—
firstPress-

Grails Persistence
with GORM and GSQL

Robert Fischer

APIESS

http:///
http://www.allitebooks.org

=
_ﬂg Contents

Chapter 1: Defining the Model in GORM.........cccccviiiiiiiiiececeaenns 1
The Goal of GORDM.............eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeennesaeaaaeaasssssnnnes 1
Defining Objects in GORMo.uuuneeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeanaans 2

Creating and Defining Simple Domain Classes..............cccccoiiiiiiiiiiienne. 2
Creating and Defining Inheritance Trees ..., 6
Adding Functionality to One Domain Class ... 10
Adding Functionality to Multiple Domain Classes.............ccccooceiieniennne 21
Creating Domain Classes Within Packages ... 30
Defining Relationships Between Classesccoooiiiiiiiiiiiiiiicic 31
Defining Tree Relationships..............ccooiiiiiiii i 46
Intermediaries and Has-Many-Through Relationships 47
Constructing New InStances................cccooeeeiieoooeeoeeeeeeeeeeeeeeeeeeaeeeenne 50
Setting Basic Properties via Map Constructoroooooiieiiiiieieceene. 51
Setting Relationship Properties via Map Constructor..............ccccooooeeee. 52

Chapter 2: Customizing GORM Mapping
and Enforcing Data Integrity.....cccccovvviiiiiiiiiiiic e 55
Data Integrity Through COnStraintseeeeeeeeeeeoeeeeeeeeeeenaeaes 39
Specifying CONSIrAINTSoooooeeiiiieeiaeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeeeeeeee I
Built-In Data CORSTraINTS.............c..eeeeeeeeeeeoeeieeceeeceeeeeeeeeeeeeeeeeennes 56
Custom CONSIPAINLS............oooneeeoneeeaniaeeeeeeeeeeeeeeeeeeeeeeeeeaeeesaneeas 61
Customizing the Object/Relational Mapping................cccooauuceaaannnnne 66

Custom and Escaped Table Namesccocoooiiiiiiiiiiicce 66
Customizing Propertiesoooiiiii e 67

Grails Persistence with GORM and GSQL firstPress

vww allitebooks.conl

http:///
http://www.allitebooks.org

Customizing the Identity Column ... 71

Using Natural Identity ... 73
Customizing Relationship Links ... 75
Custom Association Fetching Strategies....................ooo. 77
The Second-Level Cache...............coooiiiiiiiii e 78
Mapping Inheritance and Table-Per-Subclass Inheritance 80
Disabling Optimistic LoCKINgcoooiiiiiiii e 81
Demystifping CaSCAAESoo.nnnneeeeeaneeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeaeeenaes 81
Chapter 3: Querying with GORM and HQL...........cccceviiiniinninnennen. 85
Querying via Direct Methods on GORM Classes................................ 85
(o = oA 85

L O T K e 89

0 = oSSR SSSSRRRSRSRR 89
=] ol @) e (=)) = RO 93
finABY* /EinAA Ll BY X e 94
Querying via the Criteria Builder....................uueeeeeeeeeeaeeaaannnn. 99
Querying Properties.ooooiiiii e 100
Conjunctions (ANA/OT) .o 104
INEAtION (T1OE) «nneiiieeii it 106
Paginated Results (maxResults/firstResult/order)................ 107
Querying Relationships ... 108
Querying for Limited Data and Summaries (projections)............... 112
Explicit Methods (1ist/listDistinct/get/scroll).............. 117
Querying via the Hibernate Query Language (HQL)....................... 119
The Basics of HQL and executeQuerycccccoooveeeiiieeeiieeeeee 119
Fully-Qualified Classesccooiiiiieie e 121
Retrieving Only Particular Fields with Projectionscc.cc.... 122
Associations and Joins in HQL ... 123
Retrieving Maps, Lists, and Objects Inline from HQL............................. 125

firstPress Grails Persistence with GORM and GSQL

vww allitebooks.conl

http:///
http://www.allitebooks.org

Chapter 4: GORM Usage in GrailS........ccoeuuieuiieniiiininiceeeneenneennn 129

Constructing GORM Objects in the Controller-................................. 129
Working with Error MeSSAes.............euuneeeeeeeeeeeeeeeeeeeeeeeeaeeeaeeeens 132
Lazy Initialization and the Grails Sessionccccceeeueuuucnnn... 134
Lazy Initialization and Open Session in View.....................uueeeeeeenn... 136
The Scenario: Accessing GORM from the View............................. 136
The Solution: Open Session in View Filter....................... 137
Customizing and Tuning Grails Data Source Defaults 137
Chapter 5: Filling in the Gaps
with Groovy SQL and Spring’s JDBC Support..........ccceeeuneenneen. 141
Groovy SOL in Grails ... eeeeeeeaaaaeas 141
The Role of Groovy SQL in Grailscooooiiiiiiiiic 141
GIooVY SQL BaSICS ..ot 141
Injecting Groovy Sql Objects via SPringccooooiiiiiiiiiiiiieeeee. 143
Using Groovy Sql Objects with GORM Transactions............cccccceeeeenen. 145
Spring’s JDBC Support in Grails..............cooooeeoeooeeeeeeeeeeeeeeeeeaeenn. 146
The Role of Spring JDBC Support in Grails............ccoooiiiiiiiiiiiiiees 146
Using Groovy to Concisely Implement Spring JDBC Support 146
Injecting Spring JDBC Support Beans.............coooiiiiiiiiiiiiieeceee 147

Grails Persistence with GORM and GSQL firstPress- iu

vww allitebooks.conl

http:///
http://www.allitebooks.org

Chapter 1: Defining the Model in GORM
The Goal of GORM

When you stop for a moment to consider what we are doing, it 1s really
astounding. We are trying to comprehend some kind of process or system
with all of its emergent and dynamic aspects, with its historical artifacts
and experimental features, and to somehow encode that comprehension
onto an electrically-charged platter. Most of the time, we’re not just
adjusting the electrical charge on the platter in front of us, though—that’d
be too easy. We want to encode the information of this system into some
electrically-charged platter that we have never even seen, and have only
experienced by way of many, many levels of intermediaries. In short, we
are communicating the behavior of an entire system to an electrically
charged platter far away via an astoundingly automated game of telephone.

There seems to be two approaches when 1t comes time to accomplish this
daunting, seemingly magical feat: the first approach begins with deep
analysis of the application’s domain, involves conversations where the
breadth of the domain is 1dentified and the intricacies of the relationships
are explored, and finally creates the model in code (the analyst’s approach);
the second creates class definitions as they become relevant to functionality
and relies on dynamic restructuring to handle new developments (the
hacker’s approach). In either case, certain qualities of GORM (Grails
Object Relational Mapping) make it a very advantageous ORM technology.

For the hacker, GORM consolidates the current class definition into a
single, quickly written, easily read file. That single file defines the class's
properties, functionality, and relationships, which means changes to the
class definition are always reflected in a single place.

Grails Persistence with GORM and GSQL firstPress

vww allitebooks.conl

http:///
http://www.allitebooks.org

For the analyst, GORM provides a very rich set of configuration options
with many convenient default settings, while also letting you adjust the
configuration to best fit within the envisioned system.

For either hacker or analyst, working with GORM starts the same way—by
defining the model objects.

Defining Objects in GORM

Fundamentally, a GORM domain class 1s simply a Groovy class placed
under . /grails-app/domain. By its location, Grails infers that it 1s a
GORM domain class and attaches to it a full set of default metadata and
functionality. This metadata provides a default set of mappings from
Groovy objects onto the database. These mappings are usually sufficient
for development purposes and small applications. However, when the time
does come for some custom configuration, metadata configuration of the
GORM domain class 1s done by defining static properties on the class.

Creating and Defining Simple Domain Classes

To generate a simple domain class with the name “Foo,” execute grails
create-domain-class Foo In the root of your Grails application. This
creates two files in your application: . /grails-app/domain/Foo.groovy
and . /test/integration/FooTests.groovy. The first file defines the
domain class, and the second provides a place to write tests for that class.

Caution When naming your classes and properties, watch out for SQL
and Hibernate Query Language keywords. These keywords will cause
problems when Grails tries to map your object onto the database. Should
you run into this problem, the simplest solution is to customize the
offending name. See the “"Custom Names” section later in this chapter for
more on this.

firstPress Grails Persistence with GORM and GSQL

vww allitebooks.conl

http:///
http://www.allitebooks.org

Opening up ./grails-app/domain/Foo.groovy, We find 1t very barren.

Code Listing 1-1. The Foo Domain Class at Generation
// In ./grails-app/domain/Foo.groovy
class Foo {

}

Despite the emptiness of the class, quite a bit has already gone on: when
the Grails application 1s run, this class will ensure the database matches up
with the class definition and inject an entire site of querying functionality
onto the class, as well as other functionality such as optimistic locking.
There 1s a lot here, so let’s open up the test file at ./test/integration/
FooTests.groovy to exercise the basics. As it sits, that file 1s frightfully

empty.

Code Listing 1-2. The Foo Domain Class Tests at Generation
// In ./test/integration/FooTests.groovy
class FooTests extends GroovyTestCase ({
void testSomething() {
}

Tip Facing down an empty test class can cause coder’s block in even
the most experienced developers. To get over this hurdle I always write my
first test as simply assertTrue (true), and then execute that to verify my
testing framework is set up correctly. The next test seems a lot easier to
write once there’s already something on the page. This test will also catch
any exceptions in the testing framework or test class setup and teardown.

Let’s begin by exercising some of the functionality that Grails provides for
free.

Grails Persistence with GORM and GSQL firstPress

vww allitebooks.conl

http:///
http://www.allitebooks.org

Code Listing 1-3. Demonstrating the id Property

// In ./test/integration/FooTests.groovy
void testId() {
def foo = new Foo()

assertNull foo.id
assertNotNull foo.save() // Asserts no errors
assertNotNull foo.id // Set in save

assertEquals Long, foo.id.class

}

Although we did not declare an id property, Grails has provided one for
us. The property 1s the artificial identifier and primary key for the database
row, so 1t 1s not set until the record 1s saved into the database with
.save().

Another property that Grails provides 1s the version property, which it
uses to manage optimistic locking. To exercise the version property,
though, we first need to provide a new property to change.

Code Listing 1-4. Adding the bar Property
// In ./grails-app/domain/Foo.groovy
class Foo {

int bar

}

Simply declaring the property 1s all that it takes: Grails handles the
database migration and provides reasonable default property metadata for
you. In order to do this, the property must be statically typed, and of a type
recognizable to Hibernate—all the primitive types (including String) are.

Now that we have a property on our domain class we can exercise the
version property.

firstPress Grails Persistence with GORM and GSQL

vww allitebooks.conl

http:///
http://www.allitebooks.org

Code Listing 1-5. Demonstrating the version Property

// In ./test/integration/FooTests.groovy
void testVersion() {

def foo = new Foo()

assertNotNull foo.save()

def version = foo.version

foo.bar++

assertNotNull foo.save(flush:true)

assertEquals version+l, foo.version

}

The version property increments after each save to the database, which 1s
how GORM implements optimistic locking. Optimistic locking 1s provided
for free: you do not have to do anything with the version property except

stay out of its way. You can find details on using optimistic locking in
Chapter 4.

Note There is some caching going on in Code Listing 2-5. If you
remove flush:true from the second save call, the test will fail. This is
because calls to save () do not normally hit the database until the end of
the transaction, but we force the save and the associated version increment
by calling save (flush:true).

Grails does not just provide properties and background functionality,
though, 1t also provides an entire set of static data access methods. For
more information on these, see Chapter 3.

Grails Persistence with GORM and GSQL firstPress

vww allitebooks.conl

http:///
http://www.allitebooks.org

Creating and Defining Inheritance Trees

One of the most major breaks between the relational and object-oriented
paradigm 1s the concept of inheritance: while relational databases handle
has-a relationships just fine via foreign keys, they do not have a clear way
to mirror is-a relationships. This has been a pain point in many ORM
technologies where an object-oriented programmer wants to define a model
where behavior 1s inherited, but has to somehow hack a has-a relationship
in the metadata to line things up in the database.

In Grails, extending a class 1s straightforward and works exactly how you
would guess 1t would. Let’s begin by executing grails create-domain-
class Product and grails create-domain-class Book to create two
domain classes. We will make Book extend Product through standard Java
inheritance.

Code Listing 1-6. Product and Book Class Definitions

// In ./grails-app/domain/Product.groovy
class Product {
String name

// In ./grails-app/domain/Book.groovy
class Book extends Product ({
String author

}

The name and author properties exist solely to demonstrate the
polymorphic nature of Book and Product. These could be empty classes 1f
you so desired. Beyond telling Book to extend Product, there 1s literally no
further configuration needed to handle this polymorphic relationship—a
polymorphic relationship 1s now stored in the database and reflected
throughout GORM.

firstPress Grails Persistence with GORM and GSQL

vww allitebooks.conl

http:///
http://www.allitebooks.org

Code Listing 1-7. Demonstrating Domain Class Polymorphism

// In ./test/integration/BookTests.groovy

void testBookIsProduct () {
assertEquals 0, Product.list().size()
def book = new Book(name: 'Book', author: 'Author')
assertNotNull book.save()
assertNotNull Product.get (book.id)
assertEquals book.name, Product.get (book.id) .name
assertEquals book.author, Product.get (book.id) .author
assertEquals Book, Product.get (book.id).class

}

As the test in the previous code listing shows, you can save a Book object
and then retrieve it using the Product structure: the Book is-a Product, so
queries on Product reflect the newly existing Book. Even more, the
Product query 1s smart enough to return a Book class, so you have direct
access to the author property.

In the background Grails 1s creating only a single table—product—which
contains the attributes for both the Product and Book domain classes. In
addition to the standard automatic properties (id, version), there is also a
class column that specifies the class the row represents. Do not try to
work with the class column directly: as the last assert in the previous code
listing demonstrates, it 1s not accessible as a GORM property (it 1s hidden
by the object method getclass()) and simply acts as metadata.

Although this approach performs very well and behaves in intuitive ways,
the single-table-per-tree approach to inheritance has a few nuances that a
developer needs to be aware of. The most obvious nuance is the somewhat
incongruous definition of the author column on the product table:
whereas GORM defaults to defining all columns as not null, the author
column is defined as nullable in the database. Despite that column

Grails Persistence with GORM and GSQL firstPress

http:///

definition, the author field cannot be set to nul1, as the next code listing
proves.

Code Listing 1-8. Demonstrating How Child Class Properties Enforce
the Nullability Constraint

// In ./test/integration/BookTests.groovy

void testAuthorIsNotNullable() {
def book = new Book(name: 'Book', author: 'Author')
assertNotNull book.save()
book.author = null
assertNull book.save()
assertNull book.errors.getFieldError ('name')
assertNotNull book.errors.getFieldError ('author')

}

As long as the table 1s accessed via this GORM method, there 1s no concern
about data integrity here. However, some people will be uncomfortable
having a nullable column 1in a table that should not be able to hold the null
value in the model’s property.

Astute readers are already 1dentifying a tricky problem: what about two
classes in the same tree that have the same property name but different data
types? GORM handles this transparently. It reuses the column but uses the
more general data type. For instance, given our Book with a String
author property, let’s see what happens when we define a Book2 with an
int author property.

Code Listing 1-9. Definition of Book2 with a Conflicting Property
Type
// In ./grails-app/domain/Book2.groovy
class Book2 extends Product ({
int author

firstPress Grails Persistence with GORM and GSQL

http:///

When this class 1s executed the database 1s left with the data type
corresponding to String, but integer values are inserted into it. Both the
String author and int author properties still work, and GORM
ensures that the developer will never notice the difference, as Code Listing
1-10 demonstrates.

Code Listing 1-10. Demonstrating Coexisting Conflicting Columns
// In ./test/integration/Book2Tests.groovy
void testCanAddIntAuthor () {
def book = new Book(name: 'Book', author:'Author')
def book2 = new Book2 (name:'Book2', author:2)
assertNotNull book.save ()
assertNotNull book2.save()
assertEquals String, Book.get (book.id) .author.class
assertEquals Integer, Book2.get (book2.id) .author.class
}

Another nuance i1s that every attribute for every class in the tree 1s in the
single parent table. This means that if you have a very deep tree or a
significant number of properties on child classes, you can end up with a
very broad table, most of which is unused for certain classes. This 1s
generally not a noticeable impact on performance or storage size, but it
does encourage small classes and shallow inheritance trees.

If you run into a situation where you can prove that the unused columns or
conflicting datatypes are a significant issue, GORM does give you another
way to define inheritance trees: instead of storing all the subclasses into
one very large table you can give each subclass its own table to store
additional information. This eliminates any issue around unused and
conflicting columns, but at the expense of creating additional tables in the
database and requiring many expensive joins at fetch time. As a general
rule, this alternative approach is not preferable to the single-table approach
because of performance issues and behavior inconsistencies, but Grails

Grails Persistence with GORM and GSQL firstPress

http:///

gives you the option to do it if you really insist. For more information on
this approach, see the “Mapping Inheritance” section later in this chapter.

Adding Functionality to One Domain Class

Once you have your class defined you simply have a wrapper around the
relational tables that exist in the database, perhaps with a bit of
polymorphism for good measure. That model is not really object-oriented,
though, until those classes get behaviors.

Custom Methods and Artificial Properties

Methods are the backbone of object-oriented programming in Groovy, and
they are the defined in GORM domain classes just as they are defined for
any other Groovy object. As with any other Groovy object, methods in a
domain class may have either implicit or explicit return values.

Code Listing 1-11. Defining User Methods on a Domain Class
// In ./grails-app/domain/Foo.groovy
class Foo {

int bar
def returnTrue() { return !returnFalse() }
boolean returnFalse() { return false }

}

Code Listing 1-12. Testing User Methods on a Domain Class
// In ./test/integration/FooTests.groovy
void testLogHelloAndLogGoodbyeReturnValues () {
def foo = new Foo()
assertTrue foo.returnTrue()
assertFalse foo.returnFalse()

10 firstPress Grails Persistence with GORM and GSQL

http:///

In addition to standard behavior methods, GORM also gives the user the
ability to define artificial properties. Artificial properties are not declared
as normal properties, but instead are declared by providing a getter and/or a
setter following a particular naming convention. By defining only getters or
only setters you can create read-only or write-only properties that are
accessible through the standard GPath dot notation, but that are not mapped
into the database in any way. As an example, in Code Listing 1-13 the
readOnly, writeOnly, and readwrite properties are not reflected in the
database and are simply convenience methods for the user of the class.

Tip A very common trick with artificial properties is using them to
maintain backward compatibility with earlier versions of a class. If a
property’s data moves to a new name or even a different domain object, an
artificial property can provide access under the old name and thereby
maintain behavior. This can save you from having to update areas of code
built off the previous version of the domain class.

Code Listing 1-13. Defining Artificial Properties
// In ./grails-app/domain/Foo.groovy
def getReadOnly() { 'This is read only' }
def setWriteOnly(String toSet) {
/* Ignored */
}
def getReadWrite() ({
System.getProperty('eg.read.write')

}
def setReadWrite(toSet) {

System.setProperty('eg.read.write', toSet)

Grails Persistence with GORM and GSQL firstPress- 11

http:///

The methods in Code Listing 1-13 provide the Foo domain class with three
artificial properties: readonly, writeOnly, and readWrite. Since only a
getter and no setter are provided for readonly, the property is read only.
Since only a setter and no getter 1s provided for writeoOnly, that property
1s write only. And since we provided both a setter and a getter for
readwWrite, it 1s both readable and writable. This behavior 1s demonstrated
in Code Listing 1-14. Note that due to the dynamic nature of the Groovy
language, attempting to inappropriately access a read-only or write-only
property 1s a runtime exception and not a compile-time error.

Code Listing 1-14. Demonstrating Artificial Properties
// In ./test/integration/FooTests.groovy
void testArtificialProperties() {
def foo = new Foo()
foo.writeOnly = 'This is write only!'’
shouldFail (MissingPropertyException) ({
foo.writeOnly
}
assertEquals 'This is read only', foo.readOnly
shouldFail (ReadOnlyPropertyException) ({
// Slight asymmetry, but parent class is same
assertTrue (ReadOnlyPropertyException instanceof
MissingPropertyException)
foo.readOnly = 'Trying to save read only!'
}
assertEquals 'This is read only', foo.readOnly
assertNull foo.readWrite
foo.readWrite = 'Read and write'
assertEquals 'Read and write', foo.readWrite

12 firstPress Grails Persistence with GORM and GSQL

http:///

Default Property Values

Default values in GORM are defined in exactly the same way as the default
values from any other Groovy object: simply follow the declaration with an
assignment, as demonstrated in Code Listing 1-15.

