
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

What Readers Are Saying About
Grails 2: A Quick-Start Guide

This book is a delight: a warm, smart introduction to the Grails framework,
illustrated by a friendly mentor over several iterations on a small project. It’s
pair-programming on the page. By the end of the ride, we’ve created an impressive
app, and we’re ready for deeper dives, with a wealth of resources provided.
Fabulous!

➤ Michael Easter
Software composer, codetojoy.blogspot.com

If you are looking for a book to take you from Java to productivity with Grails as
quickly as possible, this is your book. Dave has produced a fantastic and pragmatic
iterative guide to building a full Grails application, including advice for development
and production. This book is the quickest way to accelerate your learning of Grails.

➤ Ken Sipe
CTO, Code Mentor, Inc.

Dave and Ben have done it again. Grails 2: A Quick Start Guide is the best book
you could hand to a new Grails developer. It’s a great mix of instruction and
practice and just what you need to get started, or get better, with Grails.

➤ Jared Richardson
Agile coach, Agile Artisans

www.allitebooks.com

http://www.allitebooks.org

Grails 2: A Quick-Start Guide

Dave Klein
Ben Klein

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

www.allitebooks.com

http://www.allitebooks.org

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Susannah Davidson Pfalzer (project manager)
Potomac Indexing, LLC (indexer)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2013 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-77-2
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—December 2013

www.allitebooks.com

http://pragprog.com
http://www.allitebooks.org

Contents

Greetings and Salutations! ix

1. Enough Groovy to Be Dangerous 1
Groovy Syntax Compared to Java 1
Groovy Strings 3
Groovy Closures 4
Groovy Collections 5
Metaprogramming 9
Where to from Here? 10

2. Our Project 11
Introducing TekDays.com 11
Meet Our Customer 12
Iteration Zero 14
Summary 20

3. Laying the Foundation 21
Creating a Domain Class 21
More About Domain Classes 23
Testing Our Domain Class 24
Taking Control of Our Domain 27
Modifying Code That Doesn’t Exist 28
Bootstrapping Some Test Data 32
Summary 35

4. Building Relationships 37
The TekUser Domain Class 37
One-to-One Relationships 40
One-to-Many Relationships 44
Collections of Simple Data Types 46
Adding a Sponsor Class 48
Many-to-Many Relationships 49

www.allitebooks.com

http://www.allitebooks.org

Finishing Up the Domain Model 54
Summary 57

5. Beyond Scaffolding 59
Generating Scaffolding Code 59
Anatomy of a Grails Controller 60
Grails Views with Groovy Server Pages 66
Configuring a Database 79
Summary 83

6. Getting Things Done 85
Changing All Our Views at Once 85
Modifying the Scaffolded Views 86
Event Task List 94
Grails Service Classes 94
Integration Testing 98
Modifying the Task Class 100
Summary 101

7. Forum Messages and UI Tricks 103
Restricting Messages to an Event 103
Of Templates and Ajax 108
Display Message Threads with a Custom Tag 116
Summary 120

8. Knock, Knock: Who’s There? Grails Security 121
Grails Security Options 121
Logging In 121
Filters 125
Logging Out 128
Summary 130

9. Big-Picture Views 131
Home Page Makeover 131
Creating a New Controller 135
Designing the Dashboard View 135
Adding the Dashboard Action 142
Adding a Menu 143
Linking to the Dashboard 145
Summary 146

10. Seek, and You Shall Find 147

Contents • vi

www.allitebooks.com

http://www.allitebooks.org

Search Using Dynamic Finders 147
Hibernate Criteria Builder 151
The Big Guns: The Searchable Plugin 153
Summary 159

11. Icing on the Cake 161
The jQuery UI Plugin 161
The Twitter4J Plugin 166
User-Friendly URLs 169
Summary 172

12. Deployment and Beyond 173
Using a JNDI Data Source 173
Creating and Deploying a WAR 176
Next Steps 176
Parting Thoughts 177

A1. Additional CSS Rules 179

A2. Resources 181
Online Resources 181
Meet the GR8 Community 182
Other Resources 185
IDE Support 188

Bibliography 191

Index 193

Contents • vii

www.allitebooks.com

http://www.allitebooks.org

Greetings and Salutations!
Let Me Tell You About Grails…

Web development is a rewarding experience. Building an application that can
run from anywhere in the world is pretty awesome. Even in a corporate
environment, you can deliver new features to your users, no matter where
they are located, without ever touching their computer. It’s a beautiful thing.
Consider also what you can build: the potential for creativity on the Web is
unlimited.

The Java platform brings even more power to the party. The Java Servlet API
and the plethora of libraries and frameworks in the Java ecosystem make it
possible to include almost any feature you could want in a web application.
It is an exciting time to be a web developer. However, it’s not all sweetness
and light.

With all this power comes a level of complexity that can be daunting. With
most Java-based web frameworks, there are multiple XML configuration files
to deal with, along with classes to extend and interfaces to implement. As a
project grows, this complexity seems to increase exponentially.

Many web application frameworks have been created to address this problem.
So many Java web frameworks have been developed that you might ask, “Why
Grails? Why another framework?” That was my thought when I first heard
about Grails.

I was at a conference that featured sessions on an array of Java-related
technologies and was planning to attend several talks on JavaServer Faces
(JSF), which is what I was working with at the time. During one of the time
slots where there was nothing JSF-related, I wandered into a session on Grails
by Scott Davis. And I have to say, I was impressed. But not convinced.

In the past, I had worked with so-called rapid application development tools
on the desktop and had seen the trade-off that you had to make to get these
“applications in minutes.” As soon as you needed to do more than the tool

report erratum • discusswww.allitebooks.com

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2
http://www.allitebooks.org

was designed for, you were stuck. I didn’t want to go down that road again.
Still, Grails did look like it would be a good choice for small applications. So,
I gave it a try.

After using Grails to build a website for our local Java user group, I was
hooked. By day, I was struggling with JSF and Enterprise JavaBeans (EJB);
by night, I was having a blast building a website with Grails. I began to look
for ways to take advantage of the brilliant simplicity of Grails in my day job.
After all, I worked in a Java shop, and Grails is a fully compliant JEE1

framework. It would produce a standard .war file, which could be deployed on
our commercial JEE application server. Finally, an opportunity presented
itself.

It was a small but important public-facing web application, planned as a six-
week JSF/EJB project. With Grails, it was done in three weeks—and it turned
out to be a little less trivial than we thought, because we needed to integrate
with an existing EJB server. We found that the Grails “magic” was great for
most of the application and provided significant productivity boosts. We also
found that when we needed to do something Grails didn’t handle “out of the
box,”2 it was easy to dip into the underlying technologies and do what we
needed. There were no black boxes or brick walls. It wasn’t “the Grails way
or the highway.”

We went on to use Grails to rescue another, much larger project that was in
trouble, with similar results. Grails is definitely not just for small applications!

How Does Grails Do It?

Grails takes a set of successful frameworks, each of which has made its own
strides toward addressing the complexity of building web applications, and
makes them all simpler, easier to use, and ultimately more powerful.

Grails bundles Spring, Hibernate, SiteMesh, H2, Tomcat, and a host of other
battle-hardened frameworks, and following the principle of “convention over
configuration,”3 it removes the complexity for most use cases. And it uses the
dynamic Groovy programming language to magically give us easy access to
the combined power of these tools.

Recall from my story that on the projects I was involved in, Grails was a
replacement for both JSF and EJB. JSF, like Struts before it and JSP before

1. Java Enterprise Edition.
2. I use this term with some hesitation—see http://dave-klein.blogspot.com/2008/08/out-of-box.html.
3. See http://en.wikipedia.org/wiki/Convention_over_Configuration.

Greetings and Salutations! • x

report erratum • discusswww.allitebooks.com

http://dave-klein.blogspot.com/2008/08/out-of-box.html
http://en.wikipedia.org/wiki/Convention_over_Configuration
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2
http://www.allitebooks.org

that, is intended to address the web tier (the front end). EJB was the frame-
work we were using to provide persistence, transactions, and various other
services (the back end). Grails addresses the whole application, and more
important, it allows us to address the whole application. Using the frameworks
mentioned earlier, Grails gives us a complete, seamless MVC4 framework that
is really more of a web application platform than just another framework.

Why This Book?

The idea for this book came about while working on the projects I mentioned
earlier. I had been working with Grails for a while, but four other developers
were working with me, and we really could have used a book to help bring
them up to speed quickly. They didn’t need a reference book yet but something
more than a collection of articles and blog posts (as helpful as those are).

As Grails’ exposure and acceptance continues to grow and as more and more
developers have their “wow!” moments, it will become even more important
to have a resource to help them get started quickly. That’s the goal of this
quick-start guide. It is not intended to be a reference or the only Grails book
on your shelf. In this book, we’ll help you get started and become productive
with Grails, but you will no doubt want to go beyond that. To help you dig
deeper, we’ve included lists of books, websites, blogs, and other helpful
resources from the Groovy/Grails community in Appendix 2, Resources, on
page 181.

This book is, however, intended to be more than a cursory introduction. We
will cover all the basics of Grails and a few advanced topics as well. When we
have finished our time together here, you will understand Grails well enough
to use it in real projects. In fact, you will have already used it in a real project,
because that is what we are going to do together. More on that later.

Who Should Read This Book

This book is aimed at web developers looking for relief from the pain brought
on by the complexity of modern web development. If you dream in XML and
enjoy juggling multiple layers of abstraction at a time or if you are in a job
where your pay is based on the number of lines of code you write, then Grails
may not be for you. If, on the other hand, you are looking for a way to be more
productive, a way to be able to focus on the heart of your applications instead
of all the technological bureaucracy, then you’re in the right place.

4. Model View Controller. See http://en.wikipedia.org/wiki/Model-view-controller.

report erratum • discuss

Why This Book? • xi

http://en.wikipedia.org/wiki/Model-view-controller
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

We assume you have an understanding of web application development, but
you don’t need to be an expert to benefit from Grails and from this book. An
understanding of Java or another object-oriented programming language
would be helpful. If you have experience with Spring and Hibernate, you are
ahead of the curve, but if you’ve never even heard of them, you’ll do fine. You
can go quite far with Grails and be using Spring and Hibernate extensively
without even realizing it. Finally, the language of Grails is Groovy. We won’t
assume that you have any experience with Groovy, and you won’t need a
great deal of it to get going with Grails. However, some knowledge of Groovy
syntax and constructs will be helpful, so we will start out with a brief tutorial.

Source Code

The code for the project in this book is available for download. You can find
a link to the source code on the book’s home page: http://pragprog.com/titles/dkgrails2.
At the top of most code listings, there is a colored box that shows where this
code can be found in the source code repository. In the ebook version of the
book, this is a link directly to the code file. You’ll notice that the path shown
in these boxes is different from the one suggested in the text; this is because
we have multiple snapshots of the project at different stages, one for each
chapter.

Grails Versions

The examples in this book have been tested with Grails 2.3.1. For newer
Grails versions, keep an eye on the Grails: A Quick-Start Guide blog
(http://gquick.blogspot.com) for any potential breaking changes and workarounds.

Acknowledgments

First, and most of all, I thank my Creator and Savior, Jesus Christ. Without
Him I could do nothing, and I know that every good thing I have comes from
Him (James 1:17). I am also very grateful to the many individuals who helped
bring this book about and/or make it better. This book has been a family
project, but there wasn’t room on the cover to put all of our names. My won-
derful wife, Debbie, and our crew: Zachary, Abigail, Benjamin, Sarah, Solomon,
Hannah, Joanna, Rebekah, Susanna, Noah, Samuel, Gideon, Joshua, and
Daniel all helped in various ways from proofreading/editing to just cheering
me up and keeping me going. Thank you, and I love you all very much.

The technical reviewers, beta readers, and others who provided feedback for
the first and second editions have made this book much better than I ever
could have done on my own. Aitor Alzola, Jeff Brown, Doug Burns, Frederick
Daoud, Scott Davis, Paolo Foletto, Amer Ghumrawi, Bill Gloff, Brian Grant,

Greetings and Salutations! • xii

report erratum • discuss

http://pragprog.com/titles/dkgrails2
http://gquick.blogspot.com
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Steve Harris, Brian Hogan, Dmitriy Kopylenko, Guillaume Laforge, Shih-gian
Lee, John Penrod, Jared Richardson, Nathaniel Schutta, Ken Sipe, Dan Sline,
Matt Stine, Venkat Subramaniam, Michael Easter, Ray Tayek, Vick Dini, Jeff
Holland, and Andy Keffalas: thank you all so much for your help and
encouragement!

Writing a book for the Pragmatic Programmers has been an awesome experi-
ence, and I am very grateful to them for giving me this opportunity. Dave,
Andy, Colleen, Jackie, and Susannah: working with you has been an honor,
a privilege, and a lot of fun! I can’t wait to do it again!

Many others helped bring this book about in various ways, though they may
not know it. I’d like to thank the gang at the Culver’s in Portage, Wisconsin,
for their cheerful faces, for their free wireless, and for not chasing me out
even after closing time. To the speakers on the No Fluff Just Stuff symposium
tour and Jay Zimmerman, their ringleader: thank you for your inspiration,
encouragement, and example! Matthew Porter, Craig McElroy, and the rest
of the gang at Contegix: thank you for giving me the opportunity to spend
some time at such an exciting company and for your continued support of
the Grails community. I’d also like to thank my former co-worker (and the
best programmer in the world) Nate Neff for attempting to temper my enthu-
siasm (it’s not gonna work).

Finally, I’d like to thank the Grails development team and the Grails commu-
nity for making web development so much fun.

Dave Klein

November 2013

report erratum • discuss

Acknowledgments • xiii

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

CHAPTER 1

Enough Groovy to Be Dangerous
Groovy is a dynamic language for the Java Virtual Machine (JVM). Of all the
JVM languages, Groovy has the best integration with Java and probably the
lowest barrier to entry for Java developers. Java is considered by many to be
in the “C family” of languages; that is to say that its syntax borrows heavily
from the C language. Other languages in this family are C++, C#, and, by its
close relationship to Java, Groovy. Without getting into a debate on whether
that syntax family is a good one, we can say it is one that millions of developers
are familiar with. That means that millions of developers can quickly pick up
Groovy!

Groovy—like Spring, Hibernate, and the other frameworks used in Grails—is
included in the Grails install. You do not need to install Groovy to use Grails.
However, Groovy is a great multipurpose language, and we encourage you to
download it and take it for a spin. You will quickly become more productive
in areas like XML processing, database access, file manipulation, and more.
You can download the Groovy installation and find more information on the
Groovy website.1 Some excellent books are available on Groovy such as
Programming Groovy 2: Dynamic Productivity for the Java Developer [Sub13],
Making Java Groovy [Kou13], and Groovy In Action [Koe13].

We’re going to discuss the Groovy features that are most often used in a Grails
application. But first, for the benefit of Java developers, we’ll look at some of
the differences between Java and Groovy.

Groovy Syntax Compared to Java

Despite the overall syntactic similarities, there are some differences between
Groovy and Java that are worth noting. The first thing you’ll notice in a block

1. http://groovy.codehaus.org

report erratum • discuss

http://groovy.codehaus.org
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

of Groovy code is the lack of semicolons; in Groovy, semicolons are optional.
Return statements are also optional. If there is no return statement in a
method, then the last statement evaluated is returned. Sometimes this makes
sense, especially in the case of small methods that simply return a value or
perform a single calculation. Other times it can be confusing. That’s the
beauty of the word optional. When return makes code more readable, use it;
when it doesn’t, don’t.

Parentheses for method calls are optional in most cases, the exception being
when calling a method without any arguments. Here are some examples:

x = someMethodWithArgs arg1, arg2, arg3
y = someMethodWithoutArgs()

Methods without arguments need the parentheses so that Groovy can tell
them apart from properties. Groovy provides “real” properties.2 All fields in a
Groovy class are given getters and setters at compile time. When you access
a field of a Groovy class, it may look like you are directly accessing the field,
but behind the scenes, the getter or setter is being called. If you’re not con-
vinced, you can call them explicitly. They’ll be there even though you didn’t
code them.

introduction.2/get_property.groovy
class Person {

String name
}
def person = new Person()
person.name = 'Abigail'
assert person.getName() == 'Abigail'
person.setName('Abi')
assert person.name == 'Abi'

If you explicitly declare a get or set method for a property, it will be used as
expected.

introduction.2/explicit_set_property.groovy
class Person {

String name

void setName(String val){
name = val.toUpperCase()

}
}
def person = new Person(name:'Sarah')
assert person.name == 'SARAH'

2. Joe Nuxoll provides a good explanation of the concept of properties at http://web.archive.org/
web/20080829124045/http://blogs.sun.com/joe/resource/java-properties-events.pdf.

Chapter 1. Enough Groovy to Be Dangerous • 2

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/introduction.2/get_property.groovy
http://media.pragprog.com/titles/dkgrails2/code/introduction.2/explicit_set_property.groovy
http://web.archive.org/web/20080829124045/http://blogs.sun.com/joe/resource/java-properties-events.pdf
http://web.archive.org/web/20080829124045/http://blogs.sun.com/joe/resource/java-properties-events.pdf
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

The previous snippet shows a few other differences in Groovy. First, all Groovy
classes automatically get a named-args constructor. This is a constructor
that takes a Map and calls the set method for each key that corresponds to a
property.3 You can easily see how this might save several lines of code with
larger classes. Grails takes advantage of this feature to assign the values from
a web page to a new object instance. Second, in Groovy, types are optional.
Instead of giving a variable an explicit type, we can use the def keyword to
designate that this variable will be dynamically typed. The third difference is
the use of == in the assert statements. In Groovy, == is the same as calling the
equals() method on the left operand.

Now, the toUpperCase() method we just used is the same as in Java. But for a
little fun, we can modify that last example to try one of the many methods
that Groovy adds to the String class.4

introduction.2/reverse.groovy
class Person {

String name

void setName(String val){
name = val.toUpperCase().reverse()

}
}

Person p = new Person(name:'Hannah')

assert p.name == 'HANNAH'

It worked. (Trust us.)

Not only does Groovy enhance the java.lang.String class, but it also adds an
entirely new one.

Groovy Strings

Groovy adds a new string known as a GString. A GString can be created by
declaring a literal with double quotes; a string literal with single quotes is a
java.lang.String. A GString can be used in place of a Java String. If a method is
expecting a String and is given a GString, it will be cast at runtime.

The beauty and power of the GString is its ability to evaluate embedded Groovy
expressions. Groovy expressions can be designated in two ways. For simple

3. Any elements in the map that do not correspond to a property are ignored by the
named-args constructor.

4. You can find more goodies in the API docs at http://groovy.codehaus.org/groovy-jdk/java/lang/
String.html.

report erratum • discuss

Groovy Strings • 3

http://media.pragprog.com/titles/dkgrails2/code/introduction.2/reverse.groovy
http://groovy.codehaus.org/groovy-jdk/java/lang/String.html
http://groovy.codehaus.org/groovy-jdk/java/lang/String.html
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

values that are not directly adjacent to any plain text, you can just use a
dollar sign, like this:

"Hello $name"

For more involved expressions, you can use the dollar sign and a pair of curly
braces:

"The 5th letter in 'Encyclopedia' is ${'Encyclopedia'[4]}"

There can be any number of expressions in a given GString, and single quotes
can be embedded without any escaping. This comes in handy when generating
HTML, as we’ll see later. For now, let’s take a look at the GString in action.

introduction.2/hello_groovy_string.groovy
def name = 'Zachary'
def x = 3
def y = 7
def groovyString = "Hello ${name}, did you know that $x x $y equals ${x*y}?"
assert groovyString == 'Hello Zachary, did you know that 3 x 7 equals 21?'

Groovy Closures

A Groovy closure, in simple terms, is an executable block of code that can be
assigned to a variable, passed to a method, and executed.5 Many of the
enhancements Groovy has made to the standard Java libraries involved adding
methods that take a closure as a parameter.

A closure is declared by placing code between curly braces. It can be declared
as it is being passed to a method call, or it can be assigned to a variable and
used later. A closure can take parameters by listing them after the opening
curly brace and separating them from the code with a dash-rocket (->), like
so:

def c = {a, b -> a + b}

If no parameters are declared in a closure, then one is implicitly provided:
it’s called it. Take a look at the following example:

introduction.2/closure_times.groovy
def name = 'Dave'
def c = {println "$name called this closure ${it+1} time${it > 0 ? 's' : ''}"}
assert c instanceof Closure
5.times(c)

5. There has been much discussion and some confusion over the definition of a “closure”
in programming languages. Some argue that what Groovy defines as a closure isn’t.
If you’re ever in town, we can discuss it over a cup of coffee, but for our purposes, we’ll
be referring to closures as defined at http://groovy.codehaus.org/Closures.

Chapter 1. Enough Groovy to Be Dangerous • 4

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/introduction.2/hello_groovy_string.groovy
http://media.pragprog.com/titles/dkgrails2/code/introduction.2/closure_times.groovy
http://groovy.codehaus.org/Closures
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

There’s a fair bit of new stuff in these three lines of code. Let’s start at the
top. The variable name is available when the closure is executed. Anything
that is in scope when the closure is created will be available when it is execut-
ed, even if it is being executed by code in a different class. This closure is
being assigned to the variable c and has no declared parameters. It does have
and use the implicit parameter it. The code in this closure takes advantage
of another Groovy shortcut. What would be in Java System.out.println() is now
just println(). When you look at the text of the GString that follows, it becomes
obvious that this code will work only if whatever calls this closure passes it
a single parameter that is a number. That’s just what the times() method,
which Groovy adds to Integer, does. The parentheses are not required for the
times() method, but we added them to emphasize that the closure was being
passed in as a parameter. The output from this code looks like this:

Dave called this closure 1 time
Dave called this closure 2 times
Dave called this closure 3 times
Dave called this closure 4 times
Dave called this closure 5 times

There is much more to the Groovy closure than we can cover here, and we
highly recommend the coverage of this topic in Venkat Subramaniam’s
Programming Groovy 2 [Sub13]. We will see more examples of the closure in
action as we look at Groovy collection classes.

Groovy Collections

Groovy offers many enhancements to the standard Java collection classes.
We’ll take a look at the three collection types that are most used in Grails.
The List, Map, and Set are powerful tools, and Groovy gives them a new edge.
We know—technically Map is not a collection; that is, it does not implement
the Collection interface. But for our purposes, it is a collection in that it holds
objects. So, leaving semantic sensitivities aside, let’s look at what Groovy has
done for these classes.

List

One of the first interesting things to learn about the List in Groovy is that it
can be created with a literal declaration.

introduction.2/groovy_list.groovy
def colors = ['Red', 'Green', 'Blue', 'Yellow']
def empty = []
assert colors instanceof List
assert empty instanceof List
assert empty.class.name == 'java.util.ArrayList'

report erratum • discuss

Groovy Collections • 5

http://media.pragprog.com/titles/dkgrails2/code/introduction.2/groovy_list.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

A comma-separated list inside square brackets is an initialized List. It can
contain literal numbers, strings, or any other objects. This is a good time to
point out that in Groovy, everything is an object. Even simple data types such
as int or boolean are autoboxed objects. (That’s why we were able to call the
times() method on the literal 5 in our earlier example.) The last line of this
example shows that the default List implementation in Groovy is java.util.ArrayList.

Groovy has also added a host of helpful methods to the List interface. One of
the most useful is each(). This method is actually added to all objects in Groovy,
but it is most useful with collection types. The each() method on List takes a
closure as a parameter and calls that closure for each element in the List,
passing in the element as the single it parameter.

introduction.2/groovy_list.groovy
def names = ['Nate', 'Matthew', 'Craig', 'Amanda']

names.each{
println "The name $it contains ${it.size()} characters."

}

This example will print the following output to the console:

The name Nate contains 4 characters.
The name Matthew contains 7 characters.
The name Craig contains 5 characters.
The name Amanda contains 6 characters.

Two handy methods added by Groovy are min() and max():

introduction.2/groovy_list.groovy
assert names.min() == 'Amanda'
assert names.max() == 'Nate'

Groovy also provides a few easy ways to sort a List. The simple sort() method
will provide a natural sort of the elements in the List. It can also take a closure.
If the closure has no explicit parameters, then the implied it parameter can
be used in an expression to sort on. You can also give the closure two
parameters to represent two List elements, and then use those parameters in
a comparison expression. Here are some examples:

introduction.2/groovy_list.groovy
def sortedNames = names.sort()
assert sortedNames == ['Amanda','Craig','Matthew','Nate']
sortedNames = names.sort{it.size()}
assert sortedNames == ['Nate','Craig','Amanda','Matthew']
sortedNames = names.sort{obj1, obj2 ->

obj1[2] <=> obj2[2]
}
assert sortedNames == ['Craig','Amanda','Nate','Matthew']

Chapter 1. Enough Groovy to Be Dangerous • 6

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/introduction.2/groovy_list.groovy
http://media.pragprog.com/titles/dkgrails2/code/introduction.2/groovy_list.groovy
http://media.pragprog.com/titles/dkgrails2/code/introduction.2/groovy_list.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

The first example performs a natural sort on the names. The second example
uses a closure to sort the names based on their size(). The last example, though
admittedly contrived, is the more interesting one. In that example, we pass
a closure to the sort(). This closure takes two parameters that represent two
objects to be compared. In the body of the closure, we use the comparison
operator6 to compare some aspect of the two objects; in this case—and this
is the contrived part—we compare the third character in the name with [2].
This type of sort would make more sense when the List elements are a more
complex type and you need to sort on a combination of properties or a more
complex expression, but you get the point.

Another useful feature of List is that the left shift operator (<<) can be used in
place of the add() method:

introduction.2/groovy_list.groovy
names << 'Jim'
assert names.contains('Jim')

Map

The Map class contains a collection of key/value pairs. It also can be created
with a literal declaration, like so:

introduction.2/groovy_map.groovy
def family = [boys:7, girls:6, Debbie:1, Dave:1]
def empty = [:]

assert family instanceof Map
assert empty instanceof Map
assert empty.getClass().name == 'java.util.LinkedHashMap'

The Map class in Groovy also has the each() method. When it is given a closure
without any parameters, the implicit it will be a Map.Entry containing key and
value properties. The more common approach is to give the closure two
parameters: the first parameter will hold the key, and the second parameter
will hold the value.

introduction.2/groovy_map.groovy
def favoriteColors = [Ben:'Green',Solomon:'Blue',Joanna:'Red']
favoriteColors.each{key, value ->

println "${key}'s favorite color is ${value}."
}

The output from this code would be as follows:

6. <=> is a shortcut for the compareTo() method.

report erratum • discuss

Groovy Collections • 7

www.allitebooks.com

http://media.pragprog.com/titles/dkgrails2/code/introduction.2/groovy_list.groovy
http://media.pragprog.com/titles/dkgrails2/code/introduction.2/groovy_map.groovy
http://media.pragprog.com/titles/dkgrails2/code/introduction.2/groovy_map.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2
http://www.allitebooks.org

Ben's favorite color is Green.
Solomon's favorite color is Blue.
Joanna's favorite color is Red.

In Groovy, Map entries can be accessed using dot notation, as if they were
properties. You may have noticed that in our first Map example, we had to use
empty.getClass().name instead of the Groovy shortcut empty.class.name. That’s
because empty.class would have looked for a key in empty called class. Other than
a few edge cases like that, this is the preferred way to access Map values.

introduction.2/groovy_map.groovy
assert favoriteColors.Joanna == 'Red'

There is no overridden left shift operator for Map, but adding an element is
still a snap. Assigning a value to a key that doesn’t exist will add that key
and value to the Map.

introduction.2/groovy_map.groovy
favoriteColors.Rebekah = 'Pink'
assert favoriteColors.size() == 4
assert favoriteColors.containsKey('Rebekah')

Set

The Set class also implements the Collection interface, so most of what we saw
with List applies to it as well. Set is the default type for one-to-many associations
in Grails, so we’ll be working with it often. There are a couple of notable dif-
ferences between Set and List. First, a Set can’t contain duplicates, and second,
it can’t be accessed with the subscript operator ([]). This last difference can
be a hindrance, but it is easy to overcome with the toList() method.

introduction.2/groovy_set.groovy
def employees = ['Susannah','Noah','Samuel','Gideon'] as Set
Set empty = []

assert employees instanceof Set
assert empty instanceof Set
assert empty.class.name == 'java.util.HashSet'

employees << 'Joshua'

assert employees.contains('Joshua')

println employees.toList()[4]

In this example, we create a Set with four names in it. Since we didn’t declare
employees with a type, we need to cast it as a Set. (The default type for a literal
declaration like this is ArrayList.) We could have just declared the type explicitly,

Chapter 1. Enough Groovy to Be Dangerous • 8

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/introduction.2/groovy_map.groovy
http://media.pragprog.com/titles/dkgrails2/code/introduction.2/groovy_map.groovy
http://media.pragprog.com/titles/dkgrails2/code/introduction.2/groovy_set.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

as we do with empty on the next line. Then we add another item to the Set
using the handy left shift operator and assert() that it is there. Finally, we show
that there are now five items by printing the fifth one with println employ-
ees.toList()[4]. This is the output from the last line of that example: Samuel. This
brings up another point about Set: you have no control of the order in which
elements are stored. If you need to specify an order, either sorted or creation
order, you can use a SortedSet or List.

Many more methods are added to these classes that we don’t have space to
cover here. To become more productive in Groovy (and to have more “wow!”
moments), check out the Groovy JDK docs, at http://groovy.codehaus.org/groovy-jdk.

Metaprogramming

A complete discussion of Groovy’s metaprogramming features would be beyond
the scope of this primer, but it will be helpful to have some understanding of
them as you begin to work with Grails. Groovy’s metaprogramming can make
us much more productive as developers. With it, Grails adds methods to our
objects that we are going to need and use but never write.

So here’s Groovy metaprogramming in a nutshell: Groovy provides mechanisms
for adding methods and properties to classes at runtime, and/or without
touching their code. This is done in several ways; we’ll discuss two that are
used in Grails.

Every Groovy class has a metaClass, which can be written by someone else and
assigned at runtime. Any methods or properties added in a class’s metaClass
will also be available in that class, and the behavior of a class can be changed
dynamically by assigning a different metaClass to it.

Groovy classes can also implement a method called methodMissing(). This is
called when a method is called that does not exist in a class or its metaClass—
the called method, along with any arguments, are passed to methodMissing().
So, for example, we could add a methodMissing() to the metaClass of Integer, and
have it look for the string incrementBy in the called method. If the rest of the
method name converts to a number, our methodMissing could add that to the
current value. Then we could do something crazy like:

25.incrementBy5()

As we’ll begin to see in Creating a Domain Class, on page 21, when we create
a domain class in Grails, it will have methods, such as save(), that we didn’t
have to implement. At first it may seem like magic, but it’s really just Groovy
metaprogramming at work. And it sure does a lot of work for us!

report erratum • discuss

Metaprogramming • 9

http://groovy.codehaus.org/groovy-jdk
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

For a much more thorough explanation of metaprogramming and examples
of how to use this powerful tool in your own applications, take a look at
Programming Groovy 2 [Sub13] by Venkat Subramaniam.

Where to from Here?

Now that you have some Groovy basics under your belt, we’re ready to get
into Grails. Over the next 11 chapters, we’ll be exploring most areas of the
Grails framework. We won’t spend a great deal of time on any one feature,
and we may not cover every aspect of Grails. The goal is to give you the
knowledge and experience necessary to start working effectively and produc-
tively with Grails and to point you to the resources you’ll need as you continue.

“Experience?” you say. “How do I get experience from a book?” This book is
meant not only to be read but to be used. In this Groovy tutorial, we showed
some code snippets and explained them. In the rest of the book, we’ll be
working together on a real project. By the time you finish this book, you’ll
have developed and deployed your first full-featured web application with
Grails.

Finally, an appendix at the end of the book contains resources (websites,
blogs, books, and mailing lists) available in the thriving Groovy and Grails
community.

Let’s get started!

Chapter 1. Enough Groovy to Be Dangerous • 10

report erratum • discuss

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

CHAPTER 2

Our Project
When you’re learning a new tool or language, you might start with a “Hello
World” example or perhaps work through a few exercises in a book. Those
steps can help you become acquainted with the tool, but that’s as far as they’ll
take you. If you want to become productive in a tool or even proficient, you
need use it in a real project. So, that’s what we’re going to do. We’ll work
together to build a cool new web application—one that will actually go live.
As our application comes together, we’ll explore Grails in a thorough, practical
way. This strategy will provide us with the context that is so valuable in
understanding and becoming productive with a new framework.

We’ll be working through a series of iterations, covering about one iteration
per chapter. This means that some features of Grails will be used in more
than one chapter. We want to build a real application, and the repetition that
comes with that is a good thing. This is a quick-start guide, but we don’t want
it to be a false-start guide. When our time together is over, you’ll be able to
go on to your second Grails project with confidence.

One concern with this method of discovery is that we’re going to run into
more advanced features of Grails, perhaps before we are ready. We’ll handle
this potential problem by developing our application in an incremental manner.
In other words, our application will start simple, thereby exercising the simple
features in Grails, and gradually get more complex.

Introducing TekDays.com

The decision about what kind of project to take on in our quest to learn Grails
is an important one. We want something that is substantial enough to exercise
the framework in ways that will stick in our minds but not something that is
so daunting that we are unable to finish it. We’re also aiming for something

Tell me and I forget. Teach me and I remember.
Involve me and I learn.

 ➤ Benjamin Franklin

report erratum • discuss

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

useful and interesting. After all, you may need something more than our
charm and wit to keep your attention.

Here’s an issue many developers encounter: the rapid pace of technological
innovation today is making it more difficult and, at the same time, increasingly
important to keep our skills as developers up-to-date. One great way to keep
on top of innovations and advances is to attend technical conferences, but
with tightening training budgets at many companies and more developers
working as freelancers or independent contractors, it is often hard to afford
these events. Some developers have taken to organizing local, nonprofit mini-
conferences to help address the problem. You may have heard of these events,
such as the Houston Tech Fest, Silicon Valley Code Camp, or the bar camps
that are springing up all over.1 Wouldn’t it be great if there was an online
application to help individuals connect and put on these types of events?
Well, when we’re done here, there will be!

TekDays.com is going to be a site where people can announce, plan, and
promote local, grassroots technical conferences. It will all start when visionary
individuals suggest an event in their city. Then, as others hear about it and
register their interest and/or support, we’ll provide tools to help them organize
the event: a to-do list, an organizer’s dashboard (to keep track of volunteers,
sponsors, and potential attendees), a discussion forum, and, finally, an event
home page to help with promotion. This may sound like a tall order, but Grails
can make it happen.

Meet Our Customer

One of the major benefits of Grails is its ability to provide rapid feedback. In
minutes, we can have new features up and running and ready for our cus-
tomers to try. But that benefit is hard to realize if we don’t have a customer
around. And this application is about building community: making connec-
tions, sharing ideas, and working together to build a solution. This application
is going to production; in fact, we’re going to use it to organize a real tech
conference, so your authors, Dave and Ben, will be joining you on the dev
team as well as playing the role of on-site customer—and first end user. Don’t
worry; we have experience wearing multiple hats. As we work on TekDays,
you can show us what you’ve done, and we’ll let you know what we think
about it. Fair enough?

1. For more information on these events, see http://www.houstontechfest.org, http://www.siliconvalley-
codecamp.com, and http://en.wikipedia.org/wiki/BarCamp.

Chapter 2. Our Project • 12

report erratum • discuss

http://www.houstontechfest.org
http://www.siliconvalley-codecamp.com
http://www.siliconvalley-codecamp.com
http://en.wikipedia.org/wiki/BarCamp
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Application Requirements

As your customer, we want to give you a good idea of what we are looking for
in this application. We are trying to attract conference organizers to this site
—preferably many of them. We’re convinced of the value of these types of
conferences to individual developers, communities, and the industry as a
whole. The application should make it easy for those visionary individuals to
get started by simply proposing a conference. Then it has to provide real help
in bringing their vision to fruition.

As end users, we’re hoping to use this application to organize a technical
conference in St. Louis, Missouri. This is a big undertaking, and we know
that we can’t do it alone, so we need this application to make it easy for others
to volunteer, or to at least let us know they’re interested in attending. Some
type of workflow to guide us through the process would make this whole
endeavor much less daunting.

After this introduction and a follow-up discussion with our customer and
user, we’ve come up with the following feature list for our application:

• Create new events

• Display event details

• Edit event details

• Create users/organizers

• Allow users to volunteer to help

• Add users to events

• Allow anonymous users to register interest

• Create sponsors

• Add sponsors to events

• Have default list of tasks

• Add/remove tasks

• Assign tasks to users

• Post forum message

• Reply to forum message

• Display forum message threads

• Allow access to event home page with simple URL

report erratum • discuss

Meet Our Customer • 13

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

This list gives us a good idea of the scope of the project. When we’re done
here, people will be able to propose conferences, volunteer to help, or add
their support. Organizers will be able to assign tasks to volunteers to spread
the load, and questions can be asked and answered in the forums to keep
the communication flowing. As a conference begins to take shape, we’ll provide
the tools needed to promote it successfully. Businesses will be able to bring
their resources to bear to help make it all happen. This is getting exciting!

We will, of course, need to flesh these out more as we go along. During each
iteration, we’ll design and implement two or three features. Along the way,
we (or our customer) may come up with new features or changes. That’s OK.
Grails can handle it, and so can we.

Iteration Zero

Before we get started building our application, we’ll take a few moments to
set the stage.

Installing Grails

First off, let’s get Grails installed and set up. There are a few different ways
to install Grails, with installers on one end of the spectrum and building the
source from GitHub on the other. We’ll use that happy middle ground and
download the compressed binaries. They are at http://grails.org/download and are
made available as zip files. Once we have them, follow these steps:

1. Expand the archive to a directory on your computer.
2. Set your GRAILS_HOME environment variable to this directory.
3. Add GRAILS_HOME/bin to your path.
4. Ensure that you have a JAVA_HOME environment variable pointing to a JDK

version 1.6 or higher.

To test our installation, run the following command:

$ grails help

If this returns something like the following output, then we’re good to go:

| Environment set to development. ...

Usage (optionals marked with *):
grails [environment]* [options]* [target] [arguments]*

Examples:
grails dev run-app
grails create-app books

Chapter 2. Our Project • 14

report erratum • discuss

http://grails.org/download
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Available options:
-debug-fork Whether to debug the forked JVM if using

forked mode
-verbose Enable verbose output
-plain-output Disables ANSI output
-refresh-dependencies Whether to force a resolve of dependencies

(skipping any caching)
-reloading Enable the reloading agent
-stacktrace Enable stack traces in output
-offline Indicates that Grails should not connect

to any remote servers during processing of
the build

-version Current Grails version
-non-interactive Whether to allow the command line to

request input

Available Targets (type grails help 'target-name' for more info):
grails add-proxy
grails alias
grails bootstrap
grails bug-report
grails clean
...

If you don’t see this output, verify that your GRAILS_HOME and JAVA_HOME environ-
ment variables are valid and that GRAILS_HOME/bin is on your path. You can do
this easily with echo:

$ echo $GRAILS_HOME
$ echo $JAVA_HOME
$ echo $PATH

On Windows, this would be as follows:

> echo %GRAILS_HOME%
> echo %JAVA_HOME%
> echo %PATH%

Grails Scripts

Grails comes with more than seventy built-in scripts that can be run with
the grails command. These scripts are used for creating applications and
application artifacts, as well as to run tests or to run the application. We’ll
learn about many of these as we work on TekDays. If you want to explore the
others, you can do that with grails help. As we saw in the previous section, grails
help will show you a list of the scripts that come with the framework. To find
out more about any one of them, run grails help followed by the name of the
script. For example:

$ grails help run-app

report erratum • discuss

Iteration Zero • 15

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Although we will be using the built-in scripts only to get TekDays ready for
production, it’s worth noting that other scripts can be used with the grails
command; some plugins install new scripts, and it’s also possible to write
your own scripts for Grails.

Setting Up Our Workspace

In other web frameworks that we’ve used—especially Java-based frameworks
—starting a new project is an ordeal. If you’re lucky, there might be a wizard,
or perhaps there’s a template project you can copy and customize. Even with
those aids, getting everything set up and in the right place can be a drag.
Grails has a solution to this problem, in the form of a script called create-app.
We’ll use this script to get TekDays off the ground.

From the directory that will be the parent of our project directory, enter the
following command:

$ grails create-app TekDays

When we run the command, Grails creates a bunch of directories and files
for our project. In just a bit, we’ll take a closer look at the directories that are
created and what they are used for.

The TekDays project is now ready to go. In fact, we can even run it already:

$ cd TekDays
$ grails run-app

Here’s a summarized view of the output from the run-app script:

| Loading Grails 2.3.1
| Configuring classpath
| Environment set to development. ...
| Running Grails application
| Server running. Browse to http://localhost:8080/TekDays

Early on in the output, Grails tells us that the environment is set to development.
development is the default of the three standard Grails environments. Running
in the development environment (or in development mode, as it is often called)
gives us autoreloading (we can change most aspects of the application while
it’s running and see the changes immediately) and an in-memory database
to make that rapid feedback even more rapid. These types of productivity-
enhancing features can be added to most other frameworks via external tools
and libraries, but Grails bakes them right in. The other two environments
are test and production. We’ll return to these other environments later when we
get to testing and deployment. For now, keep in mind that these are only
defaults and can be changed if needed.

Chapter 2. Our Project • 16

report erratum • discuss

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

The last line of output tells us where to go to see our application in action.
In the following figure, we can see what we get by browsing to that location.

Figure 1—We start with a working application.

The default home page of the app displays some application statistics in the
sidebar, as well as a list of installed plugins and a list of the app’s controllers.
(There is only one controller to begin with: grails.plugin.databasemigration.DbdocCon-
troller is part of the Grails Database Migration plugin,2 which is automatically
installed by Grails.)

It may not look like much yet, but having a working application from the very
beginning is just powerful. It gives us an excellent feedback loop. We’ll be
maintaining that runnable state, and, consequently, that feedback loop, right
through to deployment.

Starting with All Windows Intact

In their book The Pragmatic Programmer [HT00], Dave Thomas and Andy Hunt discuss
the “Broken Window” theory as it relates to software development. This theory holds
that if a building has a broken window that is left unrepaired, its chances of further
vandalism are increased. Dave and Andy point out that if software is left in a partially
broken state (failing tests or ignored bugs), it will continue to degenerate.

