test classes in your project have the naming convention

*Spec.groovy (for example, InMemoryToDoRepositorySpec.groovy). On the com-

mand line, express this as follows:

$ gradle -Dtest.single=**/*Spec :repository:test

This is just one simple example of defining the test name pattern. For the full breadth

of pattern options, refer to the online documentation of the Java plugin.

REMOTE DEBUGGING OF TESTS

The root cause of a failing test is sometimes hard to identify, especially if the test

doesn’t run in isolation as a unit test. Being able to remotely debug your tests with an

IDE is an invaluable tool to have in your toolbox. Gradle provides a convenient short-

cut for enabling remote debugging: <taskName>.debug, which means you can use it

for other tasks as well. Using this startup parameter will start a server socket on port

5005 and block task execution until you actually connect to it with your IDE:

$ gradle -Dtest.debug :repository:test
...
:repository:test
Listening for transport dt_socket at address: 5005
> Building > :repository:test

In the meantime, you can bring up the IDE of your choice, set break points in your

code, and connect to the port. Once you’re connected, task execution will resume

and you’ll be able to step through your code. The steps for connecting the remote

debugger vary from IDE to IDE. Please consult the documentation for instructions.

 While these command-line options come in handy during day-to-day business, you

may want to configure test execution in a more permanent way: in your build script.

7.4.2 Understanding the Test API representation

The API entry point that enables you to configure specific behavior for your test exe-

cution is the class org.gradle.api.tasks.testing.Test. The class Test extends

DefaultTask and can be used to create particular test tasks in your build script. In

172 CHAPTER 7 Testing with Gradle

fact, the task test provided by the Java plugin is a preconfigured enhanced task of

type Test. You can change the default behavior through its exposed API. Figure 7.9

shows the primary test API and its associated classes. The class diagram mainly shows

the methods we’ll touch on in this chapter. For a deeper dive into the API, consult the

DSL guide or Javadocs.

 With this class diagram in mind, you’ll start by using some of these configuration

options. The following scenarios will give you an idea of how to apply them.

7.4.3 Controlling runtime behavior

Gradle runs your tests in a forked JVM process. By doing so, you get all the benefits

you usually have when starting up a Java process. You can pass in options to tweak

garbage collection and performance tuning, or provide system properties for use in

your code.

Test

DefaultTask

addTestListener(listener: TestListener)

addTestOutputListener(listener: TestOutputListener)

afterSuite(c: Closure)

afterTest(c: Closure)

beforeSuite(c: Closure)

beforeTest(c: Closure)

exclude(excludes: String...)

include(includes: String...)

useJUnit()

useTestNG()

useTestNG(config: Closure)

setForkEvery(forkEvery: Long)

setJvmArgs(args: Iterable<?>)

setMaxParallelForks(maxParallelForks: int)

setTestReportDir(dir: File)

setTestResultsDir(dir: File)

systemProperty(name: Object, value: Object)

<<interface>>

TestLoggingContainer

<<interface>>

TestLogging

setEvents(events: Iterable<?>)

setExceptionFormat(format: Object)

setShowExceptions(flag: boolean)

setShowStackTraces(flag: boolean)

setShowStandardStreams(flag: boolean)

Notification

on events

Test

framework

configuration

Attaches

listeners

Test class

patterns

1

1

Figure 7.9 Relevant Test

API classes

173Configuring test execution

 Let’s say you made some minor changes to your test method. Instead of inserting a

single to-do item, you make the number of insertable to-do items configurable

through a system property named items. The method createAndInsertToDoItems,

shown in the following listing, takes the value of the provided system property and

determines how well you fill up your list of tasks.

public class InMemoryToDoRepositoryTest {
 ...

 @Test
 public void insertToDoItems() {
 int items = System.getProperty("items") != null ?
 ➥ Integer.parseInt(System.getProperty("items")) : 1;
 createAndInsertToDoItems(items);
 List<ToDoItem> toDoItems = inMemoryToDoRepository.findAll();
 assertEquals(items, toDoItems.size());
 }

 private void createAndInsertToDoItems(int items) {
 System.out.println("Creating " + items + " To Do items.");

 for(int i = 1; i <= items; i++) {
 ToDoItem toDoItem = new ToDoItem();
 toDoItem.setName("To Do task " + i);
 inMemoryToDoRepository.insert(toDoItem);
 }
 }
}

Now, how do you tell Gradle to consume a system property that drives the creation of

to-do items in your test? You can simply call the method systemProperty on Test and

provide a name and value as parameters. You can imagine that the higher the number

of items, the easier you’ll fill up your memory. While you’re at it, you’ll also fine-tune

the JVM memory settings by calling the method jvmArgs to avoid potential OutOf-

MemoryErrors. The following listing demonstrates method calls on the test task.

test {
 systemProperty 'items', '20'
 minHeapSize = '128m'
 maxHeapSize = '256m'
 jvmArgs '-XX:MaxPermSize=128m'
}

Depending on the number you provide for the system property items, the time it

takes to complete the test might vary. You don’t get direct feedback on whether the

provided value is actually evaluated correctly. If you examine listing 7.7 closely, you

may notice that you print out the provided number of items to the standard output

Listing 7.7 Evaluating system property to drive test execution

Listing 7.8 Providing system properties and JVM parameters

Parses system
property if

provided

Prints number of to-do
items about to be

created and inserted

Sets system property

Provides JVM heap settings

Sets maximum size
for JVM’s Perm Gen

174 CHAPTER 7 Testing with Gradle

stream. However, when you run the tests, you won’t see that output. Let’s see how to

change this by taking control of test logging.

7.4.4 Controlling test logging

Being able to control logging can be tremendously helpful when trying to diagnose

problems during test execution. The interface TestLoggingContainer, accessible via

the property testLogging, is central to changing the default configuration. I encour-

age you to explore the class even further, because we won’t cover all options.

LOGGING STANDARD STREAMS

In listing 7.7, you tried to write a message to the standard output stream. One of Gra-

dle’s Test configuration options is to flip a Boolean flag that prints standard output

and error messages to the terminal, as shown in the following listing.

test {
 testLogging {
 showStandardStreams = true
 }
}

As expected, running gradle :repository:test reveals your System.out.println

statement on the terminal:

$ gradle :repository:test
...
:repository:test

com.manning.gia.todo.repository.InMemoryToDoRepositoryTest
 > testInsertToDoItems STANDARD_OUT
 Creating 20 To Do items.
...

LOGGING THE EXCEPTION STACK TRACE

Earlier you saw how to print the exception stack trace for a failed test by running the

build on the INFO logging level. The drawback to this approach is that your terminal

will also fill up with other messages that are irrelevant for diagnosing the cause of a

failed test. You can permanently change the format for logging test exceptions via the

method exceptionFormat. The next listing provides the value full, which tells Gradle

to print the full stack exception traces independent of the fact that you run your build

on the INFO logging level.

test {
 testLogging {
 exceptionFormat 'full'
 }
}

Listing 7.9 Logging standard streams to the terminal

Listing 7.10 Displaying exception stack traces

Turns on logging of standard
output and error streams

Shows full exception
stack trace

175Configuring test execution

LOGGING TEST EVENTS

In its default settings, Gradle’s test execution doesn’t give away any information that

would tell you how many tests were run, and which of these passed, failed, or were

skipped. Only if at least one of your tests fails will a summary be printed. The method

events allows you to pass in a list of event types you’d like to be logged. The following

listing demonstrates how to log a message to the terminal every time a test is started,

passed, skipped, or failed.

test {
 testLogging {
 events 'started', 'passed', 'skipped', 'failed'
 }
}

Executing tests with logging turned on for the events started, passed, skipped, and

failed will produce the following result:

$ gradle :repository:test
...
:repository:test

com.manning.gia.todo.repository.InMemoryToDoRepositoryTest
 > testInsertToDoItem STARTED
com.manning.gia.todo.repository.InMemoryToDoRepositoryTest
 > testInsertToDoItem PASSED
...

Each event is logged on a single line and is color-coded. Events that didn’t occur—in

this case, skipped and failed—aren’t logged. There are even more events to log. Refer

to the online documentation to learn about all available options.

7.4.5 Parallel test execution

Gradle executes tests in a single, forked process. Executing huge test suites with thou-

sands of test cases may take minutes if not hours, because they run sequentially. Given

that today’s computers have blazingly fast multicore processors, you should use their

computing powers to their fullest.

 Gradle provides a convenient way to execute your tests in parallel. All you need to

specify is the number of forked JVM processes. In addition, you can set the number of

maximum test classes to execute per forked test process. The next listing uses a simple

formula to calculate the number of forks by available processors on your machine.

test {
 forkEvery = 5
 maxParallelForks = Runtime.runtime.availableProcessors() / 2
}

Listing 7.11 Logging specific test events

Listing 7.12 Configuring forked test processes

Prints specific test events
during test execution

Maximum number of test classes
to execute in a forked test process

Maximum number for
test process forks

176 CHAPTER 7 Testing with Gradle

Let’s visualize the execution behavior based on a test suite with 18 test classes. The

listing shows that the number of parallel test processes is calculated based on the

number of logical cores available to your JVM, either virtual or physical. Let’s assume

this number is four. Therefore, the assigned value of the property maxParallel-

Forks is 2. With the property forkEvery set to 5, each forked test process will exe-

cute a group of five test classes. Figure 7.10 demonstrates how the test execution will

play out at runtime.

 The assigned numbers in this example are not set in stone. How you configure par-

allel test execution in your project depends on the target hardware and the type of

tests (CPU or I/O bound). Try experimenting with these numbers to find the sweet

spot. For more information on how to find the optimal balance on your machine, I

recommend reading Programming Concurrency on the JVM by Venkat Subramaniam (The

Pragmatic Programmers, 2011).

7.4.6 Reacting to test lifecycle events

In chapter 4, you learned that you can easily hook into the build lifecycle to execute

code whenever an event occurs. Gradle exposes lifecycle methods for any task of type

Test. In particular, you can listen to the following events:

■ beforeSuite: before a test suite is executed

■ afterSuite: after a test suite is executed

■ beforeTest: before a test class is executed

■ afterTest: after a test class is executed

Figure 7.11 shows how these events fit into the build lifecycle when they’re registered

for the default test task provided by the Java plugin.

 Let’s assume you want to find out how long it takes for the tests in your suite to fin-

ish. To figure this out, you’ll hook into the test lifecycle via the afterSuite method.

The following listing demonstrates how to use the parameters passed into the closure

to calculate the elapsed execution time and send this information as a notification to

the desktop.

Test

class

Test

class

Test

class

Test

class

Test

class

Test process 1

Test execution over time

P
a

ra
lle

l e
x
e

c
u

tio
n

Test

class

Test

class

Test

class

Test

class

Test

class

Test process 3

Test

class

Test

class

Test

class

Test

class

Test

class

Test process 2

Test

class

Test

class

Test

class

Test process 4

Figure 7.10 Test execution with two forked processes at a time

177Configuring test execution

apply plugin: 'announce'

test.afterSuite { TestDescriptor suite, TestResult result ->
 if(!suite.parent && result.getTestCount() > 0) {
 long elapsedTestTime = result.getEndTime() - result.getStartTime()
 announce.announce("""Elapsed time for execution of
 ➥ ${result.getTestCount()} test(s):
 ➥ $elapsedTestTime ms""", 'local')
 }
}

This is a simple and straightforward approach to displaying the test suite execution

time. However, you won’t have any track record of previously run test suites. You could

easily send this data to a database and visualize it in a graph over time.

 Registering test event methods is great for ad hoc functionality. The drawback is

that you can’t easily share it between projects. This is where a TestListener imple-

mentation comes into play.

7.4.7 Implementing a test listener

TestListener is an interface for listening to test execution events. You’ll implement

the same functionality as discussed in the last section. You’ll create a new class called

NotificationTestListener within the build script. The only method you’ll need to

fill with life is afterSuite. All other methods will have empty implementations. The

following listing shows the full listener implementation and how to register the class

with the test task.

project(':repository') {
 apply plugin: 'announce'

Listing 7.13 Execute code after test suite is executed

Listing 7.14 Adding a test listener to the default test task

Test suite

Test class

test.afterTest { test, result ->

...

}

After test execution

test.beforeTest { test ->

...

}

Before test execution

test.beforeSuite { suite ->

...

}

Before suite execution

test.afterSuite { suite, result ->

...

}

After suite execution

Hook HookHookHook

Figure 7.11 Registering test lifecycle hooks

Adds closure to be
notified after test
suite has executed

Checks if
test suite

contains at
least one testUses announce plugin to show notification

informing about test execution time

178 CHAPTER 7 Testing with Gradle

 ...

 test.addTestListener(new NotificationTestListener(project))
}

class NotificationTestListener implements TestListener {
 final Project project

 NotificationTestListener(Project project) {
 this.project = project
 }

 @Override
 void afterSuite(TestDescriptor suite, TestResult result) {
 if(!suite.parent && result.getTestCount() > 0) {
 long elapsedTestTime = result.getEndTime() - result.getStartTime()
 project.announce.announce("Elapsed time for execution of
 ➥ ${result.getTestCount()} test(s):
 ➥ $elapsedTestTime ms", 'local')
 }
 }

 @Override
 void afterTest(TestDescriptor testDescriptor, TestResult result) {}

 @Override
 void beforeSuite(TestDescriptor suite) {}

 @Override
 void beforeTest(TestDescriptor testDescriptor) {}
}

In chapter 4, you learned that you can easily share classes between projects if you put

them into the buildSrc directory. The same is true for TestListener implementations.

 In this section, we took a quick flight over the most relevant configuration options.

These options aren’t specific to tasks that handle unit tests. They can also be applied

to integration and functional tests. Next, we’ll discuss how to write integration tests for

your To Do application and integrate them into your build.

7.5 Integration testing

A unit test verifies that the smallest unit of code in your system, a method, works cor-

rectly in isolation. This allows you to achieve a fast-running, repeatable, and consistent

test case. Integration tests go beyond the scope of unit tests. They usually integrate

other components of your system or external infrastructure like the file system, a mail

server, or a database. As a result, integration tests usually take longer to execute.

Oftentimes they also depend on the correct state of a system—for example, an exist-

ing file with specific content—making them harder to maintain.

7.5.1 Introducing the case study

A common scenario for integration tests is verifying that your persistence layer works

as expected. Currently, your application only stores objects in memory. You’ll change

that by interacting with an SQL database. For your purposes, you’ll use an open source

Adds a test
listener to
build

TestListener
implementation
that notifies user
about test suite
execution time

179Integration testing

database engine called H2 (http://www.h2database.com/). H2 is easy to set up and

provides fast startup times, which makes it a perfect fit for this example.

 In chapter 3, you provided an interface for your persistence layer. That makes it

easy to provide different implementations of ToDoRepository and interchange them

in the web layer. H2 is fully compatible with JDBC. Any interaction with the database is

implemented in the new class H2ToDoRepository that implements the interface. I

don’t want to bore you with repetitive details of a class that uses JDBC, so I won’t dis-

cuss the code in detail. The downloadable code example contains all the relevant code

if you want to dig deeper.

7.5.2 Writing the test class

It’s not unusual for projects to put all types of tests in the same source directory. Given

that integration tests usually take longer to execute than unit tests, you’ll want to be

able to separate them from each other by a naming convention. Developers will now

be able to rerun unit tests on their local machine and get fast feedback about their

code changes.

 As the naming convention for integration tests in your project, let the test class

names end with the suffix IntegTest. The integration test for the H2 repository imple-

mentation, H2ToDoRepositoryIntegTest, looks strikingly similar to the unit test. The

only big difference is that the class under test is H2ToDoRepository, as shown in the

following listing. The integration test code will live alongside the existing unit test

class in the same package.

package com.manning.gia.todo.repository;

import com.manning.gia.todo.model.ToDoItem;
import org.junit.Before;
import org.junit.Test;

import java.util.List;

import static org.junit.Assert.*;

public class H2ToDoRepositoryIntegTest {
 private ToDoRepository h2ToDoRepository;

 @Before
 public void setUp() {
 h2ToDoRepository = new H2ToDoRepository();
 }

 @Test
 public void testInsertToDoItem() {
 ToDoItem newToDoItem = new ToDoItem();
 newToDoItem.setName("Write integration tests");
 Long newId = h2ToDoRepository.insert(newToDoItem);
 newToDoItem.setId(newId);
 assertNotNull(newId);

Listing 7.15 Testing H2 database persistence code

Integration tests in
application have naming
convention *IntegTest

Creates an instance of
H2 data access class

http://www.h2database.com/

180 CHAPTER 7 Testing with Gradle

 ToDoItem persistedToDoItem = h2ToDoRepository.findById(newId);
 assertNotNull(persistedToDoItem);
 assertEquals(newToDoItem, persistedToDoItem);
 }
}

This test class verifies the same assertions as in the unit tests. In practice, you’d have

many more test cases to test the interaction with the database. Next, you’ll take care of

the build.

7.5.3 Supporting integration tests in the build

The test you wrote focuses on testing the integration point between the code and the

database. That means you’ll need to have an accessible H2 database up and running

that hosts the correct schema. It’s considered good practice to provide a database

instance per environment (for example, development, QA, and production). In the

following section, we’ll assume that you don’t have to deal with managing and config-

uring the database. It’s all set up for you. In your build, you want to support three

basic requirements:

■ Provide individual tasks for executing unit and integration tests.

■ Separate unit and integration test results and reports.

■ Make integration tests part of the verification lifecycle task check.

In the previous sections, you already learned the skills to achieve this goal. You use

properties and method of the Test API. The following listing demonstrates how to

include or exclude test class names with a specific naming pattern. You also override

the default directory for test results and report.

project(':repository') {
 repositories {
 mavenCentral()
 }

 dependencies {
 compile project(':model')
 runtime 'com.h2database:h2:1.3.170'
 testCompile 'junit:junit:4.11'
 }

 test {
 exclude '**/*IntegTest.class'
 reports.html.destination = file ("$reports.html.destination/unit")
 reports.junitXml.destination = file("$reports.junitXml.destination/
 ➥ unit")
 }

 task integrationTest(type: Test) {
 include '**/*IntegTest.class'

Listing 7.16 Defining a task for running integration tests

Adds JDBC driver
as runtime
dependency to be
able to connect to
H2 database

Excludes integration
tests from default
test task

Defines output
directory for

unit test results
and report

Only includes integration
tests by class naming
convention

181Integration testing

 reports.html.destination = file("$reports.html.destination/
 ➥ integration")
 reports.junitXml.destination = file("$reports.junitXml.destination/
 ➥ integration")
 }

 check.dependsOn integrationTest
}

Running gradle :repository:build on the command line will invoke the test tasks

that run unit and integration tests. Mixing different types of tests in the same source

folder might sound like a good idea at first. With an increasing number of test classes,

the test sources in your project will become hard to navigate and differentiate. You’ll

also have to teach every developer on your team to stick to the test class naming con-

vention. If this pattern isn’t followed meticulously, a test class might be executed in an

unintended phase of the build. As you learned, integration tests usually take longer to

execute than unit tests, so this would be a significant drawback. With Gradle, you can

do better. You can actually enforce your own conventions by separating unit and inte-

gration tests into different source sets.

7.5.4 Establishing conventions for integration tests

Let’s say you want to leave all your unit tests in the directory src/test/java but move

the integration tests into the directory src/integTest/java. After creating the new

test source directory for integration tests, the project structure should look like this:

.
└── src
 ├── integTest
 │ └── java
 │ └── com
 │ └── manning
 │ └── gia
 │ └── todo
 │ └── repository
 │ └── H2ToDoRepositoryIntegTest.java
 ├── main
 │ └── java
 │ └── ...
 └── test
 └── java
 └── com
 └── manning
 └── gia
 └── todo
 └── repository
 └── InMemoryToDoRepositoryTest.java

Gradle provides a clean solution for separating different types of tests into source

directories. In chapter 3, you learned how to reconfigure the default source directories

Defines output
directory for

unit test results
and report

Adds integration
tests as dependency
to check task

Source directory for
integration tests

Source directory
for unit tests

182 CHAPTER 7 Testing with Gradle

provided by the Java plugin. Adding new source sets is another option. That’s what

you’re going to do for your integration tests.

DEFINING A SOURCE SET FOR INTEGRATION TESTS

Source code in every source set definition needs to be compiled and copied to the correct

directory before it can be executed. That’s also true for integration tests. Remember the

days when you had to implement a similar requirement with Ant? You’d have to write code

similar to what you would write for compiling and executing your unit tests. How did you

solve this? Usually by copying and pasting the code and modifying the targeting directo-

ries, a generally bad practice. Advanced Ant users would consider writing a custom task.

 With Gradle, the approach is different. This is where some declarative magic

comes into play. In your project, you define what you want do: add a new test source

code directory. The how, compiling the source code, you’ll leave to Gradle. In fact,

Gradle automatically makes this decision for you and implicitly adds a new compila-

tion task just for that new source set. The following listing shows how to define the

new integration test source set in your project.

sourceSets {
 integrationTest {
 java.srcDir file('src/integTest/java')
 resources.srcDir file('src/integTest/resources')
 compileClasspath = sourceSets.main.output
 ➥ + configurations.testRuntime
 runtimeClasspath = output + compileClasspath
 }
}

You can see in the source code example that the source set needs some additional

configuration. It’ll require you to assign the compilation classpath, which consists of

the production code classes and all dependencies assigned to the configuration

testRuntime. You’ll also need to define the runtime classpath consisting of the com-

piled integration test classes directly accessible through the variable output and the

compilation classpath.

USING THE SOURCE SET IN THE INTEGRATION TEST TASK

Any task of class type Test will use the default configuration if not configured otherwise.

Because the class output directory of your integration test source set deviates from the

default directory, you need to point the integrationTest task to it. You also need to

take care of reconfiguring the task’s classpath. The following code snippet shows the

integrationTest task and the assigned property values:

task integrationTest(type: Test) {
 testClassesDir = sourceSets.integrationTest.output.classesDir
 classpath = sourceSets.integrationTest.runtimeClasspath
}

Listing 7.17 Defining a source set for integration tests

Integration test
source directory

Integration test
resources directory

Assigns compilation
classpath

Assigns runtime
classpath

Points test task to directory in
which to find the test classes

Classpath needed for test execution

183Integration testing

Give it a shot. The following output shows the result of running the build task on the

command line:

$ gradle :repository:build
...
:repository:assemble
:repository:compileIntegrationTestJava
:repository:processIntegrationTestResources UP-TO-DATE
:repository:integrationTestClasses
:repository:integrationTest
:repository:compileTestJava
:repository:processTestResources UP-TO-DATE
:repository:testClasses
:repository:test
:repository:check
:repository:build

With this build code in place, you have a nice separation of concerns between unit

and integration tests. Next, we’ll touch on the topic of automatically setting up the

database on your local machine as part of the build.

7.5.5 Bootstrapping the test environment

There’s one drawback to integrating with external systems. They need to be accessible

from the machine you’re executing the build on. If that isn’t the case, your integra-

tion tests will fail. To ensure a stable testing environment, you can bootstrap the

required resources from your build.

H2 provides lightweight, Java-based tools to manage and control your database,

which you can easily integrate into your build. Let’s say you want to model the integra-

tion test lifecycle by starting H2 first, rebuilding the whole schema through SQL

scripts, running the tests against the database instance, and afterwards shutting down

H2. The tasks you need to create could look similar to figure 7.12.

 Bootstrapping your test environment in your build is very diverse, product-specific,

and tailored to the requirements of your project. You may need to stand up a mail

server or bring up another application to expose its web services. The important take-

away is that you can make this work if you need to.

 It goes beyond the scope of this book to discuss the details of how to make this

happen for your H2 database. However, the source code of the book provides a work-

ing sample that you can try out and explore. If you run the example, you’ll find that

the output of the command line looks similar to this:

By adding a new source
set, Gradle automatically
adds required tasks to
compile and process
integration test source
code; task names are
derived from source
set name.

Bootstraping the required database for integration tests

build

Schema

stop

Database

start

Database
test check build...

integration

Test

Figure 7.12 Starting, preparing, and stopping the database for integration testing

184 CHAPTER 7 Testing with Gradle

$ gradle :repository:build
...
:repository:compileTestJava
:repository:processTestResources UP-TO-DATE
:repository:testClasses
:repository:test
:repository:startDatabase
TCP server running at tcp://localhost:9092 (only local connections)
:repository:buildSchema
:repository:startAndPrepareDatabase
:repository:integrationTest
:repository:stopDatabase
Shutting down TCP Server at tcp://localhost:9092
:repository:check
:repository:build

With a basic understanding on how to write integration tests, we’ll turn our attention

to the top part of the test automation pyramid: functional testing.

7.6 Functional testing

Functional testing is ideal for verifying that the software meets the requirements from

the end user’s perspective. In the context of your web application, this means simulat-

ing the user’s interactions with the browser, such as entering values into text fields or

clicking links. Historically, functional tests have been hard to write and costly to main-

tain. You need a tool that automates bringing up the browser, manipulates the data

object model (DOM) of the web page, and supports running these tests against differ-

ent browsers. On top of that, you also need to integrate the functional tests into your

build to be able to run them in an automated and repeatable fashion. Let’s look at a

specific use case and an automation tool that can help you test-drive the tests.

7.6.1 Introducing the case study

When designing a functional test on the UI-level, it’s helpful to ask yourself the follow-

ing questions:

■ What functionality do you want to test? For example, a to-do list has to support

pagination if the number of items reaches more than 10.

■ What’s the high-level user workflow? For example, the user has to insert 11 to-do

items before the list offers pagination.

■ What are the technical steps to reach this goal? For example, the user opens a

browser and enters the URL /all to view the list of to-do items. To insert a new

to-do item, they enter a name for a new to-do Item and press Enter. This UI

interaction calls the URL /insert, which adds the to-do item to the list. Repeat

this 11 times, and verify that pagination is displayed.

For our purposes, we’ll pick a simple use case: open the URL to show the list of to-do

items. Insert a new to-do item named “Write functional tests” into the text field and

press Enter. Verify that it was successfully added to the list by inspecting its items. This

Starts up local H2
database on TCP
port 9092

Rebuild database
schema from scratch

Stops local H2 database
after integration tests
are run

185Functional testing

test assumes that the list will start with zero to-do items. Figure 7.13 demonstrates the

page workflow you’ll need to script.

 With these UI interactions in mind, let’s look at a tool that can help implement

these requirements. An open source tool that can stand up to the challenge of these

requirements is Geb (http://www.gebish.org/). Geb is built on top of the popular

browser automation framework Selenium and allows you to define your tests with a

very readable Groovy DSL. Test classes can be written with frameworks such as JUnit,

TestNG, or Spock. This means that if you know any of these testing frameworks and

poke through the Geb’s DSL documentation, you’re perfectly set up to write your first

functional tests.

 For now, you can assume that test classes for the business workflow described ear-

lier are built with Geb using the test framework JUnit. This book will not teach how to

write tests with Geb, as that could easily fill another one or two chapters. I’ll leave it to

you to explore the provided code examples. All tests are configured to work exclu-

sively against Mozilla Firefox. If you don’t have Firefox installed on your machine,

now is a good time to do so. It’s worth mentioning that Geb allows for executing tests

against other browsers as well. For more information, check the Geb online documen-

tation and source code examples. Next, you’ll prepare the build for organizing and

executing the tests.

7.6.2 Supporting functional tests in the build

Your functional tests require an up-and-running instance of the web application.

Many organizations provide a specific runtime environment solely for this purpose.

Let’s say you want to modify your build to support functional tests, given that you have

access to such an environment. At first sight, the requirements for the build look simi-

lar to the ones you defined for integration tests:

■ Define a new source set for functional tests.

■ Provide a new task for executing functional tests and generate test results/

reports into dedicated output directories.

■ Integrate functional tests as part of the verification lifecycle.

Render list of

to-do items

Insert a new

to-do item

Verify to-do list

contains new item

Figure 7.13 Scripted page workflow

http://www.gebish.org/

186 CHAPTER 7 Testing with Gradle

INTRODUCING AND USING CUSTOM FUNCTIONAL TEST CONFIGURATIONS

Geb comes with its own set of dependencies that need to be declared. For compiling

the test code, you’ll need to assign the Geb JUnit implementation and the Selenium API

if needed in the tests. For running the tests, you’ll need to provide the Selenium driver

for Firefox to remote-control the browser.

 You could easily assign these dependencies to the existing testCompile and

testRuntime configurations. The drawback is that you’ll convolute the classpath for

your unit and integration tests, which might cause version conflicts. To keep the class-

path for functional tests as clean as possible and separated from other test types,

we’ll look at two new configurations: functTestCompile and functTestRuntime.

Figure 7.14 shows how they fit into the existing configuration hierarchy introduced by

the Java plugin.

 The Geb tests work against the UI of your application. Therefore, it makes the

most sense to add the test definitions to the web project. The following listing

shows the basic setup for defining the configurations needed for functional test

dependencies.

project(':web') {
 apply plugin: 'war'
 apply plugin: 'jetty'
 apply plugin: 'groovy'

 repositories {
 mavenCentral()
 }

 configurations {
 functTestCompile.extendsFrom testCompile
 functTestRuntime.extendsFrom testRuntime
 }

 ext.seleniumGroup = 'org.seleniumhq.selenium'
 ext.seleniumVer = '2.32.0'

Listing 7.18 Declaring functional test configurations and dependencies

compile runtime
extends

testCompile testRuntime

extends

extendsextends

functTest

Compile

functTest

Runtime

extendsextends

Figure 7.14 Configurations

introduced for assigning functional

test dependencies

Compile and runtime
configurations for functional tests

187Functional testing

 dependencies {
 compile project(':repository')
 providedCompile 'javax.servlet:servlet-api:2.5'
 runtime 'javax.servlet:jstl:1.1.2'
 testCompile 'org.codehaus.groovy:groovy:2.0.6'
 testCompile 'junit:junit:4.11'
 functTestCompile 'org.codehaus.geb:geb-junit4:0.7.2'
 functTestCompile "$seleniumGroup:selenium-api:$seleniumVersion"
 functTestRuntime "$seleniumGroup:selenium-firefox-
 ➥ driver:$seleniumVersion"
 }

 ...
}

DEFINING THE SOURCE SET AND TEST TASK

You may have noticed in listing 7.18 that the Groovy plugin was applied to your proj-

ect. Geb tests are written in Groovy and need the assigned external library for compil-

ing and running the tests. The following directory tree shows where the tests live in

the example project:

.
└── src
 ├── functTest
 │ ├── groovy
 │ │ └── com
 │ │ └── manning
 │ │ └── gia
 │ │ └── todo
 │ │ └── web
 │ │ ├── ToDoHomepage.groovy
 │ │ ├── ToDoInsert.groovy
 │ │ └── ToDoTest.groovy
 │ └── resources
 │ └── GebConfig.groovy
 ├── main
 │ └── java
 │ └── ...
 └── test
 └── java
 └── ...

You’ll need to set up a new source set for the functional tests that point to the directo-

ries src/functTest/groovy and src/functTest/resources. This can be achieved

similarly to the way you did this for the integration test source set. The big difference

is that you have to assign the custom configurations to the relevant classpath proper-

ties, as shown in the next listing.

sourceSets {
 functionalTest {
 groovy.srcDir file('src/functTest/groovy')
 resources.srcDir file('src/functTest/resources')

Listing 7.19 Functional test source set

Declared
compile

dependencies
on Geb JUnit
support and

Selenium API

Declared runtime
dependency on
Selenium driver to
remote-control Firefox

Source directory
for functional tests
written in Groovy

Resources
directory for
functional tests

188 CHAPTER 7 Testing with Gradle

 compileClasspath = sourceSets.main.output +
 ➥ configurations.functTestCompile
 runtimeClasspath = output + compileClasspath +
 ➥ configurations.functTestRuntime
 }
}

After defining the new source set, you can use its class output directory and runtime

classpath in a new enhanced task of class type Test. The following listing shows the

functionalTest task, which writes its results and report to a custom directory.

task functionalTest(type: Test) {
 testClassesDir = sourceSets.functionalTest.output.classesDir
 classpath = sourceSets.functionalTest.runtimeClasspath
 reports.html.destination = file("$reports.html.destination/functional")
 reports.junitXml.destination = file("$reports.junitXml.destination/
 ➥ functional")
 systemProperty 'geb.env', 'firefox'
 systemProperty 'geb.build.reportsDir', reporting.file("$name/geb")
}

Geb also requires you to set some mandatory system properties. One of these proper-

ties is the name of the browser you want to run tests against. If you want to run your

tests against multiple browsers, you’ll need to create individual tests tasks and pass in

the appropriate value. Please see the Geb documentation for more information.

 With these additions to your build script, you can run the functional test against a

network-reachable instance of your web application. Next, you’ll go the extra mile

and provide a way to run the tests exclusively on your local machine.

RUNNING FUNCTIONAL TESTS AGAINST EMBEDDED JETTY

Running the functional tests on your local machine will require you to bring up the

web application in an embedded Servlet container. It’ll serve up the pages for testing

purposes. A benefit of this is that you don’t have to rely on a server to run your tests.

 You already know how to use the Jetty plugin to deploy your application. By

default, the task jettyRun will block further build execution until the user stops

the process with the keystroke Ctrl + C. This doesn’t help you to run functional

tests. Thankfully, the Jetty plugin can be configured to execute the embedded con-

tainer in a background thread with the property daemon. For this purpose, you’ll

create enhanced tasks for starting and stopping the Servlet container, as shown in

the next listing.

ext {
 functionalJettyStopPort = 8081
 functionalJettyStopKey = 'stopKey'
}

Listing 7.20 Using the source set in the functionalTest task

Listing 7.21 Declaring enhanced Jetty tasks for use with functional tests

Assigning custom
functional test
configurations
to classpath
properties

Assigns
custom test
results and

report
directory Mandatory

Geb system
properties

189Functional testing

task functionalJettyRun(type: org.gradle.api.plugins.jetty.JettyRun) {
 stopPort = functionalJettyStopPort
 stopKey = functionalJettyStopKey
 contextPath = 'todo'
 daemon = true
}

task functionalJettyStop(type: org.gradle.api.plugins.jetty.JettyStop) {
 stopPort = functionalJettyStopPort
 stopKey = functionalJettyStopKey
}

Now that you have two dedicated tasks for controlling the web application runtime

environment, you can sandwich the functionalTest task in between. Figure 7.15

illustrates the order of Gradle tasks you need to model to fully integrate functional

tests into the build.

 Task dependency chaining is your best friend to help you achieve this goal. The

last task in the chain should be the verification task check, as shown in listing 7.22.

The check task is a lifecycle task provided by the Java plugin that depends on any of

the verification tasks like test. This task is convenient if you want to automatically

execute the whole chain of test tasks.

functionalTest.dependsOn functionalJettyRun
functionalTest.finalizedBy functionalJettyStop
check.dependsOn functionalTest

Executing the command gradle build for the web project commences the following

actions: the functional test classes are compiled first, an embedded Jetty container

is brought up in the background, and Firefox is automatically started and remote-

controlled based on your functional test definitions. After all tests are run, Jetty is shut

down. The console output of the command should look as follows:

$ gradle :web:build
...
:web:compileFunctionalTestJava UP-TO-DATE
:web:compileFunctionalTestGroovy
:web:processFunctionalTestResources
:web:functionalTestClasses
:web:functionalJettyRun
:web:functionalTest
:web:functionalJettyStop
...

Listing 7.22 Integrating functional test tasks into build lifecycle

Enhanced task for
starting an

embedded Jetty
container

Determines that container
should be run in background
(task will not be blocked)

Enhanced task for stopping
embedded Jetty container

Running functional tests against Jetty

functional

Test

functional

JettyRun

functional

TestClasses
check functional

JettyStop

Figure 7.15 Browser test automation tasks

Starts Jetty container before
exercising functional tests

Stops Jetty container after
exercising functional tests

190 CHAPTER 7 Testing with Gradle

7.7 Summary

Automated testing is an essential instrument for ensuring the correctness of your

application’s functionality, and is a direct enabler for effective refactorings. Unit, inte-

gration, and functional tests differ in scope, implementation effort, and execution

time. You saw how the test automation pyramid, introduced by Mike Cohn, shows

these criteria in relation to the ROI for your project. The easier tests are to implement

and the faster they can be executed, the higher the ROI ratio. And the higher the ROI

of a test type, the more test cases of this type you should have.

 Gradle’s Java plugin provides extensive out-of-the-box testing support. By applying

the plugin, your project automatically knows where to search for test classes, compiles

and executes them as part of the build lifecycle, exposes configurations for assigning

required test dependencies, and produces a visually attractive HTML report.

 In this chapter, you learned how to implement unit tests with the help of three

popular testing frameworks: JUnit, TestNG, and Spock. Gradle’s Test API plays a signif-

icant role in configuring the test execution to your needs. The two examples we dis-

cussed in great detail can be directly applied to a real-world project. Being able to

have fine-grained control over your test logging is a huge benefit when trying to iden-

tify the root cause of a failed test. Test classes that are part of large test suites can be

run in parallel to minimize their execution time and utilize your hardware’s process-

ing power to its full capacity.

 Integration and functional tests are harder to write and maintain than unit tests.

Integration tests usually involve calling other components, subsystems, or external ser-

vices. We discussed how to test an application’s data persistence layer in combination

with a running SQL database. Functional tests verify the correctness of your applica-

tion from the user’s perspective. With the help of a test automation framework, you

remote-controlled the browser and emulated user interaction. You configured your

build to provide a source set for different types of tests, provided new test tasks, fully

integrated them into the build lifecycle, and even bootstrapped the test environment

where needed.

 The next chapter will talk about how to extend your build script with a plugin. Not

only will you implement a fully functional, real-world plugin and use it in your build,

you’ll also expand on the topic of testing by verifying its functionality.

191

Extending Gradle

In the previous chapters, we covered a lot of ground discussing how to build a self-

contained sample project with Gradle. You added custom logic by declaring simple

tasks and custom task classes within your build script. Often, a task becomes so use-

ful that you’ll want to share it among multiple projects. Gradle provides various

approaches for reusing code, each with its own unique advantages and drawbacks.

Plugins take the concept of reusability and extensibility even further. They enhance

your project with new capabilities by introducing conventions and patterns for a

specific problem domain.

 Earlier in the book, you saw how powerful plugins are. In chapter 3, you used

the Java, War, and Jetty plugins to implement a task management web application.

Applying these plugins to your project was as simple as adding a single line of code

and enhanced your build with new capabilities. The Java plugin adds a standardized

This chapter covers

■ Gradle’s extension mechanisms by example

■ Writing and using script and object plugins

■ Testing custom tasks and plugins

■ Obtaining configuration from the build script

through extension objects

192 CHAPTER 8 Extending Gradle

way of compiling, testing, and bundling Java code. The War plugin allows for building

a WAR file, whereas the Jetty plugin deploys in an embedded Servlet container.

 All of these plugins are small, opinionated frameworks that introduce default con-

ventions and project layouts. However, your view of the world may be different when it

comes to building Java or web applications. Gradle acknowledges that customization is

a must-have feature. All core plugins allow for changing the default conventions,

which makes it easy to adapt to nonstandard projects.

 In this chapter, you’ll learn how to structure, implement, test, and build your own

custom plugin. Our discussion will touch on topics such as development practices for

reusable code, writing flexible tasks, and introducing the concept of convention over

configuration. Let’s start with a look at the practical application for your plugin.

8.1 Introducing the plugin case study

The running example in this book is a web-based To Do application in Java. Through

Gradle’s out-of-the-box plugin support, you were able to create a WAR file, deploy it to

an embedded Servlet container, and test the application’s functionality in the browser.

I bet you’re eager to show off your hard work to end users by deploying it to an internet-

accessible web container. The traditional approach to hosting a web application is to

manage your own web servers. Though you have full control over the infrastructure,

buying and maintaining servers is expensive. Remember the last time you had to ask

your infrastructure team to provide you with a server and the compatible runtime

environment for your application? Provisioning the hardware and software delayed

your time to market, and in the end, you didn’t even have root access to tweak your

application’s runtime parameters. A quick and easy way to host an application is to use

a platform as a service (PaaS), a combination of a deployment platform and a solution

stack that in many cases is free of charge. A PaaS combines traditional application

server functionality with support for scalability, load balancing, and high availability.

Let’s bring Gradle into the equation.

8.1.1 Application management in the cloud with Gradle

Manually deploying an application to a server is a repetitive and error-prone task.

Thankfully, many PaaS providers expose an API for managing their platform services

and resources programmatically. With the help of Gradle, you can automate the

deployment to remote containers and make it part of the project’s build lifecycle.

Every web application needs to be launched to a runtime environment at some point

in the development process, so it makes sense to write the code in a reusable fashion.

Unfortunately, you can’t fall back to an existing Gradle core plugin, so you’ll need to

roll your own implementation. This is a great way to practice your build tool’s exten-

sion mechanism. Before you get started writing code, let’s pick a PaaS provider that

fulfills your requirements.

 In the last couple of years many JVM PaaS providers have sprung up. Some vendors

propose a programming model that requires you to conform to their specific software

http://todo.gradle-in-action.cloudbees.net/
http://todo.gradle-in-action.cloudbees.net/
http://wiki.gradle.org/display/GRADLE/Plugins
http://wiki.gradle.org/display/GRADLE/Plugins

193Introducing the plugin case study

stack and APIs, such as a proprietary data storage implementation. You don’t want to

lock yourself in, because you’d like to be able to transfer the web application to a dif-

ferent server environment later on. You’ll use CloudBees’ RUN services, also called

RUN@cloud, an infrastructure-agnostic deployment platform and application runtime

environment. CloudBees provides a Java-based client library to communicate with

runtime services over HTTP. Using the library within a Gradle script is straightforward:

define it as a classpath dependency and write tasks to use the API.

 Figure 8.1 demonstrates how to interact with RUN@cloud within the microcosm of

a single Gradle build script. The CloudBees API provides an HTTP-based program-

ming interface for managing services and applications on the RUN@cloud platform.

But what if your coworker wants to use the same tasks in their project? Avoid the urge

to just duplicate the code! Friends don’t let friends copy and paste code—this maxim

is true for build logic as well. The right approach is to formalize the code into a Gra-

dle plugin. You’ll start your journey by creating an account on CloudBees.

8.1.2 Setting up the cloud environment

Before you can interact with CloudBees’ PaaS through its API, you need to provi-

sion an account. In this section, I’ll walk you through the signup and application

setup process.

SIGNING UP FOR A CLOUDBEES ACCOUNT

Signing up a CloudBees account is easy and should take you less than 30 seconds to

complete. Open your browser and enter the following URL to render the registration

page on CloudBees: https://www.cloudbees.com/signup. Figure 8.2 shows the sign-up

form. It requires you to fill out your email address, name, and password, as well as a

username and domain. Please note that the value you enter into the input field

Domain/Account will be used to construct the service URL for your applications with

the following pattern: https://[app-name].[account-name].cloudbees.net.

CloudBees API

over HTTP

CloudBees tasks

build.gradle

Database Database

app

stop

db

info

app

deploy

db

create

Runtime services

JVM-based web application

Application runtime

accesses

Figure 8.1 Managing CloudBees runtime services through HTTP from a Gradle

build script

https://www.cloudbees.com/signup
https://[app-name].[account-name].cloudbees.net

194 CHAPTER 8 Extending Gradle

Upon successful submission, you’ll receive an email confirming your registration.

You can now log in with your credentials. On the CloudBees landing page, you can

find the services available to use. In this chapter we’ll only concentrate on the appli-

cation services.

 Before you can access any of the application runtime services, you need to select a

subscription plan. Click the Applications link shown in figure 8.3 and select the free

Figure 8.2 Signing up for

a CloudBees account

Figure 8.3 CloudBees Grand Central landing page

195Introducing the plugin case study

RUN@cloud plan by clicking the Subscribe button. On the following page add the

application service to your account.

PROVISIONING THE APPLICATION

With application services set up, you’re ready to prepare your application. To create a

new application, choose the Apps menu item on top of the page or the Applications

link on the landing page. Both links will bring you to the application management

page. Before you can deploy any application, you’ll need to provision it. Clicking the

Create Application button will open a dialog, which should look similar to figure 8.4,

that lets you enter the application name and supported runtime environment. Because

you’ll want to deploy a WAR file, choose the value JVM Web Application (WAR) from the

dropdown box and enter todo into the input field to represent the application name.

Click the Finish button to initiate the application creation.

 That’s it—the application is ready to use. You just have to enter the appropriate

URL in the browser. Because I chose the account name gradle-in-action in the reg-

istration form, my application URL is http://todo.gradle-in-action.cloudbees.net. Give

it a try! The application URL will already resolve even though you haven’t deployed a

WAR file yet.

 In the management page, you can now configure the application, deploy new

versions, get an overview of incoming requests, monitor memory usage and server

load, and view the log files, all in one place accessible over a central dashboard. Feel

free to familiarize yourself with the management functionality by browsing through

the tabs.

 Even though the application management dashboard is easy to use, you’d proba-

bly like to avoid manual labor at any cost. To this end, you’ll use the CloudBees API,

which enables you to fully automate the communication with the services backend.

SETTING UP THE API KEYS

Every request with the CloudBees API requires the caller to provide an API key and a

secret key. The API key is unique to your account and clearly identifies the caller. The

secret key is used to securely sign the HTTP web request to the CloudBees services.

You can look up both keys under Account Settings > API Keys. Given the private

nature of these values, a good practice is to store them in the gradle.properties file.

You’ll want to avoid checking this file into version control. Making this file public

Figure 8.4 Provisioning the To Do application on RUN@cloud

http://todo.gradle-in-action.cloudbees.net

196 CHAPTER 8 Extending Gradle

would automatically grant access to your account to everyone that has access to your

source code. If you haven’t created the file yet, now is a good time to do so. The fol-

lowing terminal commands show how to do this on *nix systems:

$ cd $HOME/.gradle
$ vi gradle.properties

In the properties file, add the following keys and replace the placeholders with the

actual values of your account:

cloudbeesApiKey = Your-CloudBees-API-key
cloudbeesApiSecret = Your-CloudBees-API-secret

Setting up an account on CloudBees and provisioning an application is really painless.

It probably took you less than five minutes to complete the whole process. Imagine

how much work it would be to set up a similar runtime environment on a self-hosted

server. Next, we’ll discuss the step-by-step game plan for building the plugin.

8.2 From zero to plugin

Plugin development in Gradle isn’t hard. You’ll need to get to know some new con-

cepts while at the same time applying techniques you’ve already learned in previous

chapters. Gradle distinguishes two types of plugins: script plugins and object plugins. A

script plugin is nothing more than a regular Gradle build script that can be imported

into other build scripts. With script plugins, you can do everything you’ve learned so

far. Object plugins need to implement the interface org.gradle.api.Plugin. The

source code for object plugins usually lives in the buildSrc directory alongside your

project or a standalone project and is distributed as a JAR file. In this chapter, you’ll

learn how to use both approaches.

 In the spirit of agile development, you’ll iteratively build the functionality in digest-

ible pieces. The goal is to get a first version up and running quickly to collect early feed-

back. From a high-level view, you’ll plan to build the CloudBees plugin in three major

steps, as shown in figure 8.5. With each of the following iterations, we’ll identify the

drawbacks of the previous approach and discuss how to improve on it as we go along.

 In the first step, I want you to become familiar with the CloudBees API and experi-

ence its functionality firsthand. You’ll write two simple tasks in a script plugin: one for

retrieving information on a provisioned application in your CloudBees account, and

another one for deploying a WAR file to the cloud.

 In step two, you’ll transfer the logic you’ve written in task action closures and

encapsulate it into custom task classes. By exposing properties, the behavior of the

task classes will become highly configurable and reusable. The property values will be

provided by an enhanced task, the consumer of a task class.

 In the final step, you’ll learn how to create a full-fledged object plugin. You’ll set

up a standalone Groovy project to produce the plugin JAR file.

 With the master plan in place, you’ll get started by writing some tasks to interact

with the CloudBees client SDK.

197Writing a script plugin

8.3 Writing a script plugin

A script plugin is no different from your ordinary build.gradle file. You can use the

same Gradle build language constructs. You’ll create a new script named cloud-

bees.gradle that will contain the future CloudBees tasks. Because the build script’s

filename deviates from the default naming convention, you’ll need to use the –b

command-line option to invoke it. Executing gradle –b cloudbees.gradle tasks

should only present you with the default help tasks. Before you can write the first task,

the build script needs to become aware of the CloudBees API client library.

8.3.1 Adding the CloudBees API library

To use an external library directly in a build script, you’ll need to declare it in its class-

path. For that purpose, Gradle’s API class org.gradle.api.Project exposes the

method buildscript. The method expects a single parameter, a closure that defines

the dependencies you want to resolve denoted by the classpath configuration. The

CloudBees API client library is conveniently located on Maven Central. You can target

apply from: 'cloudbees.gradle'

build.gradle

cloudbees.gradle

task cloudBeesAppInfo << {

// Use CloudBees API to

// retrieve application info

}

...

use

enhances

applies

configures

assembles

Simple tasks in a script plugin

Custom classes in directorybuildSrc

External object plugin

buildSrc/src/main/groovy/.../CloudBeesAppInfo.groovy

package com.manning.gia.plugins.cloudbees

import org.gradle.api.DefaultTask

import org.gradle.api.tasks.TaskAction

class CloudBeesAppInfo extends DefaultTask {

@TaskAction

void start() {

...

}

}

cloudbees.jar

CloudBeesPlugin.class

Standalone Groovy project

CloudBeesAppInfo.class

1

task cloudBeesAppInfo

(type: CloudBeesAppInfo)

build.gradle

2

apply plugin: CloudBeesPlugin

cloudBees {

appId = 'todo'

}

build.gradle

3

src

L main

groovy

CloudBeesPlugin.groovy

CloudBeesAppInfo.groovy

build.gradle

Figure 8.5 Implementing the CloudBees plugin in three steps

198 CHAPTER 8 Extending Gradle

that repository by calling the method mavenCentral(). The following listing demon-

strates how to add the latest version of the library to the build script’s classpath.

buildscript {
 repositories {
 mavenCentral()
 }

 dependencies {
 classpath 'com.cloudbees:cloudbees-api-client:1.4.0'
 }
}

Whenever the script is executed for the first time, the CloudBees library is down-

loaded and put into your local dependency cache. You’ll now be able to import and

use any of the CloudBees SDK classes directly in your build script. Next, you’ll write

your first task to interact with your CloudBees account.

8.3.2 Using the CloudBees API from tasks

The central class of the CloudBees API is the client implementation: com.cloudbees.api

.BeesClient. Each of the exposed methods gives you access to a specific RUN@cloud

platform service. Upon instantiation, the class expects you to provide the account cre-

dentials as well as the API’s URL, format, and version. Let’s look at an example:

BeesClient client = new BeesClient('https://api.cloudbees.com/api',
 ➥ '24HE9X5DFF743671', '24QSXAHS1LAAVWDFAZS3TUFE6FZHK1DBYA=',
 ➥ 'xml', '1.0')

PREPARING THE CLIENT PROPERTIES

It’s unlikely that you’ll have to change the API parameters in the near future. For now,

you’ll define them as extra properties, as shown in the following code block:

ext {
 apiUrl = 'https://api.cloudbees.com/api'
 apiFormat = 'xml'
 apiVersion = '1.0'
}

You don’t want to share the API key and secret or check it into version control. In the last

section, you already made an effort to store the values in your local gradle.properties

file. Read these values and store them in the properties apiKey and secret:

if(project.hasProperty('cloudbeesApiKey')) {
 ext.apiKey = project.property('cloudbeesApiKey')
}

if(project.hasProperty('cloudbeesApiSecret')) {
 ext.secret = project.property('cloudbeesApiSecret')
}

Listing 8.1 Adding the CloudBees API library to the build script’s classpath

Using Maven Central
to resolve declared
dependencies

Adding CloudBees
client API library
to build script’s
classpath

199Writing a script plugin

RETRIEVING APPLICATION INFORMATION

When setting up the CloudBees account, you provisioned an application with the

name todo. The CloudBees API can be used to remotely retrieve information about

an application without having to log on to the dashboard, as shown in the follow-

ing listing.

import com.cloudbees.api.ApplicationInfo
import com.cloudbees.api.BeesClient

task cloudBeesAppInfo(description: 'Returns the basic information about an
 ➥ application.', group: 'CloudBees') {
 inputs.property('apiKey', apiKey)
 inputs.property('secret', secret)
 inputs.property('appId', appId)

 doLast {
 BeesClient client = new BeesClient(apiUrl, apiKey, secret, apiFormat,
 ➥ apiVersion)
 ApplicationInfo info

 try {
 info = client.applicationInfo(appId)
 }
 catch(Exception e) {
 throw new GradleException(e.message)
 }

 logger.quiet "Application id : $info.id"
 logger.quiet " title : $info.title"
 logger.quiet " created : $info.created"
 logger.quiet " urls : $info.urls"
 logger.quiet " status : $info.status"
 }
}

Before executing the task, you’ll create another Gradle script file: build.gradle. The

following code snippet demonstrates how an external script can be reused:

apply from: 'cloudbees.gradle'

Note that the value of the from property in the apply method call can be any kind of

URL, such as an HTTP address like http://my.scripts.com/shared/cloudbees.gradle.

Script plugins exposed over HTTP(S) are perfect candidates to be shared among

departments in an organization. It’s time to give the task a spin. The following console

output shows how to retrieve information on the application with the ID gradle-in-

action/todo:

$ gradle -PappId=gradle-in-action/todo cloudBeesAppInfo
:cloudBeesAppInfo
...
Application id : gradle-in-action/todo
 title : todo

Listing 8.2 Writing a task to list an available application on CloudBees account

Declares input properties for task;
if any properties aren’t provided
the task execution fails.

CloudBees SDK client
implementation that exposes
access to all services.

Retrieving
information

on application
specified
through

input
property

appId.

Any execution failure (e.g., authentication
errors from client) bubbles up as
exception, which is caught and rethrown
as specific Gradle exception.

Use Gradle logger for
printing response
data to console.

http://my.scripts.com/shared/cloudbees.gradle

200 CHAPTER 8 Extending Gradle

 created : Sun Sep 16 10:17:11 EDT 2012
 urls : [todo.gradle-in-action.cloudbees.net]
 status : hibernate

The output gives the application’s title, when it was created, under what URL it can

be reached, and its current status. In this example the status is hibernate. Applica-

tions on a free plan will be put to sleep if they have been idle for too long to save

resources for other applications. Upon the next request, the application will auto-

matically be reactivated. This may take a few seconds. By successfully querying infor-

mation about the application, you know that it exists under the given ID. Now, you’ll

actually deploy a WAR file to it so you can enjoy the fruits of your hard work.

DEPLOYING A WAR FILE

Listing 8.3 demonstrates that writing a task to deploy a WAR file with the CloudBees

client API is very similar to retrieving information on an application. The only differ-

ence is that you’ll need to provide other input parameters, like the WAR file itself and

an optional message.

import com.cloudbees.api.ApplicationDeployArchiveResponse
import com.cloudbees.api.BeesClient

task cloudBeesDeployWar(description: 'Deploys a new version of an application
 ➥ using a WAR archive file.',
 ➥ group: 'CloudBees') {
 inputs.property('apiKey', apiKey)
 inputs.property('secret', secret)
 inputs.property('appId', appId)
 inputs.file file(warFile)
 ext.message = project.hasProperty('message') ? project.message : null
 inputs.property('message', message)

 doLast {
 logger.quiet "Deploying WAR '$warFile' to application ID '$appId'
 ➥ with message '$message'"
 BeesClient client = new BeesClient(apiUrl, apiKey, secret, apiFormat,
 ➥ apiVersion)
 ApplicationDeployArchiveResponse response

 try {
 response = client.applicationDeployWar(appId, null, message,
 ➥ file(warFile), null, null)
 }
 catch(Exception e) {
 throw new GradleException("Error: $e.message")
 }

 logger.quiet "Application uploaded successfully to: '$response.url'"
 }
}

Here we go—the moment of truth. Deploy your To Do application to the cloud:

Listing 8.3 Writing a task for deploying a WAR file

In addition
to task input

properties
identified in

previous task,
make sure WAR
file is provided

Method
provides

extensive list of
parameters,

most of
which aren’t
important at
the moment,

so set their
values to null

201Writing custom task classes

$ gradle -PappId=gradle-in-action/todo -PwarFile=todo.war

➥ -P=message=v0.1 cloudBeesDeployWar
:cloudBeesDeployWar
...
Deploying WAR 'todo.war' to application ID 'gradle-in-action/todo' with

➥ message 'v0.1'
Application uploaded successfully to: 'http://todo.gradle-in-

➥ action.cloudbees.net'

As shown in the console output, the deployment was successful. In the CloudBees appli-

cation dashboard you should see the newly deployed version, as shown in figure 8.6.

 Of course, you don’t want to miss out on actually trying the application. Open the

URL http://todo.gradle-in-action.cloudbees.net/ in the browser. The application is

ready to be shown to your customers. You’ve seen how easy it is to write tasks to interact

with the CloudBees API. Because you wrote the code in a shared script, you can manage

applications from any other project that applies the script. Let’s go a step further and

see how to improve your design by turning the simple tasks into custom task classes.

8.4 Writing custom task classes

In the last section, you saw how to create a shared script for interacting with a PaaS

provider. By applying a script plugin, you provided your project with tasks for manag-

ing and deploying your web application in a cloud environment. Let’s review the pros

and cons of this approach.

Pros:

■ Tasks are reusable and can be imported by other projects.

■ Tasks are configurable. The consuming script only needs to know about the

required inputs.

■ Up-to-date checks are available through the task’s input and output properties.

Cons:

■ The logic of a task is defined through an action closure and therefore cannot

be structured into classes and packages.

■ The more tasks you add, the longer and less maintainable the build script gets.

■ Testability through unit or integration tests is not given.

A simple task is a great solution for developing one-off implementations. Even though

you took it to the extreme and provided configurable properties for your tasks, code

maintainability and testability fell by the wayside. If you want to go one step further,

your best bet is to implement your logic in a custom task. The behavior and properties

Figure 8.6 Version 0.1 of the

To Do application deployed to

CloudBees

http://todo.gradle-in-action.cloudbees.net/

202 CHAPTER 8 Extending Gradle

are defined in a task class implementation. When using the custom task, you define

how the task should behave by providing values for the properties. If you see your task

code grow, custom tasks can help to structure and encapsulate your build logic.

8.4.1 Custom task implementation options

Gradle conveniently provides a default implementation that you can extend your class

from: org.gradle.api.DefaultTask. In fact, many tasks of Gradle’s standard plugins

inherit from DefaultTask.

 There are multiple options for where your custom task class can be defined. The

easiest way is to put it side by side with existing build code in your build script. The cus-

tom task gets compiled automatically and put into the classpath when invoking a task

of your script.

 Another option is to put it under the buildSrc directory in the root directory of

your project. Make sure you stick to the source directory convention defined by the

language plugin. If you write your custom task in Java, for example, you’ll want to put

it under buildSrc/src/main/java. Gradle treats this directory as a default source

directory and automatically tries to compile all source files whenever you run your

build. Keep in mind that Gradle’s incremental build feature is supported here as well.

Custom task classes that live under buildSrc are shared among all build scripts of

your project and are automatically available in the classpath.

 To make custom tasks transferable among projects, you can package them into a

JAR file and declare it in your build script’s classpath. Figure 8.7 shows the various

implementation options for custom tasks.

8.4.2 Defining a custom task in buildSrc

For now, you’ll go with option 2. You’ll create custom task source files in the buildSrc

directory, which is the optimal setup for using them later with an object plugin. All

custom task classes will sit in the package com.manning.gia.plugins.cloudbees.tasks

.app. The build script in the buildSrc directory declares the dependency on the

CloudBees library. The final directory structure of your project will look as follows:

.
├── build.gradle
└── buildSrc
 ├── build.gradle
 └── src
 └── main
 └── groovy
 └── com
 └── manning
 └── gia
 └── plugins
 └── cloudbees
 └── tasks
 └── app
 ├── CloudBeesAppInfo.groovy
 └── CloudBeesAppDeployWar.groovy

Consuming
build script

Script for buildSrc
definitions

Custom tasks
implemented in Groovy

203Writing custom task classes

To see an example of how one of these custom task classes looks, you’ll rewrite your

simple task for retrieving application information from CloudBees. The code in the

next listing should look familiar.

package com.manning.gia.plugins.cloudbees.tasks.app

import com.cloudbees.api.ApplicationInfo
import com.cloudbees.api.BeesClient
import org.gradle.api.*
import org.gradle.api.tasks.*

class CloudBeesAppInfo extends DefaultTask {
 @Input String apiUrl
 @Input String apiKey
 @Input String secret
 @Input String apiFormat
 @Input String apiVersion
 @Input String appId

 CloudBeesAppInfo() {
 description = Returns the basic information about an application.'
 group = 'CloudBees'
 }

Listing 8.4 Custom task for retrieving application information

build.gradle

task myTask(type: MyTask)

class MyTask extends DefaultTask {

@TaskAction

public void start() {

...

}

}

buildSrc/src/main/java/MyTask.java

import org.gradle.api.DefaultTask;

import org.gradle.api.tasks.TaskAction;

public class MyTask extends DefaultTask {

@TaskAction

public void start() {

...

}

}

enhances

Custom task class within build script

Option 1

build.gradle

task myTask(type: MyTask)

Custom task class within directorybuildSrc

Option 2

enhances

build.gradle

task myTask(type: MyTask)

JAR file containing compiled custom task classes

Option 3

mytasks.jar

MyTask.class

Figure 8.7 Custom task implementation options

Configurable
task
properties

Task group
assignment and

description

204 CHAPTER 8 Extending Gradle

 @TaskAction
 void start() {
 BeesClient client = new BeesClient(apiUrl, apiKey, secret,
 ➥ apiFormat, apiVersion)
 ApplicationInfo info

 try {
 info = client.applicationInfo(appId)
 }
 catch(Exception e) {
 throw new GradleException(e.message)
 }

 logger.quiet "Application id : $info.id"
 logger.quiet " title : $info.title"
 logger.quiet " created : $info.created"
 logger.quiet " urls : $info.urls"
 logger.quiet " status : $info.status"
 }
}

The behavior of the task is encapsulated in the task action. To indicate which action to

execute, mark the method start() with the annotation @TaskAction. The name of

the task execution method can be picked arbitrarily as long as you don’t override the

method with signature void execute() from the parent class. The behavior of the task

action can be configured through properties—for example, appId for defining the

application identifier.

 In the custom task implementation you import classes from the CloudBees library. To

make sure the classes can be compiled correctly, you’ll create a build script dedicated to

your buildSrc project and declare the CloudBees library, as shown in the following listing.

repositories {
 mavenCentral()
}

dependencies {
 compile 'com.cloudbees:cloudbees-api-client:1.4.0'
}

USING THE CUSTOM TASK

The custom task class can’t be executed by itself. To use and configure the behavior

defined by the custom task, you’ll need to create an enhanced task. The enhanced

task declares the type of task it uses, in this case CloudBeesAppInfo, as shown in the

next listing.

import com.manning.gia.plugins.cloudbees.tasks.app.CloudBeesAppInfo

task cloudBeesAppInfo(type: CloudBeesAppInfo) {
 apiUrl = project.apiUrl

Listing 8.5 Build script in buildSrc directory

Listing 8.6 Consuming the custom task

Execution
method
indicated by
annotation

Imported
custom
task classUse of

custom task

205Writing custom task classes

 apiKey = project.apiKey
 secret = project.secret
 apiFormat = project.apiFormat
 apiVersion = project.apiVersion
 appId = project.hasProperty('appId') ? project.appId : null
}

Within the task’s closure, assign the application identifier. Parse the value from a proj-

ect property provided as command parameters. The API options and credentials are

defined as extra properties within the build script. Executing the enhanced task will

first compile all custom classes in the buildSrc project and then retrieve the applica-

tion information from CloudBees:

$ gradle -PappId=gradle-in-action/todo cloudBeesAppInfo
:buildSrc:compileJava UP-TO-DATE
:buildSrc:compileGroovy
:buildSrc:processResources UP-TO-DATE
:buildSrc:classes
:buildSrc:jar
:buildSrc:assemble
:buildSrc:compileTestJava UP-TO-DATE
:buildSrc:compileTestGroovy UP-TO-DATE
:buildSrc:processTestResources UP-TO-DATE
:buildSrc:testClasses UP-TO-DATE
:buildSrc:test
:buildSrc:check
:buildSrc:build
:cloudBeesAppInfo
...

We discussed how to implement and use a single custom task for interacting with the

CloudBees backend. The custom task for deploying a WAR file, CloudBeesAppDeploy-

War, looks similar. You’ll find it in the provided code examples for the book.

IMPROVING ON REUSABILITY THROUGH REFACTORING

When you compare both CloudBees custom tasks, you’ll find that both implementa-

tions look alike in structure. We can identify the following commonalities:

■ Both classes create an instance of the CloudBees API client, BeesClient.

■ They need to be provided with the CloudBees API options and credentials.

■ You catch an exception when interacting with the CloudBees API and handle

it appropriately.

■ All CloudBees custom tasks are assigned to the task group CloudBees.

One of the benefits of dealing with actual classes for your task implementation is that

you can make good use of principles of object-oriented programming. By creating a

parent class, you can significantly simplify the code you have to write for any given

CloudBees custom task. The following listing shows that all common characteristics

just mentioned became a concern of the parent class.

Compiles custom tasks
written in Groovy in
buildSrc/src/main/groovy

Enhanced task that retrieves
application information
from CloudBees

206 CHAPTER 8 Extending Gradle

package com.manning.gia.plugins.cloudbees.tasks

import com.cloudbees.api.BeesClient
import org.gradle.api.*
import org.gradle.api.tasks.*

abstract class CloudBeesTask extends DefaultTask {
 @Input String apiFormat = 'xml'
 @Input String apiVersion = '1.0'
 @Input String apiUrl = 'https://api.cloudbees.com/api'
 @Input String apiKey
 @Input String secret

 CloudBeesTask(String description) {
 this.description = description
 group = 'CloudBees'
 }

 @TaskAction
 void start() {
 withExceptionHandling {
 BeesClient client = new BeesClient(apiUrl, apiKey, secret,
 ➥ apiFormat, apiVersion)
 executeAction(client)
 }
 }

 private void withExceptionHandling(Closure c) {
 try {
 c()
 }
 catch(Exception e) {
 throw new GradleException(e.message)
 }
 }

 abstract void executeAction(BeesClient client)
}

You’ll use the parent CloudBees task for one of your custom tasks. Listing 8.8 demon-

strates how easy it is to deal with the CloudBees API. The task infrastructure is already

set up for you. No more repetitive creation of the API client or handling of exceptions.

