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Preface

Today, computer imaging covers various aspects of data filtering, pattern
recognition, feature extraction, computer aided design, and computer aided
inspection and diagnosis.

Pillars of the field of computer imaging are advanced, stable, and reliable algo-
rithms. In addition, feasibility analysis is required to evaluate practical relevance
of the methods. To put these pillars on solid grounds, a significant amount of
mathematical tools are required. This handbook makes a humble attempt to provide
a survey of such mathematical tools.

We had the vision that this imaging handbook should contain individual chapters
which can serve as toolboxes, which, when aligned, form background material for
complete applied imaging problems. Therefore it should also give an impression on
the broad mathematical knowledge required to solve industrial and applied research
applications: The image formation process, very frequently, is assigned to the
inverse problems community, which is prominently represented in this handbook.
The subsequent step is image analysis. Nowadays, advanced Image Analysis,
and Image Processing in general, uses sophisticated methods from Geometry,
Differential Geometry, Convex Analysis, Numerical Analysis, to mention just a few.
In fact, by the rapid advance of Imaging, the mathematical areas have been pushed
forward heavily, and raised their impact in application sciences.

Second Edition

My special thanks go to all individual authors for their valuable contributions
and the referees for their help in improving the contributions and making detailed
comments. My sincere thanks go to the Springer’s editors and staff, Marc Strauss,
Annalea Manalili, Michael Hermann, and Saskia Ellis for their patience and their
constant support and encouragement over the last two years. My thanks also goes to
Vaishali Damle, who initialized the second edition of this handbook.

Finally, I would like to encourage the readers to submit suggestions regarding
this handbook’s content. For a project of this size, it is likely that essential topics
are missed. In a rapidly evolving area like Imaging it is likely that new areas will

v

www.allitebooks.com

http://www.allitebooks.org


vi Preface

appear in a very short time and should be added to this handbook, as well as recent
development enforce modifications of existing contributions. We are committed to
issuing periodic updates and we look forward to the feedback from the community.

Otmar Scherzer
Computational Science Center
University of Vienna, Austria

and
RICAM

Austrian Academy of Sciences
Linz, Austria
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Abstract
This introductory treatment of linear inverse problems is aimed at students and
neophytes. A historical survey of inverse problems and some examples of model
inverse problems related to imaging are discussed to furnish context and texture
to the mathematical theory that follows. The development takes place within
the sphere of the theory of compact linear operators on Hilbert space, and the
singular value decomposition plays an essential role. The primary concern is
regularization theory: the construction of convergent well-posed approximations
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to ill-posed problems. For the most part, the discussion is limited to the familiar
regularization method devised by Tikhonov and Phillips.

1 Introduction

I . . . although nature begins with the cause and ends with the
experience we must follow the opposite course, namely
. . . begin with the experience and by means of it
end with the cause.
Leonardo da Vinci

An inverse problem is the flip side of some direct problem. Direct problems
treat the transformation of known causes into effects that are determined by some
specified model of a natural process. They tend to be future directed and outward
looking and are often concerned with forecasting or with determining external
effects of internal causes. Direct problems have solutions (causes have effects), and
the process of transforming causes into effects is a mathematical function: a given
cause determines, via the model, a unique effect. In direct problems the operator
that maps causes into effects is typically continuous in natural metrics: close causes
have close effects. These features of direct problems make them well posed.

The idea of a well-posed problem has its origins in Jacques Hadamard’s short
paper [37] published in 1902. Hadamard held the opinion that an important physical
problem must have three attributes:

1. (Existence) It has a solution.
2. (Uniqueness) It has only one solution.
3. (Stability) The solution depends continuously on the data of the problem.

A problem satisfying these three conditions is called well posed. In his 1902 paper,
Hadamard called a problem bien posé if it has properties (1) and (2). Again in his
1923 lectures [38], he called a problem “correctly set” if it satisfies (1) and (2).
Condition (3) was not named as a specific requirement of a well-posed problem, but
his explicit notice of the lack of continuous dependence on boundary data of the
solution of Cauchy’s problem for Laplace’s equation led to (3) becoming part of the
accepted definition of a well-posed problem.

A problem is ill posed if it lacks these qualities. Hadamard’s suggestion that
ill-posed problems are devoid of physical significance (déprourvu de signification
physique) was unfortunate, as almost all inverse problems in the physical and
biological sciences are ill posed. To be fair, it should be noted that Hadamard was
speaking about a specific problem, the Cauchy problem for Laplace’s equation in a
strip. On the other hand, Courant [15] insisted more generally that “a mathematical
problem cannot be considered as realistically corresponding to physical phenomena
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unless . . . ” it satisfies condition (3). The problems of existence and uniqueness in
inverse problems can often be ameliorated by generalizing the notion of solution
and constraining the generalized solution, but the key attribute of stability often
is a feature that is inherently absent in inverse problems. This essential lack of
stability usually has dire consequences when numerical methods, using measured
or uncertain data, are applied to inverse problems.

Inverse problems are as old as science itself. In fact, a reasonable working
definition of science is the explanation of natural phenomena by the construction
of conceptual models for interpreting imperfect observational representations of
“true” natural objects or processes. This definition encompasses the three essential
ingredients of mathematical inverse problems: a “true” solution, a model, or
operator that transforms this true solution into an imperfect representation that
is amenable to observations or measurements. One could say that inverse theory
embraces an operating principle that is essentially Platonic: true natural objects
exist, but it is only through models and imperfectly perceived images that we
experience them. The challenge is to “invert” the model to recover a useful estimate
of the true object from the observed image. In this sense, all of inverse theory deals
with “imaging.”

A mathematical framework for the study of inverse problems must provide suffi-
cient scope for each of the three elements: true solutions, model, and observations.
In this chapter the solution space and the space of observations are both taken
to be Hilbert spaces, but not necessarily the same Hilbert space, as one naturally
desires more of the solution than one demands from the observations. The model is
a transformation or operator that carries a possible solution to an observed effect.
We consider only linear inverse problems, so our models are linear operators.

Any practical model suppresses some information. If a model represents every
bit of information in the objects themselves (i.e., the model operator is the identity
operator), then nothing is gained in conceptual economy. In this case one is in the
absurd position of Mein Herr in Lewis Carroll’s Sylvie and Bruno Concluded:

“We actually made a map of the country, on a scale of a mile to the mile!” . . . “It has never
been spread out yet,” said Mein Herr: “the farmers objected; they said it would cover the
whole country, and shut out the sunlight! So now we use the country itself, as its own map,
and I assure you it does nearly as well.”

Finite linear models lead to linear algebra problems. Idealized limiting versions
of finite models typically lead to compact linear operators, that is, limits of finite
rank operators. A compact operator may have a nontrivial null-space, a non-closed
range, or an unbounded (generalized) inverse. Therefore, these operators, which
occur widely in models of linear inverse problems, lack all the virtues of well
posedness. In this chapter, we provide a somewhat slanted survey of linear inverse
problems, mainly involving compact operators, with special attention to concepts
underlying methods for constructing stable approximate solutions.

Before draping these ideas on a mathematical framework, we discuss a half
dozen examples of model inverse problems that have played significant roles in
the development of the physical sciences.



6 C. Groetsch

2 Background

I Our science is from the watching of shadows;
Ezra Pound

This brief and incomplete historical survey of physical inverse problems is meant
to give some perspective on certain inverse problems closely related to imaging
in the broad sense. Our viewpoint involves both the very large scale, treating
inverse problems loosely associated with assessing the cosmos, and the human scale,
dealing with evaluation of the inaccessible interior of bodies (human or otherwise).

Inverse theory, as a distinct field of inquiry, is a relatively recent development;
however, inverse problems are as old as science itself. A desire to know causes
of perceived effects is ingrained in the human intellectual makeup. The earliest
attempts at explanations, as, for example, in the creation myths of various cultures,
were supernatural – grounded in mysticism and mythology. When humankind
embarked on a program of rationalization of natural phenomena, inverse problems
emerged naturally and inevitably. An early example is Plato’s allegory of the cave
(ca. 375 B.C.). In the seventh book of his Republic, Plato describes the situation.
A group of people have been imprisoned since their birth in a cave where they
are chained in such a manner that allows them to view only a wall at the back
of the cave. Outside the cave life goes on, illuminated by a fire blazing in the
distance. The captives in the cave must reconstruct this external reality on the basis
of shadows cast on the rear wall of the cave. This is the classic inverse imaging
problem: real objects are perceived only as two-dimensional images in the form of
shadows on the cave wall. This annihilation of a dimension immediately implies that
the reconstruction problem has multiple solutions and that solutions are unstable in
that highly disparate objects may have virtually identical images.

Aristotle adapted his teacher Plato’s story of the cave to address a scientific
inverse problem: the shape of the earth. This shape could not be directly assessed
in Aristotle’s time, so he suggested an indirect approach (see Book II of On the
Heavens.):

As it is, the shapes which the moon itself each month shows are of every kind – straight,
gibbous, and concave – but in eclipses the outline is always curved; and since it is the
interposition of the earth that makes the eclipse, the form of the line will be caused by the
form of the earth’s surface, which is therefore spherical.

Aristotle’s reasoning provided an indirect argument for the sphericity of the earth
based on the shapes of shadows cast on the moon.

Inverse imaging has been a technical challenge for centuries. The difficulties that
early investigators encountered were vividly captured by Albrecht Dürer’s woodcut
Man Drawing a Lute (1525). We can see the doubts and angst brought on by the
inverse imaging problem etched on the face of the crouching technician (Fig. 1).

The character on the left, standing bolt upright in a confident attitude, has the
comparatively easy direct problem. He has complete knowledge of the object, and he
knows exactly how the projection model will produce the image. On the other hand,
the crouching man on the right, with the furrowed brow, faces the more difficult
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Fig. 1 A renaissance inverse problem

inverse problem of assessing whether the image captures the essential features of the
object. Dürer’s woodcut is a striking representation of the comparative difficulties
of direct and inverse assessment.

Modern imaging science has its roots in Galileo Galilei’s lunar observations
carried out during the winter of 1609. Prior to Galileo’s study, the moon was
thought to belong to the realm of the Pythagorean fifth essence, consisting of
perfectly uniform material in perfect spherical form. Galileo’s eyes, empowered
by his improved telescope, the earliest scientific imaging device, showed him
otherwise [21]:

. . . we certainly see the surface of the Moon to be not smooth, even, and perfectly spherical,
as the great crowd of philosophers has believed about this and other heavenly bodies, but,
on the contrary, to be uneven, rough, and crowded with depressions and bulges. And it is
like the Earth itself, which is marked here and there with chains of mountains and depth of
valleys.

But Galileo was not satisfied with qualitative evidence. He famously stated that the
book of nature is written in the language of mathematics, and he used mathematics,
in the form of the Pythagorean theorem, along with some shrewd estimates, to assess
indirectly the heights of lunar mountains. The process of indirect assessment is a
hallmark of inverse problems in the natural sciences. (See [2] for an account of
inverse problems of indirect assessment.)

Nonuniqueness is a feature of many inverse problems that was slow to gain
acceptance. An early instance of this phenomenon in a physical inverse problem
occurred in the kinematic studies of ballistics carried out by Niccolò Tartaglia in
the sixteenth century. Tartaglia claimed to be the inventor of the gunner’s square, a
device for measuring the angle of inclination of a cannon. Using his square Tartaglia
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carried out ranging trials and published some of the earliest firing tables. He studied
not only the direct problem of finding ranges for a given firing angle but also
the inverse problem of determining the firing angle that results in a given range.
Although Tartaglia’s treatment was conceptually flawed and lacked rigor, his work
contains glimmers of a number of basic principles of mathematical analysis that took
several centuries to mature [32]. Tartaglia was particularly struck by nonuniqueness
of solutions of the inverse problem. As he put it proudly in the dedication of his
book Nova Scientia (Venice, 1537):

I knew that a cannon could strike in the same place with two different elevations or aimings,
I found a way of bringing about this event, a thing not heard of and not thought by any other,
ancient or modern.

With this boast Tartaglia was one of the first to call attention to this common feature
of nonuniqueness in inverse problems.

Tartaglia found that for a given fixed charge, each range (other than the maximum
range) is achieved by two distinct aimings placed symmetrically above and below
the 45ı inclination. A century and a half later, Edmond Halley [39] took up the more
general problem of allowing both the charge and the firing angle to vary while firing
on a fixed target situated on an inclined plane. In this case the inverse problem of
determining charge-angle pairs that result in a strike on the target has infinitely many
solutions. (Of course, Halley did not address air resistance; his results are extended
to the case of first-order resistance in [33].) Halley restored uniqueness to the inverse
aiming problem by restricting consideration to the solution which minimizes what
we would now call the kinetic energy of the emergent cannon ball. The idea of
producing uniqueness by seeking the solution that minimizes a quadratic functional
would in due course become a key feature of inverse theory.

The model for a modern scientific society was laid out in Francis Bacon’s utopian
novel The New Atlantis (1626). Bacon describes a voyage to the mythical land of
Bensalem, which was inhabited by wise men inclined to inverse thinking. Solomon’s
House, a research institute in Bensalem, was dedicated to the “knowledge of causes,
and secret motions of things; and the enlarging of the bounds of human empire,
to the effecting of all things possible” (my italics). The Royal Society of London,
founded in 1660 and modeled on Baconian principles, was similarly dedicated.
The first great triumph (due largely to Halley’s efforts) of the Royal Society was
the publication of Newton’s magisterial Principia Mathematica (1687). In the
Principia, Newton’s laws relating force, mass, and acceleration, combined with
his inverse square law of gravity, were marshaled to solve the direct problem of
two-body dynamics, confirming the curious form of Kepler’s planetary orbits: an
inverse square centrally directed force leads to an orbit, which is a conic section.
But Newton was not satisfied with this. He also treated the inverse problem of
determining what gravitational law (cause) can give rise to a given geometrical orbit
(effect).

In the history of science literature, the problem of determining the orbit,
given the law of attraction, is sometimes called the inverse problem; this practice
inverts the terminology currently common in the scientific community. The reverse
terminology in the history community is evidently a consequence of the fact that
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Newton took up the determination of force law first and then treated the orbit
determination problem. Indeed, Newton treated the inverse problem of orbits before
he took up the direct problem. After all, his primary goal was to discover the laws
of nature, the causes, rather than the effects. As Newton put it in the preface to the
first edition of his Principia: “ . . . the whole burden of philosophy seems to consist
of this – from the phenomena of motions to investigate the forces of nature, and then
from these forces to demonstrate the other phenomena.”

In 1846, mathematical inverse theory produced a spectacular scientific triumph –
the discovery of another world. The seeds of the discovery lay in the observed
irregularities in the orbit of Uranus, the most distant of the planets known at
the time. The orbit of Uranus did not fit with predictions based on Newton’s
theories of gravity and motion. In particular an orbit calculated to fit contemporary
observations did not fit observations made in the previous century, and an orbit that
fit to the older sightings did not match the contemporary data. This suggested two
possibilities: either Newton’s theory had to be modified at great distances or perhaps
the anomalies in the orbit of Uranus were the effect of an as yet undiscovered planet
(the cause) operating on Uranus via Newton’s laws.

During the summer vacation of 1841, John Couch Adams, an undergraduate of
St. John’s College, Cambridge, was intrigued by the second possibility. He recorded
this diary entry:

1841, July 3. Formed a design in the beginning of the week, of investigating, as soon
as possible after taking my degree, the irregularities in the motion of Uranus, which are
yet unaccounted for; in order to find whether they may be attributed to the action of an
undiscovered planet beyond it; and if possible thence to determine the elements of its orbit,
etc. approximately, which would probably lead to its discovery.

Adams solved the inverse problem of determining the characteristics of the orbit of
the undiscovered planet, now known as Neptune, that perturbs Uranus. However,
a sequence of lamentable missteps, involving his own timidity, bureaucratic inertia,
and other human factors, resulted in the honor of “discovering” the new planet on the
basis of mathematics going to Urbain Le Verrier of France, who solved the inverse
problem independently of Adams. This of course led to disappointment in England
over the botched opportunity to claim the discovery and to a good deal of hauteur
in France over the perceived attempt by the English to grab credit deserved by a
Frenchman. The fascinating story of the unseemly squabble is well told in [36]. See
also [63] for a recent update in which old wounds are reopened.

Newton’s discussion of inverse orbit problems in his Principia, and vague doubts
about the form of the gravitational force law raised prior to the discovery of
Neptune, may have inspired other inverse problems. An early interesting “toy”
inverse problem in this vein was published by Ferdinand Joachimstahl in 1861
[47]. The problem Joachimstahl posed, and solved by an Abel transform, was to
determine the law of gravitational attraction if the total force at any distance from a
line of known mass density is given.

Johann Radon laid the foundation of mathematical imaging science, without
knowing it, in his 1917 memoir [61]. (An English translation of Radon’s paper may
be found in [17].) Radon was concerned with the purely mathematical problem of
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determining a real-valued function of two variables from knowledge of the values
of its line integrals over all lines intersecting its domain. Although Radon evidently
had no application in mind, his treatment was to become, after its rediscovery a
half century later, the basis for the mathematics of computed tomography. (See
[14] for more on the history of computed tomography.) Essentially the same result
was obtained independently by Viktor Ambartsumian [1] who was interested in
a specific inverse problem in astronomy. Proper motions of stars are difficult to
determine, but radial velocities (relative to the earth) are obtainable from chromatic
Doppler shift measurements. Ambartsumian used a mathematical model essentially
equivalent to that of Radon to deduce the true three-dimensional distribution of
stellar velocities from the distribution of the radial velocities.

In the mid-1950s of the last century, Allan Cormack, a young physics lecturer at
the University of Cape Town, who was moonlighting in the radiology department of
Groote Schuur Hospital, had a bright idea. In Cormack’s words:

It occurred to me that in order to improve treatment planning one had to know the
distribution of the attenuation coefficient of tissues in the body, and that this distribution
had to be found by measurements made external to the body. It soon occurred to me that
this information would be useful for diagnostic purposes and would constitute a tomogram
or series of tomograms, though I did not learn the word “tomogram” for many years.

This was the birth of the mathematical theory of medical imaging. Cormack would
not learn of Radon’s work for another two decades, but he developed the basic
results for radially symmetric attenuation coefficient distributions and tested the
theory with good results on a simple manufactured specimen in the form of a
cylinder of aluminum encased in an annular prism of wood. The reconstructed
piecewise constant attenuation function matched that of the known specimen well
enough to show the promise of this revolutionary new imaging technology.

In the 1990s, inverse thinking and indirect assessment led to another spectacular
advance in astronomy: the discovery of extrasolar planets. Philosophers had specu-
lated on the reality of planets linked to the stars at least since classical Greek times,
and few in modern times doubted the existence of extrasolar planets. But convincing
evidence of their existence had to await the development of sufficiently sensitive
telescope-mounted spectrometers and the application of simple inverse theory. The
indirect evidence of extrasolar planets consisted of spectral shift data extracted from
optical observations of a star.

In a single star–planet system, determining the variable radial velocity (relative
to the earth) of a star wobbling under the gravitational influence of an orbiting
planet of known mass and orbital radius is a simple direct problem – just equate
the gravitational acceleration of the planet to its centripetal acceleration. (Consider
only the simple case in which the planet, star, and earth are coplanar and the orbit
is circular; an orbit oblique to the line of sight from earth introduces an additional
unknown quantity. As a consequence of this obliquity, the relative mass estimated
from the inverse problem is actually a lower bound for this quantity.) Using Doppler
shift data, a simple inverse problem model may be developed for determining
approximations to the relative planetary mass and orbital radius. The solution of the
inverse problem enabled astronomers to announce in 1995 the existence of the first
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confirmed extrasolar planet orbiting the star 51Pegasi. The millennia-old question
of the existence of extrasolar worlds finally had a convincing positive answer.

We bring this historical survey of inverse problems up to the present day with
the greatest challenge in contemporary cosmology: the search for dark matter.
Such matter, being “dark,” is by definition inaccessible to direct measurement. But
recently an imaging model on the largest scale in the history of science has come to
be used in attempts to assay this dark matter. The process of gravitational lensing,
which is based on Einstein’s theory of curved space-time, presents the possibility
of inverting the imaging model to estimate a dark mass (the gravitational lens) that
intervenes between the observer on earth and an immensely distant light source.
The dark mass warps space in its vicinity resulting, under appropriate conditions,
in focusing onto the earth light rays that in flat space would not intersect the
earth. In an extreme case in which the light source (e.g., a galaxy), the intervening
gravitational lens (dark matter), and the collected image are collinear, this results
in a phenomenon called an Einstein ring (first observed in 1979; see [22]). If the
distances from earth to the lens and from the lens to source can be estimated, then
the solution of an inverse problem gives an estimate of the dark mass (see [56]).

3 Mathematical Modeling and Analysis

I . . . we have to remember that what we observe is not nature in itself
but nature exposed to our method of questioning.
Werner Heisenberg

A Platonic Inverse Problem

Plato’s discussion of captives struggling to discern the real cause of shadows cast on
the back wall of a cave is a primeval exemplar of inverse imaging problems. Here
we present a toy imaging problem inspired by Plato’s allegory. While the problem is
very elementary, it usefully illustrates some important aspects of imaging problems
and inverse problems in general.

Imagine a two-dimensional convex object in the xy-plane, which is bounded by
the positive coordinate axes, and the graph of a function y D f .x/; 0 � x �
1 that is positive on Œ0; 1/, strictly decreasing and concave-down, and satisfies
f .1/ D 0 D f 0.0/. The object is illuminated by parallel light rays from the left
that form angles � with the negative ray of the horizontal axis, as illustrated in
Fig. 2.

The goal is to reconstruct the shape of the object from observations of the
extent s.�/ of the shadow cast by the object. This is accomplished by fashioning a
parameterization .x.�/; f .x.�/// of the boundary curve of the object. As a further
simplification we assume that f 0.1/ D �1. These assumptions guarantee that for
each s > 1 there is a unique point .t; f .t// on the graph of f at which the tangent
line intersects the x-axis at s. What is required to see this is the existence of a unique
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(x(θ), f(x(θ)))

s(θ)

θ

Fig. 2 A model shadow problem

t 2 .0; 1/ such that the tangent line to the graph at the point .t; f .t// intersects the
x-axis at s. That is,

.s � t/f 0.t/C f .t/ D 0:

For each fixed s > 1, the expression on the left is strictly decreasing for t 2 .0; 1/,
positive at t D 0 and negative at t D 1, so the existence of a unique such t D x.�/
is assured. At the point of tangency,

� tan � D f 0.x.�//:

Also,

f .x.�// D .tan �/.s.�/ � x.�//;

and hence determining x.�/ also gives .x.�/; f .x.�///, which solves the inverse
imaging problem. Combining these results we have

�.tan �/x0.�/ D f 0.x.�//x0.�/ D .s.�/ � x.�// sec2 � C .s0.�/� x0.�// tan �:

A bit of simplification yields

x.�/ D s.�/C 1

2
sin .2�/s0.�/; (1)

www.allitebooks.com
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which explicitly solves the inverse problem of determining the shape .x.�/,
f .x.�/// from knowledge of the extent of the shadows s.�/.

The explicit formula (1) would seem to completely solve the inverse problem.
In a theoretical sense this is certainly true. However, the formulation (1) shelters a
subversive factor (the derivative) that should alert us to potential challenges involved
in the practical solution of the inverse problem. Observations are always subject
to measurement errors. The differentiation process, even if performed exactly,
may amplify these errors as differentiation is a notoriously unstable process. For
example, if a shadow function s.�/ is perturbed by low-amplitude high-frequency
noise of the form �n.�/ D 1

n
sin n2� giving observed data

sn.�/ D s.�/C �n.�/;

then the corresponding shape abscissas provided by (1) satisfy

xn.�/ D x.�/C �n.�/C sin 2�

2
�0
n.�/:

But �n converges uniformly to 0 as n ! 1, while max j�0
nj ! 1, giving a

convincing illustration of the instability of the solution of the inverse problem
provided by (1). For more examples of model inverse problems with explicit
solutions that involve differentiation, see [71].

It is instructive to view the inverse problem from another perspective. Note that
by (1), s.�/ is the solution of the linear differential equation

ds

d�
C 2

sin .2�/
s D 2

sin .2�/
x.�/

satisfying s.�=4/ D 1. This differential equation may be solved by elementary
means yielding

s.�/ D 1C cos 2�

sin 2�
C
Z �

�=4

2.1C cos 2�/

.1C cos 2'/ sin 2�
x.'/ d': (2)

In this formulation, the “hidden” solution x.'/ of the inverse problem is seen to be
transformed by a linear integral operator into observations of the shadows s.�/. The
goal now is to uncover x.'/ from (2) using knowledge of s.�/, that is, one must
solve an integral equation.

The solution of the integral formulation (2) suffers from the same instability as
the explicit solution (1). Indeed, one may write (2) as

s D  C  T x
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where  .�/ D .1C cos 2�/= sin 2� and

.T x/.�/ D
Z �

�=4

2

1C cos 2'
x.'/ d':

If we let �n.'/ D n
2 .1C cos 2'/ sinn2' and set

sn D  C  T .x C �n/

then one finds that sn ! s uniformly, while max j�nj ! 1: That is, arbitrarily
small perturbations in the data s may correspond to arbitrarily large deviations in
the solution x. This story has a moral: instability is intrinsic to the inverse problem
itself and not a manifestation of a particular representation of the solution.

Cormack’s Inverse Problem

As noted in the previous section, the earliest tomographic test problem explicitly
motivated by medical imaging was Cormack’s experiment [12] with a fabricated
sample having a simple radially symmetric absorption coefficient. The absorption
coefficient is a scalar field whose support may be assumed to be contained within
the body to be imaged. This coefficient f supplies a measure of the attenuation
rate of radiation as it passes through a given body point and is characterized by
Bouguer’s law

dI

ds
D �f I;

where I is the intensity of the radiation and s is arclength. The integral of f along
a line L intersecting the body then satisfies

g D
Z
L

f ds:

Here g D ln .I0=Ie/, where I0 is the incident intensity, and Ie the emergent
intensity, of the beam. The observable quantity g is then a measure of the total
attenuation effect that the body has on the beam traversing the line L.

To be more specific, for a given t 2 R and a given unit vector E' D .cos'; sin'/,
let Lt;' represent the line

Lt;' D fEx 2 R2 W hEx; E'i D tg

where h � ; � i is the Euclidean inner product. We will denote the integral of f over
Lt;' by
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R.f /.t; '/ D
Z
Lt;'

f ds D
Z 1

�1
f .t cos' � s sin '; t sin ' C s cos'/ ds:

If f is radial, that is, independent of ', then

R.f /.t; '/ D R.f /.t; 0/ D
Z 1

�1
f .t; s/ ds: (3)

Furthermore, if f vanishes exterior to the disk of radius R, then on setting r Dp
t2 C s2 and f .r/ D f .t; s/, one finds

g.t/ D
Z R

t

2rf .r/p
r2 � t2 dr; (4)

where g.t/ D R.f /.t; 0/. The mapping defined by (4), which for a given line Lt;'
transforms the radial attenuation coefficient into the function g, is an Abel transform
of f . It represents, as a direct problem, Cormack’s early experiment with a radially
symmetric test body. Determining the distribution of the attenuation coefficient
requires solving the inverse problem. The Abel transform may be formally inverted
by elementary means to furnish a solution of the inverse problem of determining the
attenuation coefficient f from knowledge of the loss data g. Indeed, by (4) and a
reversal of order of integration,

Z R

r

tg.t/p
t2 � r2

dt D
Z R

r

f .s/s

Z s

r

2tp
s2 � t2pt2 � r2

dt ds D �
Z R

r

f .s/s ds;

since Z s

r

2tp
s2 � t2pt2 � r2

dt D �

(change the variable of integration to w D ps2 � t2=ps2 � r2). However,

Z R

r

tg.t/p
t2 � r2

dt D �
Z R

r

.t2 � r2/1=2g0.t/ dt

and hence on differentiating, we have

Z R

r

rg0.t/p
t2 � r2

dt D ��rf .r/:

Therefore,

f .r/ D � 1

�

Z R

r

g0.t/p
t2 � r2

dt:
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The derivative lurking within this inversion formula is again a harbinger of
instability in the solution of the inverse problem.

Forward and Reverse Diffusion

Imagine a bar, identified with the interval Œ0; �� of the x-axis, the lateral surface of
which is thermally insulated while its ends are kept always at temperature zero. The
diffusion of heat in the bar is governed by the one-dimensional heat equation

@u

@t
D � @

2u

@x2
; 0 < x < �

where u.x; t/ is the temperature at position x and time t and � is the thermal
diffusivity. If the initial temperature distribution in the bar is a function f .x/, then
the boundary and initial conditions associated with this model are

u.0; t/ D 0; u.�; t/ D 0; u.x; 0/ D f .x/:

In the forward diffusion problem, the goal is to find, for a given future time
T > 0, the temperature distribution g.x/ D u.x; T /. Formal separation of variable
techniques leads to a solution of the form

u.x; t/ D
1X
nD1

ane
��n2t sin nx;

where an are the Fourier coefficients of the initial temperature distribution

an D 2

�

Z �

0
f .s/ sin ns ds:

The future temperature distribution is then seen to be, after some rearranging,

g.x/ D
Z �

0
k.x; s/f .s/ ds;

where

k.x; s/ D 2

�

1X
nD1

e��n2T sin nx sin ns:

A high degree of smoothing is a notable feature of the forward diffusion process.
Specifically, the factors e��n2T in the transformation have the effect of severely
damping high-frequency components in the initial temperature distribution f .
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A corresponding reverse diffusion process is immediately suggested, namely, the
retrodiction of the initial temperature distribution f , from knowledge of the later
temperature distribution g. In this inverse problem, one finds that

f .x/ D 2

�

1X
nD1

e�n
2T

Z �

0
g.s/ sin ns ds: (5)

The contrast with the forward problem is striking: now high-frequency components
in g are amplified by the huge factors e�n

2T . Also note that the inverse problem is
soluble only for a restricted class of functions g – those for which the series (5)
converges in L2Œ0; ��. As will be seen in the next section, the reverse diffusion
process is a useful metaphor in the discussion of deblurring.

Deblurring as an Inverse Problem

Cameras and other optical imagers capture a scene, or object, and convert it into
an imperfect image. The object may be represented mathematically by a function
f W R2 ! R that codes, for example, gray scale or intensity. The image produced
by the device is a function g W R2 ! R, and the process may be phrased abstractly
as g D Kf , where K is an operator modeling the operation of the imager. In a
perfect imager,K D I , the identity operator (recall Mein Herr’s map!). The perfect
model may be expressed in terms of the two-dimensional delta distribution as

f .Ex/ D
Z Z

R2
ı.Ex � E�/f .�/ d�:

However, any physical imaging device blurs the object f into an image g, which in
many cases can be represented by

g.Ex/ D
Z Z

R2
k.Ex � E�/f .�/d E� (6)

where k. � /, the point spread function of the device, is some approximation of the
delta function centered at the origin. Theoretical examples of such approximations
include the tin-can function 	R=.�R2/, where 	R is the indicator function of the
disk of radius R centered at the origin, and the sinc and sombrero functions given
in polar coordinates by

sinc.r; �/ D sin�r

�r
and somb.r; �/ D 2

J1.�r/

�r
;

respectively, where J1 is the Bessel function of first kind and order 1. A frequently
occurring model uses the Gaussian point spread function
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k.r; �/ D 1

2�
2
e�r2=2
2

:

The problem of deblurring consists of solving (6) for the object f , given the blurred
image g. For a good introduction to deblurring, see [44].

Reverse diffusion in two dimensions is a close cousin of deblurring. A basic tool
in the analysis is the 2D Fourier transform defined for f W R2 ! R and Ex; E! 2
R2 by

bf . E!/ D Fff g. E!/ D
Z 1

�1

Z 1

�1
e�ihEx; E!if .Ex/ dx1 dx2

with the inversion formula

f .Ex/ D 1

.2�/2

Z 1

�1

Z 1

�1
eihEx; E!ibf . E!/ d!1 d!2:

On integrating by parts, one sees that

Ff�f g. E!/ D �k E!k2bf . E!/;
where � is the Laplacian operator: � D @2

@x2
1
C @2

@x2
2
. Consider now the initial value

problem for the 2D heat equation

@u

@t
D ��u Ex 2 R2; t > 0; u.Ex; 0/ D f .Ex/:

Applying the Fourier transform yields the initial value problem

dU

dt
D ��k E!k2U; U.0/ D bf

where U.t/ Dbu. �; t/ and hence U.t/ D bf e�k!k2�t . The convolution theorem then
gives

u.Ex; t/ D F�1fe�k!k2�tbf g D
Z 1

�1

Z 1

�1
k.Ex � E�/f .E�/ d�1 d�2

where (using the integral result of [25], 12.A)

k.Ex/ D F�1
n
e�!2

1�t e�!2
2�t
o
D 1

4�2

Z 1

�1

Z 1

�1
eihEx; E!ie�.!2

1 C!2
2/�t d!1 d!2

D 1

4�2

Z 1

�1
eix1!1�!2

1�td!1

Z 1

�1
eix2!2�!2

2�td!2 D 1

4��t
e�.x2

1Cx2
2/=.4�t/:
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The inverse problem of determining the initial distribution f .Ex/ D u.Ex; 0/, given
the distribution g.Ex/ D u.Ex; T / at a later time T > 0, is equivalent to solving the
integral equation of the first kind

g.Ex/ D 1

4��T

Z 1

�1

Z 1

�1
e�..x1��1/

2C.x2��2/
2/=.4�T /f .�1; �2/ d�1 d�2;

which is in turn equivalent to the deblurring problem with Gaussian point spread
function

�
.Ex/ D 1

2�
2
e�kExk2=2
2

having variance 
2 D 2�T . The idea of deblurring by reverse diffusion is developed
in [8].

Extrapolation of Band-Limited Signals

Extrapolation is a basic challenge in signal analysis. The Fourier transform,F , is the
analytical workhorse in this field. It transforms a time signal f .t/;�1 < t < 1,
into a complex-frequency distribution bf .!/ via the formula

bf .!/ D Fff g.!/ D
Z 1

�1
f .t/e�i!t dt:

In a suitable setting, the time-to-frequency transformation may be inverted by the
formula (e.g., [25])

f .t/ D F�1fbf g.t/ D 1

2�

Z 1

�1
bf .!/ei!t dt:

Any physically realizable detector is capable of picking up frequencies only in a
limited range, say j!j � . A signal f whose Fourier transform vanishes for j!j >
, for some given  > 0, is called a band-limited signal. A detector that operates
in the frequency band � � ! �  band-limits signals it collects, that is, it treats
only 	Œ�;�bf , where

	Œ�;�.!/ D
�

1; ! 2 Œ�;�
0; ! … Œ�;�:

is the indicator function of the interval Œ�;�. Multiplication by 	Œ�;� in the
frequency domain is called a low-pass filter as only components with frequency
j!j �  survive the filtering process.
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Reconstruction of the full signal f is generally not possible as information in
components with frequency greater than  is unavailable. What is available is the
signal

g D F�1f	Œ�;�bf g:
By the convolution theorem for Fourier transforms, one then has

g D F�1f	Œ�;�g � f:

However,

F�1f	Œ�;�g.t/ D 1

2�

Z 

�
ei!td! D sint

�t
:

The reconstruction (or extrapolation) of the full signal f given the detected signal
g requires the solution of the convolution equation

g.t/ D
Z 1

�1
sin ..t � �//
�.t � �/ f .�/ d�:

The problem of extrapolating a band-limited signal is then seen to be mathematically
the same as deblurring the effect of an instrument with the one-dimensional point
spread function

k.t/ D sin .t/

�t
:

PET

CT scanning with X-rays is an instance of transmission tomography. A decade and
a half prior to Cormack’s publications on transmission tomography, an emission
tomography technique, now known as PET (positron transmission tomography),
was proposed [72]. In PET, a metabolically active tracer in the form of a positron-
emitting isotope is injected into an area for which it has an affinity and taken up
(metabolized) by an organ. The isotope emits positrons that immediately combine
with free electrons in so-called annihilation events, which result in the ejection
of two photons (� -rays) along oppositely directed collinear rays. When a pair of
detectors located on an array surrounding the body pick up the simultaneous arrival
of two photons, one at each detector, respectively, an annihilation event is assumed
to have taken place on the segment connecting the two detectors. In PET, the data
collected from a very large number of such events is used to construct a two-
dimensional tomographic slice of the isotope distribution. Because the uptake of the
isotope is metabolically driven, PET is an effective tool for studying metabolism
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giving it a diagnostic advantage over X-ray CT scanning. A combination of an
X-ray CT scan with a PET scan provides the diagnostician anatomical information
(distribution of attenuation coefficient) and physiological information (density of
metabolized tracer isotope), respectively.

If f W R2 ! R (we consider only a simplified version of 2D-PET) is the density
of the metabolized tracer isotope, then the number of annihilations occurring along
the coincidence line L connecting two detectors is proportional to the line integral

Z
L

f ds:

That is, the observed counts of annihilation events are measured by the Radon
transform of the density f . However, this does not take account of attenuation
effects and can under represent features of deep-seated tissue. If the attenuation
distribution is �. � ; � /, and the pair of photons resulting from an annihilation event
on the coincidence line L traverse oppositely directed rays LC and L� of L,
emanating from the annihilation site, then the detected attenuated signal takes the
form

g D
Z
L

e
� R

LC
�du
e� R

L�
�dufds

D e� R
L �du

Z
L

fds:

The model operator may now be viewed as a bivariate operator K.�; f / D g, in
which the operator K. �; f / is nonlinear and the operator K.�; � / is linear. In soft
tissue the attenuation coefficient is essentially zero, and therefore the solution of
the inverse problem is accomplished by a Radon inversion of K.0; � /. PET scans
may be performed in combination with X-ray CT scans; the CT scan provides the
attenuation coefficient, which may then be used in the model above to find the
isotope density. See [52] for an extensive survey of emission tomography.

SomeMathematics for Inverse Problems

I Philosophy is written in that great book which ever lies before our
gaze – I mean the universe . . . . The book is written in the
mathematical language . . . without which one wanders
in vain through a dark labyrinth.
Galileo Galilei

Hilbert space is a familiar environment that is rich enough for a discussion of the
chief mathematical issues that are important in the theory of inverse problems. For
the most part we restrict our attention to real Hilbert spaces. The inner product and
associated norm will be symbolized by h � ; � i and k � k, respectively:



22 C. Groetsch

kxk D
p
hx; xi:

We assume the reader is familiar with the basic properties of inner product spaces
(see, e.g., [18, Chap. I]), including the Cauchy–Schwarz inequality

jhx; yij � kxkkyk:

A Hilbert space H is complete, that is, Cauchy sequences in H converge:

if lim
n;m!1 kxn � xmk D 0; then kxn � xk ! 0;

for some x 2 H . The smallest (in the sense of inclusion) Hilbert space that contains
a given inner product space is known as the completion of the inner product space.
(Every inner product space has a unique completion.)

The space, denoted L2Œa; b�, of measurable functions on an interval Œa; b� whose
squares are Lebesgue integrable, with inner product

hf; gi D
Z b

a

f .t/g.t/ dt;

is the prototypical example of a Hilbert space. The Sobolev space of order m,
H.m/Œa; b�, is the completion with respect to the norm

kf k0 D
 

mX
kD0

kf .k/k2
0

!1=2

;

associated with the inner product

hf; gim D
mX
kD0

hf .k/; g.k/i0;

of the space of functions havingm continuous derivatives on Œa; b�. Here h � ; � i0 and
k � k0 are the L2Œa; b� norm and inner product; of course, H.0/Œa; b� D L2Œa; b�.

Two vectors x and y in a Hilbert spaceH are called orthogonal, denoted x ? y,
if hx; yi D 0. The Pythagorean Theorem,

x ? y”kx C yk2 D kxk2 C kyk2;

is a key notion that suggests the transfer of familiar geometrical ideas from
Euclidean space to Hilbert space. The orthogonal complement of a set S is the
closed subspace

S? D fx 2 H W x ? s; for all s 2 Sg:

www.allitebooks.com

http://www.allitebooks.org
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It is not difficult to show that if S is a subspace, then S?? D S , where NS is the
closure of S , that is, the smallest closed subspace that containsS . A closed subspace
S of a Hilbert space H engenders a Cartesian decomposition of H , symbolized by
H D S ˚ S?, meaning that each x 2 H has a unique representation of the form
x D x1 C x2, where x1 2 S is the projection of x onto S :

kx � x1k D inf fkx � yk W y 2 Sg;

and similarly x2 is the projection of x onto S?. The projection of a vector x onto a
closed subspace S is denoted by PSx.

A set of mutually orthogonal vectors each of which has unit norm is called an
orthonormal set. An orthonormal set S is complete if S? D f0g. A complete
orthonormal system for a Hilbert space is a sequence of vectors in H , which is
complete and orthonormal. For example, fsinn�t W n D 1; 2; 3; : : :g is a complete
orthonormal system for the Hilbert space L2Œ0; 1�. Each vector x 2 H has a
convergent Fourier expansion in terms of a complete orthonormal system f'ng1nD1
forH :

x D
1X
nD1

hx; 'ni'n;

of which Parseval’s identity is an immediate consequence

kxk2 D
1X
nD1

jhx; 'nij2:

Weak Convergence
“Weak” notions are crucial to our development of mathematics for inverse problems.
Suppose the class of functions of interest forms a real Hilbert space H with an
inner product h � ; � i and associated norm k � k. A functional is a mapping from H

to R. It is helpful to think of a functional as a measurement on elements of H .
Proportionality and additivity are natural features of most measuring processes. A
functional F W H ! R with these features, that is, satisfying

F.˛x C ˇy/ D ˛F.x/C ˇF.y/

where ˛ and ˇ are scalars and x; y 2 H , is called a linear functional. Another
common and highly desirable feature of a measurement process is continuity:
elements of H which are nearly the same should result in measurements that are
nearly the same. In mathematical terms, a functional F is continuous if, as n!1,

kxn � xk ! 0 implies jF.xn/ � F.x/j ! 0:
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For example, if the Hilbert space isL2Œ0; T �, the space of square integrable functions
on Œ0; T �, then the average value functional,

F.x/ D 1

T

Z T

0
x.�/ d�;

is a continuous linear functional. (This is an immediate consequence of the Cauchy–
Schwarz inequality.)

The Riesz Representation Theorem characterizes continuous linear functionals
on a Hilbert space:

A continuous linear functional F on H has a unique representation of the form

F.x/ D hx; 'i
for some ' 2 H .

This result is so fundamental that it is worthwhile to sketch a micro-proof. We may
assume that F is not identically zero (otherwise, take ' D 0), and hence there is a
z 2 H , with F.z/ D 1, which is orthogonal to the closed subspace

N D fx 2 H W F.x/ D 0g:

Then x � F.x/z 2 N for all x 2 H , and hence ' D z=kzk2 fits the bill

0 D hx � F.x/z; z=kzk2i D hx; 'i � F.x/:

Any two distinct vectors in H are distinguishable by some measurement in the
form of a continuous linear functional. Indeed, if hx � y; 'i D 0 for all ' 2 H ,
then x D y (set ' D x � y). However, it is possible for a sequence of vectors
fxng, which does not converge in H to any vector, nevertheless to be ultimately
indistinguishable from some vector x by bounded linear functionals. This is the idea
of weak convergence. We say that fxng converges weakly to x, symbolized xn * x,
if hxn; 'i ! hx; 'i for every ' 2 H . The simple identity

kx � xnk2 D hx � xn; x � xni D kxk2 C kxnk2 � 2hxn; xi

shows that if xn * x and kxnk ! kxk, then xn converges strongly to x, that is,
kxn � xk ! 0.

In a Hilbert space, every sequence of vectors whose norms are uniformly
bounded has a subsequence that is weakly convergent (e.g., [18], p. 205). We
note that any complete orthonormal system f'ng converges weakly to zero, for by
Parseval’s identity X

n

jhx; 'nij2 D kxk2;

and hence hx; 'ni ! 0 as n!1 for each x 2 H .
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A set is called weakly closed if it contains the weak limit of every weakly
convergent sequence of vectors in the set. Hilbert spaces have the following feature
(see, e.g., [30]), which is fundamental in the theory of optimization:

Suppose C is a weakly closed convex subset of a Hilbert space H . For each x 2 H , there
is a unique vector PC .x/ 2 C such that

kx � PC .x/k D inffkx � uk W u 2 C g:

PC .x/ is called the metric projection of x onto C . It can be shown that a closed
convex set is also weakly closed.

Linear Operators
A bounded linear operator from a Hilbert space H1 into a Hilbert space H2 is a
mapping K W H1 ! H2, which is linear, K.˛x C ˇy/ D ˛Kx C ˇKy, and for
which the number

kKk D sup fkKxk=kxk W x ¤ 0g

is finite. Note that we have used the same symbol for the norm in each of the spaces;
this generally will be our practice in the sequel. If K is a bounded linear operator,
then K is (uniformly) continuous since

kKx �Kyk D kK.x � y/k � kKkkx � yk:
For our purposes, the most cogent example of a bounded linear operator is an

integral operatorK W L2Œa; b�! L2Œc; d � of the form

Kf.t/ D
Z b

a

k.t; s/f .s/ ds; c � t � d; (7)

where k. � ; � / 2 L2.Œc; d � � Œa; b�/ is called the kernel of the integral operator. The
kernel is called degenerate if it has the form

k.t; s/ D
mX
jD1

Tj .t/Sj .s/

where the Tj and the Sj are each linearly independent sets of functions of a single
variable. In this case the range, R.K/, of the operator K is the finite-dimensional
subspace

R.K/ D spanfTj W j D 1; : : : ; mg

and

Kf.t/ D
mX
jD1

hk.t; � /; f iTj .t/;

where h � ; � i is the L2Œa; b� inner product.
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The adjoint of a bounded linear operator K W H1 ! H2 is the bounded linear
operatorK� W H2 ! H1, which satisfies

hKx; yi D hx;K�yi

for all x 2 H1 and y 2 H2. For example, by changing the order of integration, one
can see that the adjoint of the integral operator (7) is

K�g.s/ D
Z d

c

k.u; s/g.u/ du:

A bounded linear operator K W H ! H is called self-adjoint if K� D K . The
null-space of a bounded linear operatorK W H1 ! H2 is the closed subspace

N.K/ D fx 2 H1 W Kx D 0g:

Note that N.K�K/ D N.K/ for if x 2 N.K�K/, then

0 D hK�Kx; xi D hKx;Kxi D kKxk2:

There are fundamental relationships between the null-space and the range

R.K/ D fKx W x 2 H1g;

of a linear operator and its adjoint. In fact, y 2 R.K/? if and only if

0 D hKx; yi D hx;K�yi

for all x 2 H1, and hence R.K/? D N.K�/. It follows that R.K/ D R.K/?? D
N.K�/?. Replacing K by K� in these relations (noting that K�� D K), we obtain
the four fundamental relationships:

R.K/? D N.K�/; R.K/ D N.K�/?

R.K�/? D N.K/; R.K�/ D N.K/?:

Examples in a previous section have highlighted the unstable nature of solutions
of inverse problems. This instability is conveniently phrased in terms of linear
operators that are unbounded. Unbounded linear operators are typically defined only
on restricted subspaces of the Hilbert space. For example,L2Œ0; �� contains discon-
tinuous, and hence nondifferentiable, functions. But the differentiation operator may
be defined on the proper subspace of L2Œ0; �� consisting of differentiable functions
with derivatives in L2Œ0; ��. This differentiation operator is unbounded since
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����1

n
sin n2t

����
2

D �

2n2
! 0 as n!1;

while

���� ddt
�

1

n
sinn2t

�����
2

D �

2
n2 !1 as n!1:

The reverse diffusion process is also governed by an unbounded operator. As seen
in (5), the operator L, which maps the temperature distribution g.x/ D u.x; T / to
the initial temperature distribution f .x/ D u.x; 0/, is defined on the subspace

D.L/ D
(
g 2 L2Œ0; �� W

1X
nD1

e2kn2T jbnj2 <1
)
;

where

bn D 2

�

Z �

0
g.s/ sin ns ds:

L is unbounded because the functions 'm.s/ D sinms reside in D.L/ and satisfy
k'mk2 D �=2, but by the orthogonality relationships,

L'm D ekm2T 'm;

and hence kL'mk2 D e2km2T �=2!1 as m!1.

Compact Operators and the SVD
A bounded linear operatorK W H1 ! H2 of the form

Kx D
rX

jD1

hx; vj iuj ; (8)

where fuj grjD1 is a linearly independent set of vectors in H2 and fvj grjD1 is a set
of vectors in H1, is called an operator of finite rank (with rank D r). For example,
an integral operator on L2Œa; b� with a degenerate kernel is an operator of finite
rank. Finite rank operators transform weakly convergent sequences into strongly
convergent sequences: if xn * x, then

Kxn D
rX

jD1

hxn; vj iuj !
rX

jD1

hx; vj iuj D Kx:
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More generally, a linear operator is called compact if it enjoys this weak-to-strong
continuity, that is, if xn * x implies that Kxn ! Kx. In terms of our metaphor
of bounded linear functionals as measurements, one could say that if the linear
operator K modeling an inverse problem is compact, and if all measurements on a
sequence of functions fxng are ultimately indistinguishable from the corresponding
measurements on x, then the model values Kxn are ultimately indistinguishable
fromKx. That is, causes, which are ultimately indistinguishable by linear measure-
ment processes, result in effects that are ultimately indistinguishable. It is therefore
not surprising that compact operators occur frequently in models of linear inverse
problems.

Erhard Schmidt’s theory of singular functions, now called the singular value
decomposition (SVD), is the most versatile and effective tool for the analysis of
compact linear operators. (The SVD has been rediscovered several times in various
contexts; for the curious history of the SVD, see [65].) The SVD extends the
representation (8) in a particularly useful way. A singular system fvj ; uj I�j g1jD1
for a compact linear operator K bundles a complete orthonormal system fvj g1jD1

for N.K/?, consisting of eigenvectors of K�K; a complete orthonormal system
fuj g1jD1 for N.K�/? D R.K/, consisting of eigenvectors of KK�; and a sequence
of positive numbers �j , called singular values of K . The singular values and
singular vectors are tied together by the relationships

Kvj D �j uj ; K�uj D �j vj ; j D 1; 2; 3; : : : :

Every compact linear operator has a singular system, and the action of the operator
may be expressed in terms of the SVD as

Kx D
1X
jD1

�j hx; vj iuj (9)

In case K has finite rank r , this sum terminates at j D r , and otherwise

�j ! 0; as j !1:

We shall see that this fact is singularly important in the analysis of inverse problems.
As an example of the SVD of a nonself-adjoint compact operator, consider the

integral operatorK W L2Œ0; ��! L2Œ0; �� defined by

.Kf /.t/ D
Z �

0
h.t; u/f .u/ du

where

h.t; u/ D
�

1; 0 � u � t
0; t < u � �:



Linear Inverse Problems 29

One can verify that a singular system fvj ; uj I�j g1jD1 for this operator is

vj .t/ D
r

2

�
cos

�
2j C 1

2
t

�
; uj .s/ D

r
2

�
sin

�
2j C 1

2
s

�
; �j D 2

2j C 1
:

A compact operator has closed range if and only if it has finite rank. This follows
from the SVD and the open mapping theorem (e.g., [18], p. 166). Indeed, if K is
compact and R.K/ is closed, then the restricted operator K W N.K/? ! R.K/ is
one-to-one and onto, and hence has a bounded inverse. That is, there is a positive
numberm such that kKxk � mkxk for all x 2 N.K/?. But then, by (9),

�j D �j kujk D kKvjk � mkvjk D m > 0;

and hence K has only finitely many singular values for otherwise �j ! 0. This
result is highly significant in inverse theory for it says that finite rank linear models,
when pushed too far toward the limiting case of an operator of infinite rank, will
inevitably result in instability.

In 1910, Emil Picard [60] established a criterion that characterizes the existence
of solutions of an equation of the first kind

Kx D y; (10)

whereK is a compact linear operator. Picard’s criterion plays a role in inverse theory
analogous to that which the Fredholm alternative plays for integral equations of the
second kind.

Since fvj g is a complete orthonormal system for N.K/?, the series

1X
jD1

jhx; vj ij2

is convergent (and equals kPN.K/?xk2). However, if y D Kx 2 R.K/, then

hx; vj i D ��1
j hx;K�uj i D ��1

j hKx; uj i D ��1
j hy; uj i;

and so

1X
jD1

��2
j jhy; uj ij2 <1

is a necessary condition for y 2 R.K/.
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On the other hand, this condition guarantees that the series

x D
1X
jD1

��1
j hy; uj ivj (11)

is convergent inR.K/? and the singular value relations show thatKx D PN.K�/?y.
Taken together these results establish the Picard Criterion:

y 2 R.K/, y 2 N.K�/? and
1X
jD1

��2
j jhy; uj ij2 <1: (12)

If y satisfies Picard’s criterion, then y D Kx where x is given by (11).

TheMoore–Penrose Inverse
If y … R.K/, then the equationKx D y has no solution, but this should not prevent
one from doing the best one can to try to solve the problem. Perhaps the best that
can be done is to seek a vector u that is as near as possible to serving as a solution.
A vector u 2 H1 that minimizes the quadratic functional

F.x/ D kKx � yk2

is called a least squares solution of Kx D y. It is not hard to see that a least
squares solution exists if and only if y belongs to the dense subspaceR.T /CR.T /?
of H2. Also, as the geometry suggests, u is a least squares solution if and only if
y � Ku 2 R.K/? D N.K�/, and hence least squares solutions are vector v that
satisfy the so-called normal equation

K�Kv D K�y: (13)

Furthermore, the solution set of (13) is closed and convex and therefore contains
a unique vector nearest to the origin (i.e., of smallest norm), say v�. This smallest
norm least squares solution v� lies in N.K/?, for otherwise P v� ¤ 0, where P is
the orthogonal projector onto N.K/. The Pythagorean theorem then gives

kv�k2 D kv� � P v�k2 C kP v�k2:

But, since K�KP v� D 0, this implies that v� � P v� is a least squares solution with
norm smaller than that of v�. This contradiction ensures that v� 2 N.K/?.

The operatorK� W D.K�/! N.K/?, which associates with each y in the dense
subspace D.K�/ D R.K/CR.K/? ofH2 the unique minimum norm least squares
solution K�y 2 N.K/? of the equation Kx D y, is called the Moore–Penrose
generalized inverse of K . (E. H. Moore died when Roger (now Sir Roger) Penrose
was an infant; [5] tells the story of how the names of both men came to be associated
with the generalized inverse.)
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If K is a compact linear operator with SVD fvj ; uj I�j g and y 2 D.K�/, then
the vector

1X
jD1

1

�j
hy; uj ivj

is well defined by Picard’s criterion, resides in N.K/?, and is a least squares
solution. Therefore,

K�y D
1X
jD1

1

�j
hy; uj ivj : (14)

The operator K� so defined is linear, but it is unbounded (unless K has finite rank)
since

kunk D 1; but kK�unk D 1=�n !1 as n!1: (15)

There is an immense literature on generalized inverses; see [54] for a start.

Alternating Projection Theorem
Draw a pair of intersecting lines. Take a point at random in the plane spanned by the
lines, and project it onto the first line. Then project that point onto the second line,
and continue in this manner projecting alternately onto each line in turn. It soon
becomes apparent that the sequence of points so generated zigzags and converges
to the point that is common to both lines. In 1933, von Neumann showed the same
behavior for two closed subspaces S1 and S2 of a Hilbert spaceH . Namely, for each
x 2 H ,

.PS2PS1/
nx ! PS2\S1x as n!1;

where PW stands for the orthogonal projector onto the closed subspace W . This
result extends easily to the case where S1 and S2 are translates of closed subspaces,
that is, closed affine sets (see, e.g., [18, 35] for proofs). In fact, a modification
of the method, due to Boyle and Dykstra (see [18], p. 213), provides a sequence
that converges to the metric projection onto the intersection of a finite collection of
closed convex sets.

Stefan Kaczmarz [48] developed an alternating projection algorithm, indepen-
dently of von Neumann, for approximating solutions of underdetermined systems
of linear algebraic equations. (See [57] concerning Kaczmarz’s early and tragic
demise.) A solution Ex 2 Rn of a system of m linear equations in n unknowns with
coefficient matrix A and right-hand side Eb lies in the intersection of the hyperplanes

�i D fEx 2 Rn W hEai ; Exi D big; i D 1; 2; : : : ; m;
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where Eai is the i th row vector of A. Kaczmarz’s algorithm, which consists of
successively and cyclically projecting onto these hyperplanes, produces a sequence
of vectors that converges to that vector in the intersection of the hyperplanes,
which is nearest to the initial approximation (see [20] for a complete treatment
of the method). Kaczmarz’s method has come to be known as ART (the algebraic
reconstruction technique) in the tomography community.

4 Numerical Methods

I All of exact science is dominated by
the idea of approximation.
Bertrand Russell

Tikhonov Regularization

The unboundedness of the operator K�, displayed in (15), is a fundamental
challenge when solving linear inverse problems of the form Kx D y. This
unboundedness is manifested as instability when the data vector y contains errors,
which is always the case in practical circumstances as the data result from obser-
vation and measurement. Small errors in high-order singular components hy; uni (n
large) will be magnified by the factor 1=�n in the representation (14), resulting in
large deviations in the computed solution. Such instabilities in numerical solutions
were noticed from the very beginning of the use of digital computers to solve
linear inverse problems (see [31] for examples and references). The development
of theoretical strategies to mitigate this instability is known as regularization
theory.

One way to stabilize the solution process is to restrict the notion of solution.
Tikhonov’s classic result [66] of 1943 is an instance of this idea. In that paper
Tikhonov treated the inverse problem of determining the spatial distribution of a
uniform star-shaped mass lying below the horizontal surface from measurements
of the gravitational potential on the surface. He showed that the inverse problem
becomes well posed if the forward operator is restricted to a certain compact set.
Another approach is to modify the forward operator itself without a restriction on
its domain. In what has come to be known as Tikhonov regularization, the notion
of solution is generalized to the minimum norm least squares solution, which is
unstable, but a stable approximation to this generalized solution, depending on a
regularization parameter, is constructed.

The idea of Tikhonov regularization may be introduced from either an algebraic
or a variational viewpoint. Algebraically, the method, in its simplest form, consists
in replacing the normal equation (13) with the second kind equation

K�KvC ˛v D K�y; (16)

www.allitebooks.com
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where ˛ is a positive parameter. The key point is that the problem of solving (16) is
well posed. Indeed,

kxk2kK�K C ˛Ik � h.K�K C ˛I/x; xi D kKxk2 C ˛kxk2 � ˛kxk2;

and hence .K�KC˛I/�1 is a bounded linear operator; in fact, k.K�KC˛I/�1k �
1=˛. The significance of this fact is that for fixed ˛ > 0, the approximation

x˛ D .K�K C ˛I/�1K�y (17)

depends continuously on y. Specifically, suppose yı is an observed version of
y satisfying ky � yık � ı, and let xı˛ be the approximation formed using this
approximate data, that is,

xı˛ D .K�K C ˛I/�1K�yı:

From the SVD we have

x˛ � xı˛ D
1X
jD1

�j

�2
j C ˛

hy � yı; uj ivj ;

and hence

��x˛ � xı˛
��2D

1X
jD1

�2
j

�2
j C ˛

1

�2
j C ˛

jhy � yı; uj ij2

� 1
˛

P1
jD1 jhy � yı; uj ij2 � ı2=˛:

(18)

If the minimum norm least squares solution K�y satisfies the source condition
K�y D K�Kw, for some w 2 H1, then one can show that

K�y � x˛ D ˛.K�K C ˛I/�1K�Kw

and hence

kK�y � x˛k2 D ˛2
1X
jD1

 
�2
j

�2
j C ˛

!2

jhw; vj ij2 � ˛2kwk2: (19)

Combining this with (18), we see that if K�y 2 R.K�K/, then

��xı˛ �K�y
�� � ı=p˛ CO.˛/:
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Therefore, an a priori choice of the regularization parameter of the form

˛ D ˛.ı/ D Cı2=3; (20)

yields a convergence rate of the form

���xı˛.ı/ �K�y
��� D O.ı2=3/: (21)

This two thirds power rate is an asymptotic “brick wall” for Tikhonov regularization
in the sense that it is impossible to uniformly improve it to a o.ı2=3/ rate unless the
compact operator K has finite rank (see [27]). Roughly speaking, this says that
the best one can hope for is 2m-digit accuracy in the solution if there is 3m-digit
accuracy in the data.

The Tikhonov approximation (17) has a variational characterization that is useful
in both theoretical analysis and computational implementation. The equation (16)
that characterizes the Tikhonov approximation is the Euler equation for the func-
tional

F˛. � Iy/ D kK � � yk2 C ˛k � k2; (22)

and hence the approximation (17) is a global minimizer of (22). This opens
the possibility of applying standard optimization techniques for calculating the
Tikhonov approximation. Next we illustrate the usefulness of the variational
characterization in a convergence analysis for an a posteriori selection technique
for the regularization parameter known as Morozov’s discrepancy principle.

The a priori parameter selection criterion (20) is of theoretical interest as it gives
information on the order of magnitude of the regularization parameter that can be
expected to result in a convergent procedure. However, a posteriori methods of
choosing the regularization parameter that depend on the actual progress of the
computations would be expected to lead to more satisfactory results. Morozov’s
discrepancy principle [53] is the earliest parameter choice strategy of this type.
Morozov’s idea (which was presaged by Phillips [31, 59]) is to choose the regu-
larization parameter in such a way that the size of the residual

��Kxı˛ � gı
�� is equal

to error level in the data:

��Kxı˛ � yı
�� D ı: (23)

It should be recognized that this condition contains some “slack” as ı, the bound for
the data error, might not be tight. Nevertheless, this choice is not only possible, but
it leads to a convergent procedure, as we now show.

If kyık > ı, that is, there is more signal than noise in the data, and if y 2 R.K/,
then there is a unique positive parameter ˛ satisfying (23). To see this, we use the
SVD
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��Kxı˛ � yı
��2 D

1X
jD1

 
˛

�2
j C ˛

!2

jhyı; uj ij2 C kPyık2 (24)

where P is the orthogonal projector of H2 onto R.K/?. From this we see that the
real function

 .˛/ D ��Kxı˛ � yı
��

is a continuous, strictly increasing function of ˛ satisfying (since Py D 0)

lim
˛!0C

 .˛/ D kPyık D kPgı � Pgk � kyı � yk � ı

and

lim
˛!1 .˛/ D kyık > ı:

The intermediate value theorem then guarantees a unique ˛ D ˛.ı/ satisfying (23).
We now show that the choice ˛.ı/ as given by the discrepancy method (23) leads

to a regular scheme for approximatingK�y:

xı˛.ı/ ! K�y as ı ! 0:

To this end it is sufficient to show that for any sequence ın ! 0, there is
a subsequence, which we will denote by fıkg, that satisfies xık˛.ık/ ! K�y.
The argument relies on the following previously discussed facts: norm-bounded
sequences contain a weakly convergent subsequence, and weak convergence along
with convergence of the norms implies strong convergence.

We assume that y 2 R.K/ and that K W H1 ! H2 is a compact linear
operator, and we let x D K�y. That is, x is the unique vector in N.K/? satisfying
Kx D y.

The variational characterization of the Tikhonov approximation xı˛.ı/ as the

global minimizer of the quadratic functional F˛. � Iyı/ (see (22)) implies that

F˛.ı/

�
xı˛.ı/Iyı

�
� F˛.ı/.xIyı/;

that is,

ı2 C ˛.ı/
���xı˛.ı/

���2 D
���Kxı˛.ı/ � yı

���2 C ˛.ı/
���xı˛.ı/

���2

� F˛.ı/.x/ D ky � yık2 C ˛.ı/kxk2

� ı2 C ˛.ı/kxk2
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and hence
���xı˛.ı/

��� � kxk. Therefore, for any sequence ın ! 0, there is a

subsequence ık ! 0 with xık˛.ık / * w for some w. But

xı˛.ı/ D K�.KK� C ˛.ı/I /�1yı 2 R.K�/ � N.K/?

and N.K/? is weakly closed, and so w 2 N.K/?. Furthermore,

���Kxık˛.ık/ � yık
���! 0

and hence Kxık˛.ık/ ! y. But as K is compact, Kxık˛.ık/ ! Kw, and it follows that

Kw D y and w 2 N.K/?, that is, w D x. Since
���xık˛.ık/

��� � kxk, we then have

kxk2 D lim
k!1

D
x
ık
˛.ık /

; x
E
� lim

k!1

���xık˛.ık /
��� � kxk

and therefore

kxk � lim
k!1

���xık˛.ık /
��� � limk!1

���xık˛.ık/
��� � kxk:

So we have shown that xık˛.ık/ * x and
���xık˛.ık /

��� ! kxk, and hence xık˛.ık / ! x,

completing the proof.
It can be shown that, under the source condition x 2 R.K�/, Tikhonov’s method

with parameter choice by the discrepancy principle (23) achieves an asymptotic
order of accuracyO.

p
ı/; however, a swifter rate of o.

p
ı/ is generally impossible

except in the case whenK has finite rank [26]. Engl and Gfrerer (see [19, Chap. 4])
have developed a modification of the discrepancy principle that achieves the optimal
order of convergence.

Our sketch of the basic theory of Tikhonov regularization has assumed that
the regularization functional, which augments the least square objective functional
kK � � yk2, is (the square of) a norm. (Note however that while the same symbol
is used for the norm in each of the spaces H1 and H2, these norms may be distinct.
In his original paper [67], Tikhonov used a Sobolev norm on the solution space and
an L2 norm on the data space.) Phillips [59], in a paper that barely predates that of
Tikhonov, used a regularizing semi-norm – the L2 norm of the second derivative.
In all of these cases, the equation characterizing the regularized approximation is
linear. However, certain non-quadratic regularizing functionals, leading to nonlinear
problems for determining the regularized approximation, are found to be effective
in imaging science. Of particular note is the total variation, or TV, functional:

TV.u/ D
Z


jruj;
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where u W  � Rn ! R. Regularization now consists of minimizing the augmented
least squares functional

F˛.u/ D kKu � yk2
L2./

C ˛TV.u/;

where K is the identity operator for denoising problems, while for deblurring
problems,K is the blurring operator associated with a known point spread function.
A full exposition may be found in [62].

Iterative Regularization

Ordinary Tikhonov regularization consists in minimizing the functional

F˛.z/ D kKz� yk2 C ˛kzk2

for a range of positive regularization parameters ˛. In iterated Tikhonov regular-
ization, ˛ > 0 is fixed, an initial approximation x0 is selected (we take x0 D 0
for simplicity; a general initial approximation requires only small modifications
to the arguments), and successive approximations are updated by a multistage
optimization scheme in which the nth approximation is chosen to minimize the
functional

Fn.z/ D kKz � yk2 C ˛kz � xn�1k2; n D 1; 2; 3; : : : (25)

This results in the iterative method

xn D .K�K C ˛I/�1.˛xn�1 CK�y/; n D 1; 2; 3; : : : :

The conventional proof of the convergence of iterated Tikhonov regularization
uses spectral theory. (See [41] for the more general case of nonstationary iterated
Tikhonov regularization.) However, the convergence of the method is also an
immediate consequence of the alternating projection theorem, as we now show.

Let H be the product Hilbert space H1 �H2 with norm j � j given by

j.x; y/j2 D kyk2 C ˛kxk2;

where ˛ is a fixed positive constant. Note that the graph

G D f.x;Kx/ W x 2 H1g

is a closed subspace of H. For a given y 2 H2, let

Ly D fu 2 H1 W Ku D Pyg;



38 C. Groetsch

Fig. 3 The geometry of
iterated regularization

where P is the orthogonal projector of H2 onto R.K/, be the set of least squares
solutions of Kx D y. One sees that y 2 D.K�/ if and only if Ly is nonempty.
If Ly D H1 � fPyg, then Ly is a closed affine set in the Hilbert space H, and
y 2 D.K�/, Ly \ G ¤ ø. Furthermore,

PLy\G.0; y/ D
�
K�y; Py

	
;

where PW stands for the metric projector of H onto a closed convex set W � H.
From the variational characterization (25), one sees that

PLy .x0; Kx0/ D PLy .0; 0/ D .0; Py/

and PG.0; Py/ D .x1; Kx1/; therefore .x1; Kx1/ D PGPLy .x0; Kx0/, and
generally

.xn;Kxn/ D PGPLy .xn�1; Kxn�1/ D : : : D .PGPLy /
n.0; y/:

This process of projecting in alternate fashion in the space H is illustrated in Fig. 3.
The alternating projection theorem then gives

.xn;Kxn/! PLy\G.0; y/ D .K�y; Py/; as n!1:

If xın are defined as in (25), with y replaced by yı , then it is not difficult to see that

��xn � xın
�� � pnky � yık;

and hence if ky � yık � ı and n D n.ı/ ! 1 as ı ! 0, in such as manner thatp
n.ı/ı ! 0, then xın.ı/ ! K�x.



Linear Inverse Problems 39

There are many other iterative methods for regularization of ill-posed problems
(see [19, 49]). Perhaps the simplest is based on the observation that for any � > 0,
the subspace N.K/? is invariant under the mapping

F.z/ D .I � �K�K/x C �K�y;

and K�y is the unique fixed point of F in N.K/?. Furthermore, if 0 < � <

1=kK�Kk, then F is a contraction and hence the iterative method

xnC1 D .I � �K�K/xn C �K�y (26)

converges to K�y for any x0 2 N.K/?. This method was studied for Fredholm
integral equations of the first kind by Landweber and independently by Fridman. It
has since become known as Landweber iteration [51]. For this method one can show
easily that if ky � yık � ı, and xın represents the approximation obtained by (26)
with y replaced by yı , then xın.ı/ ! K�y, if

p
n.ı/ı ! 0.

The theory of Landweber iteration has been developed for nonlinear operators,
including a stopping criterion based on the discrepancy principle, by Hanke et al.
[42] (see also [49]). See [40] for a very useful survey of iterative regularization
methods.

Discretization

I . . . numerical precision is the very soul of science . . .
D’Arcy Wentworth Thompson

The preceding discussion of regularization methods took place in the context
of general (infinite-dimensional) Hilbert space. However, practical numerical com-
putations are necessarily finitary. Passing from general elements in an infinite-
dimensional space to finitely represented approximations involves a process of
discretization. Discretization of an ill-posed problem can lead to a well-posed
finite-dimensional problem; however, this discretized version generally will be ill
conditioned. Regularization methods are meant to address this problem. There
are two approaches to constructing computable regularizations of linear inverse
problems; one could handle the ill posedness by first regularizing the infinite-
dimensional problem and then discretizing the result, or one could discretize the
original problem and then regularize the resulting ill-conditioned finite-dimensional
problem. We give a couple of examples of discretized regularizations of the
former type. (For results on discretized versions of general regularization methods,
see [34].)

A key point in the theoretical convergence analysis of regularization methods is
the interplay between the regularization parameter and the error properties of the
data. For example, assuming a source condition of the form K�y 2 R.K�K/, the
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balancing of the rate O.˛/ for the infinite-dimensional Tikhonov approximation
x˛ using “clean” data with the stability bound ı=

p
˛ for the approximation using

noisy data leads to the optimal rate O.ı2=3/ found in (21). To obtain an overall
convergence rate with respect to the error in data for discretized approximations,
it is necessary to juggle three balls: a theoretical convergence rate, a measure of
the quality of the discretization, and a stability bound. In both of the cases we
consider, the measure of quality of the discretization will be denoted by �m. In our
first example, �m measures how well a given finite-dimensional subspace Vm � H1

supports the operatorK , specifically,

�m D kK.I � Pm/k;

wherePm is the orthogonal projector ofH1 onto Vm. The smaller �m is, the better the
subspace Vm supports the operatorK . In the second example, the discretization of a
regularized version of a Fredholm integral equation of the first kind is accomplished
by applying a quadrature method to the iterated kernel that generates the operator
K�K . In this case, �m measures the quality of this quadrature. In both examples it is
shown that it is theoretically possible to match the optimal rate O.ı2=3/ established
for the infinite-dimensional approximation in (21).

The variational characterization (22) immediately suggests a Ritz approach
to discretization, namely, minimization of the Tikhonov functional over a
finite-dimensional subspace. Note that the global minimum x˛ of the functional
F˛. � Iy/ on H1 may be characterized by the condition

hKx˛ �Kx;Kvi C ˛hx˛; vi D 0; for all v 2 H1; (27)

where x D K�y. The bilinear form defined on H1 by

q.u; v/ D hKu; Kvi C ˛hu; vi

is an inner product on H1, and (27) may be succinctly expressed in terms of this
inner product as

q.x˛ � x; v/ D 0 for all v 2 H1:

Suppose that fVmg1mD1 is a sequence of finite-dimensional subspaces of H1

satisfying

V1 � V2 � V3 � : : : � H1 and [1
mD1Vm D H1:

The minimizer x˛;m of F˛. � Iy/ over the finite-dimensional subspace Vm satisfies

q.x˛;m � x; vm/ D 0 for all vm 2 Vm;
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and hence

q.x˛ � x˛;m; vm/ D 0 for all vm 2 Vm:

In other words, x˛;m D Pmx˛ , where Pm is the projector of H1 onto Vm, which is
orthogonal in the sense of the inner product q. � ; � /.

If j � jq denotes the norm on H1 associated with the inner product q. � ; � /, that is,

jzj2q D kKzk2 C ˛kzk2;

then, by the characteristic property of projectors,

jx˛ � x˛;mj2q D jx˛ �Pmx˛j2q � jx˛ � Pmx˛j2q;

wherePm is the projector ofH1 onto Vm associated with the (original) inner product
on H1. But then (since projectors are idempotent),

˛kx˛ � x˛;mk2 � jx˛ � x˛;mj2q � kKx˛ �KPmx˛k2 C ˛k.I � Pm/x˛k2

D kK.I � Pm/2x˛k2 C ˛k.I � Pm/x˛k2

� .�m C ˛/k.I � Pm/x˛k2;

where

�m D kK.I � Pm/k:

Therefore,

kx˛ � x˛;mk �
p

1C �m=˛ k.I � Pm/x˛k:

If K�y satisfies the source condition x D K�y 2 R.K�K/, say, x D K�Kw, then

.I � Pm/x˛ D .I � Pm/K�.KK� C ˛I/�1KK�Kw;

and hence

k.I � Pm/x˛k � �mkKwk:
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If �m D O.˛m/, then we find from (19),

kK�y � x˛;mk D O.˛m/:

In the case of approximate data yı satisfying ky � yık � ı, one can show, using
arguments of the same type as above, that a stability bound of the same form as (18)
holds for the finite-dimensional approximations:

��x˛;m � xı˛;m
�� � ı=p˛:

Taking these results together, we see that if K�y 2 R.K�K/ and ˛m D ˛m.ı/ is
chosen in such a way that ˛m D Cı2=3 and �m D O.˛m/, then the finite-dimensional
approximations achieve the optimal order of convergence:

���K�y � xı˛.m/;m
��� D O.ı2=3/:

Quadrature is another common discretization technique. If a linear inverse
problem is expressed as a Fredholm integral equation of the first kind

y.s/ D
Z b

a

k.s; t/x.t/dt; c � s � d;

mapping functions x 2 L2Œa; b� to function y 2 L2Œc; d �, then the Tikhonov
approximation x˛ is the solution of the well-posed Fredholm integral equation of
the second kind

Z d

c

k.u; s/y.u/du D ˛x˛.s/C
Z b

a

Qk.s; t/x˛.t/dt; a � s � b;

where the iterated kernel Qk. � ; � / is given by

Qk.s; t/ D
Z d

c

k.u; s/k.u; t/du; a � s; t � b:

If a convergent quadrature scheme with positive weights
n
w.m/j

om
jD1

, and nodesn
u.m/j

om
jD1

, is applied to the iterated kernel, a degenerate kernel

Qkm.s; t/ D
mX
jD1

w.m/j k
�

u.m/j ; s
�
k
�

u.m/j ; t
�
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results, converting the infinite-dimensional Tikhonov problem into the finite rank
problem

˛x˛;m C QKmx˛;m D K�y (28)

where

QKmz D
mX
jD1

w.m/j hkj ; zikj and kj .s/ D k
�

u.m/j ; s
�
:

The problem (28) is equivalent to an m � m linear algebraic system with a unique
solution. The convergence of the approximations resulting from this finite system
to the infinite-dimensional Tikhonov approximation x˛ 2 L2Œa; b� depends on the
number

�m D k QKm �K�Kk:

If ˛ D ˛.m/ ! 0 as m ! 1 and �m D O.˛.m//, then it can be shown that
x˛.m/;m ! K�y. Furthermore, a stability bound of the form O.ı=

p
˛/ holds under

appropriate conditions, and one can show that the optimal rateO.ı2=3/ is achievable
if the parameters governing the finite-dimensional approximations are appropriately
related [29]. A much more extensive analysis along these lines is carried out in [11].
For more on numerical methods for discrete inverse problems, see [43, 70].

5 Conclusion

I Eventually, we reach the dim boundary . . .
There, we measure shadows . . .
Edwin Hubble

The first book devoted exclusively to the mathematical theory of inverse and
ill-posed problems was that of Tikhonov and Arsenin [68]. Kirsch [50] is a fine
treatment of the general theory of inverse problems, and Engl et al. [19] is the best
comprehensive presentation of the theory of regularization for inverse and ill-posed
problems. Other useful books on the general topic are [46] and [69]. A number of
books and survey articles treat inverse theory in a specific context. Some of the
areas treated include astronomy [16], engineering [45], geophysics [58], imaging
[6,7,9,10,20,44,55,62], mathematical physics [24], oceanography [4,73], parameter
estimation [3], indirect measurement [2], and vibration analysis [23].
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Abstract
Large-scale inverse problems arise in a variety of significant applications in
image processing, and efficient regularization methods are needed to compute
meaningful solutions. This chapter surveys three common mathematical models
including a linear model, a separable nonlinear model, and a general nonlinear
model. Techniques for regularization and large-scale implementations are con-

J. Chung (�)
Virginia Tech, Blacksburg, VA, USA
e-mail: jmchung@vt.edu

S. Knepper • J.G. Nagy
Emory University, Atlanta, GA, USA
e-mail: nagy@mathcs.emory.edu

© Springer Science+Business Media New York 2015
O. Scherzer (ed.), Handbook of Mathematical Methods in Imaging,
DOI 10.1007/978-1-4939-0790-8_2

47

mailto:jmchung@vt.edu
mailto:nagy@mathcs.emory.edu


48 J. Chung et al.

sidered, with particular focus on algorithms and computations that can exploit
structure in the problem. Examples from image deconvolution, multi-frame blind
deconvolution, and tomosynthesis illustrate the potential of these algorithms.
Much progress has been made in the field of large-scale inverse problems, but
many challenges still remain for future research.

1 Introduction

Powerful imaging technologies, including very large telescopes, synthetic aperture
radar, medical imaging scanners, and modern microscopes, typically combine a
device that collects electromagnetic energy (e.g., photons) with a computer that
assembles the collected data into images that can be viewed by practitioners, such
as scientists and doctors. The “assembling” process typically involves solving an
inverse problem; that is, the image is reconstructed from indirect measurements of
the corresponding object. Many inverse problems are also ill-posed, meaning that
small changes in the measured data can lead to large changes in the solution, and
special tools or techniques are needed to deal with this instability. In fact, because
real data will not be exact (it will contain at least some small amount of noise or
other errors from the data collection device), it is not possible to find the exact
solution. Instead, a physically realistic approximation is sought. This is done by
formulating an appropriate regularized (i.e., stabilized) problem, from which a good
approximate solution can be computed.

Inverse problems are ubiquitous in imaging applications, including deconvo-
lution (or, more generally, deblurring) [1, 51], superresolution (or image fusion)
[18, 27], image registration [70], image reconstruction [74, 75], seismic imaging
[31], inverse scattering [15], and radar imaging [17]. These problems are referred to
as large-scale because they typically require processing a large amount of data (the
number of pixels or voxels in the discretized image) and systems with a large (e.g.,
109 for a 3D image reconstruction problem) number of equations. Mathematicians
began to rigorously study inverse problems in the 1960s, and this interest has
continued to grow over the past few decades due to applications in fields such as
biomedical, seismic, and radar imaging; see, for example, [12,28,47,49,99] and the
references therein.

We remark that the discussion in this chapter does not address some very
important issues that can arise in PDE-based inverse problems, such as adjoints
and proper meshing. Inverse problems such as these arise in important applications,
including PDE parameter identification, seismic imaging, and inverse scattering; we
refer those interested in these topics and applications to the associated chapters in
this handbook and the references therein.

This chapter discusses computational approaches to compute approximate solu-
tions of large-scale inverse problems. Mathematical models and some applications
are presented in Sect. 2. Three basic models are considered: a general nonlinear
model, a linear model, and a mixed linear/nonlinear model. Several regularization
approaches are described in Sect. 3. Numerical methods that can be used to compute



Large-Scale Inverse Problems in Imaging 49

approximate solutions for the three basic models, along with illustrative examples
from specific imaging applications, are described in Sect. 4. Concluding remarks,
including a partial list of open questions, are provided in Sect. 5.

2 Background

A mathematical framework for inverse problems is presented in this chapter,
including model problems and imaging applications. Although only a limited
number of imaging applications are considered, the model problems, which range
from linear to nonlinear, are fairly general and can be used to describe many other
applications. For more complete treatments of inverse problems and regularization,
see [12, 28, 47, 49, 50, 99].

Model Problems

An inverse problem involves the estimation of certain quantities using information
obtained from indirect measurements. A general mathematical model to describe
this process is given by

bexact D F.xexact/; (1)

where xexact denotes the exact (or ideal) quantities that need to be estimated and bexact

is used to represent perfectly measured (error-free) data. The function F is defined
by the data collection process and is assumed known. Typically, it is assumed that
F is defined on Hilbert spaces and that it is continuous and weakly sequentially
closed [29].

Unfortunately, in any real application, it is impossible to collect error-free data,
so a more realistic model of the data collection process is given by

b D F.xexact/C �; (2)

where � represents noise and other errors in the measured data. The precise form of
F depends on the application; the following three general problems are considered
in this chapter:

• For linear problems, F.x/ D Ax, where A is a linear operator. In this case, the
data collection process is modeled as

b D Axexact C �;

and the inverse problem is: given b and A, compute an approximation of xexact:

• In some cases, x can be separated into two distinct components, x.`/ and x.n`/,
with F.x/ D F �x.`/; x.n`/	 D A �x.n`/	 x.`/; where A is a linear operator defined
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by x.n`/. That is, the data b depends linearly on x.`/ and nonlinearly on x.n`/. In
this case, the data collection process is modeled as

b D A
�

x.n`/exact

�
x.`/exact C �;

and the inverse problem is: given b and the parametric form of A, compute
approximations of x.n`/exact and x.`/exact.

• If the problem is not linear or separable, as described above, then the general
nonlinear model,

b D F.xexact/C �;

will be considered. In this case, the inverse problem is: given b and F , compute
an approximation of xexact.

In most of what follows, it is assumed that the problem has been discretized, so x;b,
and � are vectors, and A is a matrix. Depending on the constraints assumed and the
complexity of the model used, problems may range from linear to fully nonlinear.
This is true of the applications described in the next subsection.

Imaging Applications

Three applications in image processing that lead to inverse problems are discussed
in this subsection. For each application, the underlying mathematical model is
described, and some background for the problem is presented. The formulation of
each of these problems results in linear, separable, and nonlinear inverse problems,
respectively.

Image Deblurring and Deconvolution
In many important applications, such as when ground-based telescopes are used to
observe objects in space, the observed image is degraded by blurring and noise.
Although the blurring can be partially avoided by using sophisticated and expensive
imaging devices, computational post-processing techniques are also often needed to
further improve the resolution of the image. This post-processing is known as image
deblurring. To give a precise mathematical model of image deblurring, suppose
x.t/; t 2 Rd , is a scalar function describing the true d -dimensional (e.g., for a
plane image containing pixels, d D 2) image. Then the observed, blurred, and noisy
image is given by

b.s/ D
Z


k.s; t/x.t/dt C �.s/; (3)
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where s 2 Rd and �.s/ represents additive noise. The kernel k.s; t/ is a function that
specifies how the points in the image are distorted and is therefore called the point
spread function (PSF). The inverse problem of image deblurring is: given k and b,
compute an approximation of x. If the kernel has the property that k.s; t/ D k.s�t/,
then the PSF is said to be spatially invariant; otherwise, it is said to be spatially
variant. In the spatially invariant case, the blurring operation, s k.s � t/x.t/dt, is
convolution, and thus the corresponding inverse problem is called deconvolution.

In a realistic problem, images are collected only at discrete points (pixels or
voxels) and are only available in a finite bounded region. Therefore, one must
usually work directly either with a semi-discrete model

b.sj / D
Z


k.sj ; t/x.t/dt C �j j D 1; : : : ; N

where N is the number of pixels or voxels in the observed image or with the fully
discrete model

b D Axexact C �;

where xexact;b, and � are vectors obtained by discretizing functions x, b, and �
and A is a matrix that arises when approximating the integration operation with,
for example, a quadrature rule. Moreover, a precise kernel representation of the
PSF may not be known but instead must be constructed experimentally from the
imaging system by generating images of “point sources.” What constitutes a point
source depends on the application. For example, in atmospheric imaging, the point
source can be a single bright star [53]. In microscopy, the point source is typically a
fluorescent microsphere having a diameter that is about half the diffraction limit of
the lens [24]. For general motion blurs, the PSF is described by the direction (e.g.,
angle) and speed at which objects are moving [56].

For spatially invariant blurs, one point source image and appropriate boundary
conditions are enough to describe the matrix A. This situation has been well studied;
algorithms to compute approximations of x can be implemented efficiently with fast
Fourier transforms (FFT) or other trigonometric transforms [1, 51]. More recently,
an approach has been proposed where the data can be transformed to the Radon
domain so that computations can be done efficiently with, for example, wavelet
filtering techniques [26].

Spatially variant blurs also occur in a variety of important applications. For
example, in positron emission tomography (PET), patient motion during the
relatively long scan times causes reconstructed images to be corrupted by nonlinear,
nonuniform spatially variant motion blur [33, 84]. Spatially variant blurs also occur
when the object and image coordinates are tilted relative to each other, as well
as in X-ray projection imaging [100], lens distortions [65], and wave aberrations
[65]. Moreover, it is unlikely that the blur is truly spatially invariant in any realistic
application, especially over large image planes.
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Various techniques have been proposed to approximately model spatially variant
blurs. For example, in the case of patient motion in PET brain imaging, a motion
detection device is used to monitor the position of the patient’s head during the
scan time. This information can then be used to construct a large sparse matrix
A that models the motion blur. Other, more general techniques include coordinate
transformation [68], image partitioning [93], and PSF interpolation [72, 73].

Multi-Frame Blind Deconvolution
The image deblurring problem described in the previous subsection assumes that the
blurring operator, or PSF, is known. However, in most cases, only an approximation
of the operator, or an approximation of parameters that defines the operator,
is known. For example, as previously mentioned, the PSF is often constructed
experimentally from the imaging system by generating images of point sources.
In many cases, such approximations are fairly good and are used to construct the
matrix A in the linear model. However, there are situations where it is not possible
to obtain good approximations of the blurring operator, and it is necessary to include
this knowledge in the mathematical model. Specifically, consider the general image
formation model

b D A
�

x.n`/exact

�
x.`/exact C � (4)

where b is a vector representing the observed, blurred, and noisy image and x.`/exact

is a vector representing the unknown true image to be reconstructed. A
�

x.n`/exact

�
is

an ill-conditioned matrix defining the blurring operator. For example, in the case of
spatially invariant blurs, x.n`/exact could simply be the pixel (image space) values of the
PSF. Or x.n`/exact could be a small set of parameters that define the PSF, such as with a
Zernike polynomial-based representation [67]. In general, the number of parameters
defining x.n`/exact is significantly smaller than the number of pixels in the observed
image. As in the previous subsection, � is a vector that represents unknown additive
noise in the measured data. The term blind deconvolution is used for algorithms that
attempt to jointly compute approximations of x.n`/exact and x.`/exact from the separable
inverse problem given by Eq. (4).

Blind deconvolution problems are highly underdetermined, which present many
challenges to optimization algorithms that can easily become trapped in local
minima. This difficulty has been well-documented; see, for example, [64, 67]. To
address challenges of nonuniqueness, it may be necessary to include additional
constraints, such as nonnegativity and bounds on the computed approximations x.n`/

and x.`/.
Multi-frame blind deconvolution (MFBD) [64, 67] reduces some of the

nonuniqueness problems by collecting multiple images of the same object, but
with different blurring operators. Specifically, suppose a set of (e.g., m) observed
images of the same object are modeled as

bi D A
�

x.n`/i

�
x.`/exact C �i ; i D 1; 2; : : : ; m: (5)
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Then, a general separable inverse problem of the form given by Eq. (4) can be
obtained by setting

b D

2
64

b1
:::

bm

3
75 ; x.n`/exact D

2
64

x.n`/1
:::

x.n`/m

3
75 ; � D

2
64
�1
:::

�m

3
75 :

Although multiple frames reduce, to some extent, the nonuniqueness problem,
they do not completely eliminate it. In addition, compared to single-frame blind
deconvolution, there is a significant increase in the computational complexity of
processing the large, multiple data sets.

There are many approaches to solving the blind and multi-frame blind deconvo-
lution problem; see, for example, [14]. In addition, many other imaging applications
require solving separable inverse problems, including super resolution (which is an
example of image data fusion) [18, 27, 57, 76], the reconstruction of 3D macro-
molecular structures from 2D electron microscopy images of cryogenically frozen
samples (Cryo-EM) [22, 35, 55, 66, 82, 88], and seismic imaging applications [40].

Tomosynthesis
Modern conventional X-ray systems that use digital technology have many benefits
to the classical film X-ray systems, including the ability to obtain high-quality
images with lower-dosage X-rays. The term “conventional” is used to refer to a
system that produces a 2D projection image of a 3D object, as opposed to computed
tomography (CT), which produces 3D images. Because of the inexpensive cost, low
X-ray dosage, and ease of use, digital X-ray systems are widely used in medicine,
from emergency rooms, to mammography, to dentistry.

Tomosynthesis is a technique that can produce 3D image information of an object
using conventional X-ray systems [25]. The basic idea underlying tomosynthesis
is that multiple 2D image projections of the object are taken at varying incident
angles, and each 2D image provides different information about the 3D object. See
Fig. 1 for an illustration of a typical geometry for breast tomosynthesis imaging.
The relationship between the multiple 2D image projections and the 3D object can
be modeled as a nonlinear inverse problem. Reconstruction algorithms that solve
this inverse problem should be able to reconstruct any number of slices of the 3D
object. Sophisticated approaches used for 3D CT reconstruction cannot be applied
here because projections are only taken from a limited angular range, leaving entire
regions of the frequency space unsampled. Thus, alternative approaches need to be
considered.

The mathematical model described in this section is specifically designed for
breast imaging and assumes a polyenergetic (i.e., multiple energy) X-ray source.
It is first necessary to determine what quantity will be reconstructed. Although
most X-ray projection models are derived in terms of the values of the attenuation
coefficients for the voxels, it is common in breast imaging to interpret the voxels
as a composition of adipose tissue, glandular tissue, or a combination of both [42].
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Fig. 1 Breast tomosynthesis example. Typical geometry of the imaging device used in breast
imaging

Thus, each voxel of the object can be represented using the percentage glandular
fraction, that is, the percentage of glandular tissue present in that voxel. If density
or attenuation coefficient values are desired, then these can be obtained from the
glandular fraction through a simple algebraic transformation.

Now assume that the 3D object is discretized into a regular grid of voxels and
that each of the 2D projection images is discretized into a regular grid of pixels.
Specifically, let N represent the number of voxels in the discretized 3D object and
let M be the number of pixels in a discretized 2D projection image. In practice, N
is on the order of a few billion and M is the order of a few million, depending on
the size of the imaging detector. The energy-dependent linear attenuation coefficient
for voxel j D 1; 2; : : :; N in the breast can be represented as

�.e/.j / D s.e/x.j /exact C z.e/;

where x.j /exact represents the percentage glandular fraction in voxel j of the “true”
object and s.e/ and z.e/ are known energy-dependent linear fit coefficients. This
type of decomposition to reduce the number of degrees of freedom, which is
described in more detail in [20], is similar to an approach used by De Man et al. [23]
for CT, in which they express the energy-dependent linear attenuation coefficient in
terms of its photoelectric component and Compton scatter component.

The projections are taken from various angles in a predetermined angular range,
and the photon energies can be discretized into a fixed number of levels. Let there
be n� angular projections and assume the incident X-ray has been discretized into
ne photon energy levels. In practice, a typical scan may have n� D 21 and ne D 43.
For a particular projection angle, compute a monochromatic ray trace for one energy
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level and then sum over all energies. Let a.ij / represent the length of the ray that
passes through voxel j , contributing to pixel i . Then, the discrete monochromatic
ray trace for pixel i can be represented by

NX
jD1

�.e/.j /a.ij / D s.e/
NX
jD1

x
.j /
exacta

.ij / C z.e/
NX
jD1

a.ij /: (6)

Using the standard mathematical model for transmission radiography, the i th pixel
value for the � th noise-free projection image, incorporating all photon energies
present in the incident X-ray spectrum, can be written as

b
.i/

� D
neX
eD1

%.e/ exp

0
@�

NX
jD1

�.e/.j /a.ij /

1
A ; (7)

where %.e/ is a product of the current energy with the number of incident photons
at that energy. To simplify notation, define A� to be an M � N matrix with entries
a.ij /. Then Eq. (6) gives the i th entry of the vector

s.e/A�xexact C z.e/A�1;

where xexact is a vector whose j th entry is x.j /exact and 1 is a vector of all ones.
Furthermore, the � th noise-free projection image in vector form can be written as

b� D
neX
eD1

%.e/ exp.�Œs.e/A�xexact C z.e/A�1�/; (8)

where the exponential function is applied component-wise.
Tomosynthesis reconstruction is a nonlinear inverse problem where the goal is

to approximate the volume, xexact, given the set of projection images from various
angles, b� ; � D 1; 2; : : ::; n� . This can be put in the general nonlinear model

b D F.xexact/C �;

where

b D

2
64

b1
:::

bn�

3
75 and F.x/ D

2
666664

neP
eD1

%.e/ exp.�Œs.e/A1xC z.e/A11�/

:::
neP
eD1

%.e/ exp.�Œs.e/An� xC z.e/An� 1�/

3
777775
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3 Mathematical Modeling and Analysis

A significant challenge when attempting to compute approximate solutions of
inverse problems is that they are typically ill-posed. To be precise, in 1902
Hadamard defined a well-posed problem as one that satisfies the following require-
ments:

1. The solution is unique;
2. The solution exists for arbitrary data;
3. The solution depends continuously on the data.

Ill-posed problems, and hence most inverse problems, typically fail to satisfy at
least one of these criteria. It is worth mentioning that this definition of an ill-
posed problem applies to continuous mathematical models and not precisely to the
discrete approximations used in computational methods. However, the properties
of the continuous ill-posed problem are often carried over to the discrete problem
in the form of a particular kind of ill-conditioning, making certain (usually high
frequency) components of the solution very sensitive to errors in the measured data;
this property is discussed in more detail for linear problems in section “Linear
Problems.” Of course, this may depend on the level of discretization; a coarsely
discretized problem may not be very ill-conditioned, but it also may not bear much
similarity to the underlying continuous problem.

Regularization is a term used to refer to various techniques that modify the
inverse problem in an attempt to overcome the instability caused by ill-posedness.
Regularization seeks to incorporate a priori knowledge into the solution process.
Such knowledge may include information about the amount or type of noise, the
smoothness or sparsity of the solution, or restrictions on the values the solution
may obtain. Each regularization method also requires choosing one or more
regularization parameters. A variety of approaches are discussed in this section.

The theory for regularizing linear problems is much more developed than it is
for nonlinear problems. This is due, in large part, to the fact that the numerical
treatment of nonlinear inverse problems is often highly dependent on the particular
application. However, good intuition can be gained by first studying linear inverse
problems.

Linear Problems

Consider the linear inverse problem

b D Axexact C �;

where b and A are known, and the aim is to compute an approximation of xexact. The
linear problem is a good place to illustrate the challenges that arise when attempting
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to solve large-scale inverse problems. In addition, some of the regularization
methods and iterative algorithms discussed here can be used in, or generalized for,
nonlinear inverse problems.

SVD Analysis
A useful tool in studying linear inverse problems is the singular value decomposition
(SVD). Anym � n matrix A can be written as

A D U†VT (9)

where U is anm�m orthogonal matrix, V is an n�n orthogonal matrix, and† is an
m�n diagonal matrix containing the singular values 
1 � 
2 � : : : � 
min.m;n/ � 0.
If A is nonsingular, then an approximation of xexact is given by the inverse solution

xinv D A�1b D
nX
iD1

uTi b

i

vi D
nX
iD1

uTi bexact


i
vi

„ ƒ‚ …
xexact

C
nX
iD1

uTi �

i

vi
„ƒ‚…

error

where ui and vi are the singular vectors of A (i.e., the columns of U and
V, respectively). As indicated above, the inverse solution is comprised of two
components: xexact and an error term. Before discussing algorithms to compute
approximations of xexact, it is useful to study the error term.

For matrices arising from ill-posed inverse problems, the following properties
hold:

• The matrix A is severely ill-conditioned, with the singular values 
i decaying to
zero without a significant gap to indicate numerical rank.

• The singular vectors corresponding to the small singular values tend to oscillate
more (i.e., have higher frequency) than singular vectors corresponding to large
singular values.

• The components
ˇ̌
uTi bexact

ˇ̌
decay on average faster than the singular values 
i .

This is referred to as the discrete Picard condition [49].

The first two properties imply that the high-frequency components of the error term
are highly magnified by division of small singular values. The computed inverse
solution is dominated by these high-frequency components and is in general a
very poor approximation of xexact. However, the third property suggests that there
is hope of reconstructing some information about xexact; that is, an approximate
solution can be obtained by reconstructing components corresponding to the large
singular values and filtering out components corresponding to small singular
values.
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Regularization by SVD Filtering
The SVD filtering approach to regularization is motivated by observations made
in the previous subsection. That is, by filtering out components of the solution
corresponding to the small singular values, a reasonable approximation of xexact can
be computed. Specifically, an SVD-filtered solution is given by

xfilt D
nX
iD1

�i
uTi b

i

vi ; (10)

where the filter factors, �i , satisfy �i 	 1 for large 
i , and �i 	 0 for small 
i .
That is, the large singular value components of the solution are reconstructed,

while the components corresponding to the small singular values are filtered out.
Different choices of filter factors lead to different methods. Some examples include:

Truncated SVD filter Tikhonov filter Exponential filter

�i D
(

1 if 
i > �

0 if 
i � �
�i D 
2

i


2
i C ˛2

�i D 1 � e�
2
i =˛

2

Note that using a Taylor series expansion of the exponential term in the exponential
filter, it is not difficult to see that the Tikhonov filter is a truncated approximation
of the exponential filter. Moreover, the Tikhonov filter has an equivalent variational
form, which is described in section “Variational Regularization and Constraints”.

Observe that each of the filtering methods has a parameter (e.g., in the above
examples, � and ˛) that needs to be chosen to specify how much filtering is done.
Appropriate values depend on properties of the matrix A (i.e., on its singular
values and singular vectors) as well as on the data, b. Some techniques to help
guide the choice of the regularization parameter are discussed in section “Choosing
Regularization Parameters.”

Because the SVD can be very expensive to compute for large matrices, this
explicit filtering approach is generally not used for large-scale inverse problems.
There are some exceptions, though, if A is highly structured. For example, suppose
A can be decomposed as a Kronecker product,

A D Ar ˝ Ac D

2
66664

a
.r/
11 A c a

.r/
12 A c � � � a.r/1n A c

a
.r/
21 A c a

.r/
22 A c � � � a.r/2n A c

:::
:::

:::

a
.r/
n1 A c a

.r/
n2 A c � � � a.r/nnA c

3
77775

where Ac is an m � m matrix, and Ar is an n � n matrix with entries denoted by
a
.r/
ij . Then this block structure can be exploited when computing the SVD and when

implementing filtering algorithms [51].
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It is also sometimes possible to use an alternative factorization. Specifically,
suppose that

A D QƒQ�;

where ƒ is a diagonal matrix and Q� is the complex conjugate transpose of Q,
with Q�Q D I. This is called a spectral factorization, where the columns of Q are
eigenvectors and the diagonal elements of ƒ are the eigenvalues of A. Although
every matrix has an SVD, only normal matrices (i.e., matrices that satisfy A�A D
AA�/ have a spectral decomposition. However, if A has a spectral factorization, then
it can be used, in place of the SVD, to implement the filtering methods described in
this section. The advantage is that it is sometimes more computationally convenient
to compute a spectral decomposition than an SVD; an example of this is given in
section “Linear Example: Deconvolution.”

Variational Regularization and Constraints
Variational regularization methods have the form

min
x

n
kb �Axk2

2 C ˛2J .x/
o
; (11)

where the regularization operator J and the regularization parameter ˛ must be
chosen. The variational form provides a lot of flexibility. For example, one could
include additional constraints on the solution, such as nonnegativity, or it may be
preferable to replace the least squares criterion with the Poisson log likelihood
function [3–5]. As with filtering, there are many choices for the regularization
operator, J , such as Tikhonov, total variation [16, 85, 99], and sparsity constraints
[13, 34, 94]:

Tikhonov Total variation Sparsity

J .x/ D kLxk2
2 J .x/ D

���p.Dhx/2 C .Dvx/2
���

1
J .x/ D jjˆxjj1

Tikhonov regularization, which was first proposed and studied extensively in the
early 1960s [69,83,89–91], is perhaps the most well-known approach to regularizing
ill-posed problems. L is typically chosen to be the identity matrix, or a discrete
approximation to a derivative operator, such as the Laplacian. If L D I, then it is
not difficult to show that the resulting variational form of Tikhonov regularization,
namely,

min
x

n
kb �Axk2

2 C ˛2 kxk2
2

o
; (12)

can be written in an equivalent filtering framework by replacing A with its SVD
[49].
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For total variation, Dh and Dv denote discrete approximations of horizontal and
vertical derivatives of the 2D image x, and the approach extends to 3D images in an
obvious way. Efficient and stable implementation of total variation regularization is
a nontrivial problem; see [16, 99] and the references therein for further details.

In the case of sparse reconstructions, the matrixˆ represents a basis in which the
image, x, is sparse. For example, for astronomical images that contain a few bright
objects surrounded by a significant amount of black background, an appropriate
choice for ˆ might be the identity matrix. Clearly, the choice of ˆ is highly
dependent on the structure of the image x. The usage of sparsity constraints for
regularization is currently a very active field of research, with many open problems.
We refer interested readers to the chapter in this handbook on compressive sensing,
and the references therein.

We also mention that when the majority of the elements in the image x are
zero or near zero, as may be the case for astronomical or medical images, it
may be wise to enforce nonnegativity constraints on the solution [4, 5, 99]. This
requires that each element of the computed solution x is not negative, which is
often written as x � 0. Though these constraints add a level of difficulty when
solving, they can produce results that are more feasible than when nonnegativity is
ignored.

Finally, it should be noted that depending on the structure of matrix A, the type of
regularization, and the additional constraints, a variety of optimization algorithms
can be used to solve (11). In some cases, it is possible to use a very efficient filtering
approach, but typically it is necessary to use an iterative method.

Iterative Regularization
As mentioned in section “Variational Regularization and Constraints,” iterative
methods are often needed to solve the variational form of the regularized problem.
An alternate approach to using variational regularization is to simply apply the
iterative method to the least squares problem,

min
x
kb �Axk2

2 :

Note that if an iterative method applied to this unregularized problem is allowed
to “converge,” it will converge to an inverse solution, xinv, which is corrupted by
noise (recall the discussion in section “SVD Analysis”). However, many iterative
methods have the property (provided the problem on which it is applied satisfies
the discrete Picard condition) that the early iterations reconstruct components of the
solution corresponding to large singular values, while components corresponding
to small singular values are reconstructed at later iterations. Thus, there is an
observed “semi-convergence” behavior in the quality of the reconstruction, whereby
the approximate solution improves at early iterations and then degrades at later
iterations (a more detailed discussion of this behavior is given in section “Hybrid
Iterative-Direct Regularization” in the context of the iterative method LSQR). If
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the iteration is terminated at an appropriate point, a regularized approximation
of the solution is computed. Thus, the iteration index acts as the regularization
parameter, and the associated scheme is referred to as an iterative regularization
method.

Many algorithms can be used as iterative regularization methods, including
Landweber [61], steepest descent, and the conjugate gradient method (e.g., for
nonsymmetric problems, the CGLS implementation [8] or the LSQR implemen-
tation [80, 81], and for symmetric indefinite problems, the MR-II implementation
[43]). Most iterative regularization methods can be put into a general framework
associated with solving the minimization problem

minf .x/ D 1

2
xTAT Ax � xTAT b (13)

with a general iterative method of the form

xkC1 D xk C �kMk.AT b �ATAxk/ D xk C �kMkrk; (14)

where rk D AT b � ATAxk . With specific choices of �k and Mk , one can obtain a
variety of well-known iterative methods:

• The Landweber method is obtained by taking �k D � (i.e., � remains constant
for each iteration) and Mk D I (the identity matrix). Due to its very slow
convergence, this classic approach is not often used for linear inverse problems.
However, it is very easy to analyze the regularization properties of the Landweber
iteration, and it can be useful for certain large-scale nonlinear ill-posed inverse
problems.

• The steepest descent method is produced if Mk D I is again fixed as the identity,
but now �k is chosen to minimize the residual at each iteration. That is, �k is
chosen as

�k D arg min
�>0

f .xk C �rk/:

• Again, this method typically has very slow convergence, but with proper
preconditioning it may be competitive with other methods.

• It is also possible to obtain the conjugate gradient method by setting M0 = I

and MkC1 D I � skyTk
yTk sk

; where sk = xkC1 � xk and yk = ATA.xkC1 � xk/. As

with the steepest descent method, �k is chosen to minimize the residual at each
iteration. Generally, the conjugate gradient method converges much more quickly
than Landweber or steepest descent.

Other iterative algorithms that can be put into this general frame work include
the Brakhage � methods [10] and Barzilai and Borwein’s lagged steepest descent
scheme [6].
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Hybrid Iterative-Direct Regularization
One of the main disadvantages of iterative regularization methods is that it
can be very difficult to determine appropriate stopping criteria. To address this
problem, work has been done to develop hybrid methods that combine variational
approaches with iterative methods. That is, an iterative method, such as the LSQR
implementation of the conjugate gradient method, is applied to the least squares
problem min

x
jjAx � bjj22, and variational regularization is incorporated within the

iteration process. To understand how this can be done, it is necessary to briefly
describe how the LSQR iterates are computed.

LSQR is based on the Golub-Kahan (sometimes referred to as Lanczos) bidiag-
onalization (GKB) process. Given an m � n matrix A and vector b, the kth GKB
iteration computes an m � .k C 1/ matrix Wk , an n � k matrix Yk , an n � 1 vector
ykC1, and a .k C 1/ � k bidiagonal matrix Bk such that

ATWk D YkBTk C �kC1ykC1eTkC1 (15)

AYk DWkBk; (16)

where ekC1 denotes the .k C 1/st standard unit vector and Bk has the form

Bk D

2
666664

�1

ˇ2 �2

: : :
: : :

ˇk �k

ˇkC1

3
777775
: (17)

Matrices Wk and Yk have orthonormal columns, and the first column of Wk is
b=jjbjj2. Given these relations, an approximate solution xk can be computed from
the projected least squares problem

min
x2R.Yk/

kAx � bk2
2 D min

Ox
kBk Ox � ˇe1k2

2 (18)

where ˇ D jjbjj2 and xk D Yk Ox. An efficient implementation of LSQR does not
require storing the matrices Wk and Yk and uses an efficient updating scheme to
compute Ox at each iteration; see [81] for details.

An important property of GKB is that for small values of k, the singular values
of the matrix Bk approximate very well certain singular values of A, with the
quality of the approximation depending on the relative spread of the singular values;
specifically, the larger the relative spread, the better the approximation [8, 37, 87].
For ill-posed inverse problems, the singular values decay to and cluster at zero, such
as 
i D O.i�c/ where c > 1 or 
i D O.ci / where 0 < c < 1 and i D 1; 2; : : :; n
[95, 96]. Thus, the relative gap between large singular values is generally much
larger than the relative gap between small singular values. Therefore, if the GKB
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Fig. 2 This figure shows plots of the singular values of A, denoted as 
i (A) (left plot), and the
relative spread of A’s singular values (right plot)

iteration is applied to a linear system arising from discretization of an ill-posed
inverse problem, then the singular values of Bk converge very quickly to the largest
singular values of A. The following example illustrates this situation.

Example 1. Consider a linear system obtained by discretization of a one-
dimensional first-kind Fredholm integral equation of the form (3), where the kernel
k.s; t/ is given by the Green’s function for the second derivative and which is
constructed using deriv2 in the MATLAB package Regularization Tools [48].
Although this is not an imaging example, it is a small-scale canonical ill-posed
inverse problem that has properties found in imaging applications. The deriv2
function constructs an n � n matrix A from the kernel

k.s; t/ D
�
s.t � 1/ if s < t
t.s � 1/ if s � t

defined on [0, 1] � [0, 1]. We use n D 256. There are also several choices for
constructing vectors xexact and bexact (see [48]), but we focus only on the matrix A
in this example.

Figure 2 shows a plot of the singular values of A and their relative spread; that is,


i .A/� 
iC1.A/

i .A/

;

where the notation 
i .A/ is used to denote the i th largest singular value of A.
Figure 2 clearly illustrates the properties of ill-posed inverse problems; the singular
values of A decay to and cluster at 0. Moreover, it can be observed that in general the
relative gap of the singular values is larger for the large singular values and smaller
for the smaller singular values. Thus, for small values of k, the singular values of
Bk converge quickly to the large singular values of A. This can be seen in Fig. 3,
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Fig. 3 The plots in the left column of this figure show the singular values of A, denoted as 
i (A),
along with the singular values of Bk , denoted as 
i (Bk/, for k = 10, 20, and 50. The plots in the

right column show the relative difference, j
i .A/�
i .Bk /j

i .A/

which compare the singular values of A with those of the bidiagonal matrix Bk for
k D 10; 20, and 50.

This example implies that if LSQR is applied to the least squares problem
min

x
jjAx � bjj2, then at early iterations the approximate solutions xk will be in a

subspace that approximates a subspace spanned by the large singular components
of A. Thus, for k < n; xk is a regularized solution. However, eventually xk
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should converge to the inverse solution, which is corrupted with noise (recall the
discussion in section “Iterative Regularization”). This means that the iteration index
k plays the role of a regularization parameter; if k is too small, then the computed
approximation xk is an over-smoothed solution, while if k is too large, xk is
corrupted with noise. Again, we emphasize that this semi-convergence behavior
requires that the problem satisfies the discrete Picard condition. More extensive
theoretical arguments of this semi-convergence behavior of conjugate gradient
methods can be found elsewhere; see [43] and the references therein.

Instead of early termination of the iteration, hybrid approaches enforce regular-
ization at each iteration of the GKB method. Hybrid methods were first proposed by
O’Leary and Simmons in 1981 [78] and later by Björck in 1988 [7]. The basic idea
is to regularize the projected least squares problem (18) involving Bk , which can
be done very cheaply because of the smaller size of Bk . More specifically, because
the singular values of Bk approximate those of A, as the GKB iteration proceeds,
the matrix Bk becomes more ill-conditioned. The iteration can be stabilized by
including Tikhonov regularization in the projected least square problem (18) to
obtain

min
Ox

n
kBk Ox � ˇe1k2

2 C ˛2 kOxk2
2

o
(19)

where again ˇ D jjbjj2 and xk D Yk Ox. Thus, at each iteration it is necessary to
solve a regularized least squares problem involving a bidiagonal matrix Bk . Notice
that since the dimension of Bk is very small compared to A, it is much easier to
solve for Ox in Eq. (19) than it is to solve for x in the full Tikhonov regularized
problem (12). More importantly, when solving Eq. (19) one can use sophisticated
parameter choice methods to find a suitable ˛ at each iteration.

To summarize, hybrid methods have the following benefits:

• Powerful regularization parameter choice methods can be implemented effi-
ciently on the projected problem.

• Semi-convergence behavior of the relative errors observed in LSQR is avoided,
so an imprecise (over) estimate of the stopping iteration does not have a
deleterious effect on the computed solution.

Realizing these benefits in practice, though, is nontrivial. Thus, various authors have
considered computational and implementation issues, such as robust approaches
to choose regularization parameters and stopping iterations; see, for example,
[9, 11, 21, 45, 60, 62, 78]. We also remark that our discussion of hybrid methods
focused on the case of Tikhonov regularization with L D I. Implementation of
hybrid methods when L is not the identity matrix, such as a differentiation operator,
can be nontrivial; see, for example, [50, 59].
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Choosing Regularization Parameters
Each of the regularization methods discussed in this section requires choosing a
regularization parameter. It is a nontrivial matter to choose “optimal” regularization
parameters, but there are methods that can be used as guides. Some require a priori
information, such as a bound on the noise or a bound on the solution. Others attempt
to estimate an appropriate regularization parameter directly from the given data.

To describe some of the more popular parameter choice methods, let xreg denote
a solution computed by a particular regularization method:

• Discrepancy Principle. In this approach, a solution is sought such that

��b � Axreg

��
2 D � k�k2

Where � > 1 is a predetermined number [71]. This is perhaps the easiest of the
methods to implement, and there are substantial theoretical results establishing
its behavior in the presence of noise. However, it is necessary to have a good
estimate for jj�jj2.

• Generalized Cross Validation. The idea behind generalized cross validation
(GCV) is that if one data point is removed from the problem, then a good
regularized solution should predict that missing data point well. If ˛ is the
regularization parameter used to obtain xreg, then it can be shown [36] that the
GCV method chooses ˛ to minimize the function

G.˛/ D
��b �Axreg

��2

�
trace

�
I � AA�

reg

��2 :

Where A�
reg is the matrix such that xreg D A�

regb. For example, in the case of
Tikhonov regularization (12),

A�
reg D .ATAC ˛2I/�1AT :

A weighted version of GCV, W-GCV, finds a regularization parameter to
minimize

G!.˛/ D
��b �Axreg

��2

�
trace

�
I� !AA�

reg

��2 :

W-GCV is sometimes more effective at choosing regularization parameters than
the standard GCV function for certain classes of problems. Setting the weight
! D 1 gives the standard GCV method, while ! < 1 produces less smooth
solutions and ! > 1 produces smoother solutions. Further details about W-GCV
can be found in [21].
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• L-Curve. This approach attempts to balance the size of the discrepancy (i.e.,
residual) produced by the regularized solution with the size of the solution. In
the context of Tikhonov regularization, this can often be found by a log-log scale
plot of jjb � Axregjj2 versus jjxregjj2 for all possible regularization parameters.
This plot often produces an L-shaped curve, and the solution corresponding to
the corner of the L indicates a good balance between discrepancy and size of
the solution. This observation was first made by Lawson and Hanson [63] and
later studied extensively, including efficient numerical schemes to find the corner
of the L (i.e., the point of maximum curvature) by Hansen [46, 52]. Although
the L-curve tends to work well for many problems, some concerns about its
effectiveness have been reported in the literature; see [44, 98].

There exist many other parameter choice methods besides the ones discussed above;
for more information, see [28, 49, 99] and the references therein.

A proper choice of the regularization parameter is critical. If the parameter is
chosen too small, then too much noise will be introduced in the computed solution.
On the other hand, if the parameter is too large, the regularized solution may become
over smoothed and may not contain as much information about the true solution as
it could. However, it is important to keep in mind that no parameter choice method
is “fool proof,” and it may be necessary to solve the problem with a variety of
parameters and to use knowledge of the application to help decide which solution is
best.

Separable Inverse Problems

Separable nonlinear inverse problems,

b D A
�

x.n`/exact

�
x.`/exact C �; (20)

arise in many imaging applications, such as blind deconvolution (see section “Multi-
frame Blind Deconvolution”), super resolution (which is an example of image
data fusion) [18, 27, 57, 76], the reconstruction of 3D macromolecular structures
from 2D electron microscopy images of cryogenically frozen samples (Cryo-EM)
[22, 35, 55, 66, 82, 88], and seismic imaging applications [40]. One could consider
Eq. (20) as a general nonlinear inverse problem and use the approaches discussed in
section “Nonlinear Inverse Problems” to compute regularized solutions. However,
this section considers approaches that exploit the separability of the problem.
In particular, some of the regularization methods described in section “Linear
Problems,” such as variational and iterative regularization, can be adapted to
Eq. (20). To illustrate, consider the general Tikhonov regularized least squares
problem:
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min
x.`/;x.n`/

˚kA �x.n`/	 x.`/ � bk2
2 C ˛2kx.`/k2

2


 D min
x.`/;x.n`/

����
�

A.x.n`//
˛I

�
x.`/ �

�
b
0

�����
2

2

:

(21)

Three approaches to solve this nonlinear least squares problem are outlined in this
section.

Fully Coupled Problem
The nonlinear least squares problem given in Eq. (21) can be rewritten as

min
x
�.x/ D min

x

1

2
k�.x/k2

2 ; (22)

where

�.x/ D � �x.`/; x.n`/	 D
�

A
�
x.n`/

	
˛I

�
x.`/ �

�
b
0

�
; and x D

�
x.`/

x.n`/

�

Nonlinear least squares problems are solved iteratively, with algorithms having the
general form:

Algorithm 1: General Iterative Algorithm

1 Choose initial x0 D
"

x.`/0

x.n`/0

#

2 for k D 0; 1; 2; : : :
• Choose a step direction, dk
• Determine step length, �k
• Update the solution: xkC1 D xk C �kdk
• Stop when a minimum of the objective is obtained

end

Typically, dk is chosen to approximate the Newton direction,

dk D �
� O�00 .xk/

��1
�0 .xk/ ;

where O�00 is an approximation of �00; �0 D JT� � and J� is the Jacobian matrix

J� D
"
@�
�
x.`/; x.n`/

	
@x.`/

@�
�
x.`/; x.n`/

	
@x.n`/

#
:

In the case of the Gauss-Newton method, which is often recommended for
nonlinear least squares problems, O�00 D JT� J� .
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This general Gauss-Newton approach can work well, but constructing and
solving the linear systems required to update dk can be very expensive. Note that the
dimension of the matrix J� corresponds to the number of pixels in the image, x.`/,
plus the number of parameters in x.n`/, and thus J� may be on the order of 106�106.
Thus, instead of using Gauss-Newton, it might be preferable to use a low-storage
scheme such as the (nonlinear) conjugate gradient method. But there is a trade off –
although the cost per iteration is reduced, the number of iterations needed to attain
a minimum can increase significantly.

Relatively little research has been done on understanding and solving the fully
coupled problem. For example, methods are needed for choosing regularization
parameters. In addition, the rate of convergence of the linear and nonlinear terms
may be quite different, and the effect this has on overall convergence rate is not well
understood.

Decoupled Problem
Probably the simplest idea to solve the nonlinear least squares problem is to
decouple it into two problems, one involving x.`/ and the other involving x.n`/.
Specifically, the approach would have the form:

Algorithm 2: Block Coordinate Descent Iterative Algorithm

1 Choose initial x.n`/0
2 for k = 0, 1, 2, . . .

• Choose ˛k and solve the linear problem:

x.`/k D arg min
x.`/

���A
�

x.n`/k

�
x.`/ � b

���2

2
C ˛2

k

��x.`/
��2

2

• Solve the nonlinear problem:

x.n`/kC1 D arg min
x.n`/

���A
�
x.n`/

	
x.`/k � b

���2

2
C ˛2

k

���x.`/k

���2

2

• Stop when objectives are minimized

end

The advantage of this approach is that any of the approaches discussed in
section “Linear Problems,” including methods to determine ˛, can be used for
the linear problem. The nonlinear problem involving x.n`/ requires using another
iterative method, such as the Gauss-Newton method. However, there are often
significantly fewer parameters than in the fully coupled approach discussed in the
previous subsection. Thus, a Gauss-Newton method to update x.n`/kC1 at each iteration
is significantly more computationally tractable. A disadvantage to this approach,
which is known in the optimization literature as block coordinate descent, is that
it is not clear what are the practical convergence properties of the method. As
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mentioned in the previous subsection, the rate of convergence of the linear and
nonlinear terms may be quite different. Moreover, if the method does converge,
it will typically be very slow (linear), especially for problems with tightly coupled
variables [77].

Variable Projection Method
The variable projection method [38,39,58,79,86] exploits structure in the nonlinear
least squares problem (21). The approach exploits the fact that �.x.`/, x.n`// is linear
in x.`/ and that x.n`/ contains relatively fewer parameters than x.`/. However, rather
than explicitly separating variables x.`/ and x.n`/ as in coordinate descent, variable
projection implicitly eliminates the linear parameters x.`/, obtaining a reduced cost
functional that depends only on x.n`/. Then, a Gauss-Newton method is used to solve
the optimization problem associated with the reduced cost functional. Specifically,
consider

 
�
x.n`/

	 
 � �x.`/ �x.n`/	 ; x.`/	

where x.`/.x.n`// is a solution of

min
x.`/

�
�
x.`/; x.n`/

	 D min
x.`/

����
�

A
�
x.n`/

	
˛I

�
x.`/ �

�
b
0

�����
2

2

: (23)

To use the Gauss-Newton algorithm to minimize the reduced cost functional
 (x.n`//, it is necessary to compute  0.x.n`//. Note that because x.`/ solves (23),
it follows that @�

@x.`/
D 0 and thus

 0.y/ D dx
dy

@�

@x.`/
C @�

@x.n`/
D @�

@x.n`/
D JT �;

where the Jacobian of the reduced cost functional is given by

J D @
�
A
�
x.n`/

	
x.`/

	
@x.n`/

:

Thus, a Gauss-Newton method applied to the reduced cost functional has the basic
form:

Although computing J is nontrivial, it is often much more tractable than
constructing J� . In addition, the problem of variable convergence rates for the two
sets of parameters, x.`/ and x.n`/, has been eliminated. Another big advantage of
the variable projection method for large-scale inverse problems is that standard
approaches, such as those discussed in section “Linear Problems,” can be used to
solve the linear regularized least squares problem at each iteration, including the
schemes for estimating regularization parameters.
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Algorithm 3: Variable Projection Gauss-Newton Algorithm

1 Choose initial x.n`/0
2 for k D 0; 1; 2; : : :
3 Choose ˛k

4 x.`/k D arg min
x.`/

�����
"

A
�

x.n`/k

�
˛kI

#
x.`/ �

�
b
0

������
2

5 rk D b � A
�

x.n`/k

�
x.`/k

6 dk D arg min
d

jjJ d � rk jj2

7 Determine step length �k
8 x.n`/kC1 D x.n`/k C �kdk
9 end

Nonlinear Inverse Problems

Developing regularization approaches for general nonlinear inverse problems can
be significantly more challenging than the linear and separable nonlinear case.
Theoretical tools such as the SVD that are used to analyze ill-posedness in the
linear case are not available here, and previous efforts to extend these tools to
the nonlinear case do not always apply. For example, a spectral analysis of the
linearization of a nonlinear problem does not necessarily determine the degree of ill-
posedness for the nonlinear problem [30]. Furthermore, convergence properties for
nonlinear optimization require very strict assumptions that are often not realizable
in real applications [28,29]. Nevertheless, nonlinear inverse problems arise in many
important applications, motivating research on regularization schemes and general
computational approaches. This section discusses some of this work.

One approach for nonlinear problems of the form

F.x/ D b (24)

is to reformulate the problem to find a zero of F.x/ � b D 0. Then a Newton-like
method, where the nonlinear function is repeatedly linearized around the current
estimate, can be written as

xkC1 D xk C �kpk (25)

where pk solves the Jacobian system

J.xk/p D b � F.xk/: (26)

Though generally not symmetric, matrix and matrix-transpose multiplications with
the Jacobian, whose elements are the first derivatives of F.x/, are typically
computable. However, the main disadvantages of using this approach are that the
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existence and uniqueness of a solution are not guaranteed and the sensitivity of
solutions depends on the conditioning of the Jacobian. Furthermore, there is no
natural merit function that can be monitored to help select the step length, �k .

Another approach to solve (24) is to incorporate prior assumptions regarding
the statistical distribution of the model and maximize the corresponding likelihood
function. For example, an additive Gaussian noise model assumption under certain
conditions corresponds to solving the following nonlinear least squares problem:

min
x

1
2 kb � F.x/k2

2 : (27)

Since this is a standard nonlinear optimization problem, any optimization algorithm
such as a gradient descent or Newton approach can be used here. For problem (27),
the gradient vector can be written as g.x/ D J.x/T .F.x/ � b/, and Hessian matrix
can be written as H.x/ D J.x/T J.x/CZ.x/, where Z.x/ includes second derivatives
of F.x/. The main advantage of this approach is that a variety of line search methods
can be used. However, the potential disadvantages of this approach are that the
derivatives may be too difficult to compute or that negative eigenvalues introduced in
Z.x/ may cause problems in optimization algorithms. Some algorithms for solving
nonlinear optimization problems are direct extensions of the iterative methods
described in section “Iterative Regularization.” The nonlinear Landweber iteration
can be written as

xkC1 D xk C J.xk/T .b � F.xk// ; (28)

which reduces to the standard Landweber iteration if F.x/ is linear, and it can
be easily extended to other gradient descent methods such as the steepest descent
approach. Newton and Newton-type methods are also viable options for nonlinear
optimization, resulting in iterates (25) where pk solves

H.xk/p D �g.xk/: (29)

Oftentimes, an approximation of the Hessian is used. For example, the Gauss-
Newton algorithm, which takes H 	 J.xk/T J.xk/, is a preferred choice for
large-scale problems because it ensures positive semi-definiteness, but it is not
advisable for large residual problems or highly nonlinear problems [40]. Addition-
ally, nonlinear conjugate gradient, truncated-Newton, or quasi-Newton methods,
such as LBFGS can be good alternatives if storage is a concern. It is important
to remark that finding a global minimizer for a nonlinear optimization problem
is in general very difficult, especially since convexity of the objective function is
typically not guaranteed, as in the linear case. Thus, it is very likely that a descent
algorithm may get stuck in one of many local minima solutions.

When dealing with ill-posed problems, the general approach to incorporate
regularization is to couple an iterative approach with a stopping criteria such as the
discrepancy principle to produce reasonable solutions. In addition, for Newton-type
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methods it is common to incorporate additional regularization for the inner system
since the Jacobian or Hessian may become ill-conditioned. For example, including
linear Tikhonov regularization in (26) would result in

�
J.xk/T J.xk/C ˛2I

	
p D J.xk/T .b� F.xk//;

which is equivalent to a Levenberg-Marquardt iterate, where the update, pk , is the
solution of a particular Tikhonov minimization problem:

min
p
kF.xk/C J.xk/p � bk2

2 C ˛2 kpk2
2 ;

where F.x/ has been linearized around xk. Other variations for regularizing the
update can be found in [28] and the references therein. Regularization for the
inner system can also be achieved by solving the inner system inexactly using
an iterative method and terminating the iterations early. These are called inexact
Newton methods, and the early termination of the inner iterations is a good way not
only to make this approach practical for large-scale problems but also to enforce
regularization on the inner system.

The variational approaches discussed in section “Variational Regularization and
Constraints” can be extended for the second class of algorithms where a likelihood
function results in a nonlinear optimization problem. For example, after selecting a
regularization operatorJ .x/ and regularization parameter ˛ for (27), the goal would
be to solve a nonlinear optimization problem of the form

min
x

n
kb � F.x/k2

2 C ˛2J .x/
o
: (30)

The flexibility in the choice of the regularization operator is nice, but selecting a
good regularization parameter a priori can be a computationally demanding task,
especially for large-scale problems. Some work on estimating the regularization
parameter within a constrained optimization framework has been done [40, 41],
but the most common approach for regularization of nonlinear ill-posed inverse
problems is to use standard iterative methods to solve (27), where regulariza-
tion is obtained via early termination of the iterations. It cannot be stressed
enough that when using any iterative method to solve a nonlinear inverse problem
where the regularization is not already incorporated, a good stopping iteration
for the outer iteration that serves as a regularization parameter is imperative.
See also [2, 28, 29, 32, 54, 92, 97] for additional references on nonlinear inverse
problems.

4 Numerical Methods and Case Examples

Given a specific large-scale inverse problem from an imaging application, it can
be nontrivial to implement the algorithms and regularization methods discussed in
this chapter. Efficient computations require exploiting the structure of the problem.
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Moreover, choosing specific regularization schemes and constraints requires knowl-
edge about the physical process underlying the data collection process. A few
illustrative examples, using the imaging applications described in section “Imaging
Applications,” are given in this section.

Linear Example: Deconvolution

Perhaps the most well-known and well-studied linear inverse problem is deconvolu-
tion. As discussed in section “Image Deblurring and Deconvolution,” this spatially
invariant image deblurring problem is modeled as

b D Axexact C �;

where A is a structured matrix that depends on the PSF and imposed boundary
conditions. For example, if periodic boundary conditions are imposed on the
blurring operation, then A has a circulant structure, and moreover, A has the spectral
decomposition

A D F�ƒF;

where F is a matrix representing a d -dimensional discrete Fourier transform, which
satisfies F�F D I. The matrix F does not need to be constructed explicitly. Instead,
fast Fourier transform (FFT) functions can be used to implement matrix-vector
multiplications with F and F�. Specifically, for 2D images:

Fx, fft2.x/ .2D forward FFT/
F�x, ifft2.x/ .2D inverse FFT/

The main advantages are that FFT-based spectral filtering regularization algorithms
are very easy to implement and extremely efficient; see [51] for implementation
details.

To illustrate, consider the image data shown in Fig. 4, where the simulated
observed image was obtained by convolving the PSF with the true image and adding
1 % Gaussian white noise. The PSF was constructed from a Gaussian blurring
operator,

pij D exp

��.i � k/2s2
2 � .j � l/2s2

1 C 2.i � k/.j � l/s2
3

2s2
1s

2
2 � 2s4

3

�
(31)

centered at .k; l/ (location of point source), with s1 D s2 D 5 and s3 D 0. An
FFT-based Tikhonov spectral filtering solution was computed, with regularization
operator L D I and regularization parameter ˛ D 0:00544, which was chosen
using GCV. (All computations for this example were done with MATLAB. The
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Fig. 4 Simulated data for an
image deconvolution
problem. The restored image
was computed using an
FFT-based spectral filtering
method, with Tikhonov
regularization and
GCV-chosen regularization
parameter

implementation of the FFT-based spectral filter used in this example is described
in [51]. The MATLAB code, which is called tik_fft.m, can be found at http://
www2.imm.dtu.dk/~pch/HNO/#.) The reconstructed image, which was computed
in a fraction of a second on a standard laptop computer, is also shown in Fig. 4.

If there are significant details near the boundary of the image, then the peri-
odic boundary condition assumption might not be an accurate representation
of the details outside the viewable region. In this case, severe ringing artifacts
can appear in the reconstructed image, and parameter choice methods may per-
form very poorly in these situations. Consider, for example, the image data
shown in Fig. 5. The PSF is the same as in the previous example, but the
blurred image contains features at the boundaries of the viewable region. The
“restored” image in Fig. 5 was again computed using a Tikhonov spectral fil-
tering solution with regularization operator L D I, and regularization param-
eter (˛ D 6:30 � 10�5/ was chosen using GCV. This noise-corrupted recon-
structed image indicates that the regularization parameter chosen by GCV is too
small.

It is possible that another parameter choice method would perform better, but
it is also the case that imposing alternative boundary conditions may improve the
situation. For example, reflective boundary conditions assume the image scene
outside the viewable region is a mirror image of the details inside the viewable
region. With this assumption, and if the PSF is also circularly symmetric, then the

http://www2.imm.dtu.dk/~pch/HNO/#
http://www2.imm.dtu.dk/~pch/HNO/#
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Fig. 5 Simulated data for an
image deconvolution
problem. The restored image
was computed using an
FFT-based spectral filtering
method, with Tikhonov
regularization and
GCV-chosen regularization
parameter

matrix A has a symmetric Toeplitz-plus-Hankel structure, and, moreover, A has the
spectral decomposition

A D CTƒC;

where C is a matrix representing a d -dimensional discrete cosine transform, which
satisfies CTC D I. As with FFTs, the matrix C does not need to be constructed
explicitly, and very efficient functions can be used to implement matrix-vector
multiplications with C and CT , such as

Cx, dct2.x/ .2D forward DCT/
CT x, idct2.x/ .2D inverse DCT/

In addition, DCT-based spectral filtering regularization algorithms are very easy to
implement and are extremely efficient; see [51] for implementation details.