Code Listing 1-15. Assigning a Default Property Value
// In ./grails-app/domain/Foo.groovy
class Foo {
int bar = 42
}

This change provides a default value for the bar property. New instances
of Foo will automatically have their bar set to 42. It’s important to note
that this value 1s assigned programmatically and 1s not reflected in the
database schema itself. That 1s, while objects of this class are created with
the value 1nitialized appropriately, the database column backing the
property will not generate database-provided default values.

Transient Properties

Often a domain class instance will track information that should not be
stored 1n the database. The most common example is the cached value of
an expensive calculation, or temporary data that 1s persisted by way of an
event behavior (see the “Events” section). These unpersisted properties are
called “transient”, and transient properties are declared through the use of
the transients static property. Many other Java-based ORM frameworks
use the over-abused transient modifier keyword, but GORM goes a
different route.

Grails Persistence with GORM and GSQL firstPress- 13

http:///

Code Listing 1-16. Declaring a transient Property
// In ./grails-app/domain/Foo.groovy
class Foo {
static transients = ['frood', 'notStored']
int bar
String notStored
String frood = "IxX"
}
Transient properties are not persisted to the database, but exist simply as
fields on the object instance itself. Objects freshly fetched from the
database will have the default value for those properties, no matter what
previous value may have been set before a save () call. The one catch to
this relates to caching. Instances of the class may be cached, in which case
the transient properties are cached as well. This 1s normally to the user’s
advantage, but can be a bit surprising if the user 1s not ready for it. See
Code Listing 1-17 for a demonstration.

Code Listing 1-17. Demonstrating Transient Properties and Caching

// In ./test/integration/FooTests.groovy
class FooTests extends GroovyTestCase {

// Spring-injected handle on the
// Hibernate SessionFactory

def sessionFactory

void testSessionFactoryIsNotNull() ({

assertNotNull sessionFactory

void testDemonstrateTransients () {
def foo = new Foo()

14 firstPress Grails Persistence with GORM and GSQL

http:///

}

assertEquals "Ix", foo.frood
foo.bar =1

assertNotNull foo.save()
foo.frood = "Ford"

foo.notStored = "Value"

// Grab onto the foo instance id
def fooId = foo.id

// Demonstrate the caching of transient values
foo = null

foo = Foo.get (fooId)

assertEquals 1, foo.bar

assertEquals "Ford", foo.frood

assertEquals "Value", foo.notStored

// Clear session cache, clear the transient values
foo = null

sessionFactory.currentSession.clear ()

foo = Foo.get (fooId)

assertNotNull foo

assertEquals 1, foo.bar

assertEquals "Ix", foo.frood

assertNull foo.notStored

Automatic Timestamping

Having domain objects track their creation and last update dates is a very
common requirement. So common, in fact, that GORM has a very simple
baked-in solution: the dateCreated and 1astUpdated properties. Simply
adding these properties to the class triggers the automatic timestamping
functionality.

Grails Persistence with GORM and GSQL firstPress- 15

http:///

Code Listing 1-18. Defining Automatic Timestamping Properties
// In ./grails-app/domain/Foo.groovy
class Foo {
Date dateCreated, lastUpdated
int bar

}

Code Listing 1-19. Demonstrating Automatic Timestamping
Properties

// In ./test/integration/FooTests.groovy
void testAutomaticTimestamping () {
def foo = new Foo()
foo.bar =1
assertNull foo.dateCreated
assertNull foo.lastUpdated
assertNotNull foo.save()
assertNotNull foo.dateCreated
assertNotNull foo.lastUpdated
def oldDateCreated = foo.dateCreated
def oldLastUpdated = foo.lastUpdated
foo.bar = 2
assertNotNull foo.save()
assertEquals oldDateCreated, foo.dateCreated
assertEquals oldLastUpdated, foo.lastUpdated
assertNotNull foo.save(flush:true)
assertTrue foo.lastUpdated.after (oldLastUpdated)
}
Note that in Code Listing 1-19 we have the same kind of caching situation
we saw while working with the version property. Although the

lastUpdated and dateCreated properties are both initially set on the first
call to foo.save(), lastUpdated is not updated as part of the

16 firstPress Grails Persistence with GORM and GSQL

vww allitebooks.conl

http:///
http://www.allitebooks.org

foo.save () update calls; rather 1t 1s updated when the object is actually
flushed to the database.

Caution A naive approach to optimistic locking is to use something like
the lastUpdated timestamp to track update times on the erroneous
interpretation of lastUpdated and version being somewhat redundant.
Using lastUpdated in this way does not work due to data type issues: all
timestamp types have a window of time where two different moments have
the same timestamp value, and for some of the timestamp types this
window can be as long as a few seconds. If you use such a value to
implement an optimistic locking scheme, you end up creating the potential
for a race condition, where two updates get the same timestamp value and
hence circumvent the optimistic locking you thought you had. A common
response is to say that the odds of this occurring in such a way as to cause
a problem is very low, but due to the transactional nature of database work,
this is also less true than one might think. With the cost of implementation
for GORM'’s built-in optimistic locking being so low, it is almost certainly not
worth the risk to use the naive approach to locking using lastUpdated.

Events

Although event-driven logic waxes and wanes in popularity, its usefulness
for tracking metadata such as 1astUpdated and dateCreated 1s
undeniable. Other popular uses include storing summary or audit data,
calculating cached values up front, and logging. Event-driven logic hooks
into the GORM objects through four properties: beforeInsert,
beforeUpdate, beforeDelete, onLoad. These properties are assigned a
closure that 1s executed at the corresponding time in an object's life cycle.
The beforeInsert closure will be executed before the object 1s inserted
into the database, the beforeUpdate closure will be executed before the
database 1s updated with new data, the beforeDelete closure will be
executed before the database record representing this object is deleted, and

Grails Persistence with GORM and GSQL firstPress- 17

http:///

the onLoad closure will be executed when the object 1s first loaded from
the database.

Code Listing 1-20. Example of Defining Events
// In ./grails-app/domain/Foo.groovy
class Foo {

int bar
boolean beforeInsertFired = false
boolean beforeUpdateFired = false

boolean onLoadFired = false
def beforeInsert = {
beforeInsertFired = true
}
def beforeUpdate = {
beforeUpdateFired = true
}
def beforeDelete = {
// This code executed before a delete
}
def onLoad = {
onLoadFired = true

}

Understanding exactly when an event is going to fire is a bit tricky because
the events are triggered by the actual persistence events. As we saw 1n the
caching examples before, persistence events are often distinct from the
calls that enqueue them.

Both beforeInsert and beforeDelete fire off when you would expect:
beforeInsert fires off immediately at the execution of the save method

18 firstPress Grails Persistence with GORM and GSQL

http:///

on an instance that needs to go into the database, and beforeDelete fires
off immediately at the execution of the delete method.

Code Listing 1-21. Demonstrating the beforeInsert Event

// In ./test/integration/FooTests.groovy
void testEventFiringAtInsert() {
def foo = new Foo()
foo.bar = 1
assertFalse foo.beforeInsertFired
assertNotNull foo.save()
assertTrue foo.beforeInsertFired

}

In the following code listing, note that we assign the beforeDelete
property externally. This 1s not to be construed as good practice as it
overwrites any existing definition, but since setting a property on a class
being deleted does not really make sense, we needed something for the
sake of demonstration.

Code Listing 1-22. Demonstrating the beforeDelete Event
void testEventFiringAtDelete() {
def foo = new Foo()
foo.bar =1
assertNotNull foo.save(flush:true)
def foolId = foo.id
boolean deleteFired = false
foo.beforeDelete = { deleteFired = true }
foo.delete()
assertNull Foo.get (fooId)
assertTrue deleteFired

Grails Persistence with GORM and GSQL firstPress- 19

http:///

The beforeUpdate event does not fire immediately when save is called,
but rather when the session 1s flushed to the database. Although this seems
a bit surprising, the significant advantage 1s that multiple redundant firings
of the beforeUpdate event are avoided in favor of a single firing at the
very end of all the work. If you ever want to force the beforeUpdate event
to fire you can either call 1t explicitly (e.g. foo.beforeUpdate ()) or flush
your save to the database immediately by saving with flush set to true (e.g.
foo.save (flush:true)).

Code Listing 1-23. Demonstrating the beforeUpdate Event

void testEventFiringAtUpdate() {
def foo = new Foo()
foo.bar =1
assertNotNull foo.save()
foo.beforeInsertFired = false
foo.bar = 2
assertNotNull foo.save()
assertFalse foo.beforeInsertFired
assertFalse foo.beforeUpdateFired
sessionFactory.currentSession. flush()
assertTrue foo.beforeUpdateFired

}

The onLoad event has an optimization similar to the beforeUpdate
optimization: instead of firing whenever the object is retrieved by GORM,
the event 1s only fired when a domain class instance 1s fetched from the
database. If GORM retrieves the instance from the cache, the onLoad event
does not fire. This 1s probably what you want to have happen in any case.
After all, if GORM retrieved the instance from the cache, the work done by
the onLoad event has already been applied to the retrieved object, and
applying 1t again would be redundant.

20 firstPress Grails Persistence with GORM and GSQL

http:///

Code Listing 1-24. Demonstrating the onLoad Event
// In ./test/integration/FooTests.groovy
void testEventFiringAtLoad() {
def foo = new Foo()
foo.bar =1
assertNotNull foo.save()
foo = Foo.get(foo.id)
assertFalse foo.onLoadFired
sessionFactory.currentSession.clear ()
foo = Foo.get (foo.id)
assertTrue foo.onLoadFired

Tip There are a number of very good plugins in this area. The most
notable of these is the Audit Logging plugin,® which exposes additional
event hooks and provides automatic full-record logging functionality. There
is also the Hibernate Events plugin,® which provides afterInsert,
afterUpdate, afterDelete, beforelLoad, afterLoad, beforeSave,
and aftersSave.

Adding Functionality to Multiple Domain Classes

Although most work in GORM 1is done by adding functionality to
individual domain classes, it 1s also easy to add functionality to many
classes 1n a single declaration.

http://www.grails.org/Grails+Audit+Logging+Plugin

2 http://www.grails.org/Hibernate+Events+Plugin

Grails Persistence with GORM and GSQL firstPress- 21

http:///

Base Class Approach (Inheritance Tree)

The simplest way to add functionality to multiple domain classes 1s by
providing a base class those classes can inherit from. Some care has to be
taken 1n this approach, because inheriting from another domain class sets
up a data heritance structure (see “Creating and Defining Inheritance
Trees” earlier in this chapter). This can be sidestepped by making the
parent class abstract, although it’s notable that the abstract parent’s
properties will be the child’s table unless they are explicitly marked
transient. In most cases, simply defining the transient properties on the
abstract parent will do fine. If, however, there are also transient properties
on the child, the child transient definition will override the abstract parent
transient definition, which means the abstract parent properties will be
visible again. Code Listing 1-25 demonstrates how a child class can have
its own transient properties and “inherit” the parent transient properties.

Code Listing 1-25. Overriding Transient Properties While Still
Including Superclass Values

// In ./grails-app/domain/Base.groovy
abstract class Base {
static transients = ['base', 'doubleBase’']
int base
// Any 'get' method creates artificial property
int getDoubleBase() { 2 * base }

}

// In ./grails-app/domain/Foo.groovy
class Foo extends Base {
static transients = Base.transients + ['workVar']

int bar
int workVar

firstPress Grails Persistence with GORM and GSQL

http:///

Code Listing 1-26. Demonstrating Superclass Transients
// In ./test/integration/FooTests.groovy
void testFooImplementsBase() {

def foo = new Foo()
assertTrue foo instanceof Base
foo.base = 2
assertEquals 4, foo.doubleBase
foo.workvar = 3
foo.bar =1
assertNotNull foo.save(flush:true)
sessionFactory.currentSession.clear ()
foo = Foo.get(foo.id)
assertEquals 0, foo.workVar
assertEquals 0, foo.base

}

Mixin Approach (Opt-In)

Although Groovy only allows for single inheritance, a future release of
Grails will include support for adding in additional methods and fields
from more than one class. This pattern 1s called “mixins™ and is one of the
most exciting features in the evolution of Groovy. Until then it was easy
enough to fake mixin-style functionality: simply create an interface that
holds the to-be-mixed-in method names and implementations as a map, and
then apply them to the domain class’s metaclass in a static initializer block.

Tip The static initializer block is extremely under-appreciated. It
gives Groovy and Grails the ability to execute code at runtime in order to
configure the class. When that capability is combined with metaclass
access, it provides the same kind of straightforward runtime class
generation and configuration capabilities that other dynamic languages
enjoy.

Grails Persistence with GORM and GSQL firstPress

http:///

Code Listing 1-27. Creating a Mixin Utility
// In ./src/groovy/MixinUtils.groovy
class MixinUtils {
static mixin(targetMetaClass, methodMap) {
methodMap.each ({
targetMetaClass."$Sit.key" = it.value

}

Code Listing 1-28. Creating an Interface of Mixins
// In ./src/groovy/Domainutils.groovy
interface DomainUtils {
def addedMethods = [
doAddedMethod: {—>
return "Added method to: ${delegate.class}"

}

Code Listing 1-29. Applying the Mixin to the Foo class
// In ./grails-app/domain/Foo.groovy
class Foo {
static {
MixinUtils.mixin (Foo.metaClass,

DomainUtils.addedMethods)

int bar

24 firstPress Grails Persistence with GORM and GSQL

http:///

Code Listing 1-30. Demonstrating the Mixin-Created Method
// In ./test/integration/FooTests.groovy
void testAddedMethod () {

assertEquals ("Added method to: class Foo",
new Foo () .doAddedMethod())

}

This approach 1s extremely extensible. For instance, any class that wanted
the same doAddedMethod could use the same static initializer line as Foo
uses, but substituting in their own class name. The mixin interface itself
can contain an entire library of mappings, and the method names can be
getters and setters to create artificial properties (see “Custom Methods and
Artificial Properties™ earlier in this chapter).

Tip An alternative to rolling your own mixin functionality is to use
the Injecto library produced by Luke Daley (http://www.ldaley.com/
injecto/). It works a bit differently and has cleaner user-space code. You
will still have to use a static initialization block, though.

Plugin Approach (Universal)

So far, our approaches to adding functionality to domain classes have
required modification of the class source. To create a new method on all
domain classes, even those that we do not have source access to, we can
use a plugin.

The topic of plugin development 1s fairly broad, but this one piece of
functionality 1s easy to implement. First, we will generate a plugin using
grails create-plugin Eg. This generates a plugin for us, which 1s
basically a standard Grails application with a file containing information
about the plugin itself, in this case called . /Eg/EgGrailsPlugin.groovy.
We are going to edit that file, and inside the closure named

Grails Persistence with GORM and GSQL firstPress

http:///

doWithDynamicMethods, we will add our method by working with the
application domain class metaclasses.

Code Listing 1-31. Adding Methods Universally
// In ./Eg/GrailsPlugin.groovy
def doWithDynamicMethods = { ctx ->
application.domainClasses.each {
def metaClass = it.metaClass
metaClass. 'static'.universalStaticMethod = {->
return "Universal static method."
}
metaClass.universalInstanceMethod = {->
return "Universal instance method."

}

We can now install the plugin by moving into the root of Eg and executing
grails package-plugin, and then moving back into the root of our
project and executing grails install-plugin ./Eg/grails-eg-
0.1.zip.

Once the plugin 1s installed, all the domain classes—even domain classes
created by other plugins—will have two methods attached to them: a static
universalStaticMethod () and an instance method,
universalInstanceMethod (). This approach is extremely powerful. In
fact this approach is almost 1dentical to the way in which Grails attaches all
the built-in methods (e.g. Foo.get (id)) to the domain classes.

26 firstPress Grails Persistence with GORM and GSQL

vww allitebooks.conl

http:///
http://www.allitebooks.org

Caution The downside of the plugin approach is that you now have two
steps to building your application: if you update your plugin definition, you
will need to remove the installed version of the plugin (and its zip file) from
./plugins and then repackage and reinstall the plugin. A slightly more
straightforward but certainly more dangerous maneuver is simply to edit
the plugin file located underneath ./plugins. If you decide to take that
approach, be sure your change tracking works properly and be careful that
you do not accidentally delete the plugin.

Plugin Approach (Selective)

One of the advantages of using the plugin approach 1s that you have full
programmatic control over which classes get injected and how they get
used. Because the injection 1s part of runtime code execution, anything that
can be accessed by your code at runtime could be used as class
configuration. This includes reading from the file system or the database,
checking for marker interfaces, or simply interrogating the static state of
the class.

For instance, imagine that we wanted to inject our
universalStaticMethod and universalInstanceMethod only onto all
three-letter domain class names or those that have the static property
likeThreeLetter set to true. We could implement that requirement by
extending the code used in Code Listing 1-29 by using
org.codehaus.groovy.grails.commons.GrailsClassUtils t0 query
for the domain property. This code is implemented in Code Listing 1-30.

Grails Persistence with GORM and GSQL firstPress- 27

http:///

Code Listing 1-32. Example of Selective Class Modification
// In ./Eg/EgGrailsPlugin.groovy
def doWithDynamicMethods = { ctx ->
application.domainClasses.each {
if(it.clazz.simpleName.length() == | |
GrailsClassUtils.getStaticPropertyValue (
it.clazz, "likeThreeLetter"

def metaClass = it.metaClass

metaClass. 'static'.universalStaticMethod = {->
"Universal static method."

}

metaClass.universalInstanceMethod = {->
"Universal instance method."

}
Category Approach (Lexical)

An alternative to the plugin approach is using Groovy’s categories to
extend domain classes. Categories offer a way to temporarily inject some
useful methods into a particular segment of code. They are created by
defining a library of static methods and then using a use block to apply the
category into some space. Inside the use block, Groovy will not only look
for methods directly on the classes, but also for a static method on the
category where the first argument 1s the target object and the arguments are
appended from there. Although this approach may seem odd to Java

28 firstPress Grails Persistence with GORM and GSQL

http:///

developers, those used to more directly C-derived object orientation will
find the mapping familiar.

The major advantage to categories 1s that they can be defined to apply as
broadly or as specifically as you would like, and categories can neatly
organize related logic that applies to disparate types in a single place. The
major disadvantage 1s that the category 1s lexically scoped; that 1s, the
category has to be open directly around the code being executed—when the
close bracket 1s hit the category 1s removed. Although recursing into
methods works, this behavior can cause 1ssues with closures.

Code Listing 1-33. Example of a Category Definition
// In ./src/groovy/SampleCategory.groovy
import org.apache.log4j.Logger

class SampleCategory {
static void logDump (obj) {
Logger.getLogger (obj.class) .debug (
"${obj} Dump:\n${obj.dump()}"

}

static void logDump (Foo foo) {
foo.log.debug (
"Specialized Foo Dump:\n${foo.dump()}"

)

Grails Persistence with GORM and GSQL firstPress- 29

http:///

Code Listing 1-34. Demonstrating Category Definitions
// In ./test/integration/FooTests.groovy
void logDumpViaMethod (obj) {

obj.logDump ()
}
void testDemonstrateLexicalCategoryScoping() {
def closure
use (SampleCategory) {
1.1logDump ()
def foo = new Foo()
foo.logDump ()
logDumpViaMethod (foo0)
closure = { foo.logDump () }
}
shouldFail (MissingMethodException) {
closure()

}

As a general statement, the category approach should be reserved for when
an entire library of functionality 1s used to solve 1solated problems. When
considering general utility methods this approach 1s very verbose and
somewhat awkward compared to the others.

Creating Domain Classes Within Packages

Grails defaults to putting all domain classes into the root package. While
most applications continue with this default, there are often reasons why
you do not want to pollute the root package. One of the best reasons 1s
because you are writing a plugin and you do not want your plugin to
accidentally conflict with a name the user may already have.

30 firstPress Grails Persistence with GORM and GSQL

http:///

Thankfully, Grails supports packaging domain classes. To generate a
packaged domain class, simply qualify the name of the domain class when
you execute the grails create-domain-class foo.bar.Baz
command. This generates the domain class and integration test in the
appropriate folder structure and prepends the package statement into the
generated Groovy class.

Defining Relationships Between Classes

Building independent domain classes 1s a very powerful way to model the
domain. However, the domain model classes will have relationships to one
another, and modeling those relationships has traditionally been one of the
most awkward and tricky parts of ORM solutions. Where there are some
nuances 1n their use (see “Demystifying Association Cascades™), the basic
means of constructing database relationships are fairly simple.

Has-One Relationships Using Join

The simplest kind of relationship two classes can have is for one domain
class to have a reference to another domain class. This 1s accomplished
simply enough: define a property whose type 1s another domain class.