You can just concentrate on implementing the business logic.

package com.manning.gia.plugins.cloudbees.tasks.app

import com.cloudbees.api.ApplicationInfo
import com.cloudbees.api.BeesClient
import org.gradle.api.tasks.Input
import com.manning.gia.plugins.cloudbees.tasks.CloudBeesTask

Listing 8.7 Simplifying CloudBees interaction by introducing a parent task class

Listing 8.8 Simplified custom task

Exposes
properties for
API credentials

Assigns default
task group name

Creates
instance of
CloudBees
API client

Catches exception
and handles it

Abstract method required to
be implemented by subclass

207Writing custom task classes

class CloudBeesAppInfo extends CloudBeesTask {
 @Input String appId

 CloudBeesAppInfo() {
 super('Returns the basic information about an application.')
 }

 @Override
 void executeAction(BeesClient client) {
 ApplicationInfo info = client.applicationInfo(appId)
 logger.quiet "Application title : $info.title"
 logger.quiet " created : $info.created"
 logger.quiet " urls : $info.urls"
 logger.quiet " status : $info.status"
 }
}

You already executed this task and know that it works. The more custom tasks you add

to your project, the less you’ll feel inclined to manually rerun them each time you

change the code to verify that they work. Next, you’ll build confidence in your code by

writing tests to be prepared for future refactorings.

TESTING A CUSTOM TASK

Gradle’s API provides test fixtures that allow you to test custom tasks and plugins

under real working conditions. The idea is to hand you a dummy instance of a Gra-

dle Project that exposes the same methods and properties as the one you use in

your build scripts. This Project instance is provided through the method build()

of the class org.gradle.testfixtures.ProjectBuilder and can be used in any of

your test classes.

 You’ll see the ProjectBuilder in action by writing a test for the custom task

CloudBeesAppInfo with the help of the Spock framework, as shown in listing 8.9.

You’ll start by creating the class CloudBeesAppInfoSpec.groovy in the directory

buildSrc/src/test/groovy. As you can see in the listing, you use the same package as

the class under test. Whenever you run the build, this class will automatically be com-

piled and the test cases will be executed.

package com.manning.gia.plugins.cloudbees.tasks.app

import spock.lang.Specification
import org.gradle.api.*
import org.gradle.api.plugins.*
import org.gradle.testfixtures.ProjectBuilder

class CloudBeesAppInfoSpec extends Specification {
 static final TASK_NAME = 'cloudBeesAppInfo'
 Project project

 def setup() {
 project = ProjectBuilder.builder().build()
 }

Listing 8.9 Testing the custom task CloudBeesAppInfo using ProjectBuilder

Extends CloudBees
parent taskExposes property specific

to this task’s functionality

Provides
task’s
description

Implements task action;
the already-created
CloudBees API client
instance is provided

Creates a dummy
instance of Project

208 CHAPTER 8 Extending Gradle

 def "Adds app info task"() {
 expect:
 project.tasks.findByName(TASK_NAME) == null
 when:
 project.task(TASK_NAME, type: CloudBeesAppInfo) {
 appId = 'gradle-in-action/todo'
 apiKey = 'myKey'
 secret = 'mySecret'
 }
 then:
 Task task = project.tasks.findByName(TASK_NAME)
 task != null
 task.description == 'Returns the basic information about an
 ➥ application.'
 task.group == 'CloudBees'
 task.apiFormat == 'xml'
 task.apiVersion == '1.0'
 task.apiUrl == 'https://api.cloudbees.com/api'
 task.appId == 'gradle-in-action/todo'
 task.apiKey == 'myKey'
 task.secret == 'mySecret'
 }

 def "Executes app info task with wrong credentials"() {
 expect:
 project.tasks.findByName(TASK_NAME) == null
 when:
 Task task = project.task(TASK_NAME, type: CloudBeesAppInfo) {
 appId = 'gradle-in-action/todo'
 apiKey = 'myKey'
 secret = 'mySecret'
 }

 task.start()
 then:
 project.tasks.findByName(TASK_NAME) != null
 thrown(GradleException)
 }

 ...
}

The ProjectBuilder opens new doors to developing your build code with a test-

driven approach, though it’s limited in functionality. The Project instance pro-

duced by the ProjectBuilder doesn’t behave 100% like the real-world object. Cer-

tain behaviors, like the up-to-date checks for input/output annotation or the actual

loading of Gradle properties from your home directory, aren’t implemented. In

most cases, you can work around these shortcomings by writing additional code in

your test class. Deep integration testing with a sophisticated toolkit is one of the

items on the roadmap and will be available in a future version of Gradle. In the next

section, we’ll discuss how to turn existing code into an object plugin and apply it

from a different project.

Creates an
enhanced

task of
type

CloudBees
AppInfo

and
assigns

property
values

Verifies
that task
was
added to
project

209Using and building object plugins

8.5 Using and building object plugins

Implementing your logic as custom tasks produces a maintainable and testable solu-

tion. Bundled as a JAR file, tasks are fully reusable among independent projects.

However, there are limitations to this approach. Let’s review the advantages and short-

comings of a packaged custom task implementation:

Pros:

■ Custom logic is self-contained in a class and can be configured through

enhanced tasks.

■ Declarative incremental build support by marking task properties with annotations.

■ Custom tasks can be tested through tests.

Cons:

■ Custom tasks only expose single units of work. Providing additional boilerplate

code, conventions, and lifecycle integration isn’t straightforward.

■ A custom task can only be configured through an enhanced task. It’s lacking an

expressive extension mechanism through a self-defined DSL.

■ Functionality from other plugins can’t easily be used or extended.

Object plugins give you the most flexibility to encapsulate highly complex logic and

provide a powerful extension mechanism to customize its behavior within your build

script. As with custom task classes, you have full access to Gradle’s public API and

your project model. Gradle ships with out-of-the-box plugins, called standard plugins,

but can be extended by third-party plugins as well. Many plugins are self-contained.

This means that they either rely on Gradle’s core API or deliver functionality through

its packaged code. More complex plugins may depend on features from other librar-

ies, tools, or plugins. Figure 8.8 shows how plugins fit into the overall architecture

of Gradle.

 In the previous chapters, you used various standard plugins covering support for

programming languages and smooth integration with software development tools.

Think back to chapter 3 and remember how applying the Java plugin extended your

Standard plugins

Java

Plugin libraries

Eclipse

uses

External libraries

uses

Gradle API

Gradle distribution

uses uses

applies

Jetty …

External plugins

Tomcat JavaFX

JS …

Figure 8.8 Plugin architecture

210 CHAPTER 8 Extending Gradle

project’s functionality. As shown in figure 8.9, the plugin can provide a new set of tasks

integrated into the execution lifecycle, introduce a new project layout with sensible

defaults, add properties to customize its behavior, and expose configurations for

dependency management.

 With the addition of a single line of code, your project was able to compile source

code, run unit tests, generate a report, and package the project into a JAR file. All of

this functionality came with minimal configuration effort from your side.

 Standard plugins provide an impressive set of commonly used functionality. Real-

world projects are rarely limited to off-the-shelf functionality. Third-party plugins, con-

tributed by the Gradle community or developed and shared among members of an

enterprise, can be used to enhance your build scripts with nonstandard capabilities.

You may be used to sophisticated plugin portals that let you search for existing plug-

ins, view their documentation, and even rate them. At the time of writing, Gradle

doesn’t provide a centralized repository for community plugins. How do you know

what’s out there, you may ask? Gradle provides a curated list of available community

plugins on a wiki page: http://wiki.gradle.org/display/GRADLE/Plugins. Feels pretty

clunky, doesn’t it? Gradleware recognizes the fact that a plugin portal is an important

prerequisite for sharing and distributing plugins and has added it as a planned fea-

ture to Gradle’s development roadmap. For more information on its timeline, please

refer to the roadmap’s dashboard (http://www.gradle.org/roadmap).

 In this section, we’ll revisit how to use standard and third-party plugins in your

build script. Next, we’ll study a plugin’s internals to get a deep understanding of its

building blocks and mechanics. Finally, you’ll apply your knowledge by writing your

own object plugin with all the bells and whistles.

8.5.1 Applying object plugins

Let’s revisit how to use an object plugin in a project. You’ve seen that a project can be

configured to use a standard plugin by using the apply method. I explicitly use the

word method here to underline that you’re calling the method apply on the API repre-

sentation of a Gradle project, an instance of class org.gradle.api.Project. The

method defines one parameter of type java.util.Map called options. The specific

classes test build

build.gradle Java plugin

testRuntime

Source sets

runtime

Convention

properties

Tasks

Configurations

Conventions

compile

Figure 8.9 Java plugin features

http://www.gradle.org/roadmap
http://wiki.gradle.org/display/GRADLE/Plugins

211Using and building object plugins

option you want to use here is plugin. A plugin can be applied to a build script by

using its name or type.

APPLYING A PLUGIN BY NAME

The identifier of the plugin, the short name, is provided through the plugin meta-

information. To apply the Java plugin to a project, pass in the key plugin with a value

of java:

apply plugin: 'java'

APPLYING A PLUGIN BY TYPE

Alternatively, you can use the class name of the plugin implementation. This is useful if

the plugin doesn’t expose a name or if there’s a naming conflict between two different

plugins. Applying a plugin by type makes it explicit but feels a bit more cumbersome:

apply plugin: org.gradle.api.plugins.JavaPlugin

A convenient side effect of using standard plugins is that they’re part of Gradle’s run-

time. In most cases, the user doesn’t have to know about the libraries or the versions

the plugin depends on. The Gradle distribution makes sure that all standard plugins

are compatible. If you’re curious where to find these libraries, look at the directory

lib/plugins of your Gradle installation.

APPLYING AN EXTERNAL PLUGIN

A build script doesn’t know about an external plugin until you add it to its classpath.

You can do this by using the buildscript method that defines the location of the

plugin, the repository, and the plugin dependency. The order in which the build-

script and apply methods are declared is irrelevant. During the configuration phase,

Gradle will build the model of your project and connect the dots between the plugin

and the build logic. An external plugin is treated like every other dependency in Gra-

dle. Once it’s downloaded and put into the local dependency cache, it’s available for

subsequent runs of the build. The following listing shows how to apply the external

plugin tomcat for deploying web applications to an embedded Tomcat container.

buildscript {
 repositories {
 mavenCentral()
 }

 dependencies {
 classpath 'org.gradle.api.plugins:gradle-tomcat-plugin:0.9.7'
 }
}

apply plugin: 'tomcat'

Applying an external plugin is surprisingly easy. The build script only needs to define

the plugin dependency and its originating repository. In the following section, we’ll

dissect the internals of a plugin to get a better understanding of its anatomy.

Listing 8.10 Applying the tomcat plugin available on Maven Central

212 CHAPTER 8 Extending Gradle

8.5.2 Anatomy of an object plugin

Figure 8.10 shows a high-level overview of the options you have when implementing

an object plugin.

 There are four basic elements that are important for implementing an object plugin:

■ Gradle gives you full flexibility over the location in which to place your plugin

implementation. The code can live in the build script or the buildSrc directory,

or it can be developed as a standalone project and in turn distributed as a JAR file.

■ Every plugin needs to provide an implementation class, which represents the

plugin’s entry point. Plugins can be written in any JVM language that compiles

down to bytecode. I prefer Groovy because you can benefit from its dynamic

language features and conciseness. However, you can also use Java or Scala to

implement your build logic.

■ A plugin applied to a project can be customized through its exposed extension

objects. This is especially useful if the user wants to override the plugin’s default

configuration from the consuming build script.

■ The plugin descriptor is a property file containing meta-information about the

plugin. Usually it contains a mapping between the plugin’s short name and the

plugin implementation class.

build.gradle

apply plugin: MyPlugin

class MyPlugin implements Plugin<Project> {

@Override

void apply(Project project) {

...

}

}

buildSrc/src/main/groovy/MyPlugin.groovy

import org.gradle.api.Plugin

import org.gradle.api.Project

class MyPlugin implements Plugin<Project> {

@Override

void apply(Project project) {

...

}

}

applies

configures

applies

configures

Implementation class within build script

Option 1

build.gradle

apply plugin: MyPlugin

Implementation class under directorybuildSrc

Option 2

build.gradle

apply plugin: 'myplugin'

Plugin bundled in JAR file containing the compiled implementation class and a plugin descriptor

Option 3

myplugin.jar

MyPlugin.class

myplugin.properties

provides plugin short name

Figure 8.10 Implementation options for object plugins

213Using and building object plugins

Enough theory—it’s time to start building an object plugin. The plugin you’re about

to create is going to use the custom tasks you implemented before.

8.5.3 Writing an object plugin

The minimal requirement for writing a plugin is to provide an implementation of the

interface org.gradle.api.Plugin<Project>. The interface only defines a single

method: apply(Project).

 You’ll start by creating the plugin implementation class in the buildSrc project

under the package com.manning.gia.plugins.cloudbees. This has several advantages.

In the early phases of developing a plugin, you’ll want to have a quick feedback loop.

Because you don’t have to package your plugin code, you can fully concentrate on

implementing business logic while having full access to Gradle’s API. To represent the

intent of the plugin, name the class CloudBeesPlugin, as shown in the following listing.

package com.manning.gia.plugins.cloudbees

import org.gradle.api.Plugin
import org.gradle.api.Project
import org.gradle.api.plugins.WarPlugin
import com.manning.gia.plugins.cloudbees.tasks.*

class CloudBeesPlugin implements Plugin<Project> {
 @Override
 void apply(Project project) {
 project.plugins.apply(WarPlugin)
 addTasks(project)
 }

 private void addTasks(Project project) {
 project.tasks.withType(CloudBeesTask) {
 apiUrl = 'https://api.cloudbees.com/api'
 apiKey = project.property('cloudbeesApiKey')
 secret = project.property('cloudbeesApiSecret')
 }

 addAppTasks(project)
 }

 private void addAppTasks(Project project) {
 project.task('cloudBeesAppDeployWar', type: CloudBeesAppDeployWar) {
 appId = project.hasProperty('appId') ? project.appId : null
 message = project.hasProperty('message') ? project.message : null
 warFile = project.hasProperty('warFile') ?
 ➥ new File(project.getProperty('warFile')) :
 ➥ project.tasks.getByName(WarPlugin.WAR_TASK_NAME)
 ➥ .archivePath
 }

 ...
 }
}

Listing 8.11 Implementing the plugin interface

Applies the
WAR plugin.

For all CloudBees
tasks we automatically
assign the API URL, key
and secret.

If the warFile property is not
provided, we assign path to the
WAR file produce by the WAR plugin.

214 CHAPTER 8 Extending Gradle

As shown in the listing, you integrated your custom tasks and preconfigured them

with default values. You didn’t stop there. Your plugin makes certain assumptions

about the nature of the project that consumes the plugin. For example, you automati-

cally apply the War plugin and use the produced artifact as input for the enhanced

task cloudBeesAppDeployWar.

You’ll apply the plugin to your project. To do so, use the plugin implementation type

in build.gradle, as shown in the following code snippet:

apply plugin: com.manning.gia.plugins.cloudbees.CloudBeesPlugin

To verify that the task has been created, run gradle tasks. You should see the task

named cloudBeesAppDeployWar listed. Currently, you’re retrieving the inputs for your

custom tasks from the command line. You can improve on this design by obtaining

this configuration from the consuming build script.

8.5.4 Plugin extension mechanism

Parsing command-line parameters to feed your tasks with inputs may not always be

desirable. You can establish your own build language by exposing a DSL with its own

unique namespace. Let’s look at the following listing. The code shows a closure

named cloudBees that allows for setting values for properties you need as required

input values for tasks from the consuming build script.

cloudBees {
 apiUrl = 'https://api.cloudbees.com/api'
 apiKey = project.apiKey
 secret = project.secret
 appId = 'gradle-in-action/todo'
}

Gradle models these language constructs as extensions. An extension can be added to

many Gradle objects like the Project or a Task, as long as they’re extension-aware.

Plugin capabilities versus conventions

As a plugin developer, you often walk the fine line between capabilities and conven-

tions provided by a plugin. On the one hand, you may want to enhance another proj-

ect’s functionality; for example, through tasks. On the other hand, you may want to

introduce conventions that make meaningful decisions for the user; for example,

standardized project layouts. If the conventions impose a strong, opinionated view on

the structure of the consuming project, it makes sense to separate basic functionality

from conventions by creating two different plugins: a base plugin that contains the

capabilities, and another one that applies the base plugin and preconfigures these

capabilities by convention. This approach was taken by the Java plugin, which derives

from the Java base plugin. For more information on their characteristics, please see

appendix B or the online documentation.

Listing 8.12 Providing a plugin DSL for capturing user input

215Using and building object plugins

An object is considered to be extension-aware if it implements the interface

org.gradle.api.plugins.ExtensionAware. Every extension needs to be backed by

a model that captures the values provided in the user’s build script. The model can

be a simple plain old Java or Groovy Bean. The next listing shows the extension

model for the CloudBees plugin that you create in the package as your object

plugin implementation.

package com.manning.gia.plugins.cloudbees

class CloudBeesPluginExtension {
 String apiUrl
 String apiKey
 String secret
 String appId
}

As shown in listing 8.12, you need to extend the backing Project of the build script

that applied the CloudBees plugin. Extension-aware objects expose the method

extensions() that returns a container for registering extension models with a name.

The implementing interface of this container is org.gradle.api.plugins.Extension-

Container. New extensions are registered through the method create. That method

takes in a name and the model type as parameters. Once an extension is registered,

you can query for the model values and assign them to custom task properties.

Using extension values for feeding input properties of custom tasks can be a bit tricky.

Remember that custom task properties are set during the configuration phase of the

build lifecycle. At that point of time extension, values haven’t been populated. You

can solve the problem of evaluation order by using the concept of convention map-

ping. The following listing demonstrates how to register and use your extension of

type CloudBeesPluginExtension within the plugin implementation class.

class CloudBeesPlugin implements Plugin<Project> {
 static final String EXTENSION_NAME = 'cloudBees'

 @Override
 void apply(Project project) {

Listing 8.13 Plugin extension POGO

Extensions versus extra properties

Extensions are used to extend the DSL of an object that is extension-aware. A regis-

tered extension model can expose properties and methods that can be used to estab-

lish new build language constructs for your build script. The typical use case for an

extension is a plugin. Extra properties, on the other hand, are simple variables that

can be created through the ext namespace. They’re meant to be used in the user

space, the build script. Try to avoid using them in your plugin implementations.

Listing 8.14 Registering and using an extension

216 CHAPTER 8 Extending Gradle

 project.plugins.apply(WarPlugin)
 project.extensions.create(EXTENSION_NAME, CloudBeesPluginExtension)
 addTasks(project)
 }

 private void addTasks(Project project) {
 project.tasks.withType(CloudBeesTask) {
 def extension = project.extensions.findByName(EXTENSION_NAME)
 conventionMapping.apiUrl = { extension.apiUrl }
 conventionMapping.apiKey = { extension.apiKey }
 conventionMapping.secret = { extension.secret }
 }

 addAppTasks(project)
 }
 }

 private void addAppTasks(Project project) {
 project.task('cloudBeesAppInfo', type: CloudBeesAppInfo) {
 conventionMapping.appId = { getAppId(project) }
 }

 ...

 }
}

Every task of your plugin has a property named conventionMapping. To be more spe-

cific, every task derived from DefaultTask owns this property. You use this property to

assign the extension model values to a task’s input or output fields. By wrapping the

extension model value into a closure, you lazily set these values. This means that the

value is only calculated when the task is executed. To retrieve the values of a property

stored in convention mapping, you’ll need to explicitly use getter methods, as shown

in the next listing. Keep in mind that trying to access a field directly will result in a

null value.

class CloudBeesAppInfo extends CloudBeesTask {
 @Input String appId

 CloudBeesAppInfo() {
 super('Returns the basic information about an application.')
 }

 @Override
 void executeAction(BeesClient client) {
 ApplicationInfo info = client.applicationInfo(getAppId())
 logger.quiet "Application title : $info.title"
 logger.quiet " created : $info.created"
 logger.quiet " urls : $info.urls"
 logger.quiet " status : $info.status"
 }
}

Listing 8.15 Using properties set by convention mapping

Registers the
extension
container
with the

name
cloudBees

Adds tasks after project is
evaluated to ensure that
extension values are set

Finds the
extension

container a
looks up the

configured
properties

Assigning the
extension
property
value
wrapped in
a closure to
the task’s
convention
mapping

Properties set
by convention
mapping need
to explicitly use
getter methods

217Using and building object plugins

Convention mapping is a powerful concept used by many Gradle core plugins to ensure

that extension properties are evaluated at runtime. Even though the convention-

Mapping property isn’t part of the public Task API, it’s your best bet to set a task’s

input/output property values in combination with extensions.

Next, you’ll equip your plugin with a more descriptive name.

8.5.5 Assigning a meaningful plugin name

By default, the name of a plugin is derived from the fully qualified class name that

implements the interface org.gradle.api.Plugin. Even though the namespace is

less susceptible to naming clashes with other plugins, it would be handy to be able to

pick a shorter, more expressive plugin name.

 For object plugins, you can provide this information in a property file located

under META-INF/gradle-plugins. The name of the property file automatically deter-

mines the plugin name. For example, the file META-INF/gradle-plugins/cloud-

bees.properties exposes your plugin with the name cloudbees. Within the file,

assign the fully qualified class name to the key implementation-class, as shown in

the following listing.

implementation-class=com.manning.gia.plugins.cloudbees.CloudBeesPlugin

The next listing demonstrates how to apply the plugin with its short identifier in your

build script.

apply plugin: 'cloudbees'

From now on, you’ll only use the short identifier when you want to apply the Cloud-

Bees plugin. A plugin can be tested on the level of the implementation class as well.

Next, you’ll bring your code coverage to 100% by writing a Spock test class for Cloud-

BeesPlugin.groovy.

8.5.6 Testing an object plugin

Testing your plugin code is as easy as testing custom tasks. The Project instance

produced by ProjectBuilder provides the perfect setup for verifying your plugin’s

Other options for setting configuration-time properties

There are other approaches to dealing with these kinds of situations, each with their

own advantages and drawbacks. Usually, they’re highly dependent on your use case

and the language you use to implement your plugin. Among them are lazy GStrings,

Project#afterEvaluate, and more. This topic is heavily discussed on the Gradle

online forum.

Listing 8.16 Assigning a short identifier for plugin

Listing 8.17 Using the plugin short identifier

218 CHAPTER 8 Extending Gradle

functionality. In the following listing, you apply the plugin, set the extension values,

and test for the correct behavior of the created tasks.

package com.manning.gia.plugins.cloudbees

import spock.lang.Specification
import org.gradle.api.*
import org.gradle.api.plugins.*
import org.gradle.testfixtures.ProjectBuilder

class CloudBeesPluginSpec extends Specification {
 static final APP_INFO_TASK_NAME = 'cloudBeesAppInfo'
 static final APP_DEPLOY_WAR_TASK_NAME = 'cloudBeesAppDeployWar'
 Project project

 def setup() {
 project = ProjectBuilder.builder().build()
 }

 def "Applies plugin and sets extension values"() {
 expect:
 project.tasks.findByName(APP_INFO_TASK_NAME) == null
 project.tasks.findByName(APP_DEPLOY_WAR_TASK_NAME) == null
 when:
 project.apply plugin: 'cloudbees'

 project.cloudBees {
 apiKey = 'myKey'
 secret = 'mySecret'
 appId = 'todo'
 }
 then:
 project.plugins.hasPlugin(WarPlugin)
 project.extensions.findByName(CloudBeesPlugin.EXTENSION_NAME) != null

 Task appInfoTask = project.tasks.findByName(APP_INFO_TASK_NAME)
 appInfoTask != null
 appInfoTask.description == 'Returns the basic information about an
 ➥ application.'
 appInfoTask.group == 'CloudBees'
 appInfoTask.apiKey == 'myKey'
 appInfoTask.secret == 'mySecret'
 appInfoTask.appId == 'todo'
 ...
 }

 ...
}

As the next step, you’ll set up a standalone project for the plugin so you can build a

JAR distribution that can be shared among independent projects.

8.5.7 Developing and consuming a standalone object plugin

Implementing a plugin in the buildSrc project is convenient if the code is supposed

to be used from the build scripts of the main build; for example, in a multiproject

Listing 8.18 Writing a test for the plugin implementation class

Applies plugin by
its short name

Sets extension
values

Checks that WAR plugin is
automatically applied to project

219Using and building object plugins

build scenario. If you want to share a plugin across builds, you’ll need to develop it as

a standalone project and publish the produced artifact to a repository.

PROJECT AND REPOSITORY SETUP

In this section, you’ll move the existing plugin code to an independent project. Each

time you want to release a new version of the plugin, the produced JAR file will be pub-

lished to a local Maven repository named repo. The repository will live on the same

directory level as the plugin project. The To Do web application will act as a plugin

consumer. Its build script will define the local repository, declare the plugin as a

dependency, and use the plugin tasks to interact with the CloudBees backend services.

The following directory tree shows the final setup:

.
├── plugin
│ ├── build.gradle
│ └── src
│ └── ...
├── repo
│ └── com
│ └── manning
│ └── gia
│ └── cloudbees-plugin
│ ├── 1.0
│ │ ├── cloudbees-plugin-1.0.jar
│ │ ├── cloudbees-plugin-1.0.jar.md5
│ │ ├── cloudbees-plugin-1.0.jar.sha1
│ │ ├── cloudbees-plugin-1.0.pom
│ │ ├── cloudbees-plugin-1.0.pom.md5
│ │ └── cloudbees-plugin-1.0.pom.sha1
│ ├── maven-metadata.xml
│ ├── maven-metadata.xml.md5
│ └── maven-metadata.xml.sha1
└── todo
 ├── build.gradle
 ├── settings.gradle
 ├── model
 ├── repository
 └── web
 ├── build.gradle
 └── src
 └── ...

You’ll start by creating a new project for the plugin with the directory named plugin.

You’ll copy the existing structure from the buildSrc directory to the new project. The

todo project is a one-to-one copy from your existing To Do application multiproject

build. You won’t need to create the directory for the local repository—it’s automati-

cally generated at publishing time.

BUILDING THE PLUGIN PROJECT

Writing the build code for the plugin is straightforward. The project doesn’t have

access to the buildSrc infrastructure anymore, so you’ll need to declare dependen-

cies on the Groovy and Gradle API libraries. Generating the POM for the plugin and

Standalone plugin project publishing
to local Maven repository

Local Maven
repository

Plugin artifact

Plugin POM

Web project using plugin
from local Maven repository

220 CHAPTER 8 Extending Gradle

publishing the artifacts to a Maven repository can be easily achieved with the Maven

plugin. You’ll configure the Maven deployer to upload both files to a local directory.

To clearly identify the artifact, assign a value to the plugin’s group, name, and version.

The following listing shows the full plugin build script.

apply plugin: 'groovy'
apply plugin: 'maven'

archivesBaseName = 'cloudbees-plugin'
group = 'com.manning.gia'
version = '1.0'

repositories {
 mavenCentral()
}

dependencies {
 compile localGroovy()
 compile gradleApi()
 compile 'com.cloudbees:cloudbees-api-client:1.4.0'
 testCompile 'org.spockframework:spock-core:0.6-groovy-1.8'
}

uploadArchives {
 repositories {
 mavenDeployer {
 repository(url: "file://$projectDir/../repo")
 }
 }
}

Before the plugin can be consumed by the To Do web application, you’ll upload it

with the help of a task from the Maven plugin called uploadArchives. Executing the

task should produce a similar output to the following:

$ gradle uploadArchives
:compileJava UP-TO-DATE
:compileGroovy
:processResources
:classes
:jar
:uploadArchives
Uploading: com/manning/gia/cloudbees-plugin/1.0/cloudbees-plugin-

➥ 1.0.jar to repository remote at file:///Users/ben/gradle-in-

➥ action/code/plugin/../repo
Transferring 32K from remote
Uploaded 32K

After publishing the artifact, you’ll find a new directory named repo. It contains the

plugin’s JAR and POM files and is ready for consumption. In chapter 14, we’ll discuss

the Maven plugin in more detail, as well as how to publish artifacts to publicly avail-

able repositories.

Listing 8.19 Build script of standalone plugin project

Applies to Maven plugin for
publishing the plugin artifact

Defines artifact group,
name, and version

Declares dependencies
on Gradle API classes

Configures Maven
deployer to upload
plugin artifact to a
local directory

221Summary

 Using a Maven repository is the most convenient way of preparing an object plugin

for consumption. The artifact automatically knows its own dependencies, which are

declared in the POM file. Alternatively, the consuming project can also refer to the JAR

file directly by declaring a file dependency. If you go with that option, you’ll need to

handle the plugin’s transitive dependencies yourself.

USING THE PLUGIN FROM A PROJECT

It’s time to use the plugin in your web project. The next listing demonstrates how easy it

is to let your build script depend on the plugin, available in the local Maven repository.

buildscript {
 repositories {
 maven { url "file://$projectDir/../../repo" }
 mavenCentral()
 }

 dependencies {
 classpath 'com.manning.gia:cloudbees-plugin:1.0'
 }
}

project(':web') {
 apply plugin: 'war'
 apply plugin: 'jetty'
 apply plugin: 'cloudbees'

 ...

 cloudBees {
 apiUrl = 'https://api.cloudbees.com/api'
 apiKey = project.apiKey
 secret = project.secret
 appId = 'gradle-in-action/todo'
 }
}

That’s it—you’ve gotten to know all the important development practices that opti-

mally prepare you for writing your own Gradle plugins.

8.6 Summary

Gradle provides a rich plugin ecosystem for reusing functionality through out-of-the-

box standard plugins and third-party plugins contributed by the community. There

are two types of plugins: script plugins and object plugins.

 A script plugin is a regular Gradle build script with full access to Gradle’s API. Writ-

ing a script plugin is very easy, lowers the bar for sharing code, and can be applied to

another project by a URL.

 Object plugins usually contain more complex logic that requires appropriate struc-

turing into packages and classes. The entry point of every object plugin is the interface

Plugin that provides direct access to Gradle’s Project model. Many object plugins

Listing 8.20 Using the object plugin from the web project

References local Maven
repository containing
the plugin

References Maven Central to retrieve
the plugin’s dependencies (namely,
CloudBees API client library)

Adds plugin to build
script’s classpath

Applies plugin

222 CHAPTER 8 Extending Gradle

that can be shared among independent projects are packaged as JAR files, published

to a repository, and consumed by adding them to the build script’s classpath.

 In this chapter, you built a Gradle plugin for interacting with the CloudBees back-

end through an API library. For this purpose, we discussed two useful functionalities:

deploying a WAR file to a CloudBees web container and retrieving runtime information

about this application. You implemented the plugin’s functionality build step by step.

You wrote simple tasks in a script plugin, translated these tasks into custom tasks located

in the buildSrc project, and later turned this code into a full-fledged object plugin.

 A plugin can expose its own DSL for configuring functionality. Extensions are pow-

erful API elements for introducing the concept of convention over configuration into

your plugin. You experienced a typical scenario by registering an extension that serves

as a model for capturing user input for overriding default configuration values. Writ-

ing test code for your plugin is as important as writing it for application code. Gradle’s

ProjectBuilder allows for creating a Project dummy representation that can be

used to test custom components. Having tools like this removes impediments to writ-

ing tests for build code and encourages developers to aim for high code coverage.

 The next chapter will be particularly helpful for users who have existing build

infrastructure developed with Ant or Maven and who plan to migrate to Gradle. We’ll

also talk about upgrading Gradle versions in your project and how to verify its success

by comparing the outcomes of the builds before and after the migration.

223

Integration and migration

Long-running development projects are usually heavily invested in established

build tool infrastructure and logic. As one of the first build tools, Gradle acknowl-

edges that moving to a new system requires strategic planning, knowledge transfer,

and acquisition, while at the same time ensuring an unobstructed build and deliv-

ery process. Gradle provides powerful tooling to integrate existing build logic and

alleviate a migration endeavor.

 If you’re a Java developer, you likely have at least some experience with another

build tool. Many of us have worked with Ant and Maven, either by choice or

because the project we’re working on has been using it for years. If you decide to

move to Gradle as your primary build tool, you don’t have to throw your existing

knowledge overboard or rewrite all the existing build logic. In this chapter, we’ll

This chapter covers

■ Importing existing Ant projects

■ Using Ant tasks from Gradle

■ Converting Maven pom.xml into Gradle projects

■ Migration strategies from Ant and Maven

to Gradle

■ Comparing build outcomes and upgrade testing

224 CHAPTER 9 Integration and migration

look at how Gradle integrates with Ant and Maven. We’ll also explore migration strat-

egies to use if you decide to go with Gradle long-term.

 Ant users have the best options by far for integrating with Gradle. The Gradle run-

time contains the standard Ant libraries. Through the helper class AntBuilder, which

is available to all Gradle build scripts, any standard Ant task can be used with a Groovy

builder-style markup, similar to the way you’re used to in XML. Gradle can also be

pointed to an existing Ant build script and can reuse its targets, properties, and paths.

This allows for smooth migrations in baby steps as you pick and choose which of your

existing Ant build logic you want to reuse or rewrite.

 The migration path from Maven to Gradle isn’t as easy. At the time of writing, a deep

integration with existing Maven project object model (POM) files isn’t supported. To get

you started, Gradle provides a conversion tool for translating a Maven pom.xml into a

build.gradle file. Whether you’re migrating an existing Maven build or starting from

scratch, Maven repositories are ubiquitous throughout the build tool landscape. Gradle’s

Maven plugin allows for publishing artifacts to local and remote Maven repositories.

 Migrating a build process from one build tool to another is a strategic, mission-

critical endeavor. The end result should be a comparable, functional, and reliable

build, without disruption to the software delivery process. On a smaller scale, migrat-

ing from one Gradle version to another can be as important. Gradle provides a plugin

that compares the binary output of two builds—before and after the upgrade—and

can make a deterministic statement about the result before the code is changed and

checked into version control. In this chapter, you’ll learn how to use the plugin to

upgrade your To Do application from one Gradle version to another. Let’s start by tak-

ing a closer look at Gradle’s Ant capabilities.

9.1 Ant and Gradle

Gradle understands Ant syntax on two levels. On the one hand, it can import an exist-

ing Ant script and directly use Ant constructs from a Gradle build script as if they’re

native Gradle language elements. This type of integration between Gradle and Ant

doesn’t require any additional change to your Ant build. On the other hand, familiar

Ant tasks (for example, Copy, FTP, and so on) can be used within your Gradle build

script without importing any Ant script or additional dependency. Long-term Ant

users will find themselves right at home and can reuse familiar Ant functionality with a

convenient and easy-to-learn Groovy DSL notation. Chapter 2 demonstrated how to

use the Echo task within a Gradle build.

 Central to both approaches is the Groovy groovy.util.AntBuilder, a class pack-

aged with the Groovy runtime. It allows for using Ant capabilities directly from Groovy

in a concise fashion. Gradle augments the Groovy AntBuilder implementation by

adding new methods. It does so by providing the class org.gradle.api.AntBuilder,

which extends Groovy’s AntBuilder implementation, as shown in figure 9.1.

 An instance of the class org.gradle.api.AntBuilder is implicitly available to all

Gradle projects, as well as to every class that extends DefaultTask through the property

https://ant.apache.org/manual/Tasks/get.html
https://ant.apache.org/manual/Tasks/get.html
https://ant.apache.org/manual/Tasks/get.html

225Ant and Gradle

ant. In regular class files that don’t have access to a project or task, you can create a new

instance. The following code snippet demonstrates how to do that in a Groovy class:

def ant = new org.gradle.api.AntBuilder()

Let’s look at some use cases for Gradle’s AntBuilder. You’re going to take the Ant

build script from chapter 1, import it into a Gradle build script, reuse its functionality,

and even learn how to manipulate it.

9.1.1 Using Ant script functionality from Gradle

Importing an Ant script and reusing its functionality from Gradle is dead simple. All

you need to do is use the method importBuild from Gradle’s AntBuilder and provide

it with the target Ant build script, as shown in figure 9.2.

To see the import functionality, you’ll take the directory structure of your Ant build

from chapter 1 and put it under the directory name ant. Parallel to this directory, cre-

ate another directory named gradle, which holds your Gradle build script responsible

for importing the Ant script. The end result should look similar to the following direc-

tory tree:

.
├── ant
│ ├── build.xml
│ ├── lib
│ │ └── commons-lang3-3.1.jar
│ └── src
│ └── main

org.gradle.api.AntBuilder

groovy.util.AntBuilder

getAnt()

getProperties()

getReferences()

importBuild(antBuildFile: Object)

Figure 9.1 Access to Ant functionality

from Gradle is provided through the

class AntBuilder

ant.importBuild 'build.xml'

hello.doLast {

println 'Hello again!'

}

build.gradle

<project>

<target name="hello">

<echo>Hello!</echo>

</target>

</project>

build.xml

uses

manipulates

Figure 9.2 Importing an existing Ant script into Gradle

Original Ant build script
including multiple
properties and tasks

226 CHAPTER 9 Integration and migration

│ └── java
│ └── com
│ └── mycompany
│ └── app
│ └── Main.java
└── gradle
 └── build.gradle

Let’s look at the Ant build script shown in listing 9.1. It’s a simple script for compiling

Java source code and creating a JAR file from the class files. Required external librar-

ies are stored in the directory lib. This directory only holds a single library, the

Apache Commons language API. The script also defines a target for initializing the

build output directory. Another target named clean makes sure that existing class and

JAR files can be deleted.

<project name="my-app" default="dist" basedir=".">
 <property name="src" location="src"/>
 <property name="build" location="build"/>
 <property name="lib" location="lib"/>
 <property name="dist" location="dist"/>
 <property name="version" value="1.0"/>

 <target name="init">
 <mkdir dir="${build}"/>
 </target>

 <target name="compile" depends="init" description="compile the source">
 <javac srcdir="${src}" destdir="${build}"
 ➥ classpath="${lib}/commons-lang3-3.1.jar"
 ➥ includeantruntime="false"/>
 </target>

 <target name="dist" depends="compile"
 ➥ description="generate the distribution">
 <mkdir dir="${dist}"/>
 <jar jarfile="${dist}/my-app-${version}.jar" basedir="${build}"/>
 </target>

 <target name="clean" description="clean up">
 <delete dir="${build}"/>
 <delete dir="${dist}"/>
 </target>
</project>

Now, let’s look at the Gradle build file. This is where the AntBuilder comes into play.

Use the implicit property named ant, call the method importBuild, and provide the

path to the Ant build script, as shown in the following code snippet:

ant.importBuild '../ant/build.xml'

Listing the tasks available to the Gradle build script reveals that Ant targets are treated

as Gradle tasks:

Listing 9.1 Original Ant build script

Gradle build script consuming
existing Ant build script

Ant properties for
defining directories and
the version of your JAR file

Ant tasks
for

compiling
Java

source
code and
creating

the JAR file

227Ant and Gradle

$ gradle tasks --all
:tasks

--
All tasks runnable from root project
--

Help tasks

...

Other tasks

clean - clean up
dist - generate the distribution
compile - compile the source
init

As shown in the command-line output, Gradle inspects the available Ant targets,

wraps them with Gradle tasks, reuses their description, and even keeps their depen-

dencies intact. You can now execute the translated Ant targets as you’re used to

in Gradle:

$ gradle dist
:init
:compile
:dist

After executing the dist Ant target, you’ll find that the source code was compiled and

the JAR file was created—exactly as if running the script directly from Ant. The follow-

ing directory tree shows the end result:

.
├── ant
│ ├── build
│ │ └── com
│ │ └── mycompany
│ │ └── app
│ │ └── Main.class
│ ├── build.xml
│ ├── dist
│ │ └── my-app-1.0.jar
│ ├── lib
│ │ └── commons-lang3-3.1.jar
│ └── src
│ └── main
│ └── java
│ └── com
│ └── mycompany
│ └── app
│ └── Main.java
└── gradle
 └── build.gradle

Top-level Ant
targets are listed.

Ant targets with dependencies
are shown in indented form.

Java class
file

Created
JAR file

228 CHAPTER 9 Integration and migration

Importing an Ant script into Gradle can be a first step toward a full migration to Gra-

dle. In section 9.1.3, we’ll discuss various approaches in more detail. The command-

line output of Gradle tasks wrapping Ant targets is pretty sparse. As an Ant user, you

may want to see the information you’re used to seeing when executing the targets

from Ant. Next, we’ll see how to ease that pain.

LOGGING ANT TASK OUTPUT

At any time, you can render the Ant task output from Gradle by executing the Gradle

build with the INFO log level (–i command-line parameter). As always, this command-

line parameter renders more information than you actually want to see. Instead of

using this command-line parameter, you can directly change the logging level for the

Gradle task that wraps the Ant target. The following assignment changes the logging

level to INFO for all Ant targets:

[init, compile, dist, clean]*.logging*.level = LogLevel.INFO

Listing imported Ant targets manually can be tedious and error-prone. Unfortunately,

there’s no easy way around it, because you can’t distinguish the origin of a task. Run

the dist task again to see the appropriate output from Ant:

$ gradle dist
:init
[ant:mkdir] Created dir: /Users/Ben/books/gradle-in-action/code/

➥ ant-import/ant/build
:compile
[ant:javac] Compiling 1 source file to /Users/Ben/books/

➥ gradle-in-action/code/ant-import/ant/build
:dist
[ant:mkdir] Created dir: /Users/Ben/books/gradle-in-action/code/

➥ ant-import/ant/dist
[ant:jar] Building jar: /Users/Ben/books/gradle-in-action/code/

➥ ant-import/ant/dist/my-app-1.0.jar

You’ll see the output from Ant that you’re familiar with. To indicate that the output

originates from Ant, Gradle prepends the message [ant:<ant_task_name>].

 Gradle’s integration with Ant doesn’t stop here. Often you’ll want to further mod-

ify the original Ant script functionality or even extend it. This could be the case if

you’re planning a gradual transition from your existing Ant script to Gradle. Let’s

look at some options.

Accessing imported Ant properties and paths from Gradle

Ant targets translate one-to-one to Gradle tasks and can be invoked from Gradle with

exactly the same name. This makes for a very fluent interface between both build

tools. The same can’t be said about Ant properties or paths. To access them, you’ll

need to use the methods getProperties() and getReferences() from Gradle’s

AntBuilder reference. Keep in mind that the Gradle task properties won’t list any

Ant properties.

229Ant and Gradle

MODIFYING ANT TARGET BEHAVIOR

When you import an existing Ant script, its targets are effectively treated as Gradle

tasks. In turn, you can make good use of all of their features. Remember when we dis-

cussed adding actions to existing Gradle tasks in chapter 4? You can apply the same

behavior to imported Ant targets by declaring doFirst and doLast actions. The fol-

lowing listing demonstrates how to apply this concept by adding log messages to Ant

target init before and after the actual Ant target logic is executed.

init {
 doFirst {
 logger.quiet "Deleting the directory '${ant.properties.build}'."
 }

 doLast {
 logger.quiet "Starting from a clean slate."b
 }
}

Now when you execute the task init, the appropriate messages are rendered in

the terminal:

$ gradle init
:init
Deleting the directory '/Users/Ben/Dev/books/gradle-in-action/

➥ code/ant-import/ant/build'.
[ant:mkdir] Created dir: /Users/Ben/Dev/books/gradle-in-action/

➥ code/ant-import/ant/build
Starting from a clean slate.

Importing Ant targets into a Gradle build is often only the starting point when work-

ing in the setting of a conjunct build. You may also want to extend the existing model

by functionality defined in the Gradle build script. In listing 9.2, you saw how to access

the Ant property build via the AntBuilder method getProperties(). Imported Ant

properties aren’t static entities. You can even change the value of an Ant property to

make it fit your needs. You can also make changes to the task graph by hooking in new

tasks. With the regular instruments of Gradle’s API, a dependency can be defined

between an Ant target and a Gradle task or vice versa.

 Let’s look at code that pulls together all of these concepts in a concise example.

In the next listing, you’ll make heavy use of existing Ant properties, change the

value of an existing Ant property, and let an imported Ant target depend on a new

Gradle task.

ext.antBuildDir = '../ant/build'
ant.properties.build = "$antBuildDir/classes"
ant.properties.dist = "$antBuildDir/libs"

Listing 9.2 Adding behavior to existing Ant target functionality

Listing 9.3 Seamless interaction between Ant and Gradle builds

Adds a Gradle action executed
before any Ant target code is run

Renders a message to inform the user about the directory
you’re about to delete by accessing Ant property build

Adds a Gradle action
that’s executed after
Ant target code is run

Changes value of
an Ant property

230 CHAPTER 9 Integration and migration

task sourcesJar(type: Jar) {
 baseName = 'my-app'
 classifier = 'sources'
 version = ant.properties.version
 destinationDir = file(ant.properties.dist)
 from new File(ant.properties.src, 'main/java')
}

dist.dependsOn sourcesJar

The new task sourcesJar shouldn’t look foreign. It simply creates a new JAR file con-

taining the Java source files in the destination directory ant/build/libs. Because it

should be part of your distribution, you declared a dependency on the Ant target

dist. Executing the build automatically invokes the task as part of the task graph:

$ gradle clean dist
:clean
:init
:compile
:sourcesJar
:dist

The resulting JAR files can be found in a new distribution directory:

.
└── ant
 ├── build
 │ ├── classes
 │ │ └── ...
 │ └── libs
 │ ├── my-app-1.0-sources.jar
 │ └── my-app-1.0.jar
 ├── ...

So far, you’ve learned how to apply Gradle’s feature set to simplify the integration with

an existing Ant build script. Next you’ll apply one of Gradle’s unique and powerful

features: incremental builds.

ADDING INCREMENTAL BUILD CAPABILITIES TO AN ANT TARGET

The build tool Ant doesn’t support incremental build functionality because Ant tar-

gets can’t determine their own state. Sure, you can always implement it yourself by

applying homegrown (and potentially error-prone) techniques to prevent the execu-

tion of unnecessary targets (for example, with the help of time-stamped files). But why

put in all this effort if Gradle provides a built-in mechanism for it? The following list-

ing demonstrates how to define inputs and outputs for the compilation target

imported from the Ant script.

compile {
 inputs.dir file(ant.properties.src)
 outputs.dir file(ant.properties.build)
}

Listing 9.4 Defining inputs and outputs for imported Ant target

Creates JAR file
containing source files

Adds a task dependency
on Ant target

Executes task sourcesJar
as dependency of task dist

Redefined classes
output directory

Redefined
distribution
directory Generated JAR file

containing Java
source files

JAR file containing
production class files

Defines compilation input
directory ../ant/src

Defines compilation output
directory ../ant/build/classes

231Ant and Gradle

This looks pretty straightforward, right? Try it out. First, clean up the existing class

and JAR files and run through the whole generation process:

$ gradle clean dist
:init
:compile
:sourcesJar
:dist

As expected, the Java source code is compiled and the JAR files are created. When you

run the dist task again without first deleting the files, Gradle realizes that the source

files haven’t changed and that output files already exist. The compilation task is auto-

matically marked as UP-TO-DATE, as shown in the following command-line output:

$ gradle dist
:init
:compile UP-TO-DATE
:sourcesJar UP-TO-DATE
:dist

Being able to add incremental build functionality to an imported Ant target is a big

win for Ant users coming to Gradle. It proves to be a huge timesaver, especially in

enterprise builds with many dependencies and source files.

 Even if you don’t import an existing Ant build script, Gradle allows for executing

Ant tasks directly from your Gradle build script. In this book, you’ve already seen

some examples. To round out your use case, let’s discuss how to incorporate one of

Ant’s standard tasks into the build.

9.1.2 Using standard Ant tasks from Gradle

Gradle’s AntBuilder provides direct access to all standard Ant tasks within your build

script—no additional configuration needed. At runtime, Gradle checks the bundled

Ant JAR files available on its classpath for the respective Ant task. Figure 9.3 illustrates

the interaction between the use of an Ant task within the Gradle build script, the Gra-

dle runtime, and its included Ant tasks. Using standard Ant tasks in Gradle comes in

handy if you don’t want to import an existing Ant script, or if you feel more comfort-

able with the Ant syntax.

 Using an Ant task in a Gradle build script isn’t hard, as long as you remember

some basic rules:

Gradle marks compilation
task UP-TO-DATE and
doesn’t execute it.

task downloadZip << {

ext.url = 'http://local.srv'

ext.zipFile = 'test.zip'

ant.mkdir(dir: 'download')

ant.get(src: "$url/$zipFile", dest: destDir)

}

build.gradle Gradle runtime Ant tasks

evaluates

script

uses API provides

jar

AntBuilder

Ant

libraries FTP SCP

XSLT …

Figure 9.3 Using Ant tasks from Gradle

232 CHAPTER 9 Integration and migration

■ Use the implicit AntBuilder variable ant to define an Ant task.
■ The Ant task name you use with the AntBuilder instance is the same as the tag

name in Ant.
■ Task attributes are wrapped in parentheses.
■ Define a task attribute name and value with the following pattern: <name>:

<value>. Alternatively, task attributes can be provided as Map; for example

[<name1>: <value1>, <name2>: <value2>].
■ Nested task elements don’t require the use of the implicit ant variable. The par-

ent task element wraps them with curly braces.

Let’s look at a concrete example: the Ant Get task. The purpose of the task is to down-

load remote files to your local disk via HTTP(S). You can find its documentation in the

Ant online manual at https://ant.apache.org/manual/Tasks/get.html. Assume that

you want to download two files to the destination directory downloads. Figure 9.4

shows how to express this logic using the AntBuilder DSL.

 If you compare the task definition in Ant and Gradle, there are a few differences.

You got rid of the pointy brackets and ended up with a more readable task definition.

The important point is that you don’t have to rewrite existing Ant functionality, and its

integration into Gradle is seamless.

 Next, you’ll use the Get task in the context of your previous code examples. As part of

your distribution, you want to bundle a project description file and the release notes. Each

file resides on a different server and isn’t part of the source code in version control. This

is a perfect use case for the Get Ant task. The following listing shows how to apply the

Get Ant task to download both files and make them part of the generated JAR file.

task downloadReleaseDocumentation {
 logging.level = LogLevel.INFO
 ext.repoUrl = 'https://repository-gradle-in-action.forge.cloudbees.com/
 ➥ release'

 doLast {
 ant.get(dest: ant.properties.build) {
 url(url: "$repoUrl/files/README.txt")
 url(url: "$repoUrl/files/RELEASE_NOTES.txt")

Listing 9.5 Using the standard Get Ant task

<get dest="downloads">

<url url="http://ant.apache.org/index.html"/>

<url url="http://ant.apache.org/faq.html"/>

</get>

Nested

elements

Attribute

name

Attribute

name

Ant

task tag

Attribute

value

Attribute

value

ant.get(dest: "downloads") {

url(url: "http://ant.apache.org/index.html")

url(url: "http://ant.apache.org/faq.html")

}

AntBuilder

instance

Ant task

name

Figure 9.4 Relevant Ant task elements in Gradle

Uses implicit AntBuilder
variable to access Get Ant task

Declares nested URL elements

https://ant.apache.org/manual/Tasks/get.html

233Ant and Gradle

 }
 }
}

dist.dependsOn downloadReleaseDocumentation

All standard Ant tasks can be used with this technique because they’re bundled with

the Gradle runtime. Make sure to keep the Ant documentation handy when writing

your logic. Optional or third-party Ant tasks usually require you to add another JAR

file to the build script’s classpath. You already learned how to do that in chapter 5

when you used the external Cargo Ant tasks to deploy your To Do application to a web

container. Please refer to the code examples in chapter 5 for more information on

how to use optional Ant tasks.

 So far, you’ve learned many ways to interact with existing Ant build scripts or tasks

from Gradle. But what if you’re planning to move to Gradle long term? How do you

approach a step-by-step migration?

9.1.3 Migration strategies

Gradle doesn’t force you to fully migrate an existing Ant script in one go. A good

place to start is to import the existing Ant build script and get familiar with Gradle

while using existing logic. In this first step, you only have to invest minimal effort.

Let’s look at some other measures you may want to take.

MIGRATING INDIVIDUAL ANT TARGETS TO GRADLE TASKS

Later, you’ll translate the logic of Ant targets into Gradle tasks, but you’ll start small

by picking targets with simple logic. Try to implement the logic of the targets “the

Gradle way” instead of falling back to an implementation backed by the Ant-

Builder. Let’s discuss this with the help of an example. Assume you have the follow-

ing Ant target:

<target name="create-manual">
 <zip destfile="dist/manual.zip">
 <fileset dir="docs/manual"/>
 <fileset dir="." includes="README.txt"/>
 </zip>
</target>

In Gradle, it’s beneficial to implement the same logic with the help of an enhanced task

of type org.gradle.api.tasks.bundling.Zip, as shown in the following code snippet:

task createManual(type: Zip) {
 baseName = 'manual'
 destinationDir = file('dist')
 from 'docs/manual'
 from('.') {
 include 'README.txt'
 }
}

This approach automatically buys you incremental build functionality without actually

having to explicitly declare inputs and outputs. If there’s no direct Gradle task type for

234 CHAPTER 9 Integration and migration

the logic you want to transfer, you can still fall back to the AntBuilder. Over time,

you’ll see that your Ant build script will get smaller and smaller while the logic in your

Gradle build will grow.

INTRODUCING DEPENDENCY MANAGEMENT

One of Gradle’s many useful features is dependency management. If you’re an Ant

user and aren’t already using Ivy’s dependency management, it will relieve you of the

burden of having to manually manage external libraries. When migrating to Gradle,

dependency management can be used even if you’re compiling your sources within

an Ant target. All you need to do is move the dependency declaration into your Gra-

dle build script and provide a new property to the Ant script. The next listing demon-

strates how to do this for a simple code example.

configurations {
 antCompile
}

repositories {
 mavenCentral()
}

dependencies {
 antCompile 'org.apache.commons:commons-lang3:3.1'
}

ant.properties.antCompileClasspath = configurations.antCompile.asPath

With this code in place, you can use the provided Ant property named antCompile-

Classpath for setting the classpath in the Ant build script:

<target name="compile" depends="init" description="compile the source">
 <javac srcdir="${src}" destdir="${build}"
 ➥ classpath="${antCompileClasspath}" includeantruntime="false"/>
</target>

The change to the Ant build script was minimal. You can now also get rid of the lib

directory in your Ant build, because Gradle’s dependency manager automatically

downloads the dependencies. Of course, you could also move the Javac task to Gradle.

But why do all of this work when you can simply use the Gradle Java plugin? Introduc-

ing the plugin would eliminate the need for the Ant build logic.

TACKLING TASK NAME CLASHES

Sooner or later in your migration, you’ll come to a point where you’ll want to pull in

one or more Gradle plugins. Your example Ant project resembles the typical tasks

needed in a Java project: compile the source code, assemble a JAR file, and clean up

existing artifacts. Applying the Java plugin works like a charm, as long as your Ant script

doesn’t define any targets that have the same name as any of the tasks exposed by the

plugin. Give it a shot by modifying your Gradle build to have the following content:

Listing 9.6 Declaring compilation dependencies

Custom configuration
for Ant compilation
dependencies

Definition of Ant
dependencies assigned
to custom configuration

Sets a new Ant property to
be used for compilation in

Ant build script

Using the compile classpath set
from Gradle build script

235Ant and Gradle

ant.importBuild '../ant/build.xml'
apply plugin: 'java'

Executing any Gradle task will indicate that you have a task namespace clash, as shown

in the following command-line output:

$ gradle tasks

FAILURE: Build failed with an exception.

* Where:
Build file '/Users/Ben/Dev/books/gradle-in-action/code/migrating-ant-

➥ build/gradle/build.gradle' line: 2

* What went wrong:
A problem occurred evaluating root project 'gradle'.
> Cannot add task ':clean' as a task with that name already exists.

You have two choices in this situation. Either exclude the existing Ant target, or wrap

the imported Ant target with a Gradle task with a different name. The approach you

take depends on your specific use case. The following code snippet demonstrates how

to trick AntBuilder into thinking that the task already exists:

ant.project.addTarget('clean', new org.apache.tools.ant.Target())
ant.importBuild '../ant/build.xml'
apply plugin: 'java'

As a result, the original Ant target is excluded; the clean task provided by the Java

plugin is used instead.

 Excluding some of the less complex Ant targets may work for you, but sometimes

you want to preserve existing logic because it would require a significant amount of

time to rewrite it. In those cases, you can build in another level of indirection, as

shown in figure 9.5.

 The import of the Ant build script can happen in a second Gradle build script

named importedAntBuild.gradle:

ant.importBuild '../ant/build.xml'

The consuming Gradle build script declares an enhanced task of type GradleBuild

that defines the Ant target you want to use with a new name. You can think of this

technique as renaming an existing Ant target. The following code snippet demon-

strates its use:

Excludes
Ant target
with name
clean

task cleanAnt(type: GradleBuild) {

buildFile = 'importedAntBuild.gradle'

tasks = ['clean']

}

apply plugin: 'java'

<project>

<target name="clean">

...

</target>

</project>

wraps

tasks

ant.importBuild 'build.xml'

...

imports

build.gradle build.xmlimportedAntBuild.gradle

Figure 9.5 Wrapping an imported Ant target by exposing a Gradle task with a new name

236 CHAPTER 9 Integration and migration

task cleanAnt(type: GradleBuild) {
 buildFile = 'importedAntBuild.gradle'
 tasks = ['clean']
}

apply plugin: 'java'

With this code in place, the exposed Gradle task name is cleanAnt:

$ gradle tasks
:tasks

--
All tasks runnable from root project
--

...

Other tasks

cleanAnt

...

If you want to let the standard Gradle clean task depend on the Ant clean-up logic,

you can define a task dependency between them:

clean.dependsOn cleanAnt

We discussed how to approach a migration from Ant to Gradle step by step without

completely blocking the build or delivery process. In the next section, we’ll compare

commonalities and differences between Maven and Gradle concepts. As we did in this

section, we’ll also talk about build migration strategies.

9.2 Maven and Gradle

Gradle’s integration with Ant is superb. It allows for importing existing Ant build

scripts that translate targets in Gradle tasks, enable executing them transparently from

Gradle, and provide the ability to enhance targets with additional Gradle functionality

(for example, incremental build support). With these features in place, you can

approach migrating from Ant to Gradle through various strategies.

 Unfortunately, the same cannot be said about the current Maven integration sup-

port. At the time of writing, Gradle doesn’t provide any deep imports of existing

Maven builds. This means that you can’t just point your Gradle build to an existing

POM file to derive metadata at runtime and to execute Maven goals. But there are

some counter strategies to deal with this situation, and we’ll discuss them in this sec-

tion. Before we dive into migrating from Maven to Gradle, let’s compare commonali-

ties and differences between both systems. Then, we’ll map some of Maven’s core

concepts to Gradle functionality.

9.2.1 Commonalities and differences

When directly comparing Maven and Gradle, you can find many commonalities. Both

build tools share the same concepts (for example, dependency management and

Preferred task name
of type GradleBuild

Originating
Gradle build file

Tasks from originating build
script to be invoked when
wrapped task is executed

Wrapping task with name
cleanAnt that directs the call
to imported clean Ant target

237Maven and Gradle

convention over configuration) even though they may be implemented differently,

use diverging vocabulary, or require specific usage. Let’s discuss some important dif-

ferences frequently asked about on the Gradle forum.

PROVIDED SCOPE

Maven users will feel right at home when it comes to declaring dependencies with Gra-

dle. Many of the Maven dependency scopes have a direct equivalent to a Gradle configu-

ration provided by the Java or War plugin. Please refer to table 9.1 for a quick refresher.

There’s one Maven scope that only finds a representation with the War plugin: pro-

vided. Dependencies defined with the provided scope are needed for compilation

but aren’t exported (that is, bundled with the runtime distribution). The scope

assumes that the runtime environment provides the dependency. One typical exam-

ple is the Servlet API library. If you aren’t building a web application, you won’t have

an equivalent configuration available in Gradle. This is easily fixable—you can define

the behavior of the scope as a custom configuration in your build script. The follow-

ing listing shows how to create a provided scope for compilation purposes and one

for exclusive use with unit tests.

configurations {
 provided
 testProvided.extendsFrom provided
}

sourceSets {
 main {
 compileClasspath += configurations.provided
 }

 test {
 compileClasspath += configurations.testProvided
 }
}

DEPLOYING ARTIFACTS TO MAVEN REPOSITORIES

Maven repositories are omnipresent sources for external libraries in the build tool

landscape. This is particularly true for Maven Central, the go-to location on the web

for retrieving open source libraries.

Table 9.1 Maven dependency scopes and their Gradle configuration representation

Maven Scope Gradle Java Plugin Configuration Gradle War Plugin Configuration

compile compile N/A

provided N/A providedCompile, providedRuntime

runtime runtime N/A

test testCompile, testRuntime N/A

Listing 9.7 Custom provided configuration

Declares provided
configurations

Added provided
configurations to
compilation classpath

238 CHAPTER 9 Integration and migration

 So far, you’ve learned how to consume libraries from Maven repositories. Being

able to publish an artifact to a Maven repository is equally important because in an

enterprise setting a Maven repository may be used to share a reusable library across

teams or departments. Maven ships with support for deploying an artifact to a local or

remote Maven repository. As part of this process, a pom.xml file is generated contain-

ing the meta-information about the artifact.

 Gradle provides a 100% compatible plugin that resembles Maven’s functionality of

uploading artifacts to repositories: the Gradle Maven Publishing plugin. We won’t dis-

cuss the plugin any further in this chapter. If you’re eager to learn more about it,

jump directly to chapter 14.

SUPPORT FOR MAVEN PROFILES

Maven 2.0 introduces the concept of a build profile. A profile defines a set of environment-

specific parameters through a subset of elements in a POM (the project pom.xml,

settings.xml, or profiles.xml file). A typical use case for a profile is to define prop-

erties for use in a specific deployment environment. If you’re coming to Gradle, you’ll

want to either reuse an existing profile definition or to emulate this functionality.

 I’m sorry to disappoint you, but Gradle doesn’t support the concept of pro-

files. Don’t let this be a downer. There are two ways to deal with this situation.

Let’s first look at how you can read an existing profile file. Assume that you have

the settings.xml file shown in the following listing located in your Maven home

directory (~/.m2).

<?xml version="1.0" encoding="UTF-8"?>
<settings>
 <profiles>
 <profile>
 <id>appserverConfig-dev</id>
 <activation>
 <property>
 <name>env</name>
 <value>dev</value>
 </property>
 </activation>
 <properties>
 <appserver.home>/path/to/dev/appserver</appserver.home>
 </properties>
 </profile>
 <profile>
 <id>appserverConfig-test</id>
 <activation>
 <property>
 <name>env</name>
 <value>test</value>
 </property>
 </activation>
 <properties>

Listing 9.8 Maven profile file defining application server home directories

Development
environment property

Application
server home
directory for
development
environment

Test environment
property

239Maven and Gradle

 <appserver.home>/path/to/test/appserver</appserver.home>
 </properties>
 </profile>
 </profiles>
 ...
</settings>

The settings file declares two profiles for determining the application server home

directory for deployment purposes. Based on the provided environment value with

the key env, Maven will pick the appropriate profile.

 It’s easy to implement the same functionality with Gradle. The next listing shows

how to read the settings file, traverse the XML elements, and select the requested pro-

file based on the provided property env.

def getMavenSettingsCredentials = {
 String userHome = System.getProperty('user.home')
 File mavenSettings = new File(userHome, '.m2/settings.xml')
 XmlSlurper xmlSlurper = new XmlSlurper()
 xmlSlurper.parse(mavenSettings)
}

task printAppServerHome << {
 def env = project.hasProperty('env') ? project.getProperty('env')
 ➥ : 'dev'
 logger.quiet "Using environment '$env'"
 def settings = getMavenSettingsCredentials()
 def allProfiles = settings.profiles.profile
 def profile = allProfiles.find {
 it.activation.property.name == 'env' &&
 ➥ it.activation.property.value == env }
 def appServerHome = profile.properties.'appserver.home'
 println "The $env server's home directory: $appServerHome"
}

To run this example, call the task name and provide the property as a command-

line parameter:

$ gradle printAppServerHome -Penv=test
:printAppServerHome
Using environment 'test'
The test server's home directory: /path/to/test/appserver

This works great if you want to stick with the settings file. However, at some point you

may want to get rid of this artifact to cut off any dependency on Maven concepts. You

have many options for defining values for a specific profile:

■ Put them into the gradle.properties file. Unfortunately, property names are

flat by nature, so you’ll need to come up with a naming scheme; for example,

env.test.app.server.path.

■ Define them directly in your build script. The benefit of this approach is that

you’re able to use any data type available to Groovy to declare properties.

Listing 9.9 Reading environment-specific property from settings file

Application server home
directory for test environment

Parse settings file with
Groovy’s XmlSlurper

Parse provided
environment
property

Traverse XML
elements to find
the application
server property
value

240 CHAPTER 9 Integration and migration

■ Use Groovy’s ConfigSlurper utility class for reading configuration files in the form

of Groovy scripts. Chapter 14 uses this method and provides a full-fledged example.

GENERATING A SITE FOR THE PROJECT

A frequently requested feature from Maven users interested in using Gradle is the

ability to generate a site for their projects. Maven’s site plugin allows for creating a set

of HTML files by running a single goal. A site usually exposes a unified view on general

information about the project extracted from the POM, as well as aggregated report-

ing on test and static code analysis results.

 At the time of writing, this functionality isn’t available to Gradle users. A standard

Gradle plugin that started down that road is build-dashboard. The plugin was intro-

duced with Gradle 1.5 and exposes a task for building a dashboard HTML report that

contains references to all reports generated during the build. Make sure to check the

Gradle online documentation for more information.

9.2.2 Migration strategies

In the previous section, we discussed major differences between the build tools Maven

and Gradle. The illustrated approaches for bridging the gap between certain func-

tionality will give you a head start on a successful migration. Because Gradle doesn’t

offer importing Maven goals into the Gradle model at runtime, a migration will have

to take place in parallel to the existing Maven setup. This procedure ensures a smooth

migration without disrupting the build and delivery process.

 Let’s see how this can be done with the sample Maven POM file from chapter 1. For

a quick refresher on the code, look at the following listing.

<project xmlns="http://maven.apache.org/POM/4.0.0"
 ➥ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 ➥ xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 ➥ http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.mycompany.app</groupId>
 <artifactId>my-app</artifactId>
 <packaging>jar</packaging>
 <version>1.0</version>

 <dependencies>
 <dependency>
 <groupId>org.apache.commons</groupId>
 <artifactId>commons-lang3</artifactId>
 <version>3.1</version>
 <scope>compile</scope>
 </dependency>
 </dependencies>
</project>

Thankfully, you don’t have to manually convert the Maven build logic to a Gradle

script. If you’re a user of Gradle ≥ 1.6, you’re offered a little bit of help: the build

Listing 9.10 Original Maven POM file

Maven’s artifactId
element value maps to
a Gradle project name

241Maven and Gradle

setup plugin. The plugin supports generating build.gradle and settings.gradle

files by analyzing a Maven pom.xml file, as shown in figure 9.6.

 Let’s take a closer look at how to use the plugin.

USING THE MAVEN2GRADLE TASK

The build setup plugin is automatically available to all Gradle builds independent

from the build script’s configuration. You learned in chapters 2 and 3 that the plugin

can be used to generate a new Gradle build script or to add the wrapper files to your

project. There’s another task provided by the plugin that we haven’t looked at yet:

maven2Gradle. This task is only presented if your current directory contains a pom.xml

file. Create a new directory, create a pom.xml file, and copy the contents of listing 9.11

into it. The directory should look as follows:

.
└── pom.xml

Now, navigate to this directory on the command line and list the available Gradle tasks:

$ gradle tasks --all
:tasks

--
All tasks runnable from root project
--

Build Setup tasks

setupBuild - Initializes a new Gradle build. [incubating]
maven2Gradle - Generates a Gradle build from a Maven POM.