With many development tools and frameworks, we start out with broken windows;
nothing works until multiple pieces are in place. This makes it easier to get started
and keep coding without taking the time to see whether what we have works. With
Grails we start out with a running application; as we make changes, we get immediate
feedback that lets us know whether we’ve broken something.

2. See http://grails.org/plugin/database-migration.

report erratum • discuss

Iteration Zero • 17

www.allitebooks.com

http://grails.org/plugin/database-migration
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2
http://www.allitebooks.org

With some other web frameworks, we would have had to create one or two
source files, an index page, and a handful of XML files to get this far. All it
took in Grails was a single command.

Anatomy of a Grails Project

Now that we’ve seen our application run, let’s take a look at what’s under the
hood. When we ran the create-app script, a number of files and directories were
generated for us. (See the next figure.) The files that were created have default
code and configuration information that we can change as needed. The
directories are particularly important because they are at the heart of Grails’
“convention over configuration” strategy. Each directory has a purpose, and
when files are placed in these directories and meet certain other conventions,
magical things will happen. We will look at most of these in more detail when
we begin to work with them. For now, here’s a brief overview:

Figure 2—The files and directories of a Grails application

• grails-app: The main application directory, which contains the following
directories:

– conf: Contains Grails configuration files and directories for optional
Hibernate and Spring configuration files3

– controllers: Holds the controller classes, the entry points into a Grails
application

– domain: Holds domain classes, representing persistent data

3. Most Grails applications will not need Spring or Hibernate configuration files.

Chapter 2. Our Project • 18

report erratum • discuss

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

– i18n: Holds message property files for internationalization

– migrations: Can contain change log files generated by the Grails Database
Migration plugin

– services: Holds service classes, which are Spring-managed beans

– taglib: Holds Groovy Server Pages (GSP) custom tag libraries

– utils: Holds codec classes4

– views: Holds the GSP views

• lib: Contains any external .jar files we may need to include (such as JDBC
drivers).

• scripts: Can contain custom Groovy scripts to be used in the application.

• src: Contains directories for other Java and Groovy source files. Files in
this directory are available to the application at runtime.

• target: Created when we first run the app. It contains artifacts produced
by Grails commands such as grails war.

• test: Contains directories for unit and integration tests.

• web-app: Contains directories for images, CSS, and JavaScript.

• wrapper: Can contain wrapper files generated by the wrapper script.

The application.properties file holds our application’s name and version, along
with a list of plugins used. The default version for a new Grails application
is 0.1; we can change this in application.properties. The grailsw shell script and
grailsw.bat batch file allow our project to be run without a manual installation
of Grails; if Grails isn’t installed when they’re run, they will download it and
set it up to work with our project, and can then be used to run Grails scripts
in place of the usual grails command.

A brief word about tools: support for Groovy and Grails in most of the popular
development tools is good and getting better all the time. Integrated develop-
ment environments (IDEs) such as Eclipse, NetBeans, and IntelliJ IDEA are
a big help in managing a multitude of configuration files or for dealing with
verbose and redundant language syntax, but with Grails’ use of “convention
over configuration” and the clean, concise syntax of Groovy, we find ourselves
turning to an IDE less and less. If you really feel the need for an IDE, you can
find more information about what’s available in Appendix 2, Resources, on

4. See http://grails.org/doc/2.3.1/guide/single.html#codecs.

report erratum • discuss

Iteration Zero • 19

http://grails.org/doc/2.3.1/guide/single.html#codecs
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

page 181. As we work on TekDays, we’ll be using the command line for inter-
acting with Grails, but coding can be done in an editor or IDE.

Summary

We’re off to a good start. We have Grails installed. Our project requirements
are clear and achievable. Our new application is prepped, ready, and running.

In the next chapter, we’ll begin our first development iteration. To get ourselves
acclimated, we’ll reach for some low-hanging fruit and work on the first three
features on our list. At the end of Chapter 3, we will be able to create, display,
and edit an event.

Chapter 2. Our Project • 20

report erratum • discuss

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

CHAPTER 3

Laying the Foundation
In this chapter, we’ll implement the first three features on the TekDays feature
list. We’ll add the ability to create, view, and modify new technical conferences
(or code camps or what have you). We will refer to all of these as events. These
events are the core of our application. Each event that is created here has
the potential to become an actual gathering of dozens, if not hundreds, of
developers, designers, architects, and maybe even project managers, all
learning, sharing, and generally advancing our craft.

The three features that we’ll be implementing are very closely related; they’re
so close, in fact, that we will be implementing them all at once! Grails
dynamically adds the ability to create, read, update, and delete data from a
domain class. We will take advantage of this to get us started, but we won’t
stop there.

Creating a Domain Class

The heart of a Grails application is its domain model, that is, the set of domain
classes and their relationships.

A domain class represents persistent data and, by default, is used to create
a table in a database. We’ll talk more about this shortly when we create our
first domain class. For creating domain classes, Grails provides a convenience
script called (unsurprisingly)1 create-domain-class.

Just as the domain model is the heart of a Grails application, the TekEvent
class will be the heart of the TekDays domain model. TekEvent is the name of
the class that we will use to represent an event (or conference or code camp
or tech fest). If we were to sit down and put our heads together to come up

1. The designers of Grails followed the principle of least surprise; most names in Grails
are common sense and therefore easy to remember.

report erratum • discuss

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

with a design for the TekEvent class, we’d probably end up with something
similar to what we see in the following figure.

Figure 3—Diagram of the TekEvent class

To create our TekEvent class, run the following command:

$ grails create-domain-class com.tekdays.TekEvent

This script expects a package; we’re using the package com.tekdays. If we didn’t
give it a package, the script would default to the name of the app, so our
classes would be in the tekdays package.

The output from this command has a few lines of introductory text and then
these two lines:

| Created file grails-app/domain/com/tekdays/TekEvent.groovy
| Created file test/unit/com/tekdays/TekEventSpec.groovy

Grails created two files for us: the domain class and a unit test class (specif-
ically, a Spock specification).2 This is an example of the way that Grails makes
it easier for us to do the right thing. We still need to add tests, but having
this test class already created for us gives us a little nudge in the right
direction.

In Grails, a domain class is a Groovy class located under grails-app/domain. Let’s
take a look:

package com.tekdays

class TekEvent {

static constraints = {
}

}

2. Spock (https://code.google.com/p/spock/) is a specification testing framework for Groovy and
Java applications. We’ll discuss Grails’ generated Spock tests in Testing Our Domain
Class, on page 24.

Chapter 3. Laying the Foundation • 22

report erratum • discuss

https://code.google.com/p/spock/
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Pretty anemic, huh? Grails is powerful, but it’s not omniscient. (Maybe in the
next release….) We have to write a little code to make our TekEvent class useful.
We’ll use Groovy properties (see Groovy Syntax Compared to Java, on page
1) to flesh out our domain class. It’s time to fire up your trusty editor and
add the following properties to the TekEvent class:

foundation.2/TekDays/grails-app/domain/com/tekdays/TekEvent.groovy
String city
String name
String organizer
String venue
Date startDate
Date endDate
String description

We will need to come back to this class later and add or change things. Notice
that we gave our organizer property a type of String, but our diagram shows a
User. That’s because we don’t have a User class yet. A look at our feature list
shows us we will need one. But don’t worry: refactoring a Grails application,
especially in the early stages, is a breeze.

While you have your editor out, why not add a toString() method to TekEvent too?
This always comes in handy, since it gives us an easy way to represent an
instance of our domain class as a String. We’ll see later that Grails takes
advantage of the toString() in the views that it generates, and if we don’t create
our own, we’ll get Grails’ default, which is not all that informative or user
friendly.

Groovy makes this very easy to do. Add the following code after the properties
we just added:

foundation.2/TekDays/grails-app/domain/com/tekdays/TekEvent.groovy
String toString(){

"$name, $city"
}

This toString() method will return the name and city of the TekEvent separated
by a comma. For a refresher on what’s going on here, take another look at
Groovy Syntax Compared to Java, on page 1 and Groovy Strings, on page
3.

More About Domain Classes

Now we have a persistent TekEvent class. We can create instances of this class
and save them to the database. We can even find existing instances by their
id or by their properties. You might be wondering how that can be—where is
the code for all this functionality? We’ll learn more about that when we start

report erratum • discuss

More About Domain Classes • 23

http://media.pragprog.com/titles/dkgrails2/code/foundation.2/TekDays/grails-app/domain/com/tekdays/TekEvent.groovy
http://media.pragprog.com/titles/dkgrails2/code/foundation.2/TekDays/grails-app/domain/com/tekdays/TekEvent.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Joe asks:

If Groovy Is a Dynamic Language, Why Are We
Specifying the Types of Our Properties?

That’s an excellent question. If you were creating a persistent class, why might you
want to have data types on the properties? If your answer had something to do with
the database schema, move to the head of the class! Groovy is a dynamic language,
and our properties could be declared with the def keyword rather than a type, but by
using types, Grails is able to tell our database what data type to use when defining
columns. Grails also uses type information to choose default HTML elements for our
views.

using these features, but the short answer is that Grails uses Groovy
metaprogramming (which we discussed in Metaprogramming, on page 9) to
dynamically add powerful behavior to our domain classes. As we get further
in developing our application, we’ll see that we can call methods like
TekEvent.save(), TekEvent.list(), and TekEvent.findAllByStartDateGreaterThan(new Date() - 30),
even though we’ve never written any code to implement those methods.

Because domain classes are such an integral part of a Grails application, we
will be coming back to them frequently as we work on TekDays, learning a
bit more each time. There is, however, one more feature we should discuss
before we continue. Along with dynamically adding several methods and
nonpersistent properties to our domain classes, Grails adds two persistent
properties: id and version. These properties are both Integers. The id property is
the unique key in the table that is created, and the version is used by Grails
for optimistic concurrency.3

Testing Our Domain Class

As mentioned earlier, Grails makes it easy for us to do the right thing by
generating test classes for us, but we still have to write the tests. So, let’s add
a test for our TekEvent class.

Grails includes the JUnit testing framework wrapped in Groovy goodness,
along with the Spock specification framework. When we created our domain
class, a Spock test class was created for us in the test/unit directory.

3. Optimistic concurrency is a way of keeping a user’s changes from getting stomped on
by another user changing the same data at the same time. It’s outside the scope of
this book, but see http://en.wikipedia.org/wiki/Optimistic_concurrency_control for more information.

Chapter 3. Laying the Foundation • 24

report erratum • discuss

http://en.wikipedia.org/wiki/Optimistic_concurrency_control
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

By default Grails provides two types of testing, unit and integration.4 (The test
Grails generated for TekEvent is, of course, a unit test.) Since the goal of a unit
test is to test a single class in isolation, Grails unit tests do not provide access
to any of the dynamic behavior that would otherwise be available.

Testing and Dynamic Languages

Writing automated tests for our code is always a good idea, but it becomes even more
important when working with a dynamic language such as Groovy. In some situations,
it’s possible for a simple typo that would be caught by the Java compiler to sneak
through and cause havoc at runtime. Automated unit tests can prevent that and
much more. A compiler will verify that our code is syntactically correct, but a well-
written test will verify that it works! As Stuart Halloway once said, “In five years, we
will view compilation as a really weak form of unit testing.”

Fortunately, writing unit tests in Groovy is much easier than it would be in a language
such as Java or C#. See Chapter 19, “Unit Testing and Mocking,” in Programming
Groovy 2 [Sub13] for more information on applying the power of Groovy to unit testing.

At this point, most of the functionality of the TekEvent class is dynamic. How-
ever, we can write a test for the toString() method. Open TekDays/test/unit/com/tek-
days/TekEventSpec.groovy. You should see something like this:

package com.tekdays

import grails.test.mixin.TestFor
import spock.lang.Specification

/**
* See the API for {@link grails.test.mixin.domain.DomainClassUnitTestMixin}
* for usage instructions
*/

@TestFor(TekEvent)
class TekEventSpec extends Specification {

def setup() {
}

def cleanup() {
}

void "test something"() {
}

}

4. We’ll learn more about integration tests in Integration Testing, on page 98.

report erratum • discuss

Testing Our Domain Class • 25

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Grails uses the TestFor annotation to indicate the class that’s being tested. In
the generated test class here, we have one stubbed-out test called "test some-
thing"(). We can add as many tests as we want to a Grails test class. We are
currently adding only one test, so we will just replace "test something"() with a
"test toString"() method. Modify the test class to look like this:

foundation.2/TekDays/test/unit/com/tekdays/TekEventSpec.groovy
package com.tekdays

import grails.test.mixin.TestFor
import spock.lang.Specification

/**
* See the API for {@link grails.test.mixin.domain.DomainClassUnitTestMixin}
* for usage instructions
*/

@TestFor(TekEvent)
class TekEventSpec extends Specification {

def setup() {
}

def cleanup() {
}

void "test toString"() {
when: "a tekEvent has a name and a city"

def tekEvent = new TekEvent(name:'Groovy One',
city: 'San Francisco',
organizer: 'John Doe')

then: "the toString method will combine them."
tekEvent.toString() == 'Groovy One, San Francisco'

}
}

Our test code is simple enough. We are creating a new TekEvent, assigning it
to the variable tekEvent, and stating that the return value of tekEvent.toString() is
equal to the expected value.

Grails provides a script called test-app that will, by default, run all of our
application’s unit and integration tests. We can use the unit: flag to tell it to
run only unit tests. This is helpful since we want to run our tests frequently
and unit tests are much faster than integration tests. We can also specify the
particular tests we want to run; test-app unit: TekEvent (note that we can omit the
“Spec” suffix) will run only the unit tests for TekEvent. Let’s use this now to
run our test:

Chapter 3. Laying the Foundation • 26

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/foundation.2/TekDays/test/unit/com/tekdays/TekEventSpec.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

$ grails test-app unit: TekEvent

The output from this command ends with the following lines:

| Completed 1 unit test, 0 failed in 0m 1s
| Tests PASSED - view reports in .../TekDays/target/test-reports

The total number of tests run is shown, along with how many tests failed. (In
our case, we have only one test, and it passed.) Then the result of the test-app
command is shown. The result will be either Tests PASSED or Tests FAILED. Tests
FAILED means that the tests ran with one or more assertion failures. In the
event of a test failure, you will find very helpful information in the HTML
reports that Grails produces. The final line of output from test-app gives the
location of these reports.

As we create more artifacts throughout the course of the project, be sure to
add valid tests for them. Otherwise when we run test-app, our test suite will
fail, and kittens will die.

Taking Control of Our Domain

The next step in implementing our first features is to give our users a way to
create TekEvent instances. To do this, we will need a controller class. Controller
classes are the dispatchers of a Grails application. All requests from the
browser come through a controller. We will do quite a bit of work with con-
troller classes later, but for now all we need is a blank one. Once again, Grails
has a script to produce this:

$ grails create-controller com.tekdays.TekEvent

This will create the files grails-app/controllers/com/tekdays/TekEventController.groovy and
test/unit/com/tekdays/TekEventControllerSpec.groovy,5 along with a folder for views (this
folder will be empty to begin with). Let’s open the TekEventController in our editor
and take a look:

package com.tekdays

class TekEventController {

def index() { }
}

The line that we see in this otherwise empty controller—def index() { }—is called
an action. Specifically, the index action. We will eventually have controllers

5. We won’t be working with the test file yet since we currently have virtually no code to
test.

report erratum • discuss

Taking Control of Our Domain • 27

www.allitebooks.com

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2
http://www.allitebooks.org

full of actions, but for now we will take advantage of a powerful Grails feature
called dynamic scaffolding. Dynamic scaffolding will generate a controller
with a set of actions and corresponding views (pages), which we will discuss
shortly. To get all this magic, let’s change the TekEventController to look like this:

foundation.2/TekDays/grails-app/controllers/com/tekdays/TekEventController.groovy
package com.tekdays

class TekEventController {

def scaffold = TekEvent
}

Now when we run our application, we see a link titled com.tekdays.TekEventController
on the index page. This link takes us to the list view. This is the first of four
views that are made available by the dynamic scaffolding; the others are create,
edit, and show. Run the application, navigate to http://localhost:8080/TekDays, and
click that TekEventController link. You should see something like the following
figure.

Figure 4—The scaffolded list view

The list is (obviously) empty, since we haven’t created any events yet. In the
menu bar of the list view, there is a button labeled “New TekEvent”. This
button will take us to the create view. (See Figure 5, The scaffolded create
view, on page 29.) We’ll have to tweak these views a bit, but first let’s see
what our customer thinks.

Modifying Code That Doesn’t Exist

We put on our customer hat, and, after getting over our shock at how fast
you got this much done, we found the following issues with these views:

Chapter 3. Laying the Foundation • 28

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/foundation.2/TekDays/grails-app/controllers/com/tekdays/TekEventController.groovy
http://localhost:8080/TekDays
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Figure 5—The scaffolded create view

• List view:

– The Grails logo, while very cool, is not the logo we had in mind for
TekDays.

– What’s with the order of the columns? We would prefer to see Name,
City, Description, Organizer, Venue, and so on.

• Create view:

– The logo and field order issues apply here too.

– There is not enough room in the Description field to enter any mean-
ingful content.

– The date inputs allow for far too wide a range of years—we’re not going
to be putting on events in the year 1913.

Some of these issues will have to wait until we generate code that we can
modify.6 Currently we are using dynamic scaffolding, which allows us to make

6. Grails does provide a way to make more significant changes to dynamically scaffolded
views with the install-templates script. You can read about it at http://grails.org/Artifact+and+Scaf-
folding+Templates.

report erratum • discuss

Modifying Code That Doesn’t Exist • 29

http://grails.org/Artifact+and+Scaffolding+Templates
http://grails.org/Artifact+and+Scaffolding+Templates
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

changes to our domain model and quickly see the effects of those changes
but doesn’t provide us with any code that we can customize. However, we
can fix some of the issues the customer brought up by modifying our TekEvent
class.

Constraining Our Domain

Grails uses our domain classes to make some decisions about the scaffolding.
For example, property types are used to determine which HTML elements to
use. To go further, we can add constraints to our domain class. Constraints
are a way of telling Grails more about the properties of our domain class.
They are used for validation when saving, for determining some aspects of
database schema generation, and for laying out scaffolded views. We’ll look
at those first two uses of constraints later (see Constraints and Validation, on
page 54), but that last one is what we’re going to take advantage of now. Open
TekDays/grails-app/domain/com/tekdays/TekEvent.groovy in your trusty editor, and add
the following code:

foundation.2/TekDays/grails-app/domain/com/tekdays/TekEvent.groovy
static constraints = {

name()
city()
description maxSize: 5000
organizer()
venue()
startDate()
endDate()

}

The constraints consist of a code block, which is a Groovy closure.7 Inside
this block, we list each of our properties, followed by parentheses. For each
property, we can include one or more key/value pairs that represent con-
straints—rules—for that property. (If we do assign constraints to a particular
property, we can omit the parentheses.) The order of the properties in the
constraints block will be used to determine the display order in the scaffolded
views. The maxSize constraint that we added to the description property will affect
how that property is displayed in the views and will also affect the database
schema generation. For example, in MySQL,8 the description field will be of type
longtext, whereas nonconstrained String properties will render fields of varchar(255).

When we run the application and navigate to the list view, we see that it looks
more like Figure 6, List view with constraints, on page 31.

7. See Groovy Closures, on page 4.
8. See http://dev.mysql.com.

Chapter 3. Laying the Foundation • 30

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/foundation.2/TekDays/grails-app/domain/com/tekdays/TekEvent.groovy
http://dev.mysql.com
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Figure 6—List view with constraints

In this view, we corrected only the order of the properties, but if we click the
“New TekEvent” button, we see that the create page looks significantly better.
(See the next figure.)

Figure 7—Create view with constraints

report erratum • discuss

Modifying Code That Doesn’t Exist • 31

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

The order of the properties is correct, and we get a text area for entering a
description instead of an input field. We haven’t addressed all the issues yet,
but we’re moving in the right direction, and we’ll continue to make small
corrections as we go.

Bootstrapping Some Test Data

To get a better feel for how TekDays is coming along, we can enter some data
and check out the various views. We’ve seen the list and create views, but
there’s also the show and edit views.

The problem with entering test data now is that it would all be lost as soon
as we restarted the application. We’re working with an in-memory database
at this point. Eventually, we will point TekDays at a real database, but for
now, the in-memory H2 database is pretty handy—that is, it would be if we
didn’t lose our data.

This dilemma’s answer is in TekDays/grails-app/conf/BootStrap.groovy. The file has an
init() code block, which is executed by our application at start-up. If we create
TekEvent instances there, they will be preloaded for us every time we run the
application. (Once we do set up a persistent database, we’ll tweak this code
to make sure we don’t get duplicates.)

Give it a try. Open TekDays/grails-app/conf/BootStrap.groovy, and modify it to look
similar to the following code. You can make up your own event. Be creative.
It makes the learning process more fun.

foundation.2/TekDays/grails-app/conf/BootStrap.groovy
import com.tekdays.*

class BootStrap {

def init = { servletContext ->
def event1 = new TekEvent(name: 'Gateway Code Camp',

city: 'Saint Louis, MO',
organizer: 'John Doe',
venue: 'TBD',
startDate: new Date('11/21/2013'),
endDate: new Date('11/21/2013'),
description: '''This conference will bring coders from

across platforms, languages, and industries
together for an exciting day of tips, tricks,
and tech! Stay sharp! Stay at the top of your
game! But, don't stay home! Come an join us
this fall for the first annual Gateway Code
Camp.''')

Chapter 3. Laying the Foundation • 32

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/foundation.2/TekDays/grails-app/conf/BootStrap.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

if(!event1.save()){
event1.errors.allErrors.each{error ->

println "An error occured with event1: ${error}"
}

}
def event2 = new TekEvent(name: 'Perl Before Swine',

city: 'Austin, MN',
organizer: 'John Deere',
venue: 'SPAM Museum',
startDate: new Date('11/2/2013'),
endDate: new Date('11/2/2013'),
description: '''Join the Perl programmers of the Pork Producers

of America as we hone our skills and ham it up
a bit. You can show off your programming chops
while trying to win a year's supply of pork
chops in our programming challenge.

Come and join us in historic (and aromatic),
Austin, Minnesota. You'll know when you're
there!''')

if(!event2.save()){
event2.errors.allErrors.each{error ->

println "An error occured with event2: ${error}"
}

}
}
def destroy = {
}

}

Notice the triple single quotes (''') surrounding the description values in our new
TekEvent instances. This is a Groovy way to declare a multiline String, which
allows us to enter text on multiple lines without joining them with + signs.
(It’s yet another way that Groovy helps us keep our code cleaner.)

By assigning our new TekEvent instances to a variable and then saving them
in a separate step, we’re able to do a little error checking in case we mistyped
something; when a domain class instance fails to save, its errors property will
be populated with one or more Error objects, which will give us some clues as
to what went wrong.

Note also the import statement at the beginning of this file. We need this in
order to access the classes we’ve created under the com.tekdays package. It’s
important to remember to import them, because when we run the create-domain-
class script, Grails does not insert this statement here for us.

report erratum • discuss

Bootstrapping Some Test Data • 33

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Joe asks:

Why Not Just Use a “Real” Database from the
Beginning?

When your Grails application is hooked up to a persistent database, it becomes a
little more difficult to make changes to the domain model. Grails will make some
updates to your database; for example, it will add new columns based on new prop-
erties. But it won’t drop columns.

Using the in-memory database for development makes it easier to share your project
with other developers, since they don’t have to create a database to run your project
locally. And if you’re working on a team, using the in-memory database with test data
loaded in BootStrap.groovy can prevent issues with tests passing on one machine and
not another because of data differences.

If you prefer to not use the in-memory database for development, you can jump ahead
to Configuring a Database, on page 79 for information on hooking up to a MySQL
database, in which case you can skip the BootStrap.groovy code altogether.

Once you’ve saved those changes, run the application again. When we navigate
to the list view, it should look more like the following figure.

Figure 8—List view with sample data

Chapter 3. Laying the Foundation • 34

report erratum • discuss

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

If your new data doesn’t show up, check your console output to see whether
anything was reported by our sophisticated error-handling system.

if(!event1.save()){
event1.errors.allErrors.each{error ->

println "An error occured with event1: ${error}"
}

}

Now that we have some data to look at, we’d like to point out a couple more
features of the default list view. The first property in the class—in this case,
name, which we put first in our constraints for the TekEvent class—by default
becomes a link that will bring up the selected item in the show view. This
ensures that when we first run the app with our new data in BootStrap.groovy,
we already have an easy way to get around. The other feature is difficult to
show on a printed page: all the columns in the table are sortable by clicking
the column header. The sort order toggles between ascending and descending
as you would expect. Not bad for the amount of code we had to write!

Summary

We’re off to a great start. We have the basics of the first three features working:
we can create new events, we can edit them, and we can display them (see
the next two figures).

Figure 9—TekEvent show view

report erratum • discuss

Summary • 35

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Figure 10—TekEvent edit view

Our customer is still a little skeptical about how the views look, but we’ll
smooth things over. In the meantime, let’s press on with the next two features.
In the next chapter, we’re going to add users and allow them to volunteer for
events.

Chapter 3. Laying the Foundation • 36

report erratum • discuss

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

CHAPTER 4

Building Relationships
In this iteration, we will be adding more domain classes and defining the
relationships between them.

The event is key to the TekDays application, but we can’t have an event
without that visionary individual who steps up to organize it and the enthu-
siastic volunteers who help bring it about. Organizers and volunteers are two
roles that users of TekDays will play.

The same user can be an organizer of one event and a volunteer on one or
more others. The TekDays domain model will have to reflect these relation-
ships, but it takes more than one to form a relationship. So, we’ll start by
adding another domain class.

The TekUser Domain Class

Some databases consider User to be a reserved word, so we’ll call our class
TekUser. (Kind of catchy, huh?) Our TekUser class diagram looks like this:

To create this class, we’ll run the create-domain-class script like so:

$ grails create-domain-class com.tekdays.TekUser

Now open TekDays/grails-app/domain/com/tekdays/TekUser.groovy, and edit it to look like
this:

report erratum • discusswww.allitebooks.com

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2
http://www.allitebooks.org

model.0.2/TekDays/grails-app/domain/com/tekdays/TekUser.groovy
package com.tekdays

class TekUser {
String fullName
String userName
String password
String email
String website
String bio

String toString() { fullName }

static constraints = {
fullName()
userName()
email()
website()
bio maxSize:5000

}
}

We added the constraints and toString() method right away this time. Next,
we’ll create the controller and enable dynamic scaffolding for our TekUser class.
Go ahead and run grails create-controller:

$ grails create-controller com.tekdays.TekUser

Now let’s enable the scaffolding:

model.0.2/TekDays/grails-app/controllers/com/tekdays/TekUserController.groovy
package com.tekdays

class TekUserController {

def scaffold = TekUser
}

This gives us scaffolded views, like the ones we saw for TekEvent. Before we
look at those, let’s go ahead and add some test data to make them more
interesting. Open TekDays/grails-app/conf/BootStrap.groovy, and add the following
code to the init block immediately after the code we added in the previous
chapter:

model.0.2/TekDays/grails-app/conf/BootStrap.groovy
new TekUser(fullName: 'John Doe',

userName: 'jdoe',
password: 't0ps3cr3t',
email: 'jdoe@johnsgroovyshop.com',
website: 'blog.johnsgroovyshop.com',

Chapter 4. Building Relationships • 38

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/model.0.2/TekDays/grails-app/domain/com/tekdays/TekUser.groovy
http://media.pragprog.com/titles/dkgrails2/code/model.0.2/TekDays/grails-app/controllers/com/tekdays/TekUserController.groovy
http://media.pragprog.com/titles/dkgrails2/code/model.0.2/TekDays/grails-app/conf/BootStrap.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

bio: '''John has been programming for over 40 years. He has
worked with every programming language known to man
and has settled on Groovy. In his spare time, John
dabbles in astro physics and plays
shuffleboard.''').save()

new TekUser(fullName: 'John Deere',
userName: 'tractorman',
password: 't0ps3cr3t',
email: 'john.deere@porkproducers.org',
website: 'www.perl.porkproducers.org',
bio: '''John is a top notch Perl programmer and a pretty

good hand around the farm. If he can't program it he
can plow it!''').save()

This code is similar to our test data for TekEvent, so we won’t spend much time
on it. Now when we run TekDays and navigate to the index page, we see a
new link for the TekUserController. Follow this link to see the list view, as shown
in the next figure.

Figure 11—TekUser list view

report erratum • discuss

The TekUser Domain Class • 39

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

The generated list views don’t show all the properties of our class; by default,
the Grails scaffolding produces list views with six columns. Columns are
chosen based on the current ordering of properties. (Remember that the
property ordering is alphabetical by default but can be changed by adding
constraints, as we discussed in Constraining Our Domain, on page 30.)

Now that we have two domain classes, we can see how Grails handles domain
relationships.

One-to-One Relationships

In Figure 3, Diagram of the TekEvent class, on page 22, the organizer property
is shown as a TekUser, but in our current TekEvent, it’s still a String. Now that we
have a TekUser, we can fix this discrepancy. Let’s open TekDays/grails-
app/domain/com/tekdays/TekEvent.groovy and change the organizer from a String to a
TekUser:

model.0.2/TekDays/grails-app/domain/com/tekdays/TekEvent.groovy
String city
String name

➤ TekUser organizer
String venue
Date startDate
Date endDate
String description

We have now joined the TekEvent and TekUser classes in a one-to-one relationship.
Each TekEvent instance can have exactly one TekUser. That was simple enough;
however, if we save this and try to run our application, we’ll get a lovely (and
long) error stacktrace.

The problem is that we are still assigning a String ('John Doe' or 'John Deere') to the
organizer property of the TekEvent instances that we created in BootStrap.groovy.
This will be easy to fix, but we will need to do a bit more coding.

In the init block of BootStrap.groovy, we are creating two TekEvent instances and
two TekUser instances. We are creating them anonymously and then saving
them to the database so that they are available to the rest of the application.
Let’s take advantage of this: we can retrieve the TekUser objects from the
database and assign them to the organizer property of our TekEvent instances.

For this to work, we’ll also have to rearrange our code so that the TekUser
instances are created first. Here’s an abbreviated version of what this should
look like:

Chapter 4. Building Relationships • 40

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/model.0.2/TekDays/grails-app/domain/com/tekdays/TekEvent.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

model.1.2/TekDays/grails-app/conf/BootStrap.groovy
new TekUser(fullName: 'John Doe',

userName: 'jdoe',
password: 't0ps3cr3t',
email: 'jdoe@johnsgroovyshop.com',
website: 'blog.johnsgroovyshop.com',
bio: 'John has been programming for over 40 years. ...').save()

new TekUser(fullName: 'John Deere',
userName: 'tractorman',
password: 't0ps3cr3t',
email: 'john.deere@porkproducers.org',
website: 'www.perl.porkproducers.org',
bio: 'John is a top notch Perl programmer and a ...').save()

def event1 = new TekEvent(name: 'Gateway Code Camp',
city: 'Saint Louis, MO',
organizer: TekUser.findByFullName('John Doe'),
venue: 'TBD',
startDate: new Date('11/21/2013'),
endDate: new Date('11/21/2013'),
description: '''This conference will bring

coders ...''').save()

def event2 = new TekEvent(name: 'Perl Before Swine',
city: 'Austin, MN',
organizer: TekUser.findByFullName('John Deere'),
venue: 'SPAM Museum',
startDate: new Date('11/2/2013'),
endDate: new Date('11/2/2013'),
description: 'Join the Perl programmers of the ...').save()

Introducing GORM

What we just did is almost trivial as far as code goes but very interesting
behind the scenes. To set the value for the organizer property of each TekEvent,
we are calling the method TekUser.findByFullName(). This method doesn’t actually
exist. We mentioned earlier that Grails adds methods to our domain classes
at runtime. This is not one of them. Instead, what Grails is doing here is
synthesizing behavior at runtime. When a method call beginning with findBy
is made on one of our domain classes, Grails will parse the rest of the method
name to see whether it matches any of the properties of the class. Then it
executes the behavior that we would expect if a method with that name and
parameters did exist. This is called a dynamic finder, and it is part of one of
Grails’ core components called Grails Object Relational Mapping (GORM).

report erratum • discuss

One-to-One Relationships • 41

http://media.pragprog.com/titles/dkgrails2/code/model.1.2/TekDays/grails-app/conf/BootStrap.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Any time we save, retrieve, or relate any of our domain class instances, we
are using GORM. GORM removes the need for much of the boilerplate,
repetitive code that we would have to write to work with other ORM systems
or JDBC.1 We’ll learn more about GORM and take advantage of more of its
features as we continue working on TekDays.

The code we added hooks up TekEvent and TekUser in a unidirectional one-to-
one relationship. A TekEvent has a TekUser, but the TekUser doesn’t know anything
about the TekEvent.

Now that we have a domain relationship, let’s take a look at it. Run the
application, and follow the TekEventController link. Then click the name of one
of the events to bring up the show view. It should look similar to what is
shown in the next figure. Notice that the organizer’s full name now appears
as a link. This link takes us to the TekUser show view.

Figure 12—TekEvent show view with link to TekUser

Keeping Our Tests Updated

If we’ve been running our tests frequently with grails test-app (and we should
be), we will see that our TekEventSpec fails.

1. Java Database Connectivity.

Chapter 4. Building Relationships • 42

report erratum • discuss

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Dynamic Finders

As we mentioned in Metaprogramming, on page 9, Grails takes advantage of Groovy’s
metaprogramming capabilities to synthesize finders for our domain class properties
at runtime. We can call methods that begin with findBy, findAllBy, or countBy, followed
by one or more properties and optional operators.

Some examples will make this clearer. All of these would be valid methods on TekEvent:

• countByCity('New York')
• findAllByStartDateGreaterThan(new Date())
• findByCityAndDescriptionLike("Minneapolis", "%Groovy%")

Properties in dynamic finders can be joined by And or Or. The following are some of
the operators that can be used:

• LessThan
• Between
• IsNotNull
• Like

For a complete list of operators, see http://www.grails.org/OperatorNamesInDynamicMethods.

That’s because the test code still expects TekEvent.organizer to be a String. Let’s
fix that before we move on.

We don’t really want to include the TekUser class in the unit test for TekEvent,
so instead, we’ll mock the organizer with a Map. Open TekDays/test/unit/com/tek-
days/TekEventSpec.groovy, and change the organizer property, as shown here:

model.1.2/TekDays/test/unit/com/tekdays/TekEventSpec.groovy
package com.tekdays

import grails.test.mixin.TestFor
import spock.lang.Specification

/**
* See the API for {@link grails.test.mixin.domain.DomainClassUnitTestMixin}
* for usage instructions
*/

@TestFor(TekEvent)
class TekEventSpec extends Specification {

def setup() {
}

def cleanup() {
}

report erratum • discuss

One-to-One Relationships • 43

http://www.grails.org/OperatorNamesInDynamicMethods
http://media.pragprog.com/titles/dkgrails2/code/model.1.2/TekDays/test/unit/com/tekdays/TekEventSpec.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

void "test toString"() {
when: "a tekEvent has a name and a city"

def tekEvent = new TekEvent(name:'Groovy One',
city: 'San Francisco',
organizer: [fullName: 'John Doe']➤

as TekUser)➤

then: "the toString method will combine them."
tekEvent.toString() == 'Groovy One, San Francisco'

}

}

Groovy allows us to coerce a Map to a class or interface with the as operator.
We’re giving the Map a fullName element for clarity, but we could just as well
have used an empty Map, since we’re not referring to any of the organizer’s
properties in our test.

Now our tests pass and all is well.

One-to-Many Relationships

A TekEvent will have one organizer but will need more than one volunteer to
be successful. A volunteer is also a TekUser, and we just set up a relationship
between TekEvent and TekUser. We’re going to set up another relationship between
these two classes, but this time it will be a one-to-many relationship. A TekEvent
will have zero or more volunteers.

Grails uses a static property called hasMany to declare one-to-many relation-
ships. hasMany is a Map, with the key being the name of the collection in the
owning class and the value being the type of the child class. Let’s see how
that looks in our TekEvent. Open TekDays/grails-app/domain/com/tekdays/TekEvent.groovy,
and add the hasMany declaration, as shown in the following code:

model.0.2/TekDays/grails-app/domain/com/tekdays/TekEvent.groovy
Date endDate
String description

static hasMany = [volunteers : TekUser]➤

String toString(){
"$name, $city"

}

That line of code—static hasMany = [volunteers : TekUser]—gives us a Collection of
TekUser objects, along with methods to add and remove them. Grails’ dynamic
scaffolding will automatically pick up this change and modify our views. To
demonstrate this, let’s add some more bootstrap code. Open TekDays/grails-
app/conf/BootStrap.groovy, and add the following code to the bottom of the init block:

Chapter 4. Building Relationships • 44

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/model.0.2/TekDays/grails-app/domain/com/tekdays/TekEvent.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

model.0.2/TekDays/grails-app/conf/BootStrap.groovy
def g1 = TekEvent.findByName('Gateway Code Camp')
g1.addToVolunteers(new TekUser(fullName: 'Sarah Martin',

userName: 'sarah',
password: '54321',
email: 'sarah@martinworld.com',
website: 'www.martinworld.com',
bio: 'Web designer and Grails afficianado.'))

g1.addToVolunteers(new TekUser(fullName: 'Bill Smith',
userName: 'Mr_Bill',
password: '12345',
email: 'mrbill@email.com',
website: 'www.mrbillswebsite.com',
bio: 'Software developer, claymation artist.'))

g1.save()

With this code, we retrieve a TekEvent by calling TekEvent.findByName(). Then we
add new TekUser instances with the TekEvent.addToVolunteers() method, which
Grails dynamically synthesizes for us. Finally, we save our TekEvent, which
also saves its TekUser instances.

When we navigate to the show view for this event, we see that it contains a
list of volunteer’s names. Each name links to the TekUser show view for that
user. (See the following figure.)

Figure 13—TekEvent show view with volunteers

report erratum • discuss

One-to-Many Relationships • 45

http://media.pragprog.com/titles/dkgrails2/code/model.0.2/TekDays/grails-app/conf/BootStrap.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Grails also supports bidirectional one-to-many relationships with cascading
deletes using the static belongsTo2 property, which is declared in the child class,
like so:

class Parent {
...
static hasMany = [children : Child]

}
class Child {

...
Parent parent
static belongsTo = Parent

}

Collections of Simple Data Types

We’ve added an organizer and a collection of volunteers to our TekEvent. That takes
care of three more features from our list. We have some time left in this iter-
ation, so let’s take on another feature. We’ll add the ability for anonymous
users to register interest in an event.

On second thought, a completely anonymous show of interest isn’t very
valuable. Let’s say that a person can show an interest by registering to be
notified when there are updates to the event. It will still be somewhat
anonymous, in that the user has to give only an email address. From an
application viewpoint, this is also simpler; we won’t have to create another
domain class to represent this information. For the end user, we’ll try to make
it as simple as subscribing to a mailing list.

Grails provides a great way for us to associate these addresses with a TekEvent:
we can use the hasMany property with a simple data type instead of a domain
class. We already used hasMany to set up a collection of TekUser instances named
volunteers. This time we will be setting up a String collection containing email
addresses.

We need to give a meaningful name to the collection of email addresses—emails
is a bit too generic. Sure, these are email addresses, but they represent indi-
viduals who have responded to let us know they are interested in an event.
We’ll go with respondents.

Let’s make it so, as they say. Modify the hasMany property in TekDays/grails-
app/domain/com/tekdays/TekEvent.groovy to look like this:

static hasMany = [volunteers : TekUser, respondents : String]

2. belongsTo is used to show that another class is the owning side of a relationship. It is
used for one-to-many and many-to-many relationships.

Chapter 4. Building Relationships • 46

report erratum • discuss

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

With this code in place, our TekEvent now has a collection of respondents’ email
addresses. This change will be reflected in our scaffolded views, but that will
be easier to see with some data in place. Open TekDays/grails-app/conf/Boot-
Strap.groovy, and add a few calls to TekEvent.addToRespondents(). It should look
something like this:

model.1.2/TekDays/grails-app/conf/BootStrap.groovy
g1.addToVolunteers(new TekUser(fullName: 'Bill Smith',

userName: 'Mr_Bill',
password: '12345',
email: 'mrbill@email.com',
website: 'www.mrbillswebsite.com',
bio: 'Software developer, claymation artist.'))

g1.addToRespondents('ben@grailsmail.com')
g1.addToRespondents('zachary@linuxgurus.org')
g1.addToRespondents('solomon@bootstrapwelding.com')

g1.save()

This code is similar to the call to TekEvent.addToVolunteers() also shown here.

Figure 14—TekEvent show view with respondents

report erratum • discuss

Collections of Simple Data Types • 47

www.allitebooks.com

http://media.pragprog.com/titles/dkgrails2/code/model.1.2/TekDays/grails-app/conf/BootStrap.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2
http://www.allitebooks.org

The difference is that we are not creating new domain class instances to pass
into the method—we are passing Strings instead. In the next figure, we see how
the scaffolding automatically picks up this new relationship and displays it
in a reasonable manner. (It’s reasonable but not very fashionable. Remember
we are focusing on functionality now. We’ll spruce it up a bit later.)

Adding a Sponsor Class

TekDays is geared toward community-driven technical conferences, and one
of the keys to a successful community-driven conference is low cost to
attendees. This can be difficult to accomplish, considering the cost of meeting
space, A/V rental, food, and so on. One way to have all these necessities and
still keep the registration fees low is to involve sponsors; in other words,
companies involved in the technology or technologies featured are often willing
to contribute toward the cost of the conference in exchange for a bit of
exposure.

It sounds like it’s time for a new domain class. We’ll call our new class Sponsor.
(See the following figure.)

Figure 15—The Sponsor class

From our project’s root directory, run the following:

$ grails create-domain-class com.tekdays.Sponsor

Open the newly created TekDays/grails-app/domain/com/tekdays/Sponsor.groovy. Enter
the following code:

model.2.2/TekDays/grails-app/domain/com/tekdays/Sponsor.groovy
package com.tekdays

class Sponsor {
String name
String website
String description
byte[] logo

String toString(){
name

}

Chapter 4. Building Relationships • 48

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/model.2.2/TekDays/grails-app/domain/com/tekdays/Sponsor.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

static constraints = {
name blank: false
website blank: false, url: true
description nullable: true, maxSize: 5000
logo nullable: true, maxSize: 1000000

}
}

There are a few new things to point out in this code. Two of them have to do
with the logo property. The first is the logo property’s type: byte[]. The logo
property will hold an image of the sponsor’s logo, which will be stored as an
array of bytes. Next is the constraint for logo. We added a maxSize constraint
to this property to let the database know to use a blob (or other appropriate
data type). Without this, many database systems would produce a field that
wouldn’t hold anything bigger than an icon. Finally, note the second constraint
for the website property: the url constraint ensures that this property will only
accept a valid URL.