Code Listing 1-35. Defining a Has-One Relationship
// In ./grails-app/domain/Bar.groovy
class Bar {
int value

// In ./grails-app/domain/Foo.groovy
class Foo {

Bar bar

Grails Persistence with GORM and GSQL firstPress- 31

http:///

For the most part this property 1s used identically to primitive properties on
domain objects. The one trick 1s that when it comes time to save a Foo
instance, the associated Bar instance needs to already been saved. The Bar
mstance need not have been flushed to the database, but 1t needs to be
saved so that the underlying Hibernate session 1s aware of it. Objects that
Hibernate 1s not aware of are called “transient”, and 1f you see an error
complaining about a transient instance, it means that you forgot to save the
instance you tried to store.

Code Listing 1-36. Demonstrating Saving Dependent Records
// In ./test/integration/FooTest.groovy
void testFooCanSaveWithSavedBar () {

def foo = new Foo()

def bar = new Bar ()

bar.value = 1

assertNotNull bar.save()

foo.bar = bar

assertNotNull foo.save()

void testFooCannotSaveWithTransientBar () {
def foo = new Foo()
foo.bar = new Bar()
foo.bar.value = 1
// Note: No foo.bar.save()
// Exception package: org.springframework.dao
shouldFail (DataIntegrityViolationException) {
foo.save()

firstPress Grails Persistence with GORM and GSQL

http:///

Although the test in Code Listing 1-36 implies that the transient instance
will get caught on save, that 1s not necessarily the case. It 1s possible that
the transient instance may not be caught until the flush occurs.

Code Listing 1-37. Demonstrating Delayed Transient Detection
void testSaveBarAndThenSaveTransientBar () {
def foo = new Foo()
def bar
bar.value = 1

new Bar ()

assertNotNull bar.save()

foo.bar = bar

assertNotNull foo.save()

foo.bar = new Bar()

bar.value = 1

assertNotNull foo.save() // Apparently OK

shouldFail (TransientObjectException) {
sessionFactory.currentSession.flush()

}

Due to this awkwardness, if you are saving a new and potentially transient
instance onto an object, you should make sure to do a flush as soon as
possible. If you do not flush aggressively here, the transient object
exception may occur in an apparently unrelated piece of code and it can be
somewhat difficult to hunt down.

Has-One Relationships Using Composition

One of the less appreciated capabilities of GORM is the ability to hold
references to nondomain Java beans. In this way you can group pieces of
information that do not need their own table or GORM behaviors, but still
benefit from enhanced grouping, encapsulation, and logic. This approach

Grails Persistence with GORM and GSQL firstPress- 33

http:///

also saves a join on the database queries, which generally saves significant
work on the side of the database.

Fields defined through composition are called “embedded”, and are listed
in the embedded static property.

Code Listing 1-38. Defining Embedded Classes

// In ./src/groovy/Name.groovy
class Name {

String first

String last

String toString() { return "$first $last" }
}
// In ./grails-app/domain/Foo.groovy
class Foo {

static embedded = ['bar']

Name bar

}

Once the embedded field 1s defined, it 1s treated in roughly the same way as
a has-one field, except that you do not call save on the embedded instance:
the embedded field is stored directly on the parent’s table, so there is no
distinct communication with the database or instance management.

Code Listing 1-39. Demonstrating Embedded Field Usage

// In ./test/integration/FooTests.groovy

void testBarName () {
def foo = new Foo()
foo.bar = new Name ()
foo.bar.first = "Robert"
foo.bar.last = "Fischer"
assertEquals "Robert Fischer", foo.bar.toString()
foo.save(flush:true)

34 firstPress Grails Persistence with GORM and GSQL

http:///

sessionFactory.currentSession.clear ()

foo = Foo.get(foo.id)

assertEquals "Robert", foo.bar.first
assertEquals "Fischer", foo.bar.last
assertEquals "Robert Fischer", foo.bar.toString()

}
Bidirectional One-to-One Relationships

While you can simply treat a one-to-one relationship as two has-one
relationships, that 1s usually not the best route to go since managing objects
1s more difficult when both sides of the relationship know about the other.
In this case, instead of simply being able to work with one class talking to
another, we need to manage a bidirectional relationship. As just one
example of the problems this creates, consider the previous “Has-One
Relationships Using Join” section. In that section we saw that it caused an
exception to save an instance referring to a transitive instance. Both sides
know about another in a bidirectional relationship, so given two transitive
instances that each refers to the other, which side do you save first?

GORM handles most of this awkwardness for the user, but in order to do so
the user must define one part of the relationship as the “owner” or “parent”.
In a one-to-one relationship, parents specify their children as properties just
like 1n a standard has-one relationship. Children specify their owner by

setting a value in the static belongsTo map instead of the standard has-one

property.

Grails Persistence with GORM and GSQL firstPress

http:///

Code Listing 1-40. Defining a One-to-One Relationship
// In ./grails-app/domain/Foo.groovy
class Foo {
Bar bar
}
// In ./grails-app/domain/Bar.groovy
class Bar {
static belongsTo = [parent:Foo]

}

In the previous code listing, the Foo class 1s the parent of the Bar class,
hence, Bar belongsTo Foo. Once these classes are defined, the child
class (Bar) can be treated basically as though it were embedded; the parent
class (Foo) will manage saving the child class. Notably, the reverse 1s not
true—saving the child class will not save the parent class.

Code Listing 1-41. Demonstrating a One-to-One Relationship
// In ./test/integration/FooTests.groovy
void testFooOwningBarCanSave() {

def foo = new Foo()

foo.bar = new Bar|()

assertNotNull foo.save(flush:true)
assertNotNull foo.bar.id
assertNull foo.bar.parent

def foolId = foo.id

def barId = foo.bar.id

foo = null
sessionFactory.currentSession.clear ()
foo = Foo.get (fooId)

assertEquals foo.bar.id, barId
assertNull foo.bar.parent

36 firstPress Grails Persistence with GORM and GSQL

vww allitebooks.conl

http:///
http://www.allitebooks.org

void testBarCannotSaveFoo () {
def bar = new Bar()
bar.parent = new Foo ()
shouldFail (InvalidDataAccessApiUsageException) {
bar.save (flush:true)

void testSettingParentOnBarDoesNotSetFoo () {
def bar = new Bar ()
bar.parent = new Foo ()
assertNull bar.parent.bar
}
In the previous code listing, we see that although we set the child property
on our parent class, the parent property on the child class 1s not set. This 1s
a common stumbling block for developers new to Grails, often resulting in
cries of GORM’s inadequacy. However, there are two good reasons for this
behavior: first, it 1s easy to add code that automatically performs the set;
second, 1t 1s possible that the appropriate property to set may not be
obvious.

Code Listing 1-42. Defining and Demonstrating Automatic
Assignment of Child Property’s Parent Property

// In ./grails-app/domain/Foo.groovy
class Foo {
Bar bar
void setBar (newBar) {
bar = newBar
bar.parent = this

Grails Persistence with GORM and GSQL firstPress- 37

http:///

// In ./test/integration/FooTests.groovy
void testFooOwningBarCanSave() ({
def foo = new Foo()
foo.bar = new Bar()
assertNotNull foo.save(flush:true)
assertNotNull foo.bar.id
assertNotNull foo.bar.parent
def fooId = foo.id
def barId = foo.bar.id
foo = null
sessionFactory.currentSession.clear ()
foo = Foo.get (fooId)
assertEquals foo.bar.id, barId
assertNotNull foo.bar.parent

}

Code Listing 1-43. Demonstrating Problem with Auto-Assignment
// If two properties of the same type are
// specified, which should be set?

// In ./grails-app/domain/Foo.groovy
class Foo {
Bar bar
}
// In ./grails-app/domain/Bar.groovy
class Bar {
static belongsTo = [parentl:Foo, parent2:Foo]

38 firstPress Grails Persistence with GORM and GSQL

http:///

One-to-Many Relationships

Defining a one-to-many relationship in GORM is only a single step beyond
the one-to-one relationship. The parent class, instead of having a simple
property that links to the child, has a static hasMany property. That
property is a map of the collection name onto the type of the child objects.
The parent 1s still responsible for managing the relationship, and so saving
the parent will save the child, but not vice versa.

Code Listing 1-44. Defining a One-to-Many Relationship
// In ./grails-app/domain/Foo.groovy
class Foo {
static hasMany = [bars:Bar]
}
// In ./grails-app/domain/Bar.groovy
class Bar {
static belongsTo = [parent:Foo]

}

Code Listing 1-45. Demonstrating a One-to-Many Relationship
// In ./test/integration/FooTests.groovy
void testFooSavingManyBars () {
def foo = new Foo()
assertNull foo.bars
foo.save()
foo.bars = []
foo.bars << new Bar ()
foo.bars << new Bar ()
foo.bars << new Bar ()
foo.bars.each { it.parent = foo }
assertNotNull foo.save(flush:true)
assertEquals 3, foo.bars.size()

Grails Persistence with GORM and GSQL firstPress- 39

http:///

The hasMany declaration implicitly creates a Collection property with
the association’s name (bars in this case) that elements can be added to
and removed from. That collection 1s saved when the parent object itself 1s
saved.

The default behavior of that property 1s to be a set, and therefore to not
have any guarantied ordering from the elements. If you want to be
somewhat more explicit about the order of the elements, you can create the
field with an explicit kind of collection. Most popular for fixing the order
of the elements in the collection are List and SortedsSet.

Code Listing 1-46. Defining List and SortedSet Relationships
// In ./grails-app/domain/Bar.groovy
class Bar {

static belongsTo = [parent:Foo]
}
// In ./grails-app/domain/Baz.groovy
class Baz implements Comparable {
static belongsTo = [parent: Foo]
int value
int compareTo (Object them) ({
return this.value <=> them.value

}
// In ./grails-app/domain/Foo.groovy
class Foo {
static hasMany = [bars:Bar, bazzes:Baz]
List bars
SortedSet bazzes

firstPress Grails Persistence with GORM and GSQL

http:///

In the sorted set relationship (the bazzes relationship) the child domain
class needs to implement Comparable. Implementing that interface
provides a natural ordering to the class, which 1s used to determine the
sorting of the elements. At this point there is no support for using external
or custom comparators on domain classes in GORM.

Code Listing 1-47. Demonstrating List and SortedSet
Relationships

// In ./test/integration/FooTests.groovy
void testFooSavingBarList () {
def foo = new Foo()
assertNull foo.bars
foo.save()
foo.bars = []
foo.bars << new Bar ()
foo.bars << new Bar ()
foo.bars << new Bar ()
foo.bars.each { it.parent = foo }
assertNotNull foo.save (flush:true)
def barIds = foo.bars*.id
sessionFactory.currentSession.clear ()
foo = Foo.get (foo.id)
assertEquals 3, foo.bars.size()
assertTrue foo.bars instanceof List
barIds.eachWithIndex { it, idx ->
assertEquals it, foo.bars[idx].id

void testFooSavingBazzesSortedSet () {
def foo = new Foo()

Grails Persistence with GORM and GSQL firstPress- 41

http:///

assertNull foo.bazzes
foo.save()
foo.bazzes = [] as SortedSet
(1..3) .each {
def baz = new Baz()
baz.value = -1 * it
foo.bazzes << baz
}
foo.bazzes.each {
assertNull it.parent
it.parent = foo
}
assertNotNull foo.save(flush:true)
def bazIds = foo.bazzes*.id
sessionFactory.currentSession.clear ()
foo = Foo.get(foo.id)
assertEquals 3, foo.bazzes.size()
assertTrue foo.bazzes instanceof SortedSet
def bazList = foo.bazzes as List
bazIds.eachWithIndex { it, idx ->
assertEquals it, bazList[idx].id

}

Many-to-Many Relationships

The way GORM handles many-to-many relationships is basically a natural
progression of the one-to-many relationship. This means that although
there may not be a semantic parent/child relationship, one side of the
relationship needs to accept the role of child, and the parent is the one that
manages the relationship.

42 firstPress Grails Persistence with GORM and GSQL

http:///

To implement a many-to-many relationship, simply add a hasMany
declaration to the child. The belongsTo declaration on the child still sticks
around. GORM manages all the back-end database bookkeeping involved
in the many-to-many relationship, including creating and managing the
association table.

Code Listing 1-48. Defining a Many-to-Many Relationship
// In ./grails-app/domain/Foo.groovy
class Foo {

static hasMany = [bars:Bar, bazzes:Baz]
SortedSet bazzes
}
// In ./grails-app/domain/Bar.groovy
class Bar {
static belongsTo = Foo
static hasMany = [parents:Foo]
}
// In ./grails-app/domain/Baz.groovy
class Baz implements Comparable {
static belongsTo = Foo
static hasMany = [parents:Foo]
int value
int compareTo (Object them) {
return this.value <=> them.value

Grails Persistence with GORM and GSQL firstPress- 43

http:///

Code Listing 1-49. Demonstrating a Many-to-Many Relationship
// In ./test/integration/FooTests.groovy
void testManyToManyBarsAndBazzes () ({
def foo = new Foo()

foo.bars = []
(1..4) .each { foo.addToBars(new Bar()) 1}
foo.bazzes = [] as SortedSet

(1..3).each {
def baz = new Baz()
baz.value = it
foo.addToBazzes (baz)
}
assertEquals 4, foo.bars.size()
assertEquals 3, foo.bazzes.size()
assertNotNull foo.save(flush:true)
sessionFactory.currentSession.clear ()
foo = Foo.get (foo.id)
assertEquals 4, foo.bars.size()
assertEquals 3, foo.bazzes.size()

}

Unlike a one-to-many relationship, the many-to-many relationship does not
support the List collection type. There is no particularly good reason that
List 1s not supported, and there 1s an outstanding request to extend GORM
to support List collections. In the mean time, the same functionality can
be kludged 1n by specifying a sortedset and managing your own indexes.

44 firgtPress Grails Persistence with GORM and GSQL

http:///

Code Listing 1-50. Simulating a List on Many-to-Many Relationships

// In ./grails-app/domain/Foo.groovy
class Foo {

static hasMany = [bars:Bar, bazzes:Baz]

SortedSet bars,bazzes

void addToBars (bar) {

bar.foolIdx = bars.fold(0) { memo,nextBar ->
Math.max (memo, nextBar.foolIdx)

}

bars << bar

}
// In ./grails-app/domain/Bar.groovy
class Bar implements Comparable {
static belongsTo = Foo
static hasMany = [parents:Foo]
int foolIdx
int compareTo (them) {
this.fooIdx <=> them.foolIdx ?:
this.id <=> them.id ?:
this.hashCode() <=> them.hashCode ()

Grails Persistence with GORM and GSQL firstPress- 45

http:///

Code Listing 1-51. Demonstrating Many-to-Many Simulated List
Behavior

// In ./test/integration/FooTests.groovy
void testManyToManyBarsAsList () {
def foo = new Foo()
foo.bars = [] as SortedSet
(1..4) .each { foo.addToBars(new Bar()) 1}
assertEquals 4, foo.bars.size()
assertNotNull foo.save(flush:true)
def ids = foo.bars*.id
sessionFactory.currentSession.clear ()
foo = Foo.get (foo.id)
assertEquals 4, foo.bars.size()
def bars = foo.bars as List
ids.eachWithIndex { id, idx ->
assertEquals id, bars[idx].id

}

Defining Tree Relationships

A tree structure 1s a very common but often-neglected relationship. A
model with a tree structure 1s one that holds references to other objects of
the same type. Tree structures appear frequently in social media sites, such
as message board posts with responses, users that have “friends,” or web
sites that reference others.

The simplest way to represent a tree structure in GORM 1s as a many-to-
many relationship where both sides of the many-to-many are the same type.
In short this means that you use the hasMany property but point to your
own type. The functionality provided by the belongsTo property is
provided for free.

46 firstPress Grails Persistence with GORM and GSQL

vww allitebooks.conl

http:///
http://www.allitebooks.org

Code Listing 1-52. Defining a Has-Many Tree Relationship
// In ./grails-app/domain/Foo.groovy
class Foo {
static hasMany = [children:Foo]

}

Code Listing 1-53. Demonstrating a Has-Many Tree Relationship
// In ./test/integration/FooTests.groovy
void testFooHasChildren() {
def fool = new Fool()
def foo2 = new Foo()
assertNull fool.children
fool.children = [foo02]
assertNotNull fool.save(flush:true)
sessionFactory.currentSession.clear ()
fool = Foo.get(fool.id)
assertEquals 1, fool.children.size()
assertTrue fool.children*.id.contains (foo2.1id)

}

Intermediaries and Has-Many-Through Relationships

Although a many-to-many relationship 1s a convenient shorthand, often the
many-to-many relationship itself becomes a part of the domain. For
mnstance, consider the case of a web site where users can mark a piece of
content as “liked." A user can like many pieces of content, and a piece of
content can be liked by many users, so this 1s a many-to-many relationship.
However, 1t would not be surprising if the relationship itself begins to
collect data such as when it was created or some categorization by the user.
In this case, the many-to-many relationship 1s broken into two many-to-one
relationships over a linking object: a content and a user each have many

Grails Persistence with GORM and GSQL firstPress: 47

http:///

links, and a link has one content and one user. This relationship pattern has
come to be called a “has-many-through” relationship.

There 1s no innate support for has-many-through relationships in GORM.
However, the pattern for supporting has-many-through is straightforward:
simply follow the pattern of the has-one relationships and add a few helper
methods.

Code Listing 1-54. Defining a Has-Many-Through Relationship
// In ./grails-app/domain/Link.groovy
class Link {
static belongsTo = [foo:Foo, bar:Bar]
}
// In ./grails-app/domain/Foo.groovy
class Foo {
static hasMany = [links:Link]
def getBars() { links*.bar }
def addToBars (bar) {
bar.save() // Prevents transient instance issue
def link = new Link()
link.bar
bar.addToLinks (1ink)
this.addToLinks (1ink)

bar

}
// In ./grails-app/domain/Bar.groovy
class Bar {

static hasMany = [links:Link]

def getFoos() { links*.foo }

def addToFoos (foo) {

48 firstPress Grails Persistence with GORM and GSQL

http:///

foo.save() // Prevents transient instance isssue
foo.addToBars (this)

}

Code Listing 1-55. Demonstrating a Has-Many-Through Relationship
// In ./test/integration/FooTests.groovy
void testFooLinkBar () {

def foo = new Foo()

foo.save()

def bar = new Bar()

bar.save ()

def l1link = new Link()

foo.addToLinks (1ink)

bar.addToLinks (1ink)

link.save()
sessionFactory.currentSession. flush()
sessionFactory.currentSession.clear ()
foo = Foo.get(foo.id)

assertEquals 1, foo.links.size()

def newLink = (foo.links as List) [0]
assertEquals link.id, newLink.id
assertEquals bar.id, newLink.bar.id
assertEquals 1, newLink.bar.links.size()
newLink = (newLink.bar.links as List) [0]
assertEquals foo.id, newLink.foo.id

void testFooBar() {
def foo = new Foo()
foo.addToBars (new Bar())

Grails Persistence with GORM and GSQL firstPress- 49

http:///

assertNotNull foo.save(flush:true)
def barId = (foo.bars as List) [0].id
assertFalse 0 == barId

assertNotNull barId
sessionFactory.currentSession.clear ()
foo = Foo.get (foo.id)

assertEquals 1, foo.bars.size()

def bar = (foo.bars as List) [0]
assertEquals bar.id, bar.id
assertEquals 1, bar.foos.size()
assertEquals foo.id, (bar.foos as List)[0].id

}

Constructing New Instances

The constructor 1s the key method in Java and it gets a lot of play in
GORM. Through the GORM constructor, domain objects are automatically
provided with a set of dynamic properties and methods and hooks into the
underlying Hibernate structures. In addition to the default, no-argument
constructor, GORM overloads the constructor with a map-based
implementation. The constructor that takes a map can be used to define
properties of the GORM during construction. Keys in the map correspond
to property names, and values in the map correspond to property values
(more details are provided in the topics that follow). Thanks to the magic of
Groovy, you can even write the map without the surrounding square
brackets, reminiscent of named arguments.

This magic comes at a price. Because of the amount of magic that Groovy
and GORM put into the constructor, the GORM user should only be using
the constructor and not trying to redefine it. Although there is a well-
intentioned temptation to put initialization logic into the constructor, that 1s
almost certainly the wrong answer in GORM: property defaults should be
defined inline (see the previous “Default Property Values” section) and

50 firstPress Grails Persistence with GORM and GSQL

http:///

complex 1nitialization logic should go into the onLoad handler (see the
“Events” section earlier in this chapter).