Figure 6 illustrates the superior performance that can be obtained if the boundary
condition and the corresponding basis (in this case, DCT) is used in the spectral
filtering deconvolution algorithms. Specifically, the image on the left in Fig. 6 was
computed using a DCT-based Tikhonov spectral filtering method, with regulariza-
tion operator L D I and a GCV-chosen regularization parameter ˛ D 4:83 � 10�3.
The image on the right was computed using the FFT-based Tikhonov filter, but
instead of using the GCV-chosen regularization parameter (which produced the
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Fig. 6 These restored images were computed using DCT and FFT-based spectral filtering
methods, with Tikhonov regularization. For the DCT and the middle FFT reconstructions, the
regularization parameter ˛ was chosen by GCV. The FFT reconstruction on the right was obtained
using the same regularization parameter as was used for the DCT reconstruction

Fig. 7 Simulated deconvolution data with a nonsymmetric Gaussian PSF

poor reconstruction displayed in the middle of this figure), ˛ was set to the same
value used by the DCT reconstruction. This example clearly illustrates that the
quality of the reconstruction, and the effectiveness of parameter choice methods,
can depend greatly on the imposed boundary conditions and corresponding spectral
basis. (As with previous examples, all computations described here were done with
MATLAB. The implementation of the DCT-based spectral filter is described in [51].
The MATLAB code, which is called tik_dct.m, can be found at http://www2.imm.
dtu.dk/~pch/HNO/.)

Spectral filtering methods work well for many deconvolution problems, but it
may not always be possible to find a convenient basis that allows for efficient
implementation. Consider, for example, the data shown in Fig. 7. The PSF in this
figure was constructed using Eq. (31), with s1 D s2 = 3 and s3 = 2, and results in a
nonsymmetric PSF. As with the previous example, the FFT-based filter does not
work well for this deconvolution problem because of its implicit assumption of

http://www2.imm.dtu.dk/~pch/HNO/
http://www2.imm.dtu.dk/~pch/HNO/
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Fig. 8 These restored images
were computed using a
DCT-based spectral filtering
method (left) and an iterative
hybrid method (right)

periodic boundary conditions. Reflective boundary conditions are more appropriate,
but the lack of circular symmetry in the PSF means that the DCT basis does not
diagonalize the matrix A. The reconstructed image on the left in Fig. 8 illustrates
what happens if we attempt to reconstruct the image using a DCT-based Tikhonov
filter.

An iterative method may be the best option for a problem such as this; one can
impose any appropriate boundary condition (which only needs to be implemented
in matrix-vector multiplications with A and AT / without needing to assume any
symmetry or further structure in the PSF. The reconstructed image shown on the
right in Fig. 8 was obtained using a hybrid approach described in section “Hybrid
Iterative-Direct Regularization.” Specifically, Tikhonov regularization is used for
the projected subproblem, with regularization parameters chosen by W-GCV. The
MATLAB software for this, which is called HyBR, is discussed in [21] and
can be obtained from http://www.math.vt.edu/people/jmchung/hybr.html. For this
particular example, HyBR terminated at iteration 21, with a regularization parameter
˛ D 7:31 � 10�2.

The examples in this subsection illustrate that many approaches can be used
for the linear inverse problem deconvolution. It is possible that other methods,
such as those that incorporate nonnegativity constraints, may produce better results
than those presented here, but this is typical of all inverse problems. It would be
impossible to give an exhaustive study and comparison in this chapter.

Separable Example: Multi-Frame Blind Deconvolution

In this section, multi-frame blind deconvolution (MFBD) is used to illustrate a
numerical example of a separable (nonlinear) inverse problem,

b D A
�

x.n`/exact

�
x.`/exact C �:

Recall from section “Multi-frame Blind Deconvolution” that in MFBD, a set of,
say, m blurred images of an object are collected, and the aim is to simultaneously

http://www.math.vt.edu/people/jmchung/hybr.html
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Fig. 9 Simulated MFBD data. The images were obtained by convolving the true satellite image
from Fig. 4 with Gaussian PSFs using parameters given in Eq. (32) and then adding 1 % white
noise

reconstruct an approximation of the true image as well as the PSFs (or the
parameters that define the PSFs) associated with each of the observed blurred
images. Such an example can be simulated using the Gaussian blurring kernel given
in Eq. (31), and the true satellite image given in Fig. 4. Specifically, suppose using
Eq. (31), three PSFs are constructed using the following values:

x.n`/exact D

2
66666666666664

6:0516
5:8419
2:2319
5:4016
4:3802
2:1562
5:7347
6:8369
2:7385

3
77777777777775

)
Gaussian PSF parameters s1; s2; s3 for frame 1

)
Gaussian PSF parameters s1; s2; s3 for frame 2

)
Gaussian PSF parameters s1; s2; s3 for frame 3

(32)

Simulated observed image data can then be generated by convolving the PSFs
constructed from these sets of parameters with the true satellite image and then
adding 1 % white noise. The resulting simulated observed image frames are shown
in Fig. 9.

Image reconstructions can then be computed using the variable projection Gauss-
Newton algorithm described in section “Variable Projection Method.” The Jacobian
J can be constructed analytically for this problem (see, e.g., [19]), but a finite
difference approach can also work very well. In the experiments reported here,
centered differences were used to approximate the Jacobian.

The hybrid method implementation HyBR, described in the previous subsection,
was used to choose ˛k and to solve the linear subproblem for x.`/k . The step length

�k was chosen using an Armijo rule [77]. The initial guess for x.n`/0 was
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Fig. 10 Convergence results for MFBD. The relative error of the estimated PSF parameters at
each iteration is shown in the left plot, while the relative error of the reconstructed image at each
iteration is shown in the right plot

Fig. 11 On the left is the initial reconstructed image using x.n`/0 and on the right is the final
reconstructed image. The true image is displayed in the middle for comparison purposes

x.n`/0 D

2
66666666666664

7:0516
7:8369
3:2385
7:0516
7:8369
3:2385
7:0516
7:8369
3:2385

3
77777777777775

)
initial guess for s1; s2; s3 for frame 1

)
initial guess for s1; s2; s3 for frame 2

)
initial guess for s1; s2; s3 for frame 3

The results in Fig. 10 show the convergence behavior in terms of relative error at
each iteration of the variable projection Gauss-Newton algorithm for this example.
The left plot shows the convergence history of x.n`/k , and the right plot shows the

convergence history of x.`/k . Note that the convergence behavior of both terms is very
similar. Figure 11 shows the reconstructed image after the first variable projection
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Gauss-Newton iteration (i.e., the initial reconstruction) and the reconstructed image
after the last iteration of the algorithm.

Nonlinear Example: Tomosynthesis

Polyenergetic digital tomosynthesis is an example of a nonlinear inverse problem
where the forward problem can be modeled as (8). The typical approach to compute
an approximation of xexact is to assume that the observed projection image is a
realization of a Poisson random variable with mean values

Nb� C N� D
neX
eD1

%.e/ exp.�Œs.e/A�xC z.e/A�1�/C N�; (33)

where N� is the mean of the additive noise. Then the maximum likelihood estimator
(MLE) can be found by minimizing the negative log likelihood function:

�L�.x/ D
MX
iD1

� Nb.i/� C N�.i/
�
� b.i/� log

� Nb.i/� C N�.i/
�
C c; (34)

where superscripts refer to entries in a vector and c is a constant term. A regularized
estimate can be found by solving the following nonlinear optimization problem

xMLE D min
x

(
n�X
�D1

�L�.x/
)

(35)

using a gradient descent or Newton-type algorithm and terminating the iterations
before the noise enters the problem. For this example, the gradient of the objective
function with respect to the 3D volume, x, can be written as

g.xk/ D AT vk

where the entries of vector vk are given by

v.i/ D
�

b.i/

Nb.i/ C N�.i/ � 1

� neX
eD1

%.e/s.e/ exp.�Œs.e/aTi xk C z.e/aTi 1�/:

The Hessian matrix can be written as

Hk D ATWkA

where Wk is a diagonal matrix with vector wk on the diagonal. A mathematical
formula for the values of the diagonal can be quite complicated as they depend on
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Fig. 12 Extracted regions of sample projection images

the values of the second derivatives. Furthermore, the Newton step at iteration k in
Eq. (29) is just the normal equations formulation of the least squares problem

min
sk

�����W
1
2
k Ask �W

� 1
2

k vk

�����
2

(36)

where W
1
2
k D diag

�
w

1
2

�
. For solving the Newton system, CGLS can be used to

solve (36) inexactly. Furthermore, regularization for the outer problem is achieved
by early termination of the iterative optimization method.

The example illustrated here comes from a true volume of size 128� 128 � 128
whose values range between 0 and 100, representing the percentage of glandular
tissue present in the voxel. Then 21 projection images were taken at equally spaced
angles, within an angular range from �30ı to 30ı at 3ı intervals, using the typical
geometry for breast tomosynthesis, illustrated in Fig. 1. Each 2D projection image
contains 150 � 200 pixels. Subimages of three of these projections can be found in
Fig. 12.

The original object represented a portion of a patient breast with mean com-
pressed breast thickness of size 6:4�6:4�6:4 cm, and the detector was 7:5�10 cm.
The source to detector distance at 0ı was set to 66 cm, and the distance from the
center of rotation to detector was 0 cm. The incident X-ray spectrum was produced
by a rhodium target with a tube voltage of 28 kVp and an added rhodium filter of
25�m thickness, discretized to consist of 47 different energy levels, from 5.0 to
28 keV, in 0.5 keV steps.

For the reconstruction algorithms, the ray trace matrix A� for each projection
angle was computed using a cone beam model, and an initial guess of the volume
was a uniform image with all voxel values set to 50, meaning half glandular and
half adipose tissue. The reconstructed volume consisted of 128 � 128 � 40 voxels
with a voxel size of 500 � 500�m � 1:6 mm. Furthermore, additive Poisson noise
was included in the projection images so that there was a relative noise level of
approximately 1 %. Some slices of the true volume can be found in Fig. 13.
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Fig. 13 Sample slices from the original breast volume

Table 1 Convergence results for polyenergetic tomosynthesis reconstruction

Gradient descent method

Iteration Rel. objective Rel. gradient Rel. error

0 7.033e � 04 1.0000 0.4034

1 6.771e � 04 0.8755 0.3562

5 6.586e � 04 0.2731 0.2948

10 6.585e � 04 0.0641 0.2762

25 6.551e � 04 0.0314 0.2386

50 6.548e � 04 0.0104 0.2237

Newton-CG

Iteration Rel. objective Rel. gradient Rel. error CGLS iterations

0 7.033e � 04 1.0000 0.4034 -

1 6.587e � 04 0.2525 0.2814 5

2 6.550e � 04 0.0398 0.2293 9

3 6.547e � 04 0.0065 0.2075 22

4 6.547e � 04 0.0013 0.2014 50

5 6.547e � 04 0.0009 0.2003 50

Recall that the goal of digital tomosynthesis is to reconstruct an approximation
of the 3D volume, x, given the set of projection images b� ; � D 1; 2; : : : ; n� . Using
the above likelihood function, the problem has been reformulated as a nonlinear
optimization problem for which standard numerical optimization schemes can be
applied. A gradient descent, Newton-CG, and LBFGS algorithm are investigated
as methods to solve this problem, and early termination of the iterative method
produces a regularized solution.

Results presented in Table 1 include the iteration, the relative objective function
value, the relative gradient value, and the relative error for the 3D volume for two
iterative algorithms. The relative error can be computed as kxk�xexactk2kxexactk2

; where xk is
the reconstructed volume at the kth iteration. For the inexact Newton-CG algorithm,
the stopping criterion used for CGLS on the inner problem (36) was a residual
tolerance of 0.17 and a maximum number of 50 iterations. The number of CGLS
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Fig. 14 Plot of relative
errors
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iterations reported for the inner problem at each Newton-CG iteration can be found
in the last column of the table. It is worth mentioning here that many parameters
such as the number of inner and outer iterations rely heavily on heuristics that may or
may not be provided by the application. In any case, appropriate parameters should
be used in order to ensure that nonlinearity and ill-posedness of the problem are
addressed.

Since each Newton-CG iteration requires the solution of a linear system, it is
difficult to present a fair comparison of reconstruction algorithms. In terms of
computational effort, the most computationally burdensome aspect of the recon-
struction is the matrix-vector and matrix-transpose-vector multiplications with ray
trace matrix, A. Each function and gradient evaluation of the likelihood function
requires a total of three “ray trace” multiplications (two for the function evaluation
and one more for the gradient), and a multiplication operation with the Hessian
(or its transpose) only requires two “ray trace” multiplications. Furthermore, a
backtracking line search strategy is used to ensure sufficient descent at each iteration
of the optimization scheme. The Cauchy point [77] is used as an initial guess in
the line search scheme, thus requiring another multiplication with the Hessian.
Thus, the computational cost and timing for, say, one Newton-CG iteration with
50 inner CG iterations with the Hessian is not equivalent to 50 gradient descent
iterations.

Another important remark is that although the image errors in Table 1 decrease
in the early iterations, these errors eventually increase. This is illustrated in the
later Newton-CG iterations in Fig. 14, where plots of the relative errors per iteration
for the three algorithms are presented. From Fig. 14, it is evident that the gradient
descent method is slow to converge. On the contrary, Newton methods can compute
a good approximation very quickly, but corruption from errors occurs quickly as
well. Although LBFGS is typically used for problems where the Hessian cannot
be computed directly, this approach seems to offer a good balance between fast
convergence and slow semi-convergence behavior. An important remark is that
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Fig. 15 Comparison of slices from the reconstructed volumes computed after 3 iterations of
Newton-CG algorithm and 15 iterations of gradient descent

direct regularization techniques can also be used to regularize the problem, but
appropriate regularization operators and good regularization parameter selection
methods for this problem are still topics of current research. Thus, regularization
via early termination of the iterations is the approach followed here.

For a comparison of images, Fig. 15 contains corresponding slices from the
reconstructed volumes after three Newton-CG iterations and 15 gradient descent
iterations, each requiring approximately 80 matrix-vector operations. It is evident
that the Newton-CG reconstruction has more fine details and more closely resembles
the true image slice.

Although nonlinear inverse problems can be difficult to analyze, there are a
variety of scientific applications such as polyenergetic digital breast tomosynthesis
that require methods for computing approximate solutions. Iterative methods with
regularization via early termination can be a good choice, but proper precondition-
ing techniques may be needed to accelerate the algorithms and good heuristics are
required.

5 Conclusion

Large-scale inverse problems arise in many imaging applications. The examples in
this chapter illustrate the range of difficulties (from linear to nonlinear) that can
be encountered and the issues that must be addressed when designing algorithms.
It is important to emphasize that the literature in this field is vast and that this
presentation is far from being a complete survey. However, the techniques discussed
in this chapter can be used as a foundation on which to learn more about the subject.

The study of inverse problems continues to be an extremely active field of
research. Although linear inverse problems have been fairly well studied, some
fundamental questions still need to be addressed and many open problems remain.
For example, in hybrid algorithms, simple filtering methods (e.g., truncated SVD
or standard Tikhonov regularization) and standard regularization parameter choice
methods (e.g., discrepancy principle or GCV) are typically used to regularize the
projected problem. Some work has been done to generalize this (see, e.g., [59]),
but extensions to more sophisticated filtering algorithms and parameter choice
methods should be investigated. In addition, the development of novel algorithmic
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implementations and software is necessary for running existing algorithms on
state-of-the-art computing technologies, as is the development of techniques for
uncertainty quantification. Another area of active research for the solution of
linear and nonlinear inverse problems is sparse reconstruction schemes, where
regularization enforces some structure to be sparse in a certain basis, that is,
represented with only a few nonzero coefficients.

As discussed in sections “Separable Inverse Problems” and “Nonlinear Inverse
Problems,” there are many open problems related to solving nonlinear inverse
problems. For example, in the case of the variable projection Gauss-Newton method,
a thorough study of its regularization and convergence properties remains to be
done, especially in the context of an iteration-dependent regularization parameter.
For more general nonlinear problems, issues that need to be addressed include ana-
lyzing the sensitivity of the Jacobian and Hessian matrices, as well as determining
appropriate merit functions for selecting step lengths. In nonlinear optimization,
difficulties arise because convexity of the objective function cannot be guaranteed,
so algorithms can become trapped in local minima. More work also needs to be
done in the area of regularization parameter choice methods for nonlinear problems
and appropriate stopping criteria for iterative methods. For a further discussion of
open problems for nonlinear inverse problems, see [28, 29].

Finally, it should be noted that many open problems are given in the context
of the application, such as determining appropriate constraints and regularization
operators for the problem. Future directions are often motivated by the application,
and many of these questions can be found in application-specific references; see,
for example, [17]. With such varied and widespread applications, large-scale inverse
problems continue to be a thriving research interest in the mathematics, computer
science, and image processing communities.
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Six examples of parameter identification problems in integral and differential
equations are given in order to show how to apply the theory of this chapter to
specific inverse and ill-posed problems.

1 Introduction

This chapter will be devoted to direct regularization methods – theory and examples
– for the solution of inverse problems formulated as nonlinear ill-posed operator
equations

F.x/ D y ; (1)

where the forward operatorF W D.F / � X ! Y with domain D.F /maps between
infinite dimensional normed linear spaces X and Y , which are Banach spaces or
Hilbert spaces, with norms k � k. The symbol h � ; � i designates inner products in
Hilbert spaces and dual pairings in Banach spaces. Moreover, the symbols! and*
denote the norm convergence and weak convergence, respectively, in such spaces.
It is well known that the majority of inverse problems are ill-posed in the sense of
Hadamard, i.e., at least one of the following difficulties occurs:

(i) Equation (1) has no solution in D.F / if the exact right-hand side y is replaced
by a perturbed element yı (noisy data) satisfying the inequality

��yı � y�� � ı (2)

with noise level ı > 0.
(ii) The solution to Eq. (1) is not uniquely determined in D.F /.

(iii) The solution to Eq. (1) is unstable with respect to perturbations, i.e., for
xı 2 D.F / with F

�
xı
	 D yı and (2) the norm deviation

��xı � x�� may be
arbitrarily large. In other words, the possibly multivalued inverse operator F�1

fails to be continuous.

Since for nonlinear equations the local behavior of solutions is of main interest,
the aspect of local ill-posedness according to [64] is focused on numerous consid-
erations. An operator equation (1) is called locally ill-posed at some solution point
x� 2 D.F / if for any ball B�

�
x�
	

with center x� and an arbitrarily small radius
� > 0 there exist infinite sequences fxng � B�

�
x�
	 \D.F / such that

F.xn/! F
�
x�
	

in Y; but xn 6! x� in X as n!1 :

In case of local ill-posedness, x� cannot be identified arbitrarily precise by noisy
data yı even if the noise level ı is arbitrarily small. The aspect of local ill-posedness
involves both the non-injectivity of F around x� corresponding with (ii) and the
local instability of (1) corresponding with (iii) in Hadamard’s sense. Wide classes
of inverse problems that have smoothing, for example, compact, forward operators
F lead to locally ill-posed situations.
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To overcome the ill-posedness and local ill-posedness of Eq. (1), in particular
to compensate the instability of solutions with respect to small changes in the
right-hand side expressing a deficit of information in the data with respect to the
solution to be determined, regularization methods have to be used for the stable
approximate solution of Eq. (1) whenever only noisy data are given. The basic
idea of regularization is to replace the ill-posed original problem by a well-posed
and stable neighboring problem. A regularization parameter ˛ > 0 controls the
trade-off between closeness of the neighboring problem expressed by small values
˛ and high stability of the auxiliary problem expressed by large values ˛. In the
former case the approximate solutions are too unstable, whereas in the latter case,
approximate solutions are too far from the original one. On the other hand, the loss
of information in the data caused by smoothing properties of the forward operator
F can be diminished when external a priori information is exploited. This can be
done by the choice of appropriate structure in the neighboring problems.

If the forward operator F and hence the operator equation (1) is linear, then in
Hilbert spaces a comprehensive and rather complete regularization theory, including
a general regularization schema and a well-established collection of methods,
assertions on stability, convergence, and convergence rates, is available since more
than 20 years; see [10, 35, 77–79, 84]. For recent progress of regularization theory
applied to linear ill-posed problems, please refer to the papers [16, 22, 31, 57, 61,
80, 85, 86, 90]. It is well known that inverse problems aimed at the identification
of parameter functions in differential equations or boundary conditions from
observations of state variables are in general nonlinear even if the differential
equations are linear. The nonlinearity of F , however, makes the construction and
the use of regularization methods more complicated and diversified; please refer
to [9, 26, 27, 33, 38, 45, 49, 56, 66, 71, 81, 87] for more details. Furthermore, there
have been recent significant progress in regularization theory for ill-posed problems
formulated in Banach spaces (see, e.g., [22, 60, 96, 97, 102, 103, 107, 109]). In this
chapter, the focus is on direct regularization methods for the stable approximate
solution of nonlinear ill-posed operator equations formulated in Hilbert and Banach
spaces, where regularized solutions mostly are solutions of variational problems.
The functional to be minimized over a set of admissible solutions contains a
regularization parameter ˛ > 0 which has to be controlled in an appropriate
manner. An alternative way of regularization is the solution of (1) for noisy data
yı by an iteration process, where the stopping criterion, frequently depending on
ı, plays the role of the regularization parameter. For iterative solution methods,
please refer to the corresponding chapter of this book and to the monograph
[8, 76].

2 Theory of Direct Regularization Methods

In contrast to the classical treatment of linear ill-posed problems, where regularized
solutions xı˛ D R˛y

ı , i.e., stable approximate solutions to Eq. (1) under the noise
model (2), are obtained by applying bounded linear operators R˛ W Y ! X to the
data yı for regularization parameters ˛ > 0, such explicit approach fails if either
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in (1) (a) the forward operator F is nonlinear, (b) the domain D.F / is not a linear
subspace ofX , or (c) the mapping yı 7! xı˛ is continuous but nonlinear for all ˛ > 0
even if F is linear. All three sources of nonlinearity make it necessary to define
the regularized solutions in an implicit manner. The preferred approach of direct
regularization methods is variational regularization, where regularized solutions xı˛
are minimizers of the functional

ˆ.x/ WD S
�
F.x/; yı

	C ˛R.x/ (3)

by assuming that S is a nonnegative misfit functional measuring the discrepancy
between F.x/ and the data yı , moreover ˛ > 0 is the regularization parameter,
and R with domain D.R/ WD fx 2 X W R.x/ < 1g is a nonnegative
stabilizing functional with small values for elements x being reliable and large
values for improbable x. Since the origins of this method go back to the work
of A. N. Tikhonov and his collaborators (see [114, 115]), this method is often
called Tikhonov type regularization. For example, please refer to the monographs
[7, 8, 10, 35, 54, 59, 68, 73, 92, 107, 109, 116, 117] and to the papers [82, 83, 98, 118],
which contribute to the theory and practice of this kind of regularization.

Besides the standard version

S
�
F.x/; yı

	 D ��F.x/ � yı��p ; p � 1; (4)

which is mostly used in combination with the noise model (2) in Banach spaces,
specific noise models like Poisson noise or a stochastic background suggest alterna-
tive choices for the misfit term S like Kullback-Leibler or other divergences. With
respect to imaging, e.g., deblurring, image reconstruction, image registration, and
partial differential equations occurring there, different chapters of the monographs
[2,15,39,41,91,94,106,107] and the papers [12,23,40,93,120] motivate and discuss
regularized solutions xı˛ as well as different choices of functionals S and R. On the
other hand, the minimizers of (3) play also an important role in the treatment of
statistical inverse problems by Bayesian methods, maximum a posteriori estimation
(MAP), and penalized maximum likelihood estimation (see, e.g., [74]), where in
some cases the penalty term R.x/ can even be determined by a priori information
when the solution x is a realization of a randomized state variable.

A typical property of ill-posed equations is that minimizing S
�
F.x/; yı

	
alone

is very sensitive to data changes and yields in most cases highly oscillating
minimizers. For example, the least-squares approach

��F.x/ � yı��2 ! min as pre-
ferred method in Hilbert spaces shows such behavior. Therefore, the regularization
parameter ˛ > 0 in the variational problem ˆ.x/ ! min controls the trade-off
between optimal data fitting with unstable solutions if ˛ is near zero and a high
level of stability and sympathy but larger misfit for the approximate solution if ˛ is
more far from zero. The set of admissible solutions in the process of minimizingˆ
from (3) is the intersection

D WD D.F / \D.R/
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of the domains of F and R. For obtaining a regularized solution xı˛ to a nonlinear
inverse problem, a nonlinear and frequently non-convex optimization problem has
to be solved, since either the functional ˆ or the set D.F / can be non-convex.
As a consequence, for the numerical treatment of direct regularization methods in
combination with discretization approaches, iterative procedures are also required.
In this context, the details have been omitted, and the reader is referred to the
monographs [25,35,107,116] and to the sample [16,31,69,72,101] of papers from
a comprehensive set of publications on numerical approaches.

The appropriate choice of ˛ is one of the most serious tasks in regularization,
where a priori choices ˛ D ˛.ı/ and a posteriori choices ˛ D ˛

�
ı; yı

	
have to

be distinguished. For a priori choices the decay rate of ˛.ı/ ! 0 as ı ! 0 is
prescribed with the goal that regularized solutions converge to a solution of (1),
i.e., xı˛.ı/ ! x� as ı ! 0. Such convergence can be arbitrarily slow depending on

smoothness properties of x�. To obtain convergence rates
���xı˛.ı/ � x�

��� D O.'.ı//
as ı ! 0, that means a uniform convergence for some nonnegative increasing
rate function '.ı/ with '.0/ D 0, additional conditions on x�, so-called source
conditions, have to be satisfied. In contrast to a priori choices, an a posteriori
choice of the regularization parameter ˛ takes into account the present data yı

and tries to equilibrate the noise level ı and the deviation between F
�
xı
˛.ı;yı /

�
and yı. By the discrepancy principle, as the most prominent approach, ˛ is

chosen originally such that
���F �x˛.ı;yı /	ı � x�

��� D Cı with some constant C �
1 whenever (4) and (2) are supposed. Various discussions, generalizations, and
improvements of the discrepancy principle can be found in [3, 5, 69, 92, 113]. If ı
is not known sufficiently well, then heuristic methods for choosing ˛ D ˛ �yı	 can
be exploited as the quasioptimality principle, the L-curve method, and others (see,
e.g., [7, 35, 55]). They have theoretical drawbacks, since convergence fails in worst
case situations, but the utility of those methods for many classes of applications is
beyond controversy.

The choices of S; R, and ˛ D ˛
�
ı; yı

	
should be realized such that the

following questions Q1–Q4 can be answered in a positive manner:

Q1: Do minimizers xı˛ of the functionalˆ from (3) exist for all ˛ > 0 and yı 2 Y ?
Q2: Do the minimizers xı˛ for fixed ˛ > 0 stably depend on the data yı?
Q3: Is there a convergencexı

˛.ı;yı /
! x� to a solution x� of (1) if under (2) ı ! 0‹

Q4: Are there sufficient conditions imposed on x� for obtaining convergence rates��xı˛ � x�
�� D O.'.ı// as ı ! 0? In this context, ' W .0;1/ ! .0;1/ is an

index function, which means that ' is continuous and strictly increasing with
lim
ı!C0

'.ı/ D 0:

Sometimes the requirement of norm convergence is too strong. If, for instance, the
penalty functional attains the form R.x/ D kxkq ; q > 0; then R is stabilizing
only in the sense of a topology, which is weaker than the norm topology in X .
Precisely, the level sets fx 2 X W R.x/ � cg are weakly sequentially compact in X
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if X is a Hilbert space or a reflexive Banach space. In such case, weak convergence
xı
˛.ı;yı /

* x� of regularized solutions is a reasonable requirement. This leads to
norm convergence of regularized solutions if the Radon-Riesz property is satisfied;
see [107,109]. On the other hand, it may be useful to replace the norm as a measure
for the error of regularization by alternative measures E

�
xı˛; x

�
	
, preferably the

Bregman distance if R is a convex functional and X is a Banach space; see [22, 41,
50, 58, 60].

Tikhonov Regularization in Hilbert Spaces with Quadratic Misfit and
Penalty Terms

In Hilbert spaces X and Y , quadratic Tikhonov regularization with the functional

ˆ.x/ WD ��F.x/ � yı��2 C ˛ kx � x�k2 (5)

to be minimized over D D D.F / is the most prominent variant of variational
regularization of nonlinear ill-posed operator equations, for which the complete
theory with respect to questions Q1–Q4 was elaborated 20 years ago (see [37,110]).
For a comprehensive presentation including the convergence rates results, please
refer to [35, Chapter 10].

For some initial guess or reference element, x� 2 X minimizers of (5) tend to
approximate x�-minimum norm solutions x� to (1) for which

��x� � x��� D min fkx � x�k W F.x/ D y; x 2 D.F /g :

Note that x�-minimum norm solutions need not exist. In case of existence they
need not be uniquely determined. However, under the following assumption, the
existence of a solution x� 2 D.F / to (1) implies the existence of an x�-minimum
norm solution (see [107, Lemma 3.2]).

Assumption 1. 1. The operator F W D.F / � X ! Y maps between Hilbert
spaces X and Y with a nonempty domain D.F /.

2. F is weakly sequentially closed, i.e., weak convergence of the sequences xn * x0

and F.xn/ * y0 with xn 2 D.F /; x0 2 X; y0 2 Y implies x0 2 D.F / and
F.x0/ D y0:

For checking item 2 of Assumption 1, it is important to know that in the case
of weakly closed and convex domains D.F /, the weak continuity of F , i.e.,
xn * x0 implies F.xn/ * F.x0/, is a sufficient condition. Moreover, the following
proposition (see [35, Section 10.2]) answers the questions Q1–Q3 in a positive
manner.

Proposition 1. Under Assumption 1 the functional (5) has a minimizer xı˛ 2 D.F /
for all ˛ > 0 and yı 2 Y . For fixed ˛ > 0 and a sequence yn ! yı , every infinite
sequence fxng of minimizers to the associated functionals
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ˆn.x/ WD kF.x/ � ynk2 C ˛ kx � x�k2 (6)

has a convergent subsequence, and all limits of such subsequences are minimizers
xı˛ of (5). Whenever the a priori parameter choice ˛ D ˛.ı/ > 0 for ı > 0 satisfies

˛.ı/! 0 and
ı2

˛.ı/
! 0 ; as ı ! 0 ;

and if (1) has a solution in D.F /; ın ! 0 is a sequence of noise levels with
corresponding data yn D yın such that kyn � yk � ın, then every associated
sequence fxng of minimizers to (6) has a convergent subsequence, and all limit
elements are x�-minimum norm solutions x� of (1).

An answer to question Q4 concerning convergence rates is given by the following
theorem along the lines of [35, Theorem 10.4].

Theorem 2. In addition to Assumption 1, let D.F / be convex and x� be an x�-
minimum norm solution to (1) such that

��F.x/ � F �x�	 � A �x � x�	�� � L

2

��x � x���2
for all x 2 D.F /\ B�

�
x�
	
(7)

holds for a ball B�
�
x�
	

with sufficiently large radius � > 0, a constant L > 0, and
a bounded linear operator A W X ! Y satisfying a source condition

x� � x� D A� w ; (8)

where A� W Y ! X is the adjoint operator to A and w 2 Y is some source element
fulfilling the smallness condition

L kwk < 1 : (9)

Then the error estimate

��xı˛ � x�
�� � ı C ˛kwkp

˛
p

1 � Lkwk
and, for the a priori parameter choice cı � ˛.ı/ � cı with constants 0 < c � c <
1, the convergence rate

���xı˛.ı/ � x�
��� D O

�p
ı
�

as ı ! 0 (10)

are obtained.

The operatorA in (7) must be considered as a linearization of F at the point x� in
the sense of a Gâteaux or Fréchet derivativeF 0 �x�	. The condition (7) characterizes
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the structure of nonlinearity of the forward operator F in a neighborhood of x�. If
the Fréchet derivative F 0.x/ exists and is locally Lipschitz continuous around x�

with Lipschitz constant L > 0, then (7) is fulfilled.
For further convergence rate results of Tikhonov regularization in Hilbert spaces

with quadratic penalty term, please refer, for example, to [64,75,88,89,95,105,111–
113].

Variational Regularization in Banach Spaces with Convex
Penalty Term

In Banach spacesX and Y , the wide variety of variational regularization realized by
minimizing the functionalˆ from (3) allows establishing a priori information about
the noise model and the solution x� to be determined in a more sophisticated manner
than Tikhonov regularization in Hilbert spaces with quadratic misfit and penalty
terms. Knowledge of the specific situation motivates the selection of the functionals
S and R, where norm powers (4) are considered here as misfit functional, which,
for example, simplifies the numerical treatment of minimization problems if Y
is a Lebesgue space Y D Lp./ or a Sobolev space Y D W l;p./ with
1 � p � 1;  � R

k . Please refer to the papers [6, 32, 44, 51, 53, 63, 99] for a
further discussion of alternative misfit functionals S. In most cases convex penalty
functionalsR are preferred. An important class of penalty functionals form the norm
powers R.x/ WD kxkqQX ; q > 0; x 2 QX; where as an alternative to the standard case

X D QX the space QX can also be chosen as a dense subspace of X with stronger
norm, e.g., X D Lq./; QX D W l;q./; l D 1; 2; : : : : To reconstruct non-
smooth solutions x�, the exponent q can be chosen smaller than two, for example,
close to one or q D 1 if the solution is assumed to be sparse. To recover solutions
for which the expected smoothness is low, also penalty terms R.x/ D T V.x/ are
frequently applied, partly in a modified manner, where T V.x/ D R



jrxj expresses

the total variation of the function x (see, e.g., [1, 13, 107, 118, 119]). For specific
applications in imaging (see [107, Chapter 5]) and to handle sparsity of solutions
(see [3,18,19,50,52,122] and [107, Section 3.3]), the systematic use of non-convex
misfit and penalty functionals can be appropriate, in particular 0 < q < 1 for
the norm power penalties R. In the sequel, however, the focus in this section in
combination with the noise model (2) is upon the functional

ˆ.x/ WD ��F.x/ � yı��p C ˛R.x/; 1 � p <1; (11)

with a convex penalty functional R to be minimized over D D D.F / \ D.R/
yielding minimizers xı˛ .

Assumption 3. 1. The operator F W D.F / � X ! Y maps between reflexive
Banach spaces X and Y with duals X� and Y �, respectively.
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2. F is weakly sequentially closed, D.F / is convex and weakly closed, and the
intersection D D D.F /\D.R/ is nonempty.

3. The functional R is convex and weakly sequentially lower semicontinuous.
4. The functional R is stabilizing, which means that for every ˛ > 0; c � 0; and

for the exact right-hand side y of (1), the level sets

M˛.c/ WD fx 2 D W kF.x/ � ykp C ˛R.x/ � cg (12)

are weakly sequentially pre-compact in the following sense: every infinite
sequence fxng in M˛.c/ has a subsequence, which is weakly convergent in X
to some element from X .

5. The operator F possesses for all x0 2 D a one-sided directional derivative with
Gâteaux derivative-like properties, i.e., for every x0 2 D there is a bounded
linear operator F 0.x0/ W X ! Y such that

lim
t!C0

1

t
.F .x0 C t.x � x0//� F.x0// D F 0.x0/.x � x0/

is valid for all x 2 D.F /.

Under Assumption 3 existence and stability of regularized solutions xı˛ can be
shown (see [60, §3]), i.e., the questions Q1–Q2 above get a positive answer. In
Banach spaces regularization errors are estimated by upper bounds of E

�
xı˛; x

�
	
,

where E denotes an appropriate nonnegative error measure. Besides the norm
deviation

E
�
xı˛; x

�
	 D ��xı˛ � x�

�� ; (13)

which is the standard error measure in Hilbert spaces, in Banach spaces and for
convex functionals R with subdifferential @R, the Bregman distance

E
�
xı˛; x

�
	 D D�

�
xı˛; x

�
	 WD R

�
xı˛
	�R

�
x�
	 � ˝�; xı˛ � x�˛ (14)

at x� 2 DB.R/ � X and � 2 @R �
x�
	 � X� is frequently used as error measure,

where the set DB.R/ WD fx 2 D.R/ W @R.x/ 6D ;g represents the Bregman
domain. An element x� 2 D is called an R-minimizing solution to (1) if

R
�
x�
	 D min fR.x/ W F.x/ D y; x 2 Dg <1 :

Such R-minimizing solutions exist under Assumption 3 if (1) has a solution x 2 D.
For given ˛max > 0 let x� denote an R-minimizing solution of (1). By setting

� WD 2p�1˛max
�
1CR

�
x�
		
; (15)

it holds x� 2M˛max.�/ and there exists some ımax > 0 such that
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xı˛.ı/ 2M˛max.�/ for all 0 � ı � ımax :

Along the lines of [107, Section 3.2], [109, Chapters 3 and 4], and [3, 17, 58,
60, 62, 65], there are presented in the following some results on the regularization
theory for that setting.

Under an a priori parameter choice ˛ D ˛.ı/ > 0 satisfying

˛.ı/! 0 and
ıp

˛.ı/
! 0 ; as ı ! 0 ;

a positive answer to question Q3 can be given and weak convergence xı˛.ı/ * x� as
ı ! 0 (for subsequences in analogy to Proposition 1) of regularized solutions to
R-minimizing solutions x� is shown. For stronger convergence results concerning
the norm convergence, please refer, for example, to Proposition 3.32 in [107].

Taking into account the advantages of a posteriori choices of the regularization
parameter ˛ > 0, it is of interest to select such parameter choice rules ˛ D ˛ �ı; yı	
which obey the conditions

˛
�
ı; yı

	! 0 and
ıp

˛
�
ı; yı

	 ! 0 as ı ! 0: (16)

Such study was performed for the sequential discrepancy principle which will be
introduced in the following. The basis of this variety of discrepancy principle is, for
prescribed 0 < q < 1 and ˛0 > 0, a sequence

�q WD f˛j > 0 W ˛j D qj ˛0; j 2 Zg (17)

of regularization parameters and the specification of some constant � > 1.

Definition 1 (sequential discrepancy principle). For fixed ı > 0 and yı 2 Y , it
is said that ˛ D ˛

�
ı; yı

	 2 �q is chosen according to the sequential discrepancy
principle if

��F �xı˛	 � yı
�� � � ı <

���F
�
xı˛=q

�
� yı

��� : (18)

Due to Assumption 3, the set Xmin WD fx 2 D W R.x/ D Rming is nonempty for
the value Rmin WD inf

x2DR.x/ � 0 and so is Ymin WD F.Xmin/, where

F.S/ WD f Oy 2 Y W Oy D F.x/; x 2 Sg

is defined for subsets S � D.F /. Moreover, there is an element xmin 2 Xmin such
that dist

�
yı; Ymin

	 WD inf
x2Xmin

��F.x/ � yı�� D ��F.xmin/� yı
��. Using this notation,

the Proposition 2 below still needs the following two definitions concerning the
exact penalization veto and requirements on data compatibility, respectively.
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Definition 2 (exact penalization veto). It is said that the exact penalization veto
is satisfied for y 2 F.D/ if, for all ˛ > 0, any minimizer x� of the functional

ˆ0.x/ WD kF.x/ � ykp C ˛R.x/

over D, which is simultaneously an R-minimizing solution of (1), belongs to Xmin.

Definition 3 (compatible data). For y 2 F.D/ and prescribed � > 1, it is said that
there is data compatibility if there is some ımax > 0 such that for all data yı 2 Y
fulfilling (2), the condition

�ı < dist
�
yı; Ymin

	
for all 0 < ı � ımax

is satisfied.

In the paper [3], there have been formulated sufficient conditions for fulfilling the
exact penalization veto, which is mostly the case if p > 1 for the norm exponent
in the misfit term of the Tikhonov functionals ˆ and ˆ0. Sufficient conditions
for obtaining data compatibility can also be found in that paper. The following
proposition is a direct consequence of the corresponding studies in [3] for an ˛-
selection according to the sequential discrepancy principle.

Proposition 2. Let for the exact right-hand side y 2 F.D/ of Eq. (1) the exact
penalization veto be satisfied and assume for prescribed � > 1 data compatibility.
Then there is some ımax > 0 such that ˛ D ˛

�
ı; yı

	
can be chosen according to

the sequential discrepancy principle for all 0 < ı � ımax. Moreover, this parameter
choice satisfies condition (16), and consequently weak convergence xı

˛.ı;yı /
* x�

as ı ! 0 occurs in the sense of subsequences to R-minimizing solutions x� of (1)

with the limit condition lim
ı!0

R
�
xı
˛.ı;yı/

�
D R

�
x�
	
.

The weak convergence of regularized solutions xı
˛.ı;yı/

* x� in the sense of

subsequences from Proposition 2 is not worth too much. Even if the Radon-Riesz

property, which ensures that xı
˛.ı;yı/

* x� and R
�
xı
˛.ı;yı /

�
! R

�
x�
	

lead

to xı
˛.ı;yı/

! x� as ı ! 0, allows amplifying this to norm convergence, this

convergence can be arbitrarily slow for awkward solutions x�. To get more, namely,
a uniform error estimate for classes of solutions x� in the sense of convergence rates
with an index function ' determining the rate (see question Q4 above), additional
requirements must be imposed on all elements x� from the class under consider-
ation. In practice, one can restrict the considerations to rate functions ' which are
concave. The abovementioned requirements are always smoothness conditions. Pre-
cisely, the R-minimizing solutions x� to be approximated by regularized solutions
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must have a certain level of smoothness with respect to F . For nonlinear forward
operators F also the specific structure of nonlinearity influences the rate function '.

With respect to operator properties, first the concept of a degree of nonlinearity
from [58] is exploited:

Definition 4 (degree of nonlinearity in Banach space). Let c1 � 0, c2 � 0, and
c1 C c2 > 0. Then F is said to be nonlinear of degree .c1; c2/ for the Bregman
distanceD�

� � ; x�	 of R at a solution x� 2 DB.R/ � X of (1) with � 2 @R �
x�
	 �

X� if there is a constantK > 0 such that

��F.x/ � F �x�	 � F 0 �x�	 �x � x�	�� � K
��F.x/ � F �x�	�� c1

D�

�
x; x�

	 c2

(19)
for all x 2M˛max.�/.

On the other hand, the solution smoothness of x� in combination with a well-
defined degree of nonlinearity can be expressed in an efficient manner by variational
inequalities

˝
�; x� � x˛ � ˇ1D�

�
x; x�

	 C ˇ2

��F.x/ � F �x�	��� for all x 2M˛max.�/

(20)

with some � 2 @R.x�/, two multipliers 0 � ˇ1 < 1; ˇ2 � 0, and an exponent
� > 0 for obtaining convergence rates. The subsequent theorem (for a proof see
[65]) shows the utility of such variational inequalities for ensuring convergence rates
in variational regularization (for more details in the case � D 1, see also [60] and
[107, Section 3.2]).

Theorem 4. For regularized solutions xı˛ minimizingˆ from (11) with p > 1 under
Assumption 3 and provided that there is an R-minimizing solution x� 2 DB.R/, the
convergence rate

E
�
xı˛.ı/; x

�
�
D O .ı�/ as ı ! 0 (21)

is valid for the Bregman distance (14) as error measure and for an a priori
parameter choice ˛.ı/ � ıp�� if there exist an element � 2 @R �

x�
	

and constants
0 � ˇ1 < 1; ˇ2 � 0 such that the variational inequality (20) holds for some
0 < � � 1 and with � from (15).

This result which is based on Young’s inequality can immediately be extended
to the situation 0 < � < p � 1. Moreover, the situation � D p � 1
characterizes the exact penalization case. For noisy data and � D p � 1, it holds
D�

�
xı˛0
; x�

	 D O .ıp/ as ı ! 0 for a regularization parameter ˛ D ˛0 which is
fixed but sufficiently small (see [22]). An extension of such results to convergence
rates of higher order is outlined in [97].
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To verify different situations for the exponent � > 0, the setting is restricted as
follows:

Assumption 5. In addition to Assumption 3, assume for an R-minimizing solution
x� to (1):

1. The operator F is Gâteaux differentiable in x� with the Gâteaux derivative
F 0 �x�	.

2. The functional R is Gâteaux differentiable in x� with the Gâteaux derivative
� D R0 �x�	 2 X�; hence, the subdifferential @R

�
x�
	 D f�g is a singleton.

The following proposition (see [65, Proposition 4.3]) shows that exponents � > 1
in the variational inequality (20) under Assumption 5 in principle cannot occur.

Proposition 3. Under the Assumption 5 the variational inequality (20) cannot hold
with � D R0 �x�	 6D 0 and multipliers ˇ1; ˇ2 � 0 whenever � > 1.

Now the following proposition will highlight the borderline case � D 1 and
the cross connections between variational inequalities and source conditions for the
Banach space setting. Moreover, in the next subsection, the interplay with (8) and
generalized source condition can be discussed.

Proposition 4. Under Assumption 5 the following two assertions hold:

(a) The validity of a variational inequality

˝
�; x� � x˛ � ˇ1D�

�
x; x�

	 C ˇ2

��F.x/ � F �x�	�� for all x 2M˛max.�/

(22)
for � D R0 �x�	 and two multipliers ˇ1; ˇ2 � 0 implies the source condition

� D F 0 �x�	� w; w 2 Y �: (23)

(b) Let F be nonlinear of degree .0; 1/ for the Bregman distanceD�. � ; x�/ of R at
x�, i.e.,

��F.x/ � F �x�	 � F 0 �x�	 �x � x�	�� � K D�

�
x; x�

	
(24)

holds for a constant K > 0 and all x 2 M˛max.�/. Then the source
condition (23) together with the smallness condition

K kwkY � < 1 (25)

implies the validity of a variational inequality (22) with � D R0 �x�	 and
multipliers 0 � ˇ1 D KkwkY � < 1; ˇ2 D kwkY � � 0.
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Sufficient conditions for the validity of a variational inequality (20) with
fractional exponents 0 < � < 1 are formulated in [58] based on the method of
approximate source conditions using appropriate distance functions that measure
the degree of violation of the source condition (23) for the solution x�. Assertions
on convergence rates for that case can be made when the degree of nonlinearity is
such that c1 > 0 as the next proposition shows.

Proposition 5. Under Assumption 5 let F be nonlinear of degree .c1; c2/ with
0 < c1 � 1; 0 � c2 < 1; c1 C c2 � 1 for the Bregman distance D�

� � ; x�	 of
R at x�, i.e.,

��F.x/ � F �x�	 � F 0 �x�	 �x � x�	�� � K
��F.x/ � F �x�	�� c1

D�

�
u; x�

	c2

(26)
holds for a constant K > 0 and all x 2M˛max.�/. Then the source condition (23)
immediately implies the validity of a variational inequality (20) with

� D c1

1 � c2
; (27)

� D R0 �x�	, and multipliers 0 � ˇ1 < 1; ˇ2 � 0.

Some Specific Results for Hilbert Space Situations

The abstract concepts of the last subsection for the Tikhonov regularization with
quadratic functionals under Assumption 5, but with Assumption 1 in Hilbert spaces,
will be illustrated next. For

R.x/ WD kx � x�k2

the R-minimizing solutions and the classical x�-minimum norm solutions coincide.
Moreover, it holds D D D.F / and for � and D�. Qx; x/ the simple structure

� D 2
�
x� � x�	 and D�. Qx; x/ D k Qx � xk2

with Bregman domain DB.R/ D X . Then the source condition (23) attains the
form (8) with A D F 0 �x�	 =2.

To focus on the distinguished character of the setting for Hilbert spaces X and
Y , the Definition 4 will be specified as follows:

Definition 5 (Degree of nonlinearity in Hilbert space). Let c1 � 0, c2 � 0, and
c1 C c2 > 0. Define F to be nonlinear of degree .c1; c2/ at a solution x� 2 D.F /
of (1) if there is a constant K > 0 such that
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��F.x/ � F �x�	 � F 0 �x�	 �x � x�	�� � K
��F.x/ � F �x�	�� c1

��x � x��� 2c2

(28)
for all x 2M˛max.�/.

Furthermore, in Hilbert spaces Hölder source conditions

� D
�
F 0 �x�	� F 0.x�/

��=2
v; v 2 X; (29)

can be formulated that allow expressing a lower level of solution smoothness of x�

for 0 < � < 1 compared to the case � D 1, where (29) is equivalent to

� D F 0 �x�	� w; w 2 Y

(cf. condition (8) in Theorem 2). For that situation of lower smoothness, the
following theorem (see [65, Proposition 6.6]) complements the Theorem 2.

Theorem 6. Under the Assumption 5 let the operator F mapping between the
Hilbert spaces X and Y be nonlinear of degree .c1; c2/ at x� with c1 > 0 and
let with R.x/ D kx � x�k2 the element � D 2

�
x� � x�	 satisfy the Hölder source

condition (29). Then the variational inequality (20) holds with exponent

� D min

�
2�c1

1C �.1 � 2c2/
;

2�

1C �

; 0 < � � 1; (30)

for all x 2 M˛max.�/ and multipliers 0 � ˇ1 < 1; ˇ2 � 0. Consequently, for
regularized solutions xı˛.ı/ minimizing the functional ˆ from (5), the convergence
rate

E
�
xı˛.ı/; x

�
�
D O

�
ı�=2

	
as ı ! 0 (31)

holds for the norm distance (13) as error measure and for an a priori parameter
choice
˛.ı/ � ıp�� .

For parameter identification problems in partial differential equations (cf., e.g.,
[9, 68]), which can be written as nonlinear operator equations (1) with implic-
itly given forward operators F , it is difficult to estimate the Taylor remainder��F.x/ � F �x�	 � F 0 �x�	 �x � x�	�� and the variational inequality approach may
fail. However, if in addition to the Hilbert space X a densely defined subspace QX
with stronger norm is considered, then in many applications for all R > 0, there
hold conditional stability estimates of the form
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kx1 � x2k � K kF.x1/�F.x2/k� if xi 2 D.F /\ QX; kxik QX � R .i D 1; 2/
(32)

with some 0 < � � 1 and a constant K D K.R/ > 0, which may depend on the
radiusR.

Then along the lines of the paper, [31] the following theorem can be formulated.

Theorem 7. Let X and Y be Hilbert spaces and let B W D.B/ � X ! X be
an unbounded injective, positive definite, self-adjoint linear operator with domain
QX D D.B/ dense in X . Furthermore, let QC > 0 be a constant such that kxk QX WD
kBxk � QC kxk holds for x 2 QX and QX becomes a Hilbert space with norm k � k QX
stronger than the norm in X . For the nonlinear operator F W D.F / � X ! Y ,
consider regularized solutions xı˛ as minimizers over D WD D.F / \ QX of the
functional

ˆ.x/ WD ��F.x/ � yı��2 C ˛ kxk2
QX : (33)

Moreover, for all R > 0 let hold a conditional stability estimate of the form (32)
with some 0 < � � 1 and a constant K D K.R/ > 0. Then for a solution x� 2 D
of Eq. (1), the convergence rate

E
�
xı˛.ı/; x

�
�
D O .ı�/ as ı ! 0 (34)

is obtained with the norm distance (13) as error measure and for an a priori
parameter choice cı2 � ˛.ı/ � cı2 for constants 0 < c � c <1.

The papers [28, 65] show that the convergence rate result of Theorem 7 can be
extended to Banach space situations.

Further Convergence Rates Under Variational Inequalities

Returning to the Banach space setting, in Theorem 4, convergence rates were drawn
from the variational inequality (20) benefit. For the error measure E from (14) and
taking into account that the penalty functional R is convex, this inequality can be
reformulated as

ˇ E
�
x; x�

	 � R.x/ �R
�
x�
	C C ��F.x/ � F �x�	�� for all x 2M ;

for constants 0 < ˇ � 1 and C > 0, where M denotes an appropriate set
which contains x� and all regularized solutions xı˛ for sufficiently small ı > 0.
Such variational inequalities (also called variational range conditions or variational
smoothness assumptions) are in the case of general nonnegative error measures E a
powerful tool for obtaining convergence rates in Tikhonov type regularization, and
please refer to the overview in [42]. In the extended form
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ˇ E
�
x; x�

	 � R.x/ �R
�
x�
	C C ' ���F.x/ � F �x�	��	 for all x 2M ;

(35)
with some concave index function ', such variational inequalities were intensively
studied in [62]. Inequalities of this type combine assertions on the solution
smoothness of x� with assertions on the structure of nonlinearity of F around x�. In
[17] it was shown that inequalities of the form (35) are a consequence of nonlinearity
conditions

��F 0 �x�	 �x � x�	�� � 
 ���F.x/ � F �x�	��	 for all x 2M ; (36)

with concave index functions 
 , where ' depends on 
 , and both functions even
coincide if x� satisfies the source condition

� D F 0 �x�	� w; w 2 Y � ; (37)

for some subgradient � 2 @R �
x�
	
.

Theorem 8. Suppose that for y 2 F.D/ the R-minimizing solution x� 2 D of
Eq. (1) obeys for the nonnegative error measure E the variational inequality (35)
with some set M � X , constants 0 < ˇ � 1; C > 0, and a concave index function
'. Then, for the a priori parameter choice

˛.ı/ D ˛0
ıp

'.ı/

and provided that the Tikhonov-regularized solutions satisfy the condition xı˛.ı/ 2
M for 0 < ı � ımax, the convergence rate

E
�
xı˛.ı/; x

�
�
D O .'.ı// as ı ! 0 (38)

holds for arbitrarily chosen ˛0 > 0 whenever the norm exponent p in (11) is taken
from the interval 1 < p <1 and for 0 < ˛0 < 1 if p D 1.

The same convergence rate result can also be derived from the variational inequal-
ity (35) if the regularization parameter ˛ is chosen according to the sequential
discrepancy principle. For linear injective operators F and an `1-penalty term R,
this was exploited in [21] (see also [4]) for obtaining convergence rates under
conjectured sparsity constraints when the sparsity fails, but x� is in `1. Then the
decay rate of solution components x�k ! 0 as k ! 1 influences the function '
in (35).
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3 Examples

In this section, several examples of parameter identification problems in integral
and differential equations will be presented in order to show how to apply the
regularization theory outlined above to specific ill-posed and inverse problems. The
examples refer either to nonlinear inverse problems, which can be formulated as
operator equations (1) with forward operator F mapping from a Hilbert space X
to a Hilbert space Y , or to linearizations of such problems, which then appear
as linear operator equations. All discussed examples originally represent ill-posed
problems in the sense that small data changes may lead to arbitrarily large errors
in the solution. If the forward operator F is linear, then this phenomenon can be
characterized by the fact that the range of the operator F is a nonclosed subspace
in Y . For nonlinear F such simple characterization fails, but a local version of
ill-posedness (see [64]) takes place in general. In order to make clear the cross
connections to the theory, as in the previous sections, the unknown parameter
functions are denoted by x, in particular the exact solution to (1) by x�, and the
exact and noisy data are denoted by y and yı , respectively. For conciseness, this
section restricts to six examples. More examples can be found in the corresponding
references of this book.

Example I ((Identification of coefficients in wave equations)). Let  � R
n, n D

1; 2; 3, be a bounded domain with C 2-boundary @. Consider
8̂
<̂
ˆ̂:

@2u
@t2
.�; t/ D �u.�; t/C x.�/u.�; t/; � 2 ; 0 < t < T;

u.�; 0/ D a.�/; @u
@t
.�; 0/ D b.�/; � 2 ;

@u
@�
.�; t/ D 0; � 2 @; 0 < t < T:

(39)

Here and henceforth @
@�

denotes the normal derivative. Fix initial values a and b
such that

a 2 H 3./; b 2 H 2./;
@a

@�

ˇ̌
@�.0;T / D @b

@�

ˇ̌
@�.0;T / D 0: (40)

Then for any function x 2 W 1;1./, there exists a unique solution

u.x/ D u.x/.�; t/ 2 C �Œ0; T �IH 3./
	\C 1

�
Œ0; T �IH 2./

	\C 2
�
Œ0; T �IH 1./

	

to (39) (see, e.g., [67]).
The inverse problem here consists in the identification of the parameter function

x D x.�/, � 2 , occurring in the hyperbolic partial differential equation based on
noisy observations yı of time derivatives y of the state variable Œu.x/�.�; t/ on the
boundary .�; t/ 2 @ � .0; T /. In addition to (40), assume that

T > min
�02

max
�2
j� � � 0j (41)
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and

ja.�/j > 0; � 2 : (42)

Moreover, set

UM D
˚
x 2 W 1;1./ W kxkW 1;1.R/ �M



(43)

forM > 0.
In [67], it is proved that there exists a constant C D C.; T; a; b;M/ > 0 such

that

kx1 � x2kL2./ � C
���� @@t .u.x1/� u.x2//

����
H 1.@�.0;T //

(44)

for all x1; x2 2 UM .
The forward operator F is defined as a mapping from the space X D L2./ to

the space Y D H 1.@ � .0; T // according to

ŒF .x/�.�; t/ WD @u.x/

@t

ˇ̌
@�.0;T / ; .�; t/ 2 @ � .0; T /:

This is a nonlinear operator mapping between the Hilbert spaces X and Y , and Ill-
posedness of the corresponding operator equation can be indicated. However, the
estimate (44) shows that this inverse problem possesses good stability properties if
the set of admissible solutions is restricted suitably or if the regularization term is
chosen in an appropriate manner.

A Tikhonov regularization approach as outlined in the previous sections is useful.
If the functionalˆ is chosen as

ˆ.x/ D ��F.x/ � yı��2

Y
C ˛ kx � x�k2

X ;

the theory applies. Alternatively, the penalty term can also be chosen by using a
stronger norm. In this case, the functionalˆ is chosen as

ˆ.x/ D ��F.x/ � yı��2

Y
C ˛kxk2

QX :

where QX D W 1;1./.
Then by the conditional stability estimation (44), the convergence rate

��xı˛ � x�
��
L2./

D O.ı/ as ı ! 0

is obtained with the choice ˛ D ı2.

Example II (Determination of shapes of boundaries). Using polar coordinates
.r; �/, the shape of a boundary in R

2 is identified. For M > 0 and 0 < m0 <
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m1 < 1, set

Um1;M D
(
x D x.�/ 2 C 2Œ0; 2�� W d

kx

d�k
.0/ D dkx

d�k
.2�/; k D 0; 1; 2;

kxkC 2 Œ0;2�� �M; kxkCŒ0;2�� � m1

)

and

Qm0 D
˚
x 2 C 2Œ0; 2�� W x.�/ � m0; 0 � � � 2�



:

Now with a function x 2 Um1;M , let .x/ � R
2 denote a domain being a subset of

the unit circle, which is bounded by the curve �.x/ D f� D .r; �/ W r D x.�/; 0 �
� � 2�g. Consider the Laplacian field in .x/:

(
�u D 0 in .x/;

u
ˇ̌
�.x/ D 0; u j� D  ;

(45)

where  2 C 3.�/ is fixed and  � 0 does not vanish identically on � . Then there
exists a unique classical solution u.x/ D u.x/.�/ to (45).

The inverse problem in this example is aimed at the identification of the interior
subboundary �.x/ from noisy data yı of y WD @u.x/

@�
j�0 where � 0 is an arbitrary

relatively open subset of � .
In the paper [20], a uniqueness assertion was proved, namely, that it can be

concluded, for x1; x2 2 Um1;M \ Qm0 , from the equality of two potential flux
functions

@u.x1/

@�
D @u.x2/

@�
on � 0

that

x1.�/ D x2.�/; 0 � � � 2�:

Moreover, there exists a constant C D C.m0; m1;M; / > 0 such that

kx1 � x2kCŒ0;2�� � Cˇ̌
ˇ̌log

��� @u.x1/

@�
� @u.x2/

@�

���
C 1.�0/

ˇ̌
ˇ̌ (46)

for all x1; x2 2 Um1;M \Qm0 .
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The Banach spaces X and Y are fixed here as

X D C Œ0; 2��; Y D C 1.� 0/;

and the forward operator is introduced by the assignment

F.x/ WD @u.x/

@�

ˇ̌
ˇ̌
�0

:

Taking into account the intrinsic ill-posedness of this inverse problem, never-
theless, it can be seen that the estimate (46) shows some weak, i.e., logarithmic,
stability. This helps to overcome the ill-posedness here again if the admissible set is
chosen suitably or the Tikhonov regularization is applied in an appropriate way.

The theory of the preceding sections applies if the functionalˆ is chosen as

ˆ.x/ D ��F.x/ � yı��2

Y
C ˛R.x/

with R.x/ as a convex penalty term or if the penalty term is equipped with some
stronger norm leading to

ˆ.x/ D kF.x/ � yık2
Y C ˛kxk2

QX ;

where QX D Qm0 \Z and

Z D
(
x 2 C 2Œ0; 2�� W dkx

d�k
.0/ D dkx

d�k
.2�/; k D 0; 1; 2

)
:

The conditional stability estimation (46) gives the convergence rate

��xı˛ � x�
��
CŒ0;2�� D O

�
1

j log ıj
�

as ı ! 0

for the parameter choice ˛ D ı2.
Similar inverse problems are discussed in the papers [14, 58]. The regularization

methods outlined above can be used to treat those inverse problems, too.

Example III (Integral equation of the first kind with analytic kernel). LetD andD1

be simple connected bounded domains in R
3 such that D \D1 D ;. Consider an

integral equation of the first kind:

ŒF .x/�.�/ WD
Z
D

x.�/

j�� �j2d� D y.�/; � 2 D1: (47)

This type of integral equation is derived in the context of models for nondestruc-
tive testing (see [36]). In the original inverse problem, there is a nonlinear one. The
integral equation (47), however, can be considered as a linearization of the original
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problem. It was shown in [36] that the linearized problem (47) is close to the original
problem under some assumptions on the size of domainD.

By D \D1 D ;, the kernel 1
j���j2 is analytic in � 2 D1 and � 2 D, so that (47)

appears as a severely ill-posed linear operator equation.
In the paper [30], it was proved that if there are two functions x1; x2 2 L2.D/

such that the corresponding y1; y2 satisfy

y1.�/ D y2.�/; � 2 D1;

then it holds

x1.�/ D x2.�/; � 2 D:

Moreover, the following conditional stability is proved: Fix q > 3 and

UM D
n
x 2 W 2;q

0 .D/ W kxk
W

2;q
0 .D/

�M
o
:

Then there exists a constant C D C.q;M;D;D1/ > 0 such that

kxkL2.D/ �
Cˇ̌

log kykH 1.D1/

ˇ̌ (48)

for all x 2 UM .
The linear forward operator F maps here from the space X D L2.D/ to the

space Y D H 1.D1/. In spite of the original ill-posedness of the operator equation,
the estimate (48) shows again logarithmic stability after appropriate restriction of
the set of admissible solutions.

Variational regularization with the Tikhonov functional

ˆ.x/ D ��F.x/ � yı��2

Y
C ˛kx � x�k2

X

or alternatively with

ˆ.x/ D ��F.x/ � yı��2

Y
C ˛kxk2

QX

for QX D W
2;q

0 .D/ allows the application of the general theory to that example. In
particular, the conditional stability estimation (48) yields the convergence rate

kxı˛ � x�kL2.D/ D O
�

1

j log ıj
�

as ı ! 0

whenever the a priori choice ˛ D ı2 of the regularization parameter is used.
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Example IV (Identification of wave sources). Let  � R
n be a bounded domain

with C 2-boundary @. Consider

8̂
<̂
ˆ̂:

@2u
@t2
.�; t/ D �u.�; t/C �.t/x.�/; x 2 ; 0 < t < T;

u.�; 0/ D @u
@t
.�; 0/ D 0; � 2 ;

u.�; t/ D 0; � 2 @; 0 < t < T:

(49)

Assume that

� 2 C1Œ0;1/; �.0/ ¤ 0; (50)

and fix such �. Then for any function x 2 L2./, there exists a unique solution

u.x/ 2 C �Œ0; T �IH 2./\H 1
0 ./

	 \ C 1 �Œ0; T �IH 1
0 ./

	\ C 2 �Œ0; T �IL2./
	
:

The inverse problem under consideration here is the identification of x D x.�/,
� 2 ; from observations yı of y WD @u.x/

@�
j@�.0;T /. Corresponding uniqueness and

conditional stability results can be found in [121].
Let

� ¤ 1

4
;

3

4
; 0 � � � 1 ;

and let M > 0 be arbitrarily given. Set

X� D
(
H 2�./; 0 � � < 1

4 ;

H 2�
0 ./; 1

4 < � � 1; � ¤ 3
4 ;

whereH 2�./, H 2�
0 ./ denote the Sobolev spaces, and

UM;� D fx 2 X� W kxkH 2� ./ �M g:

Furthermore, assume

T > diam 
 sup
x;x02

j� � � 0j: (51)

Then, it is proved that there exists a constant C D C.; T; �; �/ > 0 such that

kx1 � x2kL2./ � CM
1

2�C1

����@u.x1/

@�
� @u.x2/

@�

����
2�

2�C1

L2.@�.0;T //
(52)

for all x1; x2 2 UM;� .
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The definition

F.x/ D y WD @u.x/

@�

ˇ̌
ˇ̌
@�.0;T /

of the forward operator F W X ! Y is well defined for the Hilbert spaces X D
L2./ and Y D L2.@ � .0; T //. In contrast to Example I, where also a wave
equation is under consideration, F appears here as a linear operator with nonclosed
range. However, the estimate (52) shows that this inverse problem possesses even
Hölder type stability if we choose the admissible set suitably.

With respect to the regularization methods from the previous sections, the
functionalˆ can be chosen as

ˆ.x/ D ��F.x/ � yı��2

Y
C ˛kx � x�k2

X

or as

ˆ.x/ D ��F.x/ � yı��2

Y
C ˛kxk2

QX ;

where QX D X� . Then the conditional stability estimation (52) gives here the Hölder
convergence rate

��xı˛ � x�
��
L2./

D O
�
ı

2�
2�C1

�
as ı ! 0

with the choice ˛ D ı2.

Example V (Identification of potential in an elliptic equation). Let  be a simply
connected domain in R

3 with the C 2-boundary @. Consider the following problem

(
�uC x � u D 0; in 

u D f; on @
(53)

with functions x 2 L2./ and f 2 H 1
2 .@/.

Assuming that zero is not the Dirichlet eigenvalue of the Schrödinger operator
� C x on the domain ; it is known that there exists unique solution u 2 H 1./

for this problem. Then the Dirichlet-to-Neumann mapƒx W H 1
2 .@/! H� 1

2 .@/

is defined as

ƒxf D @u

@�

ˇ̌
ˇ̌
@

; (54)

where � is the unit outer normal with respect to @.
The inverse problem under consideration here addresses the recovery of the not

directly observable potential function x.�/, for � 2 , from data y delivered by
ƒx . This is specified as follows: An infinite sequence fVN g1ND1 of N -dimensional
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subspaces VN D span.f1; f2; : : : ; fN / is considered generated by a basis ffj g1jD1

in H 1.@/, i.e.,

VN � VNC1 � H 1.@/ and
1[
ND1

VN is dense in H 1.@/:

In this context, it is assumed that the finite dimensional spaces VN , N D 1; 2; : : : ,
have the following properties:

1. For any g 2 H 1.@/, there exists a gN 2 VN and a function ˇ.N /, which
satisfies limN!1 ˇ.N / D 0, such that

kg � gN k
H

1
2 .@/

� ˇ.N /kgkH 1.@/: (55)

2. There exists a constant C > 0, which is independent of g, such that

kgN k
H

1
2 .@/

� Ckgk
H

1
2 .@/

: (56)

The following result is proved in [29]: Suppose that xj 2 Hs./, j D 1; 2;with
s > 3

2 , satisfy

kxj kHs./ �M

for some constant M > 0. Then there exists a constant C > 0, which depends on
M , such that

kx1 � x2kL2./ � C! .kƒx1 �ƒx2kVN C ˇ.N // (57)

for N large enough and kƒx1 � ƒx2kVN small enough. Precisely, it is here !.t/ D�
1

log 1
t

��
with some 0 < � � 1 taking into account that

kƒx1 �ƒx2kVN D sup
�2VN ;k�k

H
1
2 .@/

D1
j h.ƒx1 �ƒx2/�; �i j;

where h � ; � i is the dual pairing betweenH� 1
2 .@/ to H

1
2 .@/.

Here the forward operator F is defined as

F.q/ WD ƒjYN :

This is a nonlinear operator mapping from the space X D L2./ into the space

Y 2 L
�
L2.@/;H

1
2 .@/

�
, which represents the space of bounded linear operators

mapping between L2.@/ and H
1
2 .@/. Moreover, consider the restriction YN D
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Y jVN of Y generated by the subspace VN . The original problem of finding x from
ƒx data is ill-posed, but even without the uniqueness of the inverse problem, the
estimate (57) shows some stability behavior of logarithmic type under the associated
restrictions on the expected solution. Again for the Tikhonov regularization with
functionals

ˆ.x/ D ��F.x/ � yı��2

YN
C ˛kx � x�k2

X

or

ˆ.x/ D ��F.x/ � yı��2

YN
C ˛kxk2

QX ;

where QX D Hs with s > 3
2 , the theory of sections “Tikhonov Regularization

in Hilbert Spaces with Quadratic Misfit and Penalty Terms” and “Variational
Regularization in Banach Spaces with Convex Penalty Term” is applicable. From
the latter section, with the conditional stability estimation (57), the convergence rate

��xı˛ � x�
��
L./
D O ..log.1=ı//�� / as ı ! 0

can be derived for the parameter choice ˛ D ı2.

Example VI (Inverse problems for autoconvolution equations). For the space X D
Y D L2.0; 1/ of quadratically integrable real functions defined on the unit interval,
consider as first variant of this example the autoconvolution equation x � x D y,
where with reference to Eq. (1),

ŒF .x/�.s/ WD
sZ

0

x.s � t/x.t/dt; 0 � s � 1 (58)

is the corresponding forward operator with D.F / D X . This operator equation
of quadratic type occurs in physics of spectra, in optics, and in stochastics, often
as part of a more complex task (see, e.g., [11, 70, 108]). A series of studies on
deautoconvolution and regularization have been published for the setting (58); see,
for example, [34, 100]. Some first basic mathematical analysis of the autoconvolu-
tion equation can already be found in the paper [48]. Moreover, a regularization
approach for general quadratic operator equations was suggested in the recent
paper [43]. Because of their weak nonlinearity, deautoconvolution problems are
not seen as difficult, and hence, little attention is paid to them wrongly. However,
there is a deficit in convergence rates for regularized solutions xı˛ obtained by the
classical form of Tikhonov regularization in Hilbert spaces as minimizers of the
functional (5). It can be shown that Assumption 1 applies and that the inequality (7)
from Theorem 2 is satisfied with L D 2 and for arbitrary large radii �, even as an
equation
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��F.x/ � F �x�	 � F 0 �x�	 �x � x�	��
X
D ��x � x���2

X
;

where

�
F 0.x/h

�
.s/ D 2

sZ

0

x.s � t/h.t/dt; 0 � s � 1; h 2 L2.0; 1/;

characterizes the Fréchet derivative of F from (58) at the point x�. Note that it is
very specific phenomenon here that the nonlinear operator F is not compact, but
F 0.x�/ is a compact linear operator mapping in L2.0; 1/. One consequence of this
specific interplay between F and its derivative for the deautoconvolution problem
from (58), which is locally ill-posed everywhere, is the fact that the classical
convergence rate theory developed for the Tikhonov regularization of nonlinear ill-
posed problems reaches its limits if standard source condition

x� � x� D F 0 �x�	� w; w 2 Y;

fails. Please refer to [24] for details. On the other hand, convergence rate results
based on Hölder source conditions with small Hölder exponent and logarithmic
source conditions or on the method of approximate source conditions (cf. [58]) are
not applicable since qualified nonlinearity conditions like (36) cannot be proven
according to current knowledge.

For a function x W R ! R with support on Œ0; 1�, the autoconvolution x � x
is a function with support on Œ0; 2�. Hence, the strength of ill-posedness for the
deautoconvolution problem according to the forward operator (58) can be reduced
if observations of ŒF .x/�.s/ for all 0 � s � 2 are taken into account (full data
case). Please refer to [46] for details and numerical case studies. In a second variant
of this example with applications in laser optics, the full data case is exploited,
but for complex functions and with an additional kernel. This variety considers
a generalized autoconvolution equation motivated by problems of ultrashort laser
pulse characterization arising in the context of the self-diffraction SPIDER method,
and the reader is referred to the recent paper [47] for physical details and the
experimental setting of this problem. In this variant, the focus is on a kernel-
based, complex-valued, and full data analog to (58). Take into account L2

C
-spaces

of quadratically integrable complex-valued functions over finite real intervals set for
the corresponding normed spaces X D L2

C
.0; 1/ and Y D L2

C
.0; 1/ and consider

for the associated operator equation (1) the nonlinear forward operator

ŒF .x/�.s/ WD

8̂
<̂
ˆ̂:

sR
0
k.s; t/x.s � t/x.t/dt if 0 � s � 1

1R
s�1

k.s; t/x.s � t/x.t/dt if 1 < s � 2
(59)
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mapping from L2
C
.0; 1/ to L2

C
.0; 2/ with domain D.F / D L2

C
.0; 1/. Every function

x 2 L2
C
.0; 1/ can be represented as x.t/ D A.t/ ei�.t/; 0 � t � 1; with the

nonnegative amplitude (modulus) function A D jxj and the phase function � W
Œ0; 1� ! R. For the SPIDER technology, in particular, the phase function is to be
determined from noisy observations of the complex function y, whereas information
about the amplitude function can be verified by alternative measurements. In [47]
some mathematical studies and a regularization approach for this specific problem
have been presented, and further analytic investigations for the specific case of a
constant kernel k can be found in [24].

4 Conclusion

This chapter has presented some theoretic results including convergence and
convergence rates assertions on direct regularization methods for nonlinear inverse
problems formulated in the setting of infinite dimensional Hilbert or Banach spaces.
The inverse problems can be written as ill-posed nonlinear operator equations
with the consequence that their solutions tend to be unstable with respect to
data perturbations. To overcome that drawback, regularization methods use stable
auxiliary problems, which are close to the original inverse problem. A regularization
parameter controls the trade-off between approximation and stability. For direct
regularization methods, the auxiliary problems are mostly minimization problems
in abstract spaces, where a weighted sum of a residual term that expresses the data
misfit and a stabilizing penalty term expressing expected solution properties has
to be minimized. In this context the regularization parameter controls the relative
weight of both terms. Furthermore, six examples are given that show the wide
range of applicability for such regularization methods in the light of specific inverse
problems. More than 120 references at the end of this chapter survey the relevant
literature in this field.
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1 Introduction

Today imaging is rapidly improving by increased specificity and sensitivity of
measurement devices. However, even more diagnostic information can be gained
by combination of data recorded with different imaging systems.

In particular in medicine, information of different modalities is used for diag-
nosis. From the various imaging technologies used in medicine, we mention
exemplary positron emission tomography (PET), single photon emission computed
tomography (SPECT), magnetic resonance imaging (MRI), magnetic resonance
spectroscopy (MRS), X-ray, and ultrasound. Soft tissue can be well visualized in
magnetic resonance scans, while bone structures are more easily discernible by X-
ray imaging.

Image registration is an appropriate tool to align the information gained from
different modalities. Thereby, it is necessary to use similarity measures that are able
to compare images of different modalities, such that in a post-processing step the
data can be fused and relevant information can be aligned.

The main challenge for computer-assisted comparison of images from different
modalities is to define an appropriate distance measure between the images from
different modalities.

Similarity measures of images can be categorized as follows:

1. Pixel-wise comparison of intensities.
2. A morphological measure defines the distance between images by the distance

between their level sets.
3. Measures based on the image’s gray value distributions.

In the following, we review distance measures for images according to the above
catalog.

We use the notation˝ for the squared domain .0; 1/2. Images are simultaneously
considered as matrices or functions on ˝: A discrete image is an N � N -matrix
U 2 f0; : : : ; 255gN�N . Each of the entries of the matrix represents an intensity
value at a pixel. Therewith is associated a piecewise constant function

uN .x/ D
XN

iD1

XN

jD1
U ij	ij.x/; (1)

where

ij WD
�
i � 1

N
;
i

N

�
�
�
j � 1

N
;
j

N

�
for 1 � i; j � N;

and ¦ij is the characteristic function of ˝ij. In the context of image processing,
U ij denotes the pixel intensity at the pixel ¦ij. A continuous image is a function
u W ˝ ! R.
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We emphasize that the measures for comparing images, presented below, can be
applied in a straightforward way to higher-dimensional domains, for example, voxel
data. However, here, for the sake of simplicity of notation and readability, we restrict
attention to a two-dimensional squared domain ˝ . Even more, we restrict attention
to intensity data and do not consider vector-valued data, such as color images or
tensor data. By this restriction, we exclude, for instance, feature-based intensity
measures.

2 DistanceMeasures

In the following, we review distance measures for comparing discrete and continu-
ous images. We review the standard and a morphological distance measure; both of
them are deterministic. Moreover, based on the idea to consider images as random
variable, we consider in the last two subsections two statistical approaches.

Deterministic Pixel Measure

The most widely used distance measures for discrete and continuous images are the
lp , Lp distance measures, respectively, in particular p D 2; see, for instance, the
chapter �Linear Inverse Problems in this handbook. There, two discrete images U1

and U2 are similar, if

kU1 � U2kp WD
�PN

iD1

PN
jD1

ˇ̌
ˇU ij

1 � U ij
2

ˇ̌
ˇp
� 1
p

; 1 � p <1;
kU2 � U2k1 WD supi;jD1;:::;N

ˇ̌
ˇU ij

1 � U ij
2

ˇ̌
ˇ ; p D1;

respectively, is small. Two continuous images u1; u2 W ˝ ! R are similar if

ku1 � u2kp WD
�R

ju1.x/ � u2.x/jp; dx
	 1
p 1 � p <1;

ku2 � u2k1 WD ess supx;y ju1.x/ � u2.x/j; p D 1;

is small. Here, ess sup denotes the essential supremum.

http://dx.doi.org/10.1007/978-1-4939-0790-8_1
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u1 u2 morphology of u1,u2

Ω1.2(u2)Ω0.5(u1)

Ω0.5(u2)Ω1.2(u1)

Fig. 1 The gray values of the images are completely different, but the images u1, u2 have the same
morphology

Morphological Measures

In this subsection, we consider continuous images ui W ˝ ! Œ0; 255�; i D 1; 2.
u1 and u2 are morphologically equivalent (Fig. 1), if there exists a one-to-one gray
value transformation “ W Œ0; 255�! Œ0; 255�, such that

ˇ ı u1 D u2:

Level sets of a continuous function u are defined as

t.u/ WD fx 2  W u.x/ D tg:

The level sets˝R.u/ WD f˝t.u/ W t 2 Œ0; 255�g form the objects of an image that
remain invariant under gray value transformations. The normal field (Gauss map) is
given by the normals to the level lines and can be written as

n.u/ W  ! R
d

x 7!
(

0 if ru.x/ D 0
ru.x/

kru.x/k else:

Droske and Rumpf [7] consider images as similar, if intensity changes occur at the
same locations. Therefore, they compare the normal fields of the images with the
similarity measure

Sg.u1; u2/ D
Z


g.n.u1/.x/;n.u2/.x// dx; (2)

where they choose the function g W R2 � R
2 ! R � 0 appropriately. The vectors

n.u1/.x/; n.u2/.x/ form an angle that is minimal if the images are morphologically
equivalent. Therefore, an appropriate choice of the function g is an increasing
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function of the minimal angle between v1, v2, and v1; �v2. For instance, setting
g to be the cross or the negative dot product, we obtain

S�.u1; u2/ D 1
2

R

jn.u1/.x/ � n.u2/.x/j2 dx

Sı.u1; u2/ D 1
2

R
 .1� n.u1/.x/ �n.u2/.x//

2 dx:

(The vectors n have to be embedded in R
3 in order to calculate the cross product.)

Example 1. Consider the following scaled images ui W Œ0; 1�2 ! Œ0; 1�,

u1.x/ D x1x2; u2.x/ D 1 � x1x2; u3.x/ D .1� x1/x2;

with gradients

ru1.x/ D
�
x2

x1

�
; ru2.x/ D

��x2

�x1

�
; ru3.x/ D

� �x2

1 � x1

�
:

With g.u; v/ WD 1
2 ju1v2�u2v1j, the functionalSg defined in (2) attains the following

values for the particular images:

Sg.u1; u2/ D 1
2

R

j � x2x1 C x2x1j dx D 0

Sg.u2; u3/ D 1
2

R
 jx2x1 C x2x1j dx D 1

4
Sg.u3; u1/ D 1

2

R

j � x2x1 � .1 � x1/x2j dx D 1

4 :

The similarity measure indicates that u1 and u2 are morphologically identical.

The normalized gradient field is set valued in regions where the function
is constant. Therefore, the numerical evaluation of the gradient field is highly
unstable. To overcome this drawback, Haber and Modersitzki [15] suggested to use
regularized normal gradient fields:

n�.u/ W ! R
d

x 7! ru.x/
kru.x/k�

where kvk� WD
p

vT vC �2 for every v 2 R
d . The parameter � is connected to

the estimated noise level in the image. In regions where � is much larger than the
gradient, the regularized normalized fields n�.u/ are almost zero and therefore do
not have a significant effect of the measures S� or So, respectively. However, in
regions where � is much smaller than the gradients, the regularized normal fields
are close to the non-regularized ones (Fig. 2).
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Fig. 2 Top: images u1, u2, u3. Bottom: n.u1/, n.u2/, n.u3/

Statistical DistanceMeasures

Several distance measures for pairs of images can be motivated from statistics by
considering the images as random variables. In the following, we analyze discrete
images from a statistical point of view. For this purpose, we need some elementary
statistical definitions. Applications of the following measures are mentioned in
section “Morphological Measures”:

Correlation Coefficient :

NU WD 1

N 2

NX
i;jD1

U ij and Var.U / D
NX

i;jD1

.U ij � NU /2

denote the mean intensity and variance of the discrete image U .

Cov.U1; U2/ D
NX
iD1

NX
jD1

�
U

ij
1 � NU1

� �
U

ij
2 � NU2

�

denotes the covariance of two images U1 and U2, and the correlation coefficient is
defined by
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�.U1; U2/ D Cov.U1; U2/p
Var.U1/ Var.U2/

:

The correlation coefficient is a measure of linear dependence of two images. The
range of the correlation coefficient is Œ�1; 1�, and if �.U1; U2/ is close to one, then
it indicates that U1 and U2 are linearly dependent.

Correlation Ratio: In statistics, the correlation ratio is used to measure the
relationship between the statistical dispersion within individual categories and the
dispersion across the whole population. The correlation ratio is defined by

�.U2jU1/ D Var.E.U2jU1//

Var.U2/
;

where E.U2jU1/ is the conditional expectation of U2 subject to U1.
To put this into the context of image comparison, let

t.U1/ WD
n
.i; j /jU ij

1 D t
o

be the discrete level set of intensity t 2 {0, . . . , 255}. Then the expected value of U2

on the t-th level set of U1 is given by

E.U2jU1 D t/ WD 1

#.t.U1//

X
t .U1/

U
ij
2 ;

where #.˝t.U1// denotes the number of pixels in U1 with gray value t . Moreover,
the according conditional variance is defined by

V.U2jU1 D t/ D 1

#.t.U1//

X
t.U1/

�
U

ij
2 �E.U2jU1 D t/

�2
:

The function

H.U1/ W f0; : : : ; 255g ! N

t 7! #.t.U1//

is called the discrete histogram of U1.
The correlation ratio is nonsymmetric, that is, ˜.Y jX/ ¤ ˜.X jY /, and takes values
in [0, 1]. It is a measure of (non)linear dependence between two images. IfU1 D U2,
then the correlation ratio is maximal.

Variance of Intensity Ratio, Ratio Image Uniformity: This measure is based on
the definition of similarity that two images are similar, if the factor Rij .U1; U2/ D
U

ij
1 =U

ij
2 has a small variance. The ratio image uniformity (or normalized variance

of the intensity ratio) can be calculated by
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Fig. 3 Images for Examples 2 and 6. Note that there is a dependence between U1 and U2: U2 �
11 � .U1/

3

Table 1 Comparison of the different pixel-based similarity measures. The images U1, U2 are
related in a nonlinear way; this is reflected in a correlation ratio of 1. We see that the variance of
intensity ratio is not symmetric and not significant to make a statement on a correlation between
the images

U1, U2 U2, U1 U2, U3 U3, U2 U3, U1 U1, U3

Correlation coefficient �0.98 �0.98 0.10 0.10 �0:14 �0:14

Correlation ratio 1.00 1.00 0.28 0.32 0:29 0:64

Variance of intensity ratio 1.91 2.87 2.25 1.92 3.06 0:83

RIU.U1; U2/ D Var.R/
NR :

It is not symmetric.

Example 2. Consider the discrete images U1, U2, and U3 in Fig. 3. Table 1 shows a
comparison of the different similarity measures. The variance of the intensity ratio is
insignificant and therefore cannot be used to determine similarities. The correlation
ratio is maximal for the pairing U1, U2, and in fact there is a functional dependence
of the intensity values ofU1 andU2. However, the dependence of the intensity values
of U1 and U2 is nonlinear; hence, the absolute value of the correlation coefficient
(measure of linear dependence) is close to one, but not identical to one.

Statistical DistanceMeasures (Density Based)

In general, two images of the same object but of different modalities have a large
Lp , lp distance. Hence, the idea is to apply statistical tools that consider images
as similar if there is some statistical dependence. Statistical similarity measures are
able to compare probability density functions. Hence, we first need to relate images
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to density functions. Therefore, we consider an image as a random variable. The
basic terminology of random variables is as follows:

Definition 1. A continuous random variable is a real-valued functionX W ˝S ! R

defined on the sample space ˝S . For a sample x;X.x/ is called observation.

Remark 1 (Images as Random Variables). When we consider an image u W ˝ ! R

as a continuous random variable, the sample space is ˝ . For a sample x 2 ˝ , the
observation u.x/ is the intensity of u at x.

Regarding the intensity values of an image as an observation of a random
process allows us to compare images via their intrinsic probability densities. Since
the density cannot be calculated directly, it has to be estimated. This is outlined
in section “Density Estimation”. There exists a variety of distance measures for
probability densities (see, for instance, [31]). In particular, we review f -divergences
in section “Csiszár-Divergences (f -Divergences)” and explain how to use the f -
information as an image similarity measure in section “f -Information”.

Density Estimation
This section reviews the problem of density estimation, which is the construction of
an estimate of the density function from the observed data.

Definition 2. Let X W ˝S ! R be a random variable, that is, a function mapping
the (measurable) sample space ˝S of a random process to the real numbers.

The cumulated probability density function of X is defined by

P.t/ WD 1

meas.S/
measfx W X.x/ � tg t 2 R:

The probability density function p is the derivative of P .
The joint cumulated probability density function of two random variablesX1, X2

is defined by

OP.t1; t2/ WD 1

meas.S/2
measf.x1; x2/ W X1.x1/ � t1; X2.x2/ � t2g t1; t2 2 R:

The joint probability density function Op satisfies

OP .t1; t2/ D
Z t1

0

Z t2

0
Op.s1; s2/ds1 ds2:

Remark 2. When we consider an image u W ˝ ! R a random variable with sample
space ˝ , we write p.u/.t/ for the probability density function of the image u. For
the joint probability of two images u1 and u2, we write Op.u1; u2/.t1; t2/ to emphasize,
as above, that the images are considered as random variables.
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The terminology of Definition 2 is clarified by the following one-dimensional
example:

Example 3. Let ˝ WD Œ0; 1� and

u W ! Œ0; 255�
x ! 255x2:

The cumulated probability density function

P W Œ0; 255�! Œ0; 1�

is obtained by integration:

P.t/ WD measfx W 255 x2 � tg D meas

(
x W x �

r
t

255

)
D
Z p t

255

0
1 dx D

r
t

255
:

The probability density function of u is given by the derivative of P , which is

p.u/.t/ D 1

2
p

255

1p
t
:

In image processing, it is common to view the discrete image U (or uN as in (1)) as
an approximation of an image u. We aim for the probability density function of u,
which is approximated via kernel density estimation using the available information
of u, which is U . A kernel histogram is the normalized probability density function
according to the discretized image U , where for each pixel a kernel function (see
(3)) is superimposed. Kernel functions depend on a parameter, which can be used to
control the smoothness of the kernel histogram.

We first give a general definition of kernel density estimation:

Definition 3 (Kernel Density Estimation). Let t1, t2; : : : ; tM be a sample of
M independent observations from a measurable real random variable X with
probability density function p. A kernel density approximation at t is given by

p
.t/ D 1

M

XM

iD1
k
.t � ti /; t 2 Œ0; 255�

where k¢ is a kernel function with bandwidth ¢ . p¢ is called kernel density
approximation with parameter ¢ .

Let t1; t2; : : : ; tM and s1; s2; : : : ; sM be samples of M independent observations
from measurable real random variables X1; X2 with joint probability density
function Op; then a joint kernel density approximation of Op is given by
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Fig. 4 Density estimate for
different parameters 


~
~

ps(u)(t)

ks (t – ti)

ks(t – ti)

ti

ti

ps (u)(t)

Op
.s; t/ D 1

M

XM

iD1
K
.s � si ; t � ti /;

whereK¢.s; t/ is a two-dimensional kernel function.

Remark 3 (Kernel Density Estimation of an Image, Fig. 4). Let u be a continuous
image, which is identified with a random variable. Moreover, let U be N � N
samples of u. In analogy to Definition 3, we denote the kernel density estimation
based on the discrete image U , by

p
.t/ D 1

N 2

XN

i;jD1
k
.t � U ij/

and remark that for uN as in (1)

p
.uN /.t/ WD
Z


k
.t � uN .x//dx D 1

N 2

XN

i;jD1
k
 .t � U ij/: (3)

The joint kernel density of two images u1, u2 with observations U1 and U2 is
given by

Op
.s; t/ D 1

N 2

XN

i;jD1
K


�
s � U ij

1 ; t � U ij
2

�
;
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whereK¢.s; t/ D k¢.s/k¢.t/ is the two-dimensional kernel function. Moreover, we
remark that for u1;N , u2;N

Op
.u1;N ; u2;N /.s; t/ WD
Z


K
.s � u1;N .x/; t � u2;N .x// dx

D 1

N 2

XN

i;jD1
K


�
s � U ij

1 ; t � U ij
2

�
:

In the following, we review particular kernel functions and show that standard
histograms are kernel density estimations.

Example 4. Assume that ui W ˝ ! Œ0; 255�; i D 1; 2 are continuous images,
with discrete approximations ui;N as in (1):

• We use the joint density kernel K¢.s; t/ WD k¢.s/k¢.t/, where k¢ is the
normalized Gaussian kernel of variance ¢ . Then for i D 1; 2, the estimates
for the marginal densities are given by

p
.ui;N /.t/ WD
Z


k
.ui;N .x/ � t/ dx D 1p
2�


Z


exp

��.ui;N .x/ � t/2
2
2

�
dx;

and the joint density approximation reads as follows:

Op
.s; t/ W D
R

K
..u1.x/; u2.x// � .s; t// dx

D 1
2�
2

R


exp
��.u1;N .x/�s/2

2
2

�
exp

��.u2;N .x/�t /2
2
2

�
dx

• Histograms: Assume that U only takes values in 0; 1; : : :; 255. When we choose
the characteristic function ¦Œ�¢;¢/, with 
 D 1

2 as kernel function, we obtain the
density estimate

p	;
 .t/ D
R

	Œ�
;
�.u.x/� t/ dx

D measfx W t � 
 � u.x/ < t C 
g
D size of pixel � number of pixels with value bt C 
c

Hence, p¦;¢ corresponds with the histogram of the discrete image.

Example 5. We return to Example 3. The domain ˝ D Œ0; 1� is partitioned into N
equidistant pieces. Let

uN WD
XN

iD1

 Z i
N

i�1
N

u.x/dx

!
	Œ i�1

N ; iN �
:
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Fig. 5 Original u and discretized versions uN and uN T

a b c d

Fig. 6 (a) Density from the original image u. (b) Density estimation with Gaussian-kernel based
on uN .N D 10/, with 
 D 0:07, (c, d) normalized histogram, based on uN T , with 
 D 0:05; 0:1

Moreover, we consider the piecewise function uN T represented in Fig. 5. The
density according to u, denoted by p.u/, and the kernel density estimates of uN
and uN T are represented in Fig. 6. They resemble the actual density very well.

Csiszár Divergences (f-Divergences)
The concept of f -divergences has been introduced by Csiszár in [5] as a general-
ization of Kullback’s I -divergence and Rényi’s I -divergence and at the same time
by Ali and Silvey [1]. In probability calculus, f -divergences are used to measure
the distances between probability densities.

Definition 4. Set F0 WD ff W Œ0; 1/ ! R [ f1g W f is convex in Œ0; 1/,
continuous at 0, and satisfies f .1/ D 0g and

Vpdf WD
�
p 2 L1.R/ W p � 0;

Z
R

p.t/ dt D 1


:
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Let g1, g2 2 Vpdf be probability density functions. The f -divergence between g1,
g2 is given by

Df W Vpdf � Vpdf ! Œ0;1/
.g1; g2/!

R
R
g2.t/f

�
g1.t/

g2.t/

�
dt:

(4)

Remark 4.

• In (4), the integrand at positions t where g2.t/ D 0 is understood in the following
sense:

0f

�
g1.t/

0

�
WD limNt&0

�
Ntf
�
g1.t/

Nt
��

; t 2 R:

• In general, f -divergences are not symmetric, unless there exists some number c
such that the generating f satisfies f .x/ D x f � 1

x

	C c.x � 1/.

Examples for f -Divergences: We list several f -divergences that have been used
in literature (see [6, 12] and references therein).

The Kullback-Leibler divergence is the f -divergence with f .x/ D x log.x/

Df .g1; g2/ D
Z
R

g1.t/ log

�
g1.t/

g2.t/

�
dt:

Jensen-Shannon divergence is the symmetric Kullback-Leibler divergence:

Df .g1; g2/ D
Z
R

�
g1.t/ log

�
g1.t/

g2.t/

�
C g2.t/ log

�
g2.t/

g1.t/

��
dt:

f (x)

x

¦s-Divergences: These divergences are generated by

f s.x/ D jx � 1js; s 2 Œ1;1/

and have the form
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f (x)

x

Df .g1; g2/ D
Z
R

g2.t/

ˇ̌
ˇ̌g1.t/

g2.t/
� 1

ˇ̌
ˇ̌s D

Z
g1�s

2 .t/jg1.t/ � g2.t/jsdt:

The ¦1-divergence is a metric. The most widely used out of this family of ¦s

divergences is the ¦2-divergence (Pearson).

Dichotomy Class Divergences: The generating function of this class is given by

f .x/ D

8̂
<
:̂
x � 1 � ln.x/ for s D 0;

1
s.1�s/ .sx C 1 � s � xs/ for s 2 Rnf0; 1g;
1 � x C x ln.x/ for s D 1:

The parameter s D 1
2 provides a distance, namely, the Hellinger metric

Df .g1; g2/ D 2
Z
R

�p
g1.t/ �

p
g2.t/

�2
dt:

f (x)

x



140 C. Pöschl and O. Scherzer

Matsushita’s Divergences: The elements of this class, which is generated by the
function

f .x/ D j1� xs j 1s ; 0 < s � 1;

are prototypes of metric divergences. The distance is given by

d.g1; g2/ D .Df .g1; g2//
s

where

Df .g1; g2/ D
Z
R

g1.t/

ˇ̌
ˇ̌1 �

�
g2.t/

g1.t/

�s ˇ̌ˇ̌
1
s

dt:

Puri-Vincze Divergences: This class is generated by the functions

f .x/ D j1 � xjs
2.x C 1/s�1

; s 2 Œ1;1/:

For s D 2, we obtain the triangular divergence

Df .g1; g2/ D
Z
R

.g2.t/ � g1.t//
2

g2.t/C g1.t/
dt:

f (x)

x

Divergences of Arimoto Type: Generated by the functions

f .x/ D

8̂
<
:̂

s
s�1

�
.1C xs/ 1

s � 2
1
s �1.1C x/

�
for s 2 .0;1/nf1g

.1C x/ ln.2/C x ln.x/ � .1C x/ ln.1C x/ for s D 1
1
2 j1 � xj for s D1:

For s D 1, the divergence is proportional to the ¦1 divergence. For s 2
.0; 1/nf1g, we obtain
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f (x)

x

Df .g1; g2/ D
Z
R

s

s � 1

�
s

q
gs1.t/C gs2.t/ � 2

1�s
s .g1.t/C g2.t//

�
dt:

Moreover, this class provides the distances

d.g1; g2/ D .Df .g1; g2//
minfs; 1

s g for s 2 .0;1/:

f -Information

In the following, we review the f -information for measuring the distance between
probability densities. The most important f -information measure is the mutual
information.

The notion of information gain induced by simultaneously observing two
probability measures compared to their separate observations is tightly related to
divergences. It results from quantifying the information content of the joint measure
in comparison with the product measure.

This motivation leads to the following definition.

Definition 5 (f -Information for Images). For f 2 F0 (see Definition 4), we
define the f -information of u1, u2 2 L1 .˝/ by

If .u1; u2/ WD Df .p.u1/p.u2/; p.u1; u2//;

where the p.ui / is the probability density of ui , as introduced in section “Density
Estimation.”

Additionally, we define the f -entropy of an image u1 by

Hf .u1/ WD If .u1; u1/:

In analogy to independent probability densities, we call two images u1, u2 indepen-
dent if there is no information gain, that is,

p.u1; u2/ D p.u1/p.u2/:
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Remark 5. The f -information has the following properties:

• Symmetry: If .u1; u2/ D If .u2; u1/.
• Bounds: 0 � If .u1, u2/ � minfHf .u1/; Hf .u2/g.
• If .u1, u2/ D 0 if and only if u1, u2 are mutually independent.

The definition of f -information does not make assumptions on the relationship
between the image intensities (see [38] for discussion). It does neither assume a
linear nor a functional correlation but only a predictable relationship. For more
information on f -information, see [36].

Example 6. The most famous examples of f -informations are the following:

Mutual/Shannon Information: For f .x/ D x lnx, we obtain

If .u1; u2/ D
Z
R

Z
R

p.u1; u2/.t1; t2/ ln

�
p.u1; u2/.t1; t2/

p.u1/.t1/p.u2/.t2/

�
dt1 dt2;

with Shannon entropy

Hf .u/ D
Z
R

p.u/.t/ ln

�
1

p.u/.t/

�
dt;

joint entropy

Hf .u1; u2/ D �
Z
R

Z
R

p.u1; u2/.t1; t2/ ln .p.u1; u2/.t1; t2// dt1 dt2;

conditional entropy

Hf .u2ju1/ D
Z
R

p.u1/.t/Hf .u2ju1 D t/ dt;

and relative entropy (the Kullback-Leibler divergence)

Hf .u1ju2/ D
Z
R

p.u1/.t/ ln

�
p.u1/

p.u2/

�
:

The relative entropy is not symmetric. Maes et al. [25] and Studholme et al. [35] both
suggested the use of joint entropy for multimodal image registration. Maes et al.
demonstrate the robustness of registration, using mutual information with respect to
partial overlap and image degradation, such as noise and intensity inhomogeneities.

Hellinger Information: For f .x/ D 2x � 2 � 4
p
x (see also Dichotomy Class in

section “Csiszár-Divergences (f -Divergences)”), we obtain
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If .u1; u2/ D
Z
R

Z
R

�p
p.u1; u2/.t1; t2/�

p
p.u1/.t1/p.u2/.t2/

�2
dt1 dt2;

with Hellinger entropy

Hf .u/ D 2

�
1 �

Z
R

.p.u/.t//
3
2 dt

�
:

Both are bounded from above by 2.

For measuring the distance between discrete images U1 and U2, it is common
to map the images via kernel estimation to continuous estimates of their intensity
value densities p¢.ui;N /, where p¢.ui;N / is as defined in (3). The difference
between images is then measured via the distance between the associated estimated
probability densities.

Example 7. For Ui , i D 1; 2; 3 as in Fig. 3, let ui;N be the corresponding piecewise
constant functions. Note that U1 and U2 are somehow related. In other words, they
are highly dependent on each other, so we can expect a low information value.
Comparing the images point-wise with least squares shows a higher similarity value
for U2 and U3 than for U1 and U2.

For the ease of presentation, we work with histograms. Recall that the estimated
probability function p¢.ui;N / is equal to the normalized histogram of Ui . The
histograms (connected to the marginal density densities) are given by

1 2 3 4 5 6 7 8 9 10
H.U1/ 6 7 6 9 3 4 1 0 0 0
H.U2/ 1 0 4 0 3 0 9 6 7 6
H.U3/ 3 2 5 3 2 4 0 5 6 6

In order to calculate the information measures, we calculate the joint histograms of
U1, U2, U3, that is, JH(U1, U2/ W .s; t/! number of pixels such that U ij

1 D s and
U

ij
2 D t (see Tables 2 and 3).
The entries in the joint histogram of U1,U2 are located along a diagonal, whereas

the entries of the other two joint histograms are spread all over. Hence, we can
observe the dependence of p¢.u1;N /; p¢.u2;N / already by looking at the joint
histogram. Next, we calculate the Hellinger and the mutual information. For the
f -entropies, we obtain

U1 U2 U3

Mutual entropy 1:91 1:91 2:13
Hellinger entropy 1:17 1:17 1:30
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Table 2 Joint histograms of U2, U3 and U3, U1. The entries are disperse; this will be reflected in
a lower f -information as in the case for U1, U2
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Table 3 Joint histograms of U2, U3 and U3, U1. The entries are disperse; this will be reflected in
a lower f -information as in the case for U1, U2
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and for the f -information measures:

.U1; U2/ .U2; U3/ .U3; U1/

Mutual information 1:91 0:74 0:74
Hellinger information 1:17 0:57 0:57
Sum of least squares 31:44 14:56 21:56

Indeed, in both cases (Hellinger and mutual information), U1, U2 (high f -
information value) can be considered as more similar than U1 and U3, whereas the
least squares value between U1, U2 is the highest, meaning that they differ at most.

We can observe in Example 7 that the values of f -information differ a lot by
different choices of the function f . Moreover, it is not easy to interpret the values;
hence, one is interested in calculating normalized values:
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Normalized Mutual Information: Studholme [35] proposed a normalized mea-
sure of mutual information. Normalized f -information is defined by

NIf .u1; u2/ WD Hf .u1/CHf .u2/

If .u1; u2/
:

If u1 D u2, then the normalized f -information is minimal with value 2.

Entropy Correlation Coefficient: Collignon and Maes [25] suggested the use
of the entropy correlation coefficient, another form of normalized f -information
(Table 4):

Hf CC.u1; u2/ D 2If .u1; u2/

Hf .u1/CHf .u2/
D 2 � 2

NIf .u1; u2/
:

The entropy correlation coefficient is one if u1 D u2 and zero if u1 and u2 are
completely independent.
Exclusive f -Information: It is defined by

EIf .u1; u2/ WD Hf .u1/CHf .u2/� 2If .u1; u2/:

Note that the exclusive f -information is minimal for u1 D u2.

DistanceMeasures Including Statistical Prior Information

Most multimodal measures used in literature do not consider the underlying image
context or other statistical prior information on the image modalities. Recently,
several groups developed similarity measures that incorporate such information:

• Leventon and Grimson [23] proposed to learn prior information from training
data (registered multimodal images) by estimating the joint intensity distributions

Table 4 Comparison of
measures composed by
f -information and
f -entropies

Mutual information (u1, u2) (u2, u3) (u3, u1)

Normalizeda 2.00 5.32 5.32

Entropy correlation coefficient 1.00 0.38 0.38

Exclusivea 0.00 2.46 2.46

Hellinger information .u1; u2/ .u2; u3/ .u3; u1/

Normalizeda 2.00 4.36 4.36

Entropy correlation coefficient 1.00 0.46 0.46

Exclusivea 0.00 1.34 1.34

aNormalized and exclusive informations are minimal if the
images are equal, whereas the entropy correlation coefficient
is maximal
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of the training images. Based on this paper, Chung et al. [4] proposed to use
the Kullback-Leibler distance to compare the learned joint intensity distribution,
with the joint intensity distribution of the images, in order to compare multimodal
images. This idea was extended by Guetter et al. [14], who combine mutual
information with the incorporation of learned prior knowledge with a Kullback-
Leibler term.

As a follow-up of their ideas, we suggest the following type of generalized
similarity measures: Let pl
 be the learned joint intensity density (learned from
the training data set) and ’ 2 Œ0; 1�. For f 2 F0, define

S˛;
 .u1; u2/ WD ˛Df .p
l

 ; p
 .u1; u2//C .1 � ˛/Df .p
.u1; u2/; p
 .u1/p
.u2//„ ƒ‚ …

If .u1;u2/

:

• Instead of using a universal but a priori fixed similarity measure, one can learn
a similarity measure in a discriminative manner. The methodology proposed by
Lee et al. [22] uses a learning algorithm that constructs a similarity measure
based on a set of preregistered images.

3 Mathematical Models for Variational Imaging

In the following, we proceed with an abstract setting. We are given a physical model
F , which in mathematical terms is an operator between spaces U and V . For given
data v 2 V , we aim for solving the operator equation

F.ˆ/ D v:

In general, the solution is not unique, and we aim for finding the solution with
minimal energy, that is, we aim for a minimizer of the constraint optimization
problem

R.ˆ/! min subject to F.ˆ/ D v:

In practice, a complication of this problem is that only approximate (noisy) data
v• 2 V of v is available. To take into account uncertainty of the data, it is then
intuitive to consider the following constrained optimization problem instead:

R.ˆ/! min subject to
��F.ˆ/� vı

��2 � ı; (5)

where • is an upper bound for the approximation error v�v•. It is known that solving
(5) is equivalent to minimizing the Tikhonov functional,

ˆ! 1

2

��F.ˆ/ � vı
��2 C ˛R.ˆ/; (6)

where ’ > 0 is chosen according to Morozov’s discrepancy principle [19].
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For the formulation of the constrained optimization problem, the Tikhonov
method, respectively, it is essential that F.˚/ and v; v•, respectively, represent
data of the same modality. If F.˚/ and the data, which we denote now by w, are
of different kind, then it is intuitive to use a multimodal similarity measure Sr ,
instead of the least squares distance, which allows for comparison of F.˚/ and w.
Consequently, we consider the multimodal variational method, which consists in
minimization of

ˆ! T˛;wı .ˆ/ WD Sr .F .ˆ/;wı/C ˛R.ˆ/; ˛ > 0:

In the limiting case, that is, for •! 0, one aims for recovering an RSr -minimizing
solution ˚� if

R.ˆ�/ D minfR.ˆ/ W ˆ 2 Ag where A D fˆ W ˆ D arg minfSr .F . � /;w/gg:

To take into account priors in the Tikhonov regularization, the standard way is
again by a least squares approach. In this case, for regularization the least squares
functional

ˆ! R1.ˆ/ D 1

2
kˆ�ˆ0k2

is added to 1
2

��F.ˆ/ � vı
��2

(see, e.g., [8]). In analogy, we consider the regulariza-
tion functional (6) and incorporate priors by adding generalization of the functional
R1.˚/. Taking into account prior information �0, which might come, for instance,
from another modality, this leads to the following class of generalized Tikhonov
functionals:

T wı;‰0
˛;ˇ .ˆ/ WD Sr .F .ˆ/;wı/C ˛R.ˆ/C ˇSp.ˆ;‰0/:

Here Sp is an appropriate multimodal similarity measure. In the limiting case, that
is, for •! 0, one aims for recovering an � �RSrSp-minimizing solution ˚� if

R.ˆ�/C �Sp.ˆ�;‰0/ D minfR.ˆ/C �Sp.ˆ�;‰0/ W ˆ 2 Ag where
A D fˆ W ˆ D arg min {Sr .F . � /;w/}g:

The ”-parameter balances between the amount of prior information and regulariza-
tion and satisfies � D lim˛;ˇ!0

ˇ

˛
. For theoretical results on existence of minimizing

elements of the functionals and convergence, we refer to [11, 30].
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(x, y)

(x,y) + Φ(x, y)

(x, y)

Fig. 7 Left: images uR , uT , right: deformation field ˚

4 Registration

In this section, we review variational methods for image registration. This problem
consists in determining a spatial transformation (vector field) ˚ that aligns pixels of
two images uR and uT in an optimal way (Fig. 7). We use the terminology reference
image for uR and template image for uT , where both are assumed to be compactly
supported functions in ˝ . That is, we consider the problem of determining the
optimal transformation, which minimizes the functional

u! Sr .uT ı .idCˆ/; uR/: (7)

To establish the context to the inverse problem setting, we use the setting F.˚/ D
uT .id C ˚/ and wı D uR. In general, the problem of minimizing (7) is ill
posed. The Tikhonov-type variational regularization for registration then consists
in minimization of the functional

ˆ! Sr .uT ı .idCˆ/; uR/C ˛R.ˆ/ (8)

(we do not consider constrained registration here, but concentrate on the Tikhonov
regularization).

Image registration (also of voxel (3D) data) is widely used in medical imaging,
for instance, for monitoring and evaluating tumor growth, disease development, and
therapy evaluation.

Variational methods for registration differ by the choice of the regularization
functional R and the similarity measure Sr . There exists a variety of similarity
measures that are used in practice. For some surveys, we refer to [17, 27, 32].

The regularization functional R typically involves differential operators. In
particular, for nonrigid registration, energy functionals from elasticity theory and
fluid dynamics are used for regularization.
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The optimality condition for a minimizer of (8) reads as follows:

˛Dˆ.R.ˆ/;‰/CDˆ.Sr .uT ı .idCˆ/; uR/;‰/ D 0 for all ‰ 2 U; (9)

where Dˆ.T ; ‰/ denotes the directional derivative of a functional T in direction
� . The left-hand side of the equation is the steepest descent functional of the energy
functional (8). In the following, we highlight some steepest descent functionals
according to variational registration methods.

Example 8 (Elastic Registration with L2-Norm-Based Distance Function). Set
’ D 1; Sr .v1; v2/ D 1

2 kv1 � v2k2
L2 . We consider an elastic regularization functional

of the form

R.ˆ/ D
Z


X2

iD1

X2

jD1

 
�

2

@

@xi
ˆi

@

@xj
ˆj C �

4

�
@

@xj
ˆi C @

@xi
ˆj
�2
!
;

where œ, � � 0 are Lamé parameters and ˚ D .˚1; ˚2/. œ is adjusted to control
the rate of growth or shrinkage of local regions within the deforming template, and
� is adjusted to control shearing between adjacent regions of the template [3]. In
this case, the optimality condition for minimizing ˛R.ˆ/ C Sr .uT ı .id C ˆ//,
given by (9), is satisfied if ˚ solves the following PDE:

��ˆ.x/C .�C �/r.r �ˆ.x// D � 1

˛
.uT .x Cˆ.x// � uR.x//ruT .x Cˆ.x//„ ƒ‚ …

@
@ˆSr

:

Here �˚ D .�˚1; �˚2/ and Dˆ.Sr .uT ı .id C ˆ/; uR/;‰/ D
R


@
@ˆ

Sr �‰.
This partial differential equation is known as linear elastic equation and is derived
assuming small angles of rotation and small linear deformations. When large
displacements are inherent, it is not applicable [2, 13, 18, 24, 29, 40].

Example 9 (Elastic Registration with f -Information). Assume that k
 2 C1.R;R/

is some kernel density function. Moreover, let K¢.s; t/ D k¢.s/k¢.t/. We pose
the similarity measure as the f -information between the template and the reference
image:

Sr .uT ı .idCˆ/; uR/ D Hf .uR/� If .uT ı .id Cˆ/; uR/;

and set ’ and R as in the previous example. In order to write the derivative of If in
a compact way, we use the abbreviations Q̂ WD idCˆ. The derivative of p
.uT ı Q̂ )
with respect to Q̂ , in direction � , is given by

D Q̂ .p
.uT ı Q̂ /; ‰/.t/ D
Z


k0

 .t � uT . Q̂ .x///ruT . Q̂ .x// �‰.x/ dx
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and

D Q̂ . Op
.uT ı Q̂ ; uR/;‰/.s; t/

D
Z


k0

 .s � uT . Q̂ .x/// k
 .t � uR.x//.ruT . Q̂ .x// �‰.x// dx:

We use the following abbreviations:

g1.s; t/ WD p
.uT ı Q̂ /.s/p
.uR/.t/
p
.uT ı Q̂ ; uR/.s; t/

; g2.s; t/ WD p
.uR/.t/

. Op
.uT ı Q̂ ; uR/.s; t//2
;

and

g3.s; t/ WD D Q̂ .p
.uT ı Q̂ /; ‰/.s/ Op
.uT ı Q̂ ; uR/.s; t/C
p
.uT ı Q̂ /.s/D Q̂ . Op
.uT ı Q̂ ; uR/;‰/.s; t/:

With this, we can calculate the derivative of the f -information to be

D Q̂ .If .uT ı Q̂ ; uR/;‰/

D
Z
R

Z
R

D Q̂ .p
.uT ı Q̂ /; ‰/ .s/p
.uR/.t/f .g1.s; t//

C p
.uT ı Q̂ /.s/p
.uR/.t/f 0.g1.s; t//g2.s; t/g3.s; t/ dt ds:

For mutual information, this simplifies to

D Q̂ .MI.uT ı Q̂ ; uR/;‰/ D
Z
R

Z
R

�
D Q̂

� Op
 �uT ı Q̂ ; uR	 ; ‰	 .s; t/ ln

�
1

g1.s; t/

�

CD Q̂ . Op
.uT ı Q̂ ; uR/;‰/.s; t/
p
.uT ı Q̂ /.s/p
.uR/.t/

!
ds dt:

A detailed exposition on elastic registration with mutual information can be found
in [9, 11, 16].

In this section, we have presented a general framework on variational-based
techniques for nonconstrained multimodal image registration. Below we give a short
overview on relevant literature on this topic.

Kim and Fessler [21] describe an intensity based image registration technique
that uses a robust correlation coefficient as a similarity measure for images. It is
less sensitive to outliers that are present in one image, but not in the other. Kaneko
[20] proposed the selective correlation coefficient, as an extension of the correlation
coefficient. Van Elsen et al. investigated similarity measures for MR and CT images.
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She proposed to calculate the correlation coefficient of geometrical features [37].
Alternatively to the correlation coefficient, one could calculate Spearman’s rank
correlation coefficient (also known as Spearman’s �/, which is a nonparametric
measure of correlation [10], but not very popular in multimodal imaging. Roche
et al. [33, 34] tested the correlation ratio to align MR, CT, and PET images. Woods
et al. [42] developed an algorithm based on this measure for automated aligning and
re-slicing PET images. Independently, several groups realized that the problem of
registering two different image modalities can be cast in an information theoretic
framework. Collignon et al. [25] and Studholme et al. [35] both suggested using the
joint entropy of the combined images as a registration potential. Pluim et al. [28]
investigated in more general f -informations. For MR-CT registrations, the learned
similarity measure by Lee et al. outperforms all standard measures. Experimental
results for learning similarity measures for multimodal images can be found in [22].

5 Recommended Reading

For recent results on divergences and information measures, we refer to Computa-
tional Information Geometry. Website: http://informationgeometry.wordpress.com/
(last accessed 5 June 2014).

Comparison and evaluation of different similarity measures for CT, MR, and PET
brain images can be found in [41].

It is worth mentioning the Retrospective Image Registration Evaluation Project.
It is designed to compare different multimodal registration techniques. It involves
the use of a database of image volumes, commonly known as the “Vanderbilt
Database,” on which the registrations are to be performed. Moreover, it provides
a training data set for multimodal image registration. Link: http://www.insight-
journal.org/rire/ (last accessed 5 June 2014). For a collection of databases, we refer
to the Validation of Medical Image Registration page http://www.vmip.org (last
accessed 5 June 2014).

A number of image registration software tools have been developed in the last
decade. The following support multimodal image comparison:

• ITK is an open-source, cross-platform system that provides developers with an
extensive suite of software tools for image analysis. It supports the following
similarity measures: mean squares metric, normalized cross-correlation metric,
mean reciprocal square differences, mutual information (different implementa-
tions [26, 39]), the Kullback-Leibler distance, normalized mutual information,
correlation coefficient, kappa statistics (for binary images), and gradient differ-
ence metric. Website: www.itk.org/ (last accessed 2 June 2014).

• FLIRT is a robust and accurate automated linear (affine) registration tool based
around a multi-start, multi-resolution global optimization method. It can be used
for inter- and intra-modal registration with 2D or 3D images. Websites: http://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/FLIRT (last accessed 2 June 2014).

http://informationgeometry.wordpress.com/
http://www.insight-journal.org/rire/
http://www.insight-journal.org/rire/
http://www.vmip.org
www.itk.org/
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT
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• FAIR, FLIRT are toolboxes for fast and flexible image registration. Both
have been developed by the SAFIR-research group in Lübeck. They include
the sum of squared differences, mutual information, and normalized gradi-
ent fields. Websites: http://www.mic.uni-luebeck.de/de/people/jan-modersitzki/
software.html (last accessed 4 June 2014).

• AIR stands for automated image registration. It supports standard deviation of
ratio images, least squares, and least squares with global intensity rescaling.
Website: http://bishopw.loni.ucla.edu/AIR5/ (last accessed 5 June 2014).

• RView: This software integrates a number of 3D/4D data display and fusion
routines together with three-dimensional rigid volume registration using normal-
ized mutual information. It also contains many interactive volume segmentation
and painting functions for structural data analysis. Website: http://www.colin-
studholme.net/software/software.html (last accessed 5 June 2014).

6 Conclusion

A number of different similarity measures which are used for comparison of
multimodal images are listed in this survey. These measures can be grouped
into four different categories depending on the way the images are interpreted:
If images are represented by pixel intensities (for instance, representing photon
counts), one can apply standard lp , Lp – norms for comparison. However, these
distance measures are not recommendable for multimodal images. Viewing images
as random variables, distance measures from statistics can be utilized. Other
common measures are based on image morphology (level lines or gradient fields),
which have the advantage that they are less sensitive (or even blind) to gray-level
transformations. In applications, images of different modalities neither reveal the
same morphology nor the positions of edges are matching. Thus, none of the
above mentioned distance measures are useful. For these applications, comparison
measures for the gray value distributions of the images were proposed, and in
order to obtain estimates of these distributions, kernel density estimations have been
implemented on top. Then, one can either compare the distributions of the images
directly or alternatively quantify the information content of the joint measures
in comparison with the product measures. Such distances are called information
measures. Recent approaches are concerned with learning similarity measures with
statistical prior information. Variational image registration is discussed, where the
appropriate distance measure is important in recovering the right local transforma-
tion parameters.
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Abstract
Energy minimization methods are a very popular tool in image and signal
processing. This chapter deals with images defined on a discrete finite set.
The energies under consideration can be differentiable or not or convex or not.
Analytical results on the minimizers of different energies are provided that reveal
salient features of the images recovered in this way, as a function of the shape of
the energy itself. An intrinsic mutual relationship between energy minimization
and modeling via the choice of the energy is thus established. Examples and
illustrations corroborate the presented results. Applications that take benefit from
these results are presented as well.

1 Introduction

In numerous applications, an unknown image or a signal uo 2 R
p is represented by

data v 2 R
q according to an observation model, called also forward model

v D A.uo/ with noise; (1)

where A W Rp ! R
q is a (linear or nonlinear) transform. When u is anm�n image,

its pixels are arranged columnwise into a p-length real vector, where p D mn and
the original uŒi; j � is identified with uŒ.i � 1/mC j �. Some typical applications are,
for instance, denoising, deblurring, segmentation, zooming and super-resolution,
reconstruction in inverse problems, coding and compression, feature selection, and
compressive sensing. In all these cases, recovering a good estimate Ou for uo needs
to combine the observation along with a prior and desiderata on the unknown uo. A
common way to define such an estimate is

Find Ou such that F.Ou; v/ D min
u2UF.u; v/; (2)

F.u; v/ D ‰.u; v/C ˇˆ.u/; (3)

where F W Rp � R
q ! R is called an energy (or an objective), U � R

p is a set of
constraints, ‰ is a data-fidelity term, ˆ brings prior information on uo, and ˇ > 0
is a parameter which controls the trade-off between ‰ and ˆ.

The term‰ ensures that Ou satisfies (1) quite faithfully according to an appropriate
measure. The noise n is random and a natural way to derive ‰ from (1) is to use
probabilities; see, e.g., [7, 32, 37, 56]. More precisely, if �.vju/ is the likelihood of
data v, the usual choice is

‰.u; v/ D � log�.vju/: (4)

For instance, ifA is a linear operator and v D AuCnwhere n is additive independent
and identically distributed (i.i.d.) zero-mean Gaussian noise, one finds that
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‰.u; v/ / kAu � vk2
2: (5)

This remains quite a common choice partly because it simplifies calculations.
The role of ˆ in (3) is to push the solution to exhibit some a priori known or

desired features. It is called prior or regularization or penalty term. In many image
processing applications,ˆ is of the form

ˆ.u/ D
rX
iD1

�.kDiuk/; (6)

where for any i 2 f1; : : : ; rg, Di W Rp ! R
s , for s an integer s > 1, are linear

operators and k � k is usually the `1 or the `2 norm. For instance, the family fDig 

fDi W2 f1; : : : ; rgg can represent the discrete approximation of the gradient or the
Laplacian operator on u or the finite differences of various orders or the combination
of any of these with the synthesis operator of a frame transform or the vectors of the
canonical basis of Rr . Note that s D 1 if fDi g are finite differences or a discrete
Laplacian; then

s D 1 ) �.kDiuk/ D �.jDiuj/:

And if fDig are the basis vectors of Rr , one has �.jDiuj/ D �.juŒi �j/. In (6), � W
RC 7! R is quite a “general” function, often called a potential function (PF). A
very standard assumption is that

H1 � W RC ! R is proper, lower semicontinuous (l.s.c.) and increasing on RC,
with �.t/ > �.0/ for any t > 0.

Some typical examples for � are given in Table 1 and their plots in Fig. 1.

Remark 1. If �0.0C/ > 0 the function t ! �.jt j/ is nonsmooth at zero in which
case ˆ is nonsmooth on [riD1Œw 2 R

p W Diw D 0�. Conversely, �0.0C/ D 0 leads
to a smooth at zero t ! �.jt j/. With the PF (f13),ˆ leads to the counting function,
commonly called the `0-norm.

For the human vision, an important requirement is that the prior ˆ promotes
smoothing inside homogeneous regions but preserves sharp edges. According to a
fine analysis conducted in the 1990s and summarized in [7], � preserves edges if H1
holds as if H2, stated below, holds true as well:

H2 lim
t!1

�0.t/
t
D 0:

This assumption is satisfied by all PFs in Table 1 except for (f1) in case if ˛ D 2.
Note that there are numerous other heuristics for edge preservation.
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Table 1 Commonly used PFs � W RC ! R where ˛ > 0 is a parameter. Note that among the
nonconvex PFs, (f8), (f10), and (f12) are coercive, while the remaining PFs, namely, (f6), (f7), (f9),
(f11), and (f13), are bounded. And all nonconvex PFs with �0.0C/ > 0 are concave on RC. Recall
that (f6) is the discrete equivalent of the Mumford-Shah (MS) prior [17, 72]

Convex PFs

�0.0C/ D 0 �0.0C/ > 0

(f1) �.t/ D t ˛; 1 < ˛ 6 2 (f5) �.t/ D t

(f2) �.t/ D p
˛ C t 2

(f3) �.t/ D log.cosh.˛t//

(f4) �.t/ D t=˛ � log .1 C t=˛/

Nonconvex PFs

�0.0C/ D 0 �0.0C/ > 0

(f6) �.t/ D minf˛t 2; 1g (f10) �.t/ D t ˛; 0 < ˛ < 1

(f7) �.t/ D ˛t 2

1 C ˛t 2
(f11) �.t/ D ˛t

1 C ˛t
(f8) �.t/ D log.˛t 2 C 1/ (f12) �.t/ D log .˛t C 1/

(f9) �.t/ D 1 � exp .�˛t 2/ (f13) �.0/ D 0; �.t/ D 1 if t ¤ 0

0 1
0

1

0 1
0

1

Convex PFs Nonconvex PFs

Fig. 1 Plots of the PFs given in Table 1. PFs with �0.0C/ D 0 (- - -), PFs with �0.0C/ > 0 (—)

Background

Energy minimization methods, as described here, are at the crossroad of several
well-established methodologies that are briefly sketched below.

• Bayesian maximum a posteriori (MAP) estimation using Markov random field
(MRF) priors. Such an estimation is based on the maximization of the posterior
distribution �.ujv/ D �.vju/�.u/=Z; where �.u/ is the prior model for uo and
Z D �.v/ can be seen as a constant. Equivalently, Ou minimizes with respect to u
the energy

F.u; v/ D � ln�.vju/� ln�.u/:
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Identifying these first term above with ‰. � ; v/ and the second one with ˆ shows
the basis of the equivalence. Classical papers on MAP energies using MRF priors
are [14–16, 20, 51, 56]. Since the pioneering work of Geman and Geman [56],
various nonconvex PFs � were explored in order to produce images involving
neat edges; see, e.g., [54, 55, 65]. MAP energies involving MRF priors are also
considered in many books, such as [32, 53, 64]. For a pedagogical account,
see [96].

• Regularization for ill-posed inverse problems was initiated in the book of
Tikhonov and Arsenin [93] in 1977. The main idea can be stated in terms of
the stabilization of this kind of problems. Useful textbooks in this direction are,
e.g., [61, 69, 94] and especially the recent [91]. This methodology and its most
recent achievements are nicely discussed from quite a general point of view in
Chapter �Regularization Methods for Ill-Posed Problems in this handbook.

• Variational methods are related to PDE restoration methods and are naturally
developed for signals and images defined on a continuous subset  � R

d , d D
1; 2; : : : I for images d D 2. Originally, the data-fidelity term is of the form (5)
for A D Id and ˆ.u/ D R


�.kDuk2/dx, where � is a convex function as those

given in Table 1 (top). Since the beginning of the 1990s, a remarkable effort
was done to find heuristics on � that enable to recover edges and breakpoints
in restored images and signals while smoothing the regions between them; see,
e.g., [7, 13, 26, 31, 59, 64, 73, 85, 87]. One of the most successful is the Total
Variation (TV) regularization corresponding to �.t/ D t , which was proposed
by Rudin, Osher, and Fatemi in [87]. Variational methods were rapidly applied
along with data-fidelity terms ‰. The use of differential operatorsDk of various
orders k > 2 in the prior ˆ has been recently investigated; see, e.g., [22, 23].
More details on variational methods for image processing can be found in several
textbooks like [3, 7, 91].

For numerical implementation, the variational functional is discretized andˆ
takes the form of (6). Different discretization approaches are considered; see,
e.g., [2, 27, 95]

The equivalence between these approaches has been considered in several
seminal papers; see, e.g., [37,63]. The state of the art and the relationship among all
these methodologies are nicely outlined in the recent book of Scherzer et al. [91].
This book gives a brief historical overview of these methodologies and attaches a
great importance to the functional analysis of the presented results.

TheMain Features of theMinimizers as a Function of the Energy

Pushing curiosity ahead leads to various additional questions. One observes that
frequently data fidelity and priors are modeled separately. It is hence necessary to
check if the minimizer Ou of F. � ; v/ obeys all information contained in the data
model ‰ as well as in the prior ˆ. Hence the question: how the prior ˆ and the
data-fidelity ‰ are effectively involved in Ou – a minimizer of F. � ; v/. This leads to
formulate the following inverse modeling problem:

http://dx.doi.org/10.1007/978-1-4939-0790-8_3
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Analyze the mutual relationship between the salient features exhibited by
the minimizers Ou of an energy F. � ; v/ and the shape of the energy itself.

(7)

This problem was posed in a systematic way and studied since [74, 75]. The point
of view provided by (7) is actually adopted by many authors. Problem (7) is totally
general and involves crucial stakes:

• It yields rigorous and strong results on the minimizers Ou.
• Such a knowledge enables a real control on the solution – the reconstructed image

or signal Ou.
• Conversely, it opens new perspectives for modeling.
• It enables the conception of specialized energies F that fulfill the requirements

in applications.
• This kind of results can help to derive numerical schemes using knowledge on

the solutions.

Problem (7) remains open. The results presented here concern images, signals, and
data living on finite grids. In this practical framework, the results in this chapter are
quite general since they hold for energies F which can be convex or nonconvex or
smooth or nonsmooth, and results address local and global minimizers.

Organization of the Chapter

Some preliminary notions and results that help the reading of the chapter are
sketched in Sect. 2. Section 3 is devoted to the regularity of the (local) minimizers
of F. � ; v/ with a special focus on nonconvex regularization. Section 4 shows
how edges are enhanced using nonconvex regularization. In Sect. 5 it is shown
that nonsmooth regularization leads typically to minimizers that are sparse in the
space spanned by fDig. Conversely, Sect. 6 exhibits that the minimizers relevant to
nonsmooth data fidelity achieve an exact fit for numerous data samples. Section 7
considers results when both ‰ and ˆ are nonsmooth. Illustrations and applications
are presented.

2 Preliminaries

In this section we set the notations and recall some classical definitions and results
on minimization problems.

Notation

We systematically denote by Ou a (local) minimizer of F. � ; v/. It is explicitly
specified when Ou is a global minimizer.
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• Dn
j – The differential operator of order n with respect to the j th component of a

function.
• vŒi � – The i th entry of vector v.
• #J – The cardinality of the set J .
• J c D InJ – The complement of J � I in I where I is a set.
• K? – The orthogonal complement of a sub-vector space K � R

n.
• A� – The transpose of a matrix (or a vector) where A is real valued.
• A  0 (A � 0) – The matrix A is positive definite (positive semi-definite)
• 1n 2 R

n –The n-length vector composed of ones, i.e., 1nŒi � D 1, 1 6 i 6 n.
• L

n – The Lebesgue measure on R
n.

• Id – The identity operator.
• k:k� – A vector or a matrix �-norm.

• RC
defD ft 2 R W t > 0g and R

�C
defD ft 2 R W t > 0g.

• TV – Total Variation.
• fe1; : : : ; eng – The canonical basis of Rn, i.e., ei Œi � D 1 and ei Œj � D 0 if i ¤ j .

Reminders and Definitions

Definition 1. A function F W Rp ! R is coercive if lim
kuk!1

F.u/ D C1.

A special attention being dedicated to nonsmooth functions, we recall some basic
facts.

Definition 2. Given v 2 R
q , the function F. � ; v/ W Rp ! R admits at Ou 2 R

p a
one-sided derivative in a direction w 2 R

p , denoted ı1F.Ou; v/.w/, if the following
limit exists:

ı1F.Ou; v/.w/ D lim
t&0

F.OuC tw; v/ �F.Ou; v/
t

;

where the index 1 in ı1 means that derivatives with respect to the first variable of F
are addressed.

Here ı1F.Ou; v/.w/ is a right-side derivative; the left-side derivative is
�ı1F.Ou; v/.�w/. If F. � ; v/ is differentiable at Ou, then ı1F.Ou; v/.w/ D D1F.Ou; v/w
where D1 stands for differential with respect to the first variable (see paragraph
“Notation”). For � W RC ! R, we denote by �0.t�/ and �0.tC/ its left-side and
right-side derivatives, respectively.

The classical necessary condition for a local minimum of a (nonsmooth) function
is recalled [60, 86]:

Theorem 1. If F. � ; v/ has a local minimum at Ou 2 R
p , then ı1F.Ou; v/.w/ > 0, for

every w 2 R
p .
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If F. � ; v/ is Fréchet differentiable at Ou, one finds D1F.Ou; v/ D 0.
Rademacher’s theorem states that if F is proper and Lipschitz continuous on R

p ,
then the set of points in R

p at which F is not Fréchet differentiable form a set of
Lebesgue measure zero [60, 86]. Hence F. � ; v/ is differentiable at almost every u.
However, when F. � ; v/ is nondifferentiable, its minimizers are typically located at
points where F. � ; v/ is nondifferentiable; see, e.g., Example 1 below.

Example 1. Consider F.u; v/ D 1

2
ku � vk2 C ˇjuj for ˇ > 0 and u; v 2 R. The

minimizer Ou of F. � ; v/ reads as

Ou D
�

0 if jvj 6 ˇ

v � sign.v/ˇ if jvj > ˇ (Ou is shrunk w.r.t. v.)

Clearly, F. � ; v/ is not Fréchet differentiable only at zero. For any jvj 6 ˇ, the
minimizer of F. � ; v/ is located precisely at zero.

The next corollary shows what can happen if the necessary condition in
Theorem 1 fails.