We also need to create a controller to enable dynamic scaffolding. We’ll do
this exactly as we did for TekEvent and TekUser, but for a refresher, here it is:

$ grails create-controller com.tekdays.Sponsor

Next, open the generated controller TekDays/grails-app/controllers/com/tekdays/Sponsor-
Controller.groovy, and modify it like so:

model.2.2/TekDays/grails-app/controllers/com/tekdays/SponsorController.groovy
package com.tekdays
class SponsorController {

def scaffold = Sponsor
}

When we run TekDays now, we see a new SponsorController link. Follow that link
to the empty list view, and then click “New Sponsor” to open the create view.
In Figure 16, Sponsor create view, on page 50, we see that the logo property
is rendered as a file input element. But Grails goes beyond that: full file upload
functionality is baked right in. When we save a new Sponsor, the file we’ve
chosen for the logo will automatically be uploaded and stored in the database.
After we save, we can see that the show view doesn’t look that great, but we’ll
work on that later.

Many-to-Many Relationships

One of the concerns about bringing in a sponsor for a technical event is that
the whole thing might turn into a commercial for a vendor. That becomes
much less of a concern if there are multiple sponsors for an event. On the
other hand, a single company might be interested in sponsoring more than

report erratum • discuss

Many-to-Many Relationships • 49

http://media.pragprog.com/titles/dkgrails2/code/model.2.2/TekDays/grails-app/controllers/com/tekdays/SponsorController.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Figure 16—Sponsor create view

one event. So, should a TekEvent have a collection of Sponsor instances, or should
Sponsor have a collection of TekEvent instances? The short answer is both. The
longer answer, which we’ll get to shortly, is neither.

The relationship between TekEvent and Sponsor is a many-to-many relationship.
Grails supports many-to-many relationships implicitly by having each class
include the other in its hasMany block. In this arrangement, each class will
have a collection of the other, but one side has to be declared as the owning
side. For this, Grails uses the static variable belongsTo.

Here’s an example:

class TekEvent {
...
static hasMany=[..., sponsors : Sponsor]

}

class Sponsor {
...
static hasMany=[events : TekEvent]
static belongsTo = TekEvent

}

Chapter 4. Building Relationships • 50

report erratum • discuss

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

This code would create the relationships, or links, between a TekEvent and its
collection of Sponsor instances, as well as between a Sponsor and its collection
of TekEvent instances. What it wouldn’t do is tell us anything about the relation-
ship itself. When our users are organizing an event, it’s great that they’re able
to see who their sponsors are, but it would also be helpful to know what each
sponsor is contributing. Are they providing the meeting space, A/V equipment,
food, T-shirts (a critical piece of a successful event), or a cash contribution?
If they are contributing cash, how much?

To store this type of information, we will need an intermediary class. We’ll
call this class Sponsorship. (See the following figure.)

Figure 17—The Sponsorship class

This class will have a reference to a single TekEvent and a single Sponsor, with
fields to tell us more about what the sponsor is providing for the event. Let’s
go ahead and create this class:

$ grails create-domain-class com.tekdays.Sponsorship

We’ll implement this class with the following code:

model.3.2/TekDays/grails-app/domain/com/tekdays/Sponsorship.groovy
package com.tekdays

class Sponsorship {
TekEvent event
Sponsor sponsor
String contributionType
String description
String notes

static constraints = {
event nullable: false
sponsor nullable: false
contributionType inList:["Other", "Venue", "A/V", "Promotion", "Cash"]
description nullable: true, blank: true
notes nullable: true, blank: true, maxSize: 5000

}
}

report erratum • discuss

Many-to-Many Relationships • 51

http://media.pragprog.com/titles/dkgrails2/code/model.3.2/TekDays/grails-app/domain/com/tekdays/Sponsorship.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

In this class, we’re using a new constraint. The inList constraint takes as its
value a list of Strings. Only values matching one of the items in the list will be
allowed; any other values will cause a constraint violation when saving. But
wait, there’s more. Grails will also use this constraint to render an HTML
<select> element in the scaffolded views. We’ll take a look at that shortly, but
first we have a little more plumbing to do.

We need to modify TekEvent and Sponsor so they each have a collection of Spon-
sorship instances. Open TekDays/grails-app/domain/com/tekdays/Sponsor.groovy, and add
a hasMany property. Then add a new constraint to the constraints block, like so:

model.3.2/TekDays/grails-app/domain/com/tekdays/Sponsor.groovy
static hasMany = [sponsorships : Sponsorship]➤

static constraints = {
name blank: false
website blank: false, url: true
description nullable: true, maxSize: 5000
logo nullable: true, maxSize: 1000000
sponsorships nullable: true➤

}

Repeat those steps with TekDays/grails-app/domain/com/tekdays/TekEvent.groovy:

model.2.2/TekDays/grails-app/domain/com/tekdays/TekEvent.groovy
static hasMany = [volunteers : TekUser,

respondents : String,
sponsorships : Sponsorship]➤

static constraints = {
name()
city()
description maxSize: 5000
organizer()
venue()
startDate()
endDate()
volunteers nullable: true
sponsorships nullable: true➤

}

One last step: let’s add some sponsorship data in our BootStrap so that we’ll
have something to look at. Open TekDays/grails-app/conf/BootStrap.groovy, and add
the following code to the bottom of the init block:

model.2.2/TekDays/grails-app/conf/BootStrap.groovy
def s1 = new Sponsor(name:'Contegix',

website:'http://www.contegix.com',
description:'Beyond Managed Hosting for your

Enterprise').save()

Chapter 4. Building Relationships • 52

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/model.3.2/TekDays/grails-app/domain/com/tekdays/Sponsor.groovy
http://media.pragprog.com/titles/dkgrails2/code/model.2.2/TekDays/grails-app/domain/com/tekdays/TekEvent.groovy
http://media.pragprog.com/titles/dkgrails2/code/model.2.2/TekDays/grails-app/conf/BootStrap.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

def s2 = new Sponsor(name:'Object Computing Incorporated',
website:'http://ociweb.com',
description:'An OO Software Engineering Company'

).save()
def sp1 = new Sponsorship(event:g1,

sponsor:s1,
contributionType:'Other',
description:'Cool T-Shirts').save()

def sp2 = new Sponsorship(event:g1,
sponsor:s2,
contributionType:'Venue',
description:'Will be paying for the

Moscone').save()

When we run the application and navigate to the TekEvent show view, we see
something like the following figure.

Figure 18—TekEvent show view with sponsorships

Notice that the Sponsorship instances are shown as com.tekdays.Sponsorship : 1. This
is because we did not define a toString() for the Sponsorship class. If you’re following
along (and we do hope you are), you may also notice that clicking the

report erratum • discuss

Many-to-Many Relationships • 53

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Constraints and Validation

Constraints are used in generating scaffolded views for a domain class as well as for
hints in generating the database schema. But the real power of constraints is the
part they play in validation. When we call save() or validate() on one of our domain class
instances, Grails will try to validate the instance against any constraints we have
assigned. If any of the constraints are not met, the save() or validate() call will fail, and
appropriate error information will be stored in the instance’s errorsa property.

Grails provides several handy constraints that we can take advantage of, but it also
gives us the ability to define custom constraints,b so the possibilities are endless.
Here are some of the more useful built-in constraints:

• blank (true/false): Allows an empty string value.
• nullable (true/false): Allows null values.
• max: Specifies the maximum value.
• min: Specifies the minimum value.
• vsize: Takes a Groovy range to determine bounds.
• maxSize: Specifies the maximum size of a String or Collection.
• minSize: Specifies the minimum size of a String or Collection.
• inList: Only allows values contained in the supplied list.
• matches: Requires value to match a regular expression.
• unique (true/false): Enforces uniqueness in the database.
• url (true/false): Only accepts a valid URL.
• email (true/false): Only accepts a valid email address.
• creditCard (true/false): Only accepts a valid credit card number.
• validator: Takes a closure for custom validation. The first parameter is the value,

and the second (optional) parameter is the instance being validated.

a. Error details can be found via allErrors:

errors.allErrors.each{
//iterate over errors

}

b. See http://grails.org/doc/2.3.1/ref/Constraints/validator.html.

Sponsorship link leads to an error page. This is because we haven’t created
a SponsorshipController to enable the scaffolding. We’ll be addressing this soon.
Also, as we go about cleaning up our user interface, we’ll have different ways
to display a Sponsorship, depending on the context; but for now, this serves to
show us that the one-to-many relationship is established correctly. Well done!

Finishing Up the Domain Model

Looking again at our feature list, we can see that we’ll need two more domain
classes. We’re going to have a list of tasks that need to be done to prepare for

Chapter 4. Building Relationships • 54

report erratum • discuss

http://grails.org/doc/2.3.1/ref/Constraints/validator.html
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

an event. That will require a Task class. We’re also going to have a simple
forum that the organizer and volunteers can use to communicate throughout
the process. For this, we will need another class, which we will call TekMessage
(Grails already uses message; for example, in its generated views). For a view
of these classes, see the following figure.

Figure 19—The Task and TekMessage classes

We’ll create the Task class first. Run grails create-domain-class com.tekdays.Task, and
add the following code to TekDays/grails-app/domain/com/tekdays/Task.groovy:

model.2.2/TekDays/grails-app/domain/com/tekdays/Task.groovy
package com.tekdays
class Task {

String title
String notes
TekUser assignedTo
Date dueDate
TekEvent event
static constraints = {

title blank: false
notes blank: true, nullable: true, maxSize: 5000
assignedTo nullable: true
dueDate nullable: true

}
static belongsTo = TekEvent

}

Next we’ll create the TekMessage class and add the following code to TekDays/grails-
app/domain/com/tekdays/TekMessage.groovy:

model.2.2/TekDays/grails-app/domain/com/tekdays/TekMessage.groovy
package com.tekdays

class TekMessage {
String subject
String content
TekMessage parent
TekEvent event
TekUser author

report erratum • discuss

Finishing Up the Domain Model • 55

http://media.pragprog.com/titles/dkgrails2/code/model.2.2/TekDays/grails-app/domain/com/tekdays/Task.groovy
http://media.pragprog.com/titles/dkgrails2/code/model.2.2/TekDays/grails-app/domain/com/tekdays/TekMessage.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

static constraints = {
subject blank: false
content blank: false, maxSize: 2000
parent nullable: true
author nullable: false

}
static belongsTo = TekEvent

}

There’s not much to look at in these classes other than the belongsTo. You’ll
notice that both of these classes have the following line: static belongsTo = TekEvent.
This is because these classes will be involved in bidirectional one-to-many
relationships with the TekEvent class, and we want cascading deletes. For
example, we know that a TekMessage will belong to only one TekEvent, and if that
TekEvent goes away, there is no reason to keep the TekMessage.

To complete these relationships, we will need to once again modify our TekEvent
class. We’ll modify the hasMany property and add two more constraints to Tek-
Days/grails-app/domain/com/tekdays/TekEvent.groovy.

Since we’ve made so many changes to this class, we’ll show the whole thing
here for the sake of clarity. Note the highlighted lines:

model.3.2/TekDays/grails-app/domain/com/tekdays/TekEvent.groovy
package com.tekdays

class TekEvent {
String city
String name
TekUser organizer
String venue
Date startDate
Date endDate
String description

String toString(){
"$name, $city"

}

static hasMany = [volunteers : TekUser,
respondents : String,
sponsorships : Sponsorship,
tasks : Task,➤

messages : TekMessage]➤

static constraints = {
name()
city()
description maxSize: 5000

Chapter 4. Building Relationships • 56

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/model.3.2/TekDays/grails-app/domain/com/tekdays/TekEvent.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

organizer()
venue()
startDate()
endDate()
volunteers nullable: true
sponsorships nullable: true
tasks nullable: true➤

messages nullable: true➤

}

}

Summary

In this iteration, we created our domain model, defined and discussed the
relationships between various classes in our model, and set up bootstrap
data that we can use to bring our model to life during development.

Now that we have our domain model set up the way we want, we are ready
to generate the code that will enable us to make more significant changes in
our application. In the next chapter, we’ll generate and review the code behind
all of the functionality we’ve seen so far.

report erratum • discuss

Summary • 57

www.allitebooks.com

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2
http://www.allitebooks.org

CHAPTER 5

Beyond Scaffolding
So far, our TekDays application contains six persistent domain classes, three
controllers, and twelve views—and all with less than 190 lines of code. Now,
Grails uses the Groovy programming language, and Groovy is known for its
conciseness, but even in Groovy, this much functionality takes more than
190 lines of code. In fact, it’s Grails’ dynamic scaffolding that is creating all
this for us at runtime. Scaffolding is a great feature; we’ve been taking
advantage of it to gradually build and tweak our domain model, and all the
while we’ve been able to see the effects in our views. However, it’s time to
remove the training wheels and start taking control of our code.

Generating Scaffolding Code

Grails gives us an easy way to generate the code that does what the dynamic
scaffolding has been doing for us. We won’t see any changes to the application,
but we will have the code necessary to make changes. To get started, we will
use the grails generate-all script.

The generate-all script can be called in a few different ways. If you call it with
no arguments, you will be prompted for a name. (By convention, this would
be a domain class name.) For the more argumentative types, you can call
generate-all with a name as the argument. Both of these approaches generate
a controller, four .gsp view files, and a template, which is also a .gsp file. (We’ll
have a detailed discussion on templates in Of Templates and Ajax, on page
108.) This second method is what we usually use after creating a new domain
class, but since right now we have several domain classes for which we want
to generate corresponding controllers and views, we will use a third option.
Sometimes referred to as uber-generate-all, this modification to the generate-all
script was contributed by Marcel Overdijk.1 Let’s try it:

1. http://marceloverdijk.blogspot.com/

report erratum • discuss

http://marceloverdijk.blogspot.com/
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

$ grails generate-all "*"

Once this script gets going, it will prompt you to confirm the replacement of
the controllers and controller tests that we created earlier. Go ahead and let
them be replaced. We won’t need the old ones anymore. When it’s done, you’ll
see the statement Finished generation for domain classes.

If we run the application now, we will have all the features that we had before
we generated the code and then some. You may recall that we created con-
trollers and enabled dynamic scaffolding for only three of our domain classes
(TekEvent, TekUser, and Sponsor). We now have controllers for Sponsorship, Task, and
TekMessage. We may not end up keeping all of this generated code, but it makes
a great learning tool, and these files can serve as stubs to which we can add
custom code. Let’s take a closer look at the code we’ve generated.

Anatomy of a Grails Controller

Let’s examine the TekEventController first: what is it doing for us, and what else
we can do with it? Open TekDays/grails-app/controllers/com/tekdays/TekEventCon-
troller.groovy, and follow along as we take a look at it in chunks:

beyond.2/TekDays/grails-app/controllers/com/tekdays/TekEventController.groovy
package com.tekdays

import static org.springframework.http.HttpStatus.*
import grails.transaction.Transactional

@Transactional(readOnly = true)
class TekEventController {

static allowedMethods = [save: "POST", update: "PUT", delete: "DELETE"]

def index(Integer max) {
params.max = Math.min(max ?: 10, 100)
respond TekEvent.list(params),

model:[tekEventInstanceCount: TekEvent.count()]
}

After the package declaration and a couple of import statements,2 the first thing
we see is the class declaration. (The @Transactional annotation causes all of the
actions in this controller to be included in a transaction.) A Grails controller
is a plain Groovy class. There is nothing to extend, and there are no interfaces
to implement. Controllers serve as the entry points into a Grails application.

2. The HttpStatus import is for the HTTP status codes returned by some of the generated
Grails actions.

Chapter 5. Beyond Scaffolding • 60

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/beyond.2/TekDays/grails-app/controllers/com/tekdays/TekEventController.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

The work done by a controller is done in an action. Actions are methods or
closure properties of the controller. (In the code that Grails generates for us,
they are methods.) Controller actions can be accessed via URLs in the pattern:
/appname/controllerBaseName/action. The first letter of the controller’s name will be
lowercased, and the word Controller will be left off.

There are four options to properly exit a controller action. We can call the
render() method, which is added to all controllers and takes the name of a view
along with a Map containing any data the view needs. We can call the redirect()
method to issue an HTTP redirect to another URL, or the respond() method
(used in the generated actions), which looks at the requested content type to
determine what to return. (These last two methods are also added to all con-
trollers; we’ll look at them more closely in the following sections.) And we can
return null, or a Map containing data, which is referred to as a model. In this
last case, Grails will attempt to render a view with the same name as the
action. It will look for this view in a directory named after the root name of
the controller; for example, returning from the index action of the TekEventController
will cause Grails to render the view /grails-app/views/tekEvent/index.gsp.

The Index Action

The index action is called when we load the TekEvent list view. It is the default
action that is called when we navigate to this controller. For example, if we
follow the link on the default home page for the TekEventController, we’ll be calling
http://localhost:8080/TekDays/tekEvent. This will call the index action.

The first line of the index action is working with the params property, which is
a Map that contains all the parameters of the incoming request. Since it is a
Groovy Map, any element to which we assign a value will be added if it doesn’t
exist.

Take a look at the following line:

params.max = Math.min(max ?: 10, 100)

In this code, we see the max element being added to the params. The value that
is being set is the return value of the Math.min() method. Math.min() is being
passed the index method’s max argument, if it was given one, or the default of
10, along with the constant of 100. This is just a bit of protection that Grails
gives us against trying to pull too many items at once. If we tried to access
this view with http://localhost:8080/TekDays/tekEvent/index?max=1000, we would get
only 100 results (assuming we had that many events entered—and why not
think big?).

report erratum • discuss

Anatomy of a Grails Controller • 61

http://localhost:8080/TekDays/tekEvent
http://localhost:8080/TekDays/tekEvent/index?max=1000
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

The last line calls respond(), which will use Grails’ built-in support for content
negotiation3 to determine the format in which to send back our data. In this
case, the data we’re returning is being supplied by a call to TekEvent.list()4 and
is being returned to our view as HTML. The list() is being passed the params
Map, from which it will pull any parameters that it can use.5 Notice the model
argument being given to respond(): this method can, in the case of an HTML
response being rendered, take the two arguments model and view, and the index
action is passing a model with the key tekEventInstanceCount, which contains the
result of TekEvent.count(). This value will be used in the pagination built into
the list view, which we will look at shortly.

The end result of the list action is that the list view is rendered using the data
returned by respond(). This is done using the conventions we discussed earlier.
It’s important to note that this feature is not limited to the generated actions
and views: as we’ll see in Chapter 9, Big-Picture Views, on page 131, we can
create custom actions and views, and if we follow the conventions, it will just
work!

The Show Action

beyond.2/TekDays/grails-app/controllers/com/tekdays/TekEventController.groovy
def show(TekEvent tekEventInstance) {

respond tekEventInstance
}

The show action takes a TekEvent instance as a parameter. When an action takes
a domain class instance as a parameter, Grails looks for an id in the request,
and then looks up the instance with that id. In the show action, respond() returns
this instance, and the action then renders the show view.

The Create Action

create is another single-line action:

beyond.2/TekDays/grails-app/controllers/com/tekdays/TekEventController.groovy
def create() {

respond new TekEvent(params)
}

3. See http://en.wikipedia.org/wiki/Content_negotiation.
4. list() is one of the dynamic methods added to our domain classes. See More About

Domain Classes, on page 23.
5. This brings up another powerful feature of Grails. Many methods in Grails take a Map

as a parameter. These methods will look in the Map for the elements they need and
ignore the rest. That means that in one action we can pass the params Map to several
different methods, and each will just take from it what it needs. Pretty cool, huh?

Chapter 5. Beyond Scaffolding • 62

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/beyond.2/TekDays/grails-app/controllers/com/tekdays/TekEventController.groovy
http://media.pragprog.com/titles/dkgrails2/code/beyond.2/TekDays/grails-app/controllers/com/tekdays/TekEventController.groovy
http://en.wikipedia.org/wiki/Content_negotiation
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Here, respond() returns a newly-created TekEvent instance, assigning any values
in the params property to the corresponding properties of the instance. (We’ll
see why this is done shortly.) The action ends by rendering the create view.

The Save Action

beyond.2/TekDays/grails-app/controllers/com/tekdays/TekEventController.groovy
@Transactional
def save(TekEvent tekEventInstance) {

if (tekEventInstance == null) {
notFound()
return

}

if (tekEventInstance.hasErrors()) {
respond tekEventInstance.errors, view:'create'
return

}

tekEventInstance.save flush:true

request.withFormat {
form {

flash.message = message(code: 'default.created.message',
args: [message(code: 'tekEventInstance.label',
default: 'TekEvent'), tekEventInstance.id])

redirect tekEventInstance
}
'*' { respond tekEventInstance, [status: CREATED] }

}
}

Like the show action, the save action takes a TekEvent instance as a parameter.
(The use of @Transactional on this action omits the readOnly element which we
saw set to true at the beginning of the class; by default, it is false.) The save
action is called from the create view and begins by checking to see whether
there was an instance with the provided id. If there isn’t, it calls notFound() (a
method generated as part of the controller—we’ll discuss it shortly) and exits.
If there is an instance, the action checks for validation errors by calling
hasErrors() on the instance, re-rendering the view to display them if any are
found. (Note the view parameter being passed to respond() in the case of valida-
tion errors.) If we have an error-free TekEvent instance, we save it to the
database.6

6. Adding flush:true to any persistence-related call will force Hibernate to pass the change
on to the data source. It’s not usually necessary but good to know about when you
need it.

report erratum • discuss

Anatomy of a Grails Controller • 63

http://media.pragprog.com/titles/dkgrails2/code/beyond.2/TekDays/grails-app/controllers/com/tekdays/TekEventController.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

We then call the withFormat()7 method on the request. form is used in the case of
a form submission; in this case, when the form in the create view is submitted
and we save the resulting TekEvent instance, we use the <g:message> tag,8 called
as a method, to store a “success” message in the flash Map.9 We then call redi-
rect(), passing it our new tekEventInstance. This will send us to the show action.
(For all other content types, we respond() with the new tekEventInstance and an
HTTP status 201—CREATED.)

The Edit Action

beyond.2/TekDays/grails-app/controllers/com/tekdays/TekEventController.groovy
def edit(TekEvent tekEventInstance) {

respond tekEventInstance
}

The edit action doesn’t do any editing itself: that’s left up to the update action.
Instead, edit loads up the necessary data and passes it to the edit view. Except
for the name (which determines the view rendered), the edit action is identical
to the show action.

The Update Action

The update action steps up to bat when changes from the edit view are
submitted.

beyond.2/TekDays/grails-app/controllers/com/tekdays/TekEventController.groovy
@Transactional

def update(TekEvent tekEventInstance) {
if (tekEventInstance == null) {

notFound()
return

}

if (tekEventInstance.hasErrors()) {
respond tekEventInstance.errors, view:'edit'
return

}

tekEventInstance.save flush:true

7. See http://grails.org/doc/2.3.1/ref/Controllers/withFormat.html.
8. See http://grails.org/doc/2.3.1/ref/Tags/message.html.
9. flash is often referred to as a scope. It’s more accurate to refer to it as a Map that exists

in a special scope. Values stored in flash are available for this request and one following
request, which allows us to store a message before redirecting and have that message
be available to the redirected view.

Chapter 5. Beyond Scaffolding • 64

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/beyond.2/TekDays/grails-app/controllers/com/tekdays/TekEventController.groovy
http://media.pragprog.com/titles/dkgrails2/code/beyond.2/TekDays/grails-app/controllers/com/tekdays/TekEventController.groovy
http://grails.org/doc/2.3.1/ref/Controllers/withFormat.html
http://grails.org/doc/2.3.1/ref/Tags/message.html
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

request.withFormat {
form {

flash.message = message(code: 'default.updated.message',
args: [message(code: 'TekEvent.label', default: 'TekEvent'),
tekEventInstance.id])

redirect tekEventInstance
}
'*'{ respond tekEventInstance, [status: OK] }

}
}

Like earlier actions, update tries to retrieve the TekEvent instance passed to it
as an argument. If the instance hasErrors(), we use respond() to direct back to
the edit view and display them. The update action finishes in the same way as
does the save action, differing only in the “success” message that is stored in
flash (an “updated” message rather than a “created” message) and in the HTTP
status returned after a successful save() (200 OK).

The Delete Action

The delete action is available, by default, in the edit and show views. It must
be called via a DELETE method. Going back to the beginning of our TekEvent-
Controller listing, we see the allowedMethods property. This is a Map containing
actions and the HTTP methods that can be used to call them. This prevents
a user from entering something like http://localhost:8080/TekDays/tekEvent/delete/1
and deleting our event.

beyond.2/TekDays/grails-app/controllers/com/tekdays/TekEventController.groovy
@Transactional
def delete(TekEvent tekEventInstance) {

if (tekEventInstance == null) {
notFound()
return

}

tekEventInstance.delete flush:true

request.withFormat {
form {

flash.message = message(code: 'default.deleted.message',
args: [message(code: 'TekEvent.label', default: 'TekEvent'),
tekEventInstance.id])

redirect action:"index", method:"GET"
}
'*'{ render status: NO_CONTENT }

}
}

report erratum • discuss

Anatomy of a Grails Controller • 65

http://localhost:8080/TekDays/tekEvent/delete/1
http://media.pragprog.com/titles/dkgrails2/code/beyond.2/TekDays/grails-app/controllers/com/tekdays/TekEventController.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

The delete action starts out much like the save and update actions—attempting
to retrieve a TekEvent instance and calling notFound() if it can’t find one. If an
instance is found, we delete it and then redirect to the index action with a
“success” message (or return the status NO_CONTENT). There is no delete view,
for obvious reasons.

The notFound() Method

beyond.2/TekDays/grails-app/controllers/com/tekdays/TekEventController.groovy
protected void notFound() {

request.withFormat {
form {

flash.message = message(code: 'default.not.found.message',
args: [message(code: 'tekEventInstance.label',
default: 'TekEvent'), params.id])

redirect action: "index", method: "GET"
}
'*'{ render status: NOT_FOUND }

}
}

As we can see here, the notFound() method simply makes the same use of with-
Format() that we’ve been seeing in the generated actions. (Having this split out
into its own separate method like this means that any of our actions can
return NOT_FOUND without having to duplicate this code.) Its form stores a “not
found” message in the flash Map and redirects to the index action. For other
content types, it simply returns NOT_FOUND.

So, that’s a tour of a generated Grails controller. We looked at only one of the
six controllers generated by the generate-all script, but they all just have the
same code with different domain classes. Feel free to browse the rest of them.
It should all look very familiar. Now we’ll see what Grails gives us for views.

Grails Views with Groovy Server Pages

Grails uses Groovy Server Pages (GSP) for its view layer. If you’ve ever worked
with JavaServer Pages, well, you have my sympathy, but GSP will seem
familiar—only easier to work with. Grails also uses SiteMesh,10 the page
decoration framework from OpenSymphony, to assist in the page layout.
SiteMesh will merge each of our .gsp files into a file called main.gsp (located in
TekDays/grails-app/views/layouts. This is what gives a consistent look to all of our
pages, as we saw with the dynamic scaffolding. We’ll begin our tour of the
generated views with main.gsp, followed by the four views and the template

10. http://wiki.sitemesh.org/display/sitemesh/Home

Chapter 5. Beyond Scaffolding • 66

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/beyond.2/TekDays/grails-app/controllers/com/tekdays/TekEventController.groovy
http://wiki.sitemesh.org/display/sitemesh/Home
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

generated for the TekEvent class. Then we’ll look at a couple of the other views
that take advantage of additional Grails features.

Exploring main.gsp

<!DOCTYPE html>
<!--[if lt IE 7]> <html lang="en" class="no-js ie6"> <![endif]-->
<!--[if IE 7]> <html lang="en" class="no-js ie7"> <![endif]-->
<!--[if IE 8]> <html lang="en" class="no-js ie8"> <![endif]-->
<!--[if IE 9]> <html lang="en" class="no-js ie9"> <![endif]-->
<!--[if (gt IE 9)|!(IE)]><!-->

<html lang="en" class="no-js"><!--<![endif]-->
<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<title><g:layoutTitle default="Grails"/></title>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<link rel="shortcut icon" href="${resource(dir: 'images', file:
'favicon.ico')}" type="image/x-icon">

<link rel="apple-touch-icon" href="${resource(dir: 'images', file:
'apple-touch-icon.png')}">

<link rel="apple-touch-icon" sizes="114x114"
href="${resource(dir: 'images',
file: 'apple-touch-icon-retina.png')}">

<link rel="stylesheet" href="${resource(dir: 'css', file: 'main.css')}"
type="text/css">

<link rel="stylesheet" href="${resource(dir: 'css', file: 'mobile.css')}"
type="text/css">

<g:layoutHead/>
<r:layoutResources />

</head>
<body>

<div id="grailsLogo" role="banner">
</div>

<g:layoutBody/>
<div class="footer" role="contentinfo"></div>
<div id="spinner" class="spinner" style="display:none;">
<g:message code="spinner.alt" default="Loading…"/></div>

<g:javascript library="application"/>
<r:layoutResources />

</body>
</html>

main.gsp starts out with some conditional comments for various versions of
Microsoft’s Internet Explorer (one for each user)11 and a couple of HTML <meta>
tags. Next is a <title> in the <head> section. This tag contains a <g:layoutTitle>

11. See http://msdn.microsoft.com/en-us/library/ms537512(VS.85).aspx.

report erratum • discuss

Grails Views with Groovy Server Pages • 67

http://msdn.microsoft.com/en-us/library/ms537512(VS.85).aspx
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

tag, which will substitute the <title> from the view that is being merged. After
another <meta> tag it links in a style sheet and favicon12 that will be used by
all views (it also includes a couple of special icons for Apple devices running
iOS). Then there is the <g:layoutHead> tag. This will merge in the contents of
the target view’s <head> section. The <body> section contains an application
logo,13 a <g:layoutBody> tag, which merges in the <body> contents of the target
view, and a <div> with the CSS class footer. This last <div> contains a spinner
image and also—along with the <head> section—contains an <r:layoutResources>
tag, which tells Grails’ Resources framework14 to include any resources that
the target view has required using the <r:require> tag. (We’ll see an example of
this tag later on.)

As you can see, this file gives us a convenient place to make some major
improvements to our application. And that’s just what we’re going to do, as
soon as we finish our tour. As we discuss the four generated views and the
template, we will be looking at only portions of them, for the sake of space.
We’ll give you the name and path for each file so you can open each one on
your system and follow along.

The List View

The TekEvent list view is shown in Figure 20, TekEvent list view, on page 69.
You can refer to that image as we look at the GSP code behind it. You’ll find
this code in TekDays/grails-app/views/tekEvent/index.gsp.

<g:message
code="default.home.label"/>

<g:link class="create" action="create"><g:message
code="default.new.label" args="[entityName]" /></g:link>

This code creates the button bar just below the Grails logo. We can see two
ways that Grails provides for creating links. The createLink() method takes a
relative path and creates a URL, which is assigned to the href attribute of an
anchor tag. The <g:link> tag creates an anchor tag using the values of the controller,
action, and id attributes (if they’re provided). If a controller is not provided, the
current controller is assumed. In this case, a link to the create action of the
TekEventController will be created. The text for the links is provided by the
<g:message> tag, which we saw being used in The Save Action, on page 63.

12. http://en.wikipedia.org/wiki/Favicon
13. role is an HTML attribute that is used by screen readers to identify the function of a

particular element. See http://www.w3.org/TR/xhtml-role/.
14. See http://grails.org/doc/2.3.1/guide/theWebLayer.html#resources.

Chapter 5. Beyond Scaffolding • 68

report erratum • discuss

http://en.wikipedia.org/wiki/Favicon
http://www.w3.org/TR/xhtml-role/
http://grails.org/doc/2.3.1/guide/theWebLayer.html#resources
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Figure 20—TekEvent list view

<g:if test="${flash.message}">
<div class="message" role="status">${flash.message}</div>

</g:if>

This code doesn’t show up in our figure above, but it is important to take
note of. Recall that during our discussion of controllers, we often had code
that would store text in the message element of flash. This is where that text
will show up. The <g:if> tag checks for the existence of flash.message and, if
found, displays it.

<g:sortableColumn property="name" title="${message(code:
'tekEvent.name.label', default: 'Name')}" />

<g:sortableColumn property="city" title="${message(code:
'tekEvent.city.label', default: 'City')}" />

<g:sortableColumn property="description" title="${message(code:
'tekEvent.description.label', default: 'Description')}" />

<th><g:message code="tekEvent.organizer.label" default="Organizer" />
</th>

<g:sortableColumn property="venue" title="${message(code:
'tekEvent.venue.label', default: 'Venue')}" />

<g:sortableColumn property="startDate" title="${message(code:
'tekEvent.startDate.label', default: 'Start Date')}" />

report erratum • discuss

Grails Views with Groovy Server Pages • 69

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Joe asks:

What’s Up with the <g:message> Tags
Everywhere?

In the generated views, Grails uses the <g:message> GSP tag to read text for labels,
buttons, and other elements from message bundles, which are contained in grails-
app/i18n under our TekDays application directory. Internationalization is built into
Grails; message bundles for other languages are also stored in the i18n directory, and
contain text for various messages that we will need to show the user in our app. The
use of <g:message> here ensures that if somebody were to be using our app with a
different locale,a our user interface would be presented in the correct language.

Using the message bundles for our application’s labels and other text also means
that we have a single field to edit if we want to change a particular label or message.
Many of the instances of <g:message> in the generated views (columns in the list view’s
table, for example) provide sensible default text in case of a message not being in our
i18n files.

To keep things simple for our example purposes, we won’t be making use of interna-
tionalized messages for the features we add to the TekDays application. For details
on how they can be used in Grails, see the online documentation.b

a. See http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Locale.html.
b. http://grails.org/doc/2.3.1/guide/i18n.html

The <g:sortableColumn> tag is what Grails uses to provide sorting on our list
view. Note that, by default, this works only with regular properties, not object
references or collections. That is why we see a <th> tag used for the organizer
property.

<g:each in="${tekEventInstanceList}" status="i" var="tekEventInstance">
<tr class="${(i % 2) == 0 ? 'even' : 'odd'}">

<td><g:link action="show" id="${tekEventInstance.id}">
${fieldValue(bean: tekEventInstance, field: "name")}</g:link></td>

<td>${fieldValue(bean: tekEventInstance, field: "city")}</td>
<td>${fieldValue(bean: tekEventInstance, field: "description")}</td>
<td>${fieldValue(bean: tekEventInstance, field: "organizer")}</td>
<td>${fieldValue(bean: tekEventInstance, field: "venue")}</td>
<td><g:formatDate date="${tekEventInstance.startDate}" /></td>

</tr>
</g:each>

This code is the heart of the list view. We start with the <g:each> tag, which
iterates over the list that was passed in from the controller. By convention,
this list is named tekEventInstanceList. Each item in the tekEventInstanceList is
assigned to the tekEventInstance variable, and the body of the <g:each> tag fills

Chapter 5. Beyond Scaffolding • 70

report erratum • discuss

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Locale.html
http://grails.org/doc/2.3.1/guide/i18n.html
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

in the table row with the properties of the tekEventInstance. Notice that a Groovy
expression is used to determine the CSS class of the <tr>—powerful stuff!

Inside the <td> tags, the fieldValue() method is used to render the value of each
TekEvent property. This method retrieves the value from the given field of the
given bean—in this case, the tekEventInstance—and also calls the method
encodeAsHTML() for us, because that’s almost always what we want. (We’ll learn
about encodeAsHTML() when we look at the show view.)

One property, the last in the list, isn’t using the fieldValue() method. startDate is
a Date type, so Grails renders it using the <g:formatDate> tag, which handles
the conversion from Date to String for us.15

<div class="pagination">
<g:paginate total="${tekEventInstanceCount ?: 0}" />

</div>

The final portion of the index.gsp we’ll look at is another one that we can’t see
in our figure showing the list view. The <g:paginate> tag would cause pagination
buttons to show up at the bottom of the list view if we had enough events
displayed to warrant it. This tag uses the count that we passed in from the
controller’s index action.

The Show View

The show view, pictured in Figure 21, TekEvent show view, on page 72, is in
TekDays/grails-app/views/tekEvent/show.gsp.

Open this file now as we look at a few interesting sections:

<g:if test="${tekEventInstance?.name}">
<li class="fieldcontain">

<g:message
code="tekEvent.name.label" default="Name" />

<g:fieldValue bean="${tekEventInstance}" field="name"/>

</g:if>
<g:if test="${tekEventInstance?.city}">
<li class="fieldcontain">

<g:message
code="tekEvent.city.label" default="City" />

<g:fieldValue bean="${tekEventInstance}" field="city"/>

</g:if>

15. See http://grails.org/doc/2.3.1/ref/Tags/formatDate.html.

report erratum • discuss

Grails Views with Groovy Server Pages • 71

http://grails.org/doc/2.3.1/ref/Tags/formatDate.html
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Figure 21—TekEvent show view

The code that displays each property is wrapped in a set of <g:if> tags that
check for a value in the property, so that we don’t display an empty list item
for the property if there’s nothing to show. Within this code we see a couple
of examples of how Grails displays text properties. Notice the CSS class
hierarchy. The tag has a fieldcontain class, and the tags have a prop-
erty-label or property-value class.16

<g:if test="${tekEventInstance?.organizer}">
<li class="fieldcontain">

<g:message
code="tekEvent.organizer.label" default="Organizer" />

<g:link controller="tekUser" action="show"

id="${tekEventInstance?.organizer?.id}">
${tekEventInstance?.organizer?.encodeAsHTML()}</g:link>

</g:if>

16. aria-labelledby is another HTML attribute used by screen readers—here it refers to the id
of the element that is a label for this . See http://www.w3.org/TR/2010/WD-wai-aria-20100916/
states_and_properties#aria-labelledby.

Chapter 5. Beyond Scaffolding • 72

report erratum • discuss

http://www.w3.org/TR/2010/WD-wai-aria-20100916/states_and_properties#aria-labelledby
http://www.w3.org/TR/2010/WD-wai-aria-20100916/states_and_properties#aria-labelledby
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Here we have an example of the way Grails displays a related object. The
organizer property is rendered as a link to the TekUser show view. The <g:link>
tag has its controller and action attributes set accordingly. The id is set to a Groovy
expression that reads the id property of the organizer property of the tekEventIn-
stance that we passed in from the controller. Notice the ? after the tekEventInstance
and organizer references; this is Groovy’s safe navigation operator. When this
expression is evaluated, if either of these items is null, the whole expression
evaluates to null, and no exception is thrown!

Another thing to notice here is the use of the encodeAsHTML() method. This
method is added to all String objects and prevents any HTML code from being
processed while the page is rendering. This is helpful in defending against
cross-site scripting attacks.17

<g:if test="${tekEventInstance?.volunteers}">
<li class="fieldcontain">

<g:message
code="tekEvent.volunteers.label" default="Volunteers" />

<g:each in="${tekEventInstance.volunteers}" var="v">

<g:link controller="tekUser" action="show"

id="${v.id}">${v?.encodeAsHTML()}</g:link>
</g:each>

</g:if>

One-to-many relationships are rendered simply using a <g:each> tag. Here we
see the volunteers property being displayed using one property-label and a
 with class property-value for each item in the collection.

<g:if test="${tekEventInstance?.respondents}">
<li class="fieldcontain">

<g:message
code="tekEvent.respondents.label" default="Respondents" />

<g:fieldValue bean="${tekEventInstance}" field="respondents"/>

</g:if>

Rounding out the show view, we have the respondents collection. This property
is a collection of String objects containing email addresses. This type of collec-
tion is rendered as if it were a single String field. Grails handles converting it

17. http://en.wikipedia.org/wiki/Cross-site_scripting

report erratum • discuss

Grails Views with Groovy Server Pages • 73

http://en.wikipedia.org/wiki/Cross-site_scripting
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

to a comma-separated list, as we see in Figure 21, TekEvent show view, on
page 72. If we wanted to, we could use a <g:each> tag to show these as a list
or in a table.

The Create View

We can see the create view in Figure 22, TekEvent create view, on page 75.
The code for this view is in TekDays/grails-app/views/tekEvent/create.gsp.

<g:hasErrors bean="${tekEventInstance}">
<ul class="errors" role="alert">

<g:eachError bean="${tekEventInstance}" var="error">
<li <g:if test="${error in org.springframework.validation.FieldError}">

data-field-id="${error.field}"</g:if>><g:message error="${error}"/>
</g:eachError>

</g:hasErrors>

In The List View, on page 68, we saw how messages that we set in the con-
troller are displayed in the view. Here we see another type of message block.
When a domain instance fails to save, errors are stored in an errors property.
The <g:hasErrors> tag is a conditional tag that examines the domain instance
assigned to its bean attribute and renders its body if errors are found. In the
body of the tag, we find an unordered list populated by a <g:eachError> tag,
which works rather like the <g:each> to display the errors in a list at the top
of the page. (See Figure 23, Built-in error handling, on page 75.)

<g:form url="[resource:tekEventInstance, action:'save']" >

The <g:form> tag sets up an HTML form. This tag has controller, action, and id (or
resource) attributes, which will result in the URL to submit the form to. It can
also take a Map—url—that contains these as elements, as we see being done
here.

<fieldset class="form">
<g:render template="form"/>

</fieldset>

Within the <g:form> tags, we are using the <g:render> tag to (you guessed it)
render the form template, which is used by both the create and edit views for
form elements. (We’ll take a look at this template shortly.)

The Edit View

The last of the scaffolded views is the edit view. (See Figure 24, TekEvent edit
view, on page 76.)

Chapter 5. Beyond Scaffolding • 74

report erratum • discuss

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Figure 22—TekEvent create view

Figure 23—Built-in error handling

report erratum • discuss

Grails Views with Groovy Server Pages • 75

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Figure 24—TekEvent edit view

You will find the code in TekDays/grails-app/views/tekEvent/edit.gsp. Open the file and
let’s look at a line below the opening <g:form> tag:

<g:hiddenField name="version" value="${tekEventInstance?.version}" />

Here we see <g:hiddenField> being used to create an HTML <input type="hidden">
for the version of the tekEvenInstance. This is, of course, unique to the edit view,
because it submits to the update action of the TekEventController, which is dealing
with an existing TekEvent instance. That action will check version before we
update the instance to avoid conflicts with changes by another user.