Setting Basic Properties via Map Constructor

Basic properties are set on GORM via the same map constructor structure
that 1s available to any Groovy bean. Arguments can be passed as an
implicit map or by passing an explicit map to the constructor. This
constructor will assign properties to the values in the map, including
artificial properties and properties with overridden setters.

Code Listing 1-56. Demonstrating Setting Properties via the Map
Constructor

// In ./grails-app/domain/Foo.groovy
class Foo {

int integer

String string

double otherValue

def setOtherValue(val) {

this.Q@otherValue =
Double.parseDouble(val.toString())

}
}
// In ./test/integration/FooTests.groovy
void testAssignSimplePropertiesImplicitMap() {
def foo = new Foo(
string: 'grok’',
integer:42,
otherValue: '3.14"
)
assertEquals 'grok', foo.string
assertEquals 42, foo.integer

Grails Persistence with GORM and GSQL firstPress- 51

http:///

assertEquals 3.14, foo.otherValue
}
void testAssignSimplePropertiesExplicitMap() {
def map = [
string: 'grok’',
integer:42,
otherValue:'3.14"
]
def foo = new Foo (map)
assertEquals 'grok', foo.string
assertEquals 42, foo.integer
assertEquals 3.14, foo.otherValue
}
void testSimplePropertiesPropertiesClone() ({
def source = new Foo(
string: 'grok’',
integer:42,
otherValue:3.14
)
def target = new Foo (source.properties)
assertEquals 'grok', target.string
assertEquals 42, target.integer
assertEquals 3.14, target.otherValue

}

Setting Relationship Properties via Map Constructor

The map constructor, however, 1s not limited to setting simple properties.
Relationship values can also be set via the map constructor by passing in a
GPath expression as the map key. In order for this to work, the properties
have to be initialized to non-null default values.

firstPress Grails Persistence with GORM and GSQL

http:///

Code Listing 1-57. Demonstrating Setting Relationship Properties
// In ./grails-app/domain/Foo.groovy
class Foo {
static embedded = ['name']
static hasMany = [bazzes:Baz]
Name name = new Name ()
Bar bar = new Bar ()
}
// In ./grails-app/domain/Bar.groovy
class Bar {
int value
}
// In ./grails-app/domain/Baz.groovy
class Baz { }
// In ./src/groovy/Name.groovy
class Name {
String first, last
}
// In ./test/integration/FooTests.groovy
void testSetEmbeddedProperty () {
def name = new Name(first:'First',6 last:'Last')
def foo = new Foo(name:name)
assertEquals name.first, foo.name.first
assertEquals name.last, foo.name.last

void testSetEmbeddedPropertyValues () {
def foo = new Foo(
'name.first': 'First’',
'name.last':'Last’

Grails Persistence with GORM and GSQL firstPress

http:///

)

assertTrue foo.name instanceof Name
assertEquals 'First', foo.name.first
assertEquals 'Last', foo.name.last

void testSetOneToOnePropertyValues () {
def foo = new Foo('bar.value':1)
assertTrue foo.bar instanceof Bar
assertEquals 1, foo.bar.value

void testSetManyPropertyCollection() {
def bazzes = [new Baz (), new Baz (), new Baz()]

def foo = new Foo(bazzes:bazzes)
assertEquals 3, foo.bazzes.size()

Grails Persistence with GORM and GSQL

54 firstPress

http:///

Chapter 2: Customizing GORM Mapping
and Enforcing Data Integrity

Data Integrity Through Constraints

While the structure of the domain class 1s important, it 1s only part of the
story in domain modeling. Equally as critical to the domain model 1s data
integrity—without ensuring data integrity the domain model will quickly
degrade into nonsense. When the model degrades in this way the
application as a whole degrades as well. The invariants the application 1s
built on break down and surprising exceptions pop up, resulting in
application failures.

To prevent this breakdown, GORM provides validation via constraints.
These constraints limit the acceptable value of a property and provide the
basic away to enforce data integrity in the model. In addition, GORM will
leverage these constraints to guide the creation of the automatically
generated DDL.

Specifying Constraints

In GORM, constraints are specified through the constraints static
property. That property is assigned a closure that 1s then executed as a
DSL. The domain class properties become method names and the
arguments are the constraints to apply to the properties.

The constraints report their error messages through an internationalization
support structure (118n). This may seem like unnecessary and surprising
overhead to a web development newcomer, but there 1s significant wisdom
behind that approach.

In addition to the obvious advantage of being able to deliver localized error
messages, the internationalization layer also provides a clean break

Grails Persistence with GORM and GSQL firstPress

http:///

between the presentation of the error message and the error message itself,
akin to the clean break between controllers and views: the constraint can
worry only about the logic behind the error message and leave rendering
the appropriate text to the internationalization layer.

Built-In Data Constraints

Grails provides a long list of simple constraints that can be applied to
simple data properties. These properties act in fairly self-descriptive ways
to limit properties.

Code Listing 2-1. Demonstrating Some Simple Data Constraints
// In ./grails-app/domain/Foo.groovy
class Foo {

String userName

String email

String homePage

String userType

int loginCount

static constraints = {
userName (unique:true, matches:/\w+/)
email (email:true)
homePage (url:true)
userType (inList: ['USER', 'ADMIN'])
loginCount (min:0)

// In ./test/integration/FooTests.groovy
Foo generateFoo () {
return new Foo(
userName: 'Robert', email:'robert@email.com',
homePage: 'http://smokejumperit.com’,

56 firstPress Grails Persistence with GORM and GSQL

vww allitebooks.conl

http:///
http://www.allitebooks.org

userType: 'ADMIN', loginCount:1

}

void testRawGeneratedFooWorks () {
assertNotNull generateFoo () .save(flush:true)

}

void testDuplicateNameFails() {

def foo = generateFoo()

assertNotNull foo.save()

foo = generateFoo ()

assertFalse foo.validate()

def errors = foo.errors

assertNotNull errors.getFieldError ('userName')
}
void testBadNameFails() {

def foo = generateFoo()

foo.userName = '!@#3%"&* ()’

assertFalse foo.validate()

def errors = foo.errors

assertNotNull errors.getFieldError ('userName')
}
void testNotEmailFails () {

def foo = generateFoo()

foo.email = 'not_an_email) (*&"%$%!"

assertFalse foo.validate()

def errors = foo.errors

assertNotNull errors.getFieldError('email"')
}
void testNotUrlFails () {

def foo = generateFoo()

foo.homePage = 'mot_a_url) (!1@%!%"

Grails Persistence with GORM and GSQL firstPress- 57

http:///

assertFalse foo.validate()

def errors = foo.errors

assertNotNull errors.getFieldError ('homePage')
}
void testNotInListUserType() {

def foo = generateFoo()

foo.userType = 'bad user type'

assertFalse foo.validate()

def errors = foo.errors

assertNotNull errors.getFieldErrors ('userType')
}
void testNegativeLoginCountFails() {

def foo = generateFoo()

foo.loginCount = -1

assertFalse foo.validate()

def errors = foo.errors

assertNotNull errors.getFieldErrors('loginCount')

}

The official list of validations 1s maintained as part of the Grails
Framework Reference Documentation. Table 2-1 outlines the constraints
supported by Grails as of this writing.

The unique property requires slightly more explanation than the table can
provide. In all three forms, the property 1s specifying that a value must be
unique—the difference 1s in scope.

In the Boolean form (e.g. unique: true) the property must be unique
across all instances. In the String form (e.g. unique: 'userType') the
property must be unique across all instances where the value of the named
property 1s the same as this instance’s value. That 1s, the property must be
unique within the context of another property.

58 firstPress Grails Persistence with GORM and GSQL

http:///

In the list form (e.g. unique: ['userType', 'loginCount']) the
property must be unique across all instances where the values of all listed
properties are the same as this instance’s value. That 1s, the property must
be unique within the context of a combination of other properties.

In all these cases it’s possible that transactional interference can cause the
uniqueness validation to succeed but the record to still fail to be committed.
The 1ssue 1s fundamentally one of database concurrency structures, so the
only way around it 1s to use the debilitating non-concurrent SERIALIZABLE
transaction isolation level. Most users find it better to simply handle the
possible exception at commit time.

Table 2-1. Constraints Supported by Grails

CONSTRAINT | PROPERTY ARGUMENT | SCHEMA | NOTES
TYPE TYPE

Blank String Boolean No false prevents empty or
whitespace only values

creditCard | String Boolean No true validates if the value
is a reasonable credit card
number’

Email String Boolean No Use true for basic email
structure checks

inList Any List Yes Ensures value in argument
list

matches String regex or No Entire value must match

String regex

? Algorithm overview is available athttp: / /www.merriampark.com/

anatomycc . htm (not modifiable via a plugin although similar checks can be done through the
validator constraint).

Grails Persistence with GORM and GSQL firstPress- 59

http:///

Table 2-1. Constraints Supported by Grails (continued)

CONSTRAINT | PROPERTY ARGUMENT | SCHEMA | NOTES
TYPE TYPE
max Comparable | Same Yes Ensures that value <= ar-
gument
maxSize String or Integer Yes For String, limits length;
Collection for Collection, limits ele-
ment count
Min Comparable | Same Yes Ensures that value >= ar-
gument
minSize String or Integer Yes For String, limits length;
Collection for Collection, limits ele-
ment count
notEqual Any Same No Ensures value !'= argu-
ment
nullable Any Boolean Yes true allows null values
range Comparable | Range Yes Convenience for min/max
scale float, dou- Integer Yes Number of digits to the
ble, or Big- right of the decimal point
Decimal
size String or Range Yes Convenience for minSize
Collection and maxSize; cannot use
with blank or nullable
unique Any Boolean Yes Use true to require a
(Boolean) unique value

60 firstPress

Grails Persistence with GORM and GSQL

http:///

Table 2-1. Constraints Supported by Grails (continued)

CONSTRAINT | PROPERTY ARGUMENT | SCHEMA | NOTES
TYPE TYPE
unique Any String Yes Value must be unique
(String) (property within argument property
name)
unique Any List of Yes Must be unique within
(List) Strings property combination
url String Boolean No Use true to perform ba-
sic URL checks
Note The Schema column in this table denotes whether or not the

row’s constraint affects the schema generated by GORM’s hbm2ddl—that is,
whether or not the constraint is reflected in the database in some way.

Custom Constraints

Sooner or later an application model will become advanced enough where
simple constraints fail to capture some nuance of the data. Given the
apparent inevitability of this complexity, it 1s surprising to see that many
previous ORMs required an extensive amount of coding and configuration
in order to implement new constraints and make them.

In GORM, a custom constraint 1s implemented by using the validator
key on the argument map. That key takes a closure as a value, and the
closure executes the evaluation. Details of the closure’s behavior are
extremely variable but fall into basically two camps: the three argument
form and the zero, one, and two argument form.

The zero, one, and two argument form takes up to two optional arguments.
The first argument is the value of the property. If the closure 1s looking for

Grails Persistence with GORM and GSQL firstPress- 61

http:///

a second argument, the second argument 1s the object holding that property.
In addition, the name of the property being validated 1s provided via the
propertyName variable.

For return values the closure can return either true or null to indicate a
valid value, or it can return false to indicate a generic invalid value.
Alternatively, the validator can leverage the internationalization structure
(i18n) and return a String. That String 1s appended to
classname.propertyname. to form the message key.

If additional information is needed for the internationalization message, the
validator can go even further and return a List. The List should consist of a
String, which 1s appended to classname.propertyname. to form the
message key as before, and can follow with as many additional parameters
to the message as the user would like. For examples of how these messages
look and how to define them, see the file located at . /grails-app/il18n/
messages .properties and the associated language files in that folder.

Code Listing 2-2. Demonstrating Basic Validators
// In ./grails-app/domain/Foo.groovy
class Foo {
String oneArgValue = "One", twoArgValue = "Two"
boolean skipTwoArgCheck = true,
msgValue = true,

listvValue = true
static constraints = {
oneArgValue(validator:{ return it == "One" })

twoArgValue (validator:{ val, obj ->
return obj.skipTwoArgCheck | |
val == "Two"
})
msgValue (validator: {
if(!tit) { return "my.msg.key" }

62 firstPress Grails Persistence with GORM and GSQL

http:///

})
listValue(validator: {

if(rit) {
return ["my.other.msg.key", "blue",b42]

From ./grails-app/il8n/messages.properties
foo.msgValue.my.msg.key=From messages.properties
foo.listValue.my.other.msg.key=[{0}]1[{1}1[{2}1[{3}1[{4}]
// From ./test/integration/FooTests.groovy
void testSuccessfulSave() {
assertNotNull new Foo() .save(flush:true)
}
void testOneArgFailure() {
def foo = new Foo()
foo.oneArgValue = "Not One"
assertFalse foo.validate()
def errs = foo.errors
def error = errs.getFieldError ("oneArgValue")
assertNotNull error
}
void testTwoArgFailure() ({
def foo = new Foo
skipTwoArgCheck: false,
twoArgValue: 'Not Two'
)
assertFalse foo.validate()
def errs = foo.errors
def error = errs.getFieldError ("twoArgValue")

Grails Persistence with GORM and GSQL firstPress

63

http:///

assertNotNull error
assertNull errs.getFieldError ("skipTwoArgCheck")
}
String messageForError (error) {
messageSource.getMessage (error, Locale.default)
}
void testMsgValueMessage () {
def foo = new Foo(msgValue:false)
assertFalse foo.validate()
def error = foo.errors.getFieldError ("msgValue")
assertEquals "From messages.properties",
messageForError (error)

}
void testListValueMessage() {
def foo = new Foo(listValue:false)
assertFalse foo.validate()
def errs = foo.errors
def error = errs.getFieldError ("listValue")
assertEquals (
"[listValue] [class Foo] [false] [blue] [42]",
messageForError (error)
)
}

The three argument form 1s for serious GORM power users. As in the zero,
one, and two argument forms, the first two arguments are the value and the
object being validated. The third argument is the object’s errors object
itself. Instead of checking for a return value, the closure 1s expected to
modify the errors object directly to reflect the state of any errors. This
enxﬂsobﬁmtisaninﬁanceOforg.springframework.validation.
Errors, and the user can leverage that full API to specify all kinds of

64 firstPress Grails Persistence with GORM and GSQL

http:///

special or complex error logic, including the ability to create global errors
as opposed to field errors.

Code Listing 2-3. Demonstrating Global Errors via Validator
// In ./grails-app/domain/Foo.groovy
class Foo {
boolean failMe = false
static constraints = {
failMe(validator:{ val,obj,err ->
if(val) { err.reject("failed") }

})

}

From ./grails-app/il8n/messages.properties
failed=Globally failed!

// In ./test/integration/FooTests.groovy

String messageForError (error) {
messageSource.getMessage (error, Locale.default)

}

void testFailMeTruelIsGlobalError () {
def foo = new Foo(failMe: true)
assertFalse foo.validate()
def error = foo.errors.globalError
assertNotNull error
assertEquals "Globally failed!",

messageForError (error)

Grails Persistence with GORM and GSQL firstPress- 65

http:///

Customizing the Object/Relational Mapping

GORM provides extensive functionality to customize the mapping,
including structural customizations to map GORM objects onto legacy
tables or to nudge GORM into conformance with corporate standards or
personal sensibilities. These customizations also include functional changes
that tweak GORM’s default behavior to improve performance in each
particular case. All of this customization is done by assigning a closure to
the mapping static property and setting values within the inline DSL it
provides.

Custom and Escaped Table Names

The table name used for a domain object can be specified by calling the
table method provided by the mapping DSL. The value 1s used directly
as the table name in the underlying SQL. In this way, chatty table name
requirements can be mapped into succinct domain object names.

Code Listing 2-4. Customizing a Table Name
// In ./grails-app/domain/Foo.groovy
class Foo {

static mapping = {
table 't_gorm_book_foo'

}

Escaping the table name 1s a special case of table name mapping. One of
the most common problems reported back to Grails is that after creating a
domain class with a name such as call or Group, Hibernate will fail to
create the table or will error out on efforts to insert or query onto it. The
result may be an error on start-up complaining about unexpected tokens, or
an InvalidDataAccessResourceUsageException Or
SQLGrammarException. This behavior variance originates from how

66 firstPress Grails Persistence with GORM and GSQL

vww allitebooks.conl

http:///
http://www.allitebooks.org

permissive different databases are; even within the same database, using
keywords can change wildly even from keyword to keyword.

This wide range of behaviors makes 1dentifying this issue somewhat tricky,
but once it has been 1dentified, fixing it 1s simple: just add backticks to
your table name. Hibernate will translate the backticks into the appropriate
escaping for your database.

Code Listing 2-5. Escaping a Table Name
// In ./grails-app/domain/Group.groovy
class Group {
static mapping = {
table "‘group "

}

Customizing Properties

The DSL parts for property customization strongly resemble the DSL for
constraints. Inside the mapping closure, you customize a property’s
mapping behavior by calling a method with the property name and passing
named arguments.

Customizing the Underlying Column Name

The name of the column underlying the property type can be set with the
column key. As with table names (see the previous topic), you can use
backticks to escape the SQL reserved words surrounding the column name.

Grails Persistence with GORM and GSQL firstPress- 67

http:///

Code Listing 2-6. Customizing Column Names
// In ./grails-app/domain/Foo.groovy
class Foo {

String value

int order

static mapping = {
value column:'s_value'
order column:' order’'

}

Customizing Type: Basic Hibernate Types

While the default types specified by GORM are often sufficient for most
applications undergoing development, it 1s not uncommon for the user to
need to change the default types. In particular, in any case where an entire
text document 1s being stored (e.g. wiki pages), the Hibernate text type is
probably preferable over the varchar type. Date properties are also strong
candidates for adjustment.

To adjust the type, use the unsurprisingly named type key with a string
value that 1s the name of the Hibernate property.

Code Listing 2-7. Specifying the Column Type of a Property
// In ./grails-app/domain/Foo.groovy
class Foo {
String value = ""
Date time = new Date()
static mapping = {
value type:'text'
time type:'time’

68 firstPress Grails Persistence with GORM and GSQL

http:///

Table 2-2. Java, Hibernate, and SQL Type Cross-Reference

JAVA TYPE HIBERNATE TYPE SQL TYPE

int, Integer integer Vendor-specific numeric

long, Long long Vendor-specific numeric

short, Short short Vendor-specific numeric

float, Float float Vendor-specific numeric

double, Double double Vendor-specific numeric

char, Character character Vendor-specific numeric

byte, Byte byte Vendor-specific numeric

boolean, Boolean yes_no, Vendor-specific Boolean
true_false

String string VARCHAR*

Date date DATE

Date time TIME

Date timestamp TIMESTAMP

Calendar calendar TIMESTAMP

Calendar calendar_date DATE

BigDecimal big_decimal Vendor-specific numeric

BigInteger big_integer Vendor-specific numeric

* In this table, the key VARCHAR is used to mean the VARCHAR column type on every RDBMS
except Oracle. On Oracle, VARCHAR means VARCHAR?2.

Grails Persistence with GORM and GSQL firstPress

http:///

Table 2-2. Java, Hibernate, and SQL Type Cross-Reference
(continued)

JAVA TYPE HIBERNATE TYPE SQL TYPE

Locale locale VARCHAR (ISO code)
TimeZone timezone VARCHAR (Java ID)

Currency currency VARCHAR (ISO code)

Class class VARCHAR (fully-qualified name)
byte[] binary vendor-specific binary type
String text TEXT/CLOB

Serializable serializable Vendor-specific binary type

There are a few other Hibernate types (e.g. clob, blob, imm_binary) but
the functionality 1s redundant with the types listed here and their support 1s
inconsistent. The other types should generally be avoided.

Customizing Type: User-Defined Types

If your column storage needs are more advanced than the existing
Hibernate types can support, begin by considering whether your needs can
be met by embedded types (see “Has-One Relationships Using
Composition” in Chapter 1). If not, there 1s one last resort for complex type
specification: Hibernate user types. A Hibernate user type provides full
control over moving types to and from the database, but at the cost of much
more extensive coding.

To implement a new Hibernate user type, the type must implement the
mnterface org.hibernate.usertype.UserType. This consists of deﬁning
ways to translate the type to and from a serializable instance; how to
read, write, and update the type from the underlying JDBC structures,; and
then specifying the SQL type(s) on which the new Hibernate user type 1s
based. These requirements are well-explained in the Hibernate JavaDoc.

70 firstPress Grails Persistence with GORM and GSQL

http:///

A Hibernate user type 1s specified in the same way as a base type: assign
the value to the type argument of the property call in the mapping DSL.
Assuming the existence of a PostCodeType that maps to a String on the
Java side, 1t would look like the following code listing.