Corollary 1. Let F be differentiable on .Rp � R
q/ n‚0 where

‚0
defD f.u; v/ 2 R

p �R
q W 9w 2 R

p; � ı1F.u; v/.�w/ > ı1F.u; v/.w/g: (8)

Given v 2 R
q , if Ou is a (local) minimizer of F. � ; v/ then

.Ou; v/ 62 ‚0:

Proof. If Ou is a local minimizer, then by Theorem 1, ı1F.Ou; v/.�w/ > 0, hence

� ı1F.Ou; v/.�w/ 6 0 6 ı1F.Ou; v/.w/; 8w 2 R
p: (9)

If .Ou; v/ 2 ‚0, the necessary condition (9) cannot hold. ut

Example 2. Suppose that ‰ in (3) is a differentiable function for any v 2 R
q . For a

finite set of positive numbers, say �1; : : : ; �k , suppose that the PF � is differentiable
on RC n [kjD1�j and that

�0
�
��
j

�
> �0

�
�C
j

�
; 1 6 j 6 k: (10)

Given a (local) minimizer Ou, denote

I D f1; : : : ; rg and IOu D fi 2 I W kDi Ouk2 D �j ; 1 6 j 6 kg:



Energy MinimizationMethods 165

Define F.Ou; v/ D ‰.Ou; v/C ˇ
X
i2InIOu

�.kDi Ouk2/, which is differentiable at Ou.

Clearly, F.Ou; v/ D F.Ou; v/ C ˇ
X
i2IOu

�.kDi Ouk2/. Applying the necessary condition

(9) for w D Ou yields

ˇ
X
i2IOu

�0 �kDi Ouk�2
	

6 �D1F.Ou; v/.Ou/ 6 ˇ
X
i2IOu

�0 �kDi OukC2
	
:

In particular, one has
P

i2IOu
�0 �kDi Ouk�2

	
6
P

i2IOu
�0 �kDi OukC2

	
, which contradicts

the assumption on �0 in (10). It follows that if Ou is a (local) minimizer of F. � ; v/,
then IOu D ¿ and

kDi Ouk2 ¤ �j ; 1 6 j 6 k; 8i 2 I:

A typical case is the PF (f6) in Table 1, namely, �.t/ D minf˛t2; 1g. Then k D 1
and �1 D 1p

˛
.

The following existence theorem can be found, e.g., in the textbook [35].

Theorem 2. For v 2 R
q , let U � R

p be a nonempty and closed subset and
F. � ; v/ W U ! R a lower semicontinuous (l.s.c.) proper function. IfU is unbounded
(with possibly U D R

p), suppose that F. � ; v/ is coercive. Then there exists Ou 2 U
such that F.Ou; v/ D inf

u2U F.u; v/.

This theorem gives only sufficient conditions for the existence of a minimizer.
They are not necessary, as seen in the example below.

Example 3. Let F W R2 �R
2 ! R involve (f6) in Table 1 and read

F.u; v/ D .uŒ1��vŒ1�/2Cˇ�.j uŒ1��uŒ2� j/ for �.t/ D maxf˛t2; 1g; 0 < ˇ <1:
For any v,F. � ; v/ is not coercive since it is bounded by ˇ in the direction spanned by
f.0; uŒ2�/g. However, its global minimum is strict and is reached for OuŒ1� D OuŒ2� D
vŒ1� with F.Ou; v/ D 0.

To prove the existence of optimal solutions for more general energies, we refer
to the textbook [9].

Most of the results summarized in this chapter exhibit the behavior of the
minimizer points Ou of F. � ; v/ under variations of v. In words, they deal with local
minimizer functions.

Definition 3. Let F W Rp � R
q ! R and O � R

q . We say that U W O ! R
p is a

local minimizer function for the family of functions F. � ; O/ D fF. � ; v/ W v 2 Og
if for any v 2 O , the function F. � ; v/ reaches a strict local minimum at U.v/.
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When F. � ; v/ is proper, l.s.c., and convex, the standard results below can be
evoked; see [35, 49].

Theorem 3. Let F. � ; v/ W Rp ! R be proper, convex, l.s.c., and coercive for every
v 2 R

q .

(i) Then F. � ; v/ has a unique (global) minimum which is reached for a closed

convex set of minimizers
n OU.v/o defD

�
Ou 2 R

p W F.Ou; v/ D inf
u2U F.u; v/


.

(ii) If in addition F. � ; v/ is strictly convex, then there is a unique minimizer Ou D
U.v/ (which is also global). So F.Rp; v/ has a unique minimizer function v 7!
U.v/.

The next lemma, which can be found, e.g., in [52], addresses the regularity of
the local minimizer functions when F is smooth. It can be seen as a variant of the
implicit functions theorem.

Lemma 1. Let F be Cm, m > 2, on a neighborhood of .Ou; v/ 2 R
p � R

q . Suppose
that F. � ; v/ reaches at Ou a local minimum such thatD2

1F.Ou; v/  0. Then there are
a neighborhoodO � R

q containing v and a unique Cm�1 local minimizer function
U W O ! R

p , such that D2
1F.U.�/; �/  0 for every � 2 O and U.v/ D Ou.

This lemma is extended in several directions in this chapter.

Definition 4. Let � W Œ0;C1/! R and m > 0 an integer. We say that � is Cm on
RC, or equivalently that � 2 Cm.RC/, if and only if t 7! �.jt j/ is Cm on R.

By this definition, �0.0/ D 0. In Table 1, left, � 2 C1.RC/ for (f1) if ˛ < 2,
� 2 C2.RC/ for (f4), while for (f2), (f3), and (f7)–(f9) we find � 2 C1.RC/.

3 Regularity Results

Here, we focus on the regularity of the minimizers of F W Rp �Rq ! R of the form

F.u; v/ D kAu � vk2
2 C ˇ

X
i2I

�.kDiuk2/; (11)

I
defD f1; : : : ; rg;

where A 2 R
q�p and for any i 2 I we have Di 2 R

s�p for s > 1. Let us denote by
D the following rs � p matrix:

D
defD
2
4D1

: : :

Dr

3
5 :
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When A in (11) is not injective, a standard assumption in order to have regulariza-
tion is

H3 ker.A/\ ker.D/ D f0g.
H3 is trivial if rankA D p or rank D D p. Often, ker.D/ D span.1p/ and

A1p ¤ 0, so H3 holds.

Some General Results

We first verify the conditions on F. � ; v/ in (11) that enable Theorems 2 and 3 to be
applied. Since H1 holds, F. � ; v/ in (11) is l.s.c. and proper.

1. F. � ; v/ in (11) is coercive for any v 2 R
q at least in one of the following cases:

• Rank.A/ D p and � W RC 7! RC is nondecreasing.
• H1 and H3 hold and limt%1 �.t/ D 1 (e.g., (f1)–(f5),(f8), (f10), and (f12)

in Table 1).

By Theorem 2, F. � ; v/ has minimizers.
2. For any v 2 R

q , the energy F. � ; v/ in (11) is convex and coercive if H1 and H3
hold for a convex �. Then the claim in Theorem 3(3) holds true.

3. Further, F. � ; v/ in (11) is strictly convex and coercive for any v 2 R
q if �

satisfies H1 and if one of the following assumptions holds:

• Rank.A/ D p and � is convex.
• H3 holds and � is strictly convex.

Then the claim in Theorem 3(3) holds. Further, if F is Cm for m > 2, then the
minimizer function U W Rq ! R

p (see Definition 3) is Cm�1 by Lemma 1.

However, the PFs involved in (11) used for signal and image processing are often
nonconvex, bounded, or nondifferentiable. One extension of the standard results is
given in the next section.

Stability of theMinimizers of Energies with Possibly Nonconvex
Priors

Related questions have been considered in critical point theory, sometimes in semi-
definite programming; the well-posedness of some classes of smooth optimization
problems was addressed in [42]. Other results have been established on the stability
of the local minimizers of general smooth energies [52]. Typically, these results are
quite abstract to be applied directly to energies of the form (11).

Here the assumptions stated below are considered.
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H4 The operator A in (11) satisfies rankA D p, i.e., A�A is invertible.

H5 The PF � in (11) is C0.RC/ and Cm, m > 2, on R
�C with 0 6 �0.0C/ <1.

Under H1, H2, H4, and H5, the prior ˆ (and hence F. � ; v/) in (11) can be
nonconvex and in addition nonsmooth. By H1 and H4, F. � ; v/ in (11) admits a
global minimum v 2 R

q – see Item 1 in section “Some General Results.” However,
F. � ; v/ can present numerous local minima.

I Energies F with nonconvex and possibly nondifferentiable PFs � are fre-
quently used in engineering problems since they were observed to give rise to
high-quality solutions Ou. It is hence important to have good knowledge on the
stability of the obtained solutions.

The results summarized in this section provide the state of the art for energies of
the form (11).

Local Minimizers
The stability of local minimizers is an important matter in its own right for several
reasons. Often, a nonconvex energy is minimized only locally, in the vicinity of
some initial guess. Second, the minimization schemes that guarantee the finding
of the global minimum of a nonconvex objective function are exceptional. The
practically obtained solutions are usually only local minimizers.

The statements below are a simplified version of the results established in [44].

Theorem 4. Let F. � ; v/ in (11) satisfy H1, H2, H4, and H5. Then there exists a
closed subset ‚ � R

q whose Lebesgue measure is L
q.‚/ D 0 such that for any

v 2 R
q n‚, there exists an open subset O � R

q with v 2 O and a local minimizer
function (see Definition 3) U W O ! R

p which is Cm�1 on O and fulfills Ou D U.v/.

Since ‚ is closed in R
q and L

q.‚/ D 0, the stated properties are generic.

Commentary on the Assumptions
All assumptions H1, H2, and H5 bearing on the PF � are nonrestrictive; they address
all PFs in Table 1 except for (f13) which is discontinuous at zero. The assumption
H4 cannot be avoided, as seen in Example 4.

Example 4. Consider F W R2 � R! R given by

F.u; v/ D .uŒ1�� uŒ2�� v/2 C juŒ1�j C juŒ2�j;

where v 
 vŒ1�. The minimum is obtained after a simple computation.

v >
1

2
Ou D

�
c; c � vC 1

2

�
for any c 2

�
0; v � 1

2

�
(nonstrict minimizer):
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jvj 6 1

2
Ou D 0 (unique minimizer)

v < �1

2
Ou D

�
c; c � v � 1

2

�
for any c 2

�
vC 1

2
; 0

�
(nonstrict minimizer):

In this case, assumption H4 fails and there is a local minimizer function only for

v 2
�
�1

2
;

1

2

�
.

Other Results
The derivations in [44] reveal several other practical results.

1. If � 2 C2.RC/, see Definition 4, then 8v 2 R
q n‚, every local minimizer Ou of

F.u; v/ is strict and D2
1F.Ou; v/  0. Consequently, Lemma 1 is extended since

the statement holds true 8v 2 R
q n‚.

I For real data v – a random sample of Rq – whenever F. � ; v/ is differentiable
and satisfies the assumptions of Theorem 4, it is a generic property that
local minimizers Ou are strict and their Hessians D2

1F.Ou; v/ are positive
definite.

2. Using Corollary 1, the statement of Theorem 4 holds true if �0.0C/ D 0 and if
there is � > 0 such that �0.��/ > �0.�C/. This is the case of the PF (f6) in
Table 1.

3. If �0.0C/ > 0, define

OJ defD fi 2 I W Di Ou D 0g and K OJ
defD
n
w 2 R

p W Diw D 0; 8i 2 OJ
o
:

(12)
Then 8v 2 R

q n‚, every local minimizer Ou of F.u; v/ is strict and
(a) D1F jK OJ

.Ou; v/ D 0 and D2
1F jK OJ

.Ou; v/  0 – a sufficient condition for a
strict minimum on K OJ .

(b) ı1F.Ou; v/.w/ > 0; 8w 2 K?
OJ nf0g – a sufficient condition for a strict

minimum on K?
OJ .

I Here (a) and (b) provide a sufficient condition for a strict (local) minimum
of F. � ; v/ at Ou (a direct consequence of [80, Theorem 1]). These conditions
are satisfied at the (local) minimizers Ou of F. � ; v/ for every v 2 R

q , except
for a negligible subset of Rq , in which case Lemma 1 can be applied.

One can interpret these results as follows:

I Under the assumptions H1, H2, H4, and H5, given real data v 2 R
q , the

chance to get a nonstrict (local) minimizer or a (local) minimizer of the
energy in (11) that does not result from a Cm�1 local minimizer function
is null.
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Global Minimizers of Energies with for Possibly Nonconvex Priors
The results on the global minimizers of (11) presented next are extracted from [45].

Theorem 5. Assume that F. � ; v/ in (11) satisfy H1, H2, H4, and H5. Then there
exists a subset O‚ � R

q such that Lq. O‚/ D 0 and the interior of R
q n O‚ is dense

in R
q , and for any v 2 R

q n O‚ the energy F. � ; v/ has a unique global minimizer.
Furthermore, the global minimizer function OU W Rq n O‚ ! R

p is Cm�1 on an open
subset of Rq n O‚ which is dense in R

q .

I Otherwise said, in a real-world problem there is no chance of getting data v
such that the energy F. � ; v/ (11) has more than one global minimizer.

Nonetheless, O‚ plays a crucial role for the recovery of edges; this issue is
developed in Sect. 4.

Nonasymptotic Bounds onMinimizers

The aim here is to give nonasymptotic analytical bounds on the local and the global
minimizers Ou of F. � ; v/ in (11) that hold for all PFs � in Table 1. Related questions
have mainly been considered in particular cases or asymptotically; see, e.g., [4, 71,
92]. In [51] the mean and the variance of the minimizers Ou for strictly convex and
differentiable functions � have been explored.

The bounds provided below are of practical interest for the initialization and
the convergence analysis of numerical schemes. The statements given below are
extracted from [82].

Bounds on the restored data. One compares the “restored” dataAOu with the given
data v.

H6 Consider the alternative assumptions:

• �0.0C/ D 0 and � 2 C1.RCn‚0/ where the set‚0 D
˚
t > 0 W �0.t�/ > �0.tC/



is at most finite.

• �0.0C/ > 0 and � is C1 on R
�C.

The set‚0 allows us to address the PF given in (f6). Let us emphasize that under
H1 and H6, the PF � can be convex or nonconvex.

Theorem 6. Consider F. � ; v/ of the form (11) where H1, H3, and H6 hold. For
every v 2 R

q , if F. � ; v/ has a (local) minimum at Ou, then

kAOuk2 6 kvk2:

Comments on the results. This bound holds for every (local) minimizer of
F. � ; v/. If A is a uniform tight frame (i.e., A�A D Id), one has
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kOuk2 6 kvk2:

The mean of restored data. In many applications, the noise corrupting the data
can be supposed to have a mean equal to zero. When A D Id, it is well known that
mean.Ou/ Dmean.v/; see, e.g., [7]. However, for a general A one has

A1p / 1q ) mean.Ou/ D mean.v/: (13)

The requirement A1p / 1q is quite restrictive. In the simple case when �.t/ D t2,
ker.D/ D 1rs and A is square and invertible, it is easy to see that this is also a
sufficient condition. Finally, if A ¤ Id, then generally mean .Ou/ ¤ mean .v/.

The residuals for edge-preserving regularization. A bound on the data-fidelity
term at a (local) minimizer Ou of F. � ; v/ shall be given. The edge-preserving H2 (see
Sect. 1) is replaced by a stronger edge-preserving assumption:

H7 k�0k1 defD max

�
sup
t>0
j�0.tC/j; sup

t>0
j�0.t�/j


<1.

Except for (f1) and (f13), all other PFs in Table 1 satisfy H7. Note that when
�0.0C/ > 0 and H7 hold, one usually has k�0k1 D �0.0C/.

Theorem 7. Let F. � ; v/ be of the form (11) where rank .A/ D q 6 p, and H1, H3,
H6, and H7 hold. For every v 2 R

q , if F. � ; v/ has a (local) minimum at Ou, then

kAOu � vk1 6 ˇ

2
k�0k1k.AA�/�1Ak1kDk1: (14)

Let us emphasize that the bound in (14) is independent of data v and that it
is satisfied for any local or global minimizer Ou of F. � ; v/. (Recall that for a real
matrix C with entries C Œi; j �, one has kCk1 D maxj

P
i jC Œi; j �j and kCk1 D

maxi
P

j jC Œi; j �j; see, e.g., [35].)
If D corresponds to a discrete gradient operator for a two-dimensional image,

kDk1 D 4. If in addition A D Id, (14) yields

kv � Ouk1 6 2ˇk�0k1:

The result of this theorem may seem surprising. In a statistical setting, the
quadratic data-fidelity term kAu � vk2

2 in (11) corresponds to white Gaussian noise
on the data, which is unbounded. However, if � is edge preserving according to
H7, any (local) minimizer Ou of F. � ; v/ gives rise to a noise estimate .v � AOu/Œi �,
1 6 i 6 q that is tightly bounded as stated in (14).

I Hence the model for Gaussian noise on the data v is distorted by the solution
Ou.
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I When F. � ; v/ is convex and coercive, (14) shows that a good initialization for
a minimization algorithm should be a point u0 such that Au0 D v, e.g., the
minimum norm solution of kv � Ouk2 given by u0 D A�.AA�/�1v.

4 Nonconvex Regularization

Motivation

A permanent requirement is that the energy F favors the recovery of neat edges.
Since the pioneering work of Geman and Geman [56], various nonconvex ˆ in (3)
have been proposed [15,54,55,64,68,72,85]. Indeed, the relevant minimizers exhibit
neat edges between homogeneous regions. However, these nonconvex energies are
tiresome to control and to minimize (only few algorithms are proved to find the
global minimizer in particular cases). In order to avoid these numerical intricacies,
since the 1990s, an important effort was done to derive convex edge-preserving PFs;
see, e.g., [20,31,57,64,87] and [7] for an overview. The most popular convex edge-
preserving PF was derived by Rudin, Osher, and Fatemi [87]: it amounts to � D t ,
for fDi g yielding the discrete gradient operator, the `2-norm in (6) (see Sect. 1), and
the relevantˆ is called the Total Variation (TV) regularization.

In Fig. 2 one sees that the height of the edges is better recovered when � is
nonconvex, compared to the convex TV regularization. The same effect can also
be observed, e.g., in Figs. 7, 8, and 10.

A considerable progress in nonconvex minimization has been realized. For
energies of the form (2)–(3) we refer to [5, 19, 88, 89].

I This section is devoted to explain why edges are nicely recovered using a
nonconvex �.

Assumptions on Potential Functions �

Consider F. � ; v/ of the form (11) where Di W Rp ! R
1, i 2 I D f1; : : : ; rg, i.e.,

F.u; v/ D kAu � vk2
2 C ˇ

X
i2I

� .jDiuj/ ; (15)

and � W RC ! RC satisfies H1 (see Sect. 1), H6 section “Nonasymptotic Bounds
on Minimizers,” and H8 given below

H8 � is C2 and �0.t/ > 0 on R
�C, and inf

t2R�
C

�00.t/ < 0 with lim
t!1�00.t/ D 0;

as well as one of the following assumptions:
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1 100

0

4

1 100

0

4

1 100

0

4

Data v = u + n (—)
Original uo(dashed line)

Non-convex regularization
φ(t) = αt/(1+ αt)

Convex regularization φ(t) = t(TV)
Original uo (---), minimizer u (—)ˆ

Fig. 2 Minimizers of F.u; v/ D ku � vk2
2 C ˇ

Pp�1
iD1 �.juŒi �� uŒi C 1�j/

H9 �0.0C/ D 0, and there are two numbers � > 0 and T 2 .�;1/ such that
�00.t/ > 0 on Œ0; � �, �00.t/ < 0 on .�;1/, �00.t/ decreases on .�; T / and increases
on .T ;1/.
H10 �0.0C/ > 0, and lim

t!0
�00.t/ < 0 is well defined and �00.t/ < 0 strictly

increases on .0;1/.
These assumptions are illustrated in Fig. 3. They hold for all nonconvex PFs in

Table 1, except for (f6) and (f13) which are presented separately. Further, these
assumptions are easy to relax.

The results presented below come from [81].
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Fig. 3 Illustration of the assumptions in two typical cases – (f7) and (f11) – in Table 1

How It Works onR

I This example illustrates the main facts that explain why edges are enhanced
when � is nonconvex, satisfying H1, and H8 along with either H9 or H10.

Let F W R � R! R be given by

F.u; v/

D 1

2
.u � v/2 C ˇ�.u/ for

8̂
<
:̂
ˇ > 1

j�00.T /j if �0.0C/ D 0 (H1, H8 and H9)

ˇ > 1
jlimt&0 �

00.t/j if �0.0C/ > 0 (H1, H8 and H10)

The (local) minimality conditions for Ou of F. � ; v/ read as

• If �0.0C/ D 0 or
�
�0.0C/ > 0 and Ou ¤ 0

�
: OuCˇ�0.Ou/ D v and 1Cˇ�00.Ou/ > 0.

• If �0.0C/ > 0 and Ou D 0 : jvj 6 ˇ�0.0C/.

To simplify, we assume that v > 0. Define

�0 D infCˇ and �1 D supCˇ;

for Cˇ D
˚
u 2 R

�C W D2
1F.u; v/ < 0


 D ˚u 2 R
�C W �00.u/ < �1=ˇ



:

One has �0 D 0 if �0.0C/ > 0 and 0 < �0 < T < �1 if �0.0C/ D 0. A few
calculations yield
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1. For every v 2 RC no minimizer lives in .�0; �1/ (cf. Fig. 4).
2. One computes 0 < �0 < �1 such that (cf. Fig. 4)

a. If 0 6 v 6 �1, F. � ; v/ has a (local) minimizer Ou0 2 Œ0; �0�, hence Ou0 is subject
to a strong smoothing.

b. If v > �0, F. � ; v/ has a (local) minimizer Ou1 > �1, hence Ou1 is subject to a
weak smoothing.

c. If v 2 Œ�0; �1� then F. � ; v/ has two local minimizers, Ou0 and Ou1.
3. There is � 2 .�0; �1/ such that F. � ; �/ has two global minimizers, F.Ou0; �/ D

F.Ou1; �/, as seen in Fig. 5;
a. If 0 < v < �, the unique global minimizer is Ou D Ou0.
b. If v > �, the unique global minimizer is Ou D Ou1.

4. The global minimizer function v 7! U.v/ is discontinuous at � and C1-smooth on
RCnf�g.

Item 1 is the key for the recovery of either homogeneous regions or high edges. The
minimizer Ou0 (see Items 2a and 3a) corresponds to the restoration of homogeneous
regions, while Ou1 (see Items 2b and 3b) corresponds to edges. Item 3 corresponds to a
decision for the presence of an edge at the global minimizer. Since f�g is closed and
L

1f�g D 0, Item 4 confirms the results of section “Global Minimizers of Energies
with for Possibly Nonconvex Priors.”

Either Smoothing or Edge Enhancement

(A) Case �0.0C/ D 0. Below the case depicted in Figs. 4, left, and 5, left, is
extended to R

p .

Fig. 4 The curve of u 7! �
D1F.u; v/� v

	
on R n f0g. All assumptions mentioned before hold
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Fig. 5 Each curve represents F.u; v/ D 1
2 .u�v/2 Cˇ�.u/ for an increasing sequence v 2 Œ0; �1/.

The global minimizer of each F. � ; v/ is marked with “�.” No (local) minimizer lives in .�0; �1/

Theorem 8. Let F. � ; v/ be of the form (15) where H1, H3, H8, and H9 hold, and

fDi W i 2 I g are linearly independent. Set �
defD max16i6r kD�.DD�/�1eik2. For

ˇ >
2�2 kA�Ak2

j�00.T /j , there are �0 2 .�; T / and �1 2 .T ;1/ such that 8v 2 R
q , if Ou is a

(local) minimizer of F. � ; v/, then

either jDi Ouj 6 �0; or jDi Ouj > �1; 8i 2 I: (16)

In many imaging problems, fDig are not linearly independents. If fDig are
linearly dependent, the result (16) holds true for all (local) minimizers Ou that are
locally homogeneous on regions that are connected with respect to fDig. Otherwise,
one recovers both high edges and smooth transitions, as seen in Fig. 8a. When � is
convex, all edges are smoothed, as one can observe in Fig. 7a.

The PF �.t/ D minf˛t2; 1g (f6) in Table 1 does not satisfy assumptions H8 and
H9. From Corollary 1 and Example 2 (section “Reminders and Definitions”), any
(local) minimizer Ou of F. � ; v/ obeys

jDi Ouj ¤ 1p
˛
; 8i 2 I:

Proposition 1 below addresses only the global minimizers of F. � ; v/.

Proposition 1. Let F. � ; v/ be given by (15) where �.t/ D minf˛t2; 1g, fD W i 2
I g are linearly independent and rank .A/ > p � r > 1. If F. � ; v/ has a global
minimizer at Ou, then

either jDi Ouj 6 1p
˛
�i ; or jDi Ouj > 1p

˛ �i
;
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for �i D
s

kBeik2
2

kBeik2
2 C ˛ˇ

< 1; 8i 2 I; (17)

where B is a matrix depending only on A and D.

If D D Id, then B D A. If u one-dimensional signal and Diu D uŒi � � uŒi C 1�,
1 6 i 6 p� 1, one has B D .Id� 1

p
11T /AH whereH 2 R

p�p is upper triangular
composed of ones.

In Proposition 1, set �0 D �p
˛

and �1 D 1p
˛�

for �
defD max

i2I �i < 1.

Let us define the following subsets:

OJ0
defD fi 2 I W jDi Ouj 6 �0g and OJ1

defD I n OJ0 D fi 2 I W jDi Ouj > �1g: (18)

One can interpret the results of Theorem 8 and Proposition 1 as follows:

I The pixels in OJ0 form homogeneous regions with respect to fDi g, whereas the
pixels in OJ1 are break points.

In particular, if fDi g correspond to first-order differences, OJ0 addresses
smoothly varying regions where jDi Ouj 6 �0, while OJ1 corresponds to edges
higher than �1 � �0.

(B) Case �0.0C/ > 0. Here the results are stronger without assumptions on fDig.
This case corresponds to Figs. 4, right, and 5, right.

Theorem 9. Consider F. � ; v/ of the form (15) where H3 holds and � satisfies H1,

H8, and H10. Let ˇ > 2�2 kA�Ak2
j limt&0 �

00.t/j , where � > 0 is a constant depending only on

fDig. Then 9�1 > 0 such that8v 2 R
q , every (local) minimizer Ou of F. � ; v/ satisfies

either jDi Ouj D 0; or jDi Ouj > �1; 8i 2 I: (19)

The results of Theorem 9 were extended to energies involving box constraints in
[33].

The “0-1” PF (f13) in Table 1 does not satisfy H8 and H10 since it is
discontinuous at 0.

Proposition 2. Let F. � ; v/ in (15) be defined for �.0/ D 0; �.t/ D 1 if t > 0, i.e.,
(f13), fDig be linearly independent and rankA > p� r > 1. If F. � ; v/ has a global
minimum at Ou, then

either jDi Ouj D 0 or jDi Ouj >
p
ˇ

kBeik2
; 8i 2 I; (20)

where the matrix B depends only on D and on A.
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In (20), B is the same as in Proposition 1. For �1
defD mini2I

p
ˇ

kBeik , it is clear that
(20) holds.

Let

OJ0
defD fi W jDi Ouj D 0g and OJ1

defD I n OJ0 D fi W jDi Ouj > �1g :

Using this notation, the results of Theorem 9 and Proposition 2 show that:

I The indexes in OJ0 address regions in Ou that can be called strongly homoge-
neous (since jDi Ouj D 0), while OJ1 addresses breakpoints where jDi Ouj > �1.

If fDi g are first-order differences, Ou is neatly segmented: OJ0 corresponds to
constant regions, while OJ1 describes all edges and they are higher than �1.

Direct segmentation of an image from data transformed via a general (nondiag-
onal) operatorA remains a difficult task using standard methods. The result in (19),
Theorem 9, tells us that such a segmentation is naturally involved in the minimizers
Ou of F. � ; v/, for any operator A. This effect can be observed, e.g., on Figs. 8b, d
and 11d.

(C) Illustration: Deblurring of an image from noisy data. The original image
uo in Fig. 6a presents smoothly varying regions, constant regions, and sharp edges.
Data in Fig. 6b correspond to v D a � uo C n, where a is a blur with entries ai;j D
exp

��.i2 C j 2/=12:5
	

for �4 6 i; j 6 4, and n is white Gaussian noise yielding
20 dB of SNR. The amplitudes of the original image are in the range of Œ0; 1:32�
and those of the data in Œ�5; 50�. In all restored images, fDi g correspond to the
first-order differences of each pixel with its 8 nearest neighbors. In all figures, the
obtained minimizers are displayed on the top. Just below, the sections corresponding
to rows 54 and 90 of the restored images are compared with the same rows of the
original image.

The restorations in Fig. 7 are obtained using convex PFs � while those in
Fig. 8 using nonconvex PFs �. Edges are sharp and high in Fig. 8 where � is
nonconvex, which corroborates the results in paragraphs (A) and (B). In Fig. 8b,
d � is nonconvex and �0.0C/ > 0 in addition. As stated in Theorem 9, in spite of
the fact that A is nondiagonal (and ill-conditioned), the restored images are fully
segmented and the edges between constant pieces are high.

5 Nonsmooth Regularization

I Observe that the minimizers corresponding to �0.0C/ > 0 (nonsmooth
regularization) in Figs. 2b, c, 7b, 8b, d, 10a–c, and 11d are constant on
numerous regions. This section is aimed to explain and to generalize this
observation.
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a b

Fig. 6 Data v D a ? uo C n, where a is a blur and n is white Gaussian noise, 20 dB of SNR. (a)
Original image. (b) Data v = blur + noise

a b

Fig. 7 Restoration using convex PFs. (a) �.t/ D t ˛ for ˛ D 1:4; ˇ D 40. (b) �.t/ D t for
ˇ D 100
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a b

c d

Fig. 8 Restoration using nonconvex PFs. (a) �.t/ D ˛t 2

1 C ˛t 2
for ˛ D 25, ˇ D 35. (b) �.t/ D

˛t

1 C ˛t
for ˛ D 20, ˇ D 100. (c) �.t/ D minf˛t 2; 1g for ˛ D 60, ˇ D 10. (d) �.0/ D

0; �.t/ D 1; t > 0 for ˇ D 25
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Consider

F.u; v/ D ‰.u; v/C ˇˆ.u/ (21)

ˆ.u/ D
rX
iD1

�
���Diu

��
2

	
; (22)

where ‰ W Rp � R
q ! R is any explicit or implicit Cm-smooth function for m > 2

and Di W Rp 7! R
s , 8i 2 I D f1; : : : ; rg, are general linear operators for any

integer s > 1. It is assumed that � satisfies H1 along with

H11 � is C2-smooth on R
�C and �0.0C/ > 0.

Note that‰ and � can be convex or nonconvex. Let us define the set-valued function
J on R

p by

J .u/ D
n
i 2 I W kDiuk2 D 0

o
: (23)

Given u 2 R
p, J .u/ indicates all regions where Diu D 0. Such regions are

called strongly homogeneous with respect to fDi g. (The adverb “strongly” is used to
emphasize the difference with just “homogeneous regions” where kDiuk2 	 0.) In
particular, if fDi g correspond to first-order differences between neighboring samples
of u or to discrete gradients, J .u/ indicates all constant regions in u.

Main Theoretical Result

The results presented below are extracted from [80].

Theorem 10. Given v 2 R
q , assume that F. � ; v/ in (21)–(22) is such that ‰ is

Cm, m > 2 on R
p � R

q , and that � satisfies H1 and H11. Let Ou 2 R
p be a (local)

minimizer of F. � ; v/. For OJ defD J .Ou/, let K OJ be the vector subspace

K OJ D
n
u 2 R

p W Diu D 0;8i 2 OJ
o
: (24)

Suppose also that

(a) ı1F.Ou; v/.w/ > 0, for every w 2 K?
OJ n f0g.

(b) There is an open subsetO 0
OJ � R

q such that F jK OJ

�
:; O 0

OJ
�

has a local minimizer

function U OJ W O 0
OJ ! K OJ which is Cm�1 continuous and Ou D U OJ .v/.

Then there is an open neighborhood O OJ � O 0
OJ of v such that F. � ; O OJ / admits a

Cm�1 local minimizer function U W O OJ ! R
p which satisfies U.v/ D Ou, U jK OJ

D U OJ
and
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� 2 O OJ ) DiU.�/ D 0; for all i 2 OJ : (25)

Note that OJ and K OJ are the same as those introduced in (12) section “Local
Minimizers.”

Commentary on the assumptions. Since F. � ; v/ has a local minimum at Ou, by
Theorem 1 one has ı1F.Ou; v/.w/ > 0, for all w 2 K?

OJ n f0g, and if for some w
the inequality becomes inequality, then the inequality is strict for �w. So (a) is not
a strong requirement. Condition (b) amounts to Lemma 1 (section “Reminders and
Definitions”) applied to F jK OJ

which is Cm on a neighborhood of .Ou; v/ belonging to
K OJ � R

q .
If F. � ; v/ (possibly nonconvex) is of the form (11) and assumption H4 (sec-

tion “Stability of the Minimizers of Energies with Possibly Nonconvex Priors”)
holds, Theorem 4 and the other results given next show that (a) and (b) are satisfied
for any v 2 R

q n‚ where‚ is closed and L
q.‚/ D 0.

Significance of the results. Using the definition of J in (23), the conclusion of the
theorem can be reformulated as

v 2 O OJ ) J .U.v// � OJ , U.v/ 2 K OJ : (26)

Minimizers involving large subsets OJ are observed in Figs. 2b, c, 7b, 8b, d, 10a–c,
and 11d. It was seen in Examples 1 and 4, as well as in section “How It Works on
R” (case �0.0C/ > 0), that OJ is nonempty for data v living in an open O OJ . Note
also that there is an open subset QO OJ � O OJ such that J .U.v// D OJ for all v 2 QO OJ .
These sets QO OJ are described in Example 5.

Observe that (26) is a severe restriction sinceK OJ is a closed and negligible subset
of Rp, whereas data v vary on open subsets O OJ of Rq .

Focus on a (local) minimizer function U W O ! R
p for F. � ; O/ and put OJ D

J .U.v// for some v 2 O . By Theorem 10, the sets O OJ and QO OJ are of positive
measure in R

q . When data � range overO , the set-valued function .J ıU/ generally
takes several distinct values, say fJj g. Thus, with a (local) minimizer function U ,
defined on an open set O , there is associated a family of subsets f QOJj g which form
a covering of O . When � 2 QOJj , we find a minimizer Ou D U.�/ satisfying J .Ou/ D
Jj .

I Energies with nonsmooth regularization terms, as those considered here,
exhibit local minimizers which generically satisfy constraints of the form
J .Ou/ ¤ ¿.

In particular, if fDi g are discrete gradients or first-order difference operators,
minimizers Ou are typically constant on many regions. For example, if �.t/ D t ,
we have ˆ.u/ D TV.u/, and this explains the stair-casing effect observed in
TV methods on discrete images and signals [30,39].
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Examples and Discussion

The subsection begins with an illustration of Theorem 10 and its meaning.

Restoration of a noisy signal. Figure 9 shows a piecewise constant signal uo
corrupted with two different noises.

Figure 10 depicts the restoration from these two noisy data samples by minimiz-
ing an energy of the form F.u; v/ D ku � vk2 C ˇPp�1

iD1 �.juŒi � � uŒi C 1�j/. The
minimizers shown in Fig. 10a–c correspond to functions � such that �0.0C/ > 0
and they are constant on large segments. The reader is invited to compare the
subsets where these minimizers are constant. The function � in Fig. 10d satisfies
�0.0C/ D 0 and the resultant minimizers are nowhere constant.

Example 5 below gives a rich geometric interpretation of Theorem 25.

Example 5 (1D TV Regularization). Let F W Rp �R
p ! R be given by

F.u; v/ D kAu � vk2
2 C ˇ

p�1X
iD1

ˇ̌
uŒi � � uŒi C 1�

ˇ̌
; ˇ > 0; (27)

where A 2 R
p�p is invertible. Clearly, there is a unique minimizer function U for

F. � ;Rp/. Two striking phenomena concerning the sets QOJ are described next:

1. For every point Ou 2 R
p , there is a polyhedron QOu � R

p of dimension #J .Ou/,
such that for every v 2 QOu, the same point U.v/ D Ou is the unique minimizer of
F. � ; v/.

2. For every J � f1; : : : ; p � 1g, there is a subset QOJ � R
p , composed of 2p�#J�1

unbounded polyhedra (of dimension p) of Rp such that for every v 2 QOJ , the

1 100

0

4

1 100

0

4

Fig. 9 Data v D uoCn (—) corresponding to the original uo (-.-.) contaminated with two different
noise samples n on the left and on the right
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d

c

b

a

Fig. 10 Restoration using different functions �. Original uo (-.-.), minimizer Ou (—). Each figure
from (a) to (d) shows the two minimizers Ou corresponding to the two data sets in Fig. 9 (left and
right), while the shape of � is plotted in the middle
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minimizer Ou of F. � ; v/ satisfies Oui D OuiC1 for all i 2 J and Oui ¤ OuiC1 for all
i 2 J c . Their closure forms a covering of Rp .

The next Remark 2 deserves to be combined with the conclusions of sec-
tion “Nonasymptotic Bounds on Minimizers.”

Remark 2. The energy in (27) has a straightforward Bayesian interpretation in
terms of maximum a posteriori (MAP) estimation (see section “Background,” first
item). The quadratic data-fidelity term corresponds to an observation model of
the form v D Auo C n where n is independent identically distributed (i.i.d.)
Gaussian noise with mean zero and variance denoted by 
2. The likelihood reads

�.vju/ D exp

�
� 1

2
2
kAu � vk2

2

�
. The regularization term corresponds to an i.i.d.

Laplacian prior on each difference uŒi ��uŒiC1�, 1 6 i 6 p�1, that is, exp .��jt j/
for � D ˇ

2
2
. Since this density is continuous on R, the probability to get a null

sample, t D uŒi ��uŒiC1� D 0, is equal to zero. However, the results presented above
show that for the minimizer Ou of F. � ; v/, the probability to have OuŒi �� OuŒi C 1� D 0
for a certain amount of indexes i is strictly positive. This means that the Laplacian
prior on the differences uŒi � � uŒi C 1� is far from being incorporated in the MAP
solution Ou.

Applications

The use of nondifferentiable (and also nonconvex) regularization in compressive
sensing is actually extremely abundant; readers can check, e.g., the textbook [50].

Image reconstruction is computed tomography. The concentration of an isotope
in a part of the body provides an image characterizing metabolic functions and local
blood flow [21, 62]. In emission computed tomography (ECT), a radioactive drug
is introduced in a region of the body and the emitted photons are recorded around
it. Data are formed by the number of photons vŒi � > 0 reaching each detector,
i D 1; : : : ; q. The observed photon counts v have a Poissonian distribution [21, 90].
Their mean is determined using projection operators fai ; i D 1; 2; : : : ; qg and a
constant � > 0. The data-fidelity ‰ derived from the log-likelihood function is
nonstrictly convex and reads:

‰.u; v/ D �
*

qX
iD1

ai ; u

+
�

qX
iD1

vŒi � ln .hai ; ui/ : (28)

Figure 11 presents image reconstruction from simulated ECT data by minimizing
and energy of the forms (21) and (22) where ‰ is given by (28) and fDig yield
the first-order differences between each pixel and its eight nearest neighbors. One
observes, yet again, that a PF � which is nonconvex with �0.0C/ > 0 leads to a
nicely segmented piecewise constant reconstruction.



186 M. Nikolova

a b

c d

Fig. 11 ECT. F.u; v/ D ‰.u; v/ C ˇ
P

i2I �.jDiuj/. (a) Original phantom. (b) ECT simulated
data. (c) �0.0/ D 0, edge preserving. (d) �.t/ D t=.˛ C t / (�0.0C/ > 0, nonconvex)

a b c

Fig. 12 D is a first-order difference operator, i.e., Diu D uŒi ��uŒiC1�, 1 6 i 6 p�1. Data (- - -),
restored signal (—). Constant pieces in (a) are emphasized using “�,” while data samples that are
equal to the relevant samples of the minimizer in (b) are emphasized using “ı”

6 Nonsmooth Data Fidelity

I Figure 12 shows that there is a striking distinction in the behavior of the
minimizers relevant to nonsmooth data-fidelity terms (b) with respect to
nonsmooth regularization (a). More precisely, many data samples are fitted
exactly when the data-fidelity term is nonsmooth. This particular behavior is
explained and generalized in the present section.

Consider

F.u; v/ D ‰.u; v/C ˇˆ.u/; (29)

‰.u; v/ D
qX
iD1

 .jhai ; ui � vŒi �j/ ; (30)
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where ai 2 R
p for all i 2 f1; : : : ; qg and  W RC ! RC is a function satisfying

H12  is Cm, m > 2 on R
�C and  0.0C/ > 0 is finite.

By this condition, t 7!  .jt j/ is continuous on R. Let A 2 R
q�p denote the

matrix such that for any i D 1; : : : ; q, its i th row reads a�
i .

Nonsmooth data-fidelity terms ‰ in energies of the form (29) and (30) were
introduced in image processing in 2001 [77].

General Results

Here we present some results on the minimizers Ou of F as given in (29) and (30),
where‰ is nondifferentiable, obtained in [78,79]. An additional assumption is that

H13 The regularization term ˆ W Rp ! R in (29) is Cm, m > 2.

Note that ˆ in (29) can be convex or nonconvex. To analyze the observation in
Fig. 12b, the following set-valued function J will be useful:

.u; v/ 2 .Rp � R
q/ 7! J .u; v/ D

n
i 2 f1; : : : ; qg W hai ; ui D vŒi �

o
: (31)

Given v and a (local) minimizer Ou of F. � ; v/, the set of all data entries vŒi � that are
fitted exactly by .AOu/Œi � reads OJ D J .Ou; v/. Its complement is OJ c D f1; : : : ; qg n OJ .

Theorem 11. Let F be of the form (29)–(30) where assumptions H12 and H13
hold. Given v 2 R

q , let Ou 2 R
p be a (local) minimizer of F. � ; v/. For OJ D J .Ou; y/,

where J is defined according to (31), let

K OJ .v/ D fu 2 R
p W hai ; ui D vŒi � 8i 2 OJ and hai ; ui ¤ vŒi � 8i 2 OJ cg;

and let K OJ be its tangent. Suppose the following:

1. The set
n
ai W i 2 OJ

o
is linearly independent.

2. 8w 2 K OJ nf0g we haveD1.F jK OJ .v/
/.Ou; v/w D 0 andD2

1.F jK OJ .v/
/.Ou; v/.w;w/ >

0.
3. 8w 2 K?

OJ n f0g we have ı1F.Ou; v/.w/ > 0.

Then there are a neighborhoodO OJ � R
q containing v and a Cm�1 local minimizer

function U W O OJ ! R
p relevant to F. � ; O OJ /, yielding in particular Ou D U.v/, and

� 2 O OJ )
� hai ;U.�/i D �Œi � if i 2 OJ ;
hai ;U.�/i ¤ �Œi � if i 2 OJ c: (32)

The result in (32) means that J .U.�/; �/ D OJ is constant on O OJ .
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Note that for every v and J ¤ ¿, the set KJ .v/ is a finite union of connected
components, whereas its closure KJ .v/ is an affine subspace. Its tangent K OJ reads

K OJ D fu 2 R
p W hai ; ui D 0 8i 2 OJ g:

A comparison with K OJ in (24) may be instructive. Compare also (b) and (c) in
Theorem 11 with (a) and (b) in Theorem 10. By the way, conditions (b) and (c) in
Theorem 11 ensure that F. � ; v/ reaches a strict minimum at Ou [78, Proposition 1].
Observe that this sufficient condition for strict minimum involves the behavior
of F. � ; v/ on two orthogonal subspaces separately. This occurs because of the
nonsmoothness of t 7!  .jt j/ at zero. It can be useful to note that at a minimizer Ou,

ı1F.Ou; v/.w/ D �0.0C/
X
i2 OJ
jhai ;wij C

X
i2 OJ c

 0.hai ; Oui � vŒi �/hai ;wi

CˇDˆ.Ou/w > 0; for any w 2 R
p (33)

Commentary on the assumptions. Assumption (a) does not require the indepen-
dence of the whole set fai W i 2 f1; : : : ; qgg. It is easy to check that this assumption
fails to hold only for some v is included in a subspace of dimension strictly smaller
than q. Hence, assumption (a) is satisfied for almost all v 2 R

q and the theorem
addresses any matrix A, whether it be singular or invertible.

Assumption (b) is the classical sufficient condition for a strict local minimum of
a smooth function over an affine subspace; see Lemma 1 (section “Reminders and
Definitions”). If an arbitrary function F. � ; v/ W Rp ! R has a minimum at Ou, then
necessarily ı1F.Ou; v/.w/ > 0 for all w 2 K?

OJ ; see Theorem 1. In comparison, (c)
requires only that the latter inequality be strict.

It will be interesting to characterize the sets of data v for which (b) and (c) may
fail at some (local) minimizers. Some ideas from section “Local Minimizers” can
provide a starting point.

Corollary 2. Let F be of the form (29)–(30) where p D q, and H12 and H13 hold
true. Given v 2 R

q , let Ou 2 R
p be a (local) minimizer of F. � ; v/. Suppose the

following:

(a) The set fai W 1 6 i 6 qg is linearly independent.

(b) 8w 2 R
q satisfying kwk2 D 1 we have ˇ jDˆ.Ou/wj <  0.0C/

qX
iD1

jhai ;wij.

Then

OJ D f1; : : : ; qg

and there are a neighborhood O OJ � R
q containing v and a Cm�1 local minimizer

function U W O OJ ! R
p relevant to F. � ; O OJ /, yielding in particular Ou D U.v/, and
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� 2 O OJ ) hai ;U.�/i D �Œi � 8i 2 OJ D f1; : : : ; qg: (34)

More precisely, U.�/ D A�1� for any � 2 O OJ .

In the context of Corollary 2, A is invertible. Combining this with (33) and (b)
shows that

K OJ .v/ D fu 2 R
p W Au D vg D A�1v;

K OJ D ker.A/ D f0g:

Then

(
v 2 R

q W ˇ ˇ̌Dˆ.A�1v/w
ˇ̌
<  0.0C/

qX
iD1

jhai ;wij; 8w 2 R
q n f0g; kwk2 D 1

)

� O OJ 
 Of1;:::; qg:

The subset on the left contains an open subset of R
q by the continuity of v 7!

Dˆ.A�1v/ combined with (b).

Significance of the results. Consider that #J > 1. The result in (32) means that
the set-valued function v ! J .U.v/; v/ is constant on O OJ , i.e., that J is constant
under small perturbations of v. Equivalently, all residuals hai ;U.v/i� vŒi � for i 2 OJ
are null on O OJ .

Theorem 11 shows that Rq contains volumes of positive measure composed of
data that lead to local minimizers which fit exactly the data entries belonging to
the same set. In general, there are volumes corresponding to various OJ so that
noisy data come across them. That is why nonsmooth data-fidelity terms generically
yield minimizers fitting exactly a certain number of the data entries. The resultant
numerical effect is observed in Fig. 12b as well as in Figs. 14 and 15.

Remark 3 (Stability of Minimizers). The fact that there is a Cm�1 local minimizer
function shows that, in spite of the nonsmoothness of F , for any v, all local
minimizers of F. � ; v/ which satisfy the conditions of the theorem are stable under
weak perturbations of data v. This result extends Lemma 1.

Example 6. Let F read

F.u; v/ D
qX
iD1

juŒi � � vŒi �j C ˇ

2

qX
iD1

.uŒi �/2 ; ˇ > 0:

It is easy to see that there is a unique local minimizer function U which is given by
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a

b

Fig. 13 Original uo and data v degraded by outliers. (a) Original uo. (b) Data v D u � outliers

U.v/Œi � D 1

ˇ
sign.vŒi �/ if jvŒi �j > 1

ˇ
;

U.v/Œi � D vŒi � if jvŒi �j 6 1

ˇ
:

Condition (c) in Theorem 11 fails to hold only for
n
v 2 R

q W jvŒi �j D 1
ˇ
; 8i 2 OJ

o
.

This set is of Lebesgue measure zero in R
q . For any J 2 f1; : : : ; qg put

OJ D
�

v 2 R
q W jvŒi �j 6 1

ˇ
; 8i 2 J and jvŒi �j > 1

ˇ
; 8i 2 J c


:

Obviously, every v 2 OJ gives rise to a minimizer Ou satisfying

OuŒi � D vŒi �; 8i 2 J and OuŒi � ¤ vŒi �; 8i 2 J c:

Each set OJ has a positive Lebesgue measure in R
q . Moreover, the union of all OJ

when J ranges on all subsets J � f1; : : : ; qg (including the empty set) forms a
partition of Rq .

Numerical experiment. The original image uo is shown in Fig. 13a. Data v in
Fig. 13b are obtained by replacing some pixels of uo by aberrant impulsions, called
outliers.

In all Figs. 14–17, fDi g correspond to the first-order differences between each
pixel and its four nearest neighbors. Figure 14a corresponds to an `1 data-fidelity
term for ˇ D 0:14. The outliers are well visible although their amplitudes are clearly
reduced. The image of the residuals v � Ou, shown in Fig. 14b, is null everywhere
except at the positions of the outliers in v. The pixels corresponding to nonzero
residuals (i.e., the elements of OJ c) provide a good estimate of the locations of the
outliers in v. Figure 15a shows a minimizer Ou of the same F. � ; v/ obtained for
ˇ D 0:25. This minimizer does not contain visible outliers and is very close to
the original image uo. The image of the residuals v � Ou in Fig. 15b is null only on
restricted areas but has a very small magnitude everywhere beyond the outliers.
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a b

Fig. 14 Restoration using F.u; v/ D P
i juŒi � � vŒi �j C ˇ

P
i2I jDiuj˛ ˛ D 1:1 and ˇ D 0:14.

(a) Restoration Ou for ˇ D 0:14. (b) Residual v � Ou

a b

Fig. 15 Restoration using F.u; v/ D P
i juŒi ��vŒi �jCˇ

P
i2I jDiuj˛ for ˛ D 1:1 and ˇ D 0:25.

(a) Restoration Ou for ˇ D 0:25. (b) Residual v � Ou

a b

Fig. 16 Restoration using a smooth energy, F.u; v/ D P
i .uŒi ��vŒi �/2 Cˇ

P
i .jDiuj/2, ˇ D 0:2.

(a) Restoration Ou for ˇ D 0:2. (b) Residual v � Ou

a b

Fig. 17 Restoration using nonsmooth regularization F.u; v/ D X
i

.uŒi �� vŒi �/2 C ˇ
X
i

jDiuj,
ˇ D 0:2. (a) Restoration Ou for ˇ D 0:2. (b) Residual v � Ou

The minimizers of two different cost-functions F involving a smooth data-
fidelity term ‰, shown in Figs. 16 and 17, do not fit any data entry. In particular, the
restoration in Fig. 17 corresponds to a nonsmooth regularization and it is constant
over large regions; this effect was explained in Sect. 5.
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Applications

The possibility to keep some data samples unchanged by using nonsmooth data
fidelity is a precious property in various application fields. Nonsmooth data fidelities
are good to detect and smooth outliers. This property was exploited for deblurring
under impulse noise contamination; see, e.g., [10–12].

Denoising of frame coefficients. Consider the recovery of an original (unknown)
uo 2 R

p – a signal or an image containing smooth zones and edges – from noisy
data

v D uo C n;

where n represents a perturbation. As discussed in Sect. 4, a systematic default of
the images and signals restored using convex edge-preserving PFs � is that the
amplitude of edges is underestimated.

Shrinkage estimators operate on a decomposition of data v into a frame of `2,
say fwi W i 2 J g where J is a set of indexes. Let W be the corresponding frame
operator, i.e., .W v/Œi � D hv;wi i, 8i 2 J , and QW be a left inverse of W , giving
rise to the dual frame f Qwi W i 2 J g. The frame coefficients of v read y D W v and
are contaminated with noise W n. The inaugural work of Donoho and Johnstone
[40] considers two different shrinkage estimators: given T > 0, hard thresholding
corresponds to

yT Œi � D
�
yŒi � if i 2 J1;

0 if i 2 J0;
where

�
J0 D fi 2 J W jyŒi �j 6 T gI
J1 D J nJ0;

(35)

while in soft thresholding one takes yT Œi � D yŒi � � T sign.yŒi �/ if i 2 J1 and
yT Œi � D 0 if i 2 J0. Both soft and hard thresholding are asymptotically optimal in
the minimax sense if n is white Gaussian noise of standard deviation 
 and

T D 
p2 loge p: (36)

This threshold is difficult to use in practice because it increases with the size
of u. Numerous improvements were realized; see, e.g., [4, 13, 24, 34, 38, 66, 70].
In all cases, the main problem is that smoothing large coefficients oversmooths
edges, while thresholding small coefficients can generate Gibbs-like oscillations
near edges; see Fig. 18c, d. If shrinkage is weak, noisy coefficients (outliers) remain
almost unchanged and produce artifacts having the shape of f Qwig; see Fig. 18c–e.

In order to alleviate these difficulties, several authors proposed hybrid methods
where the information contained in important coefficients yŒi � is combined with
priors in the domain of the sought-after signal or image [18,25,36,43,67]. A critical
analysis was presented in [46].

A specialized hybrid method involving `1 data fidelity on frame coefficients is
proposed in [46]. Data are initially hard thresholded – see (35) – using a suboptimal
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a b c

d e f

Fig. 18 Methods to restore the noisy signal in (a). Restored signal (—), original signal (- -). (a)
Original and data corrupted with white Gaussian noise. (b) TV regularization. (c) Sure-shrink. (d)
T D 35 optimal, OuT D P

i yT Œi � Qwi . (e) yT , T D 23, OuT D P
i yT Œi � Qwi . (f) The proposed method

threshold T in order to keep as much as possible information. (The use of another
shrinkage estimator would alter all coefficients, which is not desired.) Then

1. J1 is composed of:

• Large coefficients bearing the main features of uo that one wishes to preserve
intact

• Aberrant coefficients (outliers) that must be restored using the regularization
term

2. J0 is composed of:

• Noise coefficients that must be kept null.
• Coefficients yŒi � corresponding to edges and other details in uo – these need

to be restored in accordance with the prior incorporated in the regularization
term.

In order to reach the goals formulated in 1 and 2 above, denoised coefficients Ox are
defined as a minimizer of the hybrid energy F.:; y/ given below:

F.x; y/ D �1

X
i2J1

jxŒi � � yŒi �j C �0

X
i2J0

jxŒi �j C
X
i2I

�
�kDi

QW xk2
	
; �0;1 > 0;

(37)
where � is convex and edge preserving. Then the sought-after denoised image or
signal is
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Ou D QW Ox D
X
i2J
Qwi OxŒi �:

Several properties relevant to the minimizers of F in (37), the parameters �i , i 2
f0; 1g, and the solution Ou are outlined in [46].

Noisy data v are shown along with the original uo in Fig. 18a. The restoration in
Fig. 18b minimizes F.u/ D kAu � vk2

2 C ˇTV – homogeneous regions remain
noisy, edges are smoothed, and spikes are eroded. Figure 18c is obtained using
the sure-shrink method [41] from the toolbox WaveLab. The other restorations use
thresholded Daubechies wavelet coefficients with eight vanishing moments. The
optimal value for the hard thresholding obtained using (36) is T D 35. The relevant
restoration – Fig. 18d – exhibits important Gibbs-like oscillations as well as wavelet-
shaped artifacts. For T D 23 the coefficients have a richer information content,
but QW yT , shown in Fig. 18e, manifests Gibbs artifacts and many wavelet-shaped
artifacts. Introducing the thresholded coefficients of Fig. 18e in the specialized
energy F in (37) leads to Fig. 18f: edges are clean and piecewise polynomial parts
are well recovered.

7 Nonsmooth Data Fidelity and Regularization

The L1-TV Case

For discrete signals of finite length, energies of the form F.u; v/ D ku � vk1 C
ˇ
Pp�1

iD1 juŒi C 1�� uŒi �j were considered by Alliney in 1992 [1].
Following [1, 78, 79], S. Esedoglu and T. Chan explored in [28] the minimizers

of the L1-TV functional given below

F.u; v/ D
Z
Rd

ju.x/� v.x/jdx C ˇ
Z
Rd

jru.x/jdx; (38)

where the sought-after minimizer Ou belongs to the space of bounded variation
functions on R

d . The main focus is on images, i.e., d D 2. The analysis in [28]
is based on a representation of F in (38) in terms of the level sets of u and v. Most
of the results are established for data v given by the characteristic function 	† of a
bounded domain† � R

d . Theorem 5.2 in [28] says that if v D 	†, where † � R
d

is bounded, then F. � ; v/ admits a minimizer of the form Ou D 	 O† (with possibly
O† ¤ †). Furthermore, Corollary 5.3. in [28] states that if in addition † is convex,
then for almost every ˇ > 0, F. � ; v/ admits a unique minimizer and Ou D 	 O†
with O† � †. Moreover, it is shown that small features in the image maintain
their contrast intact up to some value of ˇ, while for a larger ˇ they suddenly
disappear.
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Noisy binary Restored binary

Fig. 19 Restoration of a binary noisy image by minimizing L1-TV

Denoising of Binary Images and Convex Relaxation
Many problems such as text denoising and document processing, two-phase image
segmentation, shape restoration, and fairing of surfaces in computer graphics are
naturally stated as the minimization of an energy over the set of the binary images.
These energies are obviously nonconvex since the constraint set is finite. Their
global minimizer was shown in [29] to be also the minimizer of the convex L1-
TV functional which is convex. This result yielded much simpler algorithms for
binary image restoration. An illustration is given on Fig. 19.

Since then, L1-TV relaxations have became a common tool for convex relax-
ations; see, e.g., among many others [84] and the references therein.

Also, L1-TV energies were revealed very successful in image decomposition;
see, e.g., [8, 48].

Multiplicative Noise Removal
In various active imaging systems, such as synthetic aperture radar (SAR), laser, or
ultrasound imaging, the data representing the underlying (unknown image) S0 are
corrupted with multiplicative noise. Such a noise is a severe degradation; see Fig. 20.
When possible, a few independent measurements for the same scene are realized,
†k D S0�k for k 2 f1; : : : ; Kg, where the noise �k is typically modeled by the
one-sided exponential distribution. The data † used for denoising is the average of
the set of all K measurements:

† D 1

K

KX
kD1

†k D S0�: (39)

The combined multiplicative noise follows a Gamma distribution. Adaptive filtering
works only if the noise is weak. For strong noise, variational methods often use TV
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Fig. 20 Aerial image of the town of Nîmes (512 � 512) for K D 4 in (39). Restorations using
different methods. Parameters: [6] for � D 120; [47] T D 2

p
 1.K/; �0 D 1:5; �1 D 10

regularization. In [6] the log-likelihood of the raw data (39) is regularized using TV.
Instead, the properties of L1-TV are used to design an energy in [47]. First, the log-
data v D log† is decomposed into a curvelet transform yielding noisy coefficients
y D W v. A suboptimal hard thresholding is applied for T adapted to the expectation
of the log noise. Let I0 D fi W jyŒi � 6 T g and I1 D fi W jyŒi � > T g. Since the
threshold is low, I1 contains outliers. Coefficients Ox are restored by minimizing

F.x/ D �1

X
i2I1

j.x � y/Œi �j C �0

X
i2I0

jxŒi �j C TV.x/ :

The restored image OS , shown in Fig. 20, is obtained as OS D exp. QW . Ox//B where QW
is a left inverse of W and B is a bias correction.
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Fig. 21 Minimizers of F. � ; v/ as given in (40) for �.t/ D ln.˛t C1/, ˛ D 2 and different values
of ˇ. Data samples (ı ı ı), minimizer samples OuŒi � (C C C)

5 20 53 71
0

10

5 20 53 71
0

10

a b

Fig. 22 Minimizers of F. � ; v/ as given in (40) for different PFs �. Data are corrupted with
Gaussian noise. Data samples vŒi � are marked with (ı ı ı), samples OuŒi � of the minimizer – with
(C C C). The original signal is reminded in (� � �). (a) �.t/ D ˛ t

˛ tC1 , ˛ D 4, ˇ D 3. (b)
�.t/ D t , ˇ D 0:8

`1 Data Fidelity with Regularization Concave onRC

One could expect that `1 data fidelity regularized with a PF concave on RC should
somehow reinforce the properties of `1 � TV. The question was recently examined
in [83]. Consider the energy

F.u; v/ D
X
i2I
jhai ; ui � vŒi �j C ˇ

X
j2J

�.jDiuj/ (40)

for I
defD f1; : : : ; qg and J

defD f1; : : : ; rg

where � W RC ! RC is continuous and concave on RC (e.g., (f10), (f11), and (f12)
in Table 1).

Motivation
Figures 21 and 22 depict (the global) minimizers of F.u; v/ in (40) for a one-
dimensional signal where A D Id, fDig are first-order differences, and � is smooth
and concave on RC.

The tests in Figs. 21 and 22 show that a PF concave on RC considerably
reinforces the properties of `1�TV. One observes that the minimizer satisfies exactly
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part of the data term and part of the prior term (corresponding to constant pieces).
In Fig. 22b, the previous `1 � TV model is considered. Figure 21 shows also that
the minimizer remains unchanged for some range of values of ˇ and that after a
threshold value, it is simplified.

Example 7 below furnishes a first intuition on the reasons underlying the
phenomena observed in Figs. 21 and 22.

Example 7. Given v 2 R, consider the function F. � ; v/ W R! R given below

F.u; v/ D ju� vj C ˇ�.juj/ for � obeying H : (41)

The necessary conditions for F. � ; v/ to have a (local) minimum at Ou ¤ 0 and Ou ¤ v
– that its first differential meetsD1F.Ou; v/ D 0 and that its second differential obeys
D2

1F.Ou; v/ > 0 – do not hold:

Ou 62 f0; vg )
8<
:
D1F.Ou; v/ D sign.Ou � v/C ˇ' 0.jOuj/sign.Ou/ D 0 ;

D2
1F.Ou; v/ D ˇ' 00.jOuj/ < 0 ;

where the last inequality comes from the strict concavity of � onR�C. Hence,F. � ; v/
cannot have a minimizer such that Ou ¤ 0 and Ou ¤ v, for any v 2 R. Being coercive,
F. � ; v/ does have minimizers. Consequently, any (local) minimizer of F in (41)
satisfies

Ou 2 f0; vg :

Main Theoretical Results
The PFs considered here are concave on RC and smooth on R

�C. More precisely,
they satisfy H1 (Sect. 1), H8, and H10 (section “Assumptions on Potential Functions
�”). One can see Fig. 3, right, for an illustration of the assumptions.

Proposition 3. Let F. � ; v/ read as in (40). Assume that H3 (Sect. 3) holds and that
� satisfies H1 (Sect. 1), H8, and H10. Then for any v, F. � ; v/ has global minimizers.

Given v 2 R
q , with each Ou 2 R

p the following subsets are associated:

OI0
defD fi 2 I j hai Oui D vŒi �g and OI c0 defD I n OI0;

OJ0
defD fi 2 J j Di Ou D 0g and OJ c0 defD J n OJ0 :

(42)

Proposition 4. For F. � ; v/ as in (40) satisfying H1, H8, and H10, let Ou be a (local)
minimizer of F. � ; v/. Then

� OI0 [ OJ0
	 ¤ ¿ :
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H14 The point Ou 2 R
p is such that OI0 ¤ ¿ and that

w 2 ker D n f0g ) 9i 2 OI0 such that hai ;wi ¤ 0 : (43)

If rank D D p, then (43) is trivial. Anyway, (43) is not a strong requirement.

Theorem 12. Consider F. � ; v/, as given in (40), satisfying H3, as well as H1, H8,
and H10. Let Ou be a (local) minimizer of F. � ; v/ meeting OJ c0 ¤ ¿ and H14. Then Ou
is the unique solution of the full column rank linear system given below

� hai ;wi D vŒi � 8i 2 OI0 ;

Djw D 0 8j 2 OJ0 :
(44)

Significance of the Results
An immediate consequence of Theorem 12 is the following:

I Each (local) minimizer of F. � ; v/ is strict.

Another consequence is that the matrix H with rows
�
a�
i ;8i 2 OI0 and Dj ;8j 2

OJ0
	

has full column rank. This provides a strong necessary condition for a (local)
minimizer of F. � ; v/. And since Ou in (44) solves a linear system, it involves the
same kind of “contrast invariance” as the L1 � TV model. A detailed inspection
of the minimizers in Figs. 21 and 22 corroborate Theorem 12. A more practical
interpretation of this result reads as follows:

I Each pixel of a (local) minimizer Ou of F. � ; v/ is involved in (at least) one
data equation that is fitted exactly hai ; Oui D vŒi � or in (at least) one vanishing
operator Dj Ou D 0 or in both types of equations.

This remarkable property can be used in different ways.

Applications
An energy F. � ; v/ of the form in (40) with a PF � strictly concave on RC is a good
choice when

• There are some nearly faithful data points vŒi �;
• The matrix D provides a very reliable prior on the sought-after solution.

A natural way for such a prior is to construct for D an application-dependent
dictionary.

MR Image Reconstruction from Highly Undersampled Data
In the experiment in Fig. 23, only 5 % randomly chosen noisy data samples in the
k-space (i.e., individual noisy Fourier coefficients) are available; see (a). Data are
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Fig. 23 Reconstructed images from 5 % noisy randomly selected samples in the k-space using
different methods. (a) Zero-filling Fourier recovery. (b) `2 � TV. (c) F. � ; v/ in (40)

contaminated with SNR = 37 dB white centered Gaussian noise. This is a highly
underdetermined, ill-posed inverse problem. It can be related to compressed sensing
in MRI; see, e.g., [58]. The Shepp-Logan phantom being locally constant with oval
shapes, the linear operators fDig in (40) yield the usual discrete gradient of the
image, so that the regularization term provides a correct prior. Indeed, Duo is the
sparsest linear transform for this image. Clearly, A is the undersampled Fourier
transform corresponding to the 5 % randomly chosen k-samples. For Gaussian
noise, an `2 quadratic data fitting term is a classical choice. The `2 � TV cost-
function kAu � vk2

2 C ˇTV.u/ is the standard tool to solve this kind of problems.
The result is shown in Fig. 23b.

8 Conclusion

This chapter provided some theoretical results relating the shape of the energy F
to minimize and the salient features of its minimizers Ou (see (7), section “The Main
Features of the Minimizers as a Function of the Energy”). These results can serve as
a kind of inverse modeling: given an inverse problem along with our requirements
(priors) on its solution, they guide us how to construct an energy functional whose
minimizers properly incorporate all this information. The theoretical results are
illustrated using numerical examples. Various application fields can take a benefit
from these results. The problem of such an inverse modeling remains open because
of the diversity of the inverse problems to solve and the possible energy functionals.

Cross-References
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� Inverse Scattering
� Iterative Solution Methods
�Linear Inverse Problems
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Abstract
Compressive sensing is a recent type of sampling theory, which predicts that
sparse signals and images can be reconstructed from what was previously
believed to be incomplete information. As a main feature, efficient algorithms
such as `1-minimization can be used for recovery. The theory has many potential
applications in signal processing and imaging. This chapter gives an introduction
and overview on both theoretical and numerical aspects of compressive sensing.

1 Introduction

The traditional approach of reconstructing signals or images from measured data
follows the well-known Shannon sampling theorem [155], which states that the
sampling rate must be twice the highest frequency. Similarly, the fundamental theo-
rem of linear algebra suggests that the number of collected samples (measurements)
of a discrete finite-dimensional signal should be at least as large as its length (its
dimension) in order to ensure reconstruction. This principle underlies most devices
of current technology, such as analog to digital conversion, medical imaging, or
audio and video electronics. The novel theory of compressive sensing (CS) – also
known under the terminology of compressed sensing, compressive sampling, or
sparse recovery – provides a fundamentally new approach to data acquisition which
overcomes this common wisdom. It predicts that certain signals or images can be
recovered from what was previously believed to be highly incomplete measurements
(information). This chapter gives an introduction to this new field. Both fundamental
theoretical and algorithmic aspects are presented, with the awareness that it is
impossible to retrace in a few pages all the current developments of this field, which
was growing very rapidly in the past few years and undergoes significant advances
on an almost daily basis.

CS relies on the empirical observation that many types of signals or images can
be well approximated by a sparse expansion in terms of a suitable basis, that is, by
only a small number of nonzero coefficients. This is the key to the efficiency of many
lossy compression techniques such as JPEG, MP3, etc. A compression is obtained
by simply storing only the largest basis coefficients. When reconstructing the signal,
the non-stored coefficients are simply set to zero. This is certainly a reasonable
strategy when full information of the signal is available. However, when the signal
first has to be acquired by a somewhat costly, lengthy, or otherwise difficult
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measurement (sensing) procedure, this seems to be a waste of resources: First, large
efforts are spent in order to obtain full information on the signal, and afterwards
most of the information is thrown away at the compression stage. One might ask
whether there is a clever way of obtaining the compressed version of the signal
more directly, by taking only a small number of measurements of the signal. It is not
obvious at all whether this is possible since measuring directly the large coefficients
requires to know a priori their location. Quite surprisingly, compressive sensing
provides nevertheless a way of reconstructing a compressed version of the original
signal by taking only a small amount of linear and nonadaptive measurements.
The precise number of required measurements is comparable to the compressed
size of the signal. Clearly, the measurements have to be suitably designed. It is a
remarkable fact that all provably good measurement matrices designed so far are
random matrices. It is for this reason that the theory of compressive sensing uses a
lot of tools from probability theory.

It is another important feature of compressive sensing that practical recon-
struction can be performed by using efficient algorithms. Since the interest is
in the vastly undersampled case, the linear system describing the measurements
is underdetermined and therefore has infinitely many solutions. The key idea is
that the sparsity helps in isolating the original vector. The first naive approach
to a reconstruction algorithm consists in searching for the sparsest vector that is
consistent with the linear measurements. This leads to the combinatorial `0-problem
(see (4) below), which unfortunately is NP-hard in general. There are essentially
two approaches for tractable alternative algorithms. The first is convex relaxation
leading to `1-minimization – also known as basis pursuit (see (5)) – while the
second constructs greedy algorithms. This overview focuses on `1-minimization.
By now basic properties of the measurement matrix which ensure sparse recovery
by `1-minimization are known: the null space property (NSP) and the restricted
isometry property (RIP). The latter requires that all column submatrices of a certain
size of the measurement matrix are well conditioned. This is where probabilistic
methods come into play because it is quite hard to analyze these properties for
deterministic matrices with minimal amount of measurements. Among the provably
good measurement matrices are Gaussian, Bernoulli random matrices, and partial
random Fourier matrices.

Figure 1 serves as a first illustration of the power of compressive sensing. It
shows an example for recovery of a 10-sparse signal x 2 C

300 from only 30 samples
(indicated by the red dots in Fig. 1b). From a first look at the time-domain signal, one
would rather believe that reconstruction should be impossible from only 30 samples.
Indeed, the spectrum reconstructed by traditional `2-minimization is very different
from the true spectrum. Quite surprisingly, `1-minimization performs nevertheless
an exact reconstruction, that is, with no recovery error at all!

An example from nuclear magnetic resonance imaging serves as a second illus-
tration. Here, the device scans a patient by taking 2D or 3D frequency measurements
within a radial geometry. Figure 2a describes such a sampling set of a 2D Fourier
transform. Since a lengthy scanning procedure is very uncomfortable for the patient,
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Fig. 1 (a) 10-sparse Fourier spectrum, (b) time-domain signal of length 300 with 30 samples, (c)
reconstruction via `2-minimization, (d) exact reconstruction via `1-minimization

it is desired to take only a minimal amount of measurements. Total variation
minimization, which is closely related to `1-minimization, is then considered as
recovery method. For comparison, Fig. 2b shows the recovery by a traditional
back-projection algorithm. Figure 2c, d displays iterations of an algorithm, which
was proposed and analyzed in [72] to perform efficient large-scale total variation
minimization. The reconstruction in Fig. 2d is again exact!

2 Background

Although the term compressed sensing (compressive sensing) was coined only
recently with the paper by Donoho [47], followed by a huge research activity,
such a development did not start out of thin air. There were certain roots and
predecessors in application areas such as image processing, geophysics, medical
imaging, computer science, as well as in pure mathematics. An attempt is made
to put such roots and current developments into context below, although only a
partial overview can be given due to the numerous and diverse connections and
developments.
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Fig. 2 (a) Sampling data of the NMR image in the Fourier domain which corresponds to only
0:11 % of all samples. (b) Reconstruction by back projection. (c) Intermediate iteration of an
efficient algorithm for large-scale total variation minimization. (d) The final reconstruction is exact

Early Developments in Applications

Presumably the first algorithm which can be connected to sparse recovery is
due to the French mathematician de Prony [127]. The so-called Prony method,
which has found numerous applications [109], estimates nonzero amplitudes and
corresponding frequencies of a sparse trigonometric polynomial from a small
number of equispaced samples by solving an eigenvalue problem. The use of `1-
minimization appears already in the Ph.D. thesis of B. Logan [106] in connection
with sparse frequency estimation, where he observed that L1-minimization may
recover exactly a frequency-sparse signal from undersampled data provided the
sparsity is small enough. The paper by Donoho and Logan [52] is perhaps the
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earliest theoretical work on sparse recovery using L1-minimization. Nevertheless,
geophysicists observed in the late 1970s and 1980s that `1-minimization can be
successfully employed in reflection seismology where a sparse reflection function
indicating changes between subsurface layers is sought [140, 148]. In NMR
spectroscopy the idea to recover sparse Fourier spectra from undersampled non-
equispaced samples was first introduced in the 1990s [158] and has seen a significant
development since then.

In image processing the use of total variation minimization, which is closely
connected to `1-minimization and compressive sensing, first appears in the 1990s
in the work of Rudin, Osher, and Fatemi [139] and was widely applied later on.
In statistics where the corresponding area is usually called model selection, the use
of `1-minimization and related methods was greatly popularized with the work of
Tibshirani [149] on the so-called LASSO (Least Absolute Shrinkage and Selection
Operator).

Sparse Approximation

Many lossy compression techniques such as JPEG, JPEG-2000, MPEG, or MP3
rely on the empirical observation that audio signals and digital images have a sparse
representation in terms of a suitable basis. Roughly speaking one compresses the
signal by simply keeping only the largest coefficients. In certain scenarios such
as audio signal processing, one considers the generalized situation where sparsity
appears in terms of a redundant system – a so-called dictionary or frame [36] – rather
than a basis. The problem of finding the sparsest representation/approximation in
terms of the given dictionary turns out to be significantly harder than in the case
of sparsity with respect to a basis where the expansion coefficients are unique.
Indeed, in [108, 114], it was shown that the general `0-problem of finding the
sparsest solution of an underdetermined system is NP-hard. Greedy strategies such
as matching pursuit algorithms [108], FOCUSS [86] and `1-minimization [35] were
subsequently introduced as tractable alternatives. The theoretical understanding
under which conditions greedy methods and `1-minimization recover the sparsest
solutions began to develop with the work in [50, 51, 62, 78, 81, 87, 151, 152].

Information-Based Complexity and GelfandWidths

Information-based complexity (IBC) considers the general question of how well
a function f belonging to a certain class F can be recovered from n sample
values or, more generally, the evaluation of n linear or nonlinear functionals
applied to f [150]. The optimal recovery error which is defined as the maximal
reconstruction error for the “best” sampling method and “best” recovery method
(within a specified class of methods) over all functions in the class F is closely
related to the so-called Gelfand width of F [38, 47, 117]. Of particular interest for
compressive sensing is F D BN

1 , the `1-ball in R
N since its elements can be well



Compressive Sensing 211

approximated by sparse ones. A famous result due to Kashin [96] and Gluskin and
Garnaev [79, 84] sharply bounds the Gelfand widths of BN

1 (as well as their duals,
the Kolmogorov widths) from above and below; see also [77]. While the original
interest of Kashin was in the estimate of n-widths of Sobolev classes, these results
give precise performance bounds in compressive sensing on how well any method
may recover (approximately) sparse vectors from linear measurements [38,47]. The
upper bounds on Gelfand widths were derived in [96] and [79] using (Bernoulli and
Gaussian) random matrices (see also [107]), and in fact such type of matrices have
become very useful also in compressive sensing [26, 47].

Compressive Sensing

The numerous developments in compressive sensing began with the seminal work
[30,47]. Although key ingredients were already in the air at that time, as mentioned
above, the major contribution of these papers was to realize that one can combine
the power of `1-minimization and random matrices in order to show optimal
results on the ability of `1-minimization of recovering (approximately) sparse
vectors. Moreover, the authors made very clear that such ideas have strong potential
for numerous application areas. In their work [26, 30] Candès, Romberg, and
Tao introduced the restricted isometry property (which they initially called the
uniform uncertainty principle) which is a key property of compressive sensing
matrices. It was shown that Gaussian, Bernoulli, and partial random Fourier matrices
[26,129,138] possess this important property. These results require many tools from
probability theory and finite-dimensional Banach space geometry, which have been
developed for a rather long time now; see, e.g., [95, 103].

Donoho [49] developed a different path and approached the problem of charac-
terizing sparse recovery by `1-minimization via polytope geometry, more precisely,
via the notion of k-neighborliness. In several papers sharp phase transition curves
were shown for Gaussian random matrices separating regions where recovery fails
or succeeds with high probability [49, 53, 54]. These results build on previous work
in pure mathematics by Affentranger and Schneider [2] on randomly projected
polytopes.

Developments in Computer Science

In computer science the related area is usually addressed as the heavy hitters
detection or sketching. Here one is interested not only in recovering signals (such as
huge data streams on the Internet) from vastly undersampled data, but one requires
sublinear runtime in the signal length N of the recovery algorithm. This is no
impossibility as one only has to report the locations and values of the nonzero (most
significant) coefficients of the sparse vector. Quite remarkably sublinear algorithms
are available for sparse Fourier recovery [80]. Such algorithms use ideas from group
testing which date back to World War II, when Dorfman [56] invented an efficient
method for detecting draftees with syphilis.
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In sketching algorithms from computer science, one actually designs the matrix
and the fast algorithm simultaneously [42, 82]. More recently, bipartite expander
graphs have been successfully used in order to construct good compressed sensing
matrices together with associated fast reconstruction algorithms [11].

3 Mathematical Modelling and Analysis

This section introduces the concept of sparsity and the recovery of sparse vectors
from incomplete linear and nonadaptive measurements. In particular, an analysis of
`1-minimization as a recovery method is provided. The null space property and the
restricted isometry property are introduced, and it is shown that they ensure robust
sparse recovery. It is actually difficult to show these properties for deterministic
matrices and the optimal number m of measurements, and the major breakthrough
in compressive sensing results is obtained for random matrices. Examples of several
types of random matrices which ensure sparse recovery are given, such as Gaussian,
Bernoulli, and partial random Fourier matrices.

Preliminaries and Notation

This exposition mostly treats complex vectors in C
N although sometimes the

considerations will be restricted to the real case R
N . The `p-norm of a vector

x 2 C
N is defined as

kxkp WD
0
@ NX
jD1

jxj jp
1
A

1=p

; 0 < p <1;

kxk1 WD max
jD1;:::;N

jxj j: (1)

For 1 � p � 1, it is indeed a norm, while for 0 < p < 1, it is only a quasi-norm.
When emphasizing the norm, the term `Np is used instead of CN or RN . The unit
ball in `Np isBN

p D fx 2 C
N ; kxkp � 1g. The operator norm of a matrixA 2 C

m�N
from `Np to `mp is denoted

kAkp!p D max
kxkpD1

kAxkp: (2)

In the important special case p D 2, the operator norm is the maximal singular
value 
max.A/ of A.

For a subset T � f1; : : : ; N g, one denotes by xT 2 C
N the vector which

coincides with x 2 C
N on the entries in T and is zero outside T . Similarly, AT

denotes the column submatrix of A corresponding to the columns indexed by T .
Further, T c D f1; : : : ; N gnT denotes the complement of T and #T or jT j indicates
the cardinality of T . The kernel of a matrix A is denoted by kerA D fx;Ax D 0g.
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Sparsity and Compression

Compressive sensing is based on the empirical observation that many types of real-
world signals and images have a sparse expansion in terms of a suitable basis or
frame, for instance, a wavelet expansion. This means that the expansion has only a
small number of significant terms, or, in other words, that the coefficient vector can
be well approximated with one having only a small number of nonvanishing entries.

The support of a vector x is denoted supp.x/ D fj W xj ¤ 0g and

kxk0 WD j supp.x/j:

It has become common to call k � k0 the `0-norm, although it is not even a quasi-
norm. A vector x is called k-sparse if kxk0 � k. For k 2 f1; 2; : : : ; N g,

†k WD fx 2 C
N W kxk0 � kg

denotes the set of k-sparse vectors. Furthermore, the best k-term approximation
error of a vector x 2 C

N in `p is defined as


k.x/p D inf
z2†k
kx � zkp:

If 
k.x/ decays quickly in k, then x is called compressible. Indeed, in order to
compress x, one may simply store only the k largest entries. When reconstructing
x from its compressed version, the non-stored entries are simply set to zero, and the
reconstruction error is 
k.x/p . It is emphasized at this point that the procedure of
obtaining the compressed version of x is adaptive and nonlinear since it requires
the search of the largest entries of x in absolute value. In particular, the location of
the nonzeros is a nonlinear type of information.

The best k-term approximation of x can be obtained using the nonincreasing
rearrangement r.x/ D .jxi1 j; : : : ; jxiN j/T , where ij denotes a permutation of the
indexes such that jxij j � jxijC1 j for j D 1; : : : ; N � 1. Then it is straightforward to
check that


k.x/p WD
0
@ NX
jDkC1

rj .x/
p

1
A

1=p

; 0 < p <1:

And the vector xŒk� derived from x by setting to zero all the N � k smallest entries
in absolute value is the best k-term approximation,

xŒk� D arg min
z2†k
kx � zkp;

for any 0 < p � 1.
The next lemma states essentially that `q-balls with small q (ideally q � 1) are

good models for compressible vectors.
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Lemma 1. Let 0 < q < p � 1 and set r D 1
q
� 1

p
. Then


k.x/p � k�r ; k D 1; 2; : : : ; N for all x 2 BN
q :

Proof. Let T be the set of indexes of the k-largest entries of x in absolute value. The
nonincreasing rearrangement satisfies jrk.x/j � jxj j for all j 2 T , and therefore

krk.x/
q �

X
j2T
jxj jq � kxkqq � 1:

Hence, rk.x/ � k� 1
q . Therefore,


k.x/
p
p D

X
j…T
jxj jp �

X
j…T

rk.x/
p�q jxj jq � k� p�q

q kxkqq � k� p�q
q ;

which implies 
k.x/p � k�r : �

Compressive Sensing

The above outlined adaptive strategy of compressing a signal x by only keeping
its largest coefficients is certainly valid when full information on x is available. If,
however, the signal first has to be acquired or measured by a somewhat costly or
lengthy procedure, then this seems to be a waste of resources: At first, large efforts
are made to acquire the full signal and then most of the information is thrown away
when compressing it. One may ask whether it is possible to obtain more directly
a compressed version of the signal by taking only a small amount of linear and
nonadaptive measurements. Since one does not know a priori the large coefficients,
this seems a daunting task at first sight. Quite surprisingly, compressive sensing
nevertheless predicts that reconstruction from vastly undersampled nonadaptive
measurements is possible – even by using efficient recovery algorithms.

Taking m linear measurements of a signal x 2 C
N corresponds to applying a

matrix A 2 C
m�N – the measurement matrix –

y D Ax: (3)

The vector y 2 C
m is called the measurement vector. The main interest is in the

vastly undersampled case m � N . Without further information, it is, of course,
impossible to recover x from y since the linear system (3) is highly underdetermined
and has therefore infinitely many solutions. However, if the additional assumption
that the vector x is k-sparse is imposed, then the situation dramatically changes as
will be outlined.

The approach for a recovery procedure that probably comes first to mind is to
search for the sparsest vector x which is consistent with the measurement vector
y D Ax. This leads to solving the `0-minimization problem
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min kzk0 subject to Az D y: (4)

Unfortunately, this combinatorial minimization problem is NP-hard in general
[108, 114]. In other words, an algorithm that solves (4) for any matrix A and any
right-hand side y is necessarily computationally intractable. Therefore, essentially
two practical and tractable alternatives to (4) have been proposed in the literature:
convex relaxation leading to `1-minimization – also called basis pursuit [35] – and
greedy algorithms, such as various matching pursuits [151, 153]. Quite surprisingly
for both types of approaches, various recovery results are available, which provide
conditions on the matrixA and on the sparsity kxk0 such that the recovered solution
coincides with the original x and consequently also with the solution of (4). This
is no contradiction to the NP-hardness of (4) since these results apply only to a
subclass of matrices A and right-hand sides y.

The `1-minimization approach considers the solution of

min kzk1 subject to Az D y; (5)

which is a convex optimization problem and can be seen as a convex relaxation
of (4). Various efficient convex optimization techniques apply for its solution [17].
In the real-valued case, (5) is equivalent to a linear program, and in the complex-
valued case, it is equivalent to a second-order cone program. Therefore, standard
software applies for its solution – although algorithms which are specialized to (5)
outperform such standard software; see Sect. 4.

The hope is, of course, that the solution of (5) coincides with the solution of
(4) and with the original sparse vector x. Figure 3 provides an intuitive explanation
why `1-minimization promotes sparse solutions. Here, N D 2 and m D 1, so one

Fig. 3 The `1-minimizer
within the affine space of
solutions of the linear system
Az D y coincides with a
sparsest solution
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deals with a line of solutions F.y/ D fz W Az D yg in R
2. Except for pathological

situations where kerA is parallel to one of the faces of the polytope B2
1 , there is a

unique solution of the `1-minimization problem, which has minimal sparsity, i.e.,
only one nonzero entry.

Recovery results in the next sections make rigorous the intuition that `1-
minimization indeed promotes sparsity.

For sparse recovery via greedy algorithms, one refers to the literature [151,153].

The Null Space Property

The null space property is fundamental in the analysis of `1-minimization.

Definition 1. A matrix A 2 C
m�N is said to satisfy the null space property (NSP)

of order k with constant � 2 .0; 1/ if

k�T k1 � �k�T ck1;

for all sets T � f1; : : : ; N g, #T � k and for all � 2 kerA.

The following sparse recovery result is based on this notion.

Theorem 1. Let A 2 C
m�N be a matrix that satisfies the NSP of order k with

constant � 2 .0; 1/. Let x 2 C
N and y D Ax and let x� be a solution of the

`1-minimization problem (5). Then

kx � x�k1 � 2.1C �/
1 � � 
k.x/1: (6)

In particular, if x is k-sparse, then x� D x.

Proof. Let � D x� � x. Then � 2 kerA and

kx�k1 � kxk1

because x� is a solution of the `1-minimization problem (5). Let T be the set of the
k-largest entries of x in absolute value. One has

kx�
T k1 C kx�

T ck1 � kxT k1 C kxT ck1:

It follows immediately from the triangle inequality that

kxT k1 � k�T k1 C k�T ck1 � kxT ck1 � kxT k1 C kxT ck1:

Hence,

k�T ck1 � k�T k1 C 2kxT ck1 � �k�T ck1 C 2
k.x/1;
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or, equivalently,

k�T ck1 � 2

1 � � 
k.x/1: (7)

Finally,

kx � x�k1 D k�T k1 C k�T ck1 � .� C 1/k�T ck1 � 2.1C �/
1 � � 
k.x/1

and the proof is completed. �

One can also show that if all k-sparse x can be recovered from y D Ax using
`1-minimization, then necessarilyA satisfies the NSP of order k with some constant
� 2 .0; 1/ [38,87]. Therefore, the NSP is actually equivalent to sparse `1-recovery.

The Restricted Isometry Property

The NSP is somewhat difficult to show directly. The restricted isometry property
(RIP) is easier to handle, and it also implies stability under noise as stated below.

Definition 2. The restricted isometry constant ık of a matrix A 2 C
m�N is the

smallest number such that

.1 � ık/kzk2
2 � kAzk2

2 � .1C ık/kzk2
2; (8)

for all z 2 †k .

A matrixA is said to satisfy the restricted isometry property of order k with constant
ık if ık 2 .0; 1/. It is easily seen that ık can be equivalently defined as

ık D max
T�f1;:::;N g;#T	k

kA�
T AT � Id k2!2;

which means that all column submatrices of A with at most k columns are required
to be well conditioned. The RIP implies the NSP as shown in the following lemma.

Lemma 2. Assume that A 2 C
m�N satisfies the RIP of order K D k C h with

constant ıK 2 .0; 1/. Then A has the NSP of order k with constant � D
q

k
h

1CıK
1�ıK .

Proof. Let � 2 N D kerA and T � f1; : : : ; N g, #T � k. Define T0 D T

and T1; T2; : : : ; Ts to be disjoint sets of indexes of size at most h, associated to a
nonincreasing rearrangement of the entries of � 2 N , i.e.,

j�j j � j�i j for all j 2 T`; i 2 T`0 ; ` � `0 � 1: (9)
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Note that A� D 0 implies A�T0[T1 D �
Ps

jD2A�Tj . Then, from the Cauchy–
Schwarz inequality, the RIP, and the triangle inequality, the following sequence of
inequalities is deduced:

k�T k1 �
p
kk�T k2 �

p
kk�T0[T1k2

�
s

k

1 � ıK kA�T0[T1k2 D
s

k

1 � ıK kA�T2[T3[���[Tsk2

�
s

k

1 � ıK
sX

jD2

kA�Tj k2 �
s

1C ıK
1� ıK

p
k

sX
jD2

k�Tj k2: (10)

It follows from (9) that j�i j � j�`j for all i 2 TjC1 and ` 2 Tj . Taking the sum over
` 2 Tj first and then the `2-norm over i 2 TjC1 yields

j�i j � h�1k�Tj k1; and k�TjC1k2 � h�1=2k�Tj k1:

Using the latter estimates in (10) gives

k�T k1 �
s

1C ıK
1� ıK

k

h

s�1X
jD1

k�Tj k1 �
s

1C ıK
1 � ıK

k

h
k�T ck1; (11)

and the proof is finished. �

Taking h D 2k above shows that ı3k < 1=3 implies � < 1. By Theorem 1,
recovery of all k-sparse vectors by `1-minimization is then guaranteed. Addition-
ally, stability in `1 is also ensured. The next theorem shows that RIP implies also a
bound on the reconstruction error in `2.

Theorem 2. Assume A 2 C
m�N satisfies the RIP of order 3k with ı3k < 1=3. For

x 2 C
N , let y D Ax and x� be the solution of the `1-minimization problem (5).

Then

kx � x�k2 � C 
k.x/1p
k

with C D 2
1��

�
�C1p

2
C �

�
, � D

q
1Cı3k

2.1�ı3k/
.

Proof. Similarly as in the proof of Lemma 2, denote � D x� � x 2 N D kerA,
T0 D T the set of the 2k-largest entries of � in absolute value, and Tj s of size
at most k corresponding to the nonincreasing rearrangement of �. Then, using (10)
and (11) with h D 2k of the previous proof,



Compressive Sensing 219

k�T k2 �
s

1C ı3k

2.1 � ı3k/
k�1=2k�T ck1:

From the assumption ı3k < 1=3, it follows that � WD
q

1Cı3k
2.1�ı3k/

< 1. Lemmas 1

and 2 yield

k�T ck2 D 
2k.�/2 � .2k/� 1
2 k�k1 D .2k/�1=2 .k�T k1 C k�T ck1/

� .2k/�1=2 .�k�T ck1 C k�T ck1/ � � C 1p
2
k�1=2k�T ck1:

Since T is the set of 2k-largest entries of � in absolute value, it holds

k�T ck1 � k�.supp xŒ2k�/ck1 � k�.supp xŒk�/ck1; (12)

where xŒk� is the best k-term approximation to x. The use of this latter estimate,
combined with inequality (7), finally gives

kx � x�k2 � k�T k2 C k�T ck2 �
�
� C 1p

2
C �

�
k�1=2k�T ck1

� 2

1 � �
�
� C 1p

2
C �

�
k�1=2
k.x/1:

This concludes the proof. �

The restricted isometry property implies also robustness under noise on the
measurements. This fact was first noted in [26, 30].

Theorem 3. Assume that the restricted isometry constant ı2k of the matrix A 2
C
m�N satisfies

ı2k < 1=
p

2 	 0:7071 (13)

Then the following holds for all x 2 C
N . Let noisy measurements y D Ax C e be

given with kek2 � �. Let x� be the solution of

min kzk1 subject to kAz � yk2 � �: (14)

Then

kx � x�k2 � C1�C C2

k.x/1p

k

for some constants C1; C2 > 0 that depend only on ı2k .
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The constant in (13) was improved several times [22, 38, 74–76] until the present
statement was reached in [19], which is actually optimal [45].

Coherence

The coherence is a by now classical way of analyzing the recovery abilities of a
measurement matrix [50, 151]. For a matrix A D .a1ja2j � � � jaN / 2 C

m�N with
normalized columns, ka`k2 D 1, it is defined as

� WD max
`¤k
jha`; akij:

Applying Gershgorin’s disc theorem [93] to A�
T AT � I with #T D k shows that

ık � .k � 1/�: (15)

Several explicit examples of matrices are known which have small coherence
� D O.1=

p
m/. A simple one is the concatenation A D .I jF / 2 C

m�2m of the
identity matrix and the unitary Fourier matrix F 2 C

m�m with entries Fj;k D
m�1=2e2�ijk=m. It is easily seen that � D 1=

p
m in this case. Furthermore, [143]

gives several matrices A 2 C
m�m2

with coherence � D 1=
p
m. In all these cases,

ık � C kp
m

. Combining this estimate with the recovery results for `1-minimization

above shows that all k-sparse vectors x can be (stably) recovered from y D Ax via
`1-minimization provided

m � C 0k2: (16)

At first sight, one might be satisfied with this condition since if k is very small
compared toN , then stillmmight be chosen smaller thanN and all k-sparse vectors
can be recovered from the undersampled measurements y D Ax. Although this is
great news for a start, one might nevertheless hope that (16) can be improved. In
particular, one may expect that actually a linear scaling of m in k should be enough
to guarantee sparse recovery by `1-minimization. The existence of matrices, which
indeed provide recovery conditions of the form m � Ck log˛.N / (or similar) with
some ˛ � 1, is shown in the next section. Unfortunately, such results cannot be
shown using simply the coherence because of the generally lower bound [143]

� �
s

N �m
m.N � 1/

� 1p
m

.N sufficiently large/:

In particular, it is not possible to overcome the “quadratic bottleneck” in (16) by
using Gershgorin’s theorem or Riesz–Thorin interpolation between k � k1!1 and
k � k1!1; see also [131, 141]. In order to improve on (16), one has to take into
account also cancellations in the GramianA�

T AT �I , and this task seems to be quite
difficult using deterministic methods. Therefore, it will not come as a surprise that
the major breakthrough in compressive sensing was obtained with random matrices.
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It is indeed easier to deal with cancellations in the Gramian using probabilistic
techniques.

RIP for Gaussian and Bernoulli RandomMatrices

Optimal estimates for the RIP constants in terms of the number m of measurement
matrices can be obtained for Gaussian, Bernoulli, or more general subgaussian
random matrices.

Let X be a random variable. Then one defines a random matrix A D A.!/, ! 2
, as the matrix whose entries are independent realizations of X , where .;†;P/
is their common probability space. One assumes further that for any x 2 R

N one
has the identity EkAxk2

2 D kxk2
2, E denoting expectation.

The starting point for the simple approach in [7] is a concentration inequality of
the form

P
�ˇ̌kAxk2

2 � kxk2
2

ˇ̌ � ıkxk2
2

	 � 2e�c0ı
2m; 0 < ı < 1; (17)

where c0 > 0 is some constant.
The two most relevant examples of random matrices which satisfy the above

concentration are the following:

1. Gaussian matrices. Here the entries of A are chosen as i.i.d. Gaussian random
variables with expectation 0 and variance 1=m. As shown in [1], Gaussian
matrices satisfy (17).

2. Bernoulli matrices The entries of a Bernoulli matrices are independent realiza-
tions of ˙1=

p
m Bernoulli random variables, that is, each entry takes the value

C1=
p
m or �1=

p
m with equal probability. Bernoulli matrices also satisfy the

concentration inequality (17) [1].

Based on the concentration inequality (17), the following estimate on RIP
constants can be shown [7, 26, 76, 110].

Theorem 4. AssumeA 2 R
m�N to be a random matrix satisfying the concentration

property (17). Then there exists a constant C depending only on c0 such that the
restricted isometry constant of A satisfies ık � ı with probability exceeding 1 � "
provided

m � Cı�2.k log.N=m/C log."�1//:

Combining this RIP estimate with the recovery results for `1-minimization shows
that all k-sparse vectors x 2 C

N can be stably recovered from a random draw of A
satisfying (17) with high probability provided

m � Ck log.N=m/: (18)
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Up to the logarithmic factor, this provides the desired linear scaling of the number
m of measurements with respect to the sparsity k. Furthermore, as shown in Sect. 3
below, condition (18) cannot be further improved; in particular, the log-factor cannot
be removed.

It is useful to observe that the concentration inequality is invariant under unitary
transforms. Indeed, suppose that z is not sparse with respect to the canonical basis
but with respect to a different orthonormal basis. Then z D Ux for a sparse x and a
unitary matrix U 2 C

N�N . Applying the measurement matrix A yields

Az D AUx;
so that this situation is equivalent to working with the new measurement matrix
A0 D AU and again sparsity with respect to the canonical basis. The crucial point
is that A0 satisfies again the concentration inequality (17) once A does. Indeed,
choosing x D U�1x0 and using unitarity gives

P

�ˇ̌kAUxk2
2 � kxk2

2

ˇ̌ � ıkxk2
`N2

�
D P

�ˇ̌kAx0k2
2 � kU�1x0k2

2

ˇ̌ � ıkU�1x0k2
`N2

�

D P

�ˇ̌kAx0k2
2 � kx0k2

2

ˇ̌ � ıkx0k2
`N2

�
� 2e�c0ı

�2m:

Hence, Theorem 4 also applies to A0 D AU . This fact is sometimes referred to as
the universality of the Gaussian or Bernoulli random matrices. It does not matter
in which basis the signal x is actually sparse. At the coding stage, where one takes
random measurements y D Az, knowledge of this basis is not even required. Only
the decoding procedure needs to know U .

Random Partial Fourier Matrices

While Gaussian and Bernoulli matrices provide optimal conditions for the minimal
number of required samples for sparse recovery, they are of somewhat limited use
for practical applications for several reasons. Often the application imposes physical
or other constraints on the measurement matrix, so that assuming A to be Gaussian
may not be justifiable in practice. One usually has only limited freedom to inject
randomness in the measurements. Furthermore, Gaussian or Bernoulli matrices are
not structured, so there is no fast matrix-vector multiplication available which may
speed up recovery algorithms, such as the ones described in Sect. 4. Thus, Gaussian
random matrices are not applicable in large-scale problems.

A very important class of structured random matrices that overcomes these
drawbacks are random partial Fourier matrices, which were also the object of study
in the very first papers on compressive sensing [26, 29, 128, 129]. A random partial
Fourier matrix A 2 C

m�N is derived from the discrete Fourier matrix F 2 C
N�N

with entries

Fj;k D 1p
N
e2�jk=N ;
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by selecting m rows uniformly at random among all N rows. Taking measurements
of a sparse x 2 C

N corresponds then to observing m of the entries of its
discrete Fourier transform Ox D Fx. It is important to note that the fast Fourier
transform may be used to compute matrix-vector multiplications with A and A�
with complexity O.N log.N //. The following theorem concerning the RIP constant
was proven in [131] and improves slightly on the results in [26, 129, 138].

Theorem 5. LetA 2 C
m�N be the random partial Fourier matrix as just described.

Then the restricted isometry constant of the rescaled matrix
q

N
m
A satisfies ık � ı

with probability at least 1 �N�� log3.N / provided

m � Cı�2k log4.N /: (19)

The constants C; � > 1 are universal.

Combining this estimate with the `1-minimization results above shows that recovery
with high probability can be ensured for all k-sparse x provided

m � Ck log4.N /:

The plots in Fig. 1 illustrate an example of successful recovery from partial Fourier
measurements.

The proof of the above theorem is not straightforward and involves Dudley’s
inequality as a main tool [131, 138]. Compared to the recovery condition (18)
for Gaussian matrices, one suffers a higher exponent at the log-factor, but the
linear scaling of m in k is preserved. Also a nonuniform recovery result for `1-
minimization is available [29, 128, 131], which states that each k-sparse x can
be recovered using a random draw of the random partial Fourier matrix A with
probability at least 1�" providedm � Ck log.N="/. The difference to the statement
in Theorem 5 is that for each sparse x, recovery is ensured with high probability for
a new random draw of A. It does not imply the existence of a matrix which allows
recovery of all k-sparse x simultaneously. The proof of such recovery results does
not make use of the restricted isometry property or the null space property.

One may generalize the above results to a much broader class of structured
random matrices which arise from random sampling in bounded orthonormal
systems. The interested reader is referred to [128, 129, 131, 132].

Another class of structured random matrices, for which recovery results are
known, consist of partial random circulant and Toeplitz matrices. These correspond
to subsampling the convolution of x with a random vector b at m fixed (determin-
istic) entries. The reader is referred to [130, 131, 133] for detailed information.
Near-optimal estimates of the RIP constants of such type of random matrices
have been established in [101]. Further types of random measurement matrices are
discussed in [101, 122, 124, 137, 154]; see also [99] for an overview.
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Compressive Sensing and GelfandWidths

In this section a quite general viewpoint is taken. The question is investigated how
well any measurement matrix and any reconstruction method – in this context
usually called the decoder – may perform. This leads to the study of Gelfand
widths, already mentioned in Sect. 2. The corresponding analysis allows to draw
the conclusion that Gaussian random matrices in connection with `1-minimization
provide optimal performance guarantees.

Following the tradition of the literature in this context, only the real-valued case
will be treated. The complex-valued case is easily deduced from the real-valued case
by identifying C

N with R
2N and by corresponding norm equivalences of `p-norms.

The measurement matrix A 2 R
m�N is here also referred to as the encoder.

The set Am;N denotes all possible encoder/decoder pairs .A;�/ where A 2 R
m�N

and � W Rm ! R
N is any (nonlinear) function. Then, for 1 � k � N , the

reconstruction errors over subsets K � R
N , where R

N is endowed with a norm
k � kX , are defined as


k.K/X WD sup
x2K


k.x/X ;

Em.K;X/ WD inf
.A;�/2Am;N

sup
x2K
kx ��.Ax/kX :

In words, En.K;X/ is the worst reconstruction error for the best pair of
encoder/decoder. The goal is to find the largest k such that

Em.K;X/ � C0
k.K/X:

Of particular interest for compressive sensing are the unit balls K D BN
p for 0 <

p � 1 and X D `N2 because the elements of BN
p are well approximated by sparse

vectors due to Lemma 1. The proper estimate of Em.K;X/ turns out to be linked to
the geometrical concept of Gelfand width.

Definition 3. LetK be a compact set in a normed spaceX . Then the Gelfand width
of K of orderm is

dm.K;X/ WD inf
Y � X

codim.Y / 	 m

supfkxkX W x 2 K \ Y g;

where the infimum is over all linear subspaces Y of X of codimension less or equal
to m.

The following fundamental relationship between Em.K;X/ and the Gelfand
widths holds.
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Proposition 1. Let K � R
N be a closed compact set such that K D �K and

K C K � C0K for some constant C0. Let X D .RN ; k � kX/ be a normed space.
Then

dm.K;X/ � Em.K;X/ � C0d
m.K;X/:

Proof. For a matrix A 2 R
m�N , the subspace Y D kerA has codimension less or

equal to m. Conversely, to any subspace Y � R
N of codimension less or equal to

m, a matrix A 2 R
m�N can be associated, the rows of which form a basis for Y ?.

This identification yields

dm.K;X/ D inf
A2Rm�N

supfk�kX W � 2 kerA \Kg:

Let .A;�/ be an encoder/decoder pair in Am;N and z D �.0/. Denote Y D ker.A/.
Then with � 2 Y also �� 2 Y , and either k�� zkX � k�kX or k��� zkX � k�kX .
Indeed, if both inequalities were false, then

k2�kX D k� � zC zC �kX � k� � zkX C k � � � zkX < 2k�kX ;
a contradiction. Since K D �K , it follows that

dm.K;X/ D inf
A2Rm�N

supfk�kX W � 2 Y \Kg � sup
�2Y\K

k�� zkX

D sup
�2Y\K

k� ��.A�/kX � sup
x2K
kx ��.Ax/kX :

Taking the infimum over all .A;�/ 2 Am;N yields

dm.K;X/ � Em.K;X/:
To prove the converse inequality, choose an optimal Y such that

dm.K;X/ D supfkxkX W x 2 Y \Kg:
(An optimal subspace Y always exists [107].) Let A be a matrix whose rows form a
basis for Y ?. Denote the affine solution space F.y/ WD fx W Ax D yg. One defines
then a decoder as follows. If F.y/ \K ¤ ;, then choose some Nx.y/ 2 F.y/ and
set �.y/ D Nx.y/. If F.y/ \ K D ;, then �.y/ 2 F.y/. The following chain of
inequalities is then deduced:

Em.K;X/ � sup
y

sup
x;x02F.y/\K

kx � x0kX

� sup
�2C0.Y\K/

k�kX � C0d
m.K;X/;

which concludes the proof. �
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The assumption K C K � C0K clearly holds for norm balls with C0 D 2 and
for quasi-norm balls with some C0 � 2. The next theorem provides a two-sided
estimate of the Gelfand widths dm.BN

p ; `
N
2 / [48, 77, 157]. Note that the case p D 1

was considered much earlier in [77, 79, 96].

Theorem 6. Let 0 < p � 1. There exist universal constants Cp;Dp > 0 such that
the Gelfand widths dm.BN

p ; `
N
2 / satisfy

Cp min

�
1;

ln.2N=m/

m

 1=p�1=2

� dm.BN
p ; `

N
2 /

� Dp min

�
1;

ln.2N=m/

m

 1=p�1=2

(20)

Combining Proposition 1 and Theorem 6 gives in particular, for large m,

QC1

r
log.2N=m/

m
� Em.BN

1 ; `
N
2 / � QD1

r
log.2N=m/

m
: (21)

This estimate implies a lower estimate for the minimal number of required samples
which allows for approximate sparse recovery using any measurement matrix and
any recovery method whatsoever. The reader should compare the next statement
with Theorem 2.

Corollary 1. Suppose that A 2 R
m�N and� W Rm ! R

N such that

kx ��.Ax/k2 � C 
k.x/1p
k

for all x 2 BN
1 and some constant C > 0. Then necessarily

m � C 0k log.2N=m/: (22)

Proof. Since 
k.x/1 � kxk1 � 1, the assumption implies Em.BN
1 ; `

N
2 / � Ck�1=2.

The lower bound in (21) combined with Proposition 1 yields

QC1

r
log.2N=m/

m
� Em.BN

1 ; `
N
2 / � Ck�1=2:

Consequently,m � C 0k log.eN=m/ as claimed. �

In particular, the above lemma applies to `1-minimization and consequently ık �
0:5 (say) for a matrix A 2 R

m�N implies m � Ck log.N=m/. Therefore, the
recovery results for Gaussian or Bernoulli random matrices with `1-minimization
stated above are optimal.
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It can also be shown that a stability estimate in the `1-norm of the form kx �
�.Ax/k1 � C
k.x/1 for all x 2 R

N implies (22) as well [46, 77].

Extensions of Compressive Sensing

The problem of recovering nearly sparse vectors from a minimal number of
nonadaptive linear measurements can be extended in several forms. In the following
two possible, mutually related, extensions are addressed.

The first refers to the object to be recovered: while in the theory of compressive
sensing presented so far nearly sparse vectors are the unknowns of the problem
at hand, one may consider as well matrices of approximate low rank. This leads
to the problem of finding a matrix of minimal rank consistent with a given
underdetermined linear system of equations.

The second generalization of compressive sensing considers nonlinear nonadap-
tive measurements. The simplest nonlinearity consists in quadratic measurements,
given by the squared magnitude of the scalar products of the vector with respect to a
fixed basis or a frame. The associated recovery task – called the phase retrieval
problem – appears in many physical situations where only intensity values can
be observed. More generally, one may consider the recovery from higher-order
measurements. Surprisingly enough, polynomial-type, and in particular quadratic,
measurements of vectors can be recast into an affine low-rank minimization problem
discussed above, creating a connection between these two extensions of compressive
sensing.

Affine Low-RankMinimization
Here one denotes the space of real or complex n � p matrices by Mn�p. Given a
linear map S W Mn�p ! C

m, with m � pn, and a vector y 2 C
m, one considers

the affine rank minimization problem

min
X2Mn�p

rank.X/ subject to S .X/ D y: (23)

An important special case of low-rank matrix recovery is matrix completion, where
S samples a few entries,

S .X/` D xij ; (24)

for some i; j depending on `.
Like for the `0-minimization problem (4), the affine rank minimization problem

is NP-hard in general [76, 114, 135]; therefore, it is desirable to have tractable
alternatives. In [67], Fazel studied nuclear norm minimization for this purpose.
Here, the nuclear norm kXk� of a matrix X is the `1-norm of its singular values
and is the largest convex envelope of the rank function [67]. One solves then

min
X2Mn�p

kXk� subject to S .X/ D y: (25)
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There are two known regimes where nuclear norm minimization can be guaran-
teed to return minimal-rank solutions:

RIP measurement maps
The (rank) restricted isometry property is analogous to the classical restricted
isometry property from compressive sensing already mentioned in Sect. 3:

Definition 4 (Rank-Restricted Isometry Property [135]). Let S W Mn�p ! C
m

be a linear map. For an integer k, with 1 � k � n, define the k-restricted isometry
constant ık D ık.S / > 0 to be the smallest number such that

.1 � ık/kXk2
F � kS .X/k2

`m2
� .1C ık/kXk2

F

holds for all k-rank matrices X .

It is known that nuclear norm minimization (25) recovers all matrices X of rank
at most k from the measurements y D S .X/, provided ı2k < 1=

p
2; see [19, 24,

76, 121, 135].
The restricted isometry property is known to hold for Gaussian (or more

generally subgaussian) measurement maps [24, 135], which are of the form

S .X/` D
X
k;j

a`;k;j Xk;j ; ` D 1; : : : ; m; (26)

where the a`;k;j are independent normal distributed random variables with mean
zero and variance 1=m. Such a map satisfies ık � ı 2 .0; 1/ with high probability
provided

m � Cı maxfp; ngkI (27)

see Theorem 2.3 in [24]. Since the degrees of freedom of a rank k matrixX 2Mn�p
are k.nC p � k/, the above bound matches this number up to possibly a constant.
Therefore, the bound (27) is optimal.

It follows from recent results in [3, 100] that the restricted isometry property
also holds for certain structured random maps if slightly more measurements are
allowed. In particular, let S D PFD, where D W Mn�p ! Mn�p performs
independent random sign flips of all entries of a matrix, F W Mn�p ! Mn�p
represents the (suitably normalized) 2D Fourier transform, and P W Mn�p ! C

m

is the coordinate projection which extracts the entries of the matrix on a random set
 � Œn�� Œp� which is chosen uniformly at random among all subsets of cardinality
m. Then the rank-restricted isometry constants of S satisfy ık � ı 2 .0; 1/ with
high probability as long as

m � Cı maxfp; ngk log5.pn/: (28)
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This follows from recent findings in [3, 100] for which such random partial Fourier
measurements satisfy a concentration inequality of the form

P

� ˇ̌kS .X/k2 � kXk2
F

ˇ̌ � "kXk2
F

�
� 2 exp .�m

2
C" log�4.pn//; (29)

for " 2 .0; 1/, together with the same proof strategy employed for subgaussian
measurement maps based on covering arguments [24, 76]. This was first noted in
the introduction of [73].

Matrix Completion
In the matrix completion setup (24) where measurements are pointwise observations
of entries of the matrix, there are obvious rank one matrices in the kernel of the
operator S ; therefore, the RIP fails completely in this setting, and “localized” low-
rank matrices in the null space ofS cannot be recovered by any method whatsoever.
However, if certain conditions on the left and right singular vectors of the underlying
low-rank matrix are imposed, essentially requiring that such vectors are uncorrelated
with the canonical basis, then it was shown in [25, 27, 134] that such incoherent
matrices of rank at most k can be recovered from m randomly chosen entries with
high probability provided

m � Ckmaxfn; pg log2.maxfn; pg/:

Up to perhaps the exponent 2 at the log-term, this is optimal. One refers to [25, 27,
134] for detailed statements. In [88,89] extensions to quantum state tomography can
be found.

Nonlinear Measurements

Phase Retrieval
In order to understand how one can generalize compressive sensing towards nonlin-
ear measurements, it is instructive to start with the phase retrieval problem. Here,
the measurements of a signal x are given by yi D jhai ; xij2 for some vectors ai ,
i D 1; : : : ; m and the task is to reconstruct x up to a global phase factor. Practically
successful approaches can be found in the physics and optimization literature for
well over a decade; see, for instance, [8, 68]. In these investigations, however,
neither bounds of the minimal number nor a theoretical discussion on the type of
measurements is provided for the phase retrieval problem to ensure reconstruction.
Moreover, there are no guarantees for these algorithms to converge to the expected
solution. Only recently, uniqueness of feasible solutions was provided by Balan
et al. [5] using methods from algebraic geometry. The authors proved injectivity for
signals x 2 R

N and m � 2N � 1 generic measurements or for complex signals
x 2 C

N and m � 4N � 2 generic measurements. Unfortunately, this theoretical
work did not provide recovery guarantees for a practical algorithm. The main tool
in this work was the observation that quadratic measurements can be written as
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yi D jhai ; xij2 D haia�
i ; xx

�i; i D 1; : : : ; m; (30)

where the inner product on the right-hand side here denotes the Hilbert-Schmidt
inner product hA;Bi D Tr.AB�/. Consequently x can be identified as the unique
solution of the phase retrieval problem (up to a global phase factor) if X D xx� is
the unique rank one (and thus the minimum rank!) positive semidefinite solution of
the linear equations

yi D S .X/i D haia�
i ; Xi; i D 1; : : : ; m: (31)

This well-known lifting trick is also the basis of the PhaseLift algorithm by Candès
et al. [32]. Here, the main ingredient is to pass from the rank minimization problem
constrained by (31) to its convex relaxation (25). Using techniques from random
matrix theory, the authors showed recovery guarantees for m D O.N log.N //
Gaussian measurements under no structural (sparsity) assumptions on the signal.
Although PhaseLift is often not considered a very efficient approach (see Sect. 4 for
possible implementations) as one needs to solve a semidefinite program for N �N
matrices – thus squaring the dimension – this work is considered groundbreaking, as
for the first time it provided recovery guarantees for a polynomial time algorithm.
The number of Gaussian measurements for PhaseLift to recover a generic signal
has later been improved to m D O.N/ in [23] and for a variant of PhaseLift to
m D O.k2 log.N // for k-sparse signals in [105]. These recovery guarantees include
also stability with respect to measurement noise.

The question of how many measurements are necessary to allow for stable phase
retrieval, independently of the algorithm used, has been addressed in a very general
setting by Eldar and Mendelson [64]. They showed that the necessary number of
phaseless measurements to allow for the recovery of a signal x which is known to
lie in a given set S can be estimated in terms of the so-called Gaussian width of
the set S . This result is not restricted to Gaussian measurements but extends also to
measurement vectors with independent subgaussian entries which in addition satisfy
a small ball probability bound. Building upon this work, Ehler et al. [60] showed
recovery guarantees for certain greedy algorithms for complex measurements of the
same type. Other algorithms, for which recovery guarantees have been provided for
Gaussian measurements, include polarization-based approaches [4] and alternating
minimization [116].

Rigorous recovery guarantees for phase retrieval have been extended to randomly
masked Fourier transforms in [31,90] and to spherical designs in [91]. These works
address more realistic measurement scenarios than Gaussian measurements for
practical applications such as X-ray crystallography; see also [99].

Higher-Order Polynomial Measurements
Building upon the successful experience on phase retrieval problems, compressed
sensing theory can be further extended to solving nonlinear problems of the type

min kzk0 subject to yi D Ai.z/; i D 1; : : : ; m; (32)
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whereAi W CN ! C, i D 1; : : : ; m, are smooth functions. For q being a sufficiently
large even integer, one approximatesAi by its qth-order Taylor expansion,

Ai.x/ 	
X

0�j˛j	q

.x � x0/
˛

˛Š
@˛Ai .x0/ D Nx�Ai Nx;

where Ai is a

�
N C q

2
q

2

�
�
�
N C q

2
q

2

�
-symmetric matrix and Nx is the vector whose

entries are all the monomials of the elements of x with degree less or equal to q=2.
Hereby, the standard multi-index notation is used.

Example 1. Let x D .x1; x2/
T and A.x/ D 1 C x1 C x3

2 . The 4th-order Taylor
expansion around x0 D 0 is given by

A.x/ D Nx�A Nx

where Nx D .1; x1; x2; x1x2; x
2
1 ; x

2
2/
T and

A D

0
BBBBBBB@

1 1=2 0 0 0 0
1=2 0 0 0 1=12 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1=12 0 0 0 0
0 0 0 0 0 0

1
CCCCCCCA
:

One observes again that

yi D Nx�Ai Nx D hAi ; Nx Nx�i; i D 1; : : : ; m; (33)

where the inner product on the right-hand side denotes the Hilbert-Schmidt inner
product. Consequently x can be recognized as the solution of (32) if X D Nx Nx� is
the unique rank one positive definite solution of the linear equations

yi D S .X/i D hAi ; Xi; i D 1; : : : ; m: (34)

As for the PhaseLift algorithm for phase retrieval problems, one considers again
instead of the rank minimization problem constrained by (34) its convex relaxation
(25). One also notices that in case the vector x is sparse, thenX is sparse in addition
to being of rank one. Hence, one can combine the nuclear norm with the classical
`1-norm penalization and consider the problem

min
X2Mp�p;0
X kXk� C �kXk`1 ; subject to S .X/ D y; (35)
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where p D
�
N C q

2
q

2

�
and � > 0 is a suitable parameter. One refers to (35)

as nonlinear basis pursuit. This algorithm works surprisingly well in practice
to recover sparse vectors from very few measurements [118], but theoretical
guarantees for stable and unique recovery are open to date.

Applications

Compressive sensing can be potentially used in all applications where the task is
the reconstruction of a signal or an image from linear measurements, while taking
many of those measurements – in particular, a complete set of measurements – is a
costly, lengthy, difficult, dangerous, impossible, or otherwise undesired procedure.
Additionally, there should be reasons to believe that the signal is sparse in a suitable
basis (or frame). Empirically, the latter applies to most types of signals.

In computerized tomography, for instance, one would like to obtain an image of
the inside of a human body by taking X-ray images from different angles. Taking
an almost complete set of images would expose the patient to a large and dangerous
dose of radiation, so the amount of measurements should be as small as possible
and nevertheless guarantee a good enough image quality. Such images are usually
nearly piecewise constant and therefore nearly sparse in the gradient, so there is a
good reason to believe that compressive sensing is well applicable. And indeed, it
is precisely this application that started the investigations on compressive sensing in
the seminal paper [29].

Also radar imaging seems to be a very promising application of compressive
sensing techniques [65,66,94,144]. One is usually monitoring only a small number
of targets, so that sparsity is a very realistic assumption. Standard methods for radar
imaging actually also use the sparsity assumption, but only at the very end of the
signal processing procedure in order to clean up the noise in the resulting image.
Using sparsity systematically from the very beginning by exploiting compressive
sensing methods is therefore a natural approach.

Further potential applications include wireless communication [147], astronom-
ical signal and image processing [14], analog to digital conversion [154], camera
design [58], and imaging [136, 159, 160].

Affine low-rank minimization problems (23) arise in many areas of science and
technology, including system identification [113], collaborative filtering, quantum
state tomography [88, 89], signal, and image processing. An important special case
is the matrix completion problem [25, 27, 134], where the task consists in filling
in missing entries of a large low-rank data matrix. For applications of low-rank
matrix recovery in quantum state tomography, one can refer to [88,89]. Applications
of phase retrieval include diffraction imaging and X-ray crystallography; see, for
instance, [111].
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4 Numerical Methods

The previous sections showed that `1-minimization performs very well in recovering
sparse or approximately sparse vectors from undersampled measurements. In appli-
cations, it is important to have fast methods for actually solving `1-minimization
problems. Two such methods – Chambolle and Pock’s primal-dual algorithm [34]
and iteratively re-weighted least squares (IRLS) [44] – will be explained in more
detail below.

As a first remark, the `1-minimization problem

min kxk1 subject to Ax D y (36)

is in the real case equivalent to the linear program

min
2NX
jD1

vj subject to v � 0; .Aj � A/v D y: (37)

The solution x� to (36) is obtained from the solution v� of (37) via x� D
.Id j � Id/v�. Any linear programming method may therefore be used for solving
(36). The simplex method and interior point methods apply in particular [115],
and standard software may be used. (In the complex case, (36) is equivalent to
a second-order cone program (SOCP) and can also be solved with interior point
methods.) However, such methods and software are of general purpose, and one may
expect that methods specialized to (36) outperform such existing standard methods.
Moreover, standard software often has the drawback that one has to provide the
full matrix rather than fast routines for matrix-vector multiplication which are
available, for instance, in the case of partial Fourier matrices. In order to obtain
the full performance of such methods, one would therefore need to reimplement
them, which is a daunting task because interior point methods usually require
much fine-tuning. On the contrary, the two specialized methods described below
are rather simple to implement and very efficient. Many more methods are available
nowadays, including the homotopy and LARS method [55, 59, 119, 120]; greedy
methods; such as orthogonal matching pursuit [151], CoSaMP [153]; and iterative
hard thresholding [13,69], which may offer better complexity than standard interior
point methods. Due to space limitations, however, only the two methods below are
explained in detail.

A Primal-Dual Algorithm

The reconstruction approaches discussed in the previous section can often be solved
by optimization problems of the form
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min
x2CN

F.Ax/CG.x/ (38)

with A being an m � N matrix and F;G being convex functions with values in
.�1;1�. For instance, the `1-minimization problem (5) can be recast as (38) with
G.x/ D kxk1 and F.z/ D 	fyg.z/, where 	fyg is the characteristic function of
the singleton set fyg that takes the value 0 on y and1 elsewhere. Moreover, (14)
is equivalent to (38) with G.x/ D kxk1 and F D 	fwWky�wk2	�g. Also the nuclear
norm minimization problem (25) takes the form (38) withG being the nuclear norm;
see also below.

The so-called dual problem [17, 76] of (38) is given by

max
�2Cm �F

�.�/ �G�.�A��/; (39)

where

F �.�/ D supfRehz; �i � F.z/ W z 2 C
mg

is the convex (Fenchel) conjugate of F and likewise G� is the convex conjugate
of G. The joint primal-dual optimization is equivalent to solving the saddle point
problem

min
x2CN

max
�2Cm RehAx; �i CG.x/ � F �.�/: (40)

The primal-dual algorithm introduced by Chambolle and Pock in [34], generalizing
[126], and described below solves this problem iteratively. In order to formulate it,
one needs to introduce the so-called proximal mapping (proximity operator). For
the convex functionG, it is defined as

PG.�; z/ WD argmin
x2CN

�
�G.x/C 1

2
kx � zk2

2


:

For G.x/ D kxk1, the proximal mapping reduces to the well-known soft-
thresholding operator, which is defined componentwise as

S�.z/` D
�

sgn.z`/.jz`j � �/ if jz`j � �;
0 otherwise.

One also requires below the proximal mapping associated to the convex conjugate
F �.

The primal-dual algorithm performs an iteration on the dual variable, the primal
variable, and an auxiliary primal variable. Starting from initial points x0; Nx0 D x 2
C
N ; �0 2 C

m and parameters �; 
 > 0, � 2 Œ0; 1�, one iteratively computes
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�nC1 WD PF�.
 I �n C 
A Nxn/; (41)

xnC1 WD PG.� I xn � �A��nC1/; (42)

NxnC1 WD xnC1 C �.xnC1 � xn/: (43)

It can be shown that .x; �/ is a fixed point of these iterations if and only if .x; �/
is a saddle point of (40) which is equivalent to x being a solution of (38) and � of
(39); see [76, Proposition 15.6]. For this reason, the algorithm can be interpreted as
a fixed point iteration.

For the case that � D 1, the convergence of the primal-dual algorithm has been
established in [34].

Theorem 7. Consider the primal-dual algorithm (41)–(43) with � D 1 and �; 
 >
0 such that �
kAk2

2!2 < 1. If the problem (40) has a saddle point, then the sequence
.xn; �n/ converges to a saddle point of (40) and in particular .xn/ converges to a
minimizer of (38).

One observes that for the `1 and nuclear norm minimization problems of this
chapter, the assumption of the theorem that (40) has a saddle point will always be
satisfied. An estimate of the convergence rate can be shown as well. One refers
to [34] for details. Preconditioning was considered in [125], where also parameter
choices are discussed. Convergence results for values of � different from 1 have
been obtained in [92] for slight modifications of the algorithm.

One considers again some special cases. For `1-minimization (36), where
G.x/ D kxk1 and F D 	fyg, the proximal mappingPG reduces to soft-thresholding
(41) while the proximal mapping associated to F �.�/ D Rehy; �i is given by

PF�.
; �/ D � � 
y:

Therefore, all operations required in the algorithm (41)–(43) are simple and easy
to implement. Also, note that if fast matrix-vector multiplication algorithms are
available for A and A�, these can be easily exploited.

In the case of the nuclear norm minimization problem (25), where G.X/ D
kXk� and F D 	fyg, the proximal mapping of G is given by singular-value soft
thresholding: If Z D U†V � is the singular value decomposition of a matrix Z
with unitary matrices U and V and a diagonal matrix † D diag.
1; : : : ; 
n/ with

1 � 
2 � : : : � 0, then

Pk � k�
.�;Z/ D U diag.S�.
1/; � � � ; S�.
n//V �;

i.e., the soft-thresholding operator is applied to the singular values. With this
information together with the proximal mapping of F � given above, the iterations
(41)–(43) can be implemented for nuclear norm minimization.
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Of course, the described algorithm applies to many more optimization problems
and turns out to be very efficient when the proximal mappings are simple to evaluate.
Notice that the iterations (41)–(43) are strongly influenced by backward–forward
splitting methods [41] for the primal problem (38) with differentiable F , which are
of the form

xn D PG.� I xn � �rF.xn//: (44)

In fact, (41) can be considered a backward–forward step for the dual variable,
while (42) is a backward–forward step for the primal variable. A particular instance
of (44) is the soft-thresholding algorithm for minimizing functionals of the form
kAx � yk2

2 C �kxk1; see [41, 43] and [9, 10] for an accelerated version. Related
optimization algorithms include Douglas–Rachford splittings [39, 40, 57] and the
alternating direction method of multipliers [40, 83]. One refers to [142, Chapter 7],
[40], [76, Chapter 15], and [156] for overviews on these and further approaches.

Iteratively Re-weighted Least Squares

This section is concerned with an iterative algorithm which, under the condition that
A satisfies the NSP (see Definition 1), is guaranteed to reconstruct vectors with the
same error estimate (6) as `1-minimization. The following discussion is restricted
to the real-valued case. This algorithm has a guaranteed linear rate of convergence
which can even be improved to a superlinear rate with a small modification. First,
a brief introduction aims at shedding light on the basic principles of this algorithm
and their interplay with sparse recovery and `1-minimization.

Denote F.y/ D fx W Ax D yg and N D kerA. The starting point is the trivial
observation that jt j D t2

jt j for t ¤ 0. Hence, an `1-minimization can be recasted into
a weighted `2-minimization, with the hope that

arg min
x2F.y/

NX
jD1

jxj j 	 arg min
x2F.y/

NX
jD1

x2
j jx�

j j�1;

as soon as x� is the desired `1-norm minimizer. The advantage of the reformulation
consists in the fact that minimizing the smooth quadratic function t2 is an easier
task than the minimization of the nonsmooth function jt j. However, the obvious
drawbacks are that neither one disposes of x� a priori (this is the vector one is
interested to compute!) nor one can expect that x�

j ¤ 0 for all j D 1; : : : ; N , since
one hopes for k-sparse solutions.

Suppose one has a good approximation wnj of j.x�
j /

2 C �2
nj�1=2 	 jx�

j j�1, for
some �n > 0. One computes

xnC1 D arg min
x2F.y/

NX
jD1

x2
jwnj (45)
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and then updates �nC1 � �n by some rule to be specified later. Further, one sets

wnC1
j D j.xnC1

j /2 C �2
nC1j�1=2 (46)

and iterates the process. The hope is that a proper choice of �n ! 0 allows the
iterative computation of an `1-minimizer. The next sections investigate convergence
of this algorithm and properties of the limit.

Weighted `2-Minimization
Suppose that the weight w is strictly positive which means that wj > 0 for all
j 2 f1; : : : ; N g. Then `2.w/ is a Hilbert space with the inner product

hu; viw WD
NX
jD1

wjuj vj : (47)

Define

xw WD arg min
z2F.y/ kzk2;w; (48)

where kzk2;w D hz; zi1=2
w . Because the k � k2;w-norm is strictly convex, the minimizer

xw is necessarily unique; it is characterized by the orthogonality conditions

hxw; �iw D 0; for all � 2 N : (49)

An Iteratively Re-weighted Least Squares Algorithm (IRLS)
An IRLS algorithm appears for the first time in the Ph.D. thesis of Lawson in 1961
[102], in the form of an algorithm for solving uniform approximation problems.
This iterative algorithm is now well known in classical approximation theory as
Lawson’s algorithm. In [37] it is proved that it obeys a linear convergence rate. In
the 1970s, extensions of Lawson’s algorithm for `p-minimization, and in particular
`1-minimization, were introduced. In signal analysis, IRLS was proposed as a
technique to build algorithms for sparse signal reconstruction in [86]. The interplay
of the NSP, `1-minimization, and a re-weighted least square algorithm has been
clarified only recently in the work [44].

The analysis of the algorithm (45) and (46) starts from the observation that

jt j D min
w>0

1

2

�
wt2 C w�1

	
;

the minimum being attained for w D 1
jt j . Inspired by this simple relationship, given

a real number � > 0 and a weight vector w 2 R
N , with wj > 0, j D 1; : : : ; N , one

introduces the functional

J .z;w; �/ WD 1

2

NX
jD1

�
z2
jwj C �2wj C w�1

j

�
; z 2 R

N : (50)
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The algorithm roughly described in (45) and (46) can be recast as an alternating
method for choosing minimizers and weights based on the functionalJ . To describe
this more rigorously, recall that r.z/ denotes the nonincreasing rearrangement of a
vector z 2 R

N .

Algorithm IRLS. Initialize by taking w0 WD .1; : : : ; 1/. Set �0 WD 1. Then
recursively define, for n D 0; 1; : : : ;

xnC1 WD arg min
z2F.y/ J .z;w

n; �n/ D arg min
z2F.y/ kzk2;wn (51)

and

�nC1 WD min

�
�n;

rKC1.x
nC1/

N


; (52)

whereK is a fixed integer that will be specified later. Set

wnC1 WD arg min
w>0

J .xnC1;w; �nC1/: (53)

The algorithm stops if �n D 0; in this case, define xj WD xn for j > n. In general,
the algorithm generates an infinite sequence .xn/n2N of vectors.

Each step of the algorithm requires the solution of a weighted least squares
problem. In matrix form

xnC1 D D�1
n A

�.AD�1
n A�/�1y; (54)

where Dn is the N � N diagonal matrix the j th diagonal entry of which is wnj .
Once xnC1 is found, the weight wnC1 is given by

wnC1
j D Œ.xnC1

j /2 C �2
nC1�

�1=2; j D 1; : : : ; N: (55)

Convergence Properties
Lemma 3. Set L WD J .x1;w0; �0/. Then

kxn � xnC1k2
2 � 2L

�
J .xn;wn; �n/ � J .xnC1;wnC1; �nC1/

�
:

Hence .J.xn;wn; �n//n2N is a monotonically decreasing sequence and

lim
n!1 kx

n � xnC1k2
2 D 0:

Proof. Note that J .xn;wn; �n/ � J .xnC1;wnC1; �nC1/ for each n D 1; 2; : : : , and

L D J .x1;w0; �0/ � J .xn;wn; �n/ � .wnj /�1; j D 1; : : : ; N:
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Hence, for each n D 1; 2; : : : , the following estimates hold:

2ŒJ .xn;wn; �n/ � J .xnC1;wnC1; �nC1/�

� 2ŒJ .xn;wn; �n/� J .xnC1;wn; �n/� D hxn; xniwn � hxnC1; xnC1iwn
D hxn C xnC1; xn � xnC1iwn D hxn � xnC1; xn � xnC1iwn

D
NX
jD1

wnj .x
n
j � xnC1

j /2 � L�1kxn � xnC1k2
2:

In the third line, it is used that hxnC1; xn�xnC1iwn D 0 due to (49) since xn�xnC1

is contained in N . �

Moreover, if one assumes that xn ! Nx and �n ! 0, then, formally,

J .xn;wn; �n/! kNxk1:

Hence, one expects that this algorithm performs similar to `1-minimization. Indeed,
the following convergence result holds.