Chapter 5. Beyond Scaffolding • 76

report erratum • discuss

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

The form Template

The main body of both the create and edit views is in the form template, which
is located in TekDays/grails-app/views/tekEvent/_form.gsp. Open this file, and let’s see
what new and exciting things it has in store for us:

<div class="fieldcontain ${hasErrors(bean: tekEventInstance, field: 'name',
'error')} ">
<label for="name">

<g:message code="tekEvent.name.label" default="Name" />
</label>
<g:textField name="name" value="${tekEventInstance?.name}"/>

</div>

The create and edit views use a two-column layout similar to that of the show
view. The difference is that where the show view uses an ordered list to display
our event’s properties, this template has a <div> for each property, containing
HTML input elements. <g:textField>, for example, is a GSP tag that renders an
HTML text input field with the specified name and value attributes. Notice how
the <g:hasErrors> tag is used in a Groovy expression to determine whether to
use the error CSS class. That doesn’t look like a tag, does it? As we saw in The
Save Action, on page 63, all GSP tags can also be called as methods. How’s
that for versatile?

<div class="fieldcontain ${hasErrors(bean: tekEventInstance, field: 'description',
'error')} ">
<label for="description">

<g:message code="tekEvent.description.label" default="Description" />
</label>
<g:textArea name="description" cols="40" rows="5" maxlength="5000"

value="${tekEventInstance?.description}"/>
</div>

For the description property, Grails is using <g:textArea>, a GSP tag which
(unsurprisingly enough) renders a <textarea> element.

<div class="fieldcontain ${hasErrors(bean: tekEventInstance, field: 'organizer',
'error')} required">
<label for="organizer">

<g:message code="tekEvent.organizer.label" default="Organizer" />
*

</label>
<g:select id="organizer" name="organizer.id" from="${com.tekdays.TekUser.list()}"

optionKey="id" required="" value="${tekEventInstance?.organizer?.id}"
class="many-to-one"/>

</div>

For properties that are references to another domain class, Grails uses a
<g:select> tag, which will render a <select> element loaded with all the available

report erratum • discuss

Grails Views with Groovy Server Pages • 77

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

choices for that class. In this case, we end up with a list of TekUser instances
that can be assigned to the organizer property.

<div class="fieldcontain ${hasErrors(bean: tekEventInstance, field: 'startDate',
'error')} required">
<label for="startDate">

<g:message code="tekEvent.startDate.label" default="Start Date" />
*

</label>
<g:datePicker name="startDate" precision="day"

value="${tekEventInstance?.startDate}" />
</div>

The <g:datePicker> tag renders that series of select elements that we see in Figure
22, TekEvent create view, on page 75. Grails is using the tag’s precision attribute
to indicate that we only want to specify a particular day (by default, the tag
will render select elements for all of year, month, day, hour, and minute).
Another useful attribute of this tag (not used here) is noSelection.18

<div class="fieldcontain ${hasErrors(bean: tekEventInstance, field:
'volunteers', 'error')} ">
<label for="volunteers">

<g:message code="tekEvent.volunteers.label" default="Volunteers" />

</label>
<g:select name="volunteers" from="${com.tekdays.TekUser.list()}"

multiple="multiple" optionKey="id" size="5"
value="${tekEventInstance?.volunteers*.id}" class="many-to-many"/>

</div>

Grails also uses a <g:select> tag for unidirectional one-to-many relationships.
In this case, the multiple attribute is set, and the value attribute is set to the id
of each TekUser instance in the volunteers collection property, using Groovy’s
spread operator.19 This will render a multiselect listbox loaded with TekUser
instances. When submitted, all the selected instances will be automagically
added to the volunteers property.

<div class="fieldcontain ${hasErrors(bean: tekEventInstance, field: 'sponsorships',
'error')} ">
<label for="sponsorships">

<g:message code="tekEvent.sponsorships.label" default="Sponsorships" />
</label>

<ul class="one-to-many">
<g:each in="${tekEventInstance?.sponsorships?}" var="s">

<g:link controller="sponsorship" action="show"

18. See http://grails.org/doc/2.3.1/ref/Tags/datePicker.html.
19. See http://mrhaki.blogspot.com/2009/08/groovy-goodness-spread-dot-operator.html.

Chapter 5. Beyond Scaffolding • 78

report erratum • discuss

http://grails.org/doc/2.3.1/ref/Tags/datePicker.html
http://mrhaki.blogspot.com/2009/08/groovy-goodness-spread-dot-operator.html
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

id="${s.id}">${s?.encodeAsHTML()}</g:link>
</g:each>
<li class="add">
<g:link controller="sponsorship" action="create" params="['tekEvent.id':

tekEventInstance?.id]">${message(code: 'default.add.label',
args: [message(code: 'sponsorship.label', default: 'Sponsorship')])}</g:link>

</div>

In this block, we can see how the sponsorship collection property is rendered as
an unordered list of links. A <g:each> tag creates a for each sponsorship,
and after it is closed, we have one last , containing a <g:link> tag that will
render a link to the create action of the SponsorshipController. The value in the
params attribute will cause this TekEvent instance to be assigned to the tekEvent
property of the newly-created Sponsorship.

And this concludes our tour of the code behind the scaffolded views. Now
that this code is available to us and we have a working understanding of what
it is doing, we can see how we could make a few changes to make our appli-
cation a little better looking and easier to use. We’ll do that beginning in the
next chapter, but first, let’s see how we can hook up to a real database so we
no longer lose our data changes every time we restart the application.

Configuring a Database

The in-memory database that comes with Grails is handy, and we have been
making good use of it, but a time comes in the life of any application when
you need to store your data in a real database. (Let’s hope this happens before
you go to production.) As with most things, Grails makes this a snap to do.

“Configuration?” You may be wondering what happened to “convention over
configuration.” Well, keep in mind that it’s over, not instead of, and, besides,
no matter how hard Larry Ellison tries, there’s still no convention for which
database to use.20 Also, Grails takes much of the pain out of the word config-
uration by allowing us to write all of our configuration code in Groovy instead
of XML. The information about our database is in TekDays/grails-app/conf/Data-
Source.groovy. By default, it looks like this:

dataSource {
pooled = true
driverClassName = "org.h2.Driver"

20. Larry Ellison is the cofounder and CEO of Oracle, maker of the leading enterprise
database. See http://en.wikipedia.org/wiki/Larry_Ellison.

report erratum • discuss

Configuring a Database • 79

http://en.wikipedia.org/wiki/Larry_Ellison
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

username = "sa"
password = ""

}
hibernate {

cache.use_second_level_cache = true
cache.use_query_cache = false
cache.region.factory_class =
'net.sf.ehcache.hibernate.EhCacheRegionFactory' // Hibernate 3

// cache.region.factory_class =
// 'org.hibernate.cache.ehcache.EhCacheRegionFactory' // Hibernate 4
}
// environment specific settings
environments {

development {
dataSource {

dbCreate = "create-drop" // one of 'create', 'create-drop',
//'update', 'validate', ''

url = "jdbc:h2:mem:devDb;MVCC=TRUE;LOCK_TIMEOUT=10000"
}

}
test {

dataSource {
dbCreate = "update"
url = "jdbc:h2:mem:testDb;MVCC=TRUE;LOCK_TIMEOUT=10000"

}
}
production {

dataSource {
dbCreate = "update"
url = "jdbc:h2:prodDb;MVCC=TRUE;LOCK_TIMEOUT=10000"
properties {

maxActive = -1
minEvictableIdleTimeMillis=1800000
timeBetweenEvictionRunsMillis=1800000
numTestsPerEvictionRun=3
testOnBorrow=true
testWhileIdle=true
testOnReturn=false
validationQuery="SELECT 1"
jdbcInterceptors="ConnectionState"

}
}

}
}

Along with your basic database information and a bit of Hibernate-specific
options, this file has three environment blocks. These can be used to configure
our application to use different databases for development, test, and production.
For now, we’ll focus on the development environment. Open TekDays/grails-
app/conf/DataSource.groovy, and change it as indicated here:

Chapter 5. Beyond Scaffolding • 80

report erratum • discuss

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

beyond.2/TekDays/grails-app/conf/DataSource.groovy
dataSource {

pooled = true
driverClassName = "com.mysql.jdbc.Driver"➤

username = "dave"➤

password = "1234"➤

}
hibernate {

cache.use_second_level_cache = true
cache.use_query_cache = false
cache.region.factory_class =
'net.sf.ehcache.hibernate.EhCacheRegionFactory' // Hibernate 3

// cache.region.factory_class =
// 'org.hibernate.cache.ehcache.EhCacheRegionFactory' // Hibernate 4
}

// environment specific settings
environments {

development {
dataSource {

dbCreate = "update" // one of 'create', 'create-drop',➤

// 'update', 'validate', ''➤

url = "jdbc:mysql://localhost:3306/tekdays"➤

}
}
test {

dataSource {
dbCreate = "update"
url = "jdbc:h2:mem:testDb;MVCC=TRUE;LOCK_TIMEOUT=10000"

}
}
production {

dataSource {
dbCreate = "update"
url = "jdbc:h2:prodDb;MVCC=TRUE;LOCK_TIMEOUT=10000"
properties {

maxActive = -1
minEvictableIdleTimeMillis=1800000
timeBetweenEvictionRunsMillis=1800000
numTestsPerEvictionRun=3
testOnBorrow=true
testWhileIdle=true
testOnReturn=false
validationQuery="SELECT 1"
jdbcInterceptors="ConnectionState"

}
}

}
}

report erratum • discuss

Configuring a Database • 81

http://media.pragprog.com/titles/dkgrails2/code/beyond.2/TekDays/grails-app/conf/DataSource.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Next we need to make a simple change to TekDays/grails-app/conf/BuildConfig.groovy.
Grails includes a dependency in this file for the MySQL JDBC connector, but
it’s commented out by default. Open the file and uncomment the highlighted
line:

beyond.2/TekDays/grails-app/conf/BuildConfig.groovy
dependencies {

// specify dependencies here under either 'build', 'compile', 'runtime',
// 'test' or 'provided' scopes e.g.
runtime 'mysql:mysql-connector-java:5.1.24'➤

}

We also need to create an empty database called tekdays. Grails will create all
the tables for us when we run the application for the first time.

One last note regarding the database: the first time we run the application
with a real database, the bootstrap code will execute and create some initial
data for us. Unless we remove it or code around it, this will happen every
time we run the application. So, before we end up with a ton of duplicate data,
it’s a good idea to remove the bootstrap code after it has been run once or
add code to ensure it will run only once. For example, we could wrap the code
in Bootstrap.init() with an if block, like this:

if (!TekEvent.get(1)){
//bootstrap code goes here...

}

With this code in place, the entire init block will be ignored after the first time
it is run. To help with making changes once an application is in production,
there are plugins available that enable database migrations.21

Before we leave this topic, here’s another strategy. Some choose to leave the
development database as an H2 in-memory database and provide persistent
databases for test and production. In this case, we would make the bootstrap
code conditional on environment instead of data. Here’s an example of how to
do this:

import grails.util.GrailsUtil
...
if (GrailsUtil.environment == 'development'){

//bootstrap code goes here...
}

21. The Grails Database Migration plugin (which, as we saw, is installed by default in
Grails) is one example of such a plugin. See http://grails.org/plugin/database-migration.

Chapter 5. Beyond Scaffolding • 82

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/beyond.2/TekDays/grails-app/conf/BuildConfig.groovy
http://grails.org/plugin/database-migration
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Summary

Our application is actually in roughly the same state as it was at the beginning
of this chapter, but now we’ve armed ourselves with the knowledge and the
code necessary to begin making major progress. In the next chapter, we will
deal with some of the UI issues that were bothering our customer, and then
we’ll tackle the next feature on our list.

report erratum • discuss

Summary • 83

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

CHAPTER 6

Getting Things Done
In this iteration, we’re going to take advantage of the generated scaffolding
code to make our views more pleasing to our customer. We’ll also work on
implementing the task list features of TekDays so that TekDays users can
get things done. Along the way, we’ll learn just how easy it is to modify and
extend Grails views.

Changing All Our Views at Once

We saw in the previous chapter how Grails uses SiteMesh to provide a consis-
tent look throughout an application. That’s what’s been giving us that cool
Grails logo on all of our views. But that’s not quite what our customer wants
for TekDays. Let’s see what we can do about that. Open TekDays/grails-
app/views/layout/main.gsp, and in the <body> section, modify the first <div>:

things.2/TekDays/grails-app/views/layouts/main.gsp
<div id="logo" role="banner">

<img src="${resource(dir: 'images', file: 'td_logo.png')}"
alt="TekDays"/></div>

We renamed the <div>, changed the link to point to the TekDays home page,
and replaced the logo. Of course, you can substitute your own logo design,
or you can download td_logo from the book’s website. Talk about low-hanging
fruit! Our new logo will now show up on every page of our application. In
Figure 25, TekDays home page with new logo, on page 86, we get a peek at
what our pages will look like.

That’s not all we can do in this file, but it’s all we need to do for now. We
could go on and add sidebars, a footer, a standard menu, and so on. But we
don’t want to get ahead of ourselves.

Let’s look at another file that is shared across all the views in our application.
Grails puts the CSS code for the scaffolded views in web-app/css/main.css. We can

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/things.2/TekDays/grails-app/views/layouts/main.gsp
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Figure 25—TekDays home page with new logo

change many aspects of our views by modifying this file. In an effort to keep
style code out of our pages, we will be adding to this file for the small amount
of additional CSS that we will be using in TekDays. The additional style rules
that we are using can be found in Appendix 1, Additional CSS Rules, on page
179. Now let’s turn our attention to our scaffolded views.

Modifying the Scaffolded Views

We’re going to go through the scaffolded view code of the TekEvent class and
make some simple modifications. (The things we change here can just as
easily be done for the other classes’ views.) As we go through these changes,
we can leave the application running and immediately see the changes by
simply refreshing the browser—another example of how Grails keeps that
rapid feedback loop going. This also takes the pain out of the tweaking process
that we so often have to go through to get a page “just right.”

The List View

We’ll start by removing the organizer from the list view. When we generated
the scaffolded views, Grails simply used the first six properties of our TekEvent
for the table in the list view, and this included organizer. But the organizer is
not really something users will be concerned with as they look through a list
of events.

Chapter 6. Getting Things Done • 86

report erratum • discuss

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Let’s see what this looks like. Open TekDays/grails-app/views/tekEvent/index.gsp, and
go to the <thead> block. Remove the Organizer column. You should be left with
this:

things.2/TekDays/grails-app/views/tekEvent/index.gsp
<thead>

<tr>
<g:sortableColumn property="name"

title="${message(code: 'tekEvent.name.label',
default: 'Name')}" />

<g:sortableColumn property="city"
title="${message(code: 'tekEvent.city.label',
default: 'City')}" />

<g:sortableColumn property="description"
title="${message(code: 'tekEvent.description.label',
default: 'Description')}" />

<g:sortableColumn property="venue"
title="${message(code: 'tekEvent.venue.label',
default: 'Venue')}" />

<g:sortableColumn property="startDate"
title="${message(code: 'tekEvent.startDate.label',
default: 'Start Date')}" />

</tr>
</thead>

Next, remove the associated <td> from the <tbody>. It should look like this:

things.2/TekDays/grails-app/views/tekEvent/index.gsp
<tbody>
<g:each in="${tekEventInstanceList}" status="i"

var="tekEventInstance">
<tr class="${(i % 2) == 0 ? 'even' : 'odd'}">

<td><g:link action="show"
id="${tekEventInstance.id}">
${fieldValue(bean: tekEventInstance,

field: "name")}</g:link>
</td>
<td>${fieldValue(bean: tekEventInstance,
field: "city")}</td>

<td>${fieldValue(bean: tekEventInstance,
field: "description")}

</td>
<td>${fieldValue(bean: tekEventInstance,
field: "venue")}</td>

<td><g:formatDate
date="${tekEventInstance.startDate}" />

</td>
</tr>

</g:each>
</tbody>

report erratum • discuss

Modifying the Scaffolded Views • 87

http://media.pragprog.com/titles/dkgrails2/code/things.2/TekDays/grails-app/views/tekEvent/index.gsp
http://media.pragprog.com/titles/dkgrails2/code/things.2/TekDays/grails-app/views/tekEvent/index.gsp
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Now when we refresh the page, it will look like the following figure.

Figure 26—Modified TekEvent list view

The Show View

The show view presents several opportunities for improvement. We’ll go
through from top to bottom and fix things up. You can save the file and refresh
after each step, and we’ll show the new view when we’re done. Open
TekDays/grails-app/views/tekEvent/show.gsp, and let’s get started.

Near the top of this file you’ll see an <h1> containing a <g:message> tag that
will render the text “Show TekEvent.” Let’s replace that tag with the name of
the event:

things.2/TekDays/grails-app/views/tekEvent/show.gsp
<h1>${tekEventInstance?.name}</h1>

This is an example of how we can use Groovy expressions anywhere on a
page.

Next, let’s remove the name property from the main part of the page, because
we already have it displayed in the heading. Notice that each property is dis-
played within a tag surrounded by <g:if> tags; just remove the opening

Chapter 6. Getting Things Done • 88

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/things.2/TekDays/grails-app/views/tekEvent/show.gsp
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

<g:if>, the closing </g:if>, and everything in between. You can repeat this pro-
cess for any other properties you want to remove.

We’ll move description to right above city. We’ll move the organizer down directly
before the volunteers. Then we’ll do something a little more clever for the city
property:

things.2/TekDays/grails-app/views/tekEvent/show.gsp
<g:if test="${tekEventInstance?.city}">
<li class="fieldcontain">

➤

Location➤

➤

➤ <g:fieldValue bean="${tekEventInstance}" field="venue"/>,

<g:fieldValue bean="${tekEventInstance}" field="city"/>➤

</g:if>

We changed the label, which is the value in the first , to “Location,”
and we included the venue in the same line.

Next we’ll tackle the date properties. The way they’re currently being displayed
is not going to cut it. Sure, people will want their events to run on schedule,
but they’re probably not going to worry about the exact hour, minute, and
second that it starts.

things.2/TekDays/grails-app/views/tekEvent/show.gsp
<g:if test="${tekEventInstance?.startDate}">
<li class="fieldcontain">

<g:message
code="tekEvent.startDate.label" default="Start Date" />

➤ <g:formatDate format="MMMM dd, yyyy"
➤ date="${tekEventInstance?.startDate}" />

</g:if>

Here we added the format attribute1 to the <g:formatDate> tag used for startDate.
Do the same with the endDate property.

1. See http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html.

report erratum • discuss

Modifying the Scaffolded Views • 89

http://media.pragprog.com/titles/dkgrails2/code/things.2/TekDays/grails-app/views/tekEvent/show.gsp
http://media.pragprog.com/titles/dkgrails2/code/things.2/TekDays/grails-app/views/tekEvent/show.gsp
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

things.2/TekDays/grails-app/views/tekEvent/show.gsp
<g:if test="${tekEventInstance?.endDate}">
<li class="fieldcontain">

<g:message
code="tekEvent.endDate.label" default="End Date" />

➤ <g:formatDate format="MMMM dd, yyyy"
➤ date="${tekEventInstance?.endDate}" />

</g:if>

Finally, let’s clean up the way the Sponsorship collection is displayed. Recall
from the discussion in Many-to-Many Relationships, on page 49, that we did
not declare a toString() method because the way we display a Sponsorship will
depend on the context. That’s why it currently shows up as com.tekdays.Sponsorship
: 1. Since we’re working on the TekEvent views, we’ll modify the display with
that context in mind.

things.2/TekDays/grails-app/views/tekEvent/show.gsp
<g:if test="${tekEventInstance?.sponsorships}">
<li class="fieldcontain">

<g:message
code="tekEvent.sponsorships.label" default="Sponsorships" />

<g:each in="${tekEventInstance.sponsorships}" var="s">

<g:link controller="sponsorship" action="show"

id="${s.id}">${s?.sponsor.encodeAsHTML()}</g:link>
</g:each>

</g:if>

All we had to do was change the s?.encodeAsHTML() to s?.sponsor.encodeAsHTML(). If
this was the Sponsor show view, we would change it to s?.event.encodeAsHTML().
Take a look at Figure 27, Modified TekEvent show view, on page 91 to see the
results of our changes.

The Create and Edit Views

As we discussed in Chapter 5, Beyond Scaffolding, on page 59, the create and
edit views share the form elements contained in the _form.gsp template. For
our purposes, this template doesn’t need too much work. One thing we can
do is fix the date ranges that we accept. Open TekDays/grails-

Chapter 6. Getting Things Done • 90

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/things.2/TekDays/grails-app/views/tekEvent/show.gsp
http://media.pragprog.com/titles/dkgrails2/code/things.2/TekDays/grails-app/views/tekEvent/show.gsp
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Figure 27—Modified TekEvent show view

app/views/tekEvent/_form.gsp, and zero in on the <g:datePicker> tag used for the
startDate property.

things.2/TekDays/grails-app/views/tekEvent/_form.gsp
<div class="fieldcontain ${hasErrors(bean: tekEventInstance,

field: 'startDate',
'error')} required">

<label for="startDate">
<g:message code="tekEvent.startDate.label" default="Start Date" />
*

</label>
<g:datePicker name="startDate" precision="day"➤

➤ value="${tekEventInstance?.startDate}" years="${2008..2015}" />
</div>

The <g:datePicker> tag can take a years attribute, which will allow us to limit the
years from which a user can pick. (Without this attribute, the tag will just
list every year for 100 years before and after the current year.) This attribute

report erratum • discuss

Modifying the Scaffolded Views • 91

http://media.pragprog.com/titles/dkgrails2/code/things.2/TekDays/grails-app/views/tekEvent/_form.gsp
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

can take either a Range2 or a List. We gave ours a Range of 2008..2015. (We can
also add this attribute to the endDate <g:datePicker> tag.)

Now, because both of these views are constructed using the same template
that we’ve been working on, we can refresh either of these views and see the
result! (See the following figure and Figure 29, Modified TekEvent edit view,
on page 93.)

Figure 28—Modified TekEvent create view

2. See http://groovy.codehaus.org/Collections.

Chapter 6. Getting Things Done • 92

report erratum • discuss

http://groovy.codehaus.org/Collections
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Figure 29—Modified TekEvent edit view

We may return to some of these views later, but for now things are looking
much nicer. Now that we’ve gotten some things done, we’ll move on to the
next feature in our list. We’ll add a task list to our application so that our
users can get things done.

report erratum • discuss

Modifying the Scaffolded Views • 93

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Event Task List

According to our feature list, we need to be able to add and remove tasks,
assign tasks, and have a default set of tasks. We already have the add and
remove bit done: we have the same four scaffolded views for the Task that we
have for the TekEvent. They were created when we ran the generate-all script. So,
we’ll focus on providing a default set of tasks for a new event.

The task list feature will enable users to keep track of the many things that
need to be done to put on a successful technical conference. Tasks will be
assigned to volunteers, but the list will be available to the whole team. It’s
important to keep an eye on those details, or they’ll fall through the cracks.
According to our customer, most of the users will not have experience orga-
nizing an event of this magnitude. The idea behind the default tasks, then,
is to give them some ideas and a starting point.

Our customer has provided us with a set of default tasks. Rather than listing
them here, we’ll practice the DRY principle.3 We’ll list the default tasks in the
code that we write to create them. Now we need to figure out where to put
that code.

Grails Service Classes

We’re going to write a method that will create several Task instances and add
them to the tasks property of a newly created TekEvent. We will define this method
in a service class. A Grails service class is a Plain Old Groovy Object (POGO)
located in the grails-app/services directory and with a name ending in Service. By
following these conventions, this plain old Groovy object will be endowed with
magical powers.

Service classes are a great way to keep extra code out of our controllers. When
we have application logic that doesn’t fit well in any domain class—for
example, logic that involves multiple domain classes—it is tempting to add
this code to the controller. Doing this can lead to bloated controllers that are
difficult to read and maintain. To keep our controller leaner, we can move
this type of application logic into service methods. We can’t give a full treat-
ment of service classes here, but we’ll discuss some of their features as we
put them to use.4 Grails provides a convenience script to create a new service
class. Let’s try it:

3. DRY stands for Don’t Repeat Yourself. This is one of the core principles in The Pragmatic
Programmer [HT00].

4. You can find more details on Grails service classes at http://grails.org/doc/2.3.1/guide/ser-
vices.html.

Chapter 6. Getting Things Done • 94

report erratum • discuss

http://grails.org/doc/2.3.1/guide/services.html
http://grails.org/doc/2.3.1/guide/services.html
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

$ grails create-service com.tekdays.Task

We called our service TaskService because we’re going to use it to create Task
instances. Before we get started with that, let’s take a look at what Grails
created for us:

things.2/TekDays/grails-app/services/com/tekdays/TaskService.groovy
package com.tekdays

import grails.transaction.Transactional

class TaskService {

def serviceMethod() {

}
}

We start with a stubbed-out method called serviceMethod(), which by default
will be executed in a transaction.5 This is because, by default, any method
declared in a service class in Grails will be executed within a transaction.6

We don’t have to do anything to enable transactions; everything is handled
behind the scenes by Spring and Hibernate. If you’ve ever had to code trans-
action handling in a web application, we’ll give you a moment to get your jaw
off the floor.

Now let’s add a method to TaskService called addDefaultTasks(tekEvent). Open
TekDays/grails-app/services/com/tekdays/TaskService.groovy, and add the following code:

things.2/TekDays/grails-app/services/com/tekdays/TaskService.groovy
def addDefaultTasks(tekEvent){

if (tekEvent.tasks?.size() > 0)
return //We only want to add tasks to a new event

tekEvent.addToTasks new Task(title:'Identify potential venues')
tekEvent.addToTasks new Task(title:'Get price / availability of venues')
tekEvent.addToTasks new Task(title:'Compile potential sponsor list')
tekEvent.addToTasks new Task(title:'Design promotional materials')
tekEvent.addToTasks new Task(title:'Compile potential advertising avenues')
tekEvent.addToTasks new Task(title:'Locate swag provider (preferably local)')
tekEvent.save()

}

5. See http://en.wikipedia.org/wiki/Database_transaction.
6. If you’re creating a read-only service, or one that doesn’t use the database at all, you

can disable this by setting the transactional property to false. See http://grails.org/doc/2.3.1/guide/
services.html#declarativeTransactions.

report erratum • discuss

Grails Service Classes • 95

http://media.pragprog.com/titles/dkgrails2/code/things.2/TekDays/grails-app/services/com/tekdays/TaskService.groovy
http://media.pragprog.com/titles/dkgrails2/code/things.2/TekDays/grails-app/services/com/tekdays/TaskService.groovy
http://en.wikipedia.org/wiki/Database_transaction
http://grails.org/doc/2.3.1/guide/services.html#declarativeTransactions
http://grails.org/doc/2.3.1/guide/services.html#declarativeTransactions
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Let’s walk through this code. First, we check to see whether the tekEvent passed
in has anything in its tasks collection. If it does, then we bail. Otherwise, we
begin a series of calls to tekEvent.addToTasks(). This method is one of the many
added dynamically by Grails. (Notice that we’re taking advantage of Groovy’s
optional parentheses to reduce the noise in our code.) Finally, we call
tekEvent.save(), which will cascade to save all the Task instances too.

That’s it for our service class, but now we need to use it. The logical place to
do that would be in the save action of the TekEventController; that way, we can
be sure that the default tasks will be added to every TekEvent that is success-
fully saved. Open TekDays/grails-app/controllers/com/tekdays/TekEventController.groovy,
and add this single property declaration at the top of the class:

things.2/TekDays/grails-app/controllers/com/tekdays/TekEventController.groovy
package com.tekdays

import static org.springframework.http.HttpStatus.*
import grails.transaction.Transactional

@Transactional(readOnly = true)
class TekEventController {

➤ def taskService
static allowedMethods = [save: "POST", update: "PUT", delete: "DELETE"]

def index(Integer max) {
params.max = Math.min(max ?: 10, 100)
respond TekEvent.list(params),

model:[tekEventInstanceCount: TekEvent.count()]
}

All we have to do is to declare a property named after the service class (with
the first letter lowercase), and an instance of that class will be injected into
our controller at runtime. That’s autowiring Grails style, and it’s pretty awe-
some! We don’t need to create an instance of TaskService and assign it to our
controller, and we don’t need to worry about ensuring that it exists before we
call it. It’s all managed for us by Grails, courtesy of “convention over
configuration.”

Now in the save action, we’ll add the call to addDefaultTasks():

things.2/TekDays/grails-app/controllers/com/tekdays/TekEventController.groovy
@Transactional
def save(TekEvent tekEventInstance) {

if (tekEventInstance == null) {
notFound()
return

}

Chapter 6. Getting Things Done • 96

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/things.2/TekDays/grails-app/controllers/com/tekdays/TekEventController.groovy
http://media.pragprog.com/titles/dkgrails2/code/things.2/TekDays/grails-app/controllers/com/tekdays/TekEventController.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

if (tekEventInstance.hasErrors()) {
respond tekEventInstance.errors, view:'create'
return

}
tekEventInstance.save flush:true
taskService.addDefaultTasks(tekEventInstance)➤

request.withFormat {
form {

flash.message = message(code: 'default.created.message',
args: [message(code: 'tekEventInstance.label',
default: 'TekEvent'), tekEventInstance.id])

redirect tekEventInstance
}
'*' { respond tekEventInstance, [status: CREATED] }

}
}

We put the call after the error checking and saving of the TekEvent, so we don’t
waste effort trying to add tasks to a TekEvent that won’t save. If it does save
successfully, we’ll see the default tasks loaded.

Before we test this, let’s add an for the tasks collection to the TekEvent show
view. For this, we can just copy the “Sponsorships” and modify it to display
the list of tasks. Open TekDays/grails-app/views/tekEvent/show.gsp and add the following
code right below the respondents :

things.2/TekDays/grails-app/views/tekEvent/show.gsp
<g:if test="${tekEventInstance?.tasks}">
<li class="fieldcontain">

<g:message
code="tekEvent.tasks.label" default="Tasks" />
<g:each in="${tekEventInstance.tasks}" var="t">

<g:link controller="task" action="show"

id="${t.id}">${t.title}</g:link>
</g:each>

</g:if>

And now, when we create a new event, we should see something like Figure
30, TekEvent show view with default tasks, on page 98.

Before we move on from here, let’s write a test for our new service class. Grails
has already created a stubbed-out test class for us in TekDays/test/unit/com/tek-
days/TaskServiceSpec.groovy, but as we can see from the directory it’s put in, this
is a unit test. For testing our service class, we are going to use an integration
test.

report erratum • discuss

Grails Service Classes • 97

http://media.pragprog.com/titles/dkgrails2/code/things.2/TekDays/grails-app/views/tekEvent/show.gsp
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Figure 30—TekEvent show view with default tasks

Integration Testing

We create an integration test by running the Grails script create-integration-test.
An integration test is a Spock specification or JUnit test case, just like a Grails
unit test. The difference is in what is available to the test at runtime. Unit
tests are meant to test a unit (class) in isolation, so Grails doesn’t give unit
tests any of its dynamic goodness. Integration tests are meant to test multiple
classes working together. When running integration tests, Grails adds all of
the dynamic behavior that we’re taking advantage of in our application.

Since the process of adding default tasks to an event involves the TaskService,
Task, and TekEvent classes, an integration test is a good fit. Run the create-integra-
tion-test script:

$ grails create-integration-test com.tekdays.TaskService

Chapter 6. Getting Things Done • 98

report erratum • discuss

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Now open TekDays/test/integration/com/tekdays/TaskServiceSpec.groovy, and add the fol-
lowing code:

things.2/TekDays/test/integration/com/tekdays/TaskServiceSpec.groovy
package com.tekdays

import grails.test.mixin.TestFor
import spock.lang.Specification

/**
* See the API for {@link grails.test.mixin.services.ServiceUnitTestMixin}
* for usage instructions
*/

@TestFor(TaskService)
class TaskServiceSpec extends Specification {

def taskService

def setup() {
new TekUser(fullName:'Tammy Tester', userName:'tester' ,

email:'tester@test.com' , website:'test.com' ,
bio:'A test person').save()

}

def cleanup() {
}

void "test addDefaultTasks"() {
when: "we pass an event to taskService.addDefaultTasks"
def e = new TekEvent(name:'Test Event',

city:'TestCity, USA',
description:'Test Description',
organizer:TekUser.findByUserName('tester'),
venue:'TestCenter' ,
startDate:new Date(),
endDate:new Date() + 1)

taskService.addDefaultTasks(e)
then: "the event will have 6 default tasks"
e.tasks.size() == 6

}
}

Test Data Source

Integration tests will use the data source for the test environment. Before running
integration tests, you may want to set the data source for this environment to a per-
sistent database. For an example, refer to Configuring a Database, on page 79.

report erratum • discuss

Integration Testing • 99

http://media.pragprog.com/titles/dkgrails2/code/things.2/TekDays/test/integration/com/tekdays/TaskServiceSpec.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

At the top of this file, we declare a taskService property, just like we did in the
TekEventController. Then in the setup() method, we create and save a TekUser. We
have to do this because the organizer property of TekEvent does not accept nulls;
we need a real TekUser to assign to that property. Then, in the "test addDefault-
Tasks"() method (the test), we’re creating a TekEvent and passing it to the
taskService.addDefaultTasks() method. Finally, we state that our event’s tasks prop-
erty contains the number of items that our service method is adding.

If you’ve been adding valid tests for our artifacts as we’ve gone along, you can
run them now with grails test-app, and you should see them all pass. That’s a
good feeling!

Modifying the Task Class

Great! We now have default tasks on all new events, users can add and remove
tasks as needed, and tasks can be assigned to users. But there’s something
missing....

Excuse us while we take off our customer hats and smack ourselves in the
forehead.

We don’t have any way to mark a task as completed! Not to worry—we’ll just
do a quick bit of reworking, and we’ll be good to go. First we’ll modify the Task
class. Open TekDays/grails-app/domain/com/tekdays/Task.groovy, and add a new property
and constraint, as shown here:

things.2/TekDays/grails-app/domain/com/tekdays/Task.groovy
package com.tekdays

class Task {
String title
String notes
TekUser assignedTo
Date dueDate
TekEvent event
Boolean completed➤

static constraints = {
title blank: false
notes blank: true, nullable: true, maxSize: 5000
assignedTo nullable: true
dueDate nullable: true
completed nullable: true➤

}

static belongsTo = TekEvent
}

Chapter 6. Getting Things Done • 100

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/things.2/TekDays/grails-app/domain/com/tekdays/Task.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Now that we have a completed property to work with, let’s modify our views to
take advantage of it. Open TekDays/grails-app/views/task/show.gsp, and add an
block at the bottom of the , like so:

things.2/TekDays/grails-app/views/task/show.gsp
<g:if test="${taskInstance?.completed}">
<li class="fieldcontain">

<g:message
code="task.completed.label" default="Completed" />

<g:formatBoolean boolean="${taskInstance?.completed}"

true="Yes" false="No" />

</g:if>

We’re using the <g:formatBoolean> tag, which will render the text we give it for
either its true or false attributes depending on the value of the property. This
will allow our users to see when a Task is completed.

Next, open TekDays/grails-app/views/task/_form.gsp, and add the following <div> at
the end:

things.2/TekDays/grails-app/views/task/_form.gsp
<div class="fieldcontain ${hasErrors(bean: taskInstance, field: 'completed',

'error')} ">
<label for="completed">

<g:message code="task.completed.label" default="Completed" />

</label>
<g:checkBox name="completed" value="${taskInstance?.completed}" />

</div>

This will add a checkbox to our edit view so that users can mark a task as
completed. (See Figure 31, Task edit view, on page 102.)

Summary

Well, this was a productive iteration. We implemented our task-related fea-
tures, and along the way, we learned about Grails service classes, integration
testing, and what it takes to modify or extend a Grails domain class after
we’ve generated the code. Take a break. You deserve it! Catch up on some
blogs (http://groovyblogs.org would be a good choice) or email. Next we will work
on adding a message forum and see what we can learn while we’re at it.

report erratum • discuss

Summary • 101

http://media.pragprog.com/titles/dkgrails2/code/things.2/TekDays/grails-app/views/task/show.gsp
http://media.pragprog.com/titles/dkgrails2/code/things.2/TekDays/grails-app/views/task/_form.gsp
http://groovyblogs.org
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Figure 31—Task edit view

Chapter 6. Getting Things Done • 102

report erratum • discuss

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

CHAPTER 7

Forum Messages and UI Tricks
A technical event, like any collaborative project, will turn out better if the
communication flows freely. To help facilitate this for our users, we’re going
to include a forum where the organizer and volunteers can post and reply to
messages. Then, to make it easy for new volunteers to come up to speed on
what’s going on, we’ll include a threaded view of all past messages. That’s the
goal of this iteration. While we’re at it, we’ll learn more about the interaction
between controllers and views, we’ll get a closer look at GSP templates, and
we’ll get a look at Ajax, Grails style.

We won’t have to start from scratch, because Grails has already given us the
list, create, show, and edit views to work with. The create view (see Figure
32, Scaffolded create view, on page 104), for example, gives us everything we
need to create a new message.

We need to change a few things to turn these scaffolded pages into a usable
message forum. Our users should be able to see messages in a more logical
manner than a plain list. They’ll also need the ability to reply to a message
they are reading, preferably without leaving the page.

Restricting Messages to an Event

Since we want the messages to constitute a forum for a given event, we’ll have
to modify the scaffolded views to limit the viewing and creating of TekMessage
instances to the TekEvent they relate to. It’s important to note that the relation-
ship between TekEvent and TekMessage is already established in the domain
model; we’re just going to make the workflow match that relationship.

We’ll start by modifying the event show view. We’re going to add a single
“Messages” hyperlink that will lead to the message list view, and we are going
to filter the list to show only those TekMessage instances that are related to the
TekEvent.

report erratum • discuss

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Figure 32—Scaffolded create view

Open TekDays/grails-app/views/tekEvent/show.gsp, and add the following code below
the tasks that we added earlier:

forum.2/TekDays/grails-app/views/tekEvent/show.gsp
<g:if test="${tekEventInstance?.messages}">
<li class="fieldcontain">

<g:message
code="tekEvent.messages.label" default="Messages" />

<g:link controller="tekMessage" action="index"

id="${tekEventInstance.id}">
View Messages

</g:link>

</g:if>

Chapter 7. Forum Messages and UI Tricks • 104

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/forum.2/TekDays/grails-app/views/tekEvent/show.gsp
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

The <g:link> tag will create a link to the index action of the TekMessageController
and will pass a TekEvent.id. If we follow this link now, Grails won’t know what
to do with the TekEvent.id, and we’ll get an error.

To fix that, we’ll modify the index action in the TekMessageController. Open
TekDays/grails-app/controllers/com/tekdays/TekMessageController.groovy, and modify the
index action as follows:

forum.2/TekDays/grails-app/controllers/com/tekdays/TekMessageController.groovy
def index(Integer max) {

params.max = Math.min(max ?: 10, 100)
def list
def count
def event = TekEvent.get(params.id)
if(event){

list = TekMessage.findAllByEvent(event, params)
count = TekMessage.countByEvent(event)

}
else {

list = TekMessage.list(params)
count = TekMessage.count()

}
[tekMessageInstanceList: list,
tekMessageInstanceCount: count,
event: event]

}

Here we’re replacing the call to respond() with a Map containing the data we’ll
use in the view. We first declare list and count variables for the Map. Then we
declare an event variable and attempt to assign a TekEvent to it, using the id
that was passed in from the link in the event show view. If a TekEvent is found,
then we load the list and count variables using dynamic methods provided by
GORM. If event is null, we fall back to the original means of retrieving the list
and count. Finally, we assign list and count to their appropriate keys in the return
Map, and we add the event:event key/value pair to the Map. This last step will
make the TekEvent instance available to us in the list view.

Now we’ll turn our attention to the TekMessage list view. If we navigate to this
view using the link we just modified on the event show view, we’ll only see
messages related to a single event. That’s great, but if we click the “New
TekMessage” button, we’ll need to explicitly choose the event on the message
create view. We want that to be loaded automatically, and we can do it by
modifying a single line of code. Let’s open TekDays/grails-app/views/tekMessage/index.gsp
and change the “New TekMessage” <g:link> tag like so:

report erratum • discuss

Restricting Messages to an Event • 105

http://media.pragprog.com/titles/dkgrails2/code/forum.2/TekDays/grails-app/controllers/com/tekdays/TekMessageController.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

forum.2/TekDays/grails-app/views/tekMessage/index.gsp
<g:link class="create" action="create"

params='["event.id":"${event?.id}"]'><g:message
code="default.new.label" args="[entityName]" /></g:link>

All we did here was add a params attribute to the <g:link> tag. This attribute is
a Map containing parameters to be added to the URL created by the <g:link>
tag. We then assign event.id to a key of the same name. (Since the key contains
a “.”, we had to put it in quotes.) This will result in a parameter like event.id=2.
Grails’ binding will use that to retrieve a TekEvent instance and assign it to the
TekMessage.event property. All of that and more is done with the following single
line:

respond new TekMessage(params)

Slick stuff!

Open TekDays/grails-app/views/tekMessage/create.gsp, and follow along as we make a
few changes, starting with the “TekMessage List” button. We’ll do the same
thing to that button that we did to the link on the TekEvent show view.

forum.2/TekDays/grails-app/views/tekMessage/create.gsp
<g:link class="list" action="index"

id="${tekMessageInstance?.event?.id}"><g:message
code="default.list.label" args="[entityName]" /></g:link>

That will ensure that we stay with this event’s messages if we return to the
list from here.

