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Preface

This book is meant to support teaching of the DataFlow subject. University courses
fully or partially dedicated to the DataFlow subject are important for the following
reason: More and more Big Data are present in all kinds of research or commercial
challenges. Consequently, the DataFlow paradigm is getting importance, since it has
been proven that it is the most suitable computing paradigm for Big Data. It offers
superior speedups (depending on the application, from about 20 to about 200, even
2000 in some isolated cases) as well as power savings (typically about 20 times); it
brings size reduction, too. A recent study by researchers of the Tsinghua University
in China reveals that for Shallow Water Weather Forecast (a Big Data problem), on
the 1U level, compared to Tianhe-2 (at the time of writing of this book, rated #1
on the Top 500 SuperComputers list, which compares SuperComputers based on
Linpack, a small data benchmark), Maxeler (a DataFlow machine) demonstrates the
speedup of 14. With all the above in mind, the book is divided into four chapters:
The first one is of an introductory nature. The second gives an overview of the
related research. The third represents a case study. The fourth one is oriented to the
ease of use and covers the issues of importance for WebIDE (a web-based integrated
development environment). The work on this book was partially supported by the
MISANU project #44006.

Belgrade, Serbia Veljko Milutinović
Belgrade, Serbia Jakob Salom
Palo Alto, CA, USA Nemanja Trifunovic
Siena, Italy Roberto Giorgi
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Chapter 1
The DataFlow Paradigm

1.1 Introduction

Until a few years ago, one could say that all computers around us belong to the
category of control flow computers. In the case of control flow computers, one writes
a program to control the flow of data through the hardware. No matter how fast
the today’s control flow computers are and no matter how parallel they can be,
the execution process is essentially slow, especially due to the continuous push-
pull of data through the memory hierarchy and the synchronization across multiple
cooperating threads. Also instructions have to be fetched, decoded, and executed.
During the execution phase, the computer has to compute the addresses of data to
be fetched, to fetch the data, to compute and store the result, etc. All these operations
take time and the overall process can be extremely time-consuming.

Since the beginning of the 1970s, researchers had proposed DataFlow computers
[Dennis74], but only recently they emerged on the market as a viable alternative
for general-purpose computing. In the case of a DataFlow computer, one still writes
a program, but not a program to control the flow of data through the hardware;
instead, one writes a program that configures the hardware (in space), so, when data
comes to its input ports, it just gets flown through the configured hardware, and the
result is generated one, two, or even three orders of magnitude faster. How much
faster depends on the characteristics of the application. The DataFlow is not driven
by a program, but by a voltage difference between the input and the output of the
hardware; consequently, the process can be extremely fast but also extremely power
efficient and extremely small in physical size.

Many see the DataFlow approach as the most effective way to achieve the exas-
cale speeds for big data applications [Maxeler2012]. However, few understand that
all the potentials of DataFlow can be fully achieved only if the algorithms related
to exascale applications are properly modified. Therefore, this book concentrates
not only on how to design and program a DataFlow computer, but also on how to
modify the existing algorithms for the best utilization of the DataFlow potentials.

© Springer International Publishing Switzerland 2015
V. Milutinović et al., Guide to DataFlow Supercomputing, Computer
Communications and Networks, DOI 10.1007/978-3-319-16229-4_1

1



2 1 The DataFlow Paradigm

The DataFlow approach represents a new old paradigm in computer design and
programming. It is old, since the first ideas about DataFlow came all the way back
in the 1960s and 1970s [Milutinovic88] by famous researchers like Jack Dennis
(static DataFlow) and Arvind (dynamic DataFlow). It is new, because the enabler
technology for implementation of the DataFlow hardware (FPGA) and software
(OpenSPL) exists only for a relatively short time now. In other words, there was a
relatively wide time gap between initial ideas and effective implementations, which
is a characteristic of many important innovations.

As indicated above, the DataFlow paradigm, compared with the control flow
paradigm, has three important advantages: speed, power, and size.

The speedups can go all the way up to 20, 200, or even 2,000 (application depen-
dent). The power reduction is about 20 times (clock dependent). The size reduction
is also about 20 times (paradigm dependent). These numbers are elaborated further
in this book.

On one hand, comparing different architectures makes sense only for the same
set of applications and the same set of data. On the other hand, comparing different
architectures makes sense only if the design complexity and/or the purchase price is
the same.

As far as the applications and data are concerned, the rest of this book deals only
with big data applications and big data volumes.

As far as the design complexity and purchase price are concerned, one has to keep
in mind the following: (a) If the design complexity is fixed, then one obtains all the
three abovementioned advantages at the same time. (b) If the purchase price is fixed,
one obtains the abovementioned advantages only close to all three at the same time,
due to the fact that control flow computers are currently being produced in much
larger quantities compared to DataFlow computers, thus lowering their production
costs a great deal.

For all the above benefits to be achievable, certain conditions have to hold. Two
are related to loop characteristics, two to application characteristics, and two to
programmer characteristics.

Loop Characteristics

1. In essence, one can say,
DataFlow technology migrates the execution of loops from software to hardware,
which is an obvious method to make the loop execution faster.
Ideally, the loop execution time is squeezed down to almost zero.
In other words, for example, if a program takes 100 units of time to execute
and 95 units of time is spent in loops,
after the program acceleration based on the DataFlow approach,
the program execution time is ideally 5 time units.
Consequently, only the applications that spend minimum 95 % of time in loops
could obtain a speedup of about 20 times.
This is in accordance with the Amdahl’s law.
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2. The above discussion assumes that, after migration into hardware,
the loop execution time approaches zero.
The major question is, how much close to zero?
The answer depends on the level of data reusability inside the migrated loop.
The more reusability, the better the speedup.
In reality, the speedups can be expected only
if the level of reusability is higher than 3 (meaning reusing the same data 3 times).

Application Characteristics

1. The more the streaming in the application,
the easier it is to overlap external communications (inherently slow)
and internal processing (inherently fast).

2. Some applications do not tolerate even the smallest latency
till the first partial result.
Such applications may not be well suited for DataFlow implementation.

Programmer Characteristics

1. The programmer has to be familiar with the DataFlow programming paradigm,
which is not difficult to comprehend,
but takes time to learn it.

2. The programmer must possess an excellent understanding
of the underlying algorithm
and the underlying architecture,
so he knows how to modify the algorithm and how to arrange input data
for the best exploitation of the DataFlow concept.
This can also be achieved if a domain expert is in the team.

Due to the fact that the programming effort is somewhat higher and that the
compilation time is somewhat longer (both will be elaborated later), the DataFlow
technology is best used for the so-called WORM (Write Once, Run Many)
applications. In such applications, the cost of programming is amortized by the
many runs of the compiled code and is not an economic issue anymore.

Modern supercomputers are carefully ranked using the Top500 Supercomputer
List, initiated about 20 years ago by Jack Dongarra and others [Dongarra94]. In
2014, #1 on the list was the Chinese Tianhe 2. Before that are Cray Titan, IBM
Sequoia, Japanese K, etc. There is no single DataFlow machine on that list. The
question is how come is that possible if all the abovementioned DataFlow benefits
really do exist?

The explanation is simple. Had the Top500 List used a big data benchmark rather
than Linpack (which is not a big data benchmark) and had the list been concerned
with all the three issues of importance (speed, power, and size), rather than with the
speed alone (Top500) or speed and power (Green500), a DataFlow computer, like
Maxeler, would be on the top of the list [STFC2014].
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An elegant way to incorporate all the three issues (speed, power, and size) into an
analysis is to compare machines (for big data benchmarks) by measuring how much
speed can be obtained from a 1U box. If that is done, then, as a recent analysis
demonstrates, Maxeler would definitely be on the top of the list [Flynn2013].

Generally, the DataFlow approach can be of the course structure type, as in the
early work of Dennis and Arvind, or of the fine structure type, as in the case of
Maxeler [Maxeler2015]. It looks like the fine structure approach is better suited for
today’s enabler technology: FPGA [Johnston2004].

In addition to Maxeler, some other companies are trying similar approaches,
but Maxeler is by far the most successful on the markets of application giants like
Schlumberger, JP Morgan, or Chicago Mercantile Exchange (CME), so the rest of
this book uses examples exclusively based on the Maxeler approach.

In conclusion, the control flow paradigm implies that the compilation goes till the
machine level code and that the execution process is performed at the machine code
level. In the DataFlow paradigm, the compilation goes to the levels much below the
machine code, i.e., to the levels of gates and wires, so the process is executed at the
GTL (gate transfer level). As indicated before, this brings benefits (speed, power,
and size) but also the challenges: a different programming paradigm and orientation
to WORM applications.

The WORM applications are found in sciences (papers in geophysics report
speedups of about 20–200), in banking (where speedups can go from about 200 to
about 2,000), in image understanding, or in data mining from all kinds of sources,
including also the social and sensor networks.

1.2 The Concept

Essentially, DataFlow computers are accelerators. One continues to run the old
program on the host machine of the control flow type. When the time comes for
a time-consuming loop to be executed (the assumption is that the loop satisfies the
six aforementioned conditions), the execution is passed to the DataFlow accelerator
that is connected to the host machine via a PCI Express bus (or for larger systems,
via InfiniBand).

For the host and accelerator to integrate completely, one also has to download (at
the host) the following additional pieces of system software: (a) the MaxelerOS (see
Fig. 1.1), (b) the Maxeler compiler and the related run-time library (see Fig. 1.1),
and (c) the Maxeler simulator.

Figure 1.1 assumes that two loops have been migrated from the host to the
accelerator. This does not necessarily mean that only two loops existed in the
host application; this means that the number of loops in the host application could
have been higher, but only two loops satisfied the conditions for migration into the
accelerator.
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Fig. 1.1 Generic acceleration architecture (Courtesy of Maxeler Technologies)

For each loop, one has to write two program units: (a) kernel and (b) kernel test.
This means, if n loops are migrated, one has to write 2n new program units.

Also, no matter how many loops are migrated, one has to write another three new
program units from scratch: (a) manager, (b) simulator builder, and (c) hardware
builder. A detailed example is shown in Chap. 3.

Therefore, the total of 2n C 3 new program units have to be written. All these
programs are written in Maxeler Java, which is a superset of Java, with dozens
of new functionalities (built-in classes) added on the top of the classical Java.
Consequently, Maxeler Java is a new DSL (domain-specific language). Recently,
Maxeler Java emerged into a new and a more elaborated language environment
called OpenSPL (Open Spatial Programming Language).

The host can be a simple PC or a sophisticated supercomputer. The accelerator
itself can be a PCI Express board; a 1U box; a workstation with several 1U boxes; a
rack with 10, 20, or 40 1U boxes; or a train of racks.

In general, there is a 1:1 correspondence between the number of loops migrated
into the accelerator and the number of kernels that one has to write from scratch.
However, sometimes we have more kernels than the migrated loops, or the opposite.

We have more kernels if one loop is described with more kernels (i.e., if one uses
the “divide and conquer” strategy). We have fewer kernels than the migrated loops
if one kernel can be used for the execution of two different loops in two different
parts of the host application (i.e., if one uses the “time sharing” strategy).

http://dx.doi.org/10.1007/978-3-319-16229-4_3
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1.3 The Programming Paradigm

Figure 1.2 represents the first introduction to the OpenSPL language Maxeler Java
(MaxJ), using an example related to the computation of the moving average, which
is an essential element of all algorithms based on convolution.

The MaxJ programming language includes two types of variables: (a) the
standard Java variables that will be referred to here as software Java variables
and (b) the DataFlow Java variables that will here be referred to as hardware Java
variables. The software Java variables are there to instruct the compiler what to
do, so they disappear after the compilation process is completed. The hardware Java
variables are there to actually flow through the hardware, so they produce the results
after the DataFlow process is completed.

As indicated in Fig. 1.2, the MaxJ programming language follows the syntax
of the Java language, except for the add-ons. For example, a hardware variable is
written under the quotes (e.g., “x”) while it is in the environment outside the Maxeler
system. Once it enters the Maxeler system, the quotes are eliminated (e.g., x, without
quotes). The above described is well seen in Fig. 1.2, together with the convention
used to define the appropriate hardware variables (HWVar or DFEVar), as well as to
define the floating-point precision, exponent (8 bits) and mantissa (including sign,
24 bits). All other hardware variable types are defined similarly (elaborated later).

The Maxeler compiler produces a graph, as given in the right-hand part of
Fig. 1.2. The graph can be presented in a graphical form (as indicated in Fig. 1.2), or
it can be described in VHDL (which is of importance for further processing). Further
processing, from the graph level (left by the Maxeler compiler) till the binary level
(needed for configuration of the FPGA circuitry), is done using the synthesis tool
of the manufacturer of the FPGA circuitry used to implement the DataFlow system

Fig. 1.2 MaxJ (Maxeler Java), the code and the related graph (Courtesy of Maxeler Technologies)
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Fig. 1.3 Hardware/software relationship in a DataFlow system, using Maxeler as an example
(Courtesy of Maxeler Technologies)

(typically Altera or Xilinx), which is elaborated later on. Figure 1.3 describes the
relationship between hardware and software components in a DataFlow system,
again using Maxeler as an example.

The “for” loop from the main program (originally written to run on the host)
in Fig. 1.3 is assumed to be the loop to be migrated from the host to the
accelerator. For that to happen, the program segment implementing the loop has
to be deleted (the red line in Fig. 1.3), the input data for the loop have to be
moved from the host memory area A to the accelerator internal memory, and
after the results related to this loop are generated, they (the results) have to be
moved from the accelerator internal memory to a memory area B on the accelerator
board/box for further processing (and eventually, at the end of the entire loop-
related process, sent back to the host). The data movement is realized by the
“stream_data(device, A);” construct, which implies that the “device” has to be
defined first (“device D max_open_device(maxfile, “/dev/max0”);”). As indicated
in Fig. 1.3, all these changes happen in the host code.

It is the manager code that is responsible for accepting data on the accelerator
side, which (the acceptance of data) is implemented via “link(“A”, PCIe)”. It is
also the manager code that is responsible for moving the partial results (“link(“B”,
DRAM(LINEAR)”) to the memory area B in the accelerator (and eventually, for
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moving the results of the looping-related process back to the host). In the cases with
more kernels, the manager code is also responsible for moving data in between the
kernels. The manager code is also enlisted in Fig. 1.3, as well as the kernel code,
which is here repeated from Fig. 1.2.

Before the processing starts, data has to be moved from the external memory area
A through a relatively slow PCI Express bus, which means that, in the DataFlow
paradigm also, the major bottleneck is related to moving data in and out, to and
from the system. Moving data to the temporary memory area B inside the accelerator
system is not a problem, since it can happen at speeds that are an order of magnitude
(or more) faster than PCIe transfers.

Overall, the manager code is responsible for three activities: (a) moving data
from the host to the accelerator, (b) moving results from the accelerator to the host,
and (c) moving data in between the kernels.

Consequently, in theory, compilation of the manager program could result in
three different pieces of the “object” code: (a) one that is executed on the host
CPU, to serve as the host-side “pillar” of the bridge connecting the host and the
accelerator, (b) one that could be executed on a small (for programmers invisible)
CPU on the accelerator side, and (c) one that is incorporated into the .max file that
is used for configuring of the FPGA infrastructure of the accelerator.

As far as the kernels are concerned, they all are compiled into one .max file for
configuring of the underlying FPGA infrastructure. The next section gives more
details about the compilation process.

1.4 The Compilation

Figure 1.4 illustrates the compilation process and helps understand the values of the
time constants related to the compilation process.

The compilation process is entered with (a) one or more kernel programs (.java
files), (b) one manager program (also a .java file), and (c) the host program (e.g.,
a .c file), as indicated in Fig. 1.4. With the help of MaxelerOS (a run-time system
provided with the Maxeler board), for building hardware, the compiled kernel and
manager code are combined, and the execution graph is formed. In Fig. 1.4, the
execution graph is depicted with the horizontal line at the top of the “Hardware
Build” block. The Maxeler simulator works on the execution graph level, so that
level will be denoted here as the simulator level.

Before generating the FPGA-related files (.max), a user typically tests the
correctness of the code by using the simulator level framework. To move from the
simulator level to the .max level, one has to use the tools from the manufacturer
of the underlying FPGA technology (to generate the production code for FPGAs).
Once the .max file is formed, it is linked with the compiled .c code and the
appropriate routines from the MaxCompilerRT (RT stands for run time). The final
product of the compilation and linking is the executable for the control flow host
(“Application” in Fig. 1.4).
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Fig. 1.4 Details of the compilation process (Courtesy of Maxeler Technologies)

When the execution starts on the host machine, a communication is established
with the accelerator, and the accelerator is “asked” if it is configured with the related
.max file. If it is not, then the accelerator is configured, by moving the .max file
from the host to the accelerator. After the configuration is completed, the big data
stream has to be activated, and the execution starts. On the next rerun, no initial
configuring is needed, unless another user was using the hardware in the meantime.
Of course, if another user was using just a part of the hardware in the meantime and
did not damage the configuration used by the initially mentioned program, then no
reconfiguration is needed.

What are the time constants involved in the process?

Compilation from the level of kernels to the .max level could take several hours.
Compilation from the level of kernels to the graph level could take several minutes.
Loading of the .max file and configuring of the FPGA hardware could take several
seconds. Starting a big data stream may take a few milliseconds. Starting the execu-
tion of the compiled code may take several microseconds. Of course, the values of
all these constants are likely to change over time, as the technology changes.

1.5 Comparisons

A crucial question is how the two concepts compare: control flow and DataFlow.
Both concepts subdivide into two major categories.

The control flow concept subdivides into multi-core and many core. The
DataFlow concept subdivides into coarse grain and fine grain.
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In the case of control flow, the major issue is that the application software
contains enough parallelism, so that all cores can be kept busy, and partial results
appear periodically in small (multi cores) or big (many cores) chunks. In the case of
DataFlow, the major issue is the delay till the first partial result on the module level
(coarse grain) or the loop iteration level (fine grain) is obtained.