Theorem 8. SupposeA 2 R
m�N satisfies the NSP of orderK with constant � < 1.

Use K in the update rule (52). Then, for each y 2 R
m, the sequence xn produced

by the algorithm converges to a vector Nx, with rKC1. Nx/ D N limn!1 �n, and the
following holds:

(i) If � D limn!1 �n D 0, then Nx is K-sparse; in this case, there is therefore a
unique `1-minimizer x�, and Nx D x�; moreover, one has, for k � K and any
z 2 F.y/,

kz � Nxk1 � 2.1C �/
1 � � 
k.z/1 (56)

(ii) If � D limn!1 �n > 0, then Nx D x� WD arg minz2F.y/
PN

jD1

�
z2
j C �2

�1=2
.

(iii) In this last case, if � satisfies the stricter bound � < 1� 2
KC2 (or, equivalently,

if 2�
1�� < K), then one has, for all z 2 F.y/ and any k < K � 2�

1�� , that

kz � Nxk1 � Qc
k.z/1; with Qc WD 2.1C �/
1 � �

"
K � k C 3

2

K � k � 2�
1��

#
(57)

As a consequence, this case is excluded if F.y/ contains a vector of sparsity
k < K � 2�

1�� .
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Note that the approximation properties (56) and (57) are exactly of the same order as
the one (6) provided by `1-minimization. However, in general, Nx is not necessarily
an `1-minimizer, unless it coincides with a sparse solution. The proof of this result
is not included and the interested reader is referred to [44, 69] for the details.

Rate of Convergence
It is instructive to show a further result concerning the local rate of convergence
of this algorithm, which again uses the NSP as well as the optimality conditions
introduced above. One assumes here that F.y/ contains the k-sparse vector x�. The
algorithm produces a sequence xn, which converges to x�, as established above.
One denotes the (unknown) support of the k-sparse vector x� by T .

For now, one introduces an auxiliary sequence of error vectors �n 2 N via �n WD
xn � x� and

En WD k�nk1 D kx� � xnk1:

Theorem 8 guarantees thatEn ! 0 for n!1. A useful technical result is reported
next.

Lemma 4. For any z; z0 2 R
N , and for any j ,

j
j .z/1 � 
j .z0/1j � kz � z0k1; (58)

while for any J > j ,

.J � j /rJ .z/ � kz � z0k1 C 
j .z0/1: (59)

Proof. To prove (58), approximate z by a best j -term approximation z0
Œj � 2 †j of z0

in `1. Then


j .z/1 � kz � z0
Œj �k1 � kz � z0k1 C 
j .z0/1;

and the result follows from symmetry. To prove (59), it suffices to note that .J �
j / rJ .z/ � 
j .z/1. �

The following theorem gives a bound on the rate of convergence of En to zero.

Theorem 9. Assume A satisfies the NSP of order K with constant � . Suppose that
k < K � 2�

1�� , 0 < � < 1, and 0 < � < 1 � 2
KC2 are such that

� WD �.1C �/
1 � �

�
1C 1

K C 1 � k
�
< 1:

Assume that F.y/ contains a k-sparse vector x� and let T D supp.x�/. Let n0 be
such that
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En0
� R� WD � min

i2T jx
�
i j: (60)

Then, for all n � n0, one has

EnC1 � �En: (61)

Consequently, xn converges to x� exponentially.

Proof. The relation (49) with w D wn, xw D xnC1 D x� C �nC1, and � D xnC1 �
x� D �nC1 gives

NX
iD1

.x�
i C �nC1

i /�nC1
i wni D 0:

Rearranging the terms and using the fact that x� is supported on T , one obtains

NX
iD1

j�nC1
i j2wni D �

X
i2T

x�
i �

nC1
i wni D �

X
i2T

x�
i

Œ.xni /
2 C �2

n�
1=2
�nC1
i : (62)

The proof of the theorem is by induction. Assume that En � R� has already been
established. Then, for all i 2 T ,

j�ni j � k�nk1 D En � �jx�
i j;

so that

jx�
i j

Œ.xni /
2 C �2

n�
1=2
� jx

�
i j
jxni j
D jx�

i j
jx�
i C �ni j

� 1

1 � � (63)

and hence (62) combined with (63) and the NSP gives

NX
iD1

j�nC1
i j2wni �

1

1 � �k�
nC1
T k1 � �

1 � �k�
nC1
T c k1

The Cauchy–Schwarz inequality combined with the above estimate yields

k�nC1
T c k2

1 �
 X
i2T c
j�nC1
i j2wni

! X
i2T c

Œ.xni /
2 C �2

n�
1=2

!

D
 

NX
iD1

j�nC1
i j2wni

! X
i2T c

Œ.�ni /
2 C �2

n�
1=2

!

� �

1 � �k�
nC1
T c k1 .k�nk1 CN�n/ : (64)
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If �nC1
T c D 0, then xnC1

T c D 0. In this case xnC1 is k-sparse and the algorithm has
stopped by definition; since xnC1 � x� is in the null space N , which contains no
k-sparse elements other than 0, one has already obtained the solution xnC1 D x�.
If �nC1

T c ¤ 0, then canceling the factor k�nC1
T c k1 in (64) yields

k�nC1
T c k1 � �

1 � � .k�
nk1 CN�n/ ;

and thus

k�nC1k1 D k�nC1
T k1 C k�nC1

T c k1 � .1C �/k�nC1
T c k1 � �.1C �/

1 � � .k�nk1 CN�n/ :
(65)

Now, by (52) and (59), it follows

N�n � rKC1.x
n/ � 1

K C 1 � k .kx
n � x�k1 C 
k.x�/1/ D k�nk1

K C 1 � k ; (66)

since by assumption 
k.x�/1 D 0. Together with (65), this yields the desired bound:

EnC1 D k�nC1k1 � �.1C �/
1� �

�
1C 1

K C 1 � k
�
k�nk1 D �En:

In particular, since � < 1, one hasEnC1 � R�, which completes the induction step.
It follows that EnC1 � �En for all n � n0. �

The linear rate (61) can be improved significantly, by a very simple modification
of the rule of updating the weight:

wnC1
j D

�
.xnC1
j /2 C �2

nC1

�� 2��
2
; j D 1; : : : ; N; for any 0 < � < 1:

This corresponds to the substitution of the function J with

J� .z;w; �/ WD �

2

NX
jD1

0
@z2

jwj C �2wj C 2 � �
�

1

w
�

2��

j

1
A ;

where z 2 R
N ;w 2 R

NC; � 2 RC. With this new up-to-date rule for the weight,
which depends on 0 < � < 1, one has formally, for xn ! Nx and �n ! 0,

J� .xn;wn; �n/! kNxk�� :

Hence such an iterative optimization tends to promote the `� -quasi-norm
minimization.



Compressive Sensing 243

Surprisingly the rate of local convergence of this modified algorithm is superlin-
ear; the rate is larger for smaller � and approaches a quadratic rate as � ! 0. More
precisely, the local error En WD kxn � x�k�� satisfies

EnC1 � �.�; �/E2��
n ; (67)

where �.�; �/ < 1 for � > 0 sufficiently small. The validity of (67) is restricted to
xn in a (small) ball centered at x�. In particular, if x0 is close enough to x�, then
(67) ensures the convergence of the algorithm to the k-sparse solution x�; see Fig. 4.

Numerical Experiments

Figure 5 shows a typical phase transition diagram related to the (experimentally
determined) probability of successful recovery of sparse vectors by means of the
iteratively re-weighted least squares algorithm. For each point of this diagram with
coordinates .m=N; k=m/ 2 Œ0; 1�2, one shows the empirical success probability
of recovery of a k-sparse vector x 2 R

N from m measurements y D Ax.
The brightness level corresponds to the probability. As measurement matrix a real
random Fourier type matrix A was used, with entries given by

Ak;j D cos.2�j�k/; j D 1; : : : ; N;

and the �k , k D 1; : : : ; m, are sampled independently and uniformly at random from
Œ0; 1�. (Theorem 5 does not apply directly to real random Fourier matrices, but an
analogous result concerning the RIP for such matrices can be found in [131].)

Figure 6 shows a section of a phase transition diagram related to the (experimen-
tally determined) probability of successful recovery of sparse vectors from linear
measurements y D Ax, where the matrix A has i.i.d. Gaussian entries. Here both
m and N are fixed and only k is variable. This diagram establishes the transition
from a situation of exact reconstruction for sparse vectors with high probability
to very unlikely recovery for vectors with many nonzero entries. These numerical
experiments used the iteratively re-weighted least squares algorithm with different
parameters 0 < � � 1. It is of interest to emphasize the enhanced success rate
when using the algorithm for � < 1. Similarly, many other algorithms are tested
by showing the corresponding phase transition diagrams and comparing them; see
[12] for a detailed account of phase transitions for greedy algorithms and [49, 54]
for `1-minimization.

This section is concluded by showing applications of `1-minimization methods
to a real-life image recolorization problem [70, 71] in Fig. 7. The image is known
completely only on very few colored portions, while on the remaining areas, only
gray levels are provided. With this partial information, the use of `1-minimization
with respect to wavelet or curvelet coefficients allows for high fidelity recolorization
of the whole images.
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Fig. 4 The decay of logarithmic error is shown, as a function of the number of iterations of IRLS
for different values of � (1, 0.8, 0.6, 0.56). The results of an experiment are also shown, in which
the initial 10 iterations are performed with � D 1 and the remaining iterations with � D 0:5

Fig. 5 Empirical success probability of recovery of k-sparse vectors x 2 R
N from measurements

y D Ax, where A 2 R
m�N is a real random Fourier matrix. The dimension N D 300 of the

vectors is fixed. Each point of this diagram with coordinates .m=N; k=m/ 2 Œ0; 1�2 indicates the
empirical success probability of recovery, which is computed by running 100 experiments with
randomly generated k-sparse vectors x and randomly generated matrix. The algorithm used for the
recovery is the iteratively re-weighted least squares method tuned to promote `1-minimization
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Fig. 6 Empirical success probability of recovery of a k-sparse vector x 2 R
250 from mea-

surements y D Ax, where A 2 R
50�250 is Gaussian. The matrix is generated once; then, for

each sparsity value k shown in the plot, 500 attempts were made, for randomly generated k-
sparse vectors x. Two different IRLS algorithms were compared: one with weights inspired by
`1-minimization and the IRLS with weights that gradually moved during the iterations from an `1-
to an `� -minimization goal, with final � D 0:5

Fig. 7 Iterations of the recolorization methods proposed in [70, 71] via `1 and total variation
minimization, for the virtual restoration of the frescoes of A. Mantegna (1452), which were
destroyed by a bombing during World War II. Only a few colored fragments of the images were
saved from the disaster, together with good quality gray-level pictures dated to 1920

Extensions to Affine Low-RankMinimization

Reformulated as a semidefinite program, the nuclear norm minimization (25) can
be solved also by general methods from convex optimization [17]. Unfortunately,
standard semidefinite programming tools work efficiently for solving nuclear norm
minimization problems only for matrices up to size approximately 100 � 100.
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Therefore, it is crucial to develop fast algorithms that are specialized to nuclear
norm minimization (or other heuristics for rank minimization). Beside the already
mentioned primal-dual algorithm of Sect. 4, several alternative approaches have
been suggested so far; see, for instance, [20, 85, 97, 98, 104].

Borrowing a leaf from iteratively re-weighted least squares for `1-minimization,
this section discusses an algorithm inspired by (25). Assume X 2Mn�p , 0 � W D
W � 2Mn�n, and consider the functional,

J .X;W / WD 1

2

�kW 1=2Xk2
F C kW �1=2k2

F

	
; (68)

where k � kF is the Frobenius norm. In order to define the iteration below, one recalls
that 
k.X/ denotes the k th singular value of a matrix X .

IRLS-M algorithm for low-rank matrix recovery: Initialize by taking W 0 WD
I 2 Mn�n. Set "0 WD 1, K � k, and � > 0. Then recursively define, for ` D
1; 2; : : : ;

X` WD arg min
S .X/DM

J .X;W `/

and

"` WD min
˚
"`�1; �
KC1.X

`/


: (69)

The update of the weight matrixW ` follows the variational principle

W ` WD arg min
0�WDW �
"�1

` I

J .X`;W / (70)

The algorithm stops if "` D 0; in this case, define Xj WD X` for j > `. In
general, the algorithm generates an infinite sequence .X`/`2N of matrices.

The following convergence result can be shown with an analysis similar to the
one done for the IRLS for sparse vector recovery, under the assumption that the
measurement map S satisfies the restricted isometry property in Definition 4. One
refers to [73] for details.

Proposition 2. Consider the IRLS-M algorithm with parameters � D 1=n andK 2
N. Let S W Mn�p ! C

m be a surjective map with restricted isometry constants

ı3K , ı4K satisfying � D
p

2ı4K
1�ı3K

< 1 � 2
K�2 . Then, if there exists a k-rank matrix X

satisfying S .X/ DM with k < K � 2�
1�� , the sequence .X`/`2N converges to X .

Actually, one can prove something stronger: the IRLS-M algorithm is robust,
in the sense that under the same conditions on the measurement map S , the
accumulation points of the IRLS-M algorithm are guaranteed to approximate an
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arbitrary X 2 Mn�p from the measurements M D S .X/ to within a factor of the
best k-rank approximation error of X in the nuclear norm.

By combining both IRLS and IRLS-M, one can formulate an iteratively re-
weighted least squares to solve also mixed problems of the type (35).

5 Open Questions

The field of compressed sensing is rather young, so there remain many directions to
be explored, and it is impossible to give an exhaustive list here. Below, we focus on
two problems which seem to be rather hard and remained unsolved until the time of
writing of this article.

Deterministic Compressed SensingMatrices

So far, only several types of random matrices A 2 C
m�N are known to satisfy the

RIP ıs � ı � 0:4 (say) for

m D Cıs log˛.N / (71)

for some constant Cı and some exponent ˛ (with high probability). This is a
strong form of existence statement. It is open, however, to provide deterministic
and explicit m � N matrices that satisfy the RIP ıs � ı � 0:5 (say) in the desired
range (71).

In order to show RIP estimates in the regime (71), one has to take into account
cancellations of positive and negative (or more generally complex) entries in the
matrix; see also Sect. 3. This is done “automatically” with probabilistic methods but
seems to be much more difficult to exploit when the given matrix is deterministic.
It may be conjectured that certain equiangular tight frames or the “Alltop matrix” in
[123,143] do satisfy the RIP under (71). This is supported by numerical experiments
in [123]. It is expected, however, that a proof is very hard and requires a good
amount of analytic number theory. An involved deterministic construction that
achieves the RIP in the regime m � Cs2�" – overcoming the quadratic bottleneck
inherent to bounds via the coherence – was provided in [15, 16], but the best
available estimates of " are in the range of 10�26 [112]. One refers to [76, Chapter
6] for more background information on deterministic RIP matrices.

Another approach for deterministic constructions of CS matrices uses determin-
istic expander graphs [11]. Instead of the usual RIP, one shows that the adjacency
matrix of such an expander graph has the 1-RIP, where the `2-norm is replaced
by the `1-norm at each occurrence in (8). The 1-RIP also implies recovery by `1-
minimization. The best known deterministic expanders [33] yield sparse recovery
under the condition m � Cs.logN/c log2.N /. Although the scaling in s is linear
as desired, the term .logN/c log2.N / grows faster than any polynomial in logN .
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Another drawback is that the deterministic expander graph is the output of a
polynomial time algorithm, and it is questionable whether the resulting matrix can
be regarded as explicit.

Removing Log-Factors in the Fourier-RIP Estimate

It is known [26, 76, 129, 131, 138] that a random partial Fourier matrix A 2 C
m�N

satisfies the RIP with high probability provided

m

log.m/
� Cıs log2.s/ log.N /:

(The condition stated in (19) implies this one.) It is conjectured that one can remove
some of the log-factors. It must be hard, however, to improve this to a better estimate
than m � Cı;�s log.N / log.logN/. Indeed, this would imply an open conjecture
of Talagrand [146] concerning the equivalence of the `1 and `2 norm of a linear
combination of a subset of characters (complex exponentials). One refers to [76,
Chapter 12.7] for more details.

Compressive Sensing with Nonlinear Measurements

As described in Sect. 3, the extension of compressed sensing towards nonlinear
measurements is linked through the solution of problems of the type (35) which
lead to semidefinite programming. Although some progress has been achieved,
there is still the need to develop highly efficient algorithms for solving such
problems in large dimensions. Besides these more practical aspects, also theoretical
guarantees for algorithms to stably recover nearly sparse solutions consistent with
given nonlinear measurements, for instance, phase retrieval problems beyond the
case of Gaussian measurements, are a current field of very active research.

6 Conclusion

Compressive sensing established itself by now as a new sampling theory which
exhibits fundamental and intriguing connections with several mathematical fields,
such as probability, geometry of Banach spaces, harmonic analysis, theory of com-
putability, and information-based complexity. The link to convex optimization and
the development of very efficient and robust numerical methods make compressive
sensing a concept useful for a broad spectrum of natural science and engineering
applications, in particular, in signal and image processing and acquisition. It can
be expected that compressive sensing will enter various branches of science and
technology to notable effect.
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New challenges are now emerging in numerical analysis and simulation where
high-dimensional problems (e.g., stochastic partial differential equations in finance
and electron structure calculations in chemistry and biochemistry) became the
frontier. In this context, besides other forms of efficient approximation, such as
sparse grid and tensor product methods [18], compressive sensing is a promising
concept which is likely to cope with the “curse of dimensionality.” In particular,
further systematic developments of adaptivity in the presence of different scales,
randomized algorithms, and an increasing role for combinatorial aspects of the
underlying algorithms are examples of possible future developments, which are
inspired by the successful history of compressive sensing [145].

Cross-References

Compressive sensing has connections with the following chapters of the book:

�Duality and Convex Programming
�Gabor Analysis for Imaging
�Large-Scale Inverse Problems in Imaging
�Linear Inverse Problems
�Mumford and Shah Model and its Applications to Image Segmentation and Image

Restoration
�Numerical Methods and Applications in Total Variation Image Restoration
�Regularization Methods for Ill-Posed Problems
� Sampling Methods
� Splines and Multiresolution Analysis
� Starlet Transform in Astronomical Data Processing
� Supervised Learning by Support Vector Machines
� Synthetic Aperture Radar Imaging
�Tomography
�Total Variation in Imaging

Recommended Reading

The initial papers on the subject are [26, 29, 47]. The monograph [76] provides an
introduction to compressive sensing. Further introductory articles can be found in
[6, 21, 28, 61, 63, 69, 131, 136].
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Abstract
This chapter surveys key concepts in convex duality theory and their application
to the analysis and numerical solution of problem archetypes in imaging.

Convex analysis, Variational analysis, Duality

1 Introduction

An image is worth a thousand words, the joke goes, but takes up a million times
the memory – all the more reason to be efficient when computing with images.
Whether one is determining a “best” image according to some criteria or applying
a “fast” iterative algorithm for processing images, the theory of optimization and
variational analysis lies at the heart of achieving these goals. Success or failure
hinges on the abstract structure of the task at hand. For many practitioners, these
details are secondary: if the picture looks good, it is good. For the specialist in
variational analysis and optimization, however, it is what is went into constructing
the image that matters: if it is convex, it is good.

This chapter surveys more than a half-a-century of work in convex analysis that
has played a fundamental role in the development of computational imaging and
brings to light as many of the contributors to this field as possible. There is no
shortage of good books on convex and variational analysis; interested readers are
referred to the modern references [4, 6, 24, 27, 31, 49, 61, 71, 72, 80, 93, 99, 103, 106,
107,110,111,118]. References focused more on imaging and signal processing, but
with a decidedly variational flavor, include [3, 39, 109]. For general references on
numerical optimization, see [21, 35, 42, 86, 97, 117].

For many years, the dominant distinction in applied mathematics between
problem types has rested upon linearity, or lack thereof. This categorization still
holds sway today with nonlinear problems largely regarded as “hard,” while linear
problems are generally considered “easy.” But since the advent of the interior
point revolution [96], at least in linear optimization, it is more or less agreed that
nonconvexity, not nonlinearity, more accurately delineates hard from easy. The goal
of this chapter is to make this case more broad. Indeed, for convex sets topological,
algebraic, and geometric notions often coincide, and so the tools of convex analysis
provide not only for a tremendous synthesis of ideas but also for key insights, whose
dividends are efficient algorithms for solving large (infinite dimensional) problems,
and indeed even large nonlinear problems.

This chapter concerns different instances of a single optimization model. This
model accounts for the vast majority of variational problems appearing in imaging
science:
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minimize
x2C�X I'.x/

subject to Ax 2 D: (1)

Here, X and Y are real Banach spaces with continuous duals X� and Y �, C andD
are closed and convex,A W X ! Y is a continuous linear operator, and the integral
functional I'.x/ WD

R
T
'.x.t//�.dt/ is defined on some vector subspace Lp.T; �/

ofX for�, a complete totally finite measure on some measure space T . The integral
operator I' is an entropy with integrand ' W R !� � 1;C1� a closed convex
function. This provides an extremely flexible framework that specializes to most of
the instances of interest and is general enough to extend results to non-Hilbert space
settings. The most common examples are

Burg entropy: '.x/ WD � ln.x/ (2)

Shannon–Boltzmann entropy: '.x/ WD x ln.x/ (3)

Fermi–Dirac entropy W '.x/ WD x ln.x/C .1 � x/ ln.1 � x/ (4)

Lp norm '.x/ WD kxk
p

p
(5)

Lp entropy '.x/ WD
(
xp

p
x � 0

C1 else
(6)

Total variation '.x/ WD jrxj: (7)

See [18, 25, 26, 34, 37, 43, 44, 56, 64, 112] for these and other entropies.
There is a rich correspondence between the algorithmic approach to applications

implicit in the variational formulation (1) and the prevalent feasibility approach to
problems. Here, one considers the problem of finding the point x that lies in the
intersection of the constraint sets:

find x 2 C \ S where S WD fx 2 X jAx 2 D g :

In the case where the intersection is quite large, one might wish to find the point in
the intersection in some sense closest to a reference point x0 (frequently the origin).
It is the job of the objective in (1) to pick the element of C \ S that has the desired
properties, that is, to pick the best approximation. The feasibility formulation
suggests very naturally projection algorithms for finding the intersection whereby
one applies the constraints one at a time in some fashion, e.g., cyclically, or at
random [5, 30, 42, 51, 52, 119]. This is quite a powerful framework as it provides a
great deal of flexibility and is amenable to parallelization for large-scale problems.
Many of the algorithms for feasibility problems have counterparts for the more
general best approximation problems [6,9,10,58,88]. For studies of these algorithms
in nonconvex settings, see [2,7,8,11–14,29,38,53,68,78,79,87–89]. The projection
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algorithms that are central to convex feasibility and best approximation problems
play a key role in algorithms for solving the problems considered here.

Before detailing specific applications, it is useful to state a general duality result
for problem (1) that motivates the convex analytic approach. One of the more central
tools is the Fenchel conjugate [62] of a mapping f W X ! Œ�1;C1� , denoted
f � W X� ! Œ�1;C1� and defined by

f �.x�/ D sup
x2X
fhx�; xi � f .x/g:

The conjugate is always convex (as a supremum of affine functions), while f D
f ��jX exactly if f is convex, proper (not everywhere infinite), and lower semi-
continuous (lsc) [24,61]. Here and below, unless otherwise specified,X is a normed
space with dual X�. The following theorem uses constraint qualifications involving
the concept of the core of a set, the effective domain of a function (dom f ), and the
points of continuity of a function (cont f ).

Definition 1 (Core). The core of a set F � X is defined by x 2 core F if for each
h 2 fx 2 X j kxk D 1g, there exists ı > 0 so that x C th 2 F for all 0 � t � ı.

It is clear from the definition that int F � core F . If F is a convex subset of a
Euclidean space, or if F is closed, then the core and the interior are identical [27,
Theorem 4.1.4].

Theorem 1 (Fenchel Duality [24, Theorems 2.3.4 and 4.4.18]). Let X and Y be
Banach spaces, let f W X ! .�1;C1� and g W Y ! .�1;C1� and let
A W X ! Y be a bounded linear map. Define the primal and dual values p,
d 2 Œ�1;C1� by the Fenchel problems

p D inf
x2Xff .x/C g.Ax/g

d D sup
y�2Y �

f�f �.A�y�/� g�.�y�/g: (8)

Then these values satisfy the weak duality inequality p � d .
If f; g are convex and satisfy either

0 2 core .dom g �A dom f / with f and g lsc; (9)

or

A dom f \ cont g ¤ Ø; (10)

then p D d , and the supremum to the dual problem is attained if finite.
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Applying Theorem 1 to problem (1) yields f .x/ D I'.x/ C #C .x/ and g.y/ D
#D.y/ where #F is the indicator function of the set F :

#F .x/ WD
(

0 if x 2 F
C1 else.

(11)

The tools of convex analysis and the phenomenon of duality are central to
formulating, analyzing, and solving application problems. Already apparent from
the general application above is the necessity for a calculus of Fenchel conjugation
in order to compute the conjugate of sums of functions. In some specific cases, one
can arrive at the same conclusion with less theoretical overhead, but this is at the
cost of missing out more general structures that are not necessarily automatic in
other settings.

Duality has a long-established place in economics where primal and dual
problems have direct interpretations in the context of the theory of zero-sum games,
or where Lagrange multipliers and dual variables are understood, for instance, as
shadow prices. In imaging, there is not as often an easy interplay between the
physical interpretation of primal and dual problems. Duality has been used toward a
variety of ends in contemporary image and signal processing, the majority of them,
however, having to do with algorithms [17,33,34,43–46,54,55,57,70,73,90,116].
Nevertheless, the dual perspective yields new statistical or information theoretic
insight into image processing problems, in addition to faster algorithms. Since the
publication of the first edition of this handbook, interest in convex duality theory
has only continued to grow. This is, in part, due to the now ubiquitous application of
convex duality techniques to nonconvex problems; as heuristics, through appropriate
convex relaxations, or otherwise [48, 114, 115]. As a measure of this growing
interest, a Web of Science search for articles published between 2011 and 2013
having either “convex relaxation” or “primal dual” in the title, abstract, or keywords,
returns a combined count of approximately 1,500 articles.

Modern optimization packages heavily exploit duality and convex analysis. A
new trend that has matured in recent years is the field of computational convex
analysis which employs symbolic, numerical, and hybrid computations of objects
like the Fenchel conjugate [23, 65, 81–85, 91, 98]. Software suites that rely heavily
on a convex duality approach include: CCA (Computational Convex Analysis, http://
atoms.scilab.org/toolboxes/CCA) for Scilab, CVX and its extensions (http://cvxr.
com/cvx/) for MATLAB (including a C code generator) [65, 91], and S-CAT
(Symbolic Convex Analysis Toolkit, http://web.cs.dal.ca/~chamilto/research.html)
for Maple [23]. For a review of the computational aspects of convex analysis see
[84].

In this chapter, five main applications illustrate the variational analytical
approach to problem solving: linear inverse problems with convex constraints,
compressive imaging, image denoising and deconvolution, nonlinear inverse
scattering, and finally Fredholm integral equations. A brief review of these
applications is presented below. Subsequent sections develop the tools for their

http://atoms.scilab.org/toolboxes/CCA
http://atoms.scilab.org/toolboxes/CCA
http://cvxr.com/cvx/
http://cvxr.com/cvx/
http://web.cs.dal.ca/~chamilto/research.html
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analysis. At the end of the chapter these applications are revisited in light of the
convex analytical tools collected along the way.

The application of compressive sensing, or more generally sparsity optimization
leads to a new theme that is emerging out of the theory of convex relaxations
for nonconvex problems, namely direct global nonconvex methods for structured
nonconvex optimization problems. Starting with the seminal papers of Candés
and Tao [40, 41], the theory of convex relaxation for finding the sparsest vector
satisfying an underdetermined affine constraint has concentrated on determining
sufficient conditions under which the solution to a relaxation of the problem
to `1 minimization with an affine equality constraint corresponds exactly to the
global solution of the original nonconvex sparsity optimization problem. These
conditions have been used in recent years to guarantee global convergence of simple
projected gradient- and alternating projections-type algorithms for solving simpler
nonconvex optimization problems whose global solutions correspond to a solution
of the original problem (see [15, 16, 19, 20, 63, 69] and references therein). This
is the natural point at which this chapter leaves off, and the frontier of nonconvex
programming begins.

Linear Inverse Problems with Convex Constraints

LetX be a Hilbert space and '.x/ WD 1
2kxk2. The integral functional I' is the usual

L2 norm and the solution is the closest feasible point to the origin:

minimize
x2C�X

1
2kxk2

subject to Ax D b:
(12)

Levi, for instance, used this variational formulation to determine the minimum
energy band-limited signal that matched N measurements b 2 R

n with the model
A W X ! R

n [77]. Note that the signal space is infinite dimensional while the
measurement space is finite dimensional, a common situation in practice. Potter and
Arun [100] recognized a much broader applicability of this variational formulation
to remote sensing and medical imaging and applied duality theory to characterize
solutions to (12) by x D PCA

�.y/, where y 2 Y satisfies b D APCA
�y [100,

Theorem 1]. Particularly attractive is the feature that when Y is finite dimensional,
these formulas yield a finite dimensional approach to an infinite dimensional
problem. The numerical algorithm suggested by Potter and Arun is an iterative
procedure in the dual variables:

yjC1 D yj C �.b �APCA�yj / j D 0; 1; 2; : : : (13)

The optimality condition and numerical algorithms are explored at the end of this
chapter.
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As satisfying as this theory is, there is a crucial assumption in the theorem of
Potter and Arun about the existence of y 2 Y such that b D APCA

�y; one need
only to consider linear least squares, for an example, where the primal problem is
well posed, but no such y exists [22]. A specialization of Theorem 1 to the case of
linear constraints facilitates the argument. The next corollary is a specialization of
Theorem 1, where g is the indicator function of the point b in the linear constraint.

Corollary 1 (Fenchel Duality for Linear Constraints). Given any f W X !
.�1;1� , any bounded linear map A W X ! Y , and any element b 2 Y , the
following weak duality inequality holds:

inf
x2X ff .x/ jAx D b g � sup

y�2Y �

fhb; y�i � f �.A�y�/g:

If f is lsc and convex and b 2 core .A dom f /, then equality holds and the
supremum is attained if finite.

Suppose that C D X , a Hilbert space and A W X ! X . The Fenchel dual to
(12) is

maximize
y2X hy; bi � 1

2
kA�yk2: (14)

(The L2 norm is self-dual.) Suppose that the primal problem (12) is feasible, that
is, b 2 range.A/. The objective in (14) is convex and differentiable, so elementary
calculus (Fermat’s rule) yields the optimal solution y with AA�y D b, assuming y
exists. If the range of A is strictly larger than that of AA�, however, it is possible
to have b 2 range.A/ but b … range.AA�/, in which case the optimal solution x
to (12) is not equal to A�y, since y is not attained. For a concrete example see [22,
Example 2.1].

Imaging withMissing Data

Let X D R
n and '.x/ WD kxkp for p D 0 or p D 1. The case p D 1 is the `1

norm, and by kxk0 is meant the function

kxk0 WD
X
j

j sign.xj /j;

where sign.0/ WD 0. This yields the optimization problem

minimize
x2Rn kxkp

subject to Ax D b: (15)
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This model has received a great deal of attention recently in applications of
compressive sensing where the number of measurements is much smaller than the
dimension of the signal space, that is, b 2 R

m for m � n. This problem is well
known in statistics as the missing data problem.

For `1 optimization (p D 1), the seminal work of Candés and Tao establishes
probabilistic criteria for when the solution to (15) is unique and exactly matches
the true signal x� [41]. Sparsity of the original signal x� and the algebraic structure
of the matrix A are key requirements. Convex analysis easily yields a geometric
interpretation of these facts. The dual to this problem is the linear program

maximize
y2Rm bT y

subject to .A�y/j 2 Œ�1; 1� j D 1; 2; : : : ; n:
(16)

Deriving this dual is one of the goals of this chapter. Elementary facts from
linear programming guarantee that the solution includes a vertex of the polyhedron
described by the constraints, and hence, assumingA is full rank, there can be at most
m active constraints. The number of active constraints in the dual problem provides
an upper bound on the number of nonzero elements in the primal variable – the
signal to be recovered. Unless the number of nonzero elements of x� is less than
the number of measurements m, there is no hope of uniquely recovering x�. The
uniqueness of solutions to the primal problem is easily understood in terms of the
geometry of the dual problem, that is, whether or not solutions to the dual problem
reside along the edges or faces of the polyhedron. More refined details about how
sparse x� needs to be in order to have a reasonable hope of exact recovery require
more work, but elementary convex analysis already provides the essential intuition.

For the function kxk0 (p D 0 in (15)) the equivalence of the primal and dual
problems is lost due to the nonconvexity of the objective. The theory of Fenchel
duality still yields weak duality, but this is of limited use in this instance. The
Fenchel dual to (15) is

maximize
y2Rm bT y

subject to .A�y/j D 0 j D 1; 2; : : : ; n:
(17)

Denoting the values of the primal (15) and dual problems (17) by p and d ,
respectively, these values satisfy the weak duality inequality p � d . The primal
problem is a combinatorial optimization problem, and hence NP -hard; the dual
problem, however, is a linear program, which is finitely terminating. Relatively
elementary variational analysis provides a lower bound on the sparsity of signals
x that satisfy the measurements. In this instance, however, the lower bound only
reconfirms what is already known. Indeed, if A is full rank, then the only solution
to the dual problem is y D 0. In other words, the minimal sparsity of the solution
to the primal problem is zero, which is obvious. The loss of information in passing
from primal to dual formulations of nonconvex problems is a common phenomenon
and underscores the importance of convexity.
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The Fenchel conjugates of the `1 norm and the function k � k0 are given
respectively by

'�
1 .y/ WD

(
0 kyk1 � 1

C1 else
.'1.x/ WD kxk1/ (18)

'�
0 .y/ WD

(
0 y D 0

C1 else
.'0.x/ WD kxk0/ (19)

It is not uncommon to consider the function k � k0 as the limit of
�P

j jxj jp
�1=p

as

p ! 0. This suggests an alternative approach based on the regularization of the
conjugates. For L and � > 0 define

'�;L.y/ WD
8<
:
�
�
.LCy/ ln.LCy/C.L�y/ ln.L�y/

2L ln.2/ � ln.L/
ln.2/

�
.y 2 Œ�L;L�/

C1 for jyj > L:
(20)

This is a scaled and shifted Fermi–Dirac entropy (4). It is also a smooth convex
function on the interior of its domain and so elementary calculus can be used to
calculate the Fenchel conjugate,

'�
�;L.x/ D

�

ln.2/
ln
�
4xL=� C 1

	 � xL � �: (21)

For L > 0 fixed,

lim
�!0

'�;L.y/ D
(

0 y 2 Œ�L;L�
C1 else

and lim
�!0

'�
�;L.x/ D Ljxj:

For � > 0 fixed

lim
L!0

'�;L.x/ D
(

0 y D 0

C1 else
and lim

L!0
'�
�;L.x/ WD 0:

Note that k � k0 and '�
�;0 WD 0 have the same conjugate, but unlike k � k0 the

biconjugate of '�
�;0 is itself. Also note that '�;L and '�

�;L are convex and smooth
on the interior of their domains for all �; L > 0. This is in contrast to metrics of the

form
�P

j jxj jp
�

which are nonconvex for p < 1. This suggests solving

minimize
x2Rn I'�

�;L
.x/

subject to Ax D b (22)
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as a smooth convex relaxation of the conventional `p optimization for 0 � p � 1.
For further details see [28].

Image Denoising and Deconvolution

Consider next problems of the form

minimize
x2X I'.x/C 1

2�
kAx � yk2 (23)

where X is a Hilbert space, I' W X ! .�1;C1� is a semi-norm on X , and
A W X ! Y , is a bounded linear operator. This problem is explored in [17]
as a general framework that includes total variation minimization [108], wavelet
shrinkage [59], and basis pursuit [47]. WhenA is the identity, problem (23) amounts
to a technique for denoising; here y is the received, noisy signal, and the solution
x is an approximation with the desired statistical properties promoted by the
objective I' . When the linear mapping A is not the identity (for instance, A models
convolution against the point spread function of an optical system) problem (23) is
a variational formulation of deconvolution, that is, recovering the true signal from
the image y. The focus here is on total variation minimization.

Total variation was first introduced by Rudin et al. [108] as a regularization
technique for denoising images while preserving edges and, more precisely, the
statistics of the noisy image. The total variation of an image x 2 X D L1.T / –
for T and open subset of R2 – is defined by

IT V .x/ WD sup

�Z
T

x.t/ div �.t/dt
ˇ̌
� 2 C 1

c .T;R
2/; j�.t/j � 1 8t 2 T


:

The integral functional IT V is finite if and only if the distributional derivativeDx of
x is a finite Radon measure in T , in which case IT V .x/ D jDxj.T /. If, moreover,
x has a gradient rx 2 L1.T;R

2/, then IT V .x/ D
R jrx.t/jdt , or, in the context

of the general framework established at the beginning of this chapter, IT V .x/ D
I'.x/ where '.x.t// WD jrx.t/j. The goal of the original total variation denoising
problem proposed in [108] is then to

minimize
x2X ITV .x/

subject to
R
T
Ax D R

T
x0 and

R
T
jAx � x0j2 D 
2:

(24)

The first constraint corresponds to the assumption that the noise has zero mean
and the second assumption requires the denoised image to have a predetermined
standard deviation 
 . Under reasonable assumptions [44], this problem is equivalent
to the convex optimization problem
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minimize
x2X ITV .x/

subject to kAx � x0k2 � 
2:
(25)

Several authors have exploited duality in total variation minimization for efficient
algorithms to solve the above problem [43, 46, 57, 70]. One can “compute” the
Fenchel conjugate of IT V indirectly by using the already mentioned property that the
biconjugate of a proper, convex lsc function is the function itself: f ��.x/ D f .x/

if (and only if) f is proper, convex, and lsc at x. Rewriting IT V as the Fenchel
conjugate of some function yields

IT V .x/ D sup
v
hx; vi � #K.v/;

where

K WD fdiv � j � 2 C 1
c .T;R

2/ and j�.t/j � 1 8t 2 T g:

From this, it is then clear that the Fenchel conjugate of IT V is the indicator function
of the convex set K , #K .

In [43], duality is used to develop an algorithm, with proof of convergence, for
the problem

minimize
x2X ITV .x/C 1

2�
kx � x0k2 (26)

with X a Hilbert space. First-order optimality conditions for this unconstrained
problem are

0 2 x � x0 C �@ITV .x/; (27)

where @IT V .x/ is the subdifferential of IT V at x defined by

v 2 @ITV .x/ ” IT V .y/ � IT V .x/C hv; y � xi 8y:
The optimality condition (27) is equivalent to [24, Proposition 4.4.5]

x 2 @I�
T V ..x0 � x/=�/ (28)

or, since I�
T V D #K ,

x0

�
2
�
I C 1

�
@#K

�
.z/

where z D .x0 � x/=�. (For the finite dimensional statement, see [71, Proposition
I.6.1.2].) Since K is convex, standard facts from convex analysis determine that
@#K.z/ is the normal cone mapping to K at z, denoted NK.z/ and defined by
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NK.z/ WD
(
fv 2 X j hv; x � zi � 0 for all x 2 K g z 2 K
Ø z … K:

Note that this is a set-valued mapping. The resolvent
�
I C 1

�
@#K

	�1
evaluated at

x0=� is the orthogonal projection of x0=� onto K . That is, the solution to (26) is

x� D x0 � PK.x0=�/ D x0 � P�K.x0/:

The inclusions disappear from the formulation due to convexity of K: the resolvent
of the normal cone mapping of a convex set is single valued. The numerical algo-
rithm for solving (26) then amounts to an algorithm for computing the projection
P�K . The tools from convex analysis used in this derivation are the subject of this
chapter.

Inverse Scattering

An important problem in applications involving scattering is the determination of
the shape and location of scatterers from measurements of the scattered field at a
distance. Modern techniques for solving this problem use indicator functions to
detect the inconsistency or insolubility of an Fredholm integral equation of the
first kind, parameterized by points in space. The shape and location of the object
is determined by those points where the auxiliary problem is solvable. Equivalently,
the technique determines the shape and location of the scatterer by determining
whether a sampling function, parameterized by points in space, is in the range of a
compact linear operator constructed from the scattering data.

These methods have enjoyed great practical success since their introduction
in the latter half of the 1990s. Recently Kirsch and Grinberg [74] established a
variational interpretation of these ideas. They observe that the range of a linear
operator G W X ! Y (X and Y are reflexive Banach spaces) can be characterized
by the infimum of the mapping

h. / W Y � ! R [ f�1;C1g WD jh ;F ij;

where F WD GSG� for S W X� ! X , a coercive bounded linear operator.
Specifically, they establish the following.

Theorem 2 ([74, Theorem 1.16]). Let X; Y be reflexive Banach spaces with duals
X� and Y �. Let F W Y � ! Y and G W X ! Y be bounded linear operators with
F D GSG� for S W X� ! X a bounded linear operator satisfying the coercivity
condition

jh'; S'ij � ck'k2
X� for some c > 0 and all ' 2 range.G�/ � X�:
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Then for any � 2 Y nf0g � 2 range.G/ if and only if

inffh. / j  2 Y �; h�;  i D 1g > 0:

It is shown below that the infimal characterization above is equivalent to the
computation of the effective domain of the Fenchel conjugate of h,

h�.�/ WD sup
 2Y �

fh�;  i � h. /g : (29)

In the case of scattering, the operator F above is an integral operator whose
kernel is made up of the “measured” field on a surface surrounding the scatterer.
When the measurement surface is a sphere at infinity, the corresponding operator
is known as the far field operator. The factor G maps the boundary condition of
the governing PDE (the Helmholtz equation) to the far field pattern, that is, the
kernel of the far field operator. Given the right choice of spaces, the mapping G
is compact, one-to-one, and dense. There are two keys to using the above facts for
determining the shape and location of scatterers: first, the construction of the test
function � and, second, the connection of the range of G to that of some operator
easily computed from the far field operator F . The secret behind the success of
these methods in inverse scattering is, first, that the construction of � is trivial and,
second, that there is (usually) a simpler object to work with than the infimum in
Theorem 2 that depends only on the far field operator (usually the only thing that
is known). Indeed, the test functions � are simply far field patterns due to point
sources: �z WD e�ik Ox � z, where Ox is a point on the unit sphere (the direction of the
incident field), k is a nonnegative integer (the wave number of the incident field),
and z is some point in space.

The crucial observation of Kirsch is that �z is in the range of G if and only if z
is a point inside the scatterer. If one does not know where the scatter is, let alone
its shape, then one does not know G, however, the Fenchel conjugate depends not
on G but on the operator F which is constructed from measured data. In general,
the Fenchel conjugate, and hence the Kirsch–Grinberg infimal characterization, is
difficult to compute, but depending on the physical setting, there is a functionalU of
F under which the ranges of U.F / andG coincide. In the case where F is a normal
operator, U.F / D .F �F /1=4; for non-normal F , the functional U depends more
delicately on the physical problem at hand and is only known in a handful of cases.
So the algorithm for determining the shape and location of a scatterer amounts to
determining those points z, where e�ik Ox � z is in the range of U.F / and where U and
F are known and easily computed.

Fredholm Integral Equations

In the scattering application of the previous section, the prevailing numerical
technique is not to calculate the Fenchel conjugate of h. / but rather to explore
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the range of some functional of F . Ultimately, the computation involves solving a
Fredholm integral equation of the first kind, returning to the more general setting
with which this chapter began. Let

.Ax/.s/ D
Z
T

a.s; t/�.dt/ D b.s/

for reasonable kernels and operators. If A is compact, for instance, as in most
deconvolution problems of interest, the problem is ill posed in the sense of
Hadamard. Some sort of regularization technique is therefore required for numerical
solutions [60,66,67,76,113]. Regularization is explored in relation to the constraint
qualifications (9) or (10).

Formulating the integral equation as an entropy minimization problem yields

minimize
x2X I'.x/

subject to Ax D b: (30)

Following [22, Example 2.2], let T and S be the interval Œ0; 1� with Lebesgue
measures � and �, and let a.s; t/ be a continuous kernel of the Fredholm operator
A mapping X WD C.Œ0; 1�/ to Y WD C.Œ0; 1�/, both equipped with the supremum
norm. The adjoint operator is given by A�y D ˚R

S
a.s; t/�.ds/



�.dt/, where the

dual spaces are the spaces of Borel measures,X� D M.Œ0; 1�/ and Y � DM.Œ0; 1�/.
Every element of the range is therefore �-absolutely continuous and A� can be
viewed as having its range in L1.Œ0; 1�; �/. It follows from [105] that the Fenchel
dual of (30) for the operator A is therefore

max
y�2Y �

hb; y�i � I'�.A�y�/: (31)

Note that the dual problem, unlike the primal, is unconstrained. Suppose that A
is injective and that b 2 range.A/. Assume also that '� is everywhere finite and
differentiable. Assuming the solution y to the dual is attained, the naive application
of calculus provides that

b D A
�
@'�

@r
.A�y/

�
and x' D

�
@'�

@r
.A�y/

�
: (32)

Similar to the counterexample explored in section “Linear Inverse Problems
with Convex Constraints”, it is quite likely that A

�
@'�

@r
.range.A�//

	
is smaller

than the range of A, hence it is possible to have b 2 range.A/ but not in

A
�
@'�

@r
.range.A�//

�
. Thus the assumption that the solution to the dual problem

is attained cannot hold and the primal–dual relationship is broken.
For a specific example, following [22, Example 2.2], consider the Laplace

transform restricted to Œ0; 1�: a.s; t/ WD e�st (s 2 Œ0; 1�), and let ' be either the
Boltzmann–Shannon entropy, Fermi–Dirac entropy, or an Lp norm with p 2 .1; 2/,
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(3)–(5), respectively. Take b.s/ WD R
Œ0;1� e

�st x.t/dt for x WD ˛
ˇ̌
t � 1

2

ˇ̌ C ˇ, a
solution to (30). It can be shown that the restricted Laplace operator defines an
injective linear operator from C.Œ0; 1�/ to C.Œ0; 1�/. However, x' given by (32) is
continuously differentiable and thus cannot match the known solution x which is not
differentiable. Indeed, in the case of the Boltzmann–Shannon entropy, the conjugate
function and A�y are entire hence the ostensible solution x' must be infinitely
differentiable on Œ0; 1�. One could guarantee that the solution to the primal problem
(30) is attained by replacing C.Œ0; 1�/ with Lp.Œ0; 1�/, but this does not resolve the
problem of attainment in the dual problem.

To recapture the correspondence between primal and dual problems it is neces-
sary to regularize or, alternatively, relax the problem, or to require the constraint
qualification b 2 core .A dom '/. Such conditions usually require A to be
surjective, or at least to have closed range.

2 Background

As this is meant to be a survey of some of the more useful milestones in convex
analysis, the focus is more on the connections between ideas than their proofs. The
reader will find the proofs in a variety of sources. The presentation is by default in
a normed space X with dual X�, though if statements become too technical, the
Euclidean space variants will suffice. E denotes a finite-dimensional real vector
space R

n for some n 2 N endowed with the usual norm. Typically, X will be
reserved for a real infinite-dimensional Banach space. A common convention in
convex analysis is to include one or both of �1 andC1 in the range of functions
(typically only C1). This is denoted by the (semi-) closed interval .�1;C1� or
Œ�1;C1�.

A set C � X is said to be convex if it contains all line segments between any
two points in C : �x C .1 � �/y 2 C for all � 2 Œ0; 1� and x; y 2 C . Much of
the theory of convexity is centered on the analysis of convex sets, however, sets and
functions are treated interchangeably through the use of level sets, epigraphs, and
indicator functions. The lower-level sets of a function f W X ! Œ�1;C1� are
denoted lev 	˛ f and defined by lev ˛ f WD fx 2 X jf .x/ � ˛ g where ˛ 2 R. The
epigraph of a function f W X ! Œ�1;C1� is defined by

epif WD f.x; t/ 2 E � R jf .x/ � t g :

This leads to the very natural definition of a convex function as one whose epigraph
is a convex set. More directly, a convex function is defined as a mapping f W X !
Œ�1;C1� with convex domain and

f .�xC .1� �/y/ � �f .x/C .1� �/f .y/ for any x; y 2 dom f and � 2 Œ0; 1�:

A proper convex function f W X ! Œ�1;C1� is strictly convex if the above
inequality is strict for all distinct x and y in the domain of f and all 0 < � < 1.
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A function is said to be closed if its epigraph is closed; whereas a lower semi-
continuous (lsc) function f satisfies lim infx!x f .x/ � f .x/ for all x 2 X . These
properties are in fact equivalent:

Proposition 1. The following properties of a function f W X ! Œ�1;C1� are
equivalent:

(i) f is lsc.
(ii) epif is closed in X �R.

(iii) The level sets lev 	˛ f are closed on X for each ˛ 2 R.

Guide. For Euclidean spaces, this is shown in [107, Theorem 1.6]. In the Banach
space setting this is [24, Proposition 4.1.1]. This is left as an exercise for the Hilbert
space setting in [50, Exercise 2.1]. �

A principal focus is on proper functions, that is, f W E ! Œ�1;C1� with
nonempty domain. The indicator function is often used to pass from sets to functions

#C .x/ WD
(

0 x 2 C
C1 else:

For C � X convex, f W C ! Œ�1;C1� will be referred to as a convex function
if the extended function

f .x/ WD
(
f .x/ x 2 C
C1 else

is convex.

Lipschitzian Properties

Convex functions have the remarkable, yet elementary, property that local bound-
edness and local Lipschitz properties are equivalent without any additional assump-
tions on the function. In the following statement of this fact, the unit ball is denoted
by BX WD fx 2 X j kxk � 1 g.

Lemma 1. Let f W X ! .�1;C1� be a convex function and suppose that
C � X is a bounded convex set. If f is bounded on C C ıBX for some ı > 0, then
f is Lipschitz on C .

Guide. See [24, Lemma 4.1.3]. �

With this fact, one can easily establish the following.
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Proposition 2 (Convexity and Continuity in Normed Spaces). Let f W X !
.�1;C1� be proper and convex, and let x 2 dom f . The following are
equivalent:

(i) f is Lipschitz on some neighborhood of x.
(ii) f is continuous at x.

(iii) f is bounded on a neighborhood of x.
(iv) f is bounded above on a neighborhood of x.

Guide. See [24, Proposition 4.1.4] or [31, Sect. 4.1.2]. �

In finite dimensions, convexity and continuity are much more tightly connected.

Proposition 3 (Convexity and Continuity in Euclidean Spaces). Let f W E !
.�1;C1� be convex. Then f is locally Lipschitz, and hence continuous, on the
interior of its domain.

Guide. See [24, Theorem 2.1.12] or [72, Theorem 3.1.2] �

Unlike finite dimensions, in infinite dimensions a convex function need not be
continuous. A Hamel basis, for instance, an algebraic basis for the vector space
can be used to define discontinuous linear functionals [24, Exercise 4.1.21]. For
lsc convex functions, however, the correspondence follows through. The following
statement uses the notion of the core of a set given by Definition 1.

Example 1 (A Discontinuous Linear Functional). Let c00 denote the normed sub-
space of all finitely supported sequences in c0, the vector space of sequences in X
converging to 0; obviously c00 is open. Define ƒ W c00 ! R by ƒ.x/ D P

xj
where x D .xj / 2 c00. This is clearly a linear functional and discontinuous at 0.
Now extend ƒ to a functional Oƒ on the Banach space c0 by taking a basis for c0

considered as a vector space over c00. In particular, C WD Oƒ�1.Œ�1; 1�/ is a convex
set with empty interior for which 0 is a core point. Moreover, C D c0 and Oƒ is
certainly discontinuous. �

Proposition 4 (Convexity and Continuity in Banach Spaces). Suppose X is a
Banach space and f W X ! .�1;C1� is lsc, proper, and convex. Then the
following are equivalent:

(i) f is continuous at x.
(ii) x 2 int dom f .

(iii) x 2 core dom f .

Guide. This is [24, Theorem 4.1.5]. See also [31, Theorem 4.1.3]. �

The above result is helpful since it is often easier to verify that a point is in the core
of the domain of a convex function than in the interior.
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Subdifferentials

The analog to the linear function in classical analysis is the sublinear function in
convex analysis. A function f W X ! Œ�1;C1� is said to be sublinear if

f .�x C �y/ � �f .x/C �f .y/ for all x; y 2 X and �; � � 0.

By convention, 0 � .C1/ D 0. Sometimes sublinearity is defined as a function f
that is positively homogeneous (of degree 1) – i.e., 0 2 dom f and f .�x/ D �f .x/
for all x and all � > 0 – and is subadditive

f .x C y/ � f .x/C f .y/ for all x and y.

Example 2 (Norms). A norm on a vector space is a sublinear function. Recall that
a nonnegative function k � k on a vector space X is a norm if

(i) kxk � 0 for each x 2 X .
(ii) kxk D 0 if and only if x D 0.

(iii) k�xk D j�kxk for every x 2 X and scalar �.
(iv) kx C yk � kxk C kyk for every x; y 2 X .

A normed space is a vector space endowed with such a norm and is called a Banach
space if it is complete which is to say that all Cauchy sequences converge. �

Another important sublinear function is the directional derivative of the function
f at x in the direction d defined by

f 0.xI d/ WD lim
t&0

f .x C td / � f .x/
t

whenever this limit exists.

Proposition 5 (Sublinearity of the Directional Derivative). Let X be a Banach
space and let f W X ! .�1;C1� be a convex function. Suppose that x 2
core .dom f /. Then the directional derivative f 0.xI � / is everywhere finite and
sublinear.

Guide. See [31, Proposition 4.2.4]. For the finite dimensional analog, see [72,
Proposition D.1.1.2] or [24, Proposition 2.1.17]. �

Another important instance of sublinear functions are support functions of
convex sets, which, in turn permit local first-order approximations to convex
functions. A support function of a nonempty subset S of the dual space X�, usually
denoted 
S , is defined by 
S.x/ WD sup fhs; xi j s 2 S g. The support function is
convex, proper (not everywhere infinite), and 0 2 dom 
S .
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Example 3 (Support Functions and Fenchel Conjugation). From the definition of
the support function it follows immediately that, for a closed convex set C ,

#�C D 
C and #��
C D #C : �

A powerful observation is that any closed sublinear function can be viewed as a
support function. This can be seen by the representation of closed convex functions
via affine minorants. This is the content of the Hahn–Banach theorem, which is
stated in infinite dimensions as this setting will be needed below.

Theorem 3 (Hahn–Banach: Analytic Form). Let X be a normed space and 
 W
X ! R be a continuous sublinear function with dom 
 D X . Suppose that L is a
linear subspace of X and that the linear function h W L! R is dominated by 
 on
L, that is 
 � h on L. Then there is a linear function minorizing 
 on X , that is,
there exists a x� 2 X� dominated by 
 such that h.x/ D hx�; xi � 
.x/ for all
x 2 L.

Guide. The proof can be carried out in finite dimensions with elementary tools,
constructing x� from h sequentially by one-dimensional extensions from L. See
[72, Theorem C.3.1.1] and [24, Proposition 2.1.18]. The technique can be extended
to Banach spaces using Zorn’s lemma and a verification that the linear functionals so
constructed are continuous (guaranteed by the domination property) [24, Theorem
4.1.7]. See also [110, Theorem 1.11]. �

An important point in the Hahn–Banach extension theorem is the existence of a
minorizing linear function, and hence the existence of the set of linear minorants.
In fact, 
 is the supremum of the linear functions minorizing it. In other words, 
 is
the support function of the nonempty set

S
 WD fs 2 X� j hs; xi � 
.x/ for all x 2 X g :

A number of facts follow from Theorem 3, in particular the nonemptiness of the
subdifferential, a sandwich theorem and, thence, Fenchel Duality (respectively,
Theorems 5, 7, and 12). It turns out that the converse also holds, and thus these facts
are actually equivalent to nonemptiness of the subdifferential. This is the so-called
Hahn–Banach/Fenchel duality circle.

As stated in Proposition 5, the directional derivative is everywhere finite and
sublinear for a convex function f at points in the core of its domain. In light of the
Hahn–Banach theorem, then f 0.x; � / can be expressed for all d 2 X in terms of its
minorizing function:

f 0.x; d/ D 
S.d/ D max
v2S fhv; d ig:

The set S for which f 0.x; d/ is the support function has a special name: the subd-
ifferential of f at x. It is tempting to define the subdifferential this way, however,
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there is a more elemental definition that does not rely on directional derivatives
or support functions, or indeed even the convexity of f . The correspondence
between directional derivatives of convex functions and the subdifferential below
is a consequence of the Hahn–Banach theorem.

Definition 2 (Subdifferential). For a function f W X ! .�1;C1� and a point
x 2 dom f , the subdifferential of f at x, denoted @f .x/ is defined by

@f .x/ WD fv 2 X� j v.x/ � v.x/ � f .x/ � f .x/ for all x 2 X g :

When x … dom f , define @f .x/ D Ø.

In Euclidean space the subdifferential is just

@f .x/ D fv 2 E j hv; xi � hv; xi � f .x/ � f .x/ for all x 2 E g :

An element of @f .x/ is called a subgradient of f at x. See [31,93,107] for more in-
depth discussion of the regular, or limiting subdifferential defined here, in addition
to other useful varieties. This is a generalization of the classical gradient. Just as the
gradient need not exist, the subdifferential of a lsc convex function may be empty at
some points in its domain. Take, for example, f .x/ D �p1 � x2 for �1 � x � 1.
Then @f .x/ D Ø for x D ˙1.

Example 4 (Common Subdifferentials).

(i) Gradients. A function f W X ! R is said to be strictly differentiable at x if

lim
x!x;u!x

f .x/ � f .u/� rf .x/.x � u/

kx � uk D 0:

This is a stronger differentiability property than Fréchet differentiability since
it requires uniformity in pairs of points converging to x. Luckily for convex
functions the two notions agree. If f is convex and strictly differentiable
at x, then the subdifferential is exactly the gradient. (This follows from
the equivalence of the subdifferential in Definition 2 and the basic limiting
subdifferential defined in [93, Definition 1.77] for convex functions and [93,
Corollary 1.82].) In finite dimensions, at a point x 2 dom f for f convex,
Fréchet and Gâteaux differentiability coincide, and the subdifferential is a
singleton [24, Theorem 2.2.1]. In infinite dimensions, a convex function f that
is continuous at x is Gâteaux differentiable at x if and only if the @f .x/ is a
singleton [24, Corollary 4.2.11].

(ii) The subdifferential of the indicator function.

@#C .x/ D NC.x/;
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where C � X is closed and convex, X is a Banach, and NC.x/ � X� is the
normal cone mapping to C at x defined by

NC.x/ WD
(
fv 2 X� j hv; x � xi � 0 for all x 2 C g x 2 C
Ø x … C: (33)

See (41) for alternative definitions and further discussion of this important
mapping.

(iii) Absolute value. For x 2 R,

@j � j.x/ D

8̂
<̂
ˆ̂:
�1 x < 0

Œ�1; 1� x D 0

1 x > 0:
�

The following elementary observation suggests the fundamental significance of
subdifferential in optimization.

Theorem 4 (Subdifferential at Optimality: Fermat’s Rule). Let X be a normed
space, and let f W X ! .�1;C1� be proper and convex. Then f has a (global)
minimum at x if and only if 0 2 @f .x/.

Guide. The first implication of the global result follows from a more general local
result [93, Proposition 1.114] by convexity; the converse statement follows from the
definition of the subdifferential and convexity. �

Returning now to the correspondence between the subdifferential and the
directional derivative of a convex function f 0.xI d/ has the following fundamental
result.

Theorem 5 (Max Formula – Existence of @f ). Let X be a normed space, d 2 X
and let f W X ! .�1;C1� be convex. Suppose that x 2 cont f . Then @f .x/ ¤
Ø and

f 0.x; d/ D max fhx�; d i j x� 2 @f .x/g :

Proof. The tools are in place for a simple proof that synthesizes many of the
facts tabulated so far. By Proposition 5 f 0.xI � / is finite; so, for fixed d 2
fx 2 X j kxk D 1 g, let ˛ D f 0.xI d/ < 1. The stronger assumption that x 2
cont f and the convexity of f 0.xI � / yield that the directional derivative is Lipschitz
continuous with constant K . Let S WD ftd j t 2 Rg and define the linear function
ƒ W S ! R by ƒ.td/ WD t˛ for t 2 R. Then ƒ. � / � f 0.xI � / on S . The
Hahn–Banach theorem 3 then guarantees the existence of � 2 X� such that
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� D ƒ on S; �. � / � f 0.xI � / on X:

Then � 2 @f .x/ and �.sd/ D f 0.xI sd/ for all s � 0. �

A simple example on R illustrates the importance of the qualification x 2
cont f . Let

f .x/ W R! .�1;C1� WD
(
�px; x � 0

C1 otherwise.

For this example, @f .0/ D Ø.
An important application of the Max formula in finite dimensions is the mean

value theorem for convex functions.

Theorem 6 (Convex Mean Value Theorem). Let f W E ! .�1;C1� be
convex and continuous. For u; v 2 E there exists a point z 2 E interior to the
line segment Œu; v� with

f .u/ � f .v/ � hw; u � vi for all w 2 @f .z/:

Guide. See [93, 107] for extensions of this result and detailed historical back-
ground. �

The next theorem is a key tool in developing a subdifferential calculus. It relies
on assumptions that are used frequently enough that it is worthwhile to present them
separately.

Assumption 6. Let X and Y be Banach spaces and let T W X ! Y be a bounded
linear mapping. Let f W X ! .�1;C1� and g W Y ! .�1;C1� satisfy one
of

0 2 core .dom g � T dom f / and both f and g are lsc, (34)

or

T dom f \ cont g ¤ Ø: (35)

The later assumption can be used in incomplete normed spaces as well.

Theorem 7 (Sandwich Theorem). Let X and Y be Banach spaces and let T W
X ! Y be a bounded linear mapping. Suppose that f W X ! .�1;C1� and
g W Y ! .�1;C1� are proper convex functions with f � �g ı T and which
satisfy Assumption 6. Then there is an affine function A W X ! R defined by
Ax WD hT �y�; xi C r satisfying f � A � �g ı T . Moreover, for any x satisfying
f .x/ D .�g ı T /.x/, it holds that �y� 2 @g.T x/.



Duality and Convex Programming 279

Fig. 1 Hahn–Banach sandwich theorem and its failure. (a) Success; (b) failure

Guide. By the development to this point, the Max formula [24, Theorem 4.1.18]
would apply to prove the result. For a vector space version see [110, Corollary
2.1]. Another route is via Fenchel duality which is explored in the next section.
A third approach closely related to the Fenchel duality approach [31, Theorem
4.3.2] is based on a decoupling lemma which is also presented in the next section
(Lemma 3). �

Corollary 2 (Basic Separation). Let C � X be a nonempty convex set with
nonempty interior in a normed space, and suppose x0 … intC . Then there exists
� 2 X�nf0g such that

sup
C

� � �.x0/ and �.x/ < �.x0/ for all x 2 intC:

If x0 … C then it can be assumed that supC � < �.x0/:

Proof. Assume without loss of generality that 0 2 int C and apply the sand-
wich theorem with f D #fx0g, T the identity mapping on X and g.x/ D
inf fr > 0 j x 2 rC g � 1. See [31, Theorem 4.3.8] and [24, Corollary 4.1.15]. �

The Hahn–Banach theorem 3 can be seen as an easy consequence of the sandwich
theorem 7, which completes part of the circle. Figure 1 illustrates these ideas.

In the next section Fenchel duality is added to this cycle. A calculus of
subdifferentials and a few fundamental results connecting the subdifferential to
classical derivatives and monotone operators conclude the present section.

Theorem 8 (Subdifferential Sum Rule). Let X and Y be Banach spaces, T W
X ! Y a bounded linear mapping and let f W X ! .�1;C1� and g W Y !
.�1;C1� be convex functions. Then at any point x 2 X

@ .f C g ı T / .x/ � @f .x/C T �.@g.T x//;

with equality if Assumption 6 holds.
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Proof sketch. The inclusion is clear. Proving equality permits an elegant proof
using the sandwich theorem [24, Theorem 4.1.19], which we sketch here. Take � 2
@ .f C g ı T / .x/ and assume without loss of generality that

x 7! f .x/C g.T x/ � �.x/

attains a minimum of 0 at x. By Theorem 7 there is an affine function A WD
hT �y�; � i C r with �y� 2 @g.T x/ such that

f .x/ � �.x/ � Ax � �g.Ax/:

Equality is attained at x D x. It remains to check that � C T �y� 2 @f .x/. �
The next result is a useful extension to Proposition 2.

Theorem 9 (Convexity and Regularity in Normed Spaces). Let f W X !
.�1;C1� be proper and convex, and let x 2 dom f . The following are
equivalent:

(i) f is Lipschitz on some neighborhood of x.
(ii) f is continuous at x.

(iii) f is bounded on a neighborhood of x.
(iv) f is bounded above on a neighborhood of x.
(v) @f maps bounded subsets of X into bounded nonempty subsets of X�.

Guide. See [24, Theorem 4.1.25]. �

The next results relate to Example 4 and provide additional tools for verifying dif-
ferentiability of convex functions. The notation!w� denotes weak� convergence.

Theorem 10 (Šmulian). Let the convex function f be continuous at x.

(i) The following are equivalent:
(a) f is Fréchet differentiable at x.
(b) For each sequence xn ! x and � 2 @f .x/, there exist n 2 N and �n 2

@f .xn/ for n � n such that �n ! �:

(c) �n ! � whenever �n 2 @f .xn/, � 2 @f .x/.
(ii) The following are equivalent:

(a) f is Gâteaux differentiable at x.
(b) For each sequence xn ! x and � 2 @f .x/, there exist n 2 N and �n 2

@f .xn/ for n � n such that �n !w� �:

(c) �n !w� � whenever �n 2 @f .xn/, � 2 @f .x/.

A more complete statement of these facts and their provenance can be found in [24,
Theorems 4.2.8 and 4.2.9]. In particular, in every infinite dimensional normed space,



Duality and Convex Programming 281

there is a continuous convex function which is Gâteaux but not Fréchet differentiable
at the origin.

An elementary but powerful observation about the subdifferential viewed as a
multi-valued mapping will conclude this section. A multi-valued mapping T from
X to X� is denoted with double arrows, T W X � X� . Then T is monotone if

hv2 � v1; x2 � x1i � 0 whenever v1 2 T .x1/; v2 2 T .x2/:

Proposition 6 (Monotonicity and Convexity). Let f W X ! .�1;C1� be
proper and convex on a normed space. Then the subdifferential mapping @f W X �
X� is monotone.

Proof. Add the subdifferential inequalities in the Definition 2 applied to f .x1/ and
f .x0/ for v1 2 @f .x1/ and v0 2 @.f .x0/. �

3 Duality and Convex Analysis

The Fenchel conjugate is to convex analysis what the Fourier transform is to
harmonic analysis. To begin, some basic facts about this fundamental tool are
collected.

Fenchel Conjugation

The Fenchel conjugate, introduced in [62], of a mapping f W X ! Œ�1;C1� , as
mentioned above is denoted f � W X� ! Œ�1;C1� and defined by

f �.x�/ D sup
x2X
fhx�; xi � f .x/g:

The conjugate is always convex (as a supremum of affine functions). If the domain
of f is nonempty, then f � never takes the value �1.

Example 5 (Important Fenchel Conjugates).

(i) Absolute value.

f .x/ D jxj .x 2 R/; f �.y/ D
(

0 y 2 Œ�1; 1�

C1 else.

(ii) Lp norms (p > 1).

f .x/ D 1

p
kxkp .p > 1/; f �.y/ D 1

q
kykq

�
1
p
C 1

q
D 1

�
:
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In particular, note that the two-norm conjugate is “self-conjugate.”
(iii) Indicator functions.

f D #C ; f � D 
C ;

where 
C is the support function of the set C . Note that if C is not closed and
convex, then the conjugate of 
C , that is the biconjugate of #C , is the closed
convex hull of C . (See Proposition 8(ii).)

(iv) Boltzmann–Shannon entropy.

f .x/ D
(
x ln x � x .x > 0/

0 .x D 0/
; f �.y/ D ey .y 2 R/:

(v) Fermi–Dirac entropy.

f .x/ D
(
x lnx C .1 � x/ ln.1 � x/ .x 2 .0; 1//
0 .x D 0; 1/

;

f �.y/ D ln.1C ey/ .y 2 R/: �

Some useful properties of conjugate functions are tabulated below.

Proposition 7 (Fenchel–Young Inequality). Let X be a normed space and let f W
X ! Œ�1;C1� . Suppose that x� 2 X� and x 2 dom f . Then

f .x/C f �.x�/ � hx�; xi : (36)

Equality holds if and only if x� 2 @f .x/.

Proof sketch. The proof follows by an elementary application of the definitions
of the Fenchel conjugate and the subdifferential. See [103] for the finite dimensional
case. The same proof works in the normed space setting. �

The conjugate, as the supremum of affine functions, is convex. In the following,
the closure of a function f is denoted by f , and convf is the function whose
epigraph is the closed convex hull of the epigraph of f .

Proposition 8. Let X be a normed space and let f W X ! Œ�1;C1� .
(i) If f � g then g� � f �.

(ii) f � D
�
f
�� D .convf /�.

Proof. The definition of the conjugate immediately implies (i). This immediately

yields f � �
�
f
�� � .convf /�. To show (ii) it remains to show that f � �
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.convf /�. Choose any � 2 X�. If f �.�/ D C1 the conclusion is clear, so
assume f �.�/ D ˛ for some ˛ 2 R. Then �.x/ � f .x/ � ˛ for all x 2 X .
Define g WD � � f . Then g � convf and, by (i) .convf /� � g�. But g� D ˛, so
.convf /� � ˛ D f �.�/. �

Application of Fenchel conjugation twice, or biconjugation denoted by f ��, is a
function onX��. In certain instances, biconjugation is the identity – in this way, the
Fenchel conjugate resembles the Fourier transform. Indeed, Fenchel conjugation
plays a role in the convex analysis similar to the Fourier transform in harmonic
analysis and has a contemporaneous provenance dating back to Legendre.

Proposition 9 (Biconjugation). Let f W X ! .�1;C1� , x 2 X and x� 2 X�.

(i) f ��jX � f .
(ii) If f is convex and proper, then f ��.x/ D f .x/ at x if and only if f is lsc at

x. In particular, f is lsc if and only if f ��
X D f .

(iii) f ��jX D convf if convf is proper.

Guide. (i) follows from Fenchel–Young, Proposition 7, and the definition of the
conjugate. (ii) follows from (i) and an epi-separation property [24, Proposition
4.4.2]. (iii) follows from (ii) of this proposition and 8(ii). �

The next results highlight the relationship between the Fenchel conjugate and the
subdifferential already used in (28).

Proposition 10. Let f W X ! .�1;C1� be a function and x 2 dom f . If
� 2 @f .x/ then x 2 @f �.�/. If, additionally, f is convex and lsc at x, then the
converse holds, namely x 2 @f �.�/ implies � 2 @f .x/.

Guide. See [72, Corollary 1.4.4] for the finite dimensional version of this fact that,
with some modification, can be extended to normed spaces. �

Infimal convolutions conclude this subsection. Among them many applications
are smoothing and approximation – just as is the case for integral convolutions.

Definition 3 (Infimal Convolution). Let f and g be proper extended real-valued
functions on a normed space X . The infimal convolution of f and g is defined by

.f�g/.x/ WD inf
y2X f .y/C g.x � y/:

The infimal convolution of f and g is the largest extended real-valued function
whose epigraph contains the sum of epigraphs of f and g; consequently, it is a
convex function when f and g are convex.
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The next lemma follows directly from the definitions and careful application of
the properties of suprema and infima.

Lemma 2. Let X be a normed space and let f and g be proper functions on X ,
then .f�g/� D f � C g�:

An important example of infimal convolution is Yosida approximation.

Theorem 11 (Yosida Approximation). Let f W X ! R be convex and bounded
on bounded sets. Then both f�nk � k2 and f �nk � k converge uniformly to f on
bounded sets.

Guide. This follows from the above lemma and basic approximation facts. �

In the inverse problems literature
�
f �nk � k2

	
.0/ is often referred to as Tikhonov

regularization; elsewhere, f�nk � k2 is referred to as Moreau–Yosida regularization
because f� 1

2k � k2, the Moreau envelope, was studied in depth by Moreau [94, 95].
The argmin mapping corresponding to the Moreau envelope – that is the mapping
of x 2 X to the point y 2 X at which the value of f� 1

2k � k2 is attained – is called
the proximal mapping [94, 95, 107]

prox�;f .x/ WD argmin y2X f .y/C
1

2�
kx � yk2: (37)

When f is the indicator function of a closed convex set C , the proximal mapping is
just the metric projection onto C , denoted by PC .x/: prox�;#C .x/ D PC .x/.

Fenchel Duality

Fenchel duality can be proved by Theorem 5 and the sandwich theorem 7 [24, Theo-
rem 4.4.18]. As the syllogism to this point deduces Fenchel duality as a consequence
of the Hahn–Banach theorem. In order to close the Fenchel duality/Hahn–Banach
circle of ideas, however, following [31] the main duality result of this section follows
from the Fenchel–Young inequality and the next important lemma.

Lemma 3 (Decoupling). Let X and Y be Banach spaces and let T W X ! Y be
a bounded linear mapping. Suppose that f W X ! .�1;C1� and g W Y !
.�1;C1� are proper convex functions which satisfy Assumption 6. Then there is
a y� 2 Y � such that for any x 2 X and y 2 Y ,

p � �f .x/ � hy�; T xi	C �g.y/C hy�; yi	 ;
where p WD infX ff .x/C g.T x/g.
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Guide. Define the perturbed function h W Y ! Œ�1;C1� by

h.u/ WD inf
x2Xff .x/C g.T x C u/g;

which has the property that h is convex, dom h D dom g�T dom f and (the most
technical part of the proof) 0 2 int .dom h/. This can be proved by assuming the
first of the constraint qualifications (34). The second condition (35) implies (34).
Then Theorem 5 yields @h.0/ ¤ Ø, which guarantees the attainment of a minimum
of the perturbed function. The decoupling is achieved through a particular choice of
the perturbation u. See [31, Lemma 4.3.1]. �

One can now provide an elegant proof of Theorem 1, which is restated here for
convenience.

Theorem 12 (Fenchel Duality). Let X and Y be normed spaces, consider the
functions f W X ! .�1;C1� and g W Y ! .�1;C1� and let T W X ! Y

be a bounded linear map. Define the primal and dual values p, d 2 Œ�1;C1� by
the Fenchel problems

p D inf
x2Xff .x/C g.T x/g (38)

d D sup
y�2Y �

f�f �.T �y�/� g�.�y�/g: (39)

These values satisfy the weak duality inequality p � d .
If X; Y are Banach, f; g are convex and satisfy Assumption 6 then p D d , and

the supremum to the dual problem is attained if finite.

Proof. Weak duality follows directly from the Fenchel–Young inequality.
For equality assume that p ¤ �1 (this case is clear). Then Assumption 6

guarantees that p < C1, and by the decoupling lemma (Lemma 3), there is a
� 2 Y � such that for all x 2 X and y 2 Y

p � .f .x/ � h�; T xi/C .g.y/ � h��; yi/ :

Taking the infimum over all x and then over all y yields

p � �f �.T �; �/� g�.��/ � d � p:

Hence, � attains the supremum in (39), and p D d . �

Fenchel duality for linear constraints, Corollary 1, follows immediately by
taking g WD #fbg.
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Applications

Calculus Fenchel duality is, in some sense, the dual space representation of the
sandwich theorem. It is a straightforward exercise to derive Fenchel duality from
Theorem 7. Conversely, the existence of a point of attainment in Theorem 12 yields
an explicit construction of the linear mapping in Theorem 7: A WD hT ��; � i C r ,
where � is the point of attainment in (39) and r 2 Œa; b� where a WD infx2X f .x/ �
hT ��; xi and b WD supz2X �g.T z/ � hT ��; zi. One could then derive all the
theorems using the sandwich theorem, in particular the Hahn–Banach theorem 3 and
the subdifferential sum rule, Theorem 8, as consequences of Fenchel duality instead.
This establishes the Hahn–Banach/Fenchel duality circle: Each of these facts is
equivalent and easily interderivable with the nonemptiness of the subgradient of a
function at a point of continuity.

An immediate consequence of Fenchel duality is a calculus of polar cones. Define
the negative polar cone of a set K in a Banach space X by

K� D fx� 2 X� j hx�; xi � 0 8 x 2 K g : (40)

An important example of a polar cone that has appeared in the applications discussed
in this chapter is the normal cone of a convex set K at a point x 2 K , defined by
(33). Note that

NK.x/ WD .K � x/�: (41)

Corollary 3 (Polar Cone Calculus). Let X and Y be Banach spaces andK � X
andH � Y be cones, and let A W X ! Y be a bounded linear map. Then

K� C A�H� � �K C A�1H
	�

where equality holds if K andH are closed convex cones which satisfyH �AK D
Y .

This can be used to easily establish the normal cone calculus for closed convex sets
C1 and C2 at a point x 2 C1 \ C2

NC1\C2.x/ � NC1.x/CNC2.x/

with equality holding if, in addition, 0 2 core .C1 � C2/ or C1 \ int C2 ¤ Ø.

Optimality Conditions Another important consequence of these ideas is the
Pshenichnyi–Rockafellar [101, 103] condition for optimality for nonsmooth con-
strained optimization.
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Theorem 13 (Pshenichnyi–Rockafellar Conditions). Let X be a Banach space,
let C � X be closed and convex, and let f W X ! .�1;C1� be a convex
function. Suppose that either int C \ dom f ¤ Ø and f is bounded below on C ,
or C \ cont f ¤ Ø. Then there is an affine function ˛ � f with infC f D infC ˛.
Moreover, x is a solution to

.P0/
minimize

x2X
f .x/

subject to x 2 C

if and only if

0 2 @f .x/CNC.x/:

Guide. Apply the subdifferential sum rule to f C #C at x. �

A slight generalization extends this to linear constraints

.Plin/
minimize

x2X f .x/

subject to T x 2 D

Theorem 14 (First-Order Necessary and Sufficient). Let X and Y be Banach
spaces withD � Y convex, and let f W X ! .�1;C1� be convex and T W X !
Y a bounded linear mapping. Suppose further that one of the following holds:

0 2 core .D � T dom f /; D is closed and f is lsc; (42)

or

T dom f \ int .D/ ¤ Ø: (43)

Then the feasible set C WD fx 2 X jT x 2 D g satisfies

@.f C #C /.x/ D @f .x/C T �.ND.T x// (44)

and x is a solution to (Plin) if and only if

0 2 @f .x/C T �.ND.T x//: (45)

A point y� 2 Y � satisfying T �y� 2 �@f .x/ in Theorem 14 is a Lagrange
multiplier.

Lagrangian Duality The setting is limited to Euclidean space and the general
convex program
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.Pcvx/
minimize

x2E f0.x/

subject to fj .x/ � 0 .j D 1; 2; : : : ; m/

where the functions fj for j D 0; 1; 2; : : : ; m are convex and satisfy

m\
jD0

dom fj ¤ Ø: (46)

Define the Lagrangian L W E �R
mC ! .�1;C1� by

L.x; �/ WD f0.x/C �T F.x/;

where F WD .f1; f2; : : : ; fm/
T . A Lagrange multiplier in this context is a vector

� 2 R
mC for a feasible solution x if x minimizes the function L. � ; �/ over

E and � satisfies the so-called complimentary slackness conditions: �j D 0
whenever fj .x/ < 0. On the other hand, if x is feasible for the convex program
.Pcvx/ and there is a Lagrange multiplier, then x is optimal. Existence of the
Lagrange multiplier is guaranteed by the following Slater constraint qualification
first introduced in the 1950s.

Assumption 7 (Slater Constraint Qualification). There exists an Ox 2 dom f0with
fj . Ox/ < 0 for j D 1; 2; : : : ; m.

Theorem 15 (Lagrangian Necessary Conditions). Suppose that x 2 dom f0 is
optimal for the convex program (Pcvx) and that Assumption 7 holds. Then there is a
Lagrange multiplier vector for x.

Guide. See [27, Theorem 3.2.8]. �

Denote the optimal value of .Pcvx/ by p. Note that, since

sup
�2RmC

L.x; �/ D
(
f .x/ if x 2 dom f

C1 otherwise;

then

p D inf
x2E sup

�2RmC

L.x; �/: (47)

It is natural, then to consider the problem

d D sup
�2RmC

inf
x2E L.x; �/ (48)
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where d is the dual value. It follows immediately that p � d . The difference
between d and p is called the duality gap. The interesting problem is to determine
when the gap is zero, that is, when d D p.

Theorem 16 (Dual Attainment). If Assumption 7 holds for the convex program-
ming problem (Pcvx), then the primal and dual values are equal and the dual value
is attained if finite.

Guide. For a more detailed treatment of the theory of Lagrangian duality see [27,
Sect. 4.3]. �

Optimality and LagrangeMultipliers

In the previous sections, duality theory was presented as a byproduct of the Hahn–
Banach/Fenchel duality circle of ideas. This provides many entry points to the
theory of convex and variational analysis. For present purposes, however, the
real significance of duality lies with its power to illuminate duality in convex
optimization, not only as a theoretical phenomenon but also as an algorithmic
strategy.

In order to get to optimality criteria and the existence of solutions to convex
optimization problems, turn to the approximation of minima, or more generally the
regularity and well-posedness of convex optimization problems. Due to its reliance
on the Slater constraint qualification (49), Theorem 16 is not adequate for problems
with equality constraints:

.Peq/
minimize

x2S f0.x/

subject to F.x/ D 0

for S � E closed and F W E ! Y a Fréchet differentiable mapping between the
Euclidean spaces E and Y .

More generally, one has problems of the form

.PE/
minimize

x2S f0.x/

subject to F.x/ 2 D (49)

for E and Y Euclidean spaces, and S � E and D � Y are convex but not
necessarily with nonempty interior.

Example 6 (Simple Karush–Kuhn–Tucker). For linear optimization problems, rel-
atively elementary linear algebra is all that is needed to assure the existence of
Lagrange multipliers. Consider



290 J.M. Borwein and D.R. Luke

.PE/
minimize

x2S f0.x/

subject to fj .x/ 2 Dj ; j D 1; 2; : : : ; m

for fj W Rn ! R (j D 0; 1; 2; : : : ; s) continuously differentiable, fj W Rn ! R

(j D s C 1; : : : ; m) linear. Suppose S � E is closed and convex, while Di WD
.�1; 0� for j D 1; 2; : : : ; s andDj WD f0g for j D s C 1; : : : ; m.

Theorem 17. Denote by f 0
J
.x/ the submatrix of the Jacobian of .f1; : : : ; fs/

T

(assuming this is defined at x) consisting only of those f 0
j for which fj .x/ D 0.

In other words, f 0
J
.x/ is the Jacobian of the active inequality constraints at x.

Let x be a local minimizer for .PE/ at which fj are continuously differentiable
.j D 0; 1; : : : ; s/ and the matrix

 
f 0
J
.x/

A

!
(50)

is full-rank where A WD .rfsC1; : : : ;rfm/T . Then there are � 2 R
s and � 2 R

m

satisfying

� � 0: (51a)

.f1.x/; : : : ; fs.x//� D 0: (51b)

f 0
0 .x/C

sX
jD1

�j f
0
j .x/C �TA D 0: (51c)

Guide. An elegant and elementary proof is given in [36]. �

For more general constraint structure, regularity of the feasible region is essential
for the normal cone calculus which plays a key role in the requisite optimality
criteria. More specifically, one has the following constraint qualification.

Assumption 8 (Basic Constraint Qualification).

y D .0; : : : ; 0/ is the only solution in ND.F.x// to 0 2 rF T .x/y CNS.x/:

Theorem 18 (Optimality on Sets with Constraint Structure). Let

C D fx 2 S jF.x/ 2 D g

for F D .f1; f2; : : : ; fm/ W E ! R
m with fj continuously differentiable (j D

1; 2; : : : ; m), S � E closed, and forD D D1 �D2 � � � �Dm � R
m with Dj closed

intervals (j D 1; 2; : : : ; m). Then for any x 2 C at which Assumption 8 is satisfied
one has
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NC.x/ D rF T .x/ND.F.x//CNS.x/: (52)

If, in addition, f0 is continuously differentiable and x is a locally optimal solution
to (PE) then there is a vector y 2 ND.F.x//, called a Lagrange multiplier such
that 0 2 rf0.x/CrF T .x/y CNS.x/.

Guide. See [107, Theorems 6.14 and 6.15]. �

Variational Principles

The Slater condition (49) is an interiority condition on the solutions to optimization
problems. Interiority is just one type of regularity required of the solutions, wherein
one is concerned with the behavior of solutions under perturbations. The next
classical result lays the foundation for many modern notions of regularity of
solutions.

Theorem 19 (Ekeland’s Variational Principle). Let .X; d/ be a complete metric
space and let f W X ! .�1;C1� be a lsc function bounded from below. Suppose
that � > 0 and z 2 X satisfy

f .z/ < inf
X
f C �:

For a given fixed � > 0, there exists y 2 X such that

(i) d.z; y/ � �.
(ii) f .y/C �

�
d.z; y/ � f .z/.

(iii) f .x/C �
�
d.x; y/ > f .y/; for all x 2 Xnfyg.

Guide. For a proof see [61]. For a version of the principle useful in the presence of
symmetry see [32]. �

An important application of Ekeland’s variational principle is to the theory of
subdifferentials. Given a function f W X ! .�1;C1� , a point x0 2 dom f and
� � 0, the �-subdifferential of f at x0 is defined by

@�f .x0/ D f� 2 X� j h�; x � x0i � f .x/ � f .x0/C �; 8x 2 X g :

If x0 … dom f then by convention @�f .x0/ WD Ø. When � D 0 one has @�f .x/ D
@f .x/: For � > 0 the domain of the �-subdifferential coincides with dom f when
f is a proper convex lsc function.

Theorem 20 (Brønsted–Rockafellar). Suppose f is a proper lsc convex function
on a Banach spaceX . Then given any x0 2 dom f ,� > 0, � > 0 and w0 2 @�f .x0/
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there exist x 2 dom f and w 2 X� such that

w 2 @f .x/; kx � x0k � �=� and kw � w0k � �:

In particular, the domain of @f is dense in dom f .

Guide. Define g.x/ WD f .x/ � hw0; xi on X , a proper lsc convex function with
the same domain as f . Then g.x0/ � infX g.x/C �. Apply Theorem 19 to yield a
nearby point y that is the minimum of a slightly perturbed function, g.x/C�kx�yk.
Define the new function h.x/ WD �kx � yk � g.y/, so that h.x/ � g.x/ for all X .
The sandwich theorem (Theorem 7) establishes the existence of an affine separator
˛ C � which is used to construct the desired element of @f .x/. �

A nice application of Ekeland’s variational principle provides an elegant proof of
Klee’s problem in Euclidean spaces [75]: Is every C̆ebyc̆ev set C convex? Here, a
C̆ebyc̆ev set is one with the property that every point in the space has a unique best
approximation in C . A famous result is as follows.

Theorem 21. Every C̆ebyc̆ev set in a Euclidean space is closed and convex.

Guide. Since, for every finite dimensional Banach space with smooth norm,
approximately convex sets are convex, it suffices to show that C is approximately
convex, that is, for every closed ball disjoint from C there is another closed ball
disjoint from C of arbitrarily large radius containing the first. This follows from the
mean value Theorem 6 and Theorem 19. See [24, Theorem 3.5.2]. It is not known
whether the same holds for Hilbert space. �

Fixed Point Theory andMonotoneOperators

Another application of Theorem 19 is Banach’s fixed point theorem.

Theorem 22. Let .X; d/ be a complete metric space and let � W X ! X . Suppose
there is a � 2 .0; 1/ such that d.�.x/; �.y// � �d.x; y/ for all x; y 2 X . Then
there is a unique fixed point x 2 X such that �.x/ D x.

Guide. Define f .x/ WD d.x; �.x//. Apply Theorem 19 to f with � D 1 and
� D 1 � � . The fixed point x satisfies f .x/C �d.x; x/ � f .x/ for all x 2 X . �

The next theorem is a celebrated result in convex analysis concerning the
maximality of lsc proper convex functions. A monotone operator T onX is maximal
if gphT cannot be enlarged in X �X without destroying the monotonicity of T .



Duality and Convex Programming 293

Theorem 23 (Maximal Monotonicity of Subdifferentials). Let f W X !
.�1;C1� be a lsc proper convex function on a Banach space. Then @f is maximal
monotone.

Guide. The result was first shown by Moreau for Hilbert spaces [95, Propo-
sition 12.b], and shortly thereafter extended to Banach spaces by Rockafellar
[102, 104]. For a modern infinite dimensional proof see [1, 24]. This result fails
badly in incomplete normed spaces [24]. �

Maximal monotonicity of subdifferentials of convex functions lies at the heart
of the success of algorithms as this is equivalent to firm nonexpansiveness of
the resolvent of the subdifferential .I C @f /�1 [92]. An operator T is firmly
nonexpansive on a closed convex subset C � X when

kT x � Tyk2 � hx � y; T x � Tyi for all x; y 2 X: (53)

T is just nonexpansive on the closed convex subset C � X if

kT x � Tyk � kx � yk for all x; y 2 C: (54)

Clearly, all firmly nonexpansive operators are nonexpansive. One of the most
longstanding questions in geometric fixed point theory is whether a nonexpansive
self-map T of a closed bounded convex subset C of a reflexive space X must have
a fixed point. This is known to hold in Hilbert space.

4 Case Studies

One can now collect the dividends from the analysis outlined above for problems of
the form

minimize
x2C�X I'.x/

subject to Ax 2 D (55)

whereX and Y are real Banach spaces with continuous dualsX� and Y �, C andD
are closed and convex,A W X ! Y is a continuous linear operator, and the integral
functional I'.x/ WD

R
T
'.x.t//�.dt/ is defined on some vector subspace Lp.T; �/

of X .

Linear Inverse Problems with Convex Constraints

SupposeX is a Hilbert space,D D fbg 2 R
m and '.x/ WD 1

2kxk2. To apply Fenchel
duality, rewrite (12) using the indicator function
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minimize
x2X

1
2kxk2 C #C .x/

subject to Ax D b: (56)

Note that the problem is posed on an infinite dimensional space, while the
constraints (the measurements) are finite dimensional. Here Fenchel duality is used
to transform an infinite dimensional problem into a finite dimensional problem. Let
F WD fx 2 C � E jAx D b g and let G denote the extensible set in E consisting
of all measurement vectors b for which F is nonempty. Potter and Arun show that
the existence of y 2 R

m such that b D APCA
�y is guaranteed by the constraint

qualification b 2 ri G, where ri denotes the relative interior [100, Corollary 2]. This
is a special case of Assumption 6, which here reduces to b 2 int A.C /. Though at
first glance the latter condition is more restrictive, it is no real loss of generality
since, if it fails, one can restrict the problem to range.A/ which is closed. Then it
turns out that b 2 Aqri C , the image of the quasi-relative interior of C [27, Exercise
4.1.20]. Assuming this holds Fenchel duality, Theorem 12, yields the dual problem

sup
y2Rm
hb; yi � � 1

2k � k2 C #C
	�
.A�y/; (57)

whose value is equivalent to the value of the primal problem. This is a finite dimen-
sional unconstrained convex optimization problem whose solution is characterized
by the inclusion (Theorem 4)

0 2 @ � 1
2k � k2 C #C

	�
.A�y/ � b: (58)

Now from Lemma 2, Examples 5(ii) and (iii), and (37),

�
1
2k � k2 C #C

	�
.x/ D �
C� 1

2k � k
	
.x/ D inf

z2X 
C .z/C
1
2kx � zk2:

The argmin of the Yosida approximation above (see Theorem 11) is the proximal
operator (37). Applying the sum rule for differentials, Theorem 8 and Proposition 10
yield

prox1;
C .x/ D argmin z2X
˚

C .z/C 1

2kz � xk2

 D x � PC .x/; (59)

where PC is the orthogonal projection onto the set C . This together with (58) yields
the optimal solution y to (57):

b D APC .A�y/: (60)

Note that the existence of a solution to (60) is guaranteed by Assumption 6. This
yields the solution to the primal problem as x D PC .A�y/.

With the help of (59), the iteration proposed in [100] can be seen as a subgradient
descent algorithm for solving
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inf
y2Rm h.y/ WD 
C .A

�y � PC .A�y//C 1
2kPC .A�y/k2 � hb; yi :

The proposed algorithm is, given y0 2 R
m generates the sequence fyng1nD0 by

ynC1 D yn � �@h.yn/ D yn C �
�
b � APCA�yn

	
:

For convergence results of this algorithm in a much larger context see [55].

Imaging withMissing Data

This application is formally simpler than the previous example since there is no
abstract constraint set. As discussed in section “Imaging with Missing Data” in
Sect. 1 relaxations to the conventional problem take the form

minimize
x2Rn I'�

�;L
.x/

subject to Ax D b; (61)

where

'�
�;L.x/ D

�

ln.2/
ln
�
4xL=� C 1

	 � xL � �: (62)

Using Fenchel duality, the dual to this problem is the concave optimization problem

sup
y2Rm

yT b � I'�;L.A�y/;

where

'�;L.x/ WD �

�
.LC x/ ln.LC x/C .L � x/ ln.L � x/

2L ln.2/
� ln.L/

ln.2/

�

L; � > 0 x 2 Œ�L;L�:

If there exists a point y satisfying b D AA�y, then the optimal value in the dual
problem is attained and the primal solution is given by A�y. The objective in the
dual problem is smooth and convex, so we could apply any number of efficient
unconstrained optimization algorithms. Also, for this relaxation, the same numerical
techniques can be used for all L! 0. For further details see [28].
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Inverse Scattering

Theorem 24. Let X; Y be reflexive Banach spaces with duals X� and Y �. Let F W
Y � ! Y and G W X ! Y be bounded linear operators with F D GSG� for
S W X� ! X a bounded linear operator satisfying the coercivity condition

jh'; S'ij � ck'k2
X� for some c > 0 and all ' 2 range.G�/ � X�:

Define h. / W Y � ! .�1;C1� WD jh ;F ij, and let h� denote the Fenchel
conjugate of h. Then range.G/ D dom h�.

Proof. Following [74, Theorem 1.16], one shows that h�.�/ D 1 for � …
range.G/. To do this it is helpful to work with a dense subset of range G: G�.C /
for C WD f 2 Y � j h ; �i D 0 g : It was shown in [74, Theorem 1.16] that G�.C /
is dense in range.G/.

Now by the Hahn–Banach theorem 3 there is a O� 2 Y � such that
D O�; �E D 1.

Since G�.C / is dense in range.G�/, there is a sequence f ng1nD1 � C with

G� n ! �G� O�; n!1:

Now set  n WD O nC O�. Then h�; ˛ ni D ˛ andG�.˛ n/ D ˛G� n ! 0 for any
˛ 2 R. Using the factorization of F one has

j h n; F ni j D j hG� n; SG� ni j � kSkkG� nk2
X�

hence ˛2 h n; F ni ! 0 as n ! 1 for all ˛, but h�; ˛ ni D ˛, that is,
h�; ˛ ni � h.˛ n/! ˛ and h�.�/ D 1. �

In the scattering application, one has a scatterer supported on a domain D �
R
m (m D 2 or 3) that is illuminated by an incident field. The Helmholtz equation

models the behavior of the fields on the exterior of the domain and the boundary data
belongs to X D H 1=2.�/. On the sphere at infinity the leading-order behavior of
the fields, the so-called far field pattern, lies in Y D L2.S/. The operator mapping
the boundary condition to the far field pattern – the data-to-pattern operator – is
G W H 1=2.�/ ! L2.S/ . Assume that the far field operator F W L2.S/ ! L2.S/

has the factorization F D GS�G�, where S W H�1=2.�/ ! H 1=2.�/ is a single
layer boundary operator defined by

.S'/ .x/ WD
Z
�

ˆ.x; y/'.y/ds.y/; x 2 �;

for ˆ.x; y/ the fundamental solution to the Helmholtz equation. With a few results
about the denseness of G and the coercivity of S , which, though standard, will be
glossed over, one has the following application to inverse scattering.
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Corollary 4 (Application to Inverse Scattering). Let D � R
m (m D 2 or 3)

be an open bounded domain with connected exterior and boundary � . Let G W
H 1=2.�/ ! L2.S/, be the data-to-pattern operator, S W H�1=2.�/ ! H 1=2.�/ ,
the single layer boundary operator and let the far field pattern F W L2.S/! L2.S/

have the factorization F D GS�G�. Assume k2 is not a Dirichlet eigenvalue of�4
onD. Then rangeG D dom h� where h. / W L2.S/! .�1;C1� WD jh ;F ij.

Fredholm Integral Equations

The introduction featured the failure of Fenchel duality for Fredholm integral
equations. The following sketch of a result on regularizations, or relaxations,
recovers duality relationships. The result will show that by introducing a relaxation,
one can recover the solution to ill-posed integral equations as the norm limit of
solutions computable from a dual problem of maximum entropy type.

Theorem 25 ([22], Theorem 3.1). Let X D L1.T; �/ on a complete mea-
sure finite measure space and let .Y; k � k/ be a normed space. The infimum
infx2X

˚
I'.x/ jAx D b



is attained when finite. In the case where it is finite,

consider the relaxed problem for � > 0

�
P�
MEP

	 minimize
x2X

I'.x/

subject to kAx � bk � �:

Let p� denote the value of
�
P�
MEP

	
. The value of p� equals d�, the value of the dual

problem

�
P�
DEP

	
maximize
y�2Y �

hb; y�i � �ky�k� � I'�.A�y�/;

and the unique optimal solution of
�
P�
MEP

	
is given by

x';� WD @'�

@r

�
A�y�

�

	
;

where y�
� is any solution to

�
P�
DEP

	
. Moreover, as �! 0C, x';� converges in mean

to the unique solution of
�
P0
MEP

	
and p� ! p0.

Guide. Attainment of the infimum in infx2X
˚
I'.x/ jAx D b



follows from strong

convexity of I' [26, 112]: strictly convex with weakly compact lower-level sets and
with the Kadec property, i.e., that weak convergence together with convergence
of the function values implies norm convergence. Let g.y/ WD #S .y/ for S D
fy 2 Y j b 2 y C �BY g and rewrite

�
P�
MEP

	
as inf

˚
I'.x/C g.Ax/ j x 2 X



. An

elementary calculation shows that the Fenchel dual to
�
P�
MEP

	
is
�
P�
DEP

	
. The
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relaxed problem
�
P�
MEP

	
has a constraint for which a Slater-type constraint

qualification holds at any feasible point for the unrelaxed problem. The value d� is
thus attained and equal to p�. Subgradient arguments following [25] show that x';�
is feasible for

�
P�
MEP

	
and is the unique solution to

�
P�
MEP

	
. Convergence follows

from weak compactness of the lower-level set L.p0/ WD
˚
x
ˇ̌
I'.x/ � p0



, which

contains the sequence .x';�/�>0. Weak convergence of x';� to the unique solution
to the unrelaxed problem follows from strict convexity of I' . Convergence of the
function values and strong convexity of I' then yields norm convergence. �

Notice that the dual in Theorem 25 is unconstrained and easier to compute with,
especially when there are finitely many constraints. This theorem remains valid for
objectives of the form I'.x/Chx�; xi for x� in L1.T /. This enables one to apply
them to many Bregman distances, that is, integrands of the form �.x/ � �.x0/ �
h�0.x0/; x � x0i, where � is closed and convex on R.

5 Open Questions

Regrettably, due to space constraints, fixed point theory and many facts about
monotone operators that are useful in proving convergence of algorithms have been
omitted. However, it is worthwhile noting two long-standing problems that impinge
on fixed point and monotone operator theory.

1. Klee’s problem: is every C̆ebyc̆ev set C in a Hilbert space convex?
2. Must a nonexpansive self-map T of a closed bounded convex subset C of a

reflexive space X have a fixed point?

6 Conclusion

Duality and convex programming provides powerful techniques for solving a wide
range of imaging problems. While frequently a means toward computational ends,
the dual perspective can also yield new insight into image processing problems and
the information content of data implicit in certain models. Five main applications
illustrate the convex analytical approach to problem solving and the use of duality:
linear inverse problems with convex constraints, compressive imaging, image
denoising and deconvolution, nonlinear inverse scattering, and finally Fredholm
integral equations. These are certainly not exhaustive, but serve as good templates.
The Hahn–Banach/Fenchel duality cycle of ideas developed here not only provides
a variety of entry points into convex and variational analysis, but also underscores
duality in convex optimization as both a theoretical phenomenon and an algorithmic
strategy.

As readers of this volume will recognize, not all problems of interest are convex.
But just as nonlinear problems are approached numerically by sequences of linear
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approximations, nonconvex problems can be approached by sequences of convex
approximations. Convexity is the central organizing principle and has tremendous
algorithmic implications, including not only computable guarantees about solutions,
but efficient means toward that end. In particular, convexity implies the existence
of implementable, polynomial-time, algorithms. This chapter is meant to be a
foundation for more sophisticated methodologies applied to more complicated
problems.
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1 Maximum Likelihood Estimation

Expectation-maximization algorithms, or EM algorithms for short, are iterative
algorithms designed to solve maximum likelihood estimation problems. The general
setting is that one observes a random sample Y1; Y2; : : : ; Yn of a random variable Y
whose probability density function (pdf) f . � j xo/ with respect to some (known)
dominating measure is known up to an unknown “parameter” xo. The goal is to
estimate xo and, one might add, to do it well. In this chapter, that means to solve the
maximum likelihood problem

maximize
nQ
iD1

f .Yi j x/ over x; (1)

and to solve it by means of EM algorithms. The solution, assuming it exists and is
unique, is called the maximum likelihood estimator of xo. Here, the estimator is
typically denoted by Ox.

The notion of EM algorithms was coined by [27], who unified various earlier
instances of EM algorithms and in particular emphasized the notion of “missing”
data in maximum likelihood estimation problems, following Hartley [53]. Here, the
missing data refers to data that were not observed. Although this seems to imply that
these data could have or should have been observed, it is usually the case that these
missing data are inherently inaccessible. Typical examples of this are deconvolution
problems, but it may be instructive to describe a simplified version in the form of
finite mixtures of probability densities.

Let the random variable Y be a mixture of some other continuous random
variables Z1; Z2; : : : ; Zm for some known integer m. For each j , 1 6 j 6 m,
denote the pdf of Zj by f . � j j /. The pdf of Y is then
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f
Y
.y/ D

mX
jD1

w�
j f .y j j /; (2)

where w� D �
w�

1 ;w
�
2 ; : : : ;w

�
m

	
is a probability vector. In other words, the w�

j are
nonnegative and add up to 1. The interpretation is that for each j,

Y D Zj with probability w�
j : (3)

As before, given a random sample Y1; Y2; : : : ; Yn of the random variable Y, the
goal is to estimate the “parameter” w�. The maximum likelihood problem for doing
this is

maximize
mQ
iD1

(
mX
jD1

wj f .Yi j j /
)

(4)

subject to w D .w1;w2; : : : ;wm/ is a probability vector:

Now, what are the “missing” data for this finite mixture problem? In view of
the interpretation (3), it would clearly be useful if for each Yi , it was known which
random variable Zj it was supposed to be a random sample of. Thus, let Ji 2
f1; 2; : : : ; mg such that

Yi j Ji D ZJi : (5)

Then, J1; J2; : : : ; Jn would be a random sample of the random variable J, whose
distribution would then be easy to estimate: for each j ,

Owj D # fJi D j g
n

; (6)

the fraction of the Ji that were equal to j . Note that the distribution of J is given by

PŒJ D j � D w�
j ; j D 1; 2; : : : ; m: (7)

Of course, unfortunately, the Ji are not known. It is not even apparent that it would
be advantageous to think about the Ji , but in fact it is, as this chapter tries to make
clear.

From the image processing point of view, the above problem becomes more
interesting if the finite sum in (2) is interpreted as a discretization of the integral
transform

fY .y/ D
Z
f .y j x/w.x/ dx (8)

and the goal is to recover the function or image w from the random sample
Y1; Y2; : : : ; Yn. The maximum likelihood problem of estimating w,
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maximize
nQ
iD1

�Z
f .Yi j x/w.x/ dx


over w; (9)

is (formally) a straightforward extension of the mixture problem. Such (one- and
two-dimensional) deconvolution problems abound in practice, e.g., in astronomy
and tomography. See the suggested reading list.

In the next two sections, the bare essentials of a more-or-less general version
of the EM algorithm are presented and it is shown that it increases the likelihood.
Without special conditions, that is, all one can say about the convergence of the EM

algorithm, one cannot even claim that in the limit, it achieves the maximum value
of the likelihood. See [98]. For the convex case, where the negative log-likelihood
is convex and the constraint set is convex as well, one can say much more, as will
become clear.

Before discussing the two “big” applications of positron emission tomography
(PET) and three-dimensional electron microscopy (3D-EM. Yes, another instance
of EM!), it is prudent to discuss some simple examples of maximum likelihood
estimation and to derive the associated EM algorithms. It turns that the prototypical
example is that of estimating the weights in a mixture of known distributions;
see (2). By analogy, this example shows how one should derive the EM algorithm
for deconvolution problems with binned data, which is similar to the situation
in positron emission tomography. The general parametric maximum likelihood
estimation is also discussed, as well as the related case of empirical Bayes
estimation. The latter has some similarity with 3D-EM.

All of this naturally leads to the discussion of the maximum likelihood approach
to positron emission tomography (which originated with Rockmore and Macovski
[82], but who mistakenly took the road of a least-squares treatment) and the EM

algorithm of Shepp and Vardi [88]. This is one of the classic examples of Poisson
data. However, even Poisson data may be interpreted as a random sample of some
random variable; see section “The Emission Tomography Experiment.” For the
ubiquitous nature of Poisson data, see [4] and references therein.

The very messy example of the reconstruction of the shapes of macromolecules
of biological interest by way of 3D-EM also passes review.

For the example of mixtures of known distributions as well as for positron
emission tomography, there is a well-rounded theory for the convergence of the
EM algorithm to wit the alternating projection approach of Csiszár and Tusnády
[23] and the majorizing functional approach of Mülthei and Schorr [75] and De
Pierro [29]. This approach extends to EM-like algorithms for some maximum
likelihood-like problems. Unfortunately, this ignores the fact that the maximum
likelihood problem is ill conditioned when the number of components in the
mixture is large (or that the deconvolution problem is ill-posed). So, one needs
to regularize the maximum likelihood problems, and then, in this chapter, the
issue is whether there are EM algorithms for the regularized problems. For the
PET problem, this certainly works for Bayesian approaches, leading to maximum
a posteriori (MAP) likelihood problems as well as to arbitrary convex maximum
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penalized likelihood problems. In this context, mention should be made of the EMS

algorithm of Silverman et al. [90], the EM algorithm with a linear smoothing step
added, and the NEMS algorithm of Eggermont and LaRiccia [36] in which an extra
nonlinear smoothing step is added to the EMS algorithm to make it a genuine EM

algorithm for a smoothed maximum likelihood problem. However, the convergence
of regularization procedures for ill-posed maximum likelihood estimation problems,
whether Tikhonov style penalization or “optimally” stopping the EM algorithm, will
not be discussed. See, e.g., [80].

The final issue under consideration is that EM algorithms are painfully slow,
so methods for accelerating EM algorithms are discussed as well. The accelerated
methods take the form of block-iterative methods, including the extreme case of
row-action methods.

The selection of topics is driven by applications to image processing. As such,
there is very little overlap with the extensive up-to-date survey of EM algorithms of
McLachlan and Krishnan [71].

2 The Kullback–Leibler Divergence

Before turning to the issue of EM algorithms, emphatic mention must be made
of the pervasiveness of the Kullback–Leibler divergence (also called I -divergence
or information divergence; see, e.g., [22] and references therein) in maximum
likelihood estimation. For probability density functions f and g on R

d, say, it is
defined as

KL.f; g/ D
Z
Rd

�
f .y/ log

�
f .y/

g.y/


C g.y/ � f .y/

�
d�.y/; (10)

with � denoting Lebesgue measure. Here, 0 log.0=0/ is defined as 0. Note that the
Kullback–Leibler divergence is not symmetric in its arguments. Also note that the
integrand is nonnegative, so that the integral is well defined if the value C1 is
admitted. Moreover, the integrand equals 0 if and only if f .y/ D g.y/, so that
KL.f; g/ > 0 unless f D g almost everywhere, in which case KL.f; g/ D 0.

Now consider the problem of estimating the unknown parameter xo in a
probability density f . � jxo/. In view of the above, the ideal way would be to

minimize KL
�
f . � jxo/; f . � jx/

	
over x; (11)

but of course, this is not a rational problem because the objective function is
unknown. However, note that

KL
�
f . � jxo/; f . � jx/

	 D �
Z
Rd

f .yjxo/ logf .yjx/ d�.y/

C
Z
Rd

f .yjxo/ logf .yjxo/ d�.y/; (12)
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and that the second term does not depend on x. So, the problem (11) is equivalent
to (has the same solutions as)

minimize �
Z
Rd

f .yjxo/ logf .yjx/ d�.y/ over x: (13)

Of course, this is still not a rational problem, but the objective function equals
EŒLn.x/�, where Ln.x/ is the scaled negative log-likelihood

Ln.x/ D �1

n

nX
iD1

logf .Yi jx/; (14)

if Y1; Y2; : : : ; Yn is a random sample of the random variable Y with probability
density function f . � jxo/. So, solving the maximum likelihood problem (1) may
be viewed as approximately solving the minimum Kullback–Leibler divergence
problem (11). This is the basic reason for the pervasiveness of the Kullback–Leibler
divergence in the analysis of maximum likelihood estimation and EM algorithms.

The above illustrates two additional points. First, in maximum likelihood esti-
mation, one attempts to solve the minimum Kullback–Leibler problem (11) by first
estimating the objective function. So, if the estimator is “optimal” at all, it has to be
in a sense related to the Kullback–Leibler divergence. Second, one may well argue
that one is not estimating the parameter xo but rather the density f . � jxo/. This
becomes especially clear if f . � jx/ is reparametrized as '. � jz/ D f � � jT .z/	 for
some transformation T . This would have an effect on the possible unbiasedness of
the estimators Ox and Oz of xo and zo. However, under reasonable conditions on T , the
maximum likelihood density estimators f . � j Ox/ and '. � j Oz/ of f . � j xo/ will be
the same.

3 The EMAlgorithm

TheMaximum Likelihood Problem

Let .Y;BY ;P/ be a statistical space, i.e., .Y;BY / is a measurable space and P is a
collection of probability measures on BY , represented as a family indexed by some
index set X as follows:

P D fP. � jx/ W x 2 X g: (15)

Assume that there is a measureP1 that dominatesP in the sense that everyP. � jx/
is absolutely continuous with respect to P1. Then, the Radon–Nikodym derivative
of P. � jx/ with respect to P1 exists and is BY measurable for all x 2 X . It may
be written as

fY .yjx/ D
�
dP. � jx/
dP1

�
.y/ (16)
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and is referred to as the density ofP. � jx/with respect toP1. It should be observed
that fY . � jxo/ D f

Y
. � / is the density of the random variable Y with respect to

P1. For arbitrary x, fY . � jx/ is a density, but since it is not known of what random
variable, the subscript Y is used here.

Let Y be a random variable with values in Y , and assume that it is distributed
as P. � jxo/ for some (unknown) xo 2 X . The objective is to estimate xo based
on a random sample Y1; Y2; : : : ; Yn of the random variable Y . Note that estimating
xo amounts to constructing a measurable function of the data, which may then be
denoted as Ox D Ox.Y1; Y2; : : : ; Yn/.

The maximum likelihood problem for estimating xo is then written in the form
of minimizing the scaled negative log-likelihood,

minimize Ln.x/
defD �1

n

nX
iD1

logfY .Yi jx/ (17)

subject to x 2 X :

In this formulation, the parameter x is deemed important. The alternative formula-
tion in which the densities are deemed important is

minimize QLn.f / defD �1

n

nX
iD1

logf .Yi /

subject to f 2 P :

(18)

In this formulation, there are two ingredients: the likelihood function and the
(parametric) family of densities under consideration.

It is not obvious that solutions should exist, especially if the index set X is
large, but in applications of image processing type, this turns out to be of lesser
importance than one might think. See Sect. 7. Regardless, closed form solutions are
generally not available, and one must employ iterative methods for the solution of
the maximum likelihood problem. In this chapter, that means EM algorithms.

The Bare-Bones EM Algorithm

Here, the bare essentials of the EM algorithm are presented. The basic premise in
the derivation of the EM algorithm is that there is “missing” data that would make
estimating xo a lot easier had they been observed. So, assume that the missing data
refers to data in a space Z , with .Z;BZ ;Q/ another statistical space, where the
collection of probability measures is again indexed by X,

Q D fQ. � jx/ W x 2 X g: (19)
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Assume that Q is dominated by some measure Q1, and denote the associated
Radon–Nikodym derivatives as

fZ .zjx/ D
�
dQ. � jx/
dQ1

�
.z/; z 2 Z : (20)

LetZ be a random variable with values in Z and with distributionQ. � jxo/, with
the same xo as for the random variable Y . Note that the pair .Y;Z/ takes on values
in Y � Z . The relevant statistical space is then .Y � Z; BY�Z;R/; where BY�Z
is the smallest 
-algebra that contains all sets A � B with A 2 BY and B 2 BZ .
Again, assume that R may be indexed by X as

R D fR. � jx/ W x 2 X g; (21)

and that R is dominated by some measure R1. Write

fY;Z .y; zjx/ D
�
dR. � jx/
dR1

�
.y; z/ (22)

for the associated Radon–Nikodym derivatives.
Now, if the “complete” data .Y1; Z1/; .Y2; Z2/; : : : ; .Yn;Zn/; a random sample

of the random variable .Y;Z/, is available, then the maximum likelihood problem
for estimating xo is

minimize � 1

n

nX
iD1

logfY;Z .Yi ; Zi jx/

subject to x 2 X :

(23)

Of course, this is not a rational problem, since the Zi went unobserved. In other
words, the objective function is not known (and not knowable). However, one may
attempt to estimate it by the conditional expectation

E

"
�1

n

nX
iD1

logfY;Z .Yi ; Zi jx/
ˇ̌
ˇ̌
ˇ Yn

#
D �1

n

nX
iD1

E

"
logfY;Z .Yi ; Zi jx/

ˇ̌
ˇ̌
ˇ Yi

#
;

where Yn D .Y1; Y2; : : : ; Yn/: The fly in the ointment is that computing this
expectation involves the distribution of Z conditioned on Y, which surely will
involve the unknown xo one wishes to estimate! So, at this point, assume that
some initial guess x1 for xo is available; then denote the resulting (approximate)
conditional expectation by EŒ: : : jYn; x1� :

Determining this conditional expectation constitutes the E-step of the first
iteration of the EM algorithm. The M-step of the first iteration then amounts to
solving the minimization problem
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minimize ƒn.xjx1/
defD �1

n

nX
iD1

EŒlog fY;Z .Yi ; Zi jx/ jx1; Yi �

subject to x 2 X :

(24)

Denote the solution by x2 (assuming it exists). Suppressing the presence of the Yi
in the notation, one may define the iteration operator by x2 D R.x1/, and then the
EM algorithm may be stated as

xkC1 D R.xk/; k D 1; 2; : : : ; (25)

provided x1 has been chosen appropriately. This is the bare-bones version of the EM

algorithm. Note that it may not be necessary to solve the problem (24) exactly, e.g.,
one may consider (over)relaxation ideas or the so-called stochastic EM algorithms.
See, e.g., [76] and references therein. This will not be considered further.

Remark 1. (a) It may be inappropriate to speak of the EM algorithm, since the
introduction of different missing data may lead to a different algorithm.
However, usually there is not much choice in the missing data.

(b) There is a different approach to the complete data, by assuming that Y D T .Z/
for some many-to-one map T W Z ! Y . Then, Z is the complete data and Y is
the incomplete data, but one does not identify missing data as such.

The Bare-Bones EM Algorithm Fleshed Out

Here, some of the details of the bare-bones EM algorithm are filled in by using
explicit expressions for the conditional expectations. To that end, assume that one
may take the dominating measure R1 to be R1 D P1 � Q1; in the sense that

R1.A � B/ D P1.A/ � Q1.B/ for all A 2 BY and B 2 BZ : (26)

Let .Y;Z/ have density fY;Z .y; zjxo/ with respect to the product measure
P1 �Q1. Then, for all A 2 BY�Z and all measurable functions h on Y � Z
with finite expectation EŒh.Y;Z/�, one may write

EŒh.Y;Z/� D
Z
A
h.y; z/ fY;Z .y; zjx/ dP1.y/ dQ1.z/

D
Z
Y

�Z
Z
h.y; z/ fY;Z .y; zjx/ dQ1.z/


dP1.y/ (Fubini)

D
Z
Y

( Z
Z
h.y; z/

fY;Z .y; zjx/
fY .yjx/

dQ1.z/
)
fY .yjx/ dP1.y/:
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It is clear that this may be interpreted as the expected value of

Z
Z
h.Y; z/

fY;Z .Y; zjx/
fY .Y jx/

dQ1.z/;

and then interpret this in turn as EŒh.Y;Z/ jY �; the expected value of h.Y;Z/
conditioned on Y.

Now define the density of Z conditional on Y by

fZjY .zjy; x/ D
fY;Z .y; zjx/
fY .yjx/

(27)

for those y for which fY .yjx/ > 0 (and arbitrarily if fY .yjx/ D 0). Similarly, one
defines

fYjZ .yjz; x/ D
fY;Z .y; zjx/
fZ .zjx/

(28)

for those z for which fZ .zjx/ > 0 (and arbitrarily if fZ .zjx/ D 0). So then Bayes’
rule yields

fZjY .zjy; x/ D
fYjZ .yjz; x/ fZ .zjx/

fY .yjx/
: (29)

The conditional expectation of a measurable function h.Y;Z/ given Y is then

EŒh.Y;Z/jY; x� D
Z
Z
h.Y; z/ fZjY .zjY; x/ dQ1.z/: (30)

Probabilists force us to add “almost surely” here.
Now apply this to the conditional expectation of logfY;Z .Y;Zjx/; with a guess

x1 of the true x. Then,

EŒlog fY;Z .Y;Zjx/jY; x1�

D EŒlog fZ .Zjx/C logfYjZ .Y jZ; x/jY; x1�

D
Z
Z

fYjZ .Y jz; x1/ fZ .zjx1/

fY .yjx1/
logfZ .zjx/ dQ1.z/ (31)

C
Z
Z

fYjZ .Y jz; x1/ fZ .zjx1/

fY .Yi jx1/
logfYjZ .Y jz; x/ dQ1.z/:

For ƒn.xjx1/, this gives
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ƒn.xjx1/ D
Z
Z
'Z .zjx1/ logfZ .zjx/ dQ1.z/C

�1

n

nX
iD1

Z
Z

fYjZ .Yi jz; x1/ fZ .zjx1/

fY .Yi jx1/
logfYjZ .Yi jz; x/ dQ1.z/; (32)

with

'Z .z/ D fZ .zjx1/ � 1
n

nX
iD1

fYjZ .Yi jz; x1/

fY .Yi jx1/
: (33)

For the M-step of the algorithm, one has to minimize this over x, which is in
general not trivial. The problem is simplified somewhat in the important case where
fYjZ .yjz; x/ is known and does not depend on x. Then, the problem reduces to
solving

minimize Ln.xjx1/
defD �

Z
Z
'Z .zjx1/ logfZ .zjx/ dQ1.z/

subject to x 2 X :
(34)

Note that

Ln.xjx1/ D KL
�
'Z . � jx/ ; fZ . � ; x/

	C .terms not depending on x/; (35)

where KL.f; g/ is the Kullback–Leibler divergence between the density f and g
with respect to the same measureQ1, defined as

KL.f; g/ D
Z
Z

�
f .z/ log

�
f .z/

g.z/


C f .z/ � g.z/


dQ1.z/: (36)

Compare with (10).
So, solving (34) amounts to computing what one may call the Kullback–Leibler

projection of 'Z . � jx1/ onto the parametric family P . If P is such that 'Z . � jx1/ 2
P ; then the projection is fZ . � jx/ D 'Z . � jx1/:

The EMAlgorithm Increases the Likelihood

The expression for ƒn.xjx1/ (see (24)) may be reworked as follows. Using

fY;Z .y; z; jx/ D fZjY .zjy; x/ fY .yjx/

(see (27)), one gets
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E

h
logfY;Z .Y;Zjx/

ˇ̌
x1; Y

i
D logfY .Y jx/C EŒlog fZjY .ZjY; x/ jY; x1�;

and so,

ƒ.xjx1/ D Ln.x/C en.x1jx/; (37)

where Ln.x/ is given by (17) and

en.ujw/ defD �
nX
iD1

Z
Z
fZjY .zjYi ; u/ logfZjY .zjYi ;w/ dQ1.z/: (38)

It is now obvious that the EM algorithm decreasesLn.x/: Let x2 be the minimizer
of ƒ.xjx1/ over x 2 X . Then, ƒn.x2jx1/ 6 ƒn.x1jx1/; and so Ln.x2/ C
en.x1jx2/ 6 Ln.x1/C en.x1jx1/; or

Ln.x1/� Ln.x2/ > en.x1jx2/� en.x1jx1/ D Kn.x1jx2/; (39)

where

Kn.ujw/ D
nX
iD1

KL
�
fZjY . � jYi ; u/; fZjY . � jYi ;w/

�
(40)

is a sum of Kullback–Leibler “distances”; see (36). Then, Kn.x1jx2/ > 0 unless
x1 D x2, assuming that the conditional densities fZjY . � jY; u/ and fZjY . � jY;w/
are equal Q1 almost everywhere only if u D w. Then, the conclusion

Ln.x1/ > Ln.x2/ unless x1 D x2 (41)

is justified. Thus, the EM algorithm decreases the likelihood.
Unfortunately, x1 D x2 being a fixed point of the EM iteration does not guarantee

that then x1 is a maximum likelihood estimator of xo. Equally unfortunately, even
if one gets an infinite sequence of estimators, this does not imply that the sequence
of estimators converges, nor that the likelihood converges to its maximum. Later
on, the convergence of EM algorithms for special, convex maximum likelihood
problems is discussed in detail.

4 The EMAlgorithm in Simple Cases

In this section, some simple cases of the EM algorithm are discussed, capturing
some of the essential features of more complicated “real” examples of maximum
likelihood estimation to be discussed later on. It turns out that the EM algorithms
are the “same” in all but the last example (regarding a finite mixture of unknown
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densities), even though the settings appear to be quite different. However, even in
the last case, the “same” EM algorithm arises via the empirical Bayes approach.

A word on notation: The scaled negative log-likelihood for each problem is
always denoted asLn;Ln.x/ in the discrete case,Ln.f / in the continuous case. The
negative log-likelihood in the M-step of the EM algorithm is denoted by ƒ.xjx1/ or
variations thereof.

Mixtures of Known Densities

Let d > 1 be an integer and consider the statistical space .Y;B;P/, with Y D R
d , B

the 
-algebra of Borel subsets of Y and P the collection of probability measures that
are absolutely continuous with respect to Lebesgue measure. Consider the random
variable Y with values in Y and with density

f
Y
.y/ D

mX
jD1

xo.j / aj .y/; y 2 Y; (42)

where a1; a2; : : : ; am are known densities and xo D .xo;1; xo;2; : : : ; xo;m/
T is a

probability vector, i.e., xo 2 Vm,

Vm D
8<
:x 2 R

m
ˇ̌
x > 0 (componentwise);

mX
jD1

x.j / D 1

9=
;: (43)

Suppose that one has a random sample Y1; Y2; : : : ; Yn of the random variable Y .
The maximum likelihood problem for estimating f

Y
(or estimating the probability

vector xo) is then

minimize Ln.x/
defD �1

n

nX
iD1

log

0
@ mX
jD1

x.j / aj .Yi /

1
A

subject to x 2 Vm:
(44)

To derive an EM algorithm, missing data must be introduced. To see what could
be missing, it is helpful to think of how one would simulate the random variable Y .
First, draw the random variable J from the distribution

f
J
.j / D PŒJ D j � D xo.j / ; j D 1; 2; : : : ; m: (45)

Then, conditional on J D j , draw Y from the distribution with density aj . So,
the missing data is J , a random variable with values in M D f1; 2; : : : ; mg. The
associated statistical space is

�
M; 2M; Vm

	
; (46)
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the 
-algebra is the collection of all subsets of M, and the collection of all
probability measures on M may be represented by Vm. Let ˛ denote counting
measure on M, i.e., for any A 2 2M ,

˛.A/ D jA j .the number of elements in A/: (47)

Then, it is easy to see that the distribution of .Y; J / is absolutely continuous with
respect to the product measure � � ˛, with density

f
Y;J
.y; j / D f

J
.j / f

Y jJ .yjj / D xo.j / aj .y/; y 2 Y; j 2M: (48)

Now, the complete data is .Y1; J1/; .Y2; J2/; : : : ; .Yn; Jn/ and the complete
maximum likelihood problem for estimating xo is

minimize � 1

n

nX
iD1

log
n
x.Ji / aJi .Yi /

o
subject to x 2 Vm: (49)

Of course, the Ji went unobserved, so one must compute the conditional
expectations E

�
log

˚
x.J / a

J
.Y /


 ˇ̌
Y
�
: Now,

f
J jY .j jy/ D

f
Y;J
.y; j /

f
Y
.y/

D xo.j / aj .y/
mX
pD1

ap.y/ xo.j /

;

but of course, xo is unknown; approximate it by some initial guess xŒ1� 2 Vm,
e.g., xŒ1�j D 1=m for all j . Then, the conditional expectation in question is
approximated by

E
�
log

˚
x.J / a

J
.Y /


 ˇ̌
Y; xŒ1�

� D �
Z
M

log
˚
x.j / aj .Y /



xŒ2�.j; Y / d˛.j /

D �
X
j2M

xŒ2�.j; Y / log
˚
x.j / aj .Y /



;

with xŒ2�.j; Y / D xŒ1�.j / aj .Y /
mX
pD1

ap.Y / x
Œ1�.p/

; j 2M:

Then, the E-step of the EM algorithm leads to the problem

minimize �
X
j2M

xŒ2�.j / log
˚
x.j / aij



subject to x 2 V

`
; (50)
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where aij D aj .Yi / for all i; j and xŒ2�.j / D 1
n

Pn
iD1 x

Œ2�.j; Yi / ; or

xŒ2�.j / D xŒ1�.j / � 1
n

nX
iD1

aij0
@ mX
pD1

aip x
Œ1�.p/

1
A
: (51)

Taking into account that

log
˚
x.j / aj .Y /


 D logx.j /C .a term not depending on x/;

one then arrives at the problem

minimize ƒn

�
xjxŒ2�	 defD �

mX
jD1

xŒ2�.j / logx.j /

subject to x 2 Vm:
(52)

This is the E-step of the first iteration of the EM algorithm. Now consider the identity

ƒ
�
xjxŒ2�	 �ƒ �xŒ2�jxŒ2�	 D KL

�
xŒ2�; x

	
; (53)

where for u, w nonnegative vectors in R
m,

KL.u;w/
defD

mX
jD1

�
u.j / log

u.j /

w.j /
C w.j / � u.j /


: (54)

This is the finite-dimensional Kullback–Leibler divergence between the nonnegative
vectors u and w. Note that the summand is nonnegative and so is minimal when
u D w. So, the solution of (52) is precisely x D xŒ2�. This would be the M-step of
the first iteration of the EM algorithm. The EM-step is then (51).

ADeconvolution Problem

The setting is the statistical space
�
R
d ;B;P

	
, where B is the 
-algebra of Borel

subsets of R
d and P is the collection of all probability density functions on R

d

(with respect to Lebesgue measure). Denote Lebesgue measure by �. Let Y be a
random variable with values in R

d and with density f
Y

(with respect to Lebesgue
measure); the interest is in estimating f

Y
. Now, assume that one is unable to observe

Y directly but that instead one only observes a corrupted version, viz.,W D Y CZ,
where Z is another Rd -valued random variable. Assume that the distribution of Z
is completely known; denote its density by k. The density ofW is then Kf

Y
, where

the integral operator K W L1
�
R
d ; d�

	! L1
�
R
d ; d�

	
is defined as
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ŒK f �.w/ D
Z
Rd

k.w � y/ f .y/ d�.y/; w 2 R
d : (55)

Note that k. � � y/ is the density of W conditioned on Y D y, i.e., fW jY .wjy/ D
k.w � y/ for all w and y, and then

f
W;Y

.w; y/ D k.w � y/ f
Y
.y/ ; w; y 2 R

d : (56)

So, assume that one has a random sample W1;W2; : : : ;Wn of the random variable
W . The maximum likelihood problem for estimating f

Y
is then

minimize Ln.f /
defD �1

n

nX
iD1

logŒKf �.Wi /

subject to f 2 P :

(57)

Recall that P is the collection of all pdfs in L1.Rd ; d�/. It is impossible to
guarantee that this problem has a solution. In fact, regularization is required; see
section “Smoothed EM Algorithms.” Nevertheless, one can use EM algorithms to
construct useful approximations to the density f

Y
by the expedient of stopping the

iteration “early.”
Note that one could view (57) as a continuous mixture problem, since Kf is a

continuous mixture of known densities to wit the known densities ky.w/ D k.w�y/,
y 2 R

d , and the continuous weights are the unknown fY .y/, y 2 R
d . However, the

present approach is somewhat different.
To derive an EM algorithm, one must decide on the missing data. It seems

obvious that the missing data is Y itself or Z (or both), but the choice Y seems
the most convenient. Thus, assume that one has available the random sample
.W1; Y1/; .W2; Y2/; : : : ; .Wn; Yn/ of the random variable .W; Y /. In view of (56),
the maximum likelihood problem for estimating f

Y
is then

minimize ƒn.f /
defD �1

n

nX
iD1

log fk.Wi � Yi/ f .Wi /g

subject to f 2 P :

(58)

Since the Yi are not really observed, one must compute or approximate the
conditional expectation E

�
log fk.W � Y / f .Y /g ˇ̌W �

. Since the density of Y
conditioned onW may be written as

f
Y jW .yjw/ D

k.w � y/ f
Y
.y/

ŒK f
Y
�.w/

;

then, approximating f
Y

by some initial guess f1 , the conditional expectation is
approximated by
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Z
Rd

k.W � y/ f1.y/

ŒK f1 �.w/
logf .y/ d�.y/;

apart from a term not depending on f . So then, the problem (58) is approximated
by

minimize �
Z
Rd

f2.y/ logf .y/ d�.y/ subject to f 2 P ; (59)

where

f2.y/ D f1.y/ �
1

n

nX
iD1

k.Wi � y/
ŒK f1 �.Wi /

; y 2 R
d : (60)

This is the E-step of the EM algorithm
For the M-step, i.e., actually solving (59), note that

ƒn.f jf1/ �ƒn.f1 jf1/ D KL.f2 ; f /; (61)

which is minimal for f2 . Thus, the solution of (59) is f D f2 as well. Thus, the EM

algorithm takes the form (60) iteratively applied.

The discretized EM algorithm: The EM algorithm (60) cannot be implemented
as is, but it certainly may be discretized. However, it is more straightforward to
discretize the maximum likelihood problem (57).

A reasonable way to discretize the maximum likelihood problem (57) is to restrict
the minimization to step functions on a suitable partition of the space. Suppose that
the compact set Co � R

d contains the support of f
Y

, and let fCj gmjD1 be a partition
of Co. Define the (step) functions aj by

aj .y/ D jCj j�1 11.y 2 Cj / ; i D 1; 2; � ; m; (62)

where for any set A, the indicator function 11.y 2 A/ is defined as

11.y 2 A/ D 1 if y 2 A and D 0 otherwise: (63)

Then, define Pm to be the set of pdfs in the linear span of the aj ,

Pm D
8<
:

mX
jD1

xj aj . � /
ˇ̌
ˇ̌ x 2 Vm

9=
;: (64)

Note that the aj are pdfs, and in fact, one could take the aj , j D 1; 2; : : : ; m to be
any collection of pdfs.
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Now, consider the restricted maximum likelihood problem

minimize � 1

n

nX
iD1

logŒKf �.Wi / subject to f 2 Pm (65)

and observe that it may obviously be rewritten as

minimize � 1

n

nX
iD1

log

0
@ mX
jD1

aij xj

1
A subject to x 2 Vm; (66)

where for i D 1; 2; : : : ; n and j D 1; 2; : : : ; m,

aij D
Z
Rd

k.Wi � y/ aj .y/ d�.y/:

And this is all there is to it: The problem (66) is just a finite mixture problem with
known distributions! Thus, the EM algorithm is as in section “Mixtures of Known
Densities,”

x
ŒkC1�
j D xŒk�j �

1

n

nX
iD1

aij0
@ mX
pD1

aip x
Œk�
p

1
A
; j D 1; 2; : : : ; m; (67)

with the estimator for f
Y

induced by the representation of (64).