Now we’ll add the name of the event to the page heading. Modify the <h1> tag
to look like this:

forum.2/TekDays/grails-app/views/tekMessage/create.gsp
<h1>${tekMessageInstance?.event?.name} Forum - New Message</h1>

Next, open TekDays/grails-app/views/tekMessage/_form.gsp. Because we have the event
name in the view and because we don’t want to change the event from there,
let’s replace the <div> tag containing the event property with a hidden <input>.
We don’t need to display the event again, but we do need to have the value in
the <form> so that it will be submitted when we save.

forum.2/TekDays/grails-app/views/tekMessage/_form.gsp
<g:hiddenField name="event.id" value="${tekMessageInstance?.event?.id}" />

Choosing what message you’re replying to while creating the message doesn’t
make much sense, so let’s remove that <div> tag too. In its place, we’ll add a
label inside a conditional block; that way, if this is a reply, we’ll say so. Let’s

Chapter 7. Forum Messages and UI Tricks • 106

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/forum.2/TekDays/grails-app/views/tekMessage/index.gsp
http://media.pragprog.com/titles/dkgrails2/code/forum.2/TekDays/grails-app/views/tekMessage/create.gsp
http://media.pragprog.com/titles/dkgrails2/code/forum.2/TekDays/grails-app/views/tekMessage/create.gsp
http://media.pragprog.com/titles/dkgrails2/code/forum.2/TekDays/grails-app/views/tekMessage/_form.gsp
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

put this at the top of the page for clarity. Add the following code immediately
after the import statement at the beginning of the form template:

forum.2/TekDays/grails-app/views/tekMessage/_form.gsp
<g:if test="${tekMessageInstance?.parent}">

<div class="fieldcontain ${hasErrors(bean: tekMessageInstance,
field: 'parent', 'error')} ">
<label for="parent">
In Reply to:

</label>
${tekMessageInstance?.parent?.author}

</div>
</g:if>

Here we used a <g:if> tag to prevent this from being rendered unless the
tekMessageInstance has a parent property. The rest of this code just renders a label
and the author of the parent TekMessage. (We won’t see this feature yet since we
don’t yet have a way to create replies, but we’ll get there soon enough.)

Finally, we’ll use a little CSS to give our users more room to write their mes-
sages. Add class="messageField" to the subject <g:textField> and the content
<g:textArea>, like so:

forum.2/TekDays/grails-app/views/tekMessage/_form.gsp
<div class="fieldcontain ${hasErrors(bean: tekMessageInstance,

field: 'subject', 'error')} required">
<label for="subject">

<g:message code="tekMessage.subject.label" default="Subject" />
*

</label>
<g:textField name="subject" class="messageField" required=""

value="${tekMessageInstance?.subject}"/>
</div>

<div class="fieldcontain ${hasErrors(bean: tekMessageInstance,
field: 'content', 'error')} required">
<label for="content">

<g:message code="tekMessage.content.label" default="Content" />
*

</label>
<g:textArea name="content" class="messageField" cols="40" rows="5"

maxlength="2000" required="" value="${tekMessageInstance?.content}"/>
</div>

In Figure 33, Create view 2.0 (so to speak), on page 108, we see our new create
view. That’s much better. Next up: cleaning up the list and show views.

report erratum • discuss

Restricting Messages to an Event • 107

http://media.pragprog.com/titles/dkgrails2/code/forum.2/TekDays/grails-app/views/tekMessage/_form.gsp
http://media.pragprog.com/titles/dkgrails2/code/forum.2/TekDays/grails-app/views/tekMessage/_form.gsp
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Figure 33—Create view 2.0 (so to speak)

Of Templates and Ajax

On second thought, instead of cleaning up the list and show views, let’s just
set them aside and create a new view that will replace them both. To do that,
we’ll take advantage of Grails’ GSP templates.

GSP templates are simply chunks of GSP code in a file that begins with an
underscore (_likethis.gsp). They provide an easy way to share common code
across multiple pages (Grails’ use of the _form.gsp template for our create and
edit views is a great example of this). You can include a template in a GSP
page with the <g:render> tag, like this:

<g:render template="someTemplate" />

This line would render a template called _someTemplate.gsp in the same directory
as the page that it is being called from. To render templates from a different
directory, we add the path before the name of the template. We never include
the “_” at the beginning of the template name in the <g:render> tag.

Another popular use for GSP templates is rendering the response to Ajax
calls; that’s what we’re after here. Before we get too much further, let us lay

Chapter 7. Forum Messages and UI Tricks • 108

report erratum • discuss

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

out the plan. What we want is a single page with a list of messages in the
upper section, and fields for viewing a single message in the lower section.
When a user selects a message in the list, that message’s values will display
in the fields below, without reloading the rest of the page. Pretty cool, huh?
Our customer sure thought so. Now let’s see how easy this can be with Grails.

To get started, let’s create TekDays/grails-app/views/tekMessage/ajaxIndex.gsp. As a
shortcut, just copy TekDays/grails-app/views/tekMessage/index.gsp, and remove most
of it. Keep the TekMessage import statement and the <!DOCTYPE html> and <head>
(with contents), and in the <body>, keep everything up to the second <div>—
keep the opening and closing tags for the second <div>. You should end up
with something that looks like this:

forum.2/TekDays/grails-app/views/tekMessage/ajaxIndex.gsp
<%@ page import="com.tekdays.TekMessage" %>
<!DOCTYPE html>
<html>

<head>
<meta name="layout" content="main">
<g:set var="entityName" value="${message(code: 'tekMessage.label',
default: 'TekMessage')}" />

<title><g:message code="default.list.label" args="[entityName]" /></title>
</head>
<body>

<g:message
code="default.link.skip.label" default="Skip to content…"/>

<div class="nav" role="navigation">

<g:message
code="default.home.label"/>

<g:link class="create" action="create"
params='["event.id":"${event?.id}"]'><g:message
code="default.new.label" args="[entityName]" /></g:link>

</div>
<div id="list-tekMessage" class="content scaffold-list" role="main">
</div>

</body>
</html>

We kept the <head> section from the list view because it contains a couple of
<meta> tags that we need. Since this new view is going to replace the list view,
it makes sense to keep the same button bar. Other than that, we kept only
the basic page structure tags.

To flesh out the body of our new view, add the following code right after that
second opening <div> tag:

report erratum • discuss

Of Templates and Ajax • 109

http://media.pragprog.com/titles/dkgrails2/code/forum.2/TekDays/grails-app/views/tekMessage/ajaxIndex.gsp
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

forum.2/TekDays/grails-app/views/tekMessage/ajaxIndex.gsp
<h1>${event?.name} - Forum Messages</h1>
<div id="messageList">

<g:each in="${tekMessageInstanceList}" var="tekMessageInstance">
</g:each>

</div>
<h3>Message Details</h3>
<div id="details">
</div>

First we added an <h1> tag, similar to the one on the create view, using the
TekEvent instance that will be passed in from the controller. Then we added a
<div>, with an ID of messageList, to hold the list of messages. We have a style
rule in main.css for this ID that will provide scrolling if our list gets that long.
(See Appendix 1, Additional CSS Rules, on page 179.) Inside this <div>, we have
a <g:each> tag, which will iterate over the tekMessageInstanceList. Whatever we put
in the body of that tag will be displayed once for each element in the list. We’ll
talk about what to put there shortly.

Below the list <div>, we added an <h3> tag to serve as a heading to the message
detail portion of the page. Finally, we added a <div> with an id of details. This
is where the message detail template that we are about to create will be ren-
dered.

Creating the Template

Now we need to create the template that will display an individual message.
This time, just create a blank file called _details.gsp in the TekDays/grails-
app/views/tekMessage directory. We’ll borrow the <div>, , and three tags
from TekDays/grails-app/views/tekMessage/show.gsp. (The three tags are for the
subject, content, and author properties.) Because this file’s code will be inserted
into another page, it doesn’t need its own <html> or <head> tags.

forum.2/TekDays/grails-app/views/tekMessage/_details.gsp
<div id="show-tekMessage" class="content scaffold-show" role="main">

<ol class="property-list tekMessage">
<g:if test="${tekMessageInstance?.subject}">
<li class="fieldcontain">
<g:message

code="tekMessage.subject.label" default="Subject" />

<g:fieldValue bean="${tekMessageInstance}" field="subject"/>

</g:if>

Chapter 7. Forum Messages and UI Tricks • 110

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/forum.2/TekDays/grails-app/views/tekMessage/ajaxIndex.gsp
http://media.pragprog.com/titles/dkgrails2/code/forum.2/TekDays/grails-app/views/tekMessage/_details.gsp
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

<g:if test="${tekMessageInstance?.content}">
<li class="fieldcontain">
<g:message

code="tekMessage.content.label" default="Content" />

<g:fieldValue bean="${tekMessageInstance}" field="content"/>

</g:if>

<g:if test="${tekMessageInstance?.author}">
<li class="fieldcontain">
<g:message

code="tekMessage.author.label" default="Author" />

<g:link controller="tekUser" action="show"
id="${tekMessageInstance?.author?.id}">
${tekMessageInstance?.author?.encodeAsHTML()}

</g:link>

</g:if>

<g:form>

<fieldset class="buttons">
<g:link class="create" action="reply"

resource="${tekMessageInstance}">Reply</g:link>
</fieldset>

</g:form>
</div>

You may have noticed that we also added a Reply “button” at the bottom of
the template. What we added is actually a <g:link> that will be styled to look
like a button. The <g:link> will call the reply action—which we still need to create.
Don’t let us forget to return to that.

Looking at the code for our template, we can see that the only data element
that it will need is a TekMessage instance called (believe it or not) tekMessageIn-
stance. This is important to note, because when a template is rendered, the
data it requires needs to be passed to it. A template cannot automatically see
the data elements of the page that renders it. We’ll look at how to provide the
data to the template in the next section as we see how to render our template
in response to an Ajax call.

report erratum • discuss

Of Templates and Ajax • 111

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Ajax in Grails

Grails includes several Ajax tags, which we can use to call a controller action
and update a page element with the results. That’s exactly what we need to
do, but before we do it, let’s discuss a bit about the way that Grails Ajax tags
work.

Grails supports a variety of popular JavaScript libraries with regard to its
Ajax tags.1 To use these tags, we need to tell Grails which library we are using.
We do this with the <g:javascript> tag and its library attribute. This tag is placed
in the <head> section of a page. Let’s go back to TekDays/grails-app/views/tekMes-
sage/ajaxIndex.gsp and add the following line to the <head>:

forum.2/TekDays/grails-app/views/tekMessage/ajaxIndex.gsp
<g:javascript library="jquery" />

Now we can use one of Grails’ Ajax tags, and it will adapt to use the jQuery
library.2 The tag we’re going to use is <g:remoteLink>.

Let’s see how this looks in our code, and then we’ll discuss what it’s doing.
In TekDays/grails-app/views/tekMessage/ajaxIndex.gsp, add the following highlighted
code to the <g:each> body in our messageList <div>:

forum.2/TekDays/grails-app/views/tekMessage/ajaxIndex.gsp
<g:each in="${tekMessageInstanceList}" var="tekMessageInstance">

➤ <g:remoteLink action="showDetail" id="${tekMessageInstance?.id}"
update="details">➤

<p>${tekMessageInstance.author.fullName} - ${tekMessageInstance.subject}</p>➤
➤ </g:remoteLink>

</g:each>

The <g:remoteLink> tag can take controller, action, and id attributes. If the controller
attribute is not provided, then the controller that rendered the current page
will be used by default. Since the ajaxIndex view will be rendered by the
TekMessageController, we don’t need to specify it here. We did give it an action
attribute, which points to an action (which we will create next in the TekMes-
sageController). Then for the id, we use the tekMessageInstance variable from the
<g:each>. The final attribute that we set on the <g:remoteLink> tag is update. This
attribute contains the ID of the HTML element on this page that will be
updated with the result of the action—in this case, details.

1. See the Grails website for a list of supported libraries: http://grails.org/doc/2.3.1/guide/theWe-
bLayer.html#ajax.

2. Grails handles any differences that might exist in the way different JavaScript libraries
handle the tasks involved in the Ajax tags; the behavior of these tags is the same
regardless of which of the supported libraries we use.

Chapter 7. Forum Messages and UI Tricks • 112

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/forum.2/TekDays/grails-app/views/tekMessage/ajaxIndex.gsp
http://media.pragprog.com/titles/dkgrails2/code/forum.2/TekDays/grails-app/views/tekMessage/ajaxIndex.gsp
http://grails.org/doc/2.3.1/guide/theWebLayer.html#ajax
http://grails.org/doc/2.3.1/guide/theWebLayer.html#ajax
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

For the body of the <g:remoteLink>, we used the tekMessageInstance variable to
build a string containing the name of the message’s author and the subject
of the message. We’ll see how this looks shortly, but first we have to create
the showDetail action. Open TekDays/grails-app/controllers/com/tekdays/TekMessageCon-
troller.groovy, and add the following action:

forum.2/TekDays/grails-app/controllers/com/tekdays/TekMessageController.groovy
def showDetail() {

def tekMessageInstance = TekMessage.get(params.id)
if (tekMessageInstance) {

render(template:"details", model:[tekMessageInstance:tekMessageInstance])
}
else {

render "No message found with id: ${params.id}"
}

}

This action expects the params to contain an id value. The first thing we do is
define a tekMessageInstance variable and retrieve a TekMessage using the id value
in the params. If we have a valid instance, we call the render() method and pass
it the name of a template (“details”) and a model, which is a Map. The model
parameter is used to provide the data that the template will need; in this case,
we have only one object in the model, but we can include as many objects as
our template needs. The render() method will merge our template with the data
in the tekMessageInstance bean and return the results as HTML. This HTML will
then replace the contents of the <div> on our page.

Now there’s just one thing left to do before we can marvel at our handiwork:
we need to provide a way to reach our new view. If we added an action to the
TekMessageController called ajaxIndex, it would automatically render our new view,
but it would just be a copy of the index action, and that wouldn’t be very DRY.
So, we’ll use a different approach. The same render() method that we just used
for our details template can be used to render an entire view. Let’s return to
the index action and modify the last line (the line that returns the Map):

forum.1.2/TekDays/grails-app/controllers/com/tekdays/TekMessageController.groovy
def index(Integer max) {

params.max = Math.min(max ?: 10, 100)

def list
def count
def event = TekEvent.get(params.id)
if(event){

list = TekMessage.findAllByEvent(event, params)
count = TekMessage.countByEvent(event)

}

report erratum • discuss

Of Templates and Ajax • 113

http://media.pragprog.com/titles/dkgrails2/code/forum.2/TekDays/grails-app/controllers/com/tekdays/TekMessageController.groovy
http://media.pragprog.com/titles/dkgrails2/code/forum.1.2/TekDays/grails-app/controllers/com/tekdays/TekMessageController.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

else {
list = TekMessage.list(params)
count = TekMessage.count()

}
render view:'ajaxIndex', model:[tekMessageInstanceList: list,

tekMessageInstanceCount: count,
event: event]

}

This time, we pass a view parameter instead of a template. We set that parameter
to our new page, and then we pass the existing Map as the model. Now when
the index action is called (for example, when we navigate to http://localhost:8080/
TekDays/tekMessage/index), our new view will be rendered.

Wait a minute. We still need to add a reply action to the TekMessageController. OK.
The reply action will be functionally similar to the create action, but unlike create,
it will set the parent of the new TekMessage to the current one. Hopefully you still
have TekMessageController.groovy open so you can slip in the following code:

forum.1.2/TekDays/grails-app/controllers/com/tekdays/TekMessageController.groovy
def reply = {

def parent = TekMessage.get(params.id)
def tekMessageInstance = new TekMessage(parent:parent, event:parent.event,

subject:"RE: $parent.subject")
render view:'create', model:['tekMessageInstance':tekMessageInstance]

}

Our reply action is in the form of a closure. In this action, we take the id
parameter that is passed in on the link from the ajaxIndex view and use it to
retrieve a TekMessage instance. Then we create a new TekMessage, setting its parent
and subject properties based on the retrieved instance. Finally, we use the
render() method to render the create view with the tekMessageInstance in the model.
This will open the create view, which we will now modify to handle this new
responsibility.

When the create view is rendered from the reply action, the TekMessage will have
a parent assigned. We’ll change our view slightly to pass along this property
when the message form is submitted. Open the TekDays/grails-app/views/tekMes-
sage/_form.gsp file, and add the highlighted code to the block right after the
TekMessage import statement:

forum.1.2/TekDays/grails-app/views/tekMessage/_form.gsp
<g:if test="${tekMessageInstance?.parent}">

➤ <input type="hidden" name="parent.id"
value="${tekMessageInstance?.parent?.id}" />➤

<div class="fieldcontain ${hasErrors(bean: tekMessageInstance,
field: 'parent', 'error')} ">

Chapter 7. Forum Messages and UI Tricks • 114

report erratum • discuss

http://localhost:8080/TekDays/tekMessage/index
http://localhost:8080/TekDays/tekMessage/index
http://media.pragprog.com/titles/dkgrails2/code/forum.1.2/TekDays/grails-app/controllers/com/tekdays/TekMessageController.groovy
http://media.pragprog.com/titles/dkgrails2/code/forum.1.2/TekDays/grails-app/views/tekMessage/_form.gsp
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

<label for="parent">
In Reply to:

</label>
${tekMessageInstance?.parent?.author}

</div>
</g:if>

Inside our parent <g:if> block, we added a hidden field to store the tekMessageIn-
stance.parent value so that it can be passed to the save action, completing the
link between a reply and its parent.

It’s difficult to do justice to this functionality in print, but we’ll try. In the
following figure, we can see our new ajaxIndex view with a message selected,
and in Figure 35, Message create view: reply, on page 116, we can see the
result of clicking the Reply button for a message. If you’ve done anything like
this before in another Java web framework, you’re probably impressed by
how easy it was to do this. We’ve heard that that sense of awe and amazement
wears off after a while. But we’re still waiting.

Figure 34—Ajax-enabled message list

report erratum • discuss

Of Templates and Ajax • 115

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Figure 35—Message create view: reply

Display Message Threads with a Custom Tag

Now we need to add nesting to our message list in order to visualize the various
threads in our forum. We’ll do this with a custom GSP tag. If you’ve ever
written custom JSP tags or JSF components, come out from under the table.
It’s not like that at all. But just to reassure you, before we get started on our
custom tag, we’ll take a brief look at what it takes (or more important perhaps,
doesn’t take) to create a GSP tag.

A Brief Introduction to GSP Tags

The first step is to create a TagLib. A TagLib is a Groovy class with a name ending
in (surprise, surprise!) TagLib, and it lives in the grails-app/taglib directory. Grails
provides a convenience script to create this for us:

$ grails create-tag-lib com.tekdays.TekDays

This script will create TekDays/grails-app/taglib/com/tekdays/TekDaysTagLib.groovy and a
corresponding test file in TekDays/test/unit/com/tekdays/TekDaysTagLibSpec.groovy. In
that one class, we can create as many GSP tags as we want, and they will
automatically be available throughout our application. Each tag is a Groovy
closure, with optional attrs and body parameters. For example:

Chapter 7. Forum Messages and UI Tricks • 116

report erratum • discuss

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

def backwards = {attrs, body ->
out << body().reverse()

}

This is a custom GSP tag that will reverse whatever text is contained in its
body. So, <g:backwards>Hello</g:backwards> will render as olleH. That’s not very
useful, but it’s illustrative nonetheless: That’s all there is to it. There are no
TLDs (Tag library descriptors) to create, no config files to update, and no
supporting classes or interfaces. A TagLib is just a Groovy class, and each tag
is a closure with two optional parameters. The first parameter, which we call
attrs, is a Map containing any attributes the tag needs. The second, referred to
here as body, is a closure. The names given to these parameters are not
important, but the order is; the attributes Map must always be the first
parameter. (Notice that our example did not use the attrs parameter, but it
still needed to be there so that we could include the body.)

It is so easy to create custom tags in Grails that there is no excuse not to.
GSP tags can also be bundled into plugins to make it easier to share them
across projects, or to make them available to the public—but that’s a topic
for another book.3

The MessageThread Tag

Our tag will be a bit more complex than the <g:backward> tag, but not all that
much more. We are currently using two tags to render our list of messages
as links: the <g:each> tag handles the list traversal, and the <g:remoteLink> tag
renders the link, with all the Ajax magic hidden inside. Our goal is to replace
these with a single tag that will take a list of TekMessage instances, create the
same Ajax link for each one, and indent replies to provide the nested view of
message threads.

If you haven’t already, run the grails create-tag-lib script to create TekDays/grails-
app/taglib/com/tekdays/TekDaysTagLib.groovy, and then open that file. It will start
looking like this:

forum.2/TekDays/grails-app/taglib/com/tekdays/TekDaysTagLib.groovy
package com.tekdays
class TekDaysTagLib {

static defaultEncodeAs = 'html'
//static encodeAsForTags = [tagName: 'raw']

}

Remove the defaultEncodeAs line—we don’t want it here because it would escape
all of our tag’s output as HTML. Sometimes this can be a good thing, but it’s

3. Grails in Action has an excellent chapter on creating Grails plugins.

report erratum • discuss

Display Message Threads with a Custom Tag • 117

http://media.pragprog.com/titles/dkgrails2/code/forum.2/TekDays/grails-app/taglib/com/tekdays/TekDaysTagLib.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

not what we’re going for right now.4 Add the following code, and then we’ll go
over what it’s doing:

forum.1.2/TekDays/grails-app/taglib/com/tekdays/TekDaysTagLib.groovy
package com.tekdays
class TekDaysTagLib {

//static encodeAsForTags = [tagName: 'raw']
def messageThread = {attrs ->

def messages = attrs.messages.findAll{msg -> !msg.parent}
processMessages(messages, 0)

}
void processMessages(messages, indent){

messages.each{ msg ->
def body = "${msg?.author} - ${msg?.subject}"
out << "<p style='height:35; margin-left:${indent * 20}px;'>"
out << "${remoteLink(action:'showDetail', id:msg.id,

update:'details', body)}"
out << "</p>"
def children = TekMessage.findAllByParent(msg)
if (children){

processMessages(children, indent + 1)
}

}
}

}

The first thing we have is our tag closure. It is declared like a controller action,
except for the attrs parameter. The tag closure has only two lines because
we’re moving most of the processing to a method called processMessages().

The tag code’s main responsibility is preparing the starting point for the
recursive process that is required to get the nesting we are after. To do this,
we filter the list that is being passed in the messages attribute, using the findAll
method that Groovy adds to Collection. This method will pass each element of
a collection to the closure that it takes as a parameter. It will accept or reject
the element based on the Boolean result of the closure. We are checking for
the existence of a parent property in the TekMessage. The existence of a value
evaluates to true in Groovy, so we can shorten a statement like msg.parent ==
null to !msg.parent. The end result of this line is that we have a collection of top-
level messages.

The next line passes our filtered collection, along with the number 0, to the
processMessages() method. This method takes a collection of messages and an
indent value; the first time it’s called by the tag, it is given a collection of top-

4. encodeAsForTags, which we see commented out by default, works similarly. It allows us
to specify a separate encoding for each individual tag.

Chapter 7. Forum Messages and UI Tricks • 118

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/forum.1.2/TekDays/grails-app/taglib/com/tekdays/TekDaysTagLib.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

level messages and the number 0. We use the each() method to iterate over
the messages. Instead of using the default it parameter for each(), we are
explicitly declaring a msg parameter. msg, then, is a variable that represents
each individual message.

Next, we define a body, made up of the message’s author and its subject, for
our link. Then we begin writing out to the response. The first thing we send
to out is a <p> tag, which will help us with positioning our links; notice that
we use the indent parameter to determine the amount of margin-left to apply. We
next send the <remoteLink> tag to out. There is no multipass resolution of GSPs,
so we can’t write out other tags from our tag, but we can call other tags from
our tag and write out the same result that they would have written. That’s
what we are doing here.

Recall that any GSP tag can be called as a method. The tag name becomes a
method name, and the attributes become named parameters. If there is a
body, it becomes the last parameter. (Notice that we have action:'showDetail'
instead of action="showDetail".) Finally, we close the <p>. As each message in the
collection is processed, these lines will be written out, and then we will perform
a check to see whether that message has any replies.

We define a children variable, which we load with a call to TekMessage.findAllByPar-
ent(). If the message we are working on has any replies, they will be in this
collection. We then pass this collection to the processMessages() method recur-
sively, with the indent parameter incremented by 1. This will cause each new
level of replies to be indented another 20 pixels and will ensure that all replies
are accounted for, no matter how deeply they may be nested.

Having this logic in the page would have been a mess, and it would have been
unbearably cumbersome to do this in the controller. A custom tag is the
perfect solution to this problem. Indeed, GSP custom tags are the perfect
solution to many of the UI problems faced by web developers; that’s why they
are my second favorite Grails feature (the first favorite is GORM, since I—
Dave—am a recovering EJB developer). GSP tags are also a great way to reuse
view code and keep your pages DRY.

Not only does this tag prevent us from adding more code to our page, it also allows
us to remove some. Let’s open TekDays/grails-app/views/tekMessage/ajaxIndex.gsp and replace
the five lines encompassing the <g:each> tag with the following single line:

forum.1.2/TekDays/grails-app/views/tekMessage/ajaxIndex.gsp
<div id="messageList">

➤ <g:messageThread messages="${tekMessageInstanceList}" />
</div>

report erratum • discuss

Display Message Threads with a Custom Tag • 119

http://media.pragprog.com/titles/dkgrails2/code/forum.1.2/TekDays/grails-app/views/tekMessage/ajaxIndex.gsp
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

In the following figure, we can see what our handiwork looks like. Not bad!

Figure 36—Threaded message list

Summary

Wow! This was a very productive iteration. We implemented one of the most
critical features of our application; a community-based event-organizing effort
is doomed without good communication. While we were at it, we learned about
three important features of Grails. Grails templates are a convenient way of
sharing common portions of GSP code and are very helpful when using Ajax.
We also learned that Grails makes working with Ajax a snap, while not locking
us into any one JavaScript library. Then we got an overview and some good
practice with those awesome custom GSP tags.

We’ll be moving into security and related issues next, but now it’s time for a
short break. It’s time to catch up on the latest issue of GroovyMag5 to see
what’s new in this thriving community.

5. A monthly e-magazine devoted to all things Groovy: http://groovymag.com.

Chapter 7. Forum Messages and UI Tricks • 120

report erratum • discuss

http://groovymag.com
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

CHAPTER 8

Knock, Knock: Who’s There? Grails Security
Our customer keeps asking us when we are going to add security. We keep
telling him, “As soon as we need it.” But seriously, as we progress with the
TekDays application, it’s going to be very helpful to know who’s using the
application. Not only would that allow us to limit access to certain data or
areas of the application, but it would also let us be more intelligent about
what we display to our users.

Our goal this time around is to implement a simple security system and see
how we can use it to provide a more customized user experience.

Grails Security Options

Grails provides several options when it comes to security, from rolling your
own with controller interceptors and filters to using plugins for the more pop-
ular Java security frameworks out there. As of this writing, the main Grails
plugin repository has forty-two security-related plugins.

There are plugins for Apache Shiro, CAS, Spring Security, Facebook Connect,
and more. There is also the simple yet effective Authentication plugin, which
doesn’t rely on any external libraries. There are plugins for Captchas, OpenID
plugins...you get the picture. For your next Grails application, it would be
wise to spend some time looking at these plugins to see whether one or more
of them might meet your needs.1 For this project, however, we are going to
implement our own solution using Grails filters.

Logging In

Before we get into creating filters and building our security system, let’s talk
about what we want the system to do. First, we want to know who is currently

1. http://grails.org/plugins/

report erratum • discuss

http://grails.org/plugins/
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

using the system; that is, are they an anonymous user (which is fine), or are
they represented by a TekUser instance? Next, we want to restrict access to
certain areas of the application based on the current user. For example, only
organizers should be able to edit a TekEvent instance, and only organizers or
volunteers should be able to participate in the event’s forum.

For the first step, we will need some sort of login process. We will create two
new actions in the TekUserController: login and logout. We will also create a new
login view.

Open TekDays/grails-app/controllers/com/tekdays/TekUserController.groovy, and add the
following action:

def login() {
}

Interestingly, we don’t need anything in this action; simply having an action
with this name will cause the GSP that we are about to create to be rendered.
Let’s create TekDays/grails-app/views/tekUser/login.gsp and give it the following code:

security.2/TekDays/grails-app/views/tekUser/login.gsp
<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<meta name="layout" content="main" />
<title>Login</title>

</head>

<body>
<g:if test="${flash.message}">
<div class="message">${flash.message}</div>

</g:if>

<g:form action="validate">
<table>

<tr class="prop">
<td class="name">
<label for="username">User Name:</label>

</td>

<td class="value">
<input type="text" id="username" name="username" value="">

</td>
</tr>

<tr class="prop">
<td class="name">
<label for="password">Password:</label>

</td>

Chapter 8. Knock, Knock: Who’s There? Grails Security • 122

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/security.2/TekDays/grails-app/views/tekUser/login.gsp
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

<td class="value">
<input type="password" id="password" name="password" value="">

</td>
</tr>

<tr>
<td>
</td>
<td>
<input type="submit" value="login"/>

</td>
</tr>

</table>

</g:form>
</body>

</html>

Simple enough. After a standard Grails message block (which we will need if
there are problems during login), we have an HTML form with fields for username
and password, followed by a submit button. This page will be merged with our
standard header because of this line: <meta name="layout" content="main" />. The
final result can be seen in the following figure.

Figure 37—The login page

One important point about this code is the action that we’ve assigned to the
<g:form>: validate. This action will be called when we submit the form. It will
reside in the TekUserController and will use the form data to load an existing
TekUser if found. We’ll create this action now. Open TekDays/grails-app/con-
trollers/com/tekdays/TekUserController.groovy, and add the following action:

report erratum • discuss

Logging In • 123

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

def validate() {
def user = TekUser.findByUserName(params.username)
if (user && user.password == params.password){

session.user = user
redirect controller:'tekEvent', action:'index'

}

else{
flash.message = "Invalid username and password."
render view:'login'

}
}

Joe asks:

We Aren’t Going to Use Plain-Text Passwords,
Are We?

Don’t panic, Joe. This is only a simple example. Before we would put this application
in production, we would change this to use encrypted passwords, using something
like the DigestUtils class of the Apache Commons project.a We might also move the
authentication logic to a service class. There are many ways to enhance the security
of our application, all of which would fit into the basic structure we are using here.

Our goal for this example is to show the use of Grails filters and to show the structure
of a simple authentication system.

a. See http://commons.apache.org/proper/commons-codec/userguide.html.

This action, rather than the login action, does the real work of logging a user
into the system. In the first line, we define the variable user, to which we assign
the result of a call to TekUser.findByUserName(params.username). Next we check to
see whether our user has a value and, if so, whether its password matches
params.password. If both of those things are true, then we’ll stuff this TekUser
instance in the session for later use and call the redirect() method to send the
user to the index action of the TekEvent controller. If either is false, we add a
message to flash and call the render() method to redisplay the login view.

You’ll notice that we used two methods that we didn’t define anywhere. The
redirect() and render() are added to all controller classes at runtime by Grails.
The redirect() method will perform an HTTP redirect. That is, it will return a
response to the client that will cause it to make a subsequent call to the URL
that is created by the controller and action parameters.

The render() method is very versatile. We used it earlier to respond to an Ajax call.
In that instance, we passed it a template; here we pass it a view. In both cases,

Chapter 8. Knock, Knock: Who’s There? Grails Security • 124

report erratum • discuss

http://commons.apache.org/proper/commons-codec/userguide.html
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

the end result was to send a chunk of text back to the client. This method can
also be used to render XML, JSON, or any arbitrary text to the client.

In this action, we write to session, which is a Map stored in the Session scope.
Anything we put there will be available as long as this user is interacting with
our application. And since it is a Groovy Map, we can add new key/value pairs
by assigning a value to a nonexistent key. There was no user key in session, but
we added the key and assigned the value in the following line: session.user =
user. We did the same with flash, which is a Map stored in a special scope that
lasts for this request and the next, after which the values we put in will be
cleared out.

Now that we have a login page and a process for logging a user in, let’s see
how we can use filters to prompt the user to log in at the appropriate times.

Filters

Filters allow us to hook into, or intercept, the processing of a request. There
are interceptors for before, after, and afterView. There are many uses for filters,
and you can have as many filters as you need in an application. In our case,
we’ll use a filter to determine whether a user is logged in when they try to
access a “secure” page.

This must be sounding like a broken record (does anyone remember what
that is?), but Grails makes implementing filters a snap. Create a Groovy class
with a name ending in Filters, and place it in the grails-app/conf directory. In
this class, define a code block called filters, and then include individual filters
as if they were methods. Each filter (method) can take named parameters for
controller and action. Calls to this controller and action pair will be intercepted
by this filter. (An asterisk can be used as a wildcard to represent any controller
or action.) But enough chatter—let’s get to the code.

Create a new file called TekDays/grails-app/conf/SecurityFilters.groovy. Open this file,
and add the following code:

security.2/TekDays/grails-app/conf/SecurityFilters.groovy
class SecurityFilters {

def filters = {
doLogin(controller:'*', action:'*'){

before = {
if (!controllerName)

return true
def allowedActions = ['show', 'index', 'login',

'validate']
if (!session.user && !allowedActions.contains(actionName)){

redirect(controller:'tekUser', action:'login',

report erratum • discuss

Filters • 125

http://media.pragprog.com/titles/dkgrails2/code/security.2/TekDays/grails-app/conf/SecurityFilters.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

params:['cName': controllerName,
'aName':actionName])

return false
}

}
}

}
}

In our SecurityFilters class, we create a single filter called doLogin with a before
interceptor. We use wildcards for both controller and action parameters, which
means this filter will be called for all actions. We don’t actually want to require
the user to log in for every action, so we will fine-tune this filter further.

Every filter has certain properties injected into it by Grails; among these are
controllerName and actionName. These represent the original controller and action
that the user was trying to access before the filter so rudely interrupted. We
will use the actionName to determine whether we really want to filter this call.
We’ll do this in two steps. In the first step, we’ll check to see whether we have
a controllerName. If we don’t, then we can assume the user is going to the default
home page (index.gsp), in which case we will return true. For the second step,
we define a List variable with the names of actions that we want to allow. Along
with the innocuous actions show and index, we included the login and validate
actions to avoid unintended login loops. Then in our if comparison, we check
to see whether this list contains the current actionName.

The other thing we check in the if comparison is whether we already have a
user in the session. If we do not have a user and the current action is not in the
allowedActions list, we redirect to the login action of the TekUserController and pass
along the controllerName and actionName values in the params parameter. (We’ll
need them shortly.) In the final line, we return false, which will prevent any
other filters (or the original action) from being called.

Now to make this all work nicely, we have to go back and make a few changes
to our login view and the two controller actions we added to TekUserController.
We want to take advantage of the controllerName and actionName values from the
filter. When the filter redirects to the login action, it will pass these values in
the params, so we need to do something with them to keep them available.
Open TekDays/grails-app/controllers/com/tekdays/TekUserController.groovy, and modify the
empty login action like so:

security.2/TekDays/grails-app/controllers/com/tekdays/TekUserController.groovy
def login() {

if (params.cName)
return [cName:params.cName, aName:params.aName]

}

Chapter 8. Knock, Knock: Who’s There? Grails Security • 126

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/security.2/TekDays/grails-app/controllers/com/tekdays/TekUserController.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

This code checks to see whether those two values are available in params and,
if so, passes them on to the view in the returned Map. Next, we’ll modify the
view to pass these values on to the validate action. Open TekDays/grails-
app/views/tekUser/login.gsp, and add the following hidden input elements somewhere
inside the <g:form>.

security.2/TekDays/grails-app/views/tekUser/login.gsp
<input type="hidden" name="cName" value="${cName}">
<input type="hidden" name="aName" value="${aName}">

Now when the form is submitted, the controllerName and actionName values from
the filter will be passed on to the validate action. We will now use these values
to redirect the user to their original destination on successful login.

Open TekDays/grails-app/controllers/com/tekdays/TekUserController.groovy, and modify the
validate action to look like this:

security.2/TekDays/grails-app/controllers/com/tekdays/TekUserController.groovy
def validate() {

def user = TekUser.findByUserName(params.username)

if (user && user.password == params.password){
session.user = user

if (params.cName)
redirect controller:params.cName, action:params.aName

else
redirect controller:'tekEvent', action:'index'

} else{
flash.message = "Invalid username and password."
render view:'login'

}
}

What we’re doing here is checking to see whether the controllerName and action-
Name (using shortened variables) are available. If they are, we use them to
redirect the user; otherwise, we redirect them to the index action of the
TekEventController as before. We can come back and change that to the home
page later (after we add one).

This feature is a bit tricky to show in screenshots, but go ahead and try it.
Run the application, and go to the default home page. Choose any of the
controller links, and you should come to the list view. Click the “New” button,
and you should see the login screen shown in the last figure. Log in using
the credentials of one of the users we created earlier, and you should be
redirected to the create view that you were aiming at. Good deal!

report erratum • discuss

Filters • 127

http://media.pragprog.com/titles/dkgrails2/code/security.2/TekDays/grails-app/views/tekUser/login.gsp
http://media.pragprog.com/titles/dkgrails2/code/security.2/TekDays/grails-app/controllers/com/tekdays/TekUserController.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Logging Out

Since we have a method for logging in and because we like—er, because our
customer is quite fond of symmetry, we should add a method for logging out.
Don’t worry—it’ll take only a couple lines of code. Go back to TekDays/grails-
app/controllers/com/tekdays/TekUserController, and add a logout action, like so:

security.2/TekDays/grails-app/controllers/com/tekdays/TekUserController.groovy
def logout = {

session.user = null
redirect(uri:'/')

}

Since the way that our filter determines whether a user is logged in is by the
existence of a value in the user key, we set that key to null to “log them out.”
We don’t need to check for a user key before we do this; if it doesn’t exist, it
will be created and set to null. Then, to send the logged-out user back to the
home page, we use the redirect() method. In most cases, this method will take
an action, or a controller and action pair. But it can also take a url, or, as in this
case, a uri. Simply redirecting to a URI of / will return us to the home page no
matter where we are in the application. Pretty handy!

Now we can log in and out of the system, but the only way we can do either
directly is to type the appropriate URL into our browser (for example,
http://localhost:8080/TekDays/tekUser/login). That’s not very Web 2.0. It’s more like
Web 0.5. What would be great is if we had a login/logout toggle that we could
display where appropriate. Sounds like a great place for a custom tag!

Go back to our taglib at TekDays/grails-app/taglib/com/tekdays/TekDaysTagLib.groovy and
add a new tag closure called loginToggle:

security.2/TekDays/grails-app/taglib/com/tekdays/TekDaysTagLib.groovy
def loginToggle = {

out << "<div style='margin: 15px 0 40px;'>"
if (request.getSession(false) && session.user){

out << ""
out << "Welcome ${session.user}."
out << ""
out << ""
out << "Logout "

} else{
out << ""
out << ""
out << "Login "

}
out << "</div>
"

}

Chapter 8. Knock, Knock: Who’s There? Grails Security • 128

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/security.2/TekDays/grails-app/controllers/com/tekdays/TekUserController.groovy
http://localhost:8080/TekDays/tekUser/login
http://media.pragprog.com/titles/dkgrails2/code/security.2/TekDays/grails-app/taglib/com/tekdays/TekDaysTagLib.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

This tag doesn’t need any attributes or a body, so we skip the closure
parameters altogether. We start by writing out an opening <div>. Then we
check to see whether a user exists. If we have a user, we output a “Welcome”
message and a link to allow them to log out. For the message, we use
${session.user} inside a GString. (This will lead to a call to the TekUser.toString()
method, which we defined earlier.) For the link, we use a regular anchor tag
along with the <createLink> tag, called as a method. If there is no user, we just
output a link to allow the user to log in. There’s also a little CSS, but that’s
not too exciting.

We’ll use this new tag in TekDays/grails-app/views/layouts/main.gsp, so go ahead and
open that file. Add the <g:loginToggle> tag, as shown here:

security.2/TekDays/grails-app/views/layouts/main.gsp
<div id="logo" role="banner">

<img src="${resource(dir: 'images', file: 'td_logo.png')}"
alt="TekDays"/>

➤ <g:loginToggle />
</div>

We can see how our new custom tag looks in the following figure. Much better.

Figure 38—The loginToggle tag in action

report erratum • discuss

Logging Out • 129

http://media.pragprog.com/titles/dkgrails2/code/security.2/TekDays/grails-app/views/layouts/main.gsp
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Summary

That went quickly! It’s OK—you can use the extra time to do a little experi-
menting. Maybe you can try using filters to add logging or something exciting
like that. We now have the beginnings of a workable security system in place
for TekDays. It’s not as robust as those provided by the Spring Security or
Shiro plugins, but it’ll work for our purposes. We also have a new custom tag
in our growing tag library.

Next up, we’ll start tying some of these pieces together with a more useful
home page and a dashboard view for event organizers. We’ll see how Grails
allows us to build much more than single-domain views and that MVC doesn’t
have to be a collection of silos. It just keeps getting better!

Chapter 8. Knock, Knock: Who’s There? Grails Security • 130

report erratum • discuss

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

CHAPTER 9

Big-Picture Views
So far, the views we’ve been building have been focused on a single domain
class. The Grails convention-based MVC architecture allows us to build these
types of views quickly, and they play an important role in most applications.
But most applications—TekDays included—will also need a way to interact
with data from multiple domain classes at a time.

The person taking on the responsibility of organizing a community technical
event has a big job on their hands; it’s an exciting and rewarding job, but a
big one nonetheless. We’re here to help that hard-working, visionary individ-
ual, and one way we can do that is to provide a more convenient way for them
to see details about their event and to perform common tasks. In this iteration,
we’re going to implement an organizer’s dashboard view. This view will not
be tied to any one domain class but will interact with most (if not all) of them
at one time. We might even hit data that is not from our domain.

Before we launch into what will arguably be the most complex view of our
application, let’s warm up with another view that needs some work. Our home
page could really use some love. The list of controller links is getting kind of
old, so let’s warm up our GSP muscles with a home page makeover.

Home Page Makeover

The application home page can be found in the root view directory: TekDays/grails-
app/views/index.gsp.

Let’s open this file now to see what we have to work with:

security.2/TekDays/grails-app/views/index.gsp
<!DOCTYPE html>
<html>

<head>
<meta name="layout" content="main"/>
<title>Welcome to Grails</title>

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/security.2/TekDays/grails-app/views/index.gsp
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

<!-- embedded CSS omitted for the sake of space -->
</head>
<body>

<g:message
code="default.link.skip.label" default="Skip to content…"/>

<div id="status" role="complementary">
<h1>Application Status</h1>

App version: <g:meta name="app.version"/>
Grails version: <g:meta name="app.grails.version"/>
Groovy version: ${GroovySystem.getVersion()}
JVM version: ${System.getProperty('java.version')}
Reloading active: ${grails.util.Environment.reloadingAgentEnabled}
Controllers: ${grailsApplication.controllerClasses.size()}
Domains: ${grailsApplication.domainClasses.size()}
Services: ${grailsApplication.serviceClasses.size()}
Tag Libraries: ${grailsApplication.tagLibClasses.size()}

<h1>Installed Plugins</h1>

<g:each var="plugin"
in="${applicationContext.getBean('pluginManager').allPlugins}">
${plugin.name} - ${plugin.version}

</g:each>

</div>
<div id="page-body" role="main">
<h1>Welcome to Grails</h1>
<p>Congratulations, you have successfully started your first Grails

application! At the moment this is the default page, feel free to
modify it to either redirect to a controller or display whatever
content you may choose. Below is a list of controllers that are
currently deployed in this application, click on each to execute
its default action:</p>

<div id="controller-list" role="navigation">
<h2>Available Controllers:</h2>

<g:each var="c"
in="${grailsApplication.controllerClasses.sort { it.fullName } }">
<li class="controller"><g:link

controller="${c.logicalPropertyName}">${c.fullName}</g:link>

</g:each>

</div>
</div>

</body>
</html>

Chapter 9. Big-Picture Views • 132

report erratum • discuss

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

We’ll be getting rid of most of this, but it is interesting to see what’s going on
here. For example, there is a <g:each> tag that is iterating over a list of all the
controllers in the application and creating a link for each one. Looking at
things like grailsApplication.controllerClasses gives you an idea of the types of things
you can do with Grails as you move on from here. Grails is by no means a
shallow framework!