As far as the clock speed is concerned, it is typical that the control flow clock is
faster, and the DataFlow clock is slower, which determines the power requirements
of the two approaches, as it will be discussed later.

Occasionally the researchers joke that using an N-core system is like plowing
with N horses. The major question for multi-core systems (e.g., Intel) is: Which
way will the horses go? For them to go into the desired direction, a plow driver is
needed. We articulate our wishes in the form of a program that we load into the
brain of the driver. In order to understand our wishes, the brain of the driver has to
be equipped with von Neumann constructs, and in order to understand them fast, the
brain of the driver has to be equipped with constructs like caches, predictors, etc.

In the same anecdotic style, using a many-core system (e.g., NVIDIA) is like
plowing with N thousand chicken. In that case (using the CUDA programming
model), more drivers are needed in the system, and each brain of each chicken is also
equipped with von Neumann constructs. In the more recent rCUDA programming
model (remote CUDA), in addition to more drivers, one dispatcher is needed, too.

The question now is what one plows with in the case that a DataFlow system is
used? The answer is: with N million ants. Each ant has a backpack for a portion
of big data. The idea is that, while traversing the plow field, the ants generate the
end result. For this to happen, one first has to configure the field (to write kernel
programs) and to load the backpacks of the ants (to move data into the accelerator).
What motivates the ants to move into the right direction, in conditions when no
control flow program exists? The data is moved by the voltage difference between
the input and the output of each gate in the FPGA structure.

Why is the DataFlow paradigm so fast? Because it compiles down to levels much
below the machine code level; it compiles down to RTL (register transfer level),
GTL (gate transfer level), and TTL (transistor transfer level), as indicated in Fig. 1.5;

Fig. 1.5 The DataFlow
paradigm compiles to lower
hardware levels

www.allitebooks.com

http://www.allitebooks.org
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Fig. 1.6 The DataFlow
paradigm uses a slower clock
(200 MHz vs. 4 GHz)

moreover, it avoids the continuous push-pull of data through the memory hierarchy
(typical of the control flow-based processors). Another way to look at the issue is by
stating that the DataFlow paradigm uses bit serial arithmetic and internal arithmetic
pipelines, which enable more computation to be done per time unit.

Why is the DataFlow paradigm so much more power efficient? Because the
power dissipation could be calculated using the following formula:

P D f
�
f; U 2

� D kf U 2

where U is the voltage applied, f is the frequency applied, and k is a constant. No
matter if control flow or DataFlow is being used, U is the same, and the constant k
is the same for the same implementational technology. What differs is the frequency
f. In the case of modern control flow multi-core implementations, the frequencies
go up to about 4 GHz (e.g., Intel). In the case of modern control flow many-
core implementations, frequencies are lower but still relatively high. In the case of
FPGA-based DataFlow implementations, frequencies are as low as about 200 MHz
(e.g., Maxeler Technologies). If we divide 4 GHz by 200 MHz, we get 20, which
is the power savings ratio most frequently mentioned in the literature. Figure 1.6 is
meant to portray these facts mnemonically.

Finally, why is the size of a DataFlow implementation so much smaller? It is
so because the control flow paradigm is based on the von Neumann architecture
in which only about 5 % of the chip area is dedicated to the ALU area (the rest
being used for nonfunctional silicon, such as caches, branch predictor, out-of-order
execution, etc.), while the DataFlow paradigm is best implemented on the top of
FPGA architectures in which more than 95 % of the chip area is dedicated to ALU-
type functionalities. The ratio of “more than 95 %” and “about 5 %” is about 20,
which is the number most frequently quoted in the literature (see Fig. 1.7 for a
mnemonic explanation).

If one likes to preserve the 20:1 ratio in size even after packaging the chips, one
has to place (into the package) very small coolers and very small fans. Consequently,
the DataFlow implementations are noisy. The noise comes for two different reasons:
(a) smaller fans are noisier and (b) since coolers are smaller, the fans must rotate
faster, and fast fan rotation is the second major source of fan noise.
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Fig. 1.7 The DataFlow
paradigm is characterized
with chips of smaller size

The programming effort is not higher. The number of new programs to write is
higher (2n C 3), but they are straightforward to write, and one does not have to worry
about issues like the influence of caches, TLBs, predictors, or memory consistency.
However, it does not mean that one does not have to worry about memory hierarchy.
Actually, the memory hierarchy does exist in DataFlow systems, typically two levels
inside the FPGA chips and another two levels on the accelerator board outside the
FPGA chips. That memory hierarchy is to be worried about at programming time,
when kernels are written (not at run time, like in the case of control flow machines).

The debugging effort might be higher, since more lines of code may mean more
opportunity for a bug to happen. That is why a strong system support had to be
developed in software packages supporting the OpenSPL concept [Maxeler2014].

Finally, the needed compilation efforts deserve special attention. As indicated
before, compilation takes time, and therefore, the preferred applications are the ones
that are compiled once and run relatively large number of times.

1.6 DataFlow Hardware (A Maxeler Example)

Maxeler provides ready-to-use machines that exploit the DataFlow paradigm. The
current Maxeler offer includes three different options: (a) the C option representing
a full-blown computer (C D computer), (b) the X option representing an accel-
erator (X D accelerator), and (c) the N option for low-latency LAN applications
(N D network).

The 1U of the C option includes four DFEs (DataFlow engines), plus a
control flow host. This option provides a full-blown computer, rather than just an
accelerator. The reason for adopting the C option may be in the fact that the user
computer center does not own an InfiniBand bus, which is needed (could be in
addition to the PCIe bus) for bigger Maxeler systems.

The X option includes no control flow host, which leaves space for 8 (not
6) DFEs – all that for approximately the same purchase price, which makes the
accelerator option much more desirable if the user does own the InfiniBand bus.
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Finally, N option minimizes the latency (which is the Achilles’ heel of DataFlow
supercomputing) and can be used in latency-intolerant applications, like trading or
financial analytics, where trading data and data to be analyzed arrive via a network.
It is obvious, in trading applications, even if one uses the same buy-sell algorithm
as the competition, one has an obvious advantage if supported by high speeds that
the DataFlow paradigm offers.

In the latest production of Maxeler, the amount of onboard memory is 768 GB
(and approaching over 1 TB). This means, the technology is best used if the big data
can be partitioned into chunks of 768 GB (or 1 TB in near future).

1.7 Application Types

We can identify at least three major groups of applications for DataFlow super-
computers: (a) coarse grained, stateful, typically used in business; (b) fine grained,
transactional, with a shared database, typically used for data mining; and (c) fine
grained, stateless, transactional, typically used in scientific applications, in physics,
chemistry, etc.

In the first case (coarse grained, stateful), the CPU needs a DFE for minutes or
even hours, and the DFE is typically engaged after an interrupt request. Examples
of this approach can be found with JP Morgan or CME (Chicago Mercantile
Exchange), for jobs related to computation of credit derivatives or for online
trading. In the case of online trading (OLT) and high-frequency trading (HFT), the
computational infrastructure has to be equipped also with a connection to an atomic
clock and an Ethernet connection to trading data.

In the second case (fine grained, transactional), CPU utilizes a DFE for millisec-
onds to seconds; each short computation is typically performed on the data fetched
from a shared memory. Examples of this approach could be found in data mining
from social networks, like Facebook or Twitter.

This case is also typical of applications in which data mining is performed
on the top of data related to credit card transactions, or if Mind Genomics
[Moskowitz2014] analysis is performed on the top of marketing data.

In the third case (fine grained, stateless), CPU also utilizes a DFE for only
milliseconds to seconds, performing many short computations with the contents of a
private database. Examples of this approach could be found with Schlumberger (oil
and gas) for deciding where to drill the ocean floor or with Earth Sciences (Weather
Forecast) for a more accurate weather prediction. In the oil and gas industry, when
using DFEs to decide where to drill for oil and/or gas, seismic vessels are used, as
indicated in Figs. 1.8a and 1.8b.

Seismic vessel periodically emits a water blast into the ocean floor. The blast
partially reflects off the ocean floor and partially penetrates into the floor. Under the
ocean floor, the same happens at each and every seismic layer underneath: a part of
the wave reflects and the rest penetrates. Once the waves reach the gas and/or oil
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Fig. 1.8a Deciding where to drill for oil and/or gas. X axis refers to horizontal distance; Y axis
refers to vertical depth. For more details see Sect. 2.2.6 (Courtesy of Schlumberger)

Fig. 1.8b Deciding where to drill for oil and/or gas. The wave is partially bouncing back and
partially penetrating towards the lower seismic layers (Courtesy of Maxeler Technologies)

layers, the same happens, except that the penetrated waves are not of interest any
further, only the reflected waves. They are collected by a carpet of sensors being
dragged by the seismic vessel. The data collected by the carpet of sensors has to be
processed by a set of partial differential equations. The result of the processing is the
major parameter in the decision-making process at the given geographical location:
to drill or not to drill?

http://dx.doi.org/10.1007/978-3-319-16229-4_2
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The main question is: Where does the processing of partial differential equations
take place? The first guess of a typical reader is that the processing takes place at
the seismic vessel, which is not the case, due to the power restrictions. The vessel
is not able to create all the energy needed for the processing. Consequently, data
is sent to a mainland supercomputer center, not via wireless, since this is big data
and the wireless approach would take too much time, instead by moving the storage
devices (i.e., hard disks) via a helicopter, which takes orders of magnitude less time
to transmit!

A paper by Nemeth et al. [Nemeth2008] proves, for the abovementioned appli-
cation, that an implementation of a DataFlow machine is 30 times faster compared
to an implementation of an Intel machine of approximately the same market value.
At the same time, the DataFlow machine was working with a clock of 150 MHz,
while the Intel machine was working with a clock of 1.5 GHz. The latter means that
the DataFlow machine power consumption was 10 times smaller. Consequently, the
speed/power factor is about 300 times better in favor of the DataFlow machine.

While power at a given large scale may become a scarcely sustainable cost, it has
to be considered a critical factor also for medium-size data centers, where upgrading
the power infrastructure may imply an exponential cost increase due to a complete
reengineering, new contracts with the power provider, and new powerlines.

Since the speed and power could be traded, in theory, one can arrange that the
speed of the DataFlow and the control flow machine be the same, in which case
the power consumption of the DataFlow machine can be 300 times smaller, and the
above-described processing can be done at the seismic vessel.

1.8 Application Examples

In the domain of surface reflection analysis, Maxeler sources demonstrate that a
speedup of 230 times is possible for land cases (a MAX2 card compared with a
CPU) and a speedup of 190 times in the marine case. Figure 1.9 shows that the
final results of two competing programming paradigms produce almost identical
output of a complex processing (in this case CRS – Common Reflection Surface –
processing).

In the domain of seismic trace applications, an example from Italy (ENI-AGIP)
demonstrates the fact that 100 MAX2 cards were showing approximately the
same performance as the system with 21800 CPUs, for the conjugate gradient
application used for seismic tracing. Figure 1.10 shows that the final results of the
two alternative approaches are approximately the same [WANG2010].

In the domain of angle gatherers applications, a speedup of 48 times was obtained
at the [SEG2008]. Figure 1.11 shows the formula used in this application, which
boils down to the computation of the correlation function for a number of different
angles.
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Fig. 1.9 The common
reflection surface (CRS)
analysis – end results based
on the two competing
programming paradigms are
almost identical, although the
DataFlow-based results were
generated either 230 or 190
times faster. For more details,
see Sect. 2.2.6.1 (Courtesy of
Maxeler Technologies)

Marine case (6 params), speedup of 190x

Land case (8 params), speedup of 230x
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Fig. 1.10 The conjugate gradient application; data use cases with 1 t0 (essential parameter for
CGA applications), 4 t0, 16 t0, and 64 t0 (Courtesy of Maxeler Technologies)

http://dx.doi.org/10.1007/978-3-319-16229-4_2
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Fig. 1.11 Data use cases for various angle gathers in 3D seismic imaging (Courtesy of Maxeler
Technologies)

1.9 Acceleration Is Hard

In order to generate the maximal possible acceleration for a given algorithm, one
has typically to work hard in the following four domains:

(a) Appropriate algorithmic modifications
(b) Exploiting pipelining concepts
(c) Appropriate input data choreography (i.e., reorganization of the input data)
(d) Exploiting FPGA possibility for arbitrary floating-point precision

As far as algorithmic modifications are concerned, one has to adapt the order
of operations to the internal architecture of the DataFlow supercomputer, trying to
avoid any negative impact on the integrity of the algorithm. For example, instead of
first summing up elements of a vector and then multiplying the sum with a constant,
one can first multiply the vector elements with the constant and then sum up the
partial products, to produce the same result. Figure 1.12 shows how Sasa Stojanovic
[Stojanovic2015] adapted the Gross-Pitaevskii algorithm for implementation on a
DataFlow machine.

As far as pipeline utilization is concerned, one has to adapt the algorithmic steps
to the structure of the internal pipeline of the utilized DataFlow processor. For
example, instead of a step-by-step progress through the pipeline, one can first fill
out the entire pipeline and then proceed step by step. Figure 1.13 shows how in the
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Fig. 1.12 Modifications of the Gross-Pitaevskii algorithm for DataFlow implementation
[Stojanovic2013]
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Pipeline Utilization for Higher Efficiency

Fig. 1.13 Alternative utilizations of the internal pipeline in a dataflow machine (bad, left; good,
right). Bad, because the pipeline is underutilized and delivers data every eighth cycle; Good,
because the pipeline delivers data every cycle [Stojanovic2013]
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Fig. 1.14 One input data choreography tuned to a DataFlow implementation based on Xilinx
Virtex-6 [Stojanovic2013]

same example the Gross-Pitaevskii algorithm was changed for better utilization of
an internal pipeline of a DataFlow representation of the algorithm. Bad means filling
the pipeline one by one and good means filling the pipeline all at once.

As far as input data choreography is concerned, one has to adapt the input
data chunks to the size of the internal structure, on each and every architectural
level. For example, if the internal DataFlow architecture is based on Virtex-6 Xilinx
components, then it is best to enter the data six by six (the best suited combination
for Virtex-6 Xilinx architecture). If the size of the internal memory is 768 GB (8
times 96 GB), then the problem has to be decomposed into data chunks smaller
than 768 GB. Figure 1.14 shows how in the mentioned example the input data
was organized for the implementation on a DataFlow machine based on Virtex-6
[Stojanovic2015]. The calclux, calcluy, and calcluz are procedures related to the
three different dimensions of the Gross-Pitaevskii algorithm.

As far as the optimal selection of the floating-point or fixed-point precision level
is concerned, in control flow machines, the word size is fixed to 32 or 64 or a
multiple there-off bits; in DataFlow machines, one can organize own fixed-point
and floating-point structures, with a minimal number of bits needed for the mantissa
and the exponent in the given application.

Once the precision level is decreased, the saved hardware can be reinvested into
a higher speedup. In the case of Maxeler, a special 24-bit format is introduced,
compatible with the structure of the FPGA chips used for hardware implementation,
which is a feature that provides ground for enormous hardware savings, as indicated
in Fig. 1.15. The Add and Multiply lines are related to add and multiply on the
FPGA level.
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Fig. 1.15 Savings when fixed-point arithmetic is used (Courtesy of Maxeler Technologies)

1.10 Open Research Problems

The following research problems are currently seen as the major ones on the way
towards a wider adopting of DataFlow computers: (a) revisiting the supercomputer
ranking systems, (b) revisiting the major supercomputing algorithms, (c) creat-
ing new architectures for better match between the FPGA architectures and the
optimizing compilers for DataFlow processing, (d) improving reliability and fault
tolerance of the infrastructure level, (e) solving the memory bandwidth problems,
and (f) making a more efficient system software and tools that enable DataFlow
programmers to be more effective.

As far as the ranking of supercomputers is concerned, the major problem today
is the fact that the benchmarks used are not oriented to big data. For example, the
Top500 List uses the benchmark called Linpack, which is a toy benchmark, rather
than a big data benchmark. Also, the top supercomputer lists are typically concerned
with speed alone or the ratio of speed and power, and not with how much speed
one can obtain from a 1U box, which is a performance measure that takes into
consideration all the major issues: speed, power, and size.

Consequently, on one hand, DataFlow supercomputers are never on the top of
official lists, and on the other hand, supercomputer centers claim that, for their
applications, a DataFlow supercomputer outperforms the machines on the top of
the official lists [STFC2014] and that fact gets recognized ways away from research
communities, as indicated in Figs. 1.16 and 1.17.

As far as the revisiting of algorithms is concerned, all algorithms of interest have
to be revisited for the optimal implementation in a DataFlow environment. This

www.allitebooks.com
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Fig. 1.16 Angela Merkel and David Cameron with the CEO of a DataFlow company

type of activity is difficult to optimize at the compiler level. Therefore, it has to be
optimized by talented DataFlow programmers and made available to the community.

One of the major problems of the DataFlow programming is also on the
psychological side: often a novice programmer may not reach the speedup potentials
of a given DataFlow machine. The problem arises when such a novice goes around
telling that the DataFlow approach is not a good one, instead of admitting that being
a novice he/she still has not acquired the knowledge to appreciate that approach and
to get sizable results out of it.

Direct migration of algorithms from control flow to DataFlow would typically
result in a speedup which is not a substantial one. A better speedup is obtained after
appropriate algorithmic changes, an even better one after appropriate utilization of
internal pipelines, and the best possible speedup is obtained after appropriate input
data re-choreography. Additionally, if the final application is of the floating-point or
fixed-point type that can tolerate a lower precision, then obtained speedups can be
enormous.

Consequently, one possible research avenue is to work on the development of
new algorithms or modifications of the existing ones, for the best utilization of the
DataFlow concept.