Code Listing 2-8. Using a Hibernate User Type for a Column
// In ./grails-app/domain/Foo.groovy
class Foo {
String postCode
static mapping = {
postCode type:PostCodeType

}

Customizing the Identity Column

GORM gives substantial control over the way 1dentity 1s managed. The
simplest and most natural control is of the identity column itself—to
rename the column the id property is mapped to, simply specify its new
name via the column argument like any other property.

You may also change the way that ids are generated by plugging in
alternative Hibernate ID generators using the generator and params
arguments of id. The default implementation 1s Hibernate’s native, which
uses either auto-generation or sequences depending on the predilection of

the underlying database. For more information on Hibernate identity
algorithms, see Table 2-3.

Grails Persistence with GORM and GSQL firstPress- 71

http:///

Code Listing 2-9. Customizing the Identity Column Name and
Generation Strategy

// In ./grails-app/domain/Foo.groovy
class Foo {
static mapping = {
id column: 'foo_id"',
generator: 'hilo', params:[table:'keygen',
column: 'next',
max_lo:1000]

}

Table 2-3. Hibernate Identity Algorithms

IDENTITY DESCRIPTION

ALGORITHM

increment Numeric ID that counts up. Not safe if more than one process
is doing inserts.

identity Use the identity column type. Not all databases have such a
column type.

sequence Use a sequence on the database. Not all databases support
sequences.

hilo Use a table in the database to generate values efficiently.

seghilo Use a sequence in the database to generate values efficiently.

uuid Generated identifier of 32 hexadecimal characters that is
unique within the context of a network. id is based on IP ad-
dress, startup time of the JVM, system time, and a counter
value.

72 firgtPress Grails Persistence with GORM and GSQL

http:///

Table 2-3. Hibernate Identity Algorithms (continued)

IDENTITY

ALGORTTHM DESCRIPTION

guid Uses the database GUID type. Not all databases have such a
column type.

native Picks one of identity, sequence, or hilo based on sup-
port.

assigned Hands off responsibility for ID generation to the user.

select Uses a select on a database trigger to produce a primary
key.

Foreign Intended for one-to-one primary key relationships, this uses
the identifier of an associated object.

Using Natural Identity

Through years of collective experience, the software industry has
developed a standard approach to handling databases rows: each row 1s
identified using a column with a meaningless but guarantied unique value,
called the artificial identifier. This value 1s usually an incrementing number
or some kind of generated universal ID (also known as a UUID or GUID).

The value of this approach i1s that it leaves the model subject to flexible
changes. While a particular column or set of columns may be treated as
necessarily unique today, new discoveries about the domain tomorrow may
reveal that they are not actually unique.’ If the database is structured
around these newly-nonunique values, major structural changes are now
required. Defaulting to artificial identifiers throughout the database is
generally considered the best practice.

5)
The author himself has made this mistake. On a contract with a health insurance company, he once

assumed that a social security number would be unique, only to discover that clients would use artificial

or erroneous numbers with disturbing regularity. Lesson learned: “Business invariants always change.”

Grails Persistence with GORM and GSQL firstPress- 73

http:///

Still, there 1s overhead to artificial identifiers, and there are times when a
column really will be unique. This is often the case when some external
force 1s defining an encoding scheme over a domain. Examples include the
United States government’s state abbreviations (e.g. “MN” for Minnesota)
or the ISO 639 language codes (e.g. “de” for German). In these cases, using
a natural 1dentifier can result in more meaningful foreign key columns,
which can save a select query if the code 1s the only thing desired.

Retrieving the id property from a lazily-initialized stub does not trigger
loading the other fields from the database. Using the natural identifier also
saves the overhead of artificial ID storage and generation, although this
gain 1s often much smaller than imagined and can even be a net
performance loss, particularly in cases where multiple columns make up
the natural ID.

If the natural key 1s a single column, explicitly declare the ia property
and give it the appropriate type. Either approach will almost always require
the ID generator to be set to assigned—otherwise Hibernate will attempt
to assign a value to the id property, which will probably result in a type
erTor.

Code Listing 2-10. Using an Individual Natural Identifier
// In ./grails-app/domain/Bar.groovy
class Bar {
String id
static mapping = {
id generator:'assigned’

}

Sometimes more than one value is required for the natural identifier. This
kind of database 1dentifier 1s called a “composite” identifier. To use a
composite natural ID instead of an artificial ID, use the composite key on
the id call in the mapping DSL. The value of that key 1s a list of the natural

74 firgstPress Grails Persistence with GORM and GSQL

http:///

ID field names. Additionally, due to surprising consequences upstream in
Hibernate, the domain object itself needs to implement the serializable
interface (for more on this see the section on get in Chapter 3).

Code Listing 2-11. Using a Composite Natural Identifier
// In ./grails-app/domain/Foo.groovy
class Foo implements Serializable ({
String codel, code2
static mapping = {
id composite: [codel, code2]

}

Customizing Relationship Links

In a normal one-to-many relationship, the foreign key link is stored on the
child’s table. Using the mapping DSL you can alter the name of this link by
setting the column key on the parent’s association entry.

If the one-to-many relationship 1s prone to becoming a many-to-many
relationship in the future, the one-to-many relationship can be coerced into
using a join table from the start. To do this, the parent’s association entry is
passed the joinTable key, the value of which 1s a map specifying name,
key (1.e. the parent’s foreign key), and column (1.e. the child’s foreign

key).

For a many-to-many relationship, each side of the relationship 1s
responsible for its own foreign key information, which is specified on the
mapping DSL using the column key on the association entry. One bit of
awkwardness comes when changing the join table: the new join table name
needs to be specified the same way on both sides of the relationship, or
there will be a data inconsistency as a result.

Grails Persistence with GORM and GSQL firstPress- 75

http:///

Code Listing 2-12. Example of Customized Relationships
// In ./grails-app/domain/Foo.groovy
class Foo {
static hasMany = [
bar:Bar, // one-to-many
bazzes:Baz, // one-to-many (join table)
junks:Junk // many-to-many
1
static mapping = {
bars column: 'FK_Foo_Id'
bazzes joinTable: [
name: 'Foo_Baz_Link',
key: 'Foo_Id_Key',
column: 'Baz_Id_Column'

]
junks column: 'Foo_FK', joinTable:'foojunks’

// In ./grails-app/domain/Junk.groovy
class Junk {

static hasMany = [foos:Foo]
static belongsTo = Foo
static mapping = {

foos column: 'Junk_FK', joinTable:'foojunks’

// In ./grails-app/domain/Bar.groovy

class Bar {

76 firstPress Grails Persistence with GORM and GSQL

http:///

static belongsTo = [foo:Foo0]

// In ./grails-app/domain/Baz.groovy
class Baz {
static belongsTo = [foo:Foo]

}

Custom Association Fetching Strategies

By default, Hibernate’s lazy evaluation results in a single query, plus a
single query for each collection when that collection is encountered, plus a
single query for each domain object property when that domain object
property is encountered. This structure works well for the common case of
web development, when a reasonably small subset of each domain object 1s
actually accessed 1n a given session.

Sometimes, however, there are aspects of the domain that will make such a
lazy load less well-performing than the alternatives. In particular, if you
have a domain object with an association that is almost always going to be
loaded, 1t may be valuable to set the fields to load eagerly. Similarly,
rarely-used or very large domain object properties may be better off loaded
lazily. Both of these cases are handled by using the 1azy key, which takes
a Boolean value.

Note There is also a fetchMode property, but the mapping ORM
behavior will override it. Do not mix and match these properties or you will
confuse yourself.

Grails Persistence with GORM and GSQL firstPress- 77

http:///

Code Listing 2-13. Customizing Lazy Fetching Example
// In ./grails-app/domain/Foo.groovy
class Foo {
static hasMany

[bars:Bar]
Baz baz

static mapping

Il
-~

baz lazy:true
bars lazy:false

}

The Second-Level Cache

One of the most valuable tools of Hibernate 1s its intermediary cache with
the database. The Hibernate session itself acts as a cache that consolidates
repeated save calls and prevents fetches on the same object.’ The second-
level cache can be thought of as an extension of that capability: it caches
objects at an additional intermediary level between the session caches and
the database itself. This can result in a substantial speed increase for often-
used data, but at some slight risk. If the data is modified in the database
outside of GORM, stale data may be retrieved by GORM. In many cases
this risk 1s very acceptable, particularly when data 1s read-only or write-
rarely.

By default, the second-level cache is used only for query results and uses
OpenSymphony’s OSCache as an implementation. These values can be
altered in . /grails-app/conf/DataSource.groovy by adjusting the
hibernate properties found there.

® Some examples of this book want repeated object fetches, and hence the explicit calls to
sessionFactory.currentSession.clear ().

78 firgstPress Grails Persistence with GORM and GSQL

http:///

Object Cache

An entire domain object class may be eligible for caching by placing
cache true in the mapping DSL. In this case all the class's properties are
stored in the second-level cache when they are read from the database.
When an update or delete 1s applied to the data the item 1s evicted from the
cache and refreshed on the next read. This 1s called a read-write cache.

This behavior can be further customized using the usage and include
keys for the cache call. The usage key specifies whether to use read-
only or read-write caching. The read-only usage is substantially faster
than the default read-write usage but has no capability of safely handling
updates to domain objects. There are other potential settings for the usage
key: however, they are not appropriate for the Grails context. The include
key can be specified as non-1azy in order to cache only those properties
that are not lazily fetched. This setting 1s very useful for keeping large,
rarely-accessed properties from bloating your cache.

Code Listing 2-14. Enabling Object Cache for a Class
// In ./grails-app/domain/Foo.groovy
class Foo {
static mapping = {
cache true

}
// In ./grails-app/domain/Bar.groovy
class Bar {
static mapping = {
cache usage: 'read-only', include: 'non-lazy'’

Grails Persistence with GORM and GSQL firstPress- 79

http:///

Association Caching

The association cache 1s arguably the more valuable part of the second-
level cache. The association cache is responsible for caching the collection
of objects associated with a given domain class, which is often the most
painful part of domain object retrieval.

To enable association caching of the second-level class, specify the cache
key on the association call of the mapping DSL. If the value 1s set to true
or 'read-write', a read-write cache is used for the associations. If the
associations do not change, a 'read-only' value can be passed in to use
the more efficient read-only cache. If the ' read-only' cache is used an
exception will be thrown from any attempt to write to the collection, which
makes 1t valuable only for pre-loaded collection data.

Code Listing 2-15. Enabling an Association Cache
// In ./grails-app/domain/Foo.groovy
class Foo {

static hasMany = [bars:Bar]
static mapping = {
bars cache:'read-write'

}

Mapping Inheritance and Table-Per-Subclass Inheritance

As explored in “Creating and Defining Inheritance Trees” in Chapter 1,
GORM’s default behavior 1s to create a single table that stores the data for
the entire inheritance tree: this 1s referred to as the table-per-hierarchy
approach. While this works fine for small structures, larger trees or trees
that include BLOB or CLORB objects simply become unwieldy.

80 firstPress Grails Persistence with GORM and GSQL

http:///

In this case the better approach is table-per-subclass, which creates a
distinct table for each subclass and performs the appropriate inner joins up
the hierarchy chain to retrieve data. Performance 1s often much worse but it
1s both theoretically cleaner and can beat out the table-per-hierarchy
approach in rare boundary cases. To adopt the table-per-subclass approach,
specify tablePerHierarchy false in the root class’s mapping DSL.

Disabling Optimistic Locking

To disable optimistic locking simply pass false to version in the
mapping DSL. This saves a database column, but the domain object needs
to be locked at the database level when it 1s going to be updated. In general,
the cost of optimistic locking is so small that it should be left in play as a
safeguard, even 1f 1t 1s seemingly redundant with pessimistic locking
practices. For read-only domain objects, however, the optimistic locking
can be disabled without consequence.

Demystifying Cascades

When a save or delete happens on one domain object, that save or delete
may trigger saves or deletes on other objects. This behavior is referred to as
a cascade and 1s meant as a convenience for the user. Undoubtedly the
most error-prone part of learning GORM, though, 1s understanding how
cascades impact the database.

The first thing to remember 1s that saves always cascade down, but
belongsTo acts a bridge allowing deletes to cascade down relationships.

Grails Persistence with GORM and GSQL firstPress- 8l

http:///

Code Listing 2-16. Demonstrating Cascading Saves and Deletes
// In ./grails-app/domain/Foo.groovy
class Foo {
static hasMany = [bars:Bar, bazzes:Baz]
}
// In ./grails-app/domain/Bar.groovy
class Bar {
static belongsTo = [foo:Foo]
}
// In ./grails-app/domain/Baz.groovy
class Baz {
// Does not belongTo Foo
}
// In ./test/integration/FooTests.groovy
void testCascadingSaveAndDelete() {
def foo = new Foo(bars:[], bazzes:[])
def bar
def baz = new Baz()
foo.addToBars (bar)
foo.addToBazzes (baz)

new Bar ()

assertNotNull foo.save()
assertNotNull foo.id
assertNotNull bar.id // Cascading save
assertNotNull baz.id // Cascading save
foo.delete()
assertNull Bar.get(bar.id) // Cascading delete
assertNotNull Baz.get(baz.id) // Not deleted

}

Although not often done, if one class specifies that it belongsTo another
without its parent class knowing about it, there 1s no cascading behavior in

82 firstPress Grails Persistence with GORM and GSQL

http:///

either direction. Note that this 1s in direct conflict with the documentation
as of this writing.

Code Listing 2-17. Demonstrating Unpaired belongsTo
// In ./grails-app/domain/Foo.groovy
class Foo {
}
// In ./grails-app/domain/Junk.groovy
class Junk {
static belongsTo = [foo:Foo0]
}
// In ./test/integration/FooTests.groovy
void testUnidirectionalParentDelete() {
def foo = new Foo()
assertNotNull foo.save() // No cascading save
def junk = new Junk(foo:foo0)
assertNotNull junk.save()
foo.delete(flush: true)
sessionFactory.currentSession.clear ()
assertNotNull Junk.get (junk.id)
shouldFail {
Foo.get (foo.id)

Grails Persistence with GORM and GSQL firstPress- &3

http:///

Chapter 3: Querying with GORM and HQL

"The art and science of asking questions is the source of all knowledge."

Thomas Berger

When developing a project, whether iteratively or otherwise, defining the
model 1s a critical and significant piece of work. However, the real
advantage of GORM over vanilla Hibernate 1s in the powerful and
extensive set of querying methods. GORM automatically injects methods
onto the domain classes which address most of the common querying
scenar1os, including querying the GORM domain by ID or properties.

For those used to more complex application architectures, think of GORM
as providing a data access object (DAO) hanging right off of the domain
class itself, already preconfigured with most of the methods you will use.

For everyone else, think of GORM as providing prewritten methods and
other tools to save you a whole lot of SQL writing. These tools include a
very useful and impressive domain object querying DSL called the
Hibernate Query Language (HQL).

Querying via Direct Methods on GORM Classes

get

The basic retrieval method in Grails, get 1s so simple it was actually
slipped into unit tests earlier in the book. The get method takes the ID of a
domain object to retrieve and returns the domain object with that ID. If no
such domain object 1s found, it returns nul1l.

Grails Persistence with GORM and GSQL firstPress- 85

http:///

Code Listing 3-1. Demonstrating get in the Standard Case

// In ./grails-app/domain/Foo.groovy

class Foo {}

// In ./test/integration/FooTests.groovy

void testGet () {

def foo = new Foo()
assertNotNull foo.save()
assertEquals foo, Foo.get (foo.id)
assertNull Foo.get(foo.id * 9) // No exception

}

If you have customized the id property to be a type other than the default,

the get method will take the appropriate type and do the retrieval in the
exact same way.

Code Listing 3-2. Demonstrating get in the String ID Case
// In ./grails-app/domain/Bar.groovy
class Bar {
String id
static mapping = {
id generator:'assigned’

}
// In ./test/integration/BarTests.groovy
void testGetStringId() {
def bar = new Bar ()
bar.id = 'bar'
assertNotNull bar.save()

assertEquals bar, Bar.get('bar')

86 firstPress Grails Persistence with GORM and GSQL

http:///

The only particularly tricky or surprising scenario involves domain classes
with composite keys. To retrieve a domain object with that structure, use
get on an instance of the domain class with the ID values populated.

Code Listing 3-3. Demonstrating get in the Composite ID Case
// In ./grails-app/domain/Foo.groovy
class Foo implements Serializable ({
String codel, code2, code3
static mapping = {
id composite:['codel', 'codel2']

}
// In ./test/integration/FooTests.groovy

void testGetCompositeIds () {
def foo = new Foo(
codel: 'klaatu',
code2: 'barada',
code3: 'nikto’
)
assertNotNull foo.save()
assertEquals foo, Foo.get (new Foo (
codel: 'klaatu’,
code2: 'barada’
))
}

getAll

The geta11 method provides the same functionality as get except it
retrieves a list of domain objects instead of just one. There are two forms of
getAll: a varargs version and a list version, which means 1t can basically
be called with a series of arguments (varargs) or with a list.

Grails Persistence with GORM and GSQL firstPress- 87

http:///

The ordering of the arguments 1s important. The returned list 1s a direct
mapping of IDs onto objects; if an ID does not exist in the database the
returned list will have nu11 in the corresponding slot.

Tip If you want to work only with non-null elements make the call
something like Foo.getAll (ids).findall { it } or the more Java-
esque def x = Foo.getAll(ids); x.removeAll (null).

Code Listing 3-4. Demonstrating getAll
// In ./grails-app/domain/Foo.groovy
class Foo {}
// In ./test/integration/FooTests.groovy
void testGetAll() {
def foos = []
10.times { foos << new Foo() }
foos*.save()
def badFooId = foos*.id.max() + 1
assertNull Foo.get (badFooId)
def expected = foos[0..2]
def actual = Foo.getAll([foos[0].id,
foos[1].1id,
foos[2].1id])
assertEquals expected, actual
expected = foos[0..3] + [null] + foos[4..-1]
actual = Foo.getAll(foos[0..3]*.id + [badFooId] +
foos[4..-1]1*.1id)
assertEquals expected, actual

88 firstPress Grails Persistence with GORM and GSQL

http:///

lock

Although optimistic locking 1s sufficient for most cases, a domain object
will sometimes be altered, so it 1s important no other transaction tries to
alter 1t at the same time. This kind of exclusive locking is called a
pessimistic lock. A pessimistic lock can be accomplished by using 1ock. It
behaves exactly the same as get but acquires the lock in addition to
retrieving the value. The lock 1s released when the transaction is
committed.

Caution While the default database shipped with Grails, HSQLDB, works
fairly well for development purposes, it has some significant limitations, one
of which is that it does not support pessimistic locking.

list

The 1ist method provides a way to retrieve a series of domain objects for
a given class. The particular nature of the series 1s driven by named
arguments: when given no arguments, it simply returns all the domain
objects.

The max/of fset parameters can be used to implement pagination. The
series will return at most max elements, beginning at the zero-based
offset. To implement pagination, the next page begins at the previous
page’s max, and the previous page’s offset is the current offset - max.
The properties can also be used independently of each other, should that
ever be useful.

The sort/order parameters define the ordering of the returned elements.
The sort parameter takes the property name to sort by and the order
parameter 1s either asc (ascending) or desc (descending). By default,

Grails Persistence with GORM and GSQL firstPress- 89

http:///

strings are sorted 1n a case-1nsensitive manner, but you can force a case-
sensitive parameter by setting the ignoreCase parameter to false.

Caution MySQL’s default installation uses a collation that is not sensitive
to case and GORM cannot override that configuration. To work around this
problem, have your database administrator set your database default to
binary collation. Or use Postgres.

The fetch parameter can be used to eagerly fetch relationships or
properties that are normally lazily initialized. This parameter takes a map
as an argument, where the keys are property names and the argument 1s
eager.