As interesting as that code is, it doesn’t do what we need right now, so we’ll
get rid of everything in the <body> section. In the <head>, we’ll remove the
<style> block of page-specific CSS and change the <title> to the name and slogan
of our application. We’ll replace the <body> with a welcome paragraph and a
few <div> blocks to represent the major tasks in TekDays. The end result
should look like this:

bigger.2/TekDays/grails-app/views/index.gsp
<!DOCTYPE html>
<html>

<head>
<meta name="layout" content="main"/>
<title>TekDays - The Community is the Conference!</title>

</head>
<body>

<div id="welcome">

<h3>Welcome to TekDays.com</h3>
<p>TekDays.com is a site dedicated to assisting individuals and

communities to organize technology conferences. To bring great
minds with common interests and passions together for the good
of greater geekdom!</p>

</div>
<div class="homeCell">
<h3>Find a Tek Event</h3>
<p> See if there's a technical event in the works that strikes your

fancy. If there is, you can volunteer to help or just let the
organizers know that you'd be interested in attending.
Everybody has a role to play.</p>

<g:link controller="tekEvent" action="index">Find a Tek Event</g:link>

</div>
<div class="homeCell">
<h3>Organize a Tek Event</h3>
<p>If you don't see anything that suits your interest and location,

then why not get the ball rolling. It's easy to get started and
there may be others out there ready to get behind you to make it
happen.</p>

<g:link controller="tekEvent" action="create"> Organize a Tek Event</g:link>

report erratum • discuss

Home Page Makeover • 133

http://media.pragprog.com/titles/dkgrails2/code/bigger.2/TekDays/grails-app/views/index.gsp
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

</div>
<div class="homeCell">
<h3>Sponsor a Tek Event</h3>
<p>If you are part of a business or organization that is involved in

technology then sponsoring a tek event would be a great way to
let the community know that you're there and you're involved.</p>

<g:link controller="sponsor" action="create">Sponsor a Tek Event</g:link>

</div>

</body>
</html>

That’s kind of a long listing, but it’s not very complicated. We broke the page
up into four blocks: an introduction and one section each for the three main
activities users will do in our application. There are other activities, but they
will be branches off of these three—browsing events, creating an event, or
becoming a sponsor. In the following figure, we can see our new home page
in all of its glory (so to speak).

Figure 39—The TekDays home page

Chapter 9. Big-Picture Views • 134

report erratum • discuss

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Creating a New Controller

Now that we’re all warmed up and ready, we’ll get to work on the new organiz-
er’s dashboard view. To keep our overall architecture clean and not confuse
the conventions that have proved so helpful to us, we will create a new con-
troller for the dashboard view and any related views. We’ll use the create-controller
script to do this:

$ grails create-controller com.tekdays.Dashboard

The script creates the file TekDays/grails-app/controllers/com/tekdays/DashboardCon-
troller.groovy, along with the corresponding test file TekDays/test/unit/com/tekdays/
DashboardControllerSpec.groovy. It also creates the TekDays/grails-app/views/dashboard
directory, where our new controller will look for views.

Controllers and Conventions

The Grails convention of naming a controller with a domain class name followed by
Controller, and the way that the generate-all script takes a domain class and generates
a conventionally named controller and standard views in a directory with the same
name, can make it seem like everything must be based on a domain class. The fact
is that aside from the work of generate-all, there is no link between a domain class and
a controller.

Any domain class can be accessed from any controller. The static methods that Grails
adds to domain classes (get(), list(), and so on) are available in any controller.

The real convention-based link is between controllers and views. An action in a con-
troller will, unless directed otherwise, attempt to render a view named after the action,
in a directory named after the controller. For example, a bar action in FooController will
attempt to render the view in ../grails-app/views/foo/bar.gsp.

This controller will be responsible for rendering the dashboard view and
supplying it with the necessary data. To be clearer about what data we need,
we’ll work on the view first. Once we have that done, we’ll come back to the
DashboardController.

Designing the Dashboard View

The purpose of the dashboard view is to give event organizers and volunteers
an “at-a-glance” view of the most pertinent information regarding their event,
with links to get to where they need to go. This will be their starting place
when they come to work on their event.

report erratum • discuss

Creating a New Controller • 135

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

We’ll discuss the design more as we go along, but to get started, create an
empty file called TekDays/grails-app/views/dashboard/dashboard.gsp, and add the follow-
ing code:

bigger.2/TekDays/grails-app/views/dashboard/dashboard.gsp
<html>

<head>
<title>TekDays - Dashboard</title>
<meta name="layout" content="main" />

</head>
<body>
</body>

</html>

This page will have a good amount of content in it, so in order to keep it
manageable from a coding standpoint, we’ll compose the page out of a series
of templates. Our main dashboard page will consist of several <g:render> tags,
which can easily be rearranged and styled as necessary. We’ll add these tags
now and then create the templates they refer to. In dashboard.gsp, add the fol-
lowing code between the opening and closing <body> tags:

bigger.2/TekDays/grails-app/views/dashboard/dashboard.gsp
<div id="event" style='margin:10px 10px 10px 10px'>

<g:render template="event" model="${['event':event]}" />
</div>
<div id="tasks" style='margin:10px 10px 10px 10px'>

<g:render template="tasks" model="${['tasks':tasks]}" />
</div>
<div id="volunteers" style='margin:10px 10px 10px 10px'>

<g:render template="volunteers" model="${['volunteers':volunteers]}" />
</div>
<div id="messages" style='margin:10px 10px 10px 10px'>

<g:render template="messages" model="${[messages:messages]}" />
</div>
<div id="sponsors" style='margin:10px 10px 10px 10px'>

<g:render template="sponsors" model="${[sponsorships:sponsorships]}" />
</div>

We added several <div> tags containing <g:render> tags. We can tweak the
styling on these elements or change their order or what have you. Now we
can address each template on its own, which will help our discussion (as well
as our code) to be more organized. Recall that the <g:render> tag will insert the
final HTML of the designated template inside the containing element—in this
case, the <div>. Let’s start with the template for the basic event information.

Chapter 9. Big-Picture Views • 136

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/bigger.2/TekDays/grails-app/views/dashboard/dashboard.gsp
http://media.pragprog.com/titles/dkgrails2/code/bigger.2/TekDays/grails-app/views/dashboard/dashboard.gsp
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Basic Event Information

In this first template we’ll have information from the TekEvent itself, such as
name, city, dates, and venue. We’ll display the event name and city at the
top center and then build a simple table to display the other data elements.
Create the file TekDays/grails-app/views/dashboard/_event.gsp, and give it the following
code:

bigger.2/TekDays/grails-app/views/dashboard/_event.gsp

<h1>${event}</h1>

<table>

<tr>
<td>
Start Date: <g:formatDate format="MMM/dd/yyyy" date="${event.startDate}"/>

</td>

<td>
<g:if test="${event.endDate}">

End Date: <g:formatDate format="MMM/dd/yyyy" date="${event.endDate}"/>
</g:if>

</td>
</tr>

<tr>
<td>
Venue: ${event.venue}

</td>

<td>
Number of potential attendees: ${event.respondents.size()}

</td>
</tr>

</table>

Notice that we also displayed the number of potential attendees. This is not
a data element itself, but is the count of the respondents collection property.
This is the type of information that we will want at a glance; the complete list
of respondents’ email addresses would be overkill here.

Tasks

Next up is the task list. This will be an abbreviated list of the first few
incomplete tasks, with a link to go to the full task list.

Create TekDays/grails-app/views/dashboard/_tasks.gsp, and add this code:

report erratum • discuss

Designing the Dashboard View • 137

http://media.pragprog.com/titles/dkgrails2/code/bigger.2/TekDays/grails-app/views/dashboard/_event.gsp
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

bigger.2/TekDays/grails-app/views/dashboard/_tasks.gsp
<h3>Things to do</h3>
<table>

<thead>
<tr>
<th>Task Title</th>
<th>Due Date</th>
<th>Assigned To</th>

</tr>
</thead>
<g:each in="${tasks}" var="task">

<tr>
<td>${task.title}</td>
<td>

<g:formatDate format="MM/dd/yyyy" date="${task.dueDate}" />
</td>
<td>

${task.assignedTo}
</td>

</tr>
</g:each>

</table>
<g:link controller="task" action="index" id="${event.id}">

View all ${event.tasks.size()} tasks for this event.
</g:link>

The template starts out with a heading, followed by a table with three columns
displaying the title, dueDate, and assignedTo properties of each Task. Then we finish
off with a link to the rest of the tasks for this event. (Notice that we take
advantage of the GSP being one big GString by embedding a Groovy expression
in the middle of the <g:link> body.)

Volunteers

For the volunteers template, create TekDays/grails-app/views/dashboard/_volunteers.gsp,
and enter the following code:

bigger.2/TekDays/grails-app/views/dashboard/_volunteers.gsp
<h3>Volunteers</h3>

<table>
<thead>

<tr>
<th>Name</th>
<th>Email Address</th>
<th>Web Site</th>

</tr>
</thead>

Chapter 9. Big-Picture Views • 138

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/bigger.2/TekDays/grails-app/views/dashboard/_tasks.gsp
http://media.pragprog.com/titles/dkgrails2/code/bigger.2/TekDays/grails-app/views/dashboard/_volunteers.gsp
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

<g:each in="${volunteers}" var="volunteer">
<tr>
<td>

<g:link controller="tekUser" action="show" id="${volunteer.id}">
${volunteer.fullName}

</g:link>
</td>
<td>

${volunteer.email}

</td>
<td>

${volunteer.website}

</td>

</tr>
</g:each>

</table>

The volunteers template starts out the same as the tasks template with a header,
a table with three columns, and a row for each volunteer. One difference is
that we are not limiting the list of volunteers; the whole gang will be there.
Some other differences are the links that we are building in. Notice the <g:link>
tag that we use inside the fullName <td>. This will create a link to the show action
of the TekUser controller with the id of the given volunteer. We also used HTML
anchor tags to turn the volunteer’s email and website into links. Now the
organizer has a quick way to fire off an email to a volunteer.

Messages

Next, we’ll have a top-level list of the messages in the forum. Create a blank
file called TekDays/grails-app/views/dashboard/_messages.gsp, and code it as follows:

bigger.2/TekDays/grails-app/views/dashboard/_messages.gsp
<h3>Forum Messages</h3>
<table>

<thead>
<tr>
<th>Author</th>
<th>Subject</th>
<th>Content</th>

</tr>
</thead>
<g:each in="${messages}" var="msg">

<tr>
<td>

report erratum • discuss

Designing the Dashboard View • 139

http://media.pragprog.com/titles/dkgrails2/code/bigger.2/TekDays/grails-app/views/dashboard/_messages.gsp
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

<g:link controller="tekUser" action="show" id="${msg.author.id}">
${msg.author}

</g:link>
</td>
<td>

${msg.subject}
</td>
<td>

${msg.content[0..Math.min(msg.content.size() -1, 24)]}
${msg.content.size() > 25 ? '...' : ''}

</td>
</tr>

</g:each>
</table>
<g:link controller="tekMessage" action="index" id="${event.id}">

View threaded messages for this event.
</g:link>

This code is similar to the others: a table with three columns and a <g:each>
tag to iterate over the messages and fill the table. The messages list will contain
only top-level messages (no replies), but this will be handled in the controller.
One interesting thing that we did in this template is truncate the content if it
is more than 25 characters long.

Groovy allows us to retrieve a portion of a String using a range, as in the fol-
lowing example:

bigger.2/TekDays/scripts/substring_example.groovy
def s = 'Grails is fun!'
assert s[0..5] == 'Grails'

In our template, this line:

${msg.content[0..Math.min(msg.content.size() -1, 24)]}

uses a range to get the first 25 characters of the content property of the mes-
sage. To avoid getting an IndexOutOfBounds exception if the content is shorter than
25 characters, we used Math.min(). In the next line:

${msg.content.size() > 25 ? '...' : ''}

we tacked on an ellipsis, using a Java ternary operator. If we were going to
do this anywhere else, it would be another good candidate for a custom tag.

Sponsors

This last template will contain a Sponsor list. But as we discussed in Many-to-
Many Relationships, on page 49, the TekEvent has no direct relationship with
the Sponsor class; we have to work with the intermediate class Sponsorship. (Our

Chapter 9. Big-Picture Views • 140

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/bigger.2/TekDays/scripts/substring_example.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

template will actually contain information from both Sponsor and Sponsorship.)
Create a blank file called TekDays/grails-app/views/dashboard/_sponsors.gsp, and add
the following code:

bigger.2/TekDays/grails-app/views/dashboard/_sponsors.gsp
<h3>Sponsors</h3>
<table>

<thead>
<tr>
<th>Name</th>
<th>Web Site</th>
<th>Contribution</th>

</tr>
</thead>

<g:each in="${sponsorships}" var="s">
<tr>
<td>

<g:link controller="sponsor" action="show" id="${s.sponsor.id}">
${s.sponsor.name}

</g:link>
</td>

<td>

${s.sponsor.website}

</td>
<td>

${s.contributionType}
</td>

</tr>
</g:each>

</table>

The <g:each> tag in this template is iterating over a list of Sponsorship instances.
Each instance is being stored in the variable s. To get the sponsor.name and
sponsor.website properties, we accessed the sponsor property of the Sponsorship class
like this: ${s.sponsor.name}. The contributionType is a property of the Sponsorship
class, so we can access it directly. We also implemented links to the Sponsor
show view and the sponsor’s website, the same way we did for the volunteers
template.

Now we have the basic components of our dashboard page. We will come back
to it later and add some features to make it more useful, but first we want to
close the feedback loop and see this view in action. To do that, we need to
add the controller action that will collect the data we need and serve up the
view.

report erratum • discuss

Designing the Dashboard View • 141

http://media.pragprog.com/titles/dkgrails2/code/bigger.2/TekDays/grails-app/views/dashboard/_sponsors.gsp
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Adding the Dashboard Action

We can tell from looking at the code for our dashboard view that it will need
the following data elements when it is rendered: event, tasks, volunteers, messages,
and sponsorships. The first of these is a single TekEvent instance; the rest are
collections of related objects.

Some of these collections need to be filtered or limited in some way. This will
also be done in the controller action.

Let’s see how easy this can be. Open TekDays/grails-app/controllers/com/tekdays/Dash-
boardController.groovy. The empty index action should already be there. Right after
that, add the dashboard action:

bigger.2/TekDays/grails-app/controllers/com/tekdays/DashboardController.groovy
package com.tekdays
class DashboardController {

def index() { }

def dashboard = {
def event = TekEvent.get(params.id)
if (event){

if(event.organizer.userName == session.user.userName ||
event.volunteers.collect{it.userName}.contains(

session.user.userName)){
def tasks = Task.findAllByEventAndCompleted(event, false,

max:3, sort:'dueDate', order: 'asc'])
def volunteers = event.volunteers
def messages = TekMessage.findAllByEventAndParentIsNull(event,

[sort:'id', order:'desc'])
def sponsorships = event.sponsorships
return [event:event, tasks:tasks, volunteers:volunteers,

messages:messages, sponsorships:sponsorships]
}
else{

flash.message = "Access to dashboard for ${event.name} denied."
redirect controller:'tekEvent', action:'index'

}
}
else{

flash.message = "No event was found with an id of ${params.id}"
redirect controller:'tekEvent', action:'index'

}
}

}

This action expects an id in the params Map. We first use that value to retrieve
a TekEvent instance, using the TekEvent.get() method. The rest of the code is

Chapter 9. Big-Picture Views • 142

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/bigger.2/TekDays/grails-app/controllers/com/tekdays/DashboardController.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

wrapped in a couple of if blocks. If the event is null, we add a message to flash
and redirect the user to the TekEvent list. If the event is not null, then we check
to see whether the logged-in user has access to this view.

This view is for event organizers or volunteers, so we check to see whether
the logged-in user (session.user) is either the organizer or a user in the list of
volunteers. Determining whether the logged-in user is the organizer is a
simple comparison, but determining whether the logged-in user is among the
volunteers is a bit tricky. We use the collect() method on event.volunteers to iterate
over the Set and return a list containing the userName of each volunteer. Then
we call the contains() method on that list, passing in the userName of the logged-
in user. If that test is passed, we begin retrieving the rest of the data.

The tasks variable is a list of Task instances associated with this TekEvent. We
could use the tasks property of the TekEvent class, as we will do with others,
but we want to limit the list to the first three incomplete tasks. Dynamic
finders give us an easy way to do this. All of Grails’ dynamic finders allow a
Map parameter, which can contain the following elements: offset, max, sort, and
order. These values are used for pagination and sorting (which we get in the
scaffolded list views, for example). We take advantage of max to limit our list
to three items and use sort to get the tasks that are most urgent.

We don’t need to do anything special with the volunteers list, so we just take
the event.volunteers property. The messages list should show the most recent
messages, so we use a dynamic finder again (this time using the IsNull com-
parator) and pass in parameters in the Map to do a descending sort on the id
property.

The sponsorships list is also a simple one, so we just use the sponsorships property
of the TekEvent. Once we’ve defined and loaded all of the data elements our
dashboard view needs, we return them in the params Map.

Now, if we log in as the event organizer or a volunteer and navigate to
http://localhost:8080/TekDays/dashboard/dashboard/1, we’re greeted with the page shown
in Figure 40, TekDays organizer's dashboard, on page 144.

Adding a Menu

Our dashboard view gives event organizers and volunteers a good look at
most aspects of their event, but it would be nice if they could take some
actions from there, too. We’ll add a menu to the dashboard to enable that.

Open TekDays/grails-app/views/dashboard/dashboard.gsp, and add the following code to
the top of the <body> section:

report erratum • discuss

Adding a Menu • 143

http://localhost:8080/TekDays/dashboard/dashboard/1
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Figure 40—TekDays organizer’s dashboard

bigger.2/TekDays/grails-app/views/dashboard/dashboard.gsp
<div class="nav" role="navigation">

Home
<g:link class="create" controller="task" action="create"> Create

Chapter 9. Big-Picture Views • 144

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/bigger.2/TekDays/grails-app/views/dashboard/dashboard.gsp
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Task</g:link>
<g:link class="create" controller="sponsorship" action="create">Add
Sponsor</g:link>

<g:link class="list" controller="sponsor" action="index"> All
Sponsors</g:link>

</div>

This code is mostly borrowed from the scaffolded pages that Grails gave us.
We kept the “Home” menu item and added items to create new tasks and
sponsorships. We also added a menu item to list all sponsors. (This might be
useful to see who else is interested in sponsoring technical events.) We are
using the <g:link> and <g:createLink> tags, which we discussed earlier. One
interesting thing here is the CSS classes that we are using: home, create, and
list. These classes are provided by Grails and can be found in TekDays/web-
app/css/main.css.

In the following figure, we can see what our dashboard menu looks like.

Figure 41—The dashboard menu

Linking to the Dashboard

Now that we have a dashboard view, we need to provide an easy way to get
to it. The TekEvent show view is a logical place to provide a link to the dash-
board. Open TekDays/grails-app/views/tekEvent/show.gsp, and add the highlighted code
to the “nav” <div> near the top of the file.

bigger.2/TekDays/grails-app/views/tekEvent/show.gsp
<div class="nav" role="navigation">

<g:message
code="default.home.label"/>

<g:link class="list" action="index"><g:message
code="default.list.label" args="[entityName]" /></g:link>

report erratum • discuss

Linking to the Dashboard • 145

http://media.pragprog.com/titles/dkgrails2/code/bigger.2/TekDays/grails-app/views/tekEvent/show.gsp
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

<g:link class="create" action="create"><g:message
code="default.new.label" args="[entityName]" /></g:link>

<g:link class="list" controller="dashboard" action="dashboard"➤
➤ id="${tekEventInstance.id}"> Event Dashboard</g:link>

</div>

Again, we just copied the existing menu code and modified the <g:link> tag to
go to the dashboard action of the DashboardController. Notice that the variable used
to represent the TekEvent instance is tekEventInstance, instead of event as we have
been using. When modifying an existing view, we have to use the variable
names that are passed to it by the controller. (To find out what they are, we
can just look at the controller action.)

The updated menu on the show view is shown in the following figure.

Figure 42—The event show view menu

Summary

We now have a convenient dashboard view to help event organizers and vol-
unteers keep an eye on their event, and we have an easy way for them to get
to it. We have security in place so that only authorized users can get to the
dashboard. As a bonus, we have a much friendlier and more helpful home
page. And while we got all that done, we learned how to create a controller
that is not tied to a domain class and use it to populate and access views
that span multiple domain classes. We also got some good practice working
with GSP views and templates. (Our customer is impressed, too, and that’s
always a good thing.)

In the next iteration, we’ll be looking for a good way to add search capabilities
to TekDays. This will introduce us to more of the coolness that is GORM and
to the Grails plugin architecture.

Chapter 9. Big-Picture Views • 146

report erratum • discuss

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

CHAPTER 10

Seek, and You Shall Find
Any nontrivial application needs to have some sort of search mechanism.
TekDays is no exception. In fact, our customer informed us of three different
places where he wants us to incorporate some sort of search behavior. Well,
actually he wanted more than that, but we had to take a stand against scope
creep. For now, we will implement these three: first, when a user logs into
TekDays, we will find any TekEvent that has them as the organizer; second, we
will also find any TekEvent for which they are a volunteer (both of these will
show up on the home page); and finally, we will have the traditional search
feature where users can look for a TekEvent based on the properties of the
event. As we implement these new features, we will describe three common
ways of searching and finding objects with Grails.

Search Using Dynamic Finders

When an event organizer logs into TekDays, we should give them a direct link
to the event, or events, that they are organizing. These folks are busy; we
don’t want to waste their time. Fortunately, this is very easy to do using Grails’
dynamic finders (introduced in Introducing GORM, on page 41).

Here’s the plan. When the user logs in, we will find all the TekEvent instances
that have this user assigned to the organizer property. We will then display
links to the show view for each TekEvent on the home page.

The search part of this feature is pretty simple, but we have to decide just
where to do it and how to display it. Let’s have a brief design session to see
what we can come up with. We want to show the organizer’s events on the
home page, but the home page, unlike most pages in a Grails application, is
not rendered from a controller action. That means that we can’t pass the
event list to it in a model (a Map). We could retrieve the list right from the page
with code like this:

report erratum • discuss

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

<g:each in="${TekEvent.findAllByOrganizer(session.user)}" var="event">
<!-- code to display event here -->

</g:each>

There are a couple of problems with this approach. First, we are putting more
code in our page than we should. Second, we would want to do this only if
we have a logged-in user, so we would have to wrap this code in something
like this:

<g:if test="${session.user}">
<!-- each loop and corresponding code goes here -->

</g:if>

This would work, but it’s ugly. So, what would be a good way to load and
display these events every time the page loads for a logged-in event organizer?
If you said “custom tag,” you get a gold star by your name. This is an excellent
case for a custom tag. Let’s open our tag library, TekDays/grails-app/taglib/com/tek-
days/TekDaysTagLib.groovy, and add the following code at the end of the class:

seek.2/TekDays/grails-app/taglib/com/tekdays/TekDaysTagLib.groovy
def organizerEvents = {

if (request.getSession(false) && session.user){
def events = TekEvent.findAllByOrganizer(session.user)
if (events){

out << "<div style='margin-left:25px; margin-top:25px; width:85%'>"
out << "<h3>Events you are organizing:</h3>"
out << ""
events.each{

out << "<a href='"
out << "${createLink(controller:'tekEvent',action:'show',

id:it.id)}'>"
out << "${it}"

}
out << ""
out << "</div>"

}
}

}

We defined a closure called organizerEvents that creates a tag called <g:organiz-
erEvents>. This closure takes no parameters, which means that our new tag
will not have a body or any attributes. Inside the closure, the first thing we
do is check to see whether there is a logged-in user. (Recall from Chapter 8,
Knock, Knock: Who's There? Grails Security, on page 121, that we store the
logged-in user in session.user.)

If we have a user, we use the dynamic finder TekEvent.findAllByOrganizer() to get a
list of TekEvent instances. In the next line, we check to see whether that call

Chapter 10. Seek, and You Shall Find • 148

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/seek.2/TekDays/grails-app/taglib/com/tekdays/TekDaysTagLib.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

returned anything. In Groovy, a collection reference evaluates to false if it is
null or empty. The next few lines set up a <div> and an .

Next, we use the each() method to iterate over our list of events and create a
 and an <a> for each event. Notice how we use ${it} for the body of the <a>
tag; this will call the toString() on the TekEvent, which returns name and city
properties. Finally, we close out the ordered list and the <div>.

Now we can retrieve the list of events and display them on our home page by
adding a single line of code. In TekDays/grails-app/views/index.gsp, add the following
highlighted line:

seek.2/TekDays/grails-app/views/index.gsp
<h3>Welcome to TekDays.com</h3>
<p>TekDays.com is a site dedicated to assisting individuals and

communities to organize technology conferences. To bring great
minds with common interests and passions together for the good
of greater geekdom!</p>

</div>

➤ <g:organizerEvents />
<div class="homeCell">

<h3>Find a Tek Event</h3>

<p> See if there's a technical event in the works that strikes your fancy.
If there is, you can volunteer to help or just let the
organizers know that you'd be interested in attending.
Everybody has a role to play.</p>

<g:link controller="tekEvent" action="index">Find a Tek Event</g:link>

</div>

Not only have we avoided putting a bunch of business logic in our page, but
we also have a tag that can easily be reused in other pages as needed. We
don’t know about you, but we’ll sure sleep better at night.

Now that we have this nifty feature, let’s make one more change to make it
easier to see it in action. Currently, the validate action of the TekUserController
redirects users to the TekEventController.index action after a successful login. We
want to change that to redirect to the home page. Open TekDays/grails-app/con-
trollers/com/tekdays/TekUserController.groovy, and find the line in the validate action
that looks like this:

redirect(controller:'tekEvent', action:'index')

Change that to look like the following highlighted line:

report erratum • discuss

Search Using Dynamic Finders • 149

http://media.pragprog.com/titles/dkgrails2/code/seek.2/TekDays/grails-app/views/index.gsp
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

seek.2/TekDays/grails-app/controllers/com/tekdays/TekUserController.groovy
def validate() {

def user = TekUser.findByUserName(params.username)
if (user && user.password == params.password){

session.user = user
if (params.cName)

redirect controller:params.cName, action:params.aName
else

redirect(uri:'/')➤

}
else{

flash.message = "Invalid username and password."
render view:'login'

}
}

In the followinbg figure, we can see what this looks like after our friend John
Doe started up a couple more events.

Figure 43—TekDays home page with organizer events

Chapter 10. Seek, and You Shall Find • 150

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/seek.2/TekDays/grails-app/controllers/com/tekdays/TekUserController.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Hibernate Criteria Builder

Dynamic finders are great, and as you work with Grails, you will find yourself
using them again and again, but they can take you only so far. For one thing,
they are limited to top-level properties of the class—you cannot use dynamic
finders to search relationships.

Our next search feature is to find TekEvent instances for which a logged-in user
has volunteered. Volunteers for an event are in the volunteers collection, which
is the result of a one-to-many relationship between TekEvent and TekUser. To
search relationships, we must turn to a different tool in the Grails toolbox.

The Criteria Builder in Grails is a very powerful and flexible tool for retrieving
objects. It is based on the Hibernate Criteria API, so you can dig deeper by
studying that technology.1 However, this is Grails we’re talking about, so you
can do plenty with this tool by following some simple examples.

All Grails domain classes have a static createCriteria() method that returns a
HibernateCriteriaBuilder instance. This builder has a list() method that takes a clo-
sure. Inside this closure, we can define the criteria for our search.

Here’s an example:

def g3Events = TekEvent.createCriteria().list{
and{

gt('startDate', new Date())
or{
ilike('description', '%groovy%')
ilike('description', '%grails%')
ilike('description', '%griffon%')

}
}

}

This code produces a list of the technical events that you would be likely to
find us attending. More specifically, the g3Events list would contain any TekEvent
that contained the words Groovy, Grails, or Griffon in the description property
and whose startDate is still in the future. Notice how we have an or block nested
inside an and block. This type of nesting of logical blocks can be much clearer
and easier to read than an equivalent SQL statement.

Another nice feature of Criteria Builders is that relationship properties can
easily be searched. This is also done with nested criteria blocks. Let’s see how
this looks:

1. http://docs.jboss.org/hibernate/orm/3.3/reference/en-US/html/querycriteria.html

report erratum • discuss

Hibernate Criteria Builder • 151

http://docs.jboss.org/hibernate/orm/3.3/reference/en-US/html/querycriteria.html
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

def contegixEvents = TekEvent.createCriteria().list{
sponsorships{

sponsor{
eq('name', 'Contegix')

}
}

}

This code loads contegixEvents with all TekEvent instances that Contegix is spon-
soring. It does this by searching the sponsorships property, which is a collection
of Sponsorship instances. That is represented by the first block. A Sponsorship has
a sponsor property that is of type Sponsor. That’s the second block. Then, within
the sponsor block, we check for a name property that is equal to Contegix.

This last technique is the one we will use to find all events that a logged-in
user has volunteered for. Since we want to display this list on the home page
as we did for the organizer’s event list, we will once again take advantage of
Grails’ custom tags. Let’s open TekDays/grails-app/taglib/com/tekdays/TekDaysTagLib.groovy
and add the following tag code:

seek.2/TekDays/grails-app/taglib/com/tekdays/TekDaysTagLib.groovy
def volunteerEvents = {

if (request.getSession(false) && session.user){
def events = TekEvent.createCriteria().list{

volunteers{
eq('id', session.user?.id)

}
}
if (events){

out << "<div style='margin-left:25px; margin-top:25px; width:85%'>"
out << "<h3>Events you volunteered for:</h3>"
out << ""
events.each{

out << "<a href='"
out << "${createLink(controller:'tekEvent',action:'show',

id:it.id)}'>"
out << "${it}"

}
out << ""
out << "</div>"

}
}

}

Much of the code for our <g:volunteerEvents> tag is the same as the code for the
<g:organizerEvents> tag we created earlier. Let’s take a look at the bits that are
different. The most important difference is that we are using a Criteria Builder
to load the events list. We are searching the volunteers collection for a TekUser

Chapter 10. Seek, and You Shall Find • 152

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/seek.2/TekDays/grails-app/taglib/com/tekdays/TekDaysTagLib.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

with an id that is equal to the id of the logged-in user (session.user). The next
difference is the heading, which isn’t all that interesting. And finally, in this
tag we are accessing the id of the session.user instead of the user by itself.

To put this new tag to use, open TekDays/grails-app/views/index.gsp, and add the
highlighted line:

seek.1.2/TekDays/grails-app/views/index.gsp

<g:volunteerEvents />

<h3>Welcome to TekDays.com</h3>
<p>TekDays.com is a site dedicated to assisting individuals and

communities to organize technology conferences. To bring great
minds with common interests and passions together for the good
of greater geekdom!</p>

</div>
<g:organizerEvents />

➤

Now when a user who has volunteered to help out with one or more events
logs in, the home page will look similar to Figure 44, TekDays home page with
volunteer events, on page 154.

The Big Guns: The Searchable Plugin

So far, in this iteration we have implemented internal searches to add features
for our users—and right nice features they are. But we’re hoping that more
people than just the organizer and the existing volunteers will access this
site. We want to make it easy for visitors to find an event in their area, or one
related to their favorite technology. If we stumbled upon a site like this, the
first thing we’d do is search for Groovy or Grails. Let’s add this type of search
feature to TekDays.

We could create a search form with fields for all the searchable properties,
and then we could use the Criteria Builder to dynamically build a query based
on the user’s input—but that would be kind of lame. What we’ll do instead
is provide a single search field on our home page, and we’ll search for all
possible matches to the value entered in that field. To do this, we’ll take
advantage of one of the most powerful plugins in the Grails ecosystem; the
Searchable plugin2 takes the indexing and search capabilities of Compass
and Lucene and makes them easy to use. It makes them so easy, in fact, that
we call it “Grails-easy.”

Before we dig into this feature, let’s talk about Grails’ plugins. At last check,
there are more than 900 plugins in the main repository. You can see what
plugins are available by running grails list-plugins. The documentation for most

2. Developed by Maurice Nicholson; see http://grails.org/plugin/searchable.

report erratum • discuss

The Big Guns: The Searchable Plugin • 153

http://media.pragprog.com/titles/dkgrails2/code/seek.1.2/TekDays/grails-app/views/index.gsp
http://grails.org/plugin/searchable
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Figure 44—TekDays home page with volunteer events

of them is at the main plugin portal: http://grails.org/plugins/. To install a plugin,
we simply declare it as a dependency in BuildConfig.groovy. (We can get the
dependency that we need to declare from the plugin’s page in the plugin
portal; the dependency for the Searchable plugin, for example, is listed at
http://grails.org/plugin/searchable.)

Chapter 10. Seek, and You Shall Find • 154

report erratum • discuss

http://grails.org/plugins/
http://grails.org/plugin/searchable
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Plugins seamlessly add features to a Grails application. They can add new
domain classes, controllers, tag libraries, services, and more. Often, plugins
wrap an existing Java library or framework, like the Twitter4J plugin,3 which
wraps the Twitter4J library.4

It’s important to note that any library or framework that is provided by a
plugin could be included directly in your application without the plugin. You
could include the .jar files and write your code directly against the APIs. The
point of plugins and the philosophy that most plugin authors have embraced
is that these external libraries should be as easy to work with as Grails itself;
plugin authors tend to follow the principle of preferring convention to config-
uration but allowing configuration when it’s desired.

The Searchable plugin allows us to perform full-text searches on all of the
properties of our domain classes—even relationship properties. Let’s take it
for a spin. Open TekDays/grails-app/conf/BuildConfig.groovy and add the following
highlighted line:

seek.1.2/TekDays/grails-app/conf/BuildConfig.groovy
plugins {

// plugins for the build system only
build ":tomcat:7.0.42"

// plugins for the compile step
compile ":scaffolding:2.0.1"
compile ':cache:1.1.1'
compile ":webxml:1.4.1"
compile ":searchable:0.6.6"➤

// plugins needed at runtime but not for compilation
runtime ":hibernate:3.6.10.2" // or ":hibernate4:4.1.11.2"
runtime ":database-migration:1.3.5"
runtime ":jquery:1.10.2"
runtime ":resources:1.2.1"

// Uncomment these (or add new ones) to enable additional resources capabilities
//runtime ":zipped-resources:1.0.1"
//runtime ":cached-resources:1.1"
//runtime ":yui-minify-resources:0.1.5"

}

Now we will start modifying our code to enable search. Let’s start with Tek-
Days/grails-app/domain/com/tekdays/TekEvent.groovy. Open it, and add the highlighted
code:

3. http://grails.org/plugin/twitter4j
4. http://twitter4j.org/en/index.html

report erratum • discuss

The Big Guns: The Searchable Plugin • 155

http://media.pragprog.com/titles/dkgrails2/code/seek.1.2/TekDays/grails-app/conf/BuildConfig.groovy
http://grails.org/plugin/twitter4j
http://twitter4j.org/en/index.html
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

seek.1.2/TekDays/grails-app/domain/com/tekdays/TekEvent.groovy
package com.tekdays

class TekEvent {
String city
String name
TekUser organizer
String venue
Date startDate
Date endDate
String description
String toString(){
"$name, $city"

}
static searchable = true➤

static hasMany = [volunteers : TekUser,
respondents : String,
sponsorships : Sponsorship,
tasks : Task,
messages : TekMessage]

static constraints = {
name()
city()
description maxSize: 5000
organizer()
venue()
startDate()
endDate()
volunteers nullable: true
sponsorships nullable: true

}
}

“What?!” you say—“Only one line?!” That was our initial reaction, too. But
it’s true. That single line of code, static searchable = true, enables full-text search
of all the simple properties of the TekEvent. Let’s put this newfound power to
use by adding a search action to our TekEventController. Open TekDays/grails-app/con-
trollers/com/tekdays/TekEventController.groovy, and add the following action:

seek.1.2/TekDays/grails-app/controllers/com/tekdays/TekEventController.groovy
def search = {

if(params.query){
def events = TekEvent.search(params.query).results
[events : events]

}
}

In this action, we start off with an if block to protect against a blank search.
Then we have two lines: the first calls the search() method that the Searchable

Chapter 10. Seek, and You Shall Find • 156

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/seek.1.2/TekDays/grails-app/domain/com/tekdays/TekEvent.groovy
http://media.pragprog.com/titles/dkgrails2/code/seek.1.2/TekDays/grails-app/controllers/com/tekdays/TekEventController.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

plugin has added to the TekEvent class, passing in the search query (which will
come from a form we will be creating shortly). The search() method returns a
SearchResult instance, which contains a results property that is a List. The next
line just returns that list in a Map. This action will, by convention, attempt to
render a view in a file called search.gsp, so let’s give it one to render.

Joe asks:

What If We Want to Search Associated Objects?
At times, you may need to search for objects based on the properties of related objects.
The Searchable plugin makes this easy also. Let’s say, for example, that you want to
be able to search for TekEvent instances based on the properties of their organizer or
volunteers. These are both of type TekUser, so add this line to the TekUser class:

static searchable = true

Now go to the TekEvent class, and change that searchable declaration to look like this:

static searchable = {
organizer component: true
volunteers component: true

}

All you did was turn TekUser into a searchable class. Then you used the Searchable
plugin’s mapping DSL to tell it that the organizer and volunteers properties are searchable
components. Notice that you don’t have searchable = true anywhere in the TekEvent class;
assigning a mapping closure to the searchable property automatically sets it to true.

There’s a great deal more that can be done with the Searchable plugin—much more
than we can cover here. Fortunately, you can find extensive documentation at
http://grails.org/plugin/searchable.

Create an empty file called TekDays/grails-app/views/tekEvent/search.gsp, and add the
following code:

seek.1.2/TekDays/grails-app/views/tekEvent/search.gsp
<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<meta name="layout" content="main" />
<title>Tek Event Search Results</title>

</head>
<body>

<div class="nav" role="navigation">

Home

</div>
<div id="list-tekEvent" class="content scaffold-list" role="main">

report erratum • discuss

The Big Guns: The Searchable Plugin • 157

http://grails.org/plugin/searchable
http://media.pragprog.com/titles/dkgrails2/code/seek.1.2/TekDays/grails-app/views/tekEvent/search.gsp
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

<h1>Search Results</h1>

<ol class="property-list tekEvent">

<g:if test="${events}">
<g:each in="${events}" var="event">

<g:link action="show" id="${event.id}">${event}</g:link>

</g:each>
</g:if>
<g:else>

<h3>No Matching Results Found</h3>
</g:else>

</div>

</body>
</html>

The first part of this view is pretty much a copy of any of the other views we’ve
created so far. After the “Search Results” heading, we create an ordered list.
Next, we check to see whether we have any events. If we do, we use a <g:each>
tag to iterate over the events and create a hyperlink list item for each one. If
we don’t have any events, we render an appropriate message.

At this point, we could actually run this code and begin searching, but we
could do so only from the browser address bar with something like this:
http:/localhost:8080/TekDays/tekEvent/search?query=perl. That’s rather
stone-age.

Instead, let’s add a proper search field to our home page. Open TekDays/grails-
app/views/index.gsp, and add the highlighted code right after the “Welcome”
paragraph.

seek.1.2/TekDays/grails-app/views/index.gsp
<h3>Welcome to TekDays.com</h3>
<p>TekDays.com is a site dedicated to assisting individuals and

communities to organize technology conferences. To bring great
minds with common interests and passions together for the good
of greater geekdom!</p>

<div id="homeSearch">
</div>

➤

<g:form controller="tekEvent" action="search">➤

<label>Search:</label>➤

<input id="query" type="text" name="query" />➤

<input type=submit value="Go" />➤
➤

</div>
</g:form>

➤

Chapter 10. Seek, and You Shall Find • 158

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/seek.1.2/TekDays/grails-app/views/index.gsp
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

We are using a <g:form> that will post to the search action of the tekEvent con-
troller, and we have a single input element called query that will contain the
search value. Finally, we have a submit element to fire it off. We’re almost
done.

If we were to run this now, it would work, but we would be prompted to log
in when we tried to perform a search. We want everyone to be able to find
events on our site, so we’ll have to fix this.

The security check is happening in our security filter, so we will modify it to
allow the search action. Open TekDays/grails-app/conf/SecurityFilters.groovy, and add
“search” to the allowedActions list, as shown in the following code.

seek.1.2/TekDays/grails-app/conf/SecurityFilters.groovy
class SecurityFilters {

def filters = {
doLogin(controller:'*', action:'*'){

before = {
if (!controllerName)

return true
def allowedActions = ['show', 'index', 'login',➤

'validate', 'search']➤

if (!session.user && !allowedActions.contains(actionName)){
redirect(controller:'tekUser', action:'login',

params:['cName': controllerName,
'aName':actionName])

return false
}

}
}

}
}

Great! Now when we load our home page, it looks like what we see in Figure
45, TekDays home page with search, on page 160. Go ahead and try it. You
can find events based on location, venue, name, and description. Our customer
can find all the Groovy, Grails, and Griffon-related conferences that his heart
desires. We’re sure he’ll be happy.

Summary

In this iteration, we added some useful features for event organizers, volun-
teers, and users at large. Along the way, we learned about the Criteria Builder
for involved queries and about the Searchable plugin for full-text search. We
also got some more practice using those awesome Grails custom tags. The
application is starting to look good and perform all kinds of handy functions.

report erratum • discuss

Summary • 159

http://media.pragprog.com/titles/dkgrails2/code/seek.1.2/TekDays/grails-app/conf/SecurityFilters.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Figure 45—TekDays home page with search

Our customer is anxious to put it to use and is already preparing some ideas
for version 1.1.