➥ [incubating]
setupWrapper - Generates Gradle wrapper files. [incubating]

...

<project>

<modelVersion>4.0.0</modelVersion>

<groupId>com.mycompany.app</groupId>

<artifactId>my-app</artifactId>

<packaging>jar</packaging>

<version>1.0</version>

</project>

pom.xml

analyzes

1

maven2Gradle

Task

Gradle runtime

generates

2

maven2Gradle

Task

Gradle runtime

apply plugin: 'java'

apply plugin: 'maven'

group = 'com.mycompany.app'

version = '1.0'

...

build.gradle

rootProject.name = 'my-app'

settings.gradle

Figure 9.6 Generating Gradle build scripts from a Maven POM

Maven POM
converter task

242 CHAPTER 9 Integration and migration

Executing the maven2Gradle task will analyze the effective Maven POM configuration.

When I talk about the effective POM, I mean the interpolated configuration of the

pom.xml file, any parent POM, and any settings provided by active profiles. Even

though the task is at an early stage of development, you can expect the following

major conversion features:

■ Conversion of single-module and multimodule Maven projects

■ Translation from declared Maven dependencies and repositories

■ Support for converting Maven projects for building plain Java projects as well as

web projects

■ Analyzing project metadata like ID, description, version, and compiler settings,

and translating it into a Gradle configuration

In most cases, this converter task does a good job of translating the build logic from

Maven to Gradle. One thing to remember is that the converter doesn’t understand any

third-party plugin configuration, and therefore can’t create any Gradle code for it. This

logic has to be implemented manually. You’ll execute the task on your pom.xml file:

$ gradle maven2Gradle
:maven2Gradle
Maven to Gradle conversion is an incubating feature. Enjoy it and let

➥ us know how it works for you.
Working path:/Users/Ben/Dev/books/gradle-in-action/code/maven2gradle

This is single module project.
Configuring Maven repositories... Done.
Configuring Dependencies... Done.
Adding tests packaging...Generating settings.gradle if needed...
Done.
Generating main build.gradle... Done.

After executing the task, you’ll find the expected Gradle files in the same directory as

the POM file:

.
├── build.gradle
├── pom.xml
└── settings.gradle

Let’s take a closer look at the generated build.gradle file, as shown in the next list-

ing. The file contains all necessary DSL elements you’d expect: plugins, project meta-

data, repositories, and dependencies.

apply plugin: 'java'
apply plugin: 'maven'

group = 'com.mycompany.app'
version = '1.0'

description = """"""

Listing 9.11 Generated Gradle build script

Generated
Gradle files

243Comparing builds

sourceCompatibility = 1.5
targetCompatibility = 1.5

repositories {
 mavenRepo url: "http://repo.maven.apache.org/maven2"
}

dependencies {
 compile group: 'org.apache.commons', name: 'commons-lang3', version:'3.1'
}

The project name can only be set during Gradle’s initialization phase. For that reason,

the maven2Gradle task also generates the settings file shown in the following listing.

rootProject.name = 'my-app'

The generated Gradle files will give you a good start in migrating your complete

Maven. Without compromising your existing build, you can now add on to the gener-

ated Gradle logic until you’ve fully transferred all functionality. At that point, you can

flip the switch and continue to use Gradle as the primary build tool and start building

confidence. Should you encounter any impediments, you can always fall back to your

Maven build.

 Wouldn’t it be great if you could automatically determine that the build artifacts

between the Maven and Gradle build are the same? That’s the primary goal of the

Gradle build comparison plugin.

9.3 Comparing builds

The build comparison plugin was introduced with Gradle 1.2. It has the high goal of

comparing the outcomes of two builds. When I speak of an outcome, I mean the

binary artifact produced by a build—for example, a JAR, WAR, or EAR file. The plugin

aims to support the following comparisons:

■ Gradle build compared to an Ant or Maven build in the case of a build

tool migration

■ Comparing the same Gradle build with two different versions in the case of

an upgrade

■ Comparing a Gradle build with the same version after changing build logic

I know you’re excited because this plugin could be extremely helpful in comparing

the build outcomes after migrating from Ant or Maven. Unfortunately, I have to disap-

point you. At the time of writing, this functionality hasn’t been implemented. What

you can do, though, is compare a Gradle build after upgrading the version. Figure 9.7

demonstrates such a use case in the context of your To Do application.

 Your sample project creates three binary artifacts: two JAR files produced by the

projects model and repository, and one WAR file produced by the web project. The

WAR file includes the two other JAR files. A comparison between two builds would

Listing 9.12 Generated Gradle settings file

Generates URL for
Maven Central instead
of mavenCentral()
shortcut

244 CHAPTER 9 Integration and migration

have to take into account these files. Let’s say you want to upgrade your project from

Gradle 1.5 to 1.6. The following listing shows the necessary setup required to compare

the builds.

apply plugin: 'compare-gradle-builds'

compareGradleBuilds {
 sourceBuild {
 projectDir = rootProject.projectDir
 gradleVersion = '1.5'
 }

 targetBuild {
 projectDir = sourceBuild.projectDir
 gradleVersion = '1.6'
 }
}

If you want to initiate a build comparison, all you need to do is execute the provided

task compareGradleBuilds. The task will fail if the outcome of the compared build is

different. Because the command-line output of this task is lengthy, I won’t show it

here. What’s more interesting is the reporting structure produced by the task. The fol-

lowing directory tree shows the build outcome files used to compare the build and

HTML report:

.
└── build
 └── reports
 └── compareGradleBuilds
 ├── files
 │ ├── source

Listing 9.13 Upgrading the Gradle runtime

todo

model

model-0.1.jar

Source build (Gradle 1.5)

repository

repository-0.1.jar

web

web-0.1.war

todo

model

model-0.1.jar

Target build (Gradle 1.6)

repository

repository-0.1.jar

web

web-0.1.war

compares

Figure 9.7 Comparing build outcomes of two different Gradle versions

Source build definition
pointing to root project

Target build definition
pointing to root project
of source build definition

Build outcome files
generated with Gradle 1.5

245Summary

 │ │ ├── _model_jar
 │ │ │ └── model_0.1.jar
 │ │ ├── _repository_jar
 │ │ │ └── repository_0.1.jar
 │ │ └── _web_war
 │ │ └── web_0.1.war
 │ └── target
 │ ├── _model_jar
 │ │ └── model_0.1.jar
 │ ├── _repository_jar
 │ │ └── repository_0.1.jar
 │ └── _web_war
 │ └── web_0.1.war
 └── index.html

The report file index.html gives detailed information about the compared builds,

their versions, the involved binary artifacts, and the result of the comparison. If Gra-

dle determines that the compared builds aren’t identical, it’ll be reflected in the

reports, as shown in figure 9.8.

I think it becomes apparent how helpful the functionality of this plugin can be in

making a determination whether an upgrade can be performed without side effects.

The plugin has a lot of future potential, especially if you’re interested in comparing

existing builds backed by other build tools within the scope of a migration.

9.4 Summary

In this chapter, we discussed how the traditional Java-based build tools Ant and Maven

fit into the picture of integration and migration. As an Ant user, you have the most

options and the most powerful tooling. Gradle allows for deep imports of an Ant build

script by turning Ant targets into Gradle tasks. Even if you don’t import existing Ant

builds, you can benefit from reusing standard and third-party Ant tasks. You learned

Build outcome files
generated with Gradle 1.6

Build comparison
HTML report

Figure 9.8 Sample build comparison HTML report for upgrading a Gradle version

246 CHAPTER 9 Integration and migration

that migrating from Ant to Gradle can be done in baby steps: first import the existing

build, then introduce dependency management, and then translate targets into tasks

using Gradle’s API. Finally, make good use of Gradle plugins.

 Maven and Gradle share similar concepts and conventions. If you’re coming from

Maven, the basic project layout and dependency management usage patterns should

look strikingly familiar. We discussed some Maven features that are missing from Gra-

dle, such as the provided scope and the concept of profiles. You saw that Gradle (and

ultimately its underlying language Groovy) is flexible enough to find solutions to

bridge the gap. Unfortunately, Gradle doesn’t support importing Maven goals from a

POM at runtime, which makes migration less smooth than for Ant users. With Gradle’s

maven2Gradle conversion task, you can get a head start on a successful migration by

generating a build.gradle file from an effective POM.

 Upgrading a Gradle build from one version to another shouldn’t cause any side

effects or even influence your ability to compile, assemble, and deploy your applica-

tion code. The build comparison plugin automates upgrade testing by comparing the

outcomes of a build with two different versions. With this information in hand, you

can mitigate the risk of a failed upgrade.

 Congratulations, you got to know Gradle’s most essential features! This chapter

concludes part 2 of the book. In part 3, we’ll shift our focus to using Gradle in the

context of a continuous delivery process. First, let’s discuss how to use Gradle within

popular IDEs.

Part 3

From build
to deployment

Building an application on the developer’s machine is only part of the story.

In times of increased pressure to deliver software quickly and frequently, auto-

mating the deployment and release process is extremely important. In part 3,

you’ll learn how to use Gradle to its fullest in the context of continuous delivery.

 Many developers live and breathe their IDEs, which are key to being highly

productive. Chapter 10 delves into the nitty-gritty details of generating IDE proj-

ect files with the Gradle’s core plugins, importing a Gradle project from scratch,

and using IDE features to manage and operate a build from the IDE.

 Software projects in today’s world rarely concentrate on using a single pro-

gramming language to get the work done. Instead, developers bring in suited

languages to make their lives easier. In chapter 11, we’ll discuss the use of Gradle

as a single solution to build polyglot projects.

 Continuous delivery describes a build pipeline that orchestrates the end-to-end

process for getting software from the developer’s machine into the production

environment. The last four chapters of the book are devoted to implementing a

pipeline with Gradle and third-party tools. We’ll start by looking at continuous

integration, the backbone of every build pipeline. In chapter 13, you’ll use Jen-

kins, an open source continuous integration server, to model a chain of build

steps. Between each of these steps, you’ll build in quality gates with the help of

code analysis tools discussed in chapter 12. Chapters 14 and 15 discuss how to

assemble and publish an artifact produced by your project. Later on, you’ll take this

artifact and deploy it to different environments.

 By the end of part 3, you’ll be able to use your Gradle skills to take your own proj-

ects to the next level. Being able to automate the full delivery process will save your

organization lots of money and vastly improve your time-to-market ratio.

249

IDE support and tooling

While Gradle’s target runtime environment is the command line, editing build

scripts happens in a text editor. The types of editors that developers use range from

simple screen-oriented editors like vi or Emacs, to full-blown integrated develop-

ment environments (IDEs) like Eclipse and IntelliJ IDEA. IDEs can boost a devel-

oper’s productivity tremendously. Functionality like syntax highlighting, navigation

through keyboard shortcuts, refactoring, and code completion generation save

valuable time during development and make implementing code a more enjoyable

experience. Developing Gradle code should be no different.

IDEs store the configuration data for projects in project files. The format of these

files, usually described in XML, is different from vendor to vendor. Historically, popu-

lar IDEs didn’t incorporate integration support for Gradle, so Gradle had to provide

plugins to generate these files. In this chapter, we’ll look at the plugins provided by

Gradle to generate project metadata for popular Java IDEs. These plugins are effec-

tive tools in deriving most of this metadata from your build script definition. While

This chapter covers

■ Using IDE plugins to generate project files

■ Managing Gradle projects in popular IDEs

■ Embedding Gradle with the tooling API

250 CHAPTER 10 IDE support and tooling

the generated project files are usually a good start, you often need more fine-grained

control to customize the metadata. We’ll discuss how to use the DSL exposed by these

plugins to adjust this metadata to your individual needs.

 With the increasing popularity of Gradle, IDE vendors have provided first-class,

built-in support for managing Gradle projects. We’ll explore how to import existing

projects backed by Gradle build scripts, navigate these projects, and execute Gradle

tasks directly in the IDE. The breadth of this functionality is dependent on the IDE

product. In this chapter, we’ll compare the feature sets provided by Eclipse, IntelliJ

IDEA, NetBeans, and Sublime Text.

 Most IDE vendors use the tooling API to embed Gradle into their products. The

tooling API is part of Gradle’s public API and is used to execute and monitor a build.

While the API’s main focus is to embed Gradle into third-party applications, it can also

be used in other situations. You’ll get to know one of these use cases and apply the API

in practice. You’ll start by using Gradle’s IDE plugins to generate project files for your

To Do application.

10.1 Using IDE plugins to generate project files

IDEs describe organizational units with the notation of a project, similarly to a Gradle

project. A project defines a type (for example, web versus desktop application), exter-

nal dependencies (for example, JAR, source, and Javadoc files), plus individual set-

tings. With the help of project files, a project can be opened in an IDE and can allow

for sharing configuration data with other developers. Unfortunately, the formats of

these project files are not unified across IDE products. Among the most common for-

mats are XML and JSON.

 Gradle allows for generating IDE project files with the help of plugins. The stan-

dard Gradle distribution provides two out-of-the-box plugins: Eclipse and IDEA. Each

plugin understands how to model IDE-specific project files. The plugins also expose a

powerful DSL for customizing the generated project settings. To generate project

files, you’ll need to apply the IDE plugin to your build script, execute the task pro-

vided by the plugin, and import the generated project files into your IDE, as shown in

figure 10.1.

 To be able to share project files, you’d usually check them into your VCS alongside

your source code. When another developer checks out the project from the VCS, they

execute

tasks generates imports

apply plugin: 'eclipse'

apply plugin: 'idea'

apply plugin: 'sublimeText'

eclipse {

...

}

...
project(':web') {

apply plugin: 'war'

apply plugin: 'jetty'

apply plugin: 'groovy'

repositories {

mavenCentral()

}

configurations {

functTestCompile.extendsFrom testCompile

functTestRuntime.extendsFrom testRuntime

}

}

Build script

IDE project files

IDE

Gradle

Figure 10.1 IDE project generation with Gradle

251Using IDE plugins to generate project files

can directly open the project in the IDE and start working. Using the Gradle IDE plug-

ins makes this step redundant because you describe the project settings using the

plugin’s DSL. The project files can be regenerated at any time, similarly to the process

of compiling source code to class files.

 In this chapter, you’ll model project files to enable your To Do application to be

loaded in the IDEs Eclipse, IntelliJ IDEA, and Sublime Text. Therefore, Gradle’s IDE

plugins need to be able to translate the individual needs of your build into the IDE’s

configuration data. In this book, you added very specific configuration elements that

stand out from a simple Gradle project:

■ Multiproject build definition including compile-time project dependencies

■ Custom configurations used to declare external dependencies

■ Custom source sets for integration and functional tests

You’ll learn how to describe these rules with the help of the DSL exposed by the Gra-

dle plugins. You’ll start by generating Eclipse project files.

10.1.1 Using the Eclipse plugins

Eclipse (http://www.eclipse.org/) is probably the most popular and widely used IDE

for Java projects. It’s completely open source and can be extended by plugins to add

specialized functionality, such as support for Groovy projects and the use of version

control systems like Git. You need a good understanding of the format of Eclipse proj-

ect files before you start generating them because the plugin’s DSL elements target

specific files.

PROJECT FORMAT AND FILES

Eclipse stores configuration data per project. This means that every project participat-

ing in a multiproject build contains its own set of Eclipse project files and directories.

All configuration data is described in XML. There are three types of files/directories:

■ .project: The name of this file is self-explanatory—it stores the basic informa-

tion about a project. It contains the name, description, references of other proj-

ects or resources, and the type of project.

■ .classpath: This file describes the classpath entries to referenced external

libraries and other projects.

■ .settings: This directory is optional for a project. It contains workspace-specific

settings. The file within the directory stores settings like the Java compiler ver-

sion and source code version compliance.

In the setting of your To Do application, the generated project files will look similar to

figure 10.2.

 Each project in the hierarchy, root project, and subprojects has its own set of proj-

ect files. Next, you’ll apply the relevant Gradle plugins to your project and generate

the project files.

http://www.eclipse.org/
https://netbeans.org/
https://netbeans.org/
https://netbeans.org/

252 CHAPTER 10 IDE support and tooling

APPLYING AND EXECUTING THE PLUGINS

The Gradle distribution comes with two Eclipse plugins: eclipse and eclipse-wtp.

The eclipse plugin is responsible for generating standard Eclipse configuration data.

The plugin named eclipse-wtp builds on top of the eclipse plugin and generates

configuration files to be used with Eclipse’s Web Tools Platform (WTP). WTP provides

tools for developing Java EE applications and can be installed as an optional Eclipse

plugin. The WTP plugin simplifies the creation of typical web artifacts like web

descriptors, Servlets, and JSP files. It also provides support for deploying WAR files to

various web containers, which can come in handy if you need to debug your running

application from your IDE.

 At its core, your To Do application is a web application, which makes it a good can-

didate to apply both Gradle Eclipse plugins. First, apply the eclipse plugin to all Gra-

dle projects of your application:

Model project classpath configuration

Model project configuration

Model project-specific settings

todo

model

.classpath

Eclipse project files

Repository project classpath configuration

Repository project configuration

Repository project-specific settings

Web project classpath configuration

Web project configuration

Web project-specific settings

Root project classpath configuration

Root project configuration

Root project-specific settings

.project

.settings

repository

.classpath

.project

.settings

web

.classpath

.classpath

.project

.settings

.project

.settings

Figure 10.2 Eclipse

project files

http://plugins.netbeans.org/plugin/44510/gradle-support

253Using IDE plugins to generate project files

allprojects {
 apply plugin: 'eclipse'
}

Applying the plugin to the allprojects configuration block will create project files

for the root project and all subprojects. The only project that you need to generate

WTP configuration files for is the web project. You can apply the plugin as shown in

the following code snippet:

project(':web') {
 apply plugin: 'eclipse-wtp'
}

With these two plugins in place, you’re ready to generate Eclipse project files by exe-

cuting their provided tasks. Two tasks are of high importance: eclipse and clean-

Eclipse. The task eclipse generates all Eclipse project files, including .project,

.classpath, and the settings files under the directory .settings. The task clean-

Eclipse removes all existing Eclipse project files. Try executing the task eclipse on

the root level of your multiproject hierarchy:

$ gradle eclipse
:eclipseProject
:eclipse
:model:eclipseClasspath
:model:eclipseJdt
:model:eclipseProject
:model:eclipse
:repository:eclipseClasspath
:repository:eclipseJdt
:repository:eclipseProject
:repository:eclipse
:web:eclipseClasspath
:web:eclipseJdt
:web:eclipseProject
:web:eclipseWtpComponent
:web:eclipseWtpFacet
:web:eclipseWtp
:web:eclipse

The task eclipse automatically executes many dependent tasks. Each of these depen-

dent tasks is responsible for generating a specific type of project file. For example, the

task eclipseClasspath generates the content of the file .classpath. The following

directory tree shows the end result:

.
├── .project
├── model
│ ├── .classpath
│ ├── .project
│ └── .settings
│ └── org.eclipse.jdt.core.prefs
├── repository
│ ├── .classpath

Creates .project
file for root project

Creates .project, .classpath,
and JDT settings files for
model project

Creates .project, .classpath,
and JDT settings files for
repository project

Creates .project, .classpath, and
JDT settings files for web project

Creates WTP settings
files for web project

http://www.jetbrains.com/idea/
http://www.jetbrains.com/idea/
http://www.jetbrains.com/idea/
https://github.com/phildopus/gradle-sublimetext-plugin

254 CHAPTER 10 IDE support and tooling

│ ├── .project
│ └── .settings
│ └── org.eclipse.jdt.core.prefs
└── web
 ├── .classpath
 ├── .project
 └── .settings
 ├── org.eclipse.jdt.core.prefs
 ├── org.eclipse.wst.common.component
 └── org.eclipse.wst.common.project.facet.core.xml

We already discussed the purpose of the configuration files .project and .class-

path. Let’s take a closer look at one of the generated settings files. A prominent set-

tings file available to all subprojects is org.eclipse.jdt.core.prefs. This file stores

configuration data specific to Java projects provided by Eclipse’s Java development

tools (JDT). One example of a JDT setting is the Java compiler version.

 If you open the generated project files in Eclipse right now, what would you have

achieved with the default Gradle plugin configuration? All of the projects would be

recognized as Java or Groovy projects (in Eclipse this is described as project nature),

the correct source paths would be set, and dependencies for default configurations

defined by the Gradle Java plugin would be linked. The prep work for using Eclipse

WTP tooling would be done. This is a lot of configuration that the Gradle plugins pro-

vide out of the box without any additional customization from your side. So what’s

missing? Any custom configurations aren’t recognized automatically. In this case,

these are functTestCompile and functTestRuntime, two configurations you defined

for declaring functional test dependencies. You’ll fix this by customizing the genera-

tion of the project files.

CUSTOMIZING THE CONFIGURATION

The Gradle Eclipse plugins expose an extensive DSL for customizing almost every

aspect of the project file generation process. Table 10.1 shows the important key prop-

erties that provide access to the Eclipse generation model.

Table 10.1 Eclipse plugin configuration properties

Property Name Gradle API Class Plugin Description

project EclipseProject eclipse Configures project information

classpath EclipseClasspath eclipse Configures classpath

information

jdt EclipseJdt eclipse Configures JDT information

wtp.component EclipseWtpComponent eclipse-wtp Configures WTP component

information

wtp.facet EclipseWtpFacet eclipse-wtp Configures WTP facet

information

255Using IDE plugins to generate project files

Each concern is nicely separated and can be configured individually by using the ded-

icated property. In the following section, you’ll see each of these properties in action.

Project setups are different and can be very specific. It’s likely that you won’t find your

use case covered by the example. If you feel that you need to dig deeper, the best

place to start is the Gradle DSL guide. Also keep in mind that it’s a good idea to delete

existing project files whenever you change the configuration and want to regenerate

the project files. You can easily achieve this by executing the task cleanEclipse:

$ gradle cleanEclipse eclipse

The Gradle Eclipse plugin derives many configuration values for Eclipse project files

from the implicit or explicit build script configuration. For example, the Eclipse proj-

ect name is taken from the Gradle property project.name. All of the preconfigured

values can be reconfigured.

 You’ll start by fine-tuning the project details of your root project. You can easily

override the default value of the Eclipse project by assigning a new value to the prop-

erty eclipse.project.name, as shown in the following listing. You’ll also set various

other properties.

eclipse {
 project {
 name = 'todo'
 comment = 'A task management application'
 referencedProjects 'model', 'repository', 'web'
 }
}

If you just want to assign properties to the subprojects of your application, you can

put the specific configuration into the subprojects configuration block. The next

listing shows how to set values for JDT properties and how to influence the class-

path generation.

subprojects {
 apply plugin: 'java'

 eclipse {
 jdt {
 sourceCompatibility = 1.6
 targetCompatibility = 1.6
 }

 classpath {
 downloadSources = true
 downloadJavadoc = false
 }
 }
}

Listing 10.1 Setting root project properties

Listing 10.2 Setting JDT and classpath properties for all subprojects

Sets project name

Sets project description

Indicates referenced
subprojects

Sets compiler and source
compatibility version

Indicates whether source code and Javadocs
for external dependencies should be
downloaded and linked to project sources

256 CHAPTER 10 IDE support and tooling

Eclipse configuration to individual subprojects is applied on top of already existing

configuration data. All you need to do is add another eclipse configuration block in

the build script of the subproject. This method can also be used if you want to rede-

fine an already set configuration value. The following listing demonstrates how to set

the project description, add the custom Gradle configurations, and individualize WTP

configuration data.

project(':web') {
 eclipse {
 project {
 comment = 'Web components for managing To Do items in the browser'
 }

 classpath {
 plusConfigurations << configurations.functTestCompile
 plusConfigurations << configurations.functTestRuntime
 }

 wtp {
 component {
 contextPath = 'todo'
 }
 }
 }
}

These examples give you an idea of how easy it is to customize the generated configu-

ration by the properties exposed through the Gradle plugin DSL. The exposed prop-

erties cover many of the commonly used configuration options. However, it’s

impossible for the DSL to reflect configuration options for third-party Eclipse plugins

or personalized user customizations. For that purpose, the DSL provides hooks into

the model generation that allow you to manipulate the resulting XML project files.

MANIPULATING THE GENERATED CONFIGURATION

There are two ways to customize the generated project files. One is to directly reach

into the XML domain object model (DOM) using the withXml hook. The other is to

register the merge hook beforeMerged or whenMerged, which allows for working

directly with the domain object representing the Eclipse metadata model. Let’s see

the usage of these hooks by implementing a practical example.

 When applying the Gradle eclipse-wtp plugin to your web project, you can gener-

ate project files for basic functionality in Eclipse WTP. Unfortunately, the basic plugin

settings don’t preconfigure support for editing JavaScript files (including syntax high-

lighting and code completion).

 In Eclipse, a unit of functionality is called a facet. One example of a facet is the

JavaScript editing functionality. To configure the JavaScript facet, you’ll need to spec-

ify the value wst.jsdt.web as the facet key. The next listing shows how to append a

node to the XML DOM representation that adds the JavaScript facet with version 1.0.

Listing 10.3 Fine-tuning the Eclipse properties of the web subproject

Sets project description

Adds custom
configurations to
Eclipse classpath

Sets URL context path for
web application in WTP

http://marketplace.eclipse.org/content/gradle-integration-eclipse
http://marketplace.eclipse.org/content/gradle-integration-eclipse
http://www.springsource.org/sts
http://www.springsource.org/sts

257Using IDE plugins to generate project files

project(':web') {
 eclipse {
 wtp {
 facet {
 file {
 withXml { xml ->
 def node = xml.asNode()
 node.appendNode('installed', [facet: 'wst.jsdt.web',
 ➥ version: '1.0'])
 }
 }
 }
 }
 }
}

After adding this configuration and regenerating the project files, you’ll see that the

file web/.settings/org.eclipse.wst.common.project.facet.core.xml contains an

entry for your JavaScript facet.

 The same configuration can be achieved using the merge hooks. You’ll use the

hook whenMerged. When applying the hook in the context of the WTP facet element,

the closure is provided with an instance of WtpComponent. In the next listing, you’ll

instantiate a new instance of type Facet, provide the data you need in the constructor,

and add it to the list of facets.

import org.gradle.plugins.ide.eclipse.model.Facet

project(':web') {
 eclipse {
 wtp {
 facet {
 file {
 whenMerged { wtpComponent ->
 wtpComponent.facets << new Facet('wst.jsdt.web', '1.0')
 }
 }
 }
 }
 }

}

Listing 10.4 Adding the WTP JavaScript facet using the XML hook

Listing 10.5 Adding the WTP JavaScript facet using a merge hook

Choosing the “right” type of hook

You may ask yourself, which of these hooks should be used in what situation, or is

there even a best practice? In short, there isn’t. Gradle provides a variety of flexible

options. The option you choose for your project is often subjective.

Adds hook for
manipulating
generated XML

Appends node
for adding

JavaScript facet

Adds hook for manipulating
WTP component file after
Gradle populates its build
information

Adds JavaScript facet to list
of facets registered with

WTP component

http://www.gradle.org/docs/current/userguide/embedding.html
http://www.gradle.org/docs/current/userguide/embedding.html

258 CHAPTER 10 IDE support and tooling

It’s time to see the results of your hard work. Next, you’ll import the generated project

files in Eclipse.

IMPORTING THE PROJECTS

The Eclipse distribution comes in various packages targeted for the type of projects

you’re working on. Because you’re working on a Java Enterprise project, the package

best suited is Eclipse IDE for Java EE Developers. The package contains many useful

plugins you’ll want to use. If you haven’t already done so, download the package from

the Eclipse homepage and install it on your machine.

 The standard Eclipse distribution doesn’t provide an easy way of importing hierar-

chical projects. Instead, you’ll need to import each project individually. To import a

single project, choose the menu item File > Import... > General > Existing Projects

into Workspace. Press the Next button and browse to the root directory of the project

you want to import. If Eclipse can find a valid project file, it’ll display it in the list of

projects ready to be imported. After pressing the Finish button, you’ll find the project

in the Package Explorer tab. If you repeat this process for the root project and all sub-

projects, your Eclipse workspace should look similar to figure 10.3.

 Congratulations—if you’re an Eclipse user, you successfully set up your project for

yourself and your peers in a reproducible manner. At any time, you can regenerate

the project files. Later, we’ll also touch on a more sophisticated Eclipse distribution

called the SpringSource Tool Suite (STS) that provides out-of-the-box support for

importing hierarchical Gradle projects. In the next section, you’ll learn how to

achieve the same for users of IntelliJ IDEA.

10.1.2 Using the IDEA plugin

IntelliJ IDEA (http://www.jetbrains.com/idea/) is a commercial IDE for working with

JVM-based projects. It provides extensive support for popular frameworks and is

backed by a suite of integrated developer tools. While many of its features are prein-

stalled with the core product, it can be extended by plugins. Let’s start with a quick

tour of IntelliJ’s project files.

(continued)

My personal preference is to go with merge hooks because I can directly work with

domain objects that represent my configuration data. These domain objects usually

describe the data they need to work correctly. If you’re unsure about what data needs

to be provided, you can easily answer this question by looking at the Javadocs of the

Eclipse plugin.

If you need to add a configuration that isn’t backed by domain objects available in

the Gradle API, you can always fall back to the XML hook. The XML hook doesn’t run

any validation on the data you provide, which makes it easy to provide unconventional

configuration data. To find out the structure of available Eclipse XML configuration

elements, please refer to the Eclipse documentation.

http://www.jetbrains.com/idea/

259Using IDE plugins to generate project files

PROJECT FORMAT AND FILES

IntelliJ stores project files in the root directory of a project. The actual data is format-

ted in XML. We differentiate between project files with the following file extensions:

■ .ipr: The file with this extension stores the core project information. In a multi-

project setting, referenced subprojects are stored here.

■ .iml: In IntelliJ, a unit of functionality (a.k.a. a module) is stored in an .iml

module file. A module file holds configuration data about source code, build

scripts, and relevant descriptors. Each Gradle project in a multiproject build

maps to one module file.

■ .iws: The .iws file contains workspace-specific settings. There’s only one set-

tings file per single project or multiproject setting.

Your To Do application would be based on the project files shown in figure 10.4.

 Every project—root and subproject—contains at least the module file. The file

with the extension .ipr and the workspace settings file are stored on the level of the

root project. Next, you’ll apply and execute the Gradle IDEA plugin to generate

these files.

APPLYING AND EXECUTING THE PLUGIN

The Gradle standard distribution ships with the core plugin idea. You can use this

plugin to generate all required IntelliJ project files previously discussed. To generate

the project files for all projects of your To Do application, apply it in the allprojects

configuration block of the root build script:

allprojects {
 apply plugin: 'idea'
}

Figure 10.3 Imported projects in Eclipse

260 CHAPTER 10 IDE support and tooling

The main task provided by the plugin is called idea. On execution, it generates all

project files shown in figure 10.4. The command-line output of the task looks like

the following:

$ gradle idea
:ideaModule
:ideaProject
:ideaWorkspace
:idea
:model:ideaModule
:model:idea
:repository:ideaModule
:repository:idea
:web:ideaModule
:web:idea

You can already open the full IntelliJ project with the generated project files. For now,

hold off on that, because the IDEA plugin doesn’t recognize custom source sets and

configuration. This can only be achieved by customizing the configuration. Next,

you’ll learn how to fine-tune the generated configuration data.

CUSTOMIZING THE CONFIGURATION

The IDEA Gradle plugin exposes a rich DSL for setting properties to tweak the genera-

tion of project, module, and workspace files. Table 10.2 shows the relevant DSL config-

uration blocks that give you access to the internal model.

Model module configuration

todo

model

model.iml

IntelliJ IDEA project files

Repository module configuration

Web module configuration

Personal workspace settings

Core project configuration

Root module configuration

repository

repository.iml

web

web.iml

todo.iml

todo.ipr

todo.iws
Figure 10.4 IntelliJ IDEA

project files

Module, project, and
workspace files are
created for root project

For subprojects, only
the task for generating
module file is executed

261Using IDE plugins to generate project files

We’ll explore each of the configuration elements in the context of your To Do appli-

cation. If at any time you want to set a property that isn’t mentioned in the examples,

make sure to have the Gradle DSL guide handy. After changing the configuration, it’s

a good idea to fully replace the existing project files with the cleanIdea command:

$ gradle cleanIdea idea

The usage of the main IDE tasks is uniform among the Eclipse and IDEA plugins. This

makes it easy for a user to switch between IDEs or provide support for both. You’ll start

by customizing the project file. The following listing demonstrates how to set project

properties on the root level of a multiproject build.

idea {
 project {
 jdkName = '1.6'
 languageLevel = '1.6'
 }
}

If you want to customize the configuration for all subprojects participating in a

multiproject build, use the subprojects configuration block. Next, you’ll provide

instructions to download the source files for all external dependencies in your Java

projects. The following listing shows how to make the sufficient configuration for all

module files.

subprojects {
 apply plugin: 'java'

 idea {
 module {
 downloadSources = true
 downloadJavadoc = false
 }
 }
}

As mentioned earlier, the IDEA plugin doesn’t recognize custom source sets right off

the bat. You can easily change that by modifying the build scripts for the repository

Table 10.2 IDEA plugin configuration properties

Property Name Gradle API Class Plugin Description

project IdeaProject idea Configures project information

module IdeaModule idea Configures module information

workspace IdeaWorkspace idea Configures workspace information

Listing 10.6 Setting root project properties

Listing 10.7 Setting module properties for all subprojects

Sets a specific JDK
and language level

Downloads the source for
external dependencies of
all subprojects

Avoids downloading
Javadocs for all subprojects

262 CHAPTER 10 IDE support and tooling

and web subprojects. Start with the source set integrationTest defined by the sub-

project repository. Thankfully, you don’t have to repeat the directory path again.

Gradle allows for accessing the path directly via its API. The following listing demon-

strates a perfect example of how Gradle’s Java plugin DSL can be used to retrieve the

required information to apply the IDEA module DSL.

project(':repository') {
 idea {
 module {
 sourceSets.integrationTest.allSource.srcDirs.each {
 testSourceDirs += it
 }
 }
 }
}

You’ll want to apply the same type of customization to the web module. Listing 10.9

shows how to add the test source set functionalTest. In addition to this customiza-

tion, the listing also demonstrates how to add dependencies defined by your custom

configurations to the IDE’s test compilation scope.

project(':web') {
 idea {
 module {
 sourceSets.functionalTest.allSource.srcDirs.each {
 testSourceDirs += it
 }

 scopes.TEST.plus += configurations.functTestCompile
 scopes.TEST.plus += configurations.functTestRuntime
 }
 }
}

After creating this configuration setup, you can regenerate the IntelliJ project files

and open the project without any problems in the IDE. Before you do, let’s also look at

the XML and merge hooks provided by the plugin.

MANIPULATING THE GENERATED CONFIGURATION

The IDEA plugin provides the same kind of low-level customization hooks as the

Eclipse plugin. In fact, they even follow the identical naming convention. XML modifi-

cations can be achieved with the withXml hook to merge modifications with the meth-

ods beforeMerge and afterMerge.

 While the IDEA plugin does a good job of deriving a default configuration from

the build script, it certainly doesn’t pick up every desirable setting you need to get

started right away as an end user. Let’s discuss an example. Gradle comes with the Jet-

Gradle plugin preinstalled to support executing Gradle build scripts. To be able to use

Listing 10.8 Adding the custom source set for the repository subproject

Listing 10.9 Adding custom source set and configurations for the web subproject

Iterates over all
directories of
source set
integrationTest

Adds each of the directories to
list of test source directories
recognized by IntelliJ

Iterates over
all directories
of source set
functionalTest

Adds each
of the

directories
to list of

test source
directories
recognized
by IntelliJ

Adds custom
configurations to
module’s classpath

263Using IDE plugins to generate project files

any functionality of the plugin, a Gradle build script has to be selected first. The IDEA

plugin doesn’t make this selection for you when generating the project metadata.

Thankfully, you can use the XML and merge hooks to generate this configuration.

 Let’s see how to use the XML hook for this purpose. In the next listing, you first gain

access to the XML root node, then append a new component XML tag as its child node,

and finally assign the required configuration to point to your root project’s build script.

idea {
 project {
 ipr.withXml { provider ->
 def node = provider.asNode()
 def gradleSettings = node.appendNode('component',
 ➥ [name: 'GradleSettings'])
 gradleSettings.appendNode('option', [name: 'linkedProjectPath',
 ➥ value: '$PROJECT_DIR$/build.gradle'])
 }
 }
}

Unfortunately, you can’t achieve the same customization with a merge hook. In compar-

ison to the domain model exposed by the Eclipse plugin, the API of the IDEA plugin

comes with fewer domain model representations. Your best bet is to implement the

desired functionality with the XML hook, which provides you with maximum flexibility.

 To give you an idea of the usefulness of the merge hooks, let’s look at an example.

Instead of using the properties exposed by idea.project, you can also use the

plugin’s project domain models. The following listing demonstrates how to set the

JDK name and language level of your IntelliJ project using the whenMerged hook.

import org.gradle.plugins.ide.idea.model.IdeaLanguageLevel
import org.gradle.plugins.ide.idea.model.Jdk

idea {
 project {
 ipr.whenMerged { project ->
 project.jdk = new Jdk('1.6', new IdeaLanguageLevel('1.6'))
 }
 }
}

IMPORTING THE PROJECTS

To take full advantage of all features provided by IntelliJ, download the Ultimate Edi-

tion. If you don’t buy a license key for it, you can still test it for 30 days. After installing

IntelliJ on the local machine, you’re ready to import the project hierarchy. In IntelliJ,

you can directly import the full multiproject hierarchy by pointing it to the root-level

project file. In the menu bar, choose File > Open... and pick the generated .ipr file from

the directory browser. You should end up with a project setup similar to figure 10.5.

Listing 10.10 Preconfiguring project settings with the XML hook

Listing 10.11 Preconfiguring project settings using a merge hook

Adds hook for manipulating
generated XML

Creates a new XML
component tag that
preselects the root
build script for use

with IntelliJ’s Gradle
IDE support

Adds hook for manipulating
project domain model

Assigns JDK name and language
level using domain classes

264 CHAPTER 10 IDE support and tooling

Eclipse and IntelliJ IDEA are among the major players when it comes to feature-rich

IDEs for JVM language development. If you’re a NetBeans user, you’re out of luck. At

the time of writing, there’s no published plugin that allows for generating project files

with a customizable DSL approach.

IDEs provide the best support for frameworks and tooling. However, some developers

prefer a more minimalistic editing environment: plaintext editors or power editors.

They’re lightweight and can be extremely effective with the right key bindings. In recent

times, the power editor Sublime Text has become extremely popular. In the next section,

we’ll discuss how to generate project files for this editor by using a third-party plugin.

10.1.3 Using the Sublime Text plugin

Sublime Text (http://www.sublimetext.com/) is a sophisticated text editor with support

for a wide range of programming languages including Java, Groovy, and Scala. The basic

functionality of the tool can be extended by custom plugins. Sublime Text can be down-

loaded and evaluated for free. Continued use requires you to buy a license.

PROJECT FORMAT AND FILES

Sublime’s set of project files is simple and easy to understand. It differentiates

between two types of files, each of which stores configuration data as JSON:

■ .sublime-project: The file with this extension contains the project definition

consisting of source paths, the classpath, and build tool commands.
■ .sublime-workspace: The workspace file stores user-specific data, such as cur-

rently open files and modified settings.

Figure 10.5 Imported projects in IntelliJ IDEA

http://www.sublimetext.com/

265Using IDE plugins to generate project files

In the context of your To Do application, a typical project setup would consists of one

.sublime-project file per Gradle project. After working with the project in the edi-

tor, Sublime Text will automatically create the workspace file. A workspace file can

exist for any of the projects, not just the root project. Figure 10.6 illustrates the project

files in the directory tree.

 Similar to the Eclipse and IDEA Gradle plugins bundled with the Gradle distribu-

tion, you can generate Sublime Text project files with the help of a third-party plugin.

Next, you’ll explore its functionality by using it for your application.

APPLYING AND EXECUTING THE PLUGIN

At the time of writing, the Sublime Text Gradle plugin (https://github.com/phildopus/

gradle-sublimetext-plugin) is at an early stage of development and only provides lim-

ited functionality. Its core feature is generating and customizing project files. As an

add-on, it allows for preparing the project to execute Gradle tasks for Java projects

from within the IDE.

 The following listing shows the content of your root project build script that

declares the plugin and adds it to the classpath. Because you want to generate Sub-

lime Text project files for all projects of your application, apply the plugin within the

allprojects configuration block.

buildscript {
 repositories {
 maven { url 'http://phildop.us/m2repo' }
 }

Listing 10.12 Applying the Sublime Text plugin to all projects of your build

Model project configuration

todo

model

model.sublime-project

Sublime Text project files

Repository project configuration

Web project configuration

Workspace settings

Root project configuration

repository

repository.sublime-project

web

web.sublime-project

todo.sublime-project

todo.sublime-workspace
Figure 10.6 Sublime

Text project files

Declares custom
repository
containing plugin

https://github.com/phildopus/gradle-sublimetext-plugin
https://github.com/phildopus/gradle-sublimetext-plugin

266 CHAPTER 10 IDE support and tooling

 dependencies {
 classpath 'us.phildop:gradle-sublimetext-plugin:0.5'
 }
}

allprojects {
 apply plugin: 'sublimeText'
}

It’s time to generate the project files. If you execute the task sublimeText from your

root project, you should end up with the following command-line output:

$ gradle sublimeText
:sublimeText
:model:sublimeText
:repository:sublimeText
:web:sublimeText

With the default settings of the plugin, the generated project files contain mere

pointers to the directory path. You can open the project and edit the files, but you

won’t be able to compile the code with Gradle. Next, you’ll customize the configura-

tion a bit more.

CUSTOMIZING THE CONFIGURATION

Customization options are limited. Listing 10.13 shows how to exclude unwanted

directories and set up the project’s source directories and classpath. By default, the

plugin doesn’t make the selection for you, even though these directories aren’t neces-

sarily relevant for working with your project within Sublime Text.

allprojects {
 sublimeText {
 defaultFolderExcludePatterns = ['.gradle', 'build']
 addGradleCompile = true
 }
}

subprojects {
 apply plugin: 'java'

 sublimeText {
 generateSublimeJavaClasspath = true
 generateSublimeJavaSrcpath = true
 }
}

The Gradle plugin doesn’t define a clean task to delete existing project files. To

regenerate the changed metadata, run the task sublimeText again. The task will over-

ride existing project files. You’re ready to open the project in Sublime Text.

IMPORTING THE PROJECTS

Sublime Text is easy to download and install. Because you’re working with a multi-

project build, you’ll want to see the full project hierarchy in the user interface. To import

Listing 10.13 Tweaking the configuration of Sublime Text project files

Declares plugin
dependency that
makes plugin
available to build
script’s classpath

Applies plugin to all
projects of the build

Generates Sublime Text
project file for root project

Generates Sublime Text
project file for subprojects

Excludes patterns
for unwanted files
and directories

Adds the task compileJava to
Sublime’s build tool support

Generates source path and
classpath for Java projects

267Managing Gradle projects in popular IDEs

the project, choose Project > Open Project... and pick the root project’s .sublime-

project file. The rendered To Do application project hierarchy should look similar to

figure 10.7. Choosing Tools > Build System > Gradle triggers a Gradle build. At the

time of writing, only an installed Gradle runtime can be used; your provided Gradle

Wrapper is omitted.

 This concludes our discussion of generating project files for prominent IDEs and

text editors. In the next section, you’ll take the inverse approach by letting the IDE

analyze your build scripts to generate the project files.

10.2 Managing Gradle projects in popular IDEs

A couple of years ago, Gradle was the newcomer among the top dogs Ant and

Maven. None of the IDE vendors provided any significant Gradle support. To import

a project built by Gradle, you had to generate the project files using the provided

Eclipse and IDEA plugins. If you used a different IDE (for example, NetBeans), you

had no tooling support.

 With Gradle’s increasing popularity, this has changed. Tooling vendors realized

the need for first-class Gradle support. Figure 10.8 shows how the IDE acts as the mid-

dleman between the build script and Gradle runtime.

 You may ask yourself which method of generating project files should be pre-

ferred: generating project files via the build, or letting the IDE analyze your build

code. My personal preference is to let the IDE do the heavy lifting. It’ll usually give you

a good start. If you need fine-grained control over your configuration, you can bring

in the Gradle IDE plugin support. You may have to be careful, though, not to directly

override the existing configuration produced by the IDE. In practice, it sometimes

takes a bit of playing around to get the desired result.

Figure 10.7 Imported projects in Sublime Text

268 CHAPTER 10 IDE support and tooling

The following features are particularly important to IDE end users:

■ Opening a project by analyzing the existing Gradle build script and automati-

cally setting up the correct source directories and classpath

■ Generating project files from an existing Gradle build script

■ Synchronizing project settings whenever there’s a change to the build script

(for example, adding a new external dependency)

■ Executing Gradle tasks from the IDE’s user interface

■ Code completion and syntax highlighting for Gradle DSL configuration elements

In this section, we’ll compare Gradle support for three products: SpringSource STS,

IntelliJ IDEA, and NetBeans. As you’ll learn, the feature sets and their effectiveness dif-

fer slightly. Let’s start by taking a closer look at SpringSource’s Tool Suite.

10.2.1 Gradle support in SpringSource STS

Earlier in this chapter, you learned how to generate project files for Eclipse. With the

help of the generated project metadata, you were able to import the project into the

IDE. So far, we haven’t discussed how to work with a Gradle project after importing it.

The standard distribution of Eclipse doesn’t come with any Gradle integration. You’ll

need to manually install the Groovy and Gradle plugins. For more information, see

the relevant Eclipse marketplace pages (such as http://marketplace.eclipse.org/

content/gradle-integration-eclipse) for the Gradle integration.

 But why install these plugins manually, when you can do it the easy and convenient

way using the Spring Tool Suite (STS) (http://www.springsource.org/sts)? STS is an

Eclipse-based development environment mainly targeted for building applications

using the Spring framework. The IDE also provides excellent support for importing

and managing applications powered by Gradle. In this section, you’ll use its built-in

Gradle support.

executes

tasks

creates analyzes

IDE project files

Build script

Gradle

...
project(':web') {

apply plugin: 'war'

apply plugin: 'jetty'

apply plugin: 'groovy'

repositories {

mavenCentral()

}

configurations {

functTestCompile.extendsFrom testCompile

functTestRuntime.extendsFrom testRuntime

}

}

IDE

apply plugin: 'java'

repositories {

mavenCentral()

}

dependencies { ... }

Figure 10.8 Built-in Gradle support in IDEs

http://www.springsource.org/sts
http://marketplace.eclipse.org/content/gradle-integration-eclipse
http://marketplace.eclipse.org/content/gradle-integration-eclipse

269Managing Gradle projects in popular IDEs

INSTALLING STS WITH GRADLE SUPPORT

Installing STS is as simple as downloading the distribution from the homepage and

running the installer. Alternatively, you can modify your existing Eclipse instance by

stacking STS’s features on top of it. You’ll find the required installation instructions on

SpringSource’s web page. The following description is based on STS version 3.2.0.

 A central dashboard is integrated in STS. The dashboard contains sections for cre-

ating new projects, accessing tutorials and documentation, and installing extensions.

The core idea of an extension is to give you a preconfigured Eclipse plugin for a par-

ticular language, framework, or tool. We’re mainly interested in installing extensions

for Groovy and Gradle.

 If you open the IDE for the first time, the dashboard is rendered in the main panel.

At any time, you can also render the dashboard panel from the menu with Help >

Dashboard. Click on the Extensions panel, scroll to the section Language and Frame-

work Tooling, and tick the checkboxes next to the extensions named Gradle Support

and Groovy-Eclipse, as shown in figure 10.9. You can initiate the installation process by

pressing the Install button on the bottom of the dashboard panel. After successfully

installing both extensions, the STS must be restarted. After the IDE restarts, you can now

use full Gradle support, like importing multiproject builds, managing dependencies,

DSL code completion, and integrated task execution. Let’s see these features in action.

IMPORTING A GRADLE PROJECT

STS provides a wizard for importing Gradle projects. The wizard doesn’t require an

application to contain existing project files. During the import process, STS analyzes

the Gradle build script, derives the configuration data from the internal model, and

generates the project files for you. You can bring up the wizard by choosing the menu

Figure 10.9 Installing the Groovy and Gradle plugins from the dashboard

270 CHAPTER 10 IDE support and tooling

item Import... under File, as shown in figure 10.10. In the filter text input field, type

“gradle” to indicate that you want to import a Gradle project.

 Pressing the Next button will present you with the dialog shown in figure 10.11. In

this dialog, you can select the root directory of your To Do project and build the STS

project hierarchy from it by pressing the Build Model button.

STS will correctly identify the root project and all subprojects of your application.

Select all Gradle projects, as well as the relevant import options for enabling depen-

dency management, enabling DSL support, and running Gradle Eclipse plugin tasks.

Press the Finish button, and the projects are imported and will show up in the work-

space as a flat folder hierarchy. As a result, the Eclipse project files are created.

USING GRADLE SUPPORT

You’re now ready to conveniently work on your application without ever having to

leave the STS again—of course, this is only for the IDE-purists among us. Figure 10.12

shows some of the features you have at hand. On the left side, you can see the Package

Explorer. It holds all of your projects. If you open one of them, you can examine the

source directories and external dependencies.

 In the editor pane, you can modify your build script. As you can see in the screen-

shot, you’re making good use of the DSL code completion feature (type in the first let-

ters of a keyword and press CTRL + space).

 Gradle tasks can be executed from the Gradle view. To add the view to your IDE,

select the menu item Window > Show View > Other.... This will bring up the dialog

Show View. Press the OK button and choose the task to be executed from the list of

tasks for a project. Any command-line output is displayed in the Console tab.

 Perfect! If you’re an Eclipse user, you’re all set. Next, you’ll make your IntelliJ

users happy as well.

Figure 10.10 Gradle project import wizard

271Managing Gradle projects in popular IDEs

10.2.2 Gradle support in IntelliJ IDEA

Starting with version 12.1, IntelliJ has a feature set for Gradle that’s comparable to

STS’s feature set. With the help of the preinstalled Gradle plugin, you can import a

project by pointing to a Gradle build script, generate the IDE metadata, execute Gra-

dle tasks directly from the IDE, and make use of code completion in the editor. Let’s

look at IntelliJ’s Gradle support by showing how to import your To Do application.

IMPORTING A GRADLE PROJECT

IntelliJ understands how to render and manage hierarchical, multiproject applica-

tions. This is a big advantage over Eclipse, because the physical structure of your proj-

ect is directly reflected in the IDE. All you need to do to import a multiproject

application is open IntelliJ, choose the menu item File > Import Project..., and pick

the root project’s Gradle build script, as shown in figure 10.13.

Figure 10.11 Importing a multiproject Gradle build

272 CHAPTER 10 IDE support and tooling

Pressing the OK button will bring you to the next dialog, shown in figure 10.14. In the

dialog, you can choose the Gradle runtime and some other configuration parameters,

like its home directory. If the project comes with a Gradle wrapper, IntelliJ automati-

cally recognizes it. Not only should you use the wrapper on the command line, you

also want to use it in the IDE to ensure a consistent runtime environment. Move on to

the next wizard dialog by pressing the Next button.

Figure 10.12 Imported Gradle project in use in STS

Figure 10.13 Selecting the

Gradle build script to import

273Managing Gradle projects in popular IDEs

The dialog shown in figure 10.15 is all about the details for generating the project

files. On the left side, you can see the project structure that IntelliJ will generate for

you. On the right side of the dialog, you can change important settings of your proj-

ect. The initial values presented here are derived from the configuration of your build

script. If you decide to change the location of your project files or change the JDK, you

can do it here. Stick to the default settings and let IntelliJ generate the project files by

pressing the Finish button.

 You may be surprised by the format of the generated project files. A closer look

at the project structure reveals that IntelliJ created a new directory named .idea to

store IDE metadata. This is a different format for project files than the one we saw in

section 10.1.1. Newer versions of IntelliJ favor the use of this directory-based format

Figure 10.14 Gradle

runtime configuration

Figure 10.15 Setting project details

274 CHAPTER 10 IDE support and tooling

(.idea) over the file-based approach (.ipr, .iml, .iws). After importing the applica-

tion, you can start working on the code.

USING GRADLE SUPPORT

Figure 10.16 shows your imported Gradle project in action. In the project pane on the

left, you can find the application hierarchy. To indicate modules, IntelliJ marks every

Gradle subproject with a particular icon (folder with a blue square). Files with the

extension .gradle are recognized as Gradle build scripts, as indicated by the Gradle

icon. In the screenshot, you can see the code completion feature for Gradle’s DSL. If

IntelliJ can identify a DSL keyword while typing text, the context menu will pop up

and propose available configuration elements. Alternatively, you can activate the code

completion feature with the keyboard shortcut CTRL + space.

 IntelliJ calls its Gradle plugin JetGradle. You can open the JetGradle functionality

from the tab panel on the right side of the editor. One of its features is the ability to

analyze the project structure, display its dependencies, download them, and execute

available tasks directly from the IDE. At the time of writing, the plugin isn’t smart

enough to automatically import newly defined dependencies whenever a change is

made to the build script. You’ll need to manually trigger a refresh. Next, we’ll look at

NetBeans’s Gradle support.

10.2.3 Gradle support in NetBeans IDE

NetBeans IDE (https://netbeans.org/) is one of the top three players among the pop-

ular Java IDEs. It supports implementing Java and Groovy applications out of the box,

along with the typical functionality you can expect of a first-class IDE, like refactoring

Figure 10.16 Imported Gradle project in use in IntelliJ

https://netbeans.org/

275Managing Gradle projects in popular IDEs

capabilities, code completion, and integration with popular frameworks and tools.

The IDE’s functionality can be extended by plugins.

INSTALLING NETBEANS WITH GRADLE SUPPORT

Installing the NetBeans IDE is straightforward. Download the distribution for your OS

(at the time of writing, this is version 7.3) and run the installer. After a couple of min-

utes, the IDE is set up and you’re ready to take care of adding Gradle support.

 To install Gradle support, you’ll need to download a third-party plugin from http://

plugins.netbeans.org/plugin/44510/gradle-support. You can place the plugin file any-

where in your file system. In NetBeans IDE, choose the menu item Tools > Plugins. This

brings up a new dialog for managing plugins. On the tab Downloaded, press the button

Add Plugins.... Select your downloaded Gradle plugin file, as shown in figure 10.17.

 After pressing the Open button, you’re presented with details about the plugin. In

figure 10.18, you can see the version you’re about to install, the source of the plugin,

and a description of its functionality. Make sure the checkbox next to the plugin name

is checked and press the Install button to initiate the installation process. After a suc-

cessful install, NetBeans IDE needs to be restarted.

IMPORTING A GRADLE PROJECT

Next you’ll import your To Do application into NetBeans IDE. With the help of the

menu item File > Open Project you can open a new dialog that allows you to select a

Gradle project. The displayed file browser conveniently displays the Gradle icon for

every folder containing a Gradle build script. Navigate to the To Do project and select

the root folder, as shown in figure 10.19.

Figure 10.17 Adding the downloaded Gradle plugin

http://plugins.netbeans.org/plugin/44510/gradle-support
http://plugins.netbeans.org/plugin/44510/gradle-support

276 CHAPTER 10 IDE support and tooling

After pressing the button Open Project, the project is imported. You’re ready to work

with it in the IDE.

USING GRADLE SUPPORT

The project is initially opened in a tab on the left side marked Projects view. All you’ll

see is the root project. Subprojects are aligned under the tree node. For conve-

nience, expand the Subprojects node and click each of the subproject names. This

will automatically add the subprojects to the top level of the Projects view, as shown in

figure 10.20.

 Gradle tasks can be executed by clicking a project node, bringing up the context

menu, and choosing a task from the list. Every project node groups source and test

packages, dependencies, and build scripts. This is great if you prefer a logical group-

ing of important Gradle elements. If you need to change individual files, you can

Figure 10.18 Installing the Gradle plugin

Figure 10.19 Importing the Gradle project

277Embedding Gradle with the tooling API

switch to the Files tab at any time. In the screenshot, you can also see an opened Gra-

dle build script in the editor. Unfortunately, the Gradle plugin doesn’t come with any

support for DSL code completion.

 This concludes our discussion of Gradle support within IDEs. Next up, we’ll look at

Gradle’s tooling API, the API that makes it possible for all of these IDEs to provide a

smooth Gradle integration.

10.3 Embedding Gradle with the tooling API

The main purpose of the tooling API is to embed Gradle into an application. Without

knowing it, you already used the tooling API, because it’s the main driver for Gradle

support in IDEs. The tooling API is good for achieving three main goals:

■ Executing the build with a specific version of Gradle (either via the wrapper or

an installed Gradle runtime).

■ Querying the build for runtime information and its internal model (for exam-

ple, tasks, dependencies, and the command-line output).

■ Listening to build events to react to them. One example is automatically down-

loading external dependencies in an IDE whenever the declaration is changed.

Many developers aren’t working for tool vendors—we usually work on Enterprise or

open source applications that use Gradle as the build system. Why would we care

about the tooling API? The tooling API is very versatile and can be applied to other use

cases. Let’s explore one of them to see the API in action. In the following section,

you’ll use the tooling API to implement integration testing by actively executing a

build script. To verify its correct behavior, you can query for the runtime information

available through the tooling API. When you integration-test a build script with the

tooling API, you don’t have to use the ProjectBuilder class to emulate the creation of

Figure 10.20 Imported Gradle project in use in NetBeans IDE

278 CHAPTER 10 IDE support and tooling

a project. The build script is tested from the end-user perspective and behaves as if

you ran the gradle command from the console. Let’s look at an example.

 In chapter 8, you developed various Gradle tasks to interact with the CloudBees

backend. The following listing shows the task that retrieves information about a

deployed application on RUN@cloud and prints the details on the command line.

task cloudBeesAppInfo(description: 'Returns the basic information about an
 ➥ application.', group: 'CloudBees') {
 inputs.property('apiKey', apiKey)
 inputs.property('secret', secret)
 inputs.property('appId', appId)

 doLast {
 BeesClient client = new BeesClient(apiUrl, apiKey, secret, 'xml',
 ➥ '1.0')
 ApplicationInfo info

 try {
 info = client.applicationInfo(appId)
 }
 catch(Exception e) {
 throw new GradleException(e.message)
 }

 logger.quiet "Application id : $info.id"
 logger.quiet " title : $info.title"
 logger.quiet " created : $info.created"
 logger.quiet " urls : $info.urls"
 logger.quiet " status : $info.status"
 }
}

There’s no easy way to fully test this task under real-world conditions because it uses

properties provided on the command line and in the file gradle.properties. Let’s

see how the tooling API can help you to verify its correct behavior by using the

build script.

 First, set up the directory structure. Put the CloudBees task into a regular Gradle

build script in a directory named script-under-test. Your testing code will live in a

directory named tooling-api-integ-test on the same nesting level. It holds a Gra-

dle build script that sets up Spock as its testing framework and pulls in the tooling API

dependencies. The test class implementation is called CloudBeesSpec.groovy. The

final setup looks as follows:

.
├── script-under-test
│ └── build.gradle
└── tooling-api-integ-test
 ├── build.gradle
 └── src
 └── test

Listing 10.14 CloudBees task for retrieving application information

Application
information
rendered on
command line

Build script containing task
for retrieving application
information from CloudBees

Sets up integration
test dependencies

279Embedding Gradle with the tooling API

 └── groovy
 └── com
 └── manning
 └── gia
 └── CloudBeesSpec.groovy

Let’s take a quick peek at the integration test build script shown in listing 10.15.

Because you’re using Spock to write your tests, you’ll need to apply the Groovy plugin.

All dependencies use the testCompile configuration because you’re only planning to

write tests.

apply plugin: 'groovy'

repositories {
 mavenCentral()
}

dependencies {
 testCompile localGroovy()
 testCompile gradleApi()
 testCompile 'org.spockframework:spock-core:0.7-groovy-1.8'
}

Listing 10.16 shows the content of the test class CloudBeesSpec.groovy. It defines a

single test method that uses the Gradle tooling API to execute the CloudBees task

named cloudBeesAppInfo. Not only do you want to execute the task, you also want to

make sure it behaves as expected. The task only produces command-line output, so

you’ll need to parse the standard output stream to see if the correct application infor-

mation is printed. This functionality is testable in a unit test because a Gradle task

doesn’t allow for setting a mock object for the logger instance.

package com.manning.gia

import org.gradle.tooling.*
import spock.lang.Specification

class CloudBeesSpec extends Specification {
 static final String GRADLE_VERSION = '1.5'
 static final File PROJECT_DIR = new File('../script-under-test')

 def "CloudBees application information is rendered on the command line"() {
 given:
 String[] tasks = ['cloudBeesAppInfo'] as String[]
 String arguments = '-PappId=gradle-in-action/todo'
 when:
 ByteArrayOutputStream stream = executeWithGradleConnector(
 ➥ GRADLE_VERSION, PROJECT_DIR, tasks, arguments)
 String output = stream.toString('UTF-8')

Listing 10.15 Preparing the integration tests

Listing 10.16 Integration testing using the tooling API

Spock integration test
using tooling API

Adds a dependency on
Gradle API for pulling
in tooling API Declares Spock

for integration
tests

Points to project directory
of script under test

Executes script
under test

with Gradle
connector and

parses its
command-line

output

280 CHAPTER 10 IDE support and tooling

 then:
 output != null
 output.contains('Application id : gradle-in-action/todo')
 output.contains('title : todo')
 output.contains('urls : [todo.gradle-in-action.cloudbees.net]')
 }

 private ByteArrayOutputStream executeWithGradleConnector(String
 ➥ gradleVersion, File projectDir,
 ➥ String[] tasks, String arguments) {
 GradleConnector connector = GradleConnector.newConnector()
 ProjectConnection connection

 try {
 connection = connector.useGradleVersion(gradleVersion)
 ➥ .forProjectDirectory(projectDir).connect()
 BuildLauncher buildLauncher = connection.newBuild()
 buildLauncher.forTasks(tasks).withArguments(arguments)
 ByteArrayOutputStream stream = new ByteArrayOutputStream()
 buildLauncher.setStandardOutput(stream).run()
 return stream
 }
 finally {
 connection.close()
 }
 }
}

The intention of the test method should be clear. Let’s also analyze how you use the

Gradle tooling API within the test class CloudBeesSpec. As shown in the listing, you

defined a method named withGradleConnector that does the heavy lifting. The tool-

ing API is used in five steps:

1 Create an instance of the class GradleConnector—the main entry point to

invoking a build script.

2 Configure the GradleConnector instance by setting the expected Gradle ver-

sion, installation location, and the project directory containing the build script

to invoke. By default, the wrapper is automatically downloaded and used.

3 Connect to the target build script by invoking the connect() method.

4 Provide build parameters, such as the tasks, command-line arguments, and the

output stream you want to write to.

5 After the build script task is executed, the connection should be closed to free

up the resource by calling the method close().

This is the tooling API in a nutshell. There are many more options to explore, but this

example should give you an idea of how powerful the tooling API is. You can find

more information on usage patterns and configuration options in the user guide at

http://www.gradle.org/docs/current/userguide/embedding.html.

Asserts
expected

values from
task output

Creates
instance of

GradleConnector

Sets Gradle
version and
project
directory

Creates a new
instance of
BuildLauncher

Sets target
tasks,

arguments,
and output

stream to run
build script

Closes connection
of GradleConnector

http://www.gradle.org/docs/current/userguide/embedding.html

281Summary

10.4 Summary

Gradle’s main runtime environment is the command line. While this feature makes

the build portable, many developers are most productive in a visual editor or IDE.

Having to switch between a command-line tool and editor can slow down the develop-

ment process.

 Gradle doesn’t leave you hanging. With the help of plugins, you can generate proj-

ect files for various IDEs and editors. The generated project files contain the metadata

needed to conveniently open a project in an IDE with the correct setup. We discussed

how to use these plugins in the context of your To Do application to create project

files for Eclipse, IntelliJ IDEA, and Sublime Text. This metadata is mainly derived from

the default build script configuration but can be customized to fit individual needs.

 Popular Java IDE vendors realized the need for first-class Gradle support. The IDEs

SpringSource STS, IntelliJ IDEA, and NetBeans provide sufficient tooling for opening

a Gradle project by pointing them to a build script. Once the project is opened in the

tool, a developer is able to manage dependencies, use Gradle DSL code completion,

and execute tasks from within the IDE.

 The tooling API forms the foundation for integrating Gradle with many of the IDEs

we discussed. It allows for executing Gradle tasks, while at the same time monitoring

and querying the running build. You learned that the tooling API can be used for

implementing integration tests for a Gradle build script under real-world conditions.

282

Building polyglot projects

In recent years, the interest in polyglot programming and its application in real-

world, mission-critical software stacks has skyrocketed. The term polyglot program-

ming was coined to describe projects that incorporate more than one language.

That’s particularly true for the Java world. For web developers, the world can no

longer do without a potpourri of JavaScript, corresponding frameworks, libraries,

and CSS. Backend code or desktop applications are no longer built with Java alone.

Other JVM-based languages like Groovy or Scala are added to the mix. It’s all about

picking the right tool for the job. In this chapter, we’ll discuss how Gradle faces the

challenge of organizing and building polyglot projects by using your To Do applica-

tion as an example.

 As Java developers, we’re spoiled by extensive tooling and build automation

support. Concepts like build-time dependency management of external libraries

and convention over configuration for project layouts have been around for years

This chapter covers

■ Managing JavaScript with Gradle

■ Building a Gradle project with Java, Groovy,

and Scala

■ Exploring plugin support for other languages

283Managing JavaScript with Gradle

and are part of our day-to-day vocabulary. In JavaScript land, commonly accepted pat-

terns and techniques for build automation are in their early stages of development.

Gradle doesn’t provide first-class support for JavaScript and CSS, but we’ll discuss how

to use its API to implement typical usage scenarios, like combining and minifying

JavaScript files.

 In past chapters, we mainly concentrated on building Java projects. Software stacks

that incorporate a wide range of languages are a reality for many organizations. JVM-

based languages are well supported by Gradle. We’ll drill into the details of using the

core language plugins for building Java, Groovy, and Scala code. Along the way, we’ll

touch on topics like compiler daemons and joint compilation.

 In addition, many enterprises have to integrate with software written in non-JVM

languages like C or C++. This chapter will give an overview of how to incorporate het-

erogeneous software infrastructure into a build. Let’s start by looking at build automa-

tion for modern web architectures.

11.1 Managing JavaScript with Gradle

A rich user experience has become the key to success for any application. This holds

true for desktop, mobile, and web applications. Today, users demand the same look and

feel for web applications as they do for native applications. Long gone are the days when

customers were happy with static HTML pages and synchronous server roundtrips.

 JavaScript has become the most popular programming language for the web that

can meet this demand. Developers no longer have to depend on plain JavaScript to

implement their features. Many application development frameworks and libraries (like

jQuery, Prototype, and Backbone, to name just a few) are available to simplify the use of

JavaScript development and to smooth the rough edges this language introduces.

 JavaScript has moved far beyond client-side runtime environments. Platforms like

Node.js (http://nodejs.org/) use JavaScript for implementing server-side applications

as well. As a result, JavaScript is ubiquitous and grows in relevance.