Another EM algorithm? There is of course another way to derive an EM algorithm
for the problem (65), viz., by introducing the missing data Yi as before. As for the
unrestricted maximum likelihood problem (57), the E-step of the first iteration of
the EM algorithm leads to the problem, analogous to (59),

minimize �
Z
Rd

f2.y/ logf .y/ d�.y/ subject to f 2 Pm; (68)

with f2 given by (60). Now, using the representations

f .y/ D
mX
jD1

xj aj .y/; fk.y/ D
mX
jD1

x
Œk�
j aj .y/

with the step functions aj , for k D 1; 2, the objective function in (65) may be written
as

�
mX
jD1

.logxj /
Z
Cj

f2.y/ d�.y/;
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and of course

Z
Cj

f2.y/ d�.y/ D xŒ1�j �
1

n

nX
iD1

aij

ŒK f1 �.Wi /

defD x
Œ2�
j ; (69)

where

aij D
Z
Rd

k.Wi � y/ aj .y/ d�.y/ D jCj j�1
Z
Cj

k.Wi � y/ d�.y/:

Note that

ŒK f1 �.Wi / D
mX
jD1

aij x
Œ1�
j ; i D 1; 2; : : : ; n:

Thus, the problem (68) is equivalent to

minimize �
mX
jD1

x
Œ2�
j logxj subject to x > 0 ;

mX
jD1

xj D 1: (70)

But it was already shown in section “Mixtures of Known Densities” that the solution
is x D xŒ2�. So, the iterative step is exactly the same as in (67). As an aside, this
is a case where the introduction of “different” missing data leads to the same EM

algorithm.

The Deconvolution Problemwith Binning

Consider again the deconvolution problem of section “A Deconvolution Problem,”
but now with the extra twist that the data is binned.

Recall that the random variable of interest is Y which lives in the statistical space
.Y;BY ;P/ with Y D R

d , BY the 
-algebra of Borel subsets of Y , and P the
collection of probability measures on BY that are absolutely continuous with respect
to Lebesgue measure. The density of Y is denoted by f

Y
. The random variable Y

was not observable. Instead, one can observe the random variable

W D Y CZ;

where Z is another random variable living in .Y;BY ;P/, with known density
denoted by k and independent of Y . Actually, with binned data, W is not observed
either. Let ` 2 N and let fBj g`jD1 � BY be a partition of Y (or of a set containing
the support of W ). What one does observe is which “bin” Bj the observation W
belongs to. That is, one observes the random variable J , with J D j if
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11.W 2 Bj / D 1; (71)

cf. (63). Then, the statistical space of interest is .M; 2M; Vm/; see (46). Of course,
Vm is dominated by the counting measure, denoted by ˛; see (47). The density of J
then satisfies

f
J
.j / D ŒKf

Y
�.Bj / D

Z
Bj

ŒKf
Y
�.w/ d�.w/; j 2M: (72)

So, now one observes the random sample J1; J2; : : : ; Jn of the random vari-
able J , and the goal is to estimate f

Y
. The maximum likelihood problem is then

minimize � 1

n

nX
iD1

logŒKf �.BJi / subject to f 2 P ; (73)

which is equivalent to

minimize � 1

n

X̀
jD1

Nj logŒKf �.Bj / subject to f 2 P : (74)

Here, the Nj are the bin counts

Nj D
nX
iD1

11.Ji D j /; j 2M: (75)

Remark 2. Later, for any function h WM! R, the more general identity

nX
iD1

h.Ji / D
mX
jD1

Nj h.j /

will be useful.

So, the real data are the bin counts, but it is advantageous to keep the Ji . It has
to be seen whether one can get away it, though. So, the starting point is (73) and
not (74).

To derive an EM algorithm, the missing data must be considered. It seems obvious
that the Wi are missing, and the treatment in section “A Deconvolution Problem”
suggests that the Yi are missing as well. So, the complete data is the random sample
.Ji ;Wi ; Yi / of the random variable .J;W; Y /. This random variable lives in the
statistical space .M � Y � Y;B;Q/, with B the 
-algebra generated by the sets
A�B �C with A �M and B; C 2 BY . Finally, Q is the collection of probability
measures on B that are absolutely continuous with respect to the product measure
˛ � � � �. The density of .J;W; Y / is then



EM Algorithms 325

f
J;W;Y

.j;w; y/ D k.w � y/ f
Y
.y/ 11.w 2 Bj /; j 2M ; w; y 2 Y: (76)

The complete maximum likelihood problem for estimating f
Y

is now

minimize � 1

n

nX
iD1

log fk.Wi � Yi/ f .Yi /g subject to f 2 P : (77)

This is the same as the problem (58). However, here one conditions differently. At
issue is the conditional expectation E

�
logfk.W � Y / f .Y /g ˇ̌J � : Observe that

f
W;Y jJ .w; yjj / D

f
J;W;Y

.j;w; y/

f
J
.j /

D k.w � y/ f
Y
.y/ 11.w 2 Bj /

ŒKf
Y
�.Bj /

; (78)

so that, replacing f
Y

by some initial guess f1 , one finds that

E
�
logfk.W � Y / f .Y /g ˇ̌J ; f1

�

D
Z
Y�Y

logfk.w � y/ f .y/g k.w � y/ f1.y/ 11.w 2 Bj /
ŒKf1�.Bj /

d�.w/ d�.y/:

Now, using

logfk.w � y/ f .y/g D logff .y/g C .a term not depending on f /;

one arrives at

E
�
logfk.W � Y / f .Y /g ˇ̌J ; f1

�

D
Z
Y

f1.y/ kj .y/

ŒKf1�.Bj /
logff .y/g d�.y/C rem; (79)

where “rem” involves terms not depending on f , and

kj .y/ D
Z
Bj

k.w � y/ d�.w/; j 2M: (80)

Note that then

ŒKf1�.Bj / D
Z
Y
kj .y/ f1.y/ d�.y/: (81)

So, the E-step of the EM algorithm leads to the problem

minimize �
Z
Y
f2.y/ logf .y/ d�.y/ subject to f 2 P ; (82)
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where (one would say: as always)

f2.y/ D f1.y/ � 1

n

nX
iD1

k
Ji
.y/

ŒKf1�.BJi /
; y 2 Y: (83)

Since

Z
Y
f1.y/ d�.y/ D 1

n

nX
iD1

�Z
Y
k
Ji
.y/ f .y/ d�.y/

.
ŒKf1�.Bj /


D 1;

the solution of (82) is f2. So, the iterative step of the EM algorithm is given by (83).
Actually, the situation is a little sticky, since (83) involves the Ji . However, one may
collect the Ji with equal values, so that then

Nj D
nX
iD1

11.j D Ji /;

and so an equivalent definition of f2 is

f2.y/ D f1.y/ � 1

n

mX
jD1

Nj kj .y/

ŒKf1�.Bj /
y 2 Y: (84)

The EM algorithm is then obtained by iterative applying of the EM-step (84).

Discretizing the EM algorithm: Note that a discretized EM algorithm may be
derived by restricting the minimization in (74) to step functions on a partition
fCj g`jD1 of a set containing the support of Y . With Pm as in (64), the restricted
maximum likelihood problem with binned data is

minimize � 1

n

X̀
jD1

Nj logŒKf �.Cj / subject to f 2 Pm: (85)

One then derives the EM algorithm as in section “A Deconvolution Problem,”
leading to

x
ŒkC1�
j D xŒk�j �

1

n

X̀
pD1

Np kip0
@X̀
qD1

aiq x
Œk�
q

1
A
; j D 1; 2; : : : ; `; (86)

where for p D 1; 2; : : : ; m and q D 1; 2; : : : ; `,
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apq D
Z
Cp

(Z
Bq

k.w � y/ d�.y/
)
d�.w/:

The estimators for f
Y

are then

fk.y/ D
X̀
jD1

x
Œk�
j jCj j�1 11.y 2 Cj /; y 2 Y: (87)

FiniteMixtures of UnknownDistributions

The final simple case to be discussed is that of a mixture with a small number of
densities belonging to some parametric family.

Consider a random variable Y in a statistical space .Y;BY ;P/, with

P D ff . � jx/ W x 2 X g ; (88)

a family of probability measures indexed by the (low-dimensional) parameter x 2
X . Assume that P is dominated by some measure P1 and that

�
dP. � jx/
dP1

�
.y/ D fY .yjx/; y 2 Y: (89)

So, let Y be a random variable with density

f
Y
.y/ D

mX
jD1

wo.j /fY

�
y
ˇ̌
ˇxo.j /

�
; y 2 Y: (90)

Here, wo D .wo1 ;wo2 ; : : : ;wom/ 2 Vm; the space of probability vectors (see (43)),
and xo D .xo;1; xo;2; : : : ; xo;m/ 2 Xm; thus defining Xm. (The notations xo;j and
xo.j / are used interchangeably.)

Given a random sample Y1; Y2; : : : ; Ym, the maximum likelihood problem for
estimating wo and xo is then

minimize � 1

n

nX
iD1

log

0
@ mX
jD1

wj fY .Yi jxj /
1
A

subject to w 2 Vm ; x 2 Xm:

(91)

To derive an EM algorithm, one must introduce the missing data. As in sec-
tion “Mixtures of Known Densities,” the random index J 2 M D f1; 2; : : : ; mg
would be a useful information because f

Y jJ .yjj / D fY .yjxo;j / :
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So considering .Y1; J1/; .Y2; J2/; : : : ; .Yn; Jn/ to be the complete data, the
maximum likelihood problem is

minimize � 1

n

nX
iD1

logfw.Ji / fY .Yi jx.Ji //g

subject to W 2 Vm; x 2 Xm:

(92)

Similar to the development in section “Mixtures of Known Densities,” now with
initial guesses wŒ1� and xŒ1�, one obtains that

E

h
logfw.J / fY .Y jx.j //g

ˇ̌
Y;wŒ1�; xŒ1�

i

D
X
j2M

wŒ1�.j / fY
�
Y jxŒ1�.j /	0

@ mX
pD1

wŒ1�.j / fY
�
Y jxŒ1�.j /	

1
A

logfw.j / fY
�
Y jxŒ1�.j /	g:

It follows that

E

"
�1

n

nX
iD1

logfw.Ji / fY .Yi jx.Ji /; /g
ˇ̌
ˇY1; Y2; : : : ; Yn;w

Œ1�; xŒ1�

#

D �
X
j2M

wŒ2�.j / log w.j /C Ln.xjxŒ1�;wŒ1�/; (93)

where

wŒ2�.j / D wŒ1�.j / � 1

n

nX
iD1

fY .Yi jxŒ1�.j //0
@X
p2M

wŒ1�.p/ fY
�
Yi jxŒ1�.p/

	
1
A
; j 2M; (94)

and

Ln
�
xjxŒ1�;wŒ1�	 D �1

n

nX
iD1

fY .Yi jxŒ1�.j // logfY .Yi jx.j //0
@X
p2M

wŒ1�.p/ fY
�
Yi jxŒ1�.p/

	
1
A
: (95)

This is essentially the E-step of the EM algorithm. Note that the definition of wŒ2� is
in the by-now-familiar form. For the M-step, one must solve
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minimize �
X
j2M

wŒ2�.j / log w.j /C Ln
�
xjxŒ1�;wŒ1�	

subject to w 2 Vm; x 2 Xm;
(96)

and this nicely separates. The minimization over w gives w D wŒ2� as always, and
x D xŒ2� is the solution of

minimize Ln
�
xjxŒ1�;wŒ1�	 subject to x 2 Xm: (97)

Unfortunately, in general, there is no closed form solution of this problem.
There are numerous examples of this type of mixture problems. See, e.g., [58,79].

Empirical Bayes Estimation

There is another way of deriving EM algorithms for the mixture problem under
consideration. Of course, that means one must introduce a different collection of
missing data. The following development is from Eggermont and LaRiccia [39].

Starting from the beginning, consider the random variable Y with density
fY. � jxo/ with respect to P1. Given a random sample Y1; Y2; : : : ; Yn of the random
variable Y , one wishes to estimate xo. The maximum likelihood problem is

minimize � 1

n

nX
iD1

logfY .Yi jx/ subject to x 2 X : (98)

So, what is the missing data in this case? It was already alluded to: the missing
information is xo! In the so-called empirical Bayes approach, one considers xo to
be a random variable in the statistical space .X ;BX ; T /, with T a collection of
probability measures on BX , dominated by some measure T1. The complete data is
the random sample .Y1; X1/; .Y2; X2/; : : : ; .Yn; Xn/ of the random variable .Y;X/,
with density

f
Y;X
.y; x/ D f

X
.x/ f

Y jX .yjx/ D fX .x/ fY .yjx/: (99)

So, fX is the marginal density of X , but instead of prescribing a prior distribution
onX , one’s task is to estimate this distribution without using prior information. The
estimator of fX will tell us whether one parameter X D xo suffices for all Yi , viz.,
if the estimator of fX has most of its mass near x D xo or if one has (mostly) a
mixture with a few components, or indeed a continuous mixture.

Note that

f
Y
.y/ D

Z
X
fY .yjx/ fX .x/ dT1.x/: (100)
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Defining the integral operator K by

ŒKf �.y/ D
Z
X
fY .yjx/ f .x/ dT1.x/; y 2 Y; (101)

the maximum likelihood problem for estimating fX is

minimize � 1

n

nX
iD1

logŒKf �.Yi / subject to f 2 T : (102)

Note that the problem (102) is very much like the problem (57). Indeed, in very
much the same way as in section “A Deconvolution Problem,” one derives the EM

algorithm

fkC1.x/ D fk.x/ � 1

n

nX
iD1

fY .Yi jx/
ŒKfk�.Yi /

; x 2 X : (103)

This pretty much exhausts the simple examples that lead to this “same old” EM

algorithm.

5 Emission Tomography

Flavors of Emission Tomography

There are at least three flavors of emission tomography, viz., single photon emission
tomography or SPECT (the C stands for “computerized”), positron emission
tomography or PET, and time-of-flight PET (TOFPET). In all of these cases, given
measurements of the emissions, the objective is to reconstruct the three-dimensional
distribution of a radiopharmaceutical compound in the brain, giving insight into the
metabolism in general and blood flow, in particular, in the brain.

In the single photon version, single photons are emitted in random locations in
the brain and are detected (or not, as the case may be) by detectors situated around
the head. In the positron version, single positrons are emitted in random locations.
The positrons travel short distances until they are annihilated by single electrons, at
which instances pairs of photons are created which fly off in nearly opposite random
directions. The pairs of photons may then be detected by pairs of detectors. Thus,
positron emission tomography amounts to double photon emission tomography.
In the time-of-flight version of PET, the arrival times of the pairs of photons are
recorded as well, which gives some information on the location of the emission.
The time-of-flight version will not be considered further. Although the specifics are
different, in their idealized form, the reconstruction problems for SPECT and PET
are just about the same. For some of the details of the not-so-ideal circumstances in
actual practice, see, e.g., [55, 97].
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The Emission Tomography Experiment

The data collection experiment for emission tomography may be described as
follows. Consider a three-dimensional Poisson random field living in an open ball
 2 R

d (with d D 3). Here, “events” (viz., the creation of a single or double
photon) happen with spatial intensity per unit time denoted by fZ.z/, z 2 . This
means that for any Borel subset C of , the number N.C; t ; ıt/ of events that
happen inside C during a time interval . t ; t C ıt/ does not depend on t and is a
Poisson random variable with mean

EŒN.C; t ; ıt/� D ıt
Z
C

f
Z
.z/ d�.z/: (104)

Moreover, if C1; C2; : : : ; Cm are disjoint Borel subsets of  and .ti ; ti C ıti /,
i D 1; 2; : : : ; m, denote arbitrary (deterministic) time intervals, then the counts
N.C1; t1; ıt1/; N.C2; t2; ıt2/; : : :, N.Cm; tm; ıtm/; are independent. One may
choose the unit of time �T in such a way that fZ is the density of a probability
measure with respect to Lebesgue measure on . Then, in a time interval
. t ; t C ��T /, the number N D N.; t ; ��T / of events that occur throughout
 is a Poisson random variable with mean

�

Z


f
Z
.z/ d�.z/ D �:

This may be written succinctly as

N � Poisson.�/: (105)

For more on spatial Poisson processes, see, e.g., [24], section “The Shepp–Vardi
EM Algorithm for PET.”

Returning to the experiment, conditional on N D n, during the time interval
.0; ��T /, one collects a random sample Z1; Z2; : : : ; Zn (of sample size n) of
the random variable Z, the random location of an event, with density fZ with
respect to Lebesgue measure. The random variable Z lives in the statistical space
.;B;P/ with B the 
-algebra of Borel subsets of  and P the collection
of probability measures that are absolutely continuous with respect to Lebesgue
measure. The events themselves are detected by detectors or pairs of detectors,
denoted by B1; B1; : : : ; Bm, which one may view as disjoint subsets (or antipodal
subsets) of a sphere surrounding . For each event at a location Zi , there is a
random index J 2M D f1; 2; : : : ; mg such that the event is detected by the detector
(pair) BJ . Thus, J lives in the statistical space .M; 2M; Vm/; see (46). The random
variable .Z; J / is absolutely continuous with respect to the product measure �� ˛,
and its density is

f
Z;J
.z; j / D f

J jZ .j jz/ fZ .z/; z 2  ; j 2M; (106)
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with fJ jZ determined by geometric considerations. See, e.g., [97]. Assume that this
is known. Assuming that every event is detected, then fJ jZ is a conditional density,
so

mX
jD1

f
J jZ .j jz/ D 1 for all z: (107)

Note that then

f
J
.j / D

Z


f
J jZ .j jz/ fZ .z/ d�.z/; j 2M: (108)

So, conditional on N D n, one may pretend to have a random sample .Z1; J1/,
.Z2; J2/; : : : ; .Zn; Jn/ of the random variable .Z; J /. This gives rise to the usual
form of the actual data to wit the bin counts

Nj D
nX
iD1

11.Ji D j /: (109)

Continuing (and no longer conditioning on N D n), then N1; N2; : : : ; Nm are
independent Poisson random variables with EŒNj � D ŒKfZ�.j /,

Nj � Poisson
�
� ŒKf

Z
�.j /

	
; j 2M; (110)

where K W L1.; d�/ �! L1.M; d˛/ is defined by

ŒK'�.j / D
Z


f
J jZ .j jz/ '.z/ d�.z/; j 2M: (111)

This concludes the description of the ideal emission tomography experiment. In
reality, quite a few extra things need to be taken into account, such as the attenuation
of photons by tissue and bone in the head; see, e.g., [55]. For the treatment of
background noise, see, e.g., [42] and references therein.

The Shepp–Vardi EM Algorithm for PET

After these preparations, the maximum likelihood problem for estimating fZ may
be formulated. The observed data are the count data N1; N2; : : : ; Nm, which leads
to the problem

minimize � 1

N

mX
jD1

Nj logŒKf �.j / subject to f 2 P

: (112)
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Alternatively, and this is actually more convenient, one may view the total number
of detected events N and J1; J1; : : : ; JN as the actual data, which gives

minimize � 1

N

NX
iD1

logŒKf �.Ji / subject to f 2 P

: (113)

In view of Remark 2 following Remark (75), these two problems are equivalent.
So far, nothing has been said about approximating/representing the estimators in

terms of pixels or voxels. Let fCpg`pD1 be a partition of , and let P` � P be
the space of step functions that are constant on each Cp. Thus, with V` defined as
in (43),

P
`
D
8<
:
X̀
pD1

xp bp. � /
ˇ̌
ˇx 2 V`

9=
;; (114)

where bp.z/ D jCp j�1 11.z 2 Cp/; z 2 :

(Note however that one may take other basis functions.) The discretized maximum
likelihood problem is then obtained by restriction

minimize � 1

N

NX
iD1

logŒKf �.Ji / subject to f 2 P
`
: (115)

From the description of the experiment, it is clear that the missing data are the
Zi , so the complete data set is .Z1; J1/; .Z2; J2/; : : : ; .ZN ; JN /, a random sample
(of random sample size N ) of the random variable .Z; J /. The joint density of
N; .Z1; J1/; .Z2; J2/; : : : ; .ZN ; JN / is then

�n

n Š
e�� nQ

iD1

n
f
J jZ .ji jzi / fZ .zi /

o
; (116)

so that the complete maximum likelihood problem is

minimize � 1

N

NX
iD1

log
n
f
J jZ .Ji jZi/ f .Zi /

o
subject to f 2 P

`
:

(117)
In the objective function, the terms corresponding to the Poisson distribution of N
have been omitted, and the scaling 1=N was applied.

For the E-step of the EM algorithm, consider the computation of

E

h
� log

n
f
J jZ .j jz/ f .Z/

o ˇ̌
J; f1

i
; (118)
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assuming the approximation f1 to fZ . Since

f
ZjJ .zjj / D

f
J jZ .j jz/ fZ .z/

f
J
.j /

; (119)

this gives for the conditional expectation (118) the expression

�
Z


f
J jZ .j jz/ fZ .z/

f
J
.j /

logf .z/ d�.z/; (120)

where the contribution involving the known fJ jZ may be ignored, since it does not
depend on f .

Consequently, the E-step leads to the problem

minimize �
Z


f2.z/ logf .z/ d�.z/ subject to f 2 P
`
; (121)

where

f2.z/ D f1.z/ � 1

N

NX
iD1

f
J jZ .Ji jz/�Z



f
J jZ .Ji js/ f1.s/ d�.s/

� : (122)

Note that f2 is a density.
In terms of the representation of elements in P`,

f .z/ D
X̀
pD1

xp ap.z/; (123)

with ap.z/ D jCp j�1 11.z 2 Cp/ as in (62), and likewise for f1 and f2, this leads to
Z


f2.z/ logf .z/ d�.z/ D
X̀
pD1

xŒ2�p log
˚
xp jCp j�1


D
X̀
pD1

xŒ2�p logxp � log jCp j
X̀
pD1

xŒ2�p (124)

D
X̀
pD1

xŒ2�p logxp � log jCp j;
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where

xŒ2�p D xŒ1�p �
1

N

NX
iD1

a.Ji ; p/0
@X̀
qD1

a.Ji ; p/ x
Œ1�
p

1
A
; (125)

with

a.j; p/ D
Z
Rd

f
J jZ .j jz/ ap .z/ d�.z/ D

Z
Cp

f
J jZ .j jz/ d�.z/: (126)

Note that
X̀
pD1

xŒ2�p D 1 and, by (107), that

mX
jD1

a.j; p/ D 1 for all p: (127)

So, the E-step gives

minimize �
X̀
pD1

xŒ2�p logxp subject to x 2 V
`
: (128)

In section “Mixtures of Known Densities,” it was already shown that the solution
of the problem (128) is given by x D xŒ2�. So (125) is the iterative step of the EM

algorithm. Of course, using Remark 2, the iterative step for xŒ2� may be rewritten in
terms of the bin counts as

xŒ2�p D xŒ1�p �
1

N

mX
jD1

Nj a.j; p/0
@X̀
qD1

a.j; p/ xŒ1�p

1
A
: (129)

Observe again the similarity with the EM algorithms for the simple examples in
Sect. 4.

Remark 3. The problem (115) is not really discretized. The actual discretized
problem is
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minimize � 1

N

mX
jD1

Nj logŒAx�j C
X̀
pD1

xp subject to x 2 V
`
; (130)

with V
`

given by (43), and A 2 R
m�` has components a.j; p/ given by (126). This

uses Remark 2.

Remark 4. To finish, note that the original derivation by Shepp and Vardi [88]
involved the missing data M.j; p/, the number of events in each “cell” of  that
contribute to the counts Nj ,

M.j; p/ D
mX
iD1

11.Ji D j / 11.Zi 2 Cp/; p D 1; 2; : : : ; `:

This calls for a rather complicated relation between the M.j; p/ and the Nj . In
particular, one does not have random samples of the appropriate random variables.
It gets much simplified if one introduces the random variables I1; I2; : : : ; Im which
indicate to what “cell” the event Zi belongs to. So, Ii D p if

11.Zi 2 Cp/ D 1:

Then, for the complete data, one gets back to considering random samples of
random variables, viz., .J; I /. This would provide for an alternative approach to
discretization but would lead to the same EM algorithm. This is essentially the “list
mode” approach of Parra and Barrett [77]. See also [10].

Prehistory of the Shepp–Vardi EM Algorithm

The earliest reference to maximum likelihood estimation in emission tomography is
the aforementioned paper by Rockmore and Macovski [82]. In astronomy, an early
reference is Lucy [70]. The EM algorithm for these maximum likelihood problems
was introduced by Shepp and Vardi [88] and independently by Lange and Carson
[64]. See also [20] for a completely different setting. The EM algorithm for SPECT
is essentially the same; see, e.g., [60] and references therein.

The algorithm itself may be viewed as a method for approximately solving the
integral equation with moment discretization

ŒKf �.j / D Nj

N
; j D 1; 2; : : : ; m; (131)

with K as in (111). In particular, this may be applied to Fredholm integral equations
of the first kind. As such it was independently discovered in various settings many
times over, by Tarasko [93] and Kondor [61] in Physics, by Richardson [81] and
Lucy [70] in Astronomy, and perhaps other authors. It is interesting to note that
both Richardson [81] and Lucy [70] derive the algorithm based on probabilistic
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considerations involving Bayes’ theorem, as in (119). For more on the integral
equations aspect, see also [74].

6 Electron Microscopy

In this section, a recent application of EM algorithms at the bleeding edge of science
is considered. As far as the EM algorithm is concerned, the foundation is far from
complete, whether it be practical or theoretical.

ImagingMacromolecular Assemblies

Structural biologists are interested in the shape of biological objects at the macro-
molecular level. The tail of the T4 bacteriophage is a famous example. Such objects
are referred to as macromolecular assemblies. To view objects that are this tiny,
electron microscopy seems to be the only tool available. Its use in structural biology
goes back to DeRosier and Klug; see [21]. Ideally, one would like to take a single tail
of the T4 bacteriophage, say, obtain electron micrographs (projections) from many
directions, and reconstruct the three-dimensional structure of the tail. Unfortunately,
the bombardment with electrons destroys the object, so that only one projection can
be taken. The biologists have found a way around this, but it comes at a price.
Very roughly speaking, many tails are isolated and suspended in a thin layer of
water, which is then rapidly cooled to below freezing. This results in vitreous water,
with the tails suspended in it but randomly located and oriented. A single electron
micrograph of this layer is then taken. This is equivalent to taking projections of a
single tail in many different directions, corresponding to the random orientations.
For a precise description and analysis of the procedure, see [44]. Now, the price
one pays is that one has many projections of the tail but in random unknown
directions. Since these random directions may be viewed as missing data, it is clear
that EM algorithms may be used. This was first realized by Scheres et al. [85]. A
complication is that the objects can appear in conformational states, which means
that one has a mixture of finitely many (different) objects. Another complication is
that the signal-to-noise ratio is typically quite small, in the 10 % range.

TheMaximum Likelihood Problem

Mathematically, following Scheres et al. [83, 84], the setup may be described as
follows. Each object in the thin layer may be considered as being randomly chosen
from a finite collection xo1 ; x

o
2 ; : : : ; x

o
� of � objects. Its position and orientation in

the thin layer is described by five real-valued parameters: two location parameters
and three Eulerian angles describing its orientation. Denote them by ‚ and the set
of all possible ‚ by „. The problem of finding the location parameters is referred
to as the problem of alignment. For low signal-to-noise ratios, maximum likelihood
methods seem to be preferable [89].
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So, for a random object, one observes the projection in the form of a discretized
image Y ,

Y D C �R
‚
xo
K
C ": (132)

Here, K is the random index into the collection of possible objects, R
‚
x
K

is
the projection data of the object in the “direction” ‚, C is the (known) contrast
transfer function (due to the experimental setup), and � denotes the two-dimensional
discretized convolution operation. Finally, " is the noise, assumed to be normal and
isotropic, i.e., the components of " are jointly normal and the components of the
variance–covariance matrix Vo satisfy

EŒ"p;q "r;s� D †p�r;q�s ; (133)

where†p�r;q�s is a function of .p�r/2C.q�s/2; the (squared) Euclidean distance,
only. In terms of the two-dimensional discrete Fourier transform, this means that
(ignoring boundary effects)

E

h
O"
P;Q
O"
R;S

i
D �
2

o

�
P;Q

for P D R and Q D S; (134)

and D 0 otherwise. Moreover, 
2
P;Q is rotationally symmetric, i.e., it is a function

of P 2 CQ2. Unfortunately, 
2
P;Q is unknown; it must be estimated. Moreover, 
2

varies with Y .
So, the distribution of Y conditional on K D k and‚ D � is given by

f
Y j‚;K

�
yj�; xok

	 D
exp

�
�1

2
kC �R� xok � y k 2

Vo

�

.2�/N=2 det.Vo/
; (135)

where N is the size of Y (or y) and k z k2
V
D zT V �1z : In terms of Fourier

transforms, this reads as

kC �R� xok � y k 2
Vo
D
X
P;Q

�

�2
o

�
P;Q

ˇ̌
ˇ̌ h OCi

P;Q

�
R� x

o
k

�^
P;Q
� Œ Oy�

P;Q

ˇ̌
ˇ̌2;

log det.Vo/ D
X
P;Q

log
�

2
o

�
P;Q

:

(136)

Now introduce the state of the system Y one wishes to estimate and the initial
state of one’s understanding of the system,

S D
n
$o; f

‚jK ; x
o; 
o

o
and SŒ1� D ˚ bar$Œ1�; 'Œ1�; xŒ1�; 
 Œ1�



; (137)
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where $o
k D PŒK D k�, f‚jK is the density of ‚ conditional on K , and xo and 
o

are as before. The current understanding of the system is comprised of one’s best
guesses so far for the true system.

The distribution of Y may be expressed as

f
Y
.y/ D

�X
kD1

$o
k

Z
„

f
Y j‚;K .yj�; xk/ f‚jK .� jk/ d�.�/; (138)

where � D ��!, with � the Lebesgue measure on R
2 and ! the surface measure

on the sphere in R
3. Since it is reasonable to assume that the random location

parameters are independent of the random orientation, then

f
‚
.�1; �2; �3; �4; �5/ D g.�1; �2/ h.�3; �4; �5/; (139)

for appropriate densities g and h. This reduces the actual dimension of the problem,
but for notational ease, such a specialization will not be made.

Given a random sample Y1; Y2; : : : ; Yn; of Y , the maximum likelihood problem
for estimating the unknown objects x1; x2; : : : ; x� may then be formulated:

minimize � 1

n

nX
iD1

log

 
�X

kD1

$k

Z
„

'.‚i jk/ fY jK;‚.Yi jxk; �/ d�.�/
!
: (140)

The unknowns are the probability vector $ , the densities '.� jk/ (keep (139) in
mind), the unknown objects x1; x2; : : : ; x� , and the variances

�

2
i

�
P;Q

. Note that
there is some similarity with the empirical Bayes problem of section “Empirical
Bayes Estimation.”

The EMAlgorithm, up to a Point

Obviously, the goal is to derive an EM algorithm for the solution of (139), but the
final algorithm is not quite the real thing. It is clear that the missing data for each
observed projection Yi consists of the orientation, denoted by ‚i , and which kind
of object one is looking at, encoded in the index Ki . The 
2

i and the objects xk are
considered as parameters. So, the complete data set is .Yi ;‚i ;Ki /, i D 1; 2; : : : ; n,
and the complete maximum likelihood problem is then to minimize

ƒn.S/
defD �1

n

nX
iD1

log
�
$
Ki
'.‚i jKi/ fY j‚;K .Yi j‚i; xKi ; 
i /

�
(141)

over all probability vectors$ , all densities '. � jk/, all variance matrices 
2
i , and all

x1; x2; : : : ; x� . However, recall that the '. � jk/ have a simple structure.
For the E-step, the conditional expectation EŒƒn.S/ jY � is needed. By Bayes’

rule, the distribution of .K;‚/ conditional on Y is described by
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PŒK= kjY = y� f
‚jY;K .� jy; xk/ D

$o
k f‚jK .� jk/ fY j‚;K .yj�; xk; 
/

f
Y
.y/

:

So, with the current state SŒ1�, and setting Yn D fY1; Y2; : : : ; Yng, one gets

EŒƒn.S/ jYn; S Œ1�� D
�X

kD1

Z
„

g
Œ2�
k

�
�; Yi

�
log

�
$k '.� jk/ fY j‚;K

�
Yi j�; xŒ1�k ; 
 Œ1�i

��
d�.�/;(142)

where

g
Œ2�
k .�; Yi / D

$
Œ1�
k '

Œ1�
.� jk/ f

Y j‚;K
�
Yi j�; xŒ1�k ; 
 Œ1�i

�

f Œ1�
Y
.Yi /

; with (143)

f Œ1�
Y
.y/ D

�X
kD1

$
Œ1�
k

Z
„

'Œ1�.� jk/ f
Y j‚;K

�
yj�Œ1�; xŒ1�k

�
d�.�/: (144)

This completes the E-step.
The M-step deals with the minimization of EŒƒn.S/ jYn; S Œ1�� over S . This

separates into three problems. First, estimating $ may be done by solving

minimize �
�X

kD1

.log$k/

Z
„

h
Œ2�
k .�/ d�.�/

subject to $ is a probability vector;

(145)

where

h
Œ2�
k .�/ D

1

n

nX
iD1

g
Œ2�
k .� jYi/: (146)

One verifies that the solution is $ D $Œ2�,

$
Œ2�
k D

Z
„

h
Œ2�
k .�/ d�.�/; k D 1; 2; : : : ; �: (147)

Second, estimating the '. � jk/ may be done by solving

minimize �
�X

kD1

Z
„

h
Œ2�
k .�; Yi / log'.� jk/ d�.�/

subject to '. � jk/ is a pdf; k D 1; 2; : : : ; �:

(148)
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This separates into � minimization problems for the '. � jk/. One verifies that the
solutions are for k D 1; 2; : : : ; �,

'Œ2�.� jk/ D 'Œ1�.� jk/ � 1
n

nX
iD1

f
Y j‚;K

�
Yi j�; xŒ1�k ; 
 Œ1�i

�

f Œ1�
Y jK .Yi jk/

; (149)

where

f Œ1�
Y jK .Yi jk/ D

Z
„

'Œ1�.� jk/ f
Y j‚;K

�
Yi j�; xŒ1�k ; 
 Œ1�i

�
d�.�/: (150)

Note that (147) and (148) are again multiplicative algorithms.
Third and last, one must estimate fY j‚;K , which boils down to estimating the xk

and 
i . The problem is to minimize

�
�X

kD1

Z
„

1

n

nX
iD1

g
Œ2�
k .�; Yi / logf

Y j‚;K .Yi j�; xk; 
i / d�.�/ (151)

over xk and 
i . Since logf
Y j‚;K .Yi j�; xk; 
i / equals

X
P;Q

8̂
<
:̂

ˇ̌
ˇ OCP;Q � Œ.R� xk/^�P;Q � Œ OYi �P;Q

ˇ̌
ˇ2�

2
2
i

�
P;Q

C log
�

2
i

�
P;Q

9>=
>;;

here too the minimization problems separate. This may be solved for each xk by
minimizing

WLSk.xk/ D
Z
„

1

n

nX
iD1

g
Œ2�
k .�; Yi /

8̂
ˆ̂<
ˆ̂̂:

ˇ̌
ˇ̌ OC

P;Q
� Œ.R� xk/^�P;Q �

h OYi
i
P;Q

ˇ̌
ˇ̌2

�
2
2

i

�
P;Q

9>>>=
>>>;
d�.�/:

Denoting the minimizing xk by xŒ2�k , then the new 
i is 
i D 
Œ2�i with

h


Œ2�
i

i
P;Q

D
�X

kD1

Z
„

1

n

nX
iD1

g
Œ2�
k .�; Yi /

�
8<
:
ˇ̌
ˇ̌
ˇ OCP;Q �

��
R� x

Œ2�
k

�^�
P;Q

�
h OYi
i
P;Q

ˇ̌
ˇ̌
ˇ
2
9=
; d�.�/:
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The Ill-PosedWeighted Least-Squares Problem

Up to this point, the M-step has been carried out exactly. The last part is to minimize
WLSk.xk/. This is a weighted least-squares problem, which is nice, but it is ill-posed
(or ill conditioned after discretization), which implies that one cannot and should not
solve it exactly. In fact, Scheres et al. [84] employ a Wiener filter to stably implement
the “exact” deconvolution procedure

��
R� x

Œ2�
k

�^�
P;Q

D Œ OYi �P;Q
OC
P;Q

for all P;Q;

as in Penczek et al. [78], compared with Byrne and Fiddy [14], after which a
weighted least-squares version of ART (WLSART) is applied.

It should be observed that these problems are very large and are computationally
very expensive. It is clear that there is much room for algorithmic development, but
the present discussion ends here.

7 Regularization in Emission Tomography

The Need for Regularization

It is clear that the simple deconvolution problem (57) and the more complicated PET
problem (112) are ill-posed, let alone the electron microscopy problem of Sect. 6.
As already observed, in the PET problem (112), one is trying to solve the compact
operator equation with moment discretization

ŒKf �.j / D bj ; j D 1; 2; : : : ; m; (152)

where bj D Nj=N . The possible nonexistence of solutions is dealt with by
considering the maximum likelihood problem, which may be reformulated as

minimize KL.b;Kf / subject to f 2 P ; (153)

where KL is the discrete Kullback–Leibler divergence (see (54)) and

Kf D .ŒKf �.1/; ŒKf �.2/; : : : ; ŒKf �.m//T :

The problem (153) is similar to a least-squares problem. However, as in the case
of the least-squares approach to compact operator equations, this still does not take
care of the ill-posedness of the problem. So, the problem (153) must be regularized.

The standard and practically the most often used method is to use the EM algo-
rithm and stop the algorithm at some appropriate point in the iteration. See, e.g., [69]
for practical aspects and [80] and [51] for some theoretical results. The alternative is
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essentially Tikhonov regularization of the negative log-likelihood, which also comes
in the guises of Bayesian or maximum a posteriori (MAP) likelihood estimation,
Gibbs smoothing, or just roughness penalization. See [36, 46, 54, 63, 73]. A new
twist is the use of total variation regularization and nonlinear diffusion filtering
in connection with maximum likelihood estimation and EM algorithms (see, e.g.,
[3, 6, 31, 87, 100]), but unfortunately, this will not be discussed further.

In many cases, the E-step of the EM algorithm may be carried out explicitly,
but not so for the M-step. Here, some obvious modifications of the EM algorithm
or extraneous iterative methods must be introduced. However, a few examples of
explicit honest-to-goodness EM algorithms for regularized maximum likelihood
problems are discussed: the NEMS modification of the EMS method of Silverman
et al. [90] and two EM algorithms for Good’s roughness penalization.

Smoothed EMAlgorithms

In this section, the discussion centers on the EMS algorithm of Silverman et al. [90]
and the nonlinearly smoothed NEMS variant of Eggermont and LaRiccia [36] in the
context of the deconvolution problem of section “A Deconvolution Problem.” Silver-
man et al. [90] realized the necessity for regularization of the maximum likelihood
problem in that the EM algorithm produces increasingly rougher estimators. Initially,
this is good since one typically starts out with a uniform estimator and more features
of the signal appear. However, as the iteration progresses, the estimator becomes
increasingly nonsmooth, giving rise to spurious features. But Silverman et al. [90]
figured they knew how to fix the nonsmoothness: Add a smoothing step to the EM

algorithm.
So, let Sh be a smoothing operator in the form

ŒShf �.y/ D
Z
Rd

Sh.y � z/ f .z/ d�.z/; y 2 R
d ; (154)

where Sh.z/ D h�d S.h�1z/ for some bounded, continuous, symmetric pdf S 2
L1.Rd /, possibly with compact support. The EMS algorithm then takes the form

fkC1=2.z/ D fk.z/ � 1

n

nX
iD1

k.Yi � z/

ŒKfk�.Yi /
;

fkC1 D ShfkC1=2:

(155)

So the general step of the EMS algorithm is one step of the EM algorithm followed
by one smoothing step.

Silverman et al. [90] apply this algorithm to the simple problem of stereology
(a integral equation on a compact interval) and to positron emission tomography.
In both cases, it seems to work quite well. Of course, the question is whether
the algorithm (155) converges and, if so, what it converges to. Regarding the first
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question, see [65, 99]. Characterizing the limit is not so easy, e.g., if one has a fixed
point of the iteration, does one then have a point where the gradient of some log-
likelihood-like function vanishes?

In retrospect, it is clear that adding a smoothing step to the EM algorithm is a
fundamentally sound idea, but the way it is implemented is not “right.” Indeed, in
view of the multiplicative character of the EM algorithm, it seems that multiplicative
smoothing is called for. So, with Sh as before but with Sh.z/ > 0 everywhere, define
the nonlinear smoothing operator N on nonnegative functions f by

ŒN .f /�.y/ D exp .ŒSh.logf /�.y//; y 2 R
d : (156)

Note that by convexity, ŒN .f /�.y/ 6 ŒShf �.y/, so that N .f / is always well
defined. One verifies that N performs multiplicative smoothing, i.e.,

N .f � g/ D N .f / �N .g/; (157)

where the dot means pointwise multiplication: Œf � g�.y/ D f .y/g.y/ for all y. It
now turns out that the smoothed maximum likelihood problem

minimize �
nX
iD1

logŒKN .f /�.Yi / subject to f 2 P (158)

admits the EM algorithm

fkC1=3 D N .fk/;

fkC2=3.z/ D fkC1=3.z/ � 1

n

nX
iD1

k.Yi � z/

ŒKfkC1=3�.Yi /
; (159)

fkC1 D ShfkC2=3;

see [36]. In addition, the problem (158) has a solution and it is unique, and the
algorithm (159) converges to this solution in the Kullback–Leibler sense. See
section “Monotonicity of the Smoothed EM Algorithm.”

The algorithm (159) is referred to as the NEMS algorithm: The general step
consists of a nonlinear smoothing step, one step of the original EM algorithm, and
a final (linear) smoothing step. The practical performance on the toy stereology
problem is just about indistinguishable from the NEMS algorithm except that
with the same smoothing operator Sh, the NEMS algorithm does about twice the
smoothing of the EMS algorithm. Note that the question about the proper choice
of the smoothing operator (or smoothing matrix in the discrete case) arises. This is
in effect a question about the selection of the regularization parameter in ill-posed
problems. Unfortunately, this is not addressed in this chapter.
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Good’s Roughness Penalization

Good’s roughness penalization of the deconvolution problem is a particular form of
Tikhonov regularization. The roughness penalty function of Good [47] is

ˆ.f / D 1

4

Z
Rd

j rf .z/ j2
f .z/

d�.z/: (160)

(The factor 1
4 is for convenience only.) The maximum penalized likelihood problem

is then

minimize � 1

n

nX
iD1

logŒKf �.Yi /C
Z
Rd

f .z/ d�.z/C h2ˆ.f /

subject to f 2 P :

(161)

One can now perform the E-step as in section “A Deconvolution Problem” to arrive
at the problem

minimize �
Z
Rd

f2.y/ logf .y/ d�.y/C
Z
Rd

f .y/ dy C h2ˆ.f /

subject to f 2 P ;
(162)

where

f2.y/ D f1.y/ �
1

n

nX
iD1

k.Wi � y/
ŒK f1 �.Wi /

; y 2 R
d : (163)

At this stage, the change of variable u D p
f is obviously(?) useful. The problem

then becomes

minimize � 2
Z
Rd

f2.y/ log u.y/ d�.y/C k u k2 C h2 kru k2

subject to u 2 L2.Rd /; u > 0;

(164)

where k � k denotes the L2.R/ norm. Here, it is convenient to drop the constraint
k u k D 1. Note that (164) is a convex minimization problem. The Euler equations
are given by the boundary value problem

� h2�uC u D f2

u
in R

d ;

ru.y/ �! 0 for j y j �!1;
(165)
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where u is nonnegative. The M-step amounts to solving the boundary value problem.
The resulting algorithm converges, by arguments similar to those for the related

discrete case of the next section. See section “Monotonicity for Exact Gibbs
Smoothing.”

For the positron emission tomography problem, Miller and Roysam [73] arrived
at the analogue of this equation and solved the boundary value problem by finite
differences, using Jacobi’s method on a massively parallel computer. Of course,
other methods come to mind.

Another EM algorithm: There is another way to proceed. With the change of
variable u D pf as before, the objective function in (161) becomes

� 1

n

nX
iD1

logŒK.u2/�.Yi /C k u k2 C h2 kru k2: (166)

Now, introduce the convolution operator Sh with kernel Sh.z/ D h�1 S.h�1z/,
defined via its Fourier transform as

OS.!/ D
Z
Rd

S.z/ e�2�i h z ; ! i d�.z/ D ˚1C j 2�! j2
�1=2
; (167)

for ! 2 R
d . Here and below, j! j denotes the Euclidean norm of !, and h! ; z i

denotes the inner product on R
d . In fact, then

S.z/ D 2�.d�1/=2 ��.dC1/=2 j z j�.d�1/=2K.d�1/=2.j z j/; z 2 R
d ; (168)

where K� is the modified Bessel function of the second kind of order �. Aronszajn
and Smith [1] turn out to be the ideal reference for this.

The convolution operator is defined as

ŒShf �.z/ D
Z
Rd

Sh.z� s/ f .s/ d�.s/; z 2 R
d ; (169)

and satisfies .Shf /^.!/ D
˚
1C .2�h j! j/2
�1=2 Of .!/ for ! 2 R

d .
The net effect is that v D Shu satisfies

k u k2 C h2 kru k2 D k v k2; (170)

so that the final change of variable f DM.w/, where

ŒM.w/�.y/ D ˚�Shpw
�
.y/

2
; y 2 R

d ; (171)

transforms the original maximum likelihood problem (161) into
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minimize � 1

n

nX
iD1

logŒKM.w/�.Yi /C
Z
Rd

w.y/ d�.y/

subject to w 2 P :

(172)

(Actually, the pdf constraints are treated a bit cavalierly. Obviously f and w cannot
both be pdfs, but let it pass.)

It now turns out that there is an EM algorithm for the smoothed maximum
likelihood problem (172) to wit

w
kC1=3 DM.w

k
/;

w
kC2=3.z/ D

n
w
kC1=3.y/

o1=2 � 1

n

nX
iD1

k.Yi � z/

ŒKw
kC1=3 �.Yj /

; (173)

w
kC1.z/ D

˚
w
k
.z/

1=2

ŒS
h
w
kC2=3 �.z/:

It has the same monotonicity properties as the NEMS algorithm; see section “Mono-
tonicity of the Smoothed EM Algorithm.” The original method of Miller and
Roysam [73] satisfies similar monotonicity properties (assuming that (165) is solved
exactly). See section “Monotonicity for Exact Gibbs Smoothing.”

Gibbs Smoothing

Whereas Good’s roughness penalization was essentially aimed at the continuous
setting, attention now turns to a purely discrete point of view. So, let us consider the
discrete maximum penalized likelihood problem

minimize �
mX
jD1

bj logŒAx�j C
X̀
pD1

xp C �G.x/

subject to x 2 V
`
;

(174)

with V
`

given by (43) and A 2 R
m�` has components a.j; p/ given by (127)

and � > 0 is the regularization parameter. The typical form of the penalization
associated with the name of Gibbs smoothing is

G.x/ D
X
p;q

wpq �
�

�1.xp � xq/

	
; (175)

for some convex function � and nonnegative weights wpq and positive 
 . Some
typical examples for � are �. t / D log cosh. t / and �. t / D j t j for t 2 R. The
nonzero weights wpq determine a neighborhood system. The neighborhood of the p-
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th component of x is given by fq jwpq > 0g: Although x was encoded as a column
vector, one should think of x as a two-dimensional image or three-dimensional
structure, so that neighboring image elements may have widely differing indices
p and q. See [45, 46, 66]. The approach of (174) originated with Green [49].

The role of the penalty term is to penalize differences in neighboring components
of x, but large differences are not penalized much more. In fact, this is an argument
for choosing �. t / D min.j t j; ı/ for some ı.

To solve the problem (174), again proceed iteratively, and perform the E-step of
the EM algorithm. As before, this gives

minimize �
X̀
pD1

QxŒk�p logxp C
X̀
pD1

xp C �G.x/

subject to x 2 V
`
;

(176)

with QxŒ2� given by (129). For convenience, the constraint that x 2 V` is now dropped.
To solve the resulting problem, set the gradient equal to 0,

� Qx
Œ2�
p

xp
C 1C �rG.x/ D 0: (177)

Now, the one-step-late idea of Green [49] is to approximately solve this equation by

xŒ2�p D
QxŒ2�p

1C � ŒrG.xŒ1�/�p ; p D 1; 2; : : : ; `: (178)

This is referred to as OSL-EM. Green [49] reports that this works well for small �.
Regarding its convergence under appropriate conditions, see [62]. If (177) is solved
exactly, then the resulting algorithm has the usual nice monotonicity properties; see
section “Monotonicity for Exact Gibbs Smoothing.”

Hebert and Leahy [54] observed that (178) is similar in spirit to Jacobi’s method
for solving systems of linear equations, and they noticed that the Gauss–Seidel
analogue of sequentially solving (177) speeds up the computations. See also [41].
For other ways to accelerate EM algorithms, see Sect. 10.

8 Convergence of EM Algorithms

The convergence of the Shepp–Vardi EM algorithm is based on two rather remark-
able monotonicity properties of the EM algorithm, established using analytical
methods by Mülthei and Schorr [75]. Unfortunately, the geometric approach of
Csiszár and Tusnády [23] that seems to explain why the Mülthei–Schorr approach
works is not discussed. See [38]. However, the methods generalize in different ways.
See Sect. 9.



EM Algorithms 349

The TwoMonotonicity Properties

Consider the discretized maximum likelihood problem of positron emission tomog-
raphy, repeated here for convenience:

minimize L.x/
defD �

mX
jD1

bj logŒAx�j C
X̀
pD1

xp

subject to x 2 V
`
; (179)

where bj D Nj=N . Here, V
`

is given by (43) and A 2 R
m�` has nonnegative

components a.j; p/ given by (126), with unit column sums

mX
jD1

a.j; p/ D 1; p D 1; 2; : : : ; `: (180)

It is clear that the problem (179) is convex and that solutions exist. The uniqueness
is guaranteed only if A has full column rank. Regardless, the set of minimizers,
denoted by C, is convex.

Recall that the EM algorithm for solving (179) is, for k D 1; 2; : : :,

xŒkC1�
p D xŒk�p � ŒAT rŒk��p; p D 1; 2; : : : ; `;

r Œk�p D
bj

ŒAxŒk��j
; j D 1; 2; : : : ; m:

(181)

starting from some initial strictly positive probability vector xŒ1�.
The two monotonicity properties are as follows:

L.xŒk�/� L.xŒkC1�/ > KL.xŒkC1�; xŒk�/ > 0; (182)

and, if x� is any solution of (179),

KL.x�; xŒk�/� KL.x�; xŒkC1�/ > L.xŒk�/ �L.x�/ > 0: (183)

The meaning of the first monotonicity property is clear: It says that the likelihood
decreases if successive iterates are different. The second one says that the iterates
get closer to every minimizer as measured by the Kullback–Leibler “distance.” The
everyday image is that if one thinks of the set of minimizers as an airport, then
the iterates land like a helicopter, not like an airplane. This kind of monotonicity is
called Féjèr monotonicity.

The two monotonicity properties imply that the EM algorithm converges.



350 C. Byrne and P.P.B. Eggermont

Theorem 1. If xŒ1� is strictly positive, then the sequence fxŒk�gk generated by the
EM algorithm (181) converges to a solution, say x��, of the maximum likelihood
problem (179). In particular,

lim
k!1 KL.x��; xŒk�/ D 0:

Proof. The first inequality says that the negative log-likelihood is strictly decreas-
ing, unless xŒk� D xŒkC1�. If xŒk� D xŒkC1� does indeed hold, then the second
inequality says that L.xŒk�/ D L.x�/, so that xŒk� is a solution of (179). In
general, the second inequality implies that fKL.x�; xŒk�/gk is a decreasing sequence.
Since the sequence is bounded from below (by 0), it must have a limit, but then
KL.x�; xŒk�/� KL.x�; xŒkC1�/ �! 0; which implies that

L.xŒk�/ �! L.x�/: (184)

So, the negative log-likelihood converges. Finally, since
P
x
Œk�
p D 1 ; the sequence

fxŒk�gp is bounded and hence has a convergent subsequence, say, with limit x��.
By (184), thenL.x��/ D L.x�/, so that x�� is a minimizer also. Now, in the second
monotonicity property, one may replace x� by x��, and then fKL.x��; xŒk�/gk is
decreasing. Since a subsequence converges to 0, then the whole sequence converges
to 0. �

It should be observed that the theorem is actually not very useful: When using the
algorithm (181), one will always stop the algorithm well short of convergence. See,
e.g., [69, 80]. Thus, the existence of maximum likelihood estimators is moot. One
may think of this as an unfortunate side effect of discretization. For the continuous
version, say, for the deconvolution problem, one does indeed have the analogues
of the above two monotonicity properties, but the second one is vacuous, since the
continuous maximum likelihood problem has no solutions. For the NEMS algorithm,
one can show the existence of solutions as well as its convergence by way of
the two monotonicity properties. See section “Monotonicity of the Smoothed EM
Algorithm.”

In the following subsections, the two monotonicity properties are proved for
the standard discrete Shepp–Vardi EM algorithm, for the continuous version of the
NEMS algorithm, and for the exact version of Gibbs smoothing (but not for the one-
step-late version). The basic tool is the analytical proof of Mülthei and Schorr [75],
which is actually quite versatile, as demonstrated in Sect. 9.

Monotonicity of the Shepp–Vardi EM Algorithm

Here, the two monotonicity properties of the EM algorithm are exhibited, following
the proof of Mülthei and Schorr [75]. The first monotonicity property (182) follows
from the derivation of the E-step of the EM algorithm. However, here a purely
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analytical proof is explained. Vardi et al. [96] prove the two monotonicity properties
using the geometric results of Csiszár and Tusnády [23].

It is useful to define the operatorR on nonnegative vectors x 2 R
` by

ŒR x�p D xp
�
AT .b=Ax/

�
p
; p D 1; 2; : : : ; `; (185)

where b=Ax denotes the vector of componentwise quotients.

Lemma 1. For all nonnegative x and y, with y strictly positive,

L.x/ 6 L.y/C KL.R y; x/ �KL.R y; y/:

Proof. Note that for all nonnegative vectors x and y,

L.x/ � L.y/ D �
mX
jD1

bj log
ŒAx�j

ŒAy�j
C
X̀
pD1

xp � yp:

Now, for strictly positive y, one may write

ŒAx�j

ŒAy�j
D
X̀
pD1

a.j; p/ yp

ŒAy�j
� xp
yp
:

For each j , this is a convex combination of the points xp=yp , p D 1; 2; : : : ; `. Since
t 7�! � log t is convex, then by Jensen’s inequality

L.x/ � L.y/ 6 �
mX
jD1

bj
X̀
pD1

a.j; p/ yp

ŒAy�j
log

xp

yp
C
X̀
pD1

xp � yp

6
X̀
pD1

�yp ŒAT r�p log
xp

yp
C xp � yp;

where in the last step the order of summation was interchanged. The lemma
follows. �

Proof of the first monotonicity property (182). In the inequality of the lemma
above, take y D xŒk� and x D Ry D RxŒk� D xŒkC1�. Then, L.xŒkC1�/�L.xŒk�/ 6
�KL.xŒkC1�; xŒk�/: �

Proof of the second monotonicity property (183). Start with
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KL.x�; xŒk�/� KL.x�; xŒkC1�/ D
X̀
pD1

x�
p log

x
ŒkC1�
p

x
Œk�
p

D
X̀
pD1

x�
p log

�
AT

�
b

AxŒk�

�
p

:

Now, if x� solves (179), then it must satisfy the necessary and sufficient conditions
for a minimum

x� > 0; rL.x�/ > 0; x�
p ŒrL.x�/�p D 0 for all p:

The last condition says that x�
p

��ŒAT r��p C 1
	 D 0 ; where r�

j D bj =ŒAx
��j for

all j , so that if x�
p > 0, then ŒAT r��p D 1 : So, for x�

p > 0, write

�
AT

�
b

xŒk�

�
p

D
mX
jD1

a.j; p/ bj

ŒAx��j
� ŒAx

��j
ŒAxŒk��j

;

which is a convex combination of the points ŒAx��j =ŒAxŒk��j ; so by the concavity
of the logarithm,

X̀
pD1

x�
p log

�
AT

�
b

AxŒk�

�
p

>
X̀
pD1

x�
p

mX
jD1

a.j; p/ bj

ŒAx��j
� log

ŒAx��j
ŒAxŒk��j

>
mX
jD1

bj log
ŒAx��j
ŒAxŒk��j

D KL.b; AxŒk�/� KL.b; AxŒkC1�/;

where the last equality follows from
P
x
Œk�
p DP x

ŒkC1�
p DP bj : �

Monotonicity for Mixtures

Here, the two monotonicity properties of the EM algorithm for mixtures of known
densities are discussed. The difference with the Shepp–Vardi EM algorithm is that
the system matrix is not normalized to have unit column sums. It will transpire that
this does not make any difference.

Recall that the problem is to estimate the pdf

f
Y
.y/ D

mX
jD1

xo;j aj .y/; y 2 R
d ; (186)
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where the aj are known pdfs and xo is an unknown probability vector, given a
random sample Y1; Y2; : : : ; Yn of the random variable Y with density fY . Define the
matrix A 2 R

n�m by

Aij D aij D aj .Yi / for all i and j: (187)

The EM algorithm for estimating xo is, starting from the uniform vector xŒ1�,

xŒkC1� D MxŒk�; (188)

where the iteration operatorM is defined as

ŒMx�j D xj � 1
n

nX
iD1

aij

ŒAx�i
; j D 1; 2; : : : ; m: (189)

One begins again with deriving the majorizing function inequality. However, first
replace the maximum likelihood problem (44) by the equivalent

minimize Ln.x/
defD �1

n

nX
iD1

log

0
@ mX
jD1

xj aij

1
AC

mX
jD1

xj

subject to x > 0:

(190)

Note that the constraint that x be a probability vector was traded for the added sum
in the objective function.

The majorizing function inequality is the same as before, as is its proof. Then,
the first monotonicity property follows.

Lemma 2. If x and y are nonnegative probability vectors, with y strictly positive,
then

Ln.x/ 6 Ln.y/C KL.M y; x/ �KL.M y; y/:

Note that the minimizer of the right-hand side (over x) is x DMy.

Lemma 3. Starting from a strictly positive xŒ1�, the iterates of the EM algo-
rithm (188) satisfy

Ln.x
Œk�/ �Ln.xŒkC1�/ > KL.xŒkC1�; xŒk�/ > 0:

The second monotonicity property is the same also, but there is a slight change
in its proof.
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Lemma 4. Let x� be a solution of (190). Starting from a strictly positive xŒ1�, the
iterates of the EM algorithm (188) satisfy

KL.x�; xŒk�/� KL.x�; xŒkC1�/ > Ln.x
Œk�/� Ln.x�/ > 0:

Proof. Since
P
x
Œk�
j D

P
x
ŒkC1�
j D 1; one has as usual

KL.x�; xŒk�/� KL.x�; xŒkC1�/ D
mX
jD1

x�
p log

x
ŒkC1�
p

x
Œk�
p

D
X̀
jD1

x�
j log

�
AT

�
.1=n/

AxŒk�

�
j

:

Now, if x� solves (179), then it must satisfy the necessary and sufficient conditions
for a minimum

x� > 0; rLn.x�/ > 0; x�
j ŒrLn.x�/�j D 0 for all j:

The last condition says that x�
j

��ŒAT r��j C 1
	 D 0 ; where r�

i D .1=n/=ŒAx��i
for all i , so that if x�

j > 0, then ŒAT r��j D 1: So, for x�
j > 0, write

�
AT

�
.1=n/

AxŒk�

�
j

D
nX
iD1

.1=n/ aij
ŒAx��i

� ŒAx
��i

ŒAxŒk��i
;

which is a convex combination of the points ŒAx��i =ŒAxŒk��i ; so by the concavity
of the logarithm,

mX
jD1

x�
j log

�
AT

�
.1=n/

AxŒk�

�
j

>
mX
jD1

x�
j

nX
iD1

.1=n/ aij
ŒAx��i

� log
ŒAx��i
ŒAxŒk��i

>
nX
iD1

.1=n/ log
ŒAx��i
ŒAxŒk��i

C
mX
jD1

x
Œk�
j � x�

j D Ln.xŒk�/� Ln.x�/;

where the last equality follows from
P
x
Œk�
j D

P
x�
j D 1: �

The convergence of the iterates of the EM algorithm follows.

Monotonicity of the Smoothed EMAlgorithm

Here, the monotonicity properties of the NEMS algorithm for the smoothed maxi-
mum likelihood problem (158) are proved. The problem is
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minimize Ln.f /
defD �1

n

nX
iD1

logŒKN .f /�.Wi /C
Z
Rd

f .y/ d�.y/

subject to f 2 L1.Rd /; f > 0:

(191)

Since this is an infinite-dimensional problem, showing that the iterates of the NEMS

algorithm converge to a solution of (191) is a bit more involved. In particular, it
requires us to show the existence of solutions. The only remarkable thing about
the proofs of the two monotonicity properties for the NEMS algorithm is that apart
from a few cosmetic changes, they are exactly the same as for the Shepp–Vardi EM

algorithm. The argument follows Eggermont [34].
The NEMS algorithm (159) may be represented as

gkC1 D Thfk; fkC1 D Sh gkC1; (192)

starting from a strictly positive initial guess f1, assumed to be a pdf. Here, the map
Th is defined as

ŒThf �.z/ D ŒN .f /�.z/ � 1

n

nX
iD1

k.Wi � z/

ŒKN .f /�.Wi /
: (193)

The claim is now that the iterates of the NEMS algorithm satisfy the same two
monotonicity properties (182) and (183). The crux is again an analytical proof of
what amounts to the E-step of the EM algorithm.

Lemma 5. For all densities ' and  ,

Ln.'/ 6 Ln. /C KL.ShTh ; '/ �KL.ShTh ; /:

Proof. Similar to the proof of Lemma 1, one gets that

Ln.'/ � Ln. / 6 �
Z
Rd

ŒTh �.z/ log
ŒN .'/�.z/
ŒN . /�.z/ d�.z/:

Since

log .ŒN .'/�.z/=ŒN . /�.z// D ŒSh log .'= /� .z/;

and Sh is a symmetric operator, then

�
Z
Rd

ŒTh �.z/ log
ŒN .'/�.z/
ŒN . /�.z/ d�.z/ D �

Z
Rd

ŒShTh �.y/ log
'.y/

 .y/
d�.y/;
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and the lemma follows. �

Lemma 6. The iterates fk generated by the NEMS algorithm (192) satisfy

Ln.fk/� Ln.fkC1/ > KL.fkC1; fk/ > 0:

Proof. In Lemma 5, take ' D fkC1 and  D fk . Then, ShTh D fkC1. �

The second monotonicity property is actually a little bit stronger than the one for
the Shepp–Vardi EM algorithm. Note that by the convexity of the KL function jointly
in both its arguments, KL.Sh';Sh / 6 KL.';  /:

Lemma 7. Let f � be a solution of (191), with KL.f �; f1/ <1. Then, the iterates
fk generated by the NEMS algorithm (192) satisfy

KL.f �; fk/� KL.f �; fkC1/ > KL.f �; fk/� KL.Thf �; Thfk/

> Ln.fk/�Ln.f �/ > 0:

Proof. Start in the usual fashion and obtain

Ln.fk/� Ln.f �/ D 1

n

nX
iD1

log
ŒKNf ��.Wi /

ŒKNf��.Wi /

D 1

n

nX
iD1

ŒKNf ��.Wi /

ŒKNf ��.Wi /
log

ŒKNf ��.Wi /

ŒKNfk�.Wi /

D
Z
Rd

ŒNf ��.z/ � 1
n

nX
iD1

k.Wi � z/

ŒKNf ��.z/
log

ŒKNf ��.Wi /

ŒKNfk�.Wi /
d�.z/:

Now, one would like to get a convex combination, so multiply and divide by the
sum of the weights k.Wi � z/=ŒKNf ��.Wi /. Then, the concavity of the logarithm
gives that the last expression is dominated by

Z
Rd

ŒNf ��.z/ � 1
n

nX
iD1

k.Wi � z/

ŒKNf ��.z/
log

0
BBBB@

1

n

nX
iD1

k.Wi � z/

ŒKNfk�.z/

1

n

nX
iD1

k.Wi � z/

ŒKNf ��.z/

1
CCCCA d�.z/:

Now, this expression may be cleaned up as

Z
Rd

ŒThf ��.z/ log

�
ŒThfk�.z/
ŒNfk�.z/

� ŒNf
��.z/

ŒThf ��.z/

�
d�.z/:



EM Algorithms 357

After splitting up the logarithm, note that

Z
Rd

ŒThf ��.z/ log

�
ŒThfk�.z/
ŒThf ��.z/

�
d�.z/ D �KL.Thf �; Thfk/

because Th' is a pdf if ' is one and also

Z
Rd

ŒThf ��.z/ log

�
ŒNf ��.z/
ŒNfk�.z/

�
d�.z/ D

Z
Rd

ŒThg��.z/
�
Sh log

f �

fk

�
.z/ d�.z/

D
Z
Rd

ŒShThf ��.y/ log
f �.y/
fk.y/

d�.y/ D KL.f �; fk/;

since ShThf � D f �. Putting all of this together shows that

Ln.fk/ �Ln.f �/ 6 KL.f �; fk/� KL.Thf �; Thfk/;

and the lemma follows. �

The two monotonicity properties imply that the NEMS algorithm converges to a
solution of the smoothed maximum likelihood problem (191) and that this problem
actually has a solution.

Theorem 2. The smoothed maximum likelihood problem (191) has a solution f � 2
L1.Rd /.

Proof. One first shows that Ln.f / is bounded from below. Let f be a pdf on R
d

such that ŒKNf �.Wi / > 0 for all i . Let 11 2 R
n be the vector of all ones, and let

vi D ŒKNf �.Wi /. Then,

Ln.f / D KL

�
1

n
11; v

�
� 1

n

nX
iD1

logŒKNf �.Wi /C
Z
Rd

f .y/ d�.y/:

Now, by convexity ŒNf �.z/ 6 ŒShf �.z/ for all z, so that

ŒKNf �.z/ D
Z
Rd

k.Wi � z/ ŒNf �.z/ d�.z/

6
Z
Rd

k.Wi � z/ ŒShf �.z/ d�.z/

D
Z
Rd

f .y/

Z
Rd

k.Wi � z/ Sh.z � y/ d�.y/ d�.z/

6 �h

Z
Rd

f .y/ d�.y/ D �h;
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where

�h D sup
y2Rd

Z
Rd

k.Wi � z/ Sh.z � y/ d�.y/ d�.z/ 6 sup
y2Rd

Sh.z/;

since k is a pdf. Since Sh.z/ D h�dS.h�1z/, the boundedness of S then gives that
�h <1 for fixed h > 0. It follows that Ln.f / is bounded from below.

Now, let f'kgk be a minimizing sequence forLn.f /. Apply one step of the NEMS

algorithm to each 'k , so  k D ShTh'k ; k D 1; 2; : : : : By the first monotonicity
property, then f kgk is a minimizing sequence also. Since each Th'k is a pdf,
then the  k are uniformly continuous on R

d , and so it has a subsequence which
converges in the strict topology, i.e., uniformly on every compact subset of Rd , say,
with limit  �. This is the Arzelà–Ascoli theorem for the strict topology; see [2].
Then, along this subsequence

ŒKN . k/�.Wi / �! ŒKN . �/�.Wi /;

and it follows that again along this same subsequence

Ln. k/ �! Ln. 
�/:

Since the whole sequence f kgk was a minimizing sequence, this shows that  �
solves the problem (191). �

Theorem 3. For f Œ1� strictly positive with KL.f �; f Œ1�/ <1; the NEMS algorithm
converges to a solution of (191).

Proof. The proof is just about the same as for the discrete EM algorithm. Thus,
the first monotonicity property shows that fLn.fk/g is decreasing. The second
monotonicity property shows that fKL.f �; fk/gk is decreasing as well and so has
a nonnegative limit. But then KL.f �; fk/ � KL.f �; fkC1/ converges to 0, so that
again the second monotonicity property gives that the NEMS sequence ffkgk is a
minimizing sequence. All one has to do is extract a convergent subsequence, but that
follows from the argument in the proof of the existence of convergent subsequences.
Thus, there exists a subsequence which converges to some element f �� in the
strict topology. Then, ŒKN .fk/�.Wi / �! ŒKN .f ��/�.Wi / for all i , and then
Ln.fk/ �! Ln.f

��/ initially only along the subsequence, but since fLn.fk/gk is
decreasing, then along the whole sequence. Now, if KL.f ��; f1/ < 1, then apply
the second monotonicity property with the solution f ��, and then one finds that
KL.f ��; fk/ �! 0 along the subsequence, but since fKL.f ��; fk/gk is decreasing,
then along the whole sequence.

If KL.f ��; f1/ D 1, then for 0 < " < 1 but arbitrary, apply the second
monotonicity property with the solution f �

" D " f � C .1 � "/f ��. Then,
KL
�
f �
" ; f1

	
<1 and KL

�
f �
" ; fk

	
converges, and it is easy to see that
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lim
k!1 KL

�
f �
" ; fk

	 D KL
�
f �
" ; f

��	 D o.1/ for " �! 0:

It follows that KL.f ��; fk/ �! 0. �

Monotonicity for Exact Gibbs Smoothing

The two monotonicity properties also hold for penalized maximum likelihood
estimation with Gibbs smoothing, at least if the M-step of the EM algorithm is
performed exactly; see (196) below. This is at least approximately the case in the
approach of Miller and Roysam [73] but not so for the one-step-late approach of
Green [49].

Here, the monotonicity properties are proved for “arbitrary” Gibbs functionals.
So, consider the maximum penalized likelihood problem for emission tomography

minimize ƒ.x/
defD �

mX
jD1

bj logŒAx�j C
X̀
pD1

xp CG.x/

subject to x > 0;

(194)

where G.x/ is convex and differentiable and satisfies

lim
k x k!1

G.x/ D C1: (195)

Assume that b is strictly positive and that A satisfies the usual conditions (126).
Note that typically, the roughness prior will be of the form �G.x/ for some small
positive parameter �. In the present context, one may as well take � D 1.

The goal is again to derive the two monotonicity properties. The majorizing
functional inequality is just about the same as for the Shepp–Vardi EM algorithm;
see (180). Recall the definition of the operator R from (185).

Lemma 8. For all probability vectors x and y,

ƒ.x/ 6 ƒ.y/C KL.Ry; x/ �KL.Ry; y/CG.x/ �G.y/;

where rj D bj =ŒAy�j for j D 1; 2; : : : ; m.

Now, to minimize the right-hand side, set the gradient with respect to x equal to
0. With y D xŒk�, this gives the next iterate implicitly as

xŒkC1�
p D x

Œk�
p ŒAT rŒk��p

1C ŒrG.xŒkC1�/�p
; p D 1; 2; : : : ; `; (196)
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with r
Œk�
j D bj =ŒAx

Œk��j for all j . Note that 1 C �rG �xŒkC1�
	�
p
> 0 for all p,

since the equations

xŒkC1�
p

�
1C �rG �xŒkC1�	�

p

�
D xŒk�p ; p D 1; 2; : : : ; `;

have a solution (the minimization problem has a solution) and xŒk� is strictly positive
(by induction).

The first monotonicity property is almost immediate. The second one takes more
work. For nonnegative vectors x, y, and w, define

KL.x; yjw/ D
X̀
pD1

wp

�
xp log

xp

yp
C yp � xp


: (197)

Lemma 9. Starting with a strictly positive initial vector xŒ1�,

ƒ.xŒk�/ �ƒ.xŒkC1�/ > KL.xŒkC1�; xŒk� jwŒkC1�/ > 0;

where wŒkC1� D 1CrG.xŒkC1�/.

Proof. From Lemma 8, one gets

ƒ
�
xŒkC1�

	 �ƒ �xŒk�	

6
X̀
pD1

8<
:
0
@wŒkC1�

p xŒkC1�
p log

x
Œk�
p

x

ŒkC1�

p

1
AC xŒkC1�

p � xŒk�p

9=
;

CG �xŒkC1�
	�G �xŒk�	 :

Now use that G.xŒkC1�/�G.xŒk�/ 6 h rG.xŒkC1�/ ; xŒkC1� � xŒk� i: �

Lemma 10. Let x� be a solution of (194). Then, starting from a strictly positive
initial guess xŒ1�,

KL.w� �x�;wŒk� � xŒk�/� KL.w� �x�;wŒkC1� � xŒkC1�/ > ƒ.xŒk�/ �ƒ.x�/ > 0;

where w� D 1CrG.x�/:

Proof. Write ƒ.x/ D L.x/ C G.x/. So L.x/ is the unpenalized negative log-
likelihood. Now, as in section “Monotonicity of the Shepp–Vardi EM Algorithm,”
one has
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L.xŒk�/� L.x�/ D
mX
jD1

�
bj log

ŒAx��j
ŒAxŒk��j

C ŒAxŒk��j � ŒAx��j


D
X̀
pD1

(
x�
p

�
AT

�
r� log

Ax�

AxŒk�

�
p

C xŒk�p � x�
p

)
;

with r�
j D bj =ŒAx

��j for all j . Now, x� solves the problem (194), so by the
previous lemma, it must be a fixed point of the algorithm. So,

x�
p D

x�
p ŒA

T r��p
1C ŒrG.x�/�p

; p D 1; 2; : : : ; `:

Then, if x�
p > 0, one must have ŒAT r��p=.1C ŒrG.x�/�p/ D 1: Consequently, by

convexity

�
AT

�
r� log

Ax�

AxŒk�

�
p

1C ŒrG.x�/�p
6 log

�
AT

�
r� Ax�

AxŒk�

�
p

1C ŒrG.x�/�p
;

which equals

log

 
x
ŒkC1�
p

x
Œk�
p

� w
ŒkC1�
p

w�
p

!
D log

 
wŒkC1�
p x

ŒkC1�
p

wŒk�p x
Œk�
p

!
C log

wŒk�p
w�
p

:

Now, substitute this in the upper bound for L.xŒk�/� L.x�/. This yields

L.xŒk�/� L.x�/ 6
X̀
pD1

w�
p x

�
p log

wŒkC1�
p x

ŒkC1�
p

wŒk�p x
Œk�
p

C

X̀
pD1

(
w�
p x

�
p log

wŒk�p
w�
p

C xŒk�p � x�
p

)
:

Now, after some bookkeeping, the first sum is seen to be equal to

KL
�
w� �x�;wŒk� �xŒk�	 �KL

�
w� �x�;wŒkC1� �xŒkC1�

	

C
X̀
pD1

n
wŒkC1�
p xŒkC1�

p � wŒk�p xŒk�p

o
:
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Using the inequality log t 6 t � 1, one gets that

L.xŒk�/�L.x�/ 6 KL.w� �x�;wŒk� �xŒk�/�KL.w� � x�;wŒkC1� � xŒkC1�/C rem
(198)

with the remainder

rem D
X̀
pD1

n
.wŒk� � 1/

�
x�
p � xŒk�p

�
� w�

p x
�
p C wŒkC1�

p xŒkC1�
p

o
:

Now, since wŒkC1�
p x

ŒkC1�
p D xŒk�p ŒAT rŒk��p and likewise for w�

p x
�
p , then

X̀
pD1

w�
p x

�
p D

mX
jD1

bj D
X̀
pD1

wŒkC1�
p xŒkC1�

p :

The remaining terms add up to h rG.xŒk�/ ; x� � xŒk� i which is bounded by
G.x�/ � G.xŒk�/ (by convexity). Moving this to the left-hand side of the resulting
inequality proves the lemma. �

The convergence of the exact EM algorithm with Gibbs smoothing now follows.
Lange [62] proves the convergence of the one-step-late version of the algorithm by
essentially “soft” methods. It would be nice to see under what conditions the two
monotonicity properties carry over to this version.

9 EM-Like Algorithms

The analytical proofs of the inequalities of Lemmas 1 and 5 may be extended
to other interesting minimization problems. Rather surprisingly, some of these
algorithms enjoy the “same” two monotonicity properties as the EM and NEMS

algorithms (and the proofs appear to be simpler). The problems under consideration
are “positive” least-squares problems and minimum cross-entropy problems. The
main idea is that of majorizing functions, as originally exploited by De Pierro [29]
in the maximum penalized likelihood approach for emission tomography.

Again, it would have been nice to also outline the geometric approach of Csiszár
and Tusnády [23], which, just like the analytical approach of Mülthei and Schorr
[75], is applicable to the minimum cross-entropy problems. However, it is not clear
that the Csiszár–Tusnády approach works for the “positive” least-squares problem:
The Kullback–Leibler distance shows up in the monotonicity properties. This is in
effect due to the multiplicative nature of the algorithms, as explained in the last
section.
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MinimumCross-Entropy Problems

Consider again the system of equations

Ax D b; (199)

in the emission tomography setup (see (126)), with b a nonnegative vector. The
interest is in the following minimization problem:

minimize CE.x/
defD KL.Ax; b/ subject to x 2 R

` ; x > 0: (200)

Here, “CE” stands for cross-entropy. (Why it makes sense to consider KL.Ax; b/
instead of KL.b; Ax/ or even kAx � b k2 is not the issue here.)

The objective is to obtain a majorizing function for CE.x/ that would result in
a nice algorithm satisfying the “two” monotonicity properties similar to the EM

algorithm.
Prejudicing the proceedings somewhat, it is useful to define the operator R on

nonnegative vectors by

ŒRy�p D yp exp

 �
AT log

b

Ay

�
p

!
; p D 1; 2; : : : ; `: (201)

Here, and elsewhere, AT log.Ay=b/ D AT v; with vj D log.ŒAy�j =bj / for all j .

Lemma 11. For all nonnegative x, y 2 R
`,

CE.x/ 6 CE.y/C KL.x;Ry/ �KL.y;Ry/:

Proof. The starting point is the straightforward identity

CE.x/ D CE.y/C KL.Ax;Ay/C h x � y ; AT r i:

with rj D log.ŒAy�j =bj / for all j .
Now, by convexity of the KL function jointly in both its arguments, the

conditions (126) and (127) on A imply that

KL.Ax;Ay/ 6 KL.x; y/: (202)

Finally, since ŒAT r�p D � log
�
ŒRy�p=yp

	
; for all p, then

KL.x; y/C h x � y ; AT r i D KL.x;Ry/ � KL.y;Ry/:

This completes the proof of the lemma. �
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The inequality of the lemma immediately suggests an iterative algorithm for the
minimization of CE.x/. Minimizing the right-hand side gives the optimal x as x D
Ry with R given by (201). Thus, the iterative algorithm is, starting from a strictly
positive xŒ1� 2 R

`,

xŒkC1�
p D ŒRxŒk��p; p D 1; 2; : : : : (203)

This is the simultaneous multiplicative algebraic reconstruction technique (SMART

algorithm). It first appeared in [86]; see (also) Holte et al. [57] and Darroch and
Ratcliff [25], who called it the iterative rescaling algorithm. The row-action version
(MART) originated with Gordon et al. [48]. Byrne [7] developed block-iterative
Versions; see section “The MART and SMART Methods.” The starting point of
Censor and Segman [18] was entropy maximization subject to the linear constraints
Ax D b and arrived at various versions of MART including simultaneous and block-
iterative versions.

Onto the two monotonicity properties, the first one is immediate.

Lemma 12. If xŒ1� is strictly positive, then the iterates of the SMART algo-
rithm (203) satisfy

CE
�
xŒk�

	� CE
�
xŒkC1�

	
> KL

�
xŒk�; xŒkC1�

	
:

Note the difference with the first monotonicity property (182) for the Shepp–
Vardi EM algorithm. The second monotonicity property is equally simple, but the
precise form must be guessed. (Actually, it follows from the proof.)

Lemma 13. If x� is a solution of the nonnegatively constrained least-squares
problem (207), then, with xŒ1� strictly positive,

KL
�
x�; xŒk�

	 � KL
�
x�; xŒkC1�

	
> CE

�
xŒkC1�

	 � CE
�
x�	 > 0:

Proof. Observe that

KL
�
x�; xŒk�

	 � KL
�
x�; xŒkC1�

	

D
X̀
pD1

(
x�
p log

x
ŒkC1�
p

x
Œk�
p

C xŒk�p � xŒkC1�
p

)

D
X̀
pD1

�
xŒk�p � x�

p

�
log

x
Œk�
p

x
ŒkC1�
p

�
X̀
pD1

(
xŒk�p log

x
Œk�
p

x
ŒkC1�
p

C xŒkC1�
p � xŒk�p

)
:(204)

The last sum equals KL.xŒk�; xŒkC1�/, and by Lemma 12, then

�KL.xŒk�; xŒkC1�/ > CE
�
xŒkC1�

	 � CE
�
xŒk�

	
:
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The first sum equals

X̀
pD1

�
xŒk�p � x�

p

� �
AT log

AxŒk�

b

�
p

D hxŒk� � x� ; rCE.xŒk�/ i;

where h � ; � i denotes the inner product on R
` and rCE is the gradient of CE.x/.

By the convexity of CE, then

˝
xŒk� � x� ; rCE

�
xŒk�

	˛
> CE

�
xŒk�

	� CE
�
x�	 :

Summarizing, the above shows that

KL
�
x�; xŒk�

	 � KL
�
x�; xŒkC1�	 > CE

�
xŒk�

	 � CE
�
x�	C CE

�
xŒkC1�	 � CE

�
xŒk�

	
D CE

�
xŒkC1�	 � CE

�
x�	 :

This is the lemma. �

As before, the convergence of the SMART algorithm follows starting from any
strictly positive vector xŒ1�.

Minimizing Burg’s entropy: Compared with the minimum cross-entropy problem
from the previous section, the case of Burg’s entropy is problematic. For the positive
system

Ax D b

with the normalization (126), the minimum Burg entropy problem is

minimize B E.x/
defD

mX
jD1

�
� log

bj

ŒAx�j
C bj

ŒAx�j



subject to x > 0:

(205)

The first thing one notices is that it is not a convex problem. Then, it is conceivable
that the solution set is not convex, and so a “second” monotonicity property is
not likely to hold. However, there is a majorizing function, which suggests a
multiplicative algorithm, and there is a “first” monotonicity property.

Lemma 14. For all nonnegative x and y,

BE.x/ 6 BE.y/C
X̀
pD1

�
ŒAT q�p � ŒAT r�p yp

xp

 �
xp � yp

	
;
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where

rj D bj�
ŒAy�j

	2 ; qj D 1

ŒAy�j
; j D 1; 2; : : : ; m:

The algorithm suggested by the lemma comes about by minimizing the upper
bound on BE.x/ with y D xŒk�, the current guess for the solution. This gives the
minimizer as x D xŒkC1�,

xŒkC1�
p D xŒk�p �

(
ŒAT rŒk��p

ŒAT qŒk��p

) 1=2

; (206)

where

r
Œk�
j D

bj��
AxŒk�

�
j

�2 ; q
Œk�
j D

1�
AxŒk�

�
j

; j D 1; 2; : : : ; m:

The “first” monotonicity property reads as follows.

Lemma 15. Starting with a strictly positive initial guess xŒ1�, the iterates generated
by (206) satisfy

BE
�
xŒk�

	� BE
�
xŒkC1�

	
>
X̀
pD1

�
AT qŒk�

�
p

ˇ̌
ˇ xŒkC1�

p � xŒk�p
ˇ̌
ˇ2

x
Œk�
p

:

It follows that the objective function decreases as the iteration proceeds, unless
one has a fixed point of the iteration. It would seem reasonable to conjecture that
one then gets convergence of the iterates to a local minimum, but in the absence of
a second monotonicity property, this is where it ends.

Some reconstructions from simulated and real data are shown in [15]. The proofs
of the above two lemmas are shown there as well.

Nonnegative Least Squares

The absence of EM algorithms for least-squares problems sooner or later had to be
addressed. Here, consider positive least-squares problems, and as in section “Min-
imum Cross-Entropy Problems,” one may as well consider them for the discrete
emission tomography case. Thus, the interest is in solving the problem

minimize LS.x/
defD kAx � b k2 subject to x > 0: (207)

Recall the properties (126) and (127) of the nonnegative matrix A 2 R
m�`, and that

b is a nonnegative vector. It is useful to define the operator T on nonnegative vectors
by
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ŒTy�p D yp ŒAT b�p

ŒAT Ay�p
; p D 1; 2; : : : ; `: (208)

The following discussion of the convergence of this algorithm follows De Pierro
[28] and Eggermont [33]. The first item on the agenda is to prove an analogue of
Lemma 1.

Lemma 16. For all nonnegative x; y 2 R
`, with y strictly positive,

LS.x/ 6 LS.y/C
X̀
pD1

ŒAT b�p

�
.xp � ŒTy�p/2

ŒTy�p
� .yp � ŒTy�p/2

ŒTy�p


:

Proof. Observe that

LS.x/ D LS.y/C 2 h x � y ; AT .Ay � b/ i C kA.x � y/ k2:

Let z D x � y. Write Az D A
˚
y1=2

�
z=y1=2

	 

(with componentwise vector

operations) and use Cauchy–Schwarz. Then,

kAz k2 6
mX
jD1

ŒAy�j ŒA
�
z2=y

	
�j D

X̀
pD1

z2
p

ŒAT Ay�p

yp
:

Now, consider kAz k2 C 2 h z ; AT .Ay � b/ i: Completing the square gives

kAz k2 C 2 h z ; AT .Ay � b/ i 6
X̀
pD1

ŒAT Ay�p

yp

�
zp C yp ŒA

T .Ay � b/�p
ŒATAy�p

�2

�
X̀
pD1

yp

ŒATAy�p
ŒAT .Ay � b/�2p: (209)

For the first sum, note that the expression inside the parentheses equals xp � ŒTy�p .
Also, ŒAT Ay�p=yp D ŒAT b�p=ŒTy�p; so that takes care of the first sum. For the
second sum, note that

yp

ŒAT Ay�p
ŒAT .Ay � b/�2p D

ŒAT Ay�p

yp

�
yp � yp ŒAT b�

ŒAT Ay�p

�2

;

and the expression for the second sum follows. �

It is now clear how one may construct an algorithm. Take y D xŒ1�, a strictly
positive vector, and minimize the upper bound on LS.x/ given by the lemma. Setting
the gradient equal to 0 gives xŒkC1� D T xŒk� or
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xŒkC1�
p D xŒk�p �

ŒAT b�p

ŒAT AxŒk��p
; p D 1; 2; : : : ; `: (210)

Note that then all xŒk� are strictly positive because A is nonnegative and has unit
column sums.

This algorithm is due to Daube-Witherspoon and Muehllehner [26] for emission
tomography with the acronym ISRA.

Onward to the monotonicity properties of the algorithm, the following lemma is
immediate.

Lemma 17. If xŒ1� is strictly positive, then the iterates of the ISRA algorithm (210)
satisfy

LS
�
xŒk�

	 � LS
�
xŒkC1�

	
>
X̀
pD1

ŒAT b�p

�
x
Œk�
p � xŒkC1�

p

�2

x
ŒkC1�
p

:

The “second” monotonicity property is a bit more involved than for the EM

algorithm but still involves Kullback–Leibler distances. Let

KLS.x; y/ D KL.c �x; c � y/C LS.y/ � LS.y�/; (211)

where x D y� is any minimizer of kAx � b k2 over x > 0. Here, c D AT b and the
dot means componentwise multiplication.

Lemma 18. If x� is a solution of the nonnegatively constrained least-squares
problem (207), then

KLS.c �x�; c � xŒk�/ � KLS.c �x�; c �xŒkC1�/ > 1

2
LS.xŒk�/� 1

2
LS.x�/ > 0:

Proof. As before, one has

KL.c �x�; c �xŒk�/ � KL.c �x�; c �xŒkC1�/

D
X̀
pD1

cp x
�
p log

x
ŒkC1�
p

x
Œk�
p

C cp
�
xŒk�p � xŒkC1�

p

�

>
mX
pD1

cp x
�
p

 
1 � x

Œk�
p

x
ŒkC1�
p

!
C cp

�
xŒk�p � xŒkC1�

p

�

>
X̀
pD1

cp

�
x
ŒkC1�
p � x�

p

� �
x
Œk�
p � xŒkC1�

p

�

x
ŒkC1�
p

: (212)
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Here, in the second line, the inequality log t D � log. t �1/ > 1� t �1 was used.
Now, let C 2 R

`�` be the diagonal matrix with diagonal components

Cp;p D ŒAT b�p

x
ŒkC1�
p

; p D 1; 2; : : : ; `:

Then, the least expression equals

h xŒkC1� � x� ; C .xŒk� � xŒkC1�/ i D

h xŒkC1� � xŒk� ; C .xŒk� � xŒkC1�/ i C h xŒk� � x� ; C .xŒk� � xŒkC1�/ i:

Since C .xŒk� � xŒkC1�/ D AT .AxŒk� � b/; then

h xŒk� � x� ; C .xŒk� � xŒkC1�/ i D h xŒk� � x� ; AT .AxŒk� � b/ i

> 1

2
LS.xŒk�/� 1

2
LS.x�/;

the last inequality by convexity. Finally,

h xŒkC1� � xŒk� ; C .xŒk� � xŒkC1�/ i D �
X̀
pD1

ŒAT b�p

x
ŒkC1�
p

�
xŒk�p � xŒkC1�

p

�2
:

which by Lemma 17 dominates LS.xŒkC1�/� LS.xŒk�/. This shows that

KL.c � x�; c �xŒk�/� KL.c �x�; c � xŒkC1�/ > 1

2
LS.xŒk�/ � 1

2
LS.x�/

� LS.xŒk�/C LS.xŒkC1�/:

and the lemma follows. �

The convergence of the algorithm now follows similar to the EM case.

Multiplicative Iterative Algorithms

This final section concerns the observation that multiplicative iterative algorithms
may be constructed by way of proximal point algorithms as in [33] and that
Kullback–Leibler distances naturally appear in this context. For arbitrary convex
functions F on R

`, one may solve the problem with nonnegativity constraints

minimize F.x/ subject to x > 0 (213)
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by computing a sequence fxŒk�gk , with xŒkC1� the solution of

minimize F.x/C .!k/�1 KL.xŒk�; x/ subject to x > 0; (214)

starting from some xŒ1� with strictly positive components. Here,!k > 0. One verifies
that xŒkC1� satisfies

xŒkC1�
p D 1

1C !k ŒrF.xŒkC1�/�p
; p D 1; 2; : : : ; `: (215)

This is an implicit equation for xŒkC1�, but explicit versions suggest themselves. Note
that the objective function in (214) is strictly convex, so that the solution is unique,
assuming solutions exist. Of course, other proximal functions suggest themselves,
such as KL.x; xŒk�/. See, e.g., [19]. The classical one is k x � xŒk� k2, the squared
Euclidean distance, due to Rockafellar. See, e.g., [13].

It is interesting to note that the implicit algorithm (215) satisfies the two
monotonicity properties. The first one is obvious,

F.xŒk�/ � F.xŒkC1�/ > .!k/
�1 KL.xŒk�; xŒkC1�/; (216)

since xŒkC1� is the minimizer of (214).
For the second monotonicity property, assume that x� is a solution of (213). Note

that

KL.x�; xŒk�/� KL.x�; xŒkC1�/ D
X̀
pD1

x�
p log

x
ŒkC1�
p

x
Œk�
p

C xŒk�p � xŒkC1�
p

D
X̀
pD1

x� log
1

1C !k ŒrF.xŒkC1�/�p

C !k xŒkC1� ŒrF.xŒkC1�/�p

>
X̀
pD1

�x�
p !k ŒrF.xŒkC1�/�p C !k xŒkC1� ŒrF.xŒkC1�/�p

D !kh xŒkC1� � x�;rF.xŒkC1�/i > !k
�
F.xŒkC1�/� F.x�/

	
:

To summarize,

KL.x�; xŒk�/� KL.x�; xŒkC1�/ > !k
�
F.xŒkC1�/ � F.x�/

	
: (217)

The convergence of the algorithm follows. Practically speaking, one has to devise
explicit versions of the algorithm and see how they behave.
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10 Accelerating the EM Algorithm

The Ordered Subset EM Algorithm

It is well known that EM algorithms converge very slowly, even if one wants to
stop the iteration “early.” For the general EM algorithm of section “The Bare-Bones
EM Algorithm Fleshed Out,” some attempts at acceleration have been made along
the lines of coordinate descent methods or more generally descent along groups of
coordinates. In particular, the M-step (34) is replaced by a sequence of M-steps, for
j D 1; 2; : : : ; m, with x1 D xŒk�,

minimize L.xjxj�1/
defD �

Z
Z
'Z .zjxj�1/ logfZ .zjx/ d�.z/

subject to x 2 Xj ;
(218)

and then xŒkC1� D xm. Here fXj gmjD1 is a not necessarily disjoint division of the
parameter space X . See [68] and references therein. In the context of emission
tomography, the more generally accepted route to accelerating the EM algorithm has
been via the ordered subset approach of Hudson and Larkin [59]. Without putting
too fine a point to it, this amounts to partitioning the data space rather than the
parameter space. The acceleration achieved by these methods seems to be twofold.
The ordered subset approach allows for more efficient computer implementations
and, the convergence itself is speeded up. See, e.g., [60].

The ordered subset EM algorithm (OSEM) of Hudson and Larkin [59] deals
with the maximum likelihood problem of emission tomography (130). The starting
point is to divide the data into blocks, characterized by the sets of indices
.1/;.2/; : : : ;.s/ such that

.1/[.2/[ : : : [.s/ D f1; 2; : : : ; mg : (219)

However, the sets need not be disjoint. Define the partial negative Kullback–Leibler
functionals

Lr.x/ D
X
j2.r/

�
bj log

bj

ŒAx�j
C ŒAx�j � bj


; r D 1; 2; : : : ; s: (220)

Note that for all r ,

X
j2.r/

ŒAx�j D
X̀
pD1

˛rp xp with ˛rp D
X
j2.r/

a.j; p/: (221)

The OSEM algorithm now consists of successively applying one step of the Shepp–
Vardi EM algorithm to each of the problems
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minimize Lr.x/ subject to x > 0: (222)

To spell out the OSEM iteration exactly, it is useful to introduce the data vectors Br
and the matrices Ar by

Br D
�
bj W j 2 .r/

	
and Arx D

�
ŒAx�j W j 2 .r/

	
: (223)

Then, Lr.x/ D KL.Br ; Arx/, and the OSEM algorithm takes the form

xŒkC1�
p D xŒk�p �˛�1

rp ŒA
T
r %

Œk��p; p D 1; 2; : : : ; `; (224)

where r D kmod s (in the range 1 6 r 6 s) and %Œk�q D Brq
ı
ŒArx

Œk��q for all q.
The slight complication of the ˛rp arises because the matrices Ar do not have unit
column sums. This is fixed by defining the matrices Ar by

ŒAr �qp D ˛�1
rp ŒAr �qp for all q and p: (225)

Now, define Lr .y/ D Lr.x/ D KL.Br ;Ary/, where yq D ˛rqxq for all q. A
convenient short-hand notation for this is y D ˛r � x. Now, if x minimizes Lr.x/,
then y D ˛r �x minimizes Lr .y/ and vice versa. Since the matrices Ar have unit
column sums, the EM algorithm for minimizing Lr .y/ is

yŒkC1�
p D yŒk�p � ŒATr %Œk��p ; p D 1; 2; : : : ; `; (226)

with %Œk�q D Brq
ı
ŒAry

Œk��q for all q. Transforming back gives (224).
Regarding the convergence of the OSEM algorithm, the best one can hope for is

cyclic convergence, i.e., each of the subsequences
˚
xŒkCr s�


r>1 converges. Proving
this would be a daunting task. However, as observed by Byrne [9], it is useful to
consider what happens if the system of equations Ax D b is consistent in the sense
that

9 x� > 0 W Ax� D b; (227)

when one should expect convergence of the whole sequence to a nonnegative
solution of Ax D b. Hudson and Larkin [59] prove that this is so under the so-
called subset-balancing condition

˛rp D ˛o;p; p D 1; 2; : : : ; ` and r D 1; 2; : : : ; s: (228)

That is, the column sums are the same for all blocks. This is a strong condition,
even if one allows for overlapping blocks of data. Haltmeier et al. [51] make the
same assumption in the continuous setting. Byrne [11] observed that the condition
may be relaxed to that of subset-separability: There exist coefficientsˇr and �p such
that
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˛rp D ˇr�p; r D 1; 2; : : : ; s and p D 1; 2; : : : ; `: (229)

The convergence proof of the OSEM algorithm (224) under the subset-separability
condition (229) relies on the two monotonicity properties of the EM algorithm (226);
see section “Monotonicity of the Shepp–Vardi EM Algorithm.” After translation,
one gets the following monotonicity properties for (224).

Lemma 19. Let x� be a nonnegative solution of Ax D b. Starting from a strictly
positive xŒ1� 2 V`, then, with r D k mod s,

Lr.x
Œk�/� Lr.xŒkC1�/ > KL.˛r �xŒkC1�; ˛r �xŒk�/ > 0 and

KL.˛r �x�; ˛r � xŒk�/ �KL.˛r �x�; ˛r � xŒkC1�/ > Lr.x
Œk�/ �Lr.x�/ > 0:

Now, if the ˛rp change with r , then one cannot conclude much from the lemma.
However, under the subset-separability condition (229), one obtains for all nonneg-
ative x and y

KL.˛r �x; ˛r �y/ D ˇr KL.� � x; � �y/;

and the inequalities of the lemma translate as follows.

Corollary 1. Under the conditions of Lemma 19 and the subset-separability
condition (229),

ˇ�1
r

˚
Lr.x

Œk�/� Lr.xŒkC1�/



> KL.� �xŒkC1�; � � xŒk�/ > 0 and

KL.� �x�; � �xŒk�/� KL.� � x�; � � xŒkC1�/ > ˇ�1
r

˚
Lr.x

Œk�/� Lr.x�/



> 0:

As in Theorem 1, one may conclude that the sequence f� �xŒk�gk converges to a
nonnegative solution x�� of Ax D b. Note that there is another way of looking at
this; see Remark 5 at the end of this chapter.

As remarked, the subset-separability condition (228) is very strong. It fails
dramatically in the extreme case of the OSEM algorithm when each block consists
of a single row. In that case, the OSEM algorithm (224) reduces to

xŒkC1�
p D xŒk�p �

bj

ŒAxŒk��j
; p D 1; 2; : : : ; `; (230)

where j D kmodm. So, xŒkC1� is a multiple of xŒk�, and the OSEM algorithm
produces only multiples of the initial guess xŒ1�. So, certainly in this case, the
algorithm does not converge, but more seriously, it does not do anything useful.

So, what is one to do? Following Byrne [9] (see also [13]), the next section
turns to row-action methods (where the blocks consist of a single datum), that
is, the (additive) algebraic reconstruction technique (ART) and the multiplicative
version (MART) of Gordon et al. [48], as well as block-iterative variants. (The
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simultaneous version (SMART) of the multiplicative version was already discussed
in section “Minimum Cross-Entropy Problems.”) This points into the direction of
relaxation and scaling. After that, the table is set for block-iterative versions of the
EM algorithm.

The ART and Cimmino–Landweber Methods

It is useful to discuss the situation in regard to the so-called algebraic reconstruction
technique (ART) of Gordon et al. [48], and the Cimmino–Landweber iteration, a
reasonable version of the original SIRT method. Herman [55] is the authoritative
source, but see [95] for a comparison with conjugate gradient method. The ART and
Cimmino–Landweber algorithms were designed to solve systems of linear equations
of the form

Ax D b (231)

with b the measured nonnegative data and A 2 R
m�` with nonnegative components

a.j; p/ but not necessarily unit column sums. Of course, for inconsistent systems of
equations, this must be replaced by the least-squares problem

minimize kAx � b k2 subject to x 2 R
m; (232)

but in fact, the ART method solves the weighted least-squares problem

minimize
mX
jD1

ˇ̌ ˝
a.j; � /; x ˛ � bj ˇ̌2
k a.j; � / k2

subject to x 2 R
m; (233)

A standard method for the solution of (232) is the Cimmino–Landweber iteration

xŒkC1� D xŒk� C !k AT .b � AxŒk�/; (234)

for suitably small but not too small positive relaxation parameters !k . It is
mentioned here for its analogy with the EM algorithm. The Cimmino–Landweber
iteration is a well-studied method for the regularization of the least-squares prob-
lem (232) and is itself subject to acceleration; see, e.g., Hanke [52] and references
therein.

At the other end of the spectrum is Kaczmarz’ method, which consists of
sequential orthogonal projections onto the hyperplanes

Hj D
˚
x 2 R

`
ˇ̌ ˝
a.j; � / ; x ˛ D bj 
:

Formally, this is achieved by computing the new iterate xŒkC1� from the previous
one xŒk� by solving
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minimize k x � xŒk� k2 subject to
˝
a.j; � / ; x ˛ D bj : (235)

The iteration then takes the form, with j D kmodm,

xŒkC1� D xŒk� C !k bj �
˝
a.j; � / ; xŒk� ˛
k a.j; � / k2

a.j; � / (236)

for !k D 1. The relaxation parameter !k is included to see whether choices other
than !k D 1 might be advantageous. Geometrically, a requirement is 0 < !k < 2.
The choice!k D 0 would not do anything; the choice!k D 2 implements reflection
with respect to the hyperplane Hj . The algorithm (236) with relaxation originated
with Gordon et al. [48].

Typically, one takes the hyperplanes in cyclic order j D kmod m ; but Herman
and Meyer [56] show experimentally that carefully reordering the hyperplanes has a
big effect on the quality of the reconstruction when the number of iterations is fixed
before hand. The choice of !(D !k for all k) also matters greatly, but the optimal
one seems to depend on everything (the experimental setup leading to the matrix A,
the noise level, etc.), so that the optimal ! can be very close to 0 or close to 2 or in
between.

Byrne [8, 9] observes that the scaling of the ART algorithm is just about optimal,
as follows. Actually, it is difficult to say much for inconsistent systems, other than
experimentally (see [56]), but for consistent systems, one has the following two
monotonicity properties, which are reminiscent of the monotonicity properties for
the Shepp–Vardi EM algorithm. However, they are much less impressive since they
only hold for consistent systems. Define

LSj .x/ D
ˇ̌˝
a.j; � /; x ˛ � bj ˇ̌2
k a.j; � / k2

; j D 1; 2; : : : ; m: (237)

Lemma 20. If x� satisfies Ax� D b, then

LSj .xŒk�/� LSj .xŒkC1�/ D !k.2 � !k/LSj .xŒk�/;

k xŒk� � x� k2 � k xŒkC1� � x� k2 D !k.2 � !k/LSj .xŒk�/:

The proofs involve only (exact) quadratic Taylor expansions and are omitted. The
conclusion is that ART converges in the consistent case if !k D ! is constant and
0 < ! < 2. Following Byrne [8], one notes that the second monotonicity property
suggests that !k.2�!k/ should be as large as possible. This is achieved by !k D 1.
In other words, the original Kaczmarz procedure (236) with !k D 1 is optimally
scaled. However, as already remarked above, a choice other than !k D 1 may speed
things up initially.

Despite the good news that ART is much faster than the Cimmino–Landweber
type methods, it is still “slow.” Now, in transmission tomography as in emission
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tomography, the system of equations Ax D b naturally decomposes into a number
of blocks

Arx D Br; r D 1; 2; : : : ; s; (238)

(see (223)), and then one has the block version of (235)

minimize k x � xŒk�k2 subject to Arx D Br; (239)

with the solution

xŒkC1� D xŒk� C !k ATr
�
ArA

T
r

	�
.Br �ArxŒk�/; (240)

where � denotes the Moore–Penrose inverse. Now, computing
�
ATr Ar

	�
w (for any

vector w) would be expensive, but it seems reasonable that ATr Ar should be close to
diagonal, in which case one may just replace it with its diagonal. This leads to the
algorithm

xŒkC1� D xŒk� C !k ATr D�1
r .Br �ArxŒk�/; (241)

whereDr is a diagonal matrix with ŒDr �qq D
�
ArA

T
r

�
qq
:

Now, it turns out that computingArx is not much more expensive than computing
a single h a.j; � / ; x i and that the matricesATr Ar are very close to diagonal, so that
one step of the block method (241) practically achieves as much as the combined
ART steps for all the equations in one block. So, methods that process naturally
ordered blocks are appreciably faster than the two extreme methods. See [35].

It is not clear how to choose the optimal relaxation parameters. Regarding (241),
it is known that the algorithm converges cyclically provided the blocks and the
relaxation parameters are chosen cyclically, i.e., if r D kmod s and !k 
 !r ,
and

max
16r6s

�� I � !rArD�1
r ATr

��
2 < 1; (242)

then fxŒrCks�gk converges for each r D 1; 2; : : : ; s; see [35]. Moreover, if the
relaxation parameter is kept fixed, say,

!k D ! for all k; (243)

and denoting the iterates by xŒiCkI �.!/ to show the dependence on !, then

lim
!!0

lim
k!1 xŒiCkI �.!/ D x�; (244)

the minimum norm solution of (233), provided the initial guess belongs to the range
of AT . See [16]. At about the same time, Trummer [94] showed for the relaxed ART

method (236) that
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lim
k!1 xŒk�.!k/ D x�; (245)

provided

!k > 0;
1X
kD1

!2
k <1 and

1X
kD1

!k D C1: (246)

Note the difference between (245) and (246).

TheMART and SMARTMethods

Consider again the system of equations Ax D b as it arises in the PET setting,
with A and b having nonnegative components and A having unit column sums. In
section “Minimum Cross-Entropy Problems,” the SMART algorithm was discussed
for the solution of

minimize KL.Ax; b/ subject to x > 0; (247)

i.e.,

xŒkC1�
p D xŒkC1�

p � exp

 �
AT log

b

AxŒk�

�
p

!
; p D 1; 2; : : : ; `: (248)

The multiplicative ART algorithm (MART) of Gordon et al. [48] formally arises as
the multiplicative version of the additive ART algorithm, to wit

xŒkC1�
p D xŒk�p �

 
bj˝

a.j; � /; xŒk� ˛
!a.j;p/

; p D 1; 2; : : : ; `

or equivalently for p D 1; 2; : : : ; `

xŒkC1�
p D xŒk�p � exp

 
!k a.j; p/ log

bj˝
a.j; � /; xŒk� ˛

!
(249)

with !k D 1. Again, the relaxation parameter !k was included to explore whether
choices other than !k D 1 would be advantageous. Byrne [9] observes that
the MART algorithm typically does not enjoy the same speedup compared to the
simultaneous SMART version that ART has over Cimmino–Landweber. To get some
insight into this, it is useful to consider a projection method analogous to the
Kaczmarz method of orthogonal projections onto hyperplanes. The method in
question is well known (see, e.g., [17]),

minimize KL.x; xŒk�/ subject to
˝
a.j; � /; xŒk� ˛ D bj : (250)



378 C. Byrne and P.P.B. Eggermont

One may approximately solve this as follows. With the unrestricted Lagrange

multiplier �, one gets the equations log
�
xp
ı
x
Œk�
p

�
C �a.j; p/ D 0 for all p, so

that

xp D xŒk�p exp .� a.j; p// ; p D 1; 2; : : : ; `:

To enforce the constraint, take inner products with a.j; � /. This results in

bj D
˝
a.j; � /; x ˛ D X̀

pD1

a.j; p/ xŒk�p exp .� a.j; p// ; (251)

and one would like to solve this for �. That does not appear manageable, but it can
be done approximately as follows. Since the a.j; p/ and xŒk�p are nonnegative, by
the mean value theorem, there exists a � , with

0 < � < max fa.j; p/ W 1 6 p 6 `g ; (252)

such that the right-hand side of (251) equals exp.� �/
˝
a.j; � /; xŒk� ˛ : Then, solv-

ing (251) for � gives the iteration

xŒkC1�
p D xŒk�p exp

 
! a.j; p/ log

bj˝
a.j; � /; xŒk� ˛

!
; (253)

with ! D 1=� . The conservative choice, the one that changes xŒk� the least, is to
choose ! as small as possible. In view of (252), this gives ! D !j ,

!j D 1

max
16p6`

a.j; p/
: (254)

Note that if A has unit column sums, then one may expect ! to be quite large. This
may explain why the original MART algorithm is not greatly faster than the SMART

version. In defense of Gordon et al. [48], one should mention that they considered
matrices with components 0 or 1, in which case ! D 1 !

Following Byrne [8], the block-iterative version of (253) is as follows. In the
partitioned data setup of (223), the BI-MART algorithm is

xŒkC1�
p D xŒk�p � exp

 
!k

˛r

�
ATr log

�
Br

ArxŒk�

�
p

!
(255)

for p D 1; 2; : : : ; `, where

˛r D max
˚
˛rp W 1 6 p 6 `



(256)
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is the maximal column sum of Ar . One would expect that !k D 1 should be the
optimal choice. This is the rescaled BI-MART (or RBI-MART) algorithm of Byrne
[8]. Following the template of section “Minimum Cross-Entropy Problems,” one
proves the following majorizing inequality and the two monotonicity properties.
For nonnegative vectors y and ! > 0, define R!y by

ŒR!y�p D yp exp

 
!

˛r

�
ATr log

�
Br

Ary

 �
p

!
(257)

for p D 1; 2; : : : ; `.

Lemma 21. For all nonnegative x and y,

KL.Arx; Br / 6 KL.Ary; Br /C ˛r

!
fKL.x;R!y/� KL.y;R!y/g:

Note that the minimizer of the right-hand side is x D R!y. This would give rise
to the algorithm (255).

Proof. Recall the identity from section “Minimum Cross-Entropy Problems,”

KL.Arx; Br / D KL.Ary; Br /C KL.Arx; Ary/C
˝
x � y;ATr %

˛
;

with %j D log
�
ŒAry�j

ı
ŒBr �j

	
. Now, a convexity argument gives that

KL.Arx; Ary/ 6 ˛r KL.x; y/;

so that one gets the inequality

KL.Arx; Br / 6 KL.Ary; Br /C ˛r KL.x; y/C ˝ x � y;ATr % ˛:

The definition of the operator R! gives that

log
ŒR!y�p

yp
D � !

˛r
ATr %;

so then, with � 
 1=!,

˛r KL.x; y/C ˝ x � y;ATr % ˛

D ˛r
�

KL.x; y/ � � ˝x � y; log
R!y

y

˛

D ˛r f.1 � �/KL.x; y/C � .KL.x;R!y/� KL.y;R!y//g:

The last line follows after some lengthy bookkeeping. So, for � 6 1 or ! > 1, the
conclusion follows. �
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The first monotonicity property then follows.

Lemma 22. For ! > 1 and r D kmod s,

KL
�
Arx

Œk�; Br
	� KL

�
Arx

ŒkC1�; Br
	

> ˛r

!
KL
�
xŒk�; xŒkC1�	 > 0:

The second monotonicity property follows after some work (omitted).

Lemma 23. If x� > 0 satisfies Ax� D b, then for all k and r D kmod s,

KL
�
x�; xŒk�

	 �KL
�
x�; xŒkC1�

	
> !

˛r
KL
�
Arx

ŒkC1�; Br
	

> 0: (258)

Now, regardless of whether ! D 1 maximizes the right-hand side of the
inequality (258), the presence of the factor ˛r , which should be small if the original
matrix A has unit column sums, suggests that the choice ! D 1 in (258) is a
tremendous improvement over the case ! D ˛r , which would arise if one ignored
the non-unit column sums of Ar .

Row-Action and Block-Iterative EM Algorithms

Attention now turns to the construction of the row-action version of the EM

algorithm and the associated block-iterative versions. Recall the formulation (130)
of the maximum likelihood problem for the PET problem as

minimize KL.b; Ax/ subject to x 2 V
`
; (259)

with b 2 R
m and A 2 R

m�` nonnegative, with A having unit column sums.
Now, construct a row-action version by considering the following iterative pro-

jection method, where the new iterate xŒkC1� is obtained by projecting the previous
iterate xŒk� onto the hyperplane

˝
a.j; � / ; x ˛ D bj : The particular projection is

obtained by

minimize KL.xŒk�; x/ subject to
˝
a.j; � /; x ˛ D bj : (260)

Again, with �, an unrestricted Lagrange multiplier, one must solve the equations
�xŒk�p =xp C 1C �a.j; p/ D 0 ; or

xp D xŒk�p � �a.j; p/ xp; p D 1; 2; : : : ; `: (261)

At this point, one must make the simplification where xp on the right-hand side is

replaced by xŒk�p . This gives the equation
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xp D xŒk�p � �a.j; p/ xŒk�p ; p D 1; 2; : : : ; `:

To enforce the constraint, multiply by a.j; p/ and sum over p. Then,

bj D
˝
a.j; � /; xŒk� ˛ � � X̀

pD1

a.j; p/2 xŒk�p D .1 � � �/
˝
a.j; � /; xŒk� ˛: (262)

where in the last line the mean value theorem was used, for some � satisfying

0 < � < max fa.j; p/ W 1 6 p 6 `g : (263)

Solving for � gives the iterative step

xŒkC1� D .1 � ! a.j; p// xŒk�p C ! xŒk�p
a.j; p/ bj˝
a.j; � /; xŒk� ˛ ; (264)

for p D 1; 2; : : : ; `, where ! 
 1=� . In the notation of (223), with some
imagination, the block-iterative version is then

xŒkC1� D R!;r xŒk�; (265)

where the operatorsR!;r are defined by

ŒR!;r x�p D
�

1 � ! ˛rp
�
xp C ! xp

�
ATr

�
Br
ı
Arx

	�
p
; (266)

for p D 1; 2; : : : ; `. So now, ! is considered to be a relaxation parameter.
The algorithm (266) was obtained by Byrne [8, 9] after carefully examining the

analogy with MART vs. RBI-SMART. His choice for the relaxation parameter ! is to
take it depending on the block, so ! D !r with

!r D 1

max
16p6`

˛rp
; (267)

which he obtained by deriving the two monotonicity properties discussed below.
Byrne [8, 9] designated the resulting algorithm (266)–(267) as rescaled block-
iterative EM for maximum likelihood algorithm (RBI-EMML). At about the same
time, Browne and De Pierro [5] discovered the algorithm (264)–(266). They
named (264) the RAMLA (row-action maximum likelihood algorithm). For the latest
on this, see [92].

The above considerations strongly suggest that algorithm (266)–(267) is the cor-
rect one. This is corroborated by practical experience. The following monotonicity
properties lend even more weight to it. A slight drawback is that they require that
the system Ax D b has a nonnegative solution. The first item is again a majorizing
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inequality. Note that the majorizing inequality is suggested by the algorithm, not the
other way around. Define

BIr .x; y/
defD ! Lr.x/C

X̀
pD1

.1� ! ˛rp/
�
xp log

xp

yp
C yp � xp


: (268)

Lemma 24. For nonnegative x; y 2 R
`,

BIr .x; y/ 6 BIr .y; y/C KL.R! y; x/ � KL.R! y; y/;

provided ! 6 1=maxf˛rp W 1 6 p 6 `g:

Proof. Apply Lemma 1 to ! fKL.Br ; Arx/ � KL.Br ; Ary/g. Also observe that

X
q

ŒArx�q D
X̀
pD1

˛rp xp;

and likewise for ŒAry�q . This gives

BIr .x; y/ 6 BIr .y; y/C
X̀
pD1

ŒR!y�p log
yp

xp
C xp � yp;

and the lemma follows. Note that the condition on ! is used implicitly to assure that
R!;ry is nonnegative. �

The first monotonicity property is an easy consequence.

Lemma 25. For r D k mod s and ! 6 1=maxf˛rp W 1 6 p 6 `g,

Lr.x
Œk�/ �Lr

�
xŒkC1�	 > !�1 KL

�
xŒkC1�; xŒk�

	
> 0:

Proof. Take y D xŒk� and x D R!y D R!x
Œk� D xŒkC1�. Then, one gets

BI
�
xŒkC1�; xŒk�

	 � BI
�
xŒk�; xŒk�

	
6 �KL

�
xŒkC1�; xŒk�

	
; so that

!
�
Lr.x

Œk�/ �Lr
�
xŒkC1�

	 	
>
X̀
pD1

.2 � ! ˛rp/
�
xp log

xp

yp
C yp � xp


:

Since ! ˛rp 6 1, the conclusion follows. �

The second monotonicity property reads as follows.
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Lemma 26. If x� > 0 satisfies Ax� D b, then with r D kmod s,

KL
�
x�; xŒk�

	 � KL
�
x�; xŒkC1�

	
> !

˚
Lr
�
xŒk�

	 � Lr �x�	
 ;
provided ! 6 1=maxf˛rp W 1 6 p 6 `g:

The lemma suggests that one should take ! as large as possible. This is how
Byrne [9] arrived at the choice (267).

Proof of Lemma 26. Since x� satisfies Ax� D b, so Arx� D Br for all r , the
proof is actually simpler than for the original proof for the EM algorithm; see
section “Monotonicity of the Shepp–Vardi EM Algorithm.” By the concavity of the
logarithm (twice), one obtains

log
x
ŒkC1�
p

x
Œk�
p

D log

 
.1 � !˛rp/C !

�
Ar

�
Br

ArxŒk�

�
p

!

> ! ˛rp log

 
˛�1
rp

�
Ar

�
Br

ArxŒk�

�
p

!
> !

�
ATr log

�
Br

ArxŒk�

�
p

;

so that

KL
�
x�; xŒk�

	 � KL
�
x�; xŒkC1�

	
> !

X̀
pD1

x�
p

�
ATr log

�
Br
ı
Arx

Œk�
	�
p

C
X̀
pD1

xŒk�p � xŒkC1�
p :

Now, the first sum equals

X
q

ŒArx
��q log

�
ŒBr �q

ı
ŒArx

Œk��q
	 DX

q

ŒBr �q log
�
ŒBr �q

ı
ŒArx

Œk��q
	
:

For the remaining sums, note that

X̀
pD1

xŒkC1�
p D

X̀
pD1

.1 � ! ˛rp/ xŒk�p C ! xŒk�p
�
ATr

�
Br
ı
Arx

Œk�
	�
p

D
X̀
pD1

xŒk�p � !
X
q

�
Arx

Œk�
�
q
C !

X
q

ŒBr �q:

Putting the two together proves the lemma. �
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Remark 5. To wrap things up, note that Byrne [9] shows the convergence (in the
consistent case) of a somewhat different version of (266), which, under the subset-
separability condition (229), reduces to the OSEM algorithm (224), thus proving the
convergence of OSEM under subset-separability (in the consistent case). See also
Corollary 1.
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Abstract
The EM algorithm is not a single algorithm, but a template for the construction of
iterative algorithms. While it is always presented in stochastic language, relying
on conditional expectations to obtain a method for estimating parameters in
statistics, the essence of the EM algorithm is not stochastic. The conventional
formulation of the EM algorithm given in many texts and papers on the subject
is inadequate. A new formulation is given here based on the notion of acceptable
data.

1 Introduction

The “expectation maximization” (EM) algorithm is a general framework for
maximizing the likelihood function in statistical parameter estimation [1–3]. It is
always presented in probabilistic terms, involving the maximization of a conditional
expected value. The EM algorithm is not really a single algorithm, but a framework
for the design of iterative likelihood maximization methods, or, as the authors of
[4] put it, a “prescription for constructing an algorithm”; nevertheless, we shall
continue to refer to the EM algorithm. As we shall demonstrate in Sect. 2, the
essence of the EM algorithm is not stochastic. Our non-stochastic EM (NSEM) is a
general approach for function maximization that has the stochastic EM methods as
particular cases.

Maximizing the likelihood function is a well-studied procedure for estimating
parameters from observed data. When a maximizer cannot be obtained in closed
form, iterative maximization algorithms, such as the expectation maximization
(EM) maximum likelihood algorithms, are needed. The standard formulation
of the EM algorithms postulates that finding a maximizer of the likelihood is
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complicated because the observed data is somehow incomplete or deficient, and
the maximization would have been simpler had we observed the complete data. The
EM algorithm involves repeated calculations involving complete data that has been
estimated using the current parameter value and conditional expectation.

The standard formulation is adequate for the most common discrete case, in
which the random variables involved are governed by finite or infinite probability
functions, but unsatisfactory in general, particularly in the continuous case, in which
probability density functions and integrals are needed.

We adopt the view that the observed data is not necessarily incomplete, but just
difficult to work with, while different data, which we call the preferred data, leads
to simpler calculations. To relate the preferred data to the observed data, we assume
that the preferred data is acceptable, which means that the conditional distribution
of the preferred data, given the observed data, is independent of the parameter. This
extension of the EM algorithms contains the usual formulation for the discrete case,
while removing the difficulties associated with the continuous case. Examples are
given to illustrate this new approach.

2 A Non-stochastic Formulation of EM

The essence of the EM algorithm is not stochastic and leads to a general approach for
function maximization, which we call the “non-stochastic,” EM algorithm (NSEM)
[6]. In addition to being more general, this new approach also simplifies much of
the development of the EM algorithm itself.

The Non-stochastic EM Algorithm

We present now the essential aspects of the EM algorithm without relying on
statistical concepts. We shall use these results later to establish important facts about
the statistical EM algorithm. For a broader treatment of the EM algorithm in the
context of iterative optimization, see [5].

The Continuous Case
The problem is to maximize a nonnegative function f W Z ! R, where Z is an
arbitrary set. We assume that there is z� 2 Z with f .z�/ � f .z/, for all z 2 Z. We
also assume that there is a nonnegative function b W RN �Z ! R such that

f .z/ D
Z
b.x; z/dx:

Having found zk , we maximize the function

H.zk; z/ D
Z
b.x; zk/ log b.x; z/dx (1)
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to get zkC1. Adopting such an iterative approach presupposes that maximizing
H.zk; z/ is simpler than maximizing f .z/ itself. This is the case with the EM
algorithm.

The cross-entropy or Kullback-Leibler distance [7] is a useful tool for analyzing
the EM algorithm. For positive numbers u and v, the Kullback-Leibler distance from
u to v is

KL.u; v/ D u log
u

v
C v � u: (2)

We also define KL.0; 0/ D 0, KL.0; v/ D v, and KL.u; 0/ D C1. The KL
distance is extended to nonnegative vectors component-wise, so that for nonnegative
vectors a and b, we have

KL.a; b/ D
JX
jD1

KL.aj ; bj /: (3)

One of the most useful and easily proved facts about the KL distance is contained
in the following lemma; we simplify the notation by setting b.z/ D b.x; z/.

Lemma 1. For nonnegative vectors a and b, with bC DPJ
jD1 bj > 0, we have

KL.a; b/ D KL.aC; bC/C KL.a;
aC
bC
b/: (4)

This lemma can be extended to obtain the following useful identity.

Lemma 2. For f .z/ and b.x; z/ as above, and z and w in Z, with f .w/ > 0, we
have

KL.b.z/; b.w// D KL.f .z/; f .w//C KL.b.z/; .f .z/=f .w//b.w//: (5)

MaximizingH.zk; z/ is equivalent to minimizing

G.zk; z/ D KL.b.zk/; b.z//� f .z/; (6)

where

KL.b.zk/; b.z// D
Z

KL.b.x; zk/; b.x; z//dx: (7)

Therefore,

�f .zk/ D KL.b.zk/; b.zk//� f .zk/ � KL.b.zk/; b.zkC1// � f .zkC1/;
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or

f .zkC1/ � f .zk/ � KL.b.zk/; b.zkC1// � KL.f .zk/; f .zkC1//:

Consequently, the sequence ff .zk/g is increasing and bounded above, so that the
sequence fKL.b.zk/; b.zkC1//g converges to zero. Without additional restrictions,
we cannot conclude that ff .zk/g converges to f .z�/.

We get zkC1 by minimizingG.zk; z/. When we minimizeG.z; zkC1/, we get zkC1

again. Therefore, we can put the NSEM algorithm into the alternating-minimization
(AM) framework of Csiszár and Tusnády [12], to be discussed further Sect. 11.

The Discrete Case
Again, the problem is to maximize a nonnegative function f W Z ! R, where Z is
an arbitrary set. As previously, we assume that there is z� 2 Z with f .z�/ � f .z/,
for all z 2 Z. We also assume that there is a finite or countably infinite set B and a
nonnegative function b W B �Z ! R such that

f .z/ D
X
x2B

b.x; z/:

Having found zk , we maximize the function

H.zk; z/ D
X
x2B

b.x; zk/ log b.x; z/ (8)

to get zkC1.
We set b.z/ D b.x; z/ again. MaximizingH.zk; z/ is equivalent to minimizing

G.zk; z/ D KL.b.zk/; b.z//� f .z/; (9)

where
KL.b.zk/; b.z// D

X
x2B

KL.b.x; zk/; b.x; z//: (10)

As previously, we find that the sequence ff .zk/g is increasing, and fKL.b.zk/;
b.zkC1//g converges to zero. Without additional restrictions, we cannot conclude
that ff .zk/g converges to f .z�/.

3 The Stochastic EM Algorithm

The E-Step andM-Step

In statistical parameter estimation, one typically has an observable random vector
Y taking values in R

N that is governed by a probability density function (pdf) or
probability function (pf) of the form fY .yj�/, for some value of the parameter vector



394 C. Byrne

� 2 ‚, where ‚ is the set of all legitimate values of � . Our observed data consists
of one realization y of Y ; we do not exclude the possibility that the entries of y
are independently obtained samples of a common real-valued random variable. The
true vector of parameters is to be estimated by maximizing the likelihood function
Ly.�/ D fY .yj�/ over all � 2 ‚ to obtain a maximum likelihood estimate, �ML.

To employ the EM algorithmic approach, it is assumed that there is another
related random vector X , which we shall call the preferred data, such that, had
we been able to obtain one realization x of X , maximizing the likelihood function
Lx.�/ D fX.xj�/ would have been simpler than maximizing the likelihood
function Ly.�/ D fY .yj�/. Of course, we do not have a realization x of X . The
basic idea of the EM approach is to estimate x using the current estimate of � ,
denoted �k , and to use each estimate xk of x to get the next estimate �kC1.

The EM algorithm proceeds in two steps. Having selected the preferred data X ,
and having found �k , we form the function of � given by

Q.� j�k/ D E.logfX.xj�/jy; �k/I (11)

this is the E-step of the EM algorithm. Then we maximizeQ.� j�k/ over all � to get
�kC1; this is the M-step of the EM algorithm. In this way, the EM algorithm based
on X generates a sequence f�kg of parameter vectors.

For the discrete case of probability functions, we have

Q.� j�k/ D
X
x

fX jY .xjy; �k/ logfX.xj�/; (12)

and for the continuous case of probability density functions, we have

Q.� j�k/ D
Z
fX jY .xjy; �k/ logfX.xj�/dx: (13)

In decreasing order of importance and difficulty, the goals are these:

1. To have the sequence of parameters f�kg converging to �ML;
2. To have the sequence of functions ffX.xj�k/g converging to fX.xj�ML/;
3. To have the sequence of numbers fLy.�k/g converging to Ly.�ML/;
4. To have the sequence of numbers fLy.�k/g non-decreasing.

Our focus here is mainly on the fourth goal, with some discussion of the third goal.
We do present some examples for which all four goals are attained. Clearly, the first
goal requires a topology on the set ‚.

Difficulties with the Conventional Formulation

In [1] we are told that
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fX jY .xjy; �/ D fX.xj�/=fY .yj�/: (14)

This is false; integrating with respect to x gives one on the left side and 1=fY .yj�/
on the right side. Perhaps the equation is not meant to hold for all x, but just for
some x. In fact, if there is a function h such that Y D h.X/, then Eq. (14) might
hold for those x such that h.x/ D y. In fact, this is what happens in the discrete
case of probabilities; in that case we do have

fY .yj�/ D
X

x2h�1fyg
fX.xj�/; (15)

where

h�1fyg D fxjh.x/ D yg:

Consequently,

fX jY .xjy; �/ D
�
fX.xj�/=fY .yj�/; if x 2 h�1fygI

0; ifx … h�1fyg: (16)

However, this modification of Eq. (14) fails in the continuous case of probability
density functions, since h�1fyg is often a subset of zero measure. Even if the set
h�1fyg has positive measure, integrating both sides of Eq. (14) over x 2 h�1fyg
tells us that fY .yj�/ � 1, which need not hold for probability density functions.

An Incorrect Proof

Everyone who works with the EM algorithm will say that the likelihood is non-
decreasing for the EM algorithm. The proof of this fact usually proceeds as follows;
we use the notation for the continuous case, but the proof for the discrete case is
essentially the same. Use Eq. (14) to get

logfX.xj�/ D logfX jY .xjy; �/ � logfY .yj�/: (17)

Then replace the term logfX.xj�/ in Eq. (13) with the right side of Eq. (17),
obtaining

logfY .yj�/ �Q.� j�k/ D �
Z
fX jY .xjy; �k/ logfX jY .xjy; �/dx: (18)

Jensen’s Inequality tells us that

Z
u.x/ log u.x/dx �

Z
u.x/ log v.x/dx; (19)
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for any probability density functions u.x/ and v.x/. Since fX jY .xjy; �/ is a
probability density function, we have

Z
fX jY .xjy; �k/ logfX jY .xjy; �/dx �

Z
fX jY .xjy; �k/ logfX jY .xjy; �k/dx:

(20)

We conclude, therefore, that logfY .yj�/ � Q.� j�k/ attains its minimum value at
� D �k . Then we have

logfY .yj�kC1/� logfY .yj�k/ � Q.�kC1j�k/�Q.�kj�k/ � 0: (21)

This proof is incorrect; clearly it rests on the validity of Eq. (14), which is generally
false. For the discrete case, with Y D h.X/, this proof is valid, when we use
Eq. (16), instead of Eq. (14). In all other cases, however, the proof is incorrect.

Acceptable Data

We turn now to the question of how to repair the incorrect proof. Equation (14)
should read

fX jY .xjy; �/ D fX;Y .x; yj�/=fY .yj�/; (22)

for all x. In order to replace logfX.xj�/ in Eq. (13), we write

fX;Y .x; yj�/ D fX jY .xjy; �/fY .yj�/; (23)

and

fX;Y .x; yj�/ D fY jX.yjx; �/fX.xj�/; (24)

so that

logfX.xj�/ D logfX jY .xjy; �/C logfY .yj�/� logfY jX.yjx; �/: (25)

We say that the preferred data is acceptable if

fY jX.yjx; �/ D fY jX.yjx/I (26)

that is, the dependence of Y on X is unrelated to the value of the parameter � . This
definition provides our generalization of the relationship Y D h.X/.

When X is acceptable, we have that logfY .yj�/ � Q.� j�k/ again attains its
minimum value at � D �k . The assertion that the likelihood is non-decreasing then
follows, using the same argument as in the previous incorrect proof.
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4 The Discrete Case

In the discrete case, we assume that Y is a discrete random vector taking values in a
finite or countably infinite set A, and governed by probability fY .yj�/. We assume,
in addition, that there is a second discrete random vectorX , taking values in a finite
or countably infinite set B , and a function h W B ! A such that Y D h.X/. We
define the set

h�1fyg D fx 2 Bjh.x/ D yg: (27)

Then we have

fY .yj�/ D
X

x2h�1fyg
fX.xj�/: (28)

The conditional probability function for X , given Y D y, is

fX jY .xjy; �/ D fX.xj�/
fY .yj�/ ; (29)

for x 2 h�1fyg, and zero, otherwise. The so-called E-step of the EM algorithm is
then to calculate

Q.� j�k/ D E..logfX.X j�/jy; �k/ D
X

x2h�1fyg
fX jY .xjy; �k/ logfX.xj�/; (30)

and the M-step is to maximizeQ.� j�k/ as a function of � to obtain �kC1.
Using Eq. (29), we can write

Q.� j�k/ D
X

x2h�1fyg
fX jY .xjy; �k/ logfX jY .xjy; �/C logfY .yj�/: (31)

Therefore,

logfY .yj�/�Q.� j�k/ D �
X

x2h�1fyg
fX jY .xjy; �k/ logfX jY .xjy; �/:

Since

X
x2h�1fyg

fX jY .xjy; �k/ D
X

x2h�1fyg
fX jY .xjy; �/ D 1;

it follows from Jensen’s Inequality that
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�
X

x2h�1fyg
fX jY .xjy; �k/ logfX jY .xjy; �/

� �
X

x2h�1fyg
fX jY .xjy; �k/ logfX jY .xjy; �k/:

Therefore, logfY .yj�/ � Q.� j�k/ attains its minimum at � D �k . We have the
following result.

Proposition 1. The sequence ffY .yj�k/g is non-decreasing.