Code Listing 3-5. Demonstrating list
// In ./grails-app/domain/Bar.groovy
class Bar { static belongsTo = [foo:Foo] }
// In ./grails-app/domain/Foo.groovy

class Foo {

static hasMany [bars:Bar]
String name = ""
static mapping = {

bars lazy:true

}
String toString() { name }

}
// In ./test/integration/FooTests.groovy
void testList () {
def foos = []
10.times { foos << new Foo() }
foos*.save()

90 firstPress Grails Persistence with GORM and GSQL

http:///

assertTrue foos.containsAll (Foo.list())
assertTrue Foo.list () .containsAll (foos)
}
void testListPagination() {
def foos = []
9.times { foos << new Foo() }
foos*.save()
max: 3]

[offset
[offset

def pagel : 0,
: 3,

def page3d = [offset:6, max:3]
: 9,

def page2 max:3]

def paged = [offset max: 3]

assertEquals 3, Foo.list(pagel).size()
assertEquals 3, Foo.list(page2).size()
assertEquals 3, Foo.list(page3).size()
assertEquals 0, Foo.list(paged) .size()
assertEquals([], Foo.list (pagel) .intersect
))

.intersect (

Foo.list (page2)

assertEquals([], Foo.list (page2)
Foo.list (page3)))
) .intersect (
)

))

assertEquals([], Foo.list (pagel
Foo.list (page3
def 1listAll = Foo.list(pagel) +
Foo.list (page2) +
Foo.list (page3l)
assertTrue foos.containsAll (listAll)
assertTrue listAll.containsAll (foos)
}
void testListSorting() {
def foos = [:]
['bilbo', 'gimli', 'aragorn',
'legolas', 'Frodo'].each {

Grails Persistence with GORM and GSQL firstPress- 91

http:///

foos[it] = new Foo(name:it)
}
foos.values () *.save()
assertEquals ([
foos.aragorn, foos.bilbo, foos.Frodo,
foos.gimli, foos.legolas
], Foo.list(sort:'name'))
assertEquals ([
foos.legolas, foos.gimli, foos.Frodo,
foos.bilbo, foos.aragorn
], Foo.list(sort:'name', order:'desc'))

assertEquals ([
foos.Frodo, foos.aragorn, foos.bilbo,
foos.gimli, foos.legolas
], Foo.list(sort:'name', ignoreCase:false))
}
void testListFetching() {
def foo = new Foo(name: 'name')
(1..<10) .each {
foo.addToBars (new Bar())
//foo.addToBazzes (new Baz())
}
assertNotNull foo.save(flush:true)
sessionFactory.currentSession.clear ()
foo = Foo.list () [0]
assertFalse Hibernate.isInitialized(foo.bars)
sessionFactory.currentSession.clear ()
foo = Foo.list(fetch: [bars:'eager']) [0]
assertTrue Hibernate.isInitialized(foo.bars)

firstPress Grails Persistence with GORM and GSQL

http:///

listOrderBy*

The 1ist method provides a sort argument to sort the elements by a
particular property. That same behavior can be achieved by using the
listOrderBy* family of methods. These methods take all the same
arguments as 1ist, but instead of using the sort argument the property to
sort by 1s passed directly in the method name. The only semantic difference
1s that string properties are sorted in case-sensitive order by default using
listOrderBy*.

Code Listing 3-6. Demonstrating 1istOrderBy*
// In ./grails-app/domain/Foo.groovy
class Foo { String name = "" }

// In ./test/integration/FooTests.groovy
void testListOrderBySorting () ({
def foos = [:]

['bilbo', 'gimli', 'aragorn',
'legolas', 'Frodo'].each {
foos[it] = new Foo(name:it)

}

foos.values () *.save()

assertEquals ([
foos.Frodo, foos.aragorn, foos.bilbo,
foos.gimli, foos.legolas

], Foo.list(sort:'name', ignoreCase:false))

assertEquals Foo.list(sort: 'name’',
ignoreCase:false),

Foo.listOrderByName ()

Grails Persistence with GORM and GSQL firstPress- 93

http:///

findBy*/findAl1By*

findBy* and £indAa11By* are the workhorse query methods in GORM.
Both of them query the domain based on the name of the method. In the
simplest approach, the property being queried on is specified in the method
name and the value for that property is passed as an argument. The
findBy* method will return one instance matching that value; the
findA11By* method will return all instances matching that value. The
pagination parameters used for list (max, order, offset, and sort) may
be used for finda11By* to limit the number of results returned. Simply
pass those parameters in the last argument as a map.

Caution The findBy* method will not error out if multiple potential
matches exist in the domain. The particular instance returned is not
specified.

Code Listing 3-7. Demonstrating £indBy* and £indAl11By* (Simple)
// In ./grails-app/domain/Foo.groovy
class Foo { String name = "" }
// In ./test/integration/FooTests.groovy
void testFindBy () {
def foo = new Foo(name:'Smokejumper')
assertNotNull foo.save()
assertEquals foo, Foo.findByName ('Smokejumper')
}
void testFindByWithDuplicates () {
(1..2) .each {
assertNotNull new Foo(name:'Smokejumper') .save()

}
assertNotNull Foo.findByName ('Smokejumper"')

94 firstPress Grails Persistence with GORM and GSQL

http:///

}
void testFindAllBy () {

def foos = [] as Set

(1..2) .each {

foos << new Foo(name: 'Smokejumper"')

}

foos*.save()

assertEquals foos,

Foo.findAllByName ('Smokejumper') as Set

}

Conjunctions (and/or)

This family of methods 1s even more advanced than that, though. Multiple
properties can be queried by using And and or. Only one conjunction 1s
allowed per method, and this 1s an explicit design decision—there are other
ways to do more complicated queries.

Code Listing 3-8. Conjoined £indBy*/findAl1By*
// In ./grails-app/domain/Foo.groovy
class Foo {
String name = ""
int rank = 0
}
// In ./test/integration/FooTests.groovy
void testFindByAndFindAllByWithAnd () ({
assertNotNull new Foo(name:'Smokejumper',
rank:2) .save()
assertNotNull Foo.findByNameAndRank ('Smokejumper', 2)

assertEquals 1,
Foo.findAllByNameAndRank (' Smokejumper',

2).size()

Grails Persistence with GORM and GSQL firstPress- 95

http:///

}
void testFindByAndFindAllByWithOr () ({
assertNotNull new Foo (name:'Smokejumper',
rank:2) .save()
assertNotNull new Foo(name: 'Robert', rank:1) .save()
assertNotNull Foo.findByNameOrRank ('Unused', 2)
assertNotNull Foo.findByNameOrRank ('Robert', 3)
assertEquals 2, Foo.findAllByNameOrRank ('Robert’',
2).size()
assertEquals 1, Foo.findAllByNameOrRank ('Robert’',
1) .size()

}

Operators

The power of these methods still does not stop there. It 1s even possible to
icorporate some minor logic into the method name, such as these
operators:

Range Operators: LessThan, LessThanEquals, GreaterThan,
GreaterThanEquals, Between, NotEqual

String Operators: Like, Ilike
Null Operators: IsNull, IsNotNull

Caution The range operators, including NotEqual, will never return an
instance whose property is null. Also note that there is no Equal, despite
what the Grails documentation may say: leaving the operator off handles
that case.

96 firstPress Grails Persistence with GORM and GSQL

http:///

Code Listing 3-9. Demonstrating 1ist with Operators
// In ./grails-app/domain/Foo.groovy
class Foo {

String name = ""
int rank = 0
static constraints = {
name (nullable: true)
}
String toString() { "$name S$rank" }
}
// In ./test/integration/FooTests.groovy
void testOperators() {

def fool = new Foo(name:'foo', rank:1).save

(()
def foo2 = new Foo(name:'foo', rank:2) .save()
def foo3 = new Foo(name:'Foo', rank:3).save()
def fob0 = new Foo(name:'fob', rank:0).save()
def barl = new Foo(name:'bar', rank:1) .save()

def nulld4d = new Foo(name:null, rank:4).save()
assertEquals([fool, foo2, foo3, fob0,barl] as Set
Foo.findAllByRankLessThan(4) as Set)
assertEquals([fool,barl, fob0] as Set,
Foo.findAllByRankLessThanEquals(l) as Set)
assertEquals([foo3,nulld] as Set,
Foo.findAllByRankGreaterThan (2) as Set)
assertEquals([foo2, foo3,nulld4] as Set,
Foo.findAllByRankGreaterThanEquals(2) as Set)
assertEquals([foo2, foo3] as Set,
Foo.findAllByRankBetween(2,3) as Set)
assertEquals([fool, foo2, fob0] as Set,
Foo.findAllByNameLike('fo%') as Set)

Grails Persistence with GORM and GSQL firstPress- 97

http:///

assertEquals([fool, foo2, foo3, fob0] as Set,
Foo.findAllByNameIlike('fo%') as Set)
assertEquals([fool, foo2, foo3, fob0,barl] as Set,
Foo.findAllByNameIsNotNull () as Set)
assertEquals([nulld], Foo.findAllByNameIsNull())
assertEquals([foo3, fob0O, barl], // nulld4d not found
Foo.findAllByNameNotEqual ('foo'))

}
Querying for Embedded Fields and Has-One Relationships

To query for embedded fields and has-one relationships, use an example
instance to specify the field you are looking up. For an embedded field this
value has to be fully populated; for a has-one relationship, the ID field

needs to be specified.

Code Listing 3-10. Demonstrating £indBy on Embedded Fields and
Has-One Relationships
// In ./src/groovy/Name.groovy
class Name { String first, last }
// In ./grails-app/domain/Baz.groovy
class Baz { static belongsTo = [foo:Foo] }
// In ./grails-app/domain/Foo.groovy
class Foo {
static embedded = ['name']
Baz baz = new Baz ()
Name name = new Name(first:'', last:'"')
}
// In ./test/integration/FooTests.groovy
void testFindByEmbeddedField() {
def name = new Name(first:'Robert', last:'Fischer')

def foo = new Foo(name:name) .save()

98 firstPress Grails Persistence with GORM and GSQL

http:///

assertNotNull foo
name = new Name (first:'Robert', last:'Fischer')
assertNotNull Foo.findByName (name)
name = new Name (first:'Robert')
assertNull Foo.findByName (name)

}

void testFindByOnHasOneRelationship () {
def baz = new Baz()
def foo = new Foo(baz:baz)
assertNotNull foo.save()
assertNotNull Foo.findByBaz (baz)

}

Querying via the Criteria Builder

If a query becomes more complicated than £indA11By* or £indBy* can
support, one option is to use an embedded DSL called the Criteria Builder.
The Criteria Builder extends the Hibernate Criteria API’ with a more tree-
like syntax. The power of this structure 1s the ability to integrate arbitrary
Groovy code, including control structures, loops, and method calls, into the
generation of a query. Often ORM frameworks have overlooked or
downplayed the value of integrating program logic with database access,
but this is actually an area where GORM excels.

There are two access points from a GORM domain class into the Criteria
Builder. The succinct, inline version of the Criteria Builder’s “list”
functionality 1s invoked via withCriteria; a Criteria Builder as an object
can be retrieved by using createCriteria.

"http://hibernate.org/hib_docs/v3/reference/en/
html/querycriteria.html

Grails Persistence with GORM and GSQL firstPress- 99

http:///

Code Listing 3-11. Comparing withCriteria/createCriteria/list

// In ./grails-app/domain/Foo.groovy

class Foo {}

// In ./test/integration/FooTests.groovy

void testListEquivalency () {
(1..10) .each {
assertNotNull new Foo () .save()

}
assertEquals 10, Foo.list () .size()
assertEquals Foo.list(), Foo.withCriteria {}
assertEquals Foo.list (), Foo.createCriteria() .list

{}
}

Querying Properties

To query a property value, use one of the comparison operators, which.
These are called like methods within the criteria block. The comparison
operators are as follows:

Equality/Range Value Operators: between, eq, gt, ge, idEqg, 'in' ,8 1t,
ne

Equality/Range Property Operators: egProperty, gtProperty,
geProperty, 1tProperty, neProperty (these compare two properties to
one another on the database itself)

Null Operators: isNull, isNotNull

String Operators: ilike, 1ike

8 Because 1n is a Groovy keyword it has to be set in single quotes. It looks funny, but Groovy will
resolve the quoted string to be a dynamic method call as long as it is followed with a left parenthesis.

100 firstPress Grails Persistence with GORM and GSQL

http:///

Note The properties being queried must be directly on the object and
cannot be artificial properties or GPath expressions. The only apparent
exception to this is for embedded properties, which are resolved in a GPath-
like expression (see the test nhamed testOperatorOnEmbedded in Code
Listing 3-12).

Code Listing 3-12. Querying Properties with Criteria Builder
// In ./src/groovy/Name.groovy
class Name { String first, last }
// In ./grails-app/domain/Foo.groovy
class Foo {
static embedded = ['name']
String codel = "'
String code2 = "'
Name name = new Name(first:'', last:'"')
static constraints = {
code2 (nullable: true)

}
// In ./test/integration/FooTests.groovy

void testEqualityRangeValueOperators() {

def fooA = new Foo(codel:'A'")
assertNotNull fooA.save()

def fooB = new Foo(codel:'B')
assertNotNull fooB.save()

def fooC = new Foo(codel:'C'")
assertNotNull fooC.save()

assertEquals ([fooB, fooC] as Set,

Foo.withCriteria {
between('codel', 'B', 'C")

Grails Persistence with GORM and GSQL firstPress- 101

http:///

} as Set)
assertEquals ([fooA] as Set,

Foo.withCriteria { eg('codel', 'A') } as Set)
assertEquals ([fooC] as Set,

Foo.withCriteria { gt('codel', 'B') } as Set)
assertEquals ([fooB, fooC] as Set,

Foo.withCriteria { ge('codel', 'B') } as Set)
assertEquals ([fooA] as Set,

Foo.withCriteria { idEg(fooA.id) } as Set)
assertEquals ([fooA, fooB] as Set,

Foo.withCriteria {

'in'('codel', ['A','B'])

} as Set)
assertEquals ([fooA] as Set,
Foo.withCriteria { lt('codel', 'B') } as Set)
assertEquals ([fooA, fooB] as Set,
Foo.withCriteria { le('codel', 'B') } as Set)

assertEquals ([fooA, fooC] as Set,
Foo.withCriteria { ne('codel', 'B') } as Set)
}
void testEqualityRangePropertyOperators () ({
def fooA = new Foo(codel:'A', code2:'A'")
assertNotNull fooA.save()
def fooB = new Foo(codel:'A', code2:'B'")
assertNotNull fooB.save()
assertEquals ([fooA] as Set,
Foo.withCriteria {
egProperty('codel', 'code2")
} as Set)
assertEquals ([fooB] as Set,
Foo.withCriteria {

102 firstPress Grails Persistence with GORM and GSQL

http:///

gtProperty('code2', 'codel')
} as Set)
assertEquals ([fooA, fooB] as Set,
Foo.withCriteria {
geProperty('code2', 'codel")
} as Set)
assertEquals ([fooB] as Set,
Foo.withCriteria {
ltProperty('codel', 'code2')
} as Set)
assertEquals([fooA, fooB] as Set,
Foo.withCriteria {
leProperty('codel', 'codel"')
} as Set)
assertEquals ([fooB] as Set,
Foo.withCriteria {
neProperty('codel', 'codel2"')
} as Set)
}
void testNullOperators() {
def fooWith2 = new Foo(codel:'A', code2:'B')
assertNotNull fooWith2.save()
def fooNo2 = new Foo(codel:'A', code2:null)
assertNotNull fooNo2.save()
assertEquals ([fooNo2] as Set,
Foo.withCriteria { isNull('code2') } as Set)
assertEquals ([fooWith2] as Set,
Foo.withCriteria { isNotNull('code2') } as Set)
}
void testStringOperators() ({
def caffoo = new Foo(codel:'caffoo')

Grails Persistence with GORM and GSQL firstPress- 103

http:///

assertNotNull caffoo.save()
def food = new Foo(codel:'food')
assertNotNull food.save()
def foo = new Foo(codel:'foo')
assertNotNull foo.save()
def bigFoo = new Foo(codel:'FOO')
assertNotNull bigFoo.save()
assertEquals ([caffoo, foo] as Set,
Foo.withCriteria { like('codel', '%$foo') } as Set)
assertEquals ([caffoo, foo, food] as Set,

Foo.withCriteria { like('codel', '%$foo0%') } as Set)
assertEquals ([caffoo, foo, food, bigFoo] as Set,
Foo.withCriteria { ilike('codel', '%$foo%') } as Set)
}
void testOperatorOnEmbedded() {
def name = new Name(first:'Robert', last:'Fischer')

def foo = new Foo(codel:'A', name:name)
assertNotNull foo.save()
assertEquals ([foo] as Set,

Foo.withCriteria { eg('name', name) } as Set)

}

Conjunctions (and/or)

Properties can be joined by using the and and or operators. Both operators
take a block and sibling builder calls inside that block are logically
combined.

104 firstPress Grails Persistence with GORM and GSQL

http:///

Code Listing 3-13. Demonstrating and and or in Criteria Builder
// In ./grails-app/domain/Foo.groovy
class Foo { String codel = '', code2 = '' }
// In ./test/integration/FooTests.groovy
void testAndOr () {
def fooAA = new Foo(codel:'A', code2:'A'")
assertNotNull fooAA.save ()
def fooAB = new Foo(codel:'A', code2:'B')
assertNotNull fooAB.save ()
assertEquals ([fooAB] as Set,
Foo.withCriteria {

and {
eqg('codel', 'A')
eqg('code2', 'B')
}
} as Set)

assertEquals ([fooAA, fooAB] as Set,
Foo.withCriteria {

or {
eqg('codel', 'A'")
eqg('code2', 'B')
}
} as Set)

}

The and conjunction in the previous example 1s a bit redundant. The
default behavior for nonspecified sibling calls 1s to and them together.

Grails Persistence with GORM and GSQL firstPress

http:///

Code Listing 3-14. Proving Default Builder Conjunction Is and
void testDefaultIsAnd() {
def foo = new Foo(codel:'Frodo', code2:'Baggins')
assertNotNull foo.save()
def withAnd = Foo.withCriteria {
and {
eq('codel', 'Frodo')
eqg('code2', 'Baggins')

}
assertEquals([foo], withAnd)
assertEquals (withAnd, Foo.withCriteria {
eqg('codel', 'Frodo')
eqg('code2', 'Baggins')
})
}

Negation (not)

The not operator takes a block like and and or but requires that its child
checks fail.

Code Listing 3-15. Demonstrating not in Criteria Builder

// In ./grails-app/domain/Foo.groovy

class Foo { String codel = '', code2 = '' }

// In ./test/integration/FooTests.groovy

void testNot () {

def fooCA = new Foo(codel:'C', code2:'A'")
assertNotNull fooCA.save()
def fooDB = new Foo(codel:'D', code2:'B')
assertNotNull fooDB.save()

106 firstPress Grails Persistence with GORM and GSQL

http:///

assertEquals ([fooCA] as Set,
Foo.withCriteria {
not {
eqg('code2', 'B')
}
} as Set)
}

Paginated Results (maxResults/firstResult/order)

The builder provides a simple way to structure pagination: three methods
called maxResults, firstResult, and order. maxResult takes an
argument of the maximum number of results to return; firstResult takes
an argument of the offset into the results (zero-based); and order takes an
argument of the parameter to order by and optionally the direction to sort—
asc Or desc.

Code Listing 3-16. Demonstrating Pagination with Criteria Builder
// In ./grails-app/domain/Foo.groovy
class Foo { int code }
// In ./test/integration/FooTests.groovy
void testPagination() {
(1..10) .each {
assertNotNull new Foo(code:it) .save()
}
assertEquals([1,2,3], Foo.withCriteria {
maxResults (3)
firstResult (0)
order ('code', 'asc')
}*.code)
assertEquals([9,10], Foo.withCriteria {
maxResults (3)

Grails Persistence with GORM and GSQL firstPress- 107

http:///

firstResult (8)
order ('code')
}*.code)

}

Querying Relationships

Although Criteria Builder's capabilities are useful enough when acting on
jJust a single domain class, its relationship query structures are truly
impressive. By leveraging a tree-like structure, the builder gives a succinct
syntax to what would be complicated join logic and awkward aliasing in
SQL/HQL. In most cases the builder provides the cleanest and most
maintainable way to express relationship-traversing queries.

To build a relationship into part of the query, simply call the relationship
name with a closure. The closure provides a place to specify the
requirements on that relationship. If any value in a has-many relationship
matches the requirements, the requirement will pass.

Code Listing 3-17. Demonstrating Criteria Builder Relationships
// In ./grails-app/domain/Foo.groovy
class Foo {

static hasMany = [bars:Bar]
int code
}
// In ./grails-app/domain/Bar.groovy
class Bar {
static belongsTo = [foo:Foo]
int value
}
// In ./test/integration/FooTests.groovy
void testRelationshipExample() {
def goodBar = new Bar (value:2)

108 firstPress Grails Persistence with GORM and GSQL

http:///

def goodFoo = new Foo(code:1)
goodFoo.addToBars (goodBar)
assertNotNull goodFoo.save()
def badBar = new Bar (value:3)
def badFoo = new Foo(code:1)
badFoo.addToBars (badBar)
assertNotNull badFoo.save()
assertEquals ([goodFoo], Foo.withCriteria {

eq('code', 1)

bars {

eqg('value', 2)

}

})
}

Relationship Size Operators (isEmpty/isNotEmpty/sizeEq)

In addition to the basic operators, a has-many relationship can be queried
for its size. This 1s particularly useful in pre-filtering parent instances when
children are being processed.