11.1.1 Typical tasks when dealing with JavaScript

When dealing with JavaScript, various tasks come to mind that may be part of your

workflow. In fact, some of them should sound familiar, because we discussed them in

the context of your Java web application:

■ Minification: JavaScript is often included in an HTML page as an external file.

This means it has to be downloaded to the browser before it can be used to ren-

der the page. The smaller the byte footprint of such a file, the faster the page

can be loaded. Minification aims to decrease the size of an original JavaScript

file by applying smart optimizations such as removing comments, spaces, and

tabs. One tool that helps you minify your JavaScript files is the Google Closure

compiler (https://developers.google.com/closure/compiler/).

■ Merging : The size of a JavaScript file isn’t the only factor playing a role in the

loading performance of a page. Another problem is the number of HTTP

http://nodejs.org/
https://developers.google.com/closure/compiler/

284 CHAPTER 11 Building polyglot projects

requests needed for each JavaScript file included in your page. The more exter-

nal JavaScript files requested, the longer the user has to wait until the page is

rendered. Combining multiple JavaScript files into one can solve this problem.

■ Testing : Similar to writing test code for server-side code, you also want to be able

to verify the correct behavior of your JavaScript implementation. Testing frame-

works like Jasmine (http://pivotal.github.io/jasmine/) let you write test code in

JavaScript.

■ Code analysis : JavaScript source code can be analyzed to find potential bugs

and problems, structural issues, and abnormal style conventions. JSLint (http://

www.jslint.com/lint.html), a program written in JavaScript, aims to spot these

problems in an automated fashion.

■ Transpiling : Some client-side programming languages like CoffeeScript or

Dart provide their own syntax and language constructs. Unfortunately, these

kinds of languages do not run in a browser. Transpiling, a specific kind of

compilation, translates this source code into JavaScript to make it executable

in the target environment.

If you try to incorporate all of these tasks in your To Do project without proper auto-

mation, there are many manual and repetitive steps that need to be performed

before you can assemble the WAR file. For the same reasons laid out in chapter 1,

you’ll want to avoid this situation under all circumstances. In this chapter, we won’t

cover solutions to all tasks presented, but you’ll learn how to generally automate them

with Gradle.

11.1.2 Using JavaScript in the To Do application

Let’s assume you start to modernize your To Do application. Instead of submitting the

data to the server for each operation and rerendering the page, you change the func-

tionality to exchange data via asynchronous JavaScript calls (AJAX) in the background.

If the HTML user interface needs to be updated, you directly modify the document

object model (DOM). As a result, the To Do application will behave similar to a desk-

top application with no page reload required.

 To simplify the use of JavaScript, your application will use an external JavaScript

library. Out of the many available libraries, pick JQuery (http://jquery.com/), an

established, feature-rich, easy-to-use API for handling AJAX calls and manipulating the

HTML DOM.

 With the help of JQuery, you’ll implement updating the name of an existing To Do

item in your list. This functionality requires two actions. Double-clicking the item’s

name will bring the item name into edit mode by offering an input field to change its

value. Pressing the Enter key while in editing mode will send the modified item name

to the server, update the value in the data store, and exit the edit mode. These actions

are implemented in the JavaScript files edit-action.js and update-action.js. We

won’t discuss the content of these files here. Feel free to check out their implementation

http://pivotal.github.io/jasmine/
http://www.jslint.com/lint.html
http://www.jslint.com/lint.html
http://jquery.com/

285Managing JavaScript with Gradle

in the book’s source code examples. The following directory structure shows both

JavaScript files, as well as the minified JQuery library in your web project:

.
├── build.gradle
├── settings.gradle
├── model
├── repository
└── web
 ├── build.gradle
 └── src
 └── main
 ├── ...
 └── webapp
 ├── WEB-INF
 ├── css
 ├── js
 │ ├── app
 │ │ ├── edit-action.js
 │ │ └── update-action.js
 │ └── ext
 │ └── jquery-1.10.0-min.js
 └── jsp

Now, you could just download the JQuery library manually and put it into the direc-

tory src/main/webapp/js/ext. Many projects do that. Remember when we talked

about dependency management for external Java libraries in chapter 5? You can apply

the same concept for automatically resolving and downloading JavaScript files. Let’s

see how this can be done.

11.1.3 Dependency management for JavaScript libraries

Historically, JavaScript developers didn’t bother with the concept of dependency man-

agement. We used to throw in external libraries with our application sources. As our

code base grew, we had no way of knowing what JavaScript dependencies the project

required and with what version. If we were lucky, the filename of the JavaScript library

would indicate that.

 If you exclusively work with JavaScript, this problem can be tackled by using the

node package manager (NPM). Dependencies between JavaScript files can be mod-

eled by using RequireJS (http://requirejs.org/). But what if you want to use JavaScript

dependency management from Gradle? No problem; you can just use the standard

Gradle dependency declaration and resolution mechanism.

 There are some challenges we face with this approach, though. As JVM developers,

we’re used to having access to all possible libraries we’d ever want to use. We pointed

our build script to Maven Central and that was that. For JavaScript libraries, there’s

no established hosting infrastructure. One of the hosting providers with a reason-

able collection of popular, open source JavaScript libraries is Google Hosted Libraries

(https://developers.google.com/speed/libraries/). Alternatively, you can directly use

the hosted versions of a specific library if the project provides them.

Application
JavaScript code

External JQuery
library

https://github.com/eriwen/gradle-js-plugin
http://requirejs.org/
https://developers.google.com/speed/libraries/

286 CHAPTER 11 Building polyglot projects

 On top of an insufficient JavaScript hosting infrastructure, you can’t depend on a

unified descriptor format for libraries, similar to the pom.xml file for Maven reposito-

ries. This means that transitive JavaScript libraries, CSS, and even required images

need to be declared explicitly.

 Let’s look at how to retrieve the minified version of the library from JQuery’s down-

load page. You’ll see a familiar pattern here. First, you define a custom configuration,

and then you declare the library with the specific version in the dependencies config-

uration block. For downloading the library to your source code directory, create a new

task of type Copy that uses your custom configuration. The following listing demon-

strates how to wire this task up with other important tasks of your project to ensure

that you fetch the JavaScript before running the application in Jetty or assembling the

WAR file.

repositories {
 ivy {
 name 'JQuery'
 url 'http://code.jquery.com'
 layout 'pattern', {
 artifact '[module]-[revision](.[classifier]).[ext]'
 }
 }
}

configurations {
 jquery
}

dependencies {
 jquery group: 'jquery', name: 'jquery', version: '1.10.0',
 ➥ classifier: 'min', ext: 'js'
}

task fetchExternalJs(type: Copy) {
 from configurations.jquery
 into "$webAppDir/js/ext"
}

[jettyRun, jettyRunWar, war]*.dependsOn fetchExternalJs

Give the task a shot. You’ll run it from the root directory of your Gradle project:

$ gradle :web:fetchExternalJs
:web:fetchExternalJs
Download http://code.jquery.com/jquery-1.10.0.min.js

As expected, the JavaScript library is downloaded and ends up in the specified direc-

tory src/main/webapp/js/ext. You can now directly link to this library in your JSPs

and HTML files. After its initial download, the task fetchExternalJs automatically

knows that it doesn’t have to run again:

$ gradle :web:fetchExternalJs
:web:fetchExternalJs UP-TO-DATE

Listing 11.1 Using dependency management for consuming JavaScript libraries

Declares JQuery
download URL as
Ivy repository

Declares a custom
configuration for
JavaScript dependencies

Declares JQuery
library as
dependency

Task for downloading JavaScript
dependencies to directory
src/main/webapp/js/ext Task requiring

JavaScript library
will download it first

287Managing JavaScript with Gradle

Your application source directory now contains all required JavaScript files. Feel free

to check out the working application by running gradle :web:jettyRun. You’ll see

that the application is fully functional.

 You may ask yourself why the downloaded JavaScript file was put directly in your

project’s source tree. Good point! Usually, you don’t want to mix versioned files with

downloaded dependencies. This was done to support in-place web application deploy-

ment with the Jetty plugin using the jettyRun task. Unfortunately, the plugin doesn’t

allow pointing to a secondary web application directory. Therefore, the jQuery

JavaScript file needs to sit in the target web application location. There are ways to

deal with this shortcoming. For example, you could exclude the file from versioning

(please consult your VCS documentation).

 You laid the groundwork for implementing additional automation tasks for your

JavaScript code. In the next two sections, we’ll talk about how to build your own Java-

Script automation with the help of standard Gradle tooling. In particular, we’ll look at

how to implement minification and how to generate code quality metrics.

11.1.4 Merging and minifying JavaScript using a third-party Ant task

There are two essential optimizations every large JavaScript project needs to embrace:

merging multiple JavaScript files into one and minifying its content. A tool that

provides support for both of these tasks is the Google Closure Compiler (https://

developers.google.com/closure/compiler/). One of its distributions is a Java library

that can be directly included in a Gradle build, as shown in the following listing.

repositories {
 mavenCentral()
}

configurations {
 googleClosure
}

dependencies {
 googleClosure 'com.google.javascript:closure-compiler:v20130603'
}

Apart from the plain Java API classes, this library includes an Ant task wrapping the

provided functionality. It’s a matter of personal taste which of these approaches you

use in your Gradle build—both of them work. For further examples, you’ll use the Ant

task because it conveniently wraps the API. The next listing demonstrates a custom task

written in Groovy that you’ll put into the directory buildSrc/src/main/groovy of

your project. If you need a quick refresher on how to use an Ant task from Gradle,

cross-reference chapter 9.

Listing 11.2 Declaring dependency on Google Closure Compiler library

Custom configuration for
assigning Google Closure
Compiler library Declared

Google
Closure
Compiler
dependency

https://developers.google.com/closure/compiler/
https://developers.google.com/closure/compiler/

288 CHAPTER 11 Building polyglot projects

package com.manning.gia.js

import org.gradle.api.DefaultTask
import org.gradle.api.file.FileCollection
import org.gradle.api.tasks.InputFiles
import org.gradle.api.tasks.OutputFile
import org.gradle.api.tasks.TaskAction

class GoogleClosureMinifier extends DefaultTask {
 @InputFiles
 FileCollection inputFiles

 @OutputFile
 File outputFile

 @TaskAction
 void minify() {
 ant.taskdef(name: 'jscomp', classname:
 ➥ 'com.google.javascript.jscomp.ant.CompileTask', classpath:
 ➥ project.configurations.googleClosure.asPath)

 ant.jscomp(compilationLevel: 'simple', warning: 'verbose', debug:
 ➥ 'false', output: outputFile.canonicalPath) {
 inputFiles.each { inputFile ->
 ant.sources(dir: inputFile.parent) {
 ant.file(name: inputFile.name)
 }
 }
 }
 }
}

For the custom task to function, an enhanced task of type GoogleClosureMinifier

needs to set a list of input JavaScript files and the target output file, which will contain

the combined and minified JavaScript code. The following listing uses the project’s

fileTree method to derive the list of your application’s JavaScript files as input. The

output file is defined as all-min.js and is created in the directory build/js.

import com.manning.gia.js.GoogleClosureMinifier

ext {
 jsSourceDir = "$webAppDir/js/app"
 jsOutputDir = "$buildDir/js"
}

def jsSourceFiles = fileTree(jsSourceDir).include('*.js')

task minifyJs(type: GoogleClosureMinifier) {
 inputFiles = jsSourceFiles
 outputFile = file("$jsOutputDir/all-min.js")
}

Listing 11.3 Calling Google Closure Compiler Ant task

Listing 11.4 Using custom task for minifying JavaScript

Declared Ant task
from dependency

Ant task
usageDeclaration

of input files

Declares a set of
JavaScript files in
given directory

Sets input
JavaScript files

Sets minified
JavaScript output file

289Managing JavaScript with Gradle

Executing the task minifyJs will first compile your minification custom task under

buildSrc, and then produce a single, optimized JavaScript file:

$ gradle :web:minifyJs
:buildSrc:compileJava UP-TO-DATE
:buildSrc:compileGroovy
:buildSrc:processResources UP-TO-DATE
:buildSrc:classes
:buildSrc:jar
:buildSrc:assemble
:buildSrc:compileTestJava UP-TO-DATE
:buildSrc:compileTestGroovy UP-TO-DATE
:buildSrc:processTestResources UP-TO-DATE
:buildSrc:testClasses UP-TO-DATE
:buildSrc:test
:buildSrc:check
:buildSrc:build
:web:minifyJs

Being able to create an optimized JavaScript file is great, but now you have to change

the references in your dynamic and static web page files. Of course, this process

should be fully automated and integrated in your development process. In the next

section, we’ll discuss one way to implement this.

11.1.5 JavaScript optimization as part of the development workflow

In production environments performance is key. That’s why many organizations

choose to deploy optimized JavaScript files. The downside is that single-line, opti-

mized JavaScript files are hard to read and not very useful for debugging or even diag-

nosing an issue. Therefore, you don’t want to package and run your application with

only minified files. During development or in testing environments, you still want to

use plain old JavaScript files. Obviously, at build time you need to be able to control

whether your application JavaScript files need to be optimized and used.

 There are many approaches to tackle this problem. Here, we’ll only discuss one of

them. For your project, we’ll discuss a new project property named jsOptimized. If

it’s provided on the command line, you indicate that optimizations should happen. If

it’s not provided, use the original JavaScript files. Here’s an example of how to use it:

gradle :web:war –PjsOptimize.

 Gradle is flexible enough to support this requirement. Based on this optimization

flag, you can configure your war task to trigger the minification, exclude the original

JavaScript files, include the produced minified file, and change the JSP file to reference

it. The following listing shows how to make this happen for your To Do application.

ext.jsOptimize = project.hasProperty('jsOptimize')

war {
 if(jsOptimize) {
 dependsOn minifyJs

Listing 11.5 Conditional packaging and use of optimized JavaScript files

Only optimize JavaScript
if requested by property

290 CHAPTER 11 Building polyglot projects

 exclude 'js/app/*'

 from(jsOutputDir) {
 into 'js/app'
 include 'all-min.js'
 }

 exclude 'jsp/app-js.jsp'

 from("$webAppDir/jsp") {
 include 'todo-list.jsp'
 into 'jsp'
 filter { String line ->
 if(line.contains('<c:import url="app-js.jsp"/>')) {
 return '<c:import url="app-js-min.jsp"/>'
 }

 line
 }
 }
 }
}

The trickiest part of this configuration is the replacement of the JavaScript import in

the JSP file todo-list.jsp. To make life easier, you created two new JSP files that ref-

erence either the original JavaScript files or the minified file. At build time, you only

need to replace the JSTL import statement if you decide to go with the optimized ver-

sion. Keep in mind that the original source file isn’t touched. The file is changed on

the fly when building up the WAR file.

 This example covers one of the most common use cases for JavaScript developers.

Let’s also look at introspecting JavaScript source files for code quality purposes.

11.1.6 JavaScript code analysis using an external Java library

Detecting issues and potential problems before the code gets deployed to production

should be of concern to every JavaScript developer. JSHint is a popular tool written in

JavaScript for detecting errors and potential issues in JavaScript code. To run JSHint,

you’ll need to be able to execute it from Gradle. So how do you execute JavaScript

from Gradle?

 Rhino is an open source implementation of JavaScript written in Java. With the

help of this library, you can run JavaScript files and therefore use JSHint in your build.

In the next listing, you’ll retrieve Rhino from Maven Central and the JSHint JavaScript

file from a hosted download URL.

repositories {
 mavenCentral()

 ivy {
 name 'JSHint'
 url 'http://www.jshint.com/get'
 layout 'pattern', {

Listing 11.6 Declaring Rhino and JSHint dependencies

Exclude original
JavaScript files; include
minified ones instead

Exclude JSP, which
applies original
JavaScript files

Replace JSP
import file
with minified
version for file
todo-list.jsp

Declares JSHint download
URL as Ivy repository

291Managing JavaScript with Gradle

 artifact '[module]-[revision](.[classifier]).[ext]'
 }
 }
}

configurations {
 rhino
 jshint
}

dependencies {
 rhino 'org.mozilla:rhino:1.7R4'
 jshint 'jshint-rhino:jshint-rhino:2.1.4@js'
}

You declared Rhino as a dependency—now let’s see it in action. Instead of using an

Ant task, invoke the main method by assigning it to an enhanced Gradle task of type

JavaExec. JSHint requires you to define a list of JavaScript files as arguments that it

should examine. Under the hood, a Java invocation of Rhino for your application

looks as follows:

java -jar rhino-1.7RC4.jar jshint-rhino-2.1.4.js edit-action.js update-

➥ action.js

The following listing demonstrates how to build this argument list and write the

enhanced task for invoking the Rhino main class.

ext.jsSourceDir = "$webAppDir/js/app"
def jsSourceFiles = fileTree(jsSourceDir).include('*.js')
def jsHintArgs = configurations.jshint + jsSourceFiles

task jsHint(type: JavaExec) {
 classpath configurations.rhino
 main 'org.mozilla.javascript.tools.shell.Main'
 args jsHintArgs
}

Executing the task for your fully functional application doesn’t report any issues:

$ gradle jsHint
:web:jsHint

However, try emulating a bug in your JavaScript by removing a semicolon at the end of

a line in the file edit-action.js. You can see that JSHint rightfully complains about it

and fails the build:

$ gradle :web:jsHint
:web:jsHint
Missing semicolon. (/Users/Ben/gradle-in-action/code/chapter11/todo-

➥ js-code-quality/web/src/main/webapp/js/app/edit-action.js:2:46)
> $("#toDoItem_" + row).addClass("editing")

:web:jsHint FAILED

Listing 11.7 Executing the JSHint JavaScript with Rhino from Gradle

Declares JSHint
download URL
as Ivy repository

Custom configurations
for Rhino and JSHint Declares Rhino

dependency

Declares JSHint JavaScript
dependency indicated by
@js file extension

Puts together
arguments for Rhino
executable with JSHint,
JavaScript being the first

Declares enhanced task
for executing Rhino as
Java process

292 CHAPTER 11 Building polyglot projects

11.1.7 Using a third-party Gradle JavaScript plugin

We saw that it’s really easy to incorporate third-party libraries to create sufficient tool-

ing for JavaScript in your Gradle build. This can be accomplished by reusing Ant tasks,

by executing Java applications with the help of the task type JavaExec, or even by call-

ing external shell scripts. All it takes is a little bit of research and the eagerness to find

the best tool for the job.

 We all know that good developers are lazy—lazy because they hate doing monoto-

nous and repetitive tasks. Most developers prefer to reuse existing functionality.

There’s a community Gradle plugin that provides most of the functionality you’ve

implemented and even more (for example, generating API documentation with JSDoc).

Enter the Gradle JavaScript plugin (https://github.com/eriwen/gradle-js-plugin). The

plugin is a good starting point for every project that incorporates JavaScript and

doesn’t require you to implement your own tasks.

 In this section, we’ll discuss how to use the plugin and its exposed DSL to optimize

your JavaScript—that is, by combining and minifying it. First, pull in the plugin from

Maven Central and apply it to your web project, as shown in the next listing.

buildscript {
 repositories {
 mavenCentral()
 }

 dependencies {
 classpath 'com.eriwen:gradle-js-plugin:1.5.1'
 }
}

apply plugin: com.eriwen.gradle.js.JsPlugin

The plugin describes JavaScript source directories with a dedicated name. This named

JavaScript source set can then be used as input for one of the tasks the plugin defines.

The following listing shows the JavaScript DSL in more detail. This code should look

similar to what you’ve built so far, but is more readable and easier to understand.

ext {
 jsSourceDir = "$webAppDir/js/app"
 jsOutputDir = "$buildDir/js"
}

javascript.source {
 app {
 js {
 srcDir jsSourceDir
 include '*.js'
 exclude '*.min.js'
 }

Listing 11.8 Adding the JavaScript plugin to the build script’s classpath

Listing 11.9 Configuring the JavaScript plugin

Defines the directory
src/main/webapp/jsp/app
as source directory

Only includes nonminified
JavaScript files

https://github.com/eriwen/gradle-js-plugin

293Managing JavaScript with Gradle

 }
}

combineJs {
 source = javascript.source.dev.js.files
 dest = file("$jsOutputDir/all.js")
}

minifyJs {
 source = combineJs
 dest = file("$jsOutputDir/all-min.js")
}

The task usage is very similar to what you’ve experienced so far. To run minification

on your files, execute the task minifyJs. This task first calls the combineJs task to

merge your application JavaScript files before shrinking their size.

Great, there’s third-party plugin support for JavaScript in Gradle. But what if your

frontend team already implemented build automation that doesn’t use Gradle? Do

you need to rewrite all their existing logic? Thankfully, you don’t. You can directly

invoke other build automation tools from Gradle. Let’s examine this by the example

of Grunt.

11.1.8 Executing Grunt from Gradle

If you’re deeply involved in the JavaScript community, you may know the build tool

Grunt (http://gruntjs.com/). Grunt is targeted toward implementing common tasks

like minifying, merging, and testing of JavaScript code in an automated fashion. With

its plugin system and rapidly growing community, you’ll need to take into consider-

ation existing JavaScript automation workflows.

 To get started with Grunt, you first need to install the executable via NPM, the

Node.js package manager. Please check the Grunt documentation for detailed infor-

mation on how to install it. Based on your operating system, you’ll either end up with

a batch script named grunt.cmd (Windows) or a shell script named grunt (*nix). This

executable is used to evaluate and run a Grunt build. A Grunt build requires two man-

datory files: the file Gruntfile.js defines the tasks and their configuration, and the

file package.json defines the project metadata and required external dependencies

(for example, plugins).

 In this section, we’ll discuss how to call Grunt tasks from Gradle. This is a valuable

approach for two reasons: either you already have an automation process in place and

What about CSS?

Requirements for optimizing CSS are in many cases no different from JavaScript. Similar

tasks can be implemented to combine and minify CSS, except with other tools. For a quick

start, check out the Gradle CSS plugin: https://github.com/eriwen/gradle-css-plugin.

Uses JavaScript source set
as input for combining
JavaScript files

Uses output from task
combineJs as input for
task minifyJs

http://gruntjs.com/
https://github.com/eriwen/gradle-css-plugin

294 CHAPTER 11 Building polyglot projects

don’t want to rewrite this code in Gradle, or you want to drive build automation from

a single tool that allows you to cover the full application stack. Figure 11.1 illustrates

how executing the Grunt executable looks in practice.

 Let’s see this setup in action. Grunt doesn’t automatically install dependencies

defined in package.json. If a user forgets about this step, the Grunt build will fail. To

install these dependencies, navigate to the directory that contains the file and run the

NPM with the command npm install. The NPM installs dependencies to the directory

node_modules.

 Of course, we, as automation specialists, want to make this happen automatically.

Before running a Grunt task from Gradle, run the Node install command. The fol-

lowing listing demonstrates how to wrap this call with a Gradle task.

task installGruntDependencies(type: Exec) {
 inputs.file 'package.json'
 outputs.dir 'node_modules'

 executable 'npm'
 args 'install'
}

If you take a closer look at figure 11.1, you’ll notice a task of type Grunt. Listing 11.11

shows the Groovy task Grunt, a class defined under buildSrc/src/main/groovy,

which acts as a simple wrapper for invoking the Grunt executable. All you need to pro-

vide to the enhanced task are the commands (the Grunt tasks) defined in the Grunt

build file.

package com.manning.gia.js

import org.gradle.api.DefaultTask
import org.gradle.api.tasks.Input
import org.gradle.api.tasks.TaskAction

Listing 11.10 Task that installs Grunt dependencies via npm

Listing 11.11 Custom task for calling Grunt executable

import com.manning.gia.js.Grunt

task jsHint(type: Grunt) {

commands = ['jshint']

}

build.gradle module.exports = function(grunt) {

grunt.initConfig({

pkg: grunt.file.readJSON('package.json'),

jshint: {

all: ['src/main/webapp/js/app/ .js']

}

});

grunt.loadNpmTasks('grunt-contrib-jshint');

};

Gruntfile.js

invokes executes

Grunt

executable

Figure 11.1 Invoking the Grunt executable from Gradle

dependencies

Grunt package file that declares
required dependencies

Output directory npm
used to store downloaded Executed command

npm install

295Managing JavaScript with Gradle

class Grunt extends DefaultTask {
 @Input
 List<String> commands

 @TaskAction
 void callGrunt() {
 project.exec {
 executable isWindows() ? 'grunt.cmd' : 'grunt'
 args commands
 }
 }

 boolean isWindows() {
 System.properties['os.name'].toLowerCase().contains('windows')
 }
}

Let’s assume you have an existing Grunt build that applies the JSHint plugin. The

JSHint task is named jshint. To invoke this Grunt task, you create a new task of type

Grunt and provide the Grunt task name as the command, as shown in the next listing.

import com.manning.gia.js.Grunt

task jsHint(type: Grunt, dependsOn: installGruntDependencies) {
 commands = ['jshint']
}

Run the task jsHint on your To Do application. The following command-line output

shows the output from Grunt discovering an erroneous JavaScript file that’s missing

a semicolon:

$ gradle :web:jsHint
:buildSrc:compileJava UP-TO-DATE
:buildSrc:compileGroovy
...
:buildSrc:build
:web:installGruntDependencies
npm WARN package.json my-project-name@0.1.0 No README.md file found!
npm http GET https://registry.npmjs.org/grunt
...
grunt@0.4.1 node_modules/grunt
├── dateformat@1.0.2-1.2.3
├── ...
...
grunt-contrib-jshint@0.6.0 node_modules/grunt-contrib-jshint
└── jshint@2.1.4 (console-browserify@0.1.6, underscore@1.4.4, shelljs@0.1.4,
➥ minimatch@0.2.12, cli@0.4.4-2)
:web:jsHint
Running "jshint:all" (jshint) task
Linting src/main/webapp/js/app/edit-action.js...ERROR
[L2:C46] W033: Missing semicolon.
 $("#toDoItem_" + row).addClass("editing")

Listing 11.12 Enhanced task executing the Grunt JSHint plugin

Using exec
method from
Project to invoke
Grunt executable

Determines Grunt
executable based on
operating systemProvides Grunt tasks

as command-line
arguments

Installs Grunt
project
dependencies
before
executing task

Executes a list of
GruntJS tasks

296 CHAPTER 11 Building polyglot projects

Warning: Task "jshint:all" failed. Use --force to continue.

Aborted due to warnings.
:web:jsHint FAILED

After this extensive discussion about JavaScript integration with Gradle, we’ll look at

Gradle support for JVM languages other than Java.

11.2 Building polyglot, JVM-based projects

The days when Java was the one and only language used for writing applications are

over. Today, when we think about Java, we also refer to it as a mature development

platform: the Java Virtual Machine (JVM). There’s a wide range of languages running

on the JVM that are suitable for enterprise or server-side development. Among them

are popular languages likes Groovy, Scala, Clojure, and JRuby. Why would you even

want to use a different language than Java or mix them within a single project? Again,

it’s all about the right tool for the job. You may prefer Java for its statically typed

nature and library support to implement your business logic. However, Java’s syntax

isn’t a natural fit for producing DSLs. This is where other, more suitable languages like

Groovy come into play.

 So far, we’ve discussed how to build Java applications, but there’s more to Gradle.

It has first-class support for other JVM languages. In this section, we’ll look at how to

organize and build Groovy and Scala projects and how to bring them all under one

umbrella within a single project. Before we dive into the details, let’s take a step back

and review some of the inner workings of the Java plugin, which to an extent builds

the foundation for other language plugins.

11.2.1 Base capabilities of JVM language plugins

In chapter 8, we talked about a guiding principle for separating concerns in plugins:

capabilities versus conventions. Let’s quickly recap this concept. A plugin that pro-

vides a capability oftentimes introduces new concepts or tasks, and a plugin that

provides conventions imposes opinionated defaults for these concepts. What might

sound very abstract becomes strikingly clear by dissecting the inner workings of the

Java plugin.

CAPABILITIES VERSUS CONVENTIONS IN JAVA PROJECTS

What you see as a Gradle user when you apply the Java plugin to one of your projects

is the full gamut of functionality. Your project is automatically equipped with the con-

cept of source sets and Java-specific configurations, and exposes tasks as well as prop-

erties. This baseline Java support builds the foundation for every JVM language-based

project. These capabilities are

■ Configurations: compile, runtime

■ Tasks per source set: compileJava, processResources, classes

■ Lifecycle tasks: check, build, buildNeeded, buildDependents

■ Properties: sourceCompatibility, targetCompatibility

297Building polyglot, JVM-based projects

Gradle also preconfigured your project with sensible default configurations, also called

conventions—for example, production source code sits in the directory src/main/

java, and test source code in src/test/java. These conventions aren’t set in stone

and can be reconfigured, but they paint an initial opinioned view of your project.

Some of the tasks in a Java project are based on the preconfigured source sets. The

following list describes the opinionated bits of the Java plugin:

■ Configurations: testCompile, testRuntime

■ Source sets: main, test

■ Tasks: jar, test, javadoc

THE JAVA BASE PLUGIN

The Java plugin separates capabilities and conventions. How does it do it? Capabili-

ties are extracted into another plugin: the Java base plugin. Internally, the Java

plugin applies the Java base plugin and adds the conventions on top, as shown in fig-

ure 11.2.

 This separation of concerns has various implications. First of all, if your Java proj-

ect doesn’t fit the default conventions introduced by the Java plugin, you can instead

apply the Java base plugin and define your own conventions. Second, the Java base

plugin can be used as the basis for building other JVM language plugins because they

require similar concepts. This is a perfect example of code reuse and is applied to the

core plugins for building Groovy and Scala projects. Before we look at how these base

capabilities are applied, let’s explore another useful optimization you can use when

compiling Java sources.

SPEEDING UP JAVA COMPILATION WITH THE COMPILER DAEMON

By default, Gradle will fork a new JVM for every Java compilation task. Especially in

large Java-based multiproject builds, this causes unnecessary overhead. You can

speed up the compilation process by reusing an already-forked instance of a Java

compilation process. In the following listing, you configure every task of type Java-

Compile to run in fork mode, while at the same time using Gradle’s own Java com-

piler integration.

Java base

plugin

Provides

capabilites

applies

apply plugin: 'java-base'

build.gradle

Java

plugin

Provides

sensible defaults

applies

applies

apply plugin: 'java'

build.gradle

Figure 11.2 Java plugin automatically applies the Java base plugin

298 CHAPTER 11 Building polyglot projects

subprojects {
 apply plugin: 'java'

 tasks.withType(JavaCompile) {
 options.useAnt = false
 options.fork = true
 }
}

When executing the multiproject build on the root level with gradle clean build,

notice that the total time of your build is faster than without this modification. Inter-

nally, Gradle reuses the compiler daemon process across tasks even if they belong to a

different subproject. After the build is finished, the compiler daemon process(es) are

stopped. This means that they don’t outlast a single build. Next, we’ll focus on build-

ing and configuring Groovy projects.

11.2.2 Building Groovy projects

Groovy works nicely in conjunction with its older brother Java. It builds on top of

Java, but has a more concise syntax and adds dynamic language features to the mix.

Introducing Groovy to a Java project is as simple as adding the Groovy JAR file to

its classpath.

 In this book, you already used Groovy to write project infrastructure code. You used

the Spock framework to write unit tests for your production application code. We also

looked at how Groovy can be used to implement custom Gradle tasks. For conservative

organizations, these are suitable use cases for incorporating Groovy, because the code

isn’t deployed to a production environment. There are many good reasons why you may

also want to use Groovy instead of Java for implementing production code. Groovy is a

great match for writing DSLs with the help of its meta-programming features. This is

something Gradle does itself. It uses Java to implement the core logic, but wraps it with

Groovy to expose the powerful DSL you’re now accustomed to. Groovy support in Gra-

dle is provided by the Groovy plugin. Let’s look at its features and see where the Java

base plugin comes into play.

GROOVY BASE AND GROOVY PLUGIN

The Groovy plugin ecosystem imposes an analogous concept to separate capabilities

and conventions as the Java plugin. To get a quick overview on how they play together,

look at figure 11.3.

 Central to the figure are the Groovy base plugin and the Groovy plugin. The

Groovy base plugin inherits all the capabilities of the Java base plugin and imposes its

own conventions on top of it. Check out its feature list:

■ Source set: groovy

■ Tasks per source set: compileGroovy, compileTestGroovy

Listing 11.13 Activating the compiler daemon

Uses Gradle’s direct
compiler integration,
bypassing Ant javac task

Runs compilation in a
separate process

299Building polyglot, JVM-based projects

The Groovy plugin builds upon the Groovy base plugin and the Java plugin. The addi-

tional benefit that the plugin adds to the equation is a task of type Groovydoc. Executing

this task generates the HTML API documentation for the Groovy source code. Next,

you’ll convert one of the projects in your To Do application from a Java project into a

Groovy project.

MINIMAL SETUP TO GET STARTED

Turning a self-contained Java project into a Groovy project is easy. We’ll examine the

conversion process by the example of your model project. Currently, this project only

defines a single Java class file: ToDoItem.java. Before you turn this class into a Groovy

class, you’ll add the build infrastructure code to the script model/build.gradle, as

shown in the following listing.

apply plugin: 'groovy'

repositories {
 mavenCentral()
}

dependencies {
 compile 'org.codehaus.groovy:groovy-all:2.1.5'
}

By applying the Groovy plugin, you equipped your project with the capabilities to

compile Groovy source code and the default source sets that define where the com-

piler looks for the source code files.

 Remember that the Groovy plugin automatically applies the Java plugin as well. This

means that your project now contains a source set for Java sources and one for Groovy

sources. Figure 11.4 shows the default project layout with the applied Groovy plugin.

Listing 11.14 Using Groovy to manage production source code

applies applies

applies

Provides

sensible defaults

Provides

Groovydoc task

applies

apply plugin: 'groovy-base'

build.gradle

applies

applies

apply plugin: 'groovy'

build.gradle

Java base

plugin

Java

plugin

Groovy

base plugin

Groovy

plugin

Figure 11.3 Groovy plugin inherits capabilities from the Java base plugin

Applies Groovy
plugin

Declares Groovy
JAR file as compile
dependency

300 CHAPTER 11 Building polyglot projects

Keep in mind that this doesn’t mean that you’re required to have Java source files in

your project. However, it enables you to mix Java and Groovy files in a single project.

For now, just rename the existing Java class to ToDoItem.groovy and move the file

under src/main/groovy with the package directory com.manning.gia.todo.model.

It’s time to convert the bulky POJO class implementation into Groovy. The next listing

demonstrates to what extreme the code could be condensed.

package com.manning.gia.todo.model

import groovy.transform.Canonical

@Canonical
class ToDoItem implements Comparable<ToDoItem> {
 Long id
 String name
 boolean completed

 @Override
 int compareTo(ToDoItem toDoItem) {
 this.id.compareTo(toDoItem.id)
 }
}

Which Groovy distribution do I pick?

You may be aware that there are multiple distributions of the Groovy library. The file

groovy-all contains all external dependencies (for example, Antlr and Apache Com-

mons CLI) in a single JAR file archive to ensure compatibility between them. The file

with the name groovy doesn’t contain these dependencies. You’re responsible for

declaring these dependencies in your build script. No matter which distribution you

choose, both will enable your project to compile Groovy source code.

Listing 11.15 ToDoItem model class written in Groovy

Java production sources directory

src

main

Default project layout

java

groovy

test

java

groovy

Groovy production sources directory

Java test sources directory

Groovy test sources directory
Figure 11.4 Default source

directories for projects

applying the Groovy plugin

Groovy annotation that
auto-generates methods
equals, hashCode, and
toString

301Building polyglot, JVM-based projects

Try out the build of your Groovy project. You can see that the task compileJava is

marked UP-TO-DATE because you don’t have any Java source files under src/main/

java. The task compileGroovy finds the file ToDoItem.groovy and compiles it. The

following command-line output demonstrates this behavior:

$ gradle :model:build
:model:compileJava UP-TO-DATE
:model:compileGroovy
Download http://repo1.maven.org/maven2/org/codehaus/groovy/groovy-

➥ all/2.1.5/groovy-all-2.1.5.pom
Download http://repo1.maven.org/maven2/org/codehaus/groovy/groovy-

➥ all/2.1.5/groovy-all-2.1.5.jar
:model:processResources UP-TO-DATE
:model:classes
:model:jar
:model:assemble
:model:compileTestJava UP-TO-DATE
:model:compileTestGroovy UP-TO-DATE
:model:processTestResources UP-TO-DATE
:model:testClasses UP-TO-DATE
:model:test
:model:check
:model:build

CUSTOMIZING THE PROJECT LAYOUT

If the default conventions introduced by the Groovy base plugin don’t fit your needs,

you can redefine them in the same way as you can for Java projects. The underlying

concept that enables you to reconfigure the default source directories is a SourceSet.

In the following listing, you’ll say that the Groovy production source files should sit

under src/groovy, and Groovy test source files should reside under test/groovy.

sourceSets {
 main {
 groovy {
 srcDirs = ['src/groovy']
 }
 }

 test {
 groovy {
 srcDirs = ['test/groovy']
 }
 }
}

JAVA AND GROOVY JOINT COMPILATION

I mentioned before that a single Gradle project can contain Java and Groovy files. To

a developer, it feels natural to use Java classes from Groovy classes and vice versa. In

the end, shouldn’t both source file types be compiled to bytecode? There’s a catch.

Groovy can depend on Java, but Java can’t depend on Groovy.

Listing 11.16 Customizing the default Groovy source set directories

302 CHAPTER 11 Building polyglot projects

 To demonstrate this behavior, you’ll apply the Groovy plugin to the repository

project. You’ll also turn the class ToDoRepository from a Java interface into a Groovy

interface, as shown in the next listing.

package com.manning.gia.todo.repository

import com.manning.gia.todo.model.ToDoItem

interface ToDoRepository {
 List<ToDoItem> findAll()
 List<ToDoItem> findAllActive()
 List<ToDoItem> findAllCompleted()
 ToDoItem findById(Long id)
 Long insert(ToDoItem toDoItem)
 void update(ToDoItem toDoItem)
 void delete(ToDoItem toDoItem)
}

This interface has two implementations, both of which are still Java classes: InMemory-

ToDoRepository.java and H2ToDoRepository.java. Now, if you compile the repository

project, you’ll end up with a compilation error:

$ gradle :repository:classes
:model:compileJava UP-TO-DATE
:model:processResources UP-TO-DATE
:model:classes UP-TO-DATE
:model:jar UP-TO-DATE
:repository:compileJava
/Users/Ben/gradle-in-action/chapter11/todo-mixed-java-groovy/

➥ repository/src/main/java/com/manning/gia/todo/repository/

➥ H2ToDoRepository.java:9: cannot find symbol
symbol: class ToDoRepository
public class H2ToDoRepository implements ToDoRepository {
 ^
/Users/Ben/gradle-in-action/code/chapter11/todo-mixed-java-groovy/

➥ repository/src/main/java/com/manning/gia/todo/repository/

➥ InMemoryToDoRepository.java:12: cannot find symbol
symbol: class ToDoRepository
public class InMemoryToDoRepository implements ToDoRepository {
 ^
...
16 errors
:repository:compileJava FAILED

Does this mean you can never depend on Groovy classes from Java classes? No. The

key to making this work is called joint compilation, which allows you to freely mix Java

and Groovy source code with bidirectional dependencies on each other. One way to

address this issue is to put the Java source code together with the Groovy source code

under the directory src/main/groovy. Alternatively, you can configure the Groovy

compiler to enable joint compilation. The following listing shows what needs to be

configured in your build to use this feature.

Listing 11.17 Repository interface written in Groovy

303Building polyglot, JVM-based projects

sourceSets.main.java.srcDirs = []
sourceSets.main.groovy.srcDirs = ['src/main/java', 'src/main/groovy']

After you add this code snippet to the build.gradle file of the repository project,

joint compilation works as expected:

$ gradle :repository:classes
:model:compileJava UP-TO-DATE
:model:processResources UP-TO-DATE
:model:classes UP-TO-DATE
:model:jar UP-TO-DATE
:repository:compileJava UP-TO-DATE
:repository:compileGroovy
:repository:processResources UP-TO-DATE
:repository:classes

For the compiler nerds among us, let’s look at what happens under the hood:

1 The compiler parses the Groovy source files and generates stubs for them.

2 The Groovy compiler invokes the Java compiler and generates the stubs for Java

source files.

3 With the Java stubs in the Groovy source path, the Groovy compiler can com-

pile both.

With the techniques presented in this chapter, you should be able to set up your own

project to incorporate Groovy, either as a standalone Groovy project or as a mixed

Java and Groovy project. Next, we’ll explore Gradle’s support for Scala projects.

11.2.3 Building Scala projects

Scala is another language running on the JVM that has become increasingly popular in

the past few years. The language is statically typed, combines object-oriented program-

ming with support for functional programming, and is designed to express logic in an

elegant, concise way. As with Groovy, Scala can use all Java libraries that a Java developer

already knows. Scala has seen quite a bit of real-world adoption. Twitter reimplemented

their backend services with Scala, and Foursquare moved on to Scala as well.

 Scala support in Gradle is as sophisticated as the support for Groovy. In this sec-

tion, we’ll explore the corresponding Scala language plugins. You’ll take an approach

similar to what you did for Groovy to transform parts of your To Do application to

Scala and build them with Gradle.

SCALA BASE AND SCALA PLUGIN

The Scala plugins are designed with the same concepts in mind as the Groovy plugins.

The basic idea is to separate capabilities from conventions. In figure 11.5, you can see

that Gradle provides two Scala plugins.

Listing 11.18 Reconfiguring source sets for joint compilation

Removes source directories for Java source set

Includes Java and Groovy source
directory for Groovy compiler

304 CHAPTER 11 Building polyglot projects

The Scala base plugin automatically applies the Java base plugin. You learned before

that the Java plugin provides the capabilities for building Java-based projects. The Scala

base plugin uses these capabilities and preconfigures default conventions for Scala proj-

ects, as shown in the following list:

■ Source set : scala

■ Tasks per source set : compileScala, compileTestScala

The Scala plugin internally applies not only the Scala base plugin, but also the Java

plugin. This allows you to build Java and Scala source code within a single project.

The feature the Scala plugin provides on top of the Scala base plugin is the ability to

generate HTML API documentation for Scala source code. If you’re building a full-

fledged Scala project, applying the Scala plugin is your best choice. Let’s see Scala

in action.

MINIMAL SETUP TO GET STARTED

To demonstrate the use of Scala within your To Do application, you’ll convert a Java

class into a Scala class. The project in your build with the least complex source code is

the model project. At the moment, this project’s build.gradle file doesn’t define any

logic. The following listing applies the Scala plugin and declares the Scala library to

get a hold on the Scala compiler.

apply plugin: 'scala'

repositories {
 mavenCentral()
}

dependencies {
 compile 'org.scala-lang:scala-library:2.10.1'
}

Listing 11.19 Using Scala to manage production source code

applies applies

applies

Provides

sensible defaults

Provides

ScalaDoc task

applies

apply plugin: 'scala-base'

build.gradle

applies

applies

apply plugin: 'scala'

build.gradle

Java base

plugin

Java

plugin

Scala

base plugin

Scala

plugin

Figure 11.5 Scala plugin inherits capabilities from the Java base plugin

Applies Scala
plugin

Declares Scala library
JAR file as compile
dependency

305Building polyglot, JVM-based projects

After applying the Scala plugin, your project can compile any Scala source code found

in the directories src/main/scala and src/test/scala. Figure 11.6 shows the groovy

source set directories alongside the source directory conventions introduced by the

Java plugin.

 Next, you’ll transform the existing Java file ToDoItem.java into a Scala file. Every

Scala source code file has the extension .scala. Go ahead and rename the file and

move it under the directory src/main/scala. It’s time to change the source code to

Scala, as shown in the next listing.

package com.manning.gia.todo.model

class ToDoItem extends Ordered[ToDoItem] {
 var id: Long = _
 var name: String = _
 var completed: Boolean = _

 def getId: Long = {
 id
 }

 def setId(id: Long) = {
 this.id = id
 }

 ...

 override def compare(that: ToDoItem) = this.id compare that.id

 override def equals(that: Any) = {
 that match {
 case t: ToDoItem => t.id == id && t.name == name
 ➥ && t.completed == completed
 case _ => false
 }
 }
}

Listing 11.20 ToDoItem model class written in Scala

Java production sources directory

src

main

Default project layout

java

scala

test

java

scala

Scala production sources directory

Java test sources directory

Scala test sources directory
Figure 11.6 Default source

directories for projects applying

the Scala plugin

306 CHAPTER 11 Building polyglot projects

Even though you may not be well versed in Scala, the language syntax is relatively easy

to decipher. In fact, the class doesn’t introduce any additional logic and works exactly

like its Java counterpart. Executing the build for the model project produces the fol-

lowing output:

$ gradle :model:build
:model:compileJava UP-TO-DATE
:model:compileScala
Download http://repo1.maven.org/maven2/org/scala-lang/scala-library/

➥ 2.10.1/scala-library-2.10.1.pom
Download http://repo1.maven.org/maven2/org/scala-lang/scala-library/

➥ 2.10.1/scala-library-2.10.1.jar
Download http://repo1.maven.org/maven2/org/scala-lang/scala-compiler/

➥ 2.10.1/scala-compiler-2.10.1.pom
Download http://repo1.maven.org/maven2/org/scala-lang/scala-reflect/

➥ 2.10.1/scala-reflect-2.10.1.pom
Download http://repo1.maven.org/maven2/org/scala-lang/scala-compiler/

➥ 2.10.1/scala-compiler-2.10.1.jar
Download http://repo1.maven.org/maven2/org/scala-lang/scala-reflect/

➥ 2.10.1/scala-reflect-2.10.1.jar
:model:processResources UP-TO-DATE
:model:classes
:model:jar
:model:assemble
:model:compileTestJava UP-TO-DATE
:model:compileTestScala UP-TO-DATE
:model:processTestResources UP-TO-DATE
:model:testClasses UP-TO-DATE
:model:test
:model:check
:model:build

We can see that the compileScala task initiates the download of the Scala library to be

able to invoke the Scala compiler. As a result, your project compiles the Scala code,

which can be used as a dependency for other projects in your build.

CUSTOMIZING THE PROJECT LAYOUT

If you’re unhappy with the default Scala source directories, feel free to redefine them.

By now, you’ve used this concept various times, so the code in the next listing should

come as no surprise. In this example, you’ll point the production source directory to

src/scala and the test source directory to test/scala.

sourceSets {
 main {
 scala {
 srcDirs = ['src/scala']
 }
 }

 test {
 scala {

Listing 11.21 Customizing the default Scala source set directories

307Other languages

 srcDirs = ['test/scala']
 }
 }
}

JAVA AND SCALA JOINT COMPILATION

Mixing Java and Scala source code within one Gradle project follows the same rules as

for mixing Java and Groovy. What it boils down to is that Scala can depend on Java,

but Java can’t depend on Scala. Bidirectional dependencies between these source

code file types can only be achieved by joint compilation. You can either put the Java

code into the Scala source directory (by default, src/main/scala) or reconfigure the

source directory sets, as shown in the following listing.

sourceSets.main.scala.srcDirs
sourceSets.main.groovy.srcDirs = ['src/main/java', 'src/main/scala']

What happens when you configure Scala joint compilation? Joint compilation for

Scala code works slightly differently than for Groovy code. The Scala compiler doesn’t

directly invoke the Java compiler. The following steps should make this clear:

1 The Scala compiler parses and analyzes the Scala source code to figure out the

dependencies on Java classes. The Scala compiler understands Java syntax, but

doesn’t invoke the Java compiler.

2 The Scala sources are compiled. The compiler also produces a class file for

each Java source file. However, these files don’t contain bytecode. They’re used

for type checking between Java and Scala sources.

3 The Java compiler compiles the Java source code.

We covered the most basic skills required to build Scala projects. Optimizations like

incremental compilation can reduce the compilation time even more. Please see

the online documentation for more details. In the next section, we’ll go over the

Gradle compilation and packaging support for some other languages, JVM-based

and native.

11.3 Other languages

There are far more languages out there than we could possibly discuss in this book.

Some of these languages are directly supported by a core plugin; others can be inte-

grated with your build through a plugin developed by the Gradle community. Table 11.1

lists some of the more popular language plugins.

Listing 11.22 Reconfiguring source sets for joint compilation

Removes source directories for Java source set

Includes Java and Scala source
directory for Scala compiler

308 CHAPTER 11 Building polyglot projects

Even if you don’t find an appropriate plugin for the language you’re trying to incor-

porate into your build, you’re not out of luck. You learned that Ant tasks and Java APIs

can be wrapped with a Gradle task. The same technique is used by the Groovy plugin,

for example, which internally invokes the groovyc Ant task. Alternatively, you can

always execute a compiler from the command line by creating an enhanced task of

type Exec.

11.4 Summary

Today’s software projects embrace a wide range of programming languages, technolo-

gies, and libraries. It’s all about the right tool for the job. Whatever works best,

increases productivity, or solves a problem in a more elegant way should be preferred.

This maxim became increasingly important for projects that incorporate more than a

single programming language, so-called polyglot projects. In this chapter, we dis-

cussed how to configure, manage, and build three different languages with Gradle:

JavaScript and the two JVM-based languages, Groovy and Scala.

 JavaScript has been the dominant language for creating dynamic web experiences

for over a decade. Obviously, page-loading times influenced by the size of the

JavaScript files play a significant role for end users. JavaScript files can be merged and

minified to improve the page rendering performance. You learned that Gradle can

help automate otherwise manual steps to perform these actions and integrate them

with the development lifecycle of your To Do application. We didn’t stop there. We

also explored how to simplify the required configuration of your JavaScript build code

by using the community JavaScript plugin. Later, you wrapped existing Grunt build

code with Gradle to provide a single, unified control unit for automating all compo-

nents of your application.

 The JVM-based languages Groovy and Scala are directly supported within a Gra-

dle build. Gradle ships with first-class plugin support for both languages. Each lan-

guage plugin builds on top of the Java base plugin to enforce a separation of

capabilities from conventions. You transformed some of the existing To Do applica-

tion Java classes into Groovy and Scala equivalents to demonstrate the use of these

plugins. Source set conventions aren’t set in stone. You learned how to reconfigure

Table 11.1 Gradle plugins for popular programming languages

Language Name Language Homepage Gradle Plugin

C++ http://www.cplusplus.com Gradle core plugin

Clojure http://clojure.org https://bitbucket.org/clojuresque/clojuresque

Golo http://golo-lang.org https://github.com/golo-lang/gradle-golo-plugin

Kotlin http://kotlin.jetbrains.org http://repository.jetbrains.com/kotlin/org/

jetbrains/kotlin/kotlin-gradle-plugin

R http://www.programmingr.com https://github.com/jamiefolson/gradle-plugin-r

http://repository.jetbrains.com/kotlin/org/jetbrains/kotlin/kotlin-gradle-plugin
http://repository.jetbrains.com/kotlin/org/jetbrains/kotlin/kotlin-gradle-plugin
http://www.cplusplus.com
http://clojure.org
https://bitbucket.org/clojuresque/clojuresque
http://golo-lang.org
https://github.com/golo-lang/gradle-golo-plugin
http://kotlin.jetbrains.org
http://www.programmingr.com
https://github.com/jamiefolson/gradle-plugin-r

309Summary

them in case your project needs to adapt to a legacy project layout. Groovy and Scala

source code can coexist with Java source code in a single project. Bidirectional

dependencies between Java and Groovy or Scala require the use of joint compila-

tion. We discussed how to prepare the compiler for handling such a scenario. In the

last part of this chapter, we touched on other programming languages supported

by Gradle.

 The next chapter will focus on measuring the code quality of your project by inte-

grating external tooling into the build process.

310

Code quality management
and monitoring

The end product of most commercial projects is a binary. Unless your deliverable

doesn’t ship with the source code or is the source code itself, users are usually not

concerned about the quality of your code. They’re happy as long as the software

fulfills the functional requirements and has no defects. So why would you as the

software development and delivery team care? In a nutshell, high-quality code

results in fewer bugs and influences nonfunctional requirements like maintainabil-

ity, extensibility, and readability, which have a direct impact on the ROI for your busi-

ness. In this chapter, we’ll focus on tools that measure code quality and visualize the

results to help you pinpoint problem areas in your code. By the time you finish this

chapter, you’ll know how to integrate code quality tools with your build.

This chapter covers

■ Considerations and mechanics for integrating

code analysis into the build

■ Measuring the effectiveness of test

code coverage

■ Performing static code analysis

■ Integrating with Sonar to measure software

quality over time

http://www.sonarsource.org/pick-your-code-coverage-tool-in-sonar-2-2/
http://www.sonarsource.org/pick-your-code-coverage-tool-in-sonar-2-2/
http://www.sonarsource.org/pick-your-code-coverage-tool-in-sonar-2-2/

311Integrating code analysis into your build

 Earlier, you learned how to write unit, integration, and functional tests to verify the

correctness of your To Do application code. Code coverage analysis (also called test

coverage analysis) is the process of finding the areas in your code that are not exer-

cised by test cases. Empirical studies show that reasonable code coverage has an indi-

rect impact on the quality of your code.

 Measuring code quality doesn’t stop with code coverage analysis. Coding standards

define agreed-on source code conventions within a team or organization, and can

range from simple code formatting aspects, such as the use of whitespaces and inden-

tation, to programming best practices. By following these guidelines, you’ll make the

code base more readable for other team members, improve its maintainability, and

prevent potential bugs. But despite all these benefits, code analysis doesn’t replace a

code review by an experienced peer; rather, it complements it.

 It’s impossible for a single person to manually keep track of all of these metrics in

a large and ever-changing software project. Therefore, it’s essential to be able to easily

identify problem areas from a 10,000-foot view and track the progress over time. Code

quality tools help you to automatically analyze your software and provide sufficient

reporting. In the Java space, you can choose from a wide range of open source and

commercial solutions, such as Checkstyle, PMD, Cobertura, FindBugs, and Sonar.

Many of these tools are already available in the form of Gradle core or third-party

plugins and can be seamlessly integrated into your build. In this chapter, you’ll use

many of these plugins to measure the code quality of your To Do application.

12.1 Integrating code analysis into your build

Let’s step back for a minute and think back to the build pipeline stages introduced in

chapter 2. Where do we stand? So far you’ve learned how to compile your code and

implement and execute various types of tests. These tasks cover the first two phases of

the commit stage. If any of these tasks fail, the build will automatically fail.

 Though the outcome of code compilation and testing gives you a basic idea of

your project’s health status, it doesn’t provide you with any feedback about code qual-

ity characteristics such as maintainability and code coverage. Code analysis tools help

you produce metrics that make a statement about these characteristics. Some of these

metrics produced by code analysis include

■ Code coverage

■ Adherence to coding standards

■ Bad coding practices and design problems

■ Overly complex, duplicated, and strongly coupled code

In the context of a build pipeline, code analysis is performed after the first two phases

of the commit stage, as shown in figure 12.1.

 Similar to running integration and functional tests, the process of performing code

analysis can take a long time depending on the size of your code base and the number

of exercised code quality tools. For that reason, it’s helpful to create a dedicated set

http://www.gradle.org/sonar_plugin
http://checkstyle.sourceforge.net/
http://checkstyle.sourceforge.net/
http://checkstyle.sourceforge.net/
http://checkstyle.sourceforge.net/
http://checkstyle.sourceforge.net/
http://checkstyle.sourceforge.net/

312 CHAPTER 12 Code quality management and monitoring

of Gradle tasks for invoking code quality tools. These tasks are usually provided by a

plugin, so you won’t need to create them yourself. In practice, you’ll want to run partic-

ular code quality tasks independently from others. For example, during development

you may want to know whether you’ve improved the code coverage of the class you’re

currently refactoring without having to run other lengthy code quality processes.

 Code quality tasks shouldn’t depend on each other, which makes them perfect

candidates to be executed in parallel. In the overall build lifecycle of a Java project, it’s

helpful to make the verification task check depend on all the code quality tasks, as

shown in figure 12.2. Bear in mind that the given task names in the figure are only

representative names.

 Projects may consist of multiple source sets for separating code with different

concerns. You learned how to do this in chapter 7, when you defined an additional

source set solely for integration tests. To get a clear, comprehensive picture of code

quality, you’ll need to be able to selectively perform code analysis on individual

source sets or even on all of them. You’ll start by measuring the code coverage of

your To Do application.

12.2 Measuring code coverage

Code coverage doesn’t determine code quality per se. It uncovers execution paths in

your code that aren’t exercised by tests. A frequently discussed metric is the overall

percentage of tests covering the production code. While achieving 100% code cover-

age is an honorable goal, it rarely pays off, nor can it give you the ultimate confidence

that the logic is correct or bug-free. A good rule of thumb, though it shouldn’t be fol-

lowed dogmatically, is to aim for 70 to 80% code coverage with meaningful assertions.

 When I talk about code coverage metrics, what exactly do I mean? The following

list should give you some basic coverage criteria:

Compile

code and

unit tests

Integration

tests

Code

analysis

Assemble

binaries

Commit stage

Current phase

Figure 12.1 Code analysis

phase in the context of the

deployment pipeline

testAnd

Coverage

integTest

AndCoverage

staticCode

Analysis1

staticCode

Analysis2

check build

...

...

...

Figure 12.2 Code analysis tasks in relation to the standard Java plugin tasks

http://checkstyle.sourceforge.net/
http://checkstyle.sourceforge.net/
http://www.eclemma.org/jacoco/
http://www.eclemma.org/jacoco/

313Measuring code coverage

■ Branch coverage : Measures which of the possible execution paths (for example,

in if/else branching logic) is executed by tests

■ Statement coverage: Measures which statements in a code block have been executed

■ Method coverage : Measures which of the methods were entered during test

execution

■ Complexity metrics : Measures cyclomatic complexity (the number of independent

paths through a block of code) of packages, classes, and methods

Let’s look at available code coverage tools and their respective Gradle plugins.

12.2.1 Exploring code coverage tools

The Java ecosystem created several tools, free as well as commercial, for producing

code coverage metrics. The feature set usually differs by performance to generate the

metrics, the type of metric that can be produced, the coverage quality, and how these

metrics are produced at runtime (called the instrumentation). Many of these tools orig-

inated as Ant tasks, which makes them easily wrapped by Gradle tasks in your build. A

plugin abstraction is available for some of these tools. At the time of writing, none of

these plugins have made it into the Gradle core code base. Table 12.1 gives an over-

view of some popular coverage tools and their support in Gradle.

COMPARING CODE COVERAGE TOOL FEATURES

With all these options, how do you pick the tool that’s right for you? First of all, you’ll

want a tool that’s still maintained in case you need a bug to be fixed. With Clover, you

have a good chance of getting support, because it’s a commercial tool that you pay for.

Among the free tools, JaCoCo is the most active, whereas Emma and Cobertura

haven’t been updated in years.

 Two other compelling reasons for choosing a tool are the produced metrics and

their quality. Usually, the coverage percentage doesn’t deviate very much among the

tools (at a maximum by ~3–5%). What’s more important is the metrics feature set.

Emma, for example, doesn’t produce any branch coverage. When comparing perfor-

mance, JaCoCo is the clear winner. You can find an insightful comparison of these

Table 12.1 Popular code coverage tools for Java and Groovy projects

Name License Type of Instrumentation Gradle Support

Cobertura Free Offline bytecode

instrumentation

https://github.com/eriwen/gradle-

cobertura-plugin

Clover Commercial, free for

open source projects

Source code

instrumentation

https://github.com/bmuschko/gradle-

clover-plugin

Emma Free Offline bytecode

instrumentation

No sophisticated plugin support; Ant

tasks available

JaCoCo Free On-the-fly bytecode

instrumentation

https://github.com/ajoberstar/gradle-

jacoco

https://github.com/eriwen/gradle-cobertura-plugin
https://github.com/eriwen/gradle-cobertura-plugin
https://github.com/bmuschko/gradle-clover-plugin
https://github.com/bmuschko/gradle-clover-plugin
https://github.com/ajoberstar/gradle-jacoco
https://github.com/ajoberstar/gradle-jacoco
http://www.sonarsource.org/pick-your-code-coverage-tool-in-sonar-2-2/
http://www.sonarsource.org/pick-your-code-coverage-tool-in-sonar-2-2/
http://www.sonarsource.org/pick-your-code-coverage-tool-in-sonar-2-2/

314 CHAPTER 12 Code quality management and monitoring

criteria on the SonarSource homepage (http://www.sonarsource.org/pick-your-code-

coverage-tool-in-sonar-2-2/).

UNDERSTANDING INSTRUMENTATION METHODS

The method for producing code coverage metrics is different from tool to tool. The

job of instrumentation is to inject instructions that are used to detect whether a partic-

ular code line or block is hit during test execution. Let’s look at the following sce-

nario. You have a single class named ToDoItem that represents a To Do item:

public class ToDoItem {
 public final static int MAX_PRIORITY = 3;
 private int priority = 1;

 public int getPriority() {
 return priority;
 }

 public void setMaxPriority() {
 priority = MAX_PRIORITY;
 }

 public void bumpUpPriority() {
 if(priority < MAX_PRIORITY) {
 priority++;
 }
 }
}

For the ToDoItem class, you want to determine the test coverage. For that purpose, you

create a unit test class named ToDoItemTest. The class defines a test method that veri-

fies that the set priority of an item cannot be higher than the maximum priority:

public class ToDoItemTest {
 @Test
 public void testBumpUpPriorityIfAlreadyMaxPriority() {
 ToDoItem toDoItem = new ToDoItem();
 toDoItem.setMaxPriority();
 assertEquals(toDoItem.getPriority(), ToDoItem.MAX_PRIORITY);
 toDoItem.bumpUpPriority();
 assertEquals(toDoItem.getPriority(), ToDoItem.MAX_PRIORITY);
 }
}

If you generate code coverage for this class, you’ll see that all methods are covered,

because you called all of them from your test class. The only line of code that isn’t cov-

ered is priority++. This is because your test method assumed an initial priority of 3

before you tried to increase the priority of the To Do item. To achieve 100% code cov-

erage for the class ToDoItem, you’d have to write another test method that uses the ini-

tial priority.

 As shown in table 12.1, this is achieved through source code, offline bytecode, or

on-the-fly bytecode instrumentation. What’s the difference between these methods?

Source code instrumentation adds instructions to the source code before compiling it

Initial priority
start with 1

Priority of an item can only be
increased if it isn’t already set
to highest priority

Sets item’s
priority to 3

Tries to
increase
item’s
priority

Item’s
priority is

already
3 and

therefore
wasn’t

increased

http://www.sonarsource.org/pick-your-code-coverage-tool-in-sonar-2-2/
http://www.sonarsource.org/pick-your-code-coverage-tool-in-sonar-2-2/

315Measuring code coverage

to trace which part of the code has been executed. Offline bytecode instrumentation

applies these instructions directly to the compiled bytecode. On-the-fly instrumenta-

tion adds these same instructions to the bytecode, but does this when it’s loaded by

the JVM’s class loader.

 While all of these methods do their job and the produced metrics don’t exhibit a

huge difference, why does it matter which we choose? In the context of a continuous

delivery pipeline, where bundling the deliverable is done after executing the code

analysis phase, you want to make sure that the source or bytecode isn’t modified after

the compilation process to avoid unexpected behavior in the target environment.

Therefore, on-the-fly instrumentation should be preferred. In the next chapter, I’ll

also demonstrate ways to avoid problems with other instrumentation methods.

 In the following sections, you’ll learn how to use two plugins for generating code

coverage: the JaCoCo and the Cobertura plugins. Let’s start with the JaCoCo plugin.

12.2.2 Using the JaCoCo plugin

JaCoCo (http://www.eclemma.org/jacoco/), short for Java Code Coverage, is an open

source toolkit for measuring code coverage through on-the-fly bytecode instrumenta-

tion. To achieve this, JaCoCo attaches a Java agent to the JVM class loader, which collects

execution information and writes it to a file. JaCoCo produces line and branch coverage

metrics. Furthermore, it fully supports analyzing projects that are based on Java 7.

 Separating different aspects of software functionality is a best practice. The same

principle applies to build code. To separate your main build logic from code cover-

age logic, you’ll create a new build script named jacoco.gradle in the directory

gradle on the root level of your project hierarchy. Later, you’ll add other Gradle

build files to this directory. After creating the script, your project’s directory tree

should look like this:

.
├── build.gradle
├── gradle
│ └── jacoco.gradle
├── model
├── repository
└── web

This script will serve as a container for declaring and configuring the JaCoCo plugin

for your project. Remember when you added your own plugin to the classpath of the

consuming build script in chapter 8? Here you do the same by assigning a repository

and the plugin dependency. The following listing illustrates the basic setup.

buildscript {
 repositories {
 mavenCentral()
 }

Listing 12.1 Defining the JaCoCo plugin as script plugin

Script plugin that
configures and applies
JaCoCo plugin

Adds JaCoCo plugin to build
script’s classpath by retrieving
it from Maven Central

http://www.eclemma.org/jacoco/

316 CHAPTER 12 Code quality management and monitoring

 dependencies {
 classpath 'org.ajoberstar:gradle-jacoco:0.3.0'
 }
}

apply plugin: org.ajoberstar.gradle.jacoco.plugins.JacocoPlugin

jacoco {
 integrationTestTaskName = 'integrationTest'
}

You can now easily apply the script plugin jacoco.gradle to other projects. In the

context of your multiproject build, this is achieved by declaring a reference on it in

the subprojects configuration block in the build script of the root project, as illus-

trated in the following listing. In addition to applying the script plugin, you’ll also

need to tell the JaCoCo plugin where to retrieve its transitive dependencies. For now,

you’ll settle on declaring Maven Central as the repository.

subprojects {
 apply plugin: 'java'
 apply from: "$rootDir/gradle/jacoco.gradle"

 repositories {
 mavenCentral()
 }
}

Your project is prepared for generating code coverage reports with JaCoCo. When

executing tasks of type Test, JaCoCo’s agent will collect runtime information based

on the exercised test classes. Keep in mind that you won’t see any additional tasks that

would indicate that code coverage data is created.

 Give it a spin. Executing the full build will produce the execution data file with the

extension exec in the directory build/jacoco of each subproject. The following direc-

tory tree shows the produced execution data files for the subproject repository:

.
├── build.gradle
├── gradle
│ └── jacoco.gradle
├── model
├── repository
│ └── build
│ └── jacoco
│ ├── integrationTest.exec
│ └── test.exec
└── web

JaCoCo execution data is stored in a binary, non-human-readable file. To be able to

visualize the code coverage, you’ll need to generate an HTML report. The JaCoCo

plugin automatically registers a report task per test source set for each subproject. In

Listing 12.2 Applying the JaCoCo script plugin to all subprojects

Adds JaCoCo plugin to build
script’s classpath by retrieving
it from Maven Central

Applies plugin
by type

Declares task name for integration
tests to produce code coverage metrics
for integration test source set

Applies JaCoCo
script plugin.

Transitive dependencies needed
by JaCoCo plugin are retrieved
from Maven Central.

JaCoCo execution data for
unit and integration tests

http://clarkware.com/software/JDepend.html

317Measuring code coverage

your repository project, these tasks are called jacocoTestReport and jacocoInte-

grationTestReport. Figure 12.3 shows the HTML report for the test source set pro-

duced by the task jacocoTestReport.