In the next chapter, we’ll add volunteer registration and do some general
refactoring based on feedback from our customer. We’ll try more plugins and
test some cool tricks with Grails URL mapping.

Chapter 10. Seek, and You Shall Find • 160

report erratum • discuss

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

CHAPTER 11

Icing on the Cake
We are almost at the end of our project, and it is looking good. The customer
is happy with our work, but he had a couple new feature requests. It happens.
No worries, though. Because of the increased productivity of Grails and your
own killer coding skills, we are ahead of schedule, so we should be able to fit
these features in. Besides, that will give us the opportunity to try some more
Grails plugins.

Let’s take a look at what remains from our original feature list, and then we’ll
see whether we can fit in the extra goodies the customer asked for. We have
only one item left from the first list:

• Allow access to event home page with simple URL

That shouldn’t take too long. We should be able to get that done and also
these new features:

• Make it easier for a user to volunteer for an event

• Provide a way for organizers to post news about event

Those sound like good ideas. With most other frameworks, this would be too
much to take on in the time we have left, but with Grails, we can code boldly.

The jQuery UI Plugin

The first item on the new list is really just an improvement on one of the
original features. We did provide a way for people to volunteer to help on
events, but it’s not very user friendly. So, we’ll tackle this one right away.
We’ll add a button to the TekEvent show view that will allow logged-in users to
volunteer to help on this event. When they click it, we’ll show them a nice
confirmation dialog box, and if they confirm, we’ll add them to the volunteers
collection for that event.

report erratum • discuss

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

We’ll start with the button. At first, that would seem as simple as adding a
<button> tag somewhere on our page. But there is some logic involved. We
don’t want to show the button if the user is not logged in. Then if they are
logged in, we don’t want to show the button if they are already volunteering
for this event. (Hopefully you can see where we’re heading with this.) We could
do this with a couple of <g:if> tags, but our guilty consciences might drive us
to depression. So instead, we will put this logic into a custom tag.

Open TekDays/grails-app/taglib/com/tekdays/TekDaysTagLib.groovy, and add the following
tag closure:

icing.2/TekDays/grails-app/taglib/com/tekdays/TekDaysTagLib.groovy
def volunteerButton = {attrs ->

if (request.getSession(false) && session.user){
def user = session.user.merge()
def event = TekEvent.get(attrs.eventId)
if (event && !event.volunteers.contains(user)){

out << ""
out << "<button id='volunteerButton' type='button'>"
out << "Volunteer For This Event"
out << "</button>"
out << ""

}
}

}

If a user is logged in, there will be a TekUser in the session called user, so that’s
our first test. If we have a logged-in user, we’ll call the merge() method on it.
(We need to do this because objects stored in the session become detached
from the Hibernate session.) Then we use the eventId attribute to get the TekEvent
instance. Once the user has been merged, we can pass it to the contains() method
of the event.volunteers to see whether this user is already a volunteer. If they
are not, we’ll go ahead and write out the button. We start with a with
a class of menuButton and id of volunteerSpan. Note this id; it will become important
shortly.

Next we write out the <button> with its id and type, followed by the text of the
button. We finish by closing up all our tags.

Now we’ll drop this tag in the navigation bar on the TekEvent show view, in
TekDays/grails-app/views/tekEvent/show.gsp.

icing.2/TekDays/grails-app/views/tekEvent/show.gsp
<div class="nav" role="navigation">

<g:message code="default.home.label"/>

Chapter 11. Icing on the Cake • 162

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/icing.2/TekDays/grails-app/taglib/com/tekdays/TekDaysTagLib.groovy
http://media.pragprog.com/titles/dkgrails2/code/icing.2/TekDays/grails-app/views/tekEvent/show.gsp
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

<g:link class="list" action="index"><g:message
code="default.list.label" args="[entityName]" /></g:link>

<g:link class="create" action="create"><g:message
code="default.new.label" args="[entityName]" /></g:link>

<g:link class="list" controller="dashboard" action="dashboard"
id="${tekEventInstance.id}"> Event Dashboard</g:link>

<g:volunteerButton eventId="${tekEventInstance.id}" />➤

</div>

When a logged-in user views an event that they are not currently volunteering
for, the menu bar will look like the following figure.

Figure 46—TekEvent show view menu with volunteer button

That looks good, but it doesn’t do anything yet. Let’s fix that next. What we
want is a confirmation dialog box, followed by a call to an action that will add
this user to the volunteers collection of this TekEvent. Since we don’t want a
boring JavaScript dialog box, we’ll use the jQuery UI plugin to get a much
more attractive one.

The jQuery UI plugin1 includes jQuery UI2 resources (CSS and JavaScript) in
our GSP pages, making it simpler to work with the library in a Grails applica-
tion. Some of the components included in jQuery UI are Autocomplete, Tabs,
Progressbar, and the one we’re going to use, Dialog. To install the plugin, add
the following dependency to the list of compile step plugins in TekDays/grails-
app/conf/BuildConfig.groovy:

compile ":jquery-ui:1.8.24"

1. http://grails.org/plugin/jquery-ui
2. You can find very detailed documentation on jQuery UI at http://jqueryui.com/.

report erratum • discuss

The jQuery UI Plugin • 163

http://grails.org/plugin/jquery-ui
http://jqueryui.com/
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

We are now ready to add the dialog box component to our TekEvent show view.
Back in TekDays/grails-app/views/tekEvent/show.gsp, go ahead and add the highlighted
lines to the <head> section:

icing.2/TekDays/grails-app/views/tekEvent/show.gsp
<head>

<meta name="layout" content="main">
<g:set var="entityName" value="${message(code: 'tekEvent.label',

default: 'TekEvent')}" />
➤ <g:javascript library="jquery" />
➤ <r:require module="jquery-ui" />

<title><g:message code="default.show.label"
args="[entityName]" /></title>

</head>

Just as we saw in Ajax in Grails, on page 112, the <g:javascript> tag here is
declaring the JavaScript library that we’re using. (The jQuery UI plugin
depends on the jQuery plugin,3 which is included in our app automatically
by Grails.) The <r:require> tag is being used to tell Grails’ Resources framework
that we are using the jquery-ui module provided by the jQuery UI plugin.

Next, we need to add the code for the jQuery UI dialog component. Add the
following code right before the closing </body> tag:

icing.2/TekDays/grails-app/views/tekEvent/show.gsp
<script type="text/javascript">

$(document).ready(function() {
$('#volunteerDialog').hide();
$("#volunteerButton").click(function() {

$("#volunteerDialog").dialog({
resizable: false,
height:180,
width: 420,
modal: false,
buttons: {

"Submit": function() {
$.ajax({

type: "post",
dataType: "html",
url: "${g.createLink(action:'volunteer')}",
async: false,
data: $("#volunteerForm").serialize(),
success: function (response, status, xml) {

$("#volunteerSpan").html(response);
}

});

3. http://grails.org/plugin/jquery

Chapter 11. Icing on the Cake • 164

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/icing.2/TekDays/grails-app/views/tekEvent/show.gsp
http://media.pragprog.com/titles/dkgrails2/code/icing.2/TekDays/grails-app/views/tekEvent/show.gsp
http://grails.org/plugin/jquery
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

$(this).dialog("close");
},
Cancel: function() {

$(this).dialog("close");
}

}
});

});
});

</script>
<div id="volunteerDialog" title="Volunteer for ${tekEventInstance.name}">

<g:form name="volunteerForm" action="volunteer">
<g:hiddenField name="id" value="${tekEventInstance.id}" />
<p>Welcome to the team! Your help will make a huge difference.</p>

</g:form>
</div>

Note how easy Grails makes it for us to add JavaScript to a GSP. Our new
JavaScript code here is using jQuery UI to show and hide a simple volunteerDialog
<div>, which contains a <g:form> with a hidden input for the id of our event.
The form’s action attribute is set to volunteer, which is the name of the TekEvent-
Controller action that we will use to add the logged-in user to this event’s
volunteers.

OK. Our dialog box is all set up. We could even run this now and it would
show up, but we would just get a nasty error in the console if we tried to
submit. Let’s create the volunteer action in TekDays/grails-app/controllers/com/tek-
days/TekEventController.groovy, like so:

icing.2/TekDays/grails-app/controllers/com/tekdays/TekEventController.groovy
def volunteer = {

def event = TekEvent.get(params.id)
event.addToVolunteers(session.user)
event.save()
render "Thank you for Volunteering"

}

The volunteer action is the heart of this feature, even though it’s only a few
lines of code. First we use the id that was passed in the hidden input field to
get the TekEvent instance. Then we add the logged-in user (session.user) to the
volunteers collection. Next, we save the event, and finally, we render a text
message that will replace the button in the volunteerSpan. This action is a great
example of how the productivity of Grails doesn’t come in scaffolding or code
generation; it comes in the way you are able to accomplish so much with so
little code. Scaffolding helps out as you start a new application, but this
ability to enhance and expand your application quickly is where the real
productivity gains come in.

report erratum • discuss

The jQuery UI Plugin • 165

http://media.pragprog.com/titles/dkgrails2/code/icing.2/TekDays/grails-app/controllers/com/tekdays/TekEventController.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Let’s see our new feature in action. Log someone in to the application, and
navigate to an event that they haven’t volunteered for. Click the button, and
you should see something like the following figure. It’s so easy that no one
has an excuse for not volunteering.

Figure 47—The volunteer dialog box

The Twitter4J Plugin

It seems that everyone is on Twitter4 these days—even if they can’t tell you
why. We’ll take advantage of this fact to help our hardworking event organizers
get the word out about their events. If an event’s organizer creates a Twitter
account for their event, we will provide a form on the dashboard that will
enable them to post updates to their event’s Twitter timeline. To do this, we’ll
use the Twitter4J plugin mentioned earlier.

4. http://twitter.com

Chapter 11. Icing on the Cake • 166

report erratum • discuss

http://twitter.com
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

The Twitter4J plugin gives us easy access to the Twitter4J library.5 In Tek-
Days/grails-app/conf/BuildConfig.groovy, add the following dependency:

compile ":twitter4j:0.3.2"

This plugin provides a service class (Twitter4jService) that gives us access to the
Twitter4J API,6 which has a host of methods that interact with Twitter. We’ll
be using only a couple of these methods; you can read about the rest of them
in the API documentation at http://twitter4j.org/javadoc/index.html.

Before we get started with the plugin, we need to set up our app as a Twitter
client. To do this, go to https://dev.twitter.com/apps/new and sign in with a Twitter
account. Fill out the required fields and click the “Create your Twitter appli-
cation” button. On the page for our new Twitter application, look for the
“Consumer key” and “Consumer secret”. We will use these to give our app
access to the Twitter API.

Run the TekDays application and navigate to http://localhost:8080/TekDays/twitter4j.
Enter the two values that we obtained from our Twitter application page. The
plugin will give you instructions on how to finish setting it up. (It even includes
a view from which we can send a test tweet, so we can make sure we’ve
configured everything correctly.)

Now we’ll put the Twitter4jService to use. We’ll add a new action to the Dashboard-
Controller, because we’re going to expose this feature in the organizer’s dash-
board. Open TekDays/grails-app/controllers/com/tekdays/DashboardController.groovy, and
add the following code:

icing.2/TekDays/grails-app/controllers/com/tekdays/DashboardController.groovy
package com.tekdays

class DashboardController {

def twitter4jService
//Existing dashboard code snipped

def tweet = {
def event = TekEvent.get(params.id)
if (event){

twitter4jService.updateStatus(params.status)
}
redirect(action:dashboard, id:event.id)

}
}

5. http://twitter4j.org/en/index.html
6. http://twitter4j.org/javadoc/

report erratum • discuss

The Twitter4J Plugin • 167

http://twitter4j.org/javadoc/index.html
https://dev.twitter.com/apps/new
http://localhost:8080/TekDays/twitter4j
http://media.pragprog.com/titles/dkgrails2/code/icing.2/TekDays/grails-app/controllers/com/tekdays/DashboardController.groovy
http://twitter4j.org/en/index.html
http://twitter4j.org/javadoc/
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Note that we are defining a property called twitter4jService at the top of the class.
When we declare that property using the convention of changing the first
character of the class name to lowercase, Grails will inject a Twitter4jService
instance into our controller at runtime. Next we add our tweet action, which
starts out by getting the current TekEvent instance. If we have a valid instance,
we call updateStatus(), which takes a latestStatus to post, on the Twitter4jService.
That’s all there is to it! Most of the other available methods are just as simple,
and perhaps for version 1.1 we can add more Twitter integration since it’s so
easy to do. But for now, this gives us just what we need. Finally, we redirect
to the dashboard so they can do it all over again.

Now we’ll add a new section to the dashboard to call this action. Open Tek-
Days/grails-app/views/dashboard/dashboard.gsp, and add the highlighted code:

icing.2/TekDays/grails-app/views/dashboard/dashboard.gsp
<div id="sponsors" style='margin:10px 10px 10px 10px'>
<g:render template="sponsors" model="${[sponsorships:sponsorships]}" />

</div>
<div id="twitter" style='margin:10px 10px 10px 10px'>➤

<g:render template="twitter" model="${[event:event]}" />➤

</div>➤

</body>
</html>

We’re going to put the specifics of our Twitter feature in a template, which
we’ll render in the dashboard view. Create a blank file called TekDays/grails-
app/views/dashboard/_twitter.gsp, and add the following code:

icing.2/TekDays/grails-app/views/dashboard/_twitter.gsp
<h3>Post Event Updates to Twitter</h3>
<g:form name="twitterForm" action="tweet" id="${event.id}">

(No more than 140 characters)

<textarea name="status" rows="3" columns="50" style="width:100%;

height:60"></textarea>

<input type="submit" value="Post to Twitter" />

</g:form>

Our Twitter template uses <g:form> to create a form that will post to the tweet
action and pass the event.id. We have only one input in our form: a <textarea>
called status. This will contain the status message to post to Twitter. We finish
the form with a standard submit button. Now we’re ready to tweet!

In the following figure, we can see the bottom half of the dashboard view,
which includes our new Twitter section. To test this, you can enter your own
Twitter credentials and post a message starting with “@daveklein” or “@fifth-
position”. We’ll let you know if it worked.

Chapter 11. Icing on the Cake • 168

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/icing.2/TekDays/grails-app/views/dashboard/dashboard.gsp
http://media.pragprog.com/titles/dkgrails2/code/icing.2/TekDays/grails-app/views/dashboard/_twitter.gsp
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Figure 48—Section of dashboard view with Twitter form

User-Friendly URLs

We now need to provide a way to access our event page using a simple URL.
The way it stands now, once the application is deployed, the URL to a specific
event’s page looks something like this:

http://TekDays.com/tekEvent/show/5024753

(OK, the id might not be quite that large at first, but we’re thinking positive
here.) Our customer would like us to get to something more like http://Tek-
Days.com/events/MyTekEvent. This will make it easier for the event organizers and
volunteers to plaster links all over the Internet for their event.

As we have come to expect, Grails provides a simple way to do this. Every
Grails application has a UrlMappings class, which uses a DSL7 to build URL
mappings. The conventional Grails mappings are in there by default, and we
can add as many different mappings as needed. Let’s take a look at the default

7. Domain-specific language.

report erratum • discuss

User-Friendly URLs • 169

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

mappings to get an idea of how this works. Open TekDays/grails-app/conf/UrlMap-
pings.groovy:

class UrlMappings {

static mappings = {
"/$controller/$action?/$id?(.${format})?"{

constraints {
// apply constraints here

}
}

"/"(view:"/index")
"500"(view:'/error')

}
}

The static mappings block is the heart of the UrlMappings class. Inside this block
we see the mappings for the conventional Grails behavior. The first value
found after the root (/) will be assigned to the controller variable. The next value
will be assigned to the action, and the one after that will be assigned to the id.
(In the case of using file extensions for content negotiation, a file extension—
which would then be the last value—would be assigned to the format variable.)
The first variable, controller, is required; the rest have a ? on the end, which
marks them as optional. What this means is that any URL with one, two,
three, or four values after the root (including a file extension) will match this
mapping and be applied accordingly. If we were to create a FooController, /foo
would be mapped to the FooController’s default action, /foo/bar would be mapped
to the bar action of FooController, and /foo/bar/baz would be mapped to the bar action
of FooController with an id parameter of baz. You get the picture.

Inside the mapping block there is an empty constraints block, where we can put
constraints on the different variables, much as we did earlier on domain class
properties. After this, we have the two other default mappings. The root
mapping, when nothing but the application root is in the URL, maps directly
to the index view. Mapping directly to a view makes sense for pages that don’t
need any data; for example, you might use this for an About page. Last of all,
we have the 500 error mapping.

Let’s add another mapping that will match the URLs that we want to support.
The code should look something like this:

icing.2/TekDays/grails-app/conf/UrlMappings.groovy
"/events/$nickname"{

controller = "tekEvent"
action = "show"

}

Chapter 11. Icing on the Cake • 170

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/icing.2/TekDays/grails-app/conf/UrlMappings.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

The default Grails mapping uses all variables. Our mapping is using a static
value (events) and a variable ($nickname). Since our mapping does not include
variables for controller and action, we need to set those inside the mapping block.
This mapping will match any URL that starts with the word events and has
one more value, which will be assigned to the variable $nickname. The matched
URL will be directed to the show action of TekEventController with a nickname
parameter. So, now we need our controller to make use of the nickname.

We’re going to modify the show action to use a nickname parameter to show a
TekEvent instance. Before we do that, though, we need to add a nickname to
TekEvent. In TekDays/grails-app/domain/com/tekdays/TekEvent.groovy, add the two high-
lighted lines below:

icing.2/TekDays/grails-app/domain/com/tekdays/TekEvent.groovy
package com.tekdays
class TekEvent {

String city
String name
TekUser organizer
String venue
Date startDate
Date endDate
String description
String nickname➤

String toString(){
"$name, $city"

}

static searchable = true
static hasMany = [volunteers : TekUser,

respondents : String,
sponsorships : Sponsorship,
tasks : Task,
messages : TekMessage]

static constraints = {
name()
city()
description maxSize: 5000
organizer()
venue()
startDate()
endDate()
volunteers nullable: true
sponsorships nullable: true
tasks nullable: true
messages nullable: true
nickname nullable: true➤

}
}

report erratum • discuss

User-Friendly URLs • 171

http://media.pragprog.com/titles/dkgrails2/code/icing.2/TekDays/grails-app/domain/com/tekdays/TekEvent.groovy
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Now that we have that property, let’s get to work. Open TekDays/grails-app/con-
trollers/com/tekdays/TekEventController.groovy, and modify the show action like this:

icing.2/TekDays/grails-app/controllers/com/tekdays/TekEventController.groovy
def show(Long id) {

def tekEventInstance
if(params.nickname){

tekEventInstance = TekEvent.findByNickname(params.nickname)
}
else {

tekEventInstance = TekEvent.get(id)
}
if (!tekEventInstance) {

if(params.nickname){
flash.message = "TekEvent not found with nickname ${params.nickname}"

}
else {

flash.message = "TekEvent not found with id $id"
}
redirect(action: "list")
return

}
[tekEventInstance: tekEventInstance]

}

This action’s job is to pass a TekEvent instance to the show view. Here, we’re
beginning the action by declaring the tekEventInstance, and we’re giving the
action two different ways to retrieve it: by its id or by its nickname. To do this,
we separate the variable declaration from the assignment. We use an if to
decide whether to retrieve the instance by nickname or by id. If there’s a nickname
value in the params, we use the dynamic finder findByNickname(). Then, to make
our error messages clearer in case we don’t find an instance, we use another
if block to determine the appropriate error message to display.

We added the nickname of “GatewayCode” to one of our test events, so now
we can navigate to http://localhost:8080/TekDays/events/GatewayCode to view the home
page of the event.

Summary
We did it! We completed the original feature list for TekDays and even added a
couple of bonus features with the time we saved by using Grails. We also saw
firsthand how powerful and easy to use Grails plugins are. (Be sure to browse
the Grails plugin portal at http://grails.org/plugins/ to see what others are available.)

All that’s left to do now is to deploy the application to our server. Before you start
thinking “Ant and Ivy and Maven, oh my!” remember that this is Grails we’re
talking about. Well, you’ll see. Turn the page.

Chapter 11. Icing on the Cake • 172

report erratum • discuss

http://media.pragprog.com/titles/dkgrails2/code/icing.2/TekDays/grails-app/controllers/com/tekdays/TekEventController.groovy
http://localhost:8080/TekDays/events/GatewayCode
http://grails.org/plugins/
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

CHAPTER 12

Deployment and Beyond
We are nearing the end of our project and our time together. We’ve accom-
plished quite a bit, and our customer is happy with the results. He’s also very
impressed with how quickly we got it done. He’s just about ready for us to
hand the application over to him, but he wants us to try deploying it first—
sort of as a sanity check.

When we created the TekDays application, Grails automatically installed the
Grails plugin1 for Tomcat,2 which is what we’ve been running the app in up
until now. There are also Grails plugins for other servers; for example, there
is a plugin for Jetty, which is an HTTP server and Java servlet container.
Some people do use Jetty for production deployment, but usually production
will use something (such as Tomcat) that’s a little more heavy-duty, or a full-
blown JEE3 server, such as WebLogic, JBoss, or, if they can’t find a way out
of it, WebSphere.

Grails applications will run well on any of these. For our purposes (and for
most Grails applications), Tomcat is a good fit. We’ll be sticking with it for
our deployment here, but in place of it you can use any other standards-
compliant Java servlet container you like.

Using a JNDI Data Source

Before packaging our application for deployment, we need to change our data
source. Open TekDays/grails-app/conf/DataSource.groovy.

When we last worked on this file, it looked something like this:

1. http://grails.org/plugin/tomcat
2. http://tomcat.apache.org/
3. Java Enterprise Edition

report erratum • discuss

http://grails.org/plugin/tomcat
http://tomcat.apache.org/
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Joe asks:

JEE Server, Java Servlet Container: What’s the
Difference?

JEE server and Java servlet container are often used almost as interchangeable terms.
They aren’t the same thing, but they are related. A JEE server is an application
server that implements the JEE specification. This specification includes things like
EJB, JMS, JPA, JTA, JSP, Servlets, JSF, and more. (Don’t worry if you don’t recognize
all of these.)

A Java servlet container usually supports a subset of those JEE components, such
as JSP, Servlets, and JSF—basically the web-related JEE components. Some servlet
containers are gradually taking on more components, so these lines are beginning
to blur.

A simple way to look at it is that a servlet container is a lightweight JEE server.

dataSource {
pooled = true
driverClassName = "com.mysql.jdbc.Driver"
username = "dave"
password = "1234"

}
hibernate {

cache.use_second_level_cache = true
cache.use_query_cache = false
cache.region.factory_class =
'net.sf.ehcache.hibernate.EhCacheRegionFactory' // Hibernate 3

// cache.region.factory_class =
// 'org.hibernate.cache.ehcache.EhCacheRegionFactory' // Hibernate 4
}

// environment specific settings
environments {

development {
dataSource {

dbCreate = "update" // one of 'create', 'create-drop',
// 'update', 'validate', ''

url = "jdbc:mysql://localhost:3306/tekdays"
}

}
test {

dataSource {
dbCreate = "update"
url = "jdbc:h2:mem:testDb;MVCC=TRUE;LOCK_TIMEOUT=10000"

}
}

Chapter 12. Deployment and Beyond • 174

report erratum • discuss

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

production {
dataSource {

dbCreate = "update"
url = "jdbc:h2:prodDb;MVCC=TRUE;LOCK_TIMEOUT=10000"
properties {

maxActive = -1
minEvictableIdleTimeMillis=1800000
timeBetweenEvictionRunsMillis=1800000
numTestsPerEvictionRun=3
testOnBorrow=true
testWhileIdle=true
testOnReturn=false
validationQuery="SELECT 1"
jdbcInterceptors="ConnectionState"

}
}

}
}

Our focus now is on the production block toward the end of the file. It currently
points to an in-memory H2 database. It may seem obvious, but there have
been incidents where applications went into production this way. It’s not a
good thing. So, we’re going to make sure we get this changed.

Now, we could change the production dataSource to point to a MySQL instance,
as we did for the development dataSource, but in most organizations it’s consid-
ered bad form to include database credentials in an application configuration
file. All JEE servers and virtually all Java servlet containers support the Java
Naming and Directory Interface (JNDI).4 And at the risk of once again
sounding like a broken record: Grails makes it incredibly easy to use a JNDI
data source.

Our customer studied up on the subject at http://tomcat.apache.org/tomcat-7.0-doc/
jndi-datasource-examples-howto.html and has configured a JNDI data source in his
Tomcat server named TekDaysDS. To direct our application to use that data
source, we’ll change the production block of DataSource.groovy like this:

deploy.2/TekDays/grails-app/conf/DataSource.groovy
production {

dataSource {
jndiName = "java:comp/env/jdbc/TekDaysDS"➤

}
}

That’s all there is to it. The exact layout of the JNDI string may vary with
different servers, so if you’re working with something other than Tomcat, refer

4. http://docs.oracle.com/javase/7/docs/technotes/guides/jndi/index.html

report erratum • discuss

Using a JNDI Data Source • 175

http://tomcat.apache.org/tomcat-7.0-doc/jndi-datasource-examples-howto.html
http://tomcat.apache.org/tomcat-7.0-doc/jndi-datasource-examples-howto.html
http://media.pragprog.com/titles/dkgrails2/code/deploy.2/TekDays/grails-app/conf/DataSource.groovy
http://docs.oracle.com/javase/7/docs/technotes/guides/jndi/index.html
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

to your server’s documentation for more details. The production database
URL and credentials will now be read from the server. The default values will
still be used for the development and test environments.

Creating and Deploying a WAR

The standard way to deploy a Java-based web application is as a web appli-
cation resource (WAR) file. There are many tools available to help package a
web application into a WAR, from IDEs such as Eclipse and NetBeans to build
tools such as Ant and Maven. With Grails, however, those things are rarely
needed. A simple Grails script will do it for us.

$ grails war

That single script will compile our source code, pull in our dependencies, and
bundle it all into a standard JEE WAR file. For our project, the default name
for this file is TekDays-0.1.war. Deploying this to Tomcat is as simple as copying
the file to Tomcat’s webapps directory and restarting.

Our app deploys successfully on Tomcat. We’re good to go...for now. No soft-
ware application is ever really done; TekDays may be ready to start using,
but it can always be improved.

Next Steps

We’re sure that as we’ve worked on this project, you’ve thought of features
that would be nice to have in TekDays, or perhaps different ways to implement
features. Go for it! With the rapid feedback and flexible, dynamic nature of
Grails, it’s easy to explore and experiment.

You could look through the list of Grails plugins at http://grails.org/plugins/ and
see which ones might be useful—and perhaps add a regional event calendar,
or use the Grails mail plugin5 to add email services to the application. Or you
may have noticed that we don’t yet have any facility for speakers or sessions.
(Our customer was mostly interested in organizing open spaces conferences.)

But before you get too carried away with changes to this production system,
there are a couple of things to consider: version control and database
migration.

As stated earlier, Grails makes experimentation fun and easy, but you don’t
want to experiment with production code. You also don’t want to start making
duplicate project directories all over the place. So first of all, move the project
into a version control system such as SVN or Git (the Grails source code itself

5. http://grails.org/plugin/mail

Chapter 12. Deployment and Beyond • 176

report erratum • discuss

http://grails.org/plugins/
http://grails.org/plugin/mail
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

is in Git). You can find information about using these systems with Grails at
http://www.grails.org/Checking+Projects+into+SVN.

A database migration tool can help prevent database nightmares as you begin
making changes to the database to implement new features. The Grails
Database Migration plugin integrates the Liquibase6 framework with Grails,
helping you avoid those nightmares and rest easy as you migrate your
database from version to version.

Feel free to take our application in different directions or to just borrow ideas
from it and start something new. If you do something cool with it, let us know,
and we’ll feature it at http://gquick.blogspot.com.

Parting Thoughts

Now, feeling a bit like Mr. Rogers at the end of the show, it’s time for us to
take off our customer hat, our project manager hat, and our development
team member hat and to put on our author hats. The goal of this book was
to give you, the reader, a hands-on tutorial of web development with Grails:
to demonstrate enough features and provide enough practice to get you past
the newbie stage and on your way to mastery. It’s our hope that you’ve learned
enough to be productive with Grails. Even more, we hope that you caught a
vision of the power, productivity, and pleasure of Grails.

Because this was a quick-start guide and not an in-depth reference, there
are areas that we only touched on and where more information would be
helpful. To that end, we’ve included an appendix that lists books, articles,
websites, and blogs that will help you dig deeper. In the appendix, we’ll also
introduce you to the GR8 community.7 The community is truly one of the
biggest strengths of these technologies.

Finally, we hope you learned as much and had as much fun working through
this book as we had writing it.

6. http://www.liquibase.org
7. GR8 refers to Groovy, Grails, Griffon (a Groovy desktop application framework inspired

by Grails), and other Groovy-based tools and frameworks.

report erratum • discuss

Parting Thoughts • 177

http://www.grails.org/Checking+Projects+into+SVN
http://gquick.blogspot.com
http://www.liquibase.org
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

APPENDIX 1

Additional CSS Rules
Here are some style rules that we have added to TekDays/web-app/css/main.css.
Please copy these to your project to make it easier to follow along with the
project in the book.

/*Dashboard*/
.dashItem {

margin: 10px;
}
#eventBlurb {

width: 100%;
height: 60px;

}
#dashHeader {

text-align: center;
}

/*Index*/
#homeSearch {

margin-left: 30%;
margin-top: 25px;
width: 40%;

}
#homeSearch label {

font-weight: bold;
}
#welcome {

margin-left: 25px;
width: 85%;

}

.homeCell {
margin-left: 25px;
margin-top: 65px;
width: 85%;

}

report erratum • discuss

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

.homeCell .buttons {
width: 180px;
text-align: center;
float: right;
margin-right: 30px;
margin-bottom: 30px;

}

h3, li {
margin-bottom: 15px;

}

/*Message Create*/
.messageField {

width:550px
}

/*Ajaxlist*/
#messageList {

margin: 20px 30px;
overflow:auto

}

#messageList p {
margin: 10px 0;

}

#show-message {
margin: 20px 30px;

}

#detailHeading {
margin-left: 30px;
margin-bottom: 15px;

}

/*Volunteer Dialog*/
#volunteerDialog .ui-widget-header {

color: #ABBF78;
background-image: none;
color: #000;

}

Appendix 1. Additional CSS Rules • 180

report erratum • discuss

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

APPENDIX 2

Resources
Now that you’re up and running with Grails, you’ll want to learn more, and
you will undoubtedly have questions. What follows is a Grails resource guide,
and then some. Since Grails is part of the greater GR8 community (pun
entirely intended), this guide will point you to resources beyond Grails alone.
These are the resources that we’ve used and/or that are made available by
people who we know and respect; we trust that you’ll find them useful as
well.

Online Resources

The Internet has more than you’ll ever need to know about most things,
Groovy and Grails included. The following is a (very abbreviated) list of general
websites and mailing lists that are worth checking out.

Grails: A Quick-Start Guide Blog http://gquick.blogspot.com

Additional tips, tricks and tutorials that build on the example from the book.

Official Grails website . http://grails.org

Official Groovy website http://groovy.codehaus.org

Official Griffon website http://griffon.codehaus.org

Griffon is an MVC framework for rich desktop development with Groovy.

The Grails plugin portal http://grails.org/plugins/

A gold mine of plugin information. Besides a complete list of the plugins,
there’s documentation, tutorials, screencasts, and more. Tags and a rating
system help you determine whether a plugin is right for you and help you
choose between competing plugins.

report erratum • discuss

http://gquick.blogspot.com
http://grails.org
http://groovy.codehaus.org
http://griffon.codehaus.org
http://grails.org/plugins/
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Grails mailing lists http://grails.org/Mailing+lists

The Grails user and dev lists are quite active and loaded with helpful people.
Don’t be afraid to ask for help, and as you get more comfortable with the
framework, don’t be afraid to offer help. It’s a great feeling when you go from
just asking questions to answering them too.

Groovy mailing lists http://groovy.codehaus.org/Mailing+Lists

Sometimes your question will be more Groovy language-specific. When this
happens, the folks on this list are quick to help. Also, if you are new to Groovy,
taking some time to read through the threads on this list is a great way to
learn more about the language.

GroovyBlogs . http://groovyblogs.org

This is an excellent blog aggregator currently covering more than 350 blogs
related to Groovy technologies.

Meet the GR8 Community

We’ve heard many people say this, and we wholeheartedly agree: one of the
best things about Groovy, Grails, Griffon, and other Groovy tools is the com-
munity. The developers involved in these technologies are some of the
smartest, most enthusiastic, and most helpful people we’ve worked with.
We’ve had the pleasure of meeting many of them in person at various confer-
ences; others we know only through the ether. But we consider it an honor
to work with and be associated with them. Here’s an introduction to some of
your new colleagues.

The Grails Dev Team

Graeme Rocher . http://grails.io

Graeme is the Grails project lead and a coauthor of The Definitive Guide to
Grails [Roc06] and The Definitive Guide to Grails 2.

Marc Palmer . http://grailsrocks.com

Marc is a Grails committer and has written many popular Grails plugins.

Dierk König . http://www.manning.com/koenig2/

Dierk is a Grails committer and the lead author of Groovy in Action [Koe13].

Appendix 2. Resources • 182

report erratum • discuss

http://grails.org/Mailing+lists
http://groovy.codehaus.org/Mailing+Lists
http://groovyblogs.org
http://grails.io
http://grailsrocks.com
http://www.manning.com/koenig2/
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Jason Rudolph . http://jasonrudolph.com

Jason is a Grails committer and a coauthor of Getting Started with Grails
[Rud07].

Jeff Brown . http://javajeff.blogspot.com

Jeff is a Grails committer and coauthor of The Definitive Guide to Grails and
The Definitive Guide to Grails 2.

Marcel Overdijk http://marceloverdijk.blogspot.com

Marcel is a Grails committer and author of several Grails plugins.

Sergey Nebolsin . http://snebolsin.blogspot.com

Sergey is a Grails committer and is the author of the Quartz plugin, among
others.

Lee Butts . http://www.leebutts.com

Lee is a Grails committer, plugin contributor, and car buff.

Burt Beckwith: An Army of Solipsists http://burtbeckwith.com/blog/

Burt is a Grails committer, a prolific plugin author, and a regular on the
Grails mailing lists. Burt also served as the technical editor for the book Grails
in Action and is the author of Programming Grails.

The Grails Podcast Team

Sven and Glen are the hosts of the Grails Podcast. For details, see Other
Media, on page 187.

Sven Haiges . http://hansamann.wordpress.com

Sven is the founder of the Grails Podcast.

Glen Smith . http://blogs.bytecode.com.au/glen/

Glen is the creator of GroovyBlogs.org and coauthor of Grails in Action [SL09].

Other GR8 Bloggers

There are currently over 350 blogs aggregated on GroovyBlogs.org. We’re not
going to list them all here, but these are some members of the community
who have made (and are making) significant contributions. Their blogs are a
rich source of information and experience, as well as a way to get to know
them. When you come across them later on the mailing list or bump into
them at a conference, it’ll be like seeing an old friend.

report erratum • discuss

Meet the GR8 Community • 183

http://jasonrudolph.com
http://javajeff.blogspot.com
http://marceloverdijk.blogspot.com
http://snebolsin.blogspot.com
http://www.leebutts.com
http://burtbeckwith.com/blog/
http://hansamann.wordpress.com
http://blogs.bytecode.com.au/glen/
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Andres Almiray http://www.jroller.com/aalmiray/

Andres is a Groovy committer, a member of the core Griffon development
team, a Grails plugin developer, and coauthor of Griffon in Action [AFS2].

Hamlet D’Arcy: Behind the Times http://hamletdarcy.blogspot.com

Hamlet is a Groovy committer and AST wizard.

Peter Delahunty: Delahuntyware http://blog.peterdelahunty.com

Peter has written several Grails plugins and blogs frequently about his expe-
riences, among other things.

Michael Easter: Code To Joy http://codetojoy.blogspot.com

Michael is a longtime Groovyist and software composer, well-known in the
GR8 community for his Groovy (and related) insights shared at Code To Joy.

James Ervin: Iacobus http://iacobus.blogspot.com

James is the Groovy Eclipse plugin project lead and the creator of the Groovy
Monkey Eclipse plugin.

Shawn Hartsock: Thoughts and Ideas http://hartsock.blogspot.com

Shawn is an enterprise Groovy and Grails expert, Grails plugin author, and
contributor to GroovyMag.

Mike Hugo http://piraguaconsulting.blogspot.com

Mike is a Grails plugin author and contributor to GroovyMag. He has a lot of
helpful information on his blog.

Hubert Klein Ikkink: Messages from mrhaki http://mrhaki.blogspot.com

Mr. Haki, as he is known to GR8 developers everywhere, is another frequent
blogger on Groovy and related topics. He is the author of the popular “Good-
ness” blog series, including “Groovy Goodness,” “Grails Goodness,” “Griffon
Goodness,” and “Gradle Goodness.”

Chris Judd: Judd Solutions http://juddsolutions.blogspot.com

Chris is an author, speaker, trainer, and all-around Groovy guy. He is a
coauthor of Beginning Groovy and Grails: From Novice to Professional [SNJ08].

Ken Kousen: Stuff I’ve Learned Recently... http://kousenit.wordpress.com

Ken is a Java and Groovy trainer and conference speaker. He is the author
of Making Java Groovy [Kou13].

Appendix 2. Resources • 184

report erratum • discuss

http://www.jroller.com/aalmiray/
http://hamletdarcy.blogspot.com
http://blog.peterdelahunty.com
http://codetojoy.blogspot.com
http://iacobus.blogspot.com
http://hartsock.blogspot.com
http://piraguaconsulting.blogspot.com
http://mrhaki.blogspot.com
http://juddsolutions.blogspot.com
http://kousenit.wordpress.com
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Guillaume Laforge . http://glaforge.appspot.com

Guillaume is the Groovy project manager, a coauthor of Groovy in Action, and
a frequent conference speaker.

Tomás Lin: Programming Brain Dump http://fbflex.wordpress.com

Tomás is a Grails/Flex expert and author of the online book Flex on Grails.

Ted Naleid . http://naleid.com/blog

Ted is a Grails plugin author and GroovyMag contributor.

Josh Reed: Josh (formerly) in Antartica . . . http://josh-in-antarctica.blogspot.com

Josh is a desktop Groovy pro and an up-and-coming Griffon power user.

Jim Shingler: Shingler’s Thoughts http://jshingler.blogspot.com

Jim is a coauthor of Beginning Groovy and Grails: From Novice to Professional
and a Griffon plugin author.

Matt Stine . http://www.mattstine.com

Matt is a Grails plugin contributor, a Java user group leader, frequent confer-
ence speaker, and Groovy/Grails blogger.

Venkat Subramaniam http://blog.agiledeveloper.com

Venkat is an internationally recognized speaker and trainer and the author
of Programming Groovy 2: Dynamic Productivity for the Java Developer.

James Williams . http://jameswilliams.be

James is a Grails committer and member of the core Griffon development
team.

Dave Klein: Kickin’ Down the Cobblestones . . . http://dave-klein.blogspot.com

You can also reach me at daveklein@usa.net or on Twitter at http://twitter.com/daveklein.

Ben Klein . http://benkle.in

Also find me at ben@silver-chalice.com, or, on Twitter, at http://twitter.com/fifthposition.

Other Resources

Besides blogs, websites, and mailing lists, there are many other resources
available to new Grails developers. There are books, magazines, podcasts,
screencasts, and training organizations.

report erratum • discuss

Other Resources • 185

http://glaforge.appspot.com
http://fbflex.wordpress.com
http://naleid.com/blog
http://josh-in-antarctica.blogspot.com
http://jshingler.blogspot.com
http://www.mattstine.com
http://blog.agiledeveloper.com
http://jameswilliams.be
http://dave-klein.blogspot.com
http://twitter.com/daveklein
http://benkle.in
http://twitter.com/fifthposition
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Books

The shelves are filling up with Groovy and Grails books these days (well, at
least ours are). Here are some of the more recent titles.

Grails in Action [SL09], by Glen Smith and Peter Ledbrook
. http://manning.com/gsmith

A second edition (http://manning.com/gsmith2/) is expected to be in print in
December 2013.

Appendix 2. Resources • 186

report erratum • discuss

http://manning.com/gsmith
http://manning.com/gsmith2/
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

T h e D e f i n i t i v e G u i d e t o G r a i l s
2 [Roc12], by Graeme Rocher and Jeff Brown . . http://www.apress.com/9781430243779

Programming Groovy 2 [Sub13], by Venkat Subramaniam
. http://pragprog.com/book/vslg2/programming-groovy-2

Making Java Groovy [Kou13], by Ken Kousen
. http://www.manning.com/kousen/

Groovy Recipes [Dav08], by Scott Davis
. http://www.pragprog.com/book/sdgrvr

B e g i n n i n g G r o o v y a n d
Grails [SNJ08], by Judd, Shingler, and Nusairat
. http://www.apress.com/book/view/9781430210450

G r a i l s
Persistence [Fis09], by Robert Fischer . . http://www.apress.com/book/view/1430219262

Groovy and Grails Recipes [Jaw08], by Bashar Abdul Jawad . . .
. http://www.apress.com/book/view/143021600x

Groovy in Action [Koe13], Second Edition, by Köenig et al.
. http://www.manning.com/koenig2

Griffon in Action [AFS2], by Almiray, Ferrin and Shingler
. http://www.manning.com/almiray/

Other Media

GroovyMag . http://groovymag.com

A monthly e-magazine devoted to Groovy, Grails, Griffon, and other GR8
technologies.

The Grails Podcast . http://grailspodcast.com

Sven Haiges and Glen Smith host a biweekly (or as they say, fortnightly)
podcast with news, interviews, and interesting discussions centered around
the GR8 community and technology.

report erratum • discuss

Other Resources • 187

http://www.apress.com/9781430243779
http://pragprog.com/book/vslg2/programming-groovy-2
http://www.manning.com/kousen/
http://www.pragprog.com/book/sdgrvr
http://www.apress.com/book/view/9781430210450
http://www.apress.com/book/view/1430219262
http://www.apress.com/book/view/143021600x
http://www.manning.com/koenig2
http://www.manning.com/almiray/
http://groovymag.com
http://grailspodcast.com
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Grails Screencasts . http://grails.org/screencasts

Grails.org hosts a growing collection of screencasts on topics ranging from
Ajax to JMX to the Grails Mail plugin.

