
HTML5
GaMe DeveLopMenT
from the Ground Up with
ConsTruCT 2

roberto
Dillon

roberto Dillon

Computer Game Development

ISBN: 978-1-4822-1661-5

9 781482 216615

90000

HTML5 Game Development from the Ground Up with Construct 2 shows you how to use the
sophisticated yet user-friendly HTML5-based game engine Construct 2 to develop and release
polished, two-dimensional games on a multitude of different platforms. The book also covers
the foundational knowledge of game analysis and design based on the author’s research and
teaching experiences at DigiPen Institute of Technology, James Cook University, and other
institutions.

The author first helps you understand what really matters in games. He guides you in becom-
ing a better game designer from the ground up, being able to play any game critically, and
expressing your ideas in a clear and concise format. The book then presents step-by-step
tutorials on designing games. It explains how to build an arcade-style game, a platformer in-
tegrating some physics elements, and a more complex puzzle game. The book also discusses
different ways to deploy and monetize games across several platforms, including Facebook,
iOS, Android, and web-based marketplaces.

Features
• Covers game design concepts in a manner suitable for beginners, hobbyists, and

aspiring indie developers

• Requires no specific programming knowledge, assuming familiarity with only very
basic concepts (such as arrays and functions)

• Provides practical tutorials using stable, proven features of Construct 2

• Offers sample Construct 2 project files for the games designed in the book on the
author’s website

Integrating hands-on guidance with theoretical game design concepts, this book gives you
a solid foundation in game development. It will help you advance in your journey as an indie
game developer.

H
TM

L5 GaM
e DeveLo

pM
en

T
from

 the Ground Up w
ith Co

n
sTru

CT 2

K22067

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

www.allitebooks.com

http://www.allitebooks.org

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20131104

International Standard Book Number-13: 978-1-4822-1662-2 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

www.allitebooks.com

http://www.allitebooks.org

To my Students

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

Foreword, xi

Preface, xiii

Acknowledgments, xv

About the Author, xvii

About the Book, xix

Chapter 1 ◾ HTML5 and Construct 2 1
TAKE AWAY 11

Chapter 2 ◾ Understanding How Games Work 13
TAKE AWAY 29

EXERCISE 30

Chapter 3 ◾ About Games and Ideas: Dream vs. Reality 31
TAKE AWAY 40

Chapter 4 ◾ Game Design Documentation for Indies 41
TAKE AWAY 46

EXERCISE 46

Chapter 5 ◾ Moon Wolf, a Space Arcade Game 47
5.1 SOLAR FOX: ANALYSIS 47

5.2 MOON WOLF: DESIGN 50

TAKE AWAY 52

www.allitebooks.com

http://www.allitebooks.org

viii    ◾    Contents

Chapter 6 ◾ Moon Wolf Development 53
6.1 GETTING STARTED 53

6.2 ADDING CELLS AND A SCORING SYSTEM 65

6.3 SPEEDING UP 72

6.4 ADDING ENEMIES AND A BASIC GAME LOOP 82

TAKE AWAY 93

EXERCISE 93

Chapter 7 ◾ Kitty & Katty, a Platformer 95
7.1 DONKEY KONG: ANALYSIS 95

7.2 KITTY & KATTY: DESIGN 96

TAKE AWAY 99

Chapter 8 ◾ Kitty & Katty Development 101
8.1 GAME STRUCTURE 101

8.2 BACKGROUND AND PLATFORMS 110

8.3 KITTY, KATTY, AND THE PLAYER 114

8.4 RESCUING OUR PETS AMIDST FALLING BOULDERS 123

8.5 THE HIGH SCORE TABLE 130

TAKE AWAY 134

EXERCISES 134

Chapter 9 ◾ Turky on the Run, a Puzzle Game 137
9.1 LOCO-MOTION: ANALYSIS 137

9.2 TURKY ON THE RUN: DESIGN 138

TAKE AWAY 141

Chapter 10 ◾ Turky on the Run Development 143
10.1 LAYOUT AND SHUFFLING 144

10.2 MOVING TILES 150

10.3 TURKY: PLACEMENT AND MOVEMENT 156

10.4 SLY, FOXY, AND OTTO 168

10.5 TIMER AND BONUS ITEMS 176

www.allitebooks.com

http://www.allitebooks.org

Contents    ◾    ix

TAKE AWAY 186

EXERCISES 186

Chapter 11 ◾ The Journey Ahead 187
11.1 PATHFINDING 187

11.2 SPRITE FONTS 191

11.3 SHADERS (EFFECTS) 193

11.4 SOURCE CONTROL 195

11.5 PERFORMANCE TIPS 196

Chapter 12 ◾ Deployment and Monetization 199
12.1 WEB PORTALS 201

12.2 CHROME WEB STORE AND
MOZILLA MARKETPLACE 212

12.3 FACEBOOK 214

12.4 WINDOWS 8 METRO 216

12.5 WINDOWS, OSX, AND LINUX 218

12.6 BLACKBERRY 10 222

12.7 TIZEN 227

12.8 IOS AND ANDROID 228

APPENDIX A: RESOURCES FOR INDIES, 233

APPENDIX B: SELECTED BIBLIOGRAPHY FOR FURTHER
STUDY, 237

www.allitebooks.com

http://www.allitebooks.org

xi

Foreword

Scirra started out life several years ago as a loosely organized band of vol-
unteer students working in our spare time around full-time courses. We
were fairly casual and a little chaotic in getting the first (and rather flawed)
iteration of our software, Construct Classic, off the ground. Sometimes
there were periods of neglect when exams and other concerns came up,
but we always returned to it. We really loved it solving the technical prob-
lems, working with the community, and slowly gaining recognition. Years
later, through a complete ground-up rewrite and release of the successor,
Construct 2, I find myself sitting in our office in the outskirts of London
and making a living from it all! Passion and persistence can get you a long
way, even from the most humble of beginnings.

I won’t go into Construct 2 itself, since this book by Prof. Dillon will
teach you a great deal about that. However, I will add a word about tech-
nology in general. I think technology is amazing. You can buy consumer
graphics processors that have thousands of cores, using billions of indi-
vidual transistors. Most of the computers in the world are connected
together and can communicate in real time via the Internet. Phones are
now computers with apps that you carry everywhere with you, and tablets
are a whole new type of device. There are, of course, even more exciting
technologies, and there are surely more innovations to come that we can-
not even anticipate. When it comes though, as ever, software will be the
glue that connects all of it together.

Traditionally software development has been a complicated endeavor
requiring expertise to combine exciting technologies in interesting ways.
One of our aims with Construct 2 is to help people get involved in this fas-
cinating, fast-paced world. It’s designed to considerably lower the barrier
of entry, while remaining a productive and useful tool. We hope that even
without much experience you can come up with something exciting that
combines graphics processors, Internet communication, phones, tablets,

xii    ◾    Foreword

and more—all made possible by a whole stack of technology, right down
to the individual transistors.

If you are using Construct 2 and ever experience the delight of seeing
something working the way you wanted it, or feel curious to find out how
something works and are compelled to learn more, or just awe at how
much is working together to make it all possible, then we have succeeded.
If you are young, or have never really been involved in technology, and
Construct 2 is your first inspiration on a longer path of involvement in
technology (just as other technologies fascinated us when we were young),
then it truly is a privilege to have provided that for you. Just remember that
with your persistance and Construct 2, you can create great games!

Ashley Gullen
Director, Scirra Ltd.
London, September 2013

xiii

Preface

The exponential growth in sales of smart phones and tablets, together with
more widespread and faster Internet connections worldwide, has made
playing video games more popular than ever before. Internet-enabled per-
sonal computers and mobile device sales worldwide are fast approaching
1 billion units, and research data show that a significant portion of time
spent online is dedicated to playing games. It’s no wonder then that game
development is attracting more and more attention, as a hobby as well as
a possible career, where even small teams, relying exclusively on online
platforms, can find success.

In an industry that was dominated until recently by big blockbusters
sold at retail and developed by teams of 100+ professionals with budgets
topping $100 million or even more, this may look like a dramatic and
totally unexpected revolution. In reality, it can also be seen as a resurgence
of the original spirit that characterized the early days of the gaming indus-
try: in the 1980s, in fact, the relative simplicity of 8-bit computers allowed
for the emergence of the so-called “bedroom coders,” young students and
teenagers who, through their passion and commitment, managed to find
success in a market that started as a niche but soon expanded in ways that
were truly unimaginable.

As the market became more demanding and complex, though, so did
the underlying technology. Consequently, more resources, more time, and
bigger teams were needed to develop successful titles. Today, instead, we
are witnessing a new generation of technology that sidestepped raw power
and complexity for convenience and ease of use. The new tools that are
now available are so advanced and yet so intuitive that they enable any-
one to develop commercially viable products. We can actually say that the
time for the “bedroom coders” is back!

This book is written for this new generation of hobbyists and aspiring
game developers who realized that exciting things can actually be done

xiv    ◾    Preface

with the right tools and knowledge. Indeed, there’s a plethora of new and
very good manuals available already covering all possible game engines
and middleware, but, still, the book you are currently holding aims at
being a little different, and I’m very glad it found a place on your shelf.

Not only will it teach you how to use a modern tool, in this case
Construct 2, an HTML5-based game engine that will enable you to
develop and release polished two-dimensional games on a multitude
of different platforms, but it will also cover a foundational knowledge
of game analysis and design based on my personal research on the sub-
ject. This more theoretical part will be covered in the exact same way
I have been successfully teaching it in specialized classes across differ-
ent institutions, including DigiPen Institute of Technology and James
Cook University.

It is my hope that the first part of this book will help you in understand-
ing what really matters in games and contribute to making you a better
game designer from the ground up, able to play any game critically and
to express your ideas in a clear and concise format. The practical chapters
that follow from Chapter 5 onward are structured through step-by-step
tutorials. There, we will build an arcade-style game, a platformer integrat-
ing some physics elements, and then a more complex puzzle game, remak-
ing my own game Turky on the Run, published on Apple App Store and on
BlackBerry World.

Lastly, the book will discuss different ways to deploy and monetize
games across several platforms, including Facebook, iOS, Android, web-
based marketplaces, and more. A couple of appendices are also included
to provide some additional resources you may want to investigate as you
progress in your journey as an independent (“indie”) game developer.

Get ready to work hard and play harder!

Roberto Dillon
Singapore

September 6, 2013

xv

Acknowledgments

I’m grateful to all editorial staff at CRC Press for believing in this proj-
ect, in particular to Mr. Rick Adams and Ms. Jennifer Ahringer, and to
Ms. Carmen Tropeano for her invaluable feedback on the different tutori-
als. Special thanks also to my family for providing constant support and
encouragement. Last but not least, I’m also very grateful to the guys at
Scirra for making Construct 2 such a fantastic tool!

xvii

About the Author

Roberto Dillon was born in Genoa, Italy, and holds a Master’s and a Ph.D.
degree in Electrical and Computer Engineering from the University of Genoa.

Over the years he has worked in prestigious academic institutions
across Europe and Asia, including the Kungliga Tekniska Högskolan
(Royal Institute of Technology, KTH) in Stockholm, Nanyang Technical
University (NTU) in Singapore, and the DigiPen Institute of Technology
in Singapore.

While at DigiPen, he served as an Assistant Professor and Game
Design Department Chair, teaching a variety of subjects like Game
Mechanics and Game History, with his students gaining top honors at
competitions like the Independent Games Festival (IGF) both in San
Francisco and Shanghai.

He is now an Associate Professor at the Singapore campus of James
Cook University, where he teaches game design and project management
subjects to both undergraduate and graduate students.

As a game developer, Roberto has led high-profile research projects on
innovative game mechanics and has designed indie games that were show-
cased by the international press and at events like Sense of Wonder Night
in Tokyo, Electronic Language International Festival (FILE) Games in Rio
de Janeiro, and the Indie Showcase at Casual Connect Asia.

Besides HTML5 Game Development from the Ground Up with Construct
2, Roberto wrote two other books: On the Way to Fun and The Golden Age
of Video Games, published by A K Peters and CRC Press.

xix

About the Book

This book covers game design and development in a manner suitable for
beginners, hobbyists, and aspiring indie developers. No specific program-
ming knowledge is required, although familiarity with very basic concepts
(e.g., what is a variable, an array, or a function) is assumed.

The practical chapters are based on Construct 2, an HTML5-based
game engine that runs under Windows. Note that Construct 2 is an
ever-evolving engine with new versions being released very often. To
make the book as “future proof” as possible, the tutorials have been
carefully designed around stable and proven features that shouldn’t
change significantly in upcoming versions of the software. But remem-
ber that these were developed and tested up to the latest stable and beta
releases available at the moment of writing, and specific implementa-
tions may have to be tweaked and modified in the future. The underly-
ing game design concepts discussed here, though, will not be affected by
any change in software and should help you in building a solid founda-
tion in game design and development regardless of the actual tools used
later in production.

Sample Construct 2 project files for the games designed in this book
can be found on the author’s website, http://programandplay.com.

www.allitebooks.com

http://www.allitebooks.org

1

C h a p t e r 1

HTML5 and Construct 2

Even though HTML5 is a relative newcomer to the world of game
development, it already managed to capture lots of interest among

both big companies and young startups alike, thanks to the promise of
delivering a straightforward experience common to all web-based devices.
In other words, HTML5 aims at building a new Internet where installing
plugins would be redundant and where relatively advanced multimedia
features would be natively supported by the browser itself.

For example, thanks to the new <canvas> tag, it is actually possible to
define an area where we can start drawing and manipulating images right
into the webpage on the fly through JavaScript. A simple script like the fol-
lowing would set up a canvas covering a 200 × 100 pixel area, frame it with
a 1 pixel wide black border, and then fill its upper half with a red rectangle.

<html><body>
<canvas id = "myCanvas" width = "200" height = "100" style =
"border:1px solid #000000;"> </canvas>
<script>
var c = document.getElementById("myCanvas");
var ctx = c.getContext("2d"); //getContext("2d") is an HTML5 object
with many predefined properties and methods for drawing rectangles,
circles, images, text, etc.
ctx.fillStyle = "#FF0000"; //we will fill our rectangle in red
ctx.fillRect(0,0,200,50); //drawing a filled rectangle. 0,0 is the
top right corner of the canvas
</script>

</body> </html>

2    ◾    HTML5 Game Development from the Ground Up

Despite these ambitious and exciting premises, though, after an initial
announcement in 2008 by the W3C,* actual development started only in
2011, and support by the different browsers wasn’t as fast as many develop-
ers hoped. Indeed, performance across devices and browsers is not really
consistent yet, and several features are supported only by specific brows-
ers on specific platforms. Luckily, the situation is improving steadily on a
daily basis (see Figure 1.1).

Today we can finally say that HTML5 is getting advanced enough to
offer the kind of capabilities needed by the game industry, thanks also
to an effective integration of the JavaScript-based Web graphics library
(WebGL) application programming interface (API) to provide two- and
three-dimensional graphics and effects.

As HTML5 matures, the reasons it could be a major revolution for
online games become more and more apparent: games can be shared
simply as links and can be run instantly without the need for any
installation. Players don’t need to download specific plugins, while
developers don’t have to wait for approval by the different app stores.
In addition, when there is a new version, users won’t need to explic-
itly update anything because the browser will automatically download
the latest version. Offline support is also possible, making HTML5 an
extremely flexible, and potentially very successful, approach to casual
game development.

All that glitters is not gold, though, and actual game performance in
browsers is often lacking, making complex HTML5 games in practice
much less feasible and appealing than native games on most devices.

Wouldn’t it be great, then, if we could have the flexibility of HTML5,
the capability of converting our games to native apps when needed, and
a very user-friendly environment, suitable even for nontechnical people?
This is where Construct 2 by Scirra comes into the picture. Writing games
in HTML5 involves dealing with HTML, CSS3, and JavaScript, but all
these can be circumvented by using Scirra’s tool, which adopts a very
visual approach to game development. In addition, third-party tools are
available to wrap the final HTML5 game that Construct builds to turn it
into an iOS or Android game with performance close to that of a native
app, for example. This is what we are going to explore in the rest of this
book, so let’s get acquainted with our tool of choice.

* The World Wide Web Consortium (W3C) is the main international standards organization for the
World Wide Web.

HTML5 and Construct 2    ◾    3  

FIGURE 1.1 Pointing your browser to http://html5test.com/ will show exactly
what HTML5 features it is supporting. Here we have the results for different
desktop browsers, for tablets, for mobile devices, and also for a new possible gam-
ing frontier: smart TVs. The maximum possible score, i.e., score for a browser
where everything is supported, is 500. (Continued)

4    ◾    HTML5 Game Development from the Ground Up

FIGURE 1.1 (Continued) Pointing your browser to http://html5test.com/ will show
exactly what HTML5 features it is supporting. Here we have the results for differ-
ent desktop browsers, for tablets, for mobile devices, and also for a new possible
gaming frontier: smart TVs. The maximum possible score, i.e., score for a browser
where everything is supported, is 500.

HTML5 and Construct 2    ◾    5  

Construct 2 comes with three different licenses. First, a free license
with no time limit is available. This is the first thing you should get if you
haven’t done so already. Go to www.scirra.com, click on “download,” get
the latest stable release, and install it.

The free version has some important limitations you should be aware
of, though. Your projects are limited to 100 events,* and the ability to
export to platforms such as iOS and Android is disabled, as well as
other features. In order to enable these features, use over 100 events,
and have the option of releasing projects commercially, you will need
the “Personal Edition” license. This license is the perfect choice for
indie and aspiring developers. If the revenue from Construct creations
exceeds $5000 or you are buying licenses for a company, then you will
need the “Business Edition” license.

Let’s now have a first look at our game engine of choice. Once launched,
it greets you with the screen shown in Figure 1.2.

Open one of the provided examples, like Space Blaster, and you will see
a screen like Figure 1.3 in front of you.

The working area is divided into three main sections. Note that all tabs
and windows can be dragged and moved around to a configuration that
suits your working style, but throughout the book we will be using the
standard layout configuration for simplicity’s sake. The first thing that will
likely capture our attention is the main window at the center of the screen.
This is where we define a layout for our game (i.e., a level or playing area,
a splash screen, etc.), and where we place and manipulate the different
objects that will make up our game.

The column on the left instead is where we can check for specific prop-
erties of any object in the game as well as for the project itself. Try clicking
on any sprite, for example, on one of the spaceships displayed on the left
side of the layout, to select it (Figure 1.4): its properties will be displayed on
the left side panel ready to be analyzed and eventually modified.

The section on the right instead shows the project files and structure,
with an additional tab named Layers that we will discuss later (see Section
6.1 and Figure 6.5). There is also a list of all the objects available in the
current layout (Figure 1.5).

* With the exception of the last, more complex, game, all examples in this book will be encapsulated
within 100 events to allow you to experiment with the free version as much as possible. When
specific features requiring the “Personal Edition” license are used, these will be pointed out clearly
in the text.

6    ◾    HTML5 Game Development from the Ground Up

FIGURE 1.2 Launching Construct 2 provides us with options for loading recent
projects, starting new ones, and checking the manual pages and other tutorials.

FIGURE 1.3 Space Blaster: a sample project we can use to familiarize ourselves
with the development environment.

HTML5 and Construct 2    ◾    7  

You may have also noticed that on top of the main layout view there
are a few tabs: Start page (which brings us back to Figure 1.2), Game (the
name of our current layout), and Game events (the programming sheet
currently associated with the game layout).

Clicking on the latter changes the display to the Game events sheet
(Figure 1.6).

All actual programming takes place in this tab, and Construct handles
this phase of game development in a very visual and intuitive way through
events. Events are created by selecting possible conditions and actions spe-
cific to the objects defined in the associated game layout. Through these,
we can define what happens to them or what they do when specific condi-
tions or triggers happen in the game.

While visual in nature, the logic behind this approach is the very same
as in any programming language, and it will definitely help any beginner

FIGURE 1.4 Select the player’s sprite by clicking on it, and its properties will be
displayed on the column on the left.

8    ◾    HTML5 Game Development from the Ground Up

to learn how to think like a real programmer and to learn useful skills
that are valid regardless of the development environment and tools used.

The last important feature we should check at this stage to have a proper
overview of Construct 2 capabilities relates to the different options offered
for actual distribution of our finished games. If we open the file menu and
then click on Export project, as shown in Figure 1.7, we will see all avail-
able choices (Figure 1.8).

While actual choices are limited for the free trial, by registering
Construct many opportunities and platforms become easily accessible,
ranging from online platforms, desktop units, and mobile devices, which
will surely excite your imagination. A word of caution, though: Construct

FIGURE 1.5 The Projects tab on the right side is where we can get a quick over-
view of all our files and import new objects into the game.

HTML5 and Construct 2    ◾    9  

2 is an extensible platform, and many useful plugins are released by third
parties, exporters included. This means that not all possible features you
may like to use in your games will actually be supported on each platform,
and you may have to check on a case-by-case basis when working with
non-Scirra plugins. On the bright side, all these tools are being developed
and tested by a very smart and active community: their functionalities, as
well as their cross compatibility, are constantly being improved, opening
up new possibilities and expanding on existing functionalities.

All these aspects we just introduced will be discussed in much more
detail in the upcoming tutorials and chapters. For now, feel free to experi-
ment a little bit, look around, and try out the game demo in your browser
simply by clicking on the Run Layout icon shown in Figure 1.9.

FIGURE 1.6 The Game events sheet. It is here that we program our game’s logic.
For example, we can see here that we are triggering an event at the start of the
associated layout (near the bottom of the screen, the System icon is followed by
On start of layout) where we can initialize objects and variables, start playing
audio files, etc.

www.allitebooks.com

http://www.allitebooks.org

10    ◾    HTML5 Game Development from the Ground Up

FIGURE 1.7 Opening the main menu and selecting the Export project option.

FIGURE 1.8 Some among the several exporting options at our disposal, from
HTML5 games running in a browser to mobile applications. We will discuss
many of these later in the book.

HTML5 and Construct 2    ◾    11  

TAKE AWAY
In this chapter we learned a little about what HTML5 is and its pros and
cons, and then we had a first look at our game engine of choice for devel-
oping multiplatform two-dimensional games: Construct 2.

FIGURE 1.9 Click on the Run layout icon to preview your current project in any
of your installed browsers. If the bar is not visible, click on the Home tab first.

13

C h a p t e r 2

Understanding How
Games Work

“A method is needed in order to reason accurately.”
—René Descartes

Though it is tempting to jump right into practical game development
exercises, in my experience from years of teaching, the quality and

effectiveness of your work will benefit greatly from starting out with a thor-
ough understanding of the main theoretical principles behind the field.

So what are these “principles”? How can we uncover them to gain a bet-
ter understanding of what makes games tick and turns them into some-
thing engaging, and ultimately fun, for so many people?

As the French philosopher and mathematician René Descartes
(1596–1650) once said, “A method is needed in order to reason accurately.”*
Unfortunately this is an area where games have always been struggling:
game designers, in fact, still lack a common jargon. They often refer to dif-
ferent concepts using the same words or define the same concepts using
completely different words, making idea sharing and definitions of pos-
sible methods challenging to say the least.

Despite the difficulties, a first real attempt to define uniform terms was
made a few years ago by three game designers named Robin Hunicke, Marc
LeBlanc, and Robert Zubek, whose approach, called the MDA framework,
was to understand games by dividing them into the three main layers:

* Regulae ad directionem ingenii (Rules for the Direction of the Mind), unfinished treatise, 1628.

14    ◾    HTML5 Game Development from the Ground Up

mechanics, dynamics, and aesthetics.* Their groundbreaking work also
served as an inspiration for different methodologies, including one that
has been successfully used both by myself in my own work and by my
students, the AGE framework (standing for actions, gameplay, and experi-
ence), which I will present in this chapter.

As with the MDA, the main idea behind the AGE model is to offer a
reliable approach to understanding how games work by breaking them
down into different levels of abstraction and then analyze how they relate
and integrate with each other.

In the case of the AGE framework, the levels we focus on are as follows:

• Actions: The core, atomic actions that a player can perform in a
game, which can usually be described in terms of verbs: for example,
moving, jumping, kicking a ball, punching, shooting, taking cover,
shifting tiles, etc. (see Figure 2.1).

• Gameplay: The result that players achieve by using and combining
the available actions, which can be described either in terms of verbs
or higher-level concepts: for example, fighting, race to an end, ter-
ritorial acquisition, etc. (see Figure 2.2).

• Experience: The emotional experience that engages players during
the game.

* The interested reader can check their original paper, “MDA: A Formal Approach to Game Design
and Game Research,” available online at http://www.cs.northwestern.edu/~hunicke/MDA.pdf.

FIGURE 2.1 Jumping is a typical action characteristic of most platform games:
here, Super Mario Bros. Wii. (© 2009 Nintendo.)

Understanding How Games Work    ◾    15  

These concepts do not work in isolation, but they can be related to each
other for describing a game in all its complexities by realizing that players
apply the predefined rules to give a purpose to the available actions, pro-
ducing the resulting gameplay. This then is used to overcome different
challenges and goals, which serve to link the gameplay to the experience
by providing players with a reason to immerse themselves in the gaming
world and then get emotionally engaged in what they are doing (see the
AGE model in Figure 2.3).

Now, while describing actions and gameplay can be relatively straight-
forward, how can we effectively describe the emotional experience of play-
ers in a way suitable for relating it back to the gameplay?

To answer this question, the AGE framework adopts another model,
the “6-11 Framework.”*

The idea behind this model is that games can be so engaging at a sub-
conscious level because they successfully rely on a subset of six basic emo-
tions and eleven instincts that are well known in psychology and deeply
rooted in all of us, regardless of our cultural background or ethnicity.

* First introduced in On the Way to Fun: An Emotion-Based Approach to Successful Game Design,
A K Peters, 2010.

FIGURE 2.2 Race to end is a typical and straightforward example of gameplay
we can find in countless games. In Super Mario Bros. Wii, for example, our run-
ning and jumping are finalized to reaching a flagpole, allowing us to proceed to
the next level.

16    ◾    HTML5 Game Development from the Ground Up

In particular, the following six emotions seem to be the most relevant
to games:

• Fear: This is one of the most common emotions in games today.
Thanks to the newest technologies, it is now possible to represent
realistic environments and situations where fear can easily be trig-
gered: think of all the recent survival horror games or dungeon explo-
rations in role playing games for plenty of examples (see Figure 2.4).

Game

Gameplay

Actions

Experience

Goals

Rules

FIGURE 2.3 A game seen under the schematic representation of the actions,
gameplay, and experience (AGE) model: Players perform some specific action
that, in accordance with the game’s own rules, allows for the emergence of one
or more types of gameplay. Through gameplay, players aim to overcome a series
of challenges or reach a goal, and, in doing so, they can get emotionally engaged
and immersed in the virtual world.

FIGURE 2.4 Fear is at the center of our emotional experience in Silent Hill:
Shattered Memories. (© 2010 Konami.)

Understanding How Games Work    ◾    17  

• Anger: This is a powerful emotion that is often used as a motiva-
tional factor to play again or to advance in the story to correct any
wrongs that some evil character has committed (see Figure 2.5).

• Pride: Rewarding players (and thus making them feel good) for their
achievements and successes is an important motivational factor for
pushing them to improve further and advance in the game to face
even more difficult challenges (see Figure 2.6).

• Joy/happiness: Arguably, this is the most relevant emotion for hav-
ing a fun gaming experience. Usually this is a consequence of the

FIGURE 2.5 Even cute and cartoonish games like Angry Birds rely on anger to
motivate players to take a side and get into the game. (© 2009 Rovio.)

FIGURE 2.6 Getting a top score and unlocking an achievement are reasons for
pride for many gamers: here, getting a high score in a level of Rovio’s Angry Birds.
(© 2009 Rovio.)

18    ◾    HTML5 Game Development from the Ground Up

player succeeding in some task and being rewarded by means of
power-ups, story advancements, and so on (see Figure 2.7).

• Sadness: Though this emotion doesn’t seem to match with the con-
cept of “fun,” game designers have always been attracted by sadness
as a way to reach new artistic heights and touch more complex and
mature themes (see Figure 2.8).

• Excitement: This is an emotion achieved by players at some point
during most games worth playing, and it should happen naturally
as a consequence of successfully triggering other emotions and/or
instincts (see Figure 2.9).

The eleven core instincts we take into consideration instead are the
following:

• Survival (fight or flight): This most fundamental and primordial
of all instincts is triggered when we, like any other living being, are
faced with a life threat. According to the situation, we will have to
decide whether we should face the threat and fight for our life or try
to avoid it by finding a possible way to escape. This is widely used in
many modern video games, especially first-person shooter (FPS) and
survival horror games (see Figure 2.10).

FIGURE 2.7 Expressing joy can even become a mini game by itself, like in FIFA
Soccer 11. (© 2010 Electronic Arts.)

Understanding How Games Work    ◾    19  

• Self-identification: People tend to admire successful individuals or
smart fictional characters and naturally start to imagine being like
their models (see Figure 2.11).

• Collecting: A very strong instinct that motivates players is the
formation of patterns of objects by completing sets with a com-
mon theme. This also relates to our hunting instinct and has been
widely used in games since the early days of the medium (see
Figure 2.12).

FIGURE 2.8 Despite being only a text adventure and having no graphics,
Planetfall was the first game that succeeded in defining a memorable experience
by making its players cry. How? Throughout the adventure the player established
a bond with Floyd, a nonplayer character (NPC) robot that becomes the player’s
only companion. Floyd then sacrifices itself to save the player toward the end of
the game, bringing a very emotionally charged and engaging moment that made
players feel like they were losing a real friend. (© 1983 Infocom.)

www.allitebooks.com

http://www.allitebooks.org

20    ◾    HTML5 Game Development from the Ground Up

FIGURE 2.9 Hectic shoot ‘em up action where we have to exercise sharp reflexes
and make quick decisions to avoid being overwhelmed is a perfect setting for
making players excited and focused on the game: here, Ikaruga. (© 2002 ESP.)

FIGURE 2.10 Putting players in a deadly setting will make them committed and
resourceful: here, playing as Heather Mason in Silent Hill 3. (© 2003 Konami.)

Understanding How Games Work    ◾    21  

FIGURE 2.11 We all dream of being in the hero’s shoes. Sometimes things can
even get out of hand and go beyond fantasy: in 2009 in Venice several witnesses
reported seeing a blade-equipped hooded figure roaming the streets like Ezio
Auditore, the main character in Assassin’s Creed II. (© 2009 Ubisoft.)

FIGURE 2.12 Relying on our collective instinct for finding and recovering
all the treasure is enough to make for compelling gameplay in Pitfall! (© 1982
Activision.)

22    ◾    HTML5 Game Development from the Ground Up

• Protection/care/nurture: This is arguably the “best” instinct of all—
the one that pushes every parent to love their children and every per-
son to care about and help those in need despite the possible dangers,
including countless princesses in distress and kidnapped girlfriends
(see Figure 2.13).

• Aggressiveness: The other side of the coin, this usually leads to vio-
lence when coupled with greed or anger. It is exploited in countless
games (see Figure 2.14).

FIGURE 2.13 As Nintendogs and other virtual pet games show, taking care of
a virtual puppy can easily commit players to focus on the game 100%. (© 2005
Nintendo.)

FIGURE 2.14 There’s a reason that fighting games have always been an impor-
tant and successful genre; whether we like it or not, violence has always played
an important role in human evolution: here, Street Fighter IV. (© 2009 Capcom.)

Understanding How Games Work    ◾    23  

• Greed: Often we are prone to go beyond a simple “collection” and
start to amass much more than actually needed. This is another typi-
cal human behavior that is responsible for the addictive qualities of
many games: even when we are just talking about the virtual coins
and resources that we need to build our fantasy empire in a strategy
game, a greedy instinct is likely to surface very early in many players’
gaming habits (see Figure 2.15).

• Revenge: This is another powerful instinct that can act as a motiva-
tional force and is often used in games to advance the storyline or jus-
tify why we need to annihilate some alien or enemy (see Figure 2.16).

FIGURE 2.15 Manage your game studio and get rich: a simple and very attractive
proposition in Game Dev Story. (© 2010 Kairosoft.)

FIGURE 2.16 Having the opportunity to chase back the ghosts in Pac-Man is
actually one of the most satisfying and rewarding moments in the game. We
simply love getting revenge! (© 1980 Namco.)

24    ◾    HTML5 Game Development from the Ground Up

• Competition: Deeply linked with the social aspects of our psyche,
this is one of the most important instincts in relation to gaming, e.g.,
leaderboards. Without competition, games would lose much of their
appeal (see Figure 2.17).

• Communication: The need for expressing ideas, thoughts, or just
gossip was very influential for human evolution. It can be used to
great effect in games too, while seeking information by talking to a
nonplaying character (NPC) or while sharing experiences with other
players in chat rooms and forums (see Figure 2.18).

• Exploration/curiosity: All human discoveries, whether of a scien-
tific or geographical nature, have been made thanks to this instinct.
Exploration always pushes us toward the unknown (see Figure 2.19).

• Color appreciation: Scenes and environments full of vibrant colors
naturally attract us, whether it is an abstract or a photorealistic set-
ting. Note, though, that this is not necessarily linked to technology
prowess but it is more about the artistic use of colors to make graphics
attractive regardless of the actual number of pixels (see Figure 2.20).

FIGURE 2.17 By adding a leaderboard for players to sign, Asteroids managed to
push players’ competitive instincts as no games ever did before. (© 1979 Atari.)

Understanding How Games Work    ◾    25  

The AGE Framework may be seen then as a canvas where we can use
any of these elements to explain how games successfully manage to engage
players emotionally and how emotions and instincts are ultimately the
driving forces that make the players act in the game.

For example, as summarized in Figure 2.21, we can imagine a horror
game that manages to scare the player with a sudden encounter with a
zombie in a dark room. Scaring the player will trigger his survival instinct,
and this will instantaneously push him to find a way to answer the threat,
for example by escaping and avoiding the danger, which will be made

FIGURE 2.18 In Captain Blood players have to figure out how to communi-
cate with different alien species and express themselves via an articulated icon-
driven system to get the information they need to progress in the game. (© 1988
Infogrames.)

FIGURE 2.19 Uncovering the secrets of a mysterious world is a very effective way
to engage players in narrative-based games and adventures: here, Myst. (© 1995
Broderbund.)

26    ◾    HTML5 Game Development from the Ground Up

possible by the actions provided by the game, such as the ability to run or
to hide somewhere.

To better understand how this theoretical framework can help us to
figure out how a game can successfully build an engaging and enjoyable
experience in practice, let’s take a look at the classic arcade game Frogger
(Konami, 1981).

In Frogger, players control a small frog that, starting from the bottom
of the screen, they have to bring to safety by crossing a trafficked highway
and a river.

Our analysis can proceed either in a top-down approach, from the
experience to the actions, or the other way around, in a bottom-up style.
Let’s start with the latter, by identifying the actions first and then go up to
toward the experience (see Figure 2.22).

So, what are the actions in Frogger? Let’s start playing the game and ask
ourselves “What can I do in the game?” An easy answer is simply to check
out the actions mapped on the game controls.

FIGURE 2.20 Zuma Deluxe wouldn’t be that attractive if all the marbles were
just different shades of gray…. (© 2004 PopCap.)

Actions

Hiding
Running

Gameplay

Escaping
Avoiding danger

Experience

Fear Survival

FIGURE 2.21 Experience, gameplay, and actions for a generic horror game: the
survival instinct is what motivates the player to escape (gameplay) by using the
available abilities at his disposal (actions).

Understanding How Games Work    ◾    27  

In Frogger, this analysis is extremely simple becasuse we only have a
joystick that allows us to move left, right, forward, and backward. If, on
the other hand, we were analyzing a more modern and far more complex
game, the study of the actions might have required a little bit more time
and attention, as shown in Figure 2.23.