Another possible research avenue is to rank the algorithms separately for the
control flow and the DataFlow environments. It may happen, if a given application
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World's Most Efficient DataFlow Supercomputer at STFC
Daresbury Laboratory to Drive UK Science and Innovation

The Science and Technology Facilities Council (STFC) and Maxeler are collaborating in a project
funded by the UK Department of Business Innovation and Skills to install the next generation of
supercomputing technology in a new facility at the DaresburyLaboratory focusing on energy
efficient computing research. The supercomputer will offer orders of magnitude improvement in
performance and efficiency. The new MPC-X supercomputer will be available in Summer 2014
and will allow UK industry and academia to develop products and services based on MPC data
analytics engines for applications domains such as medical imaging and healthcare data
analytics, manufacturing, industrial microscopy, large scale simulations, security, real-time
operations risk, and media/entertainment.

The dataflow supercomputer will feature Maxeler developed MPC-X nodes capable of an
equivalent 8.52TFLOPs per 1U and 8.97 GFLOPs/Watt, a performance per Watt that tops the
Green��� today. MPC-X nodes build on the previous generation technology from Maxeler
deployed at JP Morgan where real-time risk computationequivalent to ����� x�� cores was
achieved in ��U of dataflow engines. For the full story please visit our website at:

http://www.maxeler.com/stfc-dataflow-
supercomputer/?utm_source=Commercial+List&utm_campaign=862e1b9d0e-
CommercialFebruary2014_Mailer&utm_medium=email&utm_term=0_ece0f8fd2e-862e1b9d0e-
336335821.

79

Fig. 1.17 A report from STFC (Courtesy of Maxeler Technologies)

can be realized with a number of different algorithms, that the algorithm which
is the worst one in the control flow environment is the best one in the DataFlow
environment, and vice versa.

As far as new architectures are concerned for better match between the compiler
and the architecture, one has to have in mind the notions of Feynman [Feynman96]
saying that the major advantage of DataFlow computing is in the fact that com-
munication delays can be made zero or almost zero. This means that the major
task of a DataFlow compiler is to generate a planar graph with zero or almost zero
communication lengths. Assuming that a smart enough compiler is able to generate
such a graph, the question is if the architecture can host such a graph without the
needs to create deviations due to the fact that there is no good match between the
compiler output and the targeted computer architecture. Current FPGA structures
are matrix organized, while the graphs generated by compilers are typically treelike.
Consequently, research is needed to create FPGA structures that would represent a
better match for the compiler output. Figure 1.18 shows a typical FPGA topology
and a typical DataFlow graph topology.

As far as reliability and fault tolerance are concerned, the major problem is how
to create mechanisms that could reconfigure at run time, without recompilation, if
a hardware bug gets generated during the system exploitation time. This issue was
one of the project goals of the FP7 project BALCON [Milutinovic2014].
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Fig. 1.18 Topologies of a typical (a matrix) FPGA chip and a typical dataflow graph (a set of
trees) with about 5.000 computational nodes

As far as the memory bandwidth issues are concerned, current in-system bus
speeds of a DataFlow machine well exceed the speed of 1 TB/s. However, the
speed of external busses is about 100 Gb/s. It is difficult and expensive to reach
over 100 Gb/s. Also, for the internal memory capacity, it is currently difficult and
expensive to reach over 1 TB. Since the DataFlow paradigm is mostly meant for big
data, the above means that big data has to arrive in streams and to be locally stored
in chunks. The bigger the data chinks, the better the performance. Therefore, lots of
research is needed for implementation of this goal.

As far as the system software and intelligent tools are concerned, the major
challenge is to create the compiler that generates planar graphs with zero delays
and also to create a WebIDE environment with examples and case studies. One such
effort is available at http://webide.maxeler.com and will be elaborated later in this
study. Another such effort is making an efficient SLiC (Simple Live CPU) Interface.
See Fig. 1.19 for programming languages available at the SLiC level.

The interest in computing systems based on DataFlow principles is repre-
sented also by relevant investments both in Europe (e.g., the TERAFLUX project
[Giorgi2014]) and in the USA (e.g., the DoE-funded X-Stack project [DOE2014]).
The Maxeler approach is pushing these concepts further.

1.11 Enabler Mechanisms for DataFlow Supercomputing

For the DataFlow technology to become more acceptable, specific actions must be
taken and specific mechanisms have to be established; some of them are in the
techno-economic domain and some are in the techno-industrial domain.

In the techno-economic domain, the main issue is to make the technology
accepted by potential users to which it can be of benefit. On the long run, the best

http://webide.maxeler.com
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Fig. 1.19 Tools currently available from Maxeler (Courtesy of Maxeler Technologies)

way is to go through universities. That is why it is wise to give the system software
and the system simulator to universities free of charge. Also, the education-oriented
DataFlow machines should be provided to these universities free of profit, meaning
that the purchase price should be equal to the price of the components used inside
plus the cost of their assembly. On the short run, the best way goes through private
industry eager to minimize costs and maximize profits. Of course, institutions
financed from state budgets are the slowest in accepting new technologies, no matter
how useful and profitable they can be.

In the techno-industrial domain, the major issues are (a) minimization, so the
DataFlow concept can enter the cell phone market, for example, to accelerate a
number of applications, (b) experimenting with new approaches to FPGA, and (c)
enabling a variety of programming languages and application languages to enter the
DataFlow environment.

As far as minimization is concerned, the major challenge is to port the DataFlow
concept from its current 1U boxes or PCIe boards to chips, which is an important
task in front of the semiconductor industry. A current interesting trend is represented
by chips like the Xilinx Zynq, which integrate on the same chip a dual-core ARM
A9 and programmable logic (FPGA).

Minimization is of importance not only for the commercial markets (like
smartphones) but also for the defense markets (e.g., drone applications).

As far as new approaches to FPGA are concerned, the point is in the fact that
current DataFlow technology works on 200 MHz, while some FPGA vendors have
announced the FPGA chips on 2 GHz. This does not say that by simple FPGA
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substitution one gets a speedup of another order of magnitude – the whole “game” is
much more complex than that. This only says that the advances in FPGA technology
will not bring a slowdown of the DataFlow concept, so the future of the “game” is
optimistic.

As far as enabling new languages and new applications is concerned, support
is needed for absolutely all high-level programming languages (HLLs), meaning
that the programs to be accelerated could be originally written in any programming
language and on the top of any operating system (OS). The same should be the case
for all major application packages and related application languages.

1.12 Getting Started

To make the presentation more concrete, this section is based on the Maxeler
approach to DataFlow. Once the system software and the simulator are downloaded,
a procedure has to be followed as in Fig. 1.20. Of course, if a WebIDE is used, as it
will be indicated later, the steps from Fig. 1.20 become “invisible.”

Getting Started a Practical Work
from the Linux Shell
1.  Open a shell terminal (e.g., $ /usr/bin/xfce4-terminal).

2.  Connect to the Maxeler machine
(e.g., $ ssh root@147.91.12.216).

3.  If more shell screens needed, start screen (e.g., $ screen).

4.  Switch to the directory that contains
the 2n+3 programs you wrote
(e.g., $ cd Desktop/workspace/src/ind/z88/).

5.  Prepare your C code for measuring the execution time
(e.g., clock_gettime(CLOCK_REALTIME, &t2);).

6.  See what you can do (e.g., $ make).

7.  Select one of those that you can do
(e.g., $ make build-sim, $ make run-sim,
$ make build-hw, $ make run-hw).

8.  Measure the power consumption at the wall plug.

Fig. 1.20 Initialization steps from the Linux Shell (Courtesy of Maxeler Technologies)
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All the explanations in Fig. 1.20 should be self-explanatory or intuitive, assuming
that the reader has a basic understanding of the Linux OS. For more details about
Linux, one is referred to existing textbooks, e.g., [Linux2000].

1.13 OPEX

Operational expenses (OPEX) are often times neglected in studies related to
software costs. However, they represent an important fraction of the system cost.
Fortunately for DataFlow supercomputing, the DataFlow approach is characterized
with much lower operational costs, compared to the control flow approach. These
facts are elaborated next.

Physical size of the computing equipment does matter, for the following reasons:
(a) The space for computing equipment has to be rented, which can be a nontrivial
cost; the smaller the size of the computing equipment, the smaller the rent. (b)
Management of the rented space for the computing equipment also costs money
(heating, cooling, cleaning, washing, etc.); the smaller the size of the computing
equipment, the smaller the maintenance costs. (c) From time to time, computing
equipment has to be moved to a new location; the smaller the size of the computing
equipment, the lower the transportation costs of moving from one location to the
other. (d) Communication delays do matter; the smaller the size of the computing
equipment, the shorter the communication delays.

Electricity costs of the computing production do matter, for the following
reasons: (a) Except for the salaries of system administrators and application
programmers, some studies reveal that 50 % of operational costs is due to the
electricity costs. (b) Lower electricity consumption means less expenses for cooling.
(c) Lower electricity consumption related to heating means less wear and tear of
the infrastructure around the production computers. (d) Less electricity means less
hazards for the natural environment around.

Based on the previously stated facts about the DataFlow supercomputing, one
can conclude that the DataFlow programming will not only result in a faster code
but also in lower operational costs, both due to smaller equipment size and smaller
energy consumption.

1.14 Computer Size Matters (1U, 2U, 4U)

The most appropriate way to compare computer systems is to compare the speed of
the computing structure that can fit into a 1U box, which is the unit size for modules
of a rack-mount supercomputer system. In that case, size and power are kept
identical for all systems to be compared, and consequently, the speed comparison
is the most fair. It is exactly such a comparison approach that favors the DataFlow
system. So, the question is: What is 1U? Also, another question is: What are 2U and
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Fig. 1.21 Facts about 1U, 2U, and 4U (Courtesy of Maxeler Technologies)

4U, as derivatives of 1U? Figure 1.21 illustrates what can be contained in a 1U, from
the point of view of Maxeler Technologies, while recalling the related terminology
about racks.

1.15 Bottom Line

When writing a line of code, the question is how much operational costs one creates
with that line. From the aforementioned, the created operational cost is much smaller
for DataFlow machines than for control flow machines. Consequently, one can say
that DataFlow programming is OPEX-aware programming.

Bearing in mind all of the above, it is wise to be an early adopter and to join the
DataFlow user family promptly. Figure 1.22 shows the innovation diffusion curve.
The DataFlow technology is now at the tipping point, meaning that early adopters
maximize the benefits of the adopted technology.

The tipping point coincides with the introduction of the OpenSPL – a creation
that makes the DataFlow concept easily usable. Till that point, the community was
aware of the speedups in hardware and was suspicious about the effectiveness
in programming. It is the introduction of the OpenSPL that created the full
trust into the new technology: great speedup and easy programming. Figure 1.23
recalls the major sponsors of the OpenSPL standard as announced in the related
website.
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Fig. 1.22 The innovation diffusion curve and the tipping point

Fig. 1.23 The OpenSPL Consortium (Courtesy of Maxeler Technologies)
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Equations: Shallow Water Equations (SWEs)

Atmospheric equations

Global Weather Simulation

[L. Gan, H. Fu, W. Luk, C. Yang, W. Xue, X. Huang, Y. Zhang, and G. Yang,  Accelerating solvers for
global atmospheric equations through mixed-precision data flow engine, FPL2013] 

Fig. 1.24 Results from a Shallow Water Weather Forecast model [Gan2013]

Weather model -- performance gain

Platform Performance
()

Speedup

6-core CPU 4.66K 1

Tianhe-1A node 110.38K 23x

MaxWorkstation 468.1K 100x

MaxNode 1.54M 330x

14x

Fig. 1.25 More results from [Gan2013]

Figures 1.24, 1.25, and 1.26 summarize the superior performance of a DataFlow
machine over the control flow machine on the top of Green500, of course on the level
of 1U, which represents the fairest way of comparison, as already indicated. The
example from these three figures points to one important (previously mentioned)
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Weather model -- power efficiency 

Platform Efficiency
( )

Speedup

6-core CPU 20.71 1

Tianhe-1A node 306.6 14.8x

MaxWorkstation 2.52K 121.6x

MaxNode 3K 144.9x

9 x

Fig. 1.26 Still more self-explanatory results from [Gan2013]

advantage of the DataFlow concept: the floating-point precision was reduced, from
32 bits to 15 bits, at no jeopardy as far as the quality of final results was concerned
[Gan2013].

One can find more on the potentials of the DataFlow architecture in [Flynn2013]
and on the Web [e.g., Google: Maxeler Technologies].

1.16 OpenSPL

Basic notions of OpenSPL are given in Fig. 1.27. The major issue is that the
DataFlow paradigm requires programmers to think in space, rather than in time!

Basic motivations for programming in space are enlisted in Fig. 1.28. The major
issue is that the growth of on-chip transistor count cannot be fully exploited due
to the limited memory bandwidth. Consequently, as elaborated in Fig. 1.29, the
solution is in the DataFlow approach.

The major goals of OpenSPL are underlined in Fig. 1.30, while the semantic
structure of OpenSPL is described in Fig. 1.31. Three OpenSPL examples are given
in Figs. 1.32, 1.33, and 1.34. All the examples are built to be self-explanatory.

www.allitebooks.com
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Fig. 1.27 Capabilities of OpenSPL (Courtesy of Maxeler Technologies)

Fig. 1.28 Basic motivations for programming in space

1.17 WebIDE

A major recent development oriented to customer satisfaction, in the case of
Maxeler, is the WebIDE integrated development system. Snapshots of its usage,
showing the elegancy of the Web-based approach for program development, are
given in Figs. 1.35, 1.36, 1.37, 1.38, and 1.39. One can select to run an existing
application or to create a new one, using a number of ready-to-use examples. One
can build kernels using these examples, and one can run the application remotely
on a real Maxeler machine, using a cloud. More information can be found at the
website http://webide.maxeler.com.

http://webide.maxeler.com
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Fig. 1.29 Technology-related motivations for programming in space (Courtesy of Maxeler Tech-
nologies)

Fig. 1.30 The basics of OpenSPL (Courtesy of Maxeler Technologies)

1.18 Instead of the Conclusion

If there is a single pearl of wisdom to get out of this book, then it is the link between
the DataFlow supercomputing and the theoretical work of the Nobel Laureate
Richard Feynman [Feynman96]: arithmetic and logic could be done with a zero or
almost zero energy; communications cannot. The control flow approach is based on
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Fig. 1.31 The structure of OpenSPL (Courtesy of Maxeler Technologies)

Fig. 1.32 An example of OpenSPL (1); remake of a previous figure, with features of OpenSPL
underlined (Courtesy of Maxeler Technologies)

the von Neumann paradigm, which implies lots of communications, as indicated in
Fig. 1.40 (left side). One first fetches an instruction, which implies communications
to the program memory. Then one fetches data in two different communication-
based transactions, from two different memory locations. Finally, one stores the
result into the data memory, which means one more communication activity.

In the case of DataFlow, as indicated in Fig. 1.40 (right side), ideally there are no
communications: DataFlow from one arithmetic or logic unit to the other. Of course,
this ideal case is obtainable only if the compiler is smart enough to generate a planar
graph and only the zero length communication paths between two neighboring
arithmetic or logic units.
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Fig. 1.33 An example of OpenSPL (2) (Courtesy of Maxeler Technologies)

Fig. 1.34 An example of OpenSPL (3) (Courtesy of Maxeler Technologies)
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Fig. 1.35 The welcome page, WebIDE (Courtesy of Maxeler Technologies)

Fig. 1.36 The getting started, WebIDE (Courtesy of Maxeler Technologies)
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Fig. 1.37 The kernel code, WebIDE (Courtesy of Maxeler Technologies)

Fig. 1.38 The manager code, WebIDE (Courtesy of Maxeler Technologies)
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Fig. 1.39 The build and run, WebIDE (Courtesy of Maxeler Technologies)

Fig. 1.40 Essence of the Feynman-based explanation of DataFlow potentials
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Consequently, in the ideal case, the power consumption of the DataFlow machine
(due to minimal communications) over the control flow machine (with lots of
communications) becomes much smaller (in the ideal case, the power could be
indefinitely many times smaller). Since the power and speed can be traded, in theory,
the DataFlow machines could become indefinitely many times faster!

This analysis concludes the first part of the book, about basic concepts. For
specific and detailed programming examples, interested readers are referred to
the website with courses taught by Professor Veljko Milutinović, with full-blown
programming examples from his OpenCourseWare (Google Veljko Milutinović;
select TEACHING; next select VLSI). URL D http://home.etf.rs/~vm/
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Chapter 2
Selected Case Studies

2.1 Classification of Selected Examples

The classification methods that are used in this analysis were developed under the
impact of the European Union FP7 environment dealing with next-generation Big
Data management solutions.

Application and Sub-application Criteria

The classification solely depends on criteria used. In this chapter the authors
suggest two application criteria and one sub-application criterion to present two
classifications and one sub-classification.

1. The first and the main criterion is what science or industry the application is
targeted for. According to this criterion, there are three groups of applications:

(a) Exascale Fundamental Drivers – targeting Formal Sciences (Decision The-
ory, Logic, Mathematics, and Statistics), Finances, Transportation, and
algorithms pertaining to FPGA improvements

(b) Exascale Science and Technology Drivers – targeting Natural Sciences
(Life Sciences, Physical Sciences, and Earth Sciences), Social Sciences, and
Medicine

(c) Exascale Engineering and Innovation Drivers – targeting Engineering and
different industries

This will be the main classification used in the paper. It consists of the group
name (as a tree’s branch) and the exact name of the science or industry (as the
branch’s leaf).

The other two, classification and subclassification, will be just mentioned.

© Springer International Publishing Switzerland 2015
V. Milutinović et al., Guide to DataFlow Supercomputing, Computer
Communications and Networks, DOI 10.1007/978-3-319-16229-4_2
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2. The second criterion is what type of task the DataFlow algorithms in the
application perform. The algorithm, according to its role, is placed in one of
the following five groups of tools:

(a) Optimization toolbox
(b) Complex networks analysis toolbox
(c) Image, video, text processing, and analysis toolbox
(d) Numerical analysis, modeling, and simulation toolbox
(e) Machine learning and data mining toolbox

3. The sub-application criterion is used just for the applications that have originally
been made for other computer architectures (CPU or GPP). According to what
type of adaptation was performed during the application transfer procedure, there
are three groups: (i) a particular single algorithm or (ii) a set of algorithms
(framework) or (iii) a set of related algorithms composed as a complete stand-
alone solution. Additionally, according to what each algorithm targets, there are
two groups: (a) a specific application or (b) a targeted set of applications.