Training

Even with all of these resources at our disposal, there are times when having
an experienced instructor there to help you dig in can make a big difference.
Don’t worry; you’re covered there as well. Here are training opportunities
offered by some of the brightest minds in the business.

SpringSource Training http://www.springsource.com/training/grv001

ThirstyHead . http://thirstyhead.com/

GroovyMag Online Training http://www.groovymag.com/training

IDE Support

As mentioned in Setting Up Our Workspace, on page 16, many Grails developers
find that they don’t need an integrated development environment (IDE) as
much as they did when working with Java or other “high-ceremony” languages.
In fact, an IDE sometimes gets in the way. A good text editor, a good browser,
and the command line are often all you need to be productive with Grails.
Personally, I (Dave) use TextMate; Ben, along with my former co-worker Nate
(who happens to be the best programmer in the world), uses Vim.

That’s not to say that there isn’t support in the major IDEs. It’s just to let you
know that you may not need it once you get going. The three major Java IDEs
—Eclipse, NetBeans, and IntelliJ IDEA—all have varying degrees of support
for Groovy and Grails. NetBeans and IDEA seem to leapfrog each other as
the top GR8 IDE, but SpringSource is actively working on its SpringSource
Tool Suite’s support, so by the time you read this, they may have leapt to the
front. Here are links to information on the support in each IDE.

Appendix 2. Resources • 188

report erratum • discuss

http://grails.org/screencasts
http://www.springsource.com/training/grv001
http://thirstyhead.com/
http://www.groovymag.com/training
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Eclipse and SpringSource Tool Suite (STS)

Grails STS integration http://www.grails.org/STS+Integration

Groovy Eclipse plugin http://groovy.codehaus.org/Eclipse+Plugin

NetBeans

Grails NetBeans integration http://www.grails.org/NetBeans+Integration

Groovy NetBeans integration http://groovy.codehaus.org/NetBeans+Plugin

An introduction to working with Grails in Netbeans
. https://netbeans.org/kb/docs/web/grails-quickstart.html

IntelliJ IDEA

Grails IDEA integration http://grails.org/IDEA+Integration

JetBrains Official Groovy page . . http://www.jetbrains.com/idea/features/groovy.html

JetBrains Official Grails page . . . http://www.jetbrains.com/idea/features/grails.html

report erratum • discuss

IDE Support • 189

http://www.grails.org/STS+Integration
http://groovy.codehaus.org/Eclipse+Plugin
http://www.grails.org/NetBeans+Integration
http://groovy.codehaus.org/NetBeans+Plugin
https://netbeans.org/kb/docs/web/grails-quickstart.html
http://grails.org/IDEA+Integration
http://www.jetbrains.com/idea/features/groovy.html
http://www.jetbrains.com/idea/features/grails.html
http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Bibliography
[AFS2] Andres Almiray, Danno Ferrin, and James Shingler. Griffon in Action.

Manning Publications Co., Greenwich, CT, 2012 .

[Dav08] Scott Davis. Groovy Recipes: Greasing the Wheels of Java. The Pragmatic
Bookshelf, Raleigh, NC and Dallas, TX, 2008.

[Fis09] Robert Fischer. Grails Persistence with GORM and GSQL. Apress, New York
City, NY, 2009.

[HT00] Andrew Hunt and David Thomas. The Pragmatic Programmer: From Jour-
neyman to Master. Addison-Wesley, Reading, MA, 2000.

[Jaw08] Bashar Jawad. Groovy and Grails Recipes. Apress, New York City, NY,
2008.

[Koe13] Dierk Koenig. Groovy In Action. Manning Publications Co., Greenwich, CT,
Second, 2013.

[Kou13] Ken Kousen. Making Java Groovy. Manning Publications Co., Greenwich,
CT, 2013.

[Roc06] Graeme Rocher. The Definitive Guide to Grails. Apress, New York City, NY,
2006.

[Roc12] Graeme Rocher. The Definitive Guide to Grails 2. Apress, New York City,
NY, 2012.

[Rud07] Jason Rudolph. Getting Started with Grails. InfoQueue, http://www.infoq.
com, 2007.

[SL09] Glen Smith and Peter Ledbrook. Grails in Action. Manning Publications
Co., Greenwich, CT, 2009.

report erratum • discuss

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

[SNJ08] Jim Shingler, Joseph Faisal Nusairat, and Christopher M. Judd. Beginning
Groovy and Grails: From Novice to Professional. Apress, New York City, NY,
2008.

[Sub13] Venkat Subramaniam. Programming Groovy 2: Dynamic Productivity for
the Java Developer. The Pragmatic Bookshelf, Raleigh, NC and Dallas, TX,
2013.

Bibliography • 192

report erratum • discuss

http://pragprog.com/titles/dkgrails2/errata/add
http://forums.pragprog.com/forums/dkgrails2

Index
SYMBOLS
$ character

calling toString(), 129, 149
Groovy expressions, 3

''' characters, declaring multi-
line String, 33

* character
filter wildcard, 125
generate-all script, 59

-> character, closure parame-
ters, 4

/ character, redirecting with,
128

; character, optional, 1

<< shortcut, 7–8

<=> shortcut, 7

== shortcut, 3

? character, safe navigation, 73

[] characters
List, 6
Set, 8

{} characters
closures, 4
Groovy expressions, 4

A
<a> tag, displaying events by

organizer, 149

action attribute
Ajax tags, 112
links in show view, 73
URL mapping, 170
volunteer button, 165

actionName, 126

actions, see also index action;
show action

Ajax tags, 112

defined, 27, 61
filters, 125
overview, 60–66

add(), 7–8

addDefaultTasks(), 95–96, 100

addToTasks(), 96

addToVolunteers(), 45

after filter, 125

afterView filter, 125

Ajax, 108–115

allErrors, 54

allowedMethods property, 65

anchor tag
creating links, 68, 129
dashboard view, 139

And, joining properties in dy-
namic finders, 43

and block, search with Criteria
Builder, 151

anonymous users
logging in, 121
registering, 46

Apache Commons project,
124

Apache Shiro, 121, 130

Apple icons, 67

application.properties file, 19

arguments, generate-all script,
59

aria-labelledby attribute, 72

as operator, 44

assert(), 8
assert statements, 3

asterisk
filter wildcard, 125
generate-all script, 59

attr parameter, custom tags,
116

authentication, see logging
in/out

Authentication plugin, 121

author variable, message fo-
rum, 107, 110, 113, 119

autoboxed objects, 6

Autocomplete, 163

automated unit tests, 25

autoreloading, 16

autowiring, 96

B
<backward> tag, 117

bar camps, 12

before filter, 125

belongsTo property, 46, 50, 56

Between, joining properties in
dynamic finders, 43

bidirectional one-to-many re-
lationships, 46, 56

binding, 106

blank constraint, 54

blob, 49

blogs, Grails and Groovy,
101, 182–185

body parameter, custom tags,
116, 119

Boolean tag, 101

BootStrap.groovy
many-to-many relation-

ships, 52
one-to-many relation-

ships, 44
one-to-one relationships,

40

respondent addresses, 47
test data, 32–35, 38, 82

bootstrapping test data, 32–
35, 38, 82

brackets
closures, 4
List, 6
Set, 8

Broken Window theory, 17

BuildConfig.groovy
database configuration,

82
installing plugins, 153

<button> tag, 162–166

buttons
creating, 68
login/out, 123
message forum, 105,

109, 111, 114
pagination, 71
reply, 111, 114
Twitter, 168
volunteer, 161–166

byte[] variable, 49

C
C language, 1

Captchas, 121

CAS, 121

cascading deletes, 46, 56

checkbox, completion, 101

children variable, message fo-
rum, 119

city property, 23, 89, 137, 149

class="messageField", 107

classes
declaration, 60
named-args constructor,

3

closures
custom tags, 117
custom validation, 54
defined, 4
each(), 6–7
sort(), 6

code
create-app default, 18
source, xii

codec classes, 19

collect(), 143

collections, see also respon-
dents collection; volunteers
collection

about Groovy, 5–9

filtering with custom
tags, 118

many-to-many relation-
ships, 50–54

simple data types, 46

colors example, 7

columns
edit and create views, 77
list view, 29, 35, 40, 70

com.tekdays package, 22, 33

compareTo(), 7
comparison expression, 6

comparison operator, 7

Compass, 153

completed property, 100

concurrency, optimistic, 24

conf directory, 18

configuration
convention over, x, 18–

19, 79, 155
create-app default, 18
databases, 79–83

constraints
about, 54
custom, 54
domain classes, 30
inList, 52, 54
list of built-in, 54
logo property, 49
<select> element, 52
task list, 100
URL mapping, 170
validation, 30, 54
website property, 49

constructor, named-args, 3

contains(), 143, 162

content, message forum, 110,
113, 140

content negotiation, 62

contributionType, 141

controller attribute
Ajax tags, 112
links in show view, 73
URL mapping, 170

controllerName, filters, 126

controllers, see also dash-
board action; index action;
show action

actions overview, 60–66
Ajax tags, 112
controllers directory, 18
conventions, 135
create action, 62
creating, 27, 38, 49, 135

dashboard view, 135,
142–143

delete action, 65
edit action, 64
from generate-all script, 59–

66
interceptors, 121, 125–

129
link creation, 68, 73
list on home page, 17,

133
save action, 63, 96
service classes, 94
update action, 64
URL mapping, 170

controllers directory, 18

convention over configura-
tion, x, 18–19, 79, 155

count(), 62

count variable, restricting
messages to an event, 105

create (CSS class), 145

create action, 62

create view
dates, 29, 90
from dynamic scaffolding,

28
form template, 77–79
GSP code, 74
message forum, 103–

107, 114
modifying, 90–93
rendering with create ac-

tion, 62
restricting messages to

an event, 106–107
save action, 63
sponsors, 49

create-app, 16–20

create-controller, 38, 135

create-domain-class, 21–23, 33,
37

create-integration-test, 98

create-service, 94

create-tag-lib, 116

createCriteria(), 151

createLink(), 68, 129, 145

<createLink> tag, 129, 145

creditCard constraint, 54

criteria blocks, nesting, 151

Criteria Builder, search with,
151–153

cross-site scripting attacks,
73

Index • 194

CSS
dashboard menu, 145
displaying text properties,

72
list view, 70
login/out, 129
main.gsp view, 67
message forum, 107, 110
modifying, 85
show view, 72
style rules, 85, 110, 179
web-app directory, 19

curly braces, 4

custom constraints, 54

custom tags
displaying events by orga-

nizer, 148–150
displaying events by vol-

unteer, 152
displaying message

threads with, 116–120
login/out, 128
taglib directory, 19
volunteer button, 162–

166

custom validation, 54

D
dash-rocket, 4

dashboard action, 142–143

dashboard view, 131–146
controllers, 135, 142–143
designing, 135–141
links, 138–139, 145
menu, 143
Twitter4J plugin, 166–

168

DashboardController
creating, 135
dashboard action, 142–143
linking to dashboard, 146
Twitter4J plugin, 167

DashboardControllerSpec, creating,
135

Database Migration plugin
advantages, 177
autoinstallation, 17
migrations directory, 19
resources, 82

databases
changing for deployment,

173–176
configuring, 79–83
migrations, 17, 19, 82,

176

databases, in-memory
advantages, 34

bootstrapping test data,
32–35

development environment,
16, 82

databases, persistent
compared to in-memory

databases, 34
domain model and, 21
production environment, 82
test environment, 82, 99

DataSource.groovy
changing for deployment,

173–176
configuring, 79–83

dates
create view, 29, 90
edit view, 90
form template, 78
list view, 71
search, 151
show view, 89

Davis, Scott, ix

DbdocController, 17

def index(), 27

def keyword, dynamic typing,
3, 24

defaultEncodeAs, 117

delete action, 65

deletes, cascading, 46, 56

deployment, 173–176

description
declaring multiline String,

33
form template, 77
modifying in show view,

89
search, 151

details variable, message forum
template, 110

development environment
databases, 80, 82
default, 16

Dialog, 163

dialog box, volunteer button,
161–166

directories
create-app, 16, 18
dashboard, 135
GSP, 19, 108

dollar sign
calling toString(), 129, 149
Groovy expressions, 3

doLogin filter, 126

domain classes
adding properties, 23

adding tests, 24–27
constraints, 30
controllers and, 135
creating, 21–23, 33, 37–

40
creating controller class-

es, 27
many-to-many relation-

ships, 49–54
metaprogramming, 23
one-to-many relation-

ships, 44–46
one-to-one relationships,

40–44

domain directory, 18

domain model, 21

Don’t Repeat Yourself princi-
ple, 94, 119

dot notation, Map, 8
DRY principle, 94, 119

dynamic finders
limiting lists, 143
missing methods, 41, 43
search, 147–150
URL mapping, 172

dynamic operators, 43

dynamic scaffolding
advantages, 29
constraints, 54
controller creation, 27
enabling, 38, 53
generating code, 59
GSP code, 66–79
modifying views, 86–93
one-to-many relation-

ships, 44, 47
views from, 28

dynamic typing, 3, 24–25

E
each()

displaying events by orga-
nizer, 149

displaying message
threads with custom
tag, 118

List, 6
Map, 7

<each> tag
dashboard view, 140–141
form template, 79
list view, 70
message forum, 110,

117, 140
one-to-many relation-

ships in show view, 73

Index • 195

search, 158
sponsors, 141

<eachError> tag, 74

echo, 15

Eclipse, 19, 176, 188

edit action, 64

edit view
from dynamic scaffolding,

28, 36
form template, 77–79
GSP code, 74
modifying, 90–93
task list checkbox, 101
update action, 65

EJB, x

ellipsis, truncating with, 140

Ellison, Larry, 79

email addresses
collecting, 46
constraint, 54
dashboard view, 139
show view, 73

email constraint, 54

employee list example, 8

encodeAsForTags, 117

encodeAsHTML(), 71, 73, 90

endDate property, 89

Enterprise JavaBeans (EJB),
x

environment variable, GRAILS
_HOME, 14

equals(), with ==, 3

errors
bootstrapping test data,

33
constraints, 54
create view, 74
form template, 77
save action, 63
update action, 65
URL mapping, 170, 172

errors property
bootstrapping test data,

33
constraints, 54
create view, 74

event variable
restricting messages to

an event, 105
URL mapping, 171

eventId attribute, 162

events, see also TekEvent
class

creating, 21–35

dashboard view, 137–
141, 146

registering respondents,
46

restricting messages to
an event, 103–107

search with Criteria
builder, 151–153

search with dynamic
finders, 147–150

URL mapping, 171

exiting controller actions, 61

explicit declaration, 2

expressions
designating, 3
embedding, 138

F
Facebook Connect, 121

favicons, 67

feedback loop, 17

fieldValue(), 71

fieldcontain, 72

fields, accessing directly, 2

file input element, 49

filtering
message forum, 103–

107, 118
security, 121, 125–129

findAll, 118

findAllByOrganizer(), 148

findAllByParent(), 119

findByFullName(), 41

findByName(), 45

findByNickname(), 172

findByUserName(), 124

flash
login/out, 124
message element, 69
notFound() method, 66
save action, 63
update action, 65

flush:true, 63

<form> tag
login/out, 127
restricting messages to

an event, 106
search field, 159
Twitter template, 168
volunteer button, 165

form template
modifying in create and

edit view, 90
rendering, 74

restricting messages to
an event, 106

using, 77–79

form variable
notFound() method, 66
save action, 63

format attribute, 89

formats
Boolean tag, 101
content negotiation, 62
dates, 71, 89

forms
HTML, 74, 77–79
login/out, 123, 127
modifying in create and

edit view, 90
notFound() method, 66
restricting messages to

an event, 106
save action, 63
volunteer button, 165

forum, see message forum

frameworks
plugins, 155
support, x

G
<g:backward> tag, 117

<g:createLink> tag, 145

<g:datePicker> tag, 78, 90

<g:each> tag
dashboard view, 140–141
form template, 79
list view, 70
message forum, 110,

117, 140
one-to-many relation-

ships in show view, 73
search, 158
sponsors, 141

<g:eachError> tag, 74

<g:form> tag
errors, 74
login/out, 123, 127
search field, 159
Twitter template, 168
volunteer button, 165

<g:formatBoolean> tag, 101

<g:formatDate> tag, 71, 89

<g:hasErrors> tag, 74, 77

<g:hiddenField> tag, 76

<g:if> tag
list view, 69

Index • 196

restricting messages to
an event, 107

show view, 72

<g:javascript> tag, 112, 164

<g:layoutBody> tag, 67

<g:layoutHead> tag, 67

<g:layoutTitle> tag, 67

<g:link> tag
about, 68
dashboard view, 139, 145
form template, 79
message forum reply

button, 111
restricting messages to

an event, 105
show view, 73

<g:message> tag
about, 70
link creation, 68
save action, 63

<g:organizerEvents> tag, 148

<g:paginate> tag, 71

<g:remoteLink> tag, 112, 117

<g:render> tag, 74, 108, 136

<g:select> tag, 77

<g:sortableColumn> tag, 70

<g:textArea> tag, 77, 107

<g:textField> tag, 107

<g:volunteerEvents> tag, 152

generate-all script, 59, 135

get()
dashboard action, 142
explicit declaration, 2

getters, 2

GORM
about, 41
restricting messages to

an event, 105

GR8 community, 177, 182–
185

Grails
advantages, ix–xi
installing, 14, 19
resources, 112, 153,

177, 181–189
Resources framework,

67, 164
tools, 19
versions, xii

grails command, scripts, 15

Grails Database Migration
plugin

advantages, 177
autoinstallation, 17

migrations directory, 19
resources, 82

Grails Object Relational Map-
ping, see GORM

grails-app directory, 18

GRAILS_HOME environment vari-
able, 14

grailsw shell script, 19

grailsw.bat batch file, 19

Griffon, 181

Groovy
about, xii, 1
closures, 4
collections, 5–9
compared to Java, 1–3
expressions, 3, 138
GString, 3
installation, 1
List class, 5–7
Map class, 5, 7
metaprogramming fea-

tures, 9, 23, 43
resources, 1, 9, 101,

120, 181–189
Set class, 5, 8
tools, 19
tutorial, 1–10

Groovy In Action, 1

Groovy Server Pages, see GSP

GroovyMag, 120, 187

GSP
create view code, 74
custom tag, 116–120
directories, 19
edit view code, 74
from generate-all script, 59
home page makeover,

131–134
jQuery UI plugin, 163–

166
list view code, 68–71
logging in/out, 122
message forum, 108–120
methods from tags, 77,

119
show view code, 71–74
views code, 66–79

GString
about, 3
login/out, 129

H
Halloway, Stuart, 25

hasErrors(), 63, 65

<hasErrors> tag, 74, 77

hasMany property, 44, 46, 50

<head> tag, 67, 109

help
scripts, 15
testing installation, 14

Hibernate
configuration files, 18
familiarity with, xii
passing changes with
flush:true, 63

search with Criteria
Builder, 151–153

transactions, 95

<hiddenField> tag, 76

home (CSS class), 145

home page
changing logo, 85
default, 17
displaying events by orga-

nizer, 147–150
displaying events by vol-

unteer, 152
GSP code, 68–71
main.gsp view, 67
makeover, 131–134
search field, 153–159
simple URL, 161, 169–

172

Houston Tech Fest, 12

href attribute, 68

HTML
Ajax tags, 112
custom tags, 117
encodeAsHTML(), 71, 73, 90
forms, 74, 77–79
hidden field, 76
main.gsp view, 67
<select> element con-

straint, 52

HTTP
allowed methods, 65
redirect, 61, 124
status codes, 60, 63, 65

HttpStatus, 60

Hunt, Andy, 17

I
i18n, 19, 70

icons, main.gsp view, 67

id property
about, 24
Ajax tags, 112, 114
dashboard action, 142
restricting messages to

an event, 105
save action, 63

Index • 197

searching events by volun-
teer, 152

show action, 62
show view, 73
URL mapping, 170, 172
volunteer button, 162,

165
volunteers in dashboard

view, 139

IDEs, 19, 176, 188

if, filters, 126

<if> tag
list view, 69
show view, 72

images, web-app directory, 19

import statement, including,
33

in-memory databases,
see databases, in-memory

inList constraint, 52, 54

indent parameter, 119

index action
about, 27, 61
login/out, 124
message forum template,

114
notFound() method, 66
restricting messages to

an event, 105

index.gsp, see home page

init(), bootstrapping test data,
32

install-templates script, 29

installation
Grails, 14, 19
Grails Database Migra-

tion plugin, 17
Groovy, 1
jQuery UI plugin, 163
plugins, 153

integration testing, see test-
ing, integration

IntelliJ IDEA, 19, 188

interceptors, 121, 125–129

internationalization, 19, 70

Internet Explorer, 67

IsNotNull, 43

it parameter, 4, 6–7

J
jArrayList, 6
.jar files

lib directory, 19
plugins, 155

Java
advantages, ix
compared to Groovy, 1–3
Java servlet containers,

173–174
JNDI data source, 173–

176

Java Database Connectivity,
42, 82

Java servlet containers, 173–
174

java.util.ArrayList, 6
JAVA_HOME environment vari-

able, 14

JavaScript
Ajax tags, 112
jQuery, 112, 161–166
web-app directory, 19

<javascript> tag, 164

JavaServer Faces (JSF), x

JBoss, 173

JDBC, 42, 82

JDK, JAVA_HOME environment
variable, 14

JEE servers
compared to Java servlet

containers, 174
deployment, 173–176

Jetty, 173

JNDI data source, deploy-
ment, 173–176

jQuery
library, 112
UI plugin, 161–166

JSF, x

JSON, 124

JUnit testing framework, 24,
98

K
key property, 7

key/value pairs
constraints, 30
hasMany property, 44
Map, 7
restricting messages to

an event, 105

L
latestStatus, 168

layout
create view, 77
edit view, 77
main.gsp view, 67

left shift operator, add(), 7–8

left-margin, 119

LessThan, 43

 tag
displaying events by orga-

nizer, 149
show view, 72
task list, 97

lib directory, 19

libraries
Ajax tags, 112
lib directory, 19
list of supported, 112
plugins, 155

library attribute, Ajax tags, 112

Like, joining properties in dy-
namic finders, 43

links
creating, 68, 129
dashboard view, 138–

140, 145
list view, 35, 68
login/out, 129
message forum, 105,

111, 117, 119
from search, 147–150
show view, 73
simple URL, 169–172
sponsors, 140
sponsorships, 79
task list, 138
volunteers, 139

Liquibase framework, 177

List
about, 5–7
filters, 126
order, 8
years attribute, 91

list(), parameters, 62

list (CSS class), 145

list variable, restricting mes-
sages to an event, 105

list view
with constraints, 30
default features, 35, 40
from dynamic scaffolding,

28
GSP code, 68–71
links, 35, 68
message forum, 105
modifying, 86
rendering with respond(),

62
with sample data, 34
TekUser, 39

list-plugins, 153

Index • 198

lists
comma-separated, 73
constraints, 52, 54
CSS class, 145
dashboard view, 137, 140
email addresses, 73
message forum, 103,

110, 118
multiselect, 78
restricting messages to

an event, 103
scrolling, 110
sponsors, 140
sponsorships, 79
task list, 94–101, 137,

143, 145

literal declaration
ArrayList default, 8
List, 5
Map, 7

locations, show view, 89

logging in/out
dashboard view, 143
displaying volunteers’

events, 151–153
setup, 121–129
volunteer button, 161,

165

loginToggle, 128

logo
application in main.gsp

view, 67
changing, 29, 85
sponsors, 49

Lucene, 153

M
main.gsp, 67

Making Java Groovy, 1

many-to-many relationships,
creating, 49–54

Map
about, 5, 7
coercing, 43
exiting controller actions,

61
named-args constructor,

3
params property, 61
restricting messages to

an event, 105

mapping, URLs, 169–172

matches constraint, 54

Math.min(), 61, 140

max(), 6
max constraint, 54, 61, 143

maxSize constraint, 30, 49, 54

menuButton, 162

merge(), 162

message bundles, 70

message element, flash, 69

message forum
dashboard view, 139, 143
displaying threads with

custom tag, 116–120
restricting messages to

an event, 103–107
setup, 54
templates and Ajax calls,

108–115

<message> tag
about, 70
link creation, 68
save action, 63

messageList, 110

MessageThread tag, 117–120

<meta> tag, 67

metaClass, 9
metaprogramming

about, 9
domain classes, 23
dynamic finders, 43

methodMissing(), 9
methods

argument parameters, 62
dynamic operators, 43
filters, 125
GSP tags, 77, 119
metaprogramming basics,

9
missing, 9, 41, 43
optional parentheses, 2

Microsoft Internet Explorer,
67

migrations directory, 19

migrations, database, 17, 19,
82, 176

min(), 6
min constraint, 54

minSize constraint, 54

mocking, 43

model
index action, 62
showDetail action, 113

Model View Controller frame-
work, x

models, exiting controller ac-
tions, 61

msg parameter, 118

multiline String, declaring with
quotes, 33

multiple attribute, 78

multiselect listbox, 78

MVC4 framework, x

MySQL JDBC connector, 82

N
name property, displaying

events by organizer, 149

named-args constructor, 3

names
controllers, 135
displaying events by orga-

nizer, 149
events in message forum,

106
events in show view, 88
principle of least sur-

prise, 21
printing example, 6
Set example, 8
uppercase example, 3

nesting
criteria blocks, 151
message forum, 116–120

NetBeans, 19, 176, 188

Nicholson, Maurice, 153

nicknames, URL mapping,
171

noSelection attribute, 78

notFound(), 63, 66

nullable constraint, 54

Nuxoll, Joe, 2

O
objects

autoboxed, 6
displaying related, 73
searching, 157

offset element, 143

one-to-many relationships
bidirectional, 46, 56
creating, 44–46, 56
domain classes, 44–46
<g:select> tag, 78
Set class default, 8
show view, 73
Strings, 44

one-to-one relationships, 40–
44

Open Symphony, 66

OpenID, 121

optimistic concurrency, 24

Index • 199

Or, joining properties in dy-
namic finders, 43

or block, search with Criteria
Builder, 151

order, see also sorting
columns in list view, 35,

40, 70
constraints, 30
custom tags, 117
List, 8
list view, 29
Set, 8
task list, 143

order element, 143

organizer property
changing, 40
displaying related objects

in show view, 73
mocking with Map, 43
modifying in show view,

89
one-to-one relationships,

40–44
removing from list view,

86
search, 147–150

<organizerEvents> tag, 148

organizers
dashboard view, 131–146
removing from list view,

86
search, 147–150
setup, 40–44
show view, 73, 89
Twitter4J plugin, 166–

168

ORM, 42

Overdijk, Marcel, 59

owning side, declaring, 50

P
packages, scripts, 22

pagination
dashboard view, 143
list view, 71

parameters
closures, 4
comparison expression,

6
create action, 62
custom tags, 116
dashboard action, 142
filters, 126
index action, 61
restricting messages to

an event, 106

show action, 62
showDetail action, 113

params property
create action, 62
dashboard action, 142
filters, 126
index action, 61
restricting messages to

an event, 106
show action, 62
showDetail action, 113

parent property, message fo-
rum, 107, 114, 118

parentheses
constraints, 30
optional, 2, 96

passwords, 123–124, 177, see
also security

persistent databases,
see databases, persistent

Plain Old Groovy Object, 94

plugins
about, 153
Grails Database Migra-

tion plugin, 17, 19, 82,
177

jQuery UI, 161–166
listing, 17, 19, 153
resources, 82, 153, 172,

176, 181
search, 153–159
security, 121, 130
Twitter4J, 155, 166–168

POGO, 94

The Pragmatic Programmer,
17, 94

precision attribute, 78

principle of least surprise, 21

println(), 5
processMessages(), 118

production environment
about, 16
databases, 82
deployment, 175

Programming Groovy 2, 1, 5,
10

Progressbar, 163

properties
about, 2
adding to TekEvent, 23
application.properties file, 19
constraints, 30
displaying text, 72
dynamic finders, 43
filters, 126

form template, 77
list view, 35, 40
metaprogramming basics,

9
named-args constructor,

3
parentheses, 2
search, 153–159

property-label, 72

property-value, 72

Q
query element, 159

question mark, safe naviga-
tion with, 73

quotes
declaring multiline String,

33
GString, 3

R
<r:layoutResources> tag, 67

<r:require> tag, 67, 164

Range, years attribute, 91

ranges, truncating with, 140

readOnly element, omitting, 63

redirect()
login/out, 124, 128
save action, 63

redirecting
controller actions, 61
login/out, 124, 128
save action, 63
to home page, 149

regular expressions, con-
straint, 54

relationships
many-to-many, 49–54
one-to-many, 8, 44–46,

56, 73, 78
one-to-one, 40–44
search and, 151

reloading, auto-, 16

<remoteLink> tag, 112, 117, 119

render()
exiting controller actions,

61
login/out, 124
message forum template,

113

<render> tag, 74, 108, 136

reply action, message forum,
111, 114

<require> tag, 67, 164

Index • 200

resources
Grails, 112, 153, 177,

181–189
Grails Database Migra-

tion plugin, 82
Groovy, 1, 9, 101, 120,

181–189
jQuery UI plugin, 163
plugins, 82, 153, 172,

176, 181
Searchable plugin, 157
String class, 3
Twitter4J plugin, 167

Resources framework, 67,
164

respond()
create action, 62
exiting controller actions,

61
index action, 62
save action, 63
show action, 62
update action, 65

respondents
dashboard view, 137
setup, 46
show view, 73

respondents collection
creating, 46
dashboard view, 137
show view, 73

results property, 156

return statements, optional,
1

reverse(), 116

role attribute, 67

root mapping, 170

S
safe navigation operator , 73

save()
constraints, 54
task list service class, 96

save action, 63, 96

scaffolding, see dynamic
scaffolding

scope, flash, 63

screen readers
aria-labelledby attribute, 72
role, 67

scripting attacks, cross-site,
73

scripts
about, 15
create-controller, 38, 135

create-domain-class, 21–23,
33, 37

create-integration-test, 98
create-service, 94
create-tag-lib, 116
generate-all, 59, 135
grailsw shell, 19
install-templates, 29
packages, 22
scripts directory, 19
test-app, 26
war, 176

scripts directory, 19

scrolling, list, 110

search, 147–159
Criteria Builder, 151–153
dynamic finders, 147–150
Searchable plugin, 153–

159

search action, 156, 159

search() method, 156

search view, 156

Searchable plugin, 153–159

SearchResult, 156

security, 121–129
cross-site scripting at-

tacks, 73
dashboard view, 143
filters, 121, 125–129
plugins, 121, 130
search, 159

SecurityFilters, 125–129, 159

<select> element, 52, 77

semicolons, optional, 1

service classes
authentication, 124
services directory, 19
task list, 94–100

serviceMethod(), 95

services directory, 19

session, 125

set, explicit declaration, 2

Set class, about, 5, 8

setters, 2

setup(), task list, 100

Shiro, 121, 130

show action
about, 62
dashboard view, 139
URL mapping, 171

show view
dashboard link, 145
from dynamic scaffolding,

28, 36

GSP code, 71–74
links from search, 147–

150
message forum, 103–106
modifying, 88–90, 103–

106
one-to-many relation-

ships, 45
one-to-one relationships,

42
rendering with show ac-

tion, 62
respondents, 47
sponsorships, 53
task list, 97
URL mapping, 172
volunteer button, 161–

166

showDetail action, 113

Silicon Valley Code Camp, 12

SiteMesh, 66

size(), 7
slash character, redirecting

with, 128

sort(), List, 6
sort element, 143

SortedSet, 8
sorting, see also order

columns, 35, 40, 70
List, 6
list view, 35, 40, 70
task list, 143

 tag
show view, 72
volunteer button, 162

spinner image, 67

Spock
integration tests, 98
unit test class, 22

Sponsor class
dashboard view, 140, 145
diagram, 48
many-to-many relation-

ships, 49–54
search, 152
setup, 48–49

SponsorController, creating, 49

sponsors
dashboard view, 140,

143, 145
form template, 79
modifying in show view,

90
search, 152
setup, 48–54

Index • 201

Sponsorship class
dashboard view, 140,

143, 145
diagram, 51
form template, 79
modifying in show view,

90
search, 152
setup, 51–54

SponsorshipController, creating,
79

Spring
configuration files, 18
familiarity with, xii
Security, 121, 130
transactions, 95

SpringSource, 188

square brackets, 6, 8

src directory, 19

startDate property, 71, 89, 151

static mappings, 170

status, Twitter plugin, 168

String
collections and hasMany

property, 46
declaring multiline with

quotes, 33
domain classes as, 23
quotes, 3
resources, 3
truncating with ranges,

140

strings
blank constraint, 54
collections and hasMany

property, 46
declaring multiline with

quotes, 33
GString, 3, 129
quotes, 3
truncating with ranges,

140

subject variable, message fo-
rum, 107, 110, 113, 119

submit button, 123

Subramaniam, Venkat, 5, 10

subscript operator, 6, 8

synthesizing behavior, 41, 43

T
tables, 137–140

Tabs, 163

TagLib class, 116–120, 148

taglib directory, 19

tags, see also custom tags
library descriptors

(TLDs), 117
main.gsp view, 67
taglib directory, 19

target directory, 19

Task
dashboard view, 137,

143, 145
default task list, 94–101
diagram, 55
modifying to show comple-

tion, 100
setup, 54
testing, 98–100

taskService property, 100

TaskService class, 95–97

TaskServiceSpec.groovy, testing,
99

<td> tag, 71

technical conferences, 12,
177, see also TekDays.com

tekdays database, creating, 82

TekDays.com
about, 12
creating, viewing, modify-

ing events, 21–35
customer, 12–14
dashboard view, 131–146
deployment, 173–176
features list, 13
home page makeover,

131–134
login/out, 121–129
message forum, 103–120
modifying scaffolded

views, 86–93
relationships and domain

classes, 37–57
search, 147–159
security, 121–129
setup, 11–20
simple URL, 169–172
task list, 94–101
Twitter4J plugin, 166–

168
views with GSP, 66–79
volunteer button, 161–

166
workspace setup, 16–18

TekDaysDS, 175

TekEvent class
adding tests, 24–27, 32–

35
bootstrapping test data,

32–35
constraints, 30

creating, 21–23, 62
creating controller class-

es, 27
dashboard action, 142–143
dashboard view, 137–

141, 146
deployment, 173–176
diagram, 22
many-to-many relation-

ships, 49–54
modifying scaffolded

views, 86–93
one-to-many relation-

ships, 44–46, 56
one-to-one relationships,

40–44
restricting messages to

an event, 103–107
save action, 63
search, 147–159
task list service class, 96
views with GSP, 66–79
volunteer button, 161–

166

TekEvent.addToVolunteers(), 45

TekEvent.count(), 62

TekEvent.findByName(), 45

TekEvent.id, restricting mes-
sages to an event, 105

tekEvent.toString(), 26

TekEventController
actions overview, 60–66
creating, 27
logging in/out, 124
search action, 156
task list service class, 96
URL mapping, 171

TekEventInstance, save action, 63

tekEventInstanceCount, 62

tekEventInstanceList, 70

TekMessage
diagram, 55
displaying threads with

custom tag, 116–120
message forum template,

111
restricting messages to

an event, 103–107
setup, 54

TekMessageController
message forum template,

112
restricting messages to

an event, 105

tekMessageInstance, message fo-
rum template, 111

Index • 202

TekUser class
controller, 38
creating, 37–40
dashboard view, 139
diagram, 37
logging in/out, 121–129
one-to-many relation-

ships, 44–46, 78
one-to-one relationships,

40–44
search, 157
test data, 38
testing task list, 100

TekUserController
creating, 38
logging in/out, 122–129
redirecting to home page,

149

templates
dashboard view, 136–141
form, 74, 77–79, 106
generate-all script, 59
install-templates script, 29
message forum, 108–115
rendering GSP, 108
Twitter, 168

ternary operator, 140

test addDefaultTasks(), 100

test directory, 19

test environment
about, 16
databases, 82, 99

test toString(), 26

test-app script, 26

TestFor annotation, 26

testing, see also testing, inte-
gration; testing, unit

databases, 82, 99
domain classes, 24–27
dynamic languages, 25
installation, 14
test directory, 19
test-app script, 26

testing, integration
task list service class, 98–

100
test directory, 19
test-app script, 26

testing, unit
creating unit test class,

22
domain classes, 25–27
dynamic languages, 25
one-to-one relationships,

42

test directory, 19
test-app script, 26

text
displaying CSS text prop-

erties, 72
form template, 77
full-text search, 155–159
message forum, 107
render(), 124
<textArea> tag, 77, 107
Twitter, 168

<textArea> tag, 77, 107

<textarea> element, 77, 168

<th> tag, 70

Thomas, Dave, 17

times(), 5
<title> tag, 67

TLDs (tag library descriptors),
117

toggle, login/out, 128

toList(), 8
Tomcat, deployment, 173–176

toString()
adding to domain classes,

23
displaying events by orga-

nizer, 149
login/out, 129
testing, 25

toUpperCase(), adding to domain
classes, 3

<tr> tag, 70

@Transactional, 60, 63

transactions
annotation, 60, 63
service classes, 95

truncating messages, 140

tweet action, 168

Twitter4J plugin, 155, 161,
166–168

types
associating with hasMany

property, 46
optional, 3
Set, 8
specifying properties, 23

U
uber-generate-all, 59

unique constraint, 54

unit testing, see testing, unit

unit: flag, 26

update action, 64

update attribute, Ajax tags,
112

updateStatus(), Twitter, 168

uppercase example, 3

uri, login/out, 128

url constraint
defined, 54
sponsors, 49

UrlMappings class, 169–172

URLs
constraint, 49, 54
controller actions, 61
creating links, 68
HTTP redirect, 61
login/out, 128
mapping, 169–172
simple, 161, 169–172
sponsors, 49

user, login/out, 124

userName, login/out, 143

username, login/out, 123, 128

utils directory, 19

V
validate(), constraints, 54

validate action
login/out, 123, 127
redirecting to home page,

149

validation
constraints, 30, 54
login/out, 123, 127
redirecting to home page,

149
save action, 63

validator constraint, 54

value property, each(), 7
version control, 176

version property, 24, 76

versions
default for new applica-

tions, 19
Grails, xii
JDK, 14

view parameter
index action, 62
message forum template,

114
save action, 63

views, see also create view;
dashboard view; edit view;
list view; show view

controllers and, 135
from dynamic scaffolding,

28

Index • 203

exiting controller actions,
61

folder, 27
GSP code, 66–79
message forum, 103–115
modifying scaffolded, 86–

93
render(), 124
search view, 156
using constraints to order

display, 30
views directory, 19

views directory, 19

visitors, search, 153–159

volunteer action, 165

volunteer property, modifying
in show view, 89

volunteerDialog, 165

<volunteerEvents> tag, 152

volunteerSpan, 162, 165

volunteers
dashboard view, 138, 143
log in/out, 143
modifying in show view,

89
search by event, 151–153
setup, 44–46
volunteer button, 161–

166

volunteers collection
dashboard view, 138, 143
one-to-many relation-

ships, 44–46
search by event, 151–153
volunteer button, 161–

166

vsize constraint, 54

W
WAR files, creating and de-

ploying, 176

web-app directory, 19

WebLogic, 173

website property, sponsors, 49

WebSphere, 173

wildcard, filters, 125

Windows, installation, 15

withFormat(), 63, 66

workspace setup for Tek-
Days.com, 16–18

wrapper directory, 19

X
XML, 124

Y
years attribute, 91

Index • 204

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
http://pragprog.com/book/dkgrails2
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community
http://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you'd like to have a paper copy of the book. It's available
for purchase at our store: http://pragprog.com/book/dkgrails2

Contact Us
http://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://pragprog.com/write-for-usWrite for Us:

+1 800-699-7764Or Call:

http://pragprog.com/book/dkgrails2
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
http://pragprog.com/book/dkgrails2
http://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://pragprog.com/write-for-us

	Cover
	Table of Contents
	Greetings and Salutations!
	Let Me Tell You About Grails…
	How Does Grails Do It?
	Why This Book?
	Who Should Read This Book
	Source Code
	Acknowledgments

	1. Enough Groovy to Be Dangerous
	Groovy Syntax Compared to Java
	Groovy Strings
	Groovy Closures
	Groovy Collections
	Metaprogramming
	Where to from Here?

	2. Our Project
	Introducing TekDays.com
	Meet Our Customer
	Iteration Zero
	Summary

	3. Laying the Foundation
	Creating a Domain Class
	More About Domain Classes
	Testing Our Domain Class
	Taking Control of Our Domain
	Modifying Code That Doesn't Exist
	Bootstrapping Some Test Data
	Summary

	4. Building Relationships
	The TekUser Domain Class
	One-to-One Relationships
	One-to-Many Relationships
	Collections of Simple Data Types
	Adding a Sponsor Class
	Many-to-Many Relationships
	Finishing Up the Domain Model
	Summary

	5. Beyond Scaffolding
	Generating Scaffolding Code
	Anatomy of a Grails Controller
	Grails Views with Groovy Server Pages
	Configuring a Database
	Summary

	6. Getting Things Done
	Changing All Our Views at Once
	Modifying the Scaffolded Views
	Event Task List
	Grails Service Classes
	Integration Testing
	Modifying the Task Class
	Summary

	7. Forum Messages and UI Tricks
	Restricting Messages to an Event
	Of Templates and Ajax
	Display Message Threads with a Custom Tag
	Summary

	8. Knock, Knock: Who's There? Grails Security
	Grails Security Options
	Logging In
	Filters
	Logging Out
	Summary

	9. Big-Picture Views
	Home Page Makeover
	Creating a New Controller
	Designing the Dashboard View
	Adding the Dashboard Action
	Adding a Menu
	Linking to the Dashboard
	Summary

	10. Seek, and You Shall Find
	Search Using Dynamic Finders
	Hibernate Criteria Builder
	The Big Guns: The Searchable Plugin
	Summary

	11. Icing on the Cake
	The jQuery UI Plugin
	The Twitter4J Plugin
	User-Friendly URLs
	Summary

	12. Deployment and Beyond
	Using a JNDI Data Source
	Creating and Deploying a WAR
	Next Steps
	Parting Thoughts

	A1. Additional CSS Rules
	A2. Resources
	Online Resources
	Meet the GR8 Community
	Other Resources
	IDE Support

	Bibliography
	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– X –
	– Y –