 Each method in the HTML report is clickable and brings you directly to a new page

that marks the coverage line by line. A line marked in green indicates that it was exer-

cised by tests, and a line marked in red means that it lacks test coverage.

 With the default setup of the plugin, you’ll have one report for unit test coverage

and one for integration test coverage. If you want to get a full picture of the project’s

overall coverage across test source sets or even across all projects of a multiproject

build, you can write a new task of type JaCoCoMerge. We won’t discuss this task further.

For more details, please see the plugin’s documentation.

 Many enterprises use the established code coverage tool Cobertura. To get an idea

of how Cobertura’s report compares to the one produced by JaCoCo, you’ll configure

Cobertura for your build.

12.2.3 Using the Cobertura plugin

Cobertura (http://cobertura.sourceforge.net/) is a Java code coverage tools that needs

to instrument the bytecode after it’s compiled. A report produced by Cobertura con-

tains the percentage of line and branch coverage, as well as the cyclomatic complexity

for each package. Unlike JaCoCo, Cobertura doesn’t support projects based on Java 7.

 You’ll prepare the same setup as you did for integrating the JaCoCo plugin. First,

you’ll create a new script called cobertura.gradle, which applies and configures the

Cobertura plugin. Then, you’ll apply the script plugin to all subprojects of your build.

The following project structure shows the new script under the directory gradle:

.
├── build.gradle
├── gradle
│ └── cobertura.gradle
├── model
├── repository
└── web

Figure 12.3 Sample JaCoCo HTML report

Script plugin that
configures and applies
Cobertura plugin

http://cobertura.sourceforge.net/

318 CHAPTER 12 Code quality management and monitoring

The following listing shows the contents of the script plugin cobertura.gradle. You’ll

retrieve the plugin from Maven Central and apply it by type.

buildscript {
 repositories {
 mavenCentral()
 }

 dependencies {
 classpath 'com.eriwen:gradle-cobertura-plugin:1.0'
 }
}

apply plugin: org.gradle.api.plugins.cobertura.CoberturaPlugin

Similar to the JaCoCo script plugin, you can now apply the Cobertura script plugin to all

subprojects of your To Do application. The next listing shows the relevant code changes.

subprojects {
 apply plugin: 'java'
 apply from: "$rootDir/gradle/cobertura.gradle"

 repositories {
 mavenCentral()
 }
}

The plugin adds one task for inserting instrumentation instructions into the compiled

class files and another for generating the code coverage report. These tasks are fully

integrated into the build lifecycle of a Java project. A build that executes the verifica-

tion task check will perform the necessary work to generate the code coverage. To do

so, the plugin copies the class files from build/classes to build/cobertura, instru-

ments the files, and serializes coverage information to a file named cobertura.ser.

The resulting report is written to the directory build/reports/cobertura. The fol-

lowing directory tree shows the relevant files after executing the build:

.
├── build.gradle
├── gradle
│ └── cobertura.gradle
├── model
├── repository
│ └── build
│ ├── cobertura
│ │ └── main
│ │ ├── classes
│ │ ├── cobertura-test.ser
│ │ └── cobertura.ser

Listing 12.3 Defining the Cobertura plugin as script plugin

Listing 12.4 Applying the Cobertura script plugin to all subprojects

Adds Cobertura plugin
to the build script’s
classpath by retrieving
it from Maven Central

Applies plugin
by type

Applies Cobertura
script plugin

Transitive dependencies
needed by Cobertura plugin are
retrieved from Maven Central

Directory holding
instrumented
classes

Data file containing serialized
metadata about your Java classes

319Performing static code analysis

│ └── reports
│ └── cobertura
│ └── main
│ ├── index.html
│ └── ...
└── web

The task testCoberturaReport is responsible for creating the code coverage report.

By default, the task produces an HTML report but can also be reconfigured to create

code coverage formatted as XML. Figure 12.4 shows a sample HTML report created for

the unit tests of the repository project.

 We’ll stop at this point in our discussion of code coverage tools. Later in this chapter,

you’ll reuse the reports you generated to track your code coverage quality over time with

Sonar. JaCoCo and Cobertura are the most widely used open source coverage tools

today. If you’re planning to use a different tool, please refer to the links provided in

table 12.1. In the next section, we’ll explore various static code analysis tools.

12.3 Performing static code analysis

Members of the software development team perform code reviews to identify architec-

tural problems, security defects, and potential bugs. While this kind of review is

extremely helpful in mitigating the risk of technical debt, this process easily becomes

expensive and unmanageable for large software projects.

 How many of us have had to toil away at code reviews? Sure, they’re useful—you

identify problems, security defects, and bugs—but it can easily get expensive and

unwieldy. A cheap and automated way of finding issues in code is static code analysis.

Cobertura HTML
report index page

Figure 12.4 Sample Cobertura HTML report

320 CHAPTER 12 Code quality management and monitoring

Static code analysis is the task of analyzing source code without actually executing the

software to derive quality metrics. Metrics that can be extracted range from potential

bugs and adherence to coding standards, to unnecessary code complexity and bad

coding practices. Let’s look at a list of tools producing these metrics.

12.3.1 Exploring static code analysis tools

There are a lot of open source tools for identifying poor code quality. In this section,

we’ll concentrate on the ones that are directly supported by Gradle through a stan-

dard plugin. Because they’re shipped with Gradle’s runtime distribution, it’s easy to

integrate them into your build and make them part of the build pipeline. Table 12.2

shows these code analysis tools, the metrics they produce, and the name of the Gradle

plugins for applying them to the build.

This list of plugins and their feature sets may look overwhelming at first. To be able to

differentiate their metrics, you’ll apply and configure each of them to determine the

code quality of your To Do application. In the next couple of sections, you’ll work

your way from the top to the bottom of the table, with the exception of CodeNarc.

PREPARING THE SUBPROJECTS

As you did with the code coverage tools, you’ll write a script plugin for each static

code analysis tool to achieve a clean separation of concerns. Many of these Gradle

plugins require a configuration file located in a directory config/<toolname> that

defines the rules for the analysis. To be optimally prepared, you’ll create the directory

config on the root level of your multiproject build and define a property that can be

used in all subprojects:

.
├── build.gradle
├── config
│ ├── checkstyle
│ │ └── ...

Table 12.2 Standard Gradle static code analysis plugins

Tool Name Gradle Plugin Report Formats Description

Checkstyle checkstyle Only XML Enforces coding standards; discovers poor design

problems, duplicated code, and bug patterns

PMD pmd XML and HTML Finds unused, overly complex, and inefficient code

CodeNarc codenarc Text or XML or

HTML

PMD equivalent for Groovy projects

FindBugs findbugs XML or HTML Discovers potential bugs, performance issues, and

bad coding practices

JDepend jdepend Text or XML Measures design quality metrics like extensibility,

reusability, and maintainability

Default configuration
directory used by code
quality plugins

321Performing static code analysis

│ └── jdepend
│ └── ...
├── gradle
│ ├── checkstyle.gradle
│ ├── pmd.gradle
│ ├── codenarc.gradle
│ ├── findbugs.gradle
│ └── jdepend.gradle
├── model
├── repository
└── web

The dependencies of each tool aren’t included in the Gradle distribution. At runtime,

they’re automatically retrieved from a repository. You’ll configure Maven Central for

that purpose. The following listing shows the changes you’ll need to make to the root

project’s build script.

subprojects {
 ext.configDir = new File(rootDir, 'config')

 // Apply static code analysis script plugin

 repositories {
 mavenCentral()
 }
}

GENERATING HTML REPORTS

The default format for reports generated by these plugins is XML. While XML is a use-

ful format for postprocessing the results from other tools like Sonar, it’s not conve-

nient to read. An easier-to-consume format is HTML. Unfortunately, not all of the

plugins you’ll use provide such a report output. However, you can easily produce

them yourself via an XML-to-HTML transformation. For that purpose, you’ll create a

reusable custom task in the buildSrc directory of your project that uses the Ant XSLT

task, as show in the next listing.

package com.manning.gia

import org.gradle.api.DefaultTask
import org.gradle.api.tasks.*

class XsltReport extends DefaultTask {
 @InputFile @Optional File inputFile
 @InputFile File xslStyleFile
 @Input @Optional Map<String, String> params = [:]
 @OutputFile File outputFile

 XsltReport() {
 onlyIf {
 inputFile.exists()

Listing 12.5 Preparing subprojects for the integration of static code analysis plugins

Listing 12.6 Task for generating HTML reports via XSLT

Directory containing
script plugins that
apply and configure
code quality plugins

Extra property pointing to
configuration directory
(directory can have any
arbitrary name)

Configures Maven
Central for retrieving
plugin dependencies

Only run HTML generation
if input file exists; if not,
task will be skipped

322 CHAPTER 12 Code quality management and monitoring

 }
 }

 @TaskAction
 void start() {
 ant.xslt(in: inputFile, style: xslStyleFile, out: outputFile) {
 params.each { key, value ->
 ant.param(name: key, expression: value)
 }
 }
 }
}

You’re prepared for applying the static code analysis tools to your build. You’ll start by

using the Checkstyle plugin.

12.3.2 Using the Checkstyle plugin

In enterprise projects, it’s helpful to introduce a coding standard to define how

source code should be formatted, structured, and annotated to form a uniform pic-

ture. As a by-product, you’ll receive more readable and maintainable source code.

This is where Checkstyle (http://checkstyle.sourceforge.net/) comes into play. The

project started out as a tool for finding areas in your source code that don’t comply

with your coding rules. Over time, the feature set was expanded to also check for

design problems, duplicate code, and common bug patterns.

 You’ll start by creating a new script file called checkstyle.gradle in the directory

gradle. It’ll serve as your Checkstyle script plugin. In that script plugin, you’ll need to

apply the standard Gradle Checkstyle plugin and configure the version of the tool you’d

like to use and its runtime behavior. The following listing demonstrates how to use the

Sun coding standards, defined by the rule set in the file config/sun_checks.xml, which

is available from the Checkstyle distribution.

apply plugin: 'checkstyle'

ext.checkstyleConfigDir = "$configDir/checkstyle"

checkstyle {
 toolVersion = '5.6'
 configFile = new File(checkstyleConfigDir, 'sun_checks.xml')
 ignoreFailures = true
 showViolations = false
}

With the basic Checkstyle definitions in place, you can apply the encapsulating script

plugin to all subprojects of your multiproject build, as shown in the next listing.

Listing 12.7 Applying and configuring the Checkstyle plugin as script plugin

Using Ant XSLT task to
generate an HTML report

Applies Gradle standard
Checkstyle plugin

Declares dependencies
on Checkstyle 5.6

Defines
rule set to

be used Changes default behavior
of failing build if at least
one rule violation is
discovered

Prevents Gradle from
printing out every violation
on command line

http://checkstyle.sourceforge.net/

323Performing static code analysis

subprojects {
 apply plugin: 'java'

 ext.configDir = new File(rootDir, 'config')
 apply from: "$rootDir/gradle/checkstyle.gradle"

 repositories {
 mavenCentral()
 }
}

Executing a full build will now produce the default Checkstyle XML report for all

source sets of the project in the directory build/reports/checkstyle of each

subproject. The following command-line output shows the relevant bits for the

repository subproject:

$ gradle build
...
:repository:checkstyleIntegrationTest
Checkstyle rule violations were found. See the report at:

➥ file:///Users/Ben/checkstyle/repository/build/reports/checkstyle/

➥ integrationTest.xml
:repository:checkstyleMain
Checkstyle rule violations were found. See the report at:

➥ file:///Users/Ben/checkstyle/repository/build/reports/checkstyle/main.xml
:repository:checkstyleTest
Checkstyle rule violations were found. See the report at:

➥ file:///Users/Ben/checkstyle/repository/build/reports/checkstyle/test.xml
...

Of course, the default report directory can be reconfigured to point to a custom direc-

tory. For more information on this and other configuration options, please see the

DSL documentation of the Checkstyle plugin.

 The Checkstyle plugin is one of the candidates that doesn’t currently provide the

generation of HTML reports. Listing 12.9 shows how to create report tasks of type

XsltReport for each of your source sets. By declaring a dependency on the default

Checkstyle task, you can ensure that the HTML report task is executed after the initial

XML Checkstyle report generation. You can add this code snippet directly to check-

style.gradle as needed.

import com.manning.gia.XsltReport

afterEvaluate {
 plugins.withType(CheckstylePlugin) {
 sourceSets.each { sourceSet ->
 String capitalizedSourceSetName = sourceSet.name.capitalize()
 String reportTaskName = "checkstyle${capitalizedSourceSetName}Report"

Listing 12.8 Applying Checkstyle to all subprojects

Listing 12.9 Generating a Checkstyle HTML report for all source sets

Applies Checkstyle
script plugin

Checkstyle task and violations notification
for integration test source set

Checkstyle
task and

violations
notification

for main
source set

Checkstyle task and violations
notification for test source set

Makes sure all source
sets have been
evaluated for a project

Only
executes

the logic the
Checkstyle

plugin
applied to

project

Iterates
through all
source sets
of a project

324 CHAPTER 12 Code quality management and monitoring

 String reportDir = "$reporting.baseDir/checkstyle"
 XsltReport reportTask = tasks.create(reportTaskName, XsltReport)

 reportTask.with {
 description = "Generates a Checkstyle HTML report for
 ➥ ${sourceSet.name} classes."
 dependsOn tasks."checkstyle${capitalizedSourceSetName}"
 inputFile = new File(reportDir, "${sourceSet.name}.xml")
 xslStyleFile = new File(checkstyleConfigDir,
 ➥ 'checkstyle-noframes.xsl')
 outputFile = new File(reportDir,
 ➥ "checkstyle_${sourceSet.name}.html")
 }

 check.dependsOn reportTaskName
 }
 }
}

For the transformation from XML to HTML, you used an XSL file provided with the

Checkstyle distribution. It generates a single HTML report with no frames. Executing

the build with gradle build again will produce a report similar to figure 12.5.

12.3.3 Using the PMD plugin

PMD (http://pmd.sourceforge.net/) is similar to Checkstyle, though it exclusively

focuses on coding problems like dead or duplicated code, overly complex code, and pos-

sible bugs. PMD’s distribution comes with a wide range of specialized rule sets—for

Declares an
enhanced

HTML report
task for each

source set and
configures it

Makes verification
task depend on
report task

Figure 12.5 Sample Checkstyle HTML report

http://pmd.sourceforge.net/

325Performing static code analysis

example, JEE components, web frameworks like JSF, and mobile technologies such

as Android.

 You’ll take the same approach you took for setting up the Checkstyle plugin. First,

you’ll create a script plugin named pmd.gradle that applies the PMD plugin. Then,

you’ll configure it and apply it to all subprojects of your To Do application. The fol-

lowing listing demonstrates how to use the default version and rule set of PMD.

apply plugin: 'pmd'

pmd {
 ignoreFailures = true
}

We won’t explore exactly how to apply the script plugin to your subprojects, because it

looks very similar to the way you integrated the Checkstyle plugin. The PMD Gradle

plugin generates an XML and HTML report out of the box, so you don’t need to do

any extra work. The following command-line output shows how PMD metrics are pro-

duced for all source sets of the project repository:

$ gradle build
...
:repository:pmdIntegrationTest
:repository:pmdMain
3 PMD rule violations were found. See the report at:

➥ file:///Users/Ben/pmd/repository/build/reports/pmd/main.html
:repository:pmdTest
...

The rendered HTML report in build/reports/pmd should look similar to figure 12.6.

Listing 12.10 Applying and configuring the PMD plugin as script plugin

Applies Gradle standard
PMD plugin Changes default behavior of

failing the build if at least one
rule violation is discovered

Figure 12.6 Sample PMD HTML report

326 CHAPTER 12 Code quality management and monitoring

Sometimes you may just want to generate a single type of report. This need arises

especially if you want to verify your progress during development. The PMD task

can be configured to enable or disable particular types of report formats, as shown

in the next listing. The same method can be applied to other code quality tasks

where applicable.

tasks.withType(Pmd) {
 reports {
 xml.enabled = false
 html.enabled = true
 }
}

12.3.4 Using the FindBugs plugin

FindBugs (http://findbugs.sourceforge.net/) is a static code analysis tool for finding

potential bugs and bad coding practices. The bugs identified include problems like

equals/hashCode implementations, redundant null checks, and even performance

issues. Unlike the other analyzers presented earlier, FindBugs operates on the Java

bytecode, rather than the source code. You’ll find that operating on bytecode makes

the analysis slower than source code analysis. For bigger projects, be prepared for it to

take minutes.

 Listing 12.12 shows that the FindBugs plugin is as easy to integrate into your build

as the other code quality plugins. For a good overview of the available configuration

options, see the Gradle DSL guide. Currently, the plugin only supports the generation

of an XML or HTML report.

apply plugin: 'findbugs'

findbugs {
 toolVersion = '2.0.1'
 ignoreFailures = true
 effort = 'max'
}

tasks.withType(FindBugs) {
 reports {
 xml.enabled = false
 html.enabled = true
 }
}

Executing the full build on all subprojects will produce the expected reports for all

available source sets. The following command-line output shows the representative

tasks for the repository subproject:

Listing 12.11 Configuring the generated PMD report type

Listing 12.12 Applying and configuring the FindBugs plugin as script plugin

Applies to all tasks of type
org.gradle.api.plugins.quality.Pmd

Disables the XML report generation,
but enables HTML report generation

Applies Gradle standard
FindBugs plugin

Defines analysis effort level;
the higher the precision, the
more meticulous the analysis

Configures org.gradle.api.plugins.quality.FindBugs
task to generate an HTML report

http://findbugs.sourceforge.net/

327Performing static code analysis

$ gradle build
...
:repository:findbugsIntegrationTest
:repository:findbugsMain
FindBugs rule violations were found. See the report at:

➥ file:///Users/Ben/findbugs/repository/build/reports/findbugs/main.html
:repository:findbugsTest
...

After executing the FindBugs tasks, you’ll find an HTML report for each source set in

the directory build/reports/findbugs. Figure 12.7 illustrates the report for the main

source set.

12.3.5 Using the JDepend plugin

The static code analysis tool JDepend (http://clarkware.com/software/JDepend.html)

produces metrics that measure the design quality of your code. It scans all packages

of your Java code, counts the number of classes and interfaces, and determines their

dependencies. This information will help you identify hot spots of unwanted or

strong coupling.

 Listing 12.13 shows how to apply and configure the standard Gradle JDepend

plugin. You can choose a report that’s formatted either as XML or plain text. The

default value is XML and doesn’t require any additional configuration. The listing also

shows you how to easily switch between the report formats.

Figure 12.7 Sample FindBugs HTML report

http://clarkware.com/software/JDepend.html

328 CHAPTER 12 Code quality management and monitoring

apply plugin: 'jdepend'

def configDir = new File(rootDir, 'config')
ext.jdependConfigDir = "$configDir/jdepend"

jdepend {
 toolVersion = '2.9.1'
 ignoreFailures = true
}

tasks.withType(JDepend) {
 reports {
 text.enabled = false
 xml.enabled = true
 }
}

After the code is applied to the subprojects configuration block, an XML report is

generated for all source sets of a project. The following command-line output illus-

trates the executed JDepend tasks required to produce the reports:

$ gradle build
...
:repository:jdependIntegrationTest
:repository:jdependMain
:repository:jdependTest
...

Unfortunately, you can’t generate an HTML report out of the box, but you can use the

custom XSTL task introduced in section 12.3.1 to produce the desired result. An XSL file

is available through the JDepend distribution. You can find an example in the source

code of the book. After executing the HTML report generation, your build/reports/

jdepend directory will contain at least one file that renders similarly to figure 12.8.

 Another great feature of JDepend is the ability to visualize the dependencies

between packages as a graph. Part of the JDepend distribution is an XSL style sheet file

that transforms an XML report into a Graphviz DOT file. You’ll find a full-fledged

example in the source code of the book.

12.4 Integrating with Sonar

You’ve seen how to generate code metrics for your project using different code analy-

sis tools. Each of these tools produces reports that need to be checked individually.

With every build, the existing report is potentially deleted and a new one is created, so

you have no idea whether the code quality has improved or decayed over time. What

you need is a centralized tool that monitors, visualizes, and aggregates your metrics. A

tool that provides this functionality is Sonar (http://www.sonarsource.org/).

 Sonar is an open source, web-based platform for managing and monitoring code

quality metrics like coding rules compliance, unit tests and their coverage, and source

Listing 12.13 Applying and configuring the JDepend plugin as script plugin

Applies Gradle standard
JDepend plugin

Configures org.gradle.api.plugins.quality.JDepend
task to generate an XML report

http://www.sonarsource.org/

329Integrating with Sonar

code documentation, as well as architectural aspects like maintainability and technical

debt. It integrates well with most of the tools we discussed earlier, including JaCoCo,

Checkstyle, and PMD. If the need arises to support an unconventional tool or lan-

guage, Sonar can be extended by plugins.

 Sonar uses a central database to collect code quality metrics over time. In its

default configuration, Sonar comes with an embedded H2 instance, which doesn’t

require any additional setup. While H2 is a great way to get started and explore

Sonar’s functionality, it’s recommended to configure a more scalable solution for a

production setting like MySQL or Oracle. Gradle integrates well with Sonar through

its Sonar Runner plugin. The Sonar Runner is a launcher that analyzes your project

and pushes the gathered metrics to the Sonar database via JDBC. You can directly

open your project’s dashboard and view aggregated quality metrics over time. Figure

12.9 shows the interaction between Gradle and Sonar.

 As the figure shows, Sonar can be fed metrics from the outside. The rule set for

these metrics is defined in quality profiles. A quality profile, which is directly configured

on Sonar, defines the code analysis tools you’d like to run on your source code and

their acceptance criteria. For example, you could say, “A class must have a docu-

mented API greater than 70%.”

 This means that Sonar not only gives you the option to apply specific metric rule

sets and thresholds per project, but also allows you to decide whether you want to use

the analysis tools provided by Sonar to generate metrics. Let’s take the default, pre-

configured quality profile called Sonar way, for example. It automatically analyzes

your project through Checkstyle and PMD with 119 rules without having to configure

the standard Gradle plugins.

Figure 12.8 Sample JDepend HTML report

330 CHAPTER 12 Code quality management and monitoring

12.4.1 Installing and running Sonar

Installing Sonar is straightforward. Go to Sonar’s homepage, download the latest ver-

sion (at the time of writing this is 3.5), and extract the ZIP file anywhere in your local

file system. Depending on your operating system, you can start up the Sonar web

server through the provided startup scripts in the directory $SONARHOME/bin. Let’s

assume you want to start Sonar on a Mac OS X 64-bit machine. From the command

line, navigate to the dedicated bin directory and start up the server:

$ cd $SONARHOME/bin/macosx-universal-64
$./sonar.sh start
Starting sonar...
Started sonar.

Reusing existing code analysis reports

Earlier, you configured your build to produce metrics through Gradle’s static code

analysis plugins. You might ask yourself if you can configure the Sonar Runner plugin

to reuse these reports. At the time of writing, Sonar doesn’t provide a mechanism to

publish these reports to Sonar’s database. Instead, you’ll need to rely on the embed-

ded Checkstyle, PMD, and FindBugs plugins that are configured by a quality profile.

The only exception to this rule is code coverage metrics. You can find a discussion

of this topic later in this chapter.

publishes reads / writes

Gradle

Sonar Runner

analyzes

Gradle project

Sonar

database

root

project

model

project

repository

project

web

project

Figure 12.9 Gradle’s interaction with Sonar

331Integrating with Sonar

Starting up Sonar for the first time takes about 30 seconds. You can check on the

startup progress in the log file <SONARHOME>/logs/sonar.log. After successfully

bringing up Sonar, the dashboard can be opened in the browser under the URL

http://localhost:9000, as shown in figure 12.10.

 In the upper-right corner of the screenshot, you’ll see a panel named Projects.

Because you didn’t publish any metrics for a project, the list doesn’t contain any

data. Next, you’ll change that by configuring your Gradle build to use the Sonar

Runner plugin.

12.4.2 Analyzing a project with Sonar Runner

The Sonar Runner plugin is the recommended way of analyzing source code in a single-

project or multiproject build. The plugin is fully compatible with Sonar version ≥ 3.4

and only requires minimal setup if you stick to the default Sonar configuration.

Listing 12.14 shows the relevant changes to your build from using Sonar Runner. It

applies the plugin to the root project of your build and configures basic properties

like the project’s name and description, as well as the source code encoding for all

subprojects. If you don’t set the properties sonar.projectName and sonar.project-

Description, this information is derived from the Gradle project properties name and

description.

apply plugin: 'sonar-runner'

sonarRunner {
 sonarProperties {
 property 'sonar.projectName', 'todo'
 property 'sonar.projectDescription', 'A task management application'

Using Sonar version < 3.4

If you need to support an already existing Sonar instance with a version before 3.4,

you’ll need to rely on the standard Gradle Sonar plugin. Because this chapter will only

discuss the Sonar Runner plugin, I’ll refer you to the Gradle documentation for more

information: http://www.gradle.org/sonar_plugin.

Listing 12.14 Applying and configuring the Sonar Runner plugin

Figure 12.10 Central Sonar dashboard

Applies Sonar Runner
standard Gradle plugin

Sets Sonar project
and description

http://www.gradle.org/sonar_plugin
http://localhost:9000

332 CHAPTER 12 Code quality management and monitoring

 }
}

subprojects {
 ...

 sonarRunner {
 sonarProperties {
 property 'sonar.sourceEncoding', 'UTF-8'
 }
 }
}

This is all you need to get started with Sonar. Analyze your project using the default

quality profile and publish the reports to the Sonar database. You can initiate this pro-

cess by executing the task named sonarRunner provided by the plugin:

$ gradle sonarRunner
...
:sonarRunner
07:01:25.468 INFO .s.b.b.BatchSettings - Load batch settings
07:01:25.572 INFO o.s.h.c.FileCache - User cache:

➥ /Users/Ben/.sonar/cache
07:01:25.577 INFO atchPluginRepository - Install plugins
07:01:26.645 INFO .s.b.b.TaskContainer - ------------- Executing

➥ Project Scan
07:01:27.235 INFO b.b.JdbcDriverHolder - Install JDBC driver
07:01:27.238 INFO .b.ProjectExclusions - Apply project exclusions
07:01:27.242 WARN .c.p.DefaultDatabase - H2 database should be used

➥ for evaluation purpose only
07:01:27.243 INFO o.s.c.p.Database - Create JDBC datasource for

➥ jdbc:h2:tcp://localhost/sonar
...
07:01:38.122 INFO .b.p.UpdateStatusJob - ANALYSIS SUCCESSFUL, you

➥ can browse http://localhost:9000
...

A lot of information is rendered. It gives you sufficient insight into which projects and

directories have been analyzed and what code quality tools have been used. If you

refresh the Sonar dashboard after executing the task, you’ll find your project named

todo, with some basic information like lines of code, a percentage of rules compli-

ance, and the last date of analysis. Clicking on the project name will bring you to a

more detailed view of the project’s metrics, as shown in figure 12.11.

 The project dashboard gives you an informative, condensed summary of metrics

like code complexity, rules violations, and code coverage. You can drill into each of

these metrics even further by clicking on them.

 The plugin lets you set properties to change every aspect of your Sonar configura-

tion. One set of properties is dedicated to pointing to a different database to host your

Sonar metrics. I’ll leave it up to you to work with the plugin documentation to make

this happen in your environment. Another set of properties I want to discuss, though,

is directly relevant to your project. To let Sonar take into account your integration test

Changes source file
encoding from system
encoding to UTF-8

333Integrating with Sonar

source set, you’ll have to tell Sonar about it. The following listing demonstrates how to

add the source set directory to the appropriate Sonar property.

project(':repository') {
 ...

 sonarRunner {
 sonarProperties {
 properties['sonar.tests'] += sourceSets.integrationTest.
 ➥ allSource.srcDirs
 }
 }
}

12.4.3 Publishing code coverage metrics to Sonar

If you took a deeper look at the Sonar dashboard, you may notice that the Sonar unit

test coverage widget shown in figure 12.12 reports a 100% success rate for unit tests,

but the code coverage rate is noted as 0%. Code coverage is an extremely helpful met-

ric to have in the Sonar dashboard. If available, you can directly walk through each

class and see a visual representation of coverage metrics.

Listing 12.15 Adding custom source sets for analysis

Figure 12.11 Sonar project dashboard

Adds integration test
source set to default
analysis source sets

Figure 12.12 Unit test coverage widget in Sonar

334 CHAPTER 12 Code quality management and monitoring

Earlier in this chapter, we discussed how to generate code coverage reports with JaCoCo

and Cobertura. You can reuse these coverage reports by feeding them through the

Sonar Runner plugin. Sonar supports this functionality for coverage reports that com-

ply with the JUnit XML format generated by the tools JaCoCo, Emma, Cobertura, and

Clover. All you need to do is to add some configuration to the Sonar Runner plugin

configuration. You’ll start with integrating the JaCoCo report.

REUSING THE JACOCO REPORT

JaCoCo is supported as the default code coverage tool in Sonar. The only thing you

need to do is tell Sonar Runner where to find the JaCoCo report files. Sonar

requires you to provide two properties for setting the path of the report files: one

for unit tests (sonar.jacoco.reportPath), and another for integration tests

(sonar.jacoco.itReportPath). Thankfully, you don’t have to set these properties

manually. The JaCoCo plugin preconfigures the Sonar Runner for you. You’ll find

that the command-line output of Sonar Runner will register the analyzed JaCoCo

report files:

$ gradle build sonarRunner
...
07:28:20.300 INFO o.s.p.j.JaCoCoPlugin - Analysing /Users/Ben/sonar-

➥ jacoco/repository/build/jacoco/integrationTest.exec
07:28:23.812 INFO o.s.p.j.JaCoCoPlugin - Analysing /Users/Ben/sonar-

➥ jacoco/repository/build/jacoco/test.exec
...

Now that the additional data has been sent to Sonar, you can refresh the project dash-

board page and see the correct reporting on code coverage in the unit test coverage wid-

get. To get insight into the integration test coverage, you need to add the integration test

widget to your dashboard. Figure 12.13 shows both code coverage widgets side by side.

 At the time of writing, Sonar doesn’t provide a dedicated widget for functional test

coverage. To work around this shortcoming, you could register your functional code

coverage as integration test coverage. To complete our discussion of reusing code cov-

erage metrics, we’ll also look at the configuration for integrating Cobertura reports

into Sonar.

Figure 12.13 Populated unit and integration test code coverage widgets in Sonar

335Integrating with Sonar

REUSING THE COBERTURA REPORT

When you initially generated code coverage reports with Cobertura, you chose to for-

mat them as HTML. Sonar can only process XML-formatted report files, so you’ll need

to reconfigure the Cobertura plugin. In the cobertura.gradle file, set the following

extension property:

cobertura {
 format = 'xml'
}

To tell Sonar Runner to reuse a different coverage processing mechanism, you’ll need

to set a new property: sonar.core.codeCoveragePlugin. Keep in mind that you’ll

only need to provide this property if you wish to reuse reports produced by a tool

other than JaCoCo. In addition to this property, you’ll also need to point Sonar Run-

ner to the Cobertura report files. The following listing demonstrates how to reuse the

Cobertura unit test report.

subprojects {
 ...

 sonarRunner {
 sonarProperties {
 property 'sonar.sourceEncoding', 'UTF-8'
 property 'sonar.core.codeCoveragePlugin', 'cobertura'

 tasks.withType(SourceTask) { task ->
 if(task.name == 'testCoberturaReport') {
 property 'sonar.cobertura.reportPath',
 ➥ new File(task.reportDir, 'coverage.xml')
 }
 }
 }
 }
}

The task sonarRunner will give you concrete information about the parsed report files:

$ gradle build sonarRunner
...
12:10:42.895 INFO p.PhasesTimeProfiler - Sensor CoberturaSensor...
12:10:42.896 INFO .p.c.CoberturaSensor - parsing /Users/Ben/sonar-

➥ cobertura/repository/build/reports/cobertura/main/coverage.xml
12:10:42.949 INFO p.PhasesTimeProfiler - Sensor CoberturaSensor

➥ done: 54 ms
...

Integrating other third-party coverage reports produced by tools like Emma or Clover

follows the same pattern. The key is to look up the required property from the Sonar

online documentation.

Listing 12.16 Configuring Sonar Runner plugin to reuse Cobertura reports

Changes default
Sonar coverage
tool to Cobertura

Sets Sonar property
for declaring JaCoCo
unit test report file

336 CHAPTER 12 Code quality management and monitoring

12.5 Summary

Poor code quality and technical debt inevitably lead to developer productivity losses,

missed deadlines, and a higher bug rate. In addition to design and code reviews

through peers, it’s important to introduce coding standards and start monitoring your

project’s code quality with the help of static code analysis tools in the early stages of

your product. The Java ecosystem offers many open source tooling options to produce

code quality metrics. Gradle simplifies the integration of many of these tools into the

build process by providing standard or third-party plugins.

 Code coverage measures the percentage of code that’s exercised by tests and

reveals obvious areas that aren’t covered by tests. A high code coverage rate signifi-

cantly improves your ability to refactor, maintain, and enhance your code base. We

looked at how to apply and configure two code coverage plugins: JaCoCo and Cober-

tura. While both tools do their jobs in generating adequate coverage reports, JaCoCo

shines through better flexibility, performance, and developer support.

 Static code analysis tools help you enforce coding standards and uncover bad cod-

ing practices and potential bugs. Gradle offers a wide range of standard plugins for

you to pick and choose from. We discussed how to apply, configure, and execute these

plugins in a reusable way.

 Tracking, evaluating, and improving code quality over time can be achieved with

Sonar. Sonar provides a set of static code analysis tools out of the box and defines

quality rules and thresholds on a central platform. Sonar should be the preferred

solution if you have to manage more than one project and need a central place for

aggregating quality metrics. You saw that integrating Sonar into a build process

required minimal effort.

 In the next chapter, we’ll discuss how to install and configure a continuous integra-

tion server that automatically builds your project whenever a code change is pushed

to the VCS.

337

Continuous integration

If you’re working as a member of a software development team, you inevitably will

have to interface with code written by your peers. Before working on a change, a

developer retrieves a copy of the code from a central source code repository, but

the local copy of this code on the developer’s machine can quickly diverge from the

version in the repository. While working on the code, other developers may commit

changes to existing code or add new artifacts like resource files and dependencies.

The longer you wait to commit your source code into the shared code repository,

the harder it’ll become to avoid merge conflicts and integration issues.

 Continuous integration (CI) is a software development practice where source

code is integrated frequently, optimally multiple times a day. With each change, the

source code is compiled and tested by an automated build, which leads to signifi-

cantly less integration headaches and immediate feedback about the health status

of your project.

This chapter covers

■ The benefits of continuous integration

■ Using Jenkins to build a Gradle project

■ Exploring cloud-based CI solutions

■ Modeling a build pipeline with Jenkins

338 CHAPTER 13 Continuous integration

 In this chapter, we’ll discuss the principles and architecture of continuous integra-

tion. We’ll also explore the tooling that enables continuous integration, called CI serv-

ers or platforms. CI servers automatically schedule and execute a build after a code

change is made to the central repository. After learning the basic mechanics of a CI

server, you’ll put your knowledge into practice. We’ll discuss how to install and use the

popular open source CI server Jenkins to build your To Do application. As with many

development tools, CI server products have been moved to the cloud. We’ll explore

various offerings and compare their feature sets.

 Breaking up a big, monolithic build job into smaller, executable steps leads to

faster feedback time and increases flexibility. A build pipeline orchestrates individual

build steps by defining their order and the conditions under which they’re supposed

to run. Jenkins provides a wide range of helpful extensions to model such a pipeline.

This chapter will build the foundation for configuring the pipeline steps we’ve

touched on so far in the book. With each of the following chapters, you’ll add new

steps to the pipeline until you reach deployment into production. Let’s first get a basic

understanding of how continuous integration ties into the development process.

13.1 Benefits of continuous integration

Integrating source code committed to a central VCS by different developers should be

a nonevent. Continuous integration is the process of verifying these integrations by

building the project in well-defined intervals (for example, every five minutes) or

each time a commit is pushed to the VCS. You’re perfectly set up with your Gradle

build to make this determination. With every commit, you can compile the code,

run various types of tests, and even determine if the code quality for your project

improved or degraded. What exactly do you gain? Apart from the initial time invest-

ment of setting up and configuring a CI server, continuous integration provides

many benefits:

■ Reduced risk: Code is built with every commit to the VCS. Therefore, the code is

frequently integrated. This practice reduces the risk of discovering integration

issues late in the project’s lifecycle; for example, every two to four weeks for a

new release. As a side effect, you can also be confident that your build process

works because it’s constantly exercised.

■ Avoiding environment-specific errors : Developers usually build software on a single

operating system. While you can rule out general build tool runtime issues by

using the Gradle Wrapper, you still have a dependency on the machine’s setup.

On a CI server, you can exercise the build independent of a particular machine

setup or configuration.

■ Improved productivity: While developers run their builds many times a day, it’s

reasonable for them to concentrate on executing tasks that are essential to their

work: compiling the code and running selected tests. Long-running tasks, like

generating code quality reports, would reduce their productivity and are better

off being run on a CI server.

339Benefits of continuous integration

■ Fast feedback: If a build fails because of an integration issue, you’ll want to

know about it as soon as possible so you can fix the root cause. CI servers offer

a wide variety of notification methods. A common notification would be an

email containing the link to the failed build, the error message, and a list of

recent commits.

■ Project visibility: Continuous integration will give you a good idea of the current

health status of your project. Many CI servers come with a web-based dashboard

that renders successful and failed builds, aggregates metrics, and provides cen-

tral reporting.

Despite all of these benefits, introducing continuous integration to a team or organi-

zation requires an attitude of transparency, and in extreme cases may even require a

complete culture shift. The health status of a project is always visible through a dash-

board or notifications. This means that a broken build won’t be a secret anymore. To

improve project quality, try to foster a culture of intolerance for defects. You’ll see that

it pays off in the long run. With these benefits in mind, let’s see how continuous inte-

gration plays out in practice by playing through a typical scenario.

 Three components are essential to a CI environment: a central VCS that all devel-

opers commit changes to, the CI server, and an executable build script. Figure 13.1

illustrates the interaction between those components.

 Let’s go over a typical scenario of integrating code changes in a team of three

developers:

1 Committing code : One or more developers commit a code change to the VCS

within a certain timeframe.

2 Triggering the build: A CI server can be configured in two different modes to

identify if there’s a code change in the VCS. The server can either be scheduled

to check the VCS for changes in predefined time intervals (pull mode), or it can

be configured to listen for a callback from the VCS (push mode). If a change is

identified, the build is automatically initiated. Alternatively, you schedule a pre-

defined time interval for triggering a build.

VCS CI server
runs

sends

Notifier
Developer

machines

pulls

pushes

Gradle

build script
commits

code

commits
code

Figure 13.1 Anatomy of a CI environment

340 CHAPTER 13 Continuous integration

3 Executing the build: Once a build is triggered, it executes a specific action. An action

could be anything from invoking a shell script, to executing a code snippet, to run-

ning a build script. In our discussions, this will usually be a Gradle build.

4 Sending a notification : A CI server can be configured to send out notifications

about the outcome of a build, whether it was successful or failed. Notifications

can include emails, IMs, IRC messages, SMS, and many more.

Depending on the configuration of your CI server, these steps are performed for a sin-

gle code change or for multiple code changes at once. The longer the scheduled

intervals for a scheduled build, the more changes are usually picked up.

 Over the past 10 years, many open source and commercial CI server products have

sprung up. Many of them are downloadable products that are installed and hosted

within your company’s network. Recently, there’s been a lot of hype about CI servers

available in the cloud. Cloud-based solutions relieve you from the burden of having to

provision infrastructure and lower the barrier of entry. They’re usually a good fit for

your own open source project. Among the most popular CI servers are Hudson/Jen-

kins, JetBrains TeamCity, and Atlassian Bamboo. In this chapter, you’ll mainly use Jen-

kins to implement continuous integration for your To Do application because it has

the biggest market share. Before you can emulate a typical CI workflow on your local

machine, you’ll have to set up your components.

13.2 Setting up Git

Continuous integration is best demonstrated by seeing it in action. All you need is a CI

server installed on your local system, access to a central VCS repository, and a project

you can build with Gradle. This section assumes that you’ve already installed a Java

version on your machine.

 Jenkins is the perfect candidate for getting started quickly. Its distribution can be

downloaded and started in literally a minute. For your convenience, I uploaded the

sample To Do application to GitHub, an online hosting service for projects. GitHub is

backed by the free and open source VCS named Git. Don’t be intimidated by this suite

of tools if you haven’t used them yet. You’ll install and configure each of them step by

step. You’ll start by signing up on GitHub if you don’t yet have an account.

13.2.1 Creating a GitHub account

Creating a free account on GitHub (https://github.com/) is as easy as entering your

username, email address, and a password in the signup form on the homepage, as

shown in figure 13.2.

 That’s it; you don’t even need to confirm your account. A successful signup will

bring you to your account’s dashboard. Feel free to explore the functionality or

update your profile settings. To establish a secure SSH connection between your com-

puter and GitHub, you’ll need to generate SSH keys and add the public key to your

GitHub account. GitHub offers a comprehensive guide (https://help.github.com/

articles/generating-ssh-keys) that explains the nitty-gritty details of achieving this.

https://github.com/
https://github.com/
https://help.github.com/articles/generating-ssh-keys
https://help.github.com/articles/generating-ssh-keys

341Setting up Git

13.2.2 Forking the GitHub repository

The sample To Do application is available as a public GitHub repository under

https://github.com/bmuschko/todo. Because you’re not the owner of this repository,

you won’t be able to commit changes to it. The easiest way to get push permission on a

repository is to fork it from your own account. A fork is a local copy of the original

repository that you can modify at will without harming the original repository. To fork

a repository, navigate to the sample repository URL and click the Fork button in the

navigation bar shown in figure 13.3.

 After a few seconds, the project will be ready for use. To interact with your remote

GitHub repository you’ll need to install and configure the Git client.

13.2.3 Installing and configuring Git

You can download the client distribution from the Git homepage (http://git-scm.com/).

The page offers you installers for the most common operating systems. Follow the

instructions to install Git onto your system. After a successful installation, you should

be able to execute Git on the command line. You can verify the installed version with

the following command:

$ git --version
git version 1.8.2

Commits to a remote repository can be directly mapped to your GitHub account. By

setting your client’s username and email address, GitHub will automatically link the

Figure 13.2 Signing up for a free GitHub account

Figure 13.3 Forking the sample repository

https://github.com/bmuschko/todo
http://git-scm.com/

342 CHAPTER 13 Continuous integration

change to your account. The following two commands show how to set both configu-

ration values:

$ git config --global user.name "<username>"
$ git config --global user.email "<email>"

You’re all set; you’ve configured Git and the sample repository. Next, you’ll install Jen-

kins and configure a build job to run the build for your To Do application.

13.3 Building a project with Jenkins

Jenkins (http://jenkins-ci.org/) originated as a project called Hudson (http://hudson-

ci.org/). Hudson started out as an open source project in 2004 at Sun Microsystems.

Over the years, it became one of the most popular CI servers with a huge market

share. When Oracle bought Sun in 2011, the community decided to fork the project

on GitHub and call it Jenkins. While Hudson still exists today, most projects switched

to using Jenkins because it provides the best support for bug fixes and extensions. Jen-

kins, which is entirely written in Java, is easy to install and upgrade and provides good

scriptability and over 600 plugins. You’re going to install Jenkins on your machine.

13.3.1 Starting Jenkins

On the Jenkins webpage, you can find native installation packages for Windows, Mac

OS X, and various Linux distributions. Alternatively, you can download the Jenkins

WAR file and either drop it into your favorite Servlet container or directly start it

using the Java command. Download the WAR file and start up the embedded con-

tainer with the Java command:

$ java -jar jenkins.war

After it starts up successfully, open the browser and enter the URL http://local-

host:8080/. You should see the Jenkins dashboard. You’re ready to install plugins and

configure build jobs.

13.3.2 Installing the Git and Gradle plugins

Jenkins comes with a minimal set of features. For example, out of the box you can

only configure a build job that pulls the source code from a project hosted on CVS or

Subversion and invoke an Ant script. If you want to build a project with Gradle hosted

on a Git repository, you’ll need to install the relevant plugins. These plugins can be

installed through the plugin manager. To access the plugin manager, click Manage

Jenkins on the main dashboard page. Then, on the following page, click Manage

Plugins. You’ll end up on the Plugin Manager page, shown in figure 13.4.

 The Plugin Manager page shows four tabs: Updates, Available, Installed, and

Advanced. To install new plugins, navigate to the Available tab. In the upper-right

corner, you’ll find a search input box called Filter. Enter the search criteria “git

plugin” and tick the checkbox next to the plugin named Git Plugin, as shown in fig-

ure 13.5.

http://jenkins-ci.org/
http://hudson-ci.org/
http://hudson-ci.org/
http://localhost:8080/
http://localhost:8080/

343Building a project with Jenkins

After pressing the button Install Without Restart, the plugin is downloaded and

installed. Using this technique, you’ll also search for the Gradle plugin. Enter “gradle

plugin” into the search box, as shown in figure 13.6.

 After ticking the plugin’s checkbox, press the button Download Now and Install

After Restart. You’ll see a screen similar to figure 13.7 that shows the downloaded and

installed plugins. To use the plugins, Jenkins needs to be restarted. Ticking the check-

box Restart Jenkins When Installation Is Complete and No Jobs Are Running will take

care of the restart.

Figure 13.4 Jenkin’s Plugin Manager page

Figure 13.5 Installing the Git plugin

Figure 13.6 Installing the Gradle plugin

344 CHAPTER 13 Continuous integration

After a few moments, Jenkins is restarted and the plugins are fully functional. You’re

ready to define your first build job.

13.3.3 Defining the build job

Jenkins defines the actual work steps or tasks in a build job. A build job usually defines

the origin of source code that you want to build, how it should be retrieved, and what

action should be executed when the job is run. For example, a build job can be as sim-

ple as compiling the source code and running the unit tests. You’ll create a build job

that does exactly that for your To Do application.

 On the Jenkins main dashboard, click the link New Job. This opens a screen that

lets you enter the job name and select the type of project you want to build. For the

job name, enter “todo” and press the radio button Build a Free-style Software Project.

A free-style project allows you to control all aspects of a build job; for example, the

VCS and build tool you want to use. Figure 13.8 shows the selected values.

 When you’re done, click OK. The build job is created and you’ll be presented with

the job configuration page.

Figure 13.7 Restarting Jenkins through the browser

Figure 13.8 Creating the free-style build job

345Building a project with Jenkins

CONFIGURING THE REPOSITORY

First, you’ll configure the GitHub repository for your build job. By configuring the

repository, you ensure that Jenkins will know where to find the source code of your

project when the job is executed. If you scroll down a little in the configuration

screen, you’ll find a section named Source Code Management.

 You want to build your project stored in a Git repository. Click the Git radio button

and enter the repository URL, which is the SSH URL you’ll find in the forked repository

of your GitHub account. It usually has the following form: git@github.com:<user-

name>/todo.git. Figure 13.9 illustrates the filled-out Source Code Management section.

 Now that you’ve told Jenkins where to retrieve the sources from, you’ll also want to

define when to pull them. In the next section, you’ll set up a build trigger.

CONFIGURING THE BUILD TRIGGER

A build trigger is a standard feature of Jenkins. It determines when a build should be

executed or triggered. Let’s say you want to poll your repository on GitHub in certain

time intervals, such as every minute. Scroll to the configuration section named Build

Triggers, tick the checkbox Poll SCM, and enter the Unix cron expression “* * * * *”

into the input box, as shown in figure 13.10.

 The expression “* * * * *” means that the repository should be polled every sin-

gle minute. Polling serves your purpose of periodically checking for changes. On

the flip side, this method is fairly inefficient. Not only does it create unnecessary

load for your VCS and Jenkins server, it also delays the build after a change is pushed

to the repository by the timeframe you defined in your cron expression (in your case

this is one minute).

 A better way is to configure your Jenkins job to listen for push notifications from

the repository. Every time a change is committed to the repository, the VCS will make a

call to Jenkins to trigger a build. Therefore, a build is only executed if an actual

Figure 13.9 Configuring the Git repository

Figure 13.10 Polling the repository for changes minute by minute

346 CHAPTER 13 Continuous integration

change occurs. You’ll find many examples online that describe the necessary setup for

your VCS. Next, we’ll define what a build means if it’s triggered.

CONFIGURING THE BUILD STEP

Whenever a build is triggered, you want to execute your Gradle build script. Each task

that should be executed is called a build step. Build steps can be added in the config-

uration section Build. Under Build, click the dropdown box Add Build Step and select

Invoke Gradle Script. The options you see in figure 13.11 are provided by the Gradle

plugin you installed earlier. Choose the radio button Use Gradle Wrapper and enter

the tasks “clean test” into the Tasks input box.

 This is one of the scenarios where the Gradle Wrapper really shines. You didn’t have

to install the Gradle runtime. Your build provides the runtime and clearly expresses

which version of Gradle should be used.

 If you’re building the project on your developer machine, you’ll want to make

good use of Gradle’s incremental build feature to save time and improve the perfor-

mance of your build. In a CI setting, the build should be run from a clean slate to

make sure all tests are rerun and recorded appropriately. That’s why you added “clean

test” to the list of tasks. Next, we’ll touch on configuring build notifications.

CONFIGURING EMAIL NOTIFICATION

Email notifications are set up as a post-build action. Scroll down to the section

Post-build Actions, click the dropdown box Add Post-build Action, and choose the

option E-mail Notification. The only thing you need to do to receive emails on a

failed build is to enter your email address into the Recipients input box, as shown

in figure 13.12.

 After adding this entire configuration, make sure you save the settings by pressing

Save on the bottom of the screen. That’s all you need to execute your build.

Figure 13.11 Configuring the Gradle build invocation

347Building a project with Jenkins

13.3.4 Executing the build job

After saving the build job, you can find it listed on Jenkins’ dashboard. The gray ball on

the left side of the job indicates that it hasn’t been built yet. A successful build will turn it

blue, and a failed build is indicated by a red ball. You can either wait a minute until

the job is triggered automatically or you can manually initiate the build by pressing the

clock icon, which schedules the build. Figure 13.13 shows your first build in progress.

 After a few minutes, the build is finished. You should see the ball turn blue and a

sun icon will appear, which indicates the health status of your project. The job also

reports on the last duration of the build and displays a timestamp that tells you the

last time the build was successfully run. Figure 13.14 shows the successful build in

the dashboard.

 To get more information about the specifics of a build, you can click on the job

name, which brings you to the project’s homepage. The page lets you reconfigure the

Figure 13.12 Setting up a post-build email notification action

Figure 13.13 Build executing in progress

Figure 13.14 Build job executed successfully

348 CHAPTER 13 Continuous integration

job, trigger the build manually, and inspect the build history. You’ll find your first

build at #1 in the build history.

 Click on it to examine what happened under the hood when the job was executed.

One of the menu items on the left side is the console output. The console output

recorded the steps that were executed during the build. First, the Git repository was

checked out from the master branch. After pulling down the source code, the Gradle

build was initiated for the tasks you defined. If you look closer, you can also see that

the Gradle Wrapper and the dependencies were downloaded before the tasks were

executed. Figure 13.15 shows an excerpt of the console output.

 The console output is rendered in real time while a build is executing. This feature

provides invaluable information if you want to track down the root cause of a failed build.

 Congratulations, you set up a CI job for your project! To trigger a subsequent

build, you can either push a code change to your repository or manually initiate it on

the project’s dashboard. Next, you’ll improve on your project’s reporting capabilities.

13.3.5 Adding test reporting

Jenkins provides extensive reporting capabilities. With minimal effort, you can config-

ure your project to process the XML test results produced by testing frameworks like

JUnit, TestNG, and Spock. In turn, Jenkins generates a graphical test result trend over

time and lets you drill into the details of successfully executed and failed tests.

Though limited in functionality, it can serve as an easy-to-set-up alternative to report-

ing provided by Sonar.

Figure 13.15 Job execution console output

349Building a project with Jenkins

PUBLISHING UNIT TEST RESULTS

You may remember that the XML test results produced by Gradle sit in the directory

build/test-results for each of your subprojects. To create a clean separation

between unit and integration test results, you reconfigured the project on GitHub to

put the results for unit tests in the subdirectory unit and integration test results into

the subdirectory integration.

 After navigating back to the project configuration page, scroll down to the section

Post-build Actions, click the dropdown box Add Post-build Action, and choose Publish

JUnit Test Result Report. You can tell Jenkins to parse the test results of all subprojects

by entering the expression “**/build/test-results/unit/*.xml” into the input field, as

shown in figure 13.16.

 For test results to be rendered on the project dashboard, you’ll need to execute

the build at least once. You’re going to trigger a build manually. You’ll find a new icon

called Latest Test Results. If you click on it, you can view statistical information on

your executed test suite. The test result trend determines the historical development

over multiple data points. After executing the job at least twice, a graph is rendered.

Successful tests are displayed in blue and failed tests in red. Figure 13.17 shows the test

result trend in the project’s dashboard.

 Your unit test task is configured to produce code coverage metrics with JaCoCo.

Next, you’ll show the test coverage trend alongside the unit test results.

PUBLISHING CODE COVERAGE RESULTS

Rendering JaCoCo code coverage results is provided through a third-party plugin. You

already know how to install a plugin for Jenkins. Go to the plugin manager page,

search for jacoco plugin, and install the plugin. After restarting Jenkins, you can add a

Figure 13.16 Configuring test reporting for all subprojects

Figure 13.17 Test result trend graph

350 CHAPTER 13 Continuous integration

new post-build action named Record JaCoCo Coverage Report. Figure 13.18 shows

how to configure the plugin to point to the correct exec file, as well as directories that

hold the class and source files.

 Another useful feature of the plugin is the ability to act as a quality gate. Let’s

assume you want to make sure that your unit tests have to cover at least 70% of all

classes and methods. In case your project’s code coverage is below the expected qual-

ity threshold, Jenkins will appropriately reflect that as poor health status.

 In figure 13.19 you can see the code coverage trend below the test result trend

after creating at least two data points. You can directly drill into the coverage result

by clicking on the graph or the menu item Coverage Trend on the left side of the

project dashboard.

 This concludes our discussion of setting up a basic build job with Jenkins. You’ll

now be able to use your knowledge to build your own projects. Later in this chapter,

you’ll expand your knowledge by chaining multiple build jobs to form a build pipe-

line. Before you do that, we’ll discuss some cloud-based CI solutions.

Figure 13.18 Configuring code coverage reporting

Figure 13.19 Code coverage trend graph

351Exploring cloud-based solutions

13.4 Exploring cloud-based solutions

Cloud-hosted CI servers deliver immediate benefits. First and foremost, you don’t

need to provision your infrastructure and maintain the software. Depending on the

purpose of your build, the demand for hardware resources can be high. Continuous

integration in the cloud promises to provide a scalability solution when you need it.

Need more CPU power to satisfy the demand of multiple, concurrent compilation

build jobs? Simply scale up by purchasing a plan that provides more hardware

resources. Many cloud-based CI servers directly integrate with your online repository

account like GitHub. Log into your account, select a project, and start building. The

following list gives an overview of some of the popular CI server solutions in the cloud

with Gradle support:

■ CloudBees DEV@cloud: The DEV@cloud service (http://www.cloudbees.com/dev.cb)

is a standard Jenkins server. The free version comes with limited server resources

and plugin support. The paid plan gives you full access to all standard Jenkins

plugins. DEV@cloud also allows you to limit the visibility of project reports and

access to configuration options.

■ CloudBees BuildHive : BuildHive (https://buildhive.cloudbees.com/) is a free ser-

vice that lets you build projects hosted on GitHub. The service is backed by Jen-

kins with a limited feature set—for example, you can’t add more Jenkins

plugins or repositories hosted outside of GitHub. Build jobs are easy to set up

and provide support for verifying pull requests before you merge them. Build-

Hive is a good choice if you need basic compilation and testing support for

open source projects.

■ Travis CI: Travis CI (https://travis-ci.org/) is a CI service suitable for open

source, small-business, and enterprise projects. The service provides its own

homegrown CI product that lets you build projects hosted on GitHub. Projects

need to provide a configuration file checked in with the source code to indicate

the language and the command you want to execute.

■ drone.io: Drone.io (https://drone.io/) lets you link your GitHub, Bitbucket, or

Google Code accounts to CI build projects. In the free version, you can only

build public repositories. Paid plans offer build support for private repositories

as well. While reporting is limited, drone.io allows you to automatically deploy

your application to environments like Heroku or AppEngine.

Choosing a hosted CI server might sound like a no-brainer. However, there are some

drawbacks. Continuous integration can consume a lot of hardware resources, espe-

cially if you have to build a whole suite of applications and want quick feedback. The

costs may easily spiral out of control. If you’re playing with the idea of using a cloud-

based CI solution, it’s a good idea to try out the free tier first and diligently evaluate

the pros and cons.

 You already learned how to use Jenkins to build tasks for your To Do application. If

you want to build a full pipeline that separates individual tasks into phases, you’ll need

http://www.cloudbees.com/dev.cb
https://buildhive.cloudbees.com/
https://travis-ci.org/
https://drone.io/

352 CHAPTER 13 Continuous integration

to create multiple build jobs and connect them. In the following section, you’ll learn

how to achieve that with Jenkins.

13.5 Modeling a build pipeline with Jenkins

While it may be convenient to run all possible tasks of your Gradle build in a single

build job, it’s hard to find the root cause of a failed build. It’s much easier to break up

the build process into smaller steps with their own technical responsibility. This leads

to clear separation of concerns and faster, more specific feedback. For example, if you

create a step for exclusively executing integration tests and that step fails, you know

two things. On the one hand, you can be certain that the source code is compilable

and the unit tests ran successfully. On the other hand, the root cause for a failed inte-

gration test is either an unsuccessful test assertion or a misbehaving integration with

other components of the system. In this section, you’ll model the first steps of your

build pipeline, as shown in figure 13.20.

 A build pipeline defines quality gates between each of the steps. Only if the result

of a build step fulfills the requirements of its quality gate will the pipeline then pro-

ceed to the next step. What does this mean for your example? In case the suite of inte-

gration tests fails to run successfully, the pipeline won’t trigger the next build step that

performs code analysis.

13.5.1 Challenges of building a pipeline

When modeling a build pipeline, you face certain challenges that call for adequate

solutions. The following list names a few very important points:

■ Every build pipeline starts with a single initial build job. During the job’s execu-

tion, the project’s source code is checked out or updated from the VCS reposi-

tory. Subsequent steps will work on the same revision of the code base to avoid

pulling in additional, unwanted changes.

■ A unique build number or identifier is used to clearly identify a build. This

build number should be assigned by the first job of the pipeline and carried

across all steps of the pipeline. Produced artifacts (for example, JAR files,

reports, and documentation) incorporate the build number to clearly identify

their version.

■ A deliverable artifact should only be created once. If later steps require it (for

example, for deployment), it should be reused and not rebuilt. The build num-

ber is used to retrieve the artifact from a shared binary repository.

Compile

code and

unit tests

Integration

tests

Code

analysis

Assemble

binaries

Commit stage

Initial build pipeline phases

Figure 13.20 Modeling the first phases

of a build pipeline

353Modeling a build pipeline with Jenkins

■ While many build steps are triggered automatically (for example, on a code

change committed to VCS or when a previous step passed the quality gate),

some of the steps need to be initiated manually. A typical example would be the

deployment of an artifact to a target environment. Manual triggers are espe-

cially useful if you want to provide push-button release functionality to nontech-

nical stakeholders. In such a scenario, the product owner could decide when to

release functionality to the end user.

At the time of writing, Jenkins doesn’t provide a standardized and easy-to-use solution

to implement those needs. The good news is that you can model a full-fledged build

pipeline with the help of community plugins. The next section will give you a high-

level overview of their features and use cases before you use them to configure your

pipeline jobs.

13.5.2 Exploring essential Jenkins plugins

Wading through the feature lists of more than 600 Jenkins plugins is no fun if you

need particular functionality. The following four plugins provide you with the most

essential functionality to get started with a build pipeline. Please install every one of

them while following along.

PARAMETERIZED TRIGGER PLUGIN

Jenkins provides out-of-the-box functionality for chaining individual build jobs. All

you need to do is add a new post-build action called Build Other Projects. This action

allows you to define the build job name that should automatically be triggered when

the current build job completes. The problem with this approach is that you can’t pass

parameters from one job to another, a feature you need to clearly identify a build by

an initial build number.

 The Parameterized Trigger plugin extends the functionality of chaining build

jobs with the ability to declare parameters for the triggered job. After installing the

plugin, you can add a new post-build action named Trigger Parameterized Build on

Other Projects. In the configuration section you can name the project to build,

under what condition it should be triggered, and the parameters you want to pass

along. Keep in mind that you can also trigger multiple jobs by declaring a comma-

separated list of job names.

 Let’s say you want to define a parameter named SOURCE_BUILD_NUMBER in the first

step of your pipeline that indicates the initial number of a build. As the value for this

parameter, you can use the built-in Jenkins parameter BUILD_NUMBER. BUILD_NUMBER is

a unique number assigned to every Jenkins build job at runtime. Figure 13.21 demon-

strates how to define a build trigger on the build job running your integration tests

from the job definition responsible for compilation/unit tests execution.

 In the triggered build, you can now use the parameter SOURCE_BUILD_NUMBER as an

environment variable in either the build job definition or the invoked Gradle build.

For example, in your Gradle build script you can directly access the value of the param-

eter by using the expression System.env.SOURCE_BUILD_NUMBER.

354 CHAPTER 13 Continuous integration

If you’re unsure about what parameters have been passed to a build job, you can

install the Jenkins plugin Show Build Parameters Plugin. It helps you verify parame-

ters and their values by displaying them on the project page for a specific build.

BUILD NAME SETTER PLUGIN

By default, every Jenkins job uses the expression #${BUILD_NUMBER} to display the

number for a particular build. On your project page, the expression looks similar to

this: ,Build #8 (Apr 2, 2013 6:08:44 AM)., If you’re dealing with multiple pipeline defi-

nitions, you may want a more expressive build name to clearly identify which pipeline

a build belongs to. The Build Name Setter plugin allows you to adjust the build name

expression. Figure 13.22 shows how you can add the prefix todo to the build name

expression for the initial compilation/unit tests job.

 After running a build, the name is displayed as follows: Build todo#8 (Apr 2, 2013

6:08:44 AM). We’ll expand on using the plugin’s functionality later when you model

the full pipeline.

CLONE WORKSPACE SCM PLUGIN

As discussed earlier, you only want to check out the source code from the VCS reposi-

tory once during the initial build job execution. Subsequent build jobs should work

on the same change set. The Clone Workspace SCM plugin lets you reuse a project’s

workspace in other jobs. To achieve this, you’ll need to configure the initial build job

to archive the checked-out change set, as shown in figure 13.23.

 In subsequent jobs, you can now select the new option Clone Workspace in the

Source Code Management configuration section. Figure 13.24 demonstrates how to

reuse the workspace of the parent project todo-initial in one of the subsequent

build jobs.

Figure 13.21 Passing a parameter from one build job to another when triggered

Figure 13.22 Build name expression for initial job

355Modeling a build pipeline with Jenkins

Instead of checking out the source code again, you can now build on top of the already

existing workspace. This gives you access to previously created artifacts like compiled

class files and project reports.

BUILD PIPELINE PLUGIN

After chaining multiple build jobs, it’s easy to lose track of their exact order if you

don’t name them appropriately. The Build Pipeline plugin provides two types of func-

tionality. On the one hand, it offers a visualization of your whole pipeline in one sin-

gle view. On the other hand, it allows you to configure a downstream build job to only

execute if the user initiates it manually. This is especially useful for push-button

deployment tasks. We’ll explore this functionality in chapter 15 when discussing arti-

fact deployments.

 Creating a build pipeline view of the chained tasks is simple. After installing the

plugin, click the + tab in the main Jenkins dashboard to add a new view. In the ren-

dered page, select the radio button Build Pipeline View and enter an appropriate view

name, as shown in figure 13.25.

Figure 13.23 Archiving the initial job workspace

Figure 13.24 Cloning the archived workspace in subsequent jobs

Figure 13.25 Creating a new build pipeline view

356 CHAPTER 13 Continuous integration

After pressing OK, you’re presented with just one more page. Select the initial build

job and you’re ready to create the build pipeline view. Figure 13.26 shows an exem-

plary view produced by the plugin.

 As shown in the figure, the pipeline consists of three build jobs. The arrows indi-

cate the order of execution. The status of a build is indicated by the color.

 Another option for creating a graphical representation of the pipeline is the

Downstream Buildview plugin. Starting from the initial project, it renders a hierar-

chical view of downstream projects. The plugin you choose for your project is

mostly a matter of taste. In this book, we’ll stick to the Build Pipeline plugin. After

getting to know these plugins, you’re well equipped to build the first three steps of

your pipeline.

13.5.3 Configuring the pipeline jobs

Modeling a build pipeline for your To Do application doesn’t require any additional

Gradle tasks. With the help of Jenkins, you’ll orchestrate a sequence of build jobs that

call off to your existing tasks. The full pipeline consists of three build jobs in the fol-

lowing order:

1 todo-initial: Compiles the source code and runs the unit tests

2 todo-integ-tests: Runs the integration tests

3 todo-code-quality: Performs static code analysis using Sonar

Earlier in this chapter, you set up a build job for compiling your source code and run-

ning the unit tests. With minor modifications, this job will serve as the initial step for

your build pipeline. To indicate that the job is the entry point for your pipeline, you’ll

rename it todo-initial. Go ahead and create new free-style build jobs for steps 2 and

3 with the names mentioned above. Later, you’ll fill them with life.

 Declaring Jenkins build jobs can be a repetitive and tedious task. To keep it short,

I’ll stick to the most important points when explaining the configuration for each of

the build steps.

Figure 13.26 Build pipeline view

357Modeling a build pipeline with Jenkins

STEP 1: COMPILATION AND UNIT TESTS

You’ll start by making some additional tweaks to the initial build job:

■ To be able to use the same workspace in downstream projects, make sure to add

the post-build action Archive for Clone Workspace SCM with the expression

“**/*”.

■ Define the build name using the expression todo#${BUILD_NUMBER}.

■ Add a parameterized build action that defines a build trigger on the job run-

ning your integration tests named todo-integ-tests. You’ll also declare the

downstream parameter SOURCE_BUILD_NUMBER=${BUILD_NUMBER}.

STEP 2: INTEGRATION TESTS

The integration test build step is only triggered if step 1 is completed successfully. This

is only the case if there were no compilation errors and all unit tests passed. Make the

following modifications to the default job configuration:

■ In the Source Code Management configuration section, choose the option

Clone Workspace and then the parent project todo-initial.

■ As the build step, you want to trigger the execution of your integration tests.

Add a build step for invoking your Gradle script using the wrapper and enter

the task databaseIntegrationTest.

■ You separated the test results between unit and integration tests by writing them

to different directories. For publishing the test reports, use the expression “**/

build/test-results/integration/*.xml.” You’ll select the file “**/build/jacoco/

integrationTest.exec” for code coverage reporting.