2.1.1 Examples for Each Leaf Within the Main Classification

Exascale Fundamental Drivers

Examples of the Leaf #1 Finance

1. A Mixed Precision Monte Carlo Methodology for Reconfigurable Accelerator
Systems [Chow2012]

2. Finding the Right Level of Abstraction for Minimizing Operational Expenditure
[Mencer2011]

3. Accelerating Reconfigurable Financial Computing [Tse2012]
4. Accelerating the Computation of Portfolios of Tranched Credit Derivatives

[Weston2010]
5. Multi-level Customization Framework for Curve Based Monte Carlo Financial

Simulations [Jin2012]
6. Rapid Computation of Value and Risk for Derivatives Portfolios [Weston2011]

Examples of the Leaf #2 Mathematics

1. A Fully-Pipelined Expectation-Maximization Engine for Gaussian Mixture
Models [Guo2012]

2. Enhancing Performance of Tall-Skinny QR Factorization Using FPGAs
[Rafique2012]

3. Heterogeneous Reconfigurable System for Adaptive Particle Filters in Real-Time
Applications [Chau2013]

4. Optimizing Performance of Quadrature Methods with Reduced Precision
[Tse2012/2]
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5. Customizable Architectures for the Set Covering Problem [Guo2013]
6. A Fully Pipelined Probability Density Function Engine for Gaussian Copula

Model [Ruan2014]

Exascale Science and Technology Drivers

Examples of the Leaf #1 Biology

1. Hardware Acceleration of Genetic Sequence Alignment [Arram2013]
2. A Large-Scale Spiking Neural Network Accelerator for FPGA Systems [Che-

ung2012]

Examples of the Leaf #2 Geophysics

1. Maximum Performance Computing with DataFlow Engines [Pell2012]
2. An Implementation of the Acoustic Wave Equation on FPGAs [Nemeth2008]
3. Finding Speedup in Parallel Processors [Flynn2008]
4. Anisotropic Reverse-Time Migration Using Co-Processors [Liu2009]

Examples of the Leaf #3 Meteorology

1. Acceleration of a Meteorological Limited Area Model with DataFlow Engines
[Oriato2012]

Exascale Engineering and Innovation Drivers

Examples of the Leaf #1 Oil and Gas Industry

1. Surviving the End Of Frequency Scaling with Reconfigurable DataFlow Com-
puting [Pell2011]

2. Beyond Traditional Microprocessors for Geoscience High-Performance Comput-
ing Applications [Lindtjorn2011]

3. Acceleration of Anisotropic Phase Shift Plus Interpolation with DataFlow
Engines [Tomas2012]

4. Accelerating Large-Scale HPC Applications Using FPGAs [Dimond2011]
5. Accelerating 3D Convolution Using Streaming Architectures On FPGAs

[Fu2009]
6. Finite-Difference Wave Propagation Modeling on Special-Purpose DataFlow

Machines [Pell2013]

2.2 Presentation of Examples

In this section, the authors present examples of the transferred applications that
showed reasonable speedups and are found in available open literature. For each
classification leaf, one, the most representative example, is described in more detail,
while for the rest of them, only a short description is given together with acquired
results (speedup, power consumption reduction, and other improvements).
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2.2.1 Examples from Exascale Fundamental Drivers Leaf #1:
Finance

2.2.1.1 Example 1: A Mixed Precision Monte Carlo Methodology for
Reconfigurable Accelerator Systems [Chow2012]

Classification #2 – Numerical analysis, modeling, and simulation toolbox
Subclassification – A particular single algorithm for a targeted set of applications
Applications/algorithms – Monte Carlo simulation

In this article, Gary C. T. Chow et al. introduce a novel method of mixed precision
applicable to any Monte Carlo (MC) simulation. The MC simulations can be well
used in field-programmable gate arrays. They have parallel nature that can be well
executed in FPGAs, and there are, also, the needed cost-effective Maxeler DFE
random number generators. The authors used data paths with reduced precision,
and for correcting any resulting errors, they used auxiliary sampling. To determine
the optimal reduced precision and optimal resource allocation among the MC data
paths and correction data paths, optimization based on mixed integer geometric
programming was implemented. Reduced-precision data paths usually have higher
clock frequencies, consume fewer resources, and offer higher degree of parallelism,
for a given amount of resources compared with full-precision data paths.

The results were evaluated for three financial use cases: Asian option pricing,
fixed strike lookback call option under the GARCH model, and collateralized
mortgage obligation, and in multidimensional integral evaluation that is used in
many other areas.

Essence
The major contributions of this paper are:

– Techniques for partitioning workloads of different precisions for auxiliary sam-
pling to a reconfigurable accelerator system consisting of FPGA(s) and GPP(s)

– Mixed Integer Geometric Programming for finding optimal precision for FPGA’s
data paths and optimal resource allocation and an optimization method for the
execution time of a Monte Carlo simulation on a reconfigurable accelerator
system based on an analytical model

– A novel mixed precision methodology for correcting finite precision errors using
auxiliary sampling and an error analysis that indicates finite precision errors from
sampling errors in reduced precision Monte Carlo simulations

Infrastructure
The system architecture is presented in Fig. 2.1
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Fig. 2.1 System architecture of the reconfigurable accelerator system in the analytical model
[Chow2012]

Relevance and Details
The proposed mixed precision methodology provides several advantages over
previous FPGA designs.

– Approximated mean finite precision error � fin is used in adjusting the final
result. Instead of passively finding the error bound, this novel approach enables
obtaining a more accurate result from the reduced precision result.

– A very accurate result can be achieved by increasing the number of sample points
because there are only sampling errors in the output. The output accuracy is no
longer bound by the reduced precision.

– Since this methodology is totally independent of the function and no accuracy
analysis is required for the relative error, the methodology is applicable to any
Monte Carlo simulation.

Application and Results
The achieved results are very remarkable (Table 2.1). Mixed precision FPGA
reconfigurable accelerator system is up to 4.6 times faster than state-of-the-art GPU,
7.1 times faster than an FPGA using double precision, and 163 times faster than
optimized software on a quad-core GPP. As far as energy efficiency is concerned,
it is up to 5.5 times more energy efficient than a GPU and 170 times more energy
efficient than a quad-core GPP.
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Table 2.1 Comparison with GPP, GPU, and plain FPGA [Chow2012]

Type of MC simulation: Asian option
Collateralized mortgage
obligation

System configuration
GPP
only GPU

FPGA
only

FPGA
C GPP

GPP
only

FPGA
only

FPGA
C GPP

Execution time (s) 29 3 4.7 0.56 117 2.8 0.72
Energy (kJ) 5.3 0.71 0.4 0.13 20,4 0,26 0,12
Power (W) 183 236 85 192 175 94 171
Precision Double Double Double Mixed Double Double Mixed
Normalized speedup 1x 9.7x 6.2x 44.6x 1x 42x 163x
Normalized energy 40.7x 5.5x 3.1x 1x 170 2.2x 1x

Characteristics
This work shows that very good improvements can be achieved by using lower
precision. Of course, in order to be sure that results have satisfactory precision,
one must have numerically exact references of previously done calculations. The
authors had the reference results available, so having data to compare with; they
could perform all the tests and get precise results.

Trends
Further analysis with changing data precision on FPGA was continued and has been
tried by many authors. General-purpose computer architectures do not offer data
precision changing, so experimenting with it on DataFlow computers was to be
expected.

2.2.1.2 Example 2: Finding the Right Level of Abstraction for Minimizing
Operational Expenditure [Mencer2011]

Classification #2 – Numerical analysis, modeling, and simulation toolbox
Subclassification – A set of algorithms (framework) for a targeted set of applications
Applications/algorithms – Total cost of ownership (TCO) of a financial computing

operation, Monte Carlo case study

In this article, Oskar Mencer et al. were examining how modern programming
language abstractions impact total cost of ownership (TCO) of a financial computing
operation. The study was mostly done using static and dynamic analysis of financial
software example based on the loopflow graph (LFG) concept and the custom
dynamic hotspot tool called MaxSpot.
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In the real life, companies’ corporate structures are usually not very keen on
releasing correct TCO calculations or figures. The authors suggested the following
list of components:

(a) Cost of software development and testing; (b) Capital expenditure (CAPEX):
cost of computing equipment, cost of air-conditioning, cost of computer storage,
cost of communication equipment, and cost of data center real estate; (c) Opera-
tional expenditure (OPEX): cost of datacenter staff, cost of electricity for computers
and air-conditioning, and cost of real estate operations; (d) Indirect costs: cost of
failures (unpredicted and scheduled downtime and nonavailability causing business
decreases), cost of time while determining whether there was a human or technical
failure, and cost of reliability (testing and verification of computing, backups,
redundancy).

It is in all businesses difficult to calculate what the real costs of not getting the
needed data on time are. It’s even more so in the financial industry (the fast changes
on the financial instrument markets, the interest rates, etc.).

The authors took a simple Monte Carlo application in C and reprogrammed it
in CCC to enable raising the level of abstraction (adding payoff calculations and
random number generators) making expanding of the code to be done with little
programming effort.

The most valuable result of these analyses is the conclusion that provided the
required throughput of an application is high enough, the operational expenditure
decreases through minimizing run time and not through minimizing programming
effort.

2.2.1.3 Example 3: Accelerating Reconfigurable Financial Computing
[Tse2012]

Classification #2 – Numerical analysis, modeling, and simulation toolbox
Subclassification – A set of related algorithms composed as a complete stand-alone

solution, for a targeted set of applications
Applications/algorithms – Derivative pricing using both Monte Carlo and quadra-

ture methods

This PhD thesis proposes novel approaches for designing, optimization, and
management of reconfigurable compute accelerators for financial computing:

1. Proposed novel reconfigurable designs for derivative pricing using both Monte
Carlo and quadrature methods. Such designs involved exploring different tech-
niques such as multidimensional analysis for quadrature methods and control
variate optimization for Monte Carlo. By using the field-programmable gate
array (FPGA) designs, significant speedups and energy savings over both CPU
and GPU designs were achieved.
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2. Proposed novel framework for distributing computing tasks on multi-accelerator
heterogeneous clusters. In this framework, different computational devices
including FPGAs, GPUs, and CPUs were used. They worked collaboratively
on the same financial problem based on a dynamic scheduling policy. The
author investigated trade-offs in speed and in energy consumption of different
accelerator allocations.

3. Proposed new reduced precision methodology for optimizing quadrature designs
and a mixed precision methodology for optimizing Monte Carlo designs. The
optimized throughput of reconfigurable designs was achieved by using data paths
with minimized precision while carefully obtaining the same accuracy of the
results as in the original designs.

This work showed trade-offs between the contribution of each computation in
increasing the accuracy of the final result and the number of computations. When
mixed precision methodologies were used, the speedups of 2.9 to 7.1 times over
the double-precision FPGA designs and 44 to 106 times over the quad-core CPU
designs were achieved. Using the mixed precision methodology, a Virtex-6 ST475X
FPGA and an i7-870 CPU were able to outperform 448-core GPU by 4.6 times
while using 5.5 times less energy.

2.2.1.4 Example 4: Accelerating the Computation of Portfolios
of Tranched Credit Derivatives [Weston2010]

Classification #2 – Optimization toolbox
Subclassification – A set of related algorithms composed as a complete stand-alone

solution, for a targeted set of applications
Applications/algorithms – Standard base correlation methodology, with a Gaussian

copula for default correlation and a stochastic recovery process

Recent big growth in trading and complexity of credit derivative instruments has
reasonably increased the need for more computationally demanding mathematical
models. Since today’s usual way to provide for those increases is big-sizing
the computer centers, this has led to massive growth in data center compute
capacity, power, and cooling requirements. The paper reports the results of a
joint project between J.P. Morgan and Maxeler Technologies on improving the
price/performance for calculating the value and risk of a large complex credit
derivatives portfolio.

The results showed that valuing tranches of collateralized default obligations
(CDOs) on Maxeler accelerated systems was over 30 times faster per Watt and
per cubic foot than solutions using standard multi-core Intel Xeon processors. Also
reports on some preliminary results of further work that extends the approach to
classes of interest rate derivatives were given.
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2.2.1.5 Example 5: Multi-level Customization Framework for Curve
Based Monte Carlo Financial Simulations [Jin2012]

Classification #2 – Numerical analysis, modeling, and simulation toolbox
Subclassification – A particular single algorithm for a targeted set of applications
Applications/algorithms – Monte Carlo framework for the automated generation of

highly efficient curve-based payoff evaluation accelerator

One of the main challenges when accelerating financial applications using recon-
figurable hardware is the management of design complexity. This paper proposed
a multi-level customization framework for automatic generation of complex yet
highly efficient curve-based financial Monte Carlo simulators on reconfigurable
hardware. By identifying multiple levels of functional specializations and the opti-
mal data format for the Monte Carlo simulation, different levels of programmability
were allowed in the framework to retain good performance and support multiple
applications.

The results showed that Virtex-6 SX475T FPGAs generated by this framework
were about 40 times faster than single-core software implementations on an i7-870
quad-core CPU at 2.93 GHz; they were also over 10 times faster and 20 times more
energy efficient than 4-core implementations on the same i7-870 quad-core CPU and
were over three times more energy efficient and 36 % faster than a highly optimized
implementation on an NVIDIA Tesla C2070 GPU at 1.15 GHz.

What is interesting is the fact that this framework is platform independent and
can be extended to support CPU and GPU applications.

2.2.1.6 Example 6: Rapid Computation of Value and Risk for Derivatives
Portfolios [Weston2011]

Classification #2 – Machine learning and data mining toolbox
Subclassification – A set of related algorithms composed as a complete stand-alone

solution for a specific application
Applications/algorithms – Valuation to risk measurement and multivariate Monte

Carlo derivative pricing model

This paper reports on results of another project between J.P. Morgan in London
and Maxeler Technologies on accelerating derivatives computations. Compared to
the previously mentioned project, in this one, the work was extended in two ways: by
applying the same techniques, first, to accelerate the computation of portfolio-level
risk for credit derivatives and, second, to different asset classes using a different type
of mathematical model. Also the implications for risk were explored.

The paper quotes an interesting information that in 2005, the world’s estimated
27 million servers consumed around 0.5 % of all electricity produced on the
planet, a figure that is closer to 1 % when the energy for associated cooling and
auxiliary equipment (e.g., backup power, power conditioning, power distribution,
air handling, lighting, and chillers) is included.
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A MaxNode-1821 compared to an eight-core Xeon E5430 server showed 31
times speedup in full precision and 37 times in reduced precision while the power
usage per node was decreased by 3 %.

2.2.2 Examples from Exascale Fundamental Drivers Leaf #2:
Mathematics

2.2.2.1 Example 1: A Fully-Pipelined Expectation-Maximization Engine
for Gaussian Mixture Models [Guo2012]

Classification #2 – Machine learning and data mining toolbox
Subclassification – A particular single algorithm for a targeted set of applications
Applications/algorithms – Gaussian mixture models for probability density model-

ing and soft clustering

In this text, Ce Guo et al. describe Gaussian mixture models (GMMs), a powerful
tool for soft clustering and probability density modeling, implemented using
Maxeler DFE. In many such applications, it is necessary to estimate parameters of a
GMM from data before working with it. One way to handle this task is to use com-
putationally demanding expectation-maximization algorithm for Gaussian mixture
models (EM-GMM). In order to fully benefit from the FPGA pipelined hardware
architecture, the authors proposed a pipeline-friendly EM-GMM algorithm. They
also used a Gaussian probability density function evaluation unit (working with
fixed-point arithmetic) to further improve the performance.

Time spent on each EM-GMM algorithm run directly depends on the data
size. Due to a fast growth of data size (big data), the algorithm has became
very computationally demanding. At the same time, it was desirable for the
algorithm to be executed within a short period of time, especially in real-time
applications.

Essence
The major contributions of this paper are:

– Making algorithmic transformations in the structure of the work flow of the orig-
inal EM-GMM algorithm in order to enable pipelining of different computation
stages, creating a pipeline-friendly EM-GMM algorithm

– Suggesting customized design of the Gaussian probability density evaluation unit
that minimizes the hardware cost while obtaining satisfactory accuracy

– Solving precision problem in Gaussian PDF evaluation with bit shifting and
successfully deploying fixed-point arithmetic throughout the system
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Infrastructure
In the performance experiments, the systems were compared with a GPU imple-
mentation described in [Kumar2009]. Since the authors did not have experimental
results of that system on the same datasets they used, they took the best performance
records in [Kumar2009] with similar data sizes. That means that there is a slight
possibility that the performance estimation could stray and that the GPU comparison
results were provided in the paper only for reference.

The two CPU implementations were done on Intel Core i3 CPU (running at
2.93 GHz) and 4 GB DDR3 memories. The FPGA implementation was deployed
on a Maxeler MAX3 acceleration card with a Xilinx Virtex-6 FPGA running at
150 MHz and with 48GB DDR3 onboard memory.

Relevance and Details
Gaussian Mixture Models (GMMs) are powerful tools for probability density
modeling and soft clustering. Some relevant usages quoted in the paper are (1)
an image segmentation system that identifies tissues in magnetic resonance (MR)
images of the brain where GMMs are employed to capture the spatial layout
information of brain tissues, (2) a speaker verification system where GMMs are
used to model the characters of a speaker’s voice, and (3) a computer vision system
to cut the background from video streams where GMMs are used to judge whether
a pixel belongs to the background in a probabilistic manner.

The fundamental difference between the pipeline-friendly EM-GMM and the
original EM-GMM is that the former requires data to be streamed into the algorithm
only once, while the latter requires it three times. Other important differences are:

– The maximization step and the expectation step become overlapped in the
pipeline-friendly algorithm. In the original algorithm, first all the data instances
are processed in the expectation step and only then the maximization step
starts. In the pipeline-friendly algorithm, the dataset is handled in a per-instance
manner. Statistical information of the new parameter set is updated when the data
instance arrives.