FIGURE 2.22 Frogger: Was it an engaging and fun game? Why? (© 1981 Konami.)

LB - Reload/Switch Grenade

Left Stick - Move
(click to crouch)

LT - Shoot/Grenade RT - Shoot RB - Use/Board/Reload

Y - Switch Weapon

B - Melee

A - Jump

X - Button
(use equipment)

Right Stick - LookD-Pad - Push to Talk

FIGURE 2.23 If we have problems identifying the available actions in a given
game, we can start by checking the control scheme and see what the different
joysticks and buttons are used for. Here we see the control layout and consequent
actions for the multiplayer version of Halo 3. (© 2007 Microsoft.)

28    ◾    HTML5 Game Development from the Ground Up

Going back to Frogger, we can now proceed to the next stage and
analyze the gameplay. To do so, we should ask ourselves something like
“What are the game rules allowing us to do?” Or, more simply, “What are
we actually doing in the game? What are we using the actions for?” These
are the questions we need to answer here.

In the case of Frogger, we are trying to avoid the speeding cars and then
jumping on the floating logs to reach a safe haven at the top of the screen.
In game design terms, we can say the gameplay is about “avoidance” of dif-
ferent hazards together with a “race to an end” component. By describing
the gameplay in these terms we have also explicated the goal of the game,
and we are then ready to analyze the emotional experience. We now have
to ask ourselves “How do I feel while playing the game?”

This is the most subjective part of the analysis and can obviously be quite
tricky, but we can rely on the 6-11 Framework to guide us in the process.

Most likely, we would point out that, while playing the game, we were
excited by the fast action of moving across the highway and river and
then happy for successfully reaching the end. Notice that we have already
identified the two main emotions that make Frogger fun and enjoyable,
but why were we happy? Because we felt proud for our achievement.

Right! Pride plays an important role here and, in fact, it usually resolves
into joy and happiness. We have another emotion to describe our experi-
ence. Now, what is the achievement we are proud of? Surviving the perils
we had to face while crossing the road and river! So, survival is the main
instinct at play here, and it actually drives us toward the goal of the game.
We may also realize that, by looking at the cars approaching us from all
directions, we might have felt a bit scared, and we may have unconsciously
taken the role of the frog, i.e., we identified with it.

The whole analysis can then be summarized into a simple diagram like
the one shown in Figure 2.24.

Actions

Moving left/right

Advancing
Retreating

Avoidance

Race to an end

Gameplay Experience

Excitement

Survival

Joy

Pride

Fear

Identification

FIGURE 2.24 AGE analysis for Frogger.

Understanding How Games Work    ◾    29  

As stated earlier, analyzing the experience can be quite subjective, so
some players may see things a bit differently.

For example, they may not have thought they were taking the role of the
frog in the first place, but, on the other hand, they simply thought their
role was to “help” the unlucky frog to safely reach the pond. In this case,
identification, fear, and survival wouldn’t play any role in their emotional
experience, and they would feel protective instead. Here the frog is not an
avatar, but it simply acts as a character the player has to rescue.

Under this assumption, the resulting AGE analysis would be like that
shown in Figure 2.25.

What if instead we decide to analyze the game following a top-down
approach?

Again, we start our analysis by playing the game, but this time we try to
figure out the experience first by asking ourselves “How is the game try-
ing to motivate me? How do I feel while playing?” This should lead us to
question our relationship with the playable character: Is it an avatar (“I’m
playing as this little frog who has to cross the street”), which will lead us
to the identification-fear-survival route? Or is it just a character we have
to protect (“I have to help this poor little thing!”), leading us to the model
motivated by protective feelings? Once the emotional analysis is in place,
we can proceed downward with the questions we saw earlier for identify-
ing the gameplay and the actions.

Regardless of our starting point, either the actions or the experience, we
should arrive at the same result at the end of our analysis.

TAKE AWAY
In this chapter we discussed a methodology for analyzing and under-
standing how games work at different levels, namely, actions, gameplay,

Actions

Moving left/right
Advancing
Retreating

Avoidance

Race to an end

Gameplay Experience

Excitement

Protection

Joy

Pride

FIGURE 2.25 Alternative AGE analysis for Frogger: we are not the frog, we are
just there to help it.

www.allitebooks.com

http://www.allitebooks.org

30    ◾    HTML5 Game Development from the Ground Up

and emotional experience. We will use this approach to get insights on
different game concepts and to design our own prototypes in the forth-
coming chapters.

EXERCISE
Select a mobile or web-based game of your choice and try to analyze it by
playing it critically, breaking it down into actions, gameplay, and experi-
ence as seen in this chapter for Frogger.

31

C h a p t e r 3

About Games and Ideas:
Dream vs. Reality

Every aspiring game developer has plenty of very ambitious ideas
for the next blockbuster. On the other hand, any professional devel-

oper will tell you that, in the game industry, grand ideas are worth noth-
ing. All that matters is execution. And this is where things get difficult:
unfortunately, time and resources are very limited, so, while I hate to wake
you from your daydreaming, a reality check is needed.

Fantasizing about the next Halo or Uncharted will bring you nowhere:
unless you have someone backing you up with $100 million, a large team
of experienced professionals, and enough patience to allow for a develop-
ment cycle spanning several years, your efforts and big dreams are des-
tined to be crushed by the harsh reality we live in.

This doesn’t mean we have to stop dreaming! Successes as diverse as
Brain Age (Nintendo, 2006), FarmVille (Zynga, 2009), and Angry Birds
(Rovio, 2009) were developed by small teams with small budgets within
realistic timeframes. What really matters is knowing ourselves, our
strengths, and our limitations and then setting our goals accordingly.

Today we are very lucky to have modern and powerful tools, like
Construct 2, that have lowered the barrier of entry into web-based, mobile,
and even social games to a level such that anybody can make and distrib-
ute games to an almost unlimited audience.

32    ◾    HTML5 Game Development from the Ground Up

These types of games, though, are much different in concept and appeal
than the AAA titles you may be playing on your home console systems
and that likely made you interested in game development in the first place,
so we may have to revise game ideas and concepts accordingly.

Individual developers or members of small independent teams made up
of friends or schoolmates should focus on games that implement straight-
forward concepts with clear and easily understandable goals.

Levels should also be structured for playing sessions lasting only a
few minutes at a time so that, when played on mobile devices on the go,
they can be picked up quickly and stopped any time (see an example in
Figure 3.1).

Interestingly, games with these characteristics are not a new concept
that emerged recently due to our modern and busy lifestyle or due to the
popularity of new mobile devices. These were actually common traits of
most games during the 1980s and early 1990s. At that time, in fact, tech-
nology couldn’t really support extensive and complex games, like those we
have today, on the hardware that was available at that time, so developers
had to make that kind of design approach a necessity.

Indeed, it may be surprising for the younger generation to realize that
old games still have a lot to teach us about game design, about what works
and what doesn’t. Playing the classics can actually be a neverending source
of inspiration and ideas for new game concepts!

FIGURE 3.1 Angry Birds: an easily understandable but addictive concept where
playing each level takes no more than a couple of minutes. This makes it per-
fectly suitable for a mobile experience on the go while commuting, for example.
(© 2009 Rovio.)

About Games and Ideas: Dream vs. Reality    ◾    33  

While 30-year-old games do look extremely primitive and lack all the
bells and whistles we are used to today, this lack of detail and technologi-
cal prowess is actually helpful for exposing all the gameplay elements that
made such games popular back in the day and, thus, are very useful learn-
ing tools.

This is also the reason why more and more university degrees on game
development are incorporating classes on game history. If you follow
industry events like the Independent Game Festival (IGF),* you will soon
notice that many of the winning games often showcase gameplay and aes-
thetics clearly inspired by games of the past.

The influence and inspiring force of these old “relics” shouldn’t be
underestimated, and I truly encourage you to spend some time rediscov-
ering old classics or little-known games for systems like the Atari 2600,
Intellivision, Commodore 64, Nintendo Entertainment System (NES),
PC-Engine, Sega Genesis, and the like. Look beyond the blocky and low-
resolution graphics and see if you can relate their core concepts to newer
games or, maybe, even get new ideas on how to reinterpret them in a mod-
ern way for a new audience.

To exemplify how an old game can still be relevant in a modern set-
ting, let’s see some actual examples where we can find specific gameplay
ideas reinterpreted and adapted into something original across a multi-
tude of genres, from casual games to high-budget AAA productions
(see Figures 3.2–3.8 for some examples).

In the end, while game development is still a very young field, it is
important to be aware that it has an exciting and fascinating history,
with many interesting concepts that can be explored in novel ways.
Knowing more about it can only help the new generations of developers
to build further on that solid foundation, exactly as writers and artists
learn from the works of the people who preceded them in their respec-
tive fields.

To stress the relevance of research to inspire new game ideas, the proto-
types we are going to develop in the next chapters will be first introduced
by an analysis of the early classics they are referencing.

* The Independent Game Festival is held annually in conjunction with the Game Developers
Conference (http://www.igf.com).

34    ◾    HTML5 Game Development from the Ground Up

FIGURE 3.2 In Angry Birds Space (top, © 2012 Rovio), the player bends his shots
using the gravity field of the nearby planets. We can find the same idea in one of
the first computer games ever created, SpaceWar! (bottom, developed by Steve
Russell et al. at MIT in 1962), where players had to shoot at each other while
taking into consideration the gravity field of the star at the center of the screen.

About Games and Ideas: Dream vs. Reality    ◾    35  

FIGURE 3.3 The Civilization franchise, started by Sid Meier in 1991 with the
original game published by MicroProse (top, © 1991 MicroProse), keeps pushing
the strategy genre to new heights with each new release, innovating from a core
set of ideas that can be traced back to 1981, when a truly groundbreaking game,
Utopia (bottom, © 1981 Mattel, developed by Don Daglow), was released for the
Intellivision console.

36    ◾    HTML5 Game Development from the Ground Up

FIGURE 3.4 Still on the Intellivision console, Mattel released Shark!Shark! in
1982 (top, © 1982 Mattel). It was a very addictive arcade-style game where the
player started as a little fish who had to eat smaller ones to grow while avoiding
being eaten by bigger creatures. We can find the same basic concept, this time
with plankton-like microorganisms, in the acclaimed experimental title flOw by
Jenova Chen (bottom, © 2006 thatgamecompany). In flOw, though, gameplay
is made much more interesting by enabling players to freely experiment with
difficulty levels. This allows them to find the right match for their skills, making
it possible to enter into a so-called state of flow, where the player’s ability and
game’s challenges are in equilibrium.

About Games and Ideas: Dream vs. Reality    ◾    37  

FIGURE 3.5 Managing and caring for the life of a virtual character (and his dog)
was the main idea behind Little Computer People (top, © 1985 Activision); here,
we made our little friend do some aerobic exercises to keep fit. The concept was
then upgraded and expanded into a whole community with The Sims (bottom,
© 2000 Electronic Arts).

38    ◾    HTML5 Game Development from the Ground Up

FIGURE 3.6 Quick Time Events (QTEs) are an integral part of many modern
games, like Asura’s Wrath (top, © 2012 Capcom) and have evolved into a very
effective tool for building a stronger connection with in-game characters and
delivering an engaging story, as in Heavy Rain (middle, © 2010 Sony Computer
Entertainment America). They are nothing new, though; QTEs got started with
the adventures of Dirk the Daring in Dragon’s Lair many years ago (bottom,
© 1983 Cinematronics).

About Games and Ideas: Dream vs. Reality    ◾    39  

FIGURE 3.7 Before getting a modern treatment with Bully (top, © 2006 Rockstar
Games), managing a busy class schedule while fighting classmates and avoiding
teachers was already the setting for a very original game on the ZX Spectrum and
Commodore 64: Skool Daze (bottom, © 1983 Microsphere).

www.allitebooks.com

http://www.allitebooks.org

40    ◾    HTML5 Game Development from the Ground Up

TAKE AWAY
• Don’t stop dreaming, but dream about something you can actu-

ally achieve!

• Playing old games critically is an invaluable learning experience that
can inspire new ideas and game concepts.

FIGURE 3.8 The Grand Theft Auto (GTA) franchise has always drawn much
controversy, starting from its first installment (top, © 1997 BMG Interactive
Entertainment) in which the player could steal a car and run over pedestrians,
leaving a trail of blood behind him. Surprisingly, though, there was an arcade
game with gameplay based on chasing and running over people more than twenty
years earlier: Death Race (bottom, © 1976 Exidy). That game, loosely based on the
movie Death Race 2000 featuring Sylvester Stallone and David Carradine, put
the player at the wheel of a car with the task of running over as many zombies as
possible; zombies that are run over leave a cross behind them. Most people saw
no difference between zombies and pedestrians and, indeed, like GTA in modern
times, the game stirred a huge antigaming debate back in the day.

41

C h a p t e r 4

Game Design
Documentation
for Indies

“To document or not to document? That is the question: whether
‘tis nobler in the mind to suffer the slings and arrows of outra-

geous and sudden ideas, or to take arms against a sea of troubles and begin
by writing everything down?”

If Hamlet were an indie game designer, he might have thought some-
thing like that. Indeed, most indie developers ask themselves something
similar when beginning a new project: why make the effort of document-
ing our ideas and trying to crystallize them before the actual work starts?
Is it really useful? Or should we just go along day after day, iteration after
iteration, and see where our inspiration leads us? And, if we decide to
document, which format is most suitable for a given project? Will anyone
really read it?

In this short chapter we’ll try to answer these questions and see how
to approach design documentation effectively from an indie perspective.

In professional settings, game design documents still take the shape
of the infamous “Game Design Bibles,” tomes often spanning 100+ pages
outlining every possible detail in the game. Every studio has its own spe-
cific formats, but in general, most tend to include sections covering the
following topics:

42    ◾    HTML5 Game Development from the Ground Up

 1. Introduction/general information: A high-level description of the
game, just one paragraph to capture the attention of the reader.

 2. Detailed game description: The nuts and bolts of the game, in as
much detail as possible, usually including several subsections:

 (a) Core gameplay and its elements (e.g., race to an end, territorial
acquisition, etc., and how they are implemented)

 (b) Game flow (e.g., whether the game is structured in chapters, lev-
els, etc.)

 (c) Characters/units (including detailed descriptions in terms of
classes, abilities, and eventual statistics)

 (d) Game physics

 (e) Artificial intelligence (purposes and approaches used)

 (f) Multiplayer (how it works and which specific game modes it is
used for)

 (g) Walkthrough (a step-by-step guide for the whole game or at least
for the first few levels)

 3. Level requirements and progression: How the game progress is
structured, including the following:

 (a) Level diagrams and maps

 (b) Flow diagrams (usually accompanying the maps, describing
what is going to happen in each area of the levels)

 (c) Description of puzzles (if any)

 (d) Assets (which are used in each level and how/when they are pre-
sented to players)

 4. Story: If story plays an important role in the game, it should have its
own dedicated section.

 (a) Backstory and world description (for example, describe the lore
of the fantasy world the game takes place in)

Game Design Documentation for Indies    ◾    43  

 (b) Character descriptions (go more in depth on histories and back-
grounds of both playing characters and nonplaying characters)

 (c) Game text, dialog requirements (how we are going to tell the
story to players)

 i. Sample scripts

 5. Graphical user interface (GUI): All the information and options
that are displayed to the player across the game, from the first menu
screen onward.

 (a) Flowchart (how the different screens are linked, e.g., menus,
options, etc.)

 (b) Functional requirements (what kind of information do we need
to display?)

 (c) Buttons, icons, pointers, bars, text (e.g., how and where score,
health/mana bars, dialog windows, etc. are displayed)

 (d) Mock-up (an overall view of how the GUI will look)

 6. Art: The general graphic style used and eventual references: in particular,

 (a) Goals, style, mood, references

 (b) Two-dimensional art and animation

 (c) Special effects

 (d) Three-dimensional art and animation

 (e) Cut scenes

 7. Sound and music: Special effects, voice-overs, and music

 (a) Goals, style, and formats used

 (b) Sound effects

 i. GUI (e.g., mouse clicks)

 ii. In game

44    ◾    HTML5 Game Development from the Ground Up

 (c) Music

 i. System screens (opening music in the splash screen, options
menu, credits, etc.)

 ii. Level themes (background music across the different levels
and areas of the game)

 iii. Events (jingles and themes triggered by specific events, e.g.,
finding a clue, advancing to the next level, etc. Also more
elaborate and dynamic music systems that can change
according to different gameplay situations)

 iv. Cut scenes (what kind of music is featured in each cut scene?)

This extremely detailed approach has some good points: by creating
it, we do actually have to think of the whole game in detail. In addition,
everything is in one single place for easy reference, at least in theory.
But these also bring some undesired side effects: game development is
an iterative process. Ideas change throughout the early (and sometimes
not-so-early) stages of development, and such a document is difficult to
update, track changes, and manage. Also, its length makes it difficult
to search it in practice and makes people less inclined to sit down and
read it.

This is actually an interesting point that is worth discussing a little
more in detail. Many game designers soon realize that no one in the team
actually reads their design documents! While this may seem a bit hard
to believe at first, I found this to be true both in my personal experience
and also confirmed by many other people. One of the funniest anecdotes
I heard was from Chris Natsuume, cofounder of the casual game devel-
oper Boomzap.* Before founding his own studio, he was a producer for the
AAA title Far Cry (developed by Crytek and published by Ubisoft in 2004)
and, to check whether their comprehensive documentation was actually
read by his colleagues, he started adding notes to some random pages like
“if you read this line, come over to me and I’ll give you $10.” Guess what?
No one ever went over to ask for the $10!

If no one reads it, can we just skip the documentation entirely then and
just start working on actual development? No, I highly discourage this,
even if you are working solo, since writing down your ideas is the best

* www.boomzap.com

Game Design Documentation for Indies    ◾    45  

way to think things over and analyze problems before they even happen.
Anyway, we definitely need to find a much more agile way of doing things.

At Boomzap, for example, they try to concentrate all the most rele-
vant information we saw in the canonical bible approach by using a very
visual style, mostly via mock-ups of different screenshots to discuss how
the gameplay would develop. The whole documentation usually takes less
than 20 pages.

An even more drastic approach, to outline a design in the most
focused way possible, has also been proposed by Electronic Arts/Maxis
Creative Director Stone Librande in his highly popular Game Developer’s
Conference talks* discussing a “One-Page Designs” format.

The idea is to identify and discuss only the main elements of the game
and their relationships. Note that this doesn’t necessarily mean the whole
game documentation is going to fit onto one page. Different features or
sections, such as concept art to discuss the theme and mood of the game,
GUI, storyboards, relationships between units and their stats, and different
maps/levels, may require their own pages, but the important point is that
each sheet we draft should stand alone and should discuss in enough detail
one or more related aspects in a visual and easily understandable way.

A possible format for approaching design documentation in this way is
showcased in Figure 4.1.

In general, good guidelines to design such one-page documents are to
start with a title and version (don’t forget to date the document!), write a syn-
thetic description of the topic under discussion, and then draw a main cen-
tral picture or diagram to illustrate the topic. This can have a more detailed
description to clarify important concepts, including sub-pictures showing
further details, callouts to identify items and functionalities, and more.

The remaining part of the page can be used to illustrate other related
diagrams, flowcharts, bullet points/checklists, high-level goals, or other
meaningful information.

It is also important to leave some white space around diagrams to facili-
tate reading and comprehension of the material presented. Although you
may want to squeeze as much information as possible on the page, an
overly cluttered layout won’t incentivize people to go through it, under-
mining the very reason of this approach: we want our documents to be
actually read and not silently ignored!

* Stone’s original slides can be retrieved from his website: www.stonetronix.com/gdc-2010/

46    ◾    HTML5 Game Development from the Ground Up

In the next chapter we will start using this approach in practice to doc-
ument our ideas.

TAKE AWAY
In this chapter we discussed the importance of documenting our ideas,
an often overlooked area in indie game development. We discussed dif-
ferent approaches, from documents potentially spanning hundreds of
pages to much more synthetic design documents. One-page designs,
in particular, are a very useful tool to think and formalize our ideas
while also providing an easily readable format for anyone involved in
the project.

EXERCISE
Write a one-page design document for the game Frogger, which we ana-
lyzed in Chapter 2.

Title
Date/Version < topic/high level description >

< description >

Main Illustration

Details,
Zoom In

Callout
Callout

Sidebar
or

Flowchart

Sidebar
• Bullet points
• ...
• ...

A.G.E.
Analysis
or other
diagram

FIGURE 4.1 A possible template for one-page design documentation.

47

C h a p t e r 5

Moon Wolf, a Space
Arcade Game

Arcade games and space shooters were all the rage in the early days:
from Space Invaders to Asteroids, from Tempest to Defender, many

classics were made around this theme.
The genre is still a very good playground to hone our skills as game

designers because it is usually built around a simple yet engrossing game-
play demanding good hand-eye coordination and fast reflexes, which are
still relevant in many mobile games. Here, gameplay has to be carefully
fine-tuned as the player progresses across waves of enemies, making also
for a good playtesting and balancing exercise.

Our first prototype will fall into this category of arcade-like space
games. We will model the core actions and gameplay after an old but
engaging arcade game of the early 1980s: Solar Fox. As an homage to our
source of inspiration, our game will be named Moon Wolf.

5.1 SOLAR FOX: ANALYSIS
Solar Fox is an arcade game released by Bally Midway in 1981. In it, the
player has to drive a starship across a series of grids to retrieve solar cells
while avoiding different types of enemies and hazards. To defend himself,
the player has a limited range fire, which can momentarily halt the sen-
tinels patrolling the grid perimeter, can destroy incoming shots, and can
speed up/slow down his ship to predefined cruise speeds.

With taglines like “Bally-Midway’s Solar Fox speeds through a video
universe of challenges” and “Speed and Strategy are all you have and they

48    ◾    HTML5 Game Development from the Ground Up

just might be enough!” Solar Fox was relatively popular, so much so that it
was even featured in the 1983 movie Joysticks* (see Figure 5.1).

To gain a better insight on the game, let’s analyze it with the AGE
framework, starting with the actions.

What actions can we do in the game? Let’s check the controls: the joystick
allows us to move around the two-dimensional grid, while two buttons allow
us to change speed, from low to high or vice versa (according to the game
difficulty we select when starting the game) and shoot a short-range missile.

What are we using the actions for? By shooting and moving around we
can avoid enemies and grab the available cells. In game design terms, we can
then say we have a gameplay centered around themes like avoidance (avoid
being hit by the enemies), race to an end (we have to find a path to reach the
next cell we are targeting), and taking/hoarding all cells in the level.

Finally, regarding the experience, the goals here are simply to reach and
grab all cells while avoiding incoming fire. Our collecting instinct will
push us to clear the level, which, in turn, should make us happy and proud
of our success. Our survival instinct would also play an important role,

* Despite featuring Solar Fox and some other great games, Joysticks isn’t really a movie worth
remembering: it’s an example of the low-quality, rowdy teen sexy comedies that were common in
the 1980s, and it’s no surprise it is currently scoring an abysmal 3.3 out of 10 rating on the Internet
Movie Database! http://www.imdb.com/title/tt0085764/

FIGURE 5.1 A screenshot of the original Solar Fox. Players had to move around
the two-dimensional grid at different speeds to gather all cells while avoiding
enemy fire. (© 1981 Bally Midway.)

Moon Wolf, a Space Arcade Game    ◾    49  

making us react as fast as possible to enemy shots. Both collecting and
survival would be stronger if the game manages to make us feel like we are
actually in command of the spaceship (identification), something that the
original arcade game tried to achieve subconsciously by providing a joy-
stick shaped like a futuristic airplane control, in addition to the attractive
and aggressive artwork on the cabinet (Figure 5.2).

Our analysis is summarized in the AGE diagram in Figure 5.3.

FIGURE 5.2 The control panel for Solar Fox: note the attractive joystick to add
realism to the space flying experience. (Image taken from the International
Arcade Museum, www.arcade-museum.com).

Identi�cation

CollectingSurvival Avoidance
Race to an end

Hoarding

Move spaceship
Change speed

Shoot

Excitement Pride

Joy

FIGURE 5.3 AGE analysis for Solar Fox.

www.allitebooks.com

http://www.allitebooks.org

50    ◾    HTML5 Game Development from the Ground Up

Inspired by this classic, we can now start designing our own take on
the genre.

5.2 MOON WOLF: DESIGN
Our space arcade game will retain the main elements of Solar Fox but will
simplify a few things while adding something new as well.

First of all, we won’t have the fancy flying joystick at our disposal, but
we can still try to engage the player by providing a simple background
story to make the setting a little more exciting. For example:

A mysterious alien force is amassing deadly weapons behind our
moon. As the famed Commander Wolf, you are Earth’s only hope:
infiltrate enemy lines and steal all their energy reserves while
avoiding their sentinels!

Our gameplay would essentially remain the same as the original, but we
can change a few aspects to make it our own: for example, shooting is not
really the main part of the action, so, for simplicity’s sake, we can just focus
on the avoiding and collecting aspects instead.* On the other hand, we
may want to add a resource-handling element, making the change speed
feature limited and, thus, more meaningful: the player can only accelerate
as long as he has enough fuel for boosting its speed. This means we should
also give opportunities for refilling our fuel tank, though, and we can do
so by deciding that every time we collect a cell, there is a 10% probability
to spawn a recharge battery. The battery should recharge 20 units of fuel
when picked, for example. Instead of four sentinels like in the original
arcade game, we can also limit our design to just one main antagonist that
would roam the full screen perimeter and shoot straight missiles. To make
the action more varied and challenging, we can add different types of haz-
ards, like asteroids that can randomly travel across the screen. In addition,
the player would start with only one life: getting hit means game over.
When all cells have been collected, the game restarts with a new wave,
replacing all the cells and making the sentinel, as well as the asteroids,
move faster and shoot at a higher fire rate.

All these ideas are summarized in our one-page design document
shown in Figure 5.4, which will serve as a reference throughout the devel-
opment process that we will start in the next chapter.

* Indeed, this is what the home conversion for the Atari 2600 console did back in the day.

Moon Wolf, a Space Arcade Game    ◾    51  

M
oo

n
W

ol
f

26
-0

4-
13

/V
.1

.0
“A

 m
ys

te
rio

us
 a

lie
n

fo
rc

e i
s a

m
as

sin
g d

ea
dl

y w
ea

po
ns

 b
eh

in
d

ou
r m

oo
n.

 A
s t

he
 fa

m
ed

Co
m

m
an

de
r W

ol
f,

yo
u

ar
e E

ar
th

’s
on

ly
 h

op
e:

in
fil

tra
te

 en
em

y l
in

es
 a

nd
 st

ea
l a

ll
th

ei
r

en
er

gy
 re

se
rv

es
 w

hi
le

av
oi

di
ng

 th
ei

r s
en

tin
els

! ”

Fl
oa

tin
g

as
te

ro
id

: c
an

 k
ill

 p
la

ye
r a

s w
el

l!

G
ra

b
al

l p
ow

er
 ce

lls
 w

hi
le

 av
oi

di
ng

 en
em

y fi
re

an
d

ot
he

r h
az

ar
ds

 li
ke

 as
te

ro
id

s.
Ca

n
ac

ce
le

ra
te

 a
s l

on
g

as
 fu

el
 le

ft.
Fu

el
 re

ch
ar

ge
 b

at
te

rie
s c

an
 sp

aw
n

ra
nd

om
ly

w
he

n
co

lle
ct

in
g

po
w

er
 ce

lls
.

D
-P

ad
Pl

ay
er

Fu
el

 In
di

ca
to

r

Id
en

tifi
ca

tio
n

Co
lle

ct
in

g
Su

rv
iv

al

Ex
ci

te
m

en
t

Pr
id

e

Jo
y

Te
xt

 d
isp

la
yi

ng
 S

co
re

, H
ig

h
Sc

or
e,

an
d

W
av

e #

En
em

y s
en

tin
el

, r
oa

m
in

g
Sc

re
en

 p
er

im
et

er
 an

d
sh

oo
tin

g

En
er

gy
 C

el
ls:

 p
la

ye
r

ne
ed

s t
o

gr
ab

 al
l t

he
se

Bu
tto

n:
 P

re
ss

 to
 ac

ce
le

ra
te

,
as

 lo
ng

 a
s y

ou
 h

av
e e

xt
ra

fu
el

! W
hi

le
 p

re
ss

ed
, f

ue
l

in
di

ca
to

r d
ec

re
as

es
.

• P
la

ye
r s

ta
rt

s w
ith

 3
 li

ve
s

• W
he

n
co

lle
ct

in
g

a c
el

l,
th

er
e’s

a 1

0%
 p

ro
ba

bi
lit

y a
 fu

el
 r

ec
ha

rg
e b

at
te

ry
 is

 sp
aw

ne
d

ac

ro
ss

 th
e s

cr
ee

n.
• W

he
n

cl
ea

re
d

al
l c

el
ls,

 n
ew

w

av
e s

ta
rt

s w
ith

 a
ne

w
 se

t o
f

 c
el

ls.
• I

n
ea

ch
 n

ew
 w

av
e:

 •
Se

nt
in

el
 sp

ee
d

an
d

sh
oo

t

 ra
te

 g
et

 5
%

fa
st

er

 •

A
st

er
oi

ds
 fr

eq
ue

nc
y a

nd

 sp
ee

d
in

cr
ea

se
 a

s w
el

l

12
34

5
-W

av
e:

 0
1

FI
G

U
R

E
5.

4
O

ne
-p

ag
e

de
sig

n
do

cu
m

en
t f

or
 o

ur
 fi

rs
t g

am
e:

 M
oo

n
W

ol
f.

52    ◾    HTML5 Game Development from the Ground Up

Finally, note also that all these rules and corresponding values are just
a starting point. Most likely we will have to change them and fine-tune
everything once we start playtesting our first prototype. Remember: noth-
ing in a game design document, no matter how verbose or concise it is, is
ever set in stone.

TAKE AWAY
In this chapter we discussed our first game concept: a simple arcade space
game inspired by Solar Fox, a classic arcade game released in 1981 by Bally
Midway. We analyzed the game using the AGE framework and then sum-
marized our ideas in a one-page design document that will serve as a refer-
ence during our development work.

53

C h a p t e r 6

Moon Wolf Development

It’s time to start developing our first game with Construct 2! First, we
will define the layout and touch controls. We will also add some back-

ground music and preview our work locally on a browser. Adding cells
and a scoring system will come next, followed by the implementation of
the speed change, fuel bonuses, and simple animations. Last but not least,
we will add the sentinel and asteroids to create challenges and complete
the game plus a basic game loop to keep playing at a higher difficulty level
once all cells have been collected or to restart after the game is over.

Before we begin, a general reminder: don’t forget to save your ongoing
project often! Note also that Construct 2 automatically keeps one or more
previous saves as backup copies. (You can specify how many from the File
menu, look for the Preferences icon and then pick the Backup tab. The
default is one.)

6.1 GETTING STARTED
If you have a demo project still open, close it and start by creating a new
empty one either from the File menu or the Start page. Once you are more
experienced, it is recommended you use the provided templates to speed up
the early development stages, but for now, it’s a good idea to go through every
step to get a better understanding of what we are actually doing and why.

The first thing we should take care of is to define the screen size for our
game and define how it is going to scale when it’s played on devices having
different screen resolutions.

Luckily for us, Construct 2 handles scaling very well, so let’s change
the Full screen in browser property in the Configuration settings for the

54    ◾  HTML5 Game Development from the Ground Up

project to Letterbox scale (to access these, click on an empty area in the
layout to display the Layout properties in the right panel, then click on
the Project properties view link). But what resolution will we develop in?
Considering we want our game to work on many devices, from Windows
8 based PCs to tablets and smart phones across different models and gen-
erations, it’s a good idea to start with something average that can be scaled
accordingly, up or down, by the game engine itself.

For our game, I decided to target a resolution of 800 × 480 pixels,
which can be a good starting point for many wide-screen devices and is
adopted by several 7 inch Android-based tablets as well as smart phones.
Feel free, however, to change the resolution to fit any specific device you
have in mind.

Our project settings should then look like those shown in Figure 6.1.
Now let’s start by setting up our first layout, by default named “Layout

1,” as the game layout, where we will prototype our gameplay. Rename
“Layout 1” as “Game” (you can do this from either the Project or the

FIGURE 6.1 The Project settings for our first game. Here we define the window
size and how it should scale on devices with different resolutions. Note that the
exact field names, values, and order may be slightly different across different ver-
sions of Construct.

Moon Wolf Development    ◾    55  

Properties windows by clicking on the layout name) and its “Event Sheet
1” as “Game Sheet.” In case the Layout properties are not displayed, click
anywhere on the layout to see them, and be sure our event sheet is cor-
rectly associated with it (check in the Layout properties).

We can now add a background and a spaceship.
Note that, in this game, I will be using the free space assets that come with

Construct 2 (we saw them already in the Space Blaster Construct 2 demo:
they can be downloaded from http://www.scirra.com/freebundle.zip). This
book is not about art assets: you may also check Appendix A for a list of
alternative resources available online, or simply use boxes and triangles of
different colors to prototype your ideas, as we did in the mock-up image
used in the one-page design document to explain the game concept. Don’t
forget that great graphics don’t make great games, great game design does!

Our background image will be background1.png, by default located
in the Sprites/space/backgrounds folder where we unzipped the assets.
However, feel free to use any background image you like.

To add any other object to the game, double click or right click anywhere
on your empty layout and select Insert new object. Since now we want to
add an image, choose Sprite. Change the default name to Background
and click Insert.

Note that now the cursor changed into a crosshair. Click anywhere
inside the layout to open the Sprite editor window. Once there, open the
folder icon and select your background image.

Once the image has been imported, you may also want to change
the picture origin and bring it to (0,0) so that it will be easier to move it
later by using coordinates. To do this, click on the origin icon (shown in
Figure 6.2) and then select the origin point, by default placed in the middle
of the image. Move it to (0,0) by clicking close to the upper left corner of
the image and then moving it by using the arrow keys as needed.

Close the editor window and you will be back to the layout. Now we can
either resize the whole image to fit the 800 × 480 pixels view of our layout
or we can simply position the big image in a way you like and display only
a portion of it.

Once this is in place, repeat the previous process to add a new sprite
to the game, but this time let’s choose an image suitable for the play-
er’s ship. I used the Crescent008.png file, but if you don’t have a nice
sprite at hand don’t worry: you can just draw a triangle like the one in
Asteroids (have it point toward the right) and your game will still work
pretty well!

56    ◾  HTML5 Game Development from the Ground Up

Click on the crop icon and your sprite should look like the one in
Figure 6.3.

Close the Edit image window and place your spaceship anywhere you
like. If, for any reason, it is not automatically displayed in the layout, we
can drag and drop it from the Project panel on the right (look into the
Object types folder). Resize it so that our game view will allow for enough
room for proper maneuvering. For example, I rescaled the ship to (33,42).
Then click on Behaviors, as shown in Figure 6.4. Add one by clicking on
the plus (+) sign and select 8 Direction under the Movements section.

FIGURE 6.2 Moving the origin of an image to a more convenient position.

FIGURE 6.3 Our player sprite, cropped, in the image editor.

Moon Wolf Development    ◾    57  

This behavior allows us to control our spaceship right away by using
the arrow keys. Before we try it, we should be sure to add touch controls
as well so that our game can be played on mobile devices and tablets via a
touch screen.