■ Define the build name by incorporating the upstream build number parame-

ter: todo#${ENV,var="SOURCE_BUILD_NUMBER"}.

■ Add a parameterized build action that defines a build trigger on the job running

your static code analysis named todo-code-quality. As far as parameters go,

you’ll reuse the existing ones by choosing the option Current Build Parameters.

STEP 3: CODE QUALITY

The code quality build step forms the last step in your pipeline for now. Therefore,

you don’t need to define a downstream project. You’ll expand on your pipeline in the

next two chapters by adding jobs for publishing the WAR file to a repository and

deploying the artifact to different runtime environments. Most of the configuration

for this job looks similar to the previous job definition:

Quick setup of Jenkins jobs

In its default configuration, Jenkins stores the definition of a build job in the directory

~/.jenkins/jobs on your local disk. Don’t worry if you feel lost at any point of time

when configuring your pipeline. The source code of the book contains the job defini-

tion for each of the steps. All you need to do is copy the job definitions to the jobs

directory and restart the server.

358 CHAPTER 13 Continuous integration

■ In the Source Code Management configuration section, choose the option Clone

Workspace and then the parent project todo-initial.

■ As the build step, you want to trigger the execution of Sonar Runner to pro-

duce code quality metrics. Add a build step for invoking your Gradle script

using the wrapper and enter the task sonarRunner.

■ Define the build name by incorporating the upstream build number parame-

ter: todo#${ENV,var="SOURCE_BUILD_NUMBER"}.

Perfect, you built your first build pipeline with Jenkins by setting up a chain of Jenkins

jobs. Make sure to configure at least one of the pipeline visualization plugins. It’s

exciting to see the job execution travel down the swim lane.

13.6 Summary

Continuous integration is a software development practice that delivers an instant

payoff for your team and the project. By automatically integrating shared source code

multiple times a day, you make sure that defects are discovered at the time they’re

introduced. As a result, the risk of delivering low-quality software is reduced.

 In this chapter, you experienced firsthand how easy it is to set up continuous inte-

gration for a project. You installed the open source CI server Jenkins on your machine

and created a build job for the To Do application. In a first step, you learned how to

periodically retrieve the source code from a GitHub repository and trigger a Gradle

build. One of Jenkins’s strong suits is reporting. You configured your build job to dis-

play the unit test results and code coverage metrics. Hosting a Jenkins instance on a

server requires hardware resources and qualified personnel to maintain it. We

explored popular, cloud-hosted CI solutions and compared their advantages and dis-

advantages. While hosting a CI server in the cloud is convenient, it may become costly

with an increasing number of build jobs and features.

 A CI server is more than just a platform for compiling and testing your code. It can

be used to orchestrate full-fledged build pipelines. You learned how to model such a

build pipeline with Jenkins. Though Jenkins doesn’t provide a standardized pipeline

implementation out of the box, you can combine the features of various community

plugins to implement a viable solution. We discussed how to set up build jobs for the

first three stages of a continuous delivery commit phase and tied them together.

 In the next chapter, you’ll learn how to build the distribution for your project and

how to publish it to private and public artifact repositories. In later chapters, you’ll

extend this pipeline by creating jobs for publishing the WAR file and deploying it to a

target environment.

359

Artifact assembly
and publishing

As a developer, you mainly deal with two kinds of artifacts during the software

development process: source code and binary artifacts as results of your build.

We’ve already seen examples of binary artifacts in this book, including JAR, WAR,

and ZIP files.

 Source code repositories provided by version control systems like Git or Subver-

sion are designed to manage source code. They provide features like storing the

changes between two versions of a file, branching, tagging, and many more. A source

code file is usually small and can be handled well by a source code repository. Larger

files, typically binaries, can degrade the performance of your repository, slow down

the developer’s check-out process, and consume a lot of network bandwidth.

 Binary repositories like JFrog Artifactory and Sonatype Nexus are well suited for

storing binary artifacts. One of the most prominent binary repositives is Maven

This chapter covers

■ Building artifacts and distributions

■ Publishing artifacts to local, remote, and public

Maven repositories

■ Artifact assembly and publishing as part of the

build pipeline

https://issues.sonatype.org/
https://issues.sonatype.org/
https://issues.sonatype.org/
https://issues.sonatype.org/browse/OSSRH/
https://issues.sonatype.org/browse/OSSRH/
http://www.sonatype.org/nexus/
http://www.jfrog.com/home/v_artifactory_opensource_overview
http://www.jfrog.com/home/v_artifactory_opensource_overview
https://docs.sonatype.org/display/Repository/Sonatype+OSS+Maven+Repository+Usage+Guide
https://docs.sonatype.org/display/Repository/Sonatype+OSS+Maven+Repository+Usage+Guide

360 CHAPTER 14 Artifact assembly and publishing

Central. They’re equipped to handle binary artifacts of large file sizes, provide a way

to organize them, describe them with the help of metadata, and expose an interface

(a user interface and/or API) to publish and download these artifacts.

 In this chapter, we’ll look at how to define the artifacts your build is supposed to

produce. We’ll also discuss how to generate metadata for these artifacts and publish

them to local and remote repositories. The CloudBees plugin you wrote in chapter 8

is a perfect example to demonstrate this functionality. By publishing the artifact of the

plugin, you can make its capabilities available to other Gradle users within your orga-

nization or to anyone on the web interested in using the plugin.

 In the context of continuous delivery, publishing your artifact plays a crucial

role. Once you package the delivery with a specific version, it’s ready to be deployed

to various target environments for acceptance testing or to be given into the hands

of the end user. It’s a good practice to build the artifact only once, deploy it to a

binary repository, and reuse it whenever needed. We’ll discuss how to apply this

concept to your To Do application as part of your build pipeline introduced in the

last chapter.

 Let’s start by bringing back your plugin code from chapter 8 and reviewing its

assembly process.

14.1 Building artifacts and distributions

By default, every project that applies the Java plugin generates a single JAR file when

the lifecycle task assemble is executed. In chapter 8, you made good use of this func-

tionality when you created the plugin artifact for further distribution. The artifact file-

name consists of a name, which is derived from the base name (usually the project

name), and a version number if it was set via the version property. The following

directory tree shows the plugin artifact after generating it:

.
├── build
│ ├── libs
│ │ └── cloudbees-plugin-1.0.jar
│ └── ...
├── build.gradle
└── src

The file type of an archive might change based on the project type. For example, if

you apply the War plugin, the generated archive is turned into a web archive (WAR

file) with all its specific packaging characteristics.

 While a single, project-type-specific artifact is sufficient for most applications, you

may want to create additional artifacts as part of the assembly process. Gradle doesn’t

impose any limitations on how many artifacts a project can produce. If you’re coming

from Maven, which gives you a hard time for wanting to create more than one artifact

per project, you may find this feature a welcome change.

 So how do you add custom archives to your project? Gradle provides archive tasks like

Zip, Tar, and Jar, available through the API package org.gradle.api.tasks.bundling.

Standard JAR artifact
containing class files and
plugin meta-information

https://oss.sonatype.org/

361Building artifacts and distributions

Chapter 4 presented an example of adding an enhanced task that packages a Zip file. It

may be helpful to have a quick peek at the example again to refresh your memory.

 To produce the output of a custom archive task, you’ll need to execute it on the

command line or add it as a task dependency to another task. If you consider nonstan-

dard artifacts part of your project’s delivery consumed by other users or projects,

you’ll want to include them into the assembly process. Gradle offers a convenient and

declarative way to add artifacts.

14.1.1 Declaring additional artifacts

Understanding how to declare additional project artifacts requires a bit of back-

ground information: every project that applies the Java plugin is equipped with the

configuration archives. You can check its existence by invoking the dependencies

task, as shown in the following command-line output:

$ gradle dependencies
:dependencies

--
Root project
--

archives - Configuration for archive artifacts.
No dependencies

...

The archives configuration declares the outgoing artifacts of a project. For Java proj-

ects, the artifact assigned to this configuration is the standard JAR file. Whenever you

execute the task assemble, all declared artifacts are built. You’re going to enrich your

plugin project by adding some more outgoing artifacts.

 You’ll learn how to achieve this by example. As the popularity of your plugin

grows, you’ll want to give your users deeper insights into the inner workings of your

code. Plugin consumers are especially interested in learning about the exposed API.

What could better serve this purpose than to provide them with the source code and

the Groovydocs of your code?

 It’s common practice to deliver the source code and Groovydocs of a project in the

form of JAR files. For your plugin project, this means that you’ll have to create two new

tasks of type Jar. The source code JAR task needs to include the source files of all

SourceSets. You’ll name the task sourcesJar. The task groovydocJar creates a JAR file

containing the API documentation of your Groovy classes. To be able to include the

project’s Groovydocs into a JAR file, you’ll need to generate them first. This can easily

be achieved by letting the jar task depend on the groovydoc task provided by the Java

plugin. Figure 14.1 shows the new archive tasks as part of the assemble task graph.

 Let’s discuss the implementation shown in listing 14.1. To clearly identify that the

resulting JAR files belong to your plugin, it’s helpful to align the naming. For that pur-

pose, you’ll add the suffix (also called classifier) sources to the JAR file containing

source code and the suffix groovydoc to the JAR file containing the Groovydocs.

Standard configuration used
to declare outgoing artifacts

362 CHAPTER 14 Artifact assembly and publishing

When looking at some of the libraries on Maven Central, you’ll notice that this nam-

ing convention is a fairly common practice.

ext.artifactBaseName = 'cloudbees-plugin'

task sourcesJar(type: Jar) {
 baseName artifactBaseName
 classifier 'sources'
 from sourceSets.main.allSource
}

task groovydocJar(type: Jar, dependsOn: groovydoc) {
 baseName artifactBaseName
 classifier 'groovydoc'
 from groovydoc.destinationDir
}

artifacts {
 archives sourcesJar
 archives groovydocJar
}

There are two ways to make the new archive tasks part of the assemble task graph. You

can go down the imperative route by adding the sourcesJar and groovydocJar as

task dependencies. This approach probably looks the most familiar and straightfor-

ward to battle-scarred Ant users:

assemble.dependsOn sourcesJar, groovydocJar

This works fine and is a valid way to hook up the creation of all artifacts for a project.

However, Gradle offers a more declarative mechanism. You can express what outgoing

artifacts a project produces without saying how they’re created. Being declarative

offers two benefits. On the one hand, it’s more readable and expressive. On the other

hand, projects participating in more complex builds can directly refer to the outgoing

artifacts of another project with the help of Gradle’s API.

 To declaratively make the new archive tasks part of the assemble task graph,

you’ll need to register them with the project’s instance of ArtifactHandler. The

interface org.gradle.api.artifacts.dsl.ArtifactHandler is responsible for defin-

ing and publishing artifacts. To register new artifacts with the project, the method

Listing 14.1 Declaring additional artifacts

assemble

jar

sourcesJar

groovydocJargroovydoc

...

...

...

Figure 14.1 Tasks for

creating additional artifacts

Task for creating JAR file
containing all source files

Task for creating JAR file
containing Groovydocs
of project

Registers additional
artifacts by assigning them
to archives configuration

363Building artifacts and distributions

Project#artifacts is used. Within the closure, you can assign a task of type org

.gradle.api.tasks.bundling.AbstractArchiveTask (for example, Jar, Zip, or Tar)

to the archives configuration. Alternatively, you can also assign an instance of type

java.io.File in case the artifact isn’t generated by an archive task.

 After assigning your archive tasks to the archives configuration, executing the

assemble task will automatically invoke the creation of your custom JAR files:

$ gradle assemble
:compileJava UP-TO-DATE
:compileGroovy
:processResources
:classes
:jar
:groovydoc UP-TO-DATE
:groovydocJar
:sourcesJar
:assemble

As expected, these files end up in the build/libs directory side by side with the stan-

dard JAR file of the project:

.
├── build
│ ├── libs
│ │ ├── cloudbees-plugin-1.0-groovydoc.jar
│ │ ├── cloudbees-plugin-1.0-sources.jar
│ │ └── cloudbees-plugin-1.0.jar
│ └── ...
├── build.gradle
└── src

You learned how easy it is to declare tasks that produce additional project artifacts and

how to register them with the assembly lifecycle process. As part of your software deliv-

ery process, you may also want to create a single archive or even multiples archives

containing a unique set of these artifacts. This requirement usually arises if you need

to assemble distributions targeted toward different operating systems, specific groups

of end users, or diverse product flavors of your software. Let’s see how creating distri-

butions is supported in Gradle.

14.1.2 Creating distributions

Creating custom distributions in Gradle is a no-brainer. For each archive you want to

create, you can add an enhanced task of type Zip or Tar. While this approach works

great for a project with a small set of distributions, you’ll have to come up with a nam-

ing pattern for the tasks to clearly express their intent.

 Gradle’s distribution plugin offers a more streamlined and declarative approach to

solving this problem. The plugin exposes an expressive language that lets you describe

a number of distributions for a project without having to manually declare tasks. The

task creation is handled by the plugin under the hood. The plugin lets you generate a

distribution in the form of a ZIP or TAR file.

Standard JAR task

JAR task packaging
project’s Groovydocs

JAR task bundling
project’s source code

Assembled
Groovydocs JAR file

Assembled source
code JAR file

Standard JAR artifact
containing class files and
plugin meta-information

http://wiki.jfrog.org/confluence/display/RTF/Gradle+Artifactory+Plugin
https://bintray.com/
https://bintray.com/
https://bintray.com/

364 CHAPTER 14 Artifact assembly and publishing

 Let’s say you want to create a distribution for your CloudBees plugin project that

bundles the plugin JAR file, the sources JAR file, and the Groovydocs JAR file into a

new archive. The following listing demonstrates how to apply the distribution plugin

and specify the target directory content you want to bundle with the archive.

apply plugin: 'distribution'

distributions {
 main {
 baseName = archivesBaseName

 contents {
 from { libsDir }
 }
 }
}

With this code in place, you can decide whether you want to create a ZIP or TAR file

for the distribution. The ZIP file can be generated by the task distZip, and the TAR

file is built by the task distTar. Usually, you’ll just need one of these file formats. A

TAR file is oftentimes a preferred format on UNIX operating systems. For a cross-

platform distribution, a ZIP file is usually the preferred format. The following command-

line output shows the creation of a ZIP distribution:

$ gradle assemble distZip
:compileJava UP-TO-DATE
:compileGroovy
:processResources
:classes
:jar
:groovydoc UP-TO-DATE
:groovydocJar
:sourcesJar
:assemble
:distZip

Distributions are placed into the directory build/distributions. The following direc-

tory tree shows the generated file:

.
├── build
│ ├── distributions
│ │ └── cloudbees-plugin-1.0.zip
│ ├── libs
│ │ ├── cloudbees-plugin-1.0-groovydoc.jar
│ │ ├── cloudbees-plugin-1.0-sources.jar
│ │ └── cloudbees-plugin-1.0.jar
│ └── ...
├── build.gradle
└── src

Listing 14.2 Building a distribution

Standard distribution
configuration closure named
main by convention

Base name of
distribution file

Packages all files
in build/libs

ZIP distribution

Source files included
in distribution

https://bintray.com/
https://bintray.com/
https://bintray.com/docs/help/bintrayuserguide.html

365Building artifacts and distributions

The distribution plugin is designed to support more than a single distribution. For

each additional distribution, you’ll need to add another named configuration block

within the distributions closure. Listing 14.3 demonstrates an example. On top of

the standard distribution that bundles all JAR files from the directory build/libs, you

want to create a distribution that solely contains documentation files. As documenta-

tion files, you classify the source files JAR and the Groovydocs JAR.

distributions {
 main {
 ...
 }

 docs {
 baseName = "$archivesBaseName-docs"

 contents {
 from(libsDir) {
 include sourcesJar.archiveName
 include groovydocJar.archiveName
 }
 }
 }
}

You may have noticed that the configuration block of the distribution is named docs.

The plugin automatically derives the distribution task names for nonstandard distri-

butions from the declared name. In addition to the already existing tasks, you can

now generate the documentation distribution by using the tasks docsDistZip and

docsDistTar. Generate the distribution—this time as a TAR file:

$ gradle assemble docsDistTar
:compileJava UP-TO-DATE
:compileGroovy UP-TO-DATE
:processResources UP-TO-DATE
:classes UP-TO-DATE
:jar UP-TO-DATE
:groovydoc UP-TO-DATE
:groovydocJar UP-TO-DATE
:sourcesJar UP-TO-DATE
:assemble UP-TO-DATE
:docsDistTar

The distribution output directory now also contains the expected TAR file:

.
├── build
│ ├── distributions
│ │ ├── cloudbees-plugin-1.0.zip
│ │ └── cloudbees-plugin-docs-1.0.tar
│ ├── libs
│ │ ├── cloudbees-plugin-1.0-groovydoc.jar
│ │ ├── cloudbees-plugin-1.0-sources.jar

Listing 14.3 Configuring a custom distribution

Custom distribution
configuration closure

Base name of
distribution file

Only packages sources and
Groovydocs JARs in build/libs

Standard distribution
as ZIP file

Documentation
distribution as TAR file

366 CHAPTER 14 Artifact assembly and publishing

│ │ └── cloudbees-plugin-1.0.jar
│ └── ...
├── build.gradle
└── src

You saw how to declare and build distributions for your plugin project. Though

descriptive and powerful, the requirements in your project may call for more complex

or platform-specific functionality; for example, creating a desktop installer or generat-

ing an RPM package. If you feel like the distribution plugin doesn’t cut the mustard,

make sure to look at third-party Gradle plugins. Some of them may provide the func-

tionality you’re looking for.

 Let’s summarize what you’ve done so far: you enabled your project to produce the

plugin JAR file and two documentation archives containing the project’s source code

and Groovydocs. Now you’re ready to share the plugin with the world. Next, I’ll show

how to publish these artifacts to a binary repository.

14.2 Publishing artifacts to a binary repository

In chapter 5, we mainly talked about dependency management from a consumer’s per-

spective. You learned how to declare dependencies and repositories within your build

script. Gradle’s dependency manager would in turn try to locate these dependencies,

download and store them in a local cache, and make them available to your build.

 In this chapter, you’ll take on the role of the artifact producer. You’ll learn how to

publish build artifacts to a local or remote repository. An important step in the pub-

lishing process is to generate metadata for these artifacts. This metadata, usually

stored in an XML-based text file, can give sufficient information about the corre-

sponding artifacts. The following list should give you an idea of some common types

of metadata:

■ General information about the artifact, like name, description, involved devel-

opers, and links to source code or documentation

■ The available version of the artifact

■ Transitive dependencies the artifact relies on

■ The software license of an artifact a consumer has to comply to

Gradle can help with producing customized metadata and uploading the artifacts of a

build to different types of repositories. Figure 14.2 demonstrates the interaction

among a Gradle build, its produced artifacts, and some targeted binary repositories.

 The most common repository formats you’ll find in the wild are based on either

Maven or Ivy. At the time of writing, Gradle doesn’t provide its own, specialized repos-

itory format. For our examples, you’ll see how to publish to the most widely used

repository format: Maven.

14.2.1 Publishing to a Maven repository

Remember earlier in this chapter when you modified your plugin build to produce

three different artifacts? You ended up with these files in your build/libs directory:

http://maven.apache.org/pom.html
http://jcenter.bintray.com
http://jcenter.bintray.com
http://repo1.maven.org/maven2/

367Publishing artifacts to a binary repository

■ cloudbees-plugin-1.0.jar

■ cloudbees-plugin-1.0-groovydoc.jar

■ cloudbees-plugin-1.0-sources.jar

It’s time to publish them to a Maven repository for later consumption. We’ll look at

how to publish them to three types of Maven repositories, as shown in figure 14.3:

■ The local cache located in the directory <USER_HOME>/.m2/repository.

■ A repository in an arbitrary directory on your local file system.

■ A remote, binary repository accessible via HTTP(S). The following examples use

the popular JFrog product Artifactory.

Projects in an enterprise setting shouldn’t rely on Maven Central as their primary

source of dependency management. To be able to produce reliable and reproduc-

ible builds, an internal repository should be set up for catering to your projects.

produces

Published artifacts

Local machine

my.jar metadata

Dependency

cache

Remote

repository

Local

repository

uploads

installspublishes

build.gradle Network

Figure 14.2 Publishing artifacts to local and remote repositories

Network

manages

Browser

...

produces

Published artifacts

Local machine

my.jar metadata

Dependency

cache

Maven

repository

Local

repository

uploads

installspublishes

build.gradle Network

Figure 14.3 Publishing artifacts to a Maven repository

http://www.sonatype.org/nexus/
http://www.sonatype.org/nexus/
http://www.sonatype.org/nexus/

368 CHAPTER 14 Artifact assembly and publishing

There are various products that can be used; for example, Sonatype Nexus (http://

www.sonatype.org/nexus/) and JFrog Artifactory (http://www.jfrog.com/home/v_

artifactory_opensource_overview). We won’t discuss how to set up such a repository.

Please refer to the product’s installation manual for more information. For now, let’s

assume you already set up Artifactory as your manager for dependencies running on

the URL http://localhost:8081/artifactory.

14.2.2 Old versus new publishing mechanisms

Publishing artifacts is an important step in the lifecycle of a software component. Gra-

dle came with support for publishing artifacts to a repository early on with the Upload

task included as part of the Maven plugin. While the Maven plugin is used by early

Gradle adopters and works well in production environments, it became apparent that

a more descriptive and elegant DSL is needed to describe publications of a project.

 Starting with version 1.3 of Gradle, a new publishing mechanism was introduced

by the plugins maven-publish and ivy-publish. Even though it’s still an incubating

feature, it coexists with the existing methods for publishing artifacts, but will super-

sede them in an upcoming version of Gradle. Given this outlook, most of our discus-

sions will be based on the new publishing mechanism, because it’ll make your build

script future-proof. In the following sections, you’ll use the maven-publish plugin for

publishing the artifacts produced by your CloudBees plugin project to a Maven repos-

itory. A similar approach can be taken with the ivy-publish plugin if you prefer to

use the Ivy repository format. The DSL exposed by both plugins looks fairly similar, so

with minor modifications you can make it target Ivy as well. Let’s jump right in and see

how to publish the plugin JAR to a Maven repository.

14.2.3 Declaring a software component as a Maven publication

Gradle projects that apply a specific plugin are preconfigured to produce a primary,

outgoing artifact whenever the assemble task is executed. You already got to know var-

ious examples of this behavior. A project that applies the Java or Groovy plugin creates

a JAR file, and a project that applies the War plugin packages a WAR file. In the con-

text of the publishing plugin, this artifact is called a software component.

 The following listing applies the Maven publishing plugin to your CloudBees proj-

ect and uses its DSL to declare a single publication: a Java software component. When

I speak of a Java software component, I mean the generated JAR file.

apply plugin: 'maven-publish'

publishing {
 publications {
 plugin(MavenPublication) {
 from components.java
 artifactId 'cloudbees-plugin'
 }

Listing 14.4 Publishing JAR component to a Maven repository

Declares publication
name of type
MavenPublication with
the name plugin

Adds JAR component
of your project to list
of publications

Declares artifact ID
for publishing

http://www.sonatype.org/nexus/
http://www.sonatype.org/nexus/
http://www.jfrog.com/home/v_ artifactory_opensource_overview
http://www.jfrog.com/home/v_ artifactory_opensource_overview
http://localhost:8081/artifactory

369Publishing artifacts to a binary repository

 }
}

This configuration is all you need to generate the metadata for your JAR file and pub-

lish the file to a Maven repository. Because you haven’t yet defined a repository, you

can only publish these files to the local Maven cache located in the directory .m2/

repository. Check the list of publication tasks available to the project:

$ gradle tasks
:tasks

--
All tasks runnable from root project
--

...

Publishing tasks

publish - Publishes all publications produced by this project.
publishPluginPublicationToMavenLocal - Publishes Maven publication

➥ 'plugin' to the local Maven repository.
publishToMavenLocal - Publishes all Maven publications produced by

➥ this project to the local Maven cache.

...

The project exposes three different publication tasks. This may look confusing at first,

but it makes a lot of sense if you need fine-grained control over the publication pro-

cess. By picking the right task, you can selectively say which artifact(s) you want to

publish to what repository. You may have noticed that the arbitrary name you used for

your publication became part of a task name: the name plugin became part of the

task name publishPluginPublicationToMavenLocal. This makes for a very declara-

tive way to construct a publication task name. Next, we’ll see these tasks in action.

14.2.4 Publishing a software component to the local Maven cache

The local Maven cache is of particular relevance for Gradle users for two reasons. In

chapter 5, you learned that Gradle tries to reuse artifacts found in the local Maven

cache. This is a major benefit to migrating Maven users, because the artifacts don’t

have to be downloaded again. The other reason why you’d want to publish to the

local Maven cache is if you work with a variety of projects that use different build

tools. One project may use Gradle to publish an artifact; another project may use

Maven to consume it.

 Let’s assume you want to publish your plugin JAR file, including the generated

POM file. The following console output shows the executed tasks:

$ gradle publishToMavenLocal
:generatePomFileForPluginPublication
:compileJava UP-TO-DATE
:compileGroovy UP-TO-DATE
:processResources UP-TO-DATE
:classes UP-TO-DATE

Publishes all
artifacts of
projectOnly

publishes
software

component
to local
Maven
cache

Publishes all
declared
artifacts to
local Maven
cache

Generates POM file
for publication

370 CHAPTER 14 Artifact assembly and publishing

:jar UP-TO-DATE
:publishPluginPublicationToMavenLocal
Uploading: com/manning/gia/cloudbees-plugin/1.0/cloudbees-plugin-

➥ 1.0.jar to repository remote at file:/Users/Ben/.m2/repository/
Transferring 43K from remote
Uploaded 43K
:publishToMavenLocal

In the process of publishing the JAR file, the POM file is generated by the task generate-

PomFileForPluginPublication. Similar to the task publishPluginPublicationTo-

MavenLocal, its name is derived from the declared name of the publication. You may

wonder why the POM file isn’t listed as an uploaded artifact in the console output. No

worries—it’s simply not logged. What you end up with are the following artifacts in the

local Maven cache directory:

.
└── .m2
 └── repository
 └── com
 └── manning
 └── gia
 └── cloudbees-plugin
 ├── 1.0
 │ ├── cloudbees-plugin-1.0.jar
 │ ├── cloudbees-plugin-1.0.jar.md5
 │ ├── cloudbees-plugin-1.0.jar.sha1
 │ ├── cloudbees-plugin-1.0.pom
 │ ├── cloudbees-plugin-1.0.pom.md5
 │ └── cloudbees-plugin-1.0.pom.sha1
 ├── maven-metadata.xml
 ├── maven-metadata.xml.md5
 └── maven-metadata.xml.sha1

The uploaded artifacts follow the typical format for dependencies within a Maven

repository. The directory com/manning/gia is derived from the project’s group prop-

erty, the artifact ID (in your case, cloudbees-plugin) follows the project name, and

the version reflects the value of the version property in your project. Files with the

extension .md5 and .sha1 are checksum files. They’re used to check the integrity of

the associated file.

How to change the artifact publication name

By default, the name of the published artifact is derived from the project name. You

may remember from earlier chapters that the project name corresponds with the

name of your project directory. It’s important to understand that any change to prop-

erties like archivesBaseName won’t have an effect on the publication name, even

though the assembled archive may have the naming you desire.

Sometimes you may want to use a different publication name. Every MavenPublication
allows for configuring custom publication attributes. One of these attributes is the

Uploads Java
component to
local Maven
repository

Published Java
component

Generated
and published
POM file

Maven artifact
metadata

371Publishing artifacts to a binary repository

The same naming pattern is reflected in the dependency attributes groupId, artifactId,

and version of the generated POM file. The following listing shows the full content of

the file named cloudbees-plugin-1.0.pom.

<?xml version="1.0" encoding="UTF-8"?>
<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 ➥ http://maven.apache.org/xsd/maven-4.0.0.xsd"
 ➥ xmlns="http://maven.apache.org/POM/4.0.0"
 ➥ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.manning.gia</groupId>
 <artifactId>cloudbees-plugin</artifactId>
 <version>1.0</version>
 <dependencies>
 <dependency>
 <groupId>com.cloudbees</groupId>
 <artifactId>cloudbees-api-client</artifactId>
 <version>1.4.0</version>
 <scope>runtime</scope>
 </dependency>
 </dependencies>
</project>

At the time of the POM generation, the publication plugin automatically determines the

project’s dependencies from the configuration runtime and declares them as transitive

dependencies. Here, you can see that this is the case for the CloudBees API client

library. Keep in mind that the publication API will only declare the dependencies that

are relevant to the consumers of the JAR file. Dependencies that are used to build your

project (for example, test libraries) aren’t included. Though this is a minor shift from

Maven’s default philosophy of including both types of dependencies in the POM, build,

and runtime information, it makes for much cleaner metadata without any drawbacks.

 Great, you were able to publish the default outgoing project artifact. But what if

you want to publish additional artifacts? Your plugin project has the specific need to

provide the sources JAR and Groovydocs JAR for consumption as well. Let’s look at

how these files can be declared using the publishing DSL.

(continued)

artifact ID of the publication, as shown in listing 14.4. Alternatively, you can also set

the project name in your settings.gradle file. The following example demonstrates

how to change the project name to my-plugin:

rootProject.name = 'my-plugin'

As a result, the published artifact would have the name my-plugin-1.0.jar, and

the name of the directory in the local Maven cache would be com/manning/gia/
my-plugin.

Listing 14.5 Generated POM for published software component

Dependency attributes
for published artifact

Transitive dependencies
required by published
artifact to function
correctly

372 CHAPTER 14 Artifact assembly and publishing

14.2.5 Declaring custom artifacts for publication

Additional artifacts can be registered for publication by using the method artifact

provided by the API class MavenPublication. The method requires you to provide one

parameter. This parameter can either be any task of type AbstractArchiveTask, which

is the case for both of your documentation JAR file tasks, or any object that can be trans-

lated into a java.io.File. The Javadocs of the publication API will give you examples

that demonstrate the use of both types of declarations. The next listing shows how to

assign the archive tasks sourcesJar and groovydocJar as Maven publications.

apply plugin: 'maven-publish'

publishing {
 publications {
 plugin(MavenPublication) {
 from components.java
 artifactId 'cloudbees-plugin'

 artifact sourcesJar
 artifact groovydocJar
 }
 }
}

There’s one important detail to keep in mind when declaring custom artifacts. The

publication plugin only allows a single artifact to be published with an empty classifier

attribute. Usually this is the software component, which has the name cloudbees-

plugin-1.0.jar. All other artifacts need to provide a classifier. For your sources JAR

file, the classifier is sources, and for the Groovydocs JAR file this is groovydoc. Initiate

the previously used publication task again and see if you can deliver your custom arti-

facts to the Maven cache:

$ gradle publishToMavenLocal
:generatePomFileForPluginPublication
:compileJava UP-TO-DATE
:compileGroovy
:processResources
:classes
:groovydoc
:groovydocJar
:jar
:sourcesJar
:publishPluginPublicationToMavenLocal
Uploading: com/manning/gia/cloudbees-plugin/1.0/cloudbees-plugin-

➥ 1.0.jar to repository remote at file:/Users/Ben/.m2/repository/
Transferring 43K from remote
Uploaded 43K
Uploading: com/manning/gia/cloudbees-plugin/1.0/cloudbees-plugin-1.0-

➥ sources.jar to repository remote at file:/Users/Ben/.m2/repository/
Transferring 7K from remote
Uploaded 7K

Listing 14.6 Publishing additional artifacts to a Maven repository

Declares publication
name of type
MavenPublication Adds JAR component

of project to list of
publications

Declares artifact ID
for publishingAdds custom artifacts

to list of publications

373Publishing artifacts to a binary repository

Uploading: com/manning/gia/cloudbees-plugin/1.0/cloudbees-plugin-1.0-

➥ groovydoc.jar to repository remote at file:/Users/Ben/.m2/repository/
Transferring 33K from remote
Uploaded 33K
:publishToMavenLocal

The console output now shows that all declared publications were uploaded to the

repository. A quick check of the directory tree reveals the desired end result:

.
└── .m2
 └── repository
 └── com
 └── manning
 └── gia
 └── cloudbees-plugin
 ├── 1.0
 │ ├── cloudbees-plugin-1.0-groovydoc.jar
 │ ├── cloudbees-plugin-1.0-groovydoc.jar.md5
 │ ├── cloudbees-plugin-1.0-groovydoc.jar.sha1
 │ ├── cloudbees-plugin-1.0-sources.jar
 │ ├── cloudbees-plugin-1.0-sources.jar.md5
 │ ├── cloudbees-plugin-1.0-sources.jar.sha1
 │ ├── cloudbees-plugin-1.0.jar
 │ ├── cloudbees-plugin-1.0.jar.md5
 │ ├── cloudbees-plugin-1.0.jar.sha1
 │ ├── cloudbees-plugin-1.0.pom
 │ ├── cloudbees-plugin-1.0.pom.md5
 │ └── cloudbees-plugin-1.0.pom.sha1
 ├── maven-metadata.xml
 ├── maven-metadata.xml.md5
 └── maven-metadata.xml.sha1

Perfect—all artifacts you wanted to make available to the Maven cache could be pub-

lished. Consumers of the artifacts rely on the default POM metadata to resolve the

plugin JAR file and its transitive dependencies. In section 14.2, we talked about the

data a POM file can contain. The publishing API makes this data fully customizable. In

the next section, we’ll discuss how to modify the generated POM.

14.2.6 Modifying the generated POM

The POM file that describes an artifact within a repository should be as informative as

possible. At the very least, you should provide details about the purpose of your arti-

fact, the software license, and a pointer to the documentation so that end users can

get a lead on what functionality is provided and how to use it within their project. The

best way to find out what information can be configured is to the check the POM refer-

ence guide at http://maven.apache.org/pom.html. The guide describes the XML

structure and available tags for configuring a POM.

 The generated standard POM can be modified with the help of the hook

pom.withXml. By calling the method asNode(), you can retrieve the root node of that

POM. New nodes can be added or existing ones modified (except for the identifiers

Published JAR file containing
project’s source code

Published JAR
file containing

project’s
Groovydocs

http://maven.apache.org/pom.html

374 CHAPTER 14 Artifact assembly and publishing

groupId, artifactId, and version). The following listing shows how to add more

information to your plugin POM.

apply plugin: 'maven-publish'

publishing {
 publications {
 plugin(MavenPublication) {
 from components.java
 artifactId 'cloudbees-plugin'

 pom.withXml {
 def root = asNode()
 root.appendNode('name', 'Gradle CloudBees plugin')
 root.appendNode('description', 'Gradle plugin for managing
 ➥ applications and databases on CloudBees
 ➥ RUN@cloud.')
 root.appendNode('inceptionYear', '2013')

 def license = root.appendNode('licenses').appendNode('license')
 license.appendNode('name', 'The Apache Software License,
 ➥ Version 2.0')
 license.appendNode('url', 'http://www.apache.org/licenses/LICENSE-
 ➥ 2.0.txt')
 license.appendNode('distribution', 'repo')

 def developer = root.appendNode('developers')
 ➥ .appendNode('developer')
 developer.appendNode('id', 'bmuschko')
 developer.appendNode('name', 'Benjamin Muschko')
 developer.appendNode('email', 'benjamin.muschko@gmail.com')
 }

 artifact sourcesJar
 artifact groovydocJar
 }
 }
}

The next listing shows the regenerated POM file, which now reflects your changes to

the metadata.

<?xml version="1.0" encoding="UTF-8"?>
<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 ➥ http://maven.apache.org/xsd/maven-4.0.0.xsd"
 ➥ xmlns="http://maven.apache.org/POM/4.0.0"
 ➥ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.manning.gia</groupId>
 <artifactId>cloudbees-plugin</artifactId>
 <version>1.0</version>
 <dependencies>

Listing 14.7 Publishing additional artifacts to a Maven repository

Listing 14.8 Modified plugin POM

Method for configuring
POM XML elements

375Publishing artifacts to a binary repository

 <dependency>
 <groupId>com.cloudbees</groupId>
 <artifactId>cloudbees-api-client</artifactId>
 <version>1.4.0</version>
 <scope>runtime</scope>
 </dependency>
 </dependencies>
 <name>Gradle CloudBees plugin</name>
 <description>Gradle plugin for managing applications and databases on
 ➥ CloudBees RUN@cloud.</description>
 <inceptionYear>2013</inceptionYear>
 <licenses>
 <license>
 <name>The Apache Software License, Version 2.0</name>
 <url>http://www.apache.org/licenses/LICENSE-2.0.txt</url>
 <distribution>repo</distribution>
 </license>
 </licenses>
 <developers>
 <developer>
 <id>bmuschko</id>
 <name>Benjamin Muschko</name>
 <email>benjamin.muschko@gmail.com</email>
 </developer>
 </developers>
</project>

So far, you’ve installed the published artifacts to the local Maven cache. What if you

wanted to publish them to a Maven repository on your local file system or the Artifac-

tory repository you set up earlier? Nothing easier than that—the publishing API allows

for declaring repositories as well.

14.2.7 Publishing to a local Maven repository

In chapter 8, you used the “old” Maven plugin to upload your project’s artifact to a local

Maven repository so it could be consumed by another Gradle project. You used this

technique for testing your plugin functionality on your local machine without having to

make it public. The same functionality is provided by the Maven publishing plugin.

 Every repository you want to target needs to be declared in a repositories con-

figuration block exposed by the publishing DSL. In the following listing, you’ll declare

a single Maven repository located in the directory named repo parallel to the proj-

ect directory.

apply plugin: 'maven-publish'

publishing {
 publications {
 plugin(MavenPublication) {
 ...
 }
 }

Listing 14.9 Publishing to a local Maven repository

376 CHAPTER 14 Artifact assembly and publishing

 repositories {
 maven {
 name 'myLocal'
 url "file://$projectDir/../repo"
 }
 }
}

The name attribute of a repository is optional. If you assign a name, it becomes part of

the corresponding publishing task. By assigning the name myLocal, your task is auto-

matically named publishPluginPublicationToMyLocalRepository. This is especially

useful when dealing with multiple repositories at the same time. Run the task:

$ gradle publishPluginPublicationToMyLocalRepository
:generatePomFileForPluginPublication
:compileJava UP-TO-DATE
:compileGroovy UP-TO-DATE
:processResources UP-TO-DATE
:classes UP-TO-DATE
:groovydoc UP-TO-DATE
:groovydocJar UP-TO-DATE
:jar UP-TO-DATE
:sourcesJar UP-TO-DATE
:publishPluginPublicationToMyLocalRepository
Uploading: com/manning/gia/cloudbees-plugin/1.0/cloudbees-plugin-

➥ 1.0.jar to repository remote at file:/Users/Ben/Dev/books/gradle-in-

➥ action/code/chapter14/publish-maven-local-repository/repo
Transferring 43K from remote
Uploaded 43K
Uploading: com/manning/gia/cloudbees-plugin/1.0/cloudbees-plugin-1.0-

➥ sources.jar to repository remote at file:/Users/Ben/Dev/books/gradle-

➥ in-action/code/chapter14/publish-maven-local-repository/repo
Transferring 7K from remote
Uploaded 7K
Uploading: com/manning/gia/cloudbees-plugin/1.0/cloudbees-plugin-1.0-

➥ groovydoc.jar to repository remote at

➥ file:/Users/Ben/Dev/books/gradle-in-action/code/chapter14/publish-maven-

➥ local-repository/repo
Transferring 33K from remote
Uploaded 33K

Gradle is smart enough to automatically create the local repository even though its

root directory doesn’t exist yet. As expected, you’ll find the uploaded artifacts in the

correct location:

.
├── cloudbees-plugin
│ └── ...
└── repo
 └── com
 └── manning
 └── gia
 └── cloudbees-plugin

Optional name for
Maven repository

File URL to local
Maven repository

CloudBees plugin project
that publishes artifacts

Local Maven
repository parallel
to plugin project

377Publishing artifacts to a binary repository

 ├── 1.0
 │ ├── cloudbees-plugin-1.0-groovydoc.jar
 │ ├── cloudbees-plugin-1.0-groovydoc.jar.md5
 │ ├── cloudbees-plugin-1.0-groovydoc.jar.sha1
 │ ├── cloudbees-plugin-1.0-sources.jar
 │ ├── cloudbees-plugin-1.0-sources.jar.md5
 │ ├── cloudbees-plugin-1.0-sources.jar.sha1
 │ ├── cloudbees-plugin-1.0.jar
 │ ├── cloudbees-plugin-1.0.jar.md5
 │ ├── cloudbees-plugin-1.0.jar.sha1
 │ ├── cloudbees-plugin-1.0.pom
 │ ├── cloudbees-plugin-1.0.pom.md5
 │ └── cloudbees-plugin-1.0.pom.sha1
 ├── maven-metadata.xml
 ├── maven-metadata.xml.md5
 └── maven-metadata.xml.sha1

In the next section, we’ll also look at how to publish the same artifacts to a remote

repository via HTTP.

14.2.8 Publishing to a remote Maven repository

Remote repositories are extremely helpful for making artifacts available to other teams

or stakeholders within your organization. For testing purposes, we set up an Artifac-

tory instance on our local machine. Keep in mind that this repository could sit any-

where within your corporate network as long as it’s accessible via HTTP(S). Artifactory

preconfigures two Maven repositories with its default installation:

■ libs-snapshot-local: Used for publishing artifacts that are considered under

development with the version suffix -SNAPSHOT

■ libs-release-local: Used for publishing production-ready artifacts without

the –SNAPSHOT version suffix

Both of these repositories expose a dedicated HTTP URL and control how and who

can upload artifacts. A secured repository requires you to supply the configured authen-

tication credentials. If you don’t provide these properties, your build will fail because it

couldn’t authenticate your upload. To prevent having to check in this sensible data into

version control, you’ll feed these properties through your gradle.properties file. Gra-

dle will read the contents of this file automatically at runtime and make the properties

available to your build script. For now, you’re going to use the default Artifactory

administration credentials:

artifactoryUsername = admin
artifactoryPassword = password

Next, you’ll write some code to publish your artifacts to one of these repositories

based on the version property of your project. The following listing doesn’t look too

different from previous examples. The biggest difference is that you also provide the

credentials to the repository to authenticate the upload.

378 CHAPTER 14 Artifact assembly and publishing

apply plugin: 'maven-publish'

ext {
 artifactoryBaseUrl = 'http://localhost:8081/artifactory'
 artifactorySnapshotRepoUrl = "$artifactoryBaseUrl/libs-snapshot-local"
 artifactoryReleaseRepoUrl = "$artifactoryBaseUrl/libs-release-local"
}

publishing {
 publications {
 plugin(MavenPublication) {
 ...
 }
 }

 repositories {
 maven {
 name 'remoteArtifactory'
 url project.version.endsWith('-SNAPSHOT') ?
 ➥ artifactorySnapshotRepoUrl : artifactoryReleaseRepoUrl

 credentials {
 username = artifactoryUsername
 password = artifactoryPassword
 }
 }
 }
}

You named the remote repository remoteArtifactory. The publishing plugin incor-

porates the repository name into the name of the task used to upload your project

artifacts to Artifactory:

$ gradle publishPluginPublicationToRemoteArtifactoryRepository
:generatePomFileForPluginPublication
:compileJava UP-TO-DATE
:compileGroovy
:processResources
:classes
:groovydoc
:groovydocJar
:jar
:sourcesJar
:publishPluginPublicationToRemoteArtifactoryRepository
Uploading: com/manning/gia/cloudbees-plugin/1.0/cloudbees-plugin-

➥ 1.0.jar to repository remote at

➥ http://localhost:8081/artifactory/libs-release-local
Transferring 43K from remote
Uploaded 43K
Uploading: com/manning/gia/cloudbees-plugin/1.0/cloudbees-plugin-1.0-

➥ sources.jar to repository remote at

➥ http://localhost:8081/artifactory/libs-release-local
Transferring 7K from remote
Uploaded 7K

Listing 14.10 Publishing to a remote Maven repository

Properties
declaring

Artifactory
repository

URLs

Optional
name for
Maven
repository

Picks
snapshot
or release
repository
based on
project
version

Sets credentials needed to upload
artifacts to secured Artifactory repository

379Publishing to a public binary repository

Uploading: com/manning/gia/cloudbees-plugin/1.0/cloudbees-plugin-1.0-

➥ groovydoc.jar to repository remote at

➥ http://localhost:8081/artifactory/libs-release-local
Transferring 33K from remote
Uploaded 33K

After uploading the artifacts to Artifactory, you should be able to browse the reposi-

tory by the provided group ID. There’s a directory with the specified version contain-

ing the POM and JAR files of your CloudBees plugin (figure 14.4).

14.3 Publishing to a public binary repository

Publishing artifacts to a repository within your corporate network is a practical solu-

tion for sharing binaries among teams. It also takes care of protecting intellectual

property from the outside world.

Simplifying the publishing code with product-specific plugins

Some binary repository products provide a Gradle plugin to simplify the process of

publishing. Such a plugin provides a standardized, product-specific DSL and can’t be

used with other binary repositories. Think of it as a higher-level API sitting on top of

the Gradle publishing API, while at the same time adding more features (for example,

build information). Using a vendor plugin can reduce the code you need to write for

publishing artifacts. These plugins should only be used if you know that your project

is sticking with a particular product long term.

JFrog provides such a plugin for Artifactory. We won’t discuss how to use it, but feel

free to check out its documentation at the following Wiki page: http://wiki.jfrog.org/

confluence/display/RTF/Gradle+Artifactory+Plugin.

Figure 14.4 Uploaded artifacts in Artifactory repository browser

http://wiki.jfrog.org/confluence/display/RTF/Gradle+Artifactory+Plugin
http://wiki.jfrog.org/confluence/display/RTF/Gradle+Artifactory+Plugin

380 CHAPTER 14 Artifact assembly and publishing

Organizations with a stake in open source software like to contribute their hard work

to the Gradle community or anyone interested in using their code. This can either be

achieved by making their binary repository internet-accessible or by uploading the

artifacts to a public repository. The most popular public repositories are JFrog Bin-

tray’s JCenter and Maven Central. In this chapter, you’ll learn how to publish your

CloudBees plugin to both repositories. Let’s start by looking at Bintray.

14.3.1 Publishing to JFrog Bintray

JFrog Bintray (https://bintray.com/) is the new kid on the block among the public

repositories. Bintray is more than just a provider for hosting binary repositories. It

comes with a web dashboard, integrated search functionality, social features, artifact

download statistics, and a RESTful API for managing your repositories and artifacts.

Bintray was launched in early 2013 but quickly grew in popularity within its first

months of existence. Currently, you see a lot of open source projects moving to Bin-

tray. Before you can publish any artifacts to Bintray, you’ll need to set up an account.

GETTING SET UP ON BINTRAY

Bintray requires you to create an account, a repository, and a package before you can

get started. This involves the following simple steps:

1 Open a browser, navigate to the URL https://bintray.com/, and sign up for a

new account if you don’t have one yet.

2 After completing the signup process, log into the newly created account. Press

the button New Repository to configure a repository. For your purposes, name

this repository gradle-plugins and choose the Maven repository format.

3 Click the repository and create a new package with the name gradle-cloudbees-

plugin. A package acts as a container for artifacts produced by a specific proj-

ect. You can store any number of artifacts in a package.

4 Any artifact you publish to this package can only be downloaded as a Gradle

project dependency if you provide your credentials in the repository configura-

tion. To make this package public to any Gradle user, you can request it to be

synced with Bintray’s JCenter, a free-of-charge public Maven repository. Only

after JFrog approves your request will you be able to make your artifacts public.

Don’t worry if you get lost anywhere during the setup procedure or have additional ques-

tions. The Bintray user guide (https://bintray.com/docs/help/bintrayuserguide.html)

can give you a more detailed insight into Bintray’s terminology and serves as a good

quick-start manual. You’re going to bring your plugin artifacts into Bintray.

UPLOADING ARTIFACTS TO A BINTRAY PACKAGE

Architecturally, uploading artifacts to Bintray doesn’t look any different from your regu-

lar upload to a remote Maven repository (figure 14.5). The main difference is that you

can share an artifact located in a private repository with JCenter, a public repository.

https://bintray.com/
https://bintray.com/
https://bintray.com/docs/help/bintrayuserguide.html

381Publishing to a public binary repository

Bintray doesn’t require you to sign your artifacts before you upload them, but gives

you the option of signing them after the fact. Therefore, you’ll only need some minor

modifications to your original build script, as shown in the following listing. You’ll

need to define a new Maven repository, provide the repository URL of your package,

and give the Bintray credentials of your account.

ext {
 bintrayBaseUrl = 'https://api.bintray.com/maven'
 bintrayUsername = 'bmuschko'
 bintrayRepository = 'gradle-plugins'
 bintrayPackage = 'gradle-cloudbees-plugin'
}

apply plugin: 'maven-publish'

publishing {
 publications {
 ...
 }

 repositories {
 maven {
 name 'Bintray'
 url "$bintrayBaseUrl/$bintrayUsername/$bintrayRepository/
 ➥ $bintrayPackage"

 credentials {
 username = bintrayUsername
 password = bintrayApiKey
 }
 }
 }
}

Listing 14.11 Publishing to Bintray repository

produces

Published artifacts

Local machine

my.jar pom.xml Maven

repository

Maven

repository

uploads links
build.gradle Network

Network

manages

Browser

...

Figure 14.5 Publishing artifacts to Bintray

Properties required for
building Bintray API URL

Puts together
Bintray API URL
and assigns it
to Maven URL
property

Bintray credentials
needed for upload

382 CHAPTER 14 Artifact assembly and publishing

For security reasons, keep the credentials in the gradle.properties file under your

home directory. The contents of this file should look similar to the following properties:

bintrayUsername = bmuschko
bintrayApiKey = 14a5g63385ad861d4c8210da795

You used an API key instead of a password in the credentials configuration block. You

can find your API key in Bintray’s dashboard under the link Your Account > Edit > API Key.

You’re all set; time to make the world a better place by publishing your plugin artifacts:

$ gradle publishPluginPublicationToBintrayRepository
:generatePomFileForPluginPublication
:compileJava UP-TO-DATE
:compileGroovy UP-TO-DATE
:processResources UP-TO-DATE
:classes UP-TO-DATE
:groovydoc UP-TO-DATE
:groovydocJar UP-TO-DATE
:jar
:sourcesJar UP-TO-DATE
:publishPluginPublicationToBintrayRepository
Uploading: org/gradle/api/plugins/gradle-cloudbees-plugin/0.1/gradle-

➥ cloudbees-plugin-0.1.jar to repository remote at

➥ https://api.bintray.com/maven/bmuschko/gradle-plugins/gradle-

➥ cloudbees-plugin
Transferring 179K from remote
Uploaded 179K
Uploading: org/gradle/api/plugins/gradle-cloudbees-plugin/0.1/gradle-

➥ cloudbees-plugin-0.1-sources.jar to repository remote at

➥ https://api.bintray.com/maven/bmuschko/gradle-plugins/gradle-

➥ cloudbees-plugin
Transferring 23K from remote
Uploaded 23K
Uploading: org/gradle/api/plugins/gradle-cloudbees-plugin/0.1/gradle-

➥ cloudbees-plugin-0.1-groovydoc.jar to repository remote at

➥ https://api.bintray.com/maven/bmuschko/gradle-plugins/gradle-

➥ cloudbees-plugin
Transferring 83K from remote
Uploaded 83K

Looks like the upload worked! You can also view the uploaded artifacts in the Bintray

dashboard. The file browser under the package gradle-cloudbees-plugin > Versions >

0.1 > Files should look similar to figure 14.6.

Managing public artifacts

Never underestimate the power of open source. Once you put an artifact on a public

repository, other developers may start to use it. Bintray doesn’t prevent you from

deleting already-published versions of an artifact. Try to stay away from deleting exist-

ing versions of your artifacts because it might break other developer’s builds. If you

need to fix a bug in your code, make sure to release a new version of your artifact

and communicate the bug fix.

383Publishing to a public binary repository

CONSUMING DEPENDENCIES FROM BINTRAY’S JCENTER

You published the artifacts and made them available on JCenter. They’re now ready

for consumption. To configure a Gradle project to use your plugin from Bintray,

declare a new reference to the JCenter repository available under the URL http://

jcenter.bintray.com, as shown in the next listing.

buildscript {
 repositories {
 jcenter()
 }

 dependencies {
 classpath 'com.manning.gia:gradle-cloudbees-plugin:0.1'
 }
}

apply plugin: 'cloudbees'

Looks pretty straightforward, right? Let’s also discuss what steps are required to pub-

lish the same plugin to Maven Central.

14.3.2 Publishing to Maven Central

Maven Central (http://repo1.maven.org/maven2/) is probably the most popular

public repository for binary artifacts, particularly open source projects. Sonatype Nexus,

Listing 14.12 Consuming the published plugin from Bintray

Figure 14.6 Uploaded artifacts in Bintray dashboard

Defines Bintray
JCenter repository

Defines a
dependency on
your previously
uploaded
plugin JAR file

http://jcenter.bintray.com
http://jcenter.bintray.com
http://repo1.maven.org/maven2/

384 CHAPTER 14 Artifact assembly and publishing

responsible for managing the artifacts, forms the backbone of the repository. Figure 14.7

shows the interaction with Sonatype OSS.

 Sonatype OSS has more specific requirements for publishing artifacts than Bin-

tray. The following checklist (described in more detail in the usage guide under

https://docs.sonatype.org/display/Repository/Sonatype+OSS+Maven+Repository+

Usage+Guide) explains how to make binaries available to the world:

1 Sign up for a new Sonatype JIRA account at https://issues.sonatype.org/. You’ll

need to wait until your account has been approved.

2 Create a new JIRA ticket at https://issues.sonatype.org/browse/OSSRH/ that

describes the meta-information of your artifact (for example, groupId, project

URL, and so on). Once your request is approved, you can start publishing with

the requested groupId. For publishing with a different groupId, you’ll need to

create another JIRA ticket.

3 Generate GNU Privacy Guard (GPG) signatures for all artifacts you wish to

publish (shown in figure 14.7 with the file extension .asc). To generate these

signatures, you can use the Gradle signing plugin. Check out the plugin docu-

mentation page for more information. One word of warning: at the time of

writing, the new publishing API doesn’t provide out-of-the-box signing support.

You may have to fall back to the old publishing API to achieve this.

4 Publish the artifacts with Gradle.

5 Log in to the Sonatype OSS user interface at https://oss.sonatype.org/. Navi-

gate to the Staging Repositories page, choose your artifact, and press the Close

button. After staging the artifact, it’s ready to be released. Press the Release but-

ton to initiate final release.

produces

Published artifacts (signed)

Local machine

my.jar pom.xml Maven

repository

uploads

my.jar

.asc

pom.xml

.asc

Network

Network

manages

Browser

...

build.gradle

Figure 14.7 Publishing artifacts to Sonatype OSS

https://docs.sonatype.org/display/Repository/Sonatype+OSS+Maven+Repository+Usage+Guide
https://docs.sonatype.org/display/Repository/Sonatype+OSS+Maven+Repository+Usage+Guide
https://issues.sonatype.org/
https://issues.sonatype.org/browse/OSSRH/
https://oss.sonatype.org/

385Artifact assembly and publishing as part of the build pipeline

6 Before the promoted artifact can be accessed via Maven Central, Sonatype OSS

needs to sync it with the central repository. This usually takes several hours.

7 Once an artifact is published, it can’t be deleted or modified.

The publishing process to Sonatype OSS requires a lot of manual steps and even more

patience to wait for approvals. If you’re unsure which public repository to choose for

your project, I recommend using Bintray over Sonatype OSS. Next, you’ll learn how to

apply the concepts we’ve discussed so far to your To Do application.

14.4 Artifact assembly and publishing as part
of the build pipeline

In the last chapter, you learned how to set up and configure Jenkins jobs to model a

build pipeline for your To Do application. After getting to know the core concepts of

creating a distribution and publishing it to a binary repository, you can now apply

your knowledge to your web application. First, you’ll make some extensions to your

existing Gradle build, and then you’ll extend your build pipeline by configuring a Jen-

kins job. Figure 14.8 shows where you stand in the process.

 In the context of continuous delivery, there are some important practices to discuss.

They ultimately determine how you’ll implement the artifact packaging and publishing.

14.4.1 Build binaries once

Before an application can be deployed to a target environment—for example, a UAT

(user acceptance test)—for manual testing by the QA team, or to production to give it

into the hands of the end users, the deliverable, also called the deployable artifact, has

to be built. It’s not uncommon for teams to rebuild this deliverable for each environ-

ment individually. This practice is often based on the fact that they need to include

environment-specific configuration; for example, to point to a dedicated database set

up for that environment. While this approach works, it creates the unnecessary risk of

introducing a difference to the deliverable. For example, the dependency manager

may pick a newer version of a third-party library that became available on a repository

that you didn’t intend to include. To avoid any side effects, you should only build your

deliverable once and store it in a central location. As you learned earlier, a binary

repository is the perfect fit for this use case.

14.4.2 Publish once, reuse later

Binary repositories require you to publish an artifact with unique attributes. In

chapter 5, you learned that a Maven repository describes these attributes as groupId,

Current phase

Compile

code and

unit tests

Integration

tests

Code

analysis

Assemble

binaries

Commit stage

Figure 14.8 Creating the distribution in

the context of the build pipeline

386 CHAPTER 14 Artifact assembly and publishing

artifactId, and version, also called coordinates. The main distinguishing difference

between each artifact built by your pipeline is the version. The two other attributes,

groupId and artifactId, will likely never change once you’ve settled on a meaningful

value. Over time, you’ll notice that more and more versions of your artifact will be

stored. Uploaded artifacts will stay in your repository until you delete them. Please

refer to the product’s documentation on how to best achieve this. Figure 14.9 illus-

trates the process of publishing to a repository with incremental versions.

 Once the artifact is uploaded to a binary repository with a specific version, you can

retrieve it by these attributes and reuse it for later steps in the pipeline. A typical use case

would be the deployment to various environments. Many repository products expose a

RESTful API for downloading artifacts via HTTP(S). The URL includes the dependency

attributes to uniquely identify the artifact. Figure 14.10 shows the download of a published

artifact with a particular version from Artifactory for successive deployment purposes.

 With this background information in mind, you’ll start by defining the versioning

scheme for your project.

1.0.32 1.0.33 1.0.34

publishes

1.0.34

Figure 14.9 Publishing

a WAR file to Artifactory

with different versions

downloads

deploys

Test

UAT

Prod

1.0.34

1.0.34

1.0.34

1.0.331.0.32

Figure 14.10 Retrieving a

WAR file from Artifactory for

deployment purposes

387Artifact assembly and publishing as part of the build pipeline

14.4.3 Picking an appropriate versioning scheme

Versioning your artifact becomes important at the time of assembly. In this section,

we’ll discuss which versioning scheme plays well with the core principles of continu-

ous delivery and how to implement an appropriate strategy with Gradle. Some build

tools propose a standard format for your versioning scheme. Let’s see how Maven

does it.

MAVEN’S VERSIONING SCHEME

Conceptually, Maven distinguishes between snapshot and release versions. A snapshot

version of an artifact indicates that it’s still under development and not ready to be

released to production. This status is indicated by the filename suffix -SNAPSHOT (for

example, todo-webapp-1.0-SNAPSHOT.war). Whenever the artifact is published to a

binary repository, it’s uploaded with the same version. Any consumer of this artifact

will only be able to retrieve the latest version of that snapshot version. Because

there’s no concrete version attached to an artifact, you can’t link it to a unique revi-

sion in the VCS. This can become a major drawback when trying to debug an issue.

For that reason, snapshot versions of a deliverable should never be deployed to the

production environment.

 At some point in development, it’s determined that the software is feature-complete.

Once it passes the QA process, it’s ready to be released to production. At that time, the

-SNAPSHOT suffix is taken off the version and it’s released to production. Now you’re

dealing with a release version of the artifact. Ultimately, this means having to modify

the version attribute in the POM file and checking it into VCS. Figure 14.11 demon-

strates this versioning scheme.

 A new development cycle starts by bumping up the major and/or minor version of

your project; the -SNAPSHOT suffix is added again. What’s wrong with this way of

assigning a project version? This is best explained by one of the core principles of con-

tinuous delivery.

EVERY COMMIT CAN BECOME A RELEASE

An important principle of continuous delivery is that every commit to your code base

under version control can become a potential release to production. Of course, this

will only happen if the software passes all phases defined by the build pipeline with

the quality standards agreed on by the team.

 Maven’s versioning philosophy is diametrically opposed to this release strategy. It

assumes that you work on a feature for a certain period of time until it’s actually

released. To be able to uniquely identify a version of an artifact during development,

as well as in the live environment, you’ll need to set an appropriate version at the initial

1.0-SNAPSHOT 1.0

Compile

code and

unit tests

... ... Deploy

production

Figure 14.11 Applying Maven’s

standard versioning scheme in a

build pipeline

388 CHAPTER 14 Artifact assembly and publishing

stage of your build pipeline. This version will carry through all the way to the pipeline

stage that deploys the deliverable to production (figure 14.12).

 Next, we’ll look at how such a versioning scheme can be implemented with Gradle.

VERSIONING SCHEME FITTED TO CONTINUOUS DELIVERY

In chapter 4, you learned how to assign an instance

of a custom class to determine the project version.

You can directly apply this knowledge to build the

project version for your To Do application. The exem-

plary version format will look like figure 14.13. It con-

sists of three attributes: major version, minor version,

and a build number.

 The major and minor attributes of the versioning scheme are configured in Gra-

dle. They’ll change less often (for example, to indicate a new feature) and have to be

incremented manually. The dynamic part of this versioning scheme is the build num-

ber. It’s incremented every time a build is kicked off—that is, at the initial step of the

build pipeline.

 Let’s look at the actual implementation of this versioning scheme in Gradle. The

Groovy class named ProjectVersion, which resides in the package com.manning.gia,

backs the version representation. Because you want to share this class among all proj-

ects of your build, you’ll create the class in the buildSrc directory, as shown in the fol-

lowing directory tree:

.
├── buildSrc
│ └── src
│ └── main
│ └── groovy
│ └── com
│ └── manning
│ └── gia
│ └── ProjectVersion.groovy
├── gradle
├── model
├── repository
├── web
├── build.gradle
└── settings.gradle

Let’s look at the class. The following listing shows the contents of the file Project-

Version.groovy.

1.0.34 1.0.34

Compile

code and

unit tests

... ... Deploy

production

Figure 14.12 Setting a dynamic,

incrementing version number at the

initial phase of the build pipeline

177112 ..
minormajor build

Figure 14.13 Versioning scheme

for To Do application

Groovy class
backing project
versioning
scheme

389Artifact assembly and publishing as part of the build pipeline

package com.manning.gia

class ProjectVersion {
 final Integer major
 final Integer minor
 final String build

 ProjectVersion(Integer major, Integer minor, String build) {
 this.major = major
 this.minor = minor
 this.build = build
 }

 @Override
 String toString() {
 String fullVersion = "$major.$minor"

 if(build) {
 fullVersion += ".$build"
 }

 fullVersion
 }
}

You know that Gradle automatically compiles every class under the directory buildSrc

when the build is run. This compiled class can now be used in any of your build scripts

to implement the versioning scheme. For a clean separation of concerns, you’ll create

a new script plugin in the directory gradle named versioning.gradle. As shown in

the next listing, you import the class ProjectVersion, instantiate it with appropriate

values, and assign it to the property version of org.gradle.api.Project.

import com.manning.gia.ProjectVersion

ext.buildTimestamp = new Date().format('yyyy-MM-dd HH:mm:ss')
project.version = new ProjectVersion(1, 0, System.env.SOURCE_BUILD_NUMBER)

The build number you set here is an environment variable named SOURCE_BUILD

_NUMBER. This variable is automatically available to your build when you execute it as

part of your Jenkins build pipeline. In the last chapter, you set it as part of your initial

job configuration via the parameterized trigger plugin. For a quick refresher, you may

want to quickly jump back to section 13.5.2. With your versioning script plugin in place,

you can now apply it to all projects of your build with the help of the allprojects con-

figuration block, as shown in the following listing.

Listing 14.13 Groovy class representing the project version

Listing 14.14 Setting build information as script plugin

Fields representing major
version, minor version,
and build number

Builds String
representation of
project version

Sets a build timestamp property to
determine when build was initiated

Assigns a new instance of ProjectVersion
to project property version

390 CHAPTER 14 Artifact assembly and publishing

allprojects {
 ...

 apply from: "$rootDir/gradle/versioning.gradle"
}

You can easily emulate building your WAR artifact without having to execute the Jen-

kins build pipeline. All you need to do is set the environment variable SOURCE_BUILD

_NUMBER on the command line. The following example demonstrates how to assign

the build number 42:

■ *nix: export SOURCE_BUILD_NUMBER=42

■ Windows: SET SOURCE_BUILD_NUMBER=42

If you assemble the WAR file now, you’ll see that the correct version number is applied

to your artifact. You’ll find the correctly named file web-1.0.42.war under the direc-

tory web/build/libs.

 Being able to identify a unique version of your artifact is essential for two reasons.

It implies a releasable version and enables you to map the binary to the source code

by tagging it in your VCS. The same versioning information can be included into the

artifact to make it self-describing.

14.4.4 Including build information in a deployable artifact

Versioning information isn’t only useful at build time. On occasion, you may also want

to know what version of your application is deployed to a given environment. This can

be achieved by including the build information as a property file generated by a new

task named createBuildInfoFile. At runtime, this property file can be read and dis-

played anywhere in your web application. The following listing demonstrates the

required task configuration in the build file of your web subproject.

task createBuildInfoFile << {
 def buildInfoFile = new File("$buildDir/build-info.properties")
 Properties props = new Properties()
 props.setProperty('version', project.version.toString())
 props.setProperty('timestamp', project.buildTimestamp)
 props.store(buildInfoFile.newWriter(), null)
}

war {
 dependsOn createBuildInfoFile
 baseName = 'todo'

 from(buildDir) {
 include 'build-info.properties'
 into('WEB-INF/classes')
 }
}

Listing 14.15 Providing the version to all projects of the build

Listing 14.16 Including build information in a WAR file

Property
file for
storing

build
information

Adds properties
to represent
project version
and build
timestamp

Writes
properties to file

Adds a task dependency on task
that writes build information file

Bundles build information
file in directory WEB-INF/
classes of WAR file

391Artifact assembly and publishing as part of the build pipeline

To give you an idea of how the generated file may look, see the following example:

#Tue Apr 23 06:44:34 EDT 2013
version=1.0.134
timestamp=2013-04-23 06:44:11

We won’t discuss the custom code required to read and display these properties in

your To Do application. Please refer to the book’s code examples to see how to

achieve this with Java. With your artifact well prepared, you’re ready to push it to an

internal binary repository for later deployments. Next, you’ll adapt the publishing

code you wrote at the beginning of this chapter to upload the WAR file.