Proof. We have

logfY .yj�kC1/ �Q.�kC1j�k/ � logfY .yj�k/�Q.�kj�k/;

or

logfY .yj�kC1/� logfY .yj�k/ � Q.�kC1j�k/�Q.�kj�k/ � 0:

�
Let 	h�1fyg.x/ be the characteristic function of the set h�1fyg, that is,

	h�1fyg.x/ D
�

1; if x 2 h�1fygI
0; ifx … h�1fyg: (32)

With the choices z D � , f .z/ D fY .yj�/, and b.z/ D fX.xj�/	h�1fyg.x/, the
discrete EM algorithm fits into the framework of the non-stochastic EM algorithm.
Consequently, we see once again that the sequence ffY .yj�k/g is non-decreasing
and also that the sequence

fKL.b.zk/; b.zkC1/g D f
X

x2h�1fyg
.KL.fX.xj�k/; fX.xj�kC1//g

converges to zero.

5 Missing Data

We say that there is missing data if the preferred data X has the form X D .Y;W /,
so that Y D h.X/ D h.Y;W /, where h is the orthogonal projection onto the
first component. The case of missing data for the discrete case is covered by the
discussion in Sect. 4, so we consider here the continuous case in which probability
density functions are involved.
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Once again, the E-step is to calculate Q.� j�k/ given by

Q.� j�k/ D E.logfX.X j�/jy; �k/: (33)

Since X D .Y;W /, we have

fX.xj�/ D fY;W .y;wj�/: (34)

Since the set h�1fyg has measure zero, we cannot write

Q.� j�k/ D
Z
h�1fyg

fX jY .xjy; �k/ logfX.xj�/dx:

Instead, following [8], we write

Q.� j�k/ D
Z
fY;W .y;wj�k/ logfY;W .y;wj�/dw=fY .yj�k/: (35)

Consequently, maximizingQ.� j�k/ is equivalent to maximizing
Z
fY;W .y;wj�k/ logfY;W .y;wj�/dw:

With b.�/ D b.�;w/ D fY;W .y;wj�/ and

fY .yj�/ D f .�/ D
Z
fY;W .y;wj�/dw D

Z
b.�/dw;

we find that maximizing Q.� j�k/ is equivalent to minimizing KL.b.�k/; b.�// �
f .�/. Therefore, the EM algorithm for the case of missing data falls into the
framework of the non-stochastic EM algorithm. We conclude that the sequence
ff .�k/g is non-decreasing and that the sequence fKL.b.�k/; b.�kC1//g converges
to zero.

Most other instances of the continuous case in which we have Y D h.X/ can
be handled using the missing-data model. For example, suppose that Z1 and Z2

are uniformly distributed on the interval Œ0; ��, for some positive � and that Y D
Z1 CZ2. We may, for example, then take W to beW D Z1 �Z2 and X D .Y;W /

as the preferred data. We shall discuss these instances further in Sect. 7.

6 The Continuous Case

We turn now to the general continuous case. We have a random vector Y taking
values in R

N and governed by the probability density function fY .yj�/. The
objective, once again, is to maximize the likelihood function Ly.�/ D fY .yj�/
to obtain the maximum likelihood estimate of � .
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Acceptable Preferred Data

For the continuous case, the vector �kC1 is obtained from �k by maximizing the
conditional expected value

Q.� j�k/ D E.logfX.X j�/jy; �k/ D
Z
fX jY .xjy; �k/ logfX.xj�/dx: (36)

Assuming the acceptability condition and using

fX;Y .x; yj�k/ D fX jY .xjy; �k/fY .yj�k/;

and

logfX.xj�/ D logfX;Y .x; yj�/ � logfY jX.yjx/;

we find that maximizing E.logfX.xj�/jy; �k/ is equivalent to minimizing

H.�k; �/ D
Z
fX;Y .x; yj�k/ logfX;Y .x; yj�/dx: (37)

With f .�/ D fY .yj�/, and b.�/ D fX;Y .x; yj�/, this problem fits the framework
of the non-stochastic EM algorithm and is equivalent to minimizing

G.�k; �/ D KL.b.�k/; b.�//� f .�/:

Once again, we may conclude that the likelihood function is non-decreasing and
that the sequence fKL.b.�k/; b.�kC1//g converges to zero.

In the discrete case in which Y D h.X/, the conditional probability fY jX.yjx; �/
is ı.y � h.x//, as a function of y, for given x, and is the characteristic function of
the set h�1.y/, as a function of x, for given y. Therefore, we can write fX jY .xjy; �/
using Eq. (16). For the continuous case in which Y D h.X/, the pdf fY jX.yjx; �/ is
again a delta function of y, for given x; the difficulty arises when we need to view
this as a function of x, for given y. The acceptability property helps us avoid this
difficulty.

When X is acceptable, we have

fX jY .xjy; �/ D fY jX.yjx/fX.xj�/=fY .yj�/; (38)

whenever fY .yj�/ ¤ 0, and is zero otherwise. Consequently, whenX is acceptable,
we have a kernel model for fY .yj�/ in terms of the fX.xj�/:

fY .yj�/ D
Z
fY jX.yjx/fX.xj�/dxI (39)
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for the continuous case we view this as a corrected version of Eq. (15). In the discrete
case the integral is replaced by a summation, of course, but when we are speaking
generally about either case, we shall use the integral sign.

The acceptability of the missing data W is used in [9], but more for computa-
tional convenience and to involve the Kullback-Leibler distance in the formulation
of the EM algorithm. It is not necessary thatW be acceptable in order for likelihood
to be non-decreasing, as we have seen.

Selecting Preferred Data

The popular example of multinomial data given below illustrates well the point that
one can often choose to view the observed data as “incomplete” simply in order to
introduce “complete” data that makes the calculations simpler, even when there is no
suggestion, in the original problem, that the observed data is in any way inadequate
or “incomplete.” It is in order to emphasize this desire for simplification that we
refer to X as the preferred data, not the complete data.

In some applications, the preferred data X arises naturally from the problem,
while in other cases the user must imagine preferred data. This choice in selecting
the preferred data can be helpful in speeding up the algorithm (see [10]).

If, instead of maximizing

Z
fX jY .xjy; �k/ logfX.xj�/dx;

at each M-step, we simply select �kC1 so that

Z
fX jY .xjy; �k/ logfX;Y .x; yj�kC1/dx

�
Z
fX jY .xjy; �k/ logfX;Y .x; yj�k/dx > 0;

we say that we are using a generalized EM (GEM) algorithm. It is clear from the
discussion in the previous subsection that whenever X is acceptable, a GEM also
guarantees that likelihood is non-decreasing.

Preferred Data as Missing Data

As we have seen, when the EM algorithm is applied to the missing-data model,
the likelihood is non-decreasing, which suggests that, for an arbitrary preferred
data X , we could imagine X as W , the missing data, and imagine applying the
EM algorithm to Z D .Y;X/. This approach would produce an EM sequence of
parameter vectors for which likelihood is non-decreasing, but it need not be the



402 C. Byrne

same sequence as obtained by applying the EM algorithm to X directly. It is the
same sequence, provided that X is acceptable. We are not suggesting that applying
the EM algorithm to Z D .Y;X/ would simplify calculations.

We know that, when the missing-data model is used and the M-step is defined
as maximizing the function in (35), the likelihood is not decreasing. It would seem
then that for any choice of preferred data X , we could view this data as missing and
take as our complete data the pair Z D .Y;X/, with X now playing the role of W .
Maximizing the function in (35) is then equivalent to maximizing

Z
fX jY .xjy; �k/ logfX;Y .x; yj�/dxI (40)

to get �kC1. It then follows that Ly.�kC1/ � Ly.�
k/. The obvious question is

whether or not these two functions given in (11) and (40) have the same maximizers.
For acceptable X we have

logfX;Y .x; yj�/ D logfX.xj�/C logfY jX.yjx/; (41)

so the two functions given in (11) and (40) do have the same maximizers. It follows
once again that whenever the preferred data is acceptable, we have Ly.�kC1/ �
Ly.�

k/. Without additional assumptions, however, we cannot conclude that f�kg
converges to �ML, nor that ffY .yj�k/g converges to fY .yj�ML/.

7 The Continuous Case with Y D h.X/

In this section we consider the continuous case in which the observed random vector
Y takes values in R

N ; the preferred random vector X takes values in R
M ; the

random vectors are governed by probability density functions fY .yj�/ and fX.xj�/,
respectively; and there is a function h W RN ! R

M such that Y D h.X/. In most
cases, M > N and h�1fyg D fxjh.x/ D yg has measure zero in R

M .

An Example

For example, suppose that Z1 and Z2 are independent and uniformly distributed
on the interval Œ0; ��, for some � > 0 to be estimated. Let Y D Z1 C Z2. With
Z D .Z1; Z2/, and h W R2 ! R given by h.z1; z2/ D z1 C z2, we have Y D h.Z/.
The pdf for Z is

fZ.zj�/ D fZ.z1; z2j�/ D 1

�2
	Œ0;� �.z1/	Œ0;� �.z2/: (42)

The pdf for Y is
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fY .yj�/ D
(

y

�2 ; if 0 � y � � I
2��y
�2 ; if � � y � 2�:

(43)

It is not the case that

fY .yj�/ D
Z
h�1fyg

fZ.zj�/; (44)

since h�1fyg has measure zero in R
2.

The likelihood function is L.�/ D fY .yj�/, viewed as a function of � , and is
given by

L.�/ D
(

y

�2 ; if � � yI
2��y
�2 ; if y2 � � � y:

(45)

Therefore, the maximum likelihood estimate of � is �ML D y.
Instead of using Z as our preferred data, suppose that we define the random

variable W D Z2, and let X D .Y;W /, a missing-data model. We then have Y D
h.X/, where h W R2 ! R is given by h.x/ D h.y;w/ D y. The pdf for Y given in
Eq. (43) can be written as

fY .yj�/ D
Z

1

�2
	Œ0;� �.y � w/	Œ0;� �.w/dw: (46)

The joint pdf is

fY;W .y;wj�/ D
�

1=�2; for w � y � � C wI
0; otherwise:

(47)

Censored Exponential Data

McLachlan and Krishnan [1] give the following example of a likelihood maximiza-
tion problem involving probability density functions. This example provides a good
illustration of the usefulness of the missing-data model.

Suppose that Z is the time until failure of a component, which we assume is
governed by the exponential distribution

f .zj�/ D 1

�
e�z=� ; (48)

where the parameter � > 0 is the expected time until failure. We observe a random
sample ofN components and record their failure times, zn. On the basis of this data,
we must estimate � , the mean time until failure.
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It may well happen, however, that during the time allotted for observing the
components, only r of the N components fail, which, for convenience, are taken
to be the first r items in the record. Rather than wait longer, we record the failure
times of those that failed and record the elapsed time for the experiment, say T , for
those that had not yet failed. The censored data is then y D .y1; : : : ; yN /, where
yn D zn is the time until failure for n D 1; : : : ; r , and yn D T for n D rC1; : : : ; N .
The censored data is reasonably viewed as incomplete, relative to the complete data
we would have had, had the trial lasted until all the components had failed.

Since the probability that a component will survive until time T is e�T=� , the pdf
for the vector y is

fY .yj�/ D
� rY
nD1

1

�
e�yn=�

�
e�.N�r/T=� ; (49)

and the log likelihood function for the censored, or incomplete, data is

logfY .yj�/ D �r log � � 1

�

NX
nD1

yn: (50)

In this particular example, we are fortunate, in that we can maximize fY .yj�/ easily,
and find that the ML solution based on the incomplete, censored data is

�MLi D 1

r

NX
nD1

yn D 1

r

rX
nD1

yn C N � r
r

T: (51)

In most cases in which our data is incomplete, finding the ML estimate from the
incomplete data is difficult, while finding it for the complete data is relatively easy.

We say that the missing data are the times until failure of those components that
did not fail during the observation time. The preferred data is the complete data
x D .z1; : : : ; zN / of actual times until failure. The pdf for the preferred data X is

fX.xj�/ D
NY
nD1

1

�
e�zn=� ; (52)

and the log likelihood function based on the complete data is

logfX.xj�/ D �N log � � 1

�

NX
nD1

zn: (53)

The ML estimate of � from the complete data is easily seen to be

�MLc D 1

N

NX
nD1

zn: (54)
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In this example, both the incomplete-data vector y and the preferred-data vector x
lie in R

N . We have y D h.x/ where the function h operates by setting to T any
component of x that exceeds T . Clearly, for a given y, the set h�1fyg consists of all
vectors x with entries xn � T or xn D yn < T . For example, suppose that N D 2,
and y D .y1; T /, where y1 < T . Then h�1fyg is the one-dimensional ray

h�1fyg D fx D .y1; x2/j x2 � T g:

Because this set has measure zero in R
2, Eq. (44) does not make sense in this case.

We need to calculateE.logfX.X j�/jy; �k/. Following McLachlan and Krishnan
[1], we note that since logfX.xj�/ is linear in the unobserved data Zn, n D r C
1; : : : ; N , to calculate E.logfX.X j�/jy; �k/, we need only replace the unobserved
values with their conditional expected values, given y and �k . The conditional
distribution of Zn � T , given that Zn > T , is still exponential, with mean � .
Therefore, we replace the unobserved values, that is, all theZn for n D rC1; : : : ; N ,
with T C �k . Therefore, at the E-step we have

E.logfX.X j�/jy; �k/ D �N log � � 1

�

 � NX
nD1

yn

�
C .N � r/�k

!
: (55)

The M-step is to maximize this function of � , which leads to

�kC1 D
 � NX

nD1

yn

�
C .N � r/�k

!
=N: (56)

Let �� be a fixed point of this iteration. Then we have

�� D
 � NX

nD1

yn

�
C .N � r/��

!
=N;

so that

�� D 1

r

NX
nD1

yn;

which, as we have seen, is the likelihood maximizer.

AMore General Approach

Let X take values in R
N and Y D h.X/ take values in R

M , where M < N and
h W RN ! R

M is a (possibly) many-to-one function. Suppose that there is a second
function k W RN ! R

N�M such that the function
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G.x/ D .h.x/; k.x// D .y;w/ D u (57)

has inverseH.y;w/ D x. Denote by J.y;w/ the determinant of the Jacobian matrix
associated with the transformationG. Let

W.y/ D fwjw D k.x/; andy D h.x/g:

Then

fY .yj�/ D
Z

w2W.y/

fX.H.y;w//J.y;w/dw: (58)

Then we apply the missing-data model for the EM algorithm, with W D k.X/ as
the missing data.

8 AMultinomial Example

In many applications, the entries of the vector y are independent realizations of a
single real-valued or vector-valued random variable V , as they are, at least initially,
for finite mixture problems to be considered later. This is not always the case,
however, as the following example shows.

A well-known example that was used in [11] and again in [1] to illustrate the
EM algorithm concerns a multinomial model taken from genetics. Here there are
four cells, with cell probabilities 1

2 C 1
4�0, 1

4 .1 � �0/, 1
4 .1 � �0/, and 1

4�0, for some
�0 2 ‚ D Œ0; 1� to be estimated. The entries of y are the frequencies from a sample
size of 197. We then have

fY .yj�/ D 197Š

y1Šy2Šy3Šy4Š
.
1

2
C 1

4
�/y1.

1

4
.1 � �//y2.

1

4
.1 � �//y3.

1

4
�/y4 : (59)

It is then supposed that the first of the original four cells can be split into two
subcells, with probabilities 1

2 and 1
4�0. We then write y1 D y11 C y12, and let

X D .Y11; Y12; Y2; Y3; Y4/; (60)

where X has a multinomial distribution with five cells. Note that we do now have
Y D h.X/.

This example is a popular one in the literature on the EM algorithm (see [11]
for citations). It is never suggested that the splitting of the first group into two
subgroups is motivated by the demands of the genetics theory itself. As stated in
[1], the motivation for the splitting is to allow us to view the two random variables
Y12 C Y4 and Y2 C Y3 as governed by a binomial distribution; that is, we can view
the value of y12 C y4 as the number of heads and the value y2 C y3 as the number
of tails that occur in the flipping of a biased coin y12 C y4 C y2 C y3 times. This
simplifies the calculation of the likelihood maximizer.
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9 The Example of Finite Mixtures

We say that a random vector V taking values in R
D is a finite mixture if, for j D

1; : : : ; J , fj is a probability density function or probability function, �j � 0 is
a weight, the �j sum to one, and the probability density function or probability
function for V is

fV .vj�/ D
JX
jD1

�j fj .v/: (61)

The value of D is unimportant, and for simplicity, we shall assume that D D 1.
We draw N independent samples of V , denoted vn, and let yn, the nth entry of

the vector y, be the number vn. To create the preferred data we assume that for each
n, the number vn is a sample of the random variable Vn whose pdf or pf is fjn , where
the probability that jn D j is �j . We then let the N entries of the preferred data X
be the indices jn. The conditional distribution of Y , givenX , is clearly independent
of the parameter vector � and is given by

fY jX.yjx; �/ D
NY
nD1

fjn.yn/I

therefore,X is acceptable. Note that we cannot recapture the entries of y from those
of x, so the model Y D h.X/ does not hold here. Note also that although the vector
y is taken originally to be a vector whose entries are independently drawn samples
from V , when we create the preferred data X , we change our view of y. Now each
entry of y is governed by a different distribution, so y is no longer viewed as a
vector of independent sample values of a single random vector.

10 The EM and the Kullback-Leibler Distance

We illustrate the usefulness of acceptability and reformulate the M-step in terms of
cross-entropy or Kullback-Leibler distance minimization.

Using Acceptable Data

The assumption that the data X is acceptable helps simplify the theoretical
discussion of the EM algorithm.

For any preferred X the M-step of the EM algorithm, in the continuous case, is
to maximize the function

Z
fX jY .xjy; �k/ logfX.xj�/dx; (62)
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over � 2 ‚; the integral is replaced by a sum in the discrete case. For notational
convenience we let

b.�k/ D fX jY .xjy; �k/; (63)

and

f .�/ D fX.xj�/I (64)

both functions are functions of the vector variable x. Then the M-step is equivalent
to minimizing the Kullback-Leibler or cross-entropy distance

KL.b.�k/; f .�// D
Z
fX jY .xjy; �k/ log

�fX jY .xjy; �k/
fX.xj�/

�
dx

D
Z
fX jY .xjy; �k/ log

�fX jY .xjy; �k/
fX.xj�/

�

C fX.xj�/ � fX jY .xjy; �k/dx: (65)

This holds since both fX.xj�/ and fX jY .xjy; �k/ are probability density functions
or probabilities.

For acceptable X we have

logfX;Y .x; yj�/ D logfX jY .xjy; �/C logfY .yj�/
D logfY jX.yjx/C logfX.xj�/: (66)

Therefore,

logfY .yj�kC1/ � logfY .yj�/ D KL.b.�k/; f .�// �KL.b.�k/; f .�kC1//

CKL.b.�k/; b.�kC1// �KL.b.�k/; b.�//:
(67)

Since � D �kC1 minimizesKL.b.�k/; f .�//, we have that

logfY .yj�kC1/� logfY .yj�k/ D KL.b.�k/; f .�k//
�KL.b.�k/; f .�kC1//

CKL.b.�k/; b.�kC1// � 0: (68)

This tells us, once again, that the sequence of likelihood values flogfY .yj�k/g is
increasing and that the sequence of its negatives, f� logfY .yj�k/g, is decreasing.
Since we assume that there is a maximizer �ML of the likelihood, the sequence
f� logfY .yj�k/g is also bounded below and the sequences fKL.b.�k/; b.�kC1//g
and fKL.b.�k/; f .�k// �KL.b.�k/; f .�kC1//g converge to zero.
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Without some notion of convergence in the parameter space ‚, we cannot
conclude that f�kg converges to a maximum likelihood estimate �ML. Without some
additional assumptions, we cannot even conclude that the functions f .�k/ converge
to f .�ML/.

11 The Approach of Csiszár and Tusnády

For acceptable X the M-step of the EM algorithm is to minimize the function
KL.b.�k/; f .�// over � 2 ‚ to get �kC1. To put the EM algorithm into the
framework of the alternating-minimization approach of Csiszár and Tusnády [12],
we need to view the M-step in a slightly different way; the problem is that, for the
continuous case, having found �kC1, we do not then minimize KL.b.�/; f .�kC1//

at the next step.

The Framework of Csiszár and Tusnády

Following [12], we take‰.p; q/ to be a real-valued function of the variables p 2 P
and q 2 Q, where P and Q are arbitrary sets. Minimizing ‰.p; qn/ gives pn and
minimizing‰.pn; q/ gives qnC1, so that

‰.pn; qn/ � ‰.pn; qnC1/ � ‰.pnC1; qnC1/: (69)

The objective is to find . Op; Oq/ such that

‰.p; q/ � ‰. Op; Oq/;

for all p and q. In order to show that f‰.pn; qn/g converges to

d D inf
p2P;q2Q‰.p; q/

the authors of [12] assume the three- and four-point properties.
If there is a nonnegative function� W P � P ! R such that

‰.p; qnC1/�‰.pnC1; qnC1/ � �.p; pnC1/; (70)

then the three-point property holds. If

�.p; pn/C‰.p; q/ � ‰.p; qnC1/; (71)

for all p and q, then the four-point property holds. Combining these two inequalities,
we have

�.p; pn/��.p; pnC1/ � ‰.pnC1; qnC1/�‰.p; q/: (72)
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From the inequality in (72) it follows easily that the sequence f‰.pn; qn/g converges
to d . Suppose this is not the case. Then there are p0, q0, and D > d with

‰.pn; qn/ � D > ‰.p0; q0/ � d:

From Eq. (72) we have

�.p0; pn/ ��.p0; pnC1/ � ‰.pnC1; qnC1/�‰.p0; q0/ � D �‰.p0; q0/ > 0:

But since f�.p0; pn/g is a decreasing sequence of positive quantities, successive
differences must converge to zero; that is, f‰.pnC1; qnC1/g must converge to
‰.p0; q0/, which is a contradiction.

The five-point property of [12] is obtained by combining (70) and (71):

‰.p; q/C‰.p; qn�1/ � ‰.p; qn/C‰.pn; qn�1/: (73)

Note that the five-point property does not involve the second function �.p0; p/.
However, assuming that the five-point property holds, it is possible to define
�.p0; p/ so that both the three- and four-point properties hold. Assuming the five-
point property, we have

‰.p; qn�1/�‰.p; qn/ � ‰.pn; qn/�‰.p; q/; (74)

from which we can show easily that f‰.pn; qn/g converges to d .

AlternatingMinimization for the EM Algorithm

Assume that X is acceptable. We define the function F.�/ to be

F.�/ D
Z
fX jY .xjy; �/ log fY jX.yjx/dx; (75)

for the continuous case, with a sum replacing the integral for the discrete case. Using
the identities

fX;Y .x; yj�/ D fX jY .xjy; �/fY .yj�/
D fY jX.yjx; �/fX.xj�/ D fY jX.yjx/fX.xj�/;

we then have

logfY .yj�/ D F.� 0/CKL.b.� 0/; b.�//�KL.b.� 0/; f .�//; (76)

for any parameter values � and � 0. With the choice of � 0 D � , we have
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logfY .yj�/ D F.�/ �KL.b.�/; f .�//: (77)

Therefore, subtracting Eq. 77 from Eq. 76, we get

�
KL.b.� 0/; f .�// � F.� 0/

�
�
�
KL.b.�/; f .�// � F.�/

�

D KL.b.� 0/; b.�//: (78)

Now we can put the EM algorithm into the alternating-minimization framework.
Define

‰.b.� 0/; f .�// D KL.b.� 0/; f .�// � F.� 0/: (79)

We know from Eq. (78) that

‰.b.� 0/; f .�// �‰.b.�/; f .�// D KL.b.� 0/; b.�//: (80)

Therefore, we can say that the M-step of the EM algorithm is to minimize
‰.b.�k/; f .�// over � 2 ‚ to get �kC1 and that minimizing ‰.b.�/; f .�kC1//

gives us � D �kC1 again. Because the EM algorithm can be viewed as an alternating
minimization method, it is also a particular case of the sequential unconstrained
minimization techniques [13] and of “optimization transfer,” [4].

With the choice of

�.b.� 0/; b.�// D KL.b.� 0/; b.�//;

Eq. (80) becomes

‰.b.� 0/; f .�// �‰.b.�/; f .�// D �.b.� 0/; b.�//; (81)

which is the three-point property.
With P D B.‚/ and Q D F.‚/, the collections of all functions b.�/ and

f .�/, respectively, we can view the EM algorithm as alternating minimization of
the function ‰.p; q/, over p 2 P and q 2 Q. As we have seen, the three-point
property holds. What about the four-point property?

The Kullback-Leibler distance is an example of a jointly convex Bregman
distance. According to a lemma of Eggermont and LaRiccia [14,15], the four-point
property holds for alternating minimization of such distances, using �.p0; p/ D
KL.p0; p/, provided that the sets P and Q are closed and convex subsets of RN .
In the continuous case of the EM algorithm, we are not performing alternating
minimization on the function KL.b.�/; f .� 0//, but on KL.b.�/; f .� 0// C F.�/.
In the discrete case, whenever Y D h.X/, the function F.�/ is always zero, so we
are performing alternating minimization on the KL distance KL.b.�/; f .� 0//. In
[16] the authors consider the problem of minimizing a function of the form
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ƒ.p; q/ D �.p/C  .q/CDg.p; q/; (82)

where � and  are convex and differentiable on R
J , Dg is a Bregman distance,

and P D Q is the interior of the domain of g. In [13] it was shown that when Dg

is jointly convex, the function ƒ.p; q/ has the five-point property of [12], which is
equivalent to the three- and four-point properties taken together. In some particular
instances, the collection of the functions f .�/ is a convex subset of RJ , as well, so
the three- and four-point properties hold.

As we saw previously, to have ‰.pn; qn/ converging to d , it is sufficient that
the five-point property hold. It is conceivable, then, that the five-point property may
hold for Bregman distances under somewhat more general conditions than those
employed in the Eggermont-LaRiccia Lemma.

The five-point property for the EM case is the following:

KL.b.�/; f .�k// �KL.b.�/; f .�kC1//

�
�
KL.b.�k/; f .�k// � F.�k/

�
�
�
KL.b.�/; f .�// � F.�/

�
: (83)

12 Sums of Independent Poisson RandomVariables

The EM is often used with aggregated data. The case of sums of independent
Poisson random variables is particularly important.

Poisson Sums

Let X1; : : : ; XN be independent Poisson random variables with expected value
E.Xn/ D �n. Let X be the random vector with Xn as its entries, � the vector
whose entries are the �n, and �C DPN

nD1 �n. Then the probability function for X
is

fX.xj�/ D
NY
nD1

�xnn exp.��n/=xnŠ D exp.��C/
NY
nD1

�xnn =xnŠ : (84)

Now let Y DPN
nD1Xn. Then, the probability function for Y is

Prob.Y D y/ D Prob.X1 C : : :CXN D y/ (85)

D
X

x1C:::xNDy
exp.��C/

NY
nD1

�xnn =xnŠ : (86)



EM Algorithms from a Non-stochastic Perspective 413

As we shall see shortly, we have

X
x1C:::xNDy

exp.��C/
NY
nD1

�xnn =xnŠ D exp.��C/�yC=yŠ : (87)

Therefore, Y is a Poisson random variable with E.Y / D �C.
When we observe an instance of Y , we can consider the conditional distribution

fX jY .xjy; �/ of fX1; : : : ; XN g, subject to y D X1 C : : :CXN . We have

fX jY .xjy; �/ D yŠ

x1Š : : : xN Š

� �1

�C

�x1

: : :
��N
�C

�xN
: (88)

This is a multinomial distribution.
Given y and �, the conditional expected value of Xn is then

E.Xnjy; �/ D y�n=�C:

To see why this is true, consider the marginal conditional distribution fX1jY .x1jy; �/
of X1, conditioned on y and �, which we obtain by holding x1 fixed and summing
over the remaining variables. We have

fX1jY .x1jy; �/ D yŠ

x1Š.y � x1/Š

� �1

�C

�x1
��0C
�C

�y�x1

X
x2C:::CxNDy�x1

.y � x1/Š

x2Š : : : xN Š

NY
nD2

� �n
�0C

�xn
;

where

�0C D �C � �1:

As we shall show shortly,

X
x2C:::CxNDy�x1

.y � x1/Š

x2Š : : : xN Š

NY
nD2

� �n
�0C

�xn D 1;

so that

fX1jY .x1jy; �/ D yŠ

x1Š.y � x1/Š

� �1

�C

�x1
��0C
�C

�y�x1

:

The random variable X1 is equivalent to the random number of heads showing in
y flips of a coin, with the probability of heads given by �1=�C. Consequently, the
conditional expected value of X1 is y�1=�C, as claimed. In the next subsection we
look more closely at the multinomial distribution.
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TheMultinomial Distribution

When we expand the quantity .a1 C : : : C aN /y , we obtain a sum of terms, each
having the form a

x1
1 : : : a

xN
N , with x1 C : : : C xN D y. How many terms of the

same form are there? There are N variables an. We are to use xn of the an, for each
n D 1; : : : ; N , to get y D x1 C : : : C xN factors. Imagine y blank spaces, each to
be filled in by a variable as we do the selection. We select x1 of these blanks and
mark them a1. We can do that in

�
y

x1

	
ways. We then select x2 of the remaining blank

spaces and enter a2 in them; we can do this in
�
y�x1
x2

	
ways. Continuing in this way,

we find that we can select the N factor types in

 
y

x1

! 
y � x1

x2

!
: : :

 
y � .x1 C : : :C xN�2/

xN�1

!
(89)

ways or in

yŠ

x1Š.y � x1/Š
: : :

.y � .x1 C : : :C xN�2//Š

xN�1Š.y � .x1 C : : :C xN�1//Š
D yŠ

x1Š : : : xN Š
: (90)

This tells us in how many different sequences the factor variables can be selected.
Applying this, we get the multinomial theorem:

.a1 C : : :C aN /y D
X

x1C:::CxNDy

yŠ

x1Š : : : xN Š
a
x1
1 : : : a

xN
N : (91)

Select an D �n=�C. Then,
1 D 1y D

� �1

�C
C : : :C �N

�C

�y
(92)

D
X

x1C:::CxNDy

yŠ

x1Š : : : xN Š

� �1

�C

�x1

: : :
��N
�C

�xN
: (93)

From this we get

X
x1C:::xNDy

exp.��C/
NY
nD1

�xnn =xnŠ D exp.��C/�yC=yŠ : (94)

13 Poisson Sums in Emission Tomography

Sums of Poisson random variables and the problem of complete versus incomplete
data arise in single-photon computed emission tomography (SPECT) [17].
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The SPECT Reconstruction Problem

In their 1976 paper, Rockmore and Makovski [18] suggested that the problem of
reconstructing a tomographic image be viewed as statistical parameter estimation.
Shepp and Vardi [19] expanded on this idea and suggested that the EM algorithm
discussed by Dempster, Laird, and Rubin [11] should be used for the reconstruction.
The region of interest within the body of the patient is discretized into J pixels (or
voxels), with �j � 0 the unknown amount of radionuclide within the j th pixel; we
assume that �j is also the expected number of photons emitted from the j th pixel
during the scanning time. Emitted photons are detected at any one of I detectors
outside the body, with yi > 0 the photon count at the i th detector. The probability
that a photon emitted at the j th pixel will be detected at the i th detector is Pij ,
which we assume is known; the overall probability of detecting a photon emitted
from the j th pixel is sj DPI

iD1 Pij > 0.

The Preferred Data
For each i and j , the random variable Xij is the number of photons emitted from
the j th pixel and detected at the i th detector; theXij are assumed to be independent
and Pij �j -Poisson. With xij a realization of Xij , the vector x with components xij
is our preferred data. The pdf for this preferred data is a probability vector, with

fX.xj�/ D
IY
iD1

JY
jD1

exp�Pij �j .Pij �j /xij =xij Š : (95)

Given an estimate �k of the vector � and the restriction that Yi DPJ
jD1Xij , the

random variables Xi1; : : : ; XiJ have the multinomial distribution

Prob.xi1; : : : ; xiJ / D yi Š

xi1Š � � �xiJ Š
JY
jD1

�Pij �j
.P�/i

�xij
:

Therefore, the conditional expected value of Xij , given y and �k, is

E.Xij jy; �k/ D �kjPij
� yi

.P�k/i

�
;

and the conditional expected value of the random variable

logfX.X j�/ D
IX
iD1

JX
jD1

.�Pij �j /CXij log.Pij �j /C constants

becomes

E.logfX.X j�/jy; �k/ D
IX
iD1

JX
jD1

 
.�Pij �j /C �kjPij

� yi

.P�k/i

�
log.Pij �j /

!
;
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omitting terms that do not involve the parameter vector �. In the EM algorithm, we
obtain the next estimate �kC1 by maximizingE.logfX.X j�/jy; �k/.

The log likelihood function for the preferred data X (omitting constants) is

LLx.�/ D
IX
iD1

JX
jD1

�
� Pij �j CXij log.Pij �j /

�
: (96)

Of course, we do not have the complete data.

The Incomplete Data
What we do have are the yi , values of the random variables

Yi D
JX
jD1

Xij I (97)

this is the given data. These random variables are also independent and .P�/i -
Poisson, where

.P�/i D
JX
jD1

Pij �j :

The log likelihood function for the given data is

LLy.�/ D
IX
iD1

�
� .P�/i C yi log..P�/i /

�
: (98)

Maximizing LLx.�/ in Eq. (96) is easy, while maximizing LLy.�/ in Eq. (98) is
harder and requires an iterative method.

The EM algorithm involves two steps: in the E-step we compute the conditional
expected value ofLLx.�/, conditioned on the data vector y and the current estimate
�k of �; in the M-step we maximize this conditional expected value to get the next
�kC1. Putting these two steps together, we have the following EMML iteration:

�kC1
j D �kj s�1

j

IX
iD1

Pij
yi

.P�k/i
: (99)

For any positive starting vector �0, the sequence f�kg converges to a maximizer of
LLy.�/, over all nonnegative vectors �.

Note that because we are dealing with finite probability vectors in this example,
it is a simple matter to conclude that

fY .yj�/ D
X

x2h�1fyg
fX.xj�/: (100)
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Using the KL Distance

In this subsection we assume, for notational convenience, that the system y D P�

has been normalized so that sj D 1 for each j . Maximizing E.logfX.X j�/jy; �k/
is equivalent to minimizing KL.r.�k/; q.�//, where r.�/ and q.�/ are I by J
arrays with entries

r.�/ij D �jPij
� yi

.P�/i

�
;

and

q.�/ij D �jPij :

In terms of our previous notation, we identify r.�/ with b.�/ and q.�/ with f .�/.
The set F.‚/ of all f .�/ is now a convex set and the four-point property of [12]
holds. The iterative step of the EMML algorithm is then

�kC1
j D �kj

IX
iD1

Pi;j
yi

.P�k/i
: (101)

The sequence f�kg converges to a maximizer �ML of the likelihood for any positive
starting vector.

As we noted previously, before we can discuss the possible convergence of the
sequence f�kg of parameter vectors to a maximizer of the likelihood, it is necessary
to have a notion of convergence in the parameter space. For the problem in this
section, the parameter vectors � are nonnegative. Proof of convergence of the
sequence f�kg depends heavily on the following [20]:

KL.y; P�k/ �KL.y; P�kC1/ D KL.r.�k/; r.�kC1//CKL.�kC1; �k/I (102)

and

KL.�ML; �
k/ �KL.�ML; �kC1/ � KL.y; P�k/ �KL.y; P�ML/: (103)

14 Nonnegative Solutions for Linear Equations

Any likelihood maximizer �ML is also a nonnegative minimizer of the KL distance
KL.y; P�/, so the EMML algorithm can be thought of, more generally, as a method
for finding a nonnegative solution (or approximate solution) for a system y D P�

of linear equations in which yi > 0 and Pij � 0 for all indices. This will be helpful
when we consider mixture problems.
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The General Case

Suppose we want a nonnegative solution x for a system Ax D b of real equations;
unless b is positive and A has only nonnegative entries, we cannot use the EMML
algorithm directly. We may, however, be able to transform Ax D b to P� D y.

Suppose that by rescaling the equations in Ax D b, we can make cj DPI
iD1Aij > 0, for each j D 1; : : : ; J , and bC D PI

iD1 bi > 0. Now replace Aij
withGij D Aij =cj , and xj with zj D cj xj ; thenGz D Ax D b and

PI
iD1Gij D 1,

for all j . We also know now that bC D zC > 0, so zC is now known.
Let U and u be the matrix and column vector whose entries are all one,

respectively, and let t > 0 be large enough so that all the entries of B D G C tU
and .tzC/u are positive. Now

Bz D GzC .tzC/u D b C .tzC/u:

We then solve Bz D b C .tzC/u for z. It follows that Ax D Gz D b and x � 0.
Finally, we let P D B , � D z, and y D b C .tbC/u.

Regularization

It is often the case, as in tomography, that the entries of the vector y are obtained
by measurements and are therefore noisy. Finding an exact solution of y D P�

or even minimizing KL.y; P�/ may not be advisable in such cases. To obtain an
approximate solution that is relatively insensitive to the noise in y,‘ we regularize.
One way to do that is to minimize not KL.y; P�/, but

F˛.�/ D .1 � ˛/KL.y; P�/ C ˛KL.p; �/; (104)

where ˛ 2 .0; 1/ and p > 0 is a prior estimate of the desired �. The iterative step of
the regularized EMML algorithm is now

�kC1
j D .1 � ˛/

�
�kj s

�1
j

IX
iD1

Pij
yi

.P�k/i

�
C ˛pj : (105)

As was shown in [20], the sequence f�kg converges to a minimizer of F˛.�/.

Acceleration

When the system y D P� is large, the EMML algorithm can be slow to converge.
One method that has been used to accelerate convergence to a solution is the use of
block iteration [21–23].
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We begin by writing the index set fi D 1; 2; : : : ; I g as the (not necessarily
disjoint) union of Bn; n D 1; 2; : : : ; N . Of particular interest is the row-action
EMML, obtained by letting each block be a singleton. At each step of the iteration,
we employ only those equations whose index is a member of the current block. We
then cycle through the blocks.

An obvious way to impose blocks would seem to be to modify the EMML
iteration as follows:

�kC1
j D �kj s�1

n;j

X
i2Bn

Pij
yi

.P�k/i
; (106)

where

sn;j D
X
i2Bn

Pij :

This does not work, though.
Let Hi D fz � 0j.P z/i D yi g. Note that for a fixed x > 0, we cannot calculate

in closed form the vector z 2 Hi that minimizes KL.z; �/. However, the vector
z D zi in Hi that minimizes the weighted KL distance

JX
jD1

PijKL.zj ; �
k
j /

is given by

zij D �kj
yi

.P�k/i
: (107)

The iterative step of the EMML algorithm can then be interpreted as saying that
�kC1 is a weighted arithmetic mean of the zi ; that is,

�kC1
j D s�1

j

IX
iD1

Pij zij : (108)

This suggests a different form for a block-iterative version of the EMML.
For k D 0; 1; : : :, and n D n.k/ D k.modN/C 1, let

�kC1
j D .1 �m�1

n snj /�
k
j Cm�1

n �
k
j

X
i2Bn

Pij
yi

.P�k/i
; (109)

where mn D maxj snj . This is the rescaled block-iterative EMML (RBI-EMML)
algorithm. The sequence f�kg converges to a nonnegative solution of the system
y D P�, for any choice of blocks, whenever the system has a nonnegative
solution [21].
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When each block is a singleton, that is,Bn D Bi D fig, for i D 1; 2; : : : ; I D N ,
the RBI-EMML becomes the EMART algorithm, with the iterative step

�kC1
j D .1 �m�1

i Pij /�
k
j C �kjm�1

i Pij
yi

.P�k/i
; (110)

wheremi D maxj Pij > 0. It is interesting to compare the EMART algorithm with
the multiplicative algebraic reconstruction technique (MART) [24], which has the
iterative step

�kC1
j D �kj

� yi

.P�k/i

�Pij =mi
; (111)

so that

�kC1
j D

�
�kj

�1�Pij =mi�
�kj

yi

.P�k/i

�pij =mi
; (112)

or

log�kC1
j D .1 �m�1

i Pij / log�kj Cm�1
i Pij log

�
�kj

yi

.P�k/i

�
: (113)

The difference between the MART and the EMART is then the difference between
a geometric mean and an arithmetic mean.

The simultaneous MART (SMART) is analogous to the EMML and uses all the
equations at each step [20, 25, 26]. The iterative step for the SMART is

�kC1
j D �kj exp

�
s�1
j

IX
iD1

Pij log
yi

.P�k/i

�
: (114)

Block-iterative versions of the MART (RBI-SMART) have been considered by [27]
and [21]. When y D P� has nonnegative solutions, the RBI-SMART sequence
converges to the nonnegative solution of y D P� for which the cross-entropy
KL.�; �0/ is minimized. When there are no nonnegative solutions of y D P�,
the SMART converges to the nonnegative minimizer of KL.P�; y/ for which
KL.�; �0/ is minimized [28].

Using Prior Bounds on�

The EMML algorithm finds an approximate nonnegative solution of y D P�. In
some applications it is helpful to be able to incorporate upper and lower bounds on
the � [29].

The SMART, EMML, MART, and EMART methods are based on the Kullback-
Leibler distance between nonnegative vectors. To impose more general constraints
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on the entries of �, we derive algorithms based on shifted KL distances, also called
Fermi-Dirac generalized entropies.

For a fixed real vector u, the shifted KL distance KL.x � u; z � u/ is defined
for vectors x and z having xj � uj and zj � uj . Similarly, the shifted distance
KL.v � x; v � z/ applies only to those vectors x and z for which xj � vj and
zj � vj . For uj � vj , the combined distance

KL.x � u; z� u/CKL.v � x; v � z/

is restricted to those x and z whose entries xj and zj lie in the interval Œuj ; vj �. Our
objective is to mimic the derivation of the SMART and EMML methods, replacing
KL distances with shifted KL distances, to obtain algorithms that enforce the
constraints uj � �j � vj , for each j . The algorithms that result are the ABMART
and ABEMML block-iterative methods. These algorithms were originally presented
in [30], in which the vectors u and v were called a and b, hence the names of the
algorithms. We shall assume that the entries of the matrix P are nonnegative. We
shall denote by Bn; n D 1; : : : ; N a partition of the index set fi D 1; : : : ; I g into
blocks. For k D 0; 1; : : : let n D n.k/ D k.modN/C 1.

The ABMART Algorithm
We assume that .P u/i � yi � .P v/i and seek a solution of P� D y with uj �
�j � vj , for each j . The algorithm begins with an initial vector �0 satisfying uj �
�0
j � vj , for each j . Having calculated �k , we take

�kC1
j D ˛kj vj C .1 � ˛kj /uj ; (115)

with n D n.k/,

˛kj D
ckj
Qn
.dki /

Pij

1C ckj
Qn
.dki /

Aij
; (116)

ckj D
.�kj � uj /

.vj � �kj /
; (117)

and

dkj D
.yi � .P u/i /..P v/i � .P�k/i /
..P v/i � yi /..P�k/i � .P u/i /

; (118)

where
Qn denotes the product over those indices i in Bn.k/. Notice that at each step

of the iteration, �kj is a convex combination of the endpoints uj and vj , so that �kj
always lies in the interval Œuj ; vj �.

We have the following theorem concerning the convergence of the ABMART
algorithm:
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Theorem 1. If there is a solution of the system P� D y that satisfies the constraints
uj � �j � vj for each j , then, for any N and any choice of the blocks Bn, the
ABMART sequence converges to that constrained solution of P� D y for which the
Fermi-Dirac generalized entropic distance from � to �0, given by

KL.� � u; �0 � u/CKL.v � �; v � �0/;

is minimized. If there is no constrained solution of P� D y, then, for N D 1, the
ABMART sequence converges to the minimizer of

KL.P� � P u; y � P u/CKL.P v � P�;P v � y/

for which

KL.� � u; �0 � u/CKL.v � �; v � �0/

is minimized.

The proof is in [30].

The ABEMMLAlgorithm
We make the same assumptions as previously. The iterative step of the ABEMML
algorithm is

�kC1
j D ˛kj vj C .1 � ˛kj /uj ; (119)

where

˛kj D �kj =dkj ; (120)

�kj D .�kj � uj /e
k
j ; (121)

ˇkj D .vj � �kj /f k
j ; (122)

dkj D �kj C ˇkj ; (123)

ekj D
 

1 �
X
i2Bn

Pij

!
C
X
i2Bn

Pij

 
yi � .P u/i

.P�k/i � .P u/i

!
; (124)

and

f k
j D

 
1 �

X
i2Bn

Pij

!
C
X
i2Bn

Pij

 
.P v/i � yi

.P v/i � .P�k/i

!
: (125)

The following theorem concerns the convergence of the ABEMML algorithm:
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Theorem 2. If there is a solution of the system P� D y that satisfies the constraints
uj � �j � vj for each j , then, for any N and any choice of the blocks Bn, the
ABEMML sequence converges to such a constrained solution of P� D y. If there
is no constrained solution of P� D y, then, for N D 1, the ABEMML sequence
converges to a constrained minimizer of

KL.y � P u; P� � P u/CKL.P v � y; P v � P�/:

The proof is found in [30]. In contrast to the ABMART theorem, this is all we can
say about the limits of the ABEMML sequences.

15 Finite Mixture Problems

Estimating the combining proportions in probabilistic mixture problems shows
that there are meaningful examples of our acceptable-data model, and provides
important applications of likelihood maximization.

Mixtures

We say that a random vector V taking values in R
D is a finite mixture [31, 32] if

there are probability density functions or probabilities fj and numbers �j � 0, for
j D 1; : : : ; J , such that the probability density function or probability function for
V has the form

fV .vj�/ D
JX
jD1

�j fj .v/; (126)

for some choice of the �j � 0 with
PJ

jD1 �j D 1. As previously, we shall assume,
without loss of generality, that D D 1.

The Likelihood Function

The data areN realizations of the random variable V , denoted vn, for n D 1; : : : ; N ,
and the given data is the vector y D .v1; : : : ; vN /. The column vector � D
.�1; : : : ; �J /

T is the generic parameter vector of mixture combining proportions.
The likelihood function is

Ly.�/ D
NY
nD1

�
�1f1.vn/C : : :C �J fJ .vn/

�
: (127)

Then the log likelihood function is
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LLy.�/ D
NX
nD1

log
�
�1f1.vn/C : : :C �J fJ .vn/

�
:

With u the column vector with entries un D 1=N , and P the matrix with entries
Pnj D fj .vn/, we define

sj D
NX
nD1

Pnj D
NX
nD1

fj .vn/:

Maximizing LLy.�/ is equivalent to minimizing

F.�/ D KL.u; P �/C
JX
jD1

.1 � sj /�j : (128)

AMotivating Illustration

To motivate such mixture problems, we imagine that each data value is generated
by first selecting one value of j , with probability �j , and then selecting a realization
of a random variable governed by fj .v/. For example, there could be J bowls
of colored marbles, and we randomly select a bowl, and then randomly select a
marble within the selected bowl. For each n the number vn is the numerical code
for the color of the nth marble drawn. In this illustration we are using a mixture of
probability functions, but we could have used probability density functions.

The Acceptable Data

We approach the mixture problem by creating acceptable data. We imagine that
we could have obtained xn D jn, for n D 1; : : : ; N , where the selection of vn
is governed by the function fjn.v/. In the bowls example, jn is the number of the
bowl from which the nth marble is drawn. The acceptable-data random vector is
X D .X1; : : : ; XN /, where the Xn are independent random variables taking values
in the set fj D 1; : : : ; J g. The value jn is one realization of Xn. Since our objective
is to estimate the true �j , the values vn are now irrelevant. Our ML estimate of
the true �j is simply the proportion of times j D jn. Given a realization x of X ,
the conditional pdf or pf of Y does not involve the mixing proportions, so X is
acceptable. Notice also that it is not possible to calculate the entries of y from those
of x; the model Y D h.X/ does not hold.
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TheMix-EMAlgorithm

Using this acceptable data, we derive the EM algorithm, which we call the Mix-EM
algorithm.

With Nj denoting the number of times the value j occurs as an entry of x, the
likelihood function for X is

Lx.�/ D fX.xj�/ D
JY
jD1

�
Nj
j ; (129)

and the log likelihood is

LLx.�/ D logLx.�/ D
JX
jD1

Nj log �j : (130)

Then

E.logLx.�/jy; �k/ D
JX
jD1

E.Nj jy; �k/ log �j : (131)

To simplify the calculations in the E-step, we rewrite LLx.�/ as

LLx.�/ D
NX
nD1

JX
jD1

Xnj log �j ; (132)

where Xnj D 1 if j D jn and zero otherwise. Then we have

E.Xnj jy; �k/ D prob .Xnj D 1jy; �k/ D �kj fj .vn/

f .vnj�k/ : (133)

The functionE.LLx.�/jy; �k/ becomes

E.LLx.�/jy; �k/ D
NX
nD1

JX
jD1

�kj fj .vn/

f .vnj�k/ log �j : (134)

Maximizing with respect to � , we get the iterative step of the Mix-EM algorithm:

�kC1
j D 1

N
�kj

NX
nD1

fj .vn/

f .vnj�k/ : (135)
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We know from our previous discussions that since the preferred data X is
acceptable, likelihood is non-decreasing for this algorithm. We shall go further now
and show that the sequence of probability vectors f�kg converges to a maximizer of
the likelihood.

Convergence of theMix-EMAlgorithm

As we noted earlier, maximizing the likelihood in the mixture case is equivalent to
minimizing

F.�/ D KL.u; P �/C
JX
jD1

.1 � sj /�j ;

over probability vectors � . It is easily shown that if O� minimizes F.�/ over all
nonnegative vectors � , then O� is a probability vector. Therefore, we can obtain the
maximum likelihood estimate of � by minimizing F.�/ over nonnegative vectors � .

The following theorem is found in [33].

Theorem 3. Let u be any positive vector, P any nonnegative matrix with sj > 0
for each j , and

F.�/ D KL.u; P �/C
JX
jD1

ˇjKL.�j ; �j /:

If sj C ˇj > 0, ˛j D sj =.sj C ˇj /, and ˇj �j � 0, for all j , then the iterative
sequence given by

�kC1
j D ˛j s�1

j �kj

� NX
nD1

Pn;j
un

.P �k/n

�
C .1 � ˛j /�j (136)

converges to a nonnegative minimizer of F.�/.

With the choices un D 1=N , �j D 0, and ˇj D 1 � sj , the iteration in Eq. (136)
becomes that of the Mix-EM algorithm. Therefore, the sequence f�kg converges to
the maximum likelihood estimate of the mixing proportions.

16 More on Convergence

There is a mistake in the proof of convergence given in [11]. Wu [34] and Boyles
[35] attempted to repair the error but also gave examples in which the EM algorithm
failed to converge to a global maximizer of likelihood. In Chap. 3 of the book
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by McLachlan and Krishnan [1], we find the basic theory of the EM algorithm,
including available results on convergence and the rate of convergence. Because
many authors rely on Eq. (14), it is not clear that these results are valid in the
generality in which they are presented. There appears to be no single convergence
theorem that is relied on universally; each application seems to require its own proof
of convergence. When the use of the EM algorithm was suggested for SPECT and
PET, it was necessary to prove convergence of the resulting iterative algorithm in
Eq. (99), as was eventually achieved in a sequence of papers [19, 36–38], and [20].
When the EM algorithm was applied to list-mode data in SPECT and PET [39–
41], the resulting algorithm differed slightly from that in Eq. (99) and a proof of
convergence was provided in [33]. The convergence theorem in [33] also establishes
the convergence of the iteration in Eq. (135) to the maximum-likelihood estimate of
the mixing proportions.

17 Open Questions

As we have seen, the conventional formulation of the EM algorithm presents
difficulties when probability density functions are involved. We have shown here
that the use of acceptable preferred data can be helpful in resolving this issue, but
other ways may also be useful.

Proving convergence of the sequence f�kg appears to involve the selection of an
appropriate topology for the parameter space ‚. While it is common to assume that
‚ is a subset of Euclidean space and that the usual norm should be used to define
distance, it may be helpful to tailor the metric to the nature of the parameters. In
the case of Poisson sums, for example, the parameters are nonnegative vectors, and
we found that the cross-entropy distance is more appropriate. Even so, additional
assumptions appear necessary before convergence of the f�kg can be established.
To simplify the analysis, it is often assumed that cluster points of the sequence lie
in the interior of the set ‚, which is not a realistic assumption in some applications.

It may be wise to consider, instead, convergence of the functions fX.xj�k/
or maybe even to identify the parameters � with the functions fX.xj�/. Proving
convergence to Ly.�ML/ of the likelihood values Ly.�k/ is also an option.

18 Conclusion

Difficulties with the conventional formulation of the EM algorithm in the continuous
case of probability density functions (pdf) have prompted us to adopt a new
definition, that of acceptable data. As we have shown, this model can be helpful
in generating EM algorithms in a variety of situations. For the discrete case of
probability functions (pf), the conventional approach remains satisfactory. In both
cases, the two steps of the EM algorithm can be viewed as alternating minimization
of the Kullback-Leibler distance between two sets of parameterized pf or pdf, along
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the lines investigated by Csiszár and Tusnády [12]. In order to use the full power of
their theory, however, we need the sets to be closed and convex. This does occur in
the important special case of sums of independent Poisson random variables, but is
not generally the case.

Acknowledgments I wish to thank Professor Paul Eggermont of the University of Delaware for
helpful discussions on these matters.
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Abstract
This chapter deals with iterative methods for nonlinear ill-posed problems. We
present gradient and Newton type methods as well as nonstandard iterative algo-
rithms such as Kaczmarz, expectation maximization, and Bregman iterations.

Our intention here is to cite convergence results in the sense of regularization
and to provide further references to the literature.

1 Introduction

This chapter will be devoted to the iterative solution of inverse problems formulated
as nonlinear operator equations

F.x/ D y ; (1)

where F W D.F / ! Y with domain D.F / � X . The exposition will be mainly
restricted to the case of X and Y being Hilbert spaces with inner products h � ; � i
and norms k � k . Some references for the Banach space case will be given.

We will assume attainability of the exact data y in a ball B�.x0/, i.e., the equation
F.x/ D y is solvable in B�.x0/. The element x0 is an initial guess which may
incorporate a-priori knowledge of an exact solution.

The actually available data yı will in practice usually be contaminated with noise
for which we here use a deterministic model, i.e.,

kyı � yk � ı ; (2)

where the noise level ı is assumed to be known. For a convergence analysis with
stochastic noise, see the references in section “Further Literature on Gauss–Newton
Type Methods”.

2 Preliminaries

Conditions onF

For the proofs of well-definedness and local convergence of the iterative methods
considered here we need several conditions on the operator F . Basically, we
inductively show that the iterates remain in a neighborhood of the initial guess.
Hence, to guarantee applicability of the forward operator to these iterates, we
assume that

B2�.x0/ � D.F / (3)

for some � > 0.
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Moreover, we need that F is continuously Fréchet-differentiable, that kF 0.x/k
is uniformly bounded with respect to x 2 B2�.x0/, and that problem (1) is properly
scaled, i.e., certain parameters occurring in the iterative methods have to be chosen
appropriately in dependence of this uniform bound.

The assumption that F 0 is Lipschitz continuous,

kF 0. Qx/� F 0.x/k � Lk Qx � xk ; x; Qx 2 B2�.x0/ ; (4)

that is often used to show convergence of iterative methods for well-posed problems,
implies that

kF. Qx/� F.x/ � F 0.x/. Qx � x/k � ck Qx � xk2 ; x; Qx 2 B2�.x0/ : (5)

However, this Taylor remainder estimate is too weak for the ill-posed situation
unless the solution is sufficiently smooth (see, e.g., case (ii) in Theorem 9 below).
An assumption on F that can often be found in the literature on nonlinear ill-posed
problems is the tangential cone condition

kF.x/ � F. Qx/ � F 0.x/.x � Qx/k � �
kF.x/ � F. Qx/k ; � < 1

2 ; x; Qx 2 B2�.x0/ � D.F / ; (6)

which implies that

1

1C � kF
0.x/. Qx � x/k � kF. Qx/� F.x/k � 1

1 � � kF
0.x/. Qx � x/k

for all x; Qx 2 B2�.x0/. One can even prove (see [70, Proposition 2.1]).

Proposition 1. Let �; " > 0 be such that

kF.x/ � F. Qx/� F 0.x/.x � Qx/k � c.x; Qx/
kF.x/ � F. Qx/k ; x; Qx 2 B�.x0/ � D.F /;

for some c.x; Qx/ � 0, where c.x; Qx/ < 1 if kx � Qxk � ".

(i) Then for all x 2 B�.x0/

Mx WD f Qx 2 B�.x0/ W F. Qx/ D F.x/g D x CN .F 0.x// \ B�.x0/

and N .F 0.x// D N .F 0. Qx// for all Qx 2Mx . Moreover,

N .F 0.x// � ft. Qx � x/ W Qx 2 Mx; t 2 Rg ;

where instead of � equality holds if x 2 ı
B�.x0/.
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(ii) If F.x/ D y is solvable in B�.x0/, then a unique x0-minimum-norm solution
exists. It is characterized as the solution x� of F.x/ D y in B�.x0/ satisfying
the condition

x� � x0 2 N .F 0.x�//? � X : (7)

If F.x/ D y is solvable in B�.x0/ but a condition like (6) is not satisfied, then at
least existence (but no uniqueness) of an x0-minimum-norm solution is guaranteed
provided that F is weakly sequentially closed (see [36, Chapter 10]).

For the proofs of convergence rates one even needs stronger conditions on F 0
than condition (6).

Source Conditions

It is well known by now that the convergence of regularized solutions can be
arbitrarily slow. Rates can only be proven if the exact solution x� satisfies some
regularity assumptions, so-called source conditions. They are usually of Hölder-
type, i.e.,

x� � x0 D .F 0.x�/�F 0.x�//�v ; v 2 N .F 0.x�//? (8)

for some exponent � > 0. Due to typical smoothing properties of the linearized
forward operator F 0.x�/, they can be interpreted as smoothness assumptions on the
initial error x� � x0.

Since (8) is usually too strong for severely ill-posed problems, logarithmic source
conditions, i.e.,

x� � x0 D f L
� .F

0.x�/�F 0.x�//v; � > 0; v 2 N .F 0.x�//?;
f L
� .�/ WD .� ln.�c�1

L //��; cL > c
2
s ;

(9)

have been considered by Hohage [56] (cf. [30, Theorem 2.7] for Landweber
iteration, [54] for the iteratively regularized Gauss–Newton method IRGNM, and
[55] for generalized IRGNM).

Stopping Rules

In the context of ill-posed problems it is essential to stop iterative solution methods
according to an appropriate rule to avoid an unbounded growth of the propagated
noise. There are two possibilities, either a-priori rules or a-posteriori rules. A-priori
rules [see, e.g., (58)] are computationally very effective. However, the disadvantage
is that one has to know the smoothness index � in (8) or (9) explicitly.
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This is avoided in a-posteriori stopping rules. The most well-known a-posteriori
criterion is the so-called discrepancy principle, i.e., the iteration is stopped after
k� D k�.ı; yı/ steps with

kyı � F.xık�
/k � �ı < kyı � F.xık/k ; 0 � k < k� ; (10)

where � > 1.
The Lepskii type balancing principle is an interesting alternative a-posteriori rule,

see [6, 8] and (62) below in the context of iterative methods.
If the noise level ı in (2) is unknown, heuristic stopping rules such as the

quasioptimality principle, the Hanke–Raus rule, or the L-curve criterion still lead
to convergence under certain structural assumptions on the noise, see [7,74,75,89].

3 Gradient Methods

One way to derive iterative regularization methods is to apply gradient methods to
the minimization problem

min 1
2 kF.x/ � yk2 over D.F / :

Since the negative gradient of this functional is given by F 0.x/�.y � F.x// and
taking into account that only noisy data yı are available, this yields methods of the
form

xıkC1 D xık C !ıkF 0.xık/�.yı � F.xık// ; (11)

where xı0 D x0 is an initial guess of the exact solution. Choosing the factor !ık in
a special way we obtain well-known methods like Landweber iteration, the steepest
descent method, and the minimal error method.

Nonlinear Landweber Iteration

If one chooses !ık D ! to be constant, one obtains Landweber iteration. As already
mentioned in the introduction of this chapter, well-definedness and convergence can
only be proven if problem (1) is properly scaled. Without loss of generality we may
assume that !ık 
 1 and that

kF 0.x/k � 1 ; x 2 B2�.x0/ � D.F / : (12)

The nonlinear Landweber iteration is then given as the method

xıkC1 D xık C F 0.xık/�.yı � F.xık// ; k 2 N0 : (13)
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We want to emphasize that for fixed iteration index k the iterate xık depends
continuously on the data yı , since xık is the result of a combination of continuous
operations.

The results on convergence and convergence rates for this method presented here
were established in [49] (see also [70]). To begin with, we formulate the following
monotonicity property that gives us a clue how to choose the number � in the
stopping rule (10) (see [70, Proposition 2.2]).

Proposition 2. Assume that the conditions (12) and (6) hold and that the equation
F.x/ D y has a solution x� 2 B�.x0/. If xık 2 B�.x�/, a sufficient condition for
xıkC1 to be a better approximation of x� than xık is that

kyı � F.xık/k > 2
1C �
1 � 2�

ı :

Moreover, it then holds that xık; x
ı
kC1 2 B�.x�/ � B2�.x0/.

In view of this proposition, the number � in the stopping rule (10) should be
chosen as

� D 2
1C �
1 � 2�

with � as in (6). To be able to prove that the stopping index k� in (10) is finite
and hence well defined it turns out that � has to be chosen slightly larger (see [70,
Corollary 2.3]), i.e.,

� > 2
1C �
1 � 2�

> 2 : (14)

Corollary 1. Let the assumptions of Proposition 2 hold and let k� be chosen
according to the stopping rule (10), (14). Then

k�.�ı/2 <
k��1X
kD0

kyı � F.xık/k2 � �

.1 � 2�/� � 2.1C �/ kx0 � x�k2:

In particular, if yı D y .i.e., if ı D 0/, then

1X
kD0

ky � F.xk/k2 <1 : (15)

Note that (15) implies that if Landweber iteration is run with precise data y D yı ,
then the residual norms of the iterates tend to zero as k !1. That is, if the iteration
converges, then the limit is necessarily a solution of F.x/ D y. The following
convergence result holds (see [70, Theorem 2.4]):
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Fig. 1 The sketch shows the
initial element x0, the
x0-minimum-norm solution
x�, the subset
x� C N .F 0.x�// and in bold
the region, where the limit of
the iterates xk can be

ρ

2ρ

x0
x†

x† +N (F ′(x†))

�����

Theorem 1. Assume that the conditions (12) and (6) hold and that the equation
F.x/ D y is solvable in B�.x0/. Then the nonlinear Landweber iteration applied to
exact data y converges to a solution of F.x/ D y. If N .F 0.x�// � N .F 0.x// for
all x 2 B�.x�/, then xk converges to x� as k !1.

We emphasize that, in general, the limit of the Landweber iterates is no x0-
minimum-norm solution. However, since the monotonicity result of Proposition 2
holds for every solution, the limit of xk has to be at least close to x�. As can be seen
below, it has to be the closer the larger � can be chosen (Fig. 1).

It is well known that, if yı does not belong to the range of F , then the iterates
xık of (13) cannot converge but still allow a stable approximation of a solution of
F.x/ D y provided the iteration is stopped after k� steps. The next result shows
that the stopping rule (10), (14) renders the Landweber iteration a regularization
method (see [70, Theorem 2.6]):

Theorem 2. Let the assumptions of Theorem 1 hold and let k� D k�.ı; yı/ be
chosen according to the stopping rule (10), (14). Then the Landweber iterates xık�

converge to a solution of F.x/ D y. If N .F 0.x�// � N .F 0.x// for all x 2 B�.x�/,
then xık�

converges to x� as ı ! 0.

To obtain convergence rates the exact solution has to satisfy some source
conditions. Moreover, one has to guarantee that the iterates remain in R.F 0.x�/�/.
In [49] rates were proven under the additional assumption that F satisfies

F 0.x/ D RxF 0.x�/ and kRx � Ik � ckx � x�k; x 2 B2�.x0/ ;

where fRx W x 2 B2�.x0/g is a family of bounded linear operators Rx W Y ! Y
and c is a positive constant.

Unfortunately, these conditions are not always satisfied (see [49, Example 4.3]).
Therefore, we consider instead of (13) the following slightly modified iteration
method,
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xıkC1 D xık C !Gı.xık/
�.yı � F.xık// ; k 2 N0 ; (16)

where, as above, xı0 D x0 is an initial guess, Gı.x/ WD G.x; yı/, and G is a
continuous operator mapping D.F / � Y into L.X ;Y/. The iteration will again be
stopped according to the discrepancy principle (10).

To obtain local convergence and convergence rates for this modification we need
the following assumptions:

Assumption 9. Let � be a positive number such that B2�.x0/ � D.F /.

(i) The equation F.x/ D y has an x0-minimum-norm solution x� in B�.x0/.
(ii) There exist positive constants c1; c2; c3 and linear operators Rıx such that for

all x 2 B�.x�/ the following estimates hold:

kF.x/�F.x�/�F 0.x�/.x � x�/k � c1kF.x/�F.x�/k kx � x�k ; (17)

Gı.x/ D RıxGı.x�/ ; (18)

kRıx � Ik � c2kx � x�k ; (19)

kF 0.x�/�Gı.x�/k � c3ı : (20)

(iii) The scaling parameter ! in (16) satisfies the condition

!kF 0.x�/k2 � 1 :

Note that, if instead of (17) the slightly stronger condition

kF.x/ � F. Qx/� F 0.x/.x � Qx/k � ckx � Qxk
kF.x/ � F. Qx/k; x; Qx 2 B2�.x0/ � D.F /; (21)

holds in B2�.x0/ for some c > 0, then the unique existence of the x0-minimum-norm
solution x� follows from Proposition 1 if F.x/ D y is solvable in B�.x0/.

Convergence and convergence rates for the modification above are obtained as
follows (see [70, Theorems 2.8 and 2.13]):

Theorem 3. Let Assumption 9 hold and let k� D k�.ı; yı/ be chosen according to
the stopping rule (10).

(i) If kx0 � x�k is so small and if the parameter � in (10) is so large that

2�1 C �2
2�

2
3 < 2
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and

� >
2.1C �1 C c3�2kx0 � x�k/

2 � 2�1 � �2
2�

2
3

;

where

�1 WD kx0 � x�k.c1 C c2.1C c1kx0 � x�k// ;
�2 WD 1C c2kx0 � x�k;
�3 WD 1C 2c3kx0 � x�k;

then the modified Landweber iterates xık�
converge to x� as ı ! 0.

(ii) If � > 2 and if x��x0 satisfies (8) with some 0 < � � 1=2 and kvk sufficiently
small, then it holds that

k� D O
�
kvk 2

2�C1 ı
� 2

2�C1

�

and

kxık�
� x�k D

8̂
<
:̂
o
�
kvk 1

2�C1 ı
2�

2�C1

�
; � < 1

2 ;

O
�pkvkı�; � D 1

2 :

Note that for the modified Landweber iteration we obtain the same convergence
rates and the same asymptotical estimate for k� as for linear ill-posed problems
(compare [36, Theorem 6.5]) if � � 1=2 in (8).

Under the Assumption 9 and according to the theorem above the best possible
convergence rate is

kxık�
� x�k D O.

p
ı/

provided that � D 1=2. Even if � > 1=2 we cannot improve this rate without an
additional restriction of the nonlinearity of F .

We will show for the following parameter estimation problem that the conditions
of Assumption 9 are satisfied if F 0.x/ is replaced by a certain operatorGı.x/.

Example 1. We treat the problem of estimating the diffusion coefficient a in

�.a.s/u.s/s/s D f .s/ ; s 2 .0; 1/ ; u.0/ D 0 D u.1/ ; (22)

where f 2 L2; the subscript s denotes derivative with respect to s.
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In this example, F is defined as the parameter-to-solution mapping

F W D.F / WD fa 2 H 1Œ0; 1� W a.s/ � a > 0g ! L2Œ0; 1�

a 7! F.a/ WD u.a/ ;

where u.a/ is the solution of (22). One can prove that F is Fréchet-differentiable
(see, e.g., [24]) with

F 0.a/h D A.a/�1Œ.hus.a//s� ;

F 0.a/�w D �B�1Œus.a/.A.a/
�1w/s� ;

where

A.a/ W H 2Œ0; 1� \H 1
0 Œ0; 1�! L2Œ0; 1�

u 7! A.a/u WD �.aus/s

and

B W D.B/ WD f 2 H 2Œ0; 1� W  0.0/ D  0.1/ D 0g ! L2Œ0; 1�

 7! B WD � 00 C  I

note that B�1 is the adjoint of the embedding operator fromH 1Œ0; 1� in L2Œ0; 1�.
First of all, we show that F satisfies condition (17): let F.a/ D u, F. Qa/ D Qu,

and w 2 L2. Noting that .Qu � u/ 2 H 2 \H 1
0 and that A.a/ is one-to-one and onto

for a; Qa 2 D.F / we obtain that

hF. Qa/ � F.a/ � F 0.a/. Qa � a/;w/ iL2

D h .Qu� u/� A.a/�1Œ.. Qa � a/us/s�;w iL2

D hA.a/.Qu � u/� .. Qa � a/us/s; A.a/�1w iL2

D h .. Qa � a/.Qus � us//s; A.a/
�1w iL2

D �h . Qa � a/.Qu � u/s; .A.a/
�1w/s iL2

D hF. Qa/� F.a/; .. Qa � a/.A.a/�1w/s/s iL2 :

This together with the fact that kgkL1 � p2kgkH 1 and that kgkL1 � kg0kL2 if
g 2 H 1 is such that g.�/ D 0 for some � 2 Œ0; 1� yields the estimate

kF. Qa/ � F.a/ � F 0.a/. Qa � a/kL2

� sup
kwk

L2 D1
hF. Qa/ � F.a/; .. Qa � a/.A.a/�1w/s/s iL2
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� kF. Qa/� F.a/kL2 sup
kwk

L2 D1

h���
� Qa � a

a

�
s

���
L2
ka.A.a/�1w/skL1

C
��� Qa � a

a

���
L1
kwkL2

i

� a�1.1Cp2C a�1
p

2kakH 1/kF. Qa/� F.a/kL2 k Qa � akH 1 : (23)

This implies (17).
The conditions (18) and (19) are not fulfilled with Gı.x/ D F 0.x/. Noting that

F 0.a/�w is the unique solution of the variational problem: for all v 2 H 1

h .F 0.a/�w/s; vs iL2 C hF 0.a/�w; v iL2 D h u.a/; ..A.a/�1w/sv/s iL2 ; (24)

we propose to choose Gı in (16) as follows: Gı.a/�w D G.a; uı/�w is the unique
solution g of the variational problem

h gs; vs iL2 C h g; v iL2 D h uı; ..A.a/�1w/sv/s iL2 ; v 2 H 1 : (25)

This operator Gı obviously satisfies (18), since

G. Qa; uı/� D G.a; uı/�R. Qa; a/�

with

R. Qa; a/� D A.a/A. Qa/�1:

The condition (19) is satisfied, since one can estimate as in (23) that

kR. Qa; a/��Ik D kA.a/A. Qa/�1�Ik � a�1.1Cp2Ca�1
p

2k QakH 1/k Qa�akH 1 :

Note that a constant c2 independent from Qa can be found, since it is assumed that
Qa 2 B�.a/. Now we turn to condition (20): using (24) and (25) we obtain similarly
to (23) the estimate

k.F 0.a/� �G.a; uı/�/wkH 1 D sup
kvkH1 D1

h u.a/� uı; ..A.a/�1w/sv/s iL2

� a�1.1Cp2C a�1
p

2kakH 1/ku.a/ � uıkL2 kwkL2 :

This together with F.a�/ D u.a�/ and kuı � u.a�/kL2 � ı implies that

kF 0.a�/�G.a�; uı/k � a�1.1Cp2C a�1
p

2ka�kH 1/ ı

and hence (20) holds.
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Thus, Theorem 3 is applicable, i.e., if ! and � are chosen appropriately, then
the modified Landweber iterates aık�

(cf. (16)) where k� is chosen according to the

stopping rule (10) converge to the exact solution a� with the rate O.
p
ı/ provided

that

a� � a0 D �B�1Œus.a
�/.A.a�/�1w/s �

with kwk sufficiently small. Note that this means that

a� � ao 2 H 3 ; .a� � a0/s.0/ D 0 D .a� � a0/s.1/ ;

z WD .a� � a0/ss � .a� � a0/

us.a/
2 H 1 ;

Z 1

0
z.s/ ds D 0 :

Basically this means that one has to know all rough parts of a� up toH 3. But without
this knowledge one cannot expect to get the rate O.

p
ı/.

In [49] two other nonlinear problems were treated where conditions (18) and (19)
are satisfied with Gı.x/ D F 0.x/.

Landweber Iteration in Hilbert Scales

We have mentioned in the last subsection that for classical Landweber iteration the
rates cannot be better than O.

p
ı/ under the given assumptions. However, better

rates may be obtained for solutions that satisfy stronger smoothness conditions if
the iteration is performed in a subspace of X with a stronger norm. This leads us
directly to regularization in Hilbert scales. On the other hand for solutions with
poor smoothness properties the number of iterations may be reduced if the iteration
is performed in a space with a weaker norm.

First of all, we shortly repeat the definition of a Hilbert scale: let L be a densely
defined unbounded self-adjoint strictly positive operator in X . Then .Xs/s2R denotes
the Hilbert scale induced by L if Xs is the completion of

T1
kD0D.L

k/ with respect
to the Hilbert space norm kxks WD kLsxkX ; obviously, kxk0 D kxkX (see [78] or
[36, Section 8.4] for details).

The operator F 0.xık/� in (13) will now be replaced by the adjoint of F 0.xık/
considered as an operator from Xs into Y . Usually s � 0, but we will see below
that there are special cases where a negative choice of s can be advantageous. Since
by definition of Xs this adjoint is given by L�2sF 0.xık/�, (13) is replaced by the
iteration process

xıkC1 D xık C L�2sF 0.xık/�.yı � F.xık// ; k 2 N0 : (26)

As in the previous chapter the iteration process is stopped according to the
discrepancy principle (10).
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Proofs of convergence and convergence rates for this method can be found in
[34, 70, 88]. For an approach, where the Hilbert scale is chosen in the space Y ,
see [33].

The following basic conditions are needed.

Assumption 10.

(i) F W D.F /.� X /! Y is continuous and Fréchet-differentiable in X .
(ii) F.x/ D y has a solution x�.

(iii) kF 0.x�/xk � mkxk�a for all x 2 X and some a > 0, m > 0. Moreover, the
extension of F 0.x�/ to X�a is injective.

(iv) B WD F 0.x�/L�s is such that kBkX ;Y � 1, where �a < s. If s < 0, F 0.x�/
has to be replaced by its extension to Xs .

Usually, for the analysis of regularization methods in Hilbert scales a stronger
condition than (iii) is used, namely (cf., e.g., [88])

kF 0.x�/xk � kxk�a for all x 2 X ; (27)

where the number a can be interpreted as a degree of ill-posedness of the linearized
problem in x�. However, this condition is not always fulfilled. Sometimes one can
only prove that condition (iii) in Assumption 10 holds. It might also be possible that
one can prove an estimate from below in a slightly weaker norm (see examples in
[34]), i.e.,

kF 0.x�/xk � mkxk�Qa for all x 2 X and some Qa � a;m > 0 : (28)

The next proposition sheds more light onto condition (iii) in Assumption 10 and
(28). The proof follows the lines of [36, Corollary 8.22] noting that the results there
not only hold for s � 0 but also for s > �a.

Proposition 3. Let Assumption 10 hold. Then for all � 2 Œ0; 1� it holds that

D..B�B/�
�
2 / D R..B�B/

�
2 / � X�.aCs/ ;

k.B�B/
�
2 xk � m� kxk��.aCs/ for all x 2 X ;

k.B�B/� �
2 xk � m�� kxk�.aCs/ for all x 2 D..B�B/� �

2 / :

Note that condition (iii) is equivalent to

R.F 0.x�/�/ � Xa and kF 0.x�/�wka � mkwk for all w 2 Y :

If in addition condition (28) holds, then for all � 2 Œ0; 1� it holds that
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X�.QaCs/ � R..B�B/
�
2 / D D..B�B/�

�
2 / ;

k.B�B/
�
2 xk � m� kxk��.QaCs/ for all x 2 X ;

k.B�B/�
�
2 xk � m�� kxk�.QaCs/ for all x 2 X�.QaCs/ :

Note that condition (28) is equivalent to

XQa � R.F 0.x�/�/ and kF 0.x�/�wk Qa � mkwk
for all w 2 N .F 0.x�/�/? with F 0.x�/�w 2 XQa :

In our convergence analysis the following shifted Hilbert scale will play an
important role

QXr WD D..B�B/
s�r

2.aCs/ Ls/ equipped with the norm

jjjxjjj r WD k.B�B/
s�r

2.aCs/ LsxkX ;

where a, s, and B are as in Assumption 10. Some properties of this shifted Hilbert
scale can be found in [70, Proposition 3.3].

For the convergence rates analysis we need the following smoothness conditions
on the solution x� and the Fréchet-derivative of F .

Assumption 11.

(i) x0 2 QB�.x�/ WD fx 2 X W x � x� 2 QX0 ^ jjjx � x�jjj0 � �g � D.F / for some
� > 0.

(ii) kF 0.x�/�F 0.x/k QX�b ;Y � c jjjx��xjjj
ˇ
0 for all x 2 QB�.x�/ and some b 2 Œ0; a�,

ˇ 2 .0; 1�, and c > 0.
(iii) x��x0 2 QXu for some .a� b/=ˇ < u � bC 2s, i.e., there is an element v 2 X

so that

Ls.x� � x0/ D .B�B/
u�s

2.aCs/ v and kvk0 D jjjx0 � x�jjju :
Condition (iii) is a smoothness condition for the exact solution comparable to

(8). Usually Xu is used instead of QXu. However, these conditions are equivalent if
(27) holds.

For the proof of the next convergence rates result see [70, Theorem 3.8].

Theorem 4. Let Assumptions 10 and 11 hold. Moreover, let k� D k�.ı; yı/ be
chosen according to the stopping rule (10) with � > 2 and let jjjx0 � x�jjju be
sufficiently small. Then the following estimates are valid for ı > 0 and some positive
constants cr :

k� �
�

2�
��2 jjjx0 � x�jjju ı�1

� 2.aCs/
aCu

(29)
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and for �a � r < u

jjjxık�
� x�jjj r � cr jjjx0 � x�jjj

aCr
aCu
u ı

u�r
aCu :

As usual for regularization in Hilbert scales, we are interested in obtaining
convergence rates with respect to the norm in X D X0.

Corollary 2. Under the assumptions of Theorem 4 the following estimates hold:

kxık�
� x�k D O

�
ı

u
aCu

�
if s � 0 ; (30)

kxık�
� x�k D O

�
kxık�

� x�ks
�
D O

�
ı

u�s
aCu

�
if 0 < s < u :

If in addition (28) holds, then for s > 0 the rate can be improved to

kxık�
� x�k D O

�
jjjxık�

� x�jjj r
�
D O

�
ı

u�r
aCu

�
if r WD s.Qa�a/

QaCs � u :

Note that (29) implies that k� is finite for ı > 0 and hence xık�
is a stable

approximation of x�.
Moreover, it can be seen from (29) that the larger s the faster k� possibly grows

if ı ! 0. As a consequence, s should be kept as small as possible to reduce the
number of iterations and hence to reduce the numerical effort. If u is close to 0, it
might be possible to choose a negative s. According to (30), we would still get the
optimal rate, but, due to (29), k� would not grow so fast. Choosing a negative s
could be interpreted as a preconditioned Landweber method (cf. [34]).

We will now comment on the rates in Corollary 2: if only Assumption 10 (iii) is
satisfied, i.e., if kF 0.x�/xk may be estimated through the norm in X�a only from
above, convergence rates in X can only be given if s < u, i.e., only for the case
of undersmoothing. If s > 0, the rates will not be optimal in general. To obtain
rates also for s > u, i.e., for the case of oversmoothing, condition (28) has to be
additionally satisfied. From what we said on the choice of s above, the case of
oversmoothing is not desirable. However, note that the rates for kxık�

� x�k0 can
be improved if (28) holds also for 0 < s < u. Moreover, if Qa D a, i.e., if the usual
equivalence condition (27) is satisfied, then we always obtain the usual optimal rates
O.ı

u
aCu / (see [87]).

For numerical computations one has to approximate the infinite-dimensional
spaces by finite-dimensional ones. Also the operators F and F 0.x/� have to be
approximated by suitable finite-dimensional realizations. An appropriate conver-
gence rates analysis has been carried out in [88]. This analysis also shows that a
modification, where F 0.xık/� in (26) is replaced by Gı.xık/ similar as in (16), is
possible.
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Steepest Descent andMinimal Error Method

These two methods are again of the form (11), where the coefficients !ık are chosen
as

!ık WD
ksıkk2

kF 0.xık/sıkk2
and !ık WD

kyı � F.xık/k2

ksıkk2

for the steepest descent method and for the minimal error method, respectively.
In [35] it has been shown that even for the solution of linear ill-posed problems

the steepest descent method is only a regularization method when stopped via a
discrepancy principle and not via an a-priori parameter choice strategy. Therefore,
we will use (10), (14) as stopping rule.

Again one can show the monotonicity of the errors and well-definedness of the
steepest descent and minimal error method (see [70, Proposition 3.20]). Conver-
gence can be shown for perturbed data (see, e.g., [70, Theorem 3.22]). However, so
far, convergence rates were proved only in the case of exact data (see [90]).

Further Literature on Gradient Methods

Iteratively Regularized Landweber Iteration
By adding an additional penalty term to the iteration scheme of classical Landweber
iteration, i.e.,

xıkC1 D xık C F 0.xık/�.yı � F.xık//C ˇk.x0 � xık/ with 0 < ˇk � ˇmax <
1
2 :

one can obtain convergence rates results under weaker restrictions on the nonlin-
earity of F (see [70, Section 3.2], [98]). The additional term is motivated by the
iteratively regularized Gauss–Newton method, see section “Iteratively Regularized
Gauss–Newton Method”.

A Derivative Free Approach
Based on an idea by Engl and Zou [37], Kügler, in his thesis [80] (see also
[79]), developed a modification of Landweber iteration for parameter identification
problems where it is not needed that F is Fréchet-differentiable.

Generalization to Banach Spaces
A generalization of Landweber iteration to the case where X and Y are Banach
spaces was considered in the papers [71,99,100], see also the book [101]. The basic
version (in case of reflexive preimage space X ) reads as

xıkC1 D jX
�

q�

�
jXq .x

ı
k/C !ıkF 0.xık/�j Yp .yı � F.xık/

�
;
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where p; q 2 .1;1/, q� D q

q�1 , X� is the dual of X , jXq denotes a single valued

selection from the set valued duality mapping JXq D @
�

1
q
k � kq

�
, JXq W X ! 2X

�

,

and !ık is an appropriately chosen step size. Banach space versions of the iteratively
regularized Landweber iteration can be found in [51, 64].

4 Newton TypeMethods

Newton’s method for the nonlinear operator equation (1) reads as

F 0.xık/.xıkC1 � xık/ D yı � F.xık/ : (31)

Since ill-posedness of the nonlinear problem (1) is usually inherited by its lineariza-
tion (31), regularization has to be applied in each Newton step. Formulating (31) as
a least squares problem

min
x2D.F / ky

ı � F.xık/� F 0.xık/.x � xık/k2

and applying Tikhonov regularization leads to either the Levenberg–Marquardt
method

xıkC1 D arg min
x2D.F / ky

ı � F.xık/� F 0.xık/.x � xık/k2 C ˛k kx � xıkk2 ; (32)

where the regularization term kx � xıkk2 is updated in each Newton step, or the
iteratively regularized Gauss–Newton method (IRGNM)

xıkC1 D arg min
x2D.F / ky

ı � F.xık/� F 0.xık/.x � xık/k2 C ˛k kx � x0k2 (33)

with a fixed a-priori guess x0 2 X . The choice of the sequence of regularization
parameters ˛k and the main ideas of the convergence analysis are quite different for
both methods as will be outlined in the following subsections.

Levenberg–Marquardt and Inexact NewtonMethods

In the Hilbert space setting with an open set D.F /, the minimizer of the quadratic
functional in (32) can be written as the solution of a linear system which leads to
the formulation

xıkC1 D xık C .F 0.xık/�F 0.xık/C ˛kI /�1F 0.xık/�.yı � F.xık// ; (34)

of the Levenberg–Marquardt method that can as well be motivated by a trust region
approach.
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Our exposition follows the seminal paper by Hanke [46], in which the first
convergence analysis for this class of Newton type methods was given. According
to this paper, ˛k should be chosen such that

kyı � F.xık/� F 0.xık/.xıkC1.˛k/� xık/k D qkyı � F.xık/k (35)

for some q 2 .0; 1/, where xıkC1.˛/ is defined as in (34) with ˛k replaced by ˛. This
means that the Newton equation (31) is only solved up to a residual of magnitude
qkyı � F.xık/k which corresponds to the concept of inexact Newton methods as
they were first considered for well-posed problems in [28]. It can be shown (see
[46]) that (35) has a unique solution ˛k provided that

kyı � F.xık/� F 0.xık/.x� � xık/k � q

�
kyı � F.xık/k (36)

for some � > 1 which in its turn can be guaranteed by (21).
The key step in the convergence analysis of the Levenberg–Marquardt method is

to show monotonicity of the error norms kxık � x�k . To sketch this monotonicity
proof we assume that (36) holds and therewith the parameter choice (35) is feasible.
Using the notation Kk D F 0.xık/ as well as Cauchy–Schwarz inequality and the
identity

˛k.KkK
�
k C ˛kI /�1.yı � F.xık// D yı � F.xık/�Kk.x

ı
kC1 � xık/ ;

we get

kxıkC1 � x�k2 � kxık � x�k2

D 2h xıkC1 � xık; xık � x� i C kxıkC1 � xıkk2

D h .KkK
�
k C ˛kI /�1.yı � F.xık//;

2Kk.x
ı
k � x�/C .KkK

�
k C ˛kI /�1KkK

�
k .y

ı � F.xık// i
D � 2˛k k.KkK

�
k C ˛kI /�1.yı � F.xık//k2

� k.K�
k Kk C ˛kI /�1K�

k .y
ı � F.xık//k2

C 2h .KkK
�
k C ˛kI /�1.yı � F.xık//; yı � F.xık/ �Kk.x

� � xık/ i
� � kxıkC1 � xıkk2 � 2˛�1

k kyı � F.xık/�Kk.x
ı
kC1 � xık/k � (37)�

kyı � F.xık/�Kk.x
ı
kC1 � xık/k � kyı � F.xık/�Kk.x

� � xık/k
�
:

By (36) and the parameter choice (35), we have

kyı � F.xık/�Kk.x
� � xık/k � ��1kyı � F.xık/ �Kk.x

ı
kC1 � xık/k :

Thus, (37) and � > 1 imply estimates (38) and (39) in the following proposition
(see [70, Proposition 4.1]):
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Proposition 4. Let 0 < q < 1 < � and assume that (1) has a solution and that
(36) holds so that ˛k can be defined via (35). Then, the following estimates hold:

kxık � x�k2 � kxıkC1 � x�k2 � kxıkC1 � xıkk2 ; (38)

kxık � x�k2 � kxıkC1 � x�k2

� 2.� � 1/

�˛k
kyı � F.xık/� F 0.xık/.xıkC1 � xık/k2 (39)

� 2.� � 1/.1� q/q
� kF 0.xık/k2

kyı � F.xık/k2 : (40)

Based on the resulting weak convergence of a subsequence of xık as well as on
quadratic summability of the (linearized) residuals, which can be easily obtained by
summing up both sides of (39) and (40), one obtains convergence as k !1 in case
of exact data [70, Theorem 4.2]:

Theorem 5. Let 0 < q < 1 and assume that (1) is solvable in B�.x0/, that F 0
is uniformly bounded in B�.x�/, and that the Taylor remainder of F satisfies (21)
for some c > 0. Then the Levenberg–Marquardt method with exact data yı D y,
kx0�x�k < q=c and ˛k determined from (35), converges to a solution of F.x/ D y
as k !1.

In case of noisy data, Hanke [46] proposes to stop the iteration according to
the discrepancy principle (10) and proves convergence as ı ! 0 (see, e.g., [70,
Theorem 4.3]):

Theorem 6. Let the assumptions of Theorem 5 hold. Additionally let k� D
k�.ı; yı/ be chosen according to the stopping rule (10) with � > 1=q. Then
for kx0 � x�k sufficiently small, the discrepancy principle (10) terminates the
Levenberg–Marquardt method with ˛k determined from (35) after finitely many
iterations k�, and

k�.ı; yı/ D O.1C j ln ıj/ :

Moreover, the Levenberg–Marquardt iterates xık�
converge to a solution of F.x/ D

y as ı ! 0.

Convergence rates seem to be much harder to prove for the Levenberg–Marquardt
method than for the iteratively regularized Gauss–Newton method (see section “Iter-
atively Regularized Gauss–Newton Method”). Suboptimal rates under source con-
ditions (8) have been proven by Rieder [94, 95] under the nonlinearity assumption
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F 0.x/ D RxF 0.x�/ and kI � Rxk � cR kx � x�k ; x 2 B�.x0/ � D.F / ;
(41)

where cR is a positive constant. Only quite recently, Hanke [48, Theorem 2.1]
proved the following optimal rates result:

Theorem 7. Let a solution x� of (1) exist and let (41) as well as (8) hold with
some 0 < � � 1=2 and kvk sufficiently small. Moreover, let ˛k and k� be chosen
according to (35) and (10), respectively with � > 2 and 1 > q > 1=� . Then the
Levenberg–Marquardt iterates defined by (34) remain in B�.x0/ and converge with
the rate

kxık�
� x�k D O

�
ı

2�
2�C1

�
:

Finally, we quote the rates result [70, Theorem 4.7] that is almost optimal
and instead of the a-posteriori choices of ˛k and k�, presumes a geometrically
decreasing sequence of regularization parameters, i.e.,

˛k D ˛0q
k ; for some ˛0 > 0 ; q 2 .0; 1/ ; (42)

and the following a-priori stopping rule

�k�
˛
�C 1

2
k�
� ı < �k˛�C 1

2
k ; 0 � k < k�; �k WD �.k C 1/�.1C"/ ;

for some � > 0 ; " > 0 :
(43)

Theorem 8. Let a solution x� of (1) exist and let (41) as well as (8) hold with
some 0 < � � 1=2 and kvk sufficiently small. Moreover, let ˛k and k� be
chosen according to (42) and (43) with � sufficiently small, respectively. Then the
Levenberg–Marquardt iterates defined by (34) remain in B�.x0/ and converge with
the rate

kxık�
� x�k D O

�
.ı .1C j ln ıj/.1C"//

2�
2�C1

�
:

Moreover,

kF.xık�
/� yk D O

�
ı .1C j ln ıj/.1C"/

�

and

k� D O.1C j ln ıj/ :

For the noise free case .ı D 0, � D 0/ we obtain that

kxk � x�k D O.˛�k / ;
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and that

kF.xk/� yk D O
�
˛
�C 1

2
k

�
:

Further Literature on Inexact NewtonMethods

Hanke [47] and Rieder [94–96] have extended the Levenberg–Marquardt method by
proposing regularization methods other than Tikhonov in the inexact solution of the
Newton equation

xıkC1 D xık C ˚.F 0.xık/; yı � F.xık// ;

with ˚.F 0.xık/; yı � F.xık//, e.g., defined by the conjugate gradient method.
Recently, Hochbruck et al. [53] proposed the application of an exponential Euler

scheme to the Showalter differential equation

x0.t/ D F 0.x.t//�.yı � F.xık// ;

which leads to a Newton type iterative method of the form

xıkC1 D xık C hk�.�hk F 0.xık/�F 0.xık//F 0.xık/�.yı � F.xık// ;

with

�.z/ D ez � 1

z
:

In [52] they show convergence using the discrepancy principle (10) as a stopping
rule under condition (6), as well as optimal convergence rates under the condition
that

F 0.x/ D RxF 0.x�/ and kI � Rxk � cR ; x 2 B�.x�/ � D.F / ; (44)

for some cR 2 .0; 1/, and under the source condition (8) with � � 1=2 for an
appropriate choice of the pseudo time step size hk .

Iteratively Regularized Gauss–NewtonMethod

In the Hilbert space setting, the variational formulation (33) of the iteratively
regularized Gauss–Newton method can be equivalently written as

xıkC1 D xık C .F 0.xık/�F 0.xık/C ˛kI /�1.F 0.xık/�.yı � F.xık//C ˛k.x0 � xık// :
(45)

Here the sequence of regularization parameters is a-priori chosen such that
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˛k > 0 ; 1 � ˛k

˛kC1
� r ; lim

k!1˛k D 0 ; (46)

for some r > 1.
This method was first proposed and analyzed by Bakushinskii [3], see also [5]

and the references therein, as well as [15, 54, 66, 69, 70]. The results presented here
and in section “Generalizations of the IRGNM” together with proofs and further
details can be found in [70].

The key point in the convergence analysis of the iteratively regularized Gauss–
Newton method is the fact that under a source condition (8) the error kxıkC1 � x�k
is up to some small additional terms equal to ˛�k wk.�/ with wk.s/ defined as in the
following lemma that is easy to prove.

Lemma 1. Let K 2 L.X ;Y/, s 2 Œ0; 1�, and let f˛kg be a sequence satisfying
˛k > 0 and ˛k ! 0 as k !1. Then it holds that

wk.s/ WD ˛1�s
k k.K�K C ˛kI /�1.K�K/svk � ss.1 � s/1�s kvk � kvk (47)

and that

lim
k!1 wk.s/ D

�
0 ; 0 � s < 1 ;
kvk ; s D 1 ;

for any v 2 N .A/?.

Indeed, in the linear and noiseless case (F.x/ D Kx, ı D 0) we get from (45)
usingKx� D y and (8)

xkC1 � x� D xk � x� C .K�K C ˛kI /�1.K�K.x� � xk/C˛k.x0�x�Cx��xk//
D �˛k.K�K C ˛kI /�1.K�K/�v

To take into account noisy data and nonlinearity, we rewrite (45) as

xıkC1 � x� D �˛k.K�K C ˛kI /�1.K�K/�v

�˛k.K�
k Kk C ˛kI /�1

�
K�K �K�

k Kk

�

.K�K C ˛kI /�1.K�K/�v

C .K�
k Kk C ˛kI /�1K�

k .y
ı � F.xık/CKk.x

ı
k � x�// ; (48)

where we set Kk WD F 0.xık/, K WD F 0.x�/.
Let us consider the case that 0 � � < 1=2 in (8) and assume that the nonlinearity

condition (44) as well as xık 2 B�.x�/ � B2�.x0/ hold. Therewith, for the Taylor
remainder we obtain that
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kF.xık/ � F.x�/ �Kk.x
ı
k � x�/k � 2cR kK.xık � x�/k : (49)

The estimates [see (47)]

k.K�
k Kk C ˛kI /�1k � ˛�1

k ; k.K�
k Kk C ˛kI /�1K�

k k � 1
2˛

� 1
2

k ;

and the identity

K�K �K�
k Kk D K�

k .R
�1
xık

� � Rxık /K

imply that

k˛k.K�
k Kk C ˛kI /�1.K�K �K�

k Kk/.K
�K C ˛kI /�1.K�K/�vk

� 1
2˛

� 1
2

k kR�1
xık

� �Rxıkk kK.K
�K C ˛kI /�1.K�K/�vk

This together with (2), (47), (48), and F.x�/ D y yields the estimate (50) in
Lemma 2 below. Inserting the identityK D R�1

xık
Kk into (48) we obtain

KeıkC1 D �˛kK.K�K C ˛kI /�1.K�K/�v

�˛kR�1
xık
Kk.K

�
k Kk C ˛kI /�1K�

k .R
�1
xık

� �Rxık /K

.K�K C ˛kI /�1.K�K/�v

�R�1
xık
Kk.K

�
k Kk C ˛kI /�1K�

k

.F.xık/� F.x�/ �Kk.x
ı
k � x�/C y � yı/ :

Now the estimate (51) in Lemma 2 below follows together with (2), (44), (47), and
(49).

Similarly one can derive estimates (52), (53) in case of 1=2 � � � 1 under the
Lipschitz condition (4), by using (5) and the decomposition

K�K �K�
k Kk D K�

k .K �Kk/C .K� �K�
k /K :

Lemma 2. Let (3), (8), (46) hold and assume that xık 2 B�.x�/. Moreover, set
K WD F 0.x�/, eık WD xık � x�, and let wk. � / be defined as in (47).

(i) If 0 � � < 1=2 and (44) hold, we obtain the estimates
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keıkC1k � ˛�k wk.�/C cR˛�k wk.�C 1
2 /C ˛

� 1
2

k .cR kKeıkk C 1
2ı/ ; (50)

kKeıkC1k � .1C 2cR.1C cR//˛�C 1
2

k wk.�C 1
2 /

C .1C cR/ .2cR kKeıkk C ı/ : (51)

(ii) If 1=2 � � � 1 and (4) hold, we obtain the estimates

keıkC1k � ˛�k wk.�/C Lkeıkk. 1
2˛

�� 1
2

k wk.�/C k.K�K/�� 1
2 vk/

C 1
2˛

� 1
2

k . 1
2Lkeıkk2 C ı/ ; (52)

kKeıkC1k � ˛k k.K�K/�� 1
2 vk C L2keıkk2. 1

2˛
�� 1

2
k wk.�/C k.K�K/�� 1

2 vk/

CL˛ 1
2
k keıkk.˛

�� 1
2

k wk.�/C 1
2 k.K�K/�� 1

2 vk/

C . 1
2L˛

� 1
2

k keıkk C 1/. 1
2Lkeıkk2 C ı/ : (53)

It is readily checked that the nonlinearity condition (44) used in Lemma 2 can be
extended to

F 0. Qx/ D R. Qx; x/F 0.x/CQ. Qx; x/ (54)

kI � R. Qx; x/k � cR (55)

kQ. Qx; x/k � cQkF 0.x�/. Qx � x/k (56)

for x; Qx 2 B2�.x0/, where cR and cQ are nonnegative constants.
With the a-priori stopping rule

k� !1 and � � ı˛� 1
2

k�
! 0 as ı ! 0 : (57)

for � D 0 and

�˛
�C 1

2
k�
� ı < �˛�C 1

2
k ; 0 � k < k� ; (58)

for 0 < � � 1 one obtains optimal convergence rates as follows (see [70,
Theorem 4.12]):

Theorem 9. Let (3), (8), (46) hold and let k� D k�.ı/ be chosen according to (57)
for � D 0 and (58) for 0 < � � 1, respectively.

(i) If 0 � � < 1=2, we assume that (54)–(56) hold and that kx0 � x�k , kvk , �, �,
cR are sufficiently small.
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(ii) If 1=2 � � � 1, we assume that (4) and kx0 � x�k , kvk , �, � are sufficiently
small.

Then we obtain that

kxık�
� x�k D

(
o.1/ ; � D 0 ;

O
�
ı

2�
2�C1

�
; 0 < � � 1 :

For the noise free case .ı D 0, � D 0/ we obtain that

kxk � x�k D
�
o.˛

�

k / ; 0 � � < 1 ;
O.˛k/ ; � D 1 ;

and that

kF.xk/� yk D
(
o
�
˛
�C 1

2
k

�
; 0 � � < 1

2 ;

O.˛k/ ;
1
2 � � � 1 :

With the discrepancy principle (10) as an a-posteriori stopping rule in place of
the a-priori stopping rule (57), (58), optimal rates can be obtained under a Hölder
type source condition (8) with � � 1

2 (see [70, Theorem 4.13]):

Theorem 10. Let (3), (8), (46), and (54)–(56) hold for some 0 � � � 1=2, and
let k� D k�.ı/ be chosen according to (10) with � > 1. Moreover, we assume that
kx0 � x�k , kvk , 1=� , �, and cR are sufficiently small. Then we obtain the rates

kxık�
� x�k D

(
o
�
ı

2�
2�C1

�
; 0 � � < 1

2 ;

O.
p
ı/ ; � D 1

2 :

In case � D 0, and with an a-posteriori choice of ˛k similar to (35), the
nonlinearity condition can be relaxed to (6), see [71].

Further Literature on Gauss–Newton TypeMethods

Generalizations of the IRGNM
Already Bakushinskii in [4] proposed to replace Tikonov regularization in (45) by
a more general method defined via functional calculus by a filter function g with
g.�/ 	 1

�
:

xıkC1 D x0Cg.F 0.xık/�F 0.xık//F 0.xık/�.yı �F.xık/�F 0.xık/.x0�xık// ; (59)

with ˛k & 0.
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Still more general, one can replace the operator g.F 0.xık/�F 0.xık//F 0.xık/� by
some regularization operator R˛.F 0.x// with

R˛.F
0.x// 	 F 0.x/� ;

satisfying certain structural conditions so that the convergence analysis for the
resulting Newton type method

xıkC1 D x0 CR˛k .F 0.xık//.yı � F.xık/� F 0.xık/.x0 � xık// : (60)

(see [30, 55, 59, 61, 62, 70]) applies not only to methods defined via functional
calculus such as iterated Tikhonov regularization, Landweber iteration, and Lardy’s
method but also to regularization by discretization.

An additional augmentation of the analysis concerns the type of nonlinearity
condition. Alternatively to range invariance of the adjoint of F 0.x/ (41), which is
closely related to (6), one can consider range invariance of F 0.x/ itself

F 0. Qx/ D F 0.x/R. Qx; x/ and kI � R. Qx; x/k � cR k Qx � xk (61)

for x; Qx 2 B2�.x0/ and some positive constant cR.
Incorporation of convex constraints is considered in [66, 102].

Generalized Source Conditions
Convergence and optimal rates for the iteratively regularized Gauss–Newton method
were established in [82] under a general source condition of the form

x� � x0 D f .F 0.x�/�F 0.x�//v ; v 2 N .F 0.x�//? ;

with an index function f W Œ0; kF 0.x�/k2� ! Œ0;1� that is increasing and
continuous with f .0/ D 0. These include logarithmic source conditions (9) that
are appropriate for severely ill-posed problems. For this purpose, it is assumed that
conditions (54)–(56) hold and the iteration is stopped according to the discrepancy
principle (10).

Other A-posteriori Stopping Rules
Bauer and Hohage in [6] carry out a convergence analysis with the Lepskii balancing
principle, i.e.,

k� D min
n
k 2 f0; : : : ; kmaxg W kxık � xımk � 8c˚˛

�1=2
m ı

8m 2 fk C 1; : : : ; kmaxg
o

(62)

(with kmax D kmax.ı/ an a-priori determined index up to which the iterates are
well defined) in place of the discrepancy principle as an a-posteriori stopping rule.
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Optimal convergence rates are shown for (60) with R˛ defined by Landweber
iteration or (iterated) Tikhonov regularization under a condition similar to (54)–
(56) if (8) with � � 1=2 or (9) holds, and under condition (4) if � � 1=2 in (8). The
advantage of this stopping rule is that saturation at � D 1=2 is avoided.

Stochastic NoiseModels
In many practical applications (e.g., in weather forecast), the data noise is not only
of deterministic nature as assumed in our exposition, but also random noise has to
be taken into account. In [8] Bauer, Hohage, and Munk consider the noise model

yı;
 D F.x�/C ı�C 
�

where � 2 Y , k�k � 1 describes the deterministic part of the noise with noise
level ı, � is a normalized Hilbert space process in Y (see, e.g., [13]) and 
2 is the
variance of the stochastic noise. Under a Hölder source condition (8) with � > 1=2
and assuming a Lipschitz condition (4), they show almost optimal convergence rates
(i.e., with an additional factor that is logarithmic in 
) of (60) with R˛ defined by
iterated Tikhonov regularization and with the Lepskii balancing principle (62) as a
stopping rule. The setting of Hohage and Werner [57] allows for an even much more
general setting with regard to the stochastic noise.

Generalization to Banach Space
Bakushinski and Kokurin in [5] consider the setting Y D X with X Banach space.
Using the Riesz–Dunford formula, they prove optimal convergence rates for the
generalized Newton method (59) under the Lipschitz condition (4), provided a
sufficiently strong source condition, namely (8) with � � 1=2 holds.

In [71], based on the variational formulation of the iteratively regularized Gauss–
Newton method,

xıkC1 D arg min
x2D.F / ky

ı � F.xık/� F 0.xık/.x � xık/kp C ˛k kx � x0kq

with p; q 2 .1;1/ and Banach space norms, convergence in the general situation
of possibly different Banach spaces X , Y without source condition under the
nonlinearity assumption (6) is proved. Convergence rates under variational and
approximate source conditions generalizing (8) to the Banach space setting are
provided in the paper [65].

The convergence rates results in [57] even hold for more general data misfit
as well as regularization functionals in place of Banach space norms. Results
on Gauss–Newton methods with other regularization than Tikhonov (similarly to
section “Generalizations of the IRGNM”) can be found, e.g., in [58, 68].

Efficient Implementation
To speed up convergence and save computational effort, it is essential to use
preconditioning when applying an iterative regularization methodR˛ in (60).
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Egger in [32] defines preconditioners for these iterations (Landweber iteration,
CG, or the �-methods, see, e.g., [36]) via Hilbert scales (see, e.g., [36]), which leads
to an iterative scheme of the form

xıkC1 D x0Cg.L�2sF 0.xık/�F 0.xık//L�2sF 0.xık/�.yı�F.xık/�F 0.xık/.x0�xık// ;

where L is typically a differential operator and s an appropriately chosen exponent.
It is shown in [32] that this leads to a reduction of the number of iterations to about
the square root.

In his thesis [81], Langer makes use of the close connection between the CG
iteration and Lanczos’ method in order to construct a spectral preconditioner that is
especially effective for severely ill-posed problems.

Further strategies for saving computational effort are, e.g., multigrid [1, 42, 63,
67, 76], quasi Newton [41, 60], and adaptive discretization [72, 73] methods.

5 Nonstandard Iterative Methods

The methods presented above were based on the standard ideas of minimizing
a least-squares functional, namely gradient descent and Newton methods. In the
following we shall discuss further iterative methods, either not based on descent of
the objective functional or based on descent for a different functional than least-
squares.

Kaczmarz and SplittingMethods

Kaczmarz-type methods are used as splitting algorithms for large operators. They
are usually applied if Y and F can be split into

Y D Y1 � Y2 � � � � � YM

and

F D .F1; F2; : : : ; FM / ;

with continuous operators Fj W X ! Yj . The corresponding least-squares problem
is the minimization of the functional

J.x/ D 1
2

MX
jD1

kFj .x/ � yıj k2
Yj :

The basic idea of a Kaczmarz-type method is to apply an iterative scheme to each
of the least-squares terms 1

2 kFj .x/ � yıjk2
Yj separately in substeps of the iteration.

The three most commonly used approaches are the Landweber–Kaczmarz method
(cf. [77])
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xıkCj=M D xıkC.j�1/=M � !kF 0
j .x

ı
kC.j�1/=M /

�.Fj .xıkC.j�1/=M / � yıj / ;
j D 1; : : : ;M

the nonlinear Kaczmarz method

xıkCj=M D xıkC.j�1/=M � !kF 0
j .x

ı
kCj=M /�.Fj .xıkCj=M / � yıj / ; j D 1; : : : ;M

and the Gauss–Newton–Kaczmarz method

xıkCj=M D xıkC.j�1/=M � .F 0
j .x

ı
kC.j�1/=M /

�F 0
j .x

ı
kC.j�1/=M /C ˛k;j I /�1

F 0
j .x

ı
kC.j�1/=M /

�.Fj .xıkC.j�1/=M /� yıj / :

Further Newton–Kaczmarz methods can be constructed in the same way as itera-
tively regularized and inexact Newton methods (cf. [19]).

The Landweber–Kaczmarz and the nonlinear Kaczmarz method can be inter-
preted as time discretization by operator splitting for the minimizing flow

x0.t/ D �
MX
jD1

F 0
j .x.t//

�.Fj .x.t/ � yıj / ;

with forward, respectively, backward Euler operator splitting (cf. [38, 92]). The
nonlinear Kaczmarz method is actually a special case of the Douglas–Rachford
splitting algorithm applied to the above least-squares problem, the iterate xıkCj=M
can be computed as a minimizer of the Tikhonov-type functional

Jk;j .x/ D 1
2 kFj .x/ � yıj k2

Yj C 1
2� kx � xıkC.j�1/=Mk2:

The convergence analysis of Kaczmarz methods is very similar to the analysis
of the iterative methods mentioned above, if nonlinearity conditions on each single
operator Fj are posed (cf. [43, 44, 77] for the Landweber–Kaczmarz, [10, 19, 83]
for Newton–Kaczmarz, [9, 27] for nonlinear Kaczmarz and further variants). The
verification of those conditions is usually an even harder task than for the collection
of operators F D .F1; : : : ; FM /, also due to the usually large nullspace of their
linearizations. The analysis can however provide at least a good idea on the
convergence behavior of the algorithms. A nontrivial point in Kaczmarz methods
is an a-posteriori stopping criterion, since in general the overall residual is not
decreasing, which rules out standard approaches such as the discrepancy principles.
Some discussions of this issue can be found in [43], where criteria based on
the sequence of residuals .kF.xıkCj=M � yıj k/jD1;:::;M have been introduced,
supplemented by additional skipping strategies.

Kaczmarz methods have particular advantages in inverse problems for partial
differential equations, when many state equations for different parameters (e.g.,
different boundary values or different sources) need to be solved. Then the operators
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Fj can be set up such that a problem for one state equation can be solved after the
other, which is memory efficient. We mention that in this case also the Landweber
iteration can be carried out in the same memory-efficient way, since

F 0.x/�.F.x/ � yı/ D
MX
jD1

F 0
j .x/

�.Fj .x/ � yıj / :

But in most cases one observes faster convergence for the Kaczmarz-type variant,
which is similar as comparing classical Jacobi and Gauss–Seidel methods.

Splitting methods are frequently used for the iterative solution of problems with
variational regularization of the form

xı˛ 2 arg min
x

�
1
2 kF.x/ � yık2 C ˛R.x/� ;

where R W X ! R [ fC1g is an appropriate convex regularization functional.
It is then natural to apply operator splitting to the least-squares part and the
regularization part, if R is not quadratic. The most important approaches are the
Douglas–Rachford splitting (in particular for linear operators F , cf. [31])

xıkC1=2 2 arg min
x

h
1
2 kF.x/ � yk2 C 1

2!k
kx � xıkk2

i

xıkC1 2 arg min
x

h
R.x/C 1

2!k
kx � xıkC1=2k2

i

and the forward–backward splitting algorithm (cf. [84])

xıkC1=2 D xık � !kF 0.xık/�.F.xık/ � yı/

xıkC1 2 arg min
x

�
R.x/C 1

2!k
kx � xıkC1=2k2

�

Such algorithms are particularly popular for nonsmooth regularization (cf. [25]),
in the case of sparsity enforcing penalties (`1-norms) the second step in both
algorithms can be computed explicitly via shrinkage (thresholding) formulas, such
schemes are hence also called iterative shrinkage (cf. [26]).

EMAlgorithms

A very popular algorithm in the case of image reconstruction with nonnegativity
constraints is the expectation maximization (EM) method, also called Richardson–
Lucy algorithm (cf. [12, 86]). In the case of F W L1.˝/ ! L1.˙/ being a linear
operator, it is given by the multiplicative fixed-point scheme

xıkC1 D xıkF �
 
yı

F xık

!
: (63)
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For F and F � being positivity preserving operators (such as the Radon transform
or convolutions with positive kernels), the algorithm preserves the positivity of an
initial value xı0 if the data yı are positive, too. Positivity of data is a too strong
restriction in the case of an additive noise model, like stochastic Gaussian models
or bounds in squared L2-distances. It is however well suited for multiplicative
models such as Poisson models used for imaging techniques based on counting
emitted particles (photons or positrons). The log-likelihood functional of a Poisson
model, respectively its asymptotic for large count rates, can also be used to derive
a variational interpretation of the EM-algorithm. More precisely (63) is a descent
method for the functional

J.x/ WD
Z
˙

�
yı log

�
yı

F x

�
� yı C Fx

�
d
 ;

which corresponds to the Kullback–Leibler divergence (relative entropy) between
the output Fx and the data yı . Minimizing J over nonnegative functions leads to
the optimality condition

x

�
�F �

�
yı

F x

�
C F �1

�
D 0 :

With appropriate operator scaling F �1 D 1 this yields the fixed-point equation

x D xF �
�
yı

F x

�
;

which is the basis of the EM-algorithm:

xıkC1 D
xık
F �1

F �
 
yı

F xık

!
:

The EM-algorithm or Richardson–Lucy algorithm (cf. [103]) is a special case of the
general EM framework by Dempster, Laird, and Rubin (cf. [29]).

Performing an analogous analysis for a nonlinear operator F W L1.˝/! L1.˙/

we are led to the fixed-point equation

xF 0.x/�1 D xF 0.x/�
�
yı

F x

�
:

Since it seems unrealistic to scale F 0.x/� for arbitrary x it is more suitable to
keep the term and divide by F 0.x/�1. The corresponding fixed-point iteration is
the nonlinear EM algorithm

xıkC1 D
xık

F 0.xık/�1
F 0.xık/�

 
yı

F.xık/

!
:
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The convergence analysis in the nonlinear case is still widely open. Therefore, we
only comment on the case of linear operators F here (cf. also [85,86] for details). In
order to avoid technical difficulties the scaling condition F �1 D 1 will be assumed
in the following. The major ingredients are reminiscent of the convergence analysis
of the Landweber iteration, but they replace the norm distance by the Kullback–
Leibler divergence

KL.x; Qx/ D
Z
˝

h
x log

x

Qx � x C Qx
i
d!;

which is a nonnegative distance, but obviously not a metric. First of all, xık can be
characterized as a minimizer of the (convex) functional

Jk.x/ WD �J.x/CKL.xıkC1; x/

over all nonnegativeL1-functions, given xıkC1. Thus, comparing with the functional
value at xıkC1 we find that the likelihood functional J decreases during the iteration,
more precisely

J.xıkC1/ � J.xık/�KL.xıkC1; x
ı
k/ :

This part of the analysis holds also in the case of exact data. The second inequality
directly concerns the dissipation of the Kullback–Leibler divergence between the
iterates and a solution, hence assumes the existence of x� with Fx� D y. Using
convexity arguments one obtains

KL.x�; xkC1/C J.xk/ � KL.x�; xk/ :

Hence, together with the monotonicity of .J.xj //j2N

KL.x�; xk/C kJ.xk/ � KL.x�; xk/C
k�1X
jD0

J.xj / � KL.x�; x0/ ;

which implies boundedness of the Kullback–Leibler divergence (hence a weak
compactness of xk in L1) and convergence J.xk/! 0 analogous to the arguments
for the Landweber iteration.

The noisy case is less clear, apparently also due to the difficulties in defining
a reasonable noise level for Poisson noise. An analysis defining the noise level in
terms of the likelihood of the noisy data has been given in [93]. Further analysis in
the case of noisy data seems to be necessary, however. This also concerns stopping
rules for noisy data, which are usually based on the noise level. A promising
multiscale stopping criterion based on the stochastic modeling of Poisson noise
has been introduced and tested recently (cf. [14]). For a combination of EM with
Kaczmarz ideas, see [45].



Iterative Solution Methods 463

Iterative methods are also used for Penalized EM-Reconstruction (equivalently
Bayesian MAP estimation), i.e., for minimizing

J.x/C ˛R.x/

over nonnegativeL1-functions, where ˛ > 0 is a regularization parameter and R is
an appropriate regularization functional, e.g., total variation or negative entropy.

A frequently used modification of the EM algorithm in this case is Green’s One-
Step-Late (OSL) method (see [39, 40]).

xıkC1 D
xık

F �1C ˛R0.xk/
F �

 
yı

F xık

!
;

which seems efficient if the pointwise sign of R0.xk/ can be controlled, e.g., for
entropy-type regularization functionals

R.x/ D
Z
˝

E.x/

with convex E W ˝ ! R
C and E 0.0/ D 0. The additional effort compared

to EM is negligible and the method converges reasonably fast to a minimizer
of J C ˛R. For other important variational regularization methods, in particular
gradient-based functionals, the OSL method is less successful, since R0.xk/ does
not necessarily have the same sign as xk , thus F �1 C ˛R0.xk/ can be negative or
zero, in which case the iteration has to be stopped or some ad-hoc fixes have to
be introduced. Another obvious disadvantage of the OSL method is the fact that
it cannot handle nonsmooth regularizations such as total variation and `1-norms,
which are often used to incorporate structural prior knowledge. As a more robust
alternative, splitting methods have been introduced also in this case. In [97] a
positivity-preserving forward–backward splitting algorithm with particular focus on
total variation regularization has been introduced. The two-step algorithm alternates
the classical EM-step with a weighted denoising problem

xıkC1=2 D xıkF �
 
yı

F xık

!

xıkC1 2 arg min
x

"Z
˝

.x � xıkC1=2/
2

xık
C ˛R.x/

#
:

Convergence can be ensured with further damping, i.e., if the second half step is
replaced by

xıkC1 2 arg min
x

"Z
˝

.x � !kxıkC1=2 � .1 � !k/xık/2
xık

C ˛R.x/
#
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with !k 2 .0; 1/ sufficiently small. This algorithm is a semi-implicit approximation
of the optimality condition

�F �
�
yı

F x

�
C 1C ˛p D 0; p 2 @R.x/ ;

where the operator-dependent first part is approximated explicitly and the reg-
ularization part p implicitly. What seems surprising is that the constant 1 is
approximated by xıkC1=x

ı
k , which however turns out to be crucial for preserving

positivity.

Bregman Iterations

A very general way of constructing iterative methods in Banach spaces are iterations
using so-called Bregman distances. For a convex functionalR, the Bregman distance
is defined by

D
p
R. Qx; x/ D R. Qx/ �R.x/ � hp; Qx � x i ; p 2 @R.x/ :

Note that for nonsmooth R the subgradient is not single-valued, hence the distance
depends on the choice of the specific subgradient. Bregman distances are a very
general class of distances in general, the main properties are Dp

R. Qx; x/ � 0 and
D
p
R.x; x/ D 0. Particular cases are

D
p
R. Qx; x/ D 1

2 k Qx � xk2 for R.x/ D 1
2 kxk2

and the Kullback–Leibler divergence for R being a logarithmic entropy functional.
If some data similarity measure H.F.x/; yı/ and a regularization functional R

is given, the Bregman iteration (cf. [16,91] in its original, different context) consists
of

xıkC1 2 arg min
x

�
H.F.x/; yı/CDpk

R .x; x
ı
k/
�

with the dual update

pkC1 D pk � @xH.F.xıkC1/; y
ı/ 2 @R.xıkC1/ :

The Bregman iteration is a primal–dual method in the sense that it computes an
update for the primal variable x as well as for the dual variable p 2 @R.x/.
Consequently one also needs to specify an initial value for the subgradient p0 2
@R.xı0/.

Most investigations of the Bregman iteration have been carried out for H being
a squared norm, i.e., the least-squares case discussed above

H.F.x/; yı/ D 1
2 kF.x/ � yık2:
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Under appropriate nonlinearity conditions a full convergence analysis can be carried
out (cf. [2]), in general only leading to some weak convergence and convergence
in the Bregman distance. If F is a nonlinear operator, further approximations in
the Bregman iterations by linearization are possible leading to the Landweber-type
method (also called linearized Bregman iteration)

xıkC1 2 arg min
x

�hF 0.xık/.x � xık/; F .xık/� yı i CDpk
R .x; x

ı
k/
�

and Levenberg–Marquardt type method

xıkC1 2 arg min
x

�
1
2 kF.xık/C F 0.xık/.x � xık/� yık2 CDpk

R .x; x
ı
k/
�
:

Both schemes have been analyzed in [2], see also [21–23] for the linearized Breg-
man iteration in compressed sensing. We mention that in particular the linearized
Bregman method does not work with an arbitrary convex regularization functional.
In order to guarantee that the functional to be minimized in each step of the iteration
is bounded from below so that the iterates are well defined, a quadratic part in the
regularization term is needed.

A discussion of Bregman iterations in the case of nonquadratic term H can be
found in [17, 18, 50] with particular focus on F being a linear operator. In this
case also a dual Bregman iteration can be constructed, which coincides with the
original one in the case of quadraticH , but differs in general. For this dual Bregman
iterations also convergence rates under appropriate source conditions can be shown
(cf. [18]), which seems out of reach for the original Bregman iteration for general
H . A systematic analysis of Bregman iterations in image restoration can be found
in [20]. In [11], Bregman iterations are used to enhance generalized total variation
and infimal convolution regularization.

6 Conclusion

Iterative methods offer an attractive alternative to variational regularization but are
also closely linked to them via iterative optimization. In this chapter we aimed at
giving a broad overview on the main classical (gradient and Newton type) as well as
nonstandard (Kaczmarz, expectation maximization, Bregman) iterations. We put an
emphasis on their regularizing properties for nonlinear ill-posed problems in Hilbert
spaces and provided outlooks on further aspects such as efficient implementation,
stochastic noise models, or formulations in Banach spaces.
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Abstract
In this chapter, an introduction is given into the use of level set techniques for
inverse problems and image reconstruction. Several approaches are presented
which have been developed and proposed in the literature since the publication of
the original (and seminal) paper by F. Santosa in 1996 on this topic. The emphasis
of this chapter, however, is not so much on providing an exhaustive overview of
all ideas developed so far but on the goal of outlining the general idea of structural
inversion by level sets, which means the reconstruction of complicated images
with interfaces from indirectly measured data. As case studies, recent results (in
2D) from microwave breast screening, history matching in reservoir engineering,
and crack detection are presented in order to demonstrate the general ideas
outlined in this chapter on practically relevant and instructive examples. Various
references and suggestions for further research are given as well.

1 Introduction

Level Set Methods for Inverse Problems and Image Reconstruction

The level set technique has been introduced for the solution of inverse problems in
the seminal paper of Santosa [82]. Since then, it has developed significantly and
appears to become now a standard technique for solving inverse problems with
interfaces. However, there are still a large number of unresolved problems and
open questions related to this method, which keeps fuelling active research on it
worldwide. This chapter can only give a rough overview of some techniques which
have been discussed so far in the literature. For more details which go beyond the
material covered here, the reader is referred to the recent review articles [20, 31–
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33, 92], each of them providing a slightly different view on the topic and making
available a rich set of additional references which the interested reader can follow
for further consultation.

Images and Inverse Problems

An image, as referred to in this chapter, is a (possibly vector-valued) function which
assigns to each point of a given domain in 2D or in 3D one or more physical
parameter values which are characteristic for that point. An image often contains
interfaces, across which one or more of these physical parameters change value in a
discontinuous manner. In many applications, these interfaces coincide with physical
interfaces between different materials or regions. These interfaces divide the domain
 in subdomainsk , k D 1; : : : ; K of different region-specific internal parameter
profiles. Often, due to the different physical structures of each of these regions, quite
different mathematical models might be most appropriate for describing them in the
given context.

Since the image represents physical parameters, it can be tested by physical
inspection. Here, the physical parameters typically appear in partial differential
equations (PDEs) or in integral equations (IEs) as space-dependent coefficients,
and various probing fields are created for measuring the response of the image to
these inputs. Due to physical restrictions, these measurements are typically only
possible at few discrete locations, often situated at the boundary of the domain ,
but sometimes also at a small number of points inside . If the underlying PDE is
time dependent, then these measurements can be time-dependent functions. The
corresponding measured data give information on the spatial distribution of the
subdomains and on the corresponding internal model parameters.

Sometimes the physical interpretation of the image is that of a source distribution
rather than a parameter distribution. Then, the image itself creates the probing field
and needs to be determined from just one set of measured data. Also combina-
tions are possible where some components of the (vector-valued) image describe
source distributions and other components describe parameter distributions. Initial
conditions or boundary conditions can also often be interpreted as images in this
spirit, which need to be determined from indirect data. It is clear that this concept of
an image can be generalized even further, which leads to interesting mathematical
problems and concepts.

There is often a large variety of additional prior information available for
determining the image, whose character depends on the given application. For
example, it might be known or assumed that all parameter profiles inside the
individual subregions of a domain  are constant with known or unknown region-
specific values. In this particular case, only the interfaces between the different
regions, and possibly the unknown parameter values, need to be reconstructed from
the gathered data, which, as a mathematical problem, is much better posed [37, 71]
than the task of estimating independent values at each individual pixel or voxel from
the same data set without additional prior information on the image. However, in
many realistic applications, the image to be found is more complicated, and even
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the combined available information is not sufficient or adequate for completely
and uniquely determining the underlying image. This becomes even worse due to
typically noisy or incomplete data, or due to model inaccuracies. Then, it needs to
be determined which information on the image is desired and which information can
reasonably be expected from the data, taking into account the available additional
prior information. Depending on the specific application, different viewpoints are
typically taken which yield different strategies for obtaining images which agree
(in an application-specific sense) with the given information. We will give some
instructive examples further below.

Determining an image (or a set of possible images) from the measured data, in
the above-described sense and by taking into account the available additional prior
information, is called here imaging or image reconstruction. In practice, images are
often represented in a computer and thereby need to be discretized somehow. The
most popular discretization model uses 2D pixels or 3D voxels for representing an
image, even though alternative models are possible. Often the underlying PDE also
needs to be discretized on some grid, which could be done by finite differences,
finite volumes, finite elements, and other techniques. The discretization for the
image does not necessarily need to be identical to the discretization used for solving
the PDE, and sometimes different models are used for discretizing the image and the
PDE. However, in these cases, some method needs to be provided to map from one
representation to the other. In a level set representation of an image, also the level
set functions need to be discretized for being represented in a computer. The above
said then holds true also for the discretizations of the level set functions, which
could either follow the same model as the PDE and/or a pixel model for the image
or follow a different pattern.

The Forward and the Inverse Problem

In this chapter, it is supposed that data Qg are given in the form

Qg DM Qu; (1)

where M denotes a linear measurement operator, and Qu are the physical states
created by the sources q for probing the image. It is assumed that a physical model
ƒ.b/ is given, which incorporates the (possibly vector-valued) model parameter
b and which is able to (roughly) predict the probing physical states when being
plugged into an appropriate numerical simulator, provided the correct sources and
physical parameters during the measurement process were known. The forward
operator A is defined as

A .b;q/ DMƒ.b/�1q: (2)

As mentioned, ƒ.b/ is often described in a form of some partial differential
equation (PDE) or, alternatively, an integral equation (IE), and the individual
coefficients of the model parameter b appear at one or several places in this model
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as space-dependent coefficients. In most applications, measurements are taken only
at few locations of the domain, for example, at the boundary of the area of interest,
from which the physical parameters b or the source q (or both) need to be inferred in
the whole domain. It is said that with respect to these unknowns, the measurements
are indirect: They are taken not at the locations where the unknowns need to be
determined but indirectly by their overall impact on the states (modeled by the
underlying PDE or IE) probing the image, which are measured only at few locations.
The behavior of the states is modeled by the operator A in (2). If in A only
b (but not q) is unknown, then the problem is an inverse parameter or inverse
scattering problem. If in A only q (but not b) is unknown, then the problem is
an inverse source problem. Given measured data Qg, the “residual operators” R are
correspondingly given by

R.b;q/ D A .b;q/� Qg: (3)

Given the above definitions, an image is defined here as a mapping

a W ! R
n;

where  is a bounded or unbounded region in R
2 or in R

3 and n is the number
of components of the (vector-valued) image. Each component function ak , k D
1; : : : ; n, represents a space-dependent physical characteristic of the domain 
which can be probed by physical inspection. If it appears as a coefficient of a PDE
(or IE), it is denoted ak D bk , and if it appears as a source, it is denoted ak D qk .
The exposition given in this chapter mainly focuses on the recovery of parameter
distributions ak D bk and addresses several peculiarities related to those cases.
However, the main concepts carry over without major changes to inverse source
problems and also to some related formulations as, for example, the reconstruction
of boundary or initial conditions of PDEs.

2 Examples and Case Studies

Some illustrative examples and case studies are presented in the following, which
will be used further on in this chapter for demonstrating basic ideas and concepts on
realistic and practical situations.

Example 1: Microwave Breast Screening

Figure 1 shows two-dimensional images from the application of microwave breast
screening. The images of size 160� 160 pixels have been constructed synthetically
based on MRI images of the female breast. Three representative breast structures
are displayed in the three images of the left column, where the value at each pixel
of the images represents the physical parameter “static relative permittivity.”
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Fig. 1 Three images from microwave breast screening. The three images are synthetically
generated from MRI breast models. Left column: two-dimensional maps of the distribution of the
static permittivity "st inside the three breast models. Right column: the corresponding histograms
of values of "st in each map

A commonly accepted model for breast tissue is to roughly distinguish between
skin, fatty tissue and fibroglandular tissue. In the images also a matching liquid is
shown in which the breast is immersed. Inside the breast, regions can be identified
easily which correspond to fibroglandular tissue (high static relative permittivity
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values) and fatty tissue (low static relative permittivity values), separated by a
more or less complicated interface. On the right column, histograms are shown
for the distributions of static relative permittivity values inside the breast. In these
histograms, it becomes apparent that values for fatty and fibroglandular tissue
are clustered around two typical values, but with a broader range of distribution.
However, a clear identification of fatty and fibroglandular tissue cannot be made
easily for each pixel of the image based on just these values.

Nevertheless, during a reconstruction, and from anatomical reasoning, it does
make sense to assume a model where fatty and fibroglandular tissue occupy some
subregions of the breast where a sharp interface exists between these subregions.
Finding these subregions provides valuable information for the physician. Further-
more, it might be sufficient for an overall evaluation of the situation to have a
smoothly varying profile of tissue parameters reconstructed inside each of these
subregions, allowing for the choice of a smoothly varying profile of static relative
permittivity values inside each region. In the same spirit, from anatomical reasoning,
it makes sense to assume a sharp interface (now of less complicated behavior)
separating the skin region from the fatty/fibroglandular tissue on the one side and
from the matching liquid on the other side. It might also be reasonable to assume
that the skin and the matching liquid have constant static permittivity values, which
might be known or not. If a tumor in its early stage of development is sought in this
breast model, it will occupy an additional region of small size (and either simple
or complicated shape and topology) and might have constant but unknown static
relative permittivity value inside this region.

During a reconstruction for breast screening, this set of plausible assumptions
provides us with a complex mathematical breast model which incorporates this
prior information and might yield an improved and more realistic image for the
reconstructed breast (including a better estimate of the tumor characteristics) than
a regular pixel-based inversion would be able to provide. This is so because it is
assumed that the real breast follows roughly the complicated model constructed
above and that this additional information is taken into account in the inversion.

In this application, the underlying PDE is the system of time-harmonic
Maxwell’s equations, or its 2D representative (describing so-called TM-waves),
a Helmholtz equation. The “static relative permittivity,” as mapped in Fig. 1,
represents one parameter entering in the wavenumber of the Debye dispersion
model. The electromagnetic fields are created by specifically developed microwave
antennas surrounding the breast, and the data are gathered at different microwave
antennas also located around the breast. For more details, see [52].

Example 2: HistoryMatching in Petroleum Engineering

Figure 2 shows a synthetically created 2D image of a hydrocarbon reservoir
during the production process. Circles indicate injection wells, and crosses indicate
production wells. The physical parameter displayed in the image is the permeability,
which affects fluid flow in the reservoir. Physically, two lithofacies can be distin-
guished in this image, namely, sandstone and shaly sandstone (further on simply
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Fig. 2 An image from reservoir engineering. Shown is the permeability distribution of a fluid
flow model in a reservoir which consists of a sandstone lithofacie (values in the range of 150–
500 mDarcy) and a shaly sandstone lithofacie (values in the range of 900–1,300 mDarcy), separated
by a sharp interface. The sandstone region shows an overall linear trend in the permeability
distribution, whereas the shaly sandstone region does not show any clear trend

called “shale”). The sandstone region has permeability values roughly in the range
150–500 mDarcy, whereas shale has permeability values more in the range 900–
1,300 mDarcy. In petroleum engineering applications, the parameters inside a given
lithofacie sometimes follow an overall linear trend, which is the case here inside the
sandstone region. This information is often available from geological evaluation
of the terrain. As a rough approximation, inside this region, the permeability
distribution can be modeled mathematically as a smooth perturbation of a bilinear
model. Inside the shale region, no trend is observed or expected, and therefore
the permeability distribution is described as a smooth perturbation of a constant
distribution (i.e., an overall smoothly varying profile).