This is not as difficult as it sounds. First, we should keep things neat. It
is a good practice to keep the graphical user interface (GUI) on a separate
layer, so add a new layer that we are going to call “UI.” To do so, in the
panel on the right, click on the Layers tab next to the Projects tab, click on
the plus sign and rename the new layer as shown in the Figure 6.5. We can
also rename the original layer, “Layer 0,” something a bit more meaning-
ful, for example “Action,” if we like. From now on we can simply select,
show, or lock a layer by clicking on the corresponding icons, and we can

FIGURE 6.4 We can easily add predefined and very useful behaviors to selected
objects.

FIGURE 6.5 Adding a layer. Layers are a huge help in keeping our game struc-
ture neat by separating different groups of elements, for example, the GUI. Note
that in the free edition we can add up to four layers only.

58    ◾  HTML5 Game Development from the Ground Up

also change their order by dragging a layer up or down the hierarchy in
the panel.

Now it’s time to start defining the control GUI: we are going to have
four big arrows placed in the lower left corner of the screen that will high-
light when touched and move our ship at a default speed. Each arrow has
to be defined as a new sprite, which we can call “Control_Up,” “Control_
Down,” and so on. After we add each sprite to the project and draw the
arrows in the image editor, we should have something like what is shown
in Figure 6.6.

Note that I scaled each arrow to be 50 × 50 pixels with an Opacity of 30
(a value of 0 means invisible). We will be using this property to simulate
the touching highlight effect.

Next, we need to add the “Touch” control object to the game. Double
click on an empty area of the layout and select what we need (Figure 6.7).

FIGURE 6.6 Our control GUI: a directional pad (D-Pad) made by four big
arrows that, when touched or clicked, will be highlighted and move our ship in
the corresponding direction.

FIGURE 6.7 Select the Touch object to insert it in our game.

Moon Wolf Development    ◾    59  

Once added, it is time to start coding the events to make our spaceship
move. Select the Game Sheet tab (or Event Sheet 1 if you haven’t renamed
it yet), and add the first event by clicking on Add event.

Double click the Touch object, choose Is touching object (Figure 6.8),
and click on the Next button.

In the Parameters for touch dialog, select the Control_Up arrow sprite
as the Object to be touched and press OK. Now click on the Add action
text next to the event we just created, select the Player sprite, and choose
Simulate control (Figure 6.9).

Finally, in the Parameters dialog, pick the Up key from the list. From
now on, whenever we run the project, touching or clicking the arrow sprite
will have the same effect as pressing the up cursor key on the keyboard
and will move the related sprite (the player ship in this case) up according
to the speed defined in the 8 Direction behavior (which is shown in the
Properties panel whenever we select the player sprite in the game layout,

FIGURE 6.8 Adding a new event via the Touch object. In this case, we want the
event to be triggered when a specific object is being touched.

FIGURE 6.9 The event will trigger an action on a related object. In this case, we
are going to simulate a specific control key. As you see, we can also add actions to
control many other movement-related features, including acceleration and speed.

60    ◾  HTML5 Game Development from the Ground Up

see Figure 6.10) or by setting up a new action via the Set speed and Set
max speed parameters shown in Figure 6.9.

We also want to simulate the press button highlight effect, so add another
action, this time choosing any of the control sprites and then selecting the
Set opacity command and specifying a value of 100 (Figure 6.11).

Since we also want the arrow to go back to its original opacity value
when not touched, we have to add another event right after the touching
one and, specifically, an Else event where we set the value back to 30 (to
do this, we can simply select the event, then right click on it, move on the
Add submenu and choose Add “Else”).

FIGURE 6.10 A detail of the Properties Panel showing the current properties of
the 8 Direction behavior, defining the ship speed, among other things.

FIGURE 6.11 After selecting one of our control GUI sprites, we can choose dif-
ferent actions for it, including changing its opacity via the Set opacity action.

Moon Wolf Development    ◾    61  

After repeating this for all four directions, we should have a set of events
like those in Figure 6.12.

Now we have to be sure our spaceship remains in the visible area, so we
need to set up a series of events that check the ship position and block it
if necessary.

Let’s add a new event having the Player as object and Compare X as
condition (Figure 6.13). We can then add an action to this event with
Player as object where we set its coordinate (via Set X) accordingly.

FIGURE 6.12 The overall events we need to define for controlling our spaceship
and for changing the opacity of the control GUI sprites accordingly. Note also
that we can add comments (the top line in the figure) by right clicking on the
event sheet and selecting the Add comment option. We can also move comments
and events around simply by dragging them.

FIGURE 6.13 Choosing the Compare X condition for a newly defined player
event.

62    ◾  HTML5 Game Development from the Ground Up

So, if our X coordinate is less than or equal to 20, we automatically replace
it with a value of 20 pixels so that we stop just before reaching the left border of
the screen (remember the upper left corner of the screen has 0,0 coordinates).
For the rightmost value we can reference the LayoutWidth variable and sub-
tract 20 and then proceed in the same way for the up and down boundaries.
Once done, our section of the event sheet will look like Figure 6.14.

The last thing we should do before trying our game for the first time is
adding some background music to make our space cruising a little more
engaging! Go back to the Game tab and add the Audio object to the proj-
ect (see Figure 6.15).

For this example I’ll be using the WeirdSynth.ogg and -.m4a files
included in the asset-bundle/Ambient FX folder that comes with the per-
sonal license, but, as usual, you can use any file you have around in for-
mats like mp3, ogg, or wav.

Import the files by right clicking on the Music folder in the Projects tab
(see Figure 6.16).

Note that importing audio wave files in Construct is recommended,
since Construct will automatically convert them to ogg and m4a. Ogg

FIGURE 6.14 The set of events we need to keep the player within the screen
boundaries.

FIGURE 6.15 Adding the Audio object to our game.

Moon Wolf Development    ◾    63  

files are the standard for browsers like Chrome, Firefox, and Opera, while
Internet Explorer 9 and Safari need files in m4a. Be sure to have both if
you want your audio to be playable on as many devices as possible!

Also, be aware of a subtle difference between the Sounds and Music
project folders: files in the Sounds folder have to be downloaded com-
pletely before we can play them in the game, while files in the Music folder
are streamed, hence we can start playing them almost immediately.

Once the files have been imported, we can call them from the event
sheet to start playing them as the game starts.

We want the music to start as the game begins, so we add a new event
directly from the System object, On start of layout, which is called as
soon as the layout starts running. The event will use the Audio object and,
specifically, the Play function, where we specify the filename we want to
play, whether it loops or not, and its starting volume (0 means maximum
volume, i.e., no attenuation) as seen in Figure 6.17.

FIGURE 6.16 Importing music directly from the Projects tab.

FIGURE 6.17 Setting up the audio file to play.

64    ◾  HTML5 Game Development from the Ground Up

In the end, we will have a new event like the one shown in Figure 6.18.
Now save your project, if you didn’t do so already, and get ready to play

what we have done so far in the browser of your choice. To do so, be sure
you are displaying the game layout and click on the Run Layout button:
you can then control the spaceship by using either the arrow keys, clicking
the arrow controls with your mouse, or just touching the controls if you
have a touch enabled screen! (See Figure 6.19.)

While not available in the free version, once you register for the Personal
or Business Edition license, Construct 2 will actually offer another very
useful way of previewing a game on different computers and tablets
directly via local area network or wifi. This would allow for an easy way
to test a project across different setups and hardware, without the need to
export and download the project on each different machine.

This type of testing may require a relatively complex setup, though,
spanning some network and firewall settings. You can check the “How to
preview on a local network” tutorial online at Scirra’s own website under
“Tutorials/Beginner/Workflow/” or by going directly to this address:
https://www.scirra.com/tutorials/247/how-to-preview-on-a-local-network.

FIGURE 6.18 On start of layout we want to start playing our background music,
looping with no attenuation.

FIGURE 6.19 Testing our work in progress in a browser: we can freely move
the ship around by using the keyboard or by clicking/touching the on-screen
controls!

Moon Wolf Development    ◾    65  

Since all this has already been covered very well online by Construct’s
own developers, I won’t cover it here again, and we will move on with
Moon Wolf development instead.

6.2 ADDING CELLS AND A SCORING SYSTEM
Let’s add a new Sprite object anywhere in our game layout as usual.
Once in the Image Editor, make your own cell design or import a suit-
able graphic file. In this case, I’ll be using the “saucer_blades000” sprite
located in the asset-bundle/Sprites/Space/Enemies folder. Crop the
image and then go back to the layout. Click on the new sprite to show
its properties (on the left) and rename it “Cell.” Also, resize it to make
it proportioned to our ship and screen; here, 30 × 30 pixels should work
well (Figure 6.20).

Now duplicate the sprite several times and spread the copies around the
layout in any way you feel appropriate. We can do this by standard copy
and paste keyboard shortcuts or by pressing Ctrl while clicking on the
sprite of choice and then dragging it on a different area of the layout (be
sure the layers you copy from and to are the same! In our case, we want all
our in-game objects to be on the Action layer).

At the end of this process we should have something like Figure 6.21.
Note that each new sprite added to the layout will, by default, be at the top
of the layer it belongs to. This means our spaceship is now at the bottom
and, most likely, we want it to fly on top of the other objects instead. To do
so, right click on the Player sprite, select Z Order and bring it to the top of
the layer once again (Figure 6.22).

FIGURE 6.20 Adding a sprite to act as the energy cells we have to collect in the
game. Rename the object properly, “Cell” in this case, and resize it to match the
screen size and other objects.

66    ◾  HTML5 Game Development from the Ground Up

Before coding what happens when the player collides with a cell, let’s
plan ahead a little bit and start defining another important element of our
GUI: a text line that should display the current score, the high score, and
the current level/wave number.

Add a new object and choose Text under the General category and
rename it “Score_txt.” After you put it in the layout, check in its properties
window to select a font you like together with a suitable size and a bright
color. Be sure the text window is big enough for your font size (resize it if
necessary) and that our object is on the UI layer. I suggest we resize the

FIGURE 6.21 A possible layout for our game, showing all the cells ready to be
collected.

FIGURE 6.22 Bringing the player’s ship on top of the layer.

Moon Wolf Development    ◾    67  

text window to cover the whole width of our layout and then change the
Horizontal alignment property to Center to have the text automatically
centered across our window. In the end we should have a set of properties
like those in Figure 6.23.

Now we need to define some variables to keep track of the score. Move
to our event sheet and right click on an empty area. Select Add global
variable from the menu (Figure 6.24), and then fill it with the relevant
data (Figure 6.25).

Do the same for two more variables, named Highscore and Level, set-
ting them to 0 and 1, respectively. Global variables will be displayed on top
of the event sheet. We want to display these variables as soon as the game
starts, so we will add a corresponding action in the On start of layout
event. Click Add action and select the score_txt object. Click Next and

FIGURE 6.23 Setting up the text for displaying player’s scores.

68    ◾  HTML5 Game Development from the Ground Up

then scroll down until you see the Set text option. Alternatively, when
looking for a specific action across a long list of options, use the Search
field in the top right corner of the window to type what you are looking
for. Click next and we can define the text we want to display. Here we can
mix characters and variables and append each to the other by using the
ampersand (&).

Note also that another window on top of your text line will pop up
(with transparency, you may have to roll over with the mouse pointer to
make it fully visible) displaying all Objects with expressions available.

FIGURE 6.24 Right click in an event sheet for creating a global variable, i.e., a
variable visible and accessible from anywhere in the game.

FIGURE 6.25 We name our variable score and set its type to number with a
starting value of 0.

Moon Wolf Development    ◾    69  

This is quite handy for retrieving variables or other objects we want to
interact with. In this case we can select the System object and insert all
the variables we need in our string simply by clicking on each of them.

The result should be something similar to Figure 6.26.
And the On start of layout event will then look like Figure 6.27.
The next step is to check for the collision between the ship and any of

the cells. When this happens, we want the cell to disappear and award
10 points to the player. To do so, we define a new event for the player object.

Click on Add event, and select the Player sprite. Look for the Collision
section of possible events and click on On collision with another object.
After this, we have to select the cell object in the new popup window
(Figures 6.28 and 6.29).

FIGURE 6.26 Setting up the string for the Score_txt object. The window on top
allows us to easily include different objects and variables in the expression we are
building. In this case we selected the System object, since we are interested in the
game global variables we defined earlier.

FIGURE 6.27 The On start of layout event updated to display the score text line
when the game begins.

70    ◾  HTML5 Game Development from the Ground Up

Now that the collision event is defined, we need to add the correspond-
ing actions we want to perform when the event is triggered (i.e., a collision
is detected).

First, we need to remove the cell, since we just picked it up. Click on
Add action, select the cell object, and select the Destroy action in the
Misc section.

For updating the score, add another action, select the System object
and then choose the Add to in the Global & local variables section. In the
new window, select the score variable and write “10” in the Value field. At

FIGURE 6.28 Setting up collision detection between two sprites is a very
straightforward process in Construct 2: we simply need to select the collision
event and then the object we will be colliding with.

FIGURE 6.29 Selecting the cell object for our collision event.

Moon Wolf Development    ◾    71  

this point we may also want to check whether we have beaten the current
high score and update it as well.

To do so, we need to introduce a subevent that compares two values
and, eventually, triggers the desired action.

Right click on the empty area of the collision event and select the Add
subevent in the Add menu (Figure 6.30). Click on the System object and
then Compare variable in the Global & local variables section. Here
choose score > Greater than highscore as shown in Figure 6.31.

Then, we add an action to the subevent to update the high score value as
well (select the System object and then the Set value command where the
value is set to our score variable).

FIGURE 6.30 Defining a subevent for checking if we need to update the high
score as well.

FIGURE 6.31 Comparing score and highscore variables.

72    ◾  HTML5 Game Development from the Ground Up

The last step is to update the display. To do so, we can simply copy and
paste the score_txt action as defined in the On start of layout event in
both the main collision event and its subevent.

If we also want to add some polish, we can add a sound to be played
when the collision happens. Right click on the Sounds folder in the
Projects tab and select a sound you think is suitable. I chose the OK-1.
wav sound in the Asset-bundle/SoundFX folder, but you can also
design a new one with a tool like SFXR, as described in Appendix A.
Add another action to the main body of the collision event and select the
Audio object. Select the Play action under the General group and then
select the file you just imported, not looping and with a volume of 0 dB
(i.e., no attenuation).

The Player/Cell collision event in its entirety is shown in Figure 6.32.
Save the project and test the game!

6.3 SPEEDING UP
In this section we are going to add the speeding up functionality, triggered
when moving in any direction while pressing a specific button. We will
need to design new GUI elements and objects and, in doing so, we will also
introduce new concepts like Instance Variables and Particles.

As we see in our one-page design document, we need to add the fuel bar
and a button. Start by creating these elements: each is a new Sprite object.

The fuel bar is made by two sprites: a background and a foreground
image. We can call the first fuel_bg, and simply fill the 256 × 256 pixel (we
can stretch it out later in the game layout) with a bright blue tone of your
choice in the sprite editor. Close the editor to go back to the layout and
change the y dimension of the sprite to 30 pixels. Also change the opacity
to 50, and place the sprite at the bottom of the screen.

FIGURE 6.32 The collision event. It takes care of updating the score and, eventu-
ally, the high score, and it also destroys the specific cell.

Moon Wolf Development    ◾    73  

Now repeat the process for a new sprite called fuel_fg, but this time we
fill it with a bright yellow color. Once back to the game layout, let’s resize it
to something like 245 × 24 pixel and an opacity level of 70. Then place this
on top of the blue background bar.

Add one more GUI sprite and name it speedup_btn. In the editor either
draw a rectangle filled with a bright red color, or select a big sized brush
(e.g., 256 to cover the entire sprite image) and a high hardness value (e.g.,
90 or more), since we don’t need a halo effect around it. Go back to the lay-
out, resize the button to 80 × 80 pixel, for example, and change its opacity
level to 30, like we did previously for the virtual D-pad.

We should then have a GUI like in Figure 6.33. Be sure that all its ele-
ments are placed in the UI layer!

We need now to implement the events we want to trigger when pressing
the button, i.e., lighting it up, progressively reduce the fuel_fg image, and
change the speed of our ship (as long as we have fuel left). All these will be
handled in a way similar to what we just did for the D-pad.

Switch to the event sheet and add a new event, choose the Touch object,
then select Is touching object, and finally choose the speedup_btn as the
object being touched.

After this, we add the actions for changing the button opacity to 100.
Changing the fuel bar X size is a little trickier and requires us to introduce
something new: instance variables.

To keep track of its width, in fact, we should define first an instance
variable, i.e., a variable tied to a specific object in the game. We can do
so through the property window once we select the object on the Game

FIGURE 6.33 The game layout after adding the GUI elements for the speeding
up effect: a fuel bar and a button.

74    ◾  HTML5 Game Development from the Ground Up

layout and we click on the Add/edit Instance variables line in the object
properties (Figure 6.34).

We should initialize this variable at the beginning of the game with
the original bar width. The On start of layout event is a suitable place
for doing it: add an action, pick the fuel_fg object, choose Set value in
the Instance variable section and then pick the Width property from the
fuel_fg object (Size & Position group) as shown in Figure 6.35, or simply
write fuel_fg.Width directly in the value field.

The On start of layout event will then be updated as in Figure 6.36.
We are now ready to change the bar width in real time as we press

the button.

FIGURE 6.34 Adding an instance variable named fuel of type number to the fuel
bar foreground to keep track of its level.

FIGURE 6.35 Initializing the fuel variable with the object’s own width.

Moon Wolf Development    ◾    75  

Note also that we want this to happen only when we have enough fuel
left. The first thing we should do is Add a subevent where we check whether
the fuel variable of the fuel_fg object is still greater than a minimum value,
let’s say 2. If this condition is satisfied, we can proceed to update the player’s
speed to, let’s say, 500: select the Player object and add an action to the
subevent we just created, then pick Set max speed in the 8 Direction group.
Finally, we have to decrease the variable and resize the bar.

For the former, we want the decreasing rate to be constant, like 10 pixels
per second, and not dependent on the specific frame rate of the machine
the game is running on. Construct achieves frame independence by
using the system expression dt, which returns the time elapsed in sec-
onds between two frames,* so let’s add a new Subtract from action for the
fuel_fg object where we subtract 10 * dt from its instance variable fuel.
After that, we add another Set width action where we update the width of
fuel_fg width to the new vale of fuel as shown in Figure 6.37.

If we playtest the game now (by the way, remember to save often!)
and press the button, most likely we will see something unexpected: the
fuel_fg yellow bar will remain centered where it is, giving the impression
it is shrinking from both sides! This happens simply because we didn’t
change its origin point yet and, by default, this is located in the center of
the image.

* Note that predefined behaviors like 8 Direction have dt already built in, so we don’t need to add it
when working with them.

FIGURE 6.36 Updating On start of layout event to reflect the initialization of
fuel_fg instance variable.

FIGURE 6.37 The event and subevent needed for giving a boost to the player’s
ship and update the GUI, as long as we still have enough fuel!

76    ◾  HTML5 Game Development from the Ground Up

To fix this, open the sprite in the image editor and move the origin
point to 0,128 like in Figure 6.38.

Now that this is fixed, we need to restore the player’s speed, as well the
button’s opacity when we stop pressing the button. We can do so by add-
ing an else condition to the Touch event where we reset the opacity and
maximum speed variables. Else is part of the System object and has to be
added as an event right after the condition we want to check, as shown in
Figure 6.39.

Unfortunately, for the button press, we don’t have a simple way to simu-
late the event as we did with the 8 Direction for movement, so we need to
handle this case specifically if we want to also enable keyboard input, for
example by pressing the space bar.

FIGURE 6.38 Image coordinates in the layout refer to its origin point. If we want
the left side of our bar to remain next to the left side of fuel_fg, we need to move
the origin point from the center to the edge of the image.

FIGURE 6.39 Restoring the variables when we stop touching the button.

Moon Wolf Development    ◾    77  

To do so, add the Keyboard object to the project first, then add a new
event, choose the newly added Keyboard, and then choose the Key is
down condition. Then click on <click to choose> and press the space bar
to associate it with the key down event. We also need to check that we have
enough fuel by adding an additional condition in the same event (or as a
subevent, as we did in Figure 6.39 when touching the speedup_btn). In the
end, our keyboard event will be defined as in Figure 6.40.

But there is an instructive problem here. Assuming the keyboard event
is placed after the one for the touch button, if we play the game we will
soon realize that, while the space bar works as planned, clicking on the red
button has no effect on the speed! Why? Because the else condition after
the keyboard event is going to be checked after the touch control changed
the speed value, and it will be executed since the space bar is not pressed,
setting the speed back to 200 regardless of what the touch button event did
previously!

This means we need to reorganize our code in a more efficient way. We
can actually delete the action resetting the player speed in the else part of
the touching button event, as well as the whole else part of the keyboard
event.* What we should do instead is a common event that gets triggered
when neither the button nor the space bar are pressed and only then resets
the speed to the original value of 200.

Add a new event and start by copying and pasting our two conditions,
Touch/Is touching speedup_btn and Keyboard/Space is down. Now
click on each to select them individually, right click, and choose Invert
from the menu. This will add a red cross next to each condition and make
the event run only when both are false, i.e., space bar is not pressed and
button is not touched.

* Note that we can temporarily disable an action or event, instead of deleting it, by right clicking on
it and then selecting toggle disabled in the menu. This is very handy when testing and looking for
different ways of doing things.

FIGURE 6.40 Handling keyboard input in addition to the touch controls for
speeding up the spaceship.

78    ◾  HTML5 Game Development from the Ground Up

The final set of events is shown in Figure 6.41.
When we boost the player speed, it would be nice to show some visual

feedback, so this is a good time to introduce particle effects.
Particles are just another predefined object we can easily add into our

project and layout (we find it under the general section next to the Sprite
object), so let’s add one and name it “boost.” As soon as we place it in the
layout or double click on it, the image editor opens up: we can now draw
our own particles. For this example, we can first reduce the size of the
image from the default 256 × 256 to 32 × 32 via the resize icon (it is next to
the crop icon) and then draw a small bright colored circle with the brush
tool (I used a size 32 with a hardness value of 25).

Back in the layout we can see our Particle object: select it and do
some experiments to understand how to manipulate and fine-tune
the various effects. Note that by clicking on help at the bottom of
Properties tab we are taken to the online manual page with a detailed
description of all the different parameters. For this simple example,
most default values are fine: we may just change the Spray cone prop-
erty to 30 or 45 degrees and a Timeout property to 0.2 seconds to
have a more focused jet. We may also want to fine-tune the individual
particle size to match the current screen resolution and player sprite
more precisely, for example, by reducing the Size to 16 (in the Initial
particle properties section).

FIGURE 6.41 All the events for handling the speed boost via either on-screen
button or space bar and then properly resetting the value.

Moon Wolf Development    ◾    79  

What we really need to do now is to attach the particle to the player and
switch the effect on and off together with the speed boost.

To do so, we should first add a specific Image point to the player sprite
that we will use as an anchor for the particles. Open the Player sprite in
the Image editor, select the origin icon and add a new one-image point.
Call it “Particles” and place it on the ship exhaust system as in Figure 6.42.
Note that the new point has an index number of 1.

The particles should be off when the game starts, so we should add an
Action to the On start of layout event to do so: select the boost particle
object and then pick the Set visible option in the Appearance section. In
the following menu, select Invisible.

We then need to turn the particles on whenever we speed up the player,
i.e., when we either press the button or the space bar and we have fuel left.
Add a Set Visible action for the particles in both those events and then
add another event to make the particle invisible again if neither is pressed.
The updated events should be like those in Figure 6.43.

We are now ready to use the player image point we defined earlier to
display the particles properly. This should be done every frame so we can
add a new System event, Every tick, and then add a new action for the
boost object, specifically the Set position to another object (in the Size &
Position group), which we tie to the Player sprite and its image point 1.
We should also add a Set Angle action to the particles for adjusting their

FIGURE 6.42 Adding an image point to the player: that is where the particle
effect will be attached.

80    ◾  HTML5 Game Development from the Ground Up

angle, which should be set to Player.Angle-180 degrees, so that the par-
ticles are emitted backward (Figure 6.44).

In the game design document we also discussed a rule about fuel refills:
“every time we collect a cell, there is a 10% probability to spawn a recharge
battery. The battery should recharge 20 units of fuel when picked,” so we
should work on this feature now.

This will allow us to explore how to instantiate objects dynamically,
but, first, we need to draw or import a suitable image for our batteries.
I decided to go with the image Spikey0000.png* in the usual asset-bundle
folder, but this shouldn’t necessarily affect your choice.

* Asset-bundle/Sprites/Space/Enemies/Spikey0000.png.

FIGURE 6.43 Updating different events to switch on and off the boosting
particle system (here identified by the filled yellow circle).

FIGURE 6.44 Every tick, i.e., every frame, we need to adjust the particles’ posi-
tion and angle.

Moon Wolf Development    ◾    81  

Name your object something meaningful, like FuelBattery, crop the
image, and resize it as necessary (I resized it to 34 × 30 pixel). Now don’t
bring it into the visible layout, but leave it off the screen: this instance is
going to work as a template that we are going to reference for the new ones
we will be creating and destroying.

What we are going to do is this: we define an instance variable in a
suitable game object, the player for example, and every time we trigger
the collision event between the player and a cell, we randomly generate a
new value for this variable within a specific range. If the value is in the top
10% of the range, we spawn a new battery fuel in a random location of the
screen. Finally, when the player picks the battery, we refill the fuel reserve
as long as it doesn’t reach its maximum level.

Defining instance variables should be easy by now: in the game layout,
select the Player sprite and then add the variable through the Properties
panel. Set it to the type “number,” and give it a name related to its pur-
pose, like “spawnb.” Now we need to extend the actions in the Player On
collision with Cell event: first, let’s add the action to update the spawnb
variable and see if we are lucky enough to get a fuel recharge. Select the
player, choose set value and, in the value field, write “random(1,100).”
The random instruction is also accessible through the System object,
in the Values group and, as we can imagine, it will generate a random
number between 1 and 100 excluded. Now we can add a subevent to
check for the random value outcome: if spawnb is greater than or equal
to 90, we trigger an action where, from the System object, we choose
create object (in the General section), select the FuelBattery, and then
we write the specific coordinates where we want the new object to be
created. We want these values to be random within the screen so we can
write something like

 round(random(20, LayoutWidth-20))

for the x axis and

 round(random(20, LayoutHeight-20))

for the y axis (Figure 6.45).
Once the battery is spawned, we need to program for picking it up,

destroying the battery, and updating the fuel bar accordingly, i.e., adding
20 fuel units and filling it up only to its maximum level, for example 245,

82    ◾  HTML5 Game Development from the Ground Up

which is the original full length of the bar after we resized it according to
our screen dimensions.

While we could easily hard code the required values of 20 (for the refill)
and 245 (for the maximum level of fuel) directly in our event, this is never
considered to be a good programming practice: having values stored in
variables makes the resulting code much easier to manage and update
when the logic behind our programs starts getting more complex. For this
reason, before proceeding with the event, let’s add an instance variable
named refill to the FuelBattery and another one named maximum to
fuel_fg. Both should be of type number and be initialized with a value of
20 and 245, respectively.*

I’ll let you write down this new event as a little exercise without further
instructions. The result is shown in Figure 6.46, where I also added a new
sound clip to be played when the fuel battery is picked up.

6.4 ADDING ENEMIES AND A BASIC GAME LOOP
Our game is now starting to take shape: we can roam around, speed up, pick
up the cells, and increase our score. We are still missing one of the main
components, though: enemies to make the action challenging and exciting!

As defined in the game design, the main opponent here is an alien
spaceship, roaming the screen perimeter and shooting around. So let’s add
two more sprites: one for the enemy, which we call sentinel, and one for its
missiles, which we simply name rocket. For these, I’ll be using the sprites

* These could also be declared as global constants by selecting the checkbox while declaring a new
global variable, but here I preferred to keep them within the objects they relate to.

FIGURE 6.45 The player/cell collision event updated to include the possibility of
spawning a fuel recharging battery.

Moon Wolf Development    ◾    83  

in asset-bundle/Sprites/Space/Enemies/bug_eye0000.png for the alien
and asset-bundle/Sprites/Space/Rockets/rocket_type_C0004.png for the
rocket (note that the image is oriented toward the right: if you draw your
own sprite, use the same convention). While cropping the image in the
editor, we should also be sure to set up image points properly so that, when
the sentinel shoots a rocket, this gets spawned from the right position, i.e.,
in front of the spaceship. As shown in Figures 6.47 and 6.48, a new point

FIGURE 6.46 The event handling player/fuel battery collision, with a subevent
checking we don’t add anything beyond the maximum level. Instance variables
have been used for defining how much fuel each battery provides (FuelBattery.
refill) and how much we can store (fuel_fg.maximum).

FIGURE 6.47 Adding an image point named Gun to the Sentinel sprite. This is
the point where we will spawn enemy rockets.

84    ◾  HTML5 Game Development from the Ground Up

called Gun, having index number 1, is added to the sentinel’s gun, while
the origin point of the rocket is moved to its tail.

We will get back to the rocket in a moment when we implement the
shooting action (for now, place it outside of the playing area), but we
should take care of the sentinel movement first.

We want the sentinel to roam the perimeter of the screen. To do so,
let’s start by placing it in the upper right corner. We have to make it move
straight to the opposite corner on the left, rotate clockwise 90 degrees,
and go down to the bottom left corner, rotate 90 degrees again, and so
on. There is a predefined behavior called bullet that would help us a little
bit here. The bullet behavior simply makes an object move forward at a
specified angle. In our case, we are going to let the sentinel move straight
and simply turn when it reaches the edges of the screen. The exact bound-
aries should be selected according to the actual size of our sprite and to
the location where we want the sprite to start. In the Sentinel object,
we also need to define an instance variable called, for example, side (of
type number) to keep track of the side along the perimeter the sentinel is
moving on. This is needed to avoid the sentinel getting stuck in a corner
and keep turning around forever. The resulting events and actions are
shown in Figure 6.49.

FIGURE 6.48 Moving the origin point of the rocket to its tail.

Moon Wolf Development    ◾    85  

For the shooting, let’s define two more instance variables for the senti-
nel: shoot, a random number between 0 and 100, and trigger, a threshold
value we will compare shoot with: if shoot is higher than or equal to that,
the sentinel will actually shoot a missile. The updated properties for the
sentinel are shown in Figure 6.50, where we also see the rocket placed out-
side of the visible playing area.

To complete the shooting process, we now have to work on the rocket.
First, we need to add, via the Properties panel, the Bullet behavior to
it, and then set its speed to 400. We should also add another behavior,
DestroyOutsideLayout: since we don’t want the rockets to travel forever,
we should destroy the object as soon as it walks out of the screen. This
behavior takes care of this for us automatically.

After this, we can define the needed events and actions: specifically, in
the Every tick (i.e., every frame) event, we need to add an action to pick
a number for the shoot variable (sentinel object, Set value, select shoot
variable, and specify random(0,100)). Shoot will then be compared in a
subevent, to be triggered if its value is higher than the trigger variable
(choose the sentinel object, Compare instance variable, and pick the two

FIGURE 6.49 Planning for the Sentinel movement. We compare its x and y
coordinates, and every time we get close enough to a corner, we turn 90 degrees
clockwise to move along the other side of the playing field. Note how the different
checks can be grouped together as additional conditions within the same event
(right click on the event and select Add condition to do so).

86    ◾  HTML5 Game Development from the Ground Up

variables). If so, we select the sentinel object again and its Spawn another
object action (which is in the Misc section), where we choose the rocket as
well as the layer and the image point the object should spawn from (pick
image point 1, i.e., the gun point we defined earlier in Figure 6.47). Last,
we add another action to rotate the rocket 90 degrees clockwise and align
it with the sentinel sprite. The new events are shown in Figure 6.51.

We can follow the same procedure for adding other enemy types, for
example, asteroids, as discussed in the game design document.

After having added a new Sprite object, drawn or imported an asteroid
image (I’ll be using asset-bundle/Sprites/Space/Rocks/rock-type-A0000.
png), and done any eventual resizing and cropping, we can now think
of the game logic we want for it. For example, we can decide that, at the

FIGURE 6.50 Updated properties for the Sentinel object. We added three
instance variables to keep track of the movement (side) and define the shoot-
ing rate (shoot and trigger). The behavior Bullet was also added, with a starting
speed set at 200 pixels per second. Finally, note the rocket sprite placed outside of
the screen: it will be used as a template for spawning all the rockets the sentinel
will shoot at the player during the game!

Moon Wolf Development    ◾    87  

beginning of the game, there is 0.25% probability that an asteroid starts
moving across the screen, entering at a random position and angle.

As for the rocket, we should start by placing the asteroid sprite out of
the visible playing area (it will act as a template for the instances we will
spawn dynamically) and add two behaviors to it: bullet for its movement
(with a starting speed of 100, for example) and Destroy outside of layout
to get rid of the instances once they are no longer needed. To handle the
asteroid’s appearances, we need to add two more instance variables of type
number to the sentinel. Call them spawn_ast and trigger_ast: these will
work like those we declared previously to handle the shooting of rockets.
Set trigger_ast at 399.

In the Every tick event we should now add another action to set the
value of spawn_ast randomly between 0 and 400 and then check this
against trigger_ast in another subevent. Implementing this section will
follow the same steps we did for the rockets. The only difference is that
here we want to give the impression the asteroids are floating into the
playing field so they should spawn up randomly at the top of the screen
(for example with Y set to 1: remember that the asteroid objects will be
destroyed automatically once they are off screen, so if we spawn them out-
side the layout they also will be destroyed right away!) and then moving
downward by setting an angle between 0 and 180 degrees.

The revised Every tick event is shown in Figure 6.52.
Now that we have all the objects in place, we should worry about the

collision detection between the player and all the hazards: sentinel, rock-
ets, and asteroids!

Basically, they will all work the same way: if we hit any of them, we
should have some explosion effect and display a button with “game over”
text to restart the game.

FIGURE 6.51 Updated Every tick event to include the sentinel shooting action.

88    ◾  HTML5 Game Development from the Ground Up

For the explosion effect, let’s try to make some cool particles. Add a new
particle object, name it Explosion, and draw some fancy, multicolored
dots with the brush tool, for example, like those shown in Figure 6.53, but
you can also import an image if you have something suitable, of course
(in this case, in the Explosion properties, change blend mode to Additive
so that each particle blends properly with the background and with the

FIGURE 6.52 Updated Every tick event to include the spawning of asteroids,
handled in the background by the sentinel object.

FIGURE 6.53 Possible particles for our explosion effect. Parameters will be set so
that particles are emitted in all directions in a single burst.

Moon Wolf Development    ◾    89  

other particles as well). Experiment with different settings until you find
a combination you like. For example, we may select Spray cone to 360 (we
want the explosion to be all over the place), set it to One shot type and
have a Rate of 100 (for a one shot type of particle, this is the total number
of particles we are creating), a Speed of 200, and a Size of 50. Check the
effect by previewing the game in your browser and then move it outside
the layout.

Now let’s add the collision related events: we pick up the player object
and we put together three Is overlapping conditions, one for each of
the possible hazards: the sentinel, the rocket, and the asteroids. Then
select the event, right click on it, and choose Make ‘OR’ block like in
Figure 6.54. This will make the actions fire whenever any of those colli-
sions happen.

In the actions we take the Player object to spawn a new Explosion par-
ticle in its default image point, and then we simply destroy the player as
well as the object that hit us.

We are still missing something important: a “Game Over” message and
Restart button! For simplicity, in this example we are going to merge the
two, so add a Button object in the game (you will find it in the Form con-
trols group in the Insert new object window), change the name to game
over, the text to “Game Over,” add a tooltip saying something like “Click

FIGURE 6.54 Turn an event with multiple conditions into an ‘Or’ block: any of
the defined conditions will fire the related actions.