– The original algorithm stores all the responsibility values in the expectation step.
In the pipeline-friendly algorithm, it is not necessary to do that because the
algorithm computes the responsibility values for a newly arrived data instance
and right away updates the statistical information of the new parameter set.
The corresponding responsibility values can be discarded safely as soon as the
statistical information about a data instance is collected.

Application and Results
The algorithm performance is measured by the number of data instances processed
in every second. A data instance is considered to be processed “in one iteration” after
all computations related to it are completed in that iteration. Experimental results on
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Table 2.2 Performance
results (instances per second)
[Guo2012]

Data CPU1 CPU2 GPU FPGA SUC1 SUG

1 1.723 2.040 3.081 1.498 86x 5x
2 8.565 1.024 1.541 1.492 174x 9x
3 5.689 6.671 1.027 1.402 262x 15x
4 8.714 1.023 1.641 1.487 171x 9x
5 4.310 5.079 7.704 1.487 347x 15x
6 2.883 3.402 5.136 1.487 517x 28x

performance are presented in Table 2.2. The last two columns in the table are the
speedup values of FPGA-based solution over the CPU-based solution (the original
EM-GMM) and the GPU-based solution, respectively.

The results showed that the FPGA-based solution generated rather accurate
results and achieved a maximum of 517 times speedup over a CPU-based solution
and 28 times speedup over a GPU-based solution.

Characteristics
To reach such high accelerations, it is necessary to use fixed-point arithmetic that
saves hardware resources on the FPGA platform. This enables deployment of up to
36 Gaussian PDF evaluation units in the pipeline, excellently using available FPGA
resources. However, it is not feasible to perform similar optimization on CPUs and
GPUs. With richer logical resources on the FPGA platform, it would be possible
to deploy even larger number of Gaussian PDF evaluation units enabling more
complicated data to be processed by the system. The corresponding acceleration
would be even more significant.

Trends
This example shows possible advantages of FPGA architecture in algorithms that
work satisfiably with fixed-point arithmetic.

2.2.2.2 Example 2: Enhancing Performance of Tall-Skinny QR
Factorization Using FPGAs [Rafique2012]

Classification #2 – Optimization toolbox
Subclassification – A particular single algorithm for a targeted set of applications
Applications/algorithms – Tall-skinny QR factorization

Tall-skinny QR factorization (TSQR) is one of the communication-avoiding
linear algebra algorithms with low communication latency and high memory
bandwidth requirements. As such, it is an excellent candidate for acceleration using
FPGAs. TSQR parallelizes QR factorization of tall-skinny matrices in a divide-
and-conquer fashion by decomposing them into sub-matrices, performing local QR



2.2 Presentation of Examples 53

factorizations, and then merging the intermediate results. GPUs seem to be the
hardware of choice (performance-wise) for this algorithm since it is a dense linear
algebra problem. However, memory bandwidth in local QR factorizations and global
communication latency in the merge stage limit the performance of GPUs.

In this paper, the shape of the matrix was exploited on FPGA-based custom
architecture, which avoided these bottlenecks by using high-bandwidth on-chip
memories for local QR factorizations and by performing the merge stage entirely
on-chip to reduce communication latency.

The result that the authors achieved was a peak double-precision floating-point
performance of 129 GFlops on Virtex-6 SX475T. A quantitative comparison of the
proposed design with recent QR factorization on FPGAs and GPU showed speedup
of up to 7.7 and 12.7 times, respectively. Additionally, even higher performance over
optimized linear algebra libraries like Intel MKL for multi-cores, CULA for GPUs,
and MAGMA for hybrid systems was achieved.

2.2.2.3 Example 3: Heterogeneous Reconfigurable System for Adaptive
Particle Filters in Real-Time Applications [Chau2013]

Classification #2 – Optimization toolbox
Subclassification – A particular single algorithm for a targeted set of applications
Applications/algorithms – Particle filter statistical method for dealing with dynamic

systems having nonlinear and non-Gaussian properties

This paper presents a heterogeneous reconfigurable system for real-time appli-
cations applying particle filters. The system consists of a multi-threaded CPU
and an FPGA. The authors proposed a method to adapt the number of particles
dynamically and to use run-time reconfigurability of the FPGA to reduce power
and energy consumption. An application was developed that involves simultaneous
mobile robot localization and people tracking. The results showed that the proposed
adaptive particle filter could reduce up to 99 % of computation time.

Using run-time reconfiguration, a reduction of 34 % in idle power and 26–34 %
of system energy was achieved. The proposed system was up to 7.39 times faster
and 3.65 times more energy efficient than Intel Xeon X5650 CPU with 12 threads
and 1.3 times faster and 2.13 times more energy efficient than NVIDIA Tesla C2070
GPU.

2.2.2.4 Example 4: Optimizing Performance of Quadrature Methods
with Reduced Precision Tse2012/2]

Classification #2 – Optimization toolbox
Subclassification – A particular single algorithm for a targeted set of applications
Applications/algorithms – Quadrature methods
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This paper presents a generic precision optimization methodology for quadrature
computation targeting reconfigurable hardware to maximize performance at a
given error tolerance level. The authors proposed methodology that optimized
performance by considering integration grid density versus mantissa size of floating-
point operators. The optimization provided a number of integration points and
mantissa size with maximized throughput while meeting given error tolerance
requirement.

Three case studies showed that the proposed reduced precision designs on a
Virtex-6 SX475T FPGA were up to 6 times faster than comparable FPGA designs
with double-precision arithmetic. They were up to 15.1 times faster and 234.9 times
more energy efficient than an i7-870 quad-core CPU and were 1.2 times faster and
42.2 times more energy efficient than a Tesla C2070 GPU.

2.2.2.5 Example 5: Customizable Architectures for the Set Covering
Problem [Guo2013]

Classification #2 – Optimization toolbox
Subclassification – A particular single algorithm for a targeted set of applications
Applications/algorithms – NP-hard set covering problem

In this example, the authors proposed novel customizable streaming architectures
for the NP-hard set covering problem (SCP). Both exhaustive and genetic algorithm
approaches were covered, supporting coarse-grained parallelism and deep pipelines
while allowing trade-offs between performance and resource usage.

The authors created streaming architectures for an exhaustive algorithm and a
genetic algorithm that can be customized to support trade-offs between performance
and resource usage. Their implementation of the FPGA is a good example of a trade-
off between performance and quality of solutions. These FPGA implementations
compared with existing FPGA designs showed improved flexibility and increased
ability to support larger-scale genetic algorithms.

Experiments targeting Maxeler systems in this example showed that FPGA-based
designs were more effective than the corresponding multi-core software versions.
The speedups that were achieved exceeded 250 for the exhaustive algorithm and 60
for the genetic algorithm.

2.2.2.6 Example 6: A Fully Pipelined Probability Density Function
Engine for Gaussian Copula Model [Ruan2014]

Classification #2 – Numerical analysis, modeling, and simulation toolbox
Subclassification – A particular single algorithm for a targeted set of applications
Applications/algorithms – Gaussian copula probability density function

In many fields where the multivariate dependence is of considerable interest,
such as finance, hydrological modeling, biomedical study, and wavelet-based
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texture modeling, the Gaussian copula is a widely used multivariate modeling
tool. However, existing solutions failed to achieve satisfactory performance, and
users had to tolerate high computational complexity and the related time cost. This
is because the mathematical model of the Gaussian copula, including either its
CDF or the corresponding PDF, consists of plenty of time-consuming computation
operations.

In this example, Xiaomeng Huang et al. developed an optimized FPGA-based
Gaussian copula PDF evaluation scheme, which was able to achieve both high com-
putation efficiency and low resource cost. It is a fast Gaussian copula PDF evaluation
engine capable of handling all the time-consuming computation operations in a fully
pipelined manner. Three optimization strategies were used during the process of
deploying the originally CPU-friendly Gaussian copula PDF algorithm on the FPGA
architecture:

– By transforming the calculation pattern of the Gaussian copula PDF algo-
rithm, the authors significantly reduced the consumption of the computational
resources.

– By eliminating constant computations from hardware logic, the authors achieved
a better computational resource balance between the host and the accelerator.

– By extending calculations to multiple pipelines in one pass, the authors effec-
tively exploited the utilization of the computational resources and achieved a
significant performance improvement.

Overall, by applying the above optimizations, using one Virtex-6 SX475T FPGA,
the authors achieved 1870 times speedup over a single-core CPU solution and 610
times speedup over a quad-core CPU solution. Furthermore, the performance of this
solution can be easily scaled for future FPGA devices with more hardware resources
since all instances processed by the Gaussian copula PDF are independent.

2.2.3 Examples from Exascale Science and Technology
Drivers Leaf #1: Biology

2.2.3.1 Example 1: Hardware Acceleration of Genetic Sequence
Alignment [Arram2013]

Classification #2 – Numerical analysis, modeling, and simulation toolbox
Subclassification – A particular single algorithm for a specific application
Applications/algorithms – DNA sequencing, alignment processor based on a back-

tracking variation of the FM-index algorithm

Next-generation DNA sequencing machines have been improving at an excep-
tional rate. The necessity to process so high quantities of data showed that the
subsequent analysis of generated sequenced data had become a bottleneck in current
systems. In this paper, J. Arram et al. explored the use of reconfigurable hardware
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to accelerate short read mapping problem, where the positions of millions of short
DNA sequences are located relative to a known reference sequence.

The proposed design has an alignment processor based on a backtracking varia-
tion of the FM-index algorithm. Providing a full solution to the short read mapping
problem, this design is capable of efficient exact and approximate alignment.

Nowadays, next-generation sequencing (NGS) machines are able inexpensively
and at a very fast rate to produce sequenced data. In order to improve the throughput
and measurement accuracy of these machines, the shorter sequences are processed.
This allows tens of billions of bases to be sequenced per day. Short sequences are
created by randomly breaking a long DNA chain. This random breaking causes the
position and orientation information of the fragments with respect to the sample to
be lost. Since there is the assumption that all DNA sequences within a species are
similar, the sample DNA can be reconstructed by determining the location of the
short fragments (the short reads) in a known reference genome of the species.

The authors created an application that involves highly parallel bit-oriented
operations based on a backtracking FM-index algorithm, using FPGA technology
as a good candidate for its acceleration. The design represents a full solution to
short read mapping, capable of both approximate and exact alignment.

Essence
The major contributions of this work include:

– A hardware design, based on a backtracking FM-index algorithm, for a novel
sequence alignment processor. Also, various optimizations, such as those for
latency, memory size, and memory bandwidth, are analyzed.

– A Maxeler MAX3 board implementation of the proposed design.
– Performance evaluation done by comparing proposed design with some of the

fastest software solutions on multi-core processors, GPUs, and FPGAs.

Infrastructure
The design uses a well-populated FPGA with alignment processors that is connected
to the host processor using software driver. The software driver’s role is, before the
alignment starts, to transfer the Burrows-Wheeler transform (BWT) sequence to the
accelerator board. BWT is then stored using on-chip BRAM or external DRAM.
Short reads are inputted to the alignment processors in batches given by the design
latency. Each batch of short reads is processed for a number of iterations. That
number is determined by the permitted number of mismatches and by the short
read length. The alignment results for each short read, including the SA interval, the
cost, and a string representation of the alignment, are all reported to the software
driver. This architecture is illustrated in Fig. 2.2.

The software driver has minimal role in the design architecture because the
alignment processor design can be fully mapped to hardware. It is assumed
that the BWT sequence is generated in advance because the reference sequence
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Fig. 2.2 Design architecture [Arram2013]

changes infrequently. The short reads are streamed to the alignment processors
populating the FPGA after transferring the data structures to the accelerator board
and configuring the number of mismatches permitted. The software driver then
waits until all the accelerator output is received. An SA interval is mapped to
positions in the reference sequence using a simple lookup table when a short read
can be matched to the reference sequence. This step can be performed in hardware;
however, it was chosen to perform it using a CPU in order to reduce the number
of memory controllers required by each alignment processor. When a short read is
unaligned, permitted mismatches are set to a higher number and the short read is
streamed again to the alignment processors for testing.

Relevance and Details
The authors proposed an alignment processor design with the following features:

– A novel scheme to reduce the memory size of the FM-index occurrence array,
allowing it to be stored directly on the accelerator board

– A new method to reduce external memory access frequency, while maximizing
memory bandwidth utilization

– A backtracking version of the FM-index algorithm with a data structure that
supports both forward and backward search, which is capable of exact and
approximate alignment

– A maximized throughput using a novel scheme to process batches of short reads
in parallel
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Table 2.3 Aligner and energy performance comparison [Arram2013]

Design Platform
Clock freq.
(MHz) Devices Cores

baps
(millions)

Energy
(W * hr)

Bowtie Intel Xeon
X5650

2,670 1 20 1.04 19

BWA Intel Xeon
X5650

2,670 1 20 1.76 11

SOAP2 Intel Xeon
X5650

2,670 1 20 1.59 13

SOAP3 NVIDIA GTX
580

900 1 512 3.84 6.3

Proposed design on
Max workstation
(3 cores)

Xilinx Virtex-6
SX475T

150 1 3 13.5 0.078

Application and Results
Since it is difficult to directly compare designs using the raw results, the authors
defined the bases aligned per second (baps) value as a normalized performance
measure unit in order to better assess the performance of various designs.

Table 2.3 presents the achieved results.

Trends
Future research should include further optimization of this approach, together with
its application in clinical procedures. It should provide that short reads with more
than two mismatches increase the sensitivity of the software aligners from present
(<20 %). This is a result of the aligner being unable to explore large search
space within the cutoff time. The design’s short reads with two mismatches had
a comparable sensitivity (�100 %) to other software aligners.

2.2.3.2 Example 2: A Large-Scale Spiking Neural Network Accelerator
for FPGA Systems [Cheung2012]

Classification #2 – Complex networks analysis toolbox
Subclassification – A particular single algorithm for a specific application
Applications/algorithms – Alignment processor based on a backtracking variation

of the Ferragina-Manzini (FM) index algorithm

Spiking neural networks (SNN) aim to mimic membrane potential dynamics of
biological neurons. They have been used widely in neuromorphic applications and
neuroscience modeling studies. Although there is a lot of anatomical and functional
knowledge of the brain, the scientists still don’t have the complete picture of how
higher cognitive function emerges from neuronal and synaptic dynamics. Large-
scale simulation is useful in this regard, since it can be investigated how such
functions emerge from deterministic simulation. The authors designed a parallel
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SNN accelerator for producing large-scale cortical simulation targeting an off-the-
shelf FPGA-based system. The accelerator parallelizes synaptic processing with run
time proportional to the firing rate of the network.

Using only one FPGA, this accelerator is estimated to support simulation of 64 K
neurons. The accelerator is 1.4 times (localized connectivity) to 5.5 times (uniform
connectivity) faster than a GPU NeMo accelerator (Tesla C1060 65 nm process) in
terms of spike delivery rate.

2.2.4 Examples from Exascale Science and Technology
Drivers Leaf #2: Geophysics

2.2.4.1 Example 1: Maximum Performance Computing with DataFlow
Engines [Pell2012]

Classification #2 – Optimization toolbox
Subclassification – A set of related algorithms composed as a complete stand-alone

solution for a specific application
Applications/algorithms – Wave modeling application

In this article, Oliver Pell et al. discuss multidisciplinary DataFlow computing
as a powerful approach to scientific computing that has led to orders-of-magnitude
performance improvements for a wide range of applications. As an example, they
provide one particular application – FD wave modeling.

One of the main factors that determine the resolution of seismic images is the
bandwidth of the seismic wavelet. Finite-difference (FD) modeling and reverse-time
migration (RTM) encounter particular problems increasing the wavelet bandwidth
at the upper end of the spectrum because of the large impact this has on the com-
putation resource requirements. Increasing the upper modeled frequency requires
a finer spatial sampling, while the Courant Friedrichs Lewy (CFL) limit implies
that the modeling time step must decrease. The amount of required computation
increases with the fourth power of the wave frequency. It means that modeling at
high frequencies (for example, 70Hz) can easily require hundreds of gigabytes of
memory.

Essence
The CPUs in the system retain control of the application in DataFlow-accelerated
wave modeling and instruct the DataFlow engine(s) to compute each time step. In
each local memory of every DataFlow engine, pressure and velocity data volumes
reside. They are streamed through the DataFlow implementation of the modeling
kernel, which computes the next time-step pressure field. The data can also be read
out from the DataFlow engine each time step to visualize or store to disk, while
stimulus data is sent from the CPU to the DataFlow engine to be added to points in
the field at run time.
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Fig. 2.3 MPC-X series architecture. These are stand-alone DataFlow compute nodes that connect
to CPU nodes in a system via InfiniBand (Courtesy of Maxeler Technologies)

Infrastructure (Fig. 2.3)
Multiple DataFlow engines can work together on a single modeling problem, by
splitting the domain in one dimension into multiple subdomains and assigning
each subdomain to a different engine. At the edge of each subdomain, engines
must exchange boundary data with their neighbors, and they can do this using the
direct MaxRing interconnect. Since the MaxRing is a point-to-point interconnect,
the communication bandwidth scales as the number of engines increases.

The Maxeler MAX2 FPGA card used has two Xilinx Virtex-5 FPGAs and 24GB
of onboard DRAM. MAX2 has a high-speed MaxRing link between cards that
enables multiple MAX2 cards to work together to achieve the 70Hz bandwidth
objective.

Relevance and Details
Finite difference is the most commonly used numerical method for solving partial
differential equations such as the wave equation. Explicit FD is an elegant and reg-
ular algorithm that affords efficient implementation within the DataFlow paradigm
especially for the geosciences, medical imaging, and physics simulations.