These relationship operators are treated like property operators: instead of
creating a tree for the property, simply call them on the parent and pass in
the relationship property name.

Code Listing 3-18. Demonstrating Relationship Size Operators
// In ./test/integration/FooTests.groovy
void testRelationshipSizes() {

def fooWithO = new Foo(code:0)
assertNotNull fooWithO.save()
def fooWithl = new Foo(code:1)
fooWithl.addToBars (new Bar (value:1))
assertNotNull fooWithl.save()

Grails Persistence with GORM and GSQL firstPress- 109

http:///

assertEquals 1, fooWithl.bars.size()

def fooWith2 = new Foo(code:2)

(1..2) .each {
fooWwith2 .addToBars (new Bar (value:it))

}

assertNotNull fooWith2.save()

assertEquals 2, fooWith2.bars.size()

assertEquals([fooWwithO], Foo.withCriteria {
isEmpty ('bars"')

})

assertEquals([fooWithl, foowith2],
Foo.withCriteria {

isNotEmpty ('bars')

})

assertEquals([fooWithl], Foo.withCriteria {
sizeEg('bars',1)

})

}

Setting the Fetch Mode (fetchMode)

One common point of awkwardness 1s the way in which relationships are
fetched. At the point of querying the object, additional information 1s often
known about how to optimize the fetching, and appropriate. The
fetchMode method can be used to configure the pre-fetching behavior for
the query by passing it two arguments: the property of the collection to

configure, and the org.hibernate.FetchMode that is intended to be
loaded.

Following are the fetchMode options:
DEFAULT: Use the underlying mapping configuration.

JOIN: Use an outer join to fetch the relationship. This is the only explicit

110 firstPress Grails Persistence with GORM and GSQL

http:///

eager fetching mode and should be used when you know that all the objects in
the collection will be touched.

SELECT: Use a distinct select to fetch the relationship when required. This is

the only explicit lazy fetching mode. Lazy fetching should be preferred when
there is a good chance most of the objects will not be used.

Code Listing 3-19. Demonstrating the fetchMode Parameters
void testRelationshipSizes() {

def fooWith2 = new Foo(code:2)
(1..2) .each {

foowith2.addToBars (new Bar (value:it))
}
assertNotNull fooWith2.save()
assertEquals 2, fooWith2.bars.size()
sessionFactory.currentSession.clear ()
fooWith2 = Foo.get (fooWith2.id)
assertFalse Hibernate.isInitialized (fooWith2.bars)
sessionFactory.currentSession.clear ()
fooWith2 = Foo.withCriteria {

fetchMode ('bars', FetchMode.JOIN) // Outer join
}[0]
assertTrue Hibernate.isInitialized(fooWith2.bars)
sessionFactory.currentSession.clear ()
fooWith2 = Foo.withCriteria {

fetchMode ('bars', FetchMode.SELECT) // Lazy fetch
}[0]
assertFalse Hibernate.isInitialized (fooWith2.bars)
sessionFactory.currentSession.clear ()
fooWith2 = Foo.withCriteria {

fetchMode ('bars', FetchMode.DEFAULT) // Default
}[0]

Grails Persistence with GORM and GSQL firstPress- 111

http:///

assertFalse Hibernate.isInitialized (fooWith2.bars)
sessionFactory.currentSession.clear ()

Caution Donald Knuth once quipped, "Premature optimization is the root
of all evil." That quote should be kept as a guide in this area: the
temptation to tweak is often more powerful than wise here. Because
Hibernate has quite a few tricks and quite a bit of intelligence in fetching
relationships and caching domain instances, overriding fetchMode will
often not realize the gains a developer might expect.

Querying for Limited Data and Summaries (projections)

One goal when designing an ORM-based domain is to 1solate small atoms
of information to ensure information that is always used together is
retrieved at once, but a minimum of additional information 1s brought
along. By doing this the database can more accurately analyze and optimize
its work, and lazy fetching has lots of opportunities to minimize the amount
of data coming back from the database.

Even under that approach, information sometimes needs to be summarized
from many, many records across the entire domain. In this case the
powerful set of optimizations provided by Hibernate may not enough, and
the heavy lifting for generating this report may need to be done in the
database itself. The builder has the ability to generate this kind of
information, and that capability 1s called projections.

112 firstPress Grails Persistence with GORM and GSQL

http:///

Basic Projection Usage

To create a projection, call the projections method and pass it a closure.
The closure can call any method from org.hibernate.criterion.
Projections, but the simplest use 1s to call the property method to
specify properties. When a single property 1s specified, the call returns a
list of that property's values. When multiple properties are specified, the
call returns a list of object arrays containing the values of the properties.

Code Listing 3-20. Demonstrating Basic Projection Usage
// In ./grails-app/domain/Foo.groovy
class Foo { int codel, code2 }
// In ./test/integration/FooTests.groovy
void testProjections () {
[[42,23], [-1,-2], [-1,-2]].each {
assertNotNull (new Foo(codel:it[0],
code2:it[1]) .save())
}
def list = Foo.withCriteria {
projections { property('codel') }
}
assertTrue list instanceof List
assertEquals([-1,-1,42] as SortedSet,
list as SortedSet)
def multilist = Foo.withCriteria {
projections {
property('codel"')
property('code2"')

}

assertTrue multilist instanceof List
assertTrue multilist[0] .class.isArray()

Grails Persistence with GORM and GSQL firstPress- 113

http:///

assertEquals 42, multilist[0][O0]

assertEquals 23, multilist[0][1]

assertEquals (-1, multilist[1][0])

assertEquals (-2, multilist[1][1])

assertEquals (-1, multilist[2][0])

assertEquals (-2, multilist[2][1])
}

Getting Unique Results (distinct)

A unique set of values from properties can be found via the distinct
projection. Simply call the distinct projection with the column whose
distinct values are desired. Multiple columns may be specified by calling
distinct multiple times.

Code Listing 3-21. Demonstrating Getting Unique Results
void testDistinct () {
[[42,23], [-1,-2], [-1,-2]].each {
assertNotNull (new Foo(codel:it[0],
code2:it[1]) .save())
}
assertEquals([42,-1] as Set, Foo.withCriteria {
projections { distinct('codel') }
} as Set)
}

Counting (count/rowCount/countDistinct)

Following are the three ways to get a count back in a projections block:

count: The count of rows based on a property, including null elements.
Takes the property name as an argument.

rowCount: The equivalent of SQL’s count (*), this returns the count of the
number of rows. Takes no argument.

114 firstPress Grails Persistence with GORM and GSQL

http:///

countDistinct: Returns the number of distinct values that the property
has. Takes the property name as an argument.

Code Listing 3-22. Demonstrating counts
// In ./grails-app/domain/Foo.groovy
class Foo {
int codel, code2
static constraints = { code2(nullable:true) }
}
// In ./test/integration/FooTests.groovy
void testCounts() {
[[42,23], [-1,-2], [-1,null]].each {
assertNotNull (new Foo(codel:it[0],
code2:it[1]) .save())
}
assertEquals([2], Foo.withCriteria {
projections { countDistinct('codel') }
})
assertEquals([3], Foo.withCriteria ({
projections { count('code2') }
})
assertEquals([3], Foo.withCriteria {

projections { rowCount() }

})
}

Mathematical Summaries (avg/max/min/sum)

Rudimentary statistics are available within the projections block, as
well. In particular, avg, max, min, and sum are available, each providing
exactly the thing they are named. In the case of avg, the mean is provided.

Grails Persistence with GORM and GSQL firstPress- 115

http:///

It 1s somewhat tricky to remember, but the results are wrapped in a list
even when only one value 1s requested.

Code Listing 3-23. Demonstrating Mathematical Summaries
void testMathematicalSummaries () {
[[42,23], [-1,-2], [-1,-2]].each {
assertNotNull (new Foo(codel:it[0],
code2:it[1]) .save())
}
assertEquals([-1], Foo.withCriteria {
projections { min('codel') }
})
assertEquals([42], Foo.withCriteria {
projections { max('codel') }
})
assertEquals([42+-1+-1] as Set, Foo.withCriteria {
projections { sum('codel') }
} as Set)
assertEquals([13.0d] as Set, Foo.withCriteria {
projections { avg('codel') }
} as Set)
}

Grouping (groupProperty)

Projections allow records to be grouped by property values. This 1s
primarily useful in conjunction with the mathematical summaries or
rowCount. To use grouping, call the groupProperty method inside
projections and give it the name of the property to be grouped by.
Multiple properties may be specified by calling groupProperty multiple
times.

116 firstPress Grails Persistence with GORM and GSQL

http:///

Code Listing 3-24. Demonstrating Grouping Using Projections
void testGroupProperty () ({
[[42,23], [-1,-2], [-1,2]].each {
assertNotNull (new Foo(codel:it[O0],
code2:it[1]) .save())
}
def result = Foo.withCriteria {
projections {
groupProperty('codel"')
max ('code2"')
rowCount ()

}
assertEquals([42, 23, 1], result[0] as List)

assertEquals([-1, 2, 2], result[l] as List)
}

Explicit Methods (1ist/listDistinct/get/scroll)

Throughout the preceding examples, the Hibernate Criteria Builder has
been accessed via a withCriteria call. There is also a createCriteria
call that provides the criteria object itself. With that object it 1s possible to
call methods that provide behaviors other than 1ist, which simply lists the
results. Although Hibernate usually handles this for you, occasionally joins
result in nondistinct rows being returned, and then the 1istDistinct
method may be called to guaranty uniqueness of the results. However, it 1s
important to know that the 1istDistinct method will not guaranty the
unique results in a projection. If only a single value is going to be returned,
the get method may be called to return a single unboxed value. Finally,
more traditional Resultset-style scrollable results may be accessed by
calling scro11 and then navigating with first (), next (), scroll (int),

Grails Persistence with GORM and GSQL firstPress- 117

http:///

previous (), and last (). When the appropriate row is found, the value
can be returned by calling get ().

Code Listing 3-25. Demonstrating Explicit Retrieval Methods
void testListListDistinctGetScroll () {

def foo42 = new Foo(codel:42, code2:23) .save()

[[1,2], [-1,-2]].each {
assertNotNull (new Foo(codel:it[0],

code2:it[1]) .save())
}
assertEquals (Foo.withCriteria {},
Foo.createCriteria().list {})

assertEquals (foo42, Foo.createCriteria() .get {
idEg(foo42.id)

})

def scroller = Foo.createCriteria() .scroll {
order ('codel', 'desc')

}

assertTrue scroller.first() // Has first result

assertEquals foo42, scroller.get()

assertTrue scroller.next()

assertEquals([1], scroller.get().codel)

assertTrue scroller.first ()

assertTrue scroller.last()

assertEquals([-1], scroller.get() .codel)

assertTrue scroller.previous()

assertEquals([1], scroller.get().codel)

assertTrue scroller.first()

assertTrue scroller.scroll(2) // Move forward 2

assertEquals([-1], scroller.get().codel)

118 firstPress Grails Persistence with GORM and GSQL

http:///

Caution Do not use ++ or —- on the scroll object. The implementation of
those operators is to execute next () or previous () and then replace the
object with the result. The result of next () and previous () in the builder,
however, is a Boolean value, so the scroll object will be lost.

Querying via the Hibernate Query Language (HQL)

Although the Hibernate Criteria Builder provides a way to express
complicated queries, some people prefer a more SQL-like approach. The
problem with exposing or working with SQL directly 1s that it violates the
Don’t Repeat Yourself (DRY) principle. With SQL, the logical mapping of
fields onto their domain classes (already defined within the domain class
itself) has to be repeated in the SQL. Hibernate provides an alternative
query language for the database, called HQL. Using the SQL-like HQL
syntax, the user can query Hibernate domain classes on the database in a
more succinct and DRY approach.

The Basics of HQL and executeQuery

The key hook from GORM into HQL is the executeQuery method. This
static method 1s attached to every GORM class and executes an arbitrary
HQL query against the database. The particular class executeQuery 1s

called on does not matter; the types of the objects returned 1s specified by
the HQL 1tself.

The HQL language itself 1s very similar to SQL. Like SQL, 1t has three
fundamental clauses: select, from, and where. In 1ts most common basic
usage, HQL uses a from clause to specify which domain class is being
queried, and the where clause to specify constraints on the domain classes
retrieved. The result of executeQuery 1s always a list of results.

Unlike SQL, only the from class 1s required. If the where clause 1s left off,
all instances of that class are returned. If the select clause 1s left off,

Grails Persistence with GORM and GSQL firstPress- 119

http:///

objects of the type specified immediately after £rom are returned. For more
on using select, see “Retrieving Only Particular Fields with Projections”

and “Retrieving Maps, Lists, and Objects Inline from HQL” later in this
chapter.

Code Listing 3-26. HQL Basics
// In ./grails-app/domain/Foo.groovy
class Foo {
int codel = 0, code2 = 0
static mapping = {
table 'my_app_key foo_t'
codel column: 'code_prefix'
code2 column: 'code_suffix’

}
// In ./test/integration/FooTests.groovy
void testHglBasics() {
[[1,2],[1,3],1[4,4]1,([6,5]].each {
assertNotNull new Foo(codel:it[0],

code2:it[1l]) .save(flush:true)

}
assertEquals Foo.list(), Foo.executeQuery("from Foo")
assertEquals Foo.findAl1lByCodel (1),

Foo.executeQuery ("from Foo where codel = 1")
assertEquals 2, Foo.executeQuery ("""

from Foo where codel < code2
nen) size()
assertTrue Foo.executeQuery ("""

from Foo where codel < code2

"mr).every { it.codel < it.code2 }

120 firstPress Grails Persistence with GORM and GSQL

http:///

assertTrue Foo.executeQuery ("""

from Foo where codel = code2 and codel = ?
"tr, [4]) .every {

it.codel == 4; it.codel == it.code2

}

Fully-Qualified Classes

HQL requires class names to be fully qualified. The easiest way to do this
1s through the idiom $ClassName.name. There is no great magic here—it
1s simply a call to the getName () method on the className class object,
which returns a fully-qualified class name as a String. That 1s then
interpolated into the query.

Code Listing 3-27. Demonstrating Packaged Class HQL Idiom

// In ./grails-
app/domain/com/smokejumperit/eg/Baz.groovy

package com.smokejumperit.eg
class Baz { String valuel }
// In ./test/integration/BazTests.groovy
import com.smokejumperit.eg.Baz
class BazTests extends GroovyTestCase {
void testHglOnPackage() {
assertNotNull new Baz(valuel: 'baz'’
) .save (flush: true)
assertEquals 1,
Baz.executeQuery ("from $Baz.name") .size()

Grails Persistence with GORM and GSQL firstPress- 121

http:///

Retrieving Only Particular Fields with Projections

One of the primary advantages of HQL over the findBy* methods 1s the
ability to select only the value of the fields from the domain object. This
can provide a substantial improvement in performance when only a limited
subset of information 1s needed from a domain class: the additional fields
will not be fetched from the database and the object marshaling is bypassed
altogether.

This functionality is called querying projections, and is implemented by
using the select clause in a syntax very similar to SQL. If a single
property 1s selected, the result will be a single-dimensional list of that
property’s values. If multiple properties are selected, the result will be a list
of arrays of those properties’ values.

Caution It bears repeating that when multiple properties are selected,
the values of the returned list are arrays, not lists. This is one of the
author’s largest annoyances with GORM. To get lists, executeQuery can be
called as executeQuery(query).collect { it as List }. For
another solution, see “Retrieving Maps, Lists, and Objects Inline from HQL".

Code Listing 3-28. Querying Projections via HQL

// In ./grails-app/domain/Foo.groovy

class Foo { int codel = 0, code2 = 0 }

// In ./test/integration/FooTests.groovy

void testHglProjections() {

[[1,2]1,01,3]1,[4,4]1,1[6,5]].each {
assertNotNull new Foo(codel:it|[0],
code2:it[1l]) .save(flush:true)

}
assertEquals([1,1,4,6], Foo.executeQuery ("""

122 firstPress Grails Persistence with GORM and GSQL

http:///

select codel from Foo
"))
assertEquals([1,4,6], Foo.executeQuery ("""
select distinct codel from Foo
"))
assertEquals([[1,2],[1,31,[4,41,1(6,5]11,
Foo.executeQuery ("""
select codel,code2 from Foo
"))
}

Associations and Joins in HQL

One of the key differences between HQL and SQL 1s that HQL provides a
natural way to navigate associations. Just as in Groovy, in HQL one-to-one
and one-to-many associations can be navigated through dot notation. The
class of the association does not even need to be specified in the from
clause. For many-to-one or many-to-many associations an explicit join 1s
needed.

Unlike in SQL, the join 1s specified by providing the navigation to those
elements (see the examples that follow). As in SQL, joins may be inner
(an end on the association 1s required), 1eft (no parent end on the
association 1s required), or right (no parent end of the association is
required).

Note When the select clause is not specified, all the domain objects
specified in the from clause will be retrieved. This means that from Foo £
join f.bars b will result in retrieving all the [£,b] pairings that exist in
the database. To get around this, explicitly specify select f£.

Grails Persistence with GORM and GSQL firstPress

http:///

Code Listing 3-29. Demonstrating Joins and Association Navigation
// In ./grails-app/domain/Foo.groovy
class Foo {

static hasMany = [bars:Bar]
Baz baz
}
// In ./grails-app/domain/Bar.groovy
class Bar {
static belongsTo = [foo:Foo]
String value
}
// In ./grails-app/domain/Baz.groovy
class Baz {
static belongsTo = [foo:Foo]
String value
}
// In ./test/integration/FooTests.groovy
void testJoin() {
def foo = new Foo()

foo.baz new Baz (value: 'baz')

foo.addToBars (new Bar (value:'barl'))

foo.addToBars (new Bar (value: 'bar2'))

foo.addToBars (new Bar (value:'bar3'))

assertNotNull foo.save()

assertEquals(['baz'], Foo.executeQuery ("""
select f.baz.value from Foo f

"))

assertEquals([foo], Foo.executeQuery ("""
from Foo f where f.baz.value = 'baz'

ll“ll))

firstPress Grails Persistence with GORM and GSQL

http:///

assertEquals (foo.bars*.id, Foo.executeQuery ("""
from Bar b where b.foo.baz.value = 'baz'
l||lll)*_id)
assertEquals([foo], Foo.executeQuery ("""
select £ from Foo f inner join f.bars b
where b.value = 'barl'
"))
assertEquals ([foo, foo, foo],
Foo.executeQuery ("""
select £ from Foo f inner join f.bars b
where b.value in
('barl', 'bar2', 'bar3')
"))
assertEquals([['baz', 'barl'],
['baz', 'bar2']],
Foo.executeQuery ("""
select f.baz.value, b.value from Foo f
join f.bars b
where b.value in ('barl', 'bar2')
nwm) collect { it as List })

}

Retrieving Maps, Lists, and Objects Inline from HQL

An extremely useful but undoubtedly underappreciated and underutilized
aspect of HQL 1s the ability to declare maps and objects inline. Within the
select clause, HQL can construct maps and objects through use of the
new keyword. The new keyword can be used in two ways: to invoke object
constructors and to create maps and lists. In the case of object constructors,
the selected properties are mapped directly into the constructor of the
specified object before the results are returned. This provides a convenient
shorthand for mapping database results into business objects.

Grails Persistence with GORM and GSQL firstPress

http:///

It 1s important to note that the object need not be a Hibernate domain class;
it simply needs to provide an appropriate constructor. In the case of maps
and lists, the new keyword 1s followed by the word map or 1ist
(respectively), and creates a map or list of the selected properties.

Code Listing 3-30. Defining Maps, Lists, and Objects Directly in HQL
// In ./grails-app/domain/Foo.groovy
class Foo { String valuel, value2 }
// In ./src/groovy/Name.groovy
class Name {
String first, last
public Name (String firstName, String lastName) {
first = firstName
last = lastName

}
boolean equals (Name them) {
return this.first == them?.first &&
this.last == them?.last

}
// In ./test/integration/FooTests.groovy
void testHglConstructors () ({
assertNotNull new Foo(valuel: 'Robert',
value2: 'Fischer') .save()
assertEquals ([new Name ('Robert', 'Fischer')],
Foo.executeQuery ("""
select new Name (valuel, value2) from Foo
"))
assertEquals([[foo: 'Robert',bar: 'Fischer']],
Foo.executeQuery ("""
select new map(valuel as foo, value2 as bar)

126 firstPress Grails Persistence with GORM and GSQL

http:///

from Foo
"))
assertEquals([['Robert', 'Fischer']],
Foo.executeQuery ("""
select new list(valuel, value2) from Foo

Illl"))

Grails Persistence with GORM and GSQL firstPress- 127

http:///

Chapter 4: GORM Usage in Grails
Constructing GORM Objects in the Controller

In Grails applications the parameters of a request will often directly reflect
the properties on a GORM object. In this case the GORM object can be
constructed by routing the parameters of an action directly onto the
properties of the domain object. This 1s done by way of the map
constructor: simply execute new MyDomainClass (params). When doing
this, all of the base types are properly set except for bate. Embedded types
and associations are not set, so they will also need to be hand-rolled.
Associations are instantiated for free, however, which makes their
initialization straightforward.