90    ◾  HTML5 Game Development from the Ground Up

to Restart!” and resize it so that it is big enough to be noticed. Place it in
the middle of the screen but be sure its Initial visibility is set to Invisible.

We will turn it to visible in the collision event like in Figure 6.55.
When clicked, the button should restart the layout by also resetting the

relevant variables. The event is shown in Figures 6.56 and 6.57.
Don’t forget to add a suitable explosion sound to make things nicer!
To properly complete the game loop, we still need to allow the player to

start playing again at an increased challenge level when all cells have been
picked up. To do so, we need, first of all, to keep track of how many cells
we have gotten so far.

Add an instance variable to the Player object and call it cells. Be sure it
is set to 0 when the game starts. Now, every time we pick up a cell we need
to increase the value of this variable by one, so add a corresponding action
to the Player/Cell collision event. Since we know we placed 40 cells in our
layout, we could simply check to see whether our counter cell is equal to
that number and proceed, but we are smarter than that! As said earlier
in this chapter, hard coding values is never a good idea: what if we want
to expand the game to have different cell layouts and different numbers?
Every time we would need to remember to update the values, otherwise

FIGURE 6.56 The different actions we have to do to restart the game once we
click on the button.

FIGURE 6.55 The collision events and related actions.

Moon Wolf Development    ◾    91  

we would get very unexpected results. Flexibility should be planned in
advance, so it is a much better idea to add one more instance variable
of type number to the Player. Let’s name it total. Then, in the On start
of layout event, we add a subevent where we use the System object and
its For each action, which we can use to cycle through all cell instances
we placed in the level and count them by adding 1 to the total variable
(Figure 6.58).

Only then we can proceed in defining the event that will compare the
player cells variable against the total: if the two match, we destroy all
objects and display a new button that allows for replaying the level with
faster and more deadly hazards (Figure 6.59).

When a new level starts, we should also update the shooting rate and
speed of the different hazards, as suggested in the game design document.
We can define simple formulas for these changes that we should imple-
ment in the start of layout, making sure that everything works consis-
tently for the very first level (Figure 6.60).

FIGURE 6.57 The player was hit by a rocket, triggering the “ring of fire” explo-
sion effect we created together with the Game Over button.

FIGURE 6.58 The updated On start of layout event, now including a counter to
keep track of how many cells we have in the level.

92    ◾  HTML5 Game Development from the Ground Up

As a final note to this chapter, I want to briefly discuss debugging. If you
didn’t already, you will soon realize that, when testing your work in prog-
ress, most of the time things don’t run as expected, and we have to find out
why. To do so, developers look at all the relevant variables in the program
and track them down to see where things go wrong. Starting from the beta
release n.140, Construct 2 added a built-in tool for displaying all relevant
information about the game, from frames per second and CPU usage to
specific objects and variables. Debugging a layout can be started by using
the keyboard shortcut Ctrl+F5 or any of the corresponding shortcuts in
the ribbon and quick-launch bar. Alternatively, to simply track a few rel-
evant data, we could also add a specific debug layer for showing a couple

FIGURE 6.60 The final On start of layout event, including also actions for
updating different variables according to the current level: the sentinel, rockets,
and asteroids will get gradually faster, and the shooting rate will also increase.
Remember we should playtest the game throughout to fine-tune these values
properly and find a sweet spot with a difficulty curve that doesn’t frustrate or
bore players.

FIGURE 6.59 The event to be triggered once all cells have been cleared, followed
by the click event for the new button we have to add to restart the level.

Moon Wolf Development    ◾    93  

of text fields displaying only the information we are interested in, such as
variables and flags being triggered when important events, like collisions
between two sprites, for example, get registered. Needless to say, the debug
layer has to be removed (or at least turned invisible) when we build the
final version to be released to the public.

Last, another option to track down variables would be to use the
Browser object and write to the browser’s own console window via the
Log to console action.

TAKE AWAY
This chapter was packed with useful information and many different con-
cepts. We introduced GUI and touch controls, variables, particles effects,
collision events, and even programmed a basic movement pattern for the
sentinel spaceship built around the bullet behavior. Most importantly,
though, we developed our first game, complete with a simple game loop to
restart after a game over or to continue with a more challenging level if the
player manages to survive.

EXERCISE
Try adding a shooting functionality to the player’s ship, for example, for
destroying asteroids.

95

C h a p t e r 7

Kitty & Katty, a Platformer

From Space Panic (a 1980 arcade game developed by Universal) to
Super Meat Boy (developed by Team Meat in 2010), platform games have

always been a fundamental genre that every aspiring game designer needs
to master, especially if interested in developing two-dimensional games.

To start defining our own, we will look at the first platform game that
incorporated a swift jumping action: Donkey Kong. This was the game
that, thanks to its innovative qualities and groundbreaking success, made
platformers a staple in gaming literature ever since, and is still played
competitively to this very day.

7.1 DONKEY KONG: ANALYSIS
Donkey Kong was the first game designed by Shigeru Miyamoto at
Nintendo in 1981. It was a truly original concept: not only did it add jump-
ing to the platforming model pioneered by Space Panic one year earlier,
defining a fundamental game action common to most platform games
ever since, but it also introduced brief cut scenes to describe a simple story.
To support these, it also featured easily recognizable characters that were
destined to become game icons, starting from Jumpman the carpenter,
soon to be renamed Mario the plumber.

The simple cut scenes are actually extremely important to set the tone
of the game and to involve the player emotionally in the action. Watching
Pauline, originally named Lady, being abducted by Donkey Kong and
then desperately crying for help throughout the game (Figure 7.1) was
sure to push the player into Jumpman’s shoes and raise our protection
instinct: who can resist such a charming and defenseless damsel in

96    ◾  HTML5 Game Development from the Ground Up

distress? The protection instinct is indeed the main driver behind the
gameplay, which is a simple race to an end (we need to reach Pauline)
while avoiding different hazards (barrels, flames, etc.). The game also
gives Jumpman a chance to defend himself for a short while by giving
him a hammer to smash the incoming barrels, though doing so prevents
him from climbing ladders and advancing toward Pauline. Later stages
also add a few of Pauline’s belongings, like an umbrella or a bag, adding
a collecting component to add some variety and reinforce the experi-
ence. The AGE framework analysis for Donkey Kong is summarized in
Figure 7.2.

7.2 KITTY & KATTY: DESIGN
Our platform game will take Donkey Kong as a model, maintaining a
gameplay built around avoidance and race to an end and relying on our
protection instinct to save... a damsel in distress? No, we saved too many
already. Let’s try to be a little more original this time!

Our player is going to play the role of a guy having a relaxing holiday
in a chalet on the Alps with his two beloved cats, named Kitty and Katty.

FIGURE 7.1 Lady Pauline screaming for help in Donkey Kong first stage: how
can we resist such a desperate cry? Off we go, no matter if we will get run over by
rolling barrels! (© 1981 Nintendo.)

Kitty & Katty, a Platformer    ◾    97  

One morning he wakes up and realizes his cats are missing: they must
have adventured off the beaten path on the nearby mountain peak, and
now they are lost somewhere, unable to get back home. We need to res-
cue them!

The game will include moving platforms in the shape of clouds, vertical
paths working as ladders we can climb on, and, to make things challeng-
ing, two different types of boulders falling off from the top of the moun-
tain. Note that we will not script the path for the boulders: we will use
the underlying physics engine instead, with gravity being responsible for
moving the boulders down toward the valley.

The player will start with three lives and will be able to run, jump, and
climb in his quest for rescuing Kitty and Katty.

This time we should also take more care in programming a proper game
structure: we will design a splash screen and a high score table, and we will
also plan for different levels that get unlocked as we proceed in the game.*

All these ideas, including the AGE analysis, are summarized in the one-
page game design document shown in Figure 7.3.

* We will design only the first stage though, leaving the others as practical exercises to the attentive
reader. If different stages are planned, an additional game design documentation page should also
be added to describe the various layouts and sequences.

Identi�cation

Collecting

Pride

Joy

Excitement

Protection
Avoidance

Race to an end

Running
Jumping

Smashing barrels

FIGURE 7.2 AGE analysis for Donkey Kong. Protection clearly drives the game-
play motivating the player. Collecting is also present in some stages, where we
can pick up different bonus objects.

98    ◾  HTML5 Game Development from the Ground Up

K
itt

y
&

 K
at

ty
10

-0
5-

13
/V

.1
.0

“D
ur

in
g a

 re
la

xi
ng

 h
ol

id
ay

 o
n

th
e A

lp
s,

Ti
m

’s
ca

ts
, K

itt
y &

 K
at

ty
, d

isa
pp

ea
r o

n
a

hi
gh

pe
ak

. C
an

 w
e r

es
cu

e t
he

m
 b

efo
re

 it
’s

to
o

la
te

?”

of

 li
ve

s l
ef

t

C
lo

ud
s a

re
 fl

oa
tin

g
pl

at
fo

rm
s.

Pl
ay

er
ca

n
ju

m
p

on
 th

em

H
ig

h
Sc

or
e

- S
co

re
 -

Bo
nu

s

Fa
lli

ng
 b

ou
ld

er
s,

ki
ll

th
e

pl
ay

er
 o

n
im

pa
ct

.

K
itt

y
an

d
K

at
ty

�
e

pl
ay

er
 n

ee
ds

 to
 re

sc
ue

 h
is

tw
o

ca
ts

 lo
st

 o
n

th
e

m
ou

nt
ai

n.
 P

la
ye

r
st

ar
ts

 w
ith

 3
 li

ve
s,

ca
n

ru
n,

 ju
m

p
an

d
cl

im
b

do
tt

ed
 p

at
hs

. B
ou

ld
er

s
fa

ll
do

w
n

dr
iv

en
 b

y
th

e
ph

ys
ic

s
en

gi
ne

.

• K
itt

y
an

d
K

at
ty

 a
re

 w
or

th
 1

00

po
in

ts
 e

ac
h

w
he

n
re

sc
ue

d.
• J

um
pi

ng
 o

ve
r a

 g
ra

y
bo

ul
de

r

is
w

or
th

 1
0

po
in

ts
• J

um
pi

ng
 o

ve
r a

 b
ro

w
n

bo
ul

de
r

is

w
or

th
 2

0
po

in
ts

•
Bo

ul
de

rs
 a

re
 sp

aw
n

at

di
ffe

re
nt

 in
te

rv
al

s f
or

m
 fo

ur

pr
ed

efi
ne

d
lo

ca
tio

ns
 (s

ee

pi
ct

ur
e)

.
• T

im
e

bo
nu

s s
ta

rt
s a

t 5
00

 a
nd

de

cr
ea

se
s b

y
10

 e
ve

ry
 se

co
nd

.

C
lim

bi
ng

 p
at

hs
Pl

ay
er

Jo
y

Pr
id

e
Ex

ci
te

m
en

tPr
ot

ec
tio

n

Id
en

tifi
ca

tio
n

G
am

e
O

ve
r

G
am

e

Se
le

ct
 L

ev
el

H
ig

h
Sc

or
es

N
ex

t l
ev

el
un

lo
ck

ed

Su
bm

it
H

i S
co

re

Sp
la

sh
 S

cr
ee

n

Av
oi

da
nc

e
Ra

ce
 to

 a
n

en
d

Ru
nn

in
g

Ju
m

pi
ng

FI
G

U
R

E
7.

3
O

ne
-p

ag
e

de
sig

n
do

cu
m

en
t f

or
 o

ur
 p

la
tfo

rm
 g

am
e:

 K
itt

y
&

 K
at

ty
. N

ot
e

th
at

 th
e

AG
E

an
al

ys
is

do
es

n’
t e

xp
lic

itl
y

in
cl

ud
e

th
e c

ol
le

ct
io

n
in

st
in

ct
, w

hi
ch

 w
as

 p
re

se
nt

 in
 D

on
ke

y K
on

g,
be

ca
us

e w
e d

id
n’

t p
la

n
fo

r e
xt

ra
 b

on
us

 o
bj

ec
ts

 to
 b

e s
pr

ea
d

ar
ou

nd
 th

e l
ev

el
.

Kitty & Katty, a Platformer    ◾    99  

TAKE AWAY
For our second game, we decided to reference an evergreen classic: Donkey
Kong, taking it as a model for a platform game with simple physics-driven
features. Like in Donkey Kong, we are going to rely on players’ protection
instinct to motivate them to climb the mountain and rescue two little cats
who couldn’t go back home otherwise. This game will also feature a proper
game structure and framework, including a splash screen, a high score
table, and a stage selection screen.

101

C h a p t e r 8

Kitty & Katty Development

Kitty & Katty is going to be developed as a PC/browser game, so
our starting resolution should be on the low end of the spectrum

to allow people with old computers and monitors to enjoy it without big
issues: limiting our window size to 800 × 600 pixels would be fine in
this case.

Start a new project and define the layout and screen dimensions accord-
ingly, together with a “letterbox scale” option to easily accommodate
larger (or smaller) resolutions. The first thing we should take care of now
is setting up the game structure as described in Figure 8.1.

8.1 GAME STRUCTURE
To implement the game structure we just defined, we need to add different
layouts to the project, one for each part: splash screen, high score table,
level selection, and then the actual levels. We can add them one by one by
right clicking on the Projects tab, Layouts folder, and select Add layout as
shown in Figure 8.2.

When adding a new layout, Construct will also ask us if we’d like to
add a new event sheet to be associated with it. Let’s do so as well (event
sheets can be added any time by right clicking on the event sheet folder
and selecting the appropriate command, so don’t worry if you forget about
this while adding a layout).

In the end, after we rename and resize all layouts accordingly, we should
have something like Figure 8.3, and then we should update our project
properties so that the application knows which layout needs to be loaded
first. In our case it will be the splash screen, as shown in Figure 8.4.

102    ◾    HTML5 Game Development from the Ground Up

FIGURE 8.2 Adding a new layout.

FIGURE 8.3 Layouts and event sheets for our game.

Game Over

Game

Select LevelHigh Scores

Next level
unlocked

Submit Hi Score

Splash Screen

FIGURE 8.1 The game structure we want to implement for Kitty & Katty.

Kitty & Katty Development    ◾    103  

Let’s start by implementing the splash screen then. We are going to
keep things extremely simple here (but you can of course let your imagi-
nation and artistic creativity run wild), so all we will have is a big text with
the game title and, possibly Kitty and Katty sprites.* Once we set this up,
we need to implement the most crucial component of the framework: its
navigation system.

We already used buttons in Moon Wolf, and, indeed, using buttons to
navigate from layout to layout is clearly the easiest route. However, we
won’t do that here. The reason is that the Button object is specific to the
Web and might not work on other platforms if later we decide to port and
wrap our HTML5 game by using other tools. Even if we are planning this
game to be a PC/web title only, it is always a good practice to keep as many
opportunities open as possible.

For this reason, we are going to make our own buttons by using
sprites, but there is also another aspect we should consider before
choosing our approach: web games can also be played in countless
different resolutions, and sprites may not always scale that well. To
work around this problem, Construct 2 offers the 9-patch object. A
9-patch image is subdivided in nine different areas, eight small ones
encompassing the edges and one big central one (Figure 8.5), so when
we need to stretch the image to fit a different resolution, we can have
much finer control on each area and decide whether to “stretch” or
“tile” them (“tile” means repeating the same section over and over)

* I’ll be using free PD art from www.clker.com.

FIGURE 8.4 Deciding the first layout to load in the project properties.

104    ◾    HTML5 Game Development from the Ground Up

to improve the final result. The different parameters for the 9-patch
object are shown in Figure 8.6.

Before proceeding further, we should first have at least a couple of
images ready, including a default and a highlighted/pressed state. For sim-
plicity, we will be using the same graphics for all buttons. We could make a
simple round or square looking button in the image editor or use free tools
like GIMP.* Once we have the images, go back to Construct. To simulate

* GIMP is a great free image editing program which you should definitely check out if you don’t
know it already: www.gimp.org.

FIGURE 8.5 A sprite button subdivided in nine different areas covering its edges
and center. Each margin can be set through the object properties.

FIGURE 8.6 A section of the 9-patch object properties where we can set up the
width of each area by changing the margin positions and whether we want edges
and center (here named Fill) to be stretched or tiled when the object gets resized.

Kitty & Katty Development    ◾    105  

the button effect, we are going to have three different elements per button:
two 9-patch objects, one each for the off and on button state (with the lat-
ter starting as invisible and placed to exactly superimpose on the former)
plus a text object to be placed on top of the graphics to identify the differ-
ent functions.

Overall, we are going to need buttons for accessing the level selection
screen (we will call the two 9-patch objects for this button btn_play_off
and btn_play_on), displaying the high score table (btn_hi_off, btn_hi_
on), and for going back to the main menu (btn_menu_off, btn_menu_on).

In the splash screen layout only the first two will be needed, so let’s
start by adding the corresponding 9-patch objects, importing the images
in the editor, and then resizing/positioning as appropriate (take some time
to experiment with the 9-patch parameters so you understand how they
work). When you are happy with the result (be sure the on image starts
as invisible and is above the off one: this can be done by changing the
z-order by right clicking on the object and selecting the z-order option),
add the corresponding text object on top of the images.

In the end, our splash screen should look something like Figure 8.7.
Now we have to program the highlight button effect and the action that

should be triggered when each button is clicked. To do so, we need to add
the Mouse object to the game first. As usual, double click any empty area
across the layout and then select the mouse from the different options
available (it’s in the input section). Now go to the splash screen event sheet.

Double click on the empty sheet to add the first event: choose the mouse
object and select On object clicked as shown in Figure 8.8.

FIGURE 8.7 Our simple splash screen featuring buttons for navigating to differ-
ent parts of the game. Each button is made by three components: a first underly-
ing 9-patch image for the off state, visible by default, a highlighted image right on
top of it, invisible by default (but still displayed in the editor), which is going to be
switched to visible once clicked, and finally a text object identifying the specific
button function.

106    ◾    HTML5 Game Development from the Ground Up

To complete the event, select the object we want to interact with (in
this case, one of the on state buttons, let’s start with btn_hi_on for exam-
ple), choose the type of click and specific mouse button we want (we can
leave the default values here, i.e., single click on the left button). For the
action, let’s pick the btn_hi_on object and change its visibility property
to visible.

We now need to take care of two things: first, if we move the cur-
sor away, without releasing the click first, we should restore the on
button image to invisible and nothing else should happen. On the
other hand, if we release the mouse left button while on the image,
hence completing the clicking process and requesting a new layout
(the high score table in the case of the btn_hi object), we need to
load and display it.

The first event implies checking that the mouse cursor is not overlap-
ping the image any more. In the event sheet we can do this by selecting the
cursor is over object event and then inverting it by right clicking on the
event and then selecting the Invert option.

For the second condition, instead, we need to check for two mouse
events: On left button released and, again, Cursor is over object. If these
conditions are met, we reset the button on state to invisible once again
(otherwise it will still be on once we come back to this screen after a game)
and load the desired layout (accessible through the system object, Go to
layout (by name) action).

The events are displayed in Figure 8.9.

FIGURE 8.8 Our buttons will respond to mouse clicks thanks to the On object
clicked mouse event.

Kitty & Katty Development    ◾    107  

Repeat the same procedure for the other button, this time directing the
player to the levelselect layout.

Let’s now move on to the highscores layout and add a button to go back
to the splash screen in the same way we just did for the splash screen and
its own buttons (use btn_menu_off, btn_menu_on). We won’t do any-
thing else on this layout for now: we will come back to it later to implement
the actual high score table once the game is done. Let’s now focus on the
levelselect layout for selecting a specific level instead and add a button to
go back to the main menu here as well. To do so, we can simply copy and
paste both objects and related code across layouts from highscores to lev-
elselect and the corresponding event sheets.

Once done, we should add a sprite image for each level we will be hav-
ing in the game. I’ll be adding three now as an example: for simplicity’s
sake, just three big squares with the level number displayed on them. After
this we need to define how to show a specific level is locked. For exam-
ple, we can manipulate the image transparency level to show they are not
available yet or superimpose another image, like a lock or a cross, which
we then remove once the level is accessible. In our case, the layout would
then look something like Figure 8.10.

But how should we handle the lock/unlock of a level?
The idea here is to have a Boolean variable (i.e., true/false) associated

with each image telling us whether the specific level is accessible or not.
If not, we show a cross/lock sprite and we don’t process any mouse click
on it. Moreover, if we want the player to be able to start at different levels
across different playing sessions to save her progress, we also need to store
this piece of information locally on the computer.

Let’s start by adding three sprites, one for each possible level, together
with an instance variable of type Boolean and another one of type

FIGURE 8.9 All the events needed for having a working button made by two
overlapped images.

108    ◾    HTML5 Game Development from the Ground Up

number to each of them. We can call the first unlocked and we can have
it instantiated to false by default. The second one can be called lvl (short
for level) and have it set to 1, 2, or 3 according to the specific level image.
We should also define a global variable at the beginning of the event sheet
of type number (remember that this, like any other global variables, will
be accessible from any layout). Let’s name it player_level and instantiate it
with a starting value of 1.

Now, the comparison between this and each level icon’s specific lvl
variable should be performed when the layout starts. To do so, add a
System/On start of layout event followed by a System/compare two
values subevent. If player_level is greater than or equal to the specific
lvl variable, we set unlocked to true. If not, we need to add an else con-
dition and act accordingly: right click on the subevent we just defined
and select Insert new event below, then choose the System object and,
among the Special conditions group, select Else. In the action part of the
sheet, we pick the System object again and use it to create a new instance
of the cross/lock sprite we prepared earlier, placing it exactly on top of
the still locked level image. The event sheet should then look like that in
Figure 8.11.

Note that, in the On start of layout event, we should have a subevent
like the one just described for each level icon displayed on the screen.*

* We actually don’t need to check for the first level, since it will be unlocked by default. Anyway, we
are including it here as well to verify the code is actually working properly when the game starts.

FIGURE 8.10 A level selection screen. At the beginning, only the first level
should be accessible, while the others are locked.

Kitty & Katty Development    ◾    109  

Now we need to process the mouse click on any unlocked image. This
should be very straightforward by now, and all we need to do is create an
event with two conditions: a mouse event checking for the left click on the
level object and a check that the unlocked variable for the specific image
is true (the condition to choose is Is Boolean instance variable set, in
the Instance variable section). If so, we go to the specific level layout. The
resulting events for all three levels are shown in Figure 8.12.

At this point it is good to introduce the WebStorage object: double click
anywhere on a layout to add a new object to our project and look for it
in the Data & Storage section. This object can store data locally on the

FIGURE 8.11 Event sheet for the level selection screen, showing the back to splash
screen button and, most importantly, the events for updating a level’s unlocked
variable and superimposing a predefined lock object (the red cross in this case)
if necessary. Note that an instance of the lock object must be placed somewhere
outside the visible part of layout if we want to create more during runtime.

FIGURE 8.12 Checking mouse clicks and status of unlocked variable to start
different levels. In our prototype, though, we will have only one playable level, so
clicking on any image will always start the same level. It will be up to you to make
levels 2 and 3 as an exercise at the end of this chapter!

110    ◾    HTML5 Game Development from the Ground Up

player’s device, which we can then retrieve later when needed, allowing
us a simple way to store player’s progress and other data.* In our game, we
need to store the level reached by the player and the different high scores
for the leaderboard. We will discuss the high scores later, but we can take
care of saving the player’s level already. In fact, instead of simply setting
up the global variable player_level to 1 like we did earlier, at the begin-
ning of the game we could check whether a specific value has been previ-
ously saved. If so, we instantiate our global variable to that number. If not,
meaning that is the first time we ever run the game, we create such value
and instantiate it to 1.

All this can be done simply via the WebStorage object: let’s move to the
event sheet associated with the first layout our game loads, i.e., splashscreen_
sheet, and add a new event. Select WebStorage and its Local key exist option,
naming the key, for example, “LevelReached” (between quotes). If the key
exists already, we define an action assigning its value to our global variable
player_level (via the System object). If not, we create an Else event via the
System object where we take WebStorage and define LevelReached, initial-
izing it to the value of 1. These events will look like Figure 8.13.

The last thing we should do before we start programming the actual
gameplay is to design a simple game over screen. We already defined the
specific layout, so go on and add a fancy “Game Over” sign together with
a button to go back to the splash screen. Leave some space though: we will
revise this later in case of a high score to allow players to input their names!

8.2 BACKGROUND AND PLATFORMS
Off to the actual game now! Open the game layout (in Figure 8.3 we called
it level1) and start drawing a sprite or importing an image for the back-
ground mountain (for this, like for most other assets in this game, I took

* For a full state save, suitable for complex action or role-playing games where we want to take a
“snapshot” of the whole game to continue it later, Construct 2 provides a proper save and load
feature through the System object.

FIGURE 8.13 Checking for the existence of a LevelReached key to initialize the
player_level variable when the game starts. If it doesn’t, we define it once and
for all.

Kitty & Katty Development    ◾    111  

an image from the public domain clipart collection website Clker.com).
You may also want to change the layout background color to a nice light
blue to simulate a bright summer sky day. This is actually done via the
layer, so select the main layer where the action takes place and, in its prop-
erties tab, change the background color. For example, I picked one with
RGB values of 0, 204, 255.

Once the mountain background is in place, we should add a series of
platforms to help our hero climb around and reach the mountain peak.
Add a new sprite, naming it, for example, path. This can be a simple brown
filled rectangle that we are then going to stretch and modify to make plat-
forms of different sizes across the mountain.

Place the path sprite in the layout and click on Add/Edit Behaviors in
its Properties Tab. To define the typical behavior we would expect from
a platform, Construct gives us two options: a solid behavior and a jump
through one. The difference being that the latter allows for characters to
jump on them from underneath while, on the former, we would just bump
our head on a solid wall and fall back. Here, we are going to use jump
through. Once this is done, add also the Physics behavior and set the val-
ues as in Figure 8.14. This is not necessary for having a proper platform-
ing action, but it will be needed for interacting with the boulders, whose
movements will be controlled by the physics engine.

FIGURE 8.14 The physics properties for the path sprites, needed later when we
will also add the falling boulders. Be sure Immovable is set to Yes and that we are
using Bounding box as collision mask.

112    ◾    HTML5 Game Development from the Ground Up

There are two more important elements we should add to make our
platformer more interesting: moving platforms and stairs.

For the first, let’s add a new sprite in the shape of a fluffy cloud. We will
place this in the upper part of the mountain, and we will let the player
jump and ride it to provide an original way to the mountain top. This
means we should add the jump through behavior to the sprite as well.

The “stairs” here can take the shape of a vertical, rocky path for the
player to climb. For this, let’s add a tiled background object instead of a
simple sprite. This will allow us to define just a small part of the image,
which will be repeated over and over as we stretch it: we can make stairs as
long as we like without actually deforming the sprite image! It is the same
idea we used earlier with the 9-patch images when designing buttons, and
it works really well. I designed the vertical path to be just a few dark gray
circles (Figure 8.15), which will be repeated as needed while drawing the
vertical paths in the layout.

Now we have all the elements for designing our levels, i.e., platforms
and paths we can use to make them challenging yet possible, so it’s high
time to start making your own actual level! Mine is shown in Figure 8.16,
where you will see I also added a small hut at the lower left corner: this is
where the player will start his adventure.

One more thing before moving on to the next section and adding
the main characters to our game. We talked about the clouds being

FIGURE 8.15 A simple image we can use for identifying vertical paths across
the mountain. Just a few dots to be repeated over and over as needed by the tiled
background object.

Kitty & Katty Development    ◾    113  

moving platforms, and this is something we can do now already with-
out adding any additional event: we simply need to add another behav-
ior to them, specifically the Sine to make them move back and forth.
Once added, we can specify the actual movement through its proper-
ties (Figure 8.17).

FIGURE 8.16 The layout for the first level of the game, featuring different plat-
forms (which we can also rotate slightly) and vertical paths to climb. Note that
the image for the vertical path is repeated automatically and not stretched, since
it is defined as a tiled background object and not as a simple sprite. We will make
the player spawn at the hut in the lower left corner of the screen (think of the big
blue barrel in Donkey Kong!).

FIGURE 8.17 The sine behavior properties for the clouds. Here we can define how
fast and how far the clouds can go and if the movements should also have random
components or not. Experiment till you find the values that suit your level most!

114    ◾    HTML5 Game Development from the Ground Up

8.3 KITTY, KATTY, AND THE PLAYER
Now that we have the first level designed, we need to populate it. Let’s
start by importing a suitable image for Kitty and Katty, if we haven’t done
so already, and then place them in some not so easy places to reach. For
example, we can place one at the very top of the mountain, accessible only
by jumping on a cloud, while the other could be on the midlevel platform
on the right, as shown in Figure 8.18. There’s no need to add any behavior
to them.

We can now start thinking about our main character.
For designing our hero, I decided to use the Tim character sprites from

the famous award-winning game Braid by Jonathan Blow, since David
Hellman, the artist responsible for Braid’s gorgeous graphics, has gener-
ously made these assets freely available to the indie community.*

To start, insert a new sprite object in the layout and call it Tim, in honor
of Braid’s protagonist.

Once in the image editor, we can start adding the graphics. I divided all
Tim images into individual frames but, naturally, Construct 2 also allows
you to import sprite sheets (all frames included in one single, big image) so
you can choose the approach you prefer for this.

Let’s start with the Default animation, which is not really an anima-
tion, since we are going to use only one frame. Let’s rename it Idle and
import the still Tim sprite. To add another animation, right click on the
Animation window of the image editor and select the proper command
(Figure 8.19).

We have to do this a few times: starting with a Running animation that
will look like in Figure 8.20.

* http://www.davidhellman.net/braidbrief.htm

FIGURE 8.18 A detail of the level layout, showing Kitty and Katty ready to be
rescued.

Kitty & Katty Development    ◾    115  

Note that, as we said, each frame can be added individually or by
importing a sprite sheet where all frames, each having exactly the same
dimensions, are spread regularly across the image. This can be done from
a specific menu, as shown in Figure 8.21.

FIGURE 8.19 Adding a new animation in the image editor.

FIGURE 8.20 The running animation, made by four frames.

116    ◾    HTML5 Game Development from the Ground Up

The running animation also should have a left counterpart. We will
do this at runtime, but it’s useful to know we can easily reverse an entire
animation if needed in the editor itself by shift clicking on the reverse icon
as shown in Figure 8.22.

Once the running animation is done, we also have to add a jumping
animation (one single frame that we will use also for falling) and a simple
two-frame animation for climbing. In the end we will have all the anima-
tions as shown in Figure 8.23.

Let’s not forget running and climbing animations need to loop: we can
set this, and other parameters like animation speed, via the Animation
properties tab displayed when we select a specific animation in the Image
Editor (Figure 8.24).

We need now to set up our character and play the different anima-
tions as appropriate. Construct provides us with a very helpful Platform

FIGURE 8.21 Right click on the Animation frames window to import frames
from individual images or a sprite sheet (here called sprite strip).

FIGURE 8.22 Mirroring an animation is a very simple process that can be done
in two different ways: we can specify a running left animation on its own in the
image editor by copying and mirroring an existing one frame by frame (like in
this figure) or mirroring the whole animation later at runtime via events (this is
actually what we will be doing in our game).

Kitty & Katty Development    ◾    117  

FIGURE 8.23 We will need all these different animations in our game. Here a
frame from the Climbing animation.

FIGURE 8.24 Setting the running animation loop property to yes.

118    ◾    HTML5 Game Development from the Ground Up

behavior that takes care of all the low-level work for us, but there is a small
caveat. Adding the Platform behavior to the animated sprite itself can give
us collision problems due to the changing nature of animated sprites, with
weird results like our character getting stuck on a platform or ledge if a
collision is registered during any animation frame, for example. It is then
recommended to have a very simple sprite, like a rectangle, of the same
size of the character (possibly a few pixels smaller, depending on the shape
of your sprite and how you want to trigger the contact with the platforms)
and add the Platform behavior to this instead. The animated sprite will
then be attached to this sort of invisible mask and follow it accordingly.

Add a new sprite, name it Player, and resize it to be like our idle Tim
character. Then add the Platform behavior to it while also adding the Pin
behavior to Tim. Figure 8.25 shows both Tim and its Player mask in the
layout editor.

To stick the Player sprite to the animated Tim sprite by using the Pin
behavior, we need to move to the event sheet. Once there, add a new event
for Tim, selecting the Pin/Is pinned event. Invert it (by right clicking on
the event and selecting the invert command) so that the event is triggered
only if Tim has not been pinned yet, and then define an action for Tim by

FIGURE 8.25 Tim with its mask in the layout, also showing the mask’s Platform
properties. I filled the latter with a bright yellow color so I could easily see it
against the background when testing. You can start with these values for speed,
jump strength, etc. and then tweak them while playtesting to make the overall
movement feel more natural in your specific level. Don’t forget to add the Pin
behavior to make it stick to Tim and change the mask’s Initial visibility property
to Invisible to make it disappear during an actual game!

Kitty & Katty Development    ◾    119  

using the Pin object and pinning it to the Player as shown in Figure 8.26.
If we play the layout now, we will be able to move Tim around (with no
animations yet) by using the cursor keys, but, in reality, we are actually
controlling the underlying Player sprite, and Tim is simply being dragged
around thanks to the Pin behavior!

To finally play the animations, we need first to check the status of the
Player sprite (whether it is on the floor or jumping, for example), then
check which key is actually being pressed (are we going left or right?) and
finally trigger the right animation sequence.

Let’s go in order and let’s begin with the running action. We need
to start with the Player sprite and select its is on floor event from the
Platform behavior. This is to be followed by two subevents, one for each
running direction, i.e., a keyboard event for the right cursor key, key is
down, and one for the left cursor key. For the corresponding actions we
need to choose our animated sprite, Tim, and pick the select animation
action, writing the name of the animation we want to play (running, in
this case) while leaving the from Beginning parameter set so that the ani-
mation will always start from its first frame.

Now, if you followed these steps so far, we should not forget we have
Tim running only toward the right, and we still have to mirror the whole
animation when running left! To do so we need to add another action:
select Tim and, in the Appearance group, pick the Set mirrored action.
Set the flag to mirrored when running left and not mirrored when run-
ning right.

We also want the animation not only to stop immediately when we
release the cursor key, but to go back to its idle state right away. For this
we need to add another subevent for the Player object. Among its events,
select On stopped among its Platform: Animation triggers group, and
then add an action for Tim setting the animation to idle. The sequence of
events is shown in Figure 8.27.

Now we need to do something similar when we are jumping or falling.

FIGURE 8.26 The event sheet for our level1 layout, here superimposing and pin-
ning the animated Tim sprite to the invisible Player object.

120    ◾    HTML5 Game Development from the Ground Up

Make a new event with two conditions: Player/Platform On fall and
Player/Platform On jump. Then select both, right click on the event, and
choose Make ‘Or’ block so that the following action will be triggered when
either of the two events happen (obviously, they can’t happen together!).
The action will simply take Tim and set the animation to Jumping, since
both are sharing the same animation frame.

Last, we need to take care of resetting things once Tim touches the
ground, so we need a new event Player/Platform On landed bringing
back the Idle frame. But what if we touch the ground and keep run-
ning right away without stopping first? We need to take care of this
case as well, so let’s add a subevent to the event we just defined to be
triggered if the sprite is moving, i.e., Player/Platform is moving where
we restart the Running animation. All this sequence is exemplified in
Figure 8.28.

Now that we can run and jump, as well as fall from a platform, we need
to take care of climbing.

The first thing we need to do is check whether we are overlapping with
one of the possible vertical paths, named climber in my case, we placed
in the level earlier. Pick the Player object and select the Is overlapping

FIGURE 8.27 The events for animating the sprite while running left and right
and resetting the animation to idle as soon as we stop moving.