Application and Results
The performance of the MAX2 system is compared to a CCC software version on
a cluster with 32 3GHz X86 cores communicating via MPI over InfiniBand. The
maximum performance of the accelerated node is equivalent to nearly 2000 CPU
cores: one MAX2 card provides the equivalent performance of over 200 CPU cores.
[Pell2014]
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Characteristics
DataFlow computing can deliver orders-of-magnitude improvements in space and
power consumption for a wide range of applications; and DataFlow compute
engines can be balanced with other kinds of compute resources in a cluster
environment (such as CPUs and storage). The benefits that can be seen show
considerable promise for achieving the potential of exascale computing.

2.2.4.2 Example 2: An Implementation of the Acoustic Wave Equation
on FPGAs [Nemeth2008]

Classification #2 – Numerical analysis, modeling, and simulation toolbox
Subclassification – A set of algorithms (framework) for a specific application
Applications/algorithms – The acoustic forward modeling application, 3D finite

difference

FPGA chips are utilized as coprocessors in a PCI Express configuration to accel-
erate an acoustic isotropic modeling application. The acoustic forward modeling
application in consideration is 3D finite difference, with 4th-order in time and 12th
order in space, and uses single-precision floating-point arithmetic. The acoustic
variable density modeling code contains a kernel which consumes majority of the
compute cycles, indicating that the algorithm is a good candidate for acceleration.
The finite-difference operators are calculated to minimize the relative phase velocity
error over the bandwidth.

Optimization provides a peak speedup of over 160 times over a single core or
28–48 times speedup per node depending on multi-core scaling. It can be observed
that FPGA speedup increases further for problem sizes beyond 400 mesh, too.

2.2.4.3 Example 3: Finding Speedup in Parallel Processors [Flyn2008]

Classification #2 – Numerical analysis, modeling, and simulation toolbox
Subclassification – A set of related algorithms composed as a complete stand-alone

solution for a targeted set of applications
Applications/algorithms – Geophysical modeling, forward modeling a finite-

difference method

One particularly compute-intensive application is concerned with oil and gas
exploration. In this application, data is collected by first distributing a grid of sensors
over a large area. Then a sonic impulse is applied to the area and reflections are
recorded: frequency, amplitude, and delay at each sensor. Sonic impulse could be a
compressed air cannon (at sea) or explosives (on land).

A typical sea-based survey uses 30,000 sensors to record data (over a 120 dB
dynamic range). With a new sonic impulse occurring every 10 sec, each sensor was
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sampled at more than 2 kbps. Reflections of these impulses that the earth structures
reflect are detected by a sensor array. In this way, terabytes of resulting data are
created each day.

In this article, the authors propose an acceleration methodology based on FPGA
arrays. The methodology uses a comprehensive application analysis supported by
high-performance FPGA hardware. The analysis provides a DataFlow graph of the
application which is replicated in SIMD for multiple data strips (until limited by the
pin bandwidth), then pipelined (MISD) until circuit limited.

In this particular application, the FPGA solution shows the possibility of speedup
of over 300 times over an Intel Xeon solution.

2.2.4.4 Example 4: Anisotropic Reverse-Time Migration Using
Co-Processors [Liu2009]

Classification #2 – Image, video, text processing, and analysis toolbox
Subclassification – A particular single algorithm for a targeted set of applications
Applications/algorithms – Seismic imaging, anisotropic reverse-time migration

Coprocessors offer attractive acceleration opportunities to waveform-based
imaging and inversion applications in challenging exploration and production
environments. Unlike seismic forward modeling, the large amount of data
involved in seismic imaging and inversion can pose a significant challenge to
scalable acceleration. The authors provide and compare several computational
schemes to perform anisotropic reverse-time migration on two coprocessor
platforms: FPGAs and GPUs. The ongoing experiments so far indicate that
both platforms can potentially achieve high speedups using acceleration-friendly
schemes which minimize interruptions to computation from data movement and
storage.

FPGA-accelerated isotropic modeling reached a speedup rate of 20 times over 8
cores. Currently, accelerated isotropic wave propagation on FPGAs can go beyond
40 times (over 8 cores) or 200 times over a single core.

2.2.5 Examples from Exascale Science and Technology
Drivers Leaf #3: Meteorology

2.2.5.1 Example 1: Acceleration of a Meteorological Limited Area Model
with DataFlow Engines [Oriato2012]

Classification #2 – Machine learning and data mining toolbox
Subclassification – A set of algorithms (framework) for a specific application
Applications/algorithms – Hydrostatic limited area model derived from the BOLAM

model
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Due to hard deadlines inherent in predicting weather, climate and weather
modeling needs High Performance Computing. This modeling produces large data
volumes so it is ideally suited for DataFlow computation. In this paper, Diego Oriato
et al. demonstrate a DataFlow implementation of dynamic core of a meteorological
limited area model. The authors focused on dynamic core of a limited area model
(LAM) derived from the BOLAM model. It is a research-oriented hydrostatic LAM
developed by ISAC-CNR (Bologna, Italy) and parallelized using message passing
libraries and domain decomposition [Marrocu1998].

They presented results for a domain of 13,600 � 3,333 � 30 km with 620
thousand grid points. In order to satisfy requirements of higher spatial resolution
for a regional weather forecast, large domain dimension for global models, and very
long time integration typical of climate simulations, it was necessary to develop a
computationally fast version of the dynamic core of the hydrostatic model.

Essence
The paper gives an example of a possible standard procedure that could be taken
in transferring application from a control flow computer to a Maxeler DataFlow
engine. A complete version of a hydrostatic LAM is made up of three main
units: initialization, post-processing, and the meteorological model that numerically
solves the prognostic equations governing atmospheric circulation. The last part is
composed of two macro blocks: the dynamic core and the physical parameterization
routines. This part is the most complex and computationally expensive (especially
the radiation). The primitive equations are a set of nonlinear 3D partial differential
equations that approximate global atmospheric flow. They consist of equations for
the conservation of thermal energy, continuity, and momentum.

The whole work was divided in four phases.

– In Structural Analysis phase, time step computation was decomposed into five
logical blocks. Each block is structured as a 3D loop where longitude, latitude,
and altitude are, respectively, fast, medium, and slow dimensions.

– In Partitioning phase, the authors used Maxeler Parton toolset to analyze the CPU
time spent on each logical block of the application when run on an Intel Xeon
core. The toolset gave as a result a lot of relevant data. The authors decided to
migrate all the blocks to DFE because an acceleration of 100 times or more was
the goal. By moving all the computation to DFE, data transfer between CPU and
DFE was also minimized.

– In Transformation phase, DataFlow computing operations were implemented
spatially as part of a pipeline through which data was streamed rather than
each instruction being executed temporally on a new piece of data. For this
reason, a DataFlow algorithm is inherently parallel. The aim was therefore to
group all the computational logic inside a single loop and to replace the loop
with a deterministic data access pattern. This required an understanding of data
dependency among different parts of the algorithm.
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Fig. 2.4 Impact of increased modeling frequency on memory and computation costs. In wave
modeling, the necessary amount of computation increases with the fourth power of the wave
frequency [Pell2012]

– In Parallelization phase, an analysis was done how in detail to parallelize the
algorithm and the DataFlow. A DataFlow engine comprises memory coupled to
a chip implementing many DataFlow cores, as shown in Fig. 2.4. The DataFlow
cores are arranged in a pipeline which processes one item of data per clock cycle.
To facilitate parallelization part, the computation was converted to use fixed-
point arithmetic. Namely, fixed-point arithmetic is more efficient in terms of
silicon area per computer operation than the equivalent floating-point arithmetic.
Analysis was performed on each block of the algorithm to establish the optimal
fixed-point representations to maximize precision and avoid overflow, applying
scaling coefficients where prognostic variables exhibited high dynamic range.
The authors also chose to use one-to-one mapping of serial simulation per DFE,
giving the capability of running six independent simulations in parallel.

Infrastructure
The DataFlow application was run on a Maxeler MPC-C series DataFlow node
(eight Intel Xeon E5506@2.13GHz CPU cores and six MAX3 DataFlow engines
connected to the CPUs via PCI Express). Each MAX3 DFE utilizes a Xilinx Virtex-
6 SX475T FPGA to implement DataFlow cores and 48GB of memory. Maxeler’s
MaxCompiler development environment was used to implement the DataFlow
pipeline and integrate it into the original FORTRAN application.

No computation was executed on the CPU other than for initialization and post-
processing. All the variables needed during the computation were stored on the
DFE. Only the prognostic variables were initialized from CPU and transferred out
at the last time step of the simulation. The CPU controlled the time step loop by
triggering the DataFlow process and waiting for it to finish before repeating the
trigger.
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Application and Results
The speedups acquired by using a single DFE was 64 times compared to a single-
node single-core CPU and 12 times compared to a single-node 12-core CPU. When
MPC-C series node was used, the speedup was 381 times compared to a single-node
single-core CPU and 74 times compared to a single-node 12-core CPU.

Peak power usage of a MPC-C series node was measured to be around 900 W.
Considering a peak value of 400 W per Intel node and 74 twelve-core nodes, around
30 kW would be needed to match the performance of the DataFlow solution.

Characteristics
This is an example of how a good preparation and analysis done prior to the
migration process of an application can give really good results, not only in speedup
but also in power reduction.

2.2.6 Examples from Exascale Engineering and Innovation
Drivers Leaf #5: Oil Industry

2.2.6.1 Example 1: Surviving the End of Frequency Scaling
with Reconfigurable DataFlow Computing [Pell2011]

Classification #2 – Optimization toolbox
Subclassification – A set of algorithms (framework) for a specific application
Applications/algorithms – Common Reflection Surface (CRS) seismic trace stack-

ing, a fitness function

In this paper, besides presenting a very good example of a DFE usage in the oil
and gas industry, Oliver Pell et al. give an excellent overview of Maxeler FPGA
computer, of how the heterogeneous computing was the solution for frequency
crunch in CPU/GPU systems, how parallelism was built and could be used in multi-
and many-core systems (CPU/GPU), and finally how the only real available way
to exascale supercomputing that wasn’t at the same time devouring consumers of
electrical power was to use and to take advantage of capabilities of both the worlds –
control flow and DataFlow computers.

It is by no means suggested that DataFlow engines were suitable to replace the
conventional CPU entirely. They should be used to increase the performance of
control flow processors. Most of the lines of code in a program will still run on
the CPU. Only computationally intensive components of an application should be
offloaded to a custom DataFlow engine (Fig. 2.5). A typical Maxeler HPC compute
node consists of some number of CPUs coupled to some number of FPGAs; for
example, one current standard 1U node has 12 Intel Xeon CPU cores, 4 Xilinx
Virtex-6 FPGAs, and 100–400GB of RAM split between the CPUs and FPGAs.
Large RAM capacities are important for many of the target applications, which
process very large data volumes.
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Fig. 2.5 A CPU coupled to a custom FPGA DataFlow engine (Courtesy of Maxeler Technologies)

The main challenge in the practical exploitation of DataFlow engines is to
program them. Unlike writing code for a CPU where the programmer is creating
a set of instructions that will be executed by existing function units, to create a
DataFlow engine, the programmer must actually construct a circuit that represents
the application. However, this does not need to be an electrical engineering
process of circuit design – Maxeler has developed a programming tool called
MaxCompilerRT that allows software engineers to implement DataFlow engines
for an application using a high-level software environment.

Essence
The oil and gas industry is one of the major industry consumers of HPC computing.
The world has been exploiting reserves of “the black gold” for more than 150
years, and after depleting the existing reservoirs, the new ones have to be found. In
order to find them, the scientists need to make images of the subsurface. To create
those images, scientists perform acoustic experiments on the earth’s surface. A low-
frequency source is activated and the reflections from the different subsurface layers
are recorded by thousands of sensors. This experiment is repeated many times, and
it creates hundreds of terabytes of data. To process this data, thousands of compute
nodes are used and the processing lasts a very long time.

Infrastructure
CRS stacking is an algorithm used to process seismic survey data to compute zero-
offset traces. CRS equation needs input data given in 8 parameters to compute
zero-offset traces. Before it can compute the stack, the stacking application must
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Fig. 2.6 Percentage of
computation time taken in
each function in the original
software [Pell2011]

determine good values for the eight parameters by performing a search in 8-
dimensional space. A fitness function is evaluated at each point in the space to
determine the quality of the current parameter set.

The control flow architecture execution time to compute CRS for a typical survey
can be in the order of 1 month using 1000 CPU cores. As presented in Fig. 2.6, this
runtime is predominately spent on the computation of the Semblance (fitness) and
Traveltime. The semblance function computes on a window of data values from that
location, while the travel time function calculates the location that should be read
from a data trace based on the eight CRS parameters.

Application and Results
With both semblance and traveltime computation done on the FPGA, over 99 %
of the total run time from the CPU was accelerated. The final implementation
gave a speedup of approximately 230 times compared to a single core for land
datasets and 190 times for marine datasets, what was approximately 30 times greater
performance/Watt.

Characteristics
Definitely a lot of sciences and industries can successfully use heterogeneous
computing architecture. The best results, up to now, have been achieved in the fields
of finances and oil and gas industries. This is an example of how huge speedups
such architecture can offer.

2.2.6.2 Example 2: Beyond Traditional Microprocessors for Geoscience
High-Performance Computing Applications [Lindtjorn2011]

Classification #2 – Optimization toolbox
Subclassification – A set of algorithms (framework) for a specific application
Applications/algorithms – Reverse-time migration
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The oil and gas industry is a major user of high-performance computing, and
geoscience computational cycles are dominated by kernels that are relatively few
and well defined. Modeling and computation are taking an unprecedented role in
the search for, and the extraction of, energy sources like oil and gas.

The oil and gas industry already uses high-performance computing (HPC), but
it’s still unclear how conventional HPC technologies can meet the demands of
tomorrow’s algorithms. In this article, authors described the acceleration of the
most demanding applications in this domain using field-programmable gate array
(FPGA) technology. These efforts helped avoid some of the performance-scaling
issues frequently encountered with CPUs and GPUs.

This approach delivered speedups of 20–70 times compared to a conventional
HPC node.

2.2.6.3 Example 3: Acceleration of Anisotropic Phase Shift Plus
Interpolation with DataFlow Engines [Tomas2012]

Classification #2 – Optimization toolbox
Subclassification – A set of algorithms (framework) for a specific application
Applications/algorithms – Phase Shift Plus Interpolation method

Although time-domain depth migration techniques have been successfully ported
to run on modern hardware accelerators, their ultimate obstacle is the I/O overhead
present during the imaging step. Frequency-domain depth migration algorithms
overcome this limitation and can exploit the full potential of new computing
technologies. In particular, this implementation of Phase Shift Plus Interpolation
(PSPI) method is characterized by fast running time, good-quality results under low
signal-to-noise ratio conditions, and excellent results for steep dips.

The measurements indicated that a DataFlow approach could achieve high
speedups despite larger and larger computational domains, increased complexity
of the anisotropic approach, and the I/O overhead during angle-gathers calculation.
When MAX2 and MAX3 systems were compared to a FORTRAN software version
on a node with 8 Intel Xeon 2.6GHz cores parallelized using MPI, the speedup was
from 13 to 34 times.

2.2.6.4 Example 4: Accelerating Large-Scale HPC Applications Using
FPGAs [Dimond2011]

Classification #2 – Optimization toolbox
Subclassification – A particular single algorithm for a targeted set of applications
Applications/algorithms – Wave propagation using 3D finite difference

The key to achieving the best performance in FPGA accelerators, while main-
taining accuracy, is optimization of arithmetic units and data types to suit the
range/precision at each point in the computation. The flexibility of FPGA to
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implement nonstandard arithmetic, combined with a DataFlow programming model
that instantiates a separate unit for each arithmetic operator in the code, provides
a wide design space. As such, FPGA computing offers significant opportunity for
arithmetic research into “large-scale” HPC applications, where there is a chance to
move away from standard IEEE formats, either to improve precision compared to
the CPU version or to increase speed.

The key to performance in stacking on the FPGA is to maximize reuse of each
point loaded from DRAM; otherwise, the available DRAM bandwidth into the chip
is the limit to performance. The degree of reuse of each input data point changes
with varying the number of output data points computed in parallel. When doing
64 parallel searches, the degree of reuse of each input data point, while varying
the number of output data points computed in parallel, is high enough so that the
application is no longer memory bound.

The authors used the flexibility of FPGA arithmetic to trade off precision and
performance in different versions of the application. A full-precision version, used
for pricing accurate to 108, gave a 31 times speedup over an 8-core Xeon E5430
server.

2.2.6.5 Example 5: Accelerating 3D Convolution Using Streaming
Architectures on FPGAs [Fu2009]

Classification #2 – Optimization toolbox
Subclassification – A set of algorithms (framework) for a specific application
Applications/algorithms – 3D convolution

In this paper, Haohuan Fu et al. investigate FPGA architectures for accelerating
applications whose dominant cost is 3D convolution, such as modeling and reverse-
time migration (RTM). The authors explore different design options, such as
using different stencils, fitting multiple stencil operators into the FPGA, processing
multiple time steps in one pass, and customizing the computation precisions. The
exploration reveals constraints and trade-offs between different design parameters
and metrics.

They are using two major FPGA advantages over other computation platforms:
(1) streaming computation architecture and (2) customizable number representa-
tions. They experimented with processing different numbers of time steps in one
pass and got different speedups, and the same happened when different floating-
point precisions were used.

The experiment results showed that the FPGA streaming architecture provided
great potential for accelerating 3D convolution and could achieve a speedup of up
to two orders of magnitude. By dividing the array into two parts and computing
in two FPGAs concurrently, speedups of up to 55 times and up to 47 times were
achieved.
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2.2.6.6 Example 6: Finite-Difference Wave Propagation Modeling
on Special-Purpose DataFlow Machines [Pell2013]

Classification #2 – Numerical analysis, modeling, and simulation toolbox
Subclassification – A particular single algorithm for a targeted set of applications
Applications/algorithms – 3D finite-difference calculations

Modeling wave propagation through the earth is an important application in
geoscience. In this paper, Oliver Pell et al. present a framework for wave propagation
modeling on special-purpose hardware, which dramatically improves the appli-
cation performance compared to conventional CPUs. They use custom hardware
platforms consisting of a mix of x86 CPUs and DataFlow engines connected by
high bandwidth communication links.