During a reconstruction, a possible model would be to reconstruct a reservoir
image from production data which consists of three different quantities: (1) the
interface between the sandstone and shale lithofacies, (2) the smooth perturbation
of the constant profile inside the shale region, and (3) the overall trend (i.e., the
bilinear profile) inside the sandstone region, assuming that inside this sandstone
region the smooth perturbation is small compared to this dominant overall trend.
In this application, the PDE is a system of equations modeling two-phase or three-
phase fluid flow in a porous medium, of which the relative permeability is one model
parameter.

The “fields” (in a slightly generalized sense) are represented in this application
by pressure values and water/oil saturation values at each point inside the reservoir
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during production and are generated by injecting (under high pressure) water in
the injection wells and extracting (imposing lower pressure) water and oil from the
production wells. The data are the injection and production rates of water and oil,
respectively, and sometimes pressure values measured at injection and production
wells over production time. For more details, see [35].

Example 3: Crack Detection

Figure 3 shows an image of a disconnected crack embedded in a homogeneous
material. The cracks are represented in this simplified model as very thin regions of
fixed thickness. The physical parameter represented by the image is the conductivity
distribution in the domain. Only two values can be assumed by this conductivity, one
inside the thin region (crack) and another one in the background. The background
value is typically known, and the value inside the crack might either be approxi-
mately known or it might be an unknown of the inverse problem. The same holds
true for the thickness of the crack, which is assumed constant along the cracks, even
though the correct thickness (the constant) might become an unknown of the inverse
problem as well. Here insulating cracks are considered, where the conductivity is
significantly lower than in the background. The probing fields inside the domain
are the electrostatic potentials which are produced by applying voltages at various
locations along the boundary of the domain, and the data are the corresponding
currents across the boundary at discrete positions.

This model can be considered as a special case of a binary medium where
volumetric inclusions are embedded in a homogeneous background. However, the
fact that these structures are very thin with fixed thickness requires some special
treatment during the shape evolution, which will be commented on further below.
In this application, the underlying PDE is a second-order elliptic equation modeling
the distribution of electric potentials in the domain for a set of given applied voltage
patterns. For more details, see [4].

3 Level Set Representation of Images with Interfaces

A complex image in the above sense needs a convenient mathematical representa-
tion in order to be dealt with in a computational and mathematical framework. In
this section, several different approaches are listed which have been proposed in the
literature for describing images with interfaces by a level set technique. First, the
most basic representation is given, which only considers binary media. Afterwards,
various representations are described which represent more complicated situations.

The Basic Level Set Formulation for Binary Media

In the shape inverse problem in its simplest form, the parameter distribution is
described by
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Fig. 3 An image from the application of crack detection. Three disconnected crack components
are embedded in a homogeneous background medium and need to be reconstructed from
electrostatic measurements at the region boundary. In the considered case of insulating cracks,
these components are modeled as thin shapes of fixed thickness with a conductivity value much
lower than the background conductivity

b.x/ D
�
b.i/.x/ in D

b.e/.x/ in nD ; (4)

where D �  is a subregion of  and where usually discontinuities in the
parameters b occur at the interface @D. In the basic level set representation for
the shape D, a (sufficiently smooth, i.e., Lipschitz continuous) level set function
� W ! R is introduced and the shape D is described by

�
�.x/ � 0 for all x 2 D;
�.x/ > 0 for all x 2 nD: (5)

In other words, the parameter function b has the form

b.x/ D
�
b.i/.x/ where �.x/ � 0
b.e/.x/ where �.x/ > 0:

(6)

Certainly, a unique representation of the image is possible by just knowing those
points where �.x/ has a change of sign (the so-called zero level set) and additionally
knowing the two interior profiles b.i/.x/ and b.e/.x/ inside those areas of  where
they are active (which are D and nD, respectively). Often, however, it is more
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Fig. 4 The basic level set representation of a shape D. Those points of the domain where the
describing level set function assumes negative values are “inside” the shape D described by the
level set function �, while those with positive values are “outside” it. The zero level set where
� D 0 represents the shape boundary

convenient to assume that these functions are defined on larger sets which include
the minimal sets mentioned above. In this chapter, it is assumed that all functions
are defined on the entire domain , by employing any convenient extensions from
the abovementioned sets to the rest of. Again, it is clear that the above extensions
are not unique and that many possible representations can then be found for a given
image. Which one to choose depends on details of the algorithm for constructing
the image, on the available prior information, and possibly on other criteria (Fig. 4).

For a sufficiently smooth level set function, the boundary of the shapeD permits
the characterization

@D D fx 2 ; �.x/ D 0g: (7)

This representation motivates the name zero level set for the boundary of the
shape. In some representations listed further below, however, level set functions are
preferred which are discontinuous across those sets where they change sign. Then,
the boundary of the different regions can be defined alternatively as

@D D fx 2  W for all � > 0 we can find x1; x2 2 B�.x/ (8)

with �.x1/ > 0 and �.x2/ � 0g

where B�.x0/ D fx 2  W jx � x0j < �g.

Level Set Formulations for Multivalued and Structured Media

As mentioned already above, in many applications the binary model described
in section “The Basic Level Set Formulation for Binary Media” is not sufficient
and more complex image models need to be employed. Several means have been
discussed in the literature for generalizing the basic model to more complex
situations, some of them being listed in the following.
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Different Levels of a Single Smooth Level Set Function
A straightforward generalization of the technique described in section “The Basic
Level Set Formulation for Binary Media” consists in using, in addition to the level
set zero, additional level sets of a given smooth (e.g., Lipschitz continuous) level set
function in order to describe different regions of a given domain [99]. For example,
define

�i D fx 2 ; �.x/ D ci g (9)

Di D fx 2 ; ciC1 < �.x/ < ci g; (10)

where ci are prespecified values with ciC1 > ci for i D 0; : : : ; i � 1 and with
c0 D C1, ci D �1. Then,

 D
i[

iD0

Di; with Di \Di 0 D ; for i ¤ i 0: (11)

A level set representation for the image b is then given as a tupel .b0; : : : ; bi ; �/

which satisfies

b.x/ D bi .x/ for ciC1 < �.x/ < ci : (12)

It is clear that certain topological restrictions are imposed on the distribution of the
regionsDi by this formulation. In particular, it favors certain nested structures. For
more details, see [63].

Piecewise Constant Level Set Function
This model describes piecewise constant multiple phases of a domain by only one
level set function and has its origins in the application of image segmentation. A
single level set function is used which is only allowed to take a small number of
different values, e.g.,

�.x/ D i in Di; for i D 0; : : : ; i ; (13)

 D
i[

iD0

Di; with Di \Di 0 D ; for i ¤ i 0:

Introducing the set of basis functions �i

�i D 1

˛i

iY
jD1
j¤i

.� � j / with ˛i D
iY

jD1
j¤i

.i � j /; (14)

the parameter distribution b.x/ is defined as
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b D
iX

iD1

bi�i : (15)

A level set representation for the image b is then given as a tupel .b1; : : : ; bi ; �/

with

b.x/ D bi where �.x/ D i: (16)

Numerical results using this model can be found, among others, in [61, 65, 67, 97].

Vector Level Set
In [99] multiple phases are described by using one individual level set function for
each of these phases, i.e.,

�i D fx 2 ; �i .x/ D 0g (17)

Di D fx 2 ; �i .x/ � 0g; (18)

for sufficiently smooth level set functions �i , i D 0; : : : ; i . In this model, the level
set representation for the image b is given by a tupel .b1; : : : ; bi ; �1; : : : ; �i / which
satisfies

b.x/ D bk.x/ where �k.x/ � 0: (19)

Care needs to be taken here that different phases do not overlap, which is not
automatically incorporated in the model. For more details on how to address this
and other related issues, see [99].

Color Level Set
An alternative way of describing different phases by more than one level set
functions has been introduced in [95] in the framework of image segmentation and
further investigated by [14, 25, 38, 63, 92] in the framework of inverse problems. In
this model (which also is known as the Chan–Vese model), up to 2n different phases
can be represented by n different level set functions by distinguishing all possible
sign combinations for these functions. For example, a level set representation
for an image b containing up to four different phases is given by the tupel
.b1; b2; b3; b4; �1; �2/ which satisfies

b.x/ D b1.1 �H.�1//.1 �H.�2//C b2.1 �H.�1//H.�2/ (20)

Cb3H.�1/.1 �H.�2//C b4H.�1/H.�2/:

Also here, the contrast values b� , � D 1; : : : ; 4 are allowed to be smoothly varying
functions inside each region. The four different regions are then given by
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Fig. 5 Color level set
representation of multiple
shapes. Each region is
characterized by a different
sign combination of the two
describing level set functions

D4

φ2 > 0

φ1 > 0

φ2 > 0

φ1 ≤ 0

φ2 ≤ 0

φ1 > 0

φ2 ≤ 0

φ1 ≤ 0
D3

D1

D2

D1 D fx; �1 � 0 and �2 � 0g (21)

D2 D fx; �1 � 0 and �2 > 0g
D3 D fx; �1 > 0 and �2 � 0g
D4 D fx; �1 > 0 and �2 > 0g:

This yields a complete covering of the domain  by the four regions, each point
x 2  being part of exactly one of the four shapes D� ; see Fig. 5.

Binary Color Level Set
An alternative technique for using more than one level set function for describing
multiple phases, which is, in a certain sense, a combination of the piecewise constant
level set model described in section “Piecewise Constant Level Set Function” and
the color level set technique described in section “Color Level Set,” has been
proposed in [62] for the application of Mumford–Shah image segmentation. For the
description of up to four phases by two (now piecewise constant) level set functions
�1 and �2, in this binary level set model, the two level set functions are required to
satisfy

�i 2 f�1; 1g; or �2
i D 1; i 2 f1; 2g: (22)

The parameter function b.x/ is given by

b.x/ D 1

4

�
b1.�1 � 1/.�2 � 1/� b2.�1 � 1/.�2 C 1/ (23)

�b3.�1 C 1// .�2 � 1/C b4.�1 C 1/.�2 C 1/
�
;

and the four different regions are encoded as
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D1 D fx; �1 D �1 and �2 D �1g (24)

D2 D fx; �1 D �1 and �2 D C1g
D3 D fx; �1 D C1 and �2 D �1g
D4 D fx; �1 D C1 and �2 D C1g:

A level set representation for an image b containing up to four different phases is
given by the tupel .b1; b2; b3; b4; �1; �2/ which satisfies (23). For more details, we
refer to [62].

Level Set Formulations for Specific Applications

Often, for specific applications, it is convenient to develop particular modifications
or generalizations of the above-described general approaches for describing multiple
regions by taking into account assumptions and prior information which are very
specific to the particular application. A few examples are given below.

AModification of Color Level Set for Tumor Detection
In the application of tumor detection from microwave data for breast screening (see
section “Example 1: Microwave Breast Screening”), the following situation needs
to be modeled. The breast consists of four possible tissue types, namely, the skin,
fibroglandular tissue, fatty tissue, and a possible tumor. Each of these tissue types
might have an internal structure, which is (together with the mutual interfaces)
one unknown of the inverse problem. In principle, the color level set description
using two level set functions for describing four different phases would be sufficient
for modeling this situation. However, the reconstruction algorithm as presented in
[52] requires some flexibility with handling these four regions separately, which
is difficult in this minimal representation of four regions. Therefore, in [52], the
following modified version of the general representation of color level sets is
proposed for modeling this situation. In this modified version, m different phases
(herem D 4) are described by n D m � 1 level set functions in the following form

b.x/ D b1.1 �H.�1//CH.�1/
h
b2.1 �H.�2// (25)

CH.�2/ fb3.1 �H.�3//C b4H.�3/g
i

or

D1 D fx; �1 � 0g (26)

D2 D fx; �1 > 0 and �2 � 0g
D3 D fx; �1 > 0 and �2 > 0 and �3 � 0g
D4 D fx; �1 > 0 and �2 > 0 and �3 > 0g;
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Fig. 6 Multiple level set representation for modeling multiphase inverse problems. Left: original
color level set technique for describing eight different phases by the different sign combinations
of three level set functions. Center: modified color level set technique used in the model for
early detection of breast cancer from microwave data. The possible eight regions of the color
level set presentation are filled with four different materials in a tailor-made fashion for this
application. Right: modified color level set technique for modeling the history matching problem
of a water-flooding process in a petroleum reservoir. Also here the eight different regions are filled
by a specific combination of materials characteristic for the reconstruction scheme used in this
application. Regions with more than one subindex correspond to “characteristic regions” with
averaged parameter values

where b1, b2, b3, and b4 denote the dielectric parameters of the skin, tumorous,
fibroglandular, and fatty tissue, respectively. In (25), �1, �2, and �3 are the three
different level set functions indicating the regions filled with the skin, tumorous,
and fibroglandular tissue, respectively, and the contrast values b� , � D 1; : : : ; 4
are generally allowed to be smoothly varying functions inside each region. This
combination of m � 1 level set functions for describing m different phases has
certain advantages with respect to the standard color level set formulation during
the reconstruction process, as it is pointed out in [52]. On the other hand, it is
obvious that (26) can be considered a special case of the color level set technique
(section “Color Level Set”) where the theoretically possible 23 D 8 different values
of the color level set description are enforced to fall into m D 4 different groups of
characteristic values; see the central image of Fig. 6.

AModification of Color Level Set for Reservoir Characterization
Another modification of the color level set technique has been used in [35] for the
application of history matching in reservoir engineering; see section “Example 2:
History Matching in Petroleum Engineering.” Given, as an example, n D 4 level set
functions �1; : : : ; �4, we define the parameter (permeability) distribution inside the
reservoir by

b D b1.1 �H.�1//H.�2/H.�3/C b2H.�1/.1 �H.�2//H.�3/

Cb3H.�1/H.�2/.1 �H.�3//C b4H.�1/H.�2/H.�3/

Cb2 C b3

2
H.�1/.1 �H.�2//.1 �H.�3//
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Cb1 C b3

2
.1 �H.�1//H.�2/.1 �H.�3//

Cb1 C b2

2
.1 �H.�1//.1�H.�2//H.�3/

Cb1 C b2 C b3

3
.1 �H.�1//.1 �H.�2//.1 �H.�3//; (27)

where the permeability values b� , � D 1; : : : ; 4 are assumed constant inside each
region. The four lithofacies are represented as

D1 D fx; �1 � 0 and �2 > 0 and �3 > 0g (28)

D2 D fx; �2 � 0 and �3 > 0 and �1 > 0g
D3 D fx; �3 � 0 and �1 > 0 and �2 > 0g
D4 D fx; �1 > 0 and �2 > 0 and �3 > 0g:

Let in the following n D 4 be the number of lithofacies. In this model, a point
in the reservoir corresponds to the lithofacie Dl , (l D 1; : : : ; n � 1) if �l has
negative sign and all the other level set functions have positive sign. In addition, one
lithofacie (which here is referred to as the “background” lithofacie with index l D n)
corresponds to those points where none of the level set functions has a negative sign.
Notice that typically this definition does not yield a complete covering of the whole
domain  by the four (n) lithofacies; see the right image of Fig. 6. Those regions
inside the domain where more than one level set function are negative are recognized
as so-called critical regions and are introduced for providing a smooth evolution
from the initial guess to the final reconstruction. Inside these critical regions, the
permeability assumes values which are calculated as certain averages over values
of the neighboring noncritical regions. They are indicated in the right image of
Fig. 6 by using multiple subindices indicating which noncritical regions contribute
to this averaging procedure. For more details regarding this model, and numerical
experiments for the application of reservoir characterization, see [35].

AModification of the Classical Level Set Technique for Describing
Cracks or Thin Shapes
Cracks of finite thickness can be modeled by using two level set functions in
a setup which amounts to a modification of the classical level set technique for
binary media. For simplicity, assume that a crack or thin region of finite thickness
is embedded in a homogeneous background. The classical level set technique
described in section “The Basic Level Set Formulation for Binary Media” captures
this situation in principle, since the crack can be interpreted as a simple shape
(with possibly complicated topology) embedded in a homogeneous background.
However, when it comes to shape evolution for such a crack-like structure, it is
difficult to maintain a fixed thickness of the thin shape following the classical
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Fig. 7 Multiple level set
representation for modeling a
disconnected crack. The zero
level set of the first level set
function defines the potential
outline of the crack, of which
the second level set function
selects those parts that are
actually occupied by the
crack. The “ideal” crack has
vanishing thickness, whereas
the “real” crack modeled by
the level set technique has a
small finite thickness and is
practically obtained by a
narrow band technique

φ2 ≤ 0
φ2 ≤ 0

φ2 > 0φ1 > 0

φ1 ≤ 0, φ2 > 0

cra
ck

crack

shape evolution scheme. This is so since the classical shape evolution applies an
individually calculated velocity field value in the normal direction at each point of
the entire shape boundary, such that the thickness of the thin region will not be
maintained. For crack evolution, the deformations of adjacent boundary points need
to be coordinated in order to maintain the thickness of the crack during the entire
shape evolution; see Fig. 9.

A modified version of the classical level set technique has been proposed in
[4, 77] which uses two level set functions for modeling crack propagation and
crack reconstruction in this sense. Here, a small neighborhood (narrowband) of the
zero level set of the first level set function defines the general outline of the crack,
whereas the second level set function selects those parts of this band structure which
in fact contribute to the possibly disconnected crack topology.

In more details, given a continuously differentiable level set function �1 and its
zero level set

��1 D fx 2  W �1.x/ D 0g: (29)

The normal n to ��1 is given by (61) and is pointing into the direction where �.x/ �
0. An (connected or disconnected) “ideal” (i.e., of thickness zero) crack with finite
length completely contained inside  is constructed by introducing a second level
set function �2 which selects one or more parts from the line ��1 ; see Fig. 7. This
second level set function defines the region

B D fx 2  W �2.x/ � 0g: (30)

The “ideal” crack is then defined as a collection of finite subintervals of ��1

SŒ�1; �2� D ��1 \ B: (31)
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An ideal “insulating” crack S (of thickness zero) is then supplemented with a
vanishing electrical current condition across this set SŒ�1; �2�. However, in the
simplified level set model, not the ideal crack is considered, but cracks of finite
thickness 2ı > 0 with known conductivity bi inside the crack and be outside it.
Moreover, in the insulating case, it is assumed that bi � be. In this model, a small
neighborhood of ��1 is introduced as

�ı�1
D fy 2  W y D x � �n.x/; j� j < ı; x 2 ��1g; (32)

and the above-defined “ideal crack” S is associated now with a “real crack”
counterpart

Sı D �ı�1
\ B: (33)

The conductivity distribution is

b.x/ D
�
bi for x 2 Sı
be otherwise

(34)

in the domain. Certainly, the real crack can also alternatively be defined by

QSı D fy 2  W y D x � �n.x/; j� j < ı; x 2 Sg; (35)

which would slightly change the shape of the crack at the crack tips. Here, the form
(33) is preferred. For the numerical treatment, see [4, 77].

4 Cost Functionals and Shape Evolution

One important technique for creating images with interfaces satisfying certain
criteria is shape evolution, more specifically, interface and profile evolution. The
general goal is to start with a set of shapes and profiles as initial guess, and then let
both, shapes and profiles, evolve due to some appropriate evolution laws in order to
improve the initial guess with increasing artificial evolution time. The focus in the
following will be on shape evolution, since evolution laws for interior profiles fairly
much follow classical and well-known concepts. Evolution of a shape or an interface
can be achieved either by defining a velocity field on the domain  which deforms
the boundaries of this shape or by defining evolution laws directly for the level set
functions representing the shape. Some of these techniques will be presented next.

General Considerations

In many applications, images need to be evaluated for verifying their usefulness
or merit for a given situation. This evaluation is usually based on a number of
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criteria, among them being the ability of the image (in its correct interpretation) to
reproduce the physically measured data (its data fitness). Other criteria include the
consistence with any additionally available prior knowledge on the given situation or
the closeness of the image to a set of reference images. In many cases, some form of
merit function (often in terms of a properly defined cost functional) is defined whose
value is intended to indicate the usefulness of the image in a given application.
However, sometimes this decision is done based on visual inspection only.

In general, during this evaluation process, a family of images is created and the
merit of each of these images is assessed. Then, one or more of these images are

selected. Let
�
b.1/; : : : ; b.i/; �.1/; : : : ; �.j /

�
be a level set representation for the class

of images to be considered. Then, creating this family of images can be described
either in a continuous way by an artificial time evolution

�
b.1/.t/; : : : ; b.i/.t/; �.1/.t/; : : : ; �.j/.t/

�
; t 2 Œ0; tmax�;

with an artificial evolution time t or in a discrete way

�
b
.1/
k ; : : : ; b

.i/

k ; �
.1/
k ; : : : ; �

.j /

k

�
; k D 1; : : : ; k;

with a counting index k. Usually these images are created in a sequential manner,
using evolution laws

d

dt

�
b.1/.t/; : : : ; b.i/.t/; �.1/.t/; : : : ; �.j /.t/

�
D f .t/;

with a multicomponent forcing term f .t/ or update formulas

�
b
.1/
kC1; : : : ; b

.i/

kC1; �
.1/
kC1; : : : ; �

.j /

kC1

�
D Fk

�
b
.1/
k ; : : : ; b

.i/

k ; �
.1/
k ; : : : ; �

.j /

k

�

with update operators Fk . These evolution laws and update operators can also be
defined on ensembles of images, which allows for statistical evaluation of each
ensemble during the evaluation process. Any arbitrarily defined evolution law and
set of update operators yield a family of images which can be evaluated, but typically
those are preferred which point into a descent direction of some predefined cost
functional. Some choices of such cost functionals will be discussed in the following.

Cost Functionals

In general, a cost functional can consist of various components, typically combined
in an additive or multiplicative manner. Popular components for an image model

b D �b.1/; : : : ; b.i/	 and � D
�
�.1/; : : : ; �.j /

�
are:
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1. Data misfit terms Jdata.b; �/

2. Terms measuring closeness to a prior model inside each subdomain Jprior.b; �/

3. Terms enforcing geometric constraints on the interfaces Jgeom.b; �/

In (1), the by far most popular data misfit term is the least squares misfit cost
functional which, in general, is given as an expression of the form

Jdata.b; �/ D
1

2

���A .b; �/� Qg
���2 D 1

2

���uM Œb; �� � Qg
���2
; (36)

where A .b; �/ is the forward operator defined in (2) and uM Œb; �� indicates the
simulated data at the set of probing locations M for this guess. Other choices can
be considered as well; see, for example, [37].

(2) corresponds to classical regularization techniques, applied to each subdo-
main, and is treated in many textbooks, such as [37,71]. Therefore, it is not discussed
in this chapter.

(3) has a long history in the shape optimization literature and in image processing
applications. See, for example, [30, 87]. A few concepts are presented in Sect. 5.

Transformations and Velocity Flows

The first technique discussed here is shape evolution by transformations and velocity
flows. This concept has been inspired by applications in continuum mechanics.
Given a (possibly bounded) domain � R

n and a shapeD �  with boundary @D
which, as usual, is denoted as � . Let a smooth vector field v W Rn ! R

n be given
with v �n D 0 on @. A family of transformations St proceeds by

St.X/ D XC tv.X/ (37)

for all X 2 . In short, St D I C tv where I stands for the identity map. This
defines for each point (“particle”) X in the domain, a propagation law prescribed by
the ordinary differential equation

Px.t;X/ D V.t; x.t;X//; (38)

x.0;X/ D X (39)

with the specific velocity choice

V.t; x.t;X// D v.X/: (40)

Physically, it corresponds to the situation where each point X of the domain travels
with constant speed along a straight line which is defined by its initial velocity vector
v.X/. Notice that the definition (40) can with (37) also be written in a slightly more
abstract fashion as
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V.t; x/ D @

@t
St .X/ D

�
@

@t
St

�
ı S�1.x/: (41)

In fact, it turns out that the ideas in the above example can be considerably
generalized from the specific case (40) to quite arbitrary smooth vector fields V.t; x/
describing smooth families of transformations Tt.X/. The generating vector field
V.t; x/ is often called “velocity field.” It can be done as follows.

Let us given an arbitrary smooth family of transformations Tt.X/ which maps
every point X of the domain to the point x.t;X/ D Tt .X/ at time t . The
propagation of the point X over time t is again described by the ordinary differential
equations (38) and (39) where the velocity V is defined by

V.t; x/ D
�
@

@t
Tt

�
ı T �1.x/: (42)

Now the propagation of points is not restricted anymore to straight lines, but can
be quite arbitrary. Vice versa, given a smooth vector field V.t; x/, it gives rise to a
family of transformations Tt.X/ via the differential equations (38) and (39) where
every point X 2  is mapped by Tt.X/ to the solution x.t;X/ of (38), (39) at time
t , i.e., Tt .X/.x/ D x.t;X/. For more details on this duality of transformations and
velocity flows, see the well-known monographs [30, 87].

Notice that the numerical treatment of such a velocity flow in the level set
framework leads to a Hamilton–Jacobi-type equation. Some remarks regarding this
link are given in section “The Level Set Framework for Shape Evolution.”

Eulerian Derivatives of Shape Functionals

Given the framework defined in section “Transformations and Velocity Flows,” the
goal is now to define transformations and velocity flows which point into a descent
direction for a given cost functional. Some useful concepts on how to obtain such
descent directions are discussed here.

Let D D D0 be a shape embedded in the domain at time t D 0. When
the points in the said domain start moving under the propagation laws discussed
above, the interior points of the shape, the boundary points, as well as the exterior
points will move as well, and therefore the shape will deform. Denote the shape
at time t by Dt D Tt .D0/ where as before Tt is the family of transformations
which correspond to a given velocity field V.t; x/. Assume furthermore that a cost
functional J .x; t;Dt ; : : :/ is given which depends (among others) upon the current
shapeDt . Deformation of shape will entail change of this cost. The so-called shape
sensitivity analysis of structural optimization aims at quantifying these changes
in the cost due to a given velocity flow (or family of transformations) in order to
determine suitable descent flows.

Given a vector field V.t; x/, the Eulerian derivative of the cost functionalJ .Dt /

at time t D 0 in the direction V is defined as the limit
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dJ .D;V/ D lim
t#0

J .Dt /�J .D/

t
; (43)

if this limit exists. The functional J .Dt / is shape differentiable (or simply
differentiable) if the Eulerian derivative dJ .D;V/ exists for all directions V and
furthermore the mapping V! dJ .D;V/ is linear and continuous (in appropriate
function spaces). It is shown in [30, 87] that if J .D/ is shape differentiable, there
exists a distribution G.D/ which is concentrated (supported) on � D @D such that

dJ .D;V/ D hG.D/;V.0/i : (44)

This distribution G is the shape gradient of J in D, which is a vector distribution.
More specifically, let $� denote the trace (or restriction) operator on the boundary
� . Then, the Hadamard-Zolésio structure theorem states that (under certain condi-
tions) there exists a scalar distribution g such that the shape gradientG writes in the
formG D $�

� .gn/, where$� is the transpose of the trace operator at � and where
n is the normal to � . For more details, see again [30, 87].

TheMaterial Derivative Method

A useful concept for calculating Eulerian derivatives for cost functionals is the
so-called material and shape derivative of states u. In the application of inverse
problems, these states u typically are the solutions of the PDEs (IEs) which model
the probing fields and which depend one way or another on the shapeD.

Let as before V be a smooth vector field with hV;ni D 0 on @, and let Tt .V/
denote the corresponding family of transformations. Moreover, let u D uŒDt � be
a state function (of some Sobolev space) which depends on the shape Dt � 

(denote as beforeD0 D D). The material derivative PuŒD;V� of u in the direction V
is defined as

PuŒD;V� D lim
t#0

uŒDt � ı Tt.V/ � uŒD�
t

; (45)

or

PuŒD;V�.X/ D lim
t#0

uŒDt �.Tt .X// � uŒD�.X/
t

for X 2 ; (46)

where the square brackets in the notation indicate the dependence of the states and
derivatives on the shape Dt and/or on the vector field V. The material derivative
corresponds to a Lagrangian point of view describing the evolution of the points in
a moving coordinate system, e.g., located in the point x.t;X/ D Tt .X/.

The shape derivative u0ŒD;V� of u in the direction V in contrast corresponds to
an Eulerian point of view observing the evolution from a fixed coordinate system,
e.g., located in the point X. It is defined as



494 O. Dorn and D. Lesselier

u0ŒD;V� D lim
t#0

uŒDt � � uŒD�
t

; (47)

or

u0ŒD;V�.X/ D lim
t#0

uŒDt �.X/� uŒD�.X/
t

for X 2 : (48)

The shape derivative and the material derivative are closely related to each other. It
can be shown that

u0ŒD;V� D PuŒD;V� � r.uŒD�/ �V.0/ (49)

provided that these quantities exist and are well defined. Subtractingr.uŒD�/ �V.0/
in (49) from the material derivative makes sure that the shape derivative actually
becomes zero in the special case that the states u do not depend on the shape D.
The material derivative usually does not vanish in these situations.

Some Useful Shape Functionals

To become more specific, some useful examples for shape functionals which have
been applied to shape inverse problems are provided herein.

1. Define for a given function � the shape integral

J1.D/ D
Z


	D.x/�.x/dx D
Z
D

�.x/dx (50)

where 	D is the characteristic function for the domain D. Then the Eulerian
derivative is given by

dJ1.D;V/ D
Z
D

div .�V.0// dx D
Z
�

�hV.0/;niRnd�: (51)

2. Consider the shape functional

J2.D/ D
Z
�

�.x/d� (52)

for a sufficiently smooth function � defined on  such that the traces on � exist
and are integrable. The tangential divergence div�V of the vector field V at the
boundary � is defined as

div�V D .divV � hDV � n; ni/j� (53)

where DV denotes the Jacobian of V. Then,
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dJ2.D;V/ D
Z
�

.hr�; V.0/i C �div�V.0// d� (54)

Be N an extension of the normal vector field n on � to a local neighborhood
of � . Then, the mean curvature � of � is defined as � D div�N j� . With that,
dJ2.D;V/ admits the alternative representation

dJ2.D;V/ D
Z
�

�
@�

@n
C ��

�
hV.0/;ni d� (55)

3. A useful link between the shape derivative and the Eulerian derivative of the cost
functional is

J3.D/ D
Z
D

uŒD�dx (56)

which depends via the states uŒD� on the shapeD. Furthermore [30, 87]

dJ3.D;V/ D
Z
D

u0ŒD;V�dxC
Z
�

uŒD�hV.0/; niRn d�: (57)

4. Consider a cost functional

J4.D/ D
Z
�

�.�/d� (58)

where � is only defined at the shape boundary � . Then we cannot use the
characterization (49) directly, since r.�/ �V.0/ is not well defined. In that case,
the shape derivative is defined as

� 0Œ�;V� D P�Œ�;V� � r�.�Œ��/ �V.0/; (59)

r� being the gradient along the boundary� of the shape (chosen such thatr� D
r�� C @�

@n n whenever all these quantities are well defined). Then, the Eulerian
derivative of the cost functional J4.D/ can be characterized as

dJ4.D;V/ D
Z
�

� 0Œ�;V�d� C
Z
�

��hV.0/;niRn d� (60)

where again � denotes the mean curvature on � .

The Level Set Framework for Shape Evolution

So far, shape evolution has been discussed independently of its representation by a
level set technique. Any of the abovementioned shape evolutions can practically be
described by employing a level set representation of the shapes.
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First, some convenient representations of geometric quantities in the level set
framework are listed:

1. The outward normal direction [74, 85] is given by

n.x/ D r�jr�j : (61)

2. The local curvature �.x/ of @D, being the divergence of the normal field n.x/, is

�.x/ D r �n.x/ D r �
� r�
jr�j

�
: (62)

3. The following relation is often useful

ı.�/ D ı@D.x/
jr�.x/j (63)

where ı@D is the n-dimensional Dirac delta distribution concentrated on @D.

Notice that the right-hand sides of (61) and (62) make sense at every point of the
domain  where the level set function � is sufficiently smooth, giving rise to a
natural extension of these quantities from the boundary @D to a local neighborhood.

Assume now that a sufficiently smooth flow field V.x; t/ is given and that a shape
D is represented by the continuously differentiable level set function � with jr�j ¤
0 at the boundary of the shape. Then, the deformation of the shape due to the flow
field V.x; t/ in the level set framework can be obtained as follows.

Since the velocity fields are assumed to be sufficiently smooth, a boundary point
x remains at the boundary of @D.t/ during the evolution of the shape. Let �.x; t/
be the set of level set functions describing the shape at every time of the evolution.
Differentiating �.x; t/ D 0 with respect to t yields

@�

@t
Cr� � dx

dt
D 0: (64)

Identifying V.x; t/ to dx
dt

and using (61), one arrives at

@�

@t
C jr�jV.x; t/ � n.x; t/ D 0: (65)

Defining the normal velocity as

F.x; t/ D V.x; t/ � n.x; t/ (66)
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the Hamilton–Jacobi-type equation for describing the evolution of the level set
function follows as

@�

@t
C F.x; t/ � jr�j D 0: (67)

5 Shape Evolution Driven by Geometric Constraints

It is possible to define a shape evolution without any data misfit functional being
involved. This type of shape evolution often occurs in applications of image
processing or computational physics. For example, starting from an initial shape,
the goal might be to define a shape evolution which aims at reducing the cost of
the image with respect to one or more geometric quantities, typically encoded in
some geometric cost functional. Based on the theory developed in Sect. 4, some
useful expressions will be derived here for calculating such descent directions. The
then obtained geometrically driven shape evolutions can also be used for adding
additional constraints or regularization during the shape evolution driven by data
misfit, if desired. This is achieved practically by adding appropriate geometrical cost
terms to the data misfit term and calculating descent directions for this combined
cost.

Penalizing Total Length of Boundaries

Assume that � D @D is a smooth submanifold in . The total length (or surface)
of � is defined as

Jlen�.D/ D
Z
�

d� D
Z


ı@D.x/ dx: (68)

Applying a flow by a smooth vector field V.x; t/, Eq. (55) yields with � D 1 an
expression for the corresponding change in the cost (68) which is

dJlen�.D;V/ D
Z
�

� hV.0/;ni d�: (69)

If the shape D is represented by a continuously differentiable level set function �,
an alternative derivation can be given. First, using (63), write (68) in the form

Jlen�.D.�// D
Z


ı.�/jr�.x/j dx: (70)
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Perturbing now � ! � C  , formal calculation (see, e.g., [92]) yields that the cost
functional is perturbed by

�
@Jlen�

@�
;  

�
D
Z


ı.�/ .x/r � r�jr�j dx: (71)

Therefore, using (62), it can be identified

@Jlen�

@�
D ı.�/r � r�jr�j D ı.�/� (72)

where � is now an extension (defined, e.g., by (62)) of the local curvature to
a small neighborhood of � . For both representations (69) and (72), minimizing
the cost by a gradient method leads to curvature-driven flow equations, which is
V.0/ D ��n. This curvature-dependent velocity has been widely used to regularize
the computation of motion of fronts via the level set method [48], as well in the field
of image processing [70], and has been introduced also recently for regularizing
inverse problems; see, e.g., [41, 79, 82].

Two popular concepts related to the above shape evolution are the Mumford–
Shah and the total variation functionals, which are frequently employed in image
segmentation applications. This relationship is briefly described in the following.

The popular Mumford–Shah functional for image segmentation [70] contains,
in addition to a fidelity term inside each region of the segmented image, a term
which encourages to shorten total curve length of the interfaces. This latter term can
be written for piecewise constant binary media (see section “The Basic Level Set
Formulation for Binary Media” with constant profiles in each region) as

JMS D
Z


jrH.�/j dx: (73)

Taking into account that rH.�/ D H 0.�/r� D ı.�/jr�jn; it is seen that JMS D
Jlen�.D.�// as given in (70), which again yields the curvature-driven flow Eq. (72).
For more details, see [26, 38, 95].

The total variation (TV) functional, on the other hand, can be written, again for
the situation of piecewise constant binary media, as

JTV D
Z


jrb.�/j dx D jbe � bi j
Z


jrH.�/j dx: (74)

Therefore, it coincides with the Mumford–Shah functional JMS up to the factor
jbe � bi j. Roughly it can be said that the TV functional (74) penalizes the product
of the jump between different regions and the arc length of their interfaces, whereas
the Mumford–Shah functional (73) penalizes only this arc length. Refer for more
information to [25, 38].
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Penalizing Volume or Area of Shape

It is again assumed that � D @D is a smooth submanifold in . Define the total
area (volume) of D as

JvolD.D/ D
Z
D

dx D
Z


	D.x/ dx; (75)

where the characteristic function 	D W  ! f0; 1g for a given shape D is defined
as

	D.x/ D
�

1; x 2 D
0; x 2 nD: (76)

Applying a flow by a smooth vector field V.x; t/, Eqs. (50) and (51) yield with � D 1

dJvolD.D;V/ D
Z
D

divV.0/dx D
Z
�

hV.0/;ni d�: (77)

Again, if the shape D is represented by a continuously differentiable level set
function �, an alternative derivation can be given. First, using the Heaviside function
H , let us write (75) in the form

JvolD.D/ D
Z


H.�/ dx: (78)

Perturbing as before � ! � C  , it follows

�
@JvolD

@�
;  

�
D
Z


ı.�/ .x/ dx (79)

such that

@JvolD

@�
D ı.�/: (80)

In both formulations, a descent flow is given by a motion with constant speed in the
negative direction of the normal n to the boundary � , which is V.0/ D �n.

6 Shape Evolution Driven by DataMisfit

An essential goal in the solution of inverse problems is to find an image which is able
to reproduce the measured data in a certain sense. As far as interfaces are concerned,
this gives rise to the need of finding descent directions for shape evolution with
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respect to the data misfit functional. In the following, some concepts are presented
which aim at providing these descent directions during the shape evolution. These
concepts can be combined arbitrarily with the above-discussed concepts for shape
evolution driven by geometric terms.

Shape Deformation by Calculus of Variations

Historically, the first approach for applying a level set technique for solving an
inverse problem in [82] has used concepts from the calculus of variations for
calculating descent directions for the data misfit functional. In many applications,
this approach is still a very convenient way of deriving evolution laws for shapes.
In the following, the main ideas of this approach are briefly reviewed, following
[82]. The goal is to obtain expressions for the deformation of already existing
shapes according to a normal velocity field defined at the boundary of these shapes.
Topological changes are not formally included in the consideration at this stage
(even though they occur automatically when implementing the discussed schemes
in a level set-based numerical framework). The formal treatment of topological
changes is a topic of active current research and will be discussed briefly in
section “Topological Derivatives.”

Least Squares Cost Functionals and Gradient Directions
Typically, appropriate function spaces are needed for defining and calculating
appropriate descent directions with respect to the data misfit cost functional.
Without being very specific, in the following, the general notation P is used for
denoting the space of parameters b and, if not otherwise specified, Z for denoting
the space of measurements Qg. For simplicity, these function spaces are considered
being appropriately chosen Hilbert or vector spaces. Certainly, other types of spaces
can be used as well, which might lead to interesting variants of the described
concepts.

Consider now the least squares cost functional

J .b/ D 1

2
kR.b/k2

Z D
1

2
hR.b/; R.b/ iZ ; (81)

where h; iZ denotes the canonical inner product in data space Z. Assume that R.b/
admits the expansion

R.b C ıb/ D R.b/CR 0.b/ıb CO �kıbk2
P

	
; (82)

letting k kP be the canonical norm in parameter space P , for a sufficiently small
perturbation (variation) ıb 2 P . The linear operator R 0.b/ (if it exists) is often
called the Fréchet derivative of R. Plugging (82) into (81) yields the relationship

J .b C ıb/ DJ .b/C Re
˝
R 0.b/�R.b/; ıb

˛
P
CO �kıbk2

P

	
(83)
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where the symbol Re indicates the real part of the corresponding quantity. The
operator R 0.b/� is the formal adjoint operator of R 0.b/ with respect to spaces Z
and P :

D
R 0.b/�g; Ob

E
P
D
D
g; R 0.b/ Ob

E
Z

for all Ob 2 P; g 2 Z: (84)

The quantity

gradbJ D R 0.b/�R.b/ (85)

is called the gradient direction of J in b.
It is assumed that the operators R 0.b/ and R 0.b/� take into account the correct

interface conditions at @D, which is important when actually evaluating these
derivatives in a “direct” or in an “adjoint” fashion. In many practical applications,
the situation can occur that (formally) the fields need to be evaluated at interfaces
where jumps occur. In these situations, appropriate limits can be considered. Alter-
natively, the tools developed in section “Shape Sensitivity Analysis and the Speed
Method” can be applied there. The existence and special form of Fréchet derivatives
R 0.b/ (and the corresponding shape derivatives) for parameter distributions b with
discontinuities along interfaces are problem specific and beyond the scope of this
chapter. Refer to the cited literature, for example, [9, 15, 49, 53, 54, 58, 78]. In
many practical implementations, the interface @D is de facto replaced by a narrow
transition zone with smoothly varying parameters, in which case the interface
conditions disappear.

Change of bDue to Shape Deformations
Assume that every point x moves in the domain  a small distance y.x/ and that
the mapping x ! y.x/ is sufficiently smooth, such that the basic structure of the
shape D remains preserved. Then, the points located on the boundary � D @D will
move to the new locations x0 D xC y.x/, and the boundary � will be deformed into
the new boundary � 0 D @D0. Assume furthermore that the parameter distribution
in  has the special form (4), such that it will change as well. In the following,
the first goal is to quantify this change in the parameter distribution b.x/ due to an
infinitesimal deformation as described above.

Consider the inner product of ıb with a test function f

hıb; f i D
Z


ıb.x/f .x/ dx D
Z

symdiff.D;D0/

ıb.x/f .x/ dx; (86)

where the overline means “complex conjugate” and symdiff.D;D0/ D .D [
D0/n.D \D0/ is the symmetric difference of the sets D and D0 (see Fig. 8). Since
the difference inD andD0 is infinitesimal, the area integral reduces to a line integral.
Let n.x/ denote the outward normal to x. Then, the integral in (86) becomes
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dD

dD¢

x

x′ = x + y(x)

y(x)

b = be

b = bi

Fig. 8 Deformation of shapes using calculation of small variations

hıb; f i@D D
Z
ıD

�
bi.x/� be.x/

�
y.x/ �n.x/f .x/ ds.x/; (87)

where ds.x/ is the incremental arclength. Here it has been used that in the limit
ıb.x/ D bi .x/� be.x/ at the boundary point x 2 @D due to (4). It follows the result

ıb.x/ D $@D

�
.bi .x/� be.x// y.x/ �n.x/

�
(88)

where $@D is the n-dimensional restriction operator which restricts functions
defined in  to the boundary @D of the shape D (n D 2 or 3, usually). Therefore,
ıb.x/ is interpreted now as a surface measure on @D. Using the n-dimensional Dirac
delta distribution ı@D concentrated on the boundary @D of the shapeD, (88) can be
written in the form

ıb.x/ D .bi � be/ y.x/ � n.x/ ı@D.x/ (89)

which is a distribution defined on the entire domain but concentrated on @D where
it has the same strength as the corresponding surface measure. Although, strictly
speaking, they are different mathematical objects, they are identified in the following
for simplicity. Compare (87) also to the classical shape or domain derivative as, for
example, calculated in [49], focusing there on the effect of the infinitesimal change
in the boundary of a scatterer on the far-field pattern of a scattering experiment.

Variation of Cost Due to Velocity Field v.x/
A popular approach for generating small displacements y.x/ (as discussed in
section “Change of b Due to Shape Deformations”) for moving the boundary @D is
to assign to each point in the domain a velocity field v.x/ and to let the points x 2 
move a small artificial evolution time Œ0; � � with constant velocity v.x/. Then

y.x/ D v.x/�: (90)
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Plugging this into (89) for t 2 Œ0; � �, the corresponding change in the parameters
follows as

ıb.xI t/ D .bi � be/ v.x/ �n.x/t ı@D.x/: (91)

Plugging expression (91) into (83) and neglecting terms of higher than linear order
yields

J .b.t// �J .b.0// D Re
˝
gradbJ ; ıb.xI t/˛

P
(92)

D Re
˝
gradbJ ; .bi � be/ v.x/ � n.x/t ı@D.x/

˛
P

or, in the limit t ! 0, evaluating the Dirac delta distribution,

@J .b/

@t

ˇ̌
ˇ̌
tD0
D Re

Z
@D

gradbJ .bi � be/v.x/ �n.x/ds.x/; (93)

where the overline means “complex conjugate” and gradbJ is defined in (85).
Similar expressions will be derived further below using formal shape sensitivity
analysis. (Compare, e.g., for the situation of TM-waves, the expression (97)
calculated by using (93) with the analogous expressions (100) and (105) calculated
by using formal shape sensitivity analysis.)

If a velocity field v.x/ can be found such that @J .b/

@t

ˇ̌
ˇ
tD0

< 0, then it is expected

(for continuity reasons) that this inequality holds in a sufficiently small time interval
Œ0; � � and that therefore the total cost during the artificial flow will be reduced. This
will be the general strategy in most optimization type approaches for solving the
underlying inverse problem. See the brief discussion in section “Shape Evolution
and Shape Optimization.”

Notice that only the normal component of the velocity field

F.x/ D v.x/ �n.x/ (94)

at the boundary @D of the shape D is of relevance for the change in the cost
(compare the remarks made already in section “The Level Set Framework for Shape
Evolution”). This is because tangential components of v do not contribute to shape
deformations. In a parameterized way of thinking, they only “re-parameterize” the
existing boundary.

Example: Shape Variation for TM-Waves
An instructive example is given here in order to demonstrate the above concepts
for a practical application. Consider TM-waves in a typical imaging situation of
subsurface imaging or of microwave breast screening as in the case study of
section “Example 1: Microwave Breast Screening.” Assume for simplicity that the
basic level set model of section “The Basic Level Set Formulation for Binary Media”
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is applied here. The cost functional measuring the mismatch between calculated data
uM ŒD� corresponding to the shape D and physically measured data Qg is defined as

J .D/ D 1

2
kuM ŒD� � Qgk2

L2.M/ ; (95)

where the calculated measurements uM are given as the electric field values u.x/
at the set of receiver locations M . Using a properly defined adjoint state z.x/ (see,
e.g., [30, 34, 71] for details on adjoint states), it can be shown by straightforward
calculation that R 0.b/�R.b/ takes the form

�
gradbJ

	
.x/ D u.x/z.x/; (96)

where u.x/ denotes the solution of the forward problem and gradbJ is defined as
in (85). Therefore, it follows that

@J .b/

@t

ˇ̌
ˇ̌
tD0

D Re

Z
@D

u.x/z.x/.bi � be/v.x/ �n.x/ds.x/; (97)

where it is used that the real part of a complex number and its complex conjugate
are identical. Similar expressions based on adjoint field calculations can be derived
for a large variety of applications; see, for example, [34, 39, 45, 71, 84, 89, 90].

Example: Evolution of Thin Shapes (Cracks)
Another application of this technique has been presented in [4,77] for finding cracks
in a homogeneous material from boundary data; see section “Example 3: Crack
Detection.” The evolution of cracks as defined in section “A Modification of the
Classical Level Set Technique for Describing Cracks or Thin Shapes” requires the
simultaneous consideration of two level set functions. Evolution of the first level
set function amounts to displacement of the thin region (crack) in the transversal
direction, whereas evolution of the second level set function describes the process
of crack growth or shrinkage in the longitudinal direction, which comes with the
option of crack splitting and merging. Descent directions for both level set functions
can be calculated by the following arguments presented above. It needs to be taken
into account, however, that, due to the specific construction of a crack with finite
thickness, deformation of the zero level set of the first level set function is associated
with a displacement of the crack boundary at two adjacent locations, which both
contribute to a small variation in the cost. See Fig. 9.

Assume that a small displacement is applied to the zero level set of the first level
set function defining S in the notation of section “A Modification of the Classical
Level Set Technique for Describing Cracks or Thin Shapes.” This is reflected by two
contributions to the least squares data misfit cost, one from the deformation of S�
in Fig. 9 and the other one from the deformation of SC in Fig. 9. It follows that a
descent velocity is now given as v.x/ D F'1.x/n.x/ with

F'1.x/ D �.bi � be/
�
gradbJ jSC � gradbJ jS�

�
on S; (98)
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Fig. 9 Deformation of a thin
shape (crack) using calculus
of small variations

S −

S +

be

be

bi

with gradbJ being defined in (85). In (98), for each x 2 ��1 , two adjacent points
of gradbJ jSC and gradbJ jS� contribute to the value of F'1.x/ which can be
found in the normal direction to ��1 in x.

In a similar way, a descent direction with respect to the second level set function
�2 can be obtained. Its detailed derivation depends slightly on the way how the
crack tips are constructed in section “A Modification of the Classical Level Set
Technique for Describing Cracks or Thin Shapes,” where two alternative choices
are given. Overall, a descent velocity can be calculated following classical rules for
those points x of @B (i.e., for those points of the zero level set of �2) which satisfy
x 2 @B \ �ı�1

or, alternatively, x 2 @B \ ��1 . Then, the obtained velocity field
needs to be extended first to the remaining parts of @B and then to the rest of .
Notice that the specific form of gradbJ might be slightly different here from the
one given in (96) due to the slightly different PDE which might be involved here
(depending on the application). For more details, refer to [4, 77].

Shape Sensitivity Analysis and the SpeedMethod

In this section, an alternative technique is presented for formally defining shape
derivatives and modeling shape deformations driven by cost functionals. This
theory, called shape sensitivity analysis, is quite general and powerful, such that it is
used heavily in various applications. Only very few concepts of it can be mentioned
here which are employed when calculating descent directions with respect to data
misfit cost functionals.

The tools, as presented here, have been used and advanced significantly during
the last twenty years in the framework of optimal shape design [30,87]. Having this
powerful theory readily available, it is therefore quite natural that these methods
have been applied very early already to the applications of shape-based inverse
problems with level sets. The theory of this section is again mainly concentrated
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upon modeling in a formally accurate way the deformation of already existing
shapes. It does not incorporate topological changes. These will be discussed briefly
in section “Topological Derivatives.”

Example: Shape Sensitivity Analysis for TM-Waves
Again the situation of inverse scattering by TM-waves is considered here. The below
discussion closely follows the results presented in [64]. The main tools used here
are the material and shape derivative defined in section “The Material Derivative
Method.”

The cost functional measuring the mismatch between calculated data uM ŒD�
corresponding to the shape D and physically measured data Qg is defined by (95).
When perturbing the shape by a velocity field V.t; x/, the electric field at the (fixed)
probing line changes according to u ! u C u0, where u0 is the shape derivative
defined in section “The Material Derivative Method.” Plugging this into (95) and
neglecting terms of higher than linear order, it is verified that

dJ .D;V/ D Re

Z
M

u0.x/ .uM � Qg/.x/dx: (99)

Now, the shape derivative u0 can be calculated by first computing the material
derivative (also defined in section “The Material Derivative Method”) and then using
one of the relationships between the material derivative and the shape derivative (see
sections “The Material Derivative Method” and “Some Useful Shape Functionals”).
Using also here an adjoint state z, the Eulerian derivative can be characterized and
calculated as

dJ .D;V/ D Re

Z
�

.bint � bext/u.x/z.x/V.0; x/ �n d�: (100)

Notice that this is exactly the same result as we arrived at in (97). For more details,
refer to [64].

Shape Derivatives by a Min–Max Principle
In order to avoid the explicit calculation of material and shape derivatives of the
states with respect to the flow fields, an alternative technique can be used as reported
in [29, 30, 78]. It is based on a reformulation of the derivative of a shape functional
J .D/ with respect to time as the partial derivative of a saddle point (or a “min–
max”) of a suitably defined Lagrangian. In the following, the basic features of this
approach will be outlined, focusing in particular on the shape derivative for TM-
waves.

Let again the cost functional J .D.t// be defined as in (95) by

J .D.t// D 1

2
kuM ŒD.t/� � QgkL2.M/ : (101)
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The goal is to write J .D.t// in the form

J .D.t// D min
u

max
z

L .t; u; z/ (102)

for some suitably defined Lagrangian L .t; u; z/. Here and in the following, the
complex nature of the forward fields u and the adjoint fields z is (partly) neglected
in order to simplify notation (more rigorous expressions can be found in [78]). The
Lagrangian L .t; u; z/ takes the form

L .t; u; z/ D 1

2

Z
M

ˇ̌
ˇ̌
Z


�
�
x0	G12

�
x; x0	 u

�
x0	 dx0 � Qg.x/

ˇ̌
ˇ̌2 dx (103)

C Re

Z


�
u .x/ � uinc .x/ �

Z


�
�
x0	G22

�
x; x0	 u

�
x0	dx0

�
z.x/ dx:

Next, it can be shown that this Lagrangian has a unique saddle point denoted by
.u�; z�/, which is characterized by an optimality condition with respect to u and
z. In fact, the uniqueness follows from the well-posedness and uniqueness of the
solutions of the direct and adjoint state equations; see [31, 78]. The key observation
is now that

dJ

dt
D @

@t

�
min

u
max

z
L .t; u; z/

�
D @

@t
L .t; u�; z�/ (104)

which says that the time derivative of the original cost functional can be replaced
by the partial time derivative of a saddle point. Following these ideas, the result is
derived

dJ

dt
D Re

Z
�

.bint � bext/u.x/z.x/V.0/ �n d� (105)

which holds for TM-waves and which is identical to the previously derived
expressions (97) and (100).

Similar expressions (now involving expressions of the form ru.x/rz.x/ rather
than u.x/z.x/ at the interfaces) can be derived also for so-called TE-waves; see [78].
The above outlined min–max approach is in fact wide ranging and can be extended
to 3D vector scattering, geometrical regularizations, simultaneous searches of shape
and contrast, etc. It de facto applies as soon as one has well-posedness of the direct
and adjoint problems. For more details, refer to [29, 30, 78, 79].

Formal Shape Evolution Using the Heaviside Function

A third possibility for describing and modeling shape deformations driven by data
misfit (in addition to using calculus of variation as in section “Shape Deformation by
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Calculus of Variations” or shape sensitivity analysis as in section “Shape Sensitivity
Analysis and the Speed Method”) is the use of the characteristic function and formal
(basic) distribution theory. In contrast to the previous two techniques which first
calculate velocity fields in the normal direction to the interfaces and then move the
interfaces accordingly using a level set technique (or any other computational front
propagation technique), typically leading to a Hamilton–Jacobi-type formalism
(compare the remarks in section “The Level Set Framework for Shape Evolution”),
the method presented in the following does not explicitly use the concept of
velocity vector fields, but instead tries to design evolution laws directly for the
describing level set functions (thereby not necessarily leading to Hamilton–Jacobi-
type evolution laws).

Notice that many of the level set formulations presented in Sect. 3 give rise to
similar concepts as discussed in the following. On the other hand, typically also
the concepts discussed in sections “Shape Deformation by Calculus of Variations”
and “Shape Sensitivity Analysis and the Speed Method” can be translated, once
suitable velocity fields have been determined, into level set evolutions using the
various representations of Sect. 3. Details on how these evolution laws can be
established can be found in the literature cited in Sect. 3.

The formalism discussed in the following is in fact very flexible and quite easy
to handle if standard rules for calculations with distributions are taken into account.
Moreover, it often leads to very robust and powerful reconstruction algorithms.
Certainly, it also has some limitations: in the form presented here, it is mainly
applicable for “penetrable objects” with finite jumps in the coefficients between
different regions. This means that it does not generally handle inverse scattering
from impenetrable obstacles if very specific and maybe quite complicated boundary
conditions need to be taken into account at the scatterer surfaces. For those
applications, the theory based on shape sensitivity analysis is more appropriate.
Nevertheless, since many inverse scattering problems can be described in the form
presented in the following, possibly incorporating some finite jump conditions of the
forward and adjoint fields or their normal components across the interfaces (which
can be handled by slightly “smearing out” these interfaces over a small transition
zone), this theory based on formal distribution theory provides an interesting
alternative when deriving level set-based shape evolution equations for solving
inverse scattering problems.

The main idea of this technique is demonstrated by giving two examples
related to the test cases from sections “Example 1: Microwave Breast Screening”
and “Example 2: History Matching in Petroleum Engineering.”

Example: Breast Screening–Smoothly Varying Internal Profiles
In the example of breast screening as discussed in section “Example 1: Microwave
Breast Screening,” three level set functions and four different interior parameter
profiles need to be reconstructed from the given data simultaneously. Some of the
interior profiles are assumed to be constant, whereas others are smoothly varying.
In the following, the theory is developed under the assumption that all interior
parameter profiles are smoothly varying. The case of constant parameter profiles
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in some region is captured in the next section where a similar case is discussed for
the application of reservoir engineering.

Let R .b.�1; �2; �3; b1; b2; b3; b4// denote the difference between measured data
and data corresponding to the latest best guess .�1; �2; �3; b1; b2; b3; b4/ of level
set functions and interior profiles in the image model discussed in section “A
Modification of Color Level Set for Tumor Detection.” Then, the least squares data
misfit for tumor detection is given by

J .b.�1; �2; �3; b1; b2; b3; b4// D 1

2
kR .b.�1; �2; �3; b1; b2; b3; b4//k2 :

(106)
Introducing an artificial evolution time t for the above specified unknowns of the

inverse problem, the goal is to find evolution laws

d��

dt
D f�.x; t/; � D 1; : : : ; 3; (107)

db�
dt
D g�.x; t/; � D 1; : : : ; 4; (108)

such that the cost J decreases with increasing evolution time. With level set
functions and interior profiles evolving, also the cost will change, J D J .t/,
such that formally its time derivative can be calculated by using the chain rule

dJ

dt
D dJ

db

"
3X

�D1

@b

@��

d��

dt
C

4X
�D1

@b

@b�

db�
dt

#
(109)

D Re

*
gradbJ ;

3X
�D1

@b

@��
f� C

4X
�D1

@b

@b�
g�

+

P

:

Here, Re indicates to take the real part of the following complex quantity and
h ; iP denotes a suitable inner product in parameter space P , and gradbJ is
defined in (85). It is verified easily that in the situation of section “A Modification
of Color Level Set for Tumor Detection”

@b

@�1
D ı.�1/

�
� b1 C b2.1 �H.�2// (110)

CH.�2/
n
b3.1�H.�3//C b4H.�3/

o�
;

@b

@�2
D H.�1/ı.�2/ Œ�b2 C b3; .1 �H.�3//C b4H.�3/� ; (111)

@b

@�3
D H.�1/H.�2/ı.�3/ f�b3 C b4g ; (112)
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and

@b

@b1
D 1 �H.�1/; (113)

@b

@b2
D H.�1/.1 �H.�2//; (114)

@b

@b3
D H.�1/H.�2/.1 �H.�3//; (115)

@b

@b4
D H.�1/H.�2/H.�3/: (116)

Descent directions are therefore given by

f�.t/ D �C�.t/ Re

�
gradbJ

@b

@��

�
; � D 1; : : : ; 3; (117)

g�.t/ D � OC�.t/ Re

�
gradbJ

@b

@b�

�
; � D 1; : : : ; 4; (118)

with some appropriately chosen positive-valued speed factors C�.t/ and OC�.t/. An
efficient way to compute gradbJ is again to use the adjoint formulation; see (96)
and for more details [34, 52, 71].

Notice that is might be convenient to approximate the Dirac delta on the right-
hand side of (110)–(112) in the formulation of the level set evolution by either a
norrowband scheme or by a positive constant which allows for topological changes
in the entire computational domain driven by the least squares data misfit. For
more details, see the brief discussion in section “Shape Evolution and Shape
Optimization” and the slightly more detailed discussions held in [31,52]. Following
the latter scheme, one possible numerical discretization of the expressions (107) and
(108) in time t D t .n/, n D 0; 1; 2; : : :, then yields the update rules

�.nC1/
� D �.n/� � ıt .n/C�

�
t .n/
	
Re

�
gradbJ

@b

@��

�.n/
; � D 1; : : : ; 3; (119)

b.nC1/
� D b.n/� � ıt .n/ OC�

�
t .n/
	
Re

�
gradbJ

@b

@b�

�.n/
; � D 1; : : : ; 4: (120)

Example: Reservoir Characterization–Parameterized Internal Profiles
In the example of history matching in reservoir engineering as discussed in
section “Example 2: History Matching in Petroleum Engineering,” one level set
function and two interior parameter profiles need to be reconstructed from the
given data, where one interior parameter profile is assumed to be smoothly varying,
and the other one is assumed to overall follow a bilinear pattern. The case of
smoothly varying interior parameter profiles is completely analogous to the situation
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discussed in the previous section for microwave breast screening, such that it is
not considered here. In the following, the situation is treated where both interior
profiles follow a parameterized model with a certain set of given basis functions.
In the history matching application as well as in the microwave breast screening
application, the mixed cases of partly parameterized (e.g., with a constant or a
bilinear profile) and partly smooth profiles are straightforward to implement as
combinations of these two general approaches.

In this approach, it is assumed that the two internal profiles can be written in the
parameterized form

bi.x/ D
NiX
jD1

˛j aj .x/; be.x/ D
NeX
kD1

ˇkbk.x/; (121)

where aj and bk are the selected basis functions for each of the two domains D
and  � D, respectively. See the model discussed in section “A Modification of
Color Level Set for Reservoir Characterization.” In the inverse problem, the level
set function � and the weights ˛j and ˇk need to be estimated with the goal
to reproduce the measured data in some sense. In order to obtain an (artificial)
evolution of the unknown quantities �, ˛j , and ˇk , the following three general
evolution equations for the level set function and for the weight parameters are
formulated

d�

dt
D f .x; t; �;R/; (122)

d˛j

dt
D gj .t; �;R/; dˇk

dt
D hk.t; �;R/: (123)

In the same way as before, the goal is to define the unknown terms f , gj , and hk
such that the mismatch in the production data decreases during the evolution. For
this purpose, we reformulate the cost functional now as

J .b.�; ˛j ; ˇk// D 1

2
kR.b.�; ˛j ; ˇk//k2; (124)

where ˛j denotes the weight parameters for region D and ˇk denotes the weight
parameters for region  � D. Formal differentiation of this cost functional with
respect to the artificial time variable t yields, in a similar way as before, the descent
directions [35]

fSD.x/ D �C1	NB.�/.be � bi/gradbJ ; (125)

gjSD.t/ D �C.˛j /
Z


aj .1 �H.�//gradbJ dx; (126)

hkSD.t/ D �C.ˇk/
Z


bkH.�/gradbJ dx; (127)
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where C1, C.˛j /, and C.ˇk/ are again positive-valued speed factors which are used
for steering the speed of evolution for each of the unknowns �, ˛j , and ˇk individu-
ally. The narrowband function 	NB.�/ is introduced for computational convenience
and can be omitted if desired. For details on this narrowband formulation, see the
brief discussion held in section “Shape Evolution and Shape Optimization.”

7 Regularization Techniques for Shape Evolution Driven by
Data Misfit

Regularization of shape evolution can be achieved by additional additive or multi-
plicative terms in the cost functional which control geometric terms, as discussed
in Sect. 5. Alternatively, some form of regularization can be obtained by restricting
the velocity fields, level set updates, or level set functions to certain classes, often
without the need to introduce additional terms into the cost functional. Some of
these techniques are presented in the following.

Regularization by Smoothed Level Set Updates

In the binary case (see section “The Basic Level Set Formulation for Binary
Media”), a properly chosen level set function � uniquely specifies a shape DŒ��.
This can be described by a nonlinear operator … mapping level set functions to
parameter distributions

….�/.x/ D
�
bi .x/ ; �.x/ � 0;
be.x/ ; �.x/ > 0:

(128)

We obviously have the equivalent characterization

….�/.x/ D bi.x/	D.x/C be.x/.1 � 	D.x// (129)

where 	D is the characteristic function of the shapeD. The “level set-based residual
operator” T .�/ follows as

T .�/ D R.….�//: (130)

Formal differentiation by the chain rule yields

T 0.�/ D R 0.….�//…0.�/: (131)

The (formal) gradient direction of the least square cost functional

OJ .�/ D 1

2
kR.b.�//k2

Z (132)
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is then given by

grad OJ .�/ D T 0.�/�T .�/; (133)

where T 0.�/� is the L2-adjoint of T 0.�/. Moreover, formally it is calculated by
standard differentiation rules that

…0.�/ D .bi � be/ı.�/: (134)

Notice that, strictly speaking, the right-hand side of (131) is not an L2-function due
to the Delta distribution which is seen in (134). Nevertheless, in order to obtain
practically useful expressions in a straightforward way, it is convenient to proceed
with the formal considerations and, whenever necessary, to approximate the Dirac
delta distribution ı.�/ by a suitable L2-function; see the brief discussion on this
topic held in section “Shape Evolution and Shape Optimization.” For example, the
narrowband function 	�;d .x/ as defined in (151) can be used for that purpose. Then,

T 0.�/� D …0.�/�R 0.….�//�: (135)

Assuming now that � 2 W1./ with

W1./ D
�
� W � 2 L2./; r� 2 L2./;

@�

@�
D 0 at @


; (136)

the adjoint operator T 0.�/� needs to be replaced by a new adjoint operator T 0.�/ı
which maps back from the data space into this Sobolev space W1./. Using the
weighted inner product

hv;wiW1./ D ˛hv;wiL2./ C ˇhrv;rwiL2./ (137)

with ˛ � 1 and ˇ > 0 being carefully chosen regularization parameters, it follows

T 0.�/ı D .˛I � ˇ�/�1 T 0.�/�: (138)

The positive definite operator .˛I � ˇ�/�1 has the effect of mapping the L2

gradient T 0.�/�T .�/ from L2./ towards the smoother Sobolev space W1./.
In fact, different choices of the weighting parameters ˛ and ˇ visually have
the effect of “smearing out” the unregularized updates to a different degree. In
particular, high-frequency oscillations or discontinuities of the updates for the level
set function are removed, which yields shapes with more regular boundaries. Notice
that for � 2 W1./; the trace �

ˇ̌
�

(which is the zero level set) is only within
the intermediate Sobolev space W1=2.�/ due to the trace theorem. Therefore, the
“degree of smoothness” of the reconstructed shape boundaries � lies somewhere in
between L2.�/ and W1.�/.
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Sometimes it is difficult or inconvenient to apply the mapping (138) to the
calculated updates T 0.�/�T .�/. Then, an approximate version can be applied
instead which is derived next. Denote fr D T 0.�/ıT .�/ and f

d
D T 0.�/�T .�/.

fr can formally be interpreted as the minimizer of the cost functional

OJ .f / D ˛ � 1

2
kf k2

L2
C ˇ

2
krf k2

L2
C 1

2
kf � f

d
k2
L2
: (139)

In particular, the minimization process of (139) can be attempted by applying a
gradient method instead of explicitly applying .˛I � ˇ�/�1 to f

d
. The gradient

flow of (139) yields a modified heat (or diffusion) equation of the form

vt � ˇ�v D f
d
� ˛v for t 2 Œ0; � � (140)

v.0/ D f
d
;

with time-dependent heating term f
d
� ˛v, where Ov D v.�/ evolves towards the

minimizer fr of (139) for � ! 1. Practically, it turns out that a satisfactory
regularization effect is achieved if instead of (140) the simplified heat equation is
solved for a few time steps only:

vt � ˇ�v D 0 for t 2 Œ0; � � (141)

v.0/ D f
d
;

for � small, using Ov D v.�/ instead of fr as update. For more details, see [44].
The above-described regularization schemes only operate on the updates (or

forcing terms f in a time-dependent setting) but not on the level set function itself.
In particular, in the case that a satisfactory solution of the shape reconstruction
problem has already been achieved such that the data residuals become zero, the
evolution will stop (which sometimes is desirable). In the following subsection,
we will mention some alternative regularization methods where the evolution in
the above-described situation would continue until an extended cost functional
combining data misfit with additional geometric terms or with additional constraints
on the final level set functions is minimized.

Regularization by Explicitly Penalizing Rough Level Set Functions

Instead of smoothing the updates to the level set functions, additional terms can be
added to the data misfit cost functional which have the effect of penalizing certain
characteristics of the level set function. For example, a Tikhonov–Philips term for
the level set function can be added to (81), which will yield the minimization
problem

min
�

J .�/ D 1

2
kR.b.�//k2

Z C �.�/; (142)



Level Set Methods for Structural Inversion and Image Reconstruction 515

where k kZ denotes the canonical norm in the data space Z and where � denotes
some additional regularization term, typically involving the norm or semi-norm
in the space of level set functions, for example, �.�/ D kr�k2

L2
. A discussion

of different choices for �.�/ is provided in [93]. Alternative functionals could be
applied to the level set function �, as, for example, Mumford–Shah, total variation,
etc., which would allow for jumps in the representing level set functions.

Regularization by Smooth Velocity Fields

In the previous two subsections, regularization tools have been discussed, which are
directly linked to the level set formulation of shape evolution. In section “Regular-
ization by Smoothed Level Set Updates,” smoothing operators have been applied
to the updates of the level set functions (or forcing terms) which are considered
as being defined on the whole domain . The additional terms discussed in
section “Regularization by Explicitly Penalizing Rough Level Set Functions,” on
the other hand, will yield additional evolutions terms which typically have to be
applied directly to the describing level set functions during the shape evolution.

An alternative concept of regularizing shape evolution, which does not directly
refer to an underlying level set representation of the shapes, consists in choosing
function spaces for the normal velocity fields which drive the shape evolution. These
velocity fields are, as such, only defined on the zero level set, i.e., on the boundaries
of the given shapes (unless extension velocities are defined for a certain reason). For
example, the velocity field could be taken as an element of a Sobolev space W1.�/

equipped with the inner product

hv;wiW1.�/ D
Z
�

�
@v

@s

@w

@s
C vw

�
ds; (143)

where ds is the surface increment at the boundary. This leads to a postprocessing
operator applied to the gradient directions which are restricted to the boundary � .
The action of this postprocessing operator can be interpreted as mapping the given
velocity field from L2.�/ towards the smoother subspace W1.�/, much as it was
described in section “Regularization by Smoothed Level Set Updates” for the spaces
L2./ and W1./. For the above given norm (143), this is modeled by a Laplace–
Beltrami operator

� @
2v

@s2
C v D fd

ˇ̌
�
: (144)

Weighted versions of (143) and (144), with parameters ˛ and ˇ as in (137), can
be defined as well. These operators have the effect of smoothing the velocity
fields along the boundary � and therefore lead to regularized level set evolutions
if suitable extension velocities are chosen. Alternatively, diffusion processes along
the boundary can be employed for achieving a similar effect of smoothing velocity
fields. For a more detailed description of various norms and the corresponding
surface flows, see [17, 50, 87].



516 O. Dorn and D. Lesselier

Simple Shapes and Parameterized Velocities

An even stronger way of regularizing shape evolution is to restrict the describing
level set functions or the driving velocities to be members of finite-dimensional
function spaces spanned by certain sets of basis functions. As basis functions,
for example, polynomials, sinusoidal or exponential functions, or any other set
of linearly independent functions tailored to the specific inverse problem, can be
used. Closely related to this approach is also the strategy of restricting the shapes
(and thereby the shape evolution) to a small set of geometric objects, as, for
example, ellipsoids. See the discussion in [31] where evolution laws for a small
sample of basic shapes are derived. In a related manner, [11] considers a multiscale
multiregion level set technique which adaptively adjusts the support and number
of basis functions for the level set representation during the shape evolution. Also
related to this approach is the projection mapping strategy for shape velocities as
proposed in [12].

8 Miscellaneous On-Shape Evolution

Shape Evolution and Shape Optimization

Shape evolution and shape optimization are closely related. Assume given any
velocity function F.x/ D v.x/ �n.x/ pointing into a descent direction of the cost

J , such that @J .b/

@t

ˇ̌
ˇ
tD0

<0. Then, the cost will decrease in the artificial time

evolution during a sufficiently small time interval Œ0; � �. On the practical level, the
corresponding Hamilton–Jacobi-type evolution equation for the representing level
set function to be solved during the time interval Œ0; � � reads

@�

@t
C F jr�j D 0; (145)

where the variables .x; t/ have been dropped in the notation. Using, for example, a
straighforward time-discretization scheme with finite differences yields

�.�/ � �.0/
�

C F jr�j D 0: (146)

Interpreting �.nC1/ D �.�/ and �.n/ D �.0/ yields the iteration

�.nC1/ D �.n/ C �ı�.n/; �.0/ D �0; (147)

where � plays the role of the step size (which might be determined by a line-search
strategy) and where

ı�.n/ D F jr�.n/j (148)

for x 2 @D.
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In the level set optimization approach, on the other hand, updates v for a level
set function � ! � C v are sought which reduce a given cost. Take, for example,
the situation of the basic level set formulation described in section “The Basic Level
Set Formulation for Binary Media.” Analogously to section “Least Squares Cost
Functionals and Gradient Directions,” a small perturbation v then has the effect on
the cost

dJ

d�
v D dJ

db

db

d�
v D Re

�
gradbJ ;

db

d�
v

�
P

(149)

D Re
˝
gradbJ ; .be.x/ � bi .x//ı.�/v

˛
P
;

with gradbJ defined in (85). Apart from the term ı.�/, this yields similar
expressions for the discrete updates as (147) if choosingF jr�.n/j D � Re.be.x/�
bi.x//gradbJ .

In fact, the term ı.�/ is the one which causes the biggest conceptual problem
when interpreting the above scheme in an optimization framework. Notice that,
strictly speaking, the mapping from the level set function to the data (or to the
corresponding least square cost) is not differentiable in standard (e.g., L2) function
spaces. This is indicated by the appearance of this Dirac delta distribution ı.�/ in
(149), which is not an L2 function.

There are several ways to circumvent these difficulties, mainly aiming at
replacing this troublesome Delta distribution by a better behaved approximation of
it. First, in the narrowband approach, the Dirac delta is replaced by a narrow band
function 	�;d .x/ which yields

F
d
jr�.n/j.x/ D � Re

�
.be � bi / 	�;d .x/ gradbJ

	
for all x 2 : (150)

Here, 	�;d .x/ is an arbitrary positive-valued approximation to ı.�/ where the
subscript d indicates the degree of approximation. For example, it can be chosen
as

	�;d .x/ D
�

1 ; there exists x0 2  with jx � x0j < d and �.x0/ D 0
0 ; otherwise

(151)

which has the form of a “narrowband” function. Other approximations with
certain additional properties (e.g., on smoothness) are possible as well. This search
direction obviously also provides a descent flow for J . In fact, the term jr�.n/j
can also be neglected in (150), without losing the descent property of the resulting
flow, since formally it can be assumed that jr�.n/j > 0 (repeated recalculation of a
signed distance function would even enforce jr�.n/j D 1).

The Dirac delta could as well be replaced by a positive constant, say 1, which
yields another choice for a descent direction

Ftop.x/ D � Re .be � bi/ gradbJ for all x 2 : (152)
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This new direction Ftop.x/ has the property that it applies updates driven by data
sensitivities on the entire domain and thereby enables the creation of objects far
away from the actual zero level set by lowering a positive level set function until its
values arrive at zero. Certainly, at this moment when the level set function changes
at some points far away from the zero level set from positive to negative values,
a new object is created, and the descent property with respect to the cost needs to
be evaluated by introducing some concept evaluating the effect of object creation on
the data misfit. A formal way of doing so is briefly discussed in section “Topological
Derivatives” further below. The opposite effect that inside a given shape, with some
distance from the zero level set, the values of the level set function switch from
negative to positive values can also occur, in which case a hole is created inside
the shape. Also here, justification of this hole creation with respect to its effect on
the data misfit cost is needed and can be treated as well by the tools discussed in
section “Topological Derivatives.”

Notice that, in the more classical level set framework, these replacements of
the Dirac delta by functions with extended support can be interpreted as different
ways of defining extension velocities for the numerical level set evolution scheme.
Refer to [7, 19, 45, 47, 84] and the further references given there for numerical
approaches which are focusing on incorporating topology changes during the shape
reconstruction.

Once optimization schemes are considered for level set-based shape reconstruc-
tion, a rich set of classical optimization schemes can be adapted and applied to this
novel application. For example, Newton-type optimization techniques and second-
order shape derivatives can be defined and calculated. Strategies for doing so are
available in the literature; see, for example, [30]. Also quasi-Newton-, Gauss–
Newton-, or Levenberg–Marquardt-type schemes look promising in this framework.
Some related approaches can be found, for example, in [18, 50, 82, 90, 93]. There
exists a large amount of literature concerned with shape optimization problems
in various applications. One important application is, for example, the structural
optimal shape design problem, where the shape of a given object (a tool, bridge, tele-
graph pole, airplane wing, etc.) needs to be optimized subject to certain application-
specific constraints [3, 87, 96]. Another example is the optimization of a bandgap
structure or of maximal eigenvalues [46, 56, 75]. Some techniques from nonlinear
optimization which have been successful in those applications consequently have
also found their way into the treatment of shape inverse problems. For brevity, we
simply refer here to the discussions presented in [2, 18, 20, 43, 50, 82, 90, 93] and
the many further references therein. Alternative nonlinear algebraic reconstruction
techniques are employed in [34] and fixed point techniques in [22, 23].

Some Remarks on Numerical Shape Evolution with Level Sets

Not much is said here regarding numerical schemes for solving Hamilton–Jacobi
equations numerically or for solving the related optimality systems for shape inverse
problems numerically. In the framework of imaging science, various schemes have
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been developed and discussed extensively in the vast literature on numerical level
set evolution; see, for example, the books and reviews [74,85,91], to mention just a
few examples. These schemes include CFL conditions, re-initialization of level set
functions, signed distance functions, the fast marching method, higher-order upwind
schemes like ENO (essentially non-oscillating) and WENO (weighted essentially
non-oscillating), artificial viscosity solutions, numerical discretizations of mean
curvature terms in the level set framework, etc. All these techniques can be applied
when working on the treatment of inverse problems by a level set formulation.

It is emphasized here, however, that the application of image reconstruction
from indirect data comes with a number of additional problems and complications
which are due to the ill-posedness of the inverse problem and to the often high
complexity of the PDE (or IE) involved in the simulation of the data. Therefore, each
particular image reconstruction problem from indirect data requires a careful study
of numerical schemes which typically are tailor-made for the specific application.
Overall, a careful choice of numerical discretization schemes and regularization
parameters is indeed essential for a stable and efficient solution of the shape
reconstruction problem. Moreover, also design parameters of the experimental setup
(as, e.g., source and receiver locations) during the data collection have a significant
impact on the shape evolution later on in the reconstruction process. Judicious
choices here pay out in form of faster and more reliable reconstructions.

Speed of Convergence and Local Minima

Level set methods for shape reconstruction in inverse problems have initially
been claimed to suffer from slow convergence due to inherent time-discretization
constraints (the CFL condition) for the Hamilton–Jacobi equation and due to the (so
far) exclusive use of first-order shape derivatives. Also, it had been observed that
the shape evolution sometimes gets trapped in local minima, such that, for example,
some topological components are missed by the shape evolution when starting with
an inappropriate intitial guess.

However, these initial problems seem to have been resolved by now, and it
appears that level set methods have in fact become quite efficient and stable when
following certain straightforward guidelines and often even clearly outperform
many classical pixel-based reconstruction schemes when additional prior informa-
tion is available.

Firstly, the search for a good starting guess for the shape evolution can usually
be done by either specific preprocessing steps (as, e.g., in [98]) or by employing
more traditional search routines for only a few iteration steps. This helps avoiding
“long-distance evolutions” during the succeeding shape reconstruction process.

A similar effect is achieved by the incorporation of some form of “topological
derivative” in the shape evolution algorithm; see the brief discussion of this topic
in the following section “Topological Derivatives.” With this topological derivative
technique, “seed” objects occur during the evolution just at the correct locations to
be deformed in only few more iterations to their final shapes.
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The topological derivative (or an appropriately designed extension velocity
which has a similar effect) can also help in avoiding the shape evolution to become
trapped in local minima due to barriers of low sensitivity where velocity fields
become very small. Again by the effect of the creation of “seed” objects in areas
of higher sensitivity, the shape evolution can jump over these barriers and quickly
arrive at the final reconstruction. When an object is extended over an area of
low sensitivity, then, certainly, any reconstruction scheme has difficulties with
its reconstruction inside this zone, such that additional prior information might
be needed for arriving at a satisfactory result inside this zone of low sensitivity
(regardless which reconstruction technique is used).

In addition, also higher-order shape derivatives have been developed in the
literature (see, e.g., [30]) which can be used for deriving higher-order shape-based
reconstruction schemes. So far, however, their usefulness as part of a level set-based
shape inversion technique has been investigated only to a very limited extent.

Finally, in an optimization framework, line-search techniques can replace the
CFL condition for marching toward the sought minimum of a cost functional. This
can speed up convergence significantly.

Keeping these simple strategies in mind, level set-based reconstruction tech-
niques can in fact be much faster than more traditional schemes, in particular when
the contrast value of the parameters is assumed to be known and does not need to
be recovered simultaneously with the shape. For very ill-posed inverse problems,
traditional techniques need a large number of iterations to converge to the right
balance between correct volume and contrast value of the sought objects.

Topological Derivatives

Even though the level set formulation allows for automatic topology changes during
the shape evolution, the concepts on calculating descent directions derived so far do
not really apply at the moment when a topological change occurs. This is typically
no problem for the case of splitting and merging of shapes, since descent directions
are only calculated for discrete time steps, such that practically always never the
need arises to calculate a descent direction just when such a topological change
occurs. Still, from a theoretical perspective, it would be interesting to calculate
expressions also for topological derivatives which capture the splitting and merging
of shapes.

Another situation where topological changes occur in shape evolution is the
creation and annihilation of shape components. These situations also occur auto-
matically in the level set framework when a suitable extension velocity is chosen.
However, for these two situations, explicit expressions have been derived in the
literature which describe the impact of an infinitesimal topological change on the
least squares data misfit cost. These are generally known as topological derivatives.

The technique of topological derivatives has received much attention lately as
a direct way of image reconstruction. The idea in these approaches is usually to
calculate a value of the topological derivative (or topological sensitivity) at each
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Fig. 10 Creating a hole B� inside the shape D

location of the imaging domain and then adding small geometric objects at those
places where this topological sensitivity is the most negative.

Certain issues arise here, as, for example, the question on how large these new
objects should be, how close to each other or to the domain boundary they can
be, and which contrast value should be applied for the so created small object.
So far, in most cases, just one update in line with the above said is done, and
thereafter the image reconstruction is either stopped or continued by a shape
evolution of the so constructed set of objects. Nevertheless, the possibility of
iterative topological reconstruction techniques remains an interesting challenge.
Furthermore, the combination of simultaneous topological and shape evolution
seems to be a very promising approach which combines the flexibility of level set
evolution with the sensitivity driven creation and annihilation of shapes. This effect
occurs in practice automatically if appropriate extension velocities are chosen in the
regular level set shape evolution technique.

In the following, a more formal approach to topological changes is presented
which has the advantage of providing a stronger mathematical justification of
topological changes in the goal of data misfit reduction. The discussion will be based
on the general ideas described in the references [15,22,23,39,40,69,73,83,86]. The
topological derivative as described here aims at introducing either a small hole (let
us call it B�) into an existing shape D or at adding a new object (let us call it D�)
into the background material at some distance away from an already existing shape
D (see Fig. 10). We will concentrate in the following on the first process, namely,
adding a small hole into an existing shape. The complementary situation of creating
a new shape component follows the same guidelines.

Denote QD� D DnB�, where the index � indicates the “size” of the hole B� and
where it is assumed that the family of new holes defined by this index is “centered”
at a given point Ox. (In other words, one has Ox 2 B� � B�0 for any 0 < � < �0 <
1.) It is assumed that all boundaries are sufficiently smooth. Consider then a cost
functional J .D/ which depends on the shape D. The topological derivative DT is
defined as
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DT .Ox/ D lim
�#0

J . QD�/�J .D/

f .�/
; (153)

where f .�/ is a function which approaches zero monotonically, i.e., f .�/ ! 0 for
�! 0. With this definition, the asymptotic expansion follows

J . QD�/ DJ .D/C f .�/DT .Ox/C o.f .�//: (154)

Early applications of this technique (going back to [22, 23, 83]) were focusing on
introducing ball-shaped holes into a given domain in connection to Dirichlet or
Neumann problems for a Laplace equation. Here, the function f .�/ is mainly deter-
mined by geometrical factors of the created shape, and the topological derivative
J . QD�/ can be determined by solving one forward and one adjoint problem for
the underlying Laplace equation. In fact, for the Neumann problem for the Laplace
equation using ball-shaped holes, the relationship (153) takes the original form
introduced in [22, 23, 83] where f .�/ is just the negative of the volume measure
of the ball, i.e., f .�/ D ���2 in 2D and f .�/ D �4��3=3 in 3D. For more details
and examples, see [22]. In general, the details of the behavior of the limit in (153),
as well as of the function f .�/ if the limit exists, depend strongly on the shape of the
hole, on the boundary condition at the hole interface, and on the underlying PDE.

An attempt has been made recently to find alternative definitions for the
topological derivative. One such approach has been presented in [39,40,73]. Instead
of taking the point of view that a hole is “created,” the topological derivative is
modeled via a limiting process where an already existing hole gradually shrinks until
it disappears. For example, perturb the parameter � of an existing hole by a small
amount ı�. Then, the cost J . QD�/ is perturbed to J . QD�Cı�/, and the following
limit appears:

D�
T .Ox/ D lim

�!0

(
lim
ı�!0

J . QD�Cı�/�J . QD�/

f .�C ı�/ � f .�/

)
: (155)

In [40, 73] the authors show a relationship between (153) and (155), which
reads as

DT .Ox/ D D�
T .Ox/ D lim

�!0

1

f 0.�/jVnjDVn.�/; (156)

where DVn.�/ is a specific form of a shape derivative related to a velocity flow Vn in
the inward normal direction of the boundary @B� with speed jVnj. For more details,
refer to [40, 73]. A related link between shape derivative and topological derivative
has been demonstrated also in [22]. Recently published-related work on this topic is
briefly reviewed in [33].
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9 Case Studies

Case Study: Microwave Breast Screening

In section “Example 1: Microwave Breast Screening,” a complex breast model is
presented for tackling the problem of early breast cancer detection from microwave
data. Due to the high complexity of the model, also the reconstruction algorithm
is likely to show some complexity. In [52] a reconstruction technique is proposed
which uses five consecutive stages for the reconstruction. In the first stage, a pixel-
by-pixel reconstruction is performed for the interior fatty fibroglandular region,
with the skin region being (at this stage of the algorithm typically still incorrectly)
estimated and fixed. Once a pixel-based reconstruction has been achieved, an
initial shape for the fibroglandular region (the background being then fatty tissue)
is extracted from it, which then, in the succeeding stages, is evolved jointly
with the interior profiles, the skin region, and a possible tumor region until the
final reconstruction is achieved. An important feature of the algorithm is that in
different stages of the algorithm, different combinations of the unknowns (level set
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Fig. 11 First breast model of Fig. 1 with a disk-shaped tumor of diameter 8 mm situated deeply
inside the breast. Top left: reference permittivity profile (true tumor permittivity value "tum

s D
53). Top center: the result at the end of stage I (pixel-by-pixel reconstruction). Top right: final
reconstruction of level set-based structural inversion scheme (reconstructed permittivity value
"reconst

st D 50). Bottom: cross section through the correct tumor for constant y coordinate (the
dashed line represents the true permittivity profile, the solid line the pixel-by-pixel result, and the
dash-dotted line the structural inversion result). For more details, see [52]
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Fig. 12 Second breast model of Fig. 1 with a large fibroglandular tissue and a disk-shaped tumor
of 6 mm diameter. The images are arranged as in Fig. 11. The real static permittivity of the tumor
is "tumor

st D 52 and the reconstructed one is "
reconst

st D 49. See also the animated movie provided in
[52] which shows the shape evolution for this example

functions and interior parameter profiles) are evolved. For more details regarding
the reconstruction algorithm, refer to [52].

Here, the pixel-by-pixel reconstructions of stage I of the algorithm and the
final reconstructions using the complex breast model and a level set evolution are
presented for the three breast models introduced in Fig. 1 and compared with each
other in the cases where a small tumor is present. See Figs. 11–13. The upper left
image of each figure shows the real breast, the central upper image shows the pixel-
by-pixel reconstruction with our basic reconstruction scheme, and the upper right
image shows the level set-based reconstruction using the complex breast model
explained in section “Example 1: Microwave Breast Screening.” The bottom images
show cross sections through a horizontal line indicated in the upper row images and
passing through the tumor locations for the three images.

The data are created on a different grid than the one used for the reconstruction.
The corresponding signal-to-noise ratio is 26 dB. Forty antennas are used as sources
and as receivers, which are situated equidistantly around the breast. Microwave
frequencies of 1; 2; 3; 4, and 5 GHz are used for the illumination of the breast.

Even though the pixel-by-pixel reconstruction scheme is not optimized here, a
general problem of pixel-based reconstruction can be identified immediately from
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Fig. 13 Third breast model of Fig. 1 with a region of fibroglandular tissue intermixed with adipose
tissue. The hidden tumor is an ellipsoid of 5 � 6 mm (lengths of principle axes). The images are
displayed as in Fig. 11. The real static permittivity value of the tumor is "tumor

st D 50 and the
reconstructed one is "

reconst

st D 42. For more details, see [52]

the presented examples. The reconstructions tend to be oversmoothed, and the small
tumor can hardly be identified from the pixel-based reconstruction. By no means
it is possible to give any reliable estimate from these pixel-based reconstructions
for the contrast of the interior tumor values to the fibroglandular or fatty tissue
values of static relative permittivity. True, the level set reconstruction scheme takes
advantage of the fact that it closely follows the correct model for breast tissue. On
the other hand, this information is typically available (at least approximately) in
breast screening applications, such that better estimates of the tumor characteristics
can be expected when using such a level set-based complex breast model. This is
confirmed in the three reconstructions shown in the upper right images of Figs. 11–
13. For more details on this reconstruction scheme in microwave breast screening,
and for an animated movie showing the image evolution, see [52].

Case Study: HistoryMatching in Petroleum Engineering

Figure 14 shows the situation described in section “Example 2: History Matching
in Petroleum Engineering” of history matching from production data. The image
is composed of one zone of overall (approximately) bilinear behavior (a trend)
and another zone where the permeability is smoothly varying without any clearly
identifiable trend. The reconstruction follows this model and evolves simultaneously
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Fig. 14 Case study: history matching in reservoir engineering from production data. Left column
from top to bottom: reference model, final reconstruction, and evolution of parameter values ˇ1, ˇ2,
ˇ3 of the bilinear trend model; right column from top to bottom: initial guess, evolution of the least
squares data misfit and the initial (red solid), final (black dashed), and reference (black solid) total
water production rate inm3=s (i.e., the true and estimated measurements). The complete evolution
as an animated file and more details on the reconstruction scheme can be found in [35]

the region boundaries (i.e., the describing level set function), the three expansion
parameters of the bilinear profile in the sandstone lithofacie, as well as the smoothly
varying interior permeability profile in the shale region. The initial guess (upper
right image of the figure) is obtained from well-log measurements. The true image
is displayed in the upper left image of the figure and the final reconstruction in
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Fig. 15 Case study: crack reconstruction by an evolution of a thin shape. Top row from left
to right: initial guess, reconstruction after 1 and 2 iterations. Middle row: after 5, 10, and 20
iterations. Bottom row: final reconstruction after 25 iterations, real crack distribution, and evolution
of least squares data misfit with iteration index. The noise level is indicated in the bottom right
image by a horizontal dotted line. One iteration amounts to successive application of the updates
corresponding to the data of each source position in a single-step fashion

the center left image. The center right image shows the evolution of the data misfit
cost during the joint evolution of all model unknowns, the lower left image shows
the evolution of the three model parameters for the bilinear model in one of the
regions, and the lower right image shows the initial, true, and final production rate
profile over production time averaged over all boreholes (the data). A classical
pixel-based reconstruction scheme typically is not able to use different models
for the parameter profiles in the different regions and simultaneously reconstruct
the sharp region interfaces. For more details on this reconstruction scheme for
history matching in reservoir engineering, including animated movies for additional
numerical examples, see [35].

Case Study: Reconstruction of Thin Shapes (Cracks)

Figure 15 shows a situation of shape evolution for the reconstruction of thin shapes
(cracks) as described in section “Example 3: Crack Detection.” The numerical
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model presented in section “A Modification of the Classical Level Set Technique
for Describing Cracks or Thin Shapes” is used here, where both level set functions
describing the crack are evolved simultaneously driven by the least squares data
misfit term. It is seen clearly that also in this specific model, topological changes
occur automatically, when marching from a single initital (and somewhat arbitrary)
crack candidate (upper left image of the figure) towards the final reconstruction
showing three different crack components (bottom left image of the figure). The
true situation is displayed in the bottom middle image of the figure, which shows as
well three crack components which roughly are at the same location and of similar
shape as the reconstructed ones. The evolution of the data misfit cost over artificial
evolution time is displayed in the bottom right image of the figure. For more details
on this reconstruction scheme and additional numerical experiments, see [4].
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Abstract
The aim of this chapter is to review recent developments in the mathematical
and numerical modeling of anomaly detection and multi-physics biomedical
imaging. Expansion methods are designed for anomaly detection. They provide
robust and accurate reconstruction of the location and of some geometric features
of the anomalies, even with moderately noisy data. Asymptotic analysis of the
measured data in terms of the size of the unknown anomalies plays a key
role in characterizing all the information about the anomaly that can be stably
reconstructed from the measured data. In multi-physics imaging approaches,
different physical types of waves are combined into one tomographic process
to alleviate deficiencies of each separate type of waves while combining their
strengths. Multi-physics systems are capable of high-resolution and high-contrast
imaging. Asymptotic analysis plays a key role in multi-physics modalities
as well.

1 Introduction

Inverse problems in medical imaging are in their most general form ill-posed.
They literally have no solution [59, 86]. If, however, in advance one has additional
structural information or can supply missing information, then one may be able
to determine specific features about what one wishes to image with a satisfactory
resolution and accuracy. One such type of information can be that the imaging
problem is to find unknown small anomalies with significantly different parameters
from those of the surrounding medium. These anomalies may represent potential
tumors at an early stage.

Over the last few years, an expansion technique has been developed for the
imaging of such anomalies. It has proven useful in dealing with many medical
imaging problems. The method relies on deriving asymptotics. Such asymptotics
have been investigated in the case of the conductivity equation, the elasticity
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equation, the Helmholtz equation, the Maxwell system, the wave equation, the
heat equation, and the (modified) Stokes system. A remarkable feature of this
method is that it allows a stable and accurate reconstruction of the location and
of some geometric features of the anomalies, even with moderately noisy data. This
is because the method reduces the set of admissible solutions and the number of
unknowns. It can be seen as a kind of regularization in comparison with (nonlinear)
iterative approaches.

Another promising technique for efficient imaging is to combine into one
tomographic process different physical types of waves. Doing so, one alleviates
deficiencies of each separate type of waves while combining their strengths. Again,
asymptotic analysis plays a key role in the design of robust and efficient imaging
techniques based on this concept of multi-waves. In the last decade or so, work
on multi-physics imaging in biomedical applications has come a long way. The
motivation is to achieve high-resolution and high-contrast imaging.

The objective of this chapter is threefold: (1) to provide asymptotic expansions
for both internal and boundary perturbations that are due to the presence of small
anomalies, (2) to apply those asymptotic formulas for the purpose of identifying
the location and certain properties of the shape of the anomalies, and (3) to design
efficient inversion algorithms in multi-physics modalities.

Applications of the anomaly detection and multi-physics approaches in medical
imaging are described in some detail. In particular, the use of asymptotic analysis to
improve a multitude of emerging imaging techniques is highlighted. These imaging
modalities include electrical impedance tomography, ultrasound imaging, infrared
thermography, magnetic resonance elastography, impediography, magneto-acousto-
electrical tomography, magneto-acoustic tomography with magnetic induction, and
photo-acoustic imaging. They can be divided into three groups: (1) those using
boundary or scattering measurements such as electrical impedance tomography,
ultrasound, and infrared tomographies; (2) those using internal measurements such
as magnetic resonance elastography; and (3) those using boundary measurements
obtained from internal perturbations of the medium such as impediography and
magneto-acoustic imaging.

As it will be shown in this chapter, modalities from group (1) can only be used
for anomaly detection, while those from groups (2) and (3) can provide a stable
reconstruction of a distribution of physical parameters.

2 Electrical Impedance Tomography for Anomaly Detection

Physical Principles

Electrical impedance tomography uses low-frequency electric current to probe a
body; the method is sensitive to changes in electrical conductivity. By injecting
known amounts of current and measuring the resulting electrical potential field
at points on the boundary of the body, it is possible to “invert” such data to
determine the conductivity or resistivity of the region of the body probed by the
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currents. This method can also be used in principle to image changes in dielectric
constant at higher frequencies, which is why the method is often called “impedance”
tomography rather than “conductivity” or “resistivity” tomography. However, the
aspect of the method that is most fully developed to date is the imaging of
conductivity/resistivity. Potential applications of electrical impedance tomography
include determination of cardiac output, monitoring for pulmonary edema, and in
particular screening for breast cancer.

Recently, a commercial system called TS2000 (Mirabel Medical Systems Inc.,
Austin, TX) has been released for adjunctive clinical uses with X-ray mammography
in the diagnostic of breast cancer. The mathematical model of the TransScan can
be viewed as a realistic or practical version of the general electrical impedance
system. In the TransScan, a patient holds a metallic cylindrical reference electrode,
through which a constant voltage of 1–2.5 V, with frequencies spanning 100 Hz–
100 KHz, is applied. A scanning probe with a planar array of electrodes, kept at
ground potential, is placed on the breast. The voltage difference between the hand
and the probe induces a current flow through the breast, from which information
about the impedance distribution in the breast can be extracted.

The use of asymptotic analysis yields a rigorous mathematical framework for the
TransScan. See [30,88] for a detailed study of this electrical impedance tomography
system.

Mathematical Model

Let be a smooth bounded domain in R
d ; d D 2 or 3 and let �x denote the outward

normal to @ at x. Suppose that the conductivity of  is equal to 1. Let D denote
a smooth anomaly inside  with conductivity 0 < k ¤ 1 < C1. The voltage
potential in the presence of the set D of conductivity anomalies is denoted by u. It
is the solution to the conductivity problem

8̂
ˆ̂̂<
ˆ̂̂̂
:

r � �	. n D/C k	.D/	ru D 0 in ;

@u

@�

ˇ̌
ˇ̌
@

D g
�
g 2 L2.@/;

Z
@

g d
 D 0

�
;Z

@

u d
 D 0;

(1)

where 	.D/ is the characteristic function of D.
The background voltage potential U in the absence of any anomaly satisfies

8̂
ˆ̂̂<
ˆ̂̂̂
:

�U D 0 in ;

@U

@�

ˇ̌
ˇ̌
@

D g;Z
@

U d
 D 0:

(2)
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LetN.x; z/ be the Neumann function for�� in corresponding to a Dirac mass
at z. That is, N is the solution to

8<
:
��xN.x; z/ D ız in ;
@N

@�x

ˇ̌
ˇ
@
D � 1

j@j ;
Z
@

N.x; z/ d
.x/ D 0 for z 2 : (3)

Note that the Neumann function N.x; z/ is defined as a function of x 2  for each
fixed z 2 :

For B a smooth bounded domain in R
d and 0 < k ¤ 1 < C1 a conductivity

parameter, let Ov D Ov.B; k/ be the solution to

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

�Ov D 0 in R
d n B;

�Ov D 0 in B;

Ovj� � OvjC D 0 on @B;

k
@Ov
@�

ˇ̌
ˇ̌
�
� @Ov
@�

ˇ̌
ˇ̌
C
D 0 on @B;

Ov.�/ � � ! 0 as j�j ! C1:

(4)

Here, one denotes

vj˙.�/ WD lim
t!0C

v
�
� ˙ t��

	
; � 2 @B;

and

@v

@��

ˇ̌
ˇ̌
˙
.�/ WD lim

t!0C

˝rv
�
� ˙ t��

	
; ��
˛
; � 2 @B;

if the limits exist, where �� is the outward unit normal to @B at � and h; i is the scalar
product in R

d . For ease of notation, the dot will be sometimes used for the scalar
product in R

d .
Recall that Ov plays the role of the first-order corrector in the theory of homoge-

nization [79].

Asymptotic Analysis of the Voltage Perturbations

In this section, an asymptotic expansion of the voltage potentials in the presence
of a diametrically small anomaly with conductivity different from the background
conductivity is provided.

The following theorem gives asymptotic formulas for both boundary and internal
perturbations of the voltage potential that are due to the presence of a conductiv-
ity anomaly.
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Theorem 1 (Voltage perturbations). Suppose that D D ıB C z; ı being the
characteristic size of D, and let u be the solution of (1), where 0 < k ¤ 1 < C1.
Denote by U the background solution, that is, the solution of (2).

(i) The following asymptotic expansion of the voltage potential on @ holds for
d D 2; 3:

u.x/ 	 U.x/ � ıdrU.z/M.k;B/rzN.x; z/: (5)

Here, N.x; z/ is the Neumann function, that is, the solution to (3), and

M.k;B/ D �mpq

	d
p;qD1 is the polarization tensor given by

M.k;B/ WD .k � 1/
Z
B

rOv.�/ d�; (6)

where Ov is the solution to (1).
(ii) Let w be a smooth harmonic function in . The weighted boundary measure-

ments IwŒU � satisfies

IwŒU � WD
Z
@

.u�U /.x/@w

@�
.x/ d
.x/ 	 �ıdrU.z/ �M.k;B/rw.z/: (7)

(iii) The following inner asymptotic formula holds:

u.x/ 	 U.z/C ı Ov
�x � z

ı

�
� rU.z/ for x near z: (8)

The inner asymptotic expansion (8) uniquely characterizes the shape and the
conductivity of the anomaly. In fact, suppose for two Lipschitz domains B and B 0
and two conductivities k and k0 that Ov.B; k/ D Ov.B 0; k0/ in a domain englobing B
and B 0, then using the jump conditions satisfied by Ov.B; k/ and Ov.B 0; k0/, one can
easily prove that B D B 0 and k D k0.

The asymptotic expansion (5) expresses the fact that the conductivity anomaly
can be modeled by a dipole far away from z. It does not hold uniformly in . It
shows that, from an imaging point of view, the location z and the polarization tensor
M of the anomaly are the only quantities that can be determined from boundary
measurements of the voltage potential, assuming that the noise level is of order
ıdC1. It is then important to precisely characterize the polarization tensor and derive
some of its properties, such as symmetry, positivity, and isoperimetric inequalities
satisfied by its elements, in order to develop efficient algorithms for reconstructing
conductivity anomalies of small volume.

Some important properties of the polarization tensor are listed in the next
theorem.
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Theorem 2 (Properties of the polarization tensor). For 0 < k ¤ 1 < C1,

let M D M.k;B/ D �
mpq

	d
p;qD1 be the polarization tensor associated with the

bounded domain B in R
d and the conductivity k. Then

(i) M is symmetric.
(ii) If k > 1, then M is positive definite, and it is negative definite if 0 < k < 1.

(iii) The following isoperimetric inequalities for the polarization tensor

8̂
<̂
ˆ̂:

1

k � 1
trace.M/ �

�
d � 1C 1

k

�
jBj;

.k � 1/ trace.M�1/ � d � 1C k
jBj ;

(9)

hold, where trace denotes the trace of a matrix and jBj is the volume of B .

The polarization tensorM can be explicitly computed for disks and ellipses in the
plane and balls and ellipsoids in three-dimensional space. See [25, pp. 81–89]. The
formula of the polarization tensor for ellipses will be useful here. LetB be an ellipse
whose semiaxes are on the x1- and x2-axes and of lengths a and b, respectively.
Then,M.k;B/ takes the form

M.k;B/ D .k � 1/jBj

0
B@
aC b
aC kb 0

0
aC b
b C ka

1
CA : (10)

Formula (5) shows that from boundary measurements, one can always represent
and visualize an arbitrary-shaped anomaly by means of an equivalent ellipse of
center z with the same polarization tensor. Further, it is impossible to extract
the conductivity from the polarization tensor. The information contained in the
polarization tensor is a mixture of the conductivity and the volume. A small anomaly
with high conductivity and a larger anomaly with lower conductivity can have the
same polarization tensor.

The bounds (9) are known as the Hashin–Shtrikman bounds. By making use of
these bounds, size and thickness estimations of B can be obtained. An inclusion
whose trace of the associated polarization tensor is close to the upper bound must
be infinitely thin [40].

Numerical Methods for Anomaly Detection

In this section, one applies the asymptotic formula (5) for the purpose of identifying
the location and certain properties of the shape of the conductivity anomalies. Two
simple fundamental algorithms that take advantage of the smallness of the anoma-
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lies are singled out: projection-type algorithms and multiple signal classification
(MUSIC)-type algorithms. These algorithms are fast, stable, and efficient.

Detection of a Single Anomaly: A Projection-Type Algorithm
One briefly discusses a simple algorithm for detecting a single anomaly. The reader
can refer to [31,73] for further details. The projection-type location search algorithm
makes use of constant current sources. One wants to apply a special type of current
that makes rU constant inD. The injection current g D a � � for a fixed unit vector
a 2 R

d yields rU D a in .
Assume for the sake of simplicity that d D 2 andD is a disk. Set

w.y/ D �.1=2 / log jx � yj for x 2 R
2n;y 2  :

Since w is harmonic in , then from (7) to (10), it follows that

IwŒU � 	 .k � 1/jDj
 .k C 1/

.x � z/ � a
jx � zj2 ; x 2 R

2n : (11)

The first step for the reconstruction procedure is to locate the anomaly. The
location search algorithm is as follows. Take two observation lines †1 and †2

contained in R
2n given by

†1 WD a line parallel to a;

†2 WD a line normal to a:

Find two points Pi 2 †i; i D 1; 2; so that

IwŒU �.P1/ D 0; IwŒU �.P2/ D max
x2†2

jIwŒU �.x/j :

From (11), one can see that the intersecting point P of the two lines

…1.P1/ WD fx j a � .x � P1/ D 0g; (12)

…2.P2/ WD fx j .x � P2/ is parallel to ag (13)

is close to the center z of the anomalyD W jP � zj D O.ı2/.
Once one locates the anomaly, the factor jDj.k � 1/=.k C 1/ can be estimated.

As it has been said before, this information is a mixture of the conductivity and the
volume. A small anomaly with high conductivity and larger anomaly with lower
conductivity can have the same polarization tensor.

An arbitrary-shaped anomaly can be represented and visualized by means of an
ellipse or an ellipsoid with the same polarization tensor. See Fig. 1.
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Fig. 1 Detection of the location and the polarization tensor of a small arbitrary-shaped anomaly
by a projection-type algorithm. The shape of the anomaly is approximated by an ellipse with the
same polarization tensor

We refer the reader to [57] for a discussion on the limits of the applicability of
the projection-type location search algorithm and the derivation of a second efficient
method, called the effective dipole method.

Detection of Multiple Anomalies: A MUSIC-Type Algorithm
Consider m well-separated anomalies Ds D ıBs C zs (these are a fixed distance
apart), with conductivities ks , s D 1; : : : ; m. Suppose for the sake of simplicity that
all the domains Bs are disks. Let yl 2 R

2n for l D 1; : : : ; n denote the source
points. Set

Uyl D wyl WD �.1=2 / log jx � yl j for x 2 ; l D 1; : : : ; n:

The MUSIC-type location search algorithm for detecting multiple anomalies is as
follows. For n 2 N sufficiently large, define the response matrix A D .Al l 0/nl;l 0D1 by

All 0 D Iwyl
ŒUyl0 � WD

Z
@

.u � Uyl0 /.x/
@wyl
@�

.x/ d
.x/ :

Expansion (7) yields

All 0 	 �
mX
sD1

2.ks � 1/jDsj
ks C 1

rUyl0 .zs/rUyl .zs/ :

Introduce

g.x/ D �Uy1.x/; : : : ; Uyn.x/
	�
;

where v� denotes the transpose of the vector v.
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Lemma 1 (MUSIC characterization of the range of the response matrix).
There exists n0 > dm such that for any n > n0, the following characterization
of the location of the anomalies in terms of the range of the matrix A holds:

g.x/ 2 Range.A/ if and only if x 2 fz1; : : : ; zmg : (14)

The MUSIC-type algorithm to determine the location of the anomalies is as
follows. Let Pnoise D I � P , where P is the orthogonal projection onto the range
of A. Given any point x 2 , form the vector g.x/. The point x coincides with the
location of an anomaly if and only if Pnoiseg.x/ D 0. Thus, one can form an image
of the anomalies by plotting, at each point x, the cost function

WMU.x/ D 1

jjPnoiseg.x/jj :

The resulting plot will have large peaks at the locations of the anomalies.
Once one locates the anomalies, the factors jDsj.ks � 1/=.ks C 1/ can be

estimated from the significant singular values of A.

Bibliography and Open Questions

Part (i) in Theorem 1 was proven in [21, 44, 51]. The proof in [21] is based on a
decomposition formula of the solution into a harmonic part and a refraction part
first derived in [61]. Part (iii) is from [28]. The Hashin–Shtrikman bounds for the
polarization tensor were proved in [43,77]. The projection algorithm was introduced
in [31, 73]. The MUSIC algorithm was originally developed for source separation
in signal theory [94]. The MUSIC-type algorithm for locating small conductivity
anomalies from the response matrix was first developed in [38]. The strong relation
between MUSIC and linear sampling methods was clarified in [16]. The results of
this section can be generalized to the detection of anisotropic anomalies [60].

As it has been said before, it is impossible to extract separately from the detected
polarization tensor information about the material property and the size of the
anomaly. However, if the measurement system is very sensitive, then making use
of higher-order polarization tensors yields such information. See [25] for the notion
of the higher-order polarization tensors.

One of the most challenging problems in anomaly detection using electrical
impedance tomography is that in practical measurements, one usually lacks exact
knowledge of the boundary of the background domain. Because of this, the
numerical reconstruction from the measured data is done using a model domain
that represents the best guess for the true domain. However, it has been noticed that
an inaccurate model of the boundary causes severe errors for the reconstructions. An
elegant and original solution toward eliminating the error caused by an incorrectly
modeled boundary has been proposed and implemented numerically in [69]. As
nicely shown in [67], another promising approach is to use multifrequency data.
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The anomaly can be detected from a weighted frequency difference of the measured
boundary voltage perturbations. Moreover, this method eliminates the need for
numerically simulated background measurements at the absence of the conductivity
anomaly. See [58, 67].

3 Ultrasound Imaging for Anomaly Detection

Physical Principles

Ultrasound imaging is a noninvasive, easily portable, and relatively inexpensive
diagnostic modality which finds extensive clinical use. The major applications
of ultrasound include many aspects of obstetrics and gynecology involving the
assessment of fetal health, intra-abdominal imaging of the liver and kidney, and
the detection of compromised blood flow in veins and arteries.

Operating typically at frequencies between 1 and 10 MHz, ultrasound imaging
produces images via the backscattering of mechanical energy from interfaces
between tissues and small structures within tissue. It has high spatial resolution,
particularly at high frequencies, and involves no ionizing radiation. The weaknesses
of the technique include the relatively poor soft tissue contrast and the fact that
gas and bone impede the passage of ultrasound waves, meaning that certain organs
cannot easily be imaged. However, ultrasound imaging is a valuable technique for
anomaly detection. It can be done in the time domain and the frequency domain.

Mathematical models for acoustical soundings of biological media involve the
Helmholtz equation in the frequency domain and the scalar wave equation in the
time domain.

Asymptotic Formulas in the Frequency Domain

Let k and � be positive constants. With the notation of section “Asymptotic Analysis
of the Voltage Perturbations,” � is the compressibility of the anomalyD and k is its
volumetric mass density. The scalar acoustic pressure u generated by the Neumann
data g in the presence of the anomalyD is the solution to the Helmholtz equation:

8̂
<
:̂
r � �	 �nD	C k	.D/	ruC !2.	

�
nD	C �	.D//u D 0 in ;

@u

@�
D g on @;

(15)

while the background solution U satisfies

8̂
<
:̂
�U C !2U D 0 in ;

@U

@�
D g on @:

(16)
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Here, ! is the operating frequency. A relevant boundary data g is the normal
derivative of a plane wave ei!x � � , with the wavelength � WD 2�=!, traveling in the
direction of the unit vector � .

Introduce the Neumann function for � ��C !2
	

in  corresponding to a Dirac
mass at z. That is, N! is the solution to

8̂
<
:̂
� ��x C !2

	
N!.x; z/ D ız in ;

@N

@�x
j@ D 0 on @:

(17)

Assuming that !2 is not an eigenvalue for the operator �� in L2./ with
homogeneous Neumann boundary conditions, one can prove, using the theory of
relatively compact operators, existence and uniqueness of a solution to (15) at least
for ı small enough [95]. Moreover, the following asymptotic formula holds.

Theorem 3 (Pressure perturbations). Let u be the solution of (15) and let U be
the background solution. Suppose that D D ıB C z; with 0 < .k; �/ ¤ .1; 1/ <
C1. Suppose that !ı � 1.

(i) For any x 2 @,

u.x/ 	 U.x/ � ıd .rU.z/ �M.k;B/rzN!.x; z/

C!2.� � 1/jBjU.z/N!.x; z/
	
; (18)

where M.k;B/ is the polarization tensor associated with B and k.
(ii) Let w be a smooth function such that

�
�C !2

	
w D 0 in . The weighted

boundary measurements IwŒU; !� satisfy

IwŒU; !� WD
Z
@

.u � U /.x/@w

@�
.x/ d
.x/

	 �ıd �rU.z/ �M.k;B/rw.z/C !2.� � 1/jBjU.z/w.z/	 :
(19)

(iii) The following inner asymptotic formula holds:

u.x/ 	 U.z/C ı Ov
�x � z

ı

�
� rU.z/ for x near z; (20)

where Ov is the solution to (1).

Compared to the conductivity equation, the only extra difficulty in establishing
asymptotic formulas for the Helmholtz equation (15) as the size of the acoustic
anomaly goes to zero is that the equations inside and outside the anomaly are not
the same.
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Asymptotic Formulas in the Time Domain

Suppose that � D 1. Consider the initial boundary value problem for the (scalar)
wave equation

8̂
ˆ̂<
ˆ̂̂:

@2
t u � r �

�
	
�
nD	C k	.D/	ru D 0 in T ;

u.x; 0/ D u0.x/; @tu.x; 0/ D u1.x/ for x 2 ;
@u

@�
D g on @T ;

(21)

where T < C1 is a final observation time, T D ��0; T Œ; and @T D
@��0; T Œ. The initial data u0; u1 2 C1 �


	

and the Neumann boundary data
g 2 C1.0; T I C1.@// are subject to compatibility conditions.

Define the background solution U to be the solution of the wave equation in the
absence of any anomalies. Thus, U satisfies

8̂
ˆ̂<
ˆ̂̂:

@2
t U ��U D 0 in T ;

U.x; 0/ D u0.x/; @tU.x; 0/ D u1.x/ for x 2 ;
@U

@�
D g on @T :

For � > 0, define the operator P� on tempered distributions by

P�Œ �.x; t/ D
Z

j!j	�
e�p�1!t O .x; !/ d!; (22)

where O .x; !/ denotes the Fourier transform of  .x; t/ in the t-variable. Clearly,
the operator P� truncates the high-frequency component of  .

The following asymptotic expansion holds as ı ! 0.

Theorem 4 (Perturbations of weighted boundary measurements). Let w 2
C1 �

T

	
satisfy

�
@2
t ��

	
w.x; t/ D 0 in T with @tw.x; T / D w.x; T / D 0

for x 2 . Suppose that �� 1=ı. Define the weighted boundary measurements

IwŒU; T � WD
Z
@T

P�Œu � U �.x; t/@w

@�
.x; t/ d
.x/ dt:

Then, for any fixed T > diam./, the following asymptotic expansion for IwŒU; T �

holds as ı ! 0:

IwŒU; T � 	 ıd
Z T

0
rP�ŒU �.z; t/M.k;B/rw.z; t/ dt; (23)

where M.k;B/ is defined by (6).
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Expansion (23) is a weighted expansion. Pointwise expansions similar to those
in Theorem 1 which is for the steady-state model can also be obtained.

Let y 2 R
3 be such that jy � zj � ı. Choose

U.x; t/ WD Uy.x; t/ WD ıtDjx�yj
4�jx � yj for x ¤ y: (24)

It is easy to check that Uy is the outgoing Green function to the wave equation:

�
@2
t ��

	
Uy.x; t/ D ıxDyıtD0 in R

3��0;C1Œ :

Moreover, Uy satisfies the initial conditions: Uy.x; 0/ D @tUy.x; 0/ D 0 for x ¤
y. Consider now for the sake of simplicity the wave equation in the whole three-
dimensional space with appropriate initial conditions:

(
@2
t u � r �

�
	
�
R

3nD	C k	.D/	ru D ıxDyıtD0 in R
3��0;C1Œ ;

u.x; 0/ D 0; @tu.x; 0/ D 0 for x 2 R
3; x ¤ y:

(25)

The following theorem holds.

Theorem 5 (Pointwise perturbations). Let u be the solution to (25). Set Uy to be
the background solution. Suppose that �� 1=ı.

(i) The following outer expansion holds

P�Œu � Uy�.x; t/ 	 �ı3
Z
R

rP�ŒUz�.x; t � �/ �M.k;B/rP�ŒUy�.z; �/ d� ;
(26)

for x away from z, where M.k;B/ is defined by (6) and Uy and Uz by (24).
(ii) The following inner approximation holds:

P�Œu � Uy�.x; t/ 	 ı Ov
�x � z

ı

�
� rP�ŒUy�.x; t/ for x near z; (27)

where Ov is given by (4) and Uy by (24).

Formula (26) shows that the perturbation due to the anomaly is in the time
domain a wave front emitted by a dipolar source located at point z.

Taking the Fourier transform of (26) in the time variable yields the expansions
given in Theorem 3 for the perturbations resulting from the presence of a small
anomaly for solutions to the Helmholtz equation at low frequencies (at large
wavelengths compared to the size of the anomaly).
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Numerical Methods

MUSIC-Type Imaging at a Single Frequency
Consider m well-separated anomalies Ds D ıBs C zs; s D 1; : : : ; m. The
compressibility and volumetric mass density of Ds are denoted by �s and ks ,
respectively. Suppose as before that all the domainsBs are disks. Let .�1; : : : ; �n/ be
n unit vectors in R

d . For arbitrary � 2 f�1; : : : ; �ng; one assumes that one is in the
possession of the boundary data u when the object  is illuminated with the plane
wave U.x/ D ei!� � x. Therefore, taking w.x/ D e�i!� 0 � x for � 0 2 f�1; : : : ; �ng
shows that one is in possession of

mX
sD1

jDsj
�

2
.ks � 1/

ks C 1
� � � 0 C .�s � 1/

�
ei!.��� 0/ � zs;

for �; � 0 2 f�1; : : : ; �ng: Define the response matrix A D .Al l 0/nl;l 0D1 2 C
n�n by

All 0 D
mX
sD1

jDsj
�

2
.ks � 1/

ks C 1
�l � �l 0 C .�s � 1//

�
ei!.�l��l0 / � zs ; l; l 0 D 1; : : : ; n :

Introduce

g.x/ D �.1; �1/
�ei!�1 � x; : : : ; .1; �n/�ei!�n �x

	�
:

Analogously to Lemma 1, one has the following characterization of the location
of the anomalies in terms of the range of the matrix A.

Lemma 2 (MUSIC characterization of the range of the response matrix).
There exists n0 2 N; n0 > .d C 1/m; such that for any n � n0, the following
statement holds:

gj .x/ 2 Range.A/ if and only if x 2 fz1; : : : ; zmg for j D 1; : : : ; d C 1;

where gj .x/ is the j th column of g.x/.

The MUSIC algorithm can now be used as before to determine the location of
the anomalies. Let Pnoise D I � P , where P is the orthogonal projection onto the
range of A. The imaging functional

WMU.x/ WD 1PdC1
jD1 jjPnoisegj .x/jj

has large peaks only at the locations of the anomalies. See Fig. 2.
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Fig. 2 MUSIC-type reconstruction from the singular value decomposition of A represented in
Fig. 3

Fig. 3 Singular value
decomposition of the
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The significant singular vectors of A can be computed by the singular value
decomposition. The number of significant singular values determines the number
of anomalies. If, for example, ks ¤ 1 and �s ¤ 1 for all s D 1; : : : ; m, then there
are exactly .d C 1/m significant singular values of A and the rest are zero or close
to zero. See Fig. 3. The significant singular values of A can be used to estimate
.ks�1/
ksC1 jDsj and .�s � 1/jDsj.

Backpropagation-Type Imaging at a Single Frequency
A backpropagation imaging functional at a single frequency ! is given by

WBP.x/ WD 1

n

nX
lD1

e�2i!�l �xIwl ŒUl �;
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where Ul.x/ D wl .x/ D ei!�l �x for �l 2 f�1; : : : ; �ng : Suppose that .�1; : : : ; �n/

are equidistant points on the unit sphere Sd�1. For sufficiently large n, since

1

n

nX
lD1

ei2!�l �x 	
�
j0.2!jxj/ for d D 3;
J0.2!jxj/ for d D 2;

where j0 is the spherical Bessel function of order zero and J0 is the Bessel function
of the first kind and of order zero, it follows that

WBP.x/ 	
mX
sD1

jDsj
�

2
.ks � 1/

ks C 1
C .�s � 1//

�
�
�
j0.2!jx � zsj/ for d D 3;
J0.2!jx � zsj/ for d D 2:

An analogy between the backpropagation and MUSIC-type imaging can be
established. Suppose that ks D 1 for s D 1; : : : ; m. One can see that

WMU.x/ / 1

jDsj.�s � 1/�WBP.x/

for x near zs [9].

Kirchhoff-Type Imaging Using a Broad Range of Frequencies
Let yl 2 R

2n for l D 1; : : : ; n denote an array of source points. Set

wyl .x/ D
i

4
H
.1/
0 .!jx � yl j/ and Uyl0 .x/ D

i

4
H
.1/
0 .!jx � yl 0 j/;

whereH.1/
0 is the Hankel function of first kind and order zero. Using the asymptotic

form of the Hankel function, one finds that for !jx � yj � 1,

i

4
H
.1/
0 .!jx � yj/ 	 1

2
p

2�

ei �=4p
!jx � yje

i!jx�yj;

and

i

4
rH.1/

0 .!jx � yj/ 	 1

2
p

2�

�
i!.x � y/
jx � yj

�
ei �=4p
!jx � yje

i!jx�yj:

Assume a high-frequency regime with !L� 1 forL the distance from the array
center point to the locations zs; s D 1; : : : ; m. It follows that

Iwl ŒUl 0 ; !� /
mX
sD1

jDsj
�
�2
ks � 1

ks C 1

.zs � yl / � .zs � yl 0/
jzs � yl jjzs � yl 0 j C .�s � 1/

�
ei!.jzs�yl jCjzs�yl0 j/:
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Introduce the response matrix A.!/ D .Al l 0.!// by

All 0.!/ WD Iwl ŒUl 0 ; !�

and the illumination vector

g.x; !/ WD
��

1;
x � y1

jx � y1j
��
ei!jx�y1j; : : : ;

�
1;
x � yn
jx � ynj

��
ei!jx�ynj

��
:

In the case of measurements at multiple frequencies .!j /, we construct the weighted
Kirchhoff imaging functional as

WKI.x/ D 1

J

X
!j ;jD1;:::;J

X
l

�
g.x; !j /; ul .!j /

	 �
g.x; !j /; vl .!j /

	
;

where .a; b/ D a � b, J is the number of frequencies, and ul and vl are, respectively,
the left and right singular vectors of A. As for WMU, WKI is written in terms of the
singular-value decompositions of the response matrices A.!j /.

Time-Reversal Imaging
Unlike the three previous imaging methods, the one in this section is in time domain.
It is based on time reversal.

The main idea of time reversal is to take advantage of the reversibility of the
wave equation in a non-dissipative unknown medium in order to back propagate
signals to the sources that emitted them. In the context of anomaly detection, one
measures the perturbation of the wave on a closed surface surrounding the anomaly
and retransmits it through the background medium in a time-reversed chronology.
Then the perturbation will travel back to the location of the anomaly. One can show
that the time-reversal perturbation focuses on the location z of the anomaly with a
focal spot size limited to one-half the wavelength which is in agreement with the
Rayleigh resolution limit.

In mathematical terms, suppose that one is able to measure the perturbation u �
Uy and its normal derivative at any point x on a sphere S englobing the anomaly
D and for a large time t0. The time-reversal operation is described by the transform
t 7! t0 � t . Both the perturbation and its normal derivative on S are time reversed
and emitted from S . Then a time-reversed perturbation propagates inside the volume
surrounded by S .

To detect the anomaly from measurements of the wavefield u�Uy away from the
anomaly, one can use a time-reversal technique. Taking into account the definition of
the outgoing fundamental solution (24) to the wave equation, spatial reciprocity, and
time-reversal invariance of the wave equation, one defines the time-reversal imaging
functionalWTR by



Expansion Methods 553

WTR.x; t/ D
Z
R

Z
S

"
Ux
�
x0; t � s	 @P�

�
u � Uy

�
@�

�
x0; t0 � s

	

�@Ux
@�

�
x0; t � s	P� �u � Uy� �x0; t0 � s

	�
d


�
x0	 ds;

(28)

where

Ux
�
x0; t � �	 D ı .t � � � jx � x0j/

4�jx � x0j :

The imaging functional WTR corresponds to propagating inside the volume sur-
rounded by S , the time-reversed perturbation P�Œu � Uy�, and its normal derivative
on S . Theorem 5 shows that

P�
�
u � Uy

�
.x; t/ 	 �ı3

Z
R

rP�ŒUz�.x; t � �/ �m.z; �/ d�;

where

m.z; �/ DM.k;B/rP�ŒUy�.z; �/ : (29)

Therefore, since

Z
R

Z
S

�
Ux.x

0; t � s/@P�ŒUz�

@�
.x0; t0 � s � �/

�@Ux
@�

.x0; t � s/P�ŒUz�.x
0; t0 � s � �/

�
d
.x0/ ds

D P�ŒUz�.x; t0 � � � t/ � P�ŒUz�.x; t � t0 C �/;

(30)

one obtains the approximation

WTR.x; t/ 	 �ı3
Z
R

m.z; �/ � rz
�
P�ŒUz�.x; t0 � � � t/ � P�ŒUz�.x; t � t0 C �/

�
d�;

which can be interpreted as the superposition of incoming and outgoing waves,
centered on the location z of the anomaly. Since

P�ŒUy�.x; �/ D sin �.� � jx � yj/
2�.� � jx � yj/jx � yj ;

m.z; �/ is concentrated at the travel time � D T D jz � yj. It then follows that

WTR.x; t/ 	 �ı3m.z; T / � rz
�
P�ŒUz�.x; t0 � T � t/ � P�ŒUz�.x; t � t0 C T /

�
:

(31)
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The imaging functionalWTR is clearly the sum of incoming and outgoing polarized
spherical waves.

Approximation (31) has an important physical interpretation. By changing the
origin of time, T can be set to 0 without loss of generality. Then by taking a Fourier
transform of (31) over the time variable t , one obtains that

OWTR.x; !/ / ı3m.z; T / � rj0.!jx � zj/;

where ! is the wave number. This shows that the time-reversal perturbation WTR

focuses on the location z of the anomaly with a focal spot size limited to one-half
the wavelength.

An identity parallel to (30) can be derived in the frequency domain. In fact, one
has

Z
S

"
OUx
�
x0	 @bUz

@�

�
x0	� @ OUx

@�

�
x0	 bUz

�
x0	
#
d


�
x0	 D 2i=m bUz.x/

/ j0.!jx � zj/;
(32)

which shows that in the frequency domain,WTR coincides with WBP.

Bibliography and Open Questions

The initial boundary-value problems for the wave equation in the presence of
anomalies of small volume have been considered in [5, 24]. Theorem 5 is from
[12]. In [12], a time-reversal approach was also designed for locating the anomaly
from the outer expansion (26). The physics literature on time reversal is quite rich.
One refers, for instance, to [48] and the references therein. See [93] for clinical
applications of time reversal. Many interesting mathematical works have dealt
with different aspects of time-reversal phenomena: see, for instance, [33] for time
reversal in the time domain, [45–47, 82] for time reversal in the frequency domain,
and [37, 50] for time reversal in random media.

The MUSIC-type algorithm for locating small acoustic or electromagnetic
anomalies from the multi-static response matrix at a fixed frequency was developed
in [18]. See also [18–20], where a variety of numerical results was presented to
highlight its potential and its limitation. It is worth mentioning that the MUSIC-
type algorithm is related to time reversal [82, 87].

MUSIC and Kirchhoff imaging functionals can be extended to the time domain
in order to detect the anomaly and its polarization tensor from (dynamical) boundary
measurements [24].

The inner expansion in Theorem 5 can be used to design an efficient optimization
algorithm for reconstructing the shape and the physical parameter of an anomaly
from the near-field perturbations of the wavefield, which can be used in radiation
force imaging.
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In radiation force imaging, one uses the acoustic radiation force of an ultrasonic
focused beam to remotely generate mechanical vibrations in organs. A spatiotem-
poral sequence of the propagation of the induced transient wave can be acquired,
leading to a quantitative estimation of the physical parameters of the anomaly. See,
for instance, [35, 36].

The proposed location search algorithms using transient wave or broad-range
multifrequency boundary measurements can be extended to the case with limited-
view measurements. Using the geometrical control method [34], one can still exploit
those algorithms and perform imaging with essentially the same resolution using
partial data as using complete data, provided that the geometric optics condition
holds.

An identity similar to (32) can be derived in an inhomogeneous medium, which
shows that the sharper the behavior of the imaginary part of the Green function
around the location of the anomaly is, the higher is the resolution. It would be quite
challenging to explicitly see how this behavior depends on the heterogeneity of the
surrounding medium. This would yield super-resolved ultrasound imaging systems.

4 Infrared Thermal Imaging

Physical Principles

Infrared thermal imaging is becoming a common screening modality in the area of
breast cancer. By carefully examining the aspects of temperature and blood vessels
of the breasts in thermal images, signs of possible cancer or precancerous cell
growth may be detected up to 10 years prior to being discovered using any other
procedure. This provides the earliest detection of cancer possible.

Because of thermal imaging’s extreme sensitivity, these temperature variations
and vascular changes may be among the earliest signs of breast cancer and/or a
precancerous state of the breast. An abnormal infrared image of the breast is an
important marker of high risk for developing breast cancer. See [3, 83].

Asymptotic Analysis of Temperature Perturbations

Suppose that the background  is homogeneous with thermal conductivity 1 and
that the anomaly D D ıB C z has thermal conductivity 0 < k ¤ 1 < C1. In this
section, one considers the following transmission problem for the heat equation:

8̂
ˆ̂<
ˆ̂̂:

@tu � r �
�
	
�
nD	C k	.D/	ru D 0 in T ;

u.x; 0/ D u0.x/ for x 2 ;
@u

@�
D g on @T ;

(33)
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where the Neumann boundary data g and the initial data u0 are subject to a
compatibility condition. Let U be the background solution defined as the solution
of

8̂
ˆ̂<
ˆ̂̂:

@tU ��U D 0 in T ;

U.x; 0/ D u0.x/ for x 2 ;
@U

@�
D g on @T :

The following asymptotic expansion holds as ı ! 0.

Theorem 6 (Perturbations of weighted boundary measurements). Let w 2
C1 �

T

	
be a solution to the adjoint problem, namely, satisfy .@tC�/w.x; t/ D 0

in T with w.x; T / D 0 for x 2 . Define the weighted boundary measurements

IwŒU; T � WD
Z
@T

.u � U /.x; t/@w

@�
.x; t/ d
.x/ dt:

Then, for any fixed T > 0, the following asymptotic expansion for IwŒU; T � holds
as ı ! 0:

IwŒU; T � 	 �ıd
Z T

0
rU.z; t/ �M.k;B/rw.z; t/ dt; (34)

where M.k;B/ is defined by (6).

Note that (34) holds for any fixed positive final time T , while (23) holds only for
T > diam./: This difference comes from the finite speed propagation property for
the wave equation compared to the infinite one for the heat equation.

Consider now the background solution to be the Green function of the heat
equation at y:

U.x; t/ WD Uy.x; t/ WD

8̂
<
:̂
e� jx�yj2

4t

.4�t/d=2
for t > 0;

0 for t < 0 :

(35)

Let u be the solution to the following heat equation with an appropriate initial
condition:

(
@tu � r �

�
	
�
R
dnD	C k	.D/	ru D 0 in R

d��0;C1Œ ;
u.x; 0/ D Uy.x; 0/ for x 2 R

d :
(36)
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Proceeding as in the derivation of (26), one can prove that ıu.x; t/ WD u � U is
approximated by

�.k�1/
Z t

0

1

.4�.t � �//d=2

Z
@D

e
� jx�x0 j2

4.t��/
@Ov
@�

ˇ̌
ˇ̌
�

�
x0 � z

ı

�
� rUy

�
x0; �

	
d


�
x0	 d�;

(37)
for x near z. Therefore, analogously to Theorem 5, the following pointwise
expansion follows from the approximation (37).