FIGURE 8.28 The events for having Tim behave properly when jumping, falling,
and also hitting the ground running!

Kitty & Katty Development    ◾    121  

another object event in the Collisions group, then we need to define two
subevents to check whether we have an up or down key press and move
accordingly, while also setting the proper climbing animation.

There is something tricky here that requires our attention though: the
Platform behavior won’t allow us to move properly! So we need to define
an action first that disables the Platform behavior through the Set enabled
action. Only then we can proceed in moving our player up or down a spe-
cific amount, which we can define as an instance variable for the Player
object (named, for example, ClimbingSpeed). Once we are back on the
ground (i.e., overlapping with a path object again or not overlapping any-
more with the climber path), we need to remember to restore the Platform
behavior once again or the game won’t be playable any more! All these
events and actions are exemplified in Figure 8.29.

Now that we can move around properly, we need to be sure we stay
within the layout boundaries. Left and right edges are easy to control: we
can either check for player’s coordinates through events or add a new sprite,
naming it “wall,” add a solid behavior to it, and then use two instances of
it to frame the layout, placing them just outside the viewable game field to
stop the player from running away. To minimize the number of events in
the game (don’t forget the free version of Construct 2 allows only for 100
events in a game), I’d suggest we take the latter approach.

FIGURE 8.29 The events related to climbing: we need to disable the Platform
behavior when climbing and reenable it as soon as we get back on the platforms.
The climbing speed is defined by an instance variable set, for example, to 20 pix-
els per second (note the dt in the formula when updating the y coordinate since
now we are not using a predefined behavior for handling movement).

122    ◾    HTML5 Game Development from the Ground Up

Once this is done, we still need to take care of the hole in the middle of
the lower path in Figure 8.16. If we fall in there we also want the player to
lose a life and then respawn at the hut.

Let’s proceed in order. First, we add an instance variable to the Player,
name it Lives, and initialize it to 3. We should also display the lives indica-
tor in the top right corner of the screen. The simplest way to do this is to
add a new sprite for each life. We can call these life1, life2, and life3 and
add them to the GUI layer. Import the Tim idle sprite for each of them,
and place them on the top right corner of the screen, in order from life1 to
life3, as in Figure 8.30.

When Tim dies, we want the game to remove these accordingly. We
can achieve this effect in several ways, and I will use this opportu-
nity for introducing the concept of functions. As in any programming
language, functions are used here to define snippets of code that can
be called any time it is needed from another part of the program. To
enable the use of functions in Construct 2, we need first to add the
Function object to the game. Do so now. Then let’s define a new event
for the Player sprite and select Is outside of layout (within the Size &
Position group). The corresponding actions would be to change the
Player position in front of the hut, subtract 1 to its instance variable
Lives, and then call the proper function to take care of removing one
life indicator, eventually going to the game over layout if there are no
lives left.

When using the Function object, we can call a specific one by name
and also add eventual parameters to be passed for further comparisons
and processing. In our case, let’s call the function LifeLost, and we also
add the player lives as parameters, as shown in Figure 8.31.

FIGURE 8.30 The three life indicators in place.

Kitty & Katty Development    ◾    123  

We have to declare the function now. Add a new event and select the
function object. Select On function and then specify its name (LifeLost).
The next step is to add three different subevents where, in each, we check
the value of the parameter and destroy one life indicator accordingly.
When lives get to 0, we also go to the Game Over layout. The function is
shown in Figure 8.32.

Try to play the game, and have fun falling in the crevasse to check the
function is actually working!

8.4 RESCUING OUR PETS AMIDST FALLING BOULDERS
After testing that everything done so far works as expected, it is time to
add a score system, save Kitty and Katty, and add falling boulders to build
excitement and keep players on their toes.

FIGURE 8.31 Calling a function named “LifeLost” and passing it one param-
eter, namely, the Player.Lives instance variable.

FIGURE 8.32 The function handling player’s deaths: removing indicators one by
one and, eventually, loading the game over screen.

124    ◾    HTML5 Game Development from the Ground Up

Let’s start with the score. We decided in our game design document to
display the current score, the high score, and also a time bonus, starting at
500 and decreasing by 10 every second. To make things look a little better
compared to Moon Wolf, this time we should have each number in its own
Text object. Add one text object for each element and call them something
like txt_Score, txt_HiScore, and txt_Bonus. Place them appropriately in
the top part of the screen.

We also need to add related global variables, i.e., Bonus, Score,
HighScore, which we can initialize to 500, 0, and 0, respectively (we will
take care of the HighScore later). Finally, in the On start of layout event,
we need to add instructions for displaying these values when the game
begins, like in Figure 8.33.

The bonus works like a timer, and we can implement it simply by
decreasing the Bonus variable through an event including two conditions:
Every X seconds, which we find in the Time section of the possible events
for the System object, and also a check on the current bonus value, i.e., we
want to stop decreasing Bonus once it reaches 0. The event for doing this
is shown in Figure 8.34.

For saving Kitty and Katty, all we have to do is to check for a collision
between their sprites and the player. When this happens, we increase the
player’s score by 100 as defined in the game design document.

To make sure things are working properly, though, we also need to
define two more instance variables in the Player object to keep track of

FIGURE 8.33 Taking care of initializing and displaying score and bonus infor-
mation when the game starts.

FIGURE 8.34 Setting up the bonus: we subtract 10 every second as long as it is
greater than or equal to 10 so that it never goes below 0.

Kitty & Katty Development    ◾    125  

the pets we saved. These should be Boolean variables, initially set to false*
(Figure 8.35). When both are toggled to true, we know we have accom-
plished our mission, and we can proceed to the next stage by updating the
player’s level.

The actions we need to take when we register a collision between the
player and a cat are the following:

 1. Toggle the related instance variable in the Player object, setting it to true.

 2. Add 100 to the global variable Score.

 3. Update txt_Score accordingly.

 4. Remove the cat from the layout (somewhat ironically, this actually
means “destroying” her, even if we just saved her!).

The corresponding events, together with the event for ending the level
and going back to the selection screen with the next challenge unlocked,
are shown in Figure 8.36.

Once all these have been implemented, we can take care of making the
game challenging and exciting by adding the falling boulders from the top
of the mountain.

Back in our game design, we decided to have two different types of
physics driven boulders, but we didn’t really specify other details like
the spawn rate, and so on, so now we have to fill in all the details, start-
ing from the exact location where they should spawn. By referencing the
mock-up screenshot in the game design document, we have four possible

* While not strictly needed since the Player object is created every time we load the level, it is defi-
nitely good practice to initialize these in the On start of layout event as well.

FIGURE 8.35 The instance variables for the Player object, now including also
two Boolean flags, set to false, for keeping track of our progress in saving Kitty
and Katty.

126    ◾    HTML5 Game Development from the Ground Up

spots at the top of the mountain that we should now store into a suitable
data structure.

In my layout these four points are identified by the following coordi-
nates: (230,155), (570,115), (260,50), and (525,50). A good way to save them
is to use a two-dimensional array: add the Array object to the project and
then, in the On start of layout event, add an action to define a new array
object via the Set size option. Construct’s array object is made to handle
up to three-dimensional arrays, where each dimension is labeled as width,
height, and depth (i.e., x, y, z) so, for a 2D array having four elements on
the x axis (indexed from 0 to 3) and two on y axis, we need to specify the
values (4,2,1).

After this, we can proceed in adding each point one by one as shown in
Figure 8.37.

We are now ready to finally add the boulders. Find or draw a suitable
image and import it in a newly created sprite object named “boulder.” In
my case I picked a simple public domain clipart* that was actually depict-
ing the moon, but I thought it could make for a nice falling and rolling

* Once again, found on www.clker.com.

FIGURE 8.36 All the different steps we need to take to update the score when
reaching one of our cats and also for moving to the next stage. For the latter, note
how we check if both the Kitty and Katty instance variables are true (Is Kitty
means the Kitty variable is set to true). If so, we update the score by adding any
bonus left and also update the local key in the WebStorage object to save the
player’s progress before moving back to the level selection screen. Once there, we
will see the second stage now unlocked.

Kitty & Katty Development    ◾    127  

boulder anyway. Then, to make the second boulder type, to be named
“boulder2,” I simply changed its colors from gray to brown and resized it
to be slightly bigger than the original one. Once the images are ready, we
can proceed in adding the physics behavior to them.

The first boulder and its properties are shown in Figure 8.38.
Once you determined a set of values that feel appropriate for the differ-

ent physics parameters, place the boulders off screen and let’s see how we
can spawn them once the game starts. We also want the player to score
points when he successfully jumps above them, and we want him to lose a
life if he is hit by the boulders. Let’s start from the latter problem.

Losing a life is very straightforward: we can simply check for the col-
lision between the player and the specific boulder, decrease the Player’s
Lives instance variable, respawn the Player at the hut, and finally call the
LifeLost function where we remove one life indicator and, eventually,
move to the Game Over screen. The event is depicted in Figure 8.39.

But how can we determine if we jump above them? We need a small
trick here: like for the Player sprite being actually an invisible mask under
Tim’s animation, we should use an invisible mask approach here as well,
place it above or below the boulder, and award points when we register a
collision between Player and this instead.

Start by adding two new sprites, call them boulder_mask and boul-
der2_mask. Fill them with any color you like: I used red for the first and

FIGURE 8.37 The On start of layout event now updated to include the 2D array
structure for storing all the points where we will spawn the boulders.

128    ◾    HTML5 Game Development from the Ground Up

green for the second so that they could stand out easily during testing
(needless to say, these should be turned to invisible when we release the
game). Resize them according to the size of the boulders and the height of
player jumps. They should be thin but long, like 15 × 70 pixels for example.
We should also move their origin point to the bottom of the image. This
will allow for an easier placement when we attach the mask to the boulder,

FIGURE 8.39 Handling the collision with both types of boulders by combining
the two events in an or block.

FIGURE 8.38 The first boulder and its properties after having added the Physics
behavior. Be sure to set collision mask to Circle and experiment with the differ-
ent parameters like density, friction, and elasticity to find the settings that feel
more natural within your level. Note that the object’s mass is calculated as its
density multiplied by the area of its collision mask.

Kitty & Katty Development    ◾    129  

whose origin we left in the center. Once back in the layout, add the Pin
behavior to the masks.

We are now ready to handle the spawning. For example, we can set
these at regular intervals, like every 2 or 3 seconds (to make the game a
little easier) for the smaller gray boulder and 3 (or 4) seconds for the bigger
brown one. We can also randomize the exact location by choosing one of
the points we stored earlier in the 2D array.

Let’s do all this step by step as usual: first of all, add a new System
event, Every X seconds, from the Time group. Let’s set the interval X to
2 seconds, meaning we are going to work on the smaller boulder. Now
we have to choose a specific spawn point. To do so, add a new global
variable, call it SpawnPoint, and then add a System object action, Set
value. Here we set the value by using the instruction “choose(0,1,2,3).”
As its name implies, this command chooses one number at random
among those listed. We will use this to pick the coordinates of a spe-
cific element in our 2D array. This can be done while creating the boul-
der through the System/Create Object action, where we specify the
array element we want to pick, in its x and y coordinates as shown in
Figure 8.40.

After this, we need to create the boulder_mask object. We can proceed
in the same way, but its x and y coordinates have to be set to the boulder’s
own x and y. The last step is to use the Pin action of the Pin behavior to

FIGURE 8.40 Specifying x and y spawning coordinates for the boulder by refer-
encing the array created previously. SpawnPoint is a variable having a random
value among 0, 1, 2, and 3.

130    ◾    HTML5 Game Development from the Ground Up

stick it to the boulder we just created. Be sure to select Position only or the
mask will rotate with the boulder!

We should also be sure to destroy the boulder and the mask once they
roll out of the layout. To do so, define a new event having an Is outside of
layout condition for both objects, and then simply destroy them.

Finally, the scoring: if we register a collision between the player and a
mask, we update the score variable as well as the text displaying it.

The same steps have to be performed for the other boulder as well. In
the end, we will have the events listed in Figure 8.41.

The game in action will now look like Figure 8.42.

8.5 THE HIGH SCORE TABLE
Once Tim has no more lives left, we automatically move to the gameover
layout. Here we have to check whether the player did well enough for her
score to be recorded and displayed in the high score table. Right, the table!
We didn’t define it yet. Let’s go back to the splash screen. Add a global
variable named FirstPlay and initialize it to 0. We will use this as a flag to
identify whether the game has just been launched. We also need to initial-
ize the high score table. Add another array object to the layout and call it

FIGURE 8.41 All the events and actions needed for spawning boulders in a
random location, pinning another object to act as an additional collision mask,
destroying them once they are outside the playing layout, and, finally, updating
the score if a successful jump is registered (i.e., a collision between the player and
the pinned mask, which has been placed above the boulder).

Kitty & Katty Development    ◾    131  

something meaningful, e.g., HighScoreTable (you don’t have to be cre-
ative when assigning names: just be straightforward and pick self-explan-
atory terms!). What we need now is a System/On start of layout event
with a System subevent to check for the FirstPlay variable (i.e., System/
Compare variable). In the corresponding Actions, we will then define the
array size (we will limit this leaderboard to five scores only so the size
will be (5,2,1)) and then populate the data one by one with dummy val-
ues (i.e., Players’ names and scores) like the old arcade games used to do
(Figure 8.43).

Once this is done, we can go back to the Game Over layout and start
implementing the high score feature. Let’s add some new elements in the
layout first: we need a new text object to congratulate the player when
achieving a high score, a Textbox object to let players input their name
(add also a Boolean instance variable to this and name it update—we are
going to use this as a flag to signal the need to update the table when leav-
ing the layout), and a button to load the high score layout if the player
wishes to do so (Figure 8.44). All these new elements should start as invis-
ible: we don’t want to display them if the player didn’t get a top score! This
can be done by setting the corresponding value in the Properties tab for
each element or by coding it in the On start of layout event as shown in
Figure 8.45. We also need to add a global variable of type Text to store
the player’s name. We can simply call it name and give it a default value
of “Player.”

FIGURE 8.42 Rolling boulders in action! Don’t forget to set the mask object
property Initial visibility to Invisible once you are done testing!

132    ◾    HTML5 Game Development from the Ground Up

Note that in Figure 8.45 we are also setting the FirstPlay global variable
to 1 so that, when we are back to the splash screen, we don’t reinitialize the
whole table once again, aside from setting the previously defined update
variable of the AskName Textbox object to false.

The next event we have to define is the one checking for a high score.
All we have to do is check the player score against the lowest score in the

FIGURE 8.44 The game over layout in the editor after adding different objects to
congratulate players for achieving a high score, letting them input their names.

FIGURE 8.43 Setting up the HighScoreTable array. Note that the array is popu-
lated in ascending order (i.e., element (0,0) is the lowest score while (4,0) is the
highest). This will make things easier for us later on, since the Sort method imple-
mented in Construct’s Array object sorts elements in ascending order as well.

Kitty & Katty Development    ◾    133  

table. If it is equal or higher, we have a high score, which will turn all those
objects visible (Figure 8.46)!

By checking Figure 8.46 you should also notice that, when clicking on
the btn_hi_on object, we are calling a new function named UpdateTable
before moving to the highscores layout. This function, which we should call
also when clicking on the btn_menu_on button before going back to our
splash screen, is where we actually update the high score table (Figure 8.47).

FIGURE 8.45 Making the high score related elements invisible when the layout
starts.

FIGURE 8.46 If the player’s Score is higher than the lowest score in the high
score table (whose values are stored in ascending order), we turn all new objects
visible. We also give focus to the textbox (via Set focused), set its update instance
variable to true, and also update the global variable name as the player writes
his or her name (via the On text changed event for the textbox object). The last
subevents are for handling the navigation button to the high score layout while
also calling a function for actually updating the high score table with the speci-
fied name and score.

134    ◾    HTML5 Game Development from the Ground Up

We do so by overwriting the lowest score in the table with the new one
together with the player’s name, and then we sort the 2D array based on the
x axis values (i.e., the scores) so that our new value gets inserted in the right
place. We also refresh the HighScore global variable (we display it during
the game) and reset the player’s score to 0 for the next game.

With these latest addition, a basic version of Kitty & Katty featuring all
the aspects we talked about in the game design document is finally complete.

Congratulations in delivering your second prototype!

TAKE AWAY
In this chapter we expanded our knowledge of Construct 2 quite sig-
nificantly: we saw how to use the WebStorage component to save values
locally and retrieve them later in another game session, we learned how to
use arrays, add functions, use physics in our games, and, last but not least,
make customized buttons via the 9-patch object, helping us to deliver a
more flexible GUI that can self-adapt to many different devices and screen
resolutions.

EXERCISES
Kitty & Katty is a fully working prototype now, but there are still lots of
things we can do to improve it and make it a much more interesting and
fun game. Here are some suggestions:

• Make the hut a “safe house” so that the player can’t be killed
when there (hint: we could do this in many different ways, either
checking the player’s position before proceeding in removing a

FIGURE 8.47 The function handling the table update and related global vari-
ables. Note that all the updating code is actually in a subevent triggered by the
update instance variable in the textbox object. If we were not adding this check,
and still call the function from the btn_menu_on object for going back to the
splash screen, we would always overwrite the lowest score in the table, even if the
player scored less than that.

Kitty & Katty Development    ◾    135  

life or by destroying the boulders when they hit the hut, for exam-
ple, or even by changing the level design so that they can’t even
reach there!).

• Add music and special effects.

• Design a second and third level layout.

• Add a death sequence for Tim after he is hit by a boulder (hint: no
need to draw new frames for a new animation from scratch. Be
resourceful with what you have already: you can take the idle sprite,
rotate it 90 degrees, and then have it fade away by changing the opac-
ity value).

• Save the high score table (hint: value by value via WebStorage or,
much better, exploring the other possibilities Construct 2 offers for
saving and loading data files).

137

C h a p t e r 9

Turky on the Run,
a Puzzle Game

Puzzle games have always been a staple of gaming, and masterpieces
like Tetris are there to remind us of how popular and long lasting a

simple yet perfectly designed puzzle can be.
A centuries old puzzle concept we are all familiar with is the so-called

“game of 15,” where a 5 × 5 grid is filled with 14 tiles leaving only one space
empty, thus allowing the player to maneuver the existing tiles around and
ultimately reach a specific configuration. This could be, for example, an
orderly sequence of numbers or a picture. Perhaps surprisingly, not many
video games used this concept despite a pioneering attempt by Konami
with Loco-Motion, a 1982 arcade game that also served as an inspiration
for Turky on the Run, a small game recently released on iOS and BB10
devices. This is the game we are going to discuss here and then proceed in
developing it step-by-step throughout the next chapter.

9.1 LOCO-MOTION: ANALYSIS
In Loco-Motion the player is presented with a grid and a set of railroad
tiles that have to be moved to form a proper railway system, thus allowing
a small locomotive to pick up all passengers waiting at the stations just
outside the map (Figure 9.1).

The locomotive can’t be stopped and can’t be controlled directly: it will
simply follow the trail it is on, so we have to herd it around by shifting tiles
accordingly. If it gets in a dead end, falls into the empty square, or gets

138    ◾    HTML5 Game Development from the Ground Up

caught by any crazy trains or loop sweepers that pop up if the player takes
too long in reaching the commuters, it will crash, and the player loses one
of the three available lives.

The railroads could also be manipulated to make the crazy trains and
sweepers crash into each other, scoring bonus points. This feature is actu-
ally very important to enhance the playing experience further by engaging
players’ revenge instinct against the bad trains that keep chasing after the
small locomotive, henceforth complementing the collecting instinct (i.e.,
picking up all the waiting passengers), which is at the core of the game
appeal as exemplified by the AGE framework analysis in Figure 9.2.

9.2 TURKY ON THE RUN: DESIGN
Like any other sliding tile puzzle, our game will rely on players’ spatial
reasoning skills, but its theme and settings are going to be much different
from Loco-Motion. Instead of a locomotive going to pick up passengers,
here we are going to have a little turkey, aptly named Turky, who needs to
reach his peacock sweetheart for a date across the tile-based maze. Lady’s
patience is limited though, so our game will be time based and not lives
based like most other games: if Turky is unable to reach his girlfriend
in time, the game will be over. Also, Turky, while by no means a very
smart guy, won’t be moving around crashing in dead ends if no paths are
available: if the path ends abruptly, he will try to go back looking for an

FIGURE 9.1 Can we manage to drive the locomotive toward the waiting pas-
sengers on the edges of the map and pick them up without crashing somewhere?

Turky on the Run, a Puzzle Game    ◾    139  

alternative route, or, if there is no way back, he will stay still waiting for us
to help him out.

Making the character stare helplessly at the player, waiting for him to
act, is also likely to enhance our protection instinct: hopefully, most play-
ers will feel the impulse to see a happy ending and bring Turky safe and
sound to the end of the maze to hug Picky the Peacock!

Setting up the path won’t be the only challenge, though: like the crazy trains
in Loco-Motion, here we have three different bad guys chasing after Turky:
two cats, who roam the maze like Turky, and an owl, who appears only in later
levels and flies randomly around. If they catch Turky, our Romeo will have to
restart from a random spot on the left side of the maze with a time penalty.

While the tile that Turky is on or the tile he is moving to can’t be
shifted, players can help Turky by moving the tiles the cats are on to avoid
a clash. This is also an effective way to take revenge against the two annoy-
ing chasers: bonus points will be awarded, but the cats will then respawn
randomly, possibly right on top of Turky!

Turky also has another option to defend himself: pick up a SuperPower
power-up that will make him invincible for the current level. This is
only one of several power-ups granting points, speed, or extra time that
we can use to add variety to the gameplay, while also adding a collecting
element. All these ideas, including the AGE analysis, are outlined in the
one-page game design document shown in Figure 9.3.

Herding
Race to an end

Make bad trains crash

Shift tiles

Revenge

Collecting

Pride

JoyExcitement

FIGURE 9.2 AGE analysis for Loco-Motion. Collecting is the main instinct
driving the gameplay, while revenge plays a complementary role by offering the
secondary objective of destroying the locomotive chasers.

140    ◾    HTML5 Game Development from the Ground Up

Tu
rk

y o
n

th
e R

un
 is

 a
 sl

id
in

g t
ile

 p
uz

zl
e g

am
e b

as
ed

 o
n

sp
at

ia
l r

ea
so

ni
ng

 sk
ill

s.
�

e
pl

ay
er

 n
ee

ds
 to

 h
el

p
Tu

rk
y t

o
sa

fel
y r

ea
ch

 P
ick

y o
n

th
e o

th
er

 si
de

 o
f t

he
 m

az
e b

y
sh

ift
in

g t
ile

s a
dj

ac
en

t t
o

th
e e

m
pt

y s
pa

ce
, l

ik
e i

n
a

ga
m

e o
f 1

5.

Q
ui

t b
ut

to
n.

 A
bo

rt
s t

he
 g

am
e

an
d

go
es

 b
ac

k
to

 sp
la

sh
 sc

re
en

Pi
ck

y
w

ai
ts

 o
n

a
ra

nd
om

bl
oc

k
on

 th
e

rig
ht

Po
w

er
-U

ps
an

d
bo

nu
se

s

Tu
rk

y
st

ar
ts

 in
 a

 ra
nd

om
 b

lo
ck

 o
n

th
e

le
ft

st
ar

tin
g

sp
ee

d:
 1

5
pi

xe
l/s

Fo
xy

, S
ly

, a
nd

 O
tto

: i
f t

he
y

in
te

rc
ep

t T
ur

ky
 h

e
w

ill
 h

av
e

to
 st

ar
t a

ga
in

w
ith

 a
 ti

m
e

pe
na

lty
 (D

at
e

de
pe

nd
en

t,
st

ar
tin

g
at

 2
5˝

 w
ith

 5
˝

in
cr

em
en

t p
er

 d
at

e,
 m

ax
 1

´3
0˝

 fo
r t

he
 c

at
s,

10
˝ o

nl
y

fo
r O

tt
o)

.
Fo

xy
 is

 th
e

fa
st

es
t,

O
tt

o
th

e
slo

w
es

t.
Sp

ee
d

in
cr

ea
se

s l
itt

le
 b

y
lit

tle
w

ith
 e

ac
h

D
at

e.
 S

ly
, F

ox
y,

an
d

O
tt

o
ap

pe
ar

 in
 D

at
e

2,
 3

, a
nd

 5
re

sp
ec

tiv
el

y.
H

er
di

ng
Av

oi
da

nc
e

Ra
ce

 to
 a

n
en

d
M

ak
e

th
e

ba
d

gu
ys

 fa
ll

Sh
ift

in
g

til
es

Ex
ci

te
m

en
t

Jo
y

Pr
id

e

Pr
ot

ec
tio

n

Re
ve

ng
e

Co
lle

ct
in

g

• O
nl

y
til

es
 a

dj
ac

en
t t

o
th

e
em

pt
y

sq
ua

re
 c

an
 b

e
m

ov
ed

,

un
le

ss
 th

ey
 a

re
 th

e
til

es
 w

he
re

 T
ur

ky
 is

 o
n

or
 w

he
re

 h
e

is

m
ov

in
g

to
: t

he
se

 c
an

 n
ev

er
 b

e
m

ov
ed

.
• T

ur
ky

 h
as

 o
nl

y
a

lim
ite

d
tim

e
to

 re
ac

h
Pi

ck
y

(b
y

de
fa

ul
t,

2´

30
˝.

Va
lu

e
ca

n
be

 c
ha

ng
ed

 in
 th

e
op

tio
ns

 sc
re

en
 to

 2
´

or

 3
´)

. 1
´ i

s a
dd

ed
 a

fte
r e

ac
h

da
te

.
 N

o
tim

e
le

ft
 =

 G
am

e
O

ve
r.

• T
ur

ky
, S

ly
, a

nd
 F

ox
y

ch
oo

se
 a

n
av

ai
la

bl
e

pa
th

 ra
nd

om
ly

.
• I

f n
o

pa
th

 av
al

ia
bl

e,
 th

ey
 re

m
ai

n
st

ill
 u

nt
il

on
e

op
en

s.
• T

ile
s w

ith
 S

ly,
 a

nd
 F

ox
y

ca
n

be
 sh

ift
ed

, m
ak

in
g

th
em

 fa
ll

an

d
sc

or
e

po
in

ts
 (2

00
 &

 3
00

 re
sp

ec
tiv

el
y)

 b
ut

 th
ey

 w
ill

re
sp

aw
n

ra
nd

om
ly

.
• O

tto
 c

on
st

an
tly

 ta
rg

et
s a

 ra
nd

om
 p

os
iti

on
 in

 th
e

m
az

e

an
d

hi
s f

lig
ht

 p
at

h
ca

n’
t b

e
ch

an
ge

d.

To
uc

hi
ng

 th
e

m
ag

ic
 b

ut
to

n
tr

an
sp

or
ts

Tu
rk

y
to

 a
 ra

nd
om

 ti
le

. P
la

ye
r s

ta
rt

s
w

ith
 3

 u
se

s b
ut

 m
or

e
m

ay
 b

e
ac

qu
ire

d
vi

a
th

e
co

rr
es

po
nd

in
g

po
w

er
-u

p.

M
ak

es
 T

ur
ky

 in
vi

nc
ib

le
: S

ly
, F

ox
y,

an
d

O
tto

 w
ill

 b
e

ki
ck

ed
 o

ut
 o

f t
he

sc
re

en
 (t

he
y

w
ill

 re
sp

aw
n

af
te

rw
ar

ds
)

�
e

eff
ec

t l
as

ts
 fo

r t
he

 w
ho

le
 d

at
e

le
ve

l u
nl

es
s T

ur
ky

 fi
gh

ts
 w

ith
 O

tto
,

af
te

r w
hi

ch
 it

 e
nd

s (
av

ai
la

bl
e

fr
om

da
te

 2
)

A
dd

s o
ne

 u
se

 to
 th

e
m

ag
ic

 b
ut

to
n

(fr
om

 D
at

e
1)

50
0

bo
nu

s p
oi

nt
s (

fr
om

 D
at

e
1)

D
ou

bl
es

 T
ur

ky
’s

sp
ee

d
(fr

om
 d

at
e

1)

1´
 e

xt
ra

 ti
m

e
(fr

om
 D

at
e

2)

30
0

bo
nu

s p
oi

nt
s a

nd
 3

0˝
 e

xt
ra

 ti
m

e
(fr

om
 D

at
e

5)

H
al

ve
s T

ur
ky

’s
sp

ee
d

(fr
om

 D
at

e
3)

Tu
rk

y
on

 th
e

Ru
n

10
-0

5-
13

/V
.2

.0

Sp
la

sh
 sc

re
en H

ow
 to

 p
la

y

G
am

e
O

ve
r

Sc
or

e
8

D
at

e
#

5
H

ig
h

Sc
or

e
17

26
7

Ti
m

e
Le

ft
2:

20

G
am

e

O
pt

io
ns N

ex
t l

ev
el

co
ng

ra
ts

 sc
re

en

FI
G

U
R

E
9.

3
O

ne
-p

ag
e

de
sig

n
do

cu
m

en
t f

or
 T

ur
ky

 o
n

th
e R

un
.

Turky on the Run, a Puzzle Game    ◾    141  

TAKE AWAY
Puzzle games are an important genre in the gaming landscape, offering
game designers opportunities to craft apparently simple systems that can
nonetheless deliver a very engaging and addictive gameplay.

In our specific case, it is instructive to realize how, despite the fact that
Loco-Motion, the game we drew inspiration from, and Turky on the Run
are essentially sharing the same basic actions and gameplay, the use of a
different theme and settings can help to actually engage players through
a different emotional experience: collecting is the main driving force
behind the model game, while Turky relies mostly on the protection
instinct instead, leaving the former somewhat in the background.

143

C h a p t e r 10

Turky on the Run
Development

Developing Turky on the Run is going to be a bit more compli-
cated than the two other games we have worked on so far: while

we managed to keep Moon Wolf and Kitty & Katty within the 100 events
limit so that they could be developed on the Construct 2 Free Edition, the
full version of Turky on the Run we can find on the Apple AppStore and
BlackBerry World counts more than 600 events!

For this reason, here we will focus on describing how to achieve the actual
gameplay only, leaving the other parts of the game, like splash screens, navi-
gation between layouts, etc., as a simple exercise: this shouldn’t be a problem
by now since these tasks would involve essentially the very same steps we did
when developing Kitty & Katty. The gameplay alone, though, will still need
more than 100 events overall, so, if developing on the free edition, you may
have to try different features individually in independent projects or sim-
plify certain aspects of the game, for example by reducing content. Specific
places where this can be done will be pointed out as we progress.

Our step-by-step development will be subdivided into the following
sections:

 1. Layout and shuffling, where we place the different tiles to form the
grid and shuffle them around.

 2. Moving tiles, where we are going to allow the player to move a tile
into the empty area by clicking on it or touching it. We will also

144    ◾    HTML5 Game Development from the Ground Up

implement a tile highlighting mechanism to point out the tiles that
can actually be moved.

 3. Turky: placement and movement, here we will define where Turky
starts his adventure and how it moves.

 4. Sly, Foxy, and Otto, in this section we will take care of Sly, Foxy, and
Otto and how they should become more dangerous after each level.

 5. Timer and bonus items, where we are going to add different bonus
items as well as other elements like a timer.

10.1 LAYOUT AND SHUFFLING
Originally, Turky on the Run was developed with a web browser and the
iPhone 3GS as target platforms, so great care was taken to keep resources
as low as possible and to work on the 3GS low-resolution screen of
480 × 320 pixels, relying on the up-scaling abilities of Construct 2 to adapt
to other devices. I will maintain the original 480 × 320 layout size here, but
if you prefer, feel free to design for a higher resolution and scale all values
accordingly.

Once our new empty project is open and the layout size set, let’s rename
the Layer 0 to “Action,” set its background color to black, and then add
a new layer named GUI, like we did for the other projects. We may also
want to add a Debug layer to display helpful text while the game is run-
ning and monitoring different variables.

We saw in the game design document that our maze will consist of a
grid made by four rows and five columns, making enough room for 19
tiles and one empty space. Specifically, we will have tiles of seven different
types according to the paths they represent, shown in Figure 10.1.

Start by adding a new sprite for each of these and import the graph-
ics accordingly (you can find these in the downloadable game project file
or draw your own). As usual, name each sprite in a meaningful way, for
example, the crossroad could be t_X, with t standing for “tile,” the vertical

FIGURE 10.1 The different tiles that will make up our maze. In the game project
these are named as: t_X, t_V, t_H, t_LD, t_DR, t_UR, and t_LU, respectively.

Turky on the Run Development    ◾    145  

path would be t_V, the path turning from left downward t_LD, and so on.
In my 480 × 320 layout, each tile was resized to a 70 × 70 square. You can
use a different size if you like, but be sure all tiles are squared and have the
exact same dimensions!

We also want to provide a right mix of tiles to make the construction
of different paths challenging but always possible, so we should duplicate
each tile wisely (don’t forget we can duplicate a tile simply by pressing Ctrl,
clicking on the object, and then dragging where we want the new copy
to appear—the new object will share the same name as the old one). For
example, we could decide for a mix including four t_X (this will clearly be
the most helpful of all) and t_H, three t_V, and two copies of all remain-
ing ones.

Let’s also add a smaller black tile (e.g., 25 × 25 pixel) that will be used
to check for collisions when the player makes a cat fall into the empty tile,
which will act as a bottomless pit.

Once we have all the tiles in the layout, we should arrange them around
to give us an idea of where the grid will be during the game (Figure 10.2).
While we will shuffle and place all the tiles properly at runtime, we do
need to decide now the best placement of the grid, making sure to record
the offset where the first top tile on the left will be placed. In my layout, the
first tile has coordinates (115,75).

FIGURE 10.2 Placing the tiles in the layout to form the grid. Note the small black
tile highlighted in the middle of the empty square: we will use this for collision
detection purposes (we may want to fill it with a different color at first for debug-
ging purposes). At this stage we can also add another small sprite to represent the
four possible locations where Turky will start (on the left side) and where Picky
will be waiting for him (on the right). These have to be placed accurately to match
the paths of the maze tiles.

146    ◾    HTML5 Game Development from the Ground Up

Before we can shuffle the tiles around and make a random maze, we need
to define how we are actually going to represent it data-wise in the game. As
you might have guessed, we are going to use an array to identify each tile posi-
tion: let’s add one to the project, call it “Positions,” and set its size to (20,1,1).

In the event sheet, let’s add a System/On start of layout event fol-
lowed by a subevent for Positions to cycle through all its elements on
the x axis and initialize them (use Positions/For each X element event).
The simplest way to do so is to copy the current index (tracked by the
Positions.CurX built-in variable) as its own value, i.e., slot 0 will have
a value of 0, slot 1 a value of 1, and so on. Once done, we need another
subevent to shuffle the array. The idea here is to switch two elements
randomly several times so that we can completely reorder the array. We
can do so via the System/For loop, with a starting index of 1 and ending
at 50, for example. To perform the switch we also need to declare three
local variables: two for selecting the indexes of the elements we want to
switch and one for temporarily storing the first value. We can call these
i, j, and temp. Then, through the System object, we assign i and j to a ran-
dom integer number between 0 and the Positions array length (i.e., Set j
to floor(Random(0, Positions.Width-1))), copy the value of the element
having index i to temp (i.e., Set temp to Positions.At(i)), and finally copy
the value in j to the slot i followed by copying the value in temp to the
slot j. The result is shown in Figure 10.3, where we also added two text
boxes in the Debug layer to print out the array values before and after
the shuffling to be sure everything was done properly.

FIGURE 10.3 Initializing and shuffling the Positions array.