The application-specific DataFlow engines run at hundreds of MHz with massive
parallelism and deliver high performance/Watt, meaning that they are up to 30
times more energy efficient than conventional CPUs. The power efficiency of this
approach suggests that DataFlow computing may have a key role to play in the
improvements in power efficiency necessary to reach exascale computing.

2.2.7 Additional Research Papers

In the last couple of years, many postgraduate students in countries of Southern
Europe have been doing intensive experimenting with porting algorithms and
applications to Maxeler DataFlow engines. A few of their research papers were
published in a special July 2013 issue “Maxeler Super Computer Related Research”
of IPSI Transaction on Internet Research magazine.

The examples of Exascale Fundamental Drivers: Mathematics (leaf #2) can be
found in [Stanojevic2013], [Rankovic2013], [Bezanic2013], and [Sustran2013].

The example of Exascale Science and Technology Drivers: Meteorology (leaf
#3) can be found in [Ivkovic2013].

The examples of Exascale Science and Technology Drivers: Physics (leaf #4)
can be found in [Stojanovic2013] and [Korolija2013].
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Chapter 3
An Example Application: Fourier Transform

3.1 Introduction

In this chapter we are going to show the process of accelerating an application and
measuring achieved acceleration on one simple example. The example used in this
chapter is acceleration of the Cooley-Tukey algorithm implemented in CCC.

3.1.1 About the Cooley-Tukey Algorithm

The Cooley-Tukey algorithm is the most commonly used algorithm for calculating
the fast Fourier transform. The algorithm was published in 1969 by J. W. Coo-
ley and John Tukey in the paper “The Fast Fourier Transform and Its Appli-
cations” [Cooley1969]. The algorithm is based on divide and conquer design
paradigm and works by calculating the discrete Fourier transform of the entire input
sequence using the discrete Fourier transforms of the subsequences of the input
sequence.

3.1.2 About the Fast Fourier Transform Algorithm

Algorithms for calculating the fast Fourier transform are used to calculate the
discrete Fourier transform of a given input sequence. Discrete Fourier transform
transforms discrete input signal from the time domain to the frequency domain. Fast
Fourier transform is used in many different areas including digital signal processing,
telecommunications, and sound signal analysis.

Time complexity of the fast Fourier transform algorithms on standard
microprocessor systems, with the John von Neumann architecture, is O(N logN).
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The accelerated algorithm shown in this chapter works in time complexity O(logN).
Although time complexity of the accelerated algorithm is much lower than the
time complexity of standard algorithms, the reader should be aware of the fact
that accelerating applications using Maxeler DFE technology introduces some
differences, when compared to traditional John von Neumann programming model.
On one side, the reader should know that when using Maxeler DFE to accelerate
an application, some time is needed to transfer the data to and from the DFE.
On the other hand, Maxeler DFE systems have the advantage that they could
generate results of the computation on each clock cycle, after the period of
initial latency, by making a hardware pipeline. This characteristic allows suitable
applications to achieve high speedups when accelerated using a Maxeler DFE
system.

3.1.3 Overview of Different Fast Fourier Transform Algorithms

Other than the Cooley-Tukey algorithm, there are many other algorithms for
calculating the fast Fourier transform (FFT), like the prime-factor FFT algorithm,
Bruun’s FFT algorithm, Reader’s FFT algorithm, Winograd’s FFT algorithm, and
Bluestein’s FFT algorithm. These algorithms use different mathematical methods
to calculate the fast Fourier transform. Used mathematical methods vary from
number theory via numerical mathematics to graph theory. All these algorithms
have in common that their time complexity is O(N logN) when running on a CPU.
Although there is no evidence that it is impossible to construct a faster algorithm
than the one with the time complexity O(N logN), faster algorithm has not yet been
constructed.

Performance comparison of a large number of publicly available algorithms
used to calculate the fast Fourier transformation was done by Matteo Frigo and
Steven G. Johnson [Frigo2014] from Massachusetts Institute of Technology, USA.
In their experiments, they used the implementations of various authors, written
over a time period longer than 35 years. Experiments were executed on different
types of computer architectures. It should be noted that Frigo and Johnson, in
their experiments, used only one processor core in multiprocessor systems. The
results of their experiments are publicly available and will be used in this chapter
to compare the performance obtained using the Maxeler MAX3 DFE System with
other publicly available implementations. Figure 3.1 is a graphical representation of
data from one of Frigo’s and Johnson’s experiments.

Figure 3.1 shows a comparison between performances of different algorithms for
calculating the fast Fourier transform of complex input sequences in single precision
depending on the length of the input sequence. The experiment was carried out on
the Intel Xeon 3.60 GHz Pentium 4 (Prescott) microprocessor. Scale of the Y axis,
which measures the speed of the algorithm, is expressed in MFlops. MFlops in this
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Fig. 3.1 Graphical representation of data from one of the experiments done by Matteo Frigo and
Steven G. Johnson

case do not represent the number of floating point operations per second; instead
MFlops value is obtained from the average execution speed of the algorithm using
the following formula:

mflops D 5 N log2.N /= .time for one FFT in microseconds/

(Source: http://www.fftw.org/speed/Pentium4-3.60GHz-icc)

3.2 The Radix 2 Cooley-Tukey Algorithm

The radix 2 Cooley-Tukey algorithm consists of the following steps:

Step 1 Input sequence is divided into two equal subsequences. Elements of the
input sequence with even indexes form first subsequence and elements with odd
indexes form second subsequence.

Step 2 Calculate discrete Fourier transform for the two subsequences.
Step 3 Based on the discrete Fourier transform of the subsequences, calculate the

discrete Fourier transform of the entire input sequence (Fig. 3.2).

http://www.fftw.org/speed/Pentium4-3.60GHz-icc
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Fig. 3.2 Graphical illustration of pipelined data processing in the radix 2 algorithm. The illustra-
tion on this figure shows data pipeline for calculating the fast Fourier transform using the radix
2 algorithm. Input sequence shown in the illustration has eight points. Pipeline consists of three
phases (Phase 0, Phase 1, and Phase 2). Number of stages is log2(N), where N is the number of
points in the input sequence

3.3 Mathematical Background

Discrete Fourier transform of the entire input sequence can be calculated from
the discrete Fourier transform of even and odd subsequences in the following
way:
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where k is in range from 0 to n � 1.
First sum in the last expression represents the discrete Fourier transform of the

even subsequence, while second sum represents the discrete Fourier transform of
the odd subsequence. If we mark the first sum as Ek, second sum as Ok, and e�2� i/N

as W k
N , we get the following formula:
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Xk D Ek C W k
N Ok

Because of the periodicity properties of the discrete Fourier transform, the following
two equations are true:

EkC N
2

D Ek

OkC N
2

D Ok

Because of the properties of the Euler formula, the following two equations are true:

e� 2�i
N

.kCN=2/ D �e� 2�i
N k

W k
N D �W k

N

Combining previous equations with the formula for calculating the discrete Fourier
transform we get the final formula that allows us to implement algorithm that we
will use to calculate the discrete Fourier transform of the input sequence from it’s
even and odd subsequences.

Xk D Ek C W k
N Ok; k D 0 : : : N=2

XkC N
2

D Ek � W k
N Ok; k D 0 : : : N=2

3.4 Pseudo Code of the Radix 2 Cooley-Tukey Algorithm

Based on the formula derived in the last chapter, it is easy to come up with the
following recursive algorithm for calculating discrete Fourier transform.
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Fig. 3.3 Graphical illustration of the radix 2 algorithm. This illustration shows how the radix
2 algorithm works for the input sequence of eight points. Input sequence is divided into two
subsequences. The first subsequence consists of the elements with even indexes; the second
subsequence consists of the elements with odd indexes. Illustration shows how the discrete
Fourier transform of the entire sequence is calculated from the discrete Fourier transforms of its
subsequences

The above pseudo code is for the radix 2 Cooley-Tukey algorithm (Fig. 3.3).

3.5 Original Implementation

Original implementation of the Cooley-Tukey algorithm is iterative in-place radix
2 implementation. The implementation has optimal time complexity of O(N logN),
where N is the number of points in the input sequence. Space complexity of the
original implementation is O(1). Code of the original implementation is written in
CCC and is given in Sect. 3.12 of this book.

3.5.1 In-Place Implementation of the Cooley-Tukey Algorithm

In-place algorithms have space complexity O(1). Constant memory consumption
is achieved by overriding values of the input sequence with intermediate and final
results. To implement Cooley-Tukey algorithm, in-place input or output sequence
needs to be rearranged in bit reverse order.
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Bit reverse order of original sequence is generated by swapping the place of
elements that have reverse indexes to each other in binary format, for example, bit
reverse order of sequence 0, 1, 2, 3, 4, 5, 6, 7 is 0, 2, 4, 6, 1, 3, 5, 7.

The following snippet of code reorders the sequence in bit reverse order:

for (i D 0; i < n; iCC) f
j D bit_reverse(i);

if (i > j) f
swap(real[i], real[j]);

swap(imag[i], imag[j]);

g
g

3.6 Analysis of the Accelerated Version of the Cooley-Tukey
Algorithm

Similar to the original CPU implementation of the Cooley-Tukey algorithm,
accelerated version consists of rearranging the order of elements in input sequence
to bit reverse order and the radix 2 algorithm.

MaxJ code of the kernel for calculating the fast Fourier transform using the radix
2 algorithm is given in the Sect. 3.12 of this book (Figs. 3.4 and 3.5).

3.7 Implementational Details

The code of the kernel for calculating the fast Fourier transform accepts parameter N
that represents the number of points in the input sequence. Based on this parameter
the end bitstream design, design that is going to be used on FPGA chip, is generated
for calculating the fast Fourier transform.

This kernel has two input and two output data streams. These two streams are
used for transferring real and imaginary parts of the input sequence points to and
from the DFE. These streams are of type arrayType that is defined in the following
way:

DFEType floatType D dfeFloat(8, 24);

DFEArrayType < DFEVar > arrayType D
new DFEArrayType < DFEVar >(floatType, n);

Coefficients Wk
N are not calculated on the DFE; instead, they are calculated

during bitstream compilation and are used as hardware constants.
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Fig. 3.4 Graphical
illustration of the manager of
the Cooley-Tukey radix 2
algorithm
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Fig. 3.5 Graphical illustration of kernel doing the fast Fourier transform calculation. This figure
was generated using maxRenderGraphs command. Command maxRenderGraphs is part of the
software package that is delivered with Maxeler compiler [Maxeler2015]. The illustration repre-
sents DataFlow graph for calculating the parallel radix 2 Cooley-Tukey algorithm for calculating
the fast Fourier transform of the input sequence with four input points

3.7.1 Using DFE for Calculating the Fast Fourier Transform
from C\CCC Code

MaxCompiler generates header file FFT.h that contains the following method:

FFT(

int number_of_input_sequences,

float *imag_in,

float *real_in,

float *imag_out,

float *real_out

);

Calling this method from C\CCC code will send data from the CPU to the DFE,
do calculation of fast Fourier transform on the DFE, and send results back to the
CPU. For MaxCompiler to generate header file FFT.h, SLiC option needs to be
turned on.
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3.8 Benchmarking Program

Benchmarking program generates random input sequences and measures and
compares the time of execution for both the original and accelerated implementation
of Cooley-Tukey algorithm. Benchmarking program also checks the correctness
of the output of the accelerated algorithm by comparing it to the output of the
original CPU implementation for the same input sequence. If the user wants
benchmarking program to print out generated input sequences and calculated fast
Fourier transforms of those sequences, the user should uncomment the following
line in the benchmarking program CCC code and recompile it:

#define PRINT_OUTPUT

Benchmarking program accepts a number of consecutive fast Fourier transforms
that will be calculated as a parameter from the command line.

Entire CCC code of the benchmarking program is given in the Sect. 3.12 of this
book.

3.9 Performance Measurements of the Accelerated
Algorithm and Analysis of the Results

3.9.1 Assumptions and Limitations

Results of all the measurements shown in this chapter are measured on MAX3
system (MAX3424A card) using only one DFE. On this system we were able
to synthesize the hardware for calculating the fast Fourier transform of the input
sequence that has the maximum length of 32 input points.

All results of the fast Fourier transform algorithm performance on multiprocessor
systems, shown in this chapter, are measured using only one processor core.

3.9.2 Types of Experiments

In our experiments we varied the size of the input sequence and the number of
consecutive calculations of the fast Fourier transform. We measured the execution
time of the original and accelerated algorithm for 100, 1,000, 10,000, 100,000,
1,000,000, 10,000,000 consecutive calculations of the fast Fourier transform for the
input sequences with lengths of 8, 16, and 32 points.
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Based on the results of experiments, the following graphs have been generated:

– Graphs that show performance of accelerated implementation compared with
other publicly available implementations of various fast Fourier transform
algorithms and implementations

– Graphs that show dependency between the total time needed to calculate consec-
utive fast Fourier transforms and the total number of consecutive transformations
calculated

– Graphs that show achieved acceleration, speedup compared to original code, for
the input sequence of lengths 8, 16, and 32 points.

Acceleration is calculated using the following formula:

� D Tcpu

Tmax

Tcpu represents time it takes for an experiment to complete on CPU, and Tmax

represents time it takes for the same experiment to complete on Maxeler DFE.

3.9.3 Comparison of the Performance of the Accelerated
Algorithm with Other Publicly Available Implementations

In this experiment we compared average run time needed to calculate 10,000,000
consecutive fast Fourier transform of accelerated algorithm with average time of
best publicly available implementations of the fast Fourier transform algorithms
running on the following machines:

• IBM QS20 Cell Blade
• PlayStation 3
• 3.60 GHz Intel Xeon Pentium 4 (Prescott)

The results of the experiments are shown in following three graphs (Graphs 3.1,
3.2, and 3.3). Graphs are showing the 30 fastest implementations and their average
time of calculating the fast Fourier transform for the input sequence of lengths 8,
16, and 32 points.
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Graph 3.1 Average execution time in seconds of the best publicly available algorithms for
calculating the fast Fourier transform on different computer architectures for the input sequence of
eight points. The graph shows that implementation accelerated using Maxeler DFE has the shortest
average execution time when compared with other publicly available implementations
Labels on y-axis are in the following format:
<details about the machine that test was run on>:<algorithm/implementation>:sc(ijo)(fjb)
s – algorithm works in single precision
c – algorithm is performing complex fast Fourier transform
i – algorithm works in-place
o – algorithm does not work in-place
f – forward transformation
b – backward transformation
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Graph 3.2 Average execution time in seconds of the best publicly available algorithms for
calculating the fast Fourier transform on different computer architectures for the input sequence of
16 points. The graph shows that implementation accelerated using Maxeler DFE has the shortest
average execution time when compared with other publicly available implementations
Labels on y-axis are in the following format:
<details about the machine that test was run on>:<algorithm/implementation>:sc(ijo)(fjb)
s – algorithm works in single precision
c – algorithm is performing complex fast Fourier transform
i – algorithm works in-place
o – algorithm does not work in-place
f – forward transformation
b – backward transformation
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Graph 3.3 Average execution time in seconds of the best publicly available algorithms for
calculating the fast Fourier transform on different computer architectures for the input sequence
of thirty-two points. The graph shows that implementation accelerated using Maxeler DFE has the
shortest average execution time when compared with other publicly available implementations
Labels on y-axis are in the following format:
<details about the machine that test was run on>:<algorithm/implementation>:sc(ijo)(fjb)
s – algorithm works in single precision
c – algorithm is performing complex fast Fourier transform
i – algorithm works in-place
o – algorithm does not work in-place
f – forward transformation
b – backward transformation

3.9.3.1 Data Preparation

The bash script for filtering files with the raw data about average execution speed
of publicly available implementations of the fast Fourier transform on different
machines is given in the Sect. 3.12 of this book. The script filters and converts the
data to the format that will be used by the python script for drawing graphs. Files
with the raw data are generated by Matteo Frigo and Steven G. Johnson [Frigo2014]
as part of their research.

The bash, data preparation, script needs to be executed from the directory
containing .speed files. As the result of the script execution for every .speed file
new .filtered.speed file will be generated, also the file named all.filtered.speed will
be generated.
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3.9.4 Comparison of the Performance of Accelerated
Algorithm with Original Implementation

The next seven graphs (Graphs 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, and 3.10) show the
comparison of performance of the accelerated algorithm compared to the original
CPU implementation. All graphs that show execution time are given in two forms.
The first form shows the execution time on a linear scale, while the second form
shows execution time on a logarithmic scale. The second form is more suitable for
observing some phenomena.