14.4.5 Publishing your To Do application WAR file

Publishing the WAR file to an internal Artifactory repository isn’t magic. You already

have the essential knowledge on how to do this. The major difference here is that the

software component you’re about to publish is a WAR file instead of a JAR file, as

shown in the following listing.

apply plugin: 'maven-publish'

ext {
 artifactoryBaseUrl = 'http://localhost:8081/artifactory'
 artifactoryReleaseRepoUrl = "$artifactoryBaseUrl/libs-release-local"
}

publishing {
 publications {
 toDoWebApp(MavenPublication) {
 from components.web
 artifactId 'todo-web'

 pom.withXml {
 def root = asNode()
 root.appendNode('name', 'To Do application')
 root.appendNode('description', 'A simple task management
 ➥ application.')
 }
 }
 }

 repositories {
 maven {
 name 'remoteArtifactory'
 url artifactoryReleaseRepoUrl

 credentials {
 username = artifactoryUsername
 password = artifactoryPassword
 }
 }
 }
}

Listing 14.17 Publishing to a remote Maven repository

Artifactory
repository URL

Declares web
software component
as publication

Declares published
artifact ID

392 CHAPTER 14 Artifact assembly and publishing

All it takes to upload the WAR file is to run the task with the name publishToDoWeb-

AppPublicationToRemoteArtifactoryRepository. Remember that this task name is

put together by the publishing API based on the assigned publication and repository

name. If you check the generated POM file, you may notice that a WAR publication

doesn’t define any external dependencies. This is for a good reason: they’re already

bundled with the WAR file in the directory WEB-INF/lib. In the next section, you’ll

wire up this phase of your build pipeline to the existing jobs in Jenkins.

14.4.6 Extending the build pipeline

Creating the distribution and publishing it to a binary repository is an essential step

for delivering your To Do application. You already implemented the Gradle side to

support this functionality. Now it’s time to extend your build pipeline by configuring

the corresponding job on Jenkins. From the last chapter, you may remember that you

set up three Jenkins jobs executed in the following order:

1 todo-initial: Compiles the source code and runs the unit tests.

2 todo-integ-tests: Runs the integration tests.

3 todo-code-quality: Performs static code analysis using Sonar.

Bring up the Jenkins dashboard and add a new job called todo-distribution. To sim-

plify its creation, feel free to clone it from the existing job named todo-code-quality.

After the job is created, you’ll need to make some additional changes to step 3 of your

build pipeline.

STEP 3: CODE QUALITY

Add a parameterized build action that defines a build trigger on the job named todo-

distribution. As far as parameters go, you’ll reuse the existing ones by choosing the

option Current Build Parameters.

 Perfect, you connected step 3 to step 4 by making it the downstream project. Next,

you’ll put in some finishing touches on your newly created job.

STEP 4: DISTRIBUTION AND PUBLICATION

The configuration for this job looks very similar to the previous one. Have a quick

look at this checklist to see if it’s set up correctly:

■ In the Source Code Management configuration section, choose the option

Clone Workspace and choose the parent project todo-initial.

■ As the build step, you want to assemble the WAR file and publish it to Artifac-

tory. Add a build step for invoking your Gradle script using the wrapper and

enter the tasks assemble publish.

■ Define the build name by incorporating the upstream build number parame-

ter: todo#${ENV,var="SOURCE_BUILD_NUMBER"}.

With this configuration in place, your build pipeline view in Jenkins should look simi-

lar to figure 14.14. To verify its correct behavior, make sure to take the pipeline for a

test drive.

393Summary

Given the current status of your build pipeline, you’re close to deploying your To Do

application to various target environments. Keep on reading to learn how to approach

this task.

14.5 Summary

Most software needs to be assembled before it can be deployed to a target environ-

ment or installed to a particular location. During the assembly process, individual

software components need to be put together in a meaningful, consumable format.

A software delivery doesn’t have to be limited to a single artifact. Often it consists

of multiple artifacts or distributions cut for a specific group of stakeholders or run-

time environments.

 Gradle supports creating artifacts for a wide range of archiving formats through

core custom tasks like Jar or Zip, some of which are automatically preconfigured for

your project if you apply a certain plugin. In addition to this functionality, the Gradle

distribution plugin can be used to describe custom distributions through an expres-

sive DSL, without actually having to define tasks in your build script. With these tools

in your toolbox, it’s simple to produce the artifacts you need and flexibly react to new

requirements for your delivery process.

 Once the deliverable artifacts are built, they can be shared with other projects,

teams, or literally every developer on the planet. Binary repositories provide the infra-

structure for uploading, managing, browsing, and consuming any number or type of

artifacts. In this chapter, you learned how to use Gradle’s publishing plugin to interact

with a local or remote Maven repository. You took your plugin project from chapter 8,

assembled the plugin JAR file, generated individualized metadata, and uploaded it to

Artifactory, a popular binary repository. The most convenient option for sharing open

source projects is to bring them into a public, internet-accessible repository. We dis-

cussed how to set up an account on Sonatype OSS (a.k.a. Maven Central) and JFrog

Bintray and applied the publishing process to both repositories.

 In the context of continuous delivery, assembling and publishing artifacts plays a

crucial role. Whenever possible, you’ll want to package the artifacts just once to avoid

potential side effects. After uploading the artifacts to a repository, they can be reused

Figure 14.14 Build pipeline view

394 CHAPTER 14 Artifact assembly and publishing

in a later step of the process for deployment purposes. You learned how to implement

a flexible versioning strategy to clearly identify a set of artifacts. Later, you extended

your build pipeline with a new job for packaging and publishing the WAR file pro-

duced by your To Do application.

 In the last chapter of this book, you’ll finally roll out your To Do application to var-

ious target environments, write smoke tests to verify a successful deployment, and tag

the release in version control.

395

Infrastructure provisioning
and deployment

Software deployments need to be repeatable and reliable. Any server outage inflicted

by a faulty deployment—with the biggest hit on production systems—results in

money lost for your organization. Automation is the next logical and necessary step

toward formulating and streamlining the deployment process. In this chapter, we’ll

talk about how to automate the deployment process with Gradle by the example of

your To Do application.

 Before any deployment can be conducted, the target environment needs to be

preconfigured with the required software infrastructure. Historically, this has been

the task of a system administrator, who would manually provision the physical

server machine and install the software components before use. This setup can be

defined as real code with tools like Puppet and Chef, checked into version control,

This chapter covers

■ Driving infrastructure provisioning from Gradle

■ Automated deployment to different target

environments

■ Verifying the outcome of a deployment with

smoke and acceptance tests

■ Deployment as part of the build pipeline

396 CHAPTER 15 Infrastructure provisioning and deployment

and tested like an ordinary piece of software. Using this infrastructure-as-code approach

helps prevent human error and minimizes the cycle time for spinning up a new envi-

ronment based on the same software stack. While Gradle doesn’t provide native tool-

ing for this task, you can bootstrap other tools to do the job for you.

 Deploying software to use as build masters means more than just copying a file to a

server. In your build, you’ll need to be able to configure and target different environ-

ments. Automating the full deployment lifecycle often requires cleaning out previ-

ously deployed artifacts, as well as restarting remote runtime environments like web

containers. This chapter covers one viable approach to achieving this.

 Once you deploy a new version of your software, you need to verify the outcome.

Automated smoke and acceptance testing can help to detect the correct functioning

of the software. You’ll set up a sufficient suite of tests and execute them with Gradle.

 All of these processes—deployment to different environments and the verification

of a successful deployment—need to be part of your build pipeline. After setting up

the supporting tasks in Gradle, you can invoke them from corresponding jobs in Jen-

kins. Deploying software for authorized stakeholders within an organization should be

as easy as pushing a button. You’ll extend your build pipeline by deploying jobs for

different environments. Before we can dive into the details of deploying software, let’s

review the tools that are helpful for provisioning an infrastructure.

15.1 Infrastructure provisioning

Before any application can be deployed, the hosting infrastructure needs to be provi-

sioned. When I talk about infrastructure provisioning in the traditional sense, I mean

setting up the hardware as well as installing and configuring the required operating

system and software components.

 Nowadays, we see a paradigm shift toward cloud provisioning of infrastructure.

Unlike the traditional approach, a cloud provider often allocates preconfigured hard-

ware in the form of virtual servers. Server virtualization is the partitioning of a physical

server into smaller virtual servers to help maximize the server resources. Depending

on the service offer, the operating system and software components are managed by

the cloud provider.

 In this section, we’ll talk about automating the creation of virtual servers and infra-

structure software components with the help of third-party open source tools. These

tools will help you set up and configure streamlined target environments for your To Do

application. Later, you’ll learn how Gradle can integrate with these tools.

15.1.1 Infrastructure as code

Developers usually work in a self-contained environment—their development machine.

Software infrastructure that’s needed to run an application has to be set up by hand. If

you think back to your To Do application, this includes the Java runtime, a web con-

tainer, and a database. What might sound unproblematic for a single developer can

transform into a huge issue the moment the team grows in size. Now, each developer

http://192.168.1.33:8080/todo

397Infrastructure provisioning

needs to make sure that they install the same version of the same software packages

with the same configuration (optimally on the same operating system).

 A similar process has to be followed for setting up the hardware and software infra-

structure for other environments (for example, UAT and production) that are part of

the deployment pipeline. In larger organizations, the responsibility for performing

this task traditionally falls on the shoulders of the operations team. Without proper

communication and documentation, getting these environments ready ends up

becoming a lengthy and nerve-wracking procedure. Even worse, if any of the configu-

ration settings need to be changed, they have to be propagated across all environ-

ments manually.

 While shell scripting is a good first step to mitigate this pain, it doesn’t fully auto-

mate the infrastructure provisioning end-to-end across environments. The paradigm

of infrastructure as code aims to bridge the gap between software development and

system administration. With sufficient tooling, it’s possible to describe a machine’s con-

figuration as executable code, which is then checked into version control and shared

among different stakeholders. Any time you need to create a new machine, you can

build a new one based on the instructions of your infrastructure code. Ultimately, this

allows you to treat infrastructure code like any other software development project that

can be versioned, tested, and checked for potential syntactical issues.

 In the past couple of years, several commercial and open source tools have

emerged to automate infrastructure provisioning. We’ll focus on two of the most pop-

ular open source infrastructure automation tools: Vagrant and Puppet. The next sec-

tion will give you an architectural overview of how both tools can be used together to

build a virtual machine from scratch. The end result will be a runtime environment

equipped to serve your To Do application.

15.1.2 Creating a virtual machine with Vagrant and Puppet

Vagrant (http://www.vagrantup.com/) is an infrastructure tool for configuring and

creating virtual environments. A machine can be managed with the help of the

Vagrant executable. For example, you can start and stop a machine with a simple, one-

line shell script. Even better, you can directly SSH into it and control it like every other

remote *nix server.

 The software configuration of a machine is described through shell scripts or provi-

sioning tools such as Chef and Puppet. The provisioning provider you use often boils

down to personal preference and knowledge of the tool. We’ll concentrate on Puppet.

 Puppet (https://puppetlabs.com/puppet/) provides a Ruby-based DSL for declar-

ing the software components and their required state on a target machine. If you

think back to the runtime environment required for your To Do application, you can

identify the following software packages and their configuration:

■ A Java runtime (JRE) installation. You’ll use version 6.

■ A Servlet container to host the web application. You’ll use Apache Tomcat with

version 7.

http://www.vagrantup.com/
https://puppetlabs.com/puppet/

398 CHAPTER 15 Infrastructure provisioning and deployment

■ An H2 database to manage your application data. To function properly, the

database schema needs to be set up.

It’s beyond the scope of this book to fully describe the configuration needed to set

up such a scenario. However, you can find a working example in the source code of

the book. Let’s examine the basic structure of your Vagrant project to get a high-

level understanding:

.
├── Vagrantfile
├── files
│ ├── h2-1.3.172.jar
│ ├── todo-schema.sql
│ └── tomcat-users.xml
└── manifests
 └── tomcat.pp

Figure 15.1 illustrates how the individual components of a Vagrant project play

together. At a minimum, every Vagrant project needs to contain a Vagrantfile. Based

on this file, virtual machines are configured and created. You’re going to go with Pup-

pet as the configuration provider. The configuration you want to apply to the virtual

machine is set up in a Puppet manifest file, which is referenced in the Vagrantfile.

In this case, the name of the manifest file is tomcat.pp. To be able to version and

share the Vagrant project with other developers, you need to check it into version con-

trol like regular source code.

 Before any virtual machine can be initiated from the infrastructure definition, you’ll

need to install the Vagrant executable and Virtual Box (https://www.virtualbox.org/).

Please refer to the Vagrant documentation for more information. After a successful

installation, you can invoke the Vagrant executable from the command line.

 Let’s explore some of the commonly used commands. To bring up your Vagrant

machine, navigate to the Vagrant project in your shell and execute the command

vagrant up. Vagrant is fairly wordy, so we won’t show the command-line output here.

After a few moments, you should see the notice that the virtual machine was brought

up successfully.

Vagrant file that defines
how to configure and
provision virtual machines

H2 library used to
execute SQL scripts

SQL file for defining
initial database schema

Used to
preconfigure

Tomcat
users

Puppet manifest file that defines how
to configure a target virtual machine

VCS
creates

configures

VM 1..n

uses

Vagrantfile

Puppet manifest

Vagrant runtime

stores

shares

reads

Figure 15.1 Creating test

environments with Vagrant

and Puppet

https://www.virtualbox.org/

399Infrastructure provisioning

In the Vagrantfile, you configured the virtual machine to be accessible by the IP

address 192.168.1.33. As part of your provisioning code, you defined Tomcat to run

on port 8080. To verify a successful installation of the web container, open the

browser of your choice and enter the URL http://192.168.1.33:8080/. You should

see the Tomcat 7 dashboard. To shut down the virtual machine, use the command

vagrant destroy. In the next section, you’ll learn how to bootstrap Vagrant com-

mands from Gradle.

15.1.3 Executing Vagrant from Gradle

At this point, you may be thinking, “Why would I want to execute Vagrant commands

from Gradle?” The short answer is automation. Any workflow that incorporates inter-

acting with a virtual machine provided by Vagrant needs to be able to call the corre-

sponding command from Gradle. To show you a simple workflow, let’s assume you

want to execute functional tests on a virtual machine that mimics the infrastructure

setup of a production server. The following steps are involved:

1 Start the virtual machine via the command vagrant up.

2 Deploy the web application to the Tomcat server.

3 Execute a suite of functional tests.

4 Shut down the virtual machine via the command vagrant destroy.

This use case is fairly advanced and requires some complex setup. For now, you’ll start

simple and enable your build to wrap Vagrant command calls with Gradle tasks.

You’re going to write a custom task. The task defines the Vagrant commands you want

to execute as an input parameter. Additionally, you need to point the task to the

Vagrant project you’d like to target. The following listing demonstrates a reusable task

that allows executing Vagrant commands.

package com.manning.gia.vm

import org.gradle.api.DefaultTask
import org.gradle.api.GradleException
import org.gradle.api.tasks.Input
import org.gradle.api.tasks.TaskAction

class Vagrant extends DefaultTask {
 static final String VAGRANT_EXECUTABLE = 'vagrant'

 @Input
 List<String> commands

 @Input
 File dir

 @TaskAction
 void runCommand() {
 commands.add(0, VAGRANT_EXECUTABLE)
 logger.info "Executing Vagrant command: '${commands.join(' ')}'"

Listing 15.1 Custom task for executing Vagrant commands

List of provided Vagrant
commands (doesn’t include
Vagrant executable)

Directory where
Vagrant box is located

http://192.168.1.33:8080/

400 CHAPTER 15 Infrastructure provisioning and deployment

 def process = commands.execute(null, dir)
 process.consumeProcessOutput(System.out, System.err)
 process.waitFor()

 if(process.exitValue() != 0) {
 throw new GradleException()
 }
 }
}

Depending on the complexity of your configuration, some Vagrant commands (espe-

cially vagrant up) may need a few minutes to finish. If you have a chain of tasks that

build on each other, you need to make sure that task execution is delayed until

Vagrant completes the actual work. Your task implementation takes care of this

requirement by letting the current thread wait until the Vagrant command responds

with an exit value. Next, you’ll put your Vagrant task to the test. The following listing

demonstrates the use of the custom task to expose important Vagrant commands to a

Gradle build.

import com.manning.gia.vm.Vagrant

ext.targetedVagrantProjectDir = file('../vagrant-tomcat-box')

task vagrantUp(type: Vagrant) {
 commands = ['up']
 dir = targetedVagrantProjectDir
}

task vagrantDestroy(type: Vagrant) {
 commands = ['destroy', '--force']
 dir = targetedVagrantProjectDir
}

task vagrantSshConfig(type: Vagrant) {
 commands = ['ssh-config']
 dir = targetedVagrantProjectDir
}

task vagrantStatus(type: Vagrant) {
 commands = ['status']
 dir = targetedVagrantProjectDir
}

task vagrantSuspend(type: Vagrant) {
 commands = ['suspend']
 dir = targetedVagrantProjectDir
}

task vagrantResume(type: Vagrant) {
 commands = ['resume']
 dir = targetedVagrantProjectDir
}

Listing 15.2 Enhanced tasks for important Vagrant commands

Executes Vagrant command
as external process
(waits until finished)

If process didn’t
finish successfully,
throw an exception

Directory pointing
to targeted
Vagrant box

Creates and configures a machine
according to Vagrantfile

Stops a running Vagrant machine
and destroys all its resources

Outputs configuration of SSH configuration
file (needed to SSH into a running machine)

Reports on state of a Vagrant machine
(for example, running, suspended)

Suspends a running Vagrant machine by
creating a snapshot of its current state

Resumes a previously
suspended Vagrant machine

http://www.jcraft.com/jsch/
http://www.jcraft.com/jsch/

401Targeting a deployment environment

Congratulations, you just implemented a way to integrate Vagrant into your build!

Running Vagrant on a local machine is great for simulating production-like environ-

ments. When it comes to interacting with existing environments other than your local

machine, your build needs to have a way of configuring the connection information.

In the next section, we’ll explore a flexible way of storing and reading environment-

specific configuration.

15.2 Targeting a deployment environment

The main maxim of continuous delivery is to get the software from the developer’s

machine into the hands of the end users as quickly and frequently as possible. How-

ever, that doesn’t mean that you assemble your deliverable and deploy it in the pro-

duction environment right away. In between these steps, a build pipeline usually

verifies functional and nonfunctional requirements in other environments, as shown

in figure 15.2.

 At the beginning of this chapter, you created a virtual machine on your developer

machine. Though the virtual machine has a production-like setup, you use this environ-

ment solely for testing purposes. The test environment brings together code changes

from multiple developers of the team. Therefore, it can be seen as the first integration

point of running code. On the deployed application in the test environment, you can

run automated acceptance tests to verify functional and nonfunctional requirements.

The user acceptance test (UAT) environment typically exists for the purpose of explor-

atory, manual testing. Once the QA team considers the current state of the software

code to be satisfactory, it’s ready to be shipped to production. The production environ-

ment directly serves to the end user and makes new features available to the world.

 If you want to use the same code for deploying to all of these environments, you’ll

need to be able to dynamically target each one of them at build time. Naturally, the

test, UAT, and production environments run on different servers with potentially dif-

ferent ports and credentials. You could store the configuration as extra properties in

your build script, but that would quickly convolute the logic of the file. Alternatively,

you could store this information in a gradle.properties file. In both cases, you’d

end up with a fairly unstructured list of properties. At build time, you’d have to pick a

set of properties based on a naming convention. Doesn’t sound very flexible, does it?

There’s a better way of storing and reading this configuration with the help of a stan-

dard Groovy feature.

15.2.1 Defining configuration in a Groovy script

Configuration, especially if you have a lot of it, should be as readable and structured

as possible. One of Groovy’s language features allows for defining properties with the

Local Test UAT Prod

Figure 15.2 Software propagation

through different environments

402 CHAPTER 15 Infrastructure provisioning and deployment

help of closures within a Groovy script. The following listing shows an example of

composing an environment-specific configuration in the form of a mini DSL.

environments {
 local {
 server {
 hostname = 'localhost'
 sshPort = 2222
 username = 'vagrant'
 }

 tomcat {
 hostname = '193.168.1.33'
 port = 8080
 context = 'todo'
 }
 }

 test {
 ...
 }

 uat {
 ...
 }

 prod {
 ...
 }
}

Each of the environments that you want to define properties for is enclosed in the

environments configuration block. For each environment, you assigned a closure

with a descriptive name. For example, you can define the server hostname, SSH port,

and username to log into the server. Use this configuration data and save it to a

Groovy script under the directory gradle/config/buildConfig.groovy, as shown in

your project directory tree:

.
├── buildSrc
├── gradle
│ └── config
│ └── buildConfig.groovy
├── model
├── repository
├── web
├── build.gradle
└── settings.gradle

You now have a Groovy-based configuration file in place, but how do you read its con-

tent from the Gradle build? Groovy provides a handy API class named groovy.util

.ConfigSlurper that’s designed to parse a treelike data structure. Let’s take a closer

look at its functionality.

Listing 15.3 Groovy-based, environment-specific configuration

Element for grouping
configuration by environment

Configuration for local
development environment

Configuration for
test environment

Configuration for
UAT environment

Configuration for
production environment

Groovy-based,
environment-specific
configuration file

403Targeting a deployment environment

15.2.2 Reading the configuration with Groovy’s ConfigSlurper

ConfigSlurper is a utility class for reading configuration in the form of Groovy

scripts. Configuration can either be defined as properties on the root level of the

script or as environment-specific properties wrapped by the environments closure.

Once this configuration is parsed, the property graph can be navigated by dot nota-

tion. We’ll see how this looks in practice.

 Reading this configuration file from Gradle requires some thinking. You need to

make sure that the configuration is read before any task action is executed. Remem-

ber when we discussed Gradle’s build lifecycle phases in chapter 4? This is best done

during the configuration phase, as shown in figure 15.3.

 The task that reads the Groovy script doesn’t need to contain a task action.

Instead, you’ll create an instance of the class ConfigSlurper in the configuration

block of the task and provide the specific environment you want to read in its con-

structor. The method parse points to the location of the configuration file. The fol-

lowing listing demonstrates how to parse the Groovy script based on the provided

property env.

def env = project.hasProperty('env') ? project.getProperty('env') : 'local'
logger.quiet "Loading configuration for environment '$env'."

def configFile = file("$rootDir/gradle/config/buildConfig.groovy")
def parsedConfig = new ConfigSlurper(env).parse(configFile.toURL())

allprojects {
 ext.config = parsedConfig
}

The parsed configuration is made available to all projects of your build through the

extra property config. Next, you’ll actually use the property in another task that

requires the parsed configuration.

Listing 15.4 Reading configuration during configuration phase

// load configuration

…

allprojects {

ext.config = parsedConfig

}

Configuration code

Initialization

phase

Configuration

phase

Execution

phase

task consumingTask << {

logger.quiet config

}

Action code

Figure 15.3 Reading Groovy script during Gradle’s configuration phase

Groovy file
containing
configuration

Reads
configuration
file for targeted
environment

Assigns read configuration to
extra property config available
to all projects of build

404 CHAPTER 15 Infrastructure provisioning and deployment

15.2.3 Using the configuration throughout the build

A typical usage pattern for the configuration shown in listing 15.3 is the deployment

of the To Do web application to a specific environment. Key to targeting a specific

environment is to provide a value for the property env on the command line. For

example, if you want to target the UAT environment, you’d provide the project prop-

erty -Penv=uat. The value of this project property directly corresponds to the closure

named uat in the Groovy configuration script. Using this simple mechanism, you

enable your build to run the same task logic—for example, deployment of code via

environment-specific configuration, as shown in figure 15.4.

 You’re going to emulate a deployment task to see if your mechanism works. In the

web project, you’ll create a new task named deployWar, as shown in listing 15.5. For

now, you won’t bother with actually implementing deployment logic. To verify that the

settings appropriate to the targeted environment are parsed correctly, the task’s

doLast action will use Gradle’s logger to print the read hostname and port.

task deployWar << {
 logger.quiet "Deploying WAR file to $config.server.hostname via SSH
 ➥ on port $config.server.sshPort."
}

When you run the task deployWar for the environment local, you can see that the

proper settings are parsed and rendered on the command line:

$ gradle deployWar -Penv=local
Loading configuration for environment 'local'.
:todo-web:deployWar
Deploying WAR file to 'localhost' via SSH on port 2222.

Listing 15.5 Using the configuration extra property

deploy artifacts

-Penv=prod

-Penv=uat

-Penv=test

Prod

UAT

Test

Figure 15.4 Targeting

specific environments by

providing a project property

Logs
configured

server
hostname
and port

405Automated deployments

Just printing out the configuration is pretty boring. In the next section, you’ll actually

use these settings to deploy the To Do application WAR file to a server.

15.3 Automated deployments

The end game of every build pipeline is to deploy the software to a production envi-

ronment once it passes all automated and manual testing phases. The deployment

process should be repeatable and reliable. Under all circumstances, you want to avoid

human error when interacting with a production environment to install a new ver-

sion. Failure to deploy the software properly will lead to unexpected side effects or

downtime and actual money lost for your organization.

 I think we can agree that the task of deploying software to production should be a

nonevent. Deployment automation is an important and necessary step toward this

goal. The code used to automate the deployment process shouldn’t be developed and

exercised against the production environment right away to reduce the risk of break-

ages. Instead, start testing it with a production-like environment on your local

machine, or a test environment. You already set up such an environment with Vagrant.

It uses infrastructure definitions that are fairly close to your production environment.

Mimicking a production-like environment using a virtual machine for developing

deployment code is cheap, easy to manage, and doesn’t disturb any other environ-

ment participating in your build pipeline. Once you’re happy with a working solution,

the code should be used for deploying to the least-critical environment in your build

pipeline. After gaining more confidence that the code is working as expected, you can

deploy it to more mission-critical environments like UAT and production.

 Writing deployment code is not a cookie-cutter job. It’s dependent on the type of

software you write and the target environment you’re planning to deploy to. For exam-

ple, a deployment of a web application to a Linux machine has different requirements

than client-installed software running on Windows. At the time of writing, Gradle

doesn’t offer a unified approach for deploying software. The approach we’ll discuss in

this chapter is geared toward deploying your web application to a Tomcat container.

15.3.1 Retrieving the artifact from the binary repository

In the last chapter, you learned how to upload an artifact to a binary repository. You’re

going to retrieve it for deployment purposes. Now that you have the Groovy configura-

tion file in place, you can also add the Artifactory repository URL. In this example, you

only use a single repository that isn’t specific to an environment. ConfigSlurper also

reads any properties declared outside of the environments closure independent of

the provided env property. The following listing demonstrates how to declare com-

mon configuration—in this case, the binary repository.

binaryRepository {
 baseUrl = 'http://localhost:8081/artifactory'

Listing 15.6 Adding binary repository settings to buildConfig.groovy

Artifactory
base URL

406 CHAPTER 15 Infrastructure provisioning and deployment

 releaseUrl = "$baseUrl/libs-release-local"
}

environments {
 ...
}

In listing 15.7, you use the settings from the file buildConfig.groovy to download the

WAR file with the current version of your project from Artifactory. In this example,

Gradle’s dependency management does the heavy lifting of downloading the file from

the repository. Executing the task fetchToDoWar will put the artifact into the directory

build/download/artifacts. Please note that it’s not mandatory to use Gradle’s

dependency management for retrieving the file. You could also use the Ant task Get

and write a lower-level implementation in Groovy.

repositories {
 maven {
 url config.binaryRepository.releaseUrl
 }
}

configurations {
 todo
}

dependencies {
 todo group: project.group, name: project.name,
 ➥ version: project.version.toString(), ext: 'war'
}

ext.downloadDir = file("$buildDir/download/artifacts")

task fetchToDoWar(type: Copy) {
 from configurations.todo
 into downloadDir
}

Try out the task. Assume your project version is 1.0.42. After executing the task, you’ll

find the expected file in the download directory:

.
└── build
 └── download
 └── artifacts
 └── todo-web-1.0.42.war

Of course, it makes sense to download the artifact just once, even though you’ll

deploy it to different environments. The task fetchToDoWar automatically implements

the incremental build functionality. Executing the task a second time will mark it

UP-TO-DATE, as shown in the following command-line output:

$ gradle fetchToDoWar
:fetchToDoWar UP-TO-DATE

Listing 15.7 Downloading the WAR file from a remote repository

URL of Maven
release repository

Defines Artifactory
URL as repository

Introduces new configuration
for application-specific
dependencies

Declares To Do
application WAR
files as dependency

Extra property
that defines
target download
directory

Task for downloading
WAR file from
Artifactory

407Automated deployments

Now things are getting exciting. You downloaded the artifact with the correct version.

Before you can take care of business by deploying the web application to Tomcat, you

should plan out the necessary steps to implement the process.

15.3.2 Identifying necessary deployment steps

The deployment process for a web application to a remote server needs to follow a

workflow to ensure a smooth transition from the current version to a new one. What

kind of aspects should be considered?

 First, you need to make sure that all artifacts of the old version, like the exploded

WAR file, are properly removed. Under all circumstances, you need to avoid mixing

up old artifacts with the new ones.

 Some deployment solutions like Cargo (http://cargo.codehaus.org/) allow for

deploying a web application while the container is running, a technique also known as

hot deployment. While it might sound attractive at first, because you don’t have to

restart the server, hot deployment isn’t a viable solution for production systems. Over

time, long-running JVM processes will run into an OutOfMemoryError for their Perm-

Gen space, which will cause it to freeze up. The reason is that the JVM will not garbage-

collect class instances from previous deploys even if they’re now unused. Therefore,

it’s highly recommended to fully stop the web container JVM process before a new ver-

sion is deployed.

 An efficient deployment process can look like the following steps:

1 Push new artifact to server.

2 Stop the web container process.

3 Delete the old artifact and its extracted files.

4 Deploy the new artifact.

5 Start the web container process.

In the following section, you’ll implement this process with the help of Gradle. The

previously created Vagrant instance will act as a test bed for your deployment script.

15.3.3 Deployment through SSH commands

We didn’t go into any specifics about the operating system of the virtual machine you

set up before. Assume that the box is based on the Linux distribution Ubuntu. You

may know that transferring a file to a remote machine running a SSH daemon can be

achieved with Secure Copy (SCP). SCP uses the same security measures as SSH. For

authentication purposes, SCP will ask for a password or a pass phrase. Alternatively,

the private key file can be provided to authenticate the user. Vagrant automatically

puts this identity file into the directory <USER_HOME>/.vagrant.d.

 You could model the whole deployment process in a shell script and call it from

Gradle by creating an enhanced task of type Exec. That’s certainly a valid way of imple-

menting the necessary steps. However, in this section we’ll discuss how to model each

step with a corresponding Gradle task.

http://cargo.codehaus.org/

408 CHAPTER 15 Infrastructure provisioning and deployment

FILE TRANSFERS WITH SCP

You’ll start by implementing the file transfer via SCP. If you’re familiar with Ant, you

may have used the SCP task before. The Ant task provides a nice abstraction on top of

a pure Java SSH implementation named JSch (http://www.jcraft.com/jsch/). The next

listing shows how to wrap the Ant SCP task with a custom Gradle task declared in the

buildSrc project.

package com.manning.gia.ssh

import org.gradle.api.DefaultTask
import org.gradle.api.GradleException
import org.gradle.api.file.FileCollection
import org.gradle.api.tasks.*

class Scp extends DefaultTask {
 @InputFiles
 FileCollection classpath

 @InputFile
 File sourceFile

 @Input
 String destination

 @Input
 File keyFile

 @Input
 Integer port

 @TaskAction
 void transferFile() {
 logger.quiet "Copying file '$sourceFile' to server."
 ant.taskdef(name: 'jschScp', classname:
 ➥ 'org.apache.tools.ant.taskdefs.optional.ssh.Scp',
 ➥ classpath: classpath.asPath)
 ant.jschScp(file: sourceFile, todir: destination, keyfile:
 ➥ keyFile.canonicalPath, port: port, trust: 'true')
 }
}

You’ll use this SCP abstraction in the build script of your web project to copy the WAR

file to the remote location. In listing 15.9, you declare the JSch Ant task dependency

with the help of a custom configuration named jsch. This dependency is passed on to

the classpath property of the enhanced task responsible for transferring the WAR file

to the remote server. You also incorporate the server settings read during the configu-

ration phase of your build.

configurations {
 jsch
}

Listing 15.8 Custom task wrapping the optional Ant SCP task

Listing 15.9 Transferring the WAR file to the server via SCP

Declares Ant
SCP taskUses Ant

SCP task to
copy a file
to server

http://www.jcraft.com/jsch/

409Automated deployments

dependencies {
 jsch 'org.apache.ant:ant-jsch:1.9.1'
}

ext {
 warFile = configurations.todo.singleFile
 tomcatRemoteDir = '/opt/apache-tomcat-7.0.42'

 userHome = System.properties['user.home']
 vagrantKeyFile = file("$userHome/.vagrant.d/insecure_private_key")
 remoteTmpDir = "$config.server.username@$config.server.hostname:/tmp"
}

import com.manning.gia.ssh.Scp

task copyWarToServer(type: Scp, dependsOn: fetchToDoWar) {
 classpath = configurations.jsch
 sourceFile = warFile
 destination = remoteTmpDir
 keyFile = vagrantKeyFile
 port = config.server.sshPort
}

This listing only implements step one of the deployment process. You have four

more to go. All of the other steps need to execute shell commands on the remote

server itself.

EXECUTING REMOTE COMMANDS WITH SSH

The SSH command makes it very simple to achieve such an operation. Instead of run-

ning an interactive shell, SSH can run a command on the remote machine and render

the output. The following listing shows the custom task SshExec that internally wraps

the SSH Ant task.

package com.manning.gia.ssh

import org.gradle.api.DefaultTask
import org.gradle.api.GradleException
import org.gradle.api.file.FileCollection
import org.gradle.api.tasks.*

class SshExec extends DefaultTask {
 @InputFiles
 FileCollection classpath

 @Input
 String host

 @Input
 String username

 @Input
 String command

 @InputFile
 File keyFile

Listing 15.10 Custom task wrapping the optional Ant SSH task

Before SCPing the WAR
file to server, make
sure it’s downloaded
from Artifactory

Assigns optional
Ant tasks to task
classpath

Defines
downloaded
WAR as source
transfer file

Declares remote
target directory
WAR file is
transferred to

410 CHAPTER 15 Infrastructure provisioning and deployment

 @Input
 Integer port

 @TaskAction
 void runSshCommand() {
 logger.quiet "Executing SSH command '$command'."
 ant.taskdef(name: 'jschSshExec', classname:
 ➥ 'org.apache.tools.ant.taskdefs.optional.ssh.SSHExec',
 ➥ classpath: classpath.asPath)
 ant.jschSshExec(host: host, username: username, command: command,
 ➥ port: port, keyfile: keyFile.canonicalPath,
 ➥ trust: 'true')
 }
}

In the next listing, you use this custom SSH task to run various shell commands on the

Vagrant virtual box. As a whole, this script implements the full deployment workflow

we discussed earlier.

import com.manning.gia.ssh.SshExec

tasks.withType(SshExec) {
 classpath = configurations.jsch
 host = config.server.hostname
 username = config.server.username
 keyFile = vagrantKeyFile
 port = config.server.sshPort
}

task shutdownTomcat(type: SshExec, dependsOn: copyWarToServer) {
 command = "sudo -u tomcat $tomcatRemoteDir/bin/shutdown.sh"

 doFirst {
 logger.quiet "Shutting down remote Tomcat."
 }
}

task deleteTomcatWebappsDir(type: SshExec, dependsOn: shutdownTomcat) {
 command = "sudo -u tomcat rm -rf $tomcatRemoteDir/webapps/todo"
}

task deleteTomcatWorkDir(type: SshExec, dependsOn: shutdownTomcat) {
 command = "sudo -u tomcat rm -rf $tomcatRemoteDir/work"
}

task deleteOldArtifacts(dependsOn: [deleteTomcatWebappsDir,
 deleteTomcatWorkDir]) {
 doFirst {
 logger.quiet "Deleting old WAR artifacts."
 }
}

task copyWarToWebappsDir(type: SshExec, dependsOn: deleteOldArtifacts) {
 command = "sudo -u tomcat cp /tmp/$warFile.name
 ➥ $tomcatRemoteDir/webapps/todo.war"

Listing 15.11 SSH commands for managing Tomcat and deploying WAR file

Declares
Ant SSH
task

Uses Ant
SSH task to
copy a file
to server

Configures all
tasks of type
SshExec

Shuts down
the Tomcat
JVM process

Deletes existing
exploded To Do web

application directory

Deletes
Tomcat
temporary
work
directory

Copies WAR file to
Tomcat’s webapps

directory

411Automated deployments

 doFirst {
 logger.quiet "Deploying WAR file to Tomcat."
 }
}

task startupTomcat(type: SshExec, dependsOn: copyWarToWebappsDir) {
 command = "sudo -u tomcat $tomcatRemoteDir/bin/startup.sh"

 doFirst {
 logger.quiet "Starting up remote Tomcat."
 }
}

task deployWar(dependsOn: startupTomcat)

That’s all you need to implement a full deployment process. Bring up the Vagrant

box and give it a try. The following command-line output shows the execution steps

in action:

$ gradle deployWar -Penv=local
...
Loading configuration for environment 'local'.
:todo-web:fetchToDoWar
:todo-web:copyWarToServer
Copying file 'todo-web-1.0.42.war' to server.
:todo-web:shutdownTomcat
Shutting down remote Tomcat.
Executing SSH command 'sudo -u tomcat /opt/apache-tomcat-7.0.42/

➥ bin/shutdown.sh'.
:todo-web:deleteTomcatWebappsDir
Executing SSH command 'sudo -u tomcat rm -rf /opt/apache-tomcat-

➥ 7.0.42/webapps/todo'.
:todo-web:deleteTomcatWorkDir
Executing SSH command 'sudo -u tomcat rm -rf /opt/apache-tomcat-

➥ 7.0.42/work'.
:todo-web:deleteOldArtifacts
Deleting old WAR artifacts.
:todo-web:copyWarToWebappsDir
Deploying WAR file to Tomcat.
Executing SSH command 'sudo -u tomcat cp /tmp/todo-web-1.0.42.war

➥ /opt/apache-tomcat-7.0.42/webapps/todo.war'.
:todo-web:startupTomcat
Starting up remote Tomcat.
Executing SSH command 'sudo -u tomcat /opt/apache-tomcat-7.0.42/

➥ bin/startup.sh'.
:todo-web:deployWar

After restarting Tomcat again, it may take some seconds until your web application is

up and running. After giving Tomcat enough time to explode the WAR file and start its

services, navigating to the URL http://192.168.1.33:8080/todo in a browser will pres-

ent you with a To Do list ready to be filled with new tasks.

 Running SSH commands isn’t the only approach for tackling deployment automa-

tion. There are many other ways to achieve this goal. Due to the diversity of this topic,

we won’t present them in this chapter. Don’t feel discouraged from trying out new,

Starts
Tomcat JVM
process

Deployment
lifecycle task

http://192.168.1.33:8080/todo

412 CHAPTER 15 Infrastructure provisioning and deployment

automated ways of getting your software deployed in the target environment. As long

as the process you choose is repeatable, reliable, and matches your organization’s

needs, you’re on the right path.

15.4 Deployment tests

Every deployment of an application should be followed by rudimentary tests that ver-

ify that the operation was successful and the system is in an expected, working state.

These types of tests are often referred to as deployment tests.

 If for whatever reason a deployment failed, you want to know about it—fast. In the

worst-case scenario, a failed deployment to the production environment, the cus-

tomer shouldn’t be the first to tell you that the application is down. You absolutely

need to avoid this situation because it destroys credibility and equates to money lost

for your organization.

 The harsh reality is that deployments can fail even with the best preparation.

Knowing about it as soon as possible is worth a mint. As a result, you can take mea-

sures to bring back the system into an operational state; for example, by rolling back

the application to the last “good” version.

 In addition to these fail-fast tests, automated acceptance tests verify that important

features or use cases of the deployed application are correctly implemented. For this

purpose, you can use the functional tests you wrote in chapter 7. Instead of running

them on your developer machine against an embedded Jetty container, you’ll config-

ure them to target other environments. Let’s first look at how to implement the most

basic types of deployment tests: smoke tests.

15.4.1 Verifying a successful deployment with smoke tests

Your deployment automation code should incorporate tests that check that your sys-

tem is in a basic, functional state after the deployment is completed. These tests are

called smoke tests. Why this name, you ask? Smoke tests make an analogy to hardware

installation like electronic circuits. If you turn on the power and see smoke coming

out of the electrical parts, you know that the installation went wrong. The same con-

clusion can be drawn for software.

 After a deployment, the target environment may need time to reach its fully func-

tional state. For example, if the deployment process restarts a web container, it’s obvi-

ous that it won’t be able to serve incoming requests right away. If that’s the case for

your environment setup, make sure to give some leeway before executing your suite of

smoke tests.

 How do smoke tests look for a web application like your To Do application? Sim-

ple—you can fire basic HTTP requests to see if the Tomcat server is up and running.

You also want to find out if the application’s homepage URL responds with the HTTP

status code 200.

 Making HTTP requests from Gradle tasks is easily achieved with Java’s standard

API classes (java.net.HttpUrlConnection) or third-party libraries like Apache Http-

Components (http://hc.apache.org/). You’ll make your life even easier by using a Groovy

http://hc.apache.org/

413Deployment tests

library named HTTPBuilder (http://groovy.codehaus.org/modules/http-builder/).

HTTPBuilder wraps the functionality provided by HttpComponents with a DSL-style

configuration mechanism, which boils down the code you need to write significantly.

You’ll use HTTPBuilder from a custom task named HttpSmokeTest that acts as an

abstraction layer for making HTTP calls. To make this task available to all projects of

your build, the implementing class becomes part of the buildSrc project, as shown in

the following directory tree:

.
├── buildSrc
│ ├── build.gradle
│ └── src
│ └── main
│ └── groovy
│ └── com
│ └── manning
│ └── gia
│ └── test
│ └── smoke
│ └── HttpSmokeTest.groovy
├── gradle
├── model
├── repository
├── web
├── build.gradle
└── settings.gradle

Before any class under buildSrc can use the HTTPBuilder library, you need to declare

it in a build script for that project. The following listing references the version 0.5.2.

repositories {
 mavenCentral()
}

dependencies {
 compile 'org.codehaus.groovy.modules.http-builder:http-builder:0.5.2'
}

As you can imagine, you may implement other types of smoke tests later; for example,

for testing the functionality of the database. For this reason, you’ll group smoke tests

in the package com.manning.gia.test.smoke. Let’s have a closer look at the imple-

mentation in the next listing for smoke tests that fire an HTTP request.

package com.manning.gia.test.smoke

import org.gradle.api.DefaultTask
import org.gradle.api.GradleException
import org.gradle.api.tasks.Input
import org.gradle.api.tasks.TaskAction

Listing 15.12 Build script for buildSrc project

Listing 15.13 Custom task for executing HTTP smoke tests

Build script for buildSrc project
declaring a dependency on the
HTTPBuilder library

Custom tasks
for defining
HTTP smoke
tests

Declares a
dependency on

library HTTPBuilder

http://groovy.codehaus.org/modules/http-builder/

414 CHAPTER 15 Infrastructure provisioning and deployment

import groovyx.net.http.HTTPBuilder
import static groovyx.net.http.ContentType.TEXT

class HttpSmokeTest extends DefaultTask {
 @Input
 String url

 @Input
 String errorMessage

 @TaskAction
 void letThereBeSmoke() {
 boolean success = isUp(url)

 if(!success) {
 throw new GradleException(errorMessage)
 }
 }

 private boolean isUp(String url) {
 def http = new HTTPBuilder(url)
 def responseStatus = http.get(contentType: TEXT) { resp, reader ->
 resp.status
 }

 responseStatus != HttpURLConnection.HTTP_OK
 }
}

In your build script, you can set up as many smoke tests as you need. As with the URL,

provide the HTTP endpoint of your web application that was read from the Groovy

configuration file earlier. Figure 15.5 shows how to use the env project property to tar-

get a particular environment.

Makes HTTP Get request
for provided URL and
checks if response code
comes back OK

Fail smoke test task if HTTP
response code is anything
other than OK

Makes
HTTP Get

request for
provided
URL and

parses
response

status code

runs smoke tests

-Penv=prod

-Penv=uat

-Penv=test

Prod

UAT

Test

Figure 15.5 Running

smoke tests against

different environments

415Deployment tests

Let’s look at some exemplary smoke test implementations. The following listing shows

two different smoke tests: one for verifying that Tomcat is up and running and

another for checking if your web application was deployed successfully.

import com.manning.gia.smoke.HttpSmokeTest

ext {
 tomcatUrl = "http://$config.tomcat.hostname:$config.tomcat.port"
 toDoAppUrl = "$tomcatUrl/$config.tomcat.context"
}

task checkTomcatUrl(type: HttpSmokeTest) {
 url = tomcatUrl
 errorMessage = "Tomcat doesn't seem to be up."
}

task checkApplicationUrl(type: HttpSmokeTest,
 dependsOn: checkTomcatUrl) {
 url = toDoAppUrl
 errorMessage = "Application doesn't seem to be up."
}

task smokeTests(dependsOn: checkApplicationUrl)

I’m sure you can imagine a whole range of smoke tests for your real-world applications.

It’s certainly worth experimenting with options, as long as they’re cheap to write and

fast to execute.

 If all smoke tests pass, you can rightfully assume that your application was deployed

successfully. But does it work functionally? As a next step, you should determine

whether the provided application functionality works as expected.

15.4.2 Verifying application functionality with acceptance tests

Functional tests, also called acceptance tests, focus on verifying whether the end

user requirements are met. In chapter 7, you learned how to implement a suite of

functional tests for your web application with the help of the browser automation

tool Geb.

 Of course, you want to be able to run these tests against a deployed application

in other environments. Acceptance tests are usually run during the automated

acceptance test phase of the continuous delivery build pipeline. This is the first time

in the pipeline that you bring together the work of the development team, deploy it

to a test server, and verify whether the functionality meets the needs of the business

in an automated fashion. In later phases of the build pipeline, acceptance tests can

be run to get quick feedback about the success of a deployment on a functional

level. The better the quality of your tests, the more confident you can be about the

determined result.

 In listing 15.13, you added a new task of type Test for running functional tests

against remote servers. Geb allows for pointing to an HTTP endpoint by setting the

Listing 15.14 Smoke tests for verifying HTTP URLs

Constructs
environment-
specific Tomcat
URL from
configuration file

Verifies if main Tomcat
container homepage
URL is reachable

Verifies if deployed
To Do application
URL is reachable

416 CHAPTER 15 Infrastructure provisioning and deployment

system property geb.build.baseUrl. The value you assign to this system property is

derived from the read environment configuration, as shown in the following listing.

ext {
 functionalTestReportDir = file("$test.reports.html.destination/functional")
 functionalTestResultsDir = file("$test.reports.junitXml.
 ➥ destination/functional")
 functionalCommonSystemProperties = ['geb.env': 'firefox',
 ➥ 'geb.build.reportsDir':
 ➥ reporting.file("$name/geb")]
}

task remoteFunctionalTest(type: Test) {
 testClassesDir = sourceSets.functionalTest.output.classesDir
 classpath = sourceSets.functionalTest.runtimeClasspath
 reports.html.destination = functionalTestReportDir
 reports.junitXml.destination = functionalTestResultsDir
 systemProperties functionalCommonSystemProperties
 systemProperty 'geb.build.baseUrl', toDoAppUrl
}

15.5 Deployment as part of the build pipeline

In the previous chapters, we discussed the purpose and practical application of phases

during the commit stage. We compiled the code, ran automated unit and integration

tests, produced code quality metrics, assembled the binary artifact, and pushed it to a

repository for later consumption. For a quick refresher on previously configured Jen-

kins jobs, please refer to earlier chapters.

 While the commit stage asserts that the software works at the technical level, the

acceptance stage verifies that it fulfills functional and nonfunctional requirements. To

make this determination, you’ll need to retrieve the artifact from the binary reposi-

tory and deploy it to a production-like test environment. You use smoke tests to make

sure that the deployment was successful before a suite of automated acceptance tests

is run to verify the application’s end user functionality. In later stages, you reuse the

already downloaded artifact and deploy it to other environments: UAT for manual test-

ing, and production environment to get the software into the hands of the end users.

 Let’s look at these stages with Jenkins. As a template for these stages, you’ll duplicate

an existing Jenkins job. Don’t worry about their configuration at the moment. You’ll

modify their settings in a bit. The end result will be the following list of Jenkins jobs:

■ todo-acceptance-deploy

■ todo-acceptance-test

■ todo-uat-deploy

■ todo-uat-smoke-test

■ todo-production-deploy

■ todo-production-smoke-test

Listing 15.15 Task for exercising functional tests against remote servers

Task of type
Test for
running
functional
tests against
different
environments

Defines HTTP
endpoint of
deployed web
application

417Deployment as part of the build pipeline

Together these jobs model the outstanding stages of your build pipeline, as shown in

figure 15.6.

 In the next sections, we’ll examine each of these stages one by one. Let’s start with

the acceptance stage.

15.5.1 Automatic deployment to test environment

You’ll start by configuring the Jenkins job todo-acceptance-deploy for automatically

deploying the WAR file to a test server. Figure 15.7 illustrates this stage in the context

of later deployment stages of the build pipeline.

 Have a quick look at this checklist to see if it’s set up correctly:

■ In the Source Code Management configuration section, choose the option

Clone Workspace and the parent project todo-distribution.

■ As with the build step, you want to download the WAR file from Artifactory and

deploy it to the test environment. Add a build step for invoking your Gradle

script using the wrapper and enter the task deployWar. In the field Switches,

you’ll provide the appropriate environment property: -Penv=test.

■ Define the build name by incorporating the upstream build number parame-

ter: todo#${ENV,var="SOURCE_BUILD_NUMBER"}.

■ Add a parameterized build action that defines a build trigger on the job running

your deployment tests named todo-acceptance-test. As far as parameters go,

you’ll reuse the existing ones by selecting the option Current Build Parameters.

15.5.2 Deployment tests

Deployment testing should follow directly after deploying the application to the test

environment (figure 15.8).

 There are two important points you need to consider when configuring the corre-

sponding Jenkins job. The execution of the job has to be slightly delayed to allow the

Deploy

binaries

Smoke and

acceptance

tests

Acceptance stage

Deploy

binaries

Smoke

tests

Smoke

tests

UAT

Deploy

binaries

Production

Figure 15.6 Acceptance, UAT, and production stages as part of the build pipeline

Current phase

Deploy

binaries

Smoke and

acceptance

tests

Acceptance stage

Deploy

binaries

Smoke

tests

Smoke

tests

UAT

Deploy

binaries

Production

Figure 15.7 Deploying the WAR file to a test server for acceptance testing

418 CHAPTER 15 Infrastructure provisioning and deployment

test environment to come up properly. Also, the downstream project (the deployment

to UAT) may not be executed automatically. The following list explains the necessary

configuration steps:

■ In the Source Code Management configuration section, choose the option

Clone Workspace and the parent project todo-acceptance-test.

■ In the Advanced Project Options configuration section, tick the checkbox

Quiet Period and enter the value 60 into the input field. This option will delay

the execution of the job for one minute to ensure that the Tomcat server has

been properly started. Because this method can be kind of brittle, you may want

to implement a more sophisticated mechanism to check whether the server is

up and running.

■ As with the build step, you want to run smoke and acceptance tests against the

test environment. Add a build step for invoking your Gradle script using the

wrapper and enter the tasks smokeTests remoteFunctionalTest. In the field

Switches, you’ll provide the appropriate environment property: -Penv=test.

■ Define the build name by incorporating the upstream build number parame-

ter: todo#${ENV,var="SOURCE_BUILD_NUMBER"}.

■ Add a parameterized build action that defines a manual build trigger on the job

deploying the WAR file to the UAT environment named todo-uat-deploy. To

define the manual trigger, choose the option Build Pipeline Trigger → Manu-

ally Execute Downstream Project from the Add Post-build Action drop-down

menu. The build pipeline view will indicate the manual trigger by displaying a

Play button for this job.

When executing the full pipeline in Jenkins, you’ll notice that the job for deploying

to UAT requires manual intervention. Only if you actively initiate the deployment

will the pipeline execution resume—that is, until it hits another push-button, down-

stream job.

15.5.3 On-demand deployment to UAT and production environment

You already configured a push-button deployment in step 6. The same configuration

needs to apply to the job that deploys the artifact to the production environment, as

shown in figure 15.9.

 We won’t go into too much detail about the configuration of these jobs. In fact,

they look very similar to the jobs that you set up to implement the acceptance stage.

Current phase

Deploy

binaries

Smoke and

acceptance

tests

Acceptance stage

Deploy

binaries

Smoke

tests

Smoke

tests

UAT

Deploy

binaries

Production

Figure 15.8 Deployment tests against deployed WAR file

419Summary

The big differentiator is the environment they target. In the Gradle build step, the UAT

deployment job needs to set the –Penv=uat switch. The deployment job to the produc-

tion environment applies the setting –Penv=prod.

 The build pipeline view in Jenkins can be configured to keep a history of previ-

ously executed builds. This is a handy option if you want to get a quick overview of

failed and successful builds. This view also enables the stakeholders of your build to

deploy artifacts with a specific version. Typical scenarios for this use case could be one

of the following:

■ The product team decides to launch a new feature included in a specific ver-

sion of your application.

■ Rolling back the application version in production to a known “good” state due

to a failed deployment or broken feature.

■ Deploying a given feature set for manual testing by the QA team into the

UAT environment.

Jenkins needs to know which version should be deployed when you hit the release

button. Thankfully, the parameterized build plugin helps you to provide the appro-

priate version to the job. For each of the deployment jobs, make the following con-

figuration. Tick the checkbox This Build Is Parameterized. From the drop-down

menu Add Parameter choose String Parameter. In the Name input box, enter the

value SOURCE_BUILD_NUMBER.

15.6 Summary

Software deployments need to be repeatable and reliable. Any server outage inflicted

by a faulty deployment—with the biggest hit on production systems—results in money

lost for your organization. Automation is the next logical and necessary step toward

formulating and streamlining the deployment process.

 Deployable artifacts often look different by nature, follow custom project require-

ments, and demand distinct runtime environments. While there’s no overarching rec-

ipe for deploying software, Gradle proves to be a flexible tool for implementing your

desired deployment strategy.

 A configured target environment is a prerequisite for any software deployment. At

the beginning of this chapter, we discussed the importance of infrastructure as code

for setting up and configuring an environment and its services in an automated

fashion. Vagrant can play an instrumental role in creating and testing infrastructure

Current phase Current phase

Deploy

binaries

Smoke and

acceptance

tests

Acceptance stage

Deploy

binaries

Smoke

tests

Smoke

tests

UAT

Deploy

binaries

Production

Figure 15.9 Performing push-button releases to UAT and production environments

420 CHAPTER 15 Infrastructure provisioning and deployment

templates. You learned how to bootstrap a virtual machine by wrapping Vagrant man-

agement commands with Gradle tasks. Later, you implemented an exemplary deploy-

ment process using SSH commands and exercised the functionality on a running

Vagrant box.

 To ensure repeatability for your deployments, the same code should be used across

all environments. This means that the automation logic needs to use dynamic prop-

erty values to target a particular environment. Environment-specific configuration

becomes very readable when structured with closures and stored in a Groovy script.

Groovy’s API class ConfigSlurper provides an easy-to-use mechanism for parsing these

settings. To have the property values available for consumption across all projects of

your build, you coded a task that reads the Groovy script during Gradle’s configura-

tion lifecycle phase.

 The outcome of every deployment needs to be verified. Automated deployment

tests, invoked after a deployment, can provide fast feedback. Smoke tests are easy to

implement and quickly reveal breakages. Functional tests, also called acceptance tests,

are the natural extension of smoke tests. This type of test assesses whether functional

and nonfunctional requirements are met.

 By the end of this chapter, you extended your build pipeline by manual and push-

button deployment capabilities. In Jenkins, you set up three deployment jobs for tar-

geting a test, UAT, and production environment, including their corresponding deploy-

ment tests. With these last steps completed, you built a fully functional, end-to-end

build pipeline. Together, we explored the necessary tooling and methods that will

enable you to implement your own build pipeline using Gradle and Jenkins.

421

appendix A
Driving

the command line

Gradle’s command-line interface (CLI) is a user’s primary tool of choice for dis-

covering available options, inspecting the project, and controlling execution

behavior by providing configuration information. It consists of three parts: dis-

covery or help tasks, build setup tasks, and configuration input. The gradle com-

mand has the following usage:

gradle [option...] [tasks...]

A.1 Discovery tasks

Many discovery tasks provide information about the build. If you’re new to a proj-

ect, they’re a good place to start discovering the configuration. They’re imple-

mented as Gradle tasks. Every Gradle build provides the discovery tasks shown in

table A.1 from the get-go.

Table A.1 Discovery tasks available to all Gradle projects

Name Description
Where To Go for

More Information

dependencies Emits a list of your project’s dependencies,

including transitive dependencies. For an

in-depth discussion of declaring and consum-

ing dependencies in your project, jump to

chapter 5.

Section 5.4.2

422 APPENDIX A Driving the command line

A.2 Build setup tasks

At a minimum, every Gradle project requires a build.gradle file to define your build

logic. This file can be created manually or conveniently generated by tasks of the build

setup plugin. Table A.2 shows the build setup tasks for initializing a new Gradle build.

Table A.1 Discovery tasks available to all Gradle projects (continued)

Name Description
Where To Go for

More Information

dependencyInsight Explains how and why a dependency is selected in

the dependency graph. The task requires

you to provide the mandatory parameters

--dependency to inspect a particular depen-

dency. To inspect a dependency assigned to a

configuration other than compile, use the

parameter --configuration. Example:

gradle dependencyInsight
--dependency apache-commons.

Section 5.7.2

help Displays a help message on the basic usage of

the Gradle command line; for example, listing all

existing tasks and running a specific task. If you

run the gradle command without specifying a

task, the help task is executed.

Gradle online manual

projects Displays all subprojects in a multiproject build. A

single-project build has no subprojects.

Section 6.2

properties Emits a list of all available properties in your proj-

ect. Some of these properties are provided by

Gradle’s Project object, the build’s internal rep-

resentation. Other properties are user-defined

properties originating from a property file, prop-

erty command-line option, or directly declared in

your build script.

Section 4.1.3

tasks Displays all runnable tasks of your project, includ-

ing their descriptions. Plugins applied to your proj-

ect may provide additional tasks. To print

additional information about the available tasks,

this task can be run with the option --all.

Section 2.6.1

Table A.2 Build setup tasks for initializing a new Gradle build

Name Description
Where To Go for

More Information

setupBuild Initializes a Gradle project by creating

build.gradle, settings.gradle,

and the wrapper files. If a pom.xml is

found, Gradle tries to derive a Gradle proj-

ect from the Maven metadata (see task

maven2Gradle).

Gradle online manual

423Configuration input

A.3 Configuration input

Build configuration information can be provided through the CLI. Options that don’t

require a value can be combined; for example, -is for running the build on the INFO

log level and printing out the stack trace if an error occurs.

A.3.1 Common options

Table A.3 describes common command-line options that don’t belong to a particular

functional grouping. These options may come in handy in your day-to-day use of Gra-

dle, so feel free to explore them.

generateBuildFile Creates a build.gradle file with the

standard setup for building a Java project.

This task is only available if no pom.xml
file can be found in the project directory.

Section 3.2.1

generateSettingsFile Creates a settings.gradle file, usu-

ally used for configuring a multiproject

build. This task is only available if no

pom.xml file can be found in the

project directory.

Gradle online manual

maven2Gradle Translates a Maven project into a Gradle

project (usually as part of a build migration)

by inspecting the POM file in the project

directory. After running this task,

build.gradle and settings.gradle
files are created. This task is only available

if a pom.xml can be found.

Section 9.2.2

wrapper Generates the Gradle wrapper files in the

project directory with the same version as

the Gradle runtime.

Section 3.4.1

Table A.3 Commonly used command-line options

Name Description
Where To Go for

More Information

-?, -h, --help Prints out all available command-line options,

including a descriptive message.

Gradle online manual

-a, --no-rebuild Avoids rebuilding all subprojects participating in

a multiproject build other than the project that

the command issues for (also called a partial

build). By using partial builds, you can avoid the

cost of checking the subproject model and

bring down your build execution time.

Section 6.3.3

Table A.2 Build setup tasks for initializing a new Gradle build (continued)

Name Description
Where To Go for

More Information

424 APPENDIX A Driving the command line

-b, --build-file The default naming convention for a Gradle

build script is build.gradle. Use this

option to execute a build script with a different

name (for example, gradle –b
test.gradle build).

Section 8.3

-c, --settings-file The default naming convention for a Gradle

settings file is settings.gradle. Use this

option to execute a build with a nonstandard

settings filename (for example, gradle –c
mySettings.gradle build).

Gradle online manual

--continue Gradle will continue execution when a task

fails to execute. This option is particularly use-

ful in a multiproject build with many subproj-

ects. It’ll discover all possible issues with a

build, and allows you to fix them at once with-

out having to fix problems one by one.

Gradle online manual

--configure-on-
demand

This option aims for optimizing the configura-

tion time required to initialize a multiproject

build. The configuration on-demand mode

attempts to configure only projects that are

relevant for requested tasks. This option can

be activated for all Gradle builds by setting the

property org.gradle.configure-
ondemand in a gradle.properties file.

Gradle online manual

-g, --gradle-user-
home

Gradle’s default home directory is located in

the directory .gradle under the user’s home

directory. Use this option if you want to point

to a different directory.

Gradle online manual

--gui Launches a Swing-based user interface as an

alternative to executing Gradle tasks from the

command line.

Gradle online manual

-I, --init-script Specifies an initialization script used for the

build. This script is executed before any of

your project tasks are executed.

Gradle online manual

-p, --project-dir By default, a build is executed based on the cur-

rent directory. With this option, you can specify

a different directory to execute the build.

Gradle online manual

--parallel Builds participating subprojects of a multi-

project build in parallel. Gradle automatically

determines the optimal number of executor

threads. This option can be activated for all

Gradle builds by setting the property

org.gradle.parallel in a

gradle.properties file.

Gradle online manual

Table A.3 Commonly used command-line options (continued)

Name Description
Where To Go for

More Information

425Configuration input

A.3.2 Property options

Properties provide a way to configure your build from the command line. Besides the

standard Java system properties, Gradle defines project properties. Table A.4 describes

their specific use cases.

--parallel-threads When building a multiproject build in parallel,

this option can be used to override the

number of executor threads (for example,

--parallel-threads=5).

Gradle online manual

-m, --dry-run Prints the order of tasks without executing

their actions. This option comes in handy if

you want to quickly determine the task execu-

tion order of your build.

Gradle online manual

--profile Apart from the total build time output on

each build run, you can break down the

execution time even more. The profile option

generates a detailed HTML report under

build/reports/profile listing task

execution times and time spent during

configuration phases.

Gradle online manual

--rerun-tasks Reruns all tasks in the determined task execu-

tion graph. This option ignores any UP-TO-
DATE status of previous task executions.

Gradle online manual

-u, --no-search-
upwards

Tells Gradle to not search for a settings file in

parent directories. This option is useful if you

want to avoid the performance hit of searching

all parent directories in a deeply nested proj-

ect structure.

Section 6.2.4

-v, --version Prints the version of the Gradle runtime that

executes the command.

Section 2.4

-x, --exclude-task Specifies a task that’s excluded from task exe-

cution. A practical example for this option is if

you want to execute a full build of a Java proj-

ect without running the unit tests (for example,

gradle –x test build).

Section 2.6.2

Table A.4 Providing properties to Gradle JVM process or the Gradle project

Name Description
Where To Go for

More Information

-D, --system-prop Gradle runs as a JVM process. As with all Java pro-

cesses, you can provide a system property like this:

–Dmyprop=myvalue.

Section 4.1.3

Table A.3 Commonly used command-line options (continued)

Name Description
Where To Go for

More Information

426 APPENDIX A Driving the command line

A.3.3 Logging options

Gradle allows access to all log messages produced by your build. Depending on your

use case, you can provide logging options to filter the relevant messages important to

you, as shown in table A.5.

A.3.4 Caching options

Gradle uses caching on various levels to improve the performance of the build. With

the options presented in table A.6, you can change the default caching behavior.

-P, --project-prop Project properties are variables available in your

build script. You can use this option to pass a prop-

erty to the build script directly from the command

line (for example, -Pmyprop=myvalue).

Section 4.1.3

Table A.5 Controlling the runtime logging level

Name Description
Where To Go for More

Information

-i, --info A Gradle build does not output a lot of infor-

mation in the default settings. Use this

option to get more informative messages by

changing Gradle’s logger to the INFO log

level. This is helpful if you want to get more

information on what’s happening under

the hood.

Section 7.3.1

-d, --debug Running Gradle on the DEBUG log level will

give you a vast amount of low-level logging

messages, including stack traces. Use

this option if you want to troubleshoot a

build problem.

Gradle online manual

-q, --quiet Reduces the log messages of a build run to

error messages only.

Section 2.6.1

-s, --stacktrace If you run into errors in your build, you’ll want

to know where they stem from. The option

–s prints out an abbreviated stack trace if an

exception is thrown, making it perfect for

debugging broken builds.

Gradle online manual

-S, --full-stacktrace Prints out the full stack trace for all

exceptions.

Gradle online manual

Table A.4 Providing properties to Gradle JVM process or the Gradle project (continued)

Name Description
Where To Go for

More Information

427Configuration input

A.3.5 Daemon options

The daemon runs Gradle as a background process. Once started, the gradle com-

mand will reuse the forked daemon process for subsequent builds, avoiding the

startup costs altogether. Table A.7 gives an overview of the available options for con-

trolling the daemon process.

Table A.6 Managing Gradle’s caching functionality

Name Description
Where To Go for More

Information

--offline Often your build only declares dependen-

cies on libraries available in repositories

outside of your network. If these depen-

dencies weren’t stored in your local

cache, running a build without a network

connection to these repositories would

result in a failed build. Use this option

to run your build in offline mode and

only check the local dependency cache

for dependencies.

Section 5.6.2

--project-cache-dir The default dependency cache directory

sits under .gradle in the user home

directory. This option can be used to

point to a different directory.

Gradle online manual

--recompile-scripts Gradle compiles every script by default

and stores them in a local cache to

improve the performance of the build. To

flush the cache of compiled scripts, exe-

cute the build with this option.

Gradle online manual

--refresh-dependencies Manually refreshes the dependencies in

your cache. This flag forces a check for

changed artifact versions with the config-

ured repositories.

Section 5.7.4

Table A.7 Managing the daemon

Name Description
Where To Go for

More Information

--daemon Executes the build with the Gradle daemon for better

performance. If a daemon process exists, it’s reused.

If it doesn’t exist, a new daemon process is started.

The daemon can be activated for all Gradle builds by

setting the property org.gradle.daemon in a

gradle.properties file.

Section 2.6.4

--foreground Starts the Gradle daemon in the foreground of your console

for debugging and monitoring purposes.

Section 2.6.4

428 APPENDIX A Driving the command line

--no-daemon Executes the build without using an existing Gradle daemon

process.