Turky on the Run Development    ◾    147  

We are now almost ready to assign each tile a unique position and place
them on the screen accordingly. Before doing this, though, we should first
add a few more variables that we will be using throughout the game when
dealing with the tiles and their positions. Specifically, we need four global
variables identifying the grid size (i.e., four rows and five columns), as well
as the coordinates of the first tile in the grid, which will be used as an off-
set when dealing with tile positions (we marked down these values earlier
when we first placed the tiles in the layout). These are shown in Figure 10.4
for my layout.

We also need to add a few instance variables to each tile so that they
can be handled properly later. In particular, we need to specify a unique
ID to identify the tile (from 0 to 19, for example—this will remain fixed
throughout the game), its current position in the grid and, for all tiles
except the small black one we use to identify the empty square, also where
its exits are located (e.g., up, down, left, right—we are going to use these
data when moving the characters around).

Note that we need to add a specific variable only once for each tile type
(e.g., t_X, t_H, etc.) since all tiles sharing the same name (in other words,
all instances of the same object) will automatically acquire the same vari-
ables, which we can then instantiate accordingly and independently (see
Figure 10.5).

Once done, we can go back to the event sheet and add more subevents
to On start of layout to place all tiles according to our previously shuf-
fled array: the number in the array will identify the position in the grid.
Referring to Figure 10.2, the top left tile will have position equal to 0, the
next one on the right will have 1, the top left tile on the second row will
have 5, and so on until the last one at the bottom right having a position
of 19.

To achieve the correct placement, we need first to add a new local vari-
able called counter and set it to 0, then we have to add subevents to scan
all instances of a specific tile type to set its grid_pos instance variable to
Position.At(counter) value and then determine the x and y coordinates

FIGURE 10.4 The global variables needed to handle the grid and the tile
placement.

148    ◾    HTML5 Game Development from the Ground Up

accordingly. For these, we can write a formula where, starting from the
position of the first tile (the global variables x_start and y_start) we add n
times the size of a tile where n is equal to Positions.At(counter)%columns
and floor(Positions.At(counter)%columns) for x and y, respectively. The
% (called “modulus”) operator returns the remainder of the division
between two numbers, and we can use it to separate the tiles properly on
the x axis. For example, for the very first tile, counter is 0, columns is 5, so
the modulus operation returns 0, and we simply place the tile in x_start.
For the second tile, counter is now 1, so the operation returns a 1. We place
the new tile at an x coordinate equal to x_start plus one tile size and so
on for the entire row. When counter is equal to 5, the modulus operation
returns 0 again, so the tile simply has x_start coordinate on the x axis, but
we change the y coordinate by checking for the integer part of the division
between counter and columns: this is now 1, and we add a tile width size
to the y axis coordinate, and so on. The event and actions are shown in
Figure 10.6.

Once this has been done for every tile type, we can run the layout and
see how the tiles are rearranged in a different way every time. Be sure to

FIGURE 10.5 Instance variables for the tile objects. We need to specify an ID,
an index position in the grid, and also which exits are active. Here is one of the
t_DR tiles.

Turky on the Run Development    ◾    149  

place the small path tiles, where we will be placing Turky and Picky, at the
side of the grid in a way that they match eventual entries in the maze.

Before moving to the next section, I’d like to solve a problem we will
face later when playtesting the game. There could be special cases where
Turky starts at the top or bottom position and the tile in front of him is a
t_LU or t_LD, respectively, as shown in Figure 10.7. If this happens, Turky
is going to be stuck, and we force the player to use a magic wand right away
to be teleported somewhere else.

This would be quite annoying, so we want to avoid it, and we should do
that right now.

FIGURE 10.6 The On start of layout subevents to place t_X and t_DR tiles
according to the values in the shuffled array Positions. Each tile type, including
the small empty tile, requires a subevent like this.

FIGURE 10.7 And now what? Turky looks puzzled and rightly so! This is a spe-
cial case we want to avoid: Turky starting on the top spot and getting stuck right
away on a left-up (t_LU) tile at the very beginning of the game (remember we
can’t move the tile that Turky is on even if there is the empty tile next to it). Same
problem when starting at the bottom with a left-down (t_LD) tile.

150    ◾    HTML5 Game Development from the Ground Up

What we have to do to be sure this never happens is to check the posi-
tion of the t_LU and t_LD tiles and see if one of them is on that critical
spot (grid_pos equal to 0 means the top left corner while grid_pos equal
to 15 identifies the bottom left corner). If so, we pick a specific instance
of a different tile (for example, one of t_X) and swap their positions. This
is done easily following the same approach we just did for placing the
tiles. The corresponding events, together with all the different actions, are
shown in Figure 10.8.*

10.2 MOVING TILES
Now that the grid is in place, we can code the moving tiles mechanism
allowing players to shift any tile adjacent to the empty square by clicking it
(or touching it, in case of a mobile device), as long as it is not the tile Turky
is on or the tile he is moving to. To identify the latter cases, we should
first add two instance variables to Turky himself, so add a new sprite for
Turky and import the turky.png image you can find in the project artwork
folder,† place our hero somewhere outside the layout, and add two instance

* There are actually a few more special cases we should consider to be sure such forced blocks don’t
happen, but I leave these to you to find out via playtesting as a simple quality assurance exercise.

† All artwork for this game is taken from www.clker.com.

FIGURE 10.8 Avoiding the special case just discussed. We check whether the
wrong tile is in place, and we also select another tile by picking up a specific
type and ID to swap it with. Note we also need a local variable to swap the grid_
pos values for the two tiles, and then we proceed to update their coordinates
accordingly.

Turky on the Run Development    ◾    151  

variables: target and grid_pos, both of type number and with an initial
value of −1 (since all values form the Positions array identifying a tile
range from 0 to 19, we can use negative numbers to represent special cases
like the character still being outside of the grid).

The next step consists in adding the Touch object to the game so that
we can finally start programming the tile-moving process. For this, we
are going to introduce a new concept: groups. A group acts like a self-
contained subsection of events and not only helps in keeping our event
structure clean and easily readable but can also be explicitly activated (i.e.,
called) and deactivated, making it a very useful tool somewhat similar to
functions, but without the possibility of passing parameters. Indeed, in
the earlier versions of Construct 2, where functions were not available yet,
groups were the only option to organize a set of events together and trigger
them from another event when needed.

To add a group, right click on the event sheet and select the appropri-
ate command. Name this group “Move Tiles” and add its first event: On
touched object from the Touch object. We can start with the t_X tile, for
example. Remember we are allowed to move the tile only if Turky is not
on it or moving into it. To check for this, add the necessary conditions to
compare the tile’s own grid_pos variable with Turky’s grid_pos and tar-
get variables via the Compare instance variable event to see whether they
are different. If Turky is not around, we can proceed to move the tile into
the empty space and swap it with the t_empty collision tile. In doing this,
we need to identify whether the empty space is above, below, in front of, or
behind the tile and act accordingly.

Let’s work first on the case where the empty space is above or below
the tile. Here, the grid position of the tile is equal to t_empty’s grid
position variable plus or minus 5 (remember we have five columns, so
adding 5 to the position will move us to the next row, subtracting 5 will
take us to the previous row instead). If this is true, we proceed in swap-
ping the two tiles (we need to add a local variable to handle this as we
did previously).

Since the actions we need to take are the same in both cases, we can put
the two events together and make an OR event (select the event and right
click on it to choose the Make ‘OR’ block option), which is triggered when
any of the two conditions is true. The event is shown in Figure 10.9.

We can now take care of the two other cases, i.e., when the tile to move
is before or after the empty space. We can identify these configurations
by checking whether the tile grid_pos is equal to t_empty position plus

152    ◾    HTML5 Game Development from the Ground Up

or minus 1, but we need to pay a little more attention here, since we want
to avoid wrapping the tile around, i.e., moving it to a different row. This
could happen when, for example, the empty space has position 4 (end
of the top row) and we click on the tile with position 5 (the first on the
second row).

So, when the tile is before the empty space, we need to be sure its
grid_pos is not equal to columns-1, (columns*2)-1, and (columns*3)-1
before proceeding. Similarly, when the tile is after the empty space, we
need to check that its grid position is not equal to columns, columns*2,
and columns*3. Note that the second condition needs to be preceded by
a System/Else statement, otherwise it will be triggered right after the first
movement bringing the tile back!

The new events are shown in Figure 10.10.
This concludes the On touched event for one type of tile but, within the

Move Tiles group, we also need to have such an event for all tiles. Simply
copy and paste the whole event and then select it, right click, and choose
the Replace object command to update the tile object to the correct one
(Figure 10.11).

Note that handling each tile type will take a few events, so if you are
using the Construct 2 free license limited to 100 events, you may prefer to
implement only a specific subset of tiles (for example, add more t_X, t_H,
and t_V and remove the others) to see how the other features of the game
work.

FIGURE 10.9 The Move Tiles group: when touching a tile, we also need to check
that it is not Turky’s current or targeted tile and that it is next to the empty area
(identified by the t_empty tile). Here we check whether the t_X is above or below
the t_empty.

Turky on the Run Development    ◾    153  

FIGURE 10.10 The last set of subevents completing the Touch t_X tile event in
the Move Tiles group. Here we take care of shifting the tile back and forth avoid-
ing the special cases where the tile is on the leftmost and rightmost columns, in
which case a shift would imply the tile wrapped around the edges of the grid and
moved to a different row.

FIGURE 10.11 After copying and pasting an event, we can quickly update the
object involved by replacing it automatically across all conditions and actions by
selecting the Replace object command.

154    ◾    HTML5 Game Development from the Ground Up

Once all tiles have been taken care of, run the layout and test that every-
thing is working properly.

In the early testing I did for Turky on the Run I noticed that some
players were confused and didn’t know which tiles they could move, so I
thought of adding some way to highlight the tiles next to the empty space.
If you would like to do so as well, start by adding another sprite and call-
ing it highlight_up. Draw something like a simple frame (Figure 10.12),
resize it to have the same dimensions as the other tiles, add a grid_pos
instance variable to it, and set its opacity property to about 50 (we don’t
want the highlight frame to stand out too much either, otherwise it can be
distracting for the players). Place it outside the visible layout, right click it,
and select Clone object type three times, renaming each instance high-
light_down, highlight_left, and highlight_right.

We are all set to implement the highlight effect now: what we will be
doing is simply to superimpose the frames to the tiles around the empty
space as long as Turky is not around.* Figures 10.13 and 10.14 show the
different events arranged into one new group, TileHighlights, where, for

* Note that this feature is not critical for the game, so, if you have the 100-event limitation, you may
want to skip it and move forward.

FIGURE 10.12 A possible simple frame we can use as a highlight effect to point
out the tiles around the empty space, i.e., the tiles players can move in the game.

Turky on the Run Development    ◾    155  

FIGURE 10.13 The TileHighlights group with a function updating each tile
grid_pos instance variable followed by two events to place the highlight_up and
highlight_down frames. There we check that we are not highlighting Turky’s own
tiles and that we are in the appropriate area of the grid (i.e., t_empty’s grid_pos
should be equal to or greater than 5, meaning we are in the second row of tiles for
highlight_up or less than 15 for highlight_down, meaning the empty space is not
in the last row). If these conditions are not met, we simply move the highlight off
screen. Note that adding a small offset to the coordinates may be needed according
to your tile’s size.

FIGURE 10.14 The events for highlight_right and highlight_left frames. Note
how we use the modulo operator to identify the last and first columns, respectively.

156    ◾    HTML5 Game Development from the Ground Up

each frame, we check whether the frame position is in the proper range
of values (e.g., we should display the highlight_up only if the empty
space is not in the first row, or highlight_right only if not in the last
column, etc.), if not we simply move it off screen (alternatively, we could
set it to invisible and set it back to visible when needed). We perform
the check within a dedicated function, which is called right away as the
game starts as well as anytime we move a tile (for this, we need to update
the events in Figures 10.09 and 10.10 by calling the function after mov-
ing t_empty).

10.3 TURKY: PLACEMENT AND MOVEMENT
We are now ready to start writing down Turky’s movement, which is
also the most difficult part of the tutorial. First of all, let’s look at how
the movement should work: we want Turky to start in one of the four
possible spots on the left, randomly. As soon as a path opens, i.e., we
place a tile with an exit matching Turky’s position, we mark the tile, so
that it cannot be shifted as long as Turky is moving toward it, and let
Turky start his journey to meet Picky. Every time we shift tiles in the
grid, we need to check whether there is a path Turky can take and, if so,
pick one randomly.

This can also be described via the following algorithm:

 1. Identify exits of the tile Turky is on.

 2. Identify exits for the tiles right above, below, before, and after
Turky.

 3. If there is any match, pick one at random and start moving Turky.

 4. Mark the selected match so that it is clear to the player where Turky
is going. That tile can’t be shifted anymore as long as Turky is going
toward it, even if he has not reached it yet.

 5. When the targeted tile has been reached, check whether we have an
exit leading to Picky. If not, repeat from step 1.

To start implementing all these steps, we need to define all the variables
required for implementing this algorithm.

Luckily, we already added instance variables for each exit across the
different tiles earlier (Figure 10.5), so now we only have to worry about

Turky on the Run Development    ◾    157  

Turky. Currently he has only two variables (target and grid_pos), so let’s
add the following:*

• startAt is the number that will identify the beginning row for Turky.

• direction is the number needed to identify where Turky is going. We
will be using the following values: 0 for left, 1 for up, 2 for right, and
3 for down plus two special cases: −2 to identify the beginning case
when Turky is outside of the grid and −1 to identify the case where
there are no exits and Turky is stuck on a tile.

• speed is the number defining Turky’s own movement speed. By
default, we can set this to 15. It will be changed according to differ-
ent power-ups (or power-downs).

• comingFrom is the number used to identify the direction Turky is
coming from. This will allow us to avoid going back unless there is
no other choice.

• possibleExits is a counter we use to know how many options Turky
has at any given time.

• up, down, left, and right are Boolean flags used to identify avail-
able exits.

• superTurky is a Boolean flag we will later use to identify whether
Turky has acquired the super power-up.

Once done, Turky’s properties will look like those shown in Figure 10.15.
To implement Turky’s movement, we are going to write three big groups

of events: Turky-Begin, where we initialize Turky at the beginning of the
game as well as when he gets caught and needs to restart, Turky-Move to
handle the actual movement, and Turky-LookAround to assess the situa-
tion, i.e., look for possible exits and choose one.

Let’s start by adding the Turky-Begin group and then a System/On
start of layout event where we call a function named InitializeTurky.
There, we set all instance variables as shown in Figure 10.16. It is useful to
have this part of code in a standalone function instead of simply adding it

* For simplicity, we will be adding all variables at once, also those that we will need later when dis-
cussing power-ups.

158    ◾    HTML5 Game Development from the Ground Up

FIGURE 10.16 Initializing Turky. Note that startAt is set to a random num-
ber identifying a specific row, and Turky’s coordinates are also set accord-
ingly to match one of the four entrances we placed previously just outside the
maze. The specific numbers here have to match your particular layout. Here, I
described the exact position to place Turky in terms of reference tiles like t_X
and t_empty.

FIGURE 10.15 All the properties Turky needs in his quest for meeting Picky.

Turky on the Run Development    ◾    159  

to the On start of layout event so that we can reinitialize Turky not only
when the game starts but also when he gets hit by Sly, Foxy, and Otto.

In the function InitializeTurky we set target to –2. We use this value
to specify the case where Turky is out of the maze. Clearly, this is the first
case we have to deal with, so let’s add a new subevent to the Turky-Begin
group identified by this very condition. In it, we start another subevent
where we check whether the tile next to Turky has an exit on the left, i.e.,
t_X, t_H, t_LU, and t_LD. All these conditions must be tied together in an
OR block as shown in Figure 10.17, so if any of these cases happens, we can
proceed by updating Turky’s target variable to the specific tile while also
setting the appropriate movement direction (i.e., moving right is identified
by the number 2, so that’s the value we will need to assign to the direction
variable).

Before we get into the consequences of changing the direction variable,
let’s see the other function we are calling here: SetTargetParticles. This is
where we want to mark the tile Turky is moving to, providing players with
some visual feedback. We can handle this by drawing some particles try-
ing to simulate a flower-like effect by combining yellow and red dots, for
example, as shown in Figure 10.18.

The function itself, shown in Figure 10.19, is actually pretty simple: what
we have to do is only to update the particle’s own grid_pos variable to the
value in Turky’s target variable and compute the position accordingly. The

FIGURE 10.17 The other subevent in the Turky-Begin group. Here we check
whether a tile providing an entrance in the maze is next to Turky. If so, we update
Turky’s relevant variables (target and direction) besides calling a function to
visually mark the tile as Turky’s target via some particle effect.

160    ◾    HTML5 Game Development from the Ground Up

animation will play automatically thanks to the properties we just set in
Figure 10.18.

We can now proceed to add a new group, Turky-Move, which should
be structured with a main event checking for Turky’s target variable being
greater than or equal to 0 and then a specific subevent for each moving
direction. Let’s not forget, though, that for this to work properly and to
handle Turky’s walking cycles, we should also add the CustomMovement
behavior (do this now through Turky’s Properties panel) besides setting

FIGURE 10.18 Properties for the particle effect as implemented in the game.
Note we have grid_pos variable here too to identify the position in the maze. The
image itself is a simple set of yellow and red dots that will spread to simulate little
flowers.

FIGURE 10.19 The SetTargetParticles function, taking care of positioning the
particle effect on the tile Turky is moving to.

Turky on the Run Development    ◾    161  

up different walking animations. Double click on Turky and add all the
needed animation cycles (up, down, left, right) by importing the different
frames as provided in the project artwork folder.

Figure 10.20 shows the subevents triggered when Turky is moving left
(direction = 0) or up (direction = 1). What we are doing there is pretty
straightforward: we use the CustomMovement behavior to set Turky in
motion with the proper speed and direction and trigger the correspond-
ing animation. After this, we stop the movement when Turky gets in the
middle of the target tile, which we identify by looking at Turky’s x posi-
tion when moving horizontally, or at his y coordinate when moving verti-
cally. Once Turky stops, we update the comingFrom variable accordingly
(e.g., if we are moving left, i.e., direction = 0, comingFrom will be set to
right, i.e., 2) as well as setting target to −1, meaning we need to look for
another exit. Last, we move the target particle off screen by setting its x
and y coordinates to −200.

Right and down movements are handled in the exact same way, as
shown in Figure 10.21.

So, what happens when target is set to −1? Here it is when the last
group, Turky-LookAround, comes into play (Figure 10.22). To have the

FIGURE 10.20 The events handling Turky’s left and up movements. Note also
that we have a debug line first to point out the values of Turky’s grid_pos and
then target variables to check that the group is called properly and everything is
working as planned.

162    ◾    HTML5 Game Development from the Ground Up

group work properly, we need to set up a few local variables for the group
itself:

• Exit is a number used to identify the direction of the exit Turky is
going to take. We initialize this to −1, meaning no exit found yet.

• Ok is a flag we will use later to signal that an exit has been found.

• Options is the total number of possible exits available to choose from.

We also need an array to keep track of the various exits at any given
time. Let’s call it “Exits4Turky” and give it dimensions equal to (4,1,1)
to cover all possible directions. Each array element represents a direction

FIGURE 10.22 The beginning of the Turky-LookAround group: setting up
the required variables and array to keep track of available possibilities while
also resetting Turky animation to its idle state as long as a new direction is not
picked up.

FIGURE 10.21 The events for moving Turky right or down.

Turky on the Run Development    ◾    163  

(e.g., element 0 represents an exit available to the left, element 1 repre-
sents up, and so on as usual), and it is going to be set to 1 if an exit in
that specific direction is available.

Once these variables and array have been initialized (the clear command
for the array object resets all elements to 0), we are ready to look for possible
exits. To do so, we are going to proceed as follows. First, we check which
exits are available on the tile Turky is currently on, then we check for match-
ing exits in the nearby tiles (i.e., above, below, before, and after Turky’s tile),
and finally we pick an available exit, if any, also making sure to avoid going
back where Turky came from unless that is the only option available.

The first step is handled by the UpdateTurky-Exits-Position function,
shown in Figure 10.23. Here we check whether Turky is on each tile type
and then update Turky’s corresponding variables accordingly, together
with its grid_pos variable.

Next comes the step where we match Turky’s exits with those of the
nearby tiles. To do so, we define a specific event for each of Turky’s direc-
tional variables (right, left, up, and down) and then check whether the next
tile in that specific direction offers a matching entrance.

For example, Figure 10.24 shows the details for Turky’s right variable and
is triggered whenever this is set to true. We also have to check that it makes
sense to look for another tile right ahead, i.e., Turky is not on the last col-
umn of the grid, a special case we identify once again thanks to the modulo
operator (turky.grid_pos%5 is not equal to 4). If so, we can update to 1 the

FIGURE 10.23 The UpdateTurky-Exits-Position function, here showing the
actions for updating Turky’s variables in case he is on a t_DR or t_H tile. Such
events have to be replicated for all other tile types as well.

164    ◾    HTML5 Game Development from the Ground Up

corresponding element in the Exits4Turky array (i.e., the one having index
equal to 2, corresponding to the direction toward the right). This is repeated
for all the tiles that have an opening to the left, where each block is preceded
by a System/else condition to avoid checking them if we already found a
match.

The very same approach is used for Turky’s other variables, left, up,
and down.

Now that we identified a set of potential exits, we need to pick one. As
discussed in our one-page design document, Turky isn’t very smart, so
he simply chooses one option at random, as long as it is not the one he is
coming from. Still, we need to develop this simple approach carefully and
the whole process is outlined in Figure 10.25.

We begin by scanning the Exits4Turky array and count how many 1s
we have in there, i.e., we check the numbers of matching exits available
and save the result in the options variable we defined earlier. If there
are no options, we do nothing and wait for the players to rearrange

FIGURE 10.24 Matching Turky’s exit variables with possible entrances in adja-
cent tiles. If there is a match, the corresponding slot in the Exits4Turky array is
updated to 1. Note also that we avoid checking for directions that would be out-
side the grid (e.g., checking for an up exit if we are on the top row or for a left exit
if we are on the first column).

Turky on the Run Development    ◾    165  

the tiles until some exit gets opened, but if options is at least 1, we can
proceed with the selection. For this, we use the ok variable as a flag in a
System/while loop: as long as ok is 0 we keep searching by picking up a
possible direction. We do so by assigning a random number between 0
and 3 to Turky’s direction variable and then use this as an index to look
into the Exits4Turky array, with its returning value assigned to ok. If
the exit is available, ok will be 1, otherwise it will remain 0, forcing the
while loop to repeat the process once again until we finally pick one of
the available exits.

Remember we also have to be sure Turky doesn’t pick the same direc-
tion he came from, unless this is indeed the only available option. To do
so, we add a subevent within the while loop where we check for this spe-
cific condition, i.e., Turky’s direction variable equal to his comingFrom
while also the number of options is greater than or equal to 2. If this hap-
pens, we reset ok to 0, forcing the while loop to repeat itself.

Once we finally exit the loop, the new direction is set, and all we have to
do is to define a subevent for each value of the direction variable where we
set Turky’s target variable accordingly, activating the Turky-Move group,

FIGURE 10.25 The second part of the Turky-LookAround group. Here we select
a specific direction based on the available options and mark the new target tile by
placing the particles on it as well.

166    ◾    HTML5 Game Development from the Ground Up

and also place the particles on the tile Turky is moving to by calling the
SetTargetPatricles function.

Play the game: Turky should now be able to walk in the maze according
to how we manipulate the tiles around him!

Now that this is settled, it’s a good time to start implementing the
score system.

Add a new global variable named score, initialized to 0, together with
two new text objects. We can name one txt_score and set its text to Score
(choose a font you like in a suitable size) while the other will be used to
actually display the score variable, and we can name it current_score or
whatever you like. Place these two text objects in the top left area of the
screen above the first tile, as in Figure 10.26.

According to the game rules, the player’s score increases as long as
Turky keeps walking around, so we can simply update the score variable
and the related text in the Turky-Move group when target is greater than
or equal to 0 as shown in Figure 10.27. We should also add an action to
update the current_score text when the game starts, for example in the
On start of layout event we added in the Turky-Begin group.

Play the game and see how the score increases when Turky moves and
stops whenever he gets stuck on a tile.

Each journey should have an end, and we don’t want Turky to wander
aimlessly in the maze forever, so taking care of Picky is a good idea now.

Add a new sprite object and import the image of Picky. Let’s define a
new group that takes care of anything Picky related, starting from her
placement (Figure 10.28), which we handle in a On start of layout event,

FIGURE 10.26 Placing the score counter on top of the screen.

Turky on the Run Development    ◾    167  

where we set her x and y coordinates to randomly match one of the small
paths we placed at the right side of the maze.

The next event we need is the one to check whether Picky has finally been
reached by Turky. When this happens, we want our Romeo to get close to
his sweetheart and then restart the action at a higher difficulty level.

To achieve this, add another event to the Picky group where we check for
the following conditions: first, Turky must be on a tile with an exit to the
right (i.e., its right variable must be set to true), the tile must be on the last
column (i.e., turky.grid_pos%5 should be equal to 4), and the two sprites
should be aligned horizontally, i.e., their y coordinates should be almost
the same, as shown in Figure 10.29, where we check that the absolute value
of the difference between the two y coordinates is less than 10 pixels.

When all these conditions are met, we can lead Turky toward Picky
by setting the Horizontal speed in his CustomMovement behavior while
switching to the right animation. We should also remember to remove the
TargetParticle, by moving it off screen as usual and set Turky’s target to
a unique number to stop the process of looking for other exits and keep
moving around.

FIGURE 10.27 Updating the main event in the Turky-Move group to update
Player’s score and the corresponding text. The score is increased by 0.1 points
per frame, and we round it to the lower integer via the floor instruction before
displaying it in the text object. Note that here I have disabled the debug informa-
tion about Turky’s whereabouts, since this was checked and tested to be working
as expected by now.

FIGURE 10.28 The beginning of a small group of events related to Picky,
starting with her random placement to the right side of the maze by using
the choose instruction. (Writing “choose(0,1,2,3)” is the same as writing
“floor(random(0,4))”.)

168    ◾    HTML5 Game Development from the Ground Up

A subevent to identify when Turky reached his position next to Picky
should also be added. The triggering condition for this would be, for
example, when the distance between the two sprites is less than 20 pixels.
When this happens, we stop Turky, add a big bonus to the current score,
and increase the level by adding 1 to the date global variable (which we
have to create now).

Once all this is done, we can reload the layout for the next challenge or
design a congratulations screen for the player to enjoy, like in the iOS and
BB10 version of the game.

10.4 SLY, FOXY, AND OTTO
In the previous section we implemented the core gameplay as described
in the one-page game design document through the AGE framework, i.e.,
based around the herding theme, where Turky moves autonomously but
we can still control him indirectly thanks to our tile shifting abilities.
Now we have to add more challenges, and we will do so thanks to Sly and
Foxy the cats and Otto the owl. With them chasing after Turky, we will be
able to implement the avoidance gameplay theme and make the overall
experience more exciting.

Let’s start with Sly. Add a new sprite and import the main image. Also
add the corresponding walking animations (all frames are provided in
the artwork folder, exactly like we did with Turky). Sly will roam the
maze taking a possible path at random and, if he ever catches Turky, a
small fight will ensue, with Turky being sent back to the starting blocks
with a time penalty, unless Turky has previously acquired the super
power-up (but we will implement this feature later, so for now Turky
will be helpless).

FIGURE 10.29 The second part of the Picky group, checking whether Turky is
finally nearby and moving him toward his sweetheart.

Turky on the Run Development    ◾    169  

The walking algorithm will work exactly like the one we designed for
Turky: we spawn Sly on a random tile, look around to find an exit on
nearby tiles matching those on the tile he is on, and finally pick a choice.
To set this up we need to add the Custom Movement behavior for Sly as
well, together with a set of instance variables like direction, target, com-
ingFrom, grid_pos, speed (all of type number) and up, down, left, right
(of type Boolean to identify the exits).

We also need a few more variables specific to Sly:

• timePenalty is the number of seconds we want to subtract from the timer
when Sly catches Turky. This is going to be level (i.e., date) dependent.

• ko is a Boolean flag we will use when colliding with Turky in his
power state.

• falling is a Boolean flag to identify the case when we will be remov-
ing the ground under Sly’s paws, making him fall into a never-end-
ing pit.

All these variables have to be initialized as shown in Figure 10.30, where
we added a new group Sly-begin including an On start of layout event.
Note that On start of layout is not alone this time. Sly should get into
the game only after the player clears the first level. For this reason we

FIGURE 10.30 The Sly-Begin group, where we initialize all Sly’s variables and
decide his starting position on the grid.

170    ◾    HTML5 Game Development from the Ground Up

also need to check out the date global variable, which is set to 1 when
the game starts, to decide whether Sly should be in or not. Right now,
though, we may prefer to check whether date is greater than or equal
to 1 instead of 2, so that Sly appears from the very beginning, but this
is done only for testing purposes so that we don’t need to go past the
first maze to see him in action. Don’t forget to set it to 2 once the game
is finished!

All discussed variables are then initialized in a dedicated function that
we will be calling not only when the level starts but also when Sly needs to
respawn during the game. Note also that Sly’s speed and timePenalty are
date dependent to make the game progressively more challenging but that
we are capping the latter at a maximum of 90 seconds.

Following the very same approach we did for Turky, we set Sly’s target
variable to −1, triggering a Sly-LookAround group (see Figure 10.31),
which is structured exactly like the LookAround group we did for Turky.
To do this quickly, we can simply copy and paste the latter, select the
whole group, and then use Replace Object substituting Turky with Sly.
We also need to have an Exits4Sly array (working like Exits4Turky we
used earlier) and an opportunely modified Update-Sly-Exits-Positions
function.

Sly-Move also works exactly like Turky-Move (Figure 10.32), although
this time we don’t have to worry about placing any particle to identify
where Sly is moving to.

What gets more interesting to discuss is how we are going to handle the
collisions involving Sly, as shown in Figure 10.33.

Here we have two main cases to consider. First, contrary to what we
decided for Turky, we know the player is free to literally move the tile under
Sly’s paws. This is a very useful feature, since it gives players more options
for building up a path and could also help avoiding an upcoming collision
whenever Turky and the cats are going toward the same tile. In addition,
if the player gets angry, it gives a simple way to get some satisfying revenge
against Sly, releasing some frustration, and scoring additional points. The
player still has to evaluate the risk/reward balance of this action, though,
since we never know where Sly is going to respawn: he might reappear
right in front of Turky, making things even worse!

Collision with the small t_tile sprite is used to trigger a series of actions:
we need to update the score and its related text, changing Sly’s target vari-
able to a negative number (e.g., −2) to avoid looking around for exits, stop-
ping his movement, and setting up the falling variable to 1. This is used as

Turky on the Run Development    ◾    171  

a flag to simulate the fall: the empty space, as we discussed earlier, should
work like a bottomless pit that Sly is falling into. To achieve this effect, we
make a new event where we check, besides falling being set to 1, Sly’s size
(i.e., the width of the sprite). Frame by frame, as long as this is wider than
a certain threshold (for example, five pixels), we keep shrinking both its
width and height via the Set size action. When Sly is finally small enough,
we move him off screen and resize the sprite to its original dimensions
before calling the Sly-Spawn function and place him back into the action.*

* An important detail to note here: moving Sly out of the screen before respawning him is actually
needed to take Sly off t_empty. If we don’t do this and Sly happens to respawn on the very same
tile, the On collision event won’t register a new collision, leaving Sly floating in empty space!

FIGURE 10.31 The Sly-LookAround group, simply an updated Turky-
LookAround with relevant objects and variables changed.

172    ◾    HTML5 Game Development from the Ground Up

The other case we need to work on is the collision with Turky himself,
where we have to further discriminate between two subcases: whether
Turky has acquired the SuperPower bonus item or not. While the actual
SuperPower sprite will be added in the game only in the next section, we
already know from the game design document how it will work and the
effect it would have, so there’s no need to wait: we can implement it right
away. If Turky’s SuperTurky flag is set, the idea is to kick Sly off the screen,
possibly in some funny cartoonish way. To do this, start by setting Sly’s
target variable to −2 (as we just did for the collision with t_empty: this
will stop the program from going through the moving or looking for exits
events, which get activated only when target has specific values greater
than or equal to −1), then we invert Sly’s speed and multiply it by a factor of
10 to simulate a powerful punch by Turky. We also set Sly’s ko flag to true.
We can use this to make things a little more fun, triggering another event
where, for example, we start rotating Sly by 10 degrees clockwise as long as
he is flying off the screen (via the Is on-screen event in the Size & Position
event group for the sprite object). When Sly is finally outside the layout,

FIGURE 10.32 The Sly-Move group, setting Sly in motion according to the direc-
tion selected in the Sly-LookAround group.

Turky on the Run Development    ◾    173  

we can stop him, restore his angle to 0 degrees, so that he won’t reappear
upside down, and call Sly-Spawn once again.

On the other hand, if superTurky is not set, Sly will have the upper
hand. Here we can add a short fight animation to cover Turky before
he gets pushed back to one of the starting spots. I added a very simple
two-frame animation shown in Figure 10.34, reminiscent of old cartoons
where fights used to be hidden in smoke and dust clouds, but you should
definitely try to do something better!

When the fight happens, we stop Turky, set target to −3 to prevent
him from looking or moving around, place the animation, and, after
a short wait (1 second), we place the animation back outside the game
layout,* apply the time penalty, and finally respawn Turky by calling the
InitializeTurky function.

* Alternatively, you could use the Visibility property to display and hide the sprite.

FIGURE 10.33 The Sly-Collision group, which handles the collisions with Turky
and with t_empty, the mask identifying the empty tile.

174    ◾    HTML5 Game Development from the Ground Up

To test that the SuperPower effect is working properly, we actually don’t
need to wait until we add the SuperPower object in the game: we just have
to change Turky’s super instance variable, launch the game, and drive
Turky and Sly to hit each other!

Adding Foxy to the game implies the exact steps we just did for Sly,
so once we created a new sprite and defined its animations and instance
variables, we can copy and paste all four groups of events and change their
names and objects accordingly. In the end, we will have a new Foxy-Begin,
Foxy-LookAround, Foxy-Move, and Foxy-Collision, together with a new
UpdateFoxy-Exits-Positions function.

Besides changing Sly with Foxy across the various groups, we also have
to update some variables, since Foxy is going to be slightly more danger-
ous than Sly. First of all, Foxy is supposed to be in the game only when the
global variable date is greater than or equal to 3, so we need to update this
in the Foxy-Begin group. We also need to update his speed (for example to
15 + date * 3) and timePenalty variables (e.g., 40 + date * 5) so that they
make for a more serious threat.

Once we have tested and everything is working fine (trust me, it’s very easy
to forget to update some variables or to rename an array like Exits4Foxy,
resulting in puzzling and unpredictable behavior!), we can proceed to our
third bad guy: Otto the owl, who will appear from Date 5 onward.

Otto is slow but keeps flying constantly around the screen, so he is a
very dangerous antagonist who can catch Turky many times. The only way
for Turky to defend himself is through the SuperPower boost. Anyway, if
this is used to kick Otto off the screen, the power will disappear, and Otto
will still come back after a while. This makes Otto the most troublesome
of the group, and we have to balance his stats so that we don’t make him

FIGURE 10.34 A very simple two-frame animation to place on Turky while in a
losing fight against any of the bad guys.

Turky on the Run Development    ◾    175  

overly powerful and punishing for the player. We can achieve this by mak-
ing his speed not only slow (for example, 10 pixels per second), but also
constant, i.e., not level dependent. Also, the time penalty for being caught
should be relatively small, for example 5 plus the date number (i.e., consid-
ering Otto will start at date 5, the penalty will start at 10 seconds, and then
increase only 1 second per date).