Graph 3.4 Dependency of achieved acceleration from the number of points in the input sequence.
The graph shows acceleration of the original CPU Cooley-Tukey algorithm implementation
achieved using the accelerated Maxeler DFE implementation. The experiment used to generate
data consisted of 10,000,000 consecutive calculations of the fast Fourier transform on randomly
generated input sequences. From the graph we can observe that the biggest acceleration is achieved
when the length of the input sequence is 32 points; in that case the accelerated algorithms achieve
acceleration of 28 times
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3.9.4.1 Results of Experiments for Input Sequence of Eight Points

Execution time

Graph 3.5 Total execution time of consecutive fast Fourier transform calculations for the input
sequences of length 8 in seconds depending on the number of consecutive transformations
performed for the accelerated and original implementations. The left graph is using a linear scale,
while the right graph is using a logarithmic scale for showing execution time on y-axis. From the
right graph, it could be observed that the accelerated implementation is slower than the original
one if the number of consecutive calculations is less than 10,000. The reason for this is the time
needed to configure Maxeler card and initial latency while the data starts streaming through the
pipeline. For the 10,000 consecutive calculations, execution time of both implementations is the
same. For more than 10,000 consecutive calculations, the accelerated implementation achieves
faster execution time than the original implementation. The conclusion of this observation is that
the accelerated version, for the case of the eight-point input sequence, should only be used if we
want to perform more than 10,000 consecutive calculations
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Acceleration

Graph 3.6 Graph of achieved acceleration and of the accelerated implementation of the
Cooley-Tukey algorithm compared to the original implementation, depending on the number of
consecutive fast Fourier transformation calculations for the input sequences of 8 points. From the
graph, we could observe that with the increase of the number of consecutive fast Fourier transform
calculations performed, there is increase in the achieved acceleration. Acceleration is smaller than
1 for less than 10,000 consecutive calculations. For the 10,000 calculations, the acceleration is 1,
while for more than 10,000 consecutive calculation, the acceleration is greater than 1
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3.9.4.2 Results of Experiments for Input Sequence of 16 Points

Execution time

Graph 3.7 Total execution time of consecutive fast Fourier transform calculations for the input
sequences of length 16 in seconds depending on the number of consecutive transformations
performed for the accelerated and original implementations. The left graph is using a linear scale,
while the right graph is using a logarithmic scale for showing execution time on y-axis. From the
right graph, it could be observed that the accelerated implementation is slower than the original
one if the number of consecutive calculations is less than 10,000. The reason for this is the time
needed to configure Maxeler card and initial latency while the data starts streaming through the
pipeline. For the 10,000 consecutive calculations, the execution time of both implementations is
the same. For more than 10,000 consecutive calculations, the accelerated implementation achieves
faster execution time than the original implementation. The conclusion of this observation is that
the accelerated version, for the case of the eight-point input sequence, should only be used if we
want to perform more than 10,000 consecutive calculations
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Acceleration

Graph 3.8 Graph of achieved acceleration and of the accelerated implementation of the
Cooley-Tukey algorithm compared to the original implementation, depending on the number of
consecutive fast Fourier transformation calculations for the input sequences of 16 points. From the
graph, we could observe that with the increase of the number of consecutive fast Fourier transform
calculations performed, there is increase in the achieved acceleration. Acceleration is smaller than
1 for less than 10,000 consecutive calculations. For the 10,000 calculations, the acceleration is 1,
while for more than 10,000 consecutive calculation, the acceleration is greater than 1
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3.9.4.3 Results of Experiments for Input Sequence of 32 Points

Execution time

Graph 3.9 Total execution time of consecutive fast Fourier transform calculations for the input
sequences of length 32 in seconds depending on the number of consecutive transformations
performed for the accelerated and original implementations. The left graph is using a linear scale,
while the right graph is using a logarithmic scale for showing execution time on y-axis. From the
right graph, it could be observed that the accelerated implementation is slower than the original
one if the number of consecutive calculations is less than 1,000. The reason for this is the time
needed to configure Maxeler card and initial latency while the data starts streaming through the
pipeline. For the 1,000–10,000 consecutive calculations, execution time of both implementations is
the same. For more than 10,000 consecutive calculations, the accelerated implementation achieves
faster execution time than the original implementation. The conclusion of this observation is that
the accelerated version, for the case of the eight-point input sequence, should only be used if we
want to perform more than 10,000 consecutive calculations
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Acceleration

Graph 3.10 Graph of achieved acceleration and of the accelerated implementation of the
Cooley-Tukey algorithm compared to the original implementation, depending on the number of
consecutive fast Fourier transformation calculations for the input sequences of 32 points. From the
graph, we could observe that with the increase of the number of consecutive fast Fourier transform
calculations performed, there is increase in the achieved acceleration. Acceleration is smaller than
1 for less than 1,000 consecutive calculations. For the 1,000–10,000 calculations, the acceleration
is 1, while for more than 10,000 consecutive calculations, the acceleration is greater than 1

3.9.5 Graph Drawing Script

The script for drawing graphs shown in this chapter is written in Python 2.7. In order
to execute the script, Python package matplotlib [Hunter2012] needs to be installed.
Matplotlib is a free package that could be installed with (e.g., on OSX) pip install
matplotlib command. The package allows drawing of graphs in a similar way as
if using MATLAB. The results of the experiments needed to generate graphs are
embedded into the source code of the graph drawing Python script.

The entire graph drawing script is given in the Sect. 3.12 of this book.
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3.9.6 Results Overview and Performance Predictions

From the results of the experiments that measured the time needed to calculate
consecutive fast Fourier transformations, we can come to the conclusion that
some number of consecutive calculations is needed for the accelerated, Maxeler,
implementation to be faster than the original, CPU, implementation. The results
show that the number of consecutive calculations needed to achieve acceleration
decreases with the increase of the length of the input sequence. This is expected
as the accelerated implementation has lower time complexity than the original
implementations.

We can also notice that for the fixed length of the input sequence, the acceleration
increases with the increase of the number of calculations performed.

3.9.7 Analysis of the Bottlenecks

The performance predictions are not true if there is a bottleneck in the system.
List of possible bottlenecks:

• Transfer of data to and from the Maxeler card cannot keep up with the speed of
data processing on the card.

– In this case bottleneck is in the I/O controller.
– Amount of data that should be transferred to and from the Maxeler card

increases linearly with the length of the input sequence.

• The Maxeler card does not have enough hardware resources to synthesize the
Cooley-Tukey radix 2 algorithm.

– In this case bottleneck is in the number of hardware resources available on the
Maxeler card.

– The number of needed hardware resources increases with dependence O(N
logN), where N is the length of the input sequence.

Explanation of the Hardware Resource Usage of the Cooley-Tukey Radix
2 Algorithms: Let N be the number of points in input sequence. The radix 2
algorithm will have logN phases. Each phase needs O(N) hardware resources to
be implemented. This yields that the total number of hardware resources needed to
implement the radix 2 algorithm is O(N).

3.10 Possible Modifications and Improvements

Initial latency of calculation can be reduced by using the radix r algorithm with r
bigger than 2. The downside of this approach is more complicated bitstream using
more of the limited hardware resources. Often the initial latency is of no significant



3.11 Conclusion 95

importance; instead, the goal is to maximize the throughput of the system, in our
case the number of fast Fourier transform calculations in one unit of time, and to
minimize the resource utilization.

Because of the limited hardware resources on one Maxeler card, there is the
limitation on the input sequence length for which hardware implementation of radix
2 algorithm could be synthesized. This limitation could be overcome by: i) splitting
the fast Fourier transform calculation into multiple phases where the output of one
phase is the input of the next phase and ii) implementing these phases as different
kernel. This approach could be used for calculating the fast Fourier transform of
larger input sequences using more than one DFE (Maxeler card).

3.11 Conclusion

The performed experiments have shown that the accelerated implementation has
the expected performance and that it produces equivalent results to the original
implementation. The performance of accelerated application has surpassed the per-
formance of other publicly available implementation of the fast Fourier transform.
Because of the limited number of hardware resource on the Maxeler card used
for our experiments, we were not able to generate a bitstream for calculating fast
Fourier transform of input sequences with more than 32 points. On better Maxeler
machines, like MAX4 (Maia or Coria), it could be possible to generate a bitstream
that calculates the fast Fourier transform of longer input sequences.

Because of the properties of radix 2 algorithm, it is possible to make a hybrid
solution that would use both CPU and Maxeler DFE for calculating fast Fourier
transform. The CPU part of the application would divide the problem into smaller
problems that would, depending on their size, either be solved on the DFE or divided
again.

It is expected, and performed experiments confirm, that there is increase in
achieved acceleration with the increase in input sequence number of elements.
Acceleration is increasing because the initial latency of the DFE implementation is
increasing slower than the latency of the CPU implementation. Also when perform-
ing multiple calculations, after the period of initial latency, the DFE implementation
produces results on every clock cycle, while the CPU implementation has the same
latency for calculating every result.

To achieve speedup using the accelerated implementation, it is necessary to
perform multiple consecutive calculations of the fast Fourier transform. The number
of consecutive calculations needed to perform in order to achieve acceleration
compared to the original CPU implementation depends on the number of points
in the input sequence. The method for determining this number is shown in
section “Comparison of the Performance of Accelerated Algorithm with Original
Implementation.
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3.12 Original Implementation Code

3.12.1 MaxJ Code of Kernel that Calculates Fast Fourier
Transform
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3.12.2 MaxJ Manager Code of Cooley-Tukey Radix 2
Algorithm
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3.12.3 MaxJ Manager Code of Bit Reverse Kernel
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3.12.4 CCC Code of Radix 2 In-Place Cooley-Tukey
Algorithm
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3.12.5 CCC Benchmark Code



3.12 Original Implementation Code 103



104 3 An Example Application: Fourier Transform

3.12.6 Script for Filtering Raw Data About Average Execution
Speed of the Experiments

#!/bin/bash

grep -E ‘sc.. ((8)j(16)j(32)) “find . -name “*.speed” ! -name

“*filtered.speed” -maxdepth 1 -print‘j awk ‘f
sub(/.speed/, “”); print $1, $2, $3, $5g’
> ‘all.filtered.speed’

for i in ‘find . -name “*.speed” ! -name “*filtered.speed”

-maxdepth 1 -print‘; do

grep -E ‘sc.. ((8)j(16)j(32)) ‘“$i” j awk ‘fprint $1, $2,

$3, $5g’ > ‘echo “$i” j sed ‘s/speed/filtered.speed/’‘

done

3.12.7 Python Script for Automatic Graph Generation
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Chapter 4
Using the WebIDE

4.1 The WebIDE System Overview

This chapter utilizes the methodology that compares one figure with one thousand
words. Therefore, the material to follow is presented via figures, graphs, pseudo
code, and real code in a way which is without redundancy, but is perfectly
understood by programmers (Fig. 4.1–4.17).

4.2 Installation Instructions

4.2.1 WebIDE Dependencies

To successfully install WebIDE, the following programs need to be installed first:

1. MaxCompiler
2. Python 2.7
3. Shellinabox

Python 2.7 and MaxCompiler should be preinstalled on MaxWorkstation. You
might need to install Python development headers if you want to use WebIDE with
Gunicorn web server.

To install Python development headers on CentOS, run the following command
as a root user:

yum install python-devel

To install shellinabox on CentOS run following command as a root user:

yum install shellinabox

© Springer International Publishing Switzerland 2015
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Fig. 4.1 Overview of the system structure; the system is split into two main components: (1)
server component and (2) client component. Components communicate to each other using
RESTful HTTP API (application programming interface) that server component exposes to the
other components that want to interact with it

4.2.2 Installation Steps

# as a root

tar -zxvf maxapi-<version>.tar.gz

cd maxapi-<version>

python setup.py install

4.3 Running WebIDE

# as a root user

# This will start shellinabox and

# WebIDE test server on port 5002

WebIDE.py

# This will start both shellinabox and

# Gunicorn server,

# serving WebIDE on port 5000.

startWebIDE
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4.4 Security Notes

4.4.1 Note1

This version of WebIDE uses Unix for user authorization, but Unix security is not
yet properly implemented (user programs currently run as root).

Additional Info Support for downgrading privileges to match the privileges of user
that has sent request to the server is built in into WebIDE server, but is disabled
because it causes thread that served the request to crash after the request was served.

4.4.2 Note2

WebIDE traffic should be encrypted if it is used over the Internet. NGINX could be
used for this purpose (please see Deployment Notes for more details).

4.5 Deployment Notes

It’s desired to use NGINX in front of Gunicorn and shellinabox for better perfor-
mance. Using NGINX can provide additional benefits like load balancing, https
support, etc (Fig. 4.2).

4.5.1 NGINX

NGINX is web server that can work as a reverse proxy. In (Fig. 4.2) NGINX is
working as a reverse proxy server doing load balancing for the WebIDE server and
for shellinabox. NGINX can also decrypt SSL sessions so he could accept HTTPS
traffic and convert it to HTTP traffic.

4.5.2 Gunicorn

To best utilize available computing resource, it is often needed for a web server to
run in multiple threads. Gunicorn is a WSGI HTTP server that allows us to run our
WebIDE server using multiple threads.
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Fig. 4.2 Configuration of WebIDE server component; this picture presents desired way to
configure and deploy WebIDE

4.6 User Administration

WebIDE currently uses Linux PAM (pluggable authentication module) for authenti-
cation. Depending on your system setup, authentication could be done using LDAP
(Lightweight Directory Access Protocol) server.

Because WebIDE uses PAM for user authentication, any user that has access to
the machine where WebIDE is installed would be able to access WebIDE with the
same credentials it uses to access that machine.

On standard MaxWorkstation new user can be created using useradd command.

Note User credentials will, at some point, be unique across all Maxeler services
including WebIDE, AppGallery, and MDX.

4.7 Login

Before doing any action on the system, the user needs to login first. Login process
consists of user providing correct username and password. By providing correct
username and password, the user proves that he has the right to access the system
(Fig. 4.3).
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Fig. 4.3 Screenshot of login view

Fig. 4.4 Screenshot of login view after unsuccessful login

This view is used to authenticate user based on his Unix username and his
password (Fig. 4.4).

This would happen when wrong credentials are entered.
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Fig. 4.5 Screenshot of Project Explorer view without any projects

4.7.1 Login Credentials

WebIDE uses Linux PAM (pluggable authentication module) for authentication.
Because of this, any user that has access to the machine where WebIDE is installed
would be able to access WebIDE with the same credentials it uses to access that
machine.

4.8 Project Explorer (Fig. 4.5)

If there are no projects, Project Explorer view would show help about how to create
new project (Fig. 4.6).

4.9 Creating a New Project

To create a new project, click on the button. After that you will be prompted
with Create new project dialog that allows you to name your project and chose from
which template project will be created. There is a large number of existing templates
that you can choose to create a new project from. All tutorial examples and training
exercises are listed as project templates. If you do not choose any template, your
project will be created from template called Default Template (Fig. 4.7).
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Fig. 4.6 Screenshot of Project Explorer view with two projects: project 1 and project 2

Fig. 4.7 Screenshot of Create new project dialog

4.10 Deleting an Existing Project

To delete an existing project:

(a) Click on it and it will become selected
(you should see it has become highlighted as in picture 4.8-3).

(b) Click on the red button with bin image on it to delete selected project.
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Fig. 4.8 Four different states of the components of the Project Explorer user interface. (1) presents
the components in the case where the user has no projects. All others show the components in the
event when the user has three existing projects (project 1, Hello World Project, Project 2). In
(3) and (4) we can see that some of the projects are highlighted in red; that means that they are
selected. The project is selected by clicking on its name. It is possible to select multiple projects.
By pressing the red button with a picture of garbage, selected projects will be deleted. By pressing
the blue button with a picture of the sign plus, it is possible to create a new project. (4) depicts
the behavior that occurs when the user keeps longer mouse pointer over the button – the program
displays a black note with white text that describes the function of the buttonA double click on the
project’s name opens the project (Color figure online)

It is possible to delete multiple projects at the same time. To achieve this
keep the Shift button pressed on your keyboard while selecting multiple projects
(Fig. 4.8).
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4.11 WebIDE with Welcome Windows (Fig. 4.9)

Fig. 4.9 Screenshot of IDE view with Welcome Windows

4.12 WebIDE with Side-by-Side Code Editors (Fig. 4.10)

Fig. 4.10 Screenshot of IDE view with side-by-side code editors
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4.13 Code Editor (Fig. 4.11)

Fig. 4.11 Screenshot of Code Editor component
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4.14 Build Output (Fig. 4.12)

Fig. 4.12 Screenshot of Build Output component
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4.15 Folder Explorer (Fig. 4.13)

Fig. 4.13 Screenshot of Code Editor component
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4.16 Image Viewer (Fig. 4.14)

Fig. 4.14 Screenshot of Image Viewer component
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4.17 PDF Viewer (Fig. 4.15)

Fig. 4.15 Screenshot of PDF Viewer component
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4.18 CSV Viewer (Fig. 4.16)

Fig. 4.16 Screenshot of CSV Viewer component

4.19 Terminal

Fully functional terminal emulator has been built in WebIDE. You can use it to
edit files using your favorite editor (Vim, Emacs, or Nano) and do many advanced
operations that are you are not able to perform using WebIDE user interface like
monitoring usage using top command (Fig. 4.17).
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Fig. 4.17 Screenshot of Terminal component

4.20 WebIDE Change Log

C-----C-------------C-----------------------------------------C
jVer j Date j Message j

C-----C-------------C-----------------------------------------C
jv0.1 j 06.Jun.2014 j Initial release. j

C-----C-------------C-----------------------------------------C
jv0.2 j 07.Jun.2014 j Removed external dependencies (CDNs). j

C-----C-------------C-----------------------------------------C
jv0.3 j 28.Jul.2014 j C Added training examples; j
j j j C Numerous small improvements. j

C-----C-------------C-----------------------------------------C
jv0.4 j 02.Sep.2014 j Added support for DFE builds. j

C-----C-------------C-----------------------------------------C



Epilogue

For the latest developments in the year 2015, the interested reader is referred
to the website with a number of fully developed and fully explained exam-
ples tuned to both users and designers: The DataFlow Application Gallery
(appgallery.maxeler.com).
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Postscript

One of the coauthors of this book recently indicated at a conference that there is an
analogy between DataFlow computing and lightning.

In both cases, it is the voltage difference that moves the relevant stuff, data in the
case of DataFlow computing and electricity in the case of lightning.

This analogy, he said, could serve as an indication that, under specific conditions,
the DataFlow approach could become many times faster than the control flow
approach.

A similar conclusion could be generated if the research results of Richard
Feynman are studied carefully. Remember, in the DataFlow approach, one writes
a program to configure the hardware, and when data comes to the DataFlow
accelerator input, driven by the voltage difference (between input and output), it
(data) moves to the output, conditionally speaking, like lightning.

Based on the observations of Richard Feynman, theoretically, DataFlow could
be many times faster, since control flow involves communications and DataFlow
may not involve communications at all, if the compiler is smart enough, and if the
topology of the underlying configurable hardware is closely corresponding to the
topology of the DataFlow graph.

That is why it makes sense to refer to the DataFlow approach as the Feynman
paradigm (contrary to the von Neumann paradigm used to describe the control flow
approach).
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