Section 2.6.4

--stop Stops an existing Gradle daemon process. Section 2.6.4

Table A.7 Managing the daemon (continued)

Name Description
Where To Go for

More Information

429

appendix B
Groovy for Gradle users

Gradle’s core functionality is built with Java. On top of this functionality sits a

domain-specific language (DSL) written in the dynamic programming language

Groovy. When writing a Gradle build script, you automatically use the language

constructs exposed by this DSL to express the desired build instructions. Gradle

build scripts are executable Groovy scripts, but they can’t be run by the Groovy run-

time. When the need to implement custom logic arises, you can use Groovy’s lan-

guage features to build out the desired functionality directly in the Gradle build

script. This appendix is a primer to Groovy and explains why it’s important for

users of Gradle to learn the language. Later, I’ll also demonstrate how some of Gra-

dle’s configuration elements are implemented with Groovy.

B.1 What is Groovy?

Groovy is a dynamic programming language for the Java Virtual Machine (JVM). Its

syntax is close to the one provided by Java. The language integrates with existing Java

classes and libraries, which makes it easy for Java developers to learn it. Not only does

Groovy build upon the strengths of Java, it also provides powerful programming fea-

tures inspired by those of Ruby, Python, and others. Groovy can be used as a scripting

language without having to compile the code. Alternatively, Groovy code can be com-

piled to Java bytecode. In this book, you use both approaches.

 While this appendix will give you a head start on Groovy’s most important language

features, it’s highly recommended that you explore it further on your own. There are

great resources out there in the form of books and dedicated Groovy web pages. The

definitive guide to Groovy is the book Groovy in Action, Second Edition by Dierk Konig, et

al (Manning, 2009). It explains all language features in great detail. The DZone refer-

ence guide on Groovy provides a cheat sheet that’s handy to every beginner of the lan-

guage. You can download it for free at http://refcardz.dzone.com/refcardz/groovy. A

http://refcardz.dzone.com/refcardz/groovy

430 APPENDIX B Groovy for Gradle users

useful resource for people experimenting with Groovy is the blog Groovy Goodness by

Hubert A. Klein Ikkink, at http://mrhaki.blogspot.com/search/label/Groovy%

3AGoodness. Each posting demonstrates a unique Groovy language feature by exam-

ple. The author recently condensed his blog posts into a book titled Groovy Goodness

Notebook (Leanpub, 2013).

B.2 How much Groovy do I need to know?

If you’re new to Gradle you may wonder how much Groovy you actually need to know

to write your first build scripts. The simple answer is very little. However, it’s highly

recommended that you know some Java. Groovy is almost 100% compatible with Java.

When implementing trivial task actions within your build script, you can choose to

write plain Java code or use Groovy’s expressive language constructs.

 Let’s look at an example. Assume you want to determine all files within a directory

and write their names to a new file named allfiles.txt. Sounds pretty simple, right?

The following listing demonstrates the Java version of the task action doLast.

task appendFilenames << {
 File inputDirectory = new File("src");
 File outputFile = new File(getBuildDir(), "allfiles.txt");
 File outputDirectory = outputFile.getParentFile();

 if(!outputDirectory.exists()) {
 outputDirectory.mkdirs();
 }

 outputFile.createNewFile();
 FileWriter fileWriter = new FileWriter(outputFile, true);

 try {
 for(File file : inputDirectory.listFiles()) {
 fileWriter.write(file.getName() + "\n");
 }
 }
 finally {
 fileWriter.close();
 }
}

Apart from the task definition itself, which is defined with Gradle’s DSL, no Groovy

code was required to implement the scenario. Next, we’ll compare this task imple-

mentation with the Groovy version. In the following listing, the task action code is

much shorter and more concise than the Java version.

Listing B.1 Gradle task written with Java syntax

Gradle task
definition

Task action
implemented
in Java

http://mrhaki.blogspot.com/search/label/Groovy%3AGoodness
http://mrhaki.blogspot.com/search/label/Groovy%3AGoodness

431Comparing Java and Groovy syntax

task appendFilenames << {
 def inputDirectory = new File('src')
 def outputFile = new File(buildDir, 'allfiles.txt')
 def outputDirectory = outputFile.parentFile

 if(!outputDirectory.exists()) {
 outputDirectory.mkdirs()
 }

 outputFile.createNewFile()
 inputDirectory.eachFile { outputFile << "$it.name\n" }
}

A mixture of Java and Groovy works just fine for trivial builds, especially if you’re in the

process of learning Groovy. For more complex builds that include custom tasks and

plugins, you’ll need to know more about the language. And for a deep understanding

of how Gradle works internally, knowing about advanced Groovy features is key.

B.3 Comparing Java and Groovy syntax

In the last section, we compared a task implementation written in Java and Groovy. In

Groovy you can become extremely productive while at the same time writing less

code. To get a good understanding of how this plays out in practice, let’s talk about

the main differentiators between both languages. As an example, we’ll look at the

class ProjectVersion.java from chapter 4 of this book. The class describes the major

and minor version of a Gradle project. The next listing shows a simplified version of

the class.

package com.manning.gia;

public class ProjectVersion {
 private Integer major;
 private Integer minor;

 public ProjectVersion(Integer major, Integer minor) {
 this.major = major;
 this.minor = minor;
 }

 public Integer getMajor() {
 return major;
 }

 public void setMajor(Integer major) {
 this.major = major;
 }

 public Integer getMinor() {
 return minor;
 }

Listing B.2 Gradle task written with Groovy syntax

Listing B.3 A typical Java POJO class

Gradle task
definition

Task action
implemented
in Groovy

432 APPENDIX B Groovy for Gradle users

 public void setMinor(Integer minor) {
 this.minor = minor;
 }
}

As a Java developer, you probably see this kind of boilerplate code every day. Plain old

Java objects (POJOs), classes that don’t implement or extend third-party library

classes, are often used to represent data. The class exposes two private fields via getter

and setter methods. The following listing demonstrates how to express the same logic

in Groovy.

package com.manning.gia

class ProjectVersion {
 Integer major
 Integer minor

 ProjectVersion(Integer major, Integer minor) {
 this.major = major
 this.minor = minor
 }
}

I think we can agree that the Groovy version of the class looks far less noisy. Groovy

assumes sensible defaults for any class you write, particularly the following optimizations:

■ The use of semicolons at the end of an expression is optional.

■ Every class, constructor, and method is public by default.

■ In Groovy, the last expression in the body of a method is returned. This means

that the use of the return statement is optional.

■ The Groovy compiler adds getter/setter methods automatically so you don’t

have to write them yourself.

■ Fields of a class (also called properties in Groovy) can be accessed by dot nota-

tion, which looks exactly as if they were public in Java. However, under the hood

Groovy calls the auto-generated corresponding getter/setter method.

■ If you compare two instances of a class with ==, Groovy automatically calls the

method equals() under the hood. This operation also avoids potential Null-

PointerExceptions.

B.4 Essential Groovy features

So far, we’ve only scratched the surface of the feature set Groovy provides. In this sec-

tion, we’ll explore language aspects used on a regular basis when programming in

Groovy. The features we’ll discuss in the following sections aren’t listed in a particular

order. Feel free to follow along and try out the examples one by one on your com-

puter. There are two tools that are extremely helpful in running code snippets.

Listing B.4 Project version class written in Groovy

433Essential Groovy features

 The Groovy console is automatically available after installing the Groovy runtime.

It provides an interactive user interface for entering and executing Groovy scripts.

The console can be launched by running the command groovyConsole or groovy-

Console.bat, located in the directory <GROOVY_HOME>/bin.

 The Groovy web console (http://groovyconsole.appspot.com/) provides an even

easier way to try out Groovy code snippets. You can run Groovy scripts on the web

without installing the Groovy runtime. Keep in mind that the language features used

in your script are bound to the bundled Groovy version of the web console indicated

on the page.

B.4.1 Assert statement

If you’re coming from Java, you may know the keyword assert. It’s used to verify pre-

and post-conditions in your code. Unlike Java’s pendant, which only works if you enable

assertion checking by setting a runtime flag (-ea or –enableassertion), Groovy’s

assert statement is always evaluated. The following listing shows a usage example.

def version = 12
assert version == 12
version++
assert version == 12

Careful readers will note that the second assertion should fail, because you incre-

mented the version variable by 1. Groovy’s assert statement, also called power assert,

provides helpful output to identify the root cause of an issue. The following output

demonstrates a sample output for the listing:

Exception thrown
Jul 29, 2013 8:06:04 AM org.codehaus.groovy.runtime.StackTraceUtils
sanitize
WARNING: Sanitizing stacktrace:
Assertion failed:
assert version == 12
 | |
 13 false

You’ll use the assert statement in the upcoming code examples as a tool to verify and

document the desired behavior.

B.4.2 Optional data type declaration

Groovy doesn’t force you to explicitly declare a type of variable, method parameter, or

return type. Instead, you can simply mark it with the keyword def, a placeholder for

java.lang.Object. At runtime, Groovy figures out the type based on the assigned

value. The next listing demonstrates some examples of optional typing.

Listing B.5 Groovy’s power assert

Provokes
a failed
assertion

http://groovyconsole.appspot.com/

434 APPENDIX B Groovy for Gradle users

def buildTool = 'Gradle'
assert buildTool.class == java.lang.String

def initProjectVersion(major, minor) {
 new ProjectVersion(major, minor)
}

assert initProjectVersion(1, 2).class == com.manning.gia.ProjectVersion

This feature is helpful for certain use cases, but you may still prefer explicit, strong

typing. Particularly in projects that expose a public API, strong typing automatically

improves documentation, makes it more obvious what parameter types need to be

provided, and enables IDE code completion. For the same reasons, declaring void

instead of def as a return type should be used if a method doesn’t return a value.

B.4.3 Optional parentheses

Method calls in Groovy can omit the parentheses if the method signature requires at

least one parameter. Without going into too much detail, this feature is often used to

create more natural-looking DSLs, a human-readable language understandable by

domain experts. The following listing compares two method calls with and without

the parentheses.

initProjectVersion(1, 2)
initProjectVersion 1, 2

println('Groovy is awesome!')
println 'Groovy is awesome!'

B.4.4 Strings

There are three different ways to declare Strings in Groovy. A single-quoted String

always creates the Java equivalent of a String. The second form follows the Java way of

creating a String. It wraps the text with double quotes. Multiline Strings, wrapped by

triple double quotes, are helpful if you want to assign wordy text or impose formatting

(for example, multiline SQL statements). The next listing shows the full range of cre-

ating Strings in Groovy.

def myString1 = 'This is a single-quoted String'
def myString2 = "This is a double-quoted String"
def myString3 = """
 This
 is a
 multiline
 String
"""

Listing B.6 Optional typing for variables and methods

Listing B.7 Omitting parentheses for top-level expressions

Listing B.8 String notations in Groovy

435Essential Groovy features

B.4.5 Groovy Strings (GStrings)

Double-quoted Strings in Groovy are more powerful than traditional Java Strings.

They can interpolate embedded variables or expressions denoted by a dollar sign and

curly braces. At runtime, the expression is evaluated and forms a String. In Groovy,

these types of Strings are also known as GStrings. The following listing gives an exam-

ple of their practical use.

def language = 'groovy'
def sentence = "$language is awesome!"
assert sentence == 'groovy is awesome!'

def improvedSentence = "${language.capitalize()} is awesome!"
assert improvedSentence == 'Groovy is awesome!'

B.4.6 Collections API

Groovy offers a concise syntax for implementations of the Collections API, which makes

them easier to use than their Java equivalent. Next, we’ll discuss Lists and Maps.

LISTS

By putting a comma-separated list of values in square brackets, you can initialize new

Lists. Under the hood, Groovy creates an instance of java.util.ArrayList. Groovy

also adds syntactic sugar to simplify the use of a List. A perfect example is the left

shift operator (<<) that allows for adding a new element to the List. Under the hood,

Groovy calls the method add. The following listing shows some of this functionality.

def buildTools = ['Ant', 'Maven']
assert buildTools.getClass() == java.util.ArrayList
assert buildTools.size() == 2
assert buildTools[1] == 'Maven'

buildTools << 'Gradle'
assert buildTools.size() == 3
assert buildTools[2] == 'Gradle'

buildTools.each { buildTool ->
 println buildTool
}

MAPS

Maps are easier to handle than Lists. To initialize a new Map with a new value, create a

comma-separated list of key-value pairs in square brackets. The default implementa-

tion of a Map is java.lang.LinkedHashMap. The next listing shows usage examples of a

Groovy Map.

Listing B.9 String interpolation with GStrings

Listing B.10 Managing Lists in Groovy

Iterate over
the values
in List

436 APPENDIX B Groovy for Gradle users

def inceptionYears = ['Ant': 2000, 'Maven': 2004]
assert inceptionYears.getClass() == java.lang.LinkedHashMap
assert inceptionYears.size() == 2
assert inceptionYears.Ant == 2000
assert inceptionYears['Ant'] == 2000

inceptionYears['Gradle'] = 2009
assert inceptionYears.size() == 3
assert inceptionYears['Gradle'] == 2009

inceptionYears.each { buildTool, year ->
 println "$buildTool was first released in $year"
}

B.4.7 Named parameters

Earlier we talked about the simple bean class ProjectVersion. The class exposes a

constructor to initialize its fields with values. Assume you didn’t define a constructor.

Groovy provides another handy way of setting property values, called named parameters.

This mechanism first calls the default constructor of the class and then calls the setter

methods for each of the provided parameters. The following listing shows how to set

the values for the fields major and minor through named parameters.

class ProjectVersion {
 Integer major
 Integer minor
}

ProjectVersion projectVersion = new ProjectVersion(major: 1, minor: 10)
assert projectVersion.minor == 10
projectVersion.minor = 30
assert projectVersion.minor == 30

B.4.8 Closures

A closure is a block of code of type groovy.lang.Closure, similar to lambdas in other

programming languages. Closures can be assigned to variables, passed to methods as

parameters, and called like regular methods.

IMPLICIT CLOSURE PARAMETER

Every closure that doesn’t explicitly define any parameters has access to an implicit

parameter named it. The parameter it refers to the first parameter passed to a

closure when calling it. If no parameter is provided, the value of the parameter is

null. Let’s look at an example to make this concept less abstract. The following list-

ing shows the definition and invocation of a closure, including the implicit parame-

ter it.

Listing B.11 Managing Maps in Groovy

Listing B.12 Setting field values with named parameters

Iterate
over values
in Map

437Essential Groovy features

def incrementMajorProjectVersion = {
 it.major++
}

ProjectVersion projectVersion = new ProjectVersion(major: 1, minor: 10)
incrementMajorProjectVersion(projectVersion)
assert projectVersion.major == 2

EXPLICIT CLOSURE PARAMETERS

Instead of using the implicit closure parameter, you can be more descriptive by assign-

ing your own parameter name. In the next listing, you define a parameter named

version of type ProjectVersion.

def incrementMajorProjectVersion = { ProjectVersion version ->
 version.major++
}

ProjectVersion projectVersion = new ProjectVersion(major: 1, minor: 10)
incrementMajorProjectVersion(projectVersion)
assert projectVersion.major == 2

Keep in mind that typing is optional in Groovy. You could have used the identifier

version without the type. Groovy doesn’t limit the number of parameters a closure

can define. The following listing shows how to declare multiple, untyped parameters

for a closure.

def setFullProjectVersion = { projectVersion, major, minor ->
 projectVersion.major = major
 projectVersion.minor = minor
}

ProjectVersion projectVersion = new ProjectVersion(major: 1, minor: 10)
setFullProjectVersion(projectVersion, 2, 1)
assert projectVersion.major == 2
assert projectVersion.minor == 1

CLOSURE RETURN VALUE

A closure always returns a value. This is either the last statement of the closure if no

explicit return statement is declared, or the value of the executed return statement.

If the last statement of a closure doesn’t have a value, null is returned. The closure

shown in the following listing returns the value of the last statement, the project’s

minor version.

Listing B.13 Closure with single, implicit parameter

Listing B.14 Closure with single, explicit parameter

Listing B.15 Closure with multiple, untyped parameters

Explicit closure
parameter it

Calls closure and provides
required parameter

Implicit,
named closure
parameter

Calls closure and provides
required parameter

Declares three
untyped closure
parameters

Calls closure and provides
required parameters

438 APPENDIX B Groovy for Gradle users

ProjectVersion projectVersion = new ProjectVersion(major: 1, minor: 10)
def minorVersion = { projectVersion.minor }
assert minorVersion() == 10

CLOSURE AS METHOD PARAMETER

As mentioned earlier, you can also use a closure as a method parameter. The following

listing shows an example.

Integer incrementVersion(Closure closure, Integer count) {
 closure() + count
}

ProjectVersion projectVersion = new ProjectVersion(major: 1, minor: 10)
assert incrementVersion({ projectVersion.minor }, 2) == 12

CLOSURE DELEGATION

The code of a closure is executed against the delegate of a closure. By default, the

delegate is the owner of the closure. For example, if you define a closure within a

Groovy script, the owner is an instance of groovy.lang.Script. The implicit vari-

able delegate of a closure allows for redefining the default owner. Consider the sce-

nario in the next listing. You set the delegate to the instance of ProjectVersion.

This means that every closure is executed against it.

class ProjectVersion {
 Integer major
 Integer minor

 void increment(Closure closure) {
 closure.resolveStrategy = Closure.DELEGATE_ONLY
 closure.delegate = this
 closure()
 }
}

ProjectVersion projectVersion = new ProjectVersion(major: 1, minor: 10)
projectVersion.increment { major += 1 }
assert projectVersion.major == 2
projectVersion.increment { minor += 5 }
assert projectVersion.minor == 15

B.4.9 Groovy Development Toolkit

The Groovy Development Kit (GDK) extends the Java Development Kit (JDK) by pro-

viding convenience methods to the standard JDK classes. You can find a Javadoc-style

HTML catalog at http://groovy.codehaus.org/groovy-jdk/. You’ll find many useful

Listing B.16 Closure return value

Listing B.17 Closure as method parameter

Listing B.18 Setting the delegate for a closure

Closure returns with value
of last statement

Method that
defines a closure
as first parameter

Invokes
closure

and uses its
return

value to
add a count

Invokes method and provides
closure as first parameter

Internal method of class
ProjectVersion that takes
a closure as parameter Only resolve

property
references of
delegate

Sets
delegate

of closure

Calls provided
closure

Invokes method that internally executes
closure on instance of ProjectVersion

http://groovy.codehaus.org/groovy-jdk/

439Applied Groovy in Gradle build scripts

methods in classes like String, Collection, File, and Stream. Many of these methods

use a closure as a parameter to add a functional flavor to the language. You already

saw one of these methods in action in listings B.10 and B.11: each. You used the

method to iterate over the elements of a Collection. Let’s look at some other exam-

ples in the following listing.

def buildTools = ['Ant', 'Maven', 'Gradle']
assert buildTools.find { it == 'Gradle' } == 'Gradle'
assert buildTools.every { it.size() >= 4 } == false

assert 'gradle'.capitalize() == 'Gradle'

new File('build.gradle').eachLine { line ->
 println line
}

B.5 Applied Groovy in Gradle build scripts

Gradle build scripts are valid Groovy scripts. Within the build script, you can use every

Groovy feature the language provides. This means that the code has to strictly adhere

to Groovy’s syntax. Invalid code will automatically result in a runtime error when exe-

cuting the build.

 Gradle comes with a DSL written in Groovy for modeling typical build concerns.

You learned in chapter 4 that every build script corresponds to at least one instance of

org.gradle.api.Project. In most cases, properties and methods you invoke in the

build script automatically delegate to the Project instance.

 Let’s examine the sample build script shown in listing B.20. After getting to know

some of Groovy’s language features by example, you may have a hunch how they work

internally. I hope this example can demystify some of the “magic” beginners to Gradle

and Groovy encounter.

apply plugin: 'java'

version = '0.1'

repositories {
 mavenCentral()
}

dependencies {
 compile 'commons-codec:commons-codec:1.6'
}

Listing B.19 Examples of methods added by the GDK

Listing B.20 Applied Groovy syntax in a sample Gradle build script

Methods added
for Collections

String convenience
methodSimplifies

iterating through
each line of a file

Calls method apply on Project. As parameter, provides
a Map with a single key–value pair (see section B.4.6).
Method call omits parenthesis (see section B.4.3).

Sets a new value for property version by calling setter
method of Project under the hood (see section B.3).

Calls method repositories on Project with a
single closure parameter (see section B.4.8).

Calls method
mavenCentral()
on object that

closure
delegates to

(see
section B.4.8).

Calls method dependencies
on Project with a single
closure parameter
(see section B.4.8).Calls method compile with a String as parameter on

object that closure delegates to (see section B.4.8).
Method call omits parentheses (see section B.4.3).

http://groovy.codehaus.org/groovy-jdk/

440

index

Symbols

: (colon) 138
-? option 45

A

-a option 147
acceptance stage

automatic deployment to test
evironment 417

deployment tests 417
description 416
on-demand deployment 418

acceptance tests 415
AJAX (asynchronous JavaScript

and XML) 284
--all option 43
allprojects method

application of 151
configuration 389
example 152
purpose 143

analysis
external Java library 290–291
JavaScript 284

annotations 91
Ant

build script
components 12, 14
example 14–15, 226

characteristics 12, 15
comparison to Maven 21
Gradle integration 224, 236
history of 24
migration 23, 34, 233, 236

purpose 12
SCP task 408
task 113

Ant Get task 232
ant property

definition 41
Gradle build script 226

AntBuilder class 224
Apache Commons Lang library

Ant build script 226
CharUtils class 59
configuration 59

Apache license 35
API (application programming

interface)
dependency 114, 129
Maven repository, custom 124
Project API 77, 143–144
RepositoryHandler interface 121
Settings API 139, 155
task 78
test class 171

API (Cloudbees)
information retrieval 199
properties 198

API key 195
application plugin 57
application programming interface.

See API
apply method 210
archive

configuration 361
file type 360

arrow
definition 9
dependsOn 100

INDEX 441

artifact
change detection 127
declaration 361, 363, 372–373
deployment 238
download, reduction of 128
filename creation 360
outcome 243
public artifact 382
publication name 370
publication process 366, 369, 371
quantity of 360
registration

artifact method 372
process of 362

retrieval 18, 405–406
signature 381, 384
See also deployable artifact

artifact method 372
artifactId attribute 385
Artifactory

installation 367
libs-release-local repository 377
libs-snapshot-local repository 377
preconfigured repository 377
publication process 385
retrieval 405–406

Asgard 38
assemble task

artifact 361
JAR file 360

assertion
code coverage 312
creation of 163
example 433
failure 164–165

asynchronous JavaScript and XML.
See AJAX

automated acceptance test stage
definition 37
example 415

automated testing. See test automation
automation. See project automation

B

BDD (behavior-driven development) 167
beforeMerged hook 256
bidirectional dependencies 302
Bintray

artifact consumption 383
artifact uploading 382
description 380
setup of 380

branch coverage 313

build by convention
adaptation 48
definition 31

build comparison plugin
purpose 243
report 245
use of 245

build engine 11
build execution 340
build file

content of 10
root project 153
subproject 154
See also build script

build job (Jenkins)
creation of 344
definition 344
execution 347–348
pipeline jobs configuration 356, 358

build lifecycle
configuration phase 87
functional testing 189
Gradle 87
initialization phase 87
Maven 16
test report 170

Build Name Setter plugin (Jenkins) 354
build number 388
build pipeline

challenges 352
definition 338
deployment 416, 419
environment 401
Maven versioning scheme 387
model 352
view 355–356
See also deployment pipeline

Build Pipeline plugin (Jenkins) 355–356
build script

build.gradle 40
buildSrc directory 98
class source files 98
classpath 197
command-line command 55
continuous integration environment 339
extendibility 34
external library 197
Gradle wrapper 70–71
Groovy 439
initialization script 103
plugin 210
POGO, addition of 85
properties file 85
script plugin 196
smoke tests 414

INDEX442

build script (continued)
standalone object plugin 219
test listener implementation 177
TestNG 167
See also build file

build setup plugin 240
build step 346
build task

purpose 55
root project 146–147

build tools
Ant 12, 16
components of 10, 12
conversion 224
definition 8–9
evolution of 24, 26
Gradle features 20, 23
legacy project 58
Maven 16, 19

build trigger
code integration process 339
configuration (Jenkins) 345
Parameterized Trigger plugin 353

build-announcements plugin 103
buildDependents task 149
--build-file option 45
build.gradle file

build script 40
dependency definition 110
joint compilation 303
name of 154
project 76
project-specific build 144
root project 153
Settings instance 139
settings.gradle file 138
subproject 153

buildNeeded task 148
buildSrc directory

custom task class 202, 204
incremental build 202
use of 98–99
versioning scheme 389

C

-c option 141
C++ plugin 307
cache

dependency 32, 127, 198
features 127–128
manual refresh 131
offline mode 128
snapshot 131
structure 126–127

Cargo
cache structure 126
dependency 110, 116
file dependency 120
flat directory repository 125
hot deployment 407
Ivy repository 124
Maven repository 121
purpose 110
repository 117
version resolution 119

Cascading Style Sheets. See CSS
Checkstyle plugin

Sonar report 330
tool comparison 320
use of 322, 324

CI (continuous integration)
benefits 338, 340
cloud-based CI servers 351–352
definition 7, 337

CI server
cloud-based 351–352
continuous integration environment

339
definition 338

class
build script 98
class source files 98
compiled class 99

classifier attribute
definition 116
publication 372

classpath
build script 197
custom task class 202

.classpath file
definition 251
generation of 253

cleanEclipse task 253
cleanIdea command 261
CLI (command-line interface)

definition 421
description 36
use of 42, 45

Clojure plugin 307
Clone Workspace SCM plugin

(Jenkins) 354
closure

definition 436
delegation 438
explicit closure parameter 437
method parameter 438
return value 437

cloud provisioning 396
cloud-based CI servers 351–352

INDEX 443

CloudBees
account creation 193, 195
API key 195
application provisioning 195
BuildHive 351
DEV@cloud 351
hibernate status 200
integration testing 277, 280
platform as a service 192
plugin creation 196, 201

Clover
Sonar report 335
tool comparison 313

Cobertura plugin
report reusability 335
tool comparison 313
use of 317, 319

code analysis
quality metrics 311
report reusability 330

code coverage analysis
definition 311
example 314–315
graph (Jenkins) 350
metrics 312
percentage 312–313
report (Jenkins) 349
tool comparison 313

code integration process 339
CodeNarc 320
cohesion 134
Cohn, Mike 159
Collections API 435
colon 138
command-line interface. See CLI
command-line options

caching options 426
common options 45–46, 423
daemon options 427
logging options 426
property options 425

commit stage
build pipeline 385
code analysis phase 311
definition 37

compilation
compiler daemon 297
dependency management 234
enhanced task 205, 308
manual process 4
project automation 5
See also joint compilation

complexity metrics 313
conditional logic 15
ConfigSlurper class 403

configuration
access to 114
customization 112
dependency grouping method 60
Gradle wrapper 71
group 112
standard configurations, disadvantages of 112
subproject 142, 152
visibility 113
War plugin 65

configuration block
addition of 86
creation of 144
dependencies 110, 120, 145
execution sequence 86
repositories 110, 121

configuration phase
build lifecycle 87
ConfigSlurper class 403
custom task properties 215
input and output 89

ConfigurationContainer class 111
continuous delivery

Maven versioning scheme 387
on-the-fly instrumentation 315
stages 36
versioning scheme 388, 390

continuous integration. See CI
controller web component 62
conventions

configuration 67
Java project 31, 296
plugin creation 214

coordinates 385
coupling 134
cron job 7
cross-project task dependency 150
CRUD (create, read, update, destroy)

definition 50
execution 54

CSS (Cascading Style Sheets) 293
custom task

advantages 90
characteristics 209
creation of 90–91
parent class 206
testing 207–208
use of 91–92
See also task type

customization
custom task 90, 92, 201
dependency 262
distribution creation 363, 366
Eclipse project files 254, 258
functional testing configuration 186

INDEX444

customization (continued)
idea plugin 260, 262
project 58, 154–155
property 58
Sonar configuration 332
Sublime Text plugin 264, 267

cyclomatic complexity
Cobertura plugin report 317
definition 313

D

-D option 45
daemon mode

background process 46
expiration 46
startup performance 33

--daemon option 46
DAG (directed acyclic graph)

definition 9
task dependency 100

data persistence 52, 179
database

control of 183
instance 180

DDD (domain-driven design) 76
def keyword 433
DefaultTask class

built-in task types 93
custom task class 90, 202
extension 224
fields 88

deliverable 385
<dependencies> tag 17
dependency 421

API 114
application of 83
configuration block 30, 110, 120, 145
configuration, grouped by 60
declaration 114
definition 11
dependency insight report 130
dependency report 130
dependency tree 117
dependsOn keyword 41
detection 60
functional testing 186
Ivy configuration 108
JavaScript library 286
list of 114
local cache 126
Maven configuration 108
POM generation 371
version 107–108

dependency attribute 116

dependency graph 328
dependency insight report 130
dependency management

Ant to Gradle migration 234
artifact retrieval 406
automation 107–110
definition 11
Gradle 23, 32
Ivy 12, 25
Java 106
JavaScript library 285, 287
Maven 17–18, 25
project 33
role in build tool 12
subproject 33

dependency notation 116
dependency tree 117
<dependency> tag 17
dependencyInsight task 422
dependent task

build engine 11
build file 10
definition 9, 78
inferred dependency 94

dependsOn
application of 83
directed acyclic graph 100
example 41
execution sequence 84

deployable artifact
definition 385
version information 390

deployment
manual process 5
scenario 89
SSH commands 407, 412
WAR file 200

deployment pipeline
acceptance stage 416, 419
code analysis phase 311
project automation 37
stages 36
steps of 407
tasks within stages 37

deployment tests 412
description property 82
directed acyclic graph. See DAG
directed edge

definition 9
dependsOn 100

directory tree
example 136
functional testing 187
modularization 135

discovery tasks 421

INDEX 445

distribution plugin
creation of 363, 366
customized distribution 365
definition 93
description 363
use of 364

documentation
annotations 91
configuration options 46
plugin functionality 72

doFirst action 229
doLast action 40, 229
DOM (domain object model) 256,

258
domain-driven design. See DDD
domain-specific language. See DSL
double-quoted String 434
Downstream Buildview plugin

(Jenkins) 356
drone.io 351
DSL (domain-specific language)

IDE features 268
project settings 250
SpringSource STS 270
use in Gradle 23
vocabulary in Gradle 30

dynamic task definition
definition 41
example 40

E

Eclipse
definition 251
imported projects 258
plugins 250–251, 258
project files 251

eclipse plugin
application of 252
configuration properties 254
purpose 252

eclipse task 253
Eclipse web tools platform (WTP)

purpose 252
subproject configuration 256

eclipse-wtp plugin 252
Emma

Sonar report 335
tool comparison 313

enhanced task
advantages 90, 92
Ant to Gradle migration 235
custom task class 204–205
definition 90
reusability 92

env property
purpose 404
smoke tests 414

environment
build pipeline 401
configuration of 401–402
deliverable 385
deployment 386
env property 404

event
listener 103
test event logging 175

exclusion
attribute 119
transitive dependency 118

execution
build engine 11
configuration phase 87
finalizer task 84
sequence 86
task dependency 84
up-to-date task 88

execution phase 87
execution state 9
explicit closure parameter 437
Extensible Markup Language.

See XML
extension model 214
extension objects

customization 212
registration 215

extensions() method 215
external dependency

Ant to Gradle migration 234
configuration 59–60

external library 197
external module dependency 115
external script reusability 199

F

facet
configuration 256
definition 256
merge hooks 257

failure
assertion 164–165
exception stack trace 174
test report 166

file dependency configuration 120
finalizer task 84
FindBugs plugin

Sonar report 330
tool comparison 320
use of 326–327

INDEX446

flat directory repository
description 121
use of 125

fork 341
forked test process 175
functional testing 184, 189

definition 158
example 415

functTestCompile configuration 186
functTestRuntime configuration 186

G

Gant 25
GDK (Groovy Development Kit) 438
Geb

dependency 186
description 185
system properties 188

generateBuildFile task 423
generateSettingsFile task 423
Git plugin (Jenkins) 342
Git setup 340, 342
GitHub

account creation 340
cloud-based CI servers 351
host for Gradle 35
plugin 35
remote repository 341
repository fork 341

GNU Privacy Guard signature 384
Golo plugin 307
Google Closure Compiler 287
Google Hosted Libraries 285
GPG signature 384
Gradle

advantages 26, 28
Ant integration 224, 236
CSS plugin 293
development roadmap dashboard 210
domain-specific language 439
features 28, 36
forum 35
JavaScript plugin 292
profile selection 239
Sonar interaction 329
test results 160

GRADLE OPTS environment
variable 39

Gradle plugin 268, 343
Gradle Templates plugin 55
Gradle wrapper

best practice 69
customization 71
Jenkins 346

purpose 35
set up 69–70
use of 70–71

GradleConnector class 280
gradle.properties file

API key 195–196
security 377, 382

Gradleware
consultation 35
professional services company 28

graphical user interface 36
Groovy

buildSrc directory 98
comparison to Java 430, 432
definition 429
distribution 300
Eclipse 251
features 432, 438
Gradle DSL 30
Groovy projects 298, 303

Groovy Development Kit. See GDK
Groovy plugin

application of 299
functional testing 187
Groovy base plugin 298
SpringSource STS 268

Groovy project 301
groovy.util.AntBuilder class 224
group

configuration 112
dependency 60

group attribute
definition 115
exclusion 119

group property 82
groupID attribute 385
Growl 103
Grunt 293–294, 296
Gruntfile.js file 293

H

-h option 45
H2 (open source database engine) 329
Hello world! 40
--help option 45
help task 422
hibernate status 200
hook

domain object model 256
selection of 257

hot deployment 407
HTML (Hypertext Markup Language)

conversion from XML 321, 323
sample report 316

INDEX 447

HTTPBuilder library 412
Hudson 342

I

-i option 45
IDE (integrated development environment)

development within 4
features 268
project management 267, 277
remote debugging 171

.idea directory 273
idea plugin

customization 260, 262
definition 250
merge hooks 262
use of 259

.iml file 259
implementation class 212
importation

Ant script 225, 228
Ant target migration 233
IntelliJ IDEA 263, 271, 273
NetBeans IDE 275
project 258
SpringSource STS 269
Sublime Text 266

importBuild method
Ant script 225
Gradle build script 226

incremental build
advantages 56
Ant target 230–231, 233
buildSrc directory 202
configuration phase 87
continuous integration 346
definition 33
input and output 89
lifecycle 87
task type 95

INFO logging level
Ant task output 228
example 165
exception stack trace 174

--info option 45
infrastructure

description 396
infrastructure as code 397
provisioning 396
Vagrant 397, 401

initialization phase
build lifecycle 87
execution sequence 146
initialization script 103
project name 243

settings execution 140
task execution 146–147

initialization script
build script 103
purpose 104

in-memory persistance 52
input

annotations 91
configuration phase 89
definition 88
incremental build 89
validation 91

installation 38
instrumentation

continuous delivery 315
definition 313
instrumentation methods 314–315

integrated development environment. See IDE
integration

Ant and Gradle 34, 41
manual process 4
Maven and Gradle 35

integration testing 178, 184
definition 158
JaCoCo plugin report 317
pipeline jobs configuration (Jenkins) 357
report (Jenkins) 349
tooling API 277, 280

IntelliJ IDEA
definition 258
Gradle 271
importation 263, 271, 273
JetGradle plugin 274
project files 259

.ipr file 259
Ivy 124

Ant 16
definition 12
dependency configuration 108
dependency management 32
repository types 121
transitive dependency 25

ivy-publish plugin 368
.iws file 259

J

JaCoCo plugin
report (Jenkins) 349
report reusability 334
tool comparison 313
use of 315, 317

JAR file
Ant integration 230
creation 57

INDEX448

JAR file (continued)
custom task class 202
dependency 59
Groovydocs 361
Maven repository 121
object plugin 221
program execution 58
version 106

Java
buildSrc directory 98
compilation with Groovy 301, 303
conventions 296
conversion to Scala 304, 306
dependency management techniques 106
program execution 57

Java Code Coverage plugin. See JaCoCo
plugin

Java Development Kit. See JDK
Java development tools. See JDT
Java EE (enterprise edition) 61
JAVA OPTS environment variable 39
Java plugin

capabilities 296, 298
comparison to Maven scope 237
configuration 112
features 209
purpose 54
test configuration 161
test tasks 161
testing with 160
use of 54, 57, 261

Java project
convention properties 31
conversion to Groovy 299, 303

Java Secure Channel. See JSch
Java Server Page. See JSP
Java Virtual Machine. See JVM
JavaScript

dependency management 285,

287
library retrieval 285–287
optimization 289
popularity 283
purpose 283

JDepend plugin
overview 327–328
tool comparison 320

JDK (Java Development Kit)
development tools in 54
Groovy Development Kit 438

JDT (Java development tools) 254
Jenkins

build job definition 344, 346
build job execution 347–348
description 342

distribution and publication 392
history of previous builds 418
pipeline jobs configuration 356, 358
plugin installation 342, 344
plugins 353, 356
report 348, 350
startup 342

JetGradle plugin
features 274
use of 262

Jetty plugin
customization 68
definition 63
file location 287
functional testing 188
use of 67

joint compilation
bidirectional dependencies 302
definition 302
Java and Groovy 301, 303
Java and Scala 307

JQuery 284
JSch (Java Secure Channel) 408–409
JSHint

definition 290
example 290–291
Grunt JSHint plugin 295

jsOptimized property 289
JSP (Java Server Page) 61
JUnit

dependency 163
functional testing 185
Spock 167, 169
test results 160
TestNG integration 169
use of 162, 166

JVM (Java Virtual Machine)
installation 38
options 39

K

Kotlin plugin 307

L

layout (project)
customization of 58
flat layout 141
Groovy 301
hierarchical layout 141
Scala 306
test source files 160

legacy project 58

INDEX 449

library
dependency management 107–

108
project dependency 146
transitive dependency 12

libs-release-local repository 377
libs-snapshot-local repository 377
lifecycle

assemble task 360
build lifecycle 16, 87
build script 30–31
callback method 100
incremental build 87

lifecycle event
build phase 99
listener 176
location 103

lifecycle hook
example 101, 176
purpose 100
task 101

listener
feedback 99
interface 101
lifecycle event 99, 176
lifecycle hook 101
registration 101
test listener 177

Lists (Collections API) 435

M

main class
definition 50
implementation 53

maintainability 90
major version 388
manifest file 398
manual test stage 37
Maps (Collections API) 435
Maven

build lifecycle 16
cache, publishing to 369, 371
Central repository

addition of 122
availability 109
definition 237
dependency search 60
example 59
publication to 383
purpose 18, 359

comparison to Ant 21
comparison to Gradle 26, 237,

240
dependency configuration 108

dependency manager 17–18
directory layout 16
history of 25
integration with Gradle 35, 236
migration to Gradle 240, 243
plugin 368
profile 238
purpose 16
repositories 124

definition 237
object plugin consumption 221
publication to 366
publication to local 375, 377
publication to remote 377, 379
repository type 121

scope 237
shortcomings 19, 24
site generation 240

Maven Polyglot 25
Maven2Gradle task

description 423
use of 241–242

MavenPublication class 372
maven-publish plugin

description 368
example 375

memory
data storage 52
settings 173

merge hook
idea plugin 263
selection of 258
types of 256

merging
Google Closure Compiler 287
Grunt 293
purpose 283

metadata
cache features 127
content for artifacts 366
dependency 108, 134
disadvantages 109
.idea directory 273
Ivy repository 124
Maven repository 121
transitive dependency 119

method coverage 313
method parameter 438
metrics

methods 314–315
publication to Sonar 333, 335
static code analysis 319

migration
Ant 34, 233, 236
Gradle 23

INDEX450

minification
example 288
Grunt 293
library retrieval 286
minifyJS task 293
purpose 283

minor version 388
Model-View-Controller. See MVC architecture
modularization

cohesion 134
coupling 134
directory tree 136
functionality, based on 136
Spring 134

module
definition 18
identification 135–136
organization 133
See also project

module attribute 119
Mojo 25
Mozilla Firefox 185
multiline String 434
multiproject build

assembly of 137, 142
common requirements 142
compiler daemon 297
definition 133
initialization phase 87
script plugin 315
support for 78

MVC (Model-View-Controller)
architecture 61

N

name
initialization phase 243
migration 234, 236
plugin 211, 217

name attribute
definition 115
repository 376

named parameter 436
NetBeans IDE

Gradle 274
importation 275
installation 275
use of 276

--no-daemon option 46
node

definition 9
dependsOn 100

node package manager. See NPM
--no-rebuild option 147–148

--no-search-upward option 141
notification

code integration process 340
configuration 346
continuous integration 339
push mode 345

NPM (node package manager) 285,

293

O

object plugin
application of 210
characteristics 209
creation 213–214
definition 196
extension objects 212
implementation class 212
location 212
options 212
plugin descriptor 212
testing 217
web project 221
See also standalone object plugin

offline bytecode instrumentation 314
--offline option 45
on-demand build 6
on-the-fly instrumentation

continuous delivery 315
definition 314
JaCoCo plugin 315, 317

optimization
CSS 293
JavaScript 289

org.gradle.api.AntBuilder class 224
outcome 243
output

annotations 91
configuration phase 89
definition 88
directory 95
incremental build 89

output directory 57

P

-P option 45
PaaS (platform as a service) 192
Package Explorer 270
package.json file 293
parallel test execution

forked test process 175
support for 33

Parameterized Trigger plugin
(Jenkins) 353

INDEX 451

parent class
creation of 205
custom task class 206

parentheses omission 434
partial build

advantages 147
definition 33

phases
definition 16
lifecycle event 99
See also build lifecycle

plain old Groovy object. See POGO
plain old Java object. See POJO
platform as a service. See PaaS
plugin

application methods 210
build-announcements plugin 103
conventions 214
customization 192
descriptor 212
extension 34, 214, 217
GitHub 35
Gradle architecture 209
Gradle wiki page 210
migration 234, 236
name 217
product-specific plugin 379
project archetypes plugin 55
short identifier 217
source files location 55
standard plugins 209
task rule 98
third-party plugins 210
types of 196

PMD plugin
Sonar report 330
tool comparison 320
use of 324, 326

POGO (plain old Groovy object)
addition of 85
extension model 214
reusability 92

POJO (plain old Java object)
conversion to Groovy 300
definition 50
use of 85

polyglot programming 25
POM (project object model)

creation of 219
definition 25
Maven profile 238
modification of 373, 375

pom.withXml hook 373
portability 6
printIn command 40

processes, list of running 46
project

Ant 13
creation of 219
customization 154–155
definition 33, 76
repository 121
See also module

project archetypes plugin 55
project automation

benefits 5–6, 36
continuous delivery 36, 38
deployment 405, 412
reasons for automation 4–5
types of 6, 8
Vagrant 399, 401

project dependency 145
project files

definition 249, 251
generation 267
generation of 253

Project instance
configuration 111
creation of 87
multiproject build 139
ProjectBuilder class 208
testing 207
use of 77

project method
example 144
project-pecific build 143

project object model. See POM
project structure

example 56
flat layout 141
hierarchical layout 141
integration testing 181
multiproject build 138

project variable 77
ProjectBuilder class 208
--project-prop option 45
projects task

description 422
example 138

ProjectVersion class
Groovy syntax 432
Java syntax 431
versioning scheme 388

properties file
build script, use with 85
version property 89

properties task
description 422
project customization 58
purpose 46

INDEX452

property
access to 82
addition of 79
configuration 217
definition 79
Eclipse project files 255
example 85
extra properties 79, 215
idea plugin 260
importation 229
inheritance 145
injection of 79
modification 58, 229
options 425

providedCompile configuration 65
public artifact management 382
public binary repository 380
publication

local Maven repository 375, 377
Maven Central repository 383
product-specific plugin 379
remote Maven repository 377, 379

pull mode 339
Puppet

project setup 398
purpose 397

push mode
code integration process 339
notification 345

Q

-q option 46
QA (quality assurance) 4
quality metrics

build pipeline 352
code analysis 311
instrumentation methods 314–315
pipeline jobs configuration (Jenkins) 357
report (Jenkins) 350

quality profile 330
--quiet option 40, 46

R

R plugin 307
RAD (rapid application development)

Jetty plugin 68
web application 63

refactoring 205, 207
release stage

definition 37
version 88

release version (Maven) 387
remote debugging 171

report
Checkstyle plugin 323
clickable URL 166
Cobertura plugin report 317, 319
FindBugs plugin 326
JaCoCo plugin report 316
JDepend plugin 327
Jenkins 348, 350
PMD plugin 325
report configuration 326
reusability 333, 335
static code analysis 321

repositories configuration block 375
repository

availability 109
cache 130
configuration (Jenkins) 345
configuration block 30, 117
coordinates 385
definition 11
dependency 59
example 52
external dependency 32
fork 341
Gradle requirement 59
Maven repository, custom 124
Maven repository, local 123
Maven repository, remote 18, 377
name attribute 376
standalone object plugin 219
types of 121

repository interface (Groovy) 302
RepositoryHandler interface

API 121
Maven repository 122

require.js 285
return on investment. See ROI
reusability

custom task 92
enhanced task 90
refactoring 205, 207

Rhino
definition 290
example 290–291, 296

ROI (return on investment)
factors 310
test automation pyramid 159
testing 190

root project
build file 153
definition 138
Eclipse project files 255
IntelliJ IDEA 271, 276
project property configuration 261
SpringSource STS 270

INDEX 453

root project (continued)
Sublime Text plugin 265
task execution 146–147

RUN@cloud. See CloudBees
runtime behavior control 172, 174
runtime dependency 65
runtime environment

functional testing 185
web application 192

S

-s option 46
.scala file 305
Scala plugin 303
Scala projects 303, 307
scheduled build 7
SCP (Secure Copy)

description 407
file transfer 408–409

script plugin
Checkstyle plugin 322
Cobertura plugin 318
creation of 197, 201
definition 196
FindBugs plugin 326
JaCoCo plugin 315
PMD plugin 325

Secure Copy. See SCP
security

gradle.properties file 382
repository 377

Selenium 185
sequence diagram 50
server virtualization 396
Servlet 61
settings file

build file, name of 155
content of 254
definition 251
generation of 253
purpose 138
search for 140
Settings instance 139
subproject, addition of 138

--settings-file option 141
settings.gradle file

example 138
initialization phase 140
purpose 139

setupBuild task 422
setupWrapper task 423
short identifier 217
signature (artifact) 381, 384
single-page application 61

single-quoted String 434
smart exclusion 45
smoke tests

definition 412
example 415

snapshot
cache 131
up-to-date task 88
version 88, 387

Snarl 103
software component

definition 368
POM 371
publication 369, 371

software functionality separation 315
Sonar

installation 330
purpose 328

Sonar Runner plugin
configuration 331
functionality 330
use of 332, 335

Sonatype OSS 384
SOURCE BUILD NUMBER environment

variable 389
source code instrumentation 314
source set integration testing 182
Spock

functional testing 185
JUnit integration 169
TestNG integration 169
use of 167–168

Spring 134
Spring Tool Suite. See STS
SSH deployment 407, 412
SSH remote commands 409, 411
--stacktrace option 46
standalone object plugin 218,

221
statement coverage 313
static code analysis

definition 319
tool comparison 320

Strings
double-quoted String 434
GStrings 435
multiline String 434
single-quoted String 434

structure. See project structure
STS (Spring Tool Suite) 268–269
Sublime Text plugin

project files 265
use of 264, 267

.sublime-project files 264

.sublime-workspace files 264

INDEX454

subproject
build file 154
configuration 142, 152
dependency management 33
hierarchy 138
property 256
property inheritance 145
settings file 138

subprojects configuration block
Checkstyle plugin 322
Cobertura script plugin 318
customization 261–262
Eclipse project files 255–256
JaCoCo script plugin 316
JDepend plugin 328
static code analysis 321

subprojects method
application of 151
example 152
purpose 143

--system-prop option 45

T

TAR file creation 364, 366
target (Ant)

definition 13
dependency 229
Gradle build script 226
Gradle task 227–228
incremental build 230
input and output 230
list of 228
migration to Gradle 233,

235–236
modification 229–230

target directory 57
task

Ant 13
Ant and Gradle 232
build script 34
build tools 9
characteristics 201, 208
definition 78
deployment pipeline 37
input and output 10, 88, 90
list of available tasks 42–43
migration 234, 236
target (Ant) 227
type, default 80
vocabulary in Gradle 30

task (Ant)
Google Closure Compiler 287
Gradle integration 231
use of 232

task action
addition of 82
declaration 81
definition 81
task configuration 104, 204

task chaining
example 40
execution 84
functional testing 189

task class creation 201, 208
task configuration

definition 86
example 86
execution sequence 86
task action 104

task dependency
--all option 43
execution phase 87
graph example 93
inferred dependency 94

task exclusion
command-line interface 44
smart exclusion 45

task execution
command-line interface 43
cross-project task dependency 150
default sequence 149
root project 146–147

task group
definition 43
task rule 97
values 83

task name
abbreviation example 44
command-line interface 44
distribution task names 365
example 96
pattern 96

task rule 95–96
task type

built-in task types 93
definition 90
example 91
incremental build 95
use of 93

tasks task
definition 42, 46
description 422
task group 43
task rule 97

test automation
detection 162
functional testing 189
types of 158

test automation pyramid 159

INDEX 455

test class
creation of 163, 179
integration testing 182
naming 168, 171, 179, 181

test configurations 161
test coverage analysis. See code coverage

analysis
test environment 401
test listener implementation 177
test logging control 174–175
test report

build lifecycle 170
clickable URL 166
example 165
testing tools aggregation 169

test results
Gradle 165
XML 160

test source directory
creation of 162
functional testing 187
integration testing 181

testCompile configuration
dependency, addition of 163
purpose 161
Spock 168

testing
build process 33
custom task 207–208
execution 164–165
execution configuration 170,

178
Grunt 293
INFO logging level 165
JavaScript 284
manual process 4
object plugin 217

testing tools
JUnit 162, 166
Spock 167–168
TestNG 167

TestNG
functional testing 185
JUnit integration 169
Spock integration 169
use of 167

testRuntime configuration 161
ThoughtWorks 27–28
toChar method 59
Tomcat plugin 64
tooling API

definition 250
integration testing 277, 280
purpose 277

transitive attribute 119

transitive dependency
definition 32
dependency management 12, 107
dependency tree 117
example 25
exclusion of 118
metadata 109, 119
POM generation 371
project dependency 146
transitive dependency graph 109

transpiling 284
Travis CI 351
triggered build 7

U

-u option 141
UAT (user acceptance test) 401
unit of work. See task
unit testing 162, 170

definition 158
integration testing 180
JaCoCo plugin report 317
pipeline jobs configuration (Jenkins) 357
report (Jenkins) 349
Sonar dashboard 333

untyped parameter 437
up-to-date task

definition 88
example 231
UP-TO-DATE message 56

user acceptance test. See UAT

V

Vagrant
execution 399, 401
installation 398
project setup 398
purpose 397, 401

VCS (Version Control System)
code integration process 339
continuous integration 338–340
on-demand build 6
project files 250
snapshot version 387
triggered build 7

version
build comparison plugin 245
class 80
conflict resolution 118, 128
dependency 107
dynamic version 119–120
enforcement 129
exclusion of 118

INDEX456

version (continued)
JAR file 106
release 80, 88
snapshot 88
specification 58
troubleshooting 129

version attribute
coordinates 385
definition 115
dynamic version 119

version control
Ant 24
automation 81
Gradle wrapper 70
manual techniques 106

Version Control System. See VCS
version property 360
versioning scheme

continuous delivery 388, 390
Maven 387

virtual server
cloud provisioning 396
creation of 397, 401

VirtualBox installation 398

W

WAR (web application archive) file
application provisioning 195
deployment of 200
example 65
name 66
publication of 391
purpose 61
retrieval 406
War plugin 65

War plugin
comparison to Maven scope 237
customization 66
definition 63
use of 64, 66

web application
build 65
conversion to 61, 63
definition 61
directory, default 64
functional testing 185
Gradle support for 63
port, default 67
runtime environment 192

web application archive file. See WAR file
web container

definition 61
Jetty plugin 67

web framework 61
whenMerged hook

domain object model 256
example 257

withXml hook
domain object model 256
facet 256
idea plugin 262
POM modification 373
use of 263

workspace reusability (Jenkins) 354
wrapper. See Gradle wrapper
WTP. See Eclipse web tools platform

X

XML (Extensible Markup Language)
characteristics 15
comparison to Gradle 24
conversion to HTML 321
dependency configuration 108
project files 249
test results 160

Z

ZIP file creation 364–365

Benjamin Muschko

G
radle is a general-purpose build automation tool.
It extends the usage patterns established by its forerun-
ners Ant and Maven and allows builds that are expres-

sive, maintainable, and easy to understand. Using a fl exible
Groovy-based DSL, Gradle provides declarative and extendable
language elements that let you model your project’s needs the
way you want.

Gradle in Action is a comprehensive guide to end-to-end project
automation with Gradle. Starting with the basics, this practi-
cal, easy-to-read book discusses how to establish an effective
build process for a full-fl edged, real-world project. Along the
way, it covers advanced topics like testing, continuous
integration, and monitoring code quality. You’ll also explore
tasks like setting up your target environment and deploying
your software.

What’s Inside
● A comprehensive guide to Gradle
● Practical, real-world examples
● Transitioning from Ant and Maven
● In-depth plugin development
● Continuous delivery with Gradle

The book assumes a basic background in Java but no
knowledge of Groovy.

Benjamin Muschko is a member of the Gradleware engineering
team and the author of several popular Gradle plugins.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/GradleinAction

$44.99 / Can $47.99 [INCLUDING eBOOK]

Gradle IN ACTION

JAVA/PROGRAMMING

M A N N I N G

“The authoritative guide.”
—From the Foreword by
Hans Dockter, Founder of

Gradle and Gradleware

“A new way to automate
your builds. You’ll never

 miss the old one.”—Nacho Ormeño, startupXplore

“Required reading for
 the polyglot programmer!”

—Rob Bugh, ReachForce

“The best Gradle
reference ever! Full of

 real-world examples.”—Wellington R. Pinheiro
Walmart eCommerce Brazil

“The missing book to help
make Gradle accessible

 to any developer.”—Samuel Brown, Blackboard, Inc.

SEE INSERT

	Front cover
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Roadmap
	Who should read the book?
	Code conventions and downloads
	Author Online
	About the author

	about the cover illustration
	Part 1—Introducing Gradle
	1 Introduction to project automation
	1.1 Life without project automation
	1.2 Benefits of project automation
	1.2.1 Prevents manual intervention
	1.2.2 Creates repeatable builds
	1.2.3 Makes builds portable

	1.3 Types of project automation
	1.3.1 On-demand builds
	1.3.2 Triggered builds
	1.3.3 Scheduled builds

	1.4 Build tools
	1.4.1 What’s a build tool?
	1.4.2 Anatomy of a build tool

	1.5 Java build tools
	1.5.1 Apache Ant
	1.5.2 Apache Maven
	1.5.3 Requirements for a next-generation build tool

	1.6 Summary

	2 Next-generation builds with Gradle
	2.1 Why Gradle? Why now?
	2.1.1 Evolution of Java build tools
	2.1.2 Why you should choose Gradle

	2.2 Gradle’s compelling feature set
	2.2.1 Expressive build language and deep API
	2.2.2 Gradle is Groovy
	2.2.3 Flexible conventions
	2.2.4 Robust and powerful dependency management
	2.2.5 Scalable builds
	2.2.6 Effortless extendibility
	2.2.7 Integration with other build tools
	2.2.8 Community-driven and company-backed
	2.2.9 Icing on the cake: additional features

	2.3 The bigger picture: continuous delivery
	2.3.1 Automating your project from build to deployment

	2.4 Installing Gradle
	2.5 Getting started with Gradle
	2.6 Using the Command line
	2.6.1 Listing available tasks of a project
	2.6.2 Task execution
	2.6.3 Command-line options
	2.6.4 Gradle daemon

	2.7 Summary

	3 Building a Gradle project by example
	3.1 Introducing the case study
	3.1.1 The To Do application
	3.1.2 Task management use cases
	3.1.3 Examining the component interaction
	3.1.4 Building the application’s functionality

	3.2 Building a Java project
	3.2.1 Using the Java plugin
	3.2.2 Customizing your project
	3.2.3 Configuring and using external dependencies

	3.3 Web development with Gradle
	3.3.1 Adding web components
	3.3.2 Using the War and Jetty plugins

	3.4 Gradle wrapper
	3.4.1 Setting up the wrapper
	3.4.2 Using the wrapper
	3.4.3 Customizing the wrapper

	3.5 Summary

	Part 2—Mastering the fundamentals
	4 Build script essentials
	4.1 Building blocks
	4.1.1 Projects
	4.1.2 Tasks
	4.1.3 Properties

	4.2 Working with tasks
	4.2.1 Managing the project version
	4.2.2 Declaring task actions
	4.2.3 Accessing DefaultTask properties
	4.2.4 Defining task dependencies
	4.2.5 Finalizer tasks
	4.2.6 Adding arbitrary code
	4.2.7 Understanding task configuration
	4.2.8 Declaring task inputs and outputs
	4.2.9 Writing and using a custom task
	4.2.10 Gradle’s built-in task types
	4.2.11 Task rules
	4.2.12 Building code in buildSrc directory

	4.3 Hooking into the build lifecycle
	4.3.1 Hooking into the task execution graph
	4.3.2 Implementing a task execution graph listener
	4.3.3 Initializing the build environment

	4.4 Summary

	5 Dependency management
	5.1 A quick overview of dependency management
	5.1.1 Imperfect dependency management techniques
	5.1.2 Importance of automated dependency management
	5.1.3 Using automated dependency management
	5.1.4 Challenges of automated dependency management

	5.2 Learning dependency management by example
	5.3 Dependency configurations
	5.3.1 Understanding the configuration API representation
	5.3.2 Defining a custom configuration
	5.3.3 Accessing a configuration

	5.4 Declaring dependencies
	5.4.1 Understanding the dependency API representation
	5.4.2 External module dependencies
	5.4.3 File dependencies

	5.5 Using and configuring repositories
	5.5.1 Understanding the repository API representation
	5.5.2 Maven repositories
	5.5.3 Ivy repositories
	5.5.4 Flat directory repositories

	5.6 Understanding the local dependency cache
	5.6.1 Analyzing the cache structure
	5.6.2 Notable caching features

	5.7 Troubleshooting dependency problems
	5.7.1 Responding to version conflicts
	5.7.2 Enforcing a specific version
	5.7.3 Using the dependency insight report
	5.7.4 Refreshing the cache

	5.8 Summary

	6 Multiproject builds
	6.1 Modularizing a project
	6.1.1 Coupling and cohesion
	6.1.2 Identifying modules
	6.1.3 Refactoring to modules

	6.2 Assembling a multiproject build
	6.2.1 Introducing the settings file
	6.2.2 Understanding the Settings API representation
	6.2.3 Settings execution
	6.2.4 Settings file resolution
	6.2.5 Hierarchical versus flat layout

	6.3 Configuring subprojects
	6.3.1 Understanding the Project API representation
	6.3.2 Defining specific behavior
	6.3.3 Declaring project dependencies
	6.3.4 Partial multiproject builds
	6.3.5 Declaring cross-project task dependencies
	6.3.6 Defining common behavior

	6.4 Individual project files
	6.4.1 Creating build files per project
	6.4.2 Defining the root project’s build code
	6.4.3 Defining the subprojects’ build code

	6.5 Customizing projects
	6.6 Summary

	7 Testing with Gradle
	7.1 Automated testing
	7.1.1 Types of automated testing
	7.1.2 Test automation pyramid

	7.2 Testing Java applications
	7.2.1 Project layout
	7.2.2 Test configurations
	7.2.3 Test tasks
	7.2.4 Automatic test detection

	7.3 Unit testing
	7.3.1 Using JUnit
	7.3.2 Using alternative unit testing frameworks
	7.3.3 Multiple unit testing frameworks in harmony

	7.4 Configuring test execution
	7.4.1 Command-line options
	7.4.2 Understanding the Test API representation
	7.4.3 Controlling runtime behavior
	7.4.4 Controlling test logging
	7.4.5 Parallel test execution
	7.4.6 Reacting to test lifecycle events
	7.4.7 Implementing a test listener

	7.5 Integration testing
	7.5.1 Introducing the case study
	7.5.2 Writing the test class
	7.5.3 Supporting integration tests in the build
	7.5.4 Establishing conventions for integration tests
	7.5.5 Bootstrapping the test environment

	7.6 Functional testing
	7.6.1 Introducing the case study
	7.6.2 Supporting functional tests in the build

	7.7 Summary

	8 Extending Gradle
	8.1 Introducing the plugin case study
	8.1.1 Application management in the cloud with Gradle
	8.1.2 Setting up the cloud environment

	8.2 From zero to plugin
	8.3 Writing a script plugin
	8.3.1 Adding the CloudBees API library
	8.3.2 Using the CloudBees API from tasks

	8.4 Writing custom task classes
	8.4.1 Custom task implementation options
	8.4.2 Defining a custom task in buildSrc

	8.5 Using and building object plugins
	8.5.1 Applying object plugins
	8.5.2 Anatomy of an object plugin
	8.5.3 Writing an object plugin
	8.5.4 Plugin extension mechanism
	8.5.5 Assigning a meaningful plugin name
	8.5.6 Testing an object plugin
	8.5.7 Developing and consuming a standalone object plugin

	8.6 Summary

	9 Integration and migration
	9.1 Ant and Gradle
	9.1.1 Using Ant script functionality from Gradle
	9.1.2 Using standard Ant tasks from Gradle
	9.1.3 Migration strategies

	9.2 Maven and Gradle
	9.2.1 Commonalities and differences
	9.2.2 Migration strategies

	9.3 Comparing builds
	9.4 Summary

	Part 3—From build to deployment
	10 IDE support and tooling
	10.1 Using IDE plugins to generate project files
	10.1.1 Using the Eclipse plugins
	10.1.2 Using the IDEA plugin
	10.1.3 Using the Sublime Text plugin

	10.2 Managing Gradle projects in popular IDEs
	10.2.1 Gradle support in SpringSource STS
	10.2.2 Gradle support in IntelliJ IDEA
	10.2.3 Gradle support in NetBeans IDE

	10.3 Embedding Gradle with the tooling API
	10.4 Summary

	11 Building polyglot projects
	11.1 Managing JavaScript with Gradle
	11.1.1 Typical tasks when dealing with JavaScript
	11.1.2 Using JavaScript in the To Do application
	11.1.3 Dependency management for JavaScript libraries
	11.1.4 Merging and minifying JavaScript using a third-party Ant task
	11.1.5 JavaScript optimization as part of the development workflow
	11.1.6 JavaScript code analysis using an external Java library
	11.1.7 Using a third-party Gradle JavaScript plugin
	11.1.8 Executing Grunt from Gradle

	11.2 Building polyglot, JVM-based projects
	11.2.1 Base capabilities of JVM language plugins
	11.2.2 Building Groovy projects
	11.2.3 Building Scala projects

	11.3 Other languages
	11.4 Summary

	12 Code quality management and monitoring
	12.1 Integrating code analysis into your build
	12.2 Measuring code coverage
	12.2.1 Exploring code coverage tools
	12.2.2 Using the JaCoCo plugin
	12.2.3 Using the Cobertura plugin

	12.3 Performing static code analysis
	12.3.1 Exploring static code analysis tools
	12.3.2 Using the Checkstyle plugin
	12.3.3 Using the PMD plugin
	12.3.4 Using the FindBugs plugin
	12.3.5 Using the JDepend plugin

	12.4 Integrating with Sonar
	12.4.1 Installing and running Sonar
	12.4.2 Analyzing a project with Sonar Runner
	12.4.3 Publishing code coverage metrics to Sonar

	12.5 Summary

	13 Continuous integration
	13.1 Benefits of continuous integration
	13.2 Setting up Git
	13.2.1 Creating a GitHub account
	13.2.2 Forking the GitHub repository
	13.2.3 Installing and configuring Git

	13.3 Building a project with Jenkins
	13.3.1 Starting Jenkins
	13.3.2 Installing the Git and Gradle plugins
	13.3.3 Defining the build job
	13.3.4 Executing the build job
	13.3.5 Adding test reporting

	13.4 Exploring cloud-based solutions
	13.5 Modeling a build pipeline with Jenkins
	13.5.1 Challenges of building a pipeline
	13.5.2 Exploring essential Jenkins plugins
	13.5.3 Configuring the pipeline jobs

	13.6 Summary

	14 Artifact assembly and publishing
	14.1 Building artifacts and distributions
	14.1.1 Declaring additional artifacts
	14.1.2 Creating distributions

	14.2 Publishing artifacts to a binary repository
	14.2.1 Publishing to a Maven repository
	14.2.2 Old versus new publishing mechanisms
	14.2.3 Declaring a software component as a Maven publication
	14.2.4 Publishing a software component to the local Maven cache
	14.2.5 Declaring custom artifacts for publication
	14.2.6 Modifying the generated POM
	14.2.7 Publishing to a local Maven repository
	14.2.8 Publishing to a remote Maven repository

	14.3 Publishing to a public binary repository
	14.3.1 Publishing to JFrog Bintray
	14.3.2 Publishing to Maven Central

	14.4 Artifact assembly and publishing as part of the build pipeline
	14.4.1 Build binaries once
	14.4.2 Publish once, reuse later
	14.4.3 Picking an appropriate versioning scheme
	14.4.4 Including build information in a deployable artifact
	14.4.5 Publishing your To Do application WAR file
	14.4.6 Extending the build pipeline

	14.5 Summary

	15 Infrastructure provisioning and deployment
	15.1 Infrastructure provisioning
	15.1.1 Infrastructure as code
	15.1.2 Creating a virtual machine with Vagrant and Puppet
	15.1.3 Executing Vagrant from Gradle

	15.2 Targeting a deployment environment
	15.2.1 Defining configuration in a Groovy script
	15.2.2 Reading the configuration with Groovy’s ConfigSlurper
	15.2.3 Using the configuration throughout the build

	15.3 Automated deployments
	15.3.1 Retrieving the artifact from the binary repository
	15.3.2 Identifying necessary deployment steps
	15.3.3 Deployment through SSH commands

	15.4 Deployment tests
	15.4.1 Verifying a successful deployment with smoke tests
	15.4.2 Verifying application functionality with acceptance tests

	15.5 Deployment as part of the build pipeline
	15.5.1 Automatic deployment to test environment
	15.5.2 Deployment tests
	15.5.3 On-demand deployment to UAT and production environment

	15.6 Summary

	Appendix A Driving the command line
	A.1 Discovery tasks
	A.2 Build setup tasks
	A.3 Configuration input
	A.3.1 Common options
	A.3.2 Property options
	A.3.3 Logging options
	A.3.4 Caching options
	A.3.5 Daemon options

	Appendix B Groovy for Gradle users
	B.1 What is Groovy?
	B.2 How much Groovy do I need to know?
	B.3 Comparing Java and Groovy syntax
	B.4 Essential Groovy features
	B.4.1 Assert statement
	B.4.2 Optional data type declaration
	B.4.3 Optional parentheses
	B.4.4 Strings
	B.4.5 Groovy Strings (GStrings)
	B.4.6 Collections API
	B.4.7 Named parameters
	B.4.8 Closures
	B.4.9 Groovy Development Toolkit

	B.5 Applied Groovy in Gradle build scripts

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Back cover