The events for Otto’s flying, grouped in a specific Otto the owl group,
are shown in Figure 10.35.

As we can see, Otto is constantly flying toward a target position chosen
randomly in an area within the maze. In the game published on iOS and
BB10, the player can decide whether the target is visible or not through a
dedicated Option screen. This can be used for fine-tuning the difficulty
level of the game, since knowing in advance where Otto is going can help
the player in strategizing the safest path for Turky and keep him safe. The
Otto-Takeoff function sets the beginning speed and position on the right
edge of the maze and direction of movement. Every frame, as long as Otto
is on the screen, we move him toward the target while also checking that
his speed doesn’t exceed a maximum value.

Once he finally reaches the target position, we simply move the target to a
different location and the process starts all over again automatically, thanks
to the event having as conditions System/Every tick and Otto/Is on-screen.

Regarding the collision with Turky we need to discriminate between
two cases once again: whether Turky got the SuperPower or not. For the
latter case, we can simply copy the actions we added when colliding with

FIGURE 10.35 The flying related events in the Otto the owl group.

176    ◾    HTML5 Game Development from the Ground Up

Sly and Foxy, where timer is updated by using Otto’s timePenalty vari-
able. The case where Turky has the upper hand instead is a bit different
from the previous ones: we make Otto go much faster by increasing ten-
fold his CustomMovement Overall speed as well as his reference speed.
We also invert his direction by multiplying CustomMovement.Speed by
−1 and, last but not least, we set Turky’s superTurky flag to false to remove
the power-up effect.

Finally, when Otto is out of the layout, we wait for a short while (10 or 15
seconds, for example) before calling the Otto-Takeoff function and make
him start roaming the maze all over again. Note that these actions should
be in a System/Trigger once subevent, otherwise they will be called con-
tinuously as long as Otto is outside the screen! Trigger once is actually a
very useful condition for all those events that remain true for a while but
where we need to perform the corresponding set of actions only when the
conditions are first triggered. All this is shown in Figure 10.36.

10.5 TIMER AND BONUS ITEMS
With the bad guys in place, the game now needs some final touches to
make the whole experience more exciting. As we know from the design
document, we are trying to achieve this by adding a few power-ups, like
the already discussed SuperPower that will make Turky able to take
revenge against his chasers. Before proceeding, though, let’s finish some
other feature we need to properly complete the game: a timer as well as a
high score. The timer global variable is already in place (we are updating it

FIGURE 10.36 The collision detection part for the Otto group of events.

Turky on the Run Development    ◾    177  

whenever Turky is hit by the other guys), but we also need to add a high-
score variable now. We should also add the proper text objects to display
this information on top of the layout, which should then look something
like Figure 10.37.

When a game starts, the timer should be set, for example, to 2 minutes,
and then it should be updated every second. When it reaches 0 the game is
over, and we should move to a game over screen, where we eventually also
update the high score value, before going back into the action. We also
want the timer to change color to red and start flashing when less than 30
seconds are available to add pressure on the player. For this we need to add
the Flash behavior to the two text objects used for displaying the time left
(txtMinutes and txtSeconds). All the events and actions needed are sum-
marized in Figure 10.38.

As we see, we start by using the System/Every X Seconds event, which
allows us to trigger a set of actions at regular intervals. Here, every second, we
deduct 1 from timer and then display the remaining time in terms of minutes
and seconds. We also take care of adding a 0 in front of the seconds if we have
less than 10 left (i.e., 1 minute and 9 seconds should display like 1 : 09).

When we get into the last 30 seconds, we change the color to red (i.e.,
rgb(255, 0, 0)) and use the Flash behavior to set the text visible/invisible
at intervals of half a second for 5 seconds. When, eventually, time goes up,
we stop flashing the text and load the Game Over layout.

We don’t need to do anything fancy for this new layout: just add
a black screen with a “Game Over” sign plus a button to start play-
ing again (Figure 10.39), together with the corresponding event sheet
(Figure 10.40).

The events for the Game Over layout are very simple: the button to
play again is handled exactly like those we used in Kitty & Katty, with a
highlight image that starts invisible and pops up whenever the button is

FIGURE 10.37 Completing the information to be displayed during the game.
Note that the digits for the timer are split into two text objects: a txtMinutes,
displaying - , and a txtSeconds, displaying : - (far right).

178    ◾    HTML5 Game Development from the Ground Up

touched or clicked. We also take care of checking for a high score when the
layout starts and of resetting the timer, score, and date variables before
leaving the layout and starting a new game.

Try the game now: getting caught by Sly, Foxy, or Otto should decrease
the timer, and, once this gets to 0, the Game Over layout will load. Finally,

FIGURE 10.38 All the events necessary for handling the in-game timer.

FIGURE 10.39 A simple game over screen. We don’t need anything fancy here:
just a sign and a button to start playing again is enough.

Turky on the Run Development    ◾    179  

when starting a new game, everything is reset properly, with an updated
high score.

It’s time now to work on the most exciting power-up in the game:
Turky’s Super Power!

Graphic wise, we need two versions of our asset: a big one to be dis-
played on the grid and a small one to pin on Turky to show his new, pow-
erful status. The big version also needs a grid_pos instance variable to
identify its location in the grid (Figure 10.41).

Coding wise, we should add a SuperPower group where we set up the
big icon on a random tile when the game begins. Remember, from the game
design document, this power-up should be available only from the second
date onward, so we have to add a check on the date number in the On start
of layout event. Then, when we register a collision between Turky and the
icon, we destroy the latter and set Turky’s superTurky flag to true. As long

FIGURE 10.40 The event sheet for the Game Over layout, handling the play
again button, checking for a high score, and resetting some important variables,
like score, date, and timer.

FIGURE 10.41 The P icon of SuperPower, giving Turky enough strength to
defeat Sly and Foxy for one whole level or Otto for one fight. On the left we can
see a smaller replica of the image we will attach to Turky to show his new power-
ful status.

180    ◾    HTML5 Game Development from the Ground Up

as Turky maintains his power status, we should also pin the small logo on
Turky’s breast, something we can achieve in the System/Every tick event
as shown in Figure 10.42. The small icon should be destroyed on the col-
lision event between Otto and Turky, where we also reset the SuperTurky
status flag to false.

If we try the game now, though, we will see a big issue: the power-up
is displayed correctly, but when we move the tile it is on, it doesn’t follow,
and this is not the kind of behavior we would expect: we want it to be car-
ried around with the tile it belongs to.

To achieve this, we need to define a new function (Check4Items,
shown in Figure 10.43), which we have to call from every event in the
Move Tiles group right after the UpdateHighlights function as shown
in Figure 10.44.

Check4Items takes two parameters. The first one is the location in the
grid of the tile being moved. We use this to identify the specific power-up
we are shifting, since their respective grid_pos variables have matching
numbers. The second parameter instead identifies the new location of the
tile that the power-up has to follow.

FIGURE 10.43 The Check4Items function we use to update power-ups position
when the underlying tile is moved. Here we have only the SuperPower object.
Param 0 is original position of the tile being moved; Param 1 is the new position
in the grid. This function is called from the Move Tiles group.

FIGURE 10.42 The events in the SuperPower group. Note how the small icon,
named SuperP in the game project, is referenced in the last action to set its posi-
tion to a specific point on Turky. This is updated every frame to follow Turky’s
animations and changes in direction.

Turky on the Run Development    ◾    181  

When picking a power-up, it would be nice to display some information
about its effect. For example we’d have a short message appear above the
item and then slowly fade away. To do so, let’s first add a new text object
to the game, which we can call txtBonus: select a nice looking font, make
it a bright color, add a Boolean instance variable named fading (false by
default), and finally, place it off screen.

Now, whenever we pick a power-up like SuperPower, we add two simple
actions before removing the sprite from the game: we move txtBonus on
top of the power-up, and then we call a new function named BonusText
passing as parameter the message we would like to display.

The updated On collision event between SuperPower and Turky is
shown in Figure 10.45.

We define the BonusText function in a BonusText group as shown in
Figure 10.46: here we update the text in txtBonus to the word we passed as
parameter, set its opacity to 100 (i.e., fully opaque), and then set the fading
flag to true.

FIGURE 10.44 The first event in the Move Tiles group for the t_X tile, updated
to call the Check4Items function. Note the parameters being passed: the old and
new position of the tile.

FIGURE 10.45 The revised collision event between the SuperPower power-up
and Turky, now displaying a text object to be updated with a specific word that is
passed as a parameter in a related function.

182    ◾    HTML5 Game Development from the Ground Up

Setting the flag allows us to activate a System/Every tick event where,
every frame, we reduce the current opacity level of txtBonus little by little
to produce the desired fading-out effect. Once the opacity gets below a
specific threshold, e.g., 10, we can reset the fading flag to false and remove
the text from the screen.

It is now very straightforward to define the other power-ups and bonus
items. For example, let’s work on the Ring bonus: when collected we award
500 extra points to the player and BonusText would be called with something
like 500 points! The different events are set up exactly like for SuperPower
and are displayed in Figure 10.47. Note that also the Check4Items function
needs to be updated accordingly to cover this new bonus as well.

Groups for the other planned items are structured in the exact same
way and are shown in Figures 10.48 (hourglass), 10.49 (diamond), 10.50
(winged shoes), and 10.51 (snail). Don’t forget to add a grid_pos instance
variable to each sprite we add to the game!

FIGURE 10.47 The group of events for the bonus ring (500 extra points).

FIGURE 10.46 The BonusText group handling the events related to the fad-
ing message displayed when picking up a power-up. Note that the BonusText
function is going to be called by all power-up related events, each with a spe-
cific text.

Turky on the Run Development    ◾    183  

The final Check4Items function is shown in Figure 10.52.
Our game is almost finished now. We only need one more thing: the

magic wand to transport Turky to a random tile, a very useful action
to help Turky when he gets stuck or needs to escape from an otherwise
unavoidable clash with Sly and friends.

FIGURE 10.48 The Hourglass group. Getting the hourglass gives Turky an extra
60 seconds to play. This item will be available from date 2 onward.

FIGURE 10.49 The Diamond group: 300 points and 30 extra seconds! Available
only from date 5 onward.

FIGURE 10.50 The Wingedshoes. These set Turky’s speed to 30 pixels per sec-
ond. These are readily available from the first date.

184    ◾    HTML5 Game Development from the Ground Up

Start by adding a global variable named magicleft, with a starting value
of 3, and then place a button on the bottom left corner of the screen, like
in Figure 10.53.

The button is made by three layers: an off image, a highlight image to be
made visible when the button is clicked or touched, and, last, an image of
the wand itself on top of them all. We should also add a text object below
the button to show how many uses we still have (txtMagic). This will dis-
play the value of the magicleft variable.

FIGURE 10.52 The updated Check4Items function, covering all available objects
Turky can pick up.

FIGURE 10.51 The Snail. This slows down Turky, setting his speed to 8 pixels/
second. It will appear from date 3 onward.

Turky on the Run Development    ◾    185  

The events related to the button are to be grouped in a Button-
MagicWand group and are shown in Figure 10.54.

As we see, we start by setting txtMagic text in the On start of layout
event, and then we take care of displaying the button properly, i.e., if there
are no touches, we set the highlight image to off. On the other hand, this
becomes visible whenever a touch is registered. When the touch event ends
and we still have magic uses available (i.e., magicleft > 0), we update the vari-
able and text, remove the target particle from the screen, and move Turky to

FIGURE 10.53 The magic wand button.

FIGURE 10.54 The group of events taking care of the magic wand button. Press
it to teleport Turky to a different tile in the maze!

186    ◾    HTML5 Game Development from the Ground Up

a random location, making sure to also reset the comingFrom and target
variables to −1 so that our program can start searching for a new path.

The unlucky case where the new location is the empty space has to be
considered as well, and it is handled by a dedicated subevent where we
simply call the initializeTurky function and have Turky restart anew.

The magic wand itself is a bonus item we have to add in the maze. Add
a new sprite object to the game, call it Wand, and define a new group
of events as usual (Figure 10.55). Once again, don’t forget to update the
Check4Items function with a corresponding wand event!

Well done! You can now enjoy Turky on the Run!

TAKE AWAY
Turky on the Run was our most complex game by far: different enemies,
bonus items, and shifting tiles on the grid presented unique challenges
that required us to perfect all the elements we saw previously, including an
effective use of groups, to keep our code easily readable and accessible, and
to name our functions with different parameters.

EXERCISES
• We didn’t add any sound! List all the sound effects that you think

are needed, find suitable ones (you may check the resources listed in
Appendix A), and add them to the project.

• Add a splash screen and an option screen, where players can
decide, for example, which date to start in, how much time they have
(e.g., 1, 2, or even 3 minutes), and whether Otto’s target should be
visible or not.

• Think of new power-ups or new enemies to add in the game!

FIGURE 10.55 The group handling the Wand bonus item, giving Turky an extra
magic shot.

187

C h a p t e r 11

The Journey Ahead

By completing our third game, Turky on the Run, we built a solid
foundation on Construct 2 upon which you should be able to expand

and add additional skills and knowledge on your own. As you have prob-
ably realized by now, despite its designer friendliness, Construct is a very
flexible and powerful engine, and there is really much more to explore and
try out than what we saw so far. Always be curious, and start exploring
the different objects and behaviors we didn’t have time to cover: you will
surely get lots of promising ideas to work on!

To conclude the development section of the book, I want to introduce
a few more topics that may help in your upcoming projects, namely, path-
finding, sprite fonts, shaders, and source control, plus some basic perfor-
mance-related tips.

11.1 PATHFINDING
Pathfinding is a very important feature in many games to make nonplay-
ing characters (NPCs) behave naturally: poor pathfinding, where char-
acters get stuck around every corner, is often enough to break players’
immersion to the extent that they might dismiss an otherwise fine game
as amateurish and poorly done. It shouldn’t be a surprise then that several
algorithms have been devised to accomplish this in a variety of ways. One
of the best and most CPU-efficient techniques adopted in game develop-
ment is called A* (A star) and, luckily for us, it is also implemented in
Construct right out of the box.

In a nutshell, A* works by first subdividing the game area into tiles and
then identifying the starting tiles, the target tiles, and those presenting

188    ◾    HTML5 Game Development from the Ground Up

obstacles. The algorithm then starts looking around the starting position
tile by tile, using some predefined scoring methods to evaluate the cost of
movement across each tile. Once the destination is reached, the algorithm
backtracks the tiles forming the path having the lower overall cost. That is
the path characters will take.

To see how to use this in Construct, let’s start a new project with a lay-
out of 640 × 640 pixels.

We don’t have to draw the tiles in the layout. For an efficient use of the
algorithm as well as for a more natural looking path, it is useful to think
of tiles sized to perfectly cover the area, e.g., in our case it would be good
to choose tiles measuring 32 × 32 or 64 × 64 pixels. In Figure 11.1 we have
the layout showing a 32 × 32 tiled background, making apparent how the
area would be divided by the A* algorithm.

Let’s add some walls to define a maze seen from a top-down per-
spective, for example, by using a simple filled rectangle in a Tiled
Background object. While not strictly required, we should make the
barriers match the dimension of the tiles exactly or, eventually, be a
little bit smaller. In fact, even if an obstacle gets into a tile only partially,
the whole tile will be considered inaccessible by the algorithm, even
though it would still look like there’s some room for the character to
move around.

FIGURE 11.1 The layout for our pathfinding experiment. The tiled background
is simply there to help us visualize the area and understand how A* is going to
subdivide the playfield.

The Journey Ahead    ◾    189  

A possible maze-like structure is shown in Figure 11.2, where we also
added two small sprites, one named “Target” and placed in the upper right
area of the layout and one named “NPC” starting in the upper left corner
instead.

To add pathfinding capabilities to a sprite, we need to add the cor-
responding behavior to it first, which we find in the Movement section
(Figure 11.3).

Once added, we will have a new set of pathfinding properties added to
our sprite, as shown in Figure 11.4.

It is here we actually define the tile size for the A* algorithm to break
down the layout and start looking for paths. We can also set the sprite
speed and acceleration properties, including whether it can move diag-
onally or not. Most importantly, we have an option for identifying the
obstacles: either anything marked with the Solid behavior in the game or
something Custom we define in the event sheet. For this example I opted
for the latter choice.

Defining the search space by specifying the obstacles is indeed the
first thing we should take care of, so in the event sheet, start by adding
an On start of layout event. Once done, you will see several pathfind-
ing related actions for the NPC sprite: pick Add Obstacle and specify
the Wall object (the tiled background we used to build the maze walls).

FIGURE 11.2 A simple maze layout made by adding a Tiled Background object
named Wall, which we replicated and stretched around as needed. Can the sprite
on the upper left corner find its way to the white sprite on the right?

190    ◾    HTML5 Game Development from the Ground Up

Then call the Regenerate obstacle map action. This will update the system
tile-based representation of the layout by including any obstacles so that
computed paths can circumnavigate them. Last, we should use the Find
path action where we have to specify the final position, i.e., the x and y

FIGURE 11.3 Adding the pathfinding behavior to a sprite.

FIGURE 11.4 The properties for the pathfinding behavior. From tile (cell) size to
speed, the most important parameters are set here.

The Journey Ahead    ◾    191  

coordinates of the target sprite, as shown in Figure 11.5. Once the path
has been found, a corresponding event gets triggered for the NPC sprite
(On Pathfinding path found) where we can issue the action to move along
said path. Reaching the target triggers another event, On Pathfinding
arrived, where we can issue any action related to the specific game we are
developing.

Run the demo and see how the NPC starts moving toward the target and
stops when reaching its position, waiting for further instructions.

11.2 SPRITE FONTS
When distributing games on a variety of different computers and devices,
it may happen that specific fonts we are using are not supported. In this
case the system will most likely revert to a default font that would probably
mess up the whole screen layout or break any style consistency we carefully
planned beforehand. To avoid these pitfalls and to be 100% sure the font
displayed is exactly the one we want, we may decide to opt for the so-called
sprite fonts instead. As the name implies, we will be using a sprite map
containing all needed characters. This would give us much more freedom
and enable us to display even multicolored sprites, for example, something
impossible when using traditional fonts. The drawback, though, is that the
new sprite will have only one size and no bold or italic versions, unless we
explicitly build them as well.

Adding sprite fonts in Construct is very easy: simply select it as a new
object in your project. By default, we will be presented with an 8-bit like
font, as shown in Figure 11.6.

The sprite font properties allow us to define the characters’ width and
height, their exact sequence in the sprite (with the first character starting

FIGURE 11.5 The events and actions for defining the map, including obstacle
position, and start the path search.

192    ◾    HTML5 Game Development from the Ground Up

in the upper left corner of the image), and a scale factor, to roughly approx-
imate different font sizes, among other things.

To edit a sprite font, simply click on the Sprite Font Edit link in
the properties tab, then either draw your own or import a premade
image.

Plenty of free fonts are available from websites such as dafont.com or
fonts101.com. If you downloaded a new true type font (ttf), you can install*
it first and then use Give Your Fonts Mono(spacing),† a very handy sprite
font generator tool made freely available by Scirra’s friendly commu-
nity, to convert it into a suitable image to be imported into Construct 2
(Figure 11.7).

* The exact procedure for installing a font can vary with the specific version of Windows you
are using. In general, you can try one of the following: double click the font and then select
the Install option, move the font in the Windows/Fonts directory or access Appearances and
Personalization/Fonts via the Control Panel and install from there.

† http://www.scirra.com/forum/sprite-font-generator_topic72160.html

FIGURE 11.6 The default sprite font, having 128 × 256 dimension where
each character taxes 16 × 16 pixels. Having dimensions which are a power
of 2, while not strictly required, is recommended for performance reasons.
Note also that the Character set property must be set to match the character
sequence in the sprite: only by combining this with the width and height of
each character will Construct know where to pick each letter to build our text
correctly.

The Journey Ahead    ◾    193  

11.3 SHADERS (EFFECTS)
With more and more browsers supporting Web graphics libraries
(WebGL), we can likely expect graphical quality of HTML5 games to
improve significantly in the near future. Shaders, simply named Effects
in Construct, are an important feature in enhancing graphics, thanks to
their ability to alter a texture pixel by pixel in real time according to some
predefined algorithm.

Construct comes with 70+ predefined shaders that can be used indi-
vidually or mixed together to create complex effects. For example, let’s
start a new project and add a sprite. Fill it with a blue color: we are going
to use a shader to simulate a water effect.

Click on the Effects link in the Properties panel as shown in Figure 11.8
and then choose to add an effect. Scroll down the list of available effects till
you find the one for water (Figure 11.9) and add it.

FIGURE 11.7 Using the Give Your Fonts Mono(spacing) utility to convert an
installed font to an image ready to be imported in Construct 2 as a sprite font.

194    ◾    HTML5 Game Development from the Ground Up

FIGURE 11.8 To start adding effects to a sprite, select the Effects line in the
Object Properties Panel.

FIGURE 11.9 Selecting the Water shader among all the different effects.

The Journey Ahead    ◾    195  

Our sprite will look distorted now, and a new set of properties related
to the specific effect will be displayed in the left panel, like in Figure 11.10.

Play with the different parameters related to the speed and intensity of
the waves and try it out. Don’t forget that WebGL must be enabled in the
project properties for shaders to work!

11.4 SOURCE CONTROL
One aspect of game development often overlooked by inexperienced devel-
opers is that of source control. Source control tools allow a team to orga-
nize all files efficiently and keep track of all different versions of each in
an orderly manner. Source control makes it possible, even easy, to merge
changes done by different developers on the same files, check between dif-
ferences across versions, and, eventually, roll back to previous releases to
recover from some sudden breaking bugs.

One of the most popular source control tools is Apache Subversion
(abbreviated SVN). This, like all similar software, works by storing a mas-
ter copy (repository) of the project on a server machine, which can also be
one of the developers’ computers, and then allows individual developers
to commit (i.e., upload) their files to the repository. Each developer works
with a client installed on his own machine to manage a local copy of the
repository to download to and to modify and then to commit again to the
server any file they work on. That way everyone on the team will then see
the different versions and the changes that have been made, so that every-
one can keep working on the latest files.

FIGURE 11.10 After adding the water effect to our blue sprite, different param-
eters get exposed to fine-tune the shader, giving us full control on how it should
behave at run time.

196    ◾    HTML5 Game Development from the Ground Up

SVN is a general tool and is not explicitly integrated with Construct
2, so we need to install and set it up independently. Fear not, though,
since Construct developer Ashley Gullen has written a very detailed
and easy-to-follow tutorial exactly for this, which we can find on Scirra’s
website.*

Thanks to their flexibility and sharing functionalities, it’s no surprise
that source control software like SVN is among the most fundamental
tools used by all professional teams. If you and your team want to act
like pros as well, start saving your Construct files individually in a project
folder (Figure 11.11) and start committing each of them to your team’s
central repository!

11.5 PERFORMANCE TIPS
If you plan on deploying your games on a variety of mobile devices, you
will soon realize that, despite mobile devices getting more and more pow-
erful by the day, they are still far from matching the raw power of the
computer you develop on, especially when your game has to run through

* https://www.scirra.com/tutorials/537/how-to-collaborate-on-projects-with-svn

FIGURE 11.11 So far we saved our project as a single, big file. This may be handy
when working alone, but when part of a team, we should definitely save our work
in a folder and commit each file to the central repository for easy source control.

The Journey Ahead    ◾    197  

a browser and not as a native code executable program. This means that
keeping the same, or similar, performance in terms of frames per second
(FPS, which, in Construct, we can easily display by using the fps keyword
in a text object) may be challenging, and it is something we should con-
sider already at the design stage of our games.

In particular, we should be careful about these features that require
considerable processing power:

• Physics: if too many objects on-screen are using the physics engine,
this will definitely slow down the game.

• Particles: each particle is actually a small sprite, so you can imagine
how having several hundreds of them on the screen at the same time
may overload a not so powerful device.

• Shaders: effects require additional real-time processing so they
should be used only when necessary and not overused. Whenever we
have several objects that should be processed by the same shader, it
is much better, performance-wise, to move them in a dedicated layer
and then apply the effect to the whole layer itself instead of having it
work on each object individually.

199

C h a p t e r 12

Deployment and
Monetization

In this chapter we are going to introduce several platforms we can
deploy our HTML5 games to, together with different monetization

strategies. Note, though, that the aim here is only to give an overview
of the different options and point you in the right direction, which you
will then have to investigate on your own: since most of the discussed
platforms and tools are constantly evolving, trying to get into the details
would not only be too advanced and off topic for a foundational book like
this one, but it would also be pointless since any extensive step-by-step
description would very likely be outdated and not applicable anymore as
soon as an update is released. For such detailed information, I recommend
that you check each tool, vendor, or portal website for the latest documen-
tation and ad hoc tutorials.

By selecting Export project from the main drop down menu, we get
several options, including web, mobile, and desktop platforms. Construct
being an HTML5 engine, the first option we should talk about is to simply
export our projects as HTML5 games to be added to our own websites.
If so, we will first be asked a set of options (Figure 12.1), common also to
the other platforms, where we can specify folders and whether to “minify”
our script. Selecting this option will make our exported code much more
difficult to read, and it is usually recommended for games to be delivered
online if we don’t want other people to easily peek into our code base.
Note, though, that this option may conflict with some target platforms,

200    ◾    HTML5 Game Development from the Ground Up

so be sure to check whether there could be any issue, or try leaving this
unchecked if the exported game doesn’t run.

Once you click Next, we move to a platform-specific set of options. In
case of a straightforward HTML5 game export, we can choose between
three different templates (shown in Figure 12.2): a standard page, a page

FIGURE 12.2 The second set of options. This is platform specific: when doing a
straight HTML5 export, we can choose among different templates for the page
containing our HTML5 game.

FIGURE 12.1 The first set of export options, common to all target platforms.

Deployment and Monetization    ◾    201  

with some built-in empty space to easily add advertisements, and an
embed template with no margins and disabled scrollbars, suitable for spe-
cific arcade-like web portals.

Try any template, export, open the game folder, and launch the result-
ing index.html webpage in the web browser of your choice. Your game is
ready to be uploaded to your server!

12.1 WEB PORTALS
Uploading to our own website is only one of the many choices we have:
with HTML5 growing in popularity, more and more web-based gaming
portals are being launched, offering increased exposure and driving thou-
sand of players straight to our games.

One of such portals is Scirra’s own Arcade* (Figure 12.3).

* http://www.scirra.com/arcade

FIGURE 12.3 Scirra’s Arcade home page: we can see games are grouped in dif-
ferent categories (Action, Puzzle, Shooter, etc.) as well as featured and top-rated
games.

202    ◾    HTML5 Game Development from the Ground Up

Submitting to Scirra’s Arcade is a very simple process: by choosing the
corresponding export option our game is zipped and ready to be uploaded
right after the exporting process has been completed. Note that Scirra’s
Arcade also offers leaderboard functionalities. To access these we need to
add the Scirra Arcade object to our project first and use its related events
and actions to submit and retrieve scores: once the first few scores get sub-
mitted, a high score table will be automatically displayed on the game page
for all to see!

One of the most well-known web-based game portals is, without doubt,
Kongregate* (Figure 12.4).

This portal hosts a huge variety of games (more than 70,000 games
freely playable developed in Flash, Unity, and HTML5) and managed to
build a very active community thanks to its many ways of engaging players
through challenges, badges, and leveling systems.

* http://www.kongregate.com/

FIGURE 12.4 Kongregate home page, sporting an impressive amount of players
(tens of thousands online at any given time) and available games.

Deployment and Monetization    ◾    203  

Registering as a developer is a simple process: basically, we just have to
register as players and then we can submit our games from a link provided
in the Developer Center section (Figure 12.5).

Once the submission process starts, we need to fill out some basic infor-
mation about the game, including description and simple playing instruc-
tions (Figure 12.6).

Then, in the next form (Figure 12.7), select the Iframe radio button
and fill the resulting fields accordingly. In the Iframe URL field, we have
to specify a link to the index.html file we get when exporting our game
in Construct targeting Kongregate. This file, together with the whole

FIGURE 12.5 Uploading new games on Kongregate is a very simple process that
can be started right away from a link at the bottom of the home page.

FIGURE 12.6 The first step in adding a new game to Kongregate. Note that
Construct 2 developers may leave the API Callback URL blank.

204    ◾    HTML5 Game Development from the Ground Up

exported folder, must be available online, for example in a public folder
provided by a cloud storage service like DropBox.*

At the bottom of the page we will also notice a section named Statistics
(Figure 12.8). This is where we can define a score-based leaderboard or
keep track of some variable to award different achievements. Once defined,

* www.dropbox.com

FIGURE 12.7 The second submission step requires more details, including a
game icon, screenshots, and game width/height. Most importantly, a link to our
game iframe page is required. For this, we can use DropBox’s public folder and
export the link to the file from there.

Deployment and Monetization    ◾    205  

statistics can be sent from the game to Kongregate via a specific action
accessible through the Kongregate object we need to add to our game.

After this step we can preview the game and finalize the submission. Once
done, the game will need to be approved by an admin before going live.

Note that using Statistics is also relevant in terms of our prospective
revenue. On Kongregate, in fact, games generate income mostly by dis-
playing ads* whose revenue is then split between Kongregate itself and the
developers. By default, developers receive 25% of the ad revenue generated
from the pages showcasing their games but, by using the Statistics API,

* In-app purchases via Kongregate’s own currency, named Kreds, are currently being tested and
available to selected developers.

FIGURE 12.8 Via the Statistics section we can define a high score table or differ-
ent achievements, like obtaining a specific item or shooting with a certain degree
of accuracy.

206    ◾    HTML5 Game Development from the Ground Up

the developers’ share gets increased by another 10%. Games that are exclu-
sive to Kongregate receive an additional 15% in revenue, bringing the total
possible share to 50%.

Besides Kongregate, there are many other portals suitable to HTML5
games, and we can expect even more in the near future. Gamesgames.com*
and ToonGoggles,† a portal dedicated to young children and very suitable
for games targeting this particular audience, may be good choices for your
games as well. One of the most exciting new portals and overall tool for
HTML5 developers in general and Construct 2 in particular is, without
doubt, Clay.io.

In fact, Clay.io is not only a portal we can publish to and monetize our
games in, but it is a sort of Swiss army knife, including many different
features like leaderboards, achievements, in-app purchases (IAPs), inte-
gration with social networks, and much, much more.

Start by registering at http://clay.io/join and, once logged in, head over
to the developers’ page (http://clay.io/developers), where you can upgrade
your status from standard user to developer and input some more infor-
mation about your indie game business.

From now on, when you log in, you will be greeted by a panel similar
to Figure 12.9.

The first thing we should do to enable all the different Clay.io features
in our Construct 2 games is to download and install two plugins. To do so,
click on API and scroll down the page until we get to the Plugins section
(Figure 12.10). Click on the Construct 2 link and download the plugin
named scirra.zip. Also download the advertisement-related plugin (scirra-
ads.zip) found in the next page.

* Check www.spilgames.com/developers for information on how to submit a game.
† www.toongogglesinc.com/games

FIGURE 12.9 The main panel in Clay.io from where we can add new games and
access many different features.

Deployment and Monetization    ◾    207  

Installing plugins in Construct is a very straightforward process: sim-
ply unzip the files we just downloaded in your Construct 2/exporters/
html5/plugins/ folder, and the plugins will be ready next time you launch
the program. You will find them available when adding new objects to
your projects (Figure 12.11).

Once the Clay.io object has been added to the game, we can start pre-
paring for its inclusion to the Clay.io portal: on the website (Figure 12.9)
select the Add new game option and fill in the required details, such as
name, description, etc. You don’t need to upload the game at this stage, but
take note of the different icons and images you will need and, most impor-
tantly, check out the API key for your game. This key, which is the same as
the subdomain we just specified when adding the game, needs to be pasted
in the Clay.io object properties within the game itself (Figure 12.12).

Once the game is finished, we can proceed by exporting it as a straight
HTML5 project or use the Chrome Web Store exporter. The resulting files

FIGURE 12.10 In the API page, scroll down till you see the dedicated Plugins
section. Click on Construct 2 and its related Advertisements Plugin page to
download the latest version of the plugins.

FIGURE 12.11 After installation, the Clay.io plugins will show up among the
web-based objects, ready to be imported in our game.

208    ◾    HTML5 Game Development from the Ground Up

should be zipped together, and the zip file is what we have to upload on the
Clay.io game details page (Figure 12.13).

Monetization in Clay.io can be implemented in many different ways:
games can be free or paid, can have IAPs or can be supported by ads.
Needless to say, the two last options are the most interesting ones.

To work, IAPs have to be set up first on Clay.io back end: access your
game developer page and click on the Items link (Figure 12.14).

Click on the Add Item button, and then you will be able to define the
item name and price. A unique ID will be assigned to each item created,

FIGURE 12.12 The Clay.io object properties. Here we have to specify the unique
game key we got when adding the game on the portal. This is the same as the
game subdomain. Debug mode allows for testing high scores and other functions
without these being actually published on the Clay.io stream. Remember to turn
this off before uploading the game!

FIGURE 12.13 Back on the Clay.io website, on the page where we specify all the
details needed for our game. The exported, zipped game has to be uploaded here
from the Game Files section.

Deployment and Monetization    ◾    209  

and these are the reference numbers we will have to use in Construct 2
when adding items to a shopping cart. As an example, let’s say we want
to sell magic wands in Turky on the Run: when the player touches a “Buy
Magic” button, we first check that Clay.io is ready, and then we add the
specific item before proceeding to the checkout (Figure 12.15).

During the checkout players can review their shopping cart before pro-
ceeding to the payment page (Figure 12.16). Once there, they can choose
among all the options we made available in the Payment Processor group
of the game Settings page (Figure 12.17).

For each transaction using Clay.io, API developers will get a share of
80%.

The Clay.io object in Construct 2 also provides us with several other
events to give us full control of what’s happening, including events for
checking that the payment has been successful and that items have been
properly retrieved.

FIGURE 12.14 By selecting the Items link for our games in the Clay.io deve-
loper’s page, we can define as many IAPs as we want.

FIGURE 12.15 An example of in game purchase for Turky on the Run. The
specific item is identified by its ID, assigned automatically when we created it
through Clay.io developer’s page.

210    ◾    HTML5 Game Development from the Ground Up

FIGURE 12.16 Thanks to Clay.io we can give our players plenty of options for
IAPs: from credit cards and Paypal to Google wallet and more.

FIGURE 12.17 A part of the game Settings page showing the Payment Processors
section. This is where we specify which payment options we want to make avail-
able to our players.

Deployment and Monetization    ◾    211  

Moving on to advertisements, these can be added in the game’s own
Clay.io page (Figure 12.18) or embedded in the game itself via the adver-
tising plugin (Figure 12.19).

The revenue share we can expect by integrating ads in our games varies
between 50% to 70%, depending on the different publishers pushing their
content on the Clay.io network of games.

For more detailed information on how to set up IAPs, ads, and other
features, such as achievements and high scores, refer to the official docu-
mentation available at the following addresses: http://clay.io/docs/con-
struct2, for the main plugin; http://clay.io/docs/advertising and http://clay.
io/docs/construct2ads, for the advertising plugin.

To conclude this section on web portals, it is important to know
that many are actually actively looking for fresh content to keep
attracting visitors. To do so, they are willing to license HTML5 games,
especially if these take advantage of the portability such games can

FIGURE 12.18 A section of the game settings page on Clay.io where we can set
up advertisements to be displayed on our game’s own page within the Clay.io
portal. Note that we can also have a preroll ad to be displayed before the game is
launched.