Code Listing 4-1. Demonstrating Normal Assignment Approaches
// In ./grails-app/domain/Foo.groovy
class Foo {

static embedded = ['name']
String string
int integer
float floater
Date date
Name name
Bar bar
}
// In ./grails-app/domain/Bar.groovy
class Bar {
static belongsTo = [foo:Foo]
String value

}
// In ./src/groovy/Name.groovy

Grails Persistence with GORM and GSQL firstPress- 129

http:///

class Name {
String first, last

boolean equals (Name them) {

return this.first == them?.first &&
this.last == them?.last
}
}
void testMapConstructor () {

def map = [
string: 'foo',
integer:'3"',
floater:'3.14159",
date:new Date() .toString(),
name: [first: 'Robert’',
last: 'Fischer'],
bar: [value: 'bar']
1
def foo = new Foo (map)
assertEquals map.string, foo.string
assertEquals map.integer,
foo.integer?.toString()
assertEquals map. floater,
foo.floater?.toString()
assertNotNull foo.bar
assertNull foo.bar.value
assertNull foo.name
assertNull foo.date
}
void testPropertiesSetting() {
def map = [

130 firstPress Grails Persistence with GORM and GSQL

http:///

string: 'foo’,
integer:'3"',

floater:'3.14159"'",
date:new Date() .toString(),

name: [first: 'Robert',

last: 'Fischer'],

bar: [value: 'bar']

]

def foo = new Foo()

foo.properties =

assertEquals map.
assertEquals map.

foo.
assertEquals map.

foo

map
string, foo.string
integer,
integer?.toString()
floater,

.floater?.toString()

assertNotNull foo.bar

assertNull foo.bar.value

assertNull foo.name

assertNull foo.date

Tip There is a very handy method in the Apache Commons Lang
project, specifically in the org.apache.commons.lang.time.DateUtils
class: parseDate(String, String[]). This class will parse a given date
string against an entire series of possible candidate formats.

However, there 1s a significant security concern when using a controller’s
parameters as input for the map constructor. Because parameters are
provided by the user and easily set for any arbitrary value, it is very
possible for the user to set a property that should only be set by the system.

Grails Persistence with GORM and GSQL firstPress- 131

http:///

This 1s handled by the bindpata method of the controller, which can be
called to exclude or include certain parameters. For more information on
this method, see the Grails documentation at http://grails.org/
doc/1.1.x/ (Section 6.1.6).

Applications often use bindData in multiple different locations—the data
to construct new instances may come in from many different places.
Duplicating what properties to assign in many different places can be
problematic, so it’s often best to define the list of ineligible properties as a
static property right on the class. Using this approach, all the calls to
bindData will look like this: bindData (target, params, excludes:
Target.excludeProperties). Wrapping this logic in a helper method
can make things even cleaner.

Working with Error Messages

Because Grails builds in internationalization, presenting errors in Grails 1s
a bit trickier than in other frameworks—the translation from programmatic
error state to human-readable message 1s somewhat involved. In other
frameworks the ORM system 1s frequently responsible for presenting
errors. This becomes a major difficulty when internationalizing the
application. Similar to how views decouple presentation from the
controllers, the 118n capabilities of GORM decouple presentation away
from the GORM framework itself.

In a view, the key tags for message presentation are g: hasErrors,
g:eachError, and g:message. These three respectively provide the ability
to check for errors, iterate over the errors, and present the messages for the
errors. There 1s another even more magical tag called g: renderErrors,
which renders the errors directly as a list. However, the lack of
configurability of the resulting HTML can be an 1ssue with this tag.

132 firstPress Grails Persistence with GORM and GSQL

http:///

Code Listing 4-2. Demonstrating Error Rendering in Views
// In ./grails-app/domain/Foo.groovy
class Foo { String string }
// In ./grails-app/controllers/EgController.groovy
class EgController {
def errorMessage = {
def foo = new Foo()
foo.validate()
[foo:foo0]

}
// In ./grails-app/views/eg/errorMessage.gsp
<html><head></head><body>
<g:hasErrors bean="${foo}">

<g:eachError bean="${foo}">
<g:message error="${it}"/></1i>
</g:eachError>

</g:hasErrors>
<!-- More magical approach -->
<g:hasErrors bean="${foo}">
<g:renderErrors bean="${foo}" />
</g:hasErrors>
</body></html>

Outside of the context of a view, the messageSource bean from the Spring
application context can be used to get error messages. The messageSource
bean 1s an instance of the Spring framework’s

org.springframework.context.MessageSourceinﬁﬂﬁme.Theerrors
property attached to each GORM class can be fed into the messageSource

Grails Persistence with GORM and GSQL firstPress- 133

http:///

bean along with a java.util.Locale to get human-readable error
messages.

Code Listing 4-3. Demonstrating Messages from messageSource
def foo = new Foo()
foo.validate(
foo.errors*.allErrors.flatten() .each {
assertNotNull (
messageSource.getMessage (it, Locale.default)

Tip Error messages generated by the default i18n settings are fairly
technical but can be modified by altering the appropriate code in
./grails-app/il8n/messages*. The particular code to be modified is
specified in the constraint documentation (and is often easy to guess), and
the particular file to be modified is either messages.properties (when no
locale is set) or messages, whose name contains the language code.

Lazy Initialization and the Grails Session

It seems to be a deep temptation for web application developers to throw
objects—and sometimes even entire data structures—into the user’s
session. This should be discouraged for many reasons, including
performance, concurrency, and audit concerns. When GORM objects are
attached to users' sessions, there 1s the additional concern of the Hibernate
session underlying it.

When fetched from the database, GORM objects are attached to a
Hibernate session, which provides the functionality to actually
communicate with the database. When the GORM object 1s attached to a
user session and that session i1s marshaled after the request, the Hibernate

134 firstPress Grails Persistence with GORM and GSQL

http:///

session 1s detached from the GORM object. This means that the GORM
object 1s no longer able to communicate with the database, which means
that calls to save will fail, along with lazily-initialized associations, lazily-
initialized properties, and a significant additional amount of functionality.
In short, these GORM objects require a Hibernate session to be functional,
and drawing the object from the user session results in the object not
having a Hibernate session.

The simplest solution 1s to use the Hibernate sessionFactory (provided
as a Spring bean named sessionFactory) to reattach GORM objects from
the user session to the Hibernate session. This i1s done by way of the merge
method on Hibernate’s session class. A potential source of bugs when
doing this 1s to assume that the merge modifies the state of the merged
object. While this may be true, caching may result in a different instance
being returned. Therefore it 1s very important to use the result of the merge
call as the instance moving forward.

Code Listing 4-4. Demonstrating Reattaching an Object
def hibSession = sessionFactory.currentSession
def foo = new Foo(string:'string')
assertNotNull foo.save()
assertTrue hibSession.contains (foo)
hibSession.evict (foo)
assertFalse hibSession.contains (foo)
foo = hibSession.merge(foo) // MUST do assign here
assertTrue hibSession.contains (fo0)

A more systematic approach is to create a filter that scans the session for
domain classes in afterview and replaces them with an object that holds
an ID and the class to create. A dynamically-generated HQL query can
then be used to reconstitute the object in before. When doing this,

Grails Persistence with GORM and GSQL firstPress

http:///

unpersisted changes are lost,” but substantially less content must be stored
in the user's session and the object will be properly attached to the
Hibernate session.

Lazy Initialization and Open Session in View

The Scenario: Accessing GORM from the View

The theory behind MV C design dictates that model objects should be
loaded and managed by the controller, and the view should simply
consume simple, raw pieces of data for presentation.

The reality, of course, 1s a bit more complicated. Often views—especially
layouts and taglibs—will end up executing their own queries. Some views
do not even have controllers backing them, yet need to draw information
from the database.

When an 1nstance 1s drawn from the database 1n a view, the Hibernate
session 1s immediately closed. This 1s done to prevent accidental data
updates from the view, since (according to theory) the view should not be
talking to the model anyway. The downside of the Hibernate session being
closed 1s that lazily-retrieved collections will throw a org.hibernate.
LazyInitializationException, effectively forcing the query to
aggressively fetch all the collections (and subcollections, and sub-
subcollections) that may be needed downstream. Aside from being grossly
mefficient, this 1s also not maintainable, because it basically requires
exposing a deep view of internal structures at the point of the query. The
situation only gets worse when multiple queries are involved.

% Of course, the filter’s af ter closure could call Save to address this issue.

136 firstPress Grails Persistence with GORM and GSQL

http:///

The Solution: Open Session in View Filter

Grails provides an opt-in web application filter called
GrailsOpenSessionInViewFilter. This filter extends Spring’s
OpenSessionInViewFilter and leaves the session open for the view.
Because the flush mode is set to FlushMode . AUTO, there 1s the potential for
the view to write to the database.

To implement this filter, execute grails install-templates to take
command of the web.xm1 directly. Edit the web.xm1 file in
./src/templates/war/web.xml and add the code shown in Code
Listing 4-5 near the other filters and filter mappings.

Code Listing 4-5. Installing the Open Session in View Filter
<!-- OSIV -->
<filter><!-- Declares the filter -->
<filter-name>openSessionInViewFilter</filter-name>
<filter-class>

org.codehaus.groovy.grails.orm.hibernate. support.GrailsO
penSessionInViewFilter

</filter-class>

</filter>

<filter-mapping><!-- Installs the filter on all URLs -->
<filter-name>openSessionInViewFilter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

<!-- /OSIV -->

Customizing and Tuning Grails Data Source Defaults

While Grails provides a solid default configuration for the application data
source (including pooling), in high-load circumstances with intense
database activity some additional tuning may be necessary.

Grails Persistence with GORM and GSQL firstPress- 137

http:///

Simple tuning of the Grails data source can be done by modifying values at
runtime in BootStrap.conf. The dataSource Spring bean is an instance
of org.apache.commons.dbcp.BasicDataSource and prOVideS a wide
range of configuration options.

More extensive configuration can be done by overriding the dataSource
Spring bean completely. To do this, use the Spring Bean Builder DSL in
the . /grails-app/conf/spring/resources.groovy file. The bean
needs to implement javax.sql.DataSource, but is otherwise fair game
for configuration or modification.

Because the Hibernate properties are set only via . /grails-app/
conf/DataSource.groovy, that file i1s already kept in play. To prevent
reduplication of effort, it is therefore best to use the data source
information provided in the configuration. To accomplish this, import the
Grails configurationHolder and use the config.dataSource values
username, password, driverClassName, and url.

Code Listing 4-6. Example Override of the dataSource Bean
// In ./grails-app/conf/spring/resources.groovy
import com.mchange.v2.c3p0.ComboPooledDataSource

import
org.codehaus.groovy.grails.commons.ConfigurationHolder
as CH

beans = {

dataSource (ComboPooledDataSource) { bean ->
bean.destroyMethod = 'close'
user = CH.config.dataSource.username
password = CH.config.dataSource.password
driverClass = CH.config.dataSource.driverClassName
jdbcUrl = CH.config.dataSource.url
acquireIncrement = 5
acquireRetryDelay = 10

38 firstPress Grails Persistence with GORM and GSQL

http:///

autoCommitOnClose = true
automaticTestTable = 'c3p0_test'

Grails Persistence with GORM and GSQL firstPress- 139

http:///

Chapter 5: Filling in the Gaps with Groovy
SQL and Spring’s JDBC Support

Groovy SQL in Grails

The Role of Groovy SQL in Grails

Although the primary way of interacting with the database in Grails 1s
GORM, and although HQL provides a mostly clean SQL replacement,
more direct SQL work may occasionally be necessary. The most usual case
for this 1s when an alternative data source, legacy table, or database-
specific call 1s needed for only a couple situations: more systematic
solutions would be overkill in that case. Another possible use 1s for
optimizing calls: if a high-performance database trick (such as using a
materialized view) 1s accessible but not being used by GORM or HQL, a
domain class could provide a special-case query method to retrieve the
appropriate IDs from the database and then fall back to getal1 to retrieve
the actual domain objects. These kinds of surgical persistence 1ssues are
where Groovy SQL can save the day in Grails.

Groovy SQL Basics

Groovy SQL 1s based directly on JDBC. It provides a collection of objects
that wrap common JDBC actions and include simple hooks to existing
calls. All of these capabilities are contained within the groovy.sql
package, with the key class being groovy . sql.sqgl. The methods of this
class are simple: they take SQL as a String (or GString) and an optional list
of positional parameter values, and either return the response or process the
response with a provided closure. In any case, sql takes care of managing
all the JDBC objects. The particular method that is called specifies the
nuances of behavior.

Grails Persistence with GORM and GSQL firstPress- 141

http:///

Table 5-1. Groovy SQL Methods

METHOD NAME

DESCRIPTION

VARIATIONS

call Used to execute stored String; String/Closure;
procedures String/List/Closure
eachRow Used to process results row by String/Closure;
row String/List/Closure;
String/Closure
(MetaData)/Closure
execute Simply executes SQL String; String/List
executelnsert Executes insert and returns auto- | String; String/List
generated columns (ids)
executeUpdate | Executes update and returns a String; String/List
count of affected rows
firstRow Executes a query and returns String; String/List
only the first row
query Executes a query and hands the | String/Closure;
ResultSet to closure to process String/List/Closure
rows Executes a query and returns the | String; String/Closure

rows of the result set as a List

(MetaData); String/List

142 firstPress

Grails Persistence with GORM and GSQL

http:///

Additionally, the following methods provide configuration of the JDBC
objects used by the sql object:

setResultSetConcurrency (int) sets the result set to read only
(ResultSet.CONCUR_READ_ONLY) or updatable (ResultSet.
CONCUR_UPDATE).

setResultSetHoldability (int) indicates whether to leave cursors
open at commit (ResultSet .HOLD_CURSORS_OVER_COMMIT) or close
at commit (ResultSet .CLOSE_CURSORS_AT_COMMIT).

setResultSetType (int) signifies the scrolling sensitivity of the
result set: forward only (ResultSet.TYPE_FORWARD_ONLY), scrollable
but does not reflect changes made by others (ResultSet.TYPE_
SCROLL_INSENSITIVE), or scrollable and reflecting changes made by
others (ResultSet.TYPE_SCROLL_SENSITIVE).

withStatement (Closure) performs arbitrary configuration on the
Statement objects used by this Sql instance. Each time a new
Statement is created it is fed into the closure so the user might be
corrected.

Injecting Groovy Sql Objects via Spring

In Grails, the data source 1s managed as a Spring bean named dataSource.
This means that Spring’s dependency injection 1s going to be the easiest
way to configure a stand-alone sql object that uses that dataSource. Two
approaches can be used get such an object: the datasource bean can be
retrieved from Spring and hand-inserted into the sq1 object, or the sq1
object can be configured via Spring and accessed through its dependency
mjection.

Grails Persistence with GORM and GSQL firstPress- 143

http:///

Manually Instantiating the Sql Object

This approach 1s far and away the simplest. To manually instantiate the sq1
object, simply get the datasource bean though its dependency injection
and call the constructor.

Code Listing 5-1. Demonstrating Manual Instantiation of Sql
// In ./test/integration/GsglTests.groovy
import groovy.sqgl.Sql
class GsglTests extends GroovyTestCase {
def dataSource // Dependency-injected dataSource
void testInstantiateSglObject () {
def sgl = new Sgl (dataSource)

}
Getting a Sql Object via Dependency Injection

To have Spring instantiate and inject the sql object, define the sq1 bean in
./grails-app/conf/spring/resources.groovy via the Spring Bean
Builder syntax. There are a few catches which are important to note at this
point. The first 1s that the sq1 bean is not designed as a singleton, so a new
mnstance 1s required each time the sql1 bean 1s injected. To accomplish this
set the scope to 'prototype'. The second is that the dataSource bean 1s
not local to the resources.groovy file and needs to be passed as a
constructor call, so the syntax for injecting it is a bit odd (see Code Listing
5-2).

144 firstPress Grails Persistence with GORM and GSQL

http:///

Code Listing 5-2. Defining and Demonstrating a Sql Spring bean

// In ./grails-app/conf/spring/resources.groovy

beans = {
sgl (groovy.sqgl.Sql,ref ('dataSource')) { bean ->
bean.scope = 'prototype'

}
// In ./test/integration/GsglTests.groovy
import groovy.sqgl.Sqgl
class GsglTests extends GroovyTestCase {
def sgl // Dependency-injected groovy.sql.Sgl
void testSglInjected() {
assertNotNull ("Is null", sqgl)
assertEquals("Is wrong class", Sqgl, sgl.class)

}

Using Groovy Sql Objects with GORM Transactions

When intermingling GORM and Groovy SQL, always make sure the sq1
object 1s placed within the same transaction; otherwise, a rollback on
GORM may not impact the Groovy SQL. To link the two together, the sq1
construct the object based on the same connection as the GORM object
itself. Take care when working with this connection, because GORM’s
underlying Spring/Hibernate structures are doing their own tracking of the
connection state. Therefore, things like transaction management should not
be handled directly through the sq1 object.

To get access to the GORM connection, inject the sessionFactory bean
and then use the connection provided by sessionFactory.
currentSession.connection () to construct the sq1 object. The SQL

Grails Persistence with GORM and GSQL firstPress- 145

http:///

executed against that object will be in the same JDBC connection context
as GORM.

Code Listing 5-3. Constructing a GORM-Connected Sql Object

// In ./test/integration/GsglTests.groovy
import groovy.sqgl.Sql
class GsglTests extends GroovyTestCase {

def sessionFactory

void testGormConnectedSession() {

def sgl = new Sqgl (
sessionFactory.currentSession.connection ()

}
Spring’s JDBC Support in Grails

The Role of Spring JDBC Support in Grails

Although Spring’s JDBC Support 1s no doubt the best pure Java library for
mteracting with JDBC, its position in Grails 1s mostly architectural. In
Grails, GORM, services and Groovy SQL accomplish those tasks that
Spring JDBC Support 1s normally used for. In many cases the dynamic
nature of Groovy and its closure supports make the capabilities of Spring
JDBC redundant. However, because Grails 1s so tightly coupled with Java
and leverages so many Java libraries, Spring JDBC Support is sometimes
still needed as a way to interact with those libraries.

Using Groovy to Concisely Implement Spring JDBC Support

The basis of Spring JDBC Support is a series of monad-like interfaces. The
mnterfaces, such as PreparedstatementCreator and
ResultSetExtractor, implement a single method and are used similarly

146 firstPress Grails Persistence with GORM and GSQL

http:///

to Groovy’s closures. This structure 1s easy to implement inline by using
the magic as operator: it can convert a closure directly into an
implementation of a single-method interface. This makes using Spring
JDBC Support much easier and replaces the anonymous inner class idiom
n Java.

Code Listing 5-4. Using Groovy'’s as operator to Define JDBC Support
Implementations

// In ./test/integration/SpringJddbcTests.groovy
import org.springframework.jdbc.core.*
import java.sqgl.*
class SpringJddbcTests extends GroovyTestCase ({
def dataSource
void testCoercionToJddbcTypes () {
def jdbc = new JdbcTemplate(dataSource)
def prepStater = { Connection conn ->
conn.prepareStatement ("SELECT 1 FROM foo")
} as PreparedStatementCreator
def rsHandler = { ResultSet rs ->
return "foobar"
} as ResultSetExtractor
assertEquals ("foobar",
jdbc.query (prepStater, rsHandler)

}

Injecting Spring JDBC Support Beans

Not surprisingly, Spring JDBC Support beans are designed to work very
well with Spring dependency injection. To add Spring JDBC Support beans
to the Spring context, define the beans in . /grails-app/conf/spring/

Grails Persistence with GORM and GSQL firstPress: 147

http:///

resources.groovy. The bean will probably require a Data Source
passed in the constructor, and because the datasource bean is not local to

that file, it will need to be acquired via the Spring DSL ref method.

Code Listing 5-5. Example of Defining a JDBC Support Bean
// In ./grails-app/conf/spring/resources.groovy
import org.springframework. jdbc.core.*

beans = {
jdbcTemplate (JdbcTemplate, ref ('dataSource'))

Grails Persistence with GORM and GSQL

148 firstPress

http:///

	Team rebOOk