FIGURE 12.19 The properties of the Clay.io advertisement plugin: here we can
set the size of the ad within the game layout and its refresh interval in seconds.

212    ◾    HTML5 Game Development from the Ground Up

offer and can be played on both desktop and mobile browsers. A good
HTML5 game should be able to get between $500 to $1000 (or even
more) for a nonexclusive license, although the game might have to be
customized a little bit by adding the publisher’s logo or integrating a
specific API.

Clay.io can work as a bridge to connect you with potential publish-
ers and other vendors as well. To take advantage of this feature, we
have to select the Licensing link (under the Marketplace section of
our game, see Figure 12.14), check the box stating the game is avail-
able for publisher licensing, and decide the licensing fee and whether
you are willing to customize the game (e.g., integrating an additional
API).

Besides Clay.io, a good website where we can look for publishing part-
ners is MarketJS (www.marketjs.com). Once registered, you can add the
game details and decide which type of license you are interested in: exclu-
sive, nonexclusive, or revenue share are possible and common options.
After the game is set up, it will be up to the interested publishers to knock
on your door and discuss things further.

Apptopia (www.apptopia.com) is also another portal that is quickly
growing in importance and shows a steadily increasing number of
users. Currently, it is focused on iOS and Android apps only (see
Section 12.8 for directions on how to turn your HTML5 games into
native looking apps for such devices), and it is surely an interesting
option to check if we want to monetize our games by selling them to
other companies.

12.2 CHROME WEB STORE AND MOZILLA MARKETPLACE
Following the success of mobile-based app stores, big players in the
Web spaces decided to also move in this direction and offer similar
marketplaces.

Two of the most well-known examples are the Chrome Web Store and
the Mozilla Marketplace,

The former, working in synergy with the Chrome web browser, is
steadily growing in importance and many famous, high-quality indie
games like From Dust, Bastion, Cut the Rope, Angry Birds, Bejeweled,
etc., can be found there. Publishing involves a one-time registration
fee of $5, after which developers will be allowed to upload and publish
their games. To publish on the Chrome Web Store, we can either use

Deployment and Monetization    ◾    213  

the dedicated export function in Construct 2, take care of the required
assets (icons, banner, screen shots, etc.) and proceed as described in the
detailed tutorial available on Scirra’s website* or, if the game is already
published on Clay.io, take a small shortcut from there. In this case, start
by clicking on the Distribute link in the game’s Marketplace section
(Figure 12.14) and then pick the Chrome Web Store icon. In the next
form (Figure 12.20) we can simply download a zipped file containing all
the game assets, which can then be pushed on the web store by following
simple instructions.

Following Chrome’s success, Mozilla also started developing its own
HTML5-based marketplace, accessible by Firefox operating system (OS)
or Firefox for Android on supported phones and 7 inch devices. Games
to be submitted can be either packaged or hosted (more information
can be gathered from https://marketplace.firefox.com/developers/), and
Clay.io makes things very simple for us by using the latter approach.
All we have to do, in fact, is go to the submission app page,† agree to
the terms, and specify the Clay.io-based URL http://yourgame.clay.io/
firefox.webapp for the app manifest (needless to say, “yourgame” is our
own game subdomain!). Last, we will be asked to add a few more details
about the game and whether we plan to release it for free or with an
upfront payment. When done, the game enters the review queue and
will be available once approved.

* https://www.scirra.com/tutorials/68/publishing-to-the-chrome-web-store/
† https://marketplace.firefox.com/developers/submit/

FIGURE 12.20 The instructions for pushing a game from Clay.io to the Chrome
Web Store.

214    ◾    HTML5 Game Development from the Ground Up

12.3 FACEBOOK
Being able to distribute our games on Facebook is a great opportunity and
a testimony to HTML5 and Construct 2’s flexibility.

Construct 2 provides its own Facebook object, allowing us to log in,
share links, post wall messages, and more, and we can integrate our games
as Facebook developers ourselves by hosting the games on our server
and following one of the official Scirra’s tutorials.* Tackling things com-
pletely by ourselves also exposes us to what many developers jokingly call
“Facebook developer love”: Facebook has a great engineering team that
updates the different APIs very often, and, unfortunately, a few things here
and there can get broken in the process. This has led to many frustrated
developers. Well-known professor and game designer Ian Bogost stated in
his blog that “the Facebook Platform is a shape-shifting, chimeric shadow
of suffering and despair.”†

In other words, this means features that were working perfectly until
a moment ago may suddenly change at short or even no notice, forcing
affected developers to understand the changes and fix their games in
a hurry.

To reduce these risks, it would be great if there were somebody who
would take care of the low-level work for us while, maybe, also hosting
the games on our behalf. Luckily, there is someone who helps in doing just
that: Clay.io!

Once the game is published on Clay.io, move to the Facebook Developers
Page‡ and click on the Create New App button. The creation process
requires us to input a few simple data, like app name and namespace.
The latter is going to be used for accessing the app’s actual URL (e.g.,
http://apps.facebook.com/namespace) as well as for more advanced tasks
like Open Graph actions. There is no need to check the web hosting box
because Clay.io is already taking care of it for us.

Once Facebook generates a specific App ID and Secret Key unique to
our game, we need to input these back to Clay.io either in the Settings page
of our game (look for the Social Settings section) or in the corresponding
fields in the Push to Facebook page (accessible through the Marketplace/
Distribute links in the developers’ panel on the left of the screen).

* https://www.scirra.com/tutorials/58/how-to-make-a-facebook-game/page-1
† http://m.bogost.com/blog/oauth_of_fealty.shtml
‡ https://developers.facebook.com/apps

Deployment and Monetization    ◾    215  

Back on the Facebook developers’ page, we have to specify the app
domain as Clay.io and all the corresponding URLs as follows (see also
Figure 12.21 for an actual example using Turky on the Run):

• Site URL: http://namespace.clay.io

• Canvas URL: http://namespace.clay.io/facebook?

• Secure Canvas URL: https://clay.io/ssl/namespace/facebook?

• Mobile Site URL: http://namespace.clay.io/facebook?

Save the changes, and your game should be available on Facebook for all
your friends to play: congratulations!

FIGURE 12.21 The Facebook settings page for Turky on the Run.

216    ◾    HTML5 Game Development from the Ground Up

Now that we have a game on a social platform, we shouldn’t forget
to take advantage of the social features the Clay.io object offers us: let-
ting players log in and then invite their friends, post on their wall, and
more (Figure 12.22). All this can be done easily via the Clay.io object
in Construct 2: check the API documentation on Clay.io for further
details.

12.4 WINDOWS 8 METRO
As with Facebook, we have two options for deploying our games as Metro
Apps, suitable for the newest Windows 8 interface that aims at offering
a seamless experience between PCs, tablets, and mobiles: straight from
Construct 2 or, again, via Clay.io.

Regardless of our approach, we need to download and install Visual
Studio 2012 Express* (or the latest available version), and, if we want to
actually distribute and sell our games on the Windows Store, we also

* http://www.microsoft.com/visualstudio/eng/downloads

FIGURE 12.22 When touching a Facebook button in the game, the correspond-
ing Clay.io action is called to specify the message we want to post on the player’s
wall, for example, we’d want to emphasize the score, together with a link to the
game and a picture.

Deployment and Monetization    ◾    217  

need to register for a developer account.* Currently, Microsoft requires
two different licenses for publishing on the Windows Store for PC and for
Mobile because the two are kept separate: the latter requires a $99 annual
fee, while the former requires a $49 fee for individual developers. If you
are a student joining the DreamSpark program,† registering as a Microsoft
Developer is completely free.

A good idea to have a head start in developing a Windows 8 game in
Construct is by using the corresponding template offered in Construct 2,
which already takes care of a couple of features required for our game to
be approved during the review process (Figure 12.23).

We can then follow the detailed tutorials offered on Scirra’s website,
such as “How to Make a Windows 8 App,”‡ if we are targeting a desktop
application, or “How to Make a Windows Phone 8 Application,”§ if we are
making a mobile game.

If, on the other hand, we also have the game on Clay.io, we can find all
relevant and up-to-date instructions in the Windows 8 section of the API

* https://appdev.microsoft.com/StorePortals/EN-US/Account/signup/Start
† https://www.dreamspark.com/
‡ https://www.scirra.com/tutorials/272/how-to-make-a-windows-8-app
§ https://www.scirra.com/tutorials/429/how-to-make-a-windows-phone-8-app

FIGURE 12.23 After selecting New Project, choose New Windows 8 Project
from the available templates. This layout, already taking care of a Paused layer as
well as of a possible game purchase after a trial period, will be displayed and will
be an effective starting point for your game.

218    ◾    HTML5 Game Development from the Ground Up

documentation* as well as on the Scirra published tutorial “Windows 8
and Clay.io Integration.”†

Regarding monetization, Microsoft allows developers many options:
games can be free with ads, be sold upfront, offer a free trial period after
which players have to pay to continue playing, or include IAPs. If you are
using Clay.io, API things are to be set up as usual, but if you are deploying
straight from Construct, you may like to check another tutorial on Scirra’s
website, “Adding In-App Purchases to your Windows 8 Game.”‡

Whatever the monetization strategy, Microsoft takes 30% of the sale
price of Windows Store apps until sales reach $25,000. The cut is then
reduced to 20% after this earning milestone is reached.

12.5 WINDOWS, OSX, AND LINUX
Good, old-fashioned games to be downloaded and run as executable
files still have a significant market share that shouldn’t be ignored.
Our HTML5 games can target this market as well by using the Node-
WebKit exporter.

Basically, Node-WebKit is a standalone version of Google Chrome but
without all those browser identifying elements (like address bar, naviga-
tion buttons, etc.) so that it looks like any other standard application.

Exporting this option will allow us to run our games as executable
files, where, in fact, what we do is actually launch a dedicated browser app
embedding the game.

After the exporting process is completed, we will find folders for
Windows, OSX,§ and Linux (both 32 and 64 bits) containing all the rel-
evant files.

Note also that Construct includes a Node-WebKit object that can be
included in a game to allow for proper file access.¶

Regarding monetization for downloadable PC/Mac games, the old-
fashioned business model of asking players to pay upfront or offering a
trial period before requesting the actual full payment is still a very viable
approach. While this model doesn’t seem to work anymore on mobile

* http://clay.io/docs/windows8
† https://www.scirra.com/tutorials/483/windows-8-and-clayio-integration
‡ https://www.scirra.com/tutorials/596/adding-in-app-purchases-to-your-windows-8-game
§ For having a proper XCode based project to work on, Mac developers may also consider MacGap,

available here: https://github.com/maccman/macgap.
¶ Refer to Construct 2 manual for detailed documentation on events and actions available: https://

www.scirra.com/manual/162/node-webkit.

Deployment and Monetization    ◾    219  

games, several dedicated PC portals do employ it and manage to be suc-
cessful, offering excellent opportunities to aspiring indie developers.

Most PC gamers know about Steam (www.steampowered.com), which
is the portal that offers the most exposure to developers by far. Its green-
light process, currently the only way for self-published indies to add their
games, has been subject to much criticism lately,* and aspiring developers
may also want to consider other venues.

A few popular choices I’d recommend to check out are, in no particular
order, the following:

• Desura (www.desura.com): This is a steadily growing portal fea-
turing games from all different genres and showing more than
13,000 daily visitors. Once registered, games can be submitted
via an online form (http://www.desura.com/games/add). Revenue
is split 70/30 and developers are paid monthly via PayPal (see
Figure 12.24).

• Big Fish Games (www.bigfishgames.com): This is the biggest portal
for casual games. Definitely the place to submit well-polished hidden
object games and many more. Games can be submitted in any stage

* gamasutra.com/view/news/176887/Discoverability_on_Steam_Greenlight_Its_nonexistent.php
and gamasutra.com/view/feature/177100/steam_greenlight_developers_speak_php.

FIGURE 12.24 Desura, one of the biggest indie friendly game portals currently
available.

220    ◾    HTML5 Game Development from the Ground Up

of production. New games and sales are offered every day to keep the
community engaged (see Figure 12.25).

• Wild Tangent Games (www.wildtangent.com): This is another
portal very popular with casual gamers. They offer games on many
platforms and formats through a dedicated gaming client, which
also uses a proprietary coin system, named WildCoins, for IAPs as
well as for granting access to different games, like in an arcade (see
Figure 12.26).

• GamersGate (www.gamersgate.com): This is a big portal featur-
ing both more mainstream games as well as indie productions. To
submit a game, you need to get in touch first with the site adminis-
trators, writing to publisher@gamersgate.com and including game
details like a short description, URLs with screenshots and videos,
etc. (see Figure 12.27).

• Get Games Go (www.getgamesgo.com): This is the PC/Mac
download service offered by Eurogamer and showcases both AAA
and indie content. Indie developers willing to distribute their

FIGURE 12.25 Big Fish Games, while casual PC/Mac downloadable games are
still the bulk of the catalog, the portal is also expanding to mobile and web-based
games, making for a very comprehensive offering.

Deployment and Monetization    ◾    221  

FIGURE 12.26 Wild Tangent Games. With more than 20,000 daily visitors, it is
surely going to offer some good exposure to your games!

FIGURE 12.27 GamersGate, a portal mixing both AAA and indie games. It has
more than 18,000 daily visitors.

222    ◾    HTML5 Game Development from the Ground Up

games have to contact the website administrators via the standard
“contact us” form. Revenue from sales is generally split 70/30 (see
Figure 12.28).

• Indievania (www.indievania.com): This is a very indie-friendly
marketplace where, as explained on the website, developers can sell
their digital rights management free games and keep 100% of the
revenue, paid via PayPal. It has more than 1000 daily visitors (see
Figure 12.29).

• IndieCity (www.indiecity.com): This is a comprehensive portal for
indie developers, offering personalized pages, analytics, and the pos-
sibility of showcasing in-progress games (see Figure 12.30).

12.6 BLACKBERRY 10
With its new BB10 OS, Blackberry is proposing itself as a serious alterna-
tive to the dominant iOS and Android platforms. Interestingly, Blackberry
has also identified games as a central component in its strategy to attract a
new, younger audience to its latest breed of devices such as the Z10 model.
To incentivize game developers, the company has set up a very indie-
friendly procedure for deploying games made by using a huge variety of
tools, HTML5 included.

FIGURE 12.28 Get Games Go, a portal brought to you by Eurogamer.

Deployment and Monetization    ◾    223  

FIGURE 12.29 Indievania, a marketplace leaving all the sales revenue to game
developers.

FIGURE 12.30 IndieCity. Revenue is split 75/25 and games are peer approved.

224    ◾    HTML5 Game Development from the Ground Up

Head to https://developer.blackberry.com/html5/ to have a general
overview of how HTML5 games are handled. Detailed tutorials and
documentation are available at https://developer.blackberry.com/html5/
documentation/.

In any case, the first step would be to start downloading the WebWorks
software development kit (SDK) and the BlackBerry 10 Simulator we
can find at https://developer.blackberry.com/html5/download/ and then
register as a BlackBerry Developer which, in line with the indie-friendly
approach adopted, is completely free. Currently, in fact, there are no
annual fees required to publish apps and games on BlackBerry World!

The process to publish a game on a BB10 device can be summarized in
three main phases:

 1. Have all the needed HTML5 files zipped together with a config.xml file.

 2. Package, sign, and test the app.

 3. Publish it on BlackBerry World.

To start we can either export our project as a standard HTML5 game (and
then follow BlackBerry instructions) or use Construct BlackBerry export
feature, which will allow us to take a couple of shortcuts, though we will
still have to fine-tune a few files.

If we opt for the latter, Construct will ask us for the path to WebWorks
SDK as well as for other information (Figure 12.31), including the sign-
ing keys we have to request at https://www.blackberry.com/SignedKeys/
codesigning.html. This pair of keys will be sent via e-mail. They are tied to
our developer account and, needless to say, are very important. Be sure to
back them up and don’t misplace them!

Construct will also build a simple config.xml file for us, but you may
want to see how to customize it to suit your specific needs and require-
ments by checking the relevant documentation.*

Once this is done, zip all the files in your game’s folder, including the
config.xml. It is now time to test our game and then deploy it. As explained
by BlackBerry official documentation, testing can be done in a few dif-
ferent ways. Here I will briefly discuss only the command line approach,
since it usually looks intimidating to beginners but, in reality, there is
nothing to worry about.

* https://developer.blackberry.com/html5/documentation/config_doc_elements.html

Deployment and Monetization    ◾    225  

You might have noticed that Construct also built two additional batch
(.bat) files: package_bb10_app and deploy_bb10_app. These are the files
we need to run to package the game, making it ready for distribution (as
a .bar file), and then deploy it to the simulator, our BB10 device, or upload
it to BlackBerry marketplace for distribution.

I had some issues when testing these, so let’s see exactly what should go
into these files and how to make our own versions if the ready-made ones
don’t work as expected.

FIGURE 12.31 When exporting for BlackBerry, Construct will ask us for the
path to the WebWorks SDK and the signing password. If we didn’t install the two
signing keys yet, we can do so here by clicking on the link (in the above window),
which will open an Install Code Signing Keys pop-up where we can look for the
two specific .csj files we received by e-mail and saved somewhere safe.

226    ◾    HTML5 Game Development from the Ground Up

To package and sign the game, making it ready for deployment on our
device as well as the marketplace, we need a bat file like the following:

“C:\Research In Motion\BlackBerry 10 WebWorks SDK 1.0.4.11\bbwp”
“C:\Users\robert\Desktop\Turky on the Run-BB10\turky.zip”
-g <YOUR SIGNING PASSWORD> --buildId 5 -o “C:\Users\robert\
Desktop\Turky on the Run-BB10\signed”

The first line specifies the path and the program to run (bbwp is the
BlackBerry WebWorks Packager we have in the WebWorks SDK folder).
This is followed by the path to the zip file we want to package, which is
then followed by different parameters.* In this case we specify our sign-
ing password via the -g parameter, a unique, progressive ID for our cur-
rent build via --buildId (note the double hyphen) and then -o (output),
which is followed by the output path (which was, in my case, a project-
specific folder in C:\Users\robert\Desktop\).

To deploy the signed game to our device, the bat file should have the
following commands:

“C:\Research In Motion\BlackBerry 10 WebWorks SDK 1.0.4.11\
dependencies\tools\bin\blackberry-deploy”
-installApp -password <YOUR DEVICE PASSWORD> -device
169.254.0.1
-package “C:\Users\robert\Desktop\Turky on the Run-BB10\
signed\device\turky.bar”

Here we are calling the blackberry-deploy program with the
-installApp parameter followed by the device password, its internet
protocol address on our network, and then the path to the specific bar
package we want to install.

If, instead, we want to simply deploy to the simulator or to test a
development build on a device, we don’t need to specify a build ID or
even the signing password in the package file, but on the other hand,
we need to generate and install a debug token as explained in the offi-
cial documentation.†

Finally, to upload the game, log in at https://blackberryid.blackberry.
com/bbid/login, then click on Managing Products and then on Add

* Full reference for parameters can be found here: https://developer.blackberry.com/html5/docu-
mentation/command_line_packaging_parameters_1873323_11.html.

† https://developer.blackberry.com/html5/documentation/running_your_bb10_app_2008471_11.
html

Deployment and Monetization    ◾    227  

Product. You will be taken to a series of forms to fill out with all relevant
data before being able to add a release and ultimately upload your game
for approval.

12.7 TIZEN
Tizen is a new mobile OS developed by Intel and Samsung with the very
ambitious aim of taking away a significant market share from Android.
HTML5 is being built in the system from the start: Tizen’s browser,
in fact, has been designed to support most of HTML5 advanced fea-
tures, including also the WebAudio API as well as WebGL. In addition,
HTML5-based games can be included in the marketplace side by side
with native apps.

We can start our Tizen development process by registering and down-
loading the SDK at https://developer.tizen.org.

Once the SDK is installed, we can try our games on the Tizen simulator
following a few simple steps.

 1. Export the game in Construct by using the Tizen option.

 2. Launch the Tizen integrated development environment (IDE) and
create a New Tizen Web Project selecting the Basic Application
template (Figure 12.32).

 3. If this is your first time running the IDE, you should also add an
Active Secure Profile that will be used later to sign your games.
You can do so via the Window/Preferences/Tizen SDK/Security
Profiles menu.

 4. Copy all contents (files and folders) exported by Construct into your
Tizen project folder, overwriting existing files in the process. Pay
attention to the config.xml file, though. There may be differences
between the fields and values that the latest version of the Tizen SDK
expects and those actually generated by Construct 2; my recommen-
dation is to open the two in a text editor and merge them manually.
In any case, the one generated by Tizen has a line specifying a unique
Application ID and package name, which we are going to lose if we
copy over Construct 2 files blindly. If lost, we will have to generate a
new one by opening config.xml in the IDE, selecting the Tizen tab,
and then clicking on the Generate button.

 5. Click on Run to build and test your game in the web simulator!

228    ◾    HTML5 Game Development from the Ground Up

Assuming everything works properly, we can now proceed to testing
the game further on the SDK device emulator or on an actual device.
When ready, we can package and publish the game to the Tizen app store,
following the instructions provided in the SDK documentation itself* or in
Scirra’s specific Tizen tutorial.†

12.8 IOS AND ANDROID
Last, but certainly not least, are the platforms that made indie mobile
game publishing not only popular but possible in the first place: iOS and
Android.

* Check for the Application Development Process group within the Tizen Web App Programming
section of the documentation.

† https://www.scirra.com/tutorials/669/how-to-export-to-tizen/page-1

FIGURE 12.32 To import a Construct 2 game in Tizen start by creating a new
basic web project from the Tizen IDE.

Deployment and Monetization    ◾    229  

While HTML5 games can be played on these devices and even installed
on the home screen via the devices’ own browsers, performance can be a real
issue. Besides, a game distributed in this way would completely lack all the
promotion and discoverability features of the official marketplaces reserved
to native apps. Luckily, a few options exist to wrap HTML5 games and turn
them into apps that look, feel, and perform exactly like native apps. CocoonJS
by Ludei is one of these tools, able to transform a Construct 2 game into a
native app to be published on the Apple App Store or Google Play.

Before proceeding further, though, remember that to publish on these
marketplaces, you need to register with them first: developing for Apple
App Store requires a $99 per year fee, and apps have to be built and signed
via XCode on a Mac computer,* while Google Play requires a one-time $25
registration fee.†

CocoonJS works by taking an HTML5 game and then compiling it via
its cloud-based services to provide a native project file that can be used to
proceed in the publication process.

In Construct, while not strictly necessary to export the game, we may
want to start by adding the CocoonJS object to our project (Figure 12.33).

* https://developer.apple.com/programs/ios/
† http://developer.android.com/index.html

FIGURE 12.33 To export for iOS or Android we need to use a third-party tool:
CocoonJS by Ludei.

230    ◾    HTML5 Game Development from the Ground Up

This will enable us to access several important features that CocoonJS
offers via specific extensions, which are discussed in detail on Ludei’s offi-
cial documentation.*

Once the object is added, we will have a new set of events and actions at
our disposal to manage things like in-app purchases, ads, and the Apple
Game Center, as shown in Figures 12.34 and 12.35.

* The latest CocoonJS documentation can be found here: http://wiki.ludei.com/cocoonjs:extensions.

FIGURE 12.34 List of CocoonJS available conditions for triggering new events
related to ads, game center, IAP, and keyboard input.

FIGURE 12.35 An overview of CocoonJS actions for handling ads, game center,
IAP, and keyboard input.

Deployment and Monetization    ◾    231  

One of the most useful features Ludei is offering to developers is a
CocoonJS app we can find on both the Apple App Store and Google Play
to test our games before submitting them for compilation. To do so, down-
load the app, register for a developer account, and then export the game
via Construct 2 CocoonJS option. This creates a zip file that we can then
easily test on our devices: for example, if using DropBox, place it in your
public folder and then write the link in the CocoonJS app to start down-
loading and launching it.

Once we have confirmed the game works as expected, we can proceed
to the actual cloud-based compilation,* which will result in either an apk
file for Android or an XCode project for iOS.

Head to https://cocoonjsservice.ludei.com/cloud/login and log in (or
register if you haven’t done so already). We can then add a new project to
our account by specifying information like the application name, a bundle
ID (usually in the reverse domain format, e.g., com.yourcompany.your-
game), a version number, the supported orientation, and how the game
should eventually scale to accommodate devices with different resolutions
(Figure 12.36).

Once done, we will be able to access a main menu for setting up the
project: we will only discuss iOS and Android here, but more and more

* http://support.ludei.com/hc/en-us/articles/201048503-How-to-use

FIGURE 12.36 The first screen in the new project creation process.

232    ◾    HTML5 Game Development from the Ground Up

options are getting added as the platform matures, so don’t be surprised to
find several other possibilities you can take advantage of!

Clicking on iOS will display a form where we need to specify and upload
a series of icons at different sizes, ranging from 320 × 480 to 2048 × 1496
pixels, while, when selecting Android, we will have only a few required
small icons to upload, plus, possibly, specify the minimum and maxi-
mum Android versions supported. If using extensions for supporting ads,
game center, or IAPs, we also need to specify these under the Services/
Configuration link.

Finally, we can click on the Compile Project link, where we have
to upload our zip file (the same we got when exporting the game from
Construct 2) and check the specific marketplace of choice.

Once the compilation starts, relax and wait: when done, you will be
notified by e-mail!

For building and publishing the resulting iOS XCode project or apk
file, besides referring to the official Apple and Android documentation
available in the respective developers’ websites, Ludei has also pro-
vided two very helpful tutorials we should definitely check and study
carefully: “Using the XCode Project”* and “Creating an Installable
Android .apk.”†

On a final note, it is worth remembering once again that we are breaking
new ground here, and all these technologies and platforms are very new
and are evolving very fast, adding and fine-tuning different features all the
time.‡ This means they are prone to constant changes and, to remain up
to date, it is important to play an active role on the different community
forums, like Scirra, Ludei, Clay.io, etc., to be aware of any eventual issues
and corresponding fixes as soon as they happen.

* http://support.ludei.com/hc/en-us/articles/200924196-Using-the-XCode-Project
† http://support.ludei.com/hc/en-us/articles/200767258-Creating-an-installable-Android-APK
‡ For example, support for the OUYA console and its controller via CocoonJS is currently under

development as well.

233

Appendix A: Resources
for Indies

The following is a short compendium of resources including graph-
ics, audio, and tools that would be helpful to individual developers

and small indie teams to head start their projects (listed in alphabetical
order).

A.1 ASSETS: GRAPHICS

• Clker (clker.com) contains a huge collection of public domain clip
art. Most of the assets for Turky on the Run are from this site.

• HasGraphics (hasgraphics.com) includes some very nice tile sets
and sprite sheets.

• Mayang’s Free Textures (mayang.com/textures) offers a huge collec-
tion of more than 4300 high-quality textures.

• Open Game Art (opengameart.org) is an excellent website featuring
free sprites and textures suitable for many game genres. It also has a
section for music and sound effects.

• PV Games (pioneervalleygames.com/free-resources.html) has tiles
and sprite sheets suitable for role-playing games and adventure
games.

A.2 ASSETS: SOUND EFFECTS AND MUSIC

• Free Music Archive (freemusicarchive.org) has free downloads
under Creative Commons and other licenses of music across many
genres.

234    ◾    Appendix A: Resources for Indies

• Free Sound Project (freesound.org) includes a huge database of
Creative Commons licensed sounds.

• Open Music Archive (openmusicarchive.org) is a collaborative
project to source, digitize, and distribute out-of-copyright sound
recordings.

• Partners in Rhyme (partnersinrhyme.com) is a well-known collec-
tion of royalty-free music and sounds effects.

• PD Sounds (pdsounds.org) is a free sound library made of public
domain sounds.

• SFX Source (sfxsource.com) is a great collection of professional
quality special effects; it also includes royalty-free music.

• Sound Jay (soundjay.com) is a neat collection of many free and use-
ful sounds; it also includes a few music tracks.

A.3 TOOLS: GRAPHICS

• Gimp (gimp.org) is the best free image processing tool. A must
have!

• PFXR (headchant.com/pfxr/) is a simple random sprite generator,
suitable for (very) retro and abstract style games.

• Pyxel Edit (pyxeledit.com) is a very useful pixel art and tileset cre-
ation tool (free).

• Spine (esotericsoftware.com) is a great two-dimensional skeletal
animation tool for games. It provides a JavaScript runtime for inte-
gration with HTML5 tools like Construct 2 (free trial).

• Spriter (brashmonkey.com) is another excellent all-around tool for
two-dimensional animation (available in free and pro versions).
There is also a Construct 2 plugin.*

* http://www.scirra.com/forum/topic59694.html

Appendix A: Resources for Indies    ◾    235

A.4 TOOLS: AUDIO

• Audacity (audacity.sourceforge.net) is a relatively simple but fully
functional digital audio workstation (DAW) for recording and edit-
ing sounds and music. Files can be exported in a multitude of for-
mats (free).

• LMMS (lmms.sourceforge.net), the “Linux Multi Media Studio” (a
version for Windows is also available), is an advanced tool for music
production. Create melodies and beats, synthesize and mix sounds,
and arrange samples. LMMS supports MIDI keyboards and much
more (free).

• Reaper (cockos.com/reaper/) is one of the most advanced DAW
available (shareware).

• SFXR (drpetter.se/project_sfxr.html) is a small, free tool that is
worth its bytes in gold. Designing 8-bit style sound effects has never
been so easy and fun!

237

Appendix B: Selected
Bibliography for
Further Study

The game design and development literature has grown significantly
during the last few years, and, among the many good books available

today, I recommend the following to the serious student who wants to gain
an in-depth knowledge of all the different facets of game design.

Books are listed in alphabetical order by author.
Adams, Ernest, Fundamentals of Game Design, New Raiders (2009, second edition).

A step-by-step approach written in a very clear style that covers all impor-
tant areas, from storytelling and character development to balancing and
user interfaces.

Adams, Ernest, Game Mechanics: Advanced Game Design, New Raiders (2012).
A more advanced text introducing design patterns and detailing aspects

such as game balancing, economies, and progression.
Brathwaite, Brenda and Ian Schreiber, Challenges for Game Designers, Cengage

Learning (2008).
An excellent collection of exercises to build up (board) game prototypes

aimed at understanding the core concepts and constraints of game making.
Csikszentmihalyi, Mihaly, Flow: The Psychology of Optimal Experience, Harper

Perennial Modern Classics (2008).
The concept of “flow” is central to many discussions in game design cir-

cles. This book explains flow and its broad implications in terms accessible
to the layman.

Dillon, Roberto, On the Way to Fun: An Emotion-Based Approach to Successful
Game Design, A K Peters/CRC Press (2010).

This is the book that introduced the 6-11 framework. Besides a detailed
analysis of the theoretical model, it also includes several case studies you can
use to practice your analytical skills.

Dillon, Roberto, The Golden Age of Video Games: The Birthplace of a Multibillion
Dollar Industry, A K Peters/CRC Press (2011).

238    ◾    Appendix B: Selected Bibliography for Further Study

If you want to know more about how it all began and which games were
the most groundbreaking and inspirational in the 8 and 16 bits era, this is a
good starting point.

Fullerton, Tracy, Game Design Workshop: A Playcentric Approach to Creating
Innovative Games, Morgan Kaufmann/CRC Press (2008, second edition).

A comprehensive introduction to all the different phases needed to build
up a game, from conceptualization to playtesting and much more. The book
stresses the importance of adopting a proper iterative process through the
teaching of design fundamentals and hands-on exercises.

Knizia, Reiner, Dice Games Properly Explained, Blue Terrier Press (2010).
Understanding how to use dice effectively to establish and manipulate

the probability of different events and outcomes is a fundamental aspect in
countless games. This book clearly explains many dice-based games whose
study would greatly benefit the skills of any game designer.

Koster, Raph, A Theory of Fun for Game Design, Paraglyph Press (2004).
A simple but delightful read to remind us all about what really matters for

making games fun.
Kremers, Rudolf, Level Design: Concept, Theory, and Practice, A K Peters/CRC

Press (2009).
Level design is an often overlooked area in game design, so, by explaining

good level design practices in general terms and not bound to any specific
development tool, this book fills an important void.

Loguidice, Bill and Matt Barton, Vintage Games: An Insider Look at the History of
Grand Theft Auto, Super Mario, and the Most Influential Games of All Time,
Focal Press (2009).

A great read that analyzes several classic games and how they affected the
evolution of different genres. Lots of insights and inspirational material here!

Moore, Michael, Basics of Game Design, A K Peters/CRC Press (2011).
A comprehensive introduction carefully explaining different genres and

the underlying data-driven structures that make them work.
Salen, Katie and Eric Zimmerman, Rules of Play: Game Design Fundamentals, MIT

Press (2003).
A slightly more scholarly book dissecting games in terms of three funda-

mental concepts, namely, rules, play, and culture.
Schell, Jesse, The Art of Game Design: A Book of Lenses, Morgan Kaufmann/CRC

Press (2008).
A modern classic outlining a set of “lenses” to look through for an in-

depth understanding of games.
Swink, Steve, Game Feel: A Game Designer’s Guide to Virtual Sensation, Morgan

Kaufmann/CRC Press (2008).
An extremely fascinating discussion of the game feel model of interac-

tivity, a very helpful perspective for creating more engaging and immersive
experiences in our games.

HTML5
GaMe DeveLopMenT
from the Ground Up with
ConsTruCT 2

roberto
Dillon

roberto Dillon

Computer Game Development

ISBN: 978-1-4822-1661-5

9 781482 216615

90000

HTML5 Game Development from the Ground Up with Construct 2 shows you how to use the
sophisticated yet user-friendly HTML5-based game engine Construct 2 to develop and release
polished, two-dimensional games on a multitude of different platforms. The book also covers
the foundational knowledge of game analysis and design based on the author’s research and
teaching experiences at DigiPen Institute of Technology, James Cook University, and other
institutions.

The author first helps you understand what really matters in games. He guides you in becom-
ing a better game designer from the ground up, being able to play any game critically, and
expressing your ideas in a clear and concise format. The book then presents step-by-step
tutorials on designing games. It explains how to build an arcade-style game, a platformer in-
tegrating some physics elements, and a more complex puzzle game. The book also discusses
different ways to deploy and monetize games across several platforms, including Facebook,
iOS, Android, and web-based marketplaces.

Features
• Covers game design concepts in a manner suitable for beginners, hobbyists, and

aspiring indie developers

• Requires no specific programming knowledge, assuming familiarity with only very
basic concepts (such as arrays and functions)

• Provides practical tutorials using stable, proven features of Construct 2

• Offers sample Construct 2 project files for the games designed in the book on the
author’s website

Integrating hands-on guidance with theoretical game design concepts, this book gives you
a solid foundation in game development. It will help you advance in your journey as an indie
game developer.

H
TM

L5 GaM
e DeveLo

pM
en

T
from

 the Ground Up w
ith Co

n
sTru

CT 2

K22067

	Front Cover
	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	About the Book
	Chapter 1: HTML5 and Construct 2
	Chapter 2: Understanding How Games Work
	Chapter 3: About Games and Ideas: Dream vs. Reality
	Chapter 4: Game Design Documentation for Indies
	Chapter 5: Moon Wolf, a Space Arcade Game
	Chapter 6: Moon Wolf Development
	Chapter 7: Kitty & Katty, a Platformer
	Chapter 8: Kitty & Katty Development
	Chapter 9: Turky on the Run, a Puzzle Game
	Chapter 10: Turky on the Run Development
	Chapter 11: The Journey Ahead
	Chapter 12: Deployment and Monetization
	Appendix A: Resources for Indies
	Appendix B: Selected Bibliography for Further Study
	Back Cover