Theorem 7 (Pointwise perturbations). Let y 2 R
d be such that jy � zj � ı. Let

u be the solution to (36). The following expansion holds

.u�U /.x; t/ 	 �ıd
Z t

0
rUz.x; t��/M.k;B/rUy.z; �/ d� for jx�zj � O.ı/;

(38)
where M.k;B/ is defined by (6) and Uy and Uz by (35).

When comparing (38) and (26), one should point out that for the heat equation
the perturbation due to the anomaly is accumulated over time.

An asymptotic formalism for the realistic half-space model for thermal imaging,
well suited for the design of anomaly reconstruction algorithms, has been developed
in [29].

Numerical Methods

In this section, the formula (34) is applied (with an appropriate choice of test
functions w and background solutions U ) for the purpose of identifying the location
of the anomaly D. The first algorithm makes use of constant heat flux, and, not
surprisingly, it is limited in its ability to effectively locate multiple anomalies.

Using many heat sources, one then describes an efficient method to locate
multiple anomalies and illustrate its feasibility. For the sake of simplicity, only the
two-dimensional case will be considered.

Detection of a Single Anomaly
For y 2 R

2n, let

w.x; t/ D wy.x; t/ WD 1

4�.T � t/ e
� jx�yj2

4.T�t / : (39)

The function w satisfies .@t C �/w D 0 in T and the final condition wjtDT D 0
in .

Suppose that there is only one anomaly D D zC ıB with thermal conductivity
k. For simplicity, assume that B is a disk. Choose the background solution U.x; t/
to be a harmonic (time-independent) function in T . One computes
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rwy.z; t/ D y � z

8�.T � t/2 e
� jz�yj2

4.T�t / ;

M.k;B/rwy.z; t/ D .k � 1/jBj
k C 1

y � z

4�.T � t/2 e
� jz�yj2

4.T�t / ;

and

Z T

0
M.k;B/rwy.z; t/ dt D .k � 1/jBj

k C 1

y � z

4�

Z T

0

e
� jz�yj2

4.T�t /

.T � t/2 dt:

But

d

dt
e

� jz�yj2

4.T�t / D �jz � yj
2

4

e
� jz�yj2

4.T�t /

.T � t/2

and therefore

Z T

0
M.k;B/rwy.z; t/ dt D .k � 1/jBj

k C 1

y � z

�jz � yj2 e
� jz�yj2

4.T�t / :

Then the asymptotic expansion (34) yields

IwŒU; T �.y/ 	 ı2 k � 1

k C 1
jBjrU.z/ � .y � z/

�jy � zj2 e� jy�zj2

4T : (40)

Now, one is in a position to present the projection-type location search algorithm
for detecting a single anomaly. Prescribe the initial condition u0.x/ D a �x for some
fixed unit constant vector a and choose g D a � � as an applied time-independent
heat flux on @T , where a is taken to be a coordinate unit vector. Take two
observation lines †1 and †2 contained in R

2n such that

†1 WD a line parallel to a; †2 WD a line normal to a :

Next, find two points Pi 2 †i.i D 1; 2/ so that Iw.T /.P1/ D 0 and

Iw.T /.P2/ D

8̂
<
:̂

min
x2†2

Iw.T /.x/ if k � 1 < 0;

max
x2†2

Iw.T /.x/ if k � 1 > 0:

Finally, draw the corresponding lines …1.P1/ and …2.P2/ given by (12). Then the
intersecting point P of …1.P1/ \ …2.P2/ is close to the anomaly D W jP � zj D
O.ı jlog ıj/ for ı small enough.
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Detection of Multiple Anomalies: A MUSIC-Type Algorithm
Consider m well-separated anomalies Ds D ıBs C zs; s D 1; : : : ; m, whose heat
conductivity is ks . Choose

U.x; t/ D Uy0.x; t/ WD 1

4�t
e� jx�y0 j2

4t for y0 2 R
2n

or, equivalently, g to be the heat flux corresponding to a heat source placed at the
point source y0 and the initial condition u0.x/ D 0 in , to obtain that

IwŒU; T � 	 �ı2
mX
sD1

.1 � ks/
64�2

.y0 � zs/M
.s/.y � zs/

�
Z T

0

1

t2.T � t/2 exp

�
�jy � zsj2

4.T � t/ �
jy0 � zsj2

4t

�
dt;

where w is given by (39) and M.s/ is the polarization tensor of Ds .
Suppose for the sake of simplicity that all the domains Bs are disks. Then it

follows from (10) thatM.s/ D m.s/I2; wherem.s/ D 2.ks � 1/jBs j=.ksC 1/ and I2

is the 2 � 2 identity matrix. Let yl 2 R
2n for l 2 N be the source points. One

assumes that the countable set fylgl2N has the property that any analytic function
which vanishes in fylgl2N vanishes identically.

The MUSIC-type location search algorithm for detecting multiple anomalies is
as follows. For n 2 N sufficiently large, define the matrix A D ŒAl l 0 �nl;l 0D1 by

All 0 WD �ı2
mX
sD1

.1 � ks/
64�2

m.s/.yl 0 � zs/ � .yl � zs/

�
Z T

0

1

t2.T � t/2 exp

�
�jyl � zs j2

4.T � t/ �
jyl 0 � zs j2

4t

�
dt :

For z 2 , one decomposes the symmetric real matrix C defined by

C WD
�Z T

0

1

t2.T � t/2 exp

�
� jyl � zj2

4.T � t/ �
jyl 0 � zj2

4t

�
dt

�
l;l 0D1;:::;n

as follows:

C D
pX
lD1

vl .z/vl .z/
� (41)

for some p � n; where vl 2 R
n and v�

l denotes the transpose of vl . Define the

vector g.l/z 2 R
n�2 for z 2  by
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g.l/z D ..y1 � z/vl1.z/; : : : ; .yn � z/vln.z//
� ; l D 1; : : : ; p : (42)

Here, vl1; : : : ; vln are the components of the vector vl ; l D 1; : : : ; p: Let yl D
.ylx; yly/ for l D 1; : : : ; n; z D .zx; zy/; and zs D .zsx; zsy/. One also introduces

g.l/zx D ..y1x � zx/vl1.z/; : : : ; .ynx � zx/vln.z//
�

and

g.l/zy D
�
.y1y � zy/vl1.z/; : : : ; .yny � zy/vln.z/

	�
:

Lemma 3 (MUSIC characterization of the range of the response matrix). The
following characterization of the location of the anomalies in terms of the range of
the matrix A holds:

g.l/zx and g.l/zy 2 Range.A/ 8 l 2 f1; : : : ; pg if and only if z 2 fz1; : : : ; zmg :
(43)

Note that the smallest number n which is sufficient to efficiently recover the
anomalies depends on the (unknown) numberm. This is the main reason for taking
n sufficiently large. As for the electrical impedance imaging, the MUSIC-type
algorithm for the thermal imaging is as follows. Compute Pnoise, the projection onto
the noise space, by the singular value decomposition of the matrix A. Compute the
vectors vl by (41). Form an image of the locations, z1; : : : ; zm; by plotting, at each

point z, the quantity
���g.l/z � a

��� =
���Pnoise

�
g
.l/
z � a

���� for l D 1; : : : ; p, where g.l/z is

given by (42) and a is a unit constant vector. The resulting plot will have large
peaks at the locations of zs; s D 1; : : : ; m.

The next two figures (Figs. 4 and 5) show MUSIC-type reconstructions of two
anomalies without and with noise.

In Fig. 4, one sees clearly the presence of two anomalies. However, the one on
the right, which is also deeper, is not as well rendered as the one on the left.

Bibliography and Open Questions

Thermal imaging of small anomalies has been considered in [17]. See also [29],
where a realistic half-space model for thermal imaging was considered and accurate
and robust reconstruction algorithms are designed.

It is worth mentioning that the inner expansions derived for the heat equation
can be used to improve reconstruction in ultrasonic temperature imaging. The idea
behind ultrasonic temperature imaging hinges on measuring local temperature near
anomalies. The aim is to reconstruct anomalies with higher spatial and contrast
resolution as compared to those obtained from boundary measurements alone.
Further numerical investigations on this emerging topic are required.
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Fig. 4 Detection of anomalies using n D 10 heat sources equi-placed on the top
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Fig. 5 Detection in the presence of 1 % (on the left) and 5 % (on the right) of measurement noise

5 Impediography

Physical Principles

Since all the present electrical impedance tomography technologies are only practi-
cally applicable in feature extraction of anomalies, improving electrical impedance
tomography calls for innovative measurement techniques that incorporate struc-
tural information. A very promising direction of research is the recent magnetic
resonance imaging technique, called current density imaging, which measures the
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internal current density distribution. See the breakthrough work by Seo and his
group described, for instance, in [65, 66, 89]. However, this technique has a number
of disadvantages, among which the lack of portability and a potentially long imaging
time. Moreover, it uses an expensive magnetic resonance imaging scanner.

Impediography is another mathematical direction for future electrical impedance
tomography research in view of biomedical applications. It keeps the most important
merits of electrical impedance tomography (real-time imaging, low cost, portabil-
ity). It is based on the simultaneous measurement of an electric current and of
acoustic vibrations induced by ultrasound waves. Its intrinsic resolution depends
on the size of the focal spot of the acoustic perturbation, and thus, it may provide
high-resolution images.

The core idea of impediography is to couple electric measurements to localized
elastic perturbations. A body (a domain  � R

2) is electrically probed: one or
several currents are imposed on the surface and the induced potentials are measured
on the boundary. At the same time, a circular region of a few millimeters in
the interior of  is mechanically excited by ultrasonic waves, which dilate this
region. The measurements are made as the focus of the ultrasounds scans the entire
domain. Several sets of measurements can be obtained by varying amplitudes of the
ultrasound waves and the applied currents.

Within each disk of (small) volume, the conductivity is assumed to be constant
per volume unit. At a point x 2 , within a disk D of volume VD , the electrical
conductivity � is defined in terms of a density � as �.x/ D �.x/VD:

The ultrasonic waves induce a small elastic deformation of the disk D. If this
deformation is isotropic, the material points of D occupy a volume V p

D in the
perturbed configuration, which at first order is equal to

V
p
D D VD

�
1C 2

�r

r

�
;

where r is the radius of the disk D and �r is the variation of the radius due to the
elastic perturbation. As �r is proportional to the amplitude of the ultrasonic wave,
one obtains a proportional change of the deformation. Using two different ultrasonic
waves with different amplitudes but with the same spot, it is therefore easy to
compute the ratio V p

D=VD. As a consequence, the perturbed electrical conductivity
�p satisfies

8 x 2 ; �p.x/ D �.x/V p
D D �.x/�.x/;

where �.x/ D V
p
D=VD is a known function. One makes the following realistic

assumptions: (1) the ultrasonic wave expands the zone it impacts and changes
its conductivity, 8x 2 ; �.x/ > 1, and (2) the perturbation is not too small,
�.x/ � 1� VD:
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Mathematical Model

Let u be the voltage potential induced by a current g; in the absence of ultrasonic
perturbations. It is given by

8<
:
r � .�.x/ru/ D 0 in ;

�
@u

@�
D g on @;

(44)

with the convention that
R
@

u D 0. One supposes that the conductivity � of the
region close to the boundary of the domain is known, so that ultrasonic probing is
limited to interior points. One denotes the region (open set) by1.

Let uı be the voltage potential induced by a current g; in the presence
of ultrasonic perturbations localized in a disk-shaped domain D WD z C
ıB of volume jDj D O �ı2

	
. The voltage potential uı is a solution to

8<
:
r � .�ı.x/ruı.x// D 0 in ;

�
@uı
@�
D g on @;

(45)

with the notation

�ı.x/ D �.x/ Œ1C 	.D/.x/ .�.x/ � 1/� ;

where 	.D/ is the characteristic function of the domainD.
As the zone deformed by the ultrasound wave is small, one can view it as a

small-volume perturbation of the background conductivity � and seek an asymptotic
expansion of the boundary values of uı�u. The method of small-volume expansions
shows that comparing uı and u on@ provides information about the conductivity.
Indeed, one can prove that

Z
@

.uı � u/g d
 D
Z
D

�.x/
.�.x/ � 1/2

�.x/C 1
ru � ru dx C o.jDj/

D �.z/ jru.z/j2
Z
D

.�.x/ � 1/2

�.x/C 1
dx C o.jDj/:

Note that because of assumption (2) at the end of the previous section, it follows
that

Z
D

.�.x/ � 1/2

�.x/C 1
dx � C jDj
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for some positive constant C . Therefore, one has

�.z/ jru.z/j2 D E.z/C o.1/; (46)

where the function E.z/ is defined by

E.z/ D
 Z

D

.�.x/ � 1/2

�.x/C 1
dx

!�1 Z
@

.uı � u/g d
: (47)

By scanning the interior of the body with ultrasound waves, given an applied
current g, one then obtains data from which one can compute the electrical energy

E.z/ WD �.z/jru.z/j2

in an interior subregion of . The new inverse problem is now to reconstruct � ,
knowing E .

Substitution Algorithm

The use of E leads one to transform (44), having two unknowns � and u with highly
nonlinear dependency on � , into the following nonlinear PDE (the 0–Laplacian)

8̂
<̂
ˆ̂:
rx �

� E
jruj2ru

�
D 0 in ;

E
jruj2

@u

@�
D g on @:

(48)

It is worth emphasizing that E is a known function, constructed from the measured
data (47). Consequently, all the parameters entering in (48) are known. Thus, the
ill-posed inverse problem in electrical impedance tomography is converted into a
less-complicated direct problem (48).

The E-substitution algorithm, which will be explained below, uses two currents
g1 and g2. One chooses this pair of current patterns to have ru1 � ru2 ¤
0 for all x 2 , where ui ; i D 1; 2; is the solution to (44). One refers to [66]
and the references therein for an evidence of the possibility of such a choice. The
E-substitution algorithm is based on an approximation of a linearized version of
problem (48).

Suppose that � is a small perturbation of conductivity profile �0 W � D
�0 C ı� . Let u0 and u D u0 C ıu denote the potentials corresponding to
�0 and � with the same Neumann boundary data g. It is easily seen that
ıu satisfies r � .�rıu/ D �r � .ı�ru0/ in  with the homogeneous Dirichlet
boundary condition. Moreover, from
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E D .�0 C ı�/jr.u0 C ıu/j2 	 �0jru0j2 C ı� jru0j2 C 2�0ru0 � rıu;

after neglecting the terms ı�ru0 � rıu and ı� jrıuj2, it follows that

ı� 	 E
jru0j2

� �0 � 2�0
rıu � ru0

jru0j2
:

The E-substitution algorithm is as follows. One starts from an initial guess for
the conductivity � and solves the corresponding Dirichlet conductivity problem

�r � .�ru0/ D 0 in ;
u0 D  on @:

The data is the Dirichlet data measured as a response to the current g (say g D g1)
in the absence of elastic deformation. The discrepancy between the data and the
guessed solution is

�0 WD E
jru0j2

� �: (49)

One then introduces a corrector, ıu, computed as the solution to

�r � .�rıu/ D �r � ."0ru0/ in ;
ıu D 0 on @;

and updates the conductivity

� WD E � 2�rıu � ru0

jru0j2
:

One iteratively updates the conductivity, alternating directions of currents (i.e., with
g D g2).

Consider a disk-shaped domain , which contains three anomalies, an ellipse,
an L-shaped domain, and a triangle. See Fig. 6.

Figure 7 shows the result of the reconstruction when measurements with very
accurate precision for two directions of currents are available.

In the case of incomplete data, that is, if E is only known on a subset 0 of the
domain, one can follow an optimal control approach. See [39].

Bibliography and Open Questions

Impediography was proposed in [8], and the substitution algorithm proposed there.
An optimal control approach for solving the inverse problem in impediography has
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Fig. 6 Conductivity
distribution

Fig. 7 Reconstruction test. From left to right, the initial guess, the collected data E for two
directions of currents, and the reconstructed conductivity

been described in [39]. The inversion was considered as a minimization problem,
and it was performed in two or three dimensions.

As pointed out in [71], the success of impediography depends on the feasibility
of focusing ultrasound waves at an arbitrary point inside the body. Such a focusing,
however, is quite tricky to achieve in practice. See, for instance, [85]. A method
to extract the measurements corresponding to well-focused beams from the data
obtained with unfocused waves has been proposed in [71].

An interesting problem is to study the sensitivity of the inversion methods to
limitations on the intensities of the applied voltages, as electrical safety regulations
limit the amount of the total current that patients can sustain. Another interesting
problem is to reconstruct anisotropic conductivity distributions and to see whether
or not impediography allows one to remove the obstruction to unique identifiability
of the conductivity by electrical impedance tomography. In electrical impedance
tomography, it is known that any change of variables of the background conductor
that leaves the boundary fixed gives rise to a new anisotropic conductivity with the
same boundary measurements [68].
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6 Magneto-Acoustic Imaging

In magneto-acoustic imaging, a probe signal such as an acoustic wave or an electric
current (or voltage) is applied to a biological tissue placed in a magnetic field. The
probe signal produces, by the Lorentz force, an induced signal that is a function
of the local electrical conductivity of the biological tissue. If the probe signal is an
acoustic wave, then the induced signal is an electric current and the Lorentz force
causes a local current density.

Induced boundary currents or pressure which are proportional to the local
electrical conductivity can be measured to reconstruct the conductivity distribution
with the spatial resolution of the ultrasound. The induced signal is detected, and an
image of the local electrical conductivity of the specimen is generated based on the
detected induced signal. The first method is referred as magneto-acousto-electrical
tomography and the second one as magneto-acoustic tomography with magnetic
induction.

Magneto-Acousto-Electrical Tomography

Physical Principles
In magneto-acousto-electrical imaging, an acoustic wave is applied to a biological
tissue placed in a magnetic field. The probe signal produces by the Lorentz force an
electric current that is a function of the local electrical conductivity of the biological
tissue [80]. The mathematical basis for this magneto-acoustic imaging approach is
provided, and an efficient algorithm for solving the inverse problem is proposed
which is quite similar to the one designed for impediography.

Mathematical Model
Denote by �.x/ the unknown conductivity, and let the voltage potential v be the
solution to the conductivity problem

�r � �rv D 0 in ;
v D g on @:

(50)

Suppose that the conductivity � is a known constant on a neighborhood of the
boundary @ and let �� denote � j@.

In magneto-acoustic imaging, ultrasonic waves are focused on regions of small
diameter inside a body placed on a static magnetic field. The oscillation of each
small region results in frictional forces being applied to the ions, making them
move. In the presence of a magnetic field, the ions experience a Lorentz force. This
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gives rise to a localized current density within the medium. The current density is
proportional to the local electrical conductivity [80]. In practice, the ultrasounds
impact a spherical or ellipsoidal zone, of a few millimeters in diameter. The induced
current density should thus be sensitive to conductivity variations at the millimeter
scale, which is the precision required for breast cancer diagnostics.

Let z 2  and D be a small impact zone around the point z. The created current
by the Lorentz force density is given by

Jz.x/ D c	.D/.x/�.x/e; (51)

for some constant c and a constant unit vector e, both of which are independent of
z. With the induced current Jz, the new voltage potential, denoted by uz, satisfies

�r � .�ruz C Jz/ D 0 in ;
uz D g on @:

According to (51), the induced electrical potential wz WD v � uz satisfies the
conductivity equation:

�r � �rwz D cr � .	.D/�e/ for x 2 ;
wz.x/ D 0 for x 2 @: (52)

The inverse problem for the magneto-acousto-electrical imaging is to reconstruct
the conductivity profile � from boundary measurements of @uz

@�
j@ or equivalently

@wz
@�
j@ for z 2 .

Substitution Algorithm
Since � is assumed to be constant in D and jDj is small, one obtains using Green’s
identity

Z
@

��
@wz

@�
gd
 	 �cjDjr.�v/.z/ � e : (53)

The relation (53) shows that, by scanning the interior of the body with ultra-
sound waves, cr.�v/.z/ � e can be computed from the boundary measurements
@wz
@�
j@ in . If one can rotate the subject, then cr.�v/.z/ for any z in  can be

reconstructed. In practice, the constant c is not known. But, since �v and @.�v/=@�
on the boundary of  are known, one can recover c and �v from cr.�v/ in a
constructive way [11].

The new inverse problem is now to reconstruct the contrast profile � , knowing

E.z/ WD �.z/v.z/ (54)

for a given boundary potential g, where v is the solution to (50).
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In view of (54), v satisfies

8<
:
r � E

v
rv D 0 in ;

v D g on @:
(55)

If one solves (55) for v, then (54) yields the conductivity contrast � . Note that to be
able to solve (55), one needs to know the coefficient E.z/ for all z, which amounts
to scanning all the points z 2  by the ultrasonic beam.

Observe that solving (55) is quite easy mathematically: if one puts w D ln v, then
w is the solution to

�r � Erw D 0 in ;
w D ln g on @;

(56)

as long as g > 0. Thus, if one solves (56) for w, then v WD ew is the solution to
(55). However, taking an exponent may amplify the error which already exists in
the computed data E . In order to avoid this numerical instability, one solves (55)
iteratively. To do so, one can adopt an iterative scheme similar to the one proposed
in the previous section.

Start with �0 and let v0 be the solution of

�r � �0rv0 D 0 in ;
v0 D g on @:

(57)

According to (54), the updates, �0 C ı� and v0 C ıv, should satisfy

�0 C ı� D E
v0 C ıv ; (58)

where

�r � .�0 C ı�/r.v0 C ıv/ D 0 in ;
ıv D 0 on @;

or equivalently

�r � �0rıvCr � ı�rv0 D 0 in ;
ıv D 0 on @:

(59)

One then linearizes (58) to have

�0 C ı� D E
v0.1C ıv=v0/

	 E
v0

�
1� ıv

v0

�
: (60)
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Fig. 8 Reconstruction test. From left to right, the conductivity distribution, the initial guess, and
the reconstructed conductivity after three iterations

Thus,

ı� D �Eıv
v2

0

� ı; ı D � E
v0
C �0: (61)

One then finds ıv by solving

(
r � �0rıv � r �

�
Erv0

v2
0
ıv
�
D r � ırv0 in ;

ıv D 0 on @:
(62)

Figure 8 shows the result of the reconstruction when very accurate measurements
for two Dirichlet boundary conditions, g D g1; g2, are available.

In the case of incomplete data, that is, if E is only known on a subset ! of the
domain, one can follow an optimal control approach. See [11].

Magneto-Acoustic Imaging withMagnetic Induction

Physical Principles
In the magneto-acoustic tomography with magnetic induction, pulsed magnetic
stimulation by the ultrasound beam is imposed on an object placed in a static
magnetic field. The magnetic stimulation can be considered as an ideal pulsed
distribution over time. The magnetically induced eddy current is then subject
to a Lorentz force. This in turn creates a pressure wave that can be detected
using an ultrasound hydrophone [80]. The magneto-acoustic tomography with
magnetic induction uses this acoustic pressure wave to reconstruct the conductivity
distribution of the sample as the focus of the ultrasound beam scans the entire
domain.
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Mathematical Model
Let � be the conductivity distribution of the object as before. Denoting the constant
magnetic field as B0 and the magnetically induced current density distribution as
Jz.x/ with z indicating the location of the magnetic stimulation, the Lorentz force is
given by

Jz.x/ �B0ıtD0 D c	.D/.x/�.x/eıtD0;

where D is the impact zone which is a small neighborhood of z as before, and c is
a constant independent of z and x. Then the wave equation governing the pressure
distribution pz can be written as

@2pz

@t2
� c2

s �pz D 0; x 2 ; t 2�0; T Œ; (63)

for some final observation time T , where cs is the acoustic speed in. The pressure
satisfies the Dirichlet boundary condition

pz D 0 on @��0; T Œ (64)

and the initial conditions

pzjtD0 D 0 and
@pz

@t

ˇ̌
ˇ
tD0
D �cr � .	.D/�e/ in : (65)

The inverse problem for the magneto-acoustic tomography with magnetic induc-
tion is to determine the conductivity distribution � in  from boundary measure-
ments of @pz

@�
on @��0; T Œ for all z 2 . Suppose that T is large enough so that

T >
diam./

cs
; (66)

which says that the observation time is long enough for the wave initiated at z to
reach the boundary @.

Reconstruction Algorithm
The algorithms for the magneto-acoustic tomography with magnetic induction
available in the literature are limited to unbounded media. They use the spherical
Radon transform inversion. However, the pressure field is significantly affected by
the acoustic boundary conditions at the tissue–air interface, where the pressure must
vanish. Thus, one cannot base magneto-acoustic imaging on pressure measurements
made over a free surface. Instead, one can use the following algorithm.
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Let w satisfy

@2w

@t2
� c2

s �w D 0 in ��0; T Œ; (67)

with the final conditions

wjtDT D @w

@t

ˇ̌
ˇ
tDT D 0 in : (68)

Since � is constant on D, one can prove that the following identity holds:

Z T

0

Z
@

@pz

@�
.x; t/w.x; t/ d
.x/ dt D c

c2
s

�.z/
Z
D

e � rw.x; 0/dx: (69)

Suppose that d D 3. For y 2 R
3n, define the probe function

wy.x; t/ WD
ı
�
t C � � jx�yj

cs

�

4�jx � yj in ��0; T Œ; (70)

where � WD jy�zj
cs

. The function wy is a Green’s function corresponding to retarded
potentials. Choosing wy as a test function in (69) yields the new identity

c�.z/ D c2
sR

D
e � rwy.x; 0/dx

Z T

0

Z
@

@pz

@�
.x; t/wy.x; t/ d
.x/ dt: (71)

The quantity
R
D e � rwy.x; 0/dx can be explicitly computed. In particular, if the

source point y is such that z � y is parallel to e and D is a sphere of radius r (and
center z), then

c�.z/ D � cs
r2

2jz�yj2 � r4

4jz�yj4

Z T

0

Z
@

@pz

@�
.x; t/wy .x; t/ d
.x/ dt; (72)

provided that � is constant on D. But since r is sufficiently small, one obtains

c�.z/ 	 �2csjz � yj2
r2

Z T

0

Z
@

@pz

@�
.x; t/wy .x; t/ d
.x/ dt: (73)

Formula (73) can be used to effectively compute the conductivity contrast in 
with a resolution of order the size of the ultrasound beam. It is worth emphasizing
that unlike magneto-acousto-electrical imaging, in magneto-acoustic tomography
with magnetic induction, it suffices to excite the local spot at z in order to obtain the
value c�.z/, as clearly shown by (73).
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Bibliography and Open Questions

The feasibility of magneto-acoustic imaging has been demonstrated in [54, 75, 76].
The mathematical and numerical modeling described in this section is from [11]. As
it will be shown in Sect. 8, the approach for the magneto-acoustic tomography with
magnetic induction can be used in photo-acoustic imaging.

It would be interesting to prove the convergence of the proposed iterative scheme
for magneto-acousto-electrical tomography. Another important problem is to design
an efficient inversion algorithm for magneto-acoustic tomography with magnetic
induction when the acoustic speed fluctuates randomly.

7 Magnetic Resonance Elastography

Physical Principles

Extensive work has been carried out in the past decade to image, by inducing
motion, the elastic properties of human soft tissues. This wide application field,
called elasticity imaging or elastography, is based on the initial idea that shear
elasticity can be correlated with the pathological state of tissues. Several techniques
arose according to the type of mechanical excitation chosen (static compression,
monochromatic, or transient vibration) and the way these excitations are generated
(externally or internally). Different imaging modalities can be used to estimate the
resulting tissue displacements.

Magnetic resonance elastography (MRE) is a new way of realizing the idea of
elastography. It can directly visualize and quantitatively measure the displacement
field in tissues subject to harmonic mechanical excitation at low frequencies. A
phase-contrast magnetic resonance imaging technique is used to spatially map and
measure the complete three-dimensional displacement patterns. From this data,
local quantitative values of shear modulus can be calculated, and images that depict
tissue elasticity or stiffness can be generated. The inverse problem for magnetic
resonance elastography is to determine the shape and the elastic parameters of
an elastic anomaly from internal measurements of the displacement field. In most
cases, the most significant elastic parameter is the stiffness coefficient.

In biological media, the compression modulus is four to six orders higher than the
shear modulus. One can prove that, as the compression modulus goes to C1, the
Lamé system converges to the modified Stokes system. By reducing the elasticity
system to a modified Stokes system, one removes the compression modulus from
consideration.

Mathematical Model

Consider the modified Stokes system, i.e., the problem of determining v and q in a
domain from the conditions:
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8<
:
�
�C �2

	
v � rq D 0;

r � v D 0 ;
vj@ D g :

(74)

Problem (74) governs elastic wave propagation in nearly incompressible homoge-
neous media.

Let .Gil /di;lD1 be the Dirichlet Green function for the operator in (74), i.e., for
y 2 ,

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

�
�x C �2	Gil .x; y/ � @Fi .x � y/

@xl
D ıilıy.x/ in ;

dX
lD1

@

@xl
Gil .x; y/ D 0 in ;

Gil .x; y/ D 0 on @:

(75)

Denote by .e1; : : : ; ed / an orthonormal basis of Rd . Let d.�/ WD .1=d/Pk �kek
and Ovpq , for p; q D 1; : : : ; d , be the solution to

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

��Ovpq Cr Op D 0 in R
dnB;

Q��Ovpq Cr Op D 0 in B;

Ovpq j� � Ovpq jC D 0 on @B;�
OpNC Q�@Ovpq

@N

�
j� �

�
OpNC �@Ovpq

@N

�
jC D 0 on @B;

r � Ovpq D 0 in R
d ;

Ovpq.�/! �peq � ıpqd.�/ as j�j ! 1;
Op.�/! 0 as j�j ! C1:

(76)

Here, @v=@N D .rv C .rv/�/ �N and .rv/� denotes the transpose of the matrix
rv.

Define the viscous moment tensor .Vijpq/i;j;p;qD1;:::;d by

Vijpq WD . Q� � �/
Z
B

rOvpq � .r.�iej /Cr.�iej /�/ d�: (77)

Consider an elastic anomaly D inside a nearly compressible medium . The
anomaly D has a shear modulus Q� different from that of ;�. The displacement
field u solves the following transmission problem for the modified Stokes problem:
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8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

�
��C !2

	
uCrp D 0 in nD;� Q��C !2
	

uCrp D 0 in D;

u
ˇ̌
� D u

ˇ̌
C on @D;

.pjC � pj�/NC � @u
@N

ˇ̌
ˇ̌
C
� Q� @u

@N

ˇ̌
ˇ̌
�
D 0 on @D;

r �u D 0 in ;

u D g on @;Z


p D 0;

(78)

where g 2 L2.@/ satisfies the compatibility condition
Z
@

g �N D 0.

The inverse problem consists of reconstructing Q� and the shape of the inclusion
D from internal measurements of u.

Asymptotic Analysis of Displacement Fields

Let .U; q/ denote the background solution to the modified Stokes system in the
absence of any anomalies, that is, the solution to

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

�
��C !2	UCrq D 0 in ;

r �U D 0 in ;

U D g on @;Z


q D 0:

(79)

The following asymptotic expansions hold.

Theorem 8 (Expansions of the displacement field). Suppose that D D ıB C z,
and let u be the solution of (78), where 0 < Q� ¤ � < C1.

(i) The following inner expansion holds:

u.x/ 	 U.z/C ı
dX

p;qD1

@qU.z/p Ovpq
�x � z

ı

�
for x near z; (80)

where Ovpq is defined by (76).
(ii) Let .Vijpq/ be the viscous moment tensor defined by (77). The following outer

expansion holds uniformly for x 2 @:
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.u �U/.x/ 	 ıd
2
4 dX
i;j;p;q;`D1

e`@jG`i .x; z/@qU.z/pVijpq

3
5 ; (81)

where Vijpq is given by (77), and the Green function .Gil /di;lD1 is defined by (75)
with �2 D !2=�, � being the shear modulus of the background medium.

The notion of a viscous moment tensor extends the notion of a polarization tensor
to quasi-incompressible elasticity. The viscous moment tensor, V , characterizes all
the information about the elastic anomaly that can be learned from the leading-
order term of the outer expansion (81). It can be explicitly computed for disks and
ellipses in the plane and balls and ellipsoids in three-dimensional space. If B is a
two-dimensional disk, then

V D 4 jBj�. Q�� �/Q�C � P;

where P D �
Pijpq

	
is the orthogonal projection from the space of symmetric

matrices onto the space of symmetric matrices of trace zero, i.e.,

Pijpq D 1

2

�
ıipıjq C ıiqıjp

	 � 1

d
ıij ıpq:

If B is an ellipse of the form

x2
1

a2
C x2

2

b2
D 1; a � b > 0; (82)

then the viscous moment tensor for B is given by

8̂
ˆ̂̂<
ˆ̂̂̂
:

V1111 D V2222 D �V1122 D �V2211 D jBj 2�. Q�� �/
�C Q� � . Q� � �/m2

;

V1212 D V2112 D V1221 D V2121 D jBj 2�. Q� � �/
�C Q�C . Q� � �/m2

;

the remaining terms are zero;

(83)

wherem D .a � b/=.aC b/.
If B is a ball in three dimensions, the viscous moment tensor associated with B

and an arbitrary Q� is given by
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8̂
ˆ̂̂<
ˆ̂̂̂
:

Vii i i D 20�jBj
3

Q� � �
2 Q�C 3�

; Viijj D �10�jBj
3

Q� � �
2 Q�C 3�

.i ¤ j /;

Vij ij D Vijj i D 5�jBj Q� � �
2 Q�C 3�

; .i ¤ j /;
the remaining terms are zero:

(84)

Theorem 9 (Properties of the viscous moment tensor). For 0 < Q� ¤ � <

C1; let V D .Vijpq/
d
i;p;qD1 be the viscous moment tensor associated with the

bounded domain B in R
d and the pair of shear modulus . Q�;�/. Then

(i) For i; j; p; q D 1; : : : ; d ,

Vijpq D Vjipq; Vijpq D Vijqp; Vijpq D Vpqij : (85)

(ii) One has

X
p

Vijpp D 0 for all i; j and
X
i

Vi ipq D 0 for all p; q;

or equivalently, V D PVP .
(iii) The tensor V is positive (negative, resp.) definite on the space of symmetric

matrices of trace zero if Q� > � ( Q� < �, resp.).
(iv) The tensor .1=.2�// V satisfies the following bounds:

Tr

�
1

2�
V

�
� jBj

� Q�
�
� 1

��
.d � 1/

�

Q� C
d.d � 1/

2

�
; (86)

Tr

�
1

2�
V

��1

� 1

jBj
� Q�
�
� 1

�
�
.d � 1/

Q�
�
C d.d � 1/

2

�
; (87)

where for C D �Cijpq	, Tr.C / WDPd
i;jD1Cij ij :

Note that the viscous moment tensor, V , is a four tensor and can be regarded,
because of its symmetry, as a linear transformation on the space of symmetric
matrices. Note also that, in view of Theorem 2, the right-hand sides of (86) and (87)
are exactly in the two-dimensional case (d D 2) the Hashin–Shtrikman bounds (9)
for the polarization tensor associated with the same domain B and the conductivity
contrast k D Q�=�.
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Numerical Methods

Let u be the solution to the modified Stokes system (78). The inverse problem in the
magnetic resonance elastography is to reconstruct the shape and the shear modulus
of the anomalyD from internal measurements of u.

Based on the inner asymptotic expansion (80) of ıu .WD u � U/ of the
perturbations in the displacement field that are due to the presence of the anomaly,
a reconstruction method of binary level set type can be designed.

The first step for the reconstruction procedure is to locate the anomaly. This can
be done using the outer expansion of ıu, i.e., an expansion far away from the elastic
anomaly.

Suppose that z is reconstructed. Since the representation D D z C ıB is not
unique, one can fix ı. One uses a binary level set representation f of the scaled
domain B:

f .x/ D
�

1; x 2 B ;

�1; x 2 R
3nB: (88)

Let

2h.x/ D Q�
�
f
�x � z

ı

�
C 1

�
� �

�
f
�x � z

ı

�
� 1

�
(89)

and let ˇ be a regularization parameter. Then the second step is to fix a window W

(containing z) and solve the following constrained minimization problem

min
Q�;f

L.f; Q�/ D1

2

������ ıu.x/ � ı
dX

p;qD1

@qU.z/p Ovpq
�x � z

ı

�
CrU.z/.x � z/

������
2

L2.W /

C ˇ
Z
W

jrh.x/j dx; (90)

subject to (76). Here,
R
W
jrhj dx is the total variation of the shear modulus and

jrhj is understood as a measure:

Z
W

jrhj D sup

�Z
W

hr � v dx; v 2 C1
0.W / and jvj � 1 in W


:

This regularization indirectly controls both the length of the level curves and the
jumps in the coefficients.

The local character of the method is due to the decay of

ı

dX
p;qD1

@qU.z/p Ovpq
� � � z

ı

�
� rU.z/. � � z/
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Fig. 9 Reconstruction using the data on the whole domain on the left, a zoom on the anomaly
in the middle, and on the right the reconstruction limited on the subregion defined by the boxed
region on the left

away from z. This is one of the main features of the method. In the presence of noise,
because of a trade-off between accuracy and stability, one has to choose carefully
the size ofW . As it has been shown in [13], the size ofW should not be too small in
order to preserve some stability and not too big so that one can gain some accuracy.
See Fig. 9.

The minimization problem (90) corresponds to a minimization with respect to Q�
followed by a step of minimization with respect to f . The minimization steps are
over the set of Q� and f and can be performed using a gradient-based method with a
line search. Of importance are the optimal bounds satisfied by the viscous moment
tensor V . One should check at each step whether the bounds (86) and (87) on V are
satisfied or not. In the case where they are not, one has to restate the value of Q�.
Another way to deal with (86) and (87) is to introduce them into the minimization
problem (90) as a constraint. Set ˛ D Tr.V / and ˇ D Tr

�
V �1

	
and suppose for

simplicity that Q� > �. Then, (86) and (87) can be rewritten (when d D 3) as
follows:

8̂
<̂
ˆ̂:
˛ � 2. Q� � �/

�
3C 2�

Q�
�
jDj;

2�. Q�� �/
3�C 2 Q� jDj � ˇ

�1:

(91)

Bibliography and Open Questions

Magnetic resonance elastography was first proposed in [81]. The results provided
on this technique are from [14]. Theorem 8 and the results on the viscous moment
tensor in Theorem 9 are from [15].
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In general, the elastic parameters of biological tissues show anisotropic proper-
ties, that is, the local value of elasticity is different in the different spatial directions
[91] and also viscous properties. It would be very interesting to extend the algorithm
described in this section for detecting the shape of an elastic anomaly and the
viscosity and the anisotropy in its shear modulus. The study of the dependence of
the shear modulus as a function of the frequency is also important [90].

8 Photo-Acoustic Imaging of Small Absorbers

Physical Principles

In photo-acoustic imaging, optical energy absorption causes thermoelastic expan-
sion of the tissue, which in turn leads to propagation of a pressure wave. This signal
is measured by transducers distributed on the boundary of the object, which is in turn
used for imaging optical properties of the object. The significance of photo-acoustic
imaging is to provide images of optical contrasts (based on the optical absorption)
with the resolution of ultrasound.

In pure optical imaging, optical scattering in soft tissues degrades spatial
resolution significantly with depth. As for electrical impedance tomography, even
though pure optical imaging is very sensitive to optical absorption, it can only
provide a spatial resolution of the order of 1 cm at centimeter depths. As discussed
before, pure conventional ultrasound imaging is based on the detection of the
mechanical properties (acoustic impedance) in biological soft tissues. It can provide
good spatial resolution because of its millimetric wavelength and weak scattering at
megahertz frequencies.

If the medium is acoustically homogeneous and has the same acoustic properties
as the free space, then the boundary of the object plays no role and the optical
properties of the medium can be extracted from the measurements of the pressure
wave by inverting a spherical Radon transform.

In the more realistic situation, where a boundary condition has to be imposed
on the pressure field, such an inversion formula does not hold. Using asymptotic
analysis, one can develop an efficient approach for reconstructing absorbing regions
and absorbing energy density inside a bounded domain from boundary data. One
can also reconstruct the optical absorption coefficient. In general, it is not possible
to infer physiological parameters from the absorbing energy density. It is the optical
absorption coefficient distribution that directly correlates with tissue structural and
functional information such as blood oxygenation.

Mathematical Model

Let Dl; l D 1; : : : ; m, be m absorbing domains inside the nonabsorbing
background-bounded medium  � R

d ; d D 2 or 3. In an acoustically
homogeneous medium, the photo-acoustic effect is described by the following
equation:
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@2p

@t2
.x; t/ � c2

s �p.x; t/ D �
@H

@t
.x; t/; x 2 ; t 2 R; (92)

where cs is the acoustic speed in ; � the dimensionless Grüneisen coefficient in
; and H.x; t/ a heat source function (absorbed energy per unit time per unit
volume).

Assuming the stress-confinement condition, the source term can be modeled
as �H.x; t/ D ı.t/A.x/, where the absorbed optical energy density times the
Grüneisen coefficientA DPm

lD1Al	.Dl/ andAl are constants. Under this assump-
tion, the pressure in an acoustically homogeneous medium obeys the following wave
equation:

@2p

@t2
.x; t/ � c2

s �p.x; t/ D 0; x 2 ; t 2�0; T Œ;

for some final observation time T . The pressure satisfies the Dirichlet boundary
condition

p D 0 on @��0; T Œ

and the initial conditions

pjtD0 D
mX
lD1

	.Dl/Al and
@p

@t

ˇ̌
ˇ
tD0
D 0 in :

Suppose that T satisfies (66). The inverse problem in photo-acoustic imaging is
to determine the supports of nonzero optical absorption (Dl; l D 1; : : : ; m) in 
and A.x/ from boundary measurements of @p

@�
on @��0; T Œ.

Reconstruction Algorithms

Analogously to (71), the following identity holds:

1

c2
s

mX
lD1

Al

Z
D

@twy.x; 0I �/dx D
Z T

0

Z
@

@p

@�
.x; t/wy .x; t I �/ d
.x/ dt; (93)

where the probe function wy is given by (70).

Determination of Location
Suppose for simplicity that there is only one absorbing object .m D 1/ which is
denoted by D .D zC ıB/. Identity (93) shows that the imaging functional
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Fig. 10 Real configuration of the medium on the left – there are seven optical anomalies of
various size and absorption. Reconstructed configuration on the right – anomalies 6 and 7 are
reconstructed as a single anomaly

W.�; y/ WD
Z T

0

Z
@

@p

@�
.x; t/wy .x; t I �/ d
.x/ dt (94)

is nonzero only on the interval ��a; �eŒ, where �a D dist.y;D/=cs is the first � for
which the sphere of center y and radius � hits D and �e is the last � for which such
sphere hitsD. This gives a simple way to detect the location (by changing the source
point y and taking intersection of spheres). The functional W.�; y/ can be used to
probe the medium as a function of � and y. For fixed y, it is a one-dimensional
function and is related to time reversal in the sense that it is a convolution with a
reversed wave.

A result of numerical simulation to validate the location search algorithm is given
in Fig. 10.

Estimation of Absorbing Energy
Consider first the three-dimensional case. If D is a sphere with A.x/ D A	.D/,
then one has

ı2A 	 csjz � yj
Z �e

�a

ˇ̌
ˇ̌
Z T

0

Z
@

@p

@�
.x; t/wy .x; t I �/ d
.x/ dt

ˇ̌
ˇ̌ d�; (95)

which gives an approximation of ı2A.
In two dimensions, one should rather consider the probe wave given by

w� .x; t I �/ D ı
�
t C � � hx; �i

c

�
; (96)

where � is a unit vector and � is a parameter satisfying
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� > max
x2

� hx; �i
c

�
:

One can still use the function

� 7!
Z T

0

Z
@

@p

@�
.x; t/w� .x; t I �/ d
.x/ dt

to probe the medium as a function of � . This quantity is nonzero on the interval
��a; �eŒ, where �a and �e are defined such that planes hx; �i D c� for � D �a and
�e hit D. Changing the direction � and intersecting stripes gives an efficient way to
reconstruct the anomalies.

By exactly the same arguments as in three dimensions, one can show that

ıA 	 cs

4

Z �e

�a

ˇ̌
ˇ̌Z T

0

Z
@

@p

@�
.x; t/w� .x; t I �/ d
.x/ dt

ˇ̌
ˇ̌ d�: (97)

The above formula can be used to estimate ıA.
In the case when there arem inclusions, one first computes for each l the quantity

�l;best D argmax
�2Œ0;��

�
min
j¤l

ˇ̌hzj � zl ; �i
ˇ̌�

and then, since along the direction �l;best, the inclusionDl is well separated from all
the other inclusions, one can use formula (97) to estimate its ıAl .

Reconstruction of the Absorption Coefficient
The density A.x/ is related to the optical absorption coefficient distribution
�a.x/ D �a	.D/ by the equation A.x/ D �a.x/ˆ.x/, where ˆ is the fluence
rate. The functionˆ depends on the distribution of scattering and absorption within
, as well as the light sources. Based on the diffusion approximation to the transport
equation,ˆ satisfies

�
i!

c
C �a.x/ � 1

3
r � 1

�a.x/C �s.x/r
�
ˆ.x/ D 0 in ; (98)

with the boundary condition

1

�s

@ˆ

@�
D g on @: (99)

Here, g denotes the light source, ! a given frequency, c the speed of light, and �s
the scattering coefficient. The diffusion approximation holds when �s � �a.
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Suppose that d D 3 and �s is known a priori. Define ˆ0 by

�
i!

c
� 1

3
r � 1

�s.x/
r
�
ˆ0.x/ D 0 in ;

subject to the boundary condition

1

�s

@ˆ0

@�
D g on @:

Introduce ONB to be the Newton potential given by

ONB.�/ WD
Z
B

�.� � y/ dy;

where � WD �1=.4�jxj/ is a fundamental solution of the Laplacian in three
dimensions.

Let ˛ WD ı2�aˆ.z/ D ı2A. As shown before, ˛ can be reconstructed from @p

@�
.

To extract ı2�a from ˛, one uses the following theorem:

Theorem 10 (Fluence rate perturbations). If B is the unit sphere, then the
following expansion holds:

.ˆ�ˆ0/.z/ 	 3˛�s.z/ ONB.0/; (100)

from which it follows that the (normalized) absorption coefficient can be approxi-
mated by

ı2�a 	 ˛

3˛�s.z/ ONB.0/Cˆ0.z/
: (101)

Separating ı from �a requires boundary measurements ofˆ on @. One can use

Z
@

g.ˆ �ˆ0/ d
 	 �aˆ2
0.z/jDj (102)

to separately recover ı from �a.
In the case where �s is unknown, an algorithm to extract the absorption coeffi-

cient �a from absorbed energies obtained at multiple wavelengths was developed in
[10]. It assumes that the wavelength dependence of the scattering and absorption
coefficients are known. In biological tissues, the wavelength dependence of the
scattering often approximates to a power law.
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Bibliography and Open Questions

Basic physical principles of the photo-acoustic effect have been described, for
instance, in [49, 98]. The results of this section are from [9,10]. The location search
algorithm described in this section can be extended to the case with limited-view
measurements. The half-space problem has been considered [96]. In free space, one
refers to [1, 2, 4, 55, 56, 70, 84] for uniqueness of the reconstruction and inversion
procedures based on the spherical Radon transform. Reconstruction methods with
incomplete data have been developed in [97]. Sensitivity analysis of a photo-
acoustic wave to the presence of small absorbing objects has been provided in [49].

In connection with photo-acoustic imaging, it is worth mentioning the multi-
physics imaging technique proposed in [52], which combines electrical impedance
tomography with acoustic tomography. This method makes use of the fact that the
absorbed electrical energy causes thermoelastic expansion of the tissue, which leads
to propagation of a pressure wave. With the notation of Sect. 5, the induced signal
is measured on the boundary of the object and can be used for calculating the
absorbed electrical energy, E D � jruj2, inside the body, from which the electrical
conductivity � can be reconstructed using, for instance, the substitution algorithm.

As for magneto-acoustic imaging with magnetic induction, it would be very
interesting to design a robust inversion algorithm when the acoustic speed fluctuates
randomly.

9 Conclusion

In this chapter, applications of asymptotic analysis in emerging medical imaging are
outlined. This method leads to very effective and robust reconstruction algorithms
in many imaging problems. Of particular interest are emerging multi-physics or
hybrid-imaging approaches. These approaches allow one to overcome the severe
ill-posedness character of image reconstruction. It would be very interesting to ana-
lytically investigate their robustness, with respect to incomplete data, measurement,
and medium noises. Another important problem is to take into account the effect of
anisotropy, dissipation, or attenuation in biological tissues.
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Abstract
The topic of this chapter is devoted to shape identification problems, i.e.,
problems where the shape of an object has to be determined from indirect
measurements. In contrast to iterative methods where a sequence of forward
problems has to be computed the sampling methods avoid the (usually expansive)
computation of the forward problems. Instead, a class of test objects (e.g.,
points) are chosen and a binary criterium is constructed which depends on the
measured data only, and which decides whether this test object is inside or
outside of the searched for domain. In this chapter, the factorization method is
explained for the impedance tomography problem with insulating or conducting
inclusions, for scattering theory for time harmonic acoustic plane waves in the
presence of a perfectly sound–soft obstacle, and for electromagnetic scattering by
an inhomogeneous conducting medium. Brief descriptions of related sampling
methods, such as the linear sampling method, MUSIC, the singular sources
method, and the probe method complement this chapter.

1 Introduction

The topic of this chapter is devoted to shape identification problems, i.e., problems
where the shape of an object has to be determined from indirect measurements.
Such a situation typically occurs in problems of tomography, in particular electrical
impedance tomography or optical tomography. For example, a current through a
homogeneous object will in general induce a different potential than the same
current through the same object containing an enclosed cavity. In impedance
tomography, the task is to determine the shape of the cavity from measurements
of the potential on the boundary of the object. For survey articles on this subject, we
refer to [18, 54], and chapter �Electrical Impedance Tomography in this volume.

As a second of these fields, we mention inverse scattering problems where one
wants to detect – and identify – unknown objects through the use of acoustic,
electromagnetic, or elastic waves. Similar to the above, one of the important
problems in inverse scattering theory is to determine the shape of the scattering
obstacle from field measurements. Applications of inverse scattering problems occur
in such diverse areas as medical imaging, material science, nondestructive testing,
radar, remote sensing, or seismic exploration. A survey on the state of the art of the
mathematical theory and numerical approaches for solving inverse time-harmonic
scattering problems until 1998 can be found in the standard monograph [36] (see
also chapter � Inverse Scattering or [83] for an introduction and survey on inverse
scattering problems).

Shape identification problems are intrinsically nonlinear, i.e., the measured
quantities do not depend linearly on the shape. Even the notion of linearity does
not make sense since, in general, the set of admissible shapes does not carry a linear
structure. Traditional (and still very successful) approaches describe the objects by
appropriate parameterizations and compute the parameters by iterative schemes as,
e.g., Newton-type methods. Newton-type methods are attractive because of their

http://dx.doi.org/10.1007/978-1-4939-0790-8_14
http://dx.doi.org/10.1007/978-1-4939-0790-8_48
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fast convergence, although they require a good initial guess to converge. Still,
these methods are widely used – partly because techniques from shape optimization
theory can be used to characterize the required first- or second-order derivatives. We
refer to [84, 89] for general references and to [57, 58, 65] for applications in inverse
scattering theory.

While classical iterative algorithms use explicit parameterizations of the object,
new shape optimization methods have been developed since around 1995 which
completely avoid the use of parameterizations and replace the classical Fréchet
derivative by a geometrically motivated topological derivative, see, e.g., [50]
for the application of these methods in the inverse scattering context. Yet these
methods have the shortcoming that they are not able to change the number of
connectivity components during the algorithm. This has led to the development
of level set methods which are based on implicit representations of the unknown
object involving an “evolution parameter” t . We refer to [25] or chapter �Level Set
Methods for Structural Inversion and Image Reconstruction for recent surveys.

While very successful in many cases, iterative methods for shape identification
problems – may they use classical tools as the Fréchet derivative or more recent
techniques such as domain derivatives, level curves, or topological derivatives – are
computationally very expensive since they require the solution of a direct problem
in every step. Furthermore, for many important cases, the convergence theory is
still missing. This is due to the fact that these problems are not only nonlinear but
also because their linearizations are improperly posed. Although there exist many
results on the convergence of (regularized) iterative methods for solving nonlinear
improperly posed problems (see, e.g., [39, 64] or chapter � Iterative Solution
Methods), the assumptions for convergence are not met in the applications to shape
identification problems. (Or, at least, it is unknown whether these assumptions are
fulfilled or not.)

These difficulties and disadvantages of iterative schemes gave rise to the devel-
opment of different classes of non-iterative methods which avoid the solution of a
sequence of direct problems. We briefly mention decomposition methods (according
to the notion of [37]) which consist of an analytic continuation step (which is linear
but highly improperly posed) and a nonlinear step of finding the boundary of the
unknown domain by forcing the boundary condition to hold. We refer to section
“Decomposition Methods” in chapter � Inverse Scattering.

This chapter will focus on a different class of non-iterative methods, the so-called
sampling methods. The common idea of these methods is the construction of criteria
on the known data to decide whether a given test object (a point or a curve or a
set) is inside or outside the unknown domain D. Then, a grid of “sampling” points
is chosen in a region that is known to contain the unknown domain D, in order
to compute the (approximate) characteristic function of D. The different kinds of
sampling methods differ in the way of defining the criteria and in the type of test
objects.

One of the first methods which falls into this class has been developed by
David Colton and one of the authors (A. K.) in 1996 [35], now known as the
linear sampling method. Its origin goes back to the dual space method developed

http://dx.doi.org/10.1007/978-1-4939-0790-8_11
http://dx.doi.org/10.1007/978-1-4939-0790-8_9
http://dx.doi.org/10.1007/978-1-4939-0790-8_48
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between 1985 and 1990 (see, e.g., [36]). The numerical implementation of the linear
sampling method is extremely simple and fast because sampling is done by points
z only. For every sampling point z, one has to compute the field of a point source
in z with respect to the background medium (essentially, one has to compute the
fundamental solution of the underlying differential operator; if the background is
constant, the response is given analytically) and evaluate a series, i.e., a finite sum
in practice.

A problem with the linear sampling method from the mathematical point of view
is that the computable criterion is only a sufficient condition which is, in general, not
necessary. The factorization method overcomes this drawback and yields a criterion
for z which is both necessary and sufficient. Therefore, this method succeeds to
provide a simple formula for the characteristic function of D which can easily be
used for numerical computations.

The factorization method consists of three components. First, a “measurement
operator”M is factorized in three factors of the form

M D AGA�; (1)

where A� is the dual operator of A with respect to the L2 topology. Second, the
range of A is characterized by the obstacle D, and vice versa. Third, if the operator
G satisfies a certain coercivity condition, then the range of A can be determined
by the given operator M . This requires some functional analytic results on range
identities which we have collected in an appendix.

Combining these three steps yields an explicit characterization of the unknown
obstacle D by the measurement operatorM .

The outline of this chapter is as follows. First, in Sect. 2, we present the fac-
torization method for two different settings in the impedance tomography context.
In the very first setting, we deal with insulating inclusions, and this allows for
a very elementary presentation of the method. Afterwards, in Sect. 3, we turn to
applications from inverse acoustic and (full 3D) electromagnetic scattering. Finally,
we give a brief overview of other sampling type methods in Sect. 4, including the
original linear sampling method and MUSIC-type methods.

2 The FactorizationMethod in Impedance Tomography

We start with the impedance tomography problem. Consider an object that fills a
simply connected domain  � R

n with Lipschitz continuous boundary, where
n D 2 or n D 3, respectively. We assume that the object is a homogeneous and
isotropic conductor, except for a finite number m of so-called inclusions, given by
domains Di � , i D 1; : : : ; m, with Lipschitz continuous boundaries @Di . We
assume that these domains are well separated, i.e., Di \ Dj D ; when i ¤ j ,
and that the complement of the closure D of D D [miD1Di is connected. In
impedance tomography, currents are imposed through the boundary of the object,
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and the resulting boundary potentials are measured. Linear independent boundary
currents yield independent pieces of information, which can be used as input data
to determine the unknown shapes and positions of the inclusions.

In practice, at least in most medical applications, the boundary currents have
a frequency in the kHz range (5–500 kHz), and the dc approximation with a
positive real conductivity 
 (or possibly a positive definite tensor) serves as a
suitable physical model. Without loss of generality, we can always assume that the
homogeneous conductivity of the object equals 
 D 1, whereas 
 ¤ 1 within the
inclusions.

Below we will consider two specific scenarios. In the first one, we assume that
the inclusions are insulating, formally corresponding to the case where 
 D 0. Our
analysis of the factorization method for the corresponding inverse problem will be
somewhat nonstandard; in particular, we employ a factorization in only two factors
instead of three as in (1), but this allows for a most elementary treatment of the
method.

Subsequently, we show how to deal with conducting obstacles with a conductiv-
ity tensor 
 . Of particular interest is the setting where the object under consideration
can be modeled as a half space; examples of this sort arise in geophysics, cf. [78],
and in medicine, e.g., when a planar device is used for mammography examinations,
cf. [92]. Another interesting application for the half-space problem has recently been
considered in [17]. We therefore briefly describe the differences that arise in this
context (mainly in the theoretical justification of the method).

We conclude our case studies with a setting where the inclusion degenerates to
a crack, i.e., an n � 1 dimensional smooth manifold within . This application
requires some care in the appropriate implementation of the factorization method.

Impedance Tomography in the Presence of Insulating Inclusions

To begin with, we take up the case where  is a bounded domain, and the domains
Di � ; i D 1; : : : ; m correspond to insulating inclusions. Within the dc model,
the potential u0 induced by a boundary current f is given by

�u0 D 0 in nD; @

@�
u0 D 0 on @D;

@

@�
u0 D f on @;

Z
@

u0 ds D 0;
(2)

where the normal vectors � on @ and @D are pointing into the exterior of  and
D, respectively. In order to make the forward problem (2) well posed, we restrict
f to be square integrable with vanishing mean on @. The corresponding set of
admissible boundary currents is

L2}.@/ D
�
f 2 L2.@/ W

Z
@

f ds D 0


: (3)
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Under these assumptions, problem (2) has a unique (weak) solution

u0 2 H 1}.nD/ D
�

u 2 H 1.nD/ W
Z
@

u ds D 0


:

The last condition in (2) normalizes this boundary potential to have vanishing mean;
without this condition, the solution would only be unique up to additive constants,
reflecting the fact that only the voltage, i.e., the difference between the potential at
two different points, is a well-defined physical quantity.

Therefore, the direct problem is to determine the field u0 when f and D are
given.

The quantity that is measured in impedance tomography is the trace g0 D u0j@,
i.e., the boundary potential. The corresponding measurement operator

ƒ0 W
�
L2}.@/! L2}.@/;
f 7! g0 D u0j@; (4)

i.e., the so-called Neumann-Dirichlet operator, is usually referred to as absolute
data in impedance tomography.

The inverse problem is to determine the shape of D from the measurement
operatorƒ0.

For the factorization method, we employ relative data, that is, the difference
between the above Neumann-Dirichlet operator and the corresponding one for a
completely homogeneous object in. To be precise, let u1 be the reference solution
for the homogeneous object, given the same boundary current f 2 L2

}.@/,

�u1 D 0 in ;
@

@�
u1 D f on @;

Z
@

u1 ds D 0; (5)

and denote by ƒ1 Wf 7! g1 D u1j@ the Neumann-Dirichlet map associated with
(5). It is the relative data M D ƒ0 � ƒ1 that later enters in (1) to lay the grounds
for the setting of the factorization method.

We refer to chapter �Electrical Impedance Tomography for a more elaborate
treatment of the impedance tomography problem, but we will see below thatƒ0�ƒ1

is a bounded and positive self-adjoint operator. We also do not discuss practical
issues such as electrode models that should be incorporated into a realistic problem
setting. For the same reason, we do not comment on how to obtain relative data
in practice; the generation of accurate reference data is indeed a difficult subject,
and some work-arounds have therefore been suggested for this purpose. (We like
to highlight one recent approach from [56], where different frequencies are used
in the experimental setup to obtain relative data. This approach, however, leads to a
different variant of the factorization method than the one that is described here.) Our
specification of the impedance tomography problem is thus a purely mathematical
one, although it can be shown to be a pretty reasonable approximation of the real
case, cf., e.g., [60, 77].

http://dx.doi.org/10.1007/978-1-4939-0790-8_14


Sampling Methods 597

Before we continue, we pause to comment on the nature of the relative data
introduced above. Any function h in the range R.ƒ0�ƒ1/ ofƒ0�ƒ1 corresponds
to a suitable input current f 2 L2}.@/, such that h is the trace of w D u0 � u1 W
nD ! R, where u0 and u1 are the solutions of (2) and (5), respectively. As u0 and
u1 are both harmonic in nD, the same holds true for w; on top of that, like u0 and
u1, w has finite H 1 norm on nD, as well as vanishing mean on @. Moreover, w
has homogeneous Neumann boundary conditions on @, as u0 and u1 both satisfy
the same Neumann boundary condition. And finally, on @Di , i D 1; : : : ; m, we have

Z
@Di

@

@�
w ds D �

Z
@Di

@

@�
u1 ds D 0

by virtue of Green’s formula. Accordingly, the range of ƒ0 �ƒ1 consists of traces
of potentials w from

W D
�

w 2 H 1
}.nD/ W �w D 0;

@

@�
w D 0 on @;

Z
@Di

@

@�
w ds D 0; i D 1; : : : ; m


: (6)

It is well known that harmonic functions have infinite smoothness. Moreover, as the
elements of W have a vanishing Neumann derivative on @, the “variation” of w
on @ can only be caused by their behavior near the boundary of D – unless the
boundary of  is non-smooth. In other words, the (local) variation of the trace of
some function w 2 W is an indicator for the (local) width of the domain nD. In
fact, as we will show next, it is possible to characterize D completely, if the set of
all traces of W on @ were known. (For one insulating inclusion, it is even known
that the trace of one single potential w 2 W is enough to identify D, cf., e.g., [16].
For conducting obstacles, with known conductivity, the corresponding uniqueness
problem is still open.)

To this end, we introduce the Neumann function N. �; z/ associated with the
Laplacian in the domain , which is given as the (distributional) solution of the
problem

��N.x; z/ D ı.x � z/ in ;
@

@�
N.x; z/ D � 1

j@j on @;R
@
N.x; z/ ds.x/ D 0;

(7)

where z 2  is kept fixed, and the differential operators act on the x-variable only.
To achieve a unique solution, we have normalized N. �; z/ to have vanishing mean
on @. The directional derivative

Uz.x/ D p � gradz N.x; z/ (8)
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with respect to z of N in direction p (of unit length) yields the potential of a dipole
source in z with moment p in the presence of an insulated boundary @: We refer
to Uz as the dipole potential, tacitly assuming the dipole moment to be fixed. (All
subsequent results hold true for an arbitrary choice of p 2 R

n with jpj D 1, and it
appears that there is still space to improve the numerical performance of the method,
especially in three-space dimensions, provided that this property is exploited in an
optimal way.) We remark that Uz behaves like

Uz.x/ �

8̂
<̂
ˆ̂:

1

2�

.x � z/ �p
jx � zj2 ; n D 2;

1

4�

.x � z/ �p
jx � zj3 ; n D 3;

as x ! z; (9)

and, in fact, Uz agrees with the right-hand side of (9) up to a harmonic function.
This statement holds true for every fixed z 2 .

Now we are ready to formulate the characterization of the inclusion D as it
has been established by Brühl in his dissertation [21] (see also [22]) and which
constitutes the basis for the factorization method.

Theorem 1. A point z 2  belongs to D, if and only if the trace �z D Uzj@
coincides with the trace of some potential w 2W .

Proof. First, let z 2 D. Then the dipole potential Uz is harmonic in nfzg, i.e., in
nD and in a neighborhood of @D. Accordingly Uz belongs to H 1}.nD/. As
N.x; z/ has the same Neumann boundary data for any z 2 R

n, its directional
derivative with respect to z has vanishing Neumann data on @. Moreover,
according to Green’s formula,

Z
@Di

@

@�
Uz ds D 0 (10)

for every component Di of D which does not contain z; however, as the total flux
of Uz across @.nD/ vanishes as well, (10) must also hold true for that component
Di of D which does contain z. Therefore, Uz 2 W , and its trace belongs to the
corresponding trace space.

Now, let z … D, and assume that the trace �z of the dipole potential Uz is the
trace of a potential w 2 W . As we have seen in the first part of this proof, Uz and
w thus have the same Cauchy data on @, and it follows from the uniqueness of
solutions of the Cauchy problem for the Poisson equation that Uz and w coincide
in n.D [ fzg/, where both are harmonic. (It is here where the assumption on the
connectedness of nD is needed.) Now, w extends as a harmonic function into the
point z and, hence, is bounded near z, whereas Uz is not, cf. (9). This provides the
desired contradiction.

In the last case, where z sits on the boundary ofD, we can use the same argument
as before to show that w and Uz coincide in nD. According to (6), Uz must
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therefore have a finiteH 1-norm onnD, which contradicts the asymptotic behavior
(9) near z 2 @D. (This argument requires the Lipschitz continuity of @D, because
this assumption makes sure that we can find an open-cone C � nD with vertex in
z and, hence, that the integral

R
C jgrad Uzj2dx is unbounded.) �

It turns out that the potentials w D u0�u1, which provide the given relative data,
have additional features that are not captured by the description of the set W of (6).
For example, if the boundaries of the domains Di are smooth, then the potential
u0 of (2) can be extended by reflection to a certain subset of D, showing that w
has a harmonic extension to a larger domain than just nD (see [54]; Appendix).
Therefore, the space spanned by the relative data is smaller than the trace space
of W in general. Still, there is a means to deduce this trace space from the given
relative data – and the appropriate tool is the factorization method.

At this point we deviate from the usual presentation of the factorization method
to opt for a more elementary derivation of the main results. Instead of the usual
factorization of the data map in three factors as in (1), we follow the approach in
[23] and factor the relative data in only two parts, namely,

ƒ0 �ƒ1 D K�K; (11)

whereK� is an appropriate adjoint of the operatorK given by

K W f 7!
�

u0 � u1 in nD;
ci � u1 in Di; i D 1; : : : ; m;

(12)

and the real numbers ci in (12) are the means of the potential u0 at the boundaries
of the insulating inclusions, i.e.,

ci D 1

j@Di j
Z
@Di

u0 ds; i D 1; : : : ; m: (13)

We claim (see Theorem 2 below for a proof) that K is a continuous operator from
L2}.@/ to X , where

X D ˚v W ! R W v
ˇ̌
nD 2 H 1}.nD/; v

ˇ̌
D 2 H 1.D/;

Z
@Di

Œv� ds D 0; i D 1; : : : ; m


: (14)

In this definition, again, the subscript Þ indicates that any v 2 X is required to have
vanishing mean on @, and

Œv� D vCj@D � v�j@D
denotes the jump of v across the boundary of the inclusion(s), defined in the
appropriate trace spaces. Here and below we denote by vC and v� the restriction
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of a generic element v 2 X tonD andD, respectively. We equip X with the inner
product

.v;w/X D
Z
n@D

grad v � grad wdx

D
Z
D

grad v� � grad w�dx C
Z
nD

grad vC � grad wCdx; (15)

which turns X into a Hilbert space. Take note that H 1}./, i.e., the set of all
functions fromH 1./ with vanishing mean on @, is a subset of X .

Lemma 1. Let K � X be the set of all elements w 2 X that are harmonic inn@D
and satisfy

@

@�
w D 0 on @ and

�
@

@�
w

�
D 0 on @D:

Then K is the orthogonal complement ofH 1}./ in X .

Proof. Using Green’s formula for any v 2 H 1}./ and any w 2 X that is harmonic
in n@D, we obtain

Z
n@D

grad v � grad wdx D
Z
@

v
@w

@�
ds �

Z
@D

v
@wC

@�
ds C

Z
@D

v
@w�

@�
ds

D
Z
@

v
@w

@�
ds �

Z
@D

v

�
@w

@�

�
ds;

(16)

as v has a well-defined unique trace on @D. Now, if we choose w 2 K, then both
integrals vanish, and hence w?v with respect to the scalar product in X .

Vice versa, pick w 2 X from the orthogonal complement ofH 1}./, and let v be
a C1 function with compact support in nD, then Green’s formula yields

Z
nD

w�vdx D
Z
@

w
@v

@�
ds �

Z
@D

w
@v

@�
ds �

Z
nD

grad w � grad vdx

D
Z
@

w
@v

@�
ds �

Z
@D

w
@v

@�
ds �

Z
n@D

grad w � grad vdx;

and all three integrals in the bottom line are zero by construction. Thus, w is
harmonic in nD according to Weyl’s Lemma. The same kind of argument also
shows that w is harmonic in D. Accordingly, as above, (16) holds true for any v 2
H 1}./, where now the left-hand side of (16) is zero because of the orthogonality.
A standard variational argument then shows that the normal derivative of w on @
and the flux of w across @D must vanish. �
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We briefly mention that every potential w from W of (6) has a unique continua-
tion to a potential w 2 K, and the restriction of a nontrivial element from K tonD
is a nonzero element from W . Accordingly, the set of traces on @ of potentials
from W and K, respectively, are the same.

Theorem 2. The operatorK W L2}.@/! X defined in (12) is bounded, injective,
and its range lies dense in the subset K introduced in Lemma 1. The adjoint operator
K� W X ! L2}.@/ satisfies

K�v D
�

vj@; v 2 K;
0; v 2 H 1}./:

In particular, there holdsK�K D ƒ0 �ƒ1, i.e., (11).

Proof. We recall that the two Neumann problems (2) and (5) have well-defined
unique solutions u0 and u1 in the spaceH 1}.nD/ andH 1}./, respectively, which
are given by the corresponding weak formulations

Z
nD

grad u0 � grad v0dx D
Z
@

f v0 ds for every v0 2 H 1}.nD/;Z


grad u1 � grad vdx D
Z
@

f v ds for every v 2 H 1}./:
(17)

Moreover, the two solutions depend continuously (in H 1) on the given boundary
data f 2 L2}.@/. Accordingly, w D Kf is a well-defined element of X and K a
bounded linear operator from L2}.@/ to X . The jump condition s@Di Œw�ds D 0 is
a consequence of the definition (13) of ci and the uniqueness of the trace of u1 on
@D.

Now, choose any f 2 L2}.@/, and denote by u0 and u1 the corresponding
solutions of (2) and (5). As in the definition of Kf, we can extend u0 to a function

Ou0 D
�

u0 in nD;
ci in Di; i D 1; : : : ; m;

in X , such that Kf D Ou0 � u1. First, for v 2 H 1}./, we have

.Kf ; v/X D .Ou0; v/X � .u1; v/X

D
Z
nD

grad u0 � grad vdx�
Z


grad u1 � grad vdx D 0
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by virtue of (17), and, hence, R.K/?H 1}./. It thus follows from Lemma 1 that

R.K/ � K and N .K�/ D R.K/? � H 1}./ and, in particular, that K�v D 0 for
every v 2 H 1

}./.
Second, for v 2 K, we compute

.Kf ; v/X D .Ou0; v/X � .u1; v/X D .Ou0; v/X ;

since u1 and v are orthogonal to each other according to Lemma 1. Together
with (17) thus follows that

.Kf ; v/X D
Z
nD

grad u0 � grad vdx D
Z
@

f v ds D .f; v/L2.@/;

i.e., that K�v D vj@. In particular, for v D Kf D Ou0 � u1 2 K, we obtain

K�Kf D K�.Ou0 � u1/ D .u0 � u1/j@D;
and, hence, the assertion (11) follows, cf. (4).

Assume now that R.K/ were not dense in K. Then there is some 0 ¤ v 2 K \
R.K/? D K \N .K�/, and since 0 D K�v D vj@, this function v has vanishing
Dirichlet boundary values on @. Moreover, as v belongs to K, it is harmonic in
nD with vanishing Neumann boundary values on @ (see Lemma 1). Thus, vC D
vjnD D 0 because of the unique solvability of the Cauchy problem for harmonic
functions. Using Lemma 1 once more, it follows that v� D vjD is also harmonic
with vanishing Neumann boundary values on @D, and, hence, v� is constant on
each Di , say v�jDi D v�

i ; i D 1; : : : ; m. Since s@Di
Œv�ds D �v�

i j@Dj and as v
belongs to X , these constants must all be zero. This is a contradiction to v ¤ 0, and,
hence, R.K/ is dense in K.

Finally, to show injectivity of K , we assume Kf D 0 for some f 2 L2}.@/.
Then u0 D u1 in nD, and u1 D ci in Di; i D 1; : : : ; m. Since u1 is harmonic
in all of the domain , the field must be constant in  (principle of unique
continuation), and the flux f D @u1=@� vanishes on @. �

This theorem – together with Lemma 1 – reveals that the range of K� consists
of all traces of potentials w 2 K, whereas the range of ƒ0 � ƒ1 only consists of a
dense subset of this set. Accordingly, we need to find a way to deduce the range of
K� from the given data to decrypt the information hidden in these traces according
to Theorem 1.

To this end we exploit the so-called Picard criterion, a formulation of which can
be found in the appendix (Theorem 25) for the ease of completeness. The Picard
criterion is based on the singular value decomposition of the operator K , which is
largely equivalent to the spectral decomposition of the operatorK�K D ƒ0 �ƒ1.

Corollary 1. The operator ƒ0 � ƒ1 is a compact and self-adjoint operator from
L2}.@/ into itself. As such, L2}.@/ has an orthonormal eigenbasis ffj g and
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associated eigenvalues �j , such that

.ƒ0 �ƒ1/fj D �j fj ; n 2 N: (18)

These eigenvalues are positive and converge to zero as n ! 1. Throughout we
shall assume that they are sorted in nonincreasing order.

Proof. That ƒ0 and ƒ1 are compact operators can be seen from the fact that the
trace space ofH 1.nD/ on @, i.e.,H 1=2.@/, is compactly embedded inL2.@/.
Accordingly, the difference operatorƒ0 �ƒ1 is compact as well as self-adjoint, as
follows readily from (11). One can thus find an orthonormal eigenbasis of ƒ0 �
ƒ1, and the associated eigenvalues converge to zero for j ! 1. It remains to
prove that they are all positive; this follows from (11) and the injectivity of K by
Theorem 2. �

As we have mentioned before, a point z 2  belongs to D, if and only if the
trace �z of Uz is the trace of a potential in K, i.e., if it belongs to the range of K�.
As we show in the appendix, cf. Corollary 3, this can be tested in the following way.

Theorem 3. Let ffj g and f�j g be the eigenbasis and eigenvalues ofƒ0�ƒ1. Then,
for any point z 2 ,

z 2 D”
1X
nD1

ˇ̌
.�z; fj /L2.@/

ˇ̌2
�j

<1 (19)

with �z D Uzj@ from (8).

Remark 1. With the notations 1=1 D 0 and sign ˛ D
�
˛=j˛j; ˛ ¤ 0;

0; ˛ D 0;
for any

˛ 2 C, we note that

XD.z/ D sign

2
4X

j

ˇ̌
.�z; fj /L2.@/

ˇ̌2
�j

3
5

�1

; z 2 ;

is the characteristic function of D. In particular, this result provides a constructive
proof of the uniqueness of the inverse problem.

Conducting Obstacles

Next, we turn to the case of anisotropic conducting obstacles. To this end we assume
that for each x 2  the conductivity 
.x/ is a real, symmetric positive definite
n � n-matrix, measurable and essentially bounded as a function of x and that the
associated quadratic form is bounded from below by some positive constant c > 0,
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i.e.,

p � .
.x/p/ � c for almost every x 2 D and every p 2 R
n with jpj D 1 and


.x/ D I on nD;
(20)

where D denotes the obstacles, which are assumed to have the same topological
properties as before. Another assumption that seems to be necessary for the validity
of the factorization method is that

p � .
.x/p/ � � < 1 for every p 2 R
n with jpj D 1; and almost every x 2 D;

(21)
which states that the background conductivity of the object is strictly larger
than within the inclusions. Instead of (21), one can alternatively require that the
conductivity within the inclusions is strictly larger than in the background, with
straightforward modifications of the analysis; however, we will stick to the above
assumption for the ease of simplicity. We mention that the assumption that the
background conductivity be strictly larger (or smaller) than within the object can be
relaxed to just being larger (or smaller), for the prize that the outcome of the method,
is unspecified for sampling points right on the boundary of the inclusions, cf. [42].
However, it is an open problem whether the factorization method is applicable,
if inequality (21) holds in some obstacles, while p � .
.x/p/ � � > 1 in other
inclusions; numerically, the method does not seem to deterior in this “mixed case.”

With conducting obstacles, the potential corresponding to a boundary current
f 2 L2}.@/ is given as the (weak) solution u 2 H 1}./ of the boundary value
problem

div.
grad u/ D 0 in ;
@

@�
u D f on @;

Z
@

u ds D 0; (22)

which replaces the model (2) from section “Impedance Tomography in the Presence
of Insulating Inclusions” above. Accordingly, we denote by ƒ the Neumann-
Dirichlet map associated with (13), i.e., ƒ W f 7! g D uj@.

As before, the corresponding inverse problem is to determine the shape of the
obstacles D from the relative data ƒ � ƒ1. Here, again, ƒ1 corresponds to the
“unperturbed” case 
 D 
1 D 1 everywhere in .

We mention that the problem whether not only D but the conductivity 
 itself
is uniquely determined by these data is completely settled when n D 2 – as long
as 
 is isotropic – cf. [14]. For n D 3, this question is still open for general scalar
L1 – conductivities. Partial answers are known; we refer to chapter �Electrical
Impedance Tomography. However, the set D is uniquely determined as we will see
below in Theorem 7.

Now we proceed to derive a factorization of ƒ � ƒ1 in three factors as in (1),
i.e.,

ƒ �ƒ1 D AGA�: (23)

http://dx.doi.org/10.1007/978-1-4939-0790-8_14
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To this end we imagine the effect of a virtual source ' on the boundary of the
obstacleD, given that the boundary of the object is insulated. The corresponding
potential v is the solution of the boundary value problem

�v D 0 in nD; � @
@�

v D ' on @D;

@

@�
v D 0 on @;

Z
@

v ds D 0:
(24)

Recall that the normal vector � on @D has been fixed to point into the interior of
nD, and therefore the minus sign in front of the normal derivative on @D reflects
the fact that ' is considered to be a source and not a sink. We will require that this
source has vanishing mean on each connected componentDi of D, i.e.,

' 2 H�1=2� .@D/ D
�
' 2 H�1=2.@D/ W

Z
@Di

'ds D 0; i D 1; : : : ; m


; (25)

where the integrals have to be interpreted as dual pairings betweenH�1=2 functions
and the unit constant from H 1=2. For later use we remark that the dual space of
H

�1=2� .@D/ can be identified with the subspace

H
1=2
� .@D/ D

�
 2 H 1=2.@D/ W

Z
@Di

 ds D 0; i D 1; : : : ; m


(26)

of H 1=2.@D/.
Associated with (24), we define the operator

A W
(
H

�1=2
� .@D/ ! L2

}.@/;
' 7! vj@; (27)

and remark that the adjoint operatorA� W L2}.@/! H
1=2
� .@D/ ofA is easily seen

to map f 2 L2}.@/ onto the trace of the solution u0 of (2) on the boundary of the
obstacle – after an appropriate renormalization of this trace on each component @Di

of @D. More precisely the following holds

.A�f /.x/ D u0.x/ � ci for x 2 @Di ; i D 1; : : : ; m; (28)

with ci as in (13).
In order to establish (23), it remains to determine the operator G in the middle.

We define G via the weak solution w of the diffraction problem
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div.
 grad w/ D 0 in n@D; @

@�
w D 0 on @;

Z
@

wds D 0;

Œw�@D D  ; Œ� � .
 grad w/�@D D 0;
(29)

and the solution w1 of the corresponding problem with 
 replaced by one every-
where. Again, the normal � on @D is pointing into the exterior of D. Note that
when 
 D 1 throughout all of, then the corresponding solution w1 of (29) can be
represented as a modified double-layer potential with density  and the Neumann
function for the Laplacian as kernel, i.e.,

w1.x/ D
Z
@D

@

@y�
N.x; y/ .y/ds.y/; x 2 n@D:

For a general conductivity tensor, the weak form of (29) is obtained by integrating
the differential equation against any test function v 2 H 1./ and using partial
integration, which yields

Z
n@D

grad w � .
 grad v/ dx D 0 for every v 2 H 1./: (30)

Now we can make the ansatz w D w1 C Ow with Ow 2 H 1./ to rewrite this as a
standard variational problem in H 1./. Find Ow 2 H 1./ such that

Z


grad Ow � .
grad v/ dx D �
Z
n@D

grad w1 � .
grad v/dx

for every v 2 H 1./. From this, it follows readily that problem (29) has a unique
weak solution in H 1.n@D/, provided that  2 H 1=2.@D/, i.e., that  belongs to
the trace space ofH 1.D/. In accordance with the definition ofA�, however, we will
restrict  to H 1=2� .@D/.

The flux of w and w1 across @D is well defined in H�1=2.@D/, cf., e.g., [45,
Thm. 2.5], and there holds

Z
@Di

@

@�
.wC � wC

1 / ds D
Z
@Di

� � .
 grad w�/ds �
Z
@Di

@

@�
w�
1 ds

D
Z
Di

div.
 grad w/dx �
Z
Di

�w1dx D 0:

We can therefore define the bounded operatorG in the following way:

G W
8<
:
H

1=2
� .@D/ ! H

�1=2
� .@D/;

 7! @

@�
.wC � wC

1 /j@D:
(31)
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Theorem 4. With A and G defined as above, the difference ƒ � ƒ1 of the two
Neumann-Dirichlet operators associated with (22) and (5), respectively, satisfies

ƒ �ƒ1 D AGA�:

Proof. Consider an arbitrary element f 2 L2}.@/ and the corresponding function
 D A�f , which satisfies

 j@Di D u0j@Di � ci ;

where u0 is given by (2), and ci is as in (13). The function  belongs to H 1=2
� .@D/,

and it is easy to verify that the associated solution w1 of (29) – where 
 is replaced
by one – is given by

w1 D
�

u0 � u1 in nD;
ci � u1 in Di; i D 1; : : : ; m;

where u1 is the solution of (5). Similarly, the solution w of (29) is given by

w D
�

u0 � u in nD;
ci � u in Di; i D 1; : : : ; m;

with u from (22). Accordingly, wC � wC
1 D uC

1 � uC, and hence,

' D GA�f D @

@�
.uC

1 � uC/
ˇ̌
ˇ̌
@D

:

If we insert this particular source term ' into (24), then we conclude readily that the
associated solution v of (24) is given by v D uC� uC

1 . It thus follows from (27) that

AGA�f D A' D g � g1 D .ƒ�ƒ1/f

as required. �

At this occasion, we recall that every function w 2 W of (6) has a well-defined
normal derivative ' 2 H�1=2

� .@D/ at the inner boundary @D and, hence, solves the
corresponding boundary value problem (24). And vice versa, the solution of (24)
for any ' 2 H�1=2� .@D/ belongs to W . Thus, we can reformulate Theorem 1 as
follows.

Theorem 5. A point z 2  belongs to D, if and only if the trace �z of the dipole
potential Uz in z, defined by (8), belongs to R.A/.

As in the insulating case, it remains to derive a constructive algorithm to test
whether the trace of some dipole potential belongs to R.A/ or not. The next step on
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our way towards this goal is an investigation of the functional analytic properties of
the operator G. In the following, we will often consider operators acting between
a reflexive Banach space X and its dual space X�. We will denote the action of an
element ` 2 X� on an element 2 X by h`;  i and the pair of spaces by hX�; Xi
in order to indicate that the first argument belongs to X� and the second to X . A
particular example is the Sobolev space H 1=2

� .@D/ with dual space H�1=2
� .@D/.

Theorem 6. The operator G W H
1=2
� .@D/ ! H

�1=2
� .@D/ is self-adjoint (i.e.,

G coincides with G� W H 1=2
� .@D/ ! H

�1=2
� .@D/ if the bi-dual of H 1=2

� .@D/ is
identified with itself) and coercive, i.e., there exists � > 0 with

hG ; i � � k k2
H 1=2.@D/ for all  2 H 1=2

� .@D/: (32)

Here, h � ; � i denotes the dual pairing in the dual system
D
H

�1=2� .@D/;H
1=2� .@D/

E
.

Proof. The proof proceeds in a couple of steps.

1. At first we establish the symmetry of G. Take any  and Q from H
1=2� .@D/,

define w and w1 as in the proof of Theorem 4, and – using Q instead of  in (29)
– define Qw and Qw1 accordingly. Then we conclude that

hG ; Q i D
Z
@D

Q @

@�
wCds �

Z
@D

Q @

@�
wC
1 ds

D
Z
@D

. QwC � Qw�/
@

@�
wCds �

Z
@D

� QwC
1 � Qw�

1

	 @
@�

wC
1 ds

D
Z
@D

QwC @

@�
wCds �

Z
@D

Qw�.� � .
 grad w�//ds

�
Z
@D

QwC
1

@

@�
wC
1 ds C

Z
@D

Qw�
1

@

@�
w�
1 ds:

Now we can use (29) and apply Green’s formula in D or nD, respectively, in
each of these integrals (care has to be taken concerning the orientation of the
normal on @D), to obtain

hG ; Q i D �
Z
nD

grad Qw � grad wdx �
Z
D

grad Qw � .
grad w/ dx

C
Z
nD

grad Qw1 � grad w1dx C
Z
D

grad Qw1 � grad w1dx

D
Z
n@D

grad Qw1 � grad w1dx �
Z
n@D

grad Qw � .
grad w/ dx;

(33)
from which the symmetry of G is obvious.
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2. Turning to the coercivity assertion (32), we fix some  2 H 1=2� .@D/ and employ
the weak form (30) of (29) with v D w � w1 2 H 1./. Starting from (33) with
 D Q , we thus obtain

hG ; i D
Z
n@D
jgrad w1j2dx �

Z
n@D

grad w � .
grad w/ dx

D
Z
n@D
jgrad w1j2dx �

Z
n@D

grad w � .
grad w/ dx

C 2
Z
n@D

grad w � .
grad .w� w1// dx

D
Z
n@D
jgrad w1j2dx C

Z
n@D

grad w � .
grad w/ dx

� 2
Z
n@D

grad w � .
grad w1/ dx

D
Z
n@D

grad w1 � ..1 � 
/grad w1/ dx

C
Z
n@D

grad .w � w1/ � .
grad .w � w1// dx

�
Z
n@D

grad w1 � ..1 � 
/grad w1/ dx:

The integrand of the last integral vanishes in nD and can be bounded in D
from below using the restriction (21) on the conductivity. Accordingly we have

hG ; i � .1 � �/
Z
D

jgrad w1j2dx: (34)

3. To accomplish the proof of (32), we need to show that

kgrad w1kL2.D/ � c k kH 1=2.@D/ (35)

for some constant c > 0. Assume the contrary: let  .j / 2 H
1=2
� .@D/ and

the corresponding w.j /1 be such that k .j /kH 1=2.@D/ D 1 for every j and

that
���grad w.j /1

���
L2.D/

converges to zero as j tends to infinity. Define Qw.j /1 2
H 1.n@D/ as

Qw.j /1 D
(

w.j /1 in nD;
w.j /1 � c.j /i in Di; i D 1; : : : ; m;
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with

c
.j /
i D

1

j@Di j
Z
@Di

�
w.j /1

��
ds; i D 1; : : : ; m:

Then Qw.j /1 jDi has vanishing mean on @Di , and
���grad Qw.j /1

���
L2.Di /

! 0 for every

i D 1; : : : ; m as j ! 1. By virtue of the Poincaré inequality, this implies that
Qw.j /1 tends to zero in H 1.D/. From (29), thus follows that the normal derivative
@
@�
Qw.j /1 at @D (from either side) tends to zero in H�1=2.@D/ and, hence, that

Qw.j /1 jnD converges in H 1.nD/ to the solution of the homogeneous Neumann

problem, normalized at the outer boundary. In other words, Qw.j /1 converges to
zero in H 1.D/ and in H 1.nD/ as j ! 1. Recurring to (29) once again, we
observe that

 .j /j@Di C c
.j /
i D

h
w.j /1

i
@Di
C c.j /i D

h
Qw.j /1

i
@Di
; (36)

and since  .j / 2 H 1=2
� .@D/, it follows by integration over @Di that

c
.j /
i D

1

j@Di j
Z
@Di

h
Qw.j /1

i
@Di

ds � 1

j@Di j
Z
@Di

 .j /ds

D 1

j@Di j
Z
@Di

h
Qw.j /1

i
@Di

ds ! 0

as j runs to infinity. Inserting this into (36), we conclude that

 .j /j@Di D
h
Qw.j /1

i
@Di
� c.j /i ! 0; j !1

in H 1=2.@Di /; i D 1; : : : ; m, but this contradicts
�� .j /��

H 1=2.@D/
D 1.

Therefore, (35) is true for some c > 0 and every 2 H 1=2� .@D/, and hence, (32)
follows from (34) and (35). �

By virtue of Theorem 6, all assumptions of Corollary 5 are satisfied for the
factorization of the relative data ƒ � ƒ1 established in Theorem 5. Therefore, we
can now conclude the main result of this section.

Theorem 7. Let z 2  and �z be defined as before.

Then: z 2 D”
1X
nD1

ˇ̌
.�z; fj /L2.@/

ˇ̌2
�j

<1,

where fj and �j are the orthonormal eigenfunctions and eigenvalues of ƒ�ƒ1.
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Local Data

It is an important feature of the factorization method that it can be easily adapted to
applications where the given data correspond to what is called the local Neumann-
Dirichlet mapƒ`. This is the map that takes Neumann boundary values supported on
some relatively open subset � � @ only and returns the corresponding boundary
potentials on the very same subset (normalized to have vanishing mean, say). The
local Neumann-Dirichlet map occurs whenever part of the boundary is inaccessible
to measurements, in which case � corresponds to that part of the boundary of 
where electrodes can be attached. Mathematically, the local Neumann-Dirichlet map
can be interpreted as a Galerkin projection

ƒ` D PƒP � (37)

of the full Neumann-Dirichlet map, where

P W
(
L2}.@/ ! L2}.�/;

g 7! gj� � 1
j�j
R
�
gds;

(38)

and P � is its L2 adjoint, i.e.,

P �f D
�
f on�;
0 on @Dn�:

From Theorem 4 we immediately conclude that if the conductivity distribution
satisfies (20) and (21), then the difference of the two local Neumann-Dirichlet maps
ƒ` and ƒ`

1 can be factorized in the form

ƒ` �ƒ`
1 D .PA/G.PA/�

with A and G as before. Moreover, the coercivity of G allows a constructive way to
check whether a given function belongs to R.PA/, considered as an operator from
H

�1=2� .@D/ to L2}.�/. Note that it is obvious from Theorem 5 that the functionP�z

belongs to R.PA/ when z 2 D; the converse statement requires a little more effort.

Theorem 8. Let � be a relatively open subset of @, and let P be the projector
defined in (38). Then z 2 D, if and only if P�z 2 R.PA/.

Proof. According to the definition (27) of A, the test function P�z belongs to
R.PA/, if and only if �z coincides on � (up to a constant) with the trace of a solution
v of (24). In this case, however, the dipole potential Uz and the function v are both
harmonic functions in n.D [ fzg/ and have the same Cauchy data on � (again,
up to a constant). Now we choose a connected subset 0 of n.D [ fzg/, whose
boundary contains a portion of � that is also a relatively open subset of @. ThenUz
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and v coincide up to a constant in 0 according to Holmgren’s theorem and, hence,
near all of @. This shows that �z 2 R.A/, and, hence, the assertion follows from
Theorem 5. �

Accordingly, if � is a relatively open subset of @, then Theorem 7 also extends
readily to the local situation, if the eigenfunctions and eigenvalues of ƒ �ƒ1 are

replaced by those ofƒ` �ƒ`

1.
Note that Theorem 8 requires that � is a relatively open subset of @, and

in fact, the factorization method no longer applies for discrete measurements
or finitely many boundary currents. Still, this is precisely the situation that is
encountered in practice, as data are always finite dimensional. Due to the rapid
decay of the eigenvalues of ƒ�ƒ1, however, the full relative data can be very
well approximated by operators of finite rank, such as those corresponding to real
data (see [54] for detailed numerical examples).

Other Generalizations

The Half-Space Problem
The factorization method can also be applied to a related inverse electrostatic
problem in full space with near field data, if the same manifold of codimension one
is used to generate a source and to measure the resulting change of the potential.
In fact, this problem which has been studied in [52] and [75] is very similar to the
setting for the Helmholtz equation that we will consider in the following section.
We also like to refer to [15] where this approach has been applied to some real
two-dimensional data.

For quite a few applications, however, the impedance tomography problem is
more appropriately modeled in a half space, rather than in the full space or within a
bounded domain. For this setting new difficulties arise, as the data (may) live on the
entire, unbounded boundary of the surface, which calls for weighted Sobolev spaces
for an appropriate theoretical analysis. In the sequel we restrict our attention to
three-space dimensions .n D 3/, as the two-dimensional case needs some additional
attention, cf. [55] and at the same time appears to be less interesting from a practical
point of view.

We consider the half-space  D fx 2 R
3 W � �x < 0g, where � 2 R

3 is a fixed
unit vector, which coincides with the outer normal on the hyperplane fx W � �x D
0g, which is the boundary of . The main difficulty in the analysis of this problem
is that solutions of the corresponding conductivity problem

div.
grad u/ D 0 in ;
@

@�
u D f on @; (39)

need no longer belong to L2./; instead, one has to resort to weighted Sobolev
spaces, such as
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U D fu 2 D0./ W .1C j � j2/�1=2u 2 L2./; jgrad uj 2 L2./g;

to search for a unique solution of (39). If 
 is given by (20), then a weak solution
u 2 U can be shown to exist provided that f belongs to

L2;�1.@/ D ff W .1C j � j2/1=2f 2 L2.@/g;

in which case the trace of u belongs to the dual space L2;1.@/ of L2;�1.@/. Note
that no normalization of u is required in (39) because solutions in U are implicitly
normalized to vanish at infinity. We refer to [55] for further details about the forward
problem.

Within this function space setting, the Neumann-Dirichlet operator is defined
in a natural way as an operator ƒ W L2;�1.@/ ! L2;1.@/, and the difference
betweenƒ andƒ1 (the latter corresponding to the homogeneous half space) admits
a factorization (23) as before, where now

A W
(
H

�1=2
� .@D/ ! L2;1.@/;

' 7! vj@;

and v solves the same boundary value problem as in (24), except for the missing
normalization over the boundary @. Furthermore, the self-adjoint operator G is
defined as before (with the appropriate definition of a weak solution of (29)) and is
coercive again.

We emphasize that the dipole potential (8) for the half space is explicitly known,
i.e., we have (up to a negligible multiplicative constant)

�z.x/ D .x � z/ �p
jx � zj3 ; x 2 @: (40)

With these notations, the characterization of the inclusions can be established in
much the same way as before (see [55]).

Theorem 9. A point z 2  belongs toD, if and only if �z of (40) belongs to R.A/.

For real applications, the measuring device will only cover a bounded region
� � @. The corresponding local Neumann-Dirichlet operator ƒ` can then be
embedded in the standard L2 framework from the previous section, and the usual
Picard series can be used to implement the range test. For the ease of completeness,
we briefly mention that for such local data the test dipole �z can be replaced by the
function

Q�z.x/ D 1

jx � zj ; x 2 �;
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which is the trace of the corresponding Neumann function (again, up to a multi-
plicative constant), as the latter has a vanishing normal derivative on the boundary
of the half space. We hasten to add, though, that Q�z must not be used for full data,
as it does not belong to L2;1.@/. Numerically, however, this modification of the
method has no significant benefit.

The Crack Problem
Another case of interest are cracks, i.e., lower-dimensional manifolds of codi-
mension one, that are insulating, say. This setting has important applications in
nondestructive testing of materials. Consider a domain  � R

n, with n D 2 or
n D 3 again, and the union † D [miD1†i �  of m smooth, bounded manifolds
(the insulating cracks), such that †i \ †j D ; and n† are connected. Given a
boundary current f 2 L2}.@/, the induced potential satisfies the model equations

�u0 D 0 in n†; @

@�
u0 D 0 on †;

@

@�
u0 D f on @; (41)

and the corresponding Neumann–Dirichlet operator is the map that takes f onto the
trace of u0 on @:

ƒ W
�
L2}.@/ ! L2}.@/;
f 7! u0j@:

The crack case can be analyzed in a similar way as in section “Impedance
Tomography in the Presence of Insulating Inclusions”, cf. [23], using a factorization
ƒ � ƒ1 D K�K , where K is almost identical to the operator in (12), except that
it maps into H 1.n†/. There is a more important difference, though. As the crack
has no interior points, the range test will always fail with the hitherto used test
function �z, as the dipole singularity of Uz is too strong to belong to H 1.n†/,
even when z 2 †. To detect a crack, we therefore need to construct a new test
function by integrating the function �z over z along some “test arc” (in R

2) or some
“test surface” (in R

3).
The range test can then be implemented by placing linear (planar) test cracks in

different sampling points with various orientations (see [23] for numerical recon-
structions in two-space dimensions). The amount of work thus grows substantially,
as we now have 2 degrees of freedom to sample (a test point and a normal direction)
instead of only one in the previous cases. Also, in a numerical realization, test cracks
will – at best – only touch the crack tangentially, but in theory this already suffices to
ruin the range test. It turns out that in practice the usual implementation with the test
function �z performs as good as the more elaborate but expensive variant described
above. As said before, in theory, �z will never belong to the range ofK; in practice,
however, it will “almost” do so, i.e., the Picard series (19) will grow much more
slowly in the close neighborhood of the crack.

One-dimensional cracks in three-dimensional objects cannot be reconstructed
in this way, because the potential does not “see” inhomogeneities of this size.
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However, one can use an asymptotic analysis similar to the derivation of MUSIC-
type algorithms that are discussed in section “MUSIC” below. Here we give a brief
sketch of an argument provided in [47] and refer to this paper for further details. The
basic idea is that realistic “one-dimensional” cracks in a 3D world are not exactly
one-dimensional, but better modeled as extremely thin tubular inclusions of small
diameter ı > 0. The corresponding relative dataƒı�ƒ1, whereƒı is the Neumann-
Dirichlet operator associated with the tubular inclusion and ƒ1 is as usual, turn out
to satisfy an asymptotic expansion in ı,

ƒı �ƒ1 D ı2 OM C o.ı2/;

possibly after selecting an appropriate (sub)sequence ık ! 0. The operator OM
that constitutes the dominating term of this expansion admits a factorization similar
to (23). In contrast to the MUSIC framework below, this operator has infinite
dimensional range. Although the operators of the corresponding factorization are
somewhat different from the ones that we have encountered above, the bottom
line is the same as for one-dimensional cracks in two-space dimensions. The same
integrated test function belongs to the range of the operator A of this factorization,
if and only if the corresponding test arc is part of the crack. The singular value
decomposition of OM can be used to evaluate this test, and in practice this singular
value decomposition can be approximated by the one of ƒı �ƒ1, i.e., by the given
data.

3 The FactorizationMethod in Inverse Scattering Theory

The second part of this chapter is devoted to the factorization method for problems
in inverse scattering theory for time-harmonic waves. The scattering of an incident
plane wave by a medium gives rise to a scattered field which is measured “far
away” from the medium. The factorization method characterizes the shape of the
scattering medium from this far field information. The measurement operator will
be the far field operator F which maps the density of the incident Herglotz field to
the corresponding far field pattern of the scattered field.

The far field operatorF allows a factorization of the form (1) where the operators
A and G depend on the specific situation. We will discuss two typical cases and
start with the scattering by a sound-soft obstacle D in section “Inverse Acoustic
Scattering by a Sound-Soft Obstacle.” This is an example of a nonabsorbing medium
which is mathematically reflected by the fact that the far field operator is normal –
though not self-adjoint as for the corresponding problem in impedance tomography.
It was this example for which the factorization method was developed for the first
time in [66]. In section “Inverse Electromagnetic Scattering by an Inhomogeneous
Medium,” we will study the scattering of time-harmonic electromagnetic plane
waves by an absorbing medium. In this case the corresponding far field operator
fails to be normal.

Each case study will start with a short repetition of the corresponding direct
problem. Then the inverse problem will be stated, and a factorization of the form
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(1) will be derived. As in impedance tomography, a crucial point is to establish in
each case a certain coercivity condition for G. In addition, one needs to prove a
range identity which describes the range of A via the known – possibly non-normal
– data operator F .

Here and throughout the following sections, S2 D fx 2 R
3 W jxj D 1g denotes

the unit sphere in R
3.

Inverse Acoustic Scattering by a Sound-Soft Obstacle

This section is devoted to the analysis of the factorization method for the most
simplest case in scattering theory. We consider the scattering of time-harmonic plane
waves by an impenetrable obstacleD � R

3 which we model by assuming Dirichlet
boundary conditions on the boundary @D of D. As before, we assume that D is a
finite union D D [miD1 Di of bounded domains Di such that Di \ Dj D ; for
i ¤ j . Furthermore, we assume that the boundaries @Di are Lipschitz continuous
and that the exterior R3nD ofD is connected. Finally, let k > 0 be the wave number
and

ui .x/ D exp.ikx � O�/; x 2 R
3; (42)

be the incident plane wave of direction O� 2 S2. The obstacle D gives rise to a
scattered field us 2 C 2.R3nD/ \ C.R3nD/ which superposes ui and results in the
total field u D ui C us which satisfies the Helmholtz equation

�uC k2u D 0 outside D (43)

and the Dirichlet boundary condition

u D 0 on @D: (44)

The scattered field us satisfies the Sommerfeld radiation condition

@us

@r
� ikus D O.r�2/ for r D jxj ! 1 (45)

uniformly with respect to Ox D x=jxj 2 S2.
The direct scattering problem is to determine the scattered field us for a given

obstacle D � R
3, some O� 2 S2 and k > 0.

For the treatment of this direct problem, we refer to [36] (see also section
“Obstacle Scattering” in chapter � Inverse Scattering). There it is also shown that
the scattered field us has the asymptotic behavior

us.x/ D exp.ikjxj/
4�jxj u1. Ox/CO.jxj�2/; jxj ! 1 (46)

http://dx.doi.org/10.1007/978-1-4939-0790-8_48
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uniformly with respect to Ox D x=jxj 2 S2. The function u1 W S2 ! C is analytic
and is called the far field pattern of us . It depends on the wave number k, the
direction O� 2 S2, and the domain D. Since we will keep k > 0 fixed, only the
dependence on O� is indicated: u1 D u1. OxI O�/ for Ox; O� 2 S2.

In the inverse scattering problem, the far field pattern u1. OxI O�/ is known for
all Ox; O� 2 S2 and some fixed k > 0, and the domain D has to be determined. We
refer again to [36] or chapter � Inverse Scattering for the presentation of the most
important properties of this inverse scattering problem. The knowledge of u1. OxI O�/
for all OxI O� 2 S2 determines the integral kernel of the far field operator F from
L2.S2/ into itself, which is defined by

.Fg/. Ox/ D
Z
S2

u1. OxI O�/g. O�/ds. O�/ for Ox 2 S2: (47)

The far field operator F is compact, normal (i.e., F commutes with its adjoint F �),
and the so-called scattering operator I C ik

8�2F is unitary in L2.S2/.
As in section “Conducting Obstacles,” the first step is to derive a factorization of

F in the form (1).
The operator A is the data-to-pattern operator which maps f 2 H 1=2.@D/ to

the far field pattern v1 of the radiating (i.e., v satisfies the Sommerfeld radiation
condition (45)) solution v 2 H 1

loc.R
3nD/ of

�vC k2v D 0 in the exterior of D; v D f on @D: (48)

Here, H 1
loc.R

3nD/ is the space of functions v with vjBnD 2 H 1.BnD/ for all balls
B � R

3. Existence and uniqueness is assured (see, e.g., [80]; Chap. 9).

Theorem 10. Define the operator A W H 1=2.@D/ ! L2.S2/ by Af D v1 where
v1 is the far field pattern of the unique radiating solution v 2 H 1

loc.R
3nD/ of (48).

Then A is one-to-one with dense range, and the following factorization holds

F D �AS�A�; (49)

where A� W L2.S2/ ! H�1=2.@D/ is the dual of A, and S� W H�1=2.@D/ !
H 1=2.@D/ is the dual of the single-layer boundary operator S W H�1=2.@D/ !
H 1=2.@D/ defined by

.S'/.x/ D
Z
@D

'.y/ˆ.x; y/ds.y/; x 2 @D: (50)

Here, ˆ denotes the fundamental solution of the Helmholtz equation, i.e.,

ˆ.x; y/ D exp.ikjx � yj/
4�jx � yj ; x; y 2 R

3; x ¤ y; (51)

http://dx.doi.org/10.1007/978-1-4939-0790-8_48
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and the explicit definition (50) of this operator makes only sense for smooth
functions '. It has to be extended to functionals ' 2 H�1=2.@D/ by a density or
duality argument.

Proof. The injectivity of A follows immediately from Rellich’s Lemma (see [36]
or chapter � Inverse Scattering). The denseness of the range of A can be shown by
approximating any g 2 L2.S2/ by a finite sum of spherical harmonics to which the
corresponding field can be written down explicitly.

To derive the factorization, define the auxiliary operator H W L2.S2/ !
H 1=2.@D/ by

.Hg/.x/ D
Z
S2
g. O�/ exp.ikx � O�/ds. O�/ D

Z
S2
g. O�/ui .xI O�/ds. O�/; x 2 @D:

First we note that u1. � I O�/ D �Aui . � I O�/ by the definition of A, and thus by the
superposition principle, Fg D �AHg for all g 2 L2.S2/, i.e., F D �AH. We
compute the dual H� W H�1=2.@D/! L2.S2/ as

.H�'/. Ox/ D
Z
@D

'.y/ exp.�ik Ox � y/ds.y/; Ox 2 S2:

The fundamental solution ˆ has the asymptotic behavior

ˆ.x; y/ D exp.ikjxj/
4�jxj exp.�ik Ox �y/CO.jxj�2/; jxj ! 1 (52)

uniformly with respect to Ox 2 S2 and y 2 @D and thus has the far field pattern
ˆ1. Ox; y/ D exp.�ik Ox �y/. Therefore, again by superposition, H�' D AS', i.e.,
H D S�A�. Substituting this into F D �AH yields (49). �

Therefore, F allows a factorization in the form (1) with G D �S�. The most
important properties of this operator are collected in the following theorem. (For a
proof see, e.g., [73, 80].)

Theorem 11. Assume that k2 is not a Dirichlet eigenvalue of �� in D. Then the
following holds:

• S is an isomorphism from the Sobolev spaceH�1=2.@D/ ontoH 1=2.@D/.
• Imh'; S'i < 0 for all ' 2 H�1=2.@D/ with ' 6D 0. Here, h:; :i denotes the

duality pairing in hH�1=2.@D/, H 1=2.@D/i.
• Let Si be the single-layer boundary operator (50) corresponding to the wave

number k D i. The operator Si is self-adjoint and coercive as an operator from
H�1=2.@D/ ontoH 1=2.@D/, i.e., there exists c0 > 0 with

h'Si'i � c0 k'k2
H�1=2.@D/ for all ' 2 H�1=2.@D/: (53)

http://dx.doi.org/10.1007/978-1-4939-0790-8_48
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• The difference S � Si is compact from H�1=2.@D/ into H�1=2.@D/.

From this theorem the following coercivity result can be derived.
Assume that k2 is not a Dirichlet eigenvalue of �� in D. Then there exists c1 > 0
with

jh'S'ij � c1 k'k2
H�1=2.@D/ for all ' 2 H�1=2.@D/: (54)

This establishes the first step of the factorization method. In the second step, the
domainD is characterized by the range of the operator A.

Theorem 12. For any z 2 R
3, define the function �z 2 L2.S2/ by

�z. Ox/ D exp.�ik Ox � z/; Ox 2 S2: (55)

Then z belongs to D, if and only if �z 2 R.A/.

Proof. Let first z 2 D. From (52), we conclude that �z is the far field pattern of
ˆ. �; z/; thus, �z D Af , where f D ˆ. �; z/j@D 2 H 1=2.@D/.

Let now z … D and assume, on the contrary, that �z D Af for some f 2
H 1=2.@D/. Let v be as in the definition of Af. Then �z D v1. From Rellich’s Lemma
and unique continuation, we conclude that ˆ. �; z/ and v coincide in R

3n.D [ fzg/.
By the same arguments as in the proof of Theorem 1, this is a contradiction since v
is regular and ˆ. �; z/ is singular at z. �

From the factorization (49), we conclude that R.F / � R.A/, and thus

�z 2 R.F / H) z 2 D:

Therefore, the condition on the left-hand side determines only a subset of D. One
can show, cf. [35], that for the case of D, being a ball, the left-hand side is only
satisfied for the center of this ball. Nevertheless, the (regularized version) of the test
�z 2 R.F / leads to the Linear Sampling Method, cf. section “The Linear Sampling
Method”.

In the third step of the factorization method, the range R.A/ of A has to be
expressed by the known data operator F . This is achieved by a second factorization
of F based on the spectral decomposition of the normal operator F . From now on
we make the assumption that k2 is not a Dirichlet eigenvalue of �� in D. Then the
far field operator is one-to-one as it follows directly from the factorization (49) and
part (a) of Theorem 11.

Since F is compact, normal, and one-to-one, there exists a complete set of
orthonormal eigenfunctions  j 2 L2.S2/ with corresponding eigenvalues �j 2
C; j D 1; 2; 3; : : : (see, e.g., [88]). Furthermore, since the operator ICik=.8�2/F

is unitary, the eigenvalues �j of F lie on the circle of radius 1=r and center i=r
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where r D k=.8�2/. The spectral theorem for normal operators yields that F has
the form

F D
1X
jD1

�j . ; j /L2.S2/ j ;  2 L2.S2/: (56)

Therefore, F has a second factorization in the form

F D .F �F /1=4G2.F
�F /1=4; (57)

where the self-adjoint operator .F �F /1=4 W L2.S2/ ! L2.S2/ and the signum
G2 W L2.S2/! L2.S2/ of F are given by

.F �F /1=4 D
1X
jD1

q
j�j j. ; j /L2.S2/ j ;  2 L2.S2/; (58)

G2 D
1X
jD1

�j
j�j j . ; j /L2.S2/ j ;  2 L2.S2/: (59)

Also this operator G2 satisfies a coercivity condition of the form (54).

Theorem 13. Assume that k2 is not a Dirichlet eigenvalue of �� in D. Then there
exists c2 > 0 with

ˇ̌
. ;G2 /L2.S2/

ˇ̌ � c2 k k2
L2.S2/ for all  2 L2.S2/: (60)

Proof. It is sufficient to prove (60) for  2 L2.S2/ of the form  DPj cj  j with

k k2
L2.S2/ D

P
j jcj j2 D 1. With the abbreviation sj D �j =j�j j, it is

ˇ̌
.G2 ; /L2.S2/

ˇ̌ D
ˇ̌
ˇ̌
ˇ̌
0
@ 1X
jD1

sj cj j ;

1X
jD1

cj j

1
A
L2.S2/

ˇ̌
ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
ˇ̌

1X
jD1

sj jcj j2
ˇ̌
ˇ̌
ˇ̌ :

The complex number
P1

jD1 sj jcj j2 belongs to the closure of the convex hull C D
conv fsj W j 2 Ng � C of the complex numbers sj . We conclude that

ˇ̌
.G2 ; /L2.S2/

ˇ̌ � inf fjzj W z 2 Cg

for all  2 L2.S2/ with k kL2.S2/ D 1. From the facts that �j lie on the circle with
center i/r passing through the origin and that �j tends to zero as j tends to infinity,
we conclude that the only accumulation points of the sequence fsj g can be C1 or
�1. From the factorization (49) and Theorem 11, it can be shown (see the proof of
Theorem 1.23 of [73]) that indeed 1 is the only accumulation point, i.e., sj ! 1 as



Sampling Methods 621

j tends to infinity. Therefore, the set C is contained in the part of the upper half disk
which is above the line l D ftOsC .1 � t/1 W t 2 Rg passing through Os and 1. Here,
Os is the point in fsj W j 2 Ng with the smallest real part. Therefore, the distance of
the origin to this convex hull C is positive, i.e., there exists c2 with (60).

From Theorem 10 and Eq. (57), the scattering operator F can be written as

F D AG1A
� D .F �F /1=4G2.F

�F /1=4; (61)

where we have set G1 D �S�. Both of the operators Gj ; j D 1, 2 are coercive
in the sense of (54) and (60), respectively. By the range identity of Corollary 4, the
ranges of A and .F �F /1=4 coincide. The combination of this result and Theorem 12
yields the main result of this section. (To derive the second equivalence of (62),
Theorem 25 of Picard has been applied.)

Theorem 14. Assume that k2 is not a Dirichlet eigenvalue of �� in D. For any
z 2 R

3, define again �z 2 L2.S2/ by (55), i.e.,

�z. Ox/ WD exp.�ik Ox � z/; Ox 2 S2:

Then

z 2 D” �z 2 R..F �F /1=4/”
X
j

ˇ̌
.�z;  j /L2.S2/

ˇ̌2
j�j j <1: (62)

Here, �j 2 C are the eigenvalues of the normal operator F with corresponding
normalized eigenfunctions  j 2 L2.S2/.

Formula (62) provides a simple and fast technique to visualize the object D by
plotting the inverse of the series on the right-hand side. In practice, this will be
a finite sum instead of a series, but the value of the finite sum is much larger for
points z outside than for points inside of D. We refer to the original paper [66] for
some typical plots.

Remark 2. It is illuminating to compare the presentation in this section with the
one for impedance tomography from section “Conducting Obstacles”. The relative
potential u�u1 considered there corresponds to the scattered wave us D u�ui , i.e.,
the total field minus the incoming field; the incoming field is the potential that is
induced by the excitation if the background is homogeneous, whereas the total field
is the corresponding solution in the presence of the scatterer.

In both cases, the operator that maps the excitation onto the associated “relative
data” can be factorized in three operators: the one that is applied first, i.e., A�,
maps the excitation/the incoming field onto the boundary of the obstacle(s), the
operatorA that is applied last, maps appropriate boundary data on the obstacle onto
the “outgoing field,” and its measured data. Accordingly, the operator in the middle
encodes the “refraction” at the obstacle(s).
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As such, we can view the factorization from impedance tomography as a
generalization of Huygens’ principle to the diffusion problem (22), although the
time causality from scattering theory has no apparent physical analog in stationary
diffusion processes.

Inverse Electromagnetic Scattering by an Inhomogeneous Medium

This section is devoted to the analysis of the factorization method for the inverse
scattering of electromagnetic time-harmonic plane waves by an inhomogeneous
nonmagnetic and conducting medium. Let k D !

p
"0�0 > 0 be the wave number

with angular frequency !, electric permittivity "0, and magnetic permeability �0 in
vacuum. The incident plane wave has the form

Hi.x/ D p exp .ik O� �x/; Ei.x/ D � 1

i!"0
curlHi.x/; (63)

for some polarization vector p 2 C
3 and some direction O� 2 S2 such that p � O� D 0.

This pair satisfies the time-harmonic Maxwell system in vacuum, i.e.,

curlEi � i!�0H
i D 0 in R

3; (64)

curlHi C i!"0E
i D 0 in R

3: (65)

This incident wave is scattered by a medium with space-dependent electric per-
mittivity " D ".x/ and conductivity 
 D 
.x/. We assume that the magnetic
permeability� is constant and equal to the permeability�0 of vacuum. Furthermore,
we assume that " 
 "0 and 
 
 0 outside of some bounded domain. The total
fields are superpositions of the incident and scattered fields, i.e., E D Ei CEs and
H D Hi CHs and satisfy the Maxwell system

curlE � i!�0H D 0 in R
3; (66)

curlH C i!"E D 
E in R
3: (67)

Also, the tangential components of E and H are continuous on interfaces where 

or " are discontinuous. Finally, the scattered fields have to be radiating, i.e., satisfy
the Silver-Müller radiation condition

p
�0H

s.x/ � Ox �p"0E
s.x/ D O

�
1

jxj2
�

as jxj ! 1 (68)

uniformly w.r.t. Ox D x=jxj 2 S2. The complex-valued relative electric permittivity
"r is defined by
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"r.x/ D ".x/

"0
C i


.x/

!"0
: (69)

Note that "r 
 1 outside of some bounded domain. Equation (67) can then be
written in the form

curlH C i!"0"rE D 0 in R
3: (70)

It is preferable to work with the magnetic field H only. This is motivated by the
fact that the magnetic field is divergence free as seen from (66) and the fact that
div curlD 0. In general, this is not the case for the electric field E . Eliminating the
electric field E from the system (66) and (70) leads to

curl

�
1

"r
curlH

�
� k2H D 0 in R

3: (71)

The incident field Hi satisfies

curl2Hi � k2Hi D 0 in R
3: (72)

Subtracting both equations yields

curl

�
1

"r
curlHs

�
� k2Hs D curl Œq curl Hi� in R

3; (73)

where the contrast q is defined by q D 1 � 1="r . The Silver-Müller radiation
condition turns into

curlHs.x/ � Ox � ikHs.x/ D O
�

1

jxj2
�
; jxj ! 1: (74)

The continuity of the tangential components of E and H translates into analogous
requirements for Hs and curl Hs .

It will be necessary to allow more general source terms on the right-hand side
of (73). In particular, we will consider the problem to determine a radiating solution
v 2 Hloc.curl;R3/ of

curl

�
1

"r
curl v

�
� k2v D curl f in R

3 (75)

for given f 2 L2.R3/3 with compact support. (For any open set D the space
L2.D/3 denotes the space of vector functions v W D ! C

3 such that all components
are in L2.D/.) The solutions v of (75) as well as of (71) and (73) have to be
understood in the variational sense, i.e., v 2 Hloc.curl;R3/ satisfies
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Z
R3

�
1

"r
curl v � curl � k2v � 

�
dx D

Z
R3
f � curl dx (76)

for all  2 H.curl;R3/ with compact support. For any domain , the Sobolev
space H.curl; / is the space of all vector fields v 2 L2./3 such that also curl v 2
L2./3. Furthermore, Hloc.curl;R3/ D fv W vjB 2 H.curl; B/ for all balls B �
R

3g:
Outside of the supports of "r � 1 and f , the solution satisfies curl2v � k2v D 0.

Taking the divergence of this equation and using the identities div curl D 0 and
curl2 D ��C grad div, this system is equivalent to the pair of equations

�vC k2v D 0 and div v D 0:

Classical interior regularity results (cf. [80] combined with [36]) yield that v
is analytic outside of the supports of "r� 1 and f . In particular, the radiation
condition (74) is well defined.

There are several ways to show the Fredholm property of Eq. (75). We refer to
[81] for the treatment by a variational equation with nonlocal boundary conditions
or to [73] for a treatment by an integrodifferential equation of Lippmann-Schwinger
type.

The question of uniqueness of radiating solutions to (75) is closely related to
the validity of the unique continuation principle. It is known to hold for piecewise
Hölder-continuously differentiable functions "r (see [81]).

As in the case of the Helmholtz equation, every radiating vector field v
satisfying curl2v � k2v D 0 outside of some ball has the asymptotic behavior

v.x/ D exp.ikjxj/
4�jxj v1. Ox/ C O.jxj�2/; jxj ! 1;

uniformly with respect to Ox D x=jxj 2 S2 (see again [36]). The vector field v1
is uniquely determined and again called the far field pattern of v. It is a tangential
vector field, i.e., v1 2 L2

t .S
2/ where

L2
t .S

2/ D fw 2 L2.S2/3 W w. Ox/ � Ox D 0; Ox 2 S2g:

The inverse problem is to determine the shape D of the support of the contrast
q from the far field pattern H1. OxI O�; p/ for all Ox; O� 2 S2 and p 2 C

3 with
p � O� D 0. Because of the linear dependence of H1 on p, it is sufficient to
know H1 only for a basis of two vectors for p. As in impedance tomography,
the task of determining only D is rather modest since it is well known that one
can even reconstruct q uniquely from this set of data (see [38]). However, the proof
of uniqueness is nonconstructive, while the factorization method will provide an
explicit characterization of the characteristic function of D which can, e.g., be
used for numerical purposes. Also, the factorization method can – with only minor
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modifications – be carried over for anisotropic media (as in section “Conducting
Obstacles”) where it is well known that "r can only be determined up to a smooth
change of coordinates.

For the remaining part of this section, we make the following assumption:

Assumption 12. Let D � R
3 be a finite unionD D [miD1 Di of bounded domains

Di such thatDi \Dj D ; for i ¤ j . Furthermore, we assume that the boundaries
@Di are Lipschitz continuous and the exterior R

3nD of D is connected. Let "r 2
L1.D/ be such that the values "r.x/ vary in a compact subset of the half disk
fz 2 C W .Re z�1=2/2C .Im z/2 < 1=4; Im z � 0g, and that for every f 2 L2.R3/3

with compact support there exists a unique radiating solution of (75).
We extend "r by one outside of D and define the contrast by q D 1 � 1="r; thus,

Im q � 0 and Re q � �� jqj on D for some � > 0.

Condition (3) is, e.g., satisfied for Hölder-continuously differentiable parameters
" and 
 (see [81]).

The far field operator F : L2
t .S

2/! L2
t .S

2/ is defined as

.Fp/. Ox/ WD
Z
S2
H1. OxI �; p.�//ds.�/; Ox 2 S2: (77)

F is a linear operator since H1 depends linearly on the polarization p.
The first step in the factorization method is to derive a factorization of F in

the form F D AT�A� where the operators A W L2.D/3 ! L2
t .S

2/ and T W
L2.D/3 ! L2.D/3 are defined as follows.

The data-to-pattern operator A W L2.D/3 ! L2
t .S

2/ is defined by Af WD v1,
where v1 denotes the far field pattern corresponding to the radiating (variational)
solution v 2 Hloc.curl;R3/ of

curl

�
1

"r
curl v

�
� k2v D curl

"
qpjqjf

#
in R

3: (78)

Again, the contrast is given by q D 1 � 1="r . We note that the solution exists by
part (3) of Assumption 12.

The operator T W L2.D/3 ! L2.D/3 is defined by Tf D .sign q/f �pjqj curl wjD , where w 2 Hloc.curl; R3/ is the radiating solution of

curl2 w � k2w D curl
hp
jqjf

i
in R

3: (79)

The solution exists and is unique (see, e.g., [73]).

Theorem 15. Let Assumption 12 hold. Then F from (77) can be factorized as

F D AT�A�; (80)
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where A� W L2
t .S

2/! L2.D/3 and T � : L2.D/3 ! L2.D/3 denote the adjoints of
A and T , respectively. Furthermore, A� is injective.

For a proof of this and the following result, we refer to [73].

Remark 3. The solution w of (79) can be expressed in the form (see [73])

w.x/ D curl
Z
D

p
jq.y/jf .y/ˆ.x; y/dy; x 2 R

3;

which yields an explicit expression of T .
The following theorem corresponds to Theorem 11 and collects properties of the

operator T needed for the analysis of the factorization method.

Theorem 16. Let the conditions of Assumption 12 hold, and let T W L2.D/3 !
L2.D/3 be defined above. Then the following holds:

(a) The imaginary part ImT D 1
2i .T � T �/ is non-positive, i.e.,

Im.Tf ; f /L2.D/3 � 0 for all f 2 L2.D/3:

(b) Define the operator T0 in the same way as T but for k D i. Then �Re T0 is
coercive, and T � T0 is compact in L2.D/3.

(c) T is an isomorphism from L2.D/3 onto itself.

As in section “Inverse Acoustic Scattering by a Sound-Soft Obstacle” we first
characterize the domain D by the range R.A/ of A. The proof of the following
result can again be found in [73].

Theorem 17. Let the conditions of Assumption 12 hold. For any z 2 R
3 and fixed

p 2 C
3, we define �z 2 L2

t .S
2/ as the far field pattern of the electric dipole at z

with moment p, i.e.,

�z. Ox/ D �ik. Ox � p/ exp.�ik Ox � z/; Ox 2 S2: (81)

Then z belongs to D, if and only if �z 2 R.A/.
In contrast to the data operators ƒ0 � ƒ1 or ƒ � ƒ1 of Sect. 2 or the far field

operator F of section “Inverse Acoustic Scattering by a Sound-Soft Obstacle”, the
far field operator for absorbing media – as in the present case – fails to be normal
or even self-adjoint. Therefore, the approaches of the previous sections – i.e., the
application of the range identities of Corollaries 4 and 5 – are not applicable.
However, application of Theorem 27 to the far field operator F from L2

t .S
2/ into

itself and the operator G D T � W L2.D/3 ! L2.D/3 yields the characterization
of D via an auxiliary operator
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F# D j Re Fj C Im F; (82)

cf. (109), which is easily obtained from the given far field data.

Theorem 18. Let the conditions of Assumption 12 hold. For any z 2 R
3, define

again �z 2 L2
t .S

2/ by (81). Then, with F# of (82), there holds

z 2 D” �z 2 R
�
F

1=2
#

�
”

X
j

ˇ̌
.�z;  j /L2.S2/

ˇ̌2
j�j j <1: (83)

Here, �j 2 C are the eigenvalues of the self-adjoint and positive compact operator
F# with corresponding normalized eigenfunctions  j 2 L2

t .S
2/.

Historical Remarks and Open Questions

Historically, the factorization method originated from the linear sampling method
which will be explained in section “The Linear Sampling Method” (see also
section “The Linear Sampling Method” in chapter � Inverse Scattering). The linear
sampling method studies the far field equation Fg D �z in contrast to the
factorization method which characterizes the domainD by exactly those points z for
which the modified far field equationF 1=2

# g D �z is solvable where F# D .F �F /1=2

in the case of section “Inverse Acoustic Scattering by a Sound-Soft Obstacle” and
F# D jRe F j C Im F in the case of section “Inverse Electromagnetic Scattering by
an Inhomogeneous Medium.” It is easily seen that the points for which the far field
equation Fg D �z is solvable determines only a subset of D – which can consist of
a single point only, as the example of a ball shows.

The implementation of the factorization method is as simple and universal as of
the linear sampling method. Only the far field operator F – i.e., in practice a finite-
dimensional approximation – has to be known. No other a priori information on the
unknown domain D such as the number of components or the kind of boundary
condition has to be known in advance. The mathematical justification, however,
has to be proven for every single situation. Since their first presentations, the
factorization method has been justified for several problems in inverse acoustic and
electromagnetic scattering theory such as the scattering by inhomogeneous media
[67,69,72,73], scattering by periodic structures [11,12], and scattering by obstacles
under different kinds of boundary conditions [49,73]. The factorization method can
also be adapted for scattering problems for a crack [74] with certain modifications;
we refer to the remarks concerning the crack problem in section “Other Generaliza-
tions.” The factorization method for elastic scattering problems and wave guides is
studied in [9] and [30], respectively.

In many situations near field measurements on some surface � for point sources
on the same surface � as incident fields rather than far field measurements for plane
waves as incident fields are available. The corresponding “near field operator”M W

http://dx.doi.org/10.1007/978-1-4939-0790-8_48
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L2.�/ ! L2.�/ allows a factorization in the form M D BGB0 where B 0 is the
adjoint with respect to the bilinear form s� uvds rather than the (sesquilinear) inner
product

R
�

uNvds. The validity of the range identity for these kinds of factorizations is
not known so far and is one of the open problems in this field. For certain situations
(see [73]), the corresponding far field operator F can be computed fromM , and the
factorization method can then be applied to F .

Also the cases where the background medium is more complicated than the free
space can be treated (see [48,73] for scattering problems in a half space and [71] for
scattering problems in layered media).

The justification of the factorization method for arbitrary elliptic boundary value
problems or even more general problems is treated in [44, 70, 82].

4 Related Sampling Methods

This section is devoted to some alternate examples of sampling methods which were
developed during the last decade: the linear sampling method, first introduced by
Colton and Kirsch in [35], the closely related MUSIC, the singular sources method
by Potthast (see [85]), and Ikehata’s probe method (see [62]). However, it is not the
aim of this section to report on all sampling methods. In particular, we do not discuss
the enclosure method or the no-response test but refer to the monograph [86] and
the survey article [87].

The Linear Sampling Method

Here we reconsider the inverse scattering problem for time-harmonic plane acoustic
waves of section “Inverse Acoustic Scattering by a Sound-Soft Obstacle,” i.e.,
the problem to determine the shape of an acoustically soft obstacle D from the
knowledge of the far field pattern u1. OxI O�/ for all Ox; O� 2 S2. We refer to (42)–
(47) for the mathematical model and the definition of the far field operator F from
L2.S2/ into itself.

The factorization method for inverse scattering problems studies solvability of
the equation F 1=2

# g D �z in L2.S2/ where F# D .F �F /1=2 in the case where
F is normal (as, e.g., in section “Inverse Acoustic Scattering by a Sound-Soft
Obstacle”) and F# D j Re Fj C Im F in the general case with absorption (see
Theorems 14 and 18, respectively). In contrast to this equation, the linear sampling
method considers the far field equation

Fg D �z in L2.S2/: (84)

We mention again that in general no solution of this equation exists. However,
one can compute “approximate solutions” g D gz;" of (84) such that k g kL2.S2/

behaves differently for z being inside or outside of D. We refer to chapter � Inverse
Scattering, Theorem 5.3, for a more precise formulation of this behavior.

http://dx.doi.org/10.1007/978-1-4939-0790-8_48
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The drawback of this result – and all the other attempts to justify the linear
sampling method rigorously – is that there is no guarantee that the solution of a
regularized version of (84), e.g., by Tikhonov regularization, will actually pick the
density g D gz;" with the properties of the aforementioned “approximate solution.”
We refer to [53] for a discussion of this fact. However, numerically the method has
proven to be very effective for a large class of inverse scattering problems (see, e.g.,
[26] for the scattering by cracks, [27] for inverse scattering problems for anisotropic
media, [19] for wave guide scattering problems, [33, 34, 51] for electromagnetic
scattering problems, and [29, 31, 40] for elastic scattering problems). Modifications
of the linear sampling method and combinations with other methods can be found
in [8, 20, 79].

For the cases in which the factorization method in the form .F �F /1=4g D
�z is applicable, a complete characterization of the unknown obstacle D by a
modification of the linear sampling method can be derived by replacing the indicator
value kgkL2.S2/ by .g; �z/L2.S2/. This is summarized in the following theorem (see
[10, 13] and, for the following presentation, [73]).

Theorem 19. Let u1 D u1. OxI O�/ be the far field pattern corresponding to the
scattering problem (42)–(45) with associated far field operator F , and assume that
k2 is not a Dirichlet eigenvalue of �� in D. Furthermore, for every z 2 D, let
gz 2 L2.S2/ denote the solution of .F �F /1=4gz D �z, i.e., the solution obtained by
the factorization method, and for every z 2 R

3 and " > 0, let g D gz;" 2 L2.S2/ be
the Tikhonov approximation of (84), i.e., the unique solution of

."I C F �F /g D F ��z (85)

which is computed by the linear sampling method (if Tikhonov’s regularization
technique is chosen). Here, �z 2 L2.S2/ is defined in (55). Furthermore, let
vgz;" .z/ D .gz;"; �z/L2.S2/ D

R
S2 gz;". O�/ exp.ik O� � z/ds. O�/ denote the corresponding

Herglotz wave function evaluated at z.

(a) For every z 2 D, the limit lim"!0 vgz;" .z/ exists. Furthermore, there exists c >
0, depending on F only, such that for all z 2 D the following estimates hold:

c kgzk2
L2.S2/ � lim

"!0

ˇ̌
vgz;" .z/

ˇ̌ � kgzk2
L2.S2/ : (86)

(b) For z … D, the absolute values jvgz;".z/j tend to infinity as " tends to zero.

Proof. Using an orthonormal system f j W j 2 Ng of eigenfunctions  j corre-
sponding to eigenvalues �j 2 C of F , one computes the Tikhonov approximation
gz;" from (85) as
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gz;" D
1X
jD1

�j

j�j j2 C ".�z;  j /L2.S2/ j :

From vg.z/ D .g; �z/L2.S2/ for any g 2 L2.S2/, we conclude that

vgz;" .z/ D
1X
jD1

�j

j�j j2 C "
ˇ̌
.�z;  j /L2.S2/

ˇ̌2
: (87)

(a) Let now z 2 D. Then .F �F /1=4gz D �z is solvable in L2.S2/

by Theorem 14, and thus .�z;  j /L2.S2/ D ..F �F /1=4gz;  j /L2.S2/ D
.gz; .F

�F /1=4 j /L2.S2/ D
pj�j j.gz;  j /L2.S2/.

Therefore, we can express vgz;" .z/ as

vgz;" .z/ D
1X
jD1

�j j�j j
j�j j2 C "

ˇ̌
.gz;  j /L2.S2/

ˇ̌2 D kgzk2
L2.S2/

1X
jD1

�j
�j j�j j
j�j j2 C " ;

(88)
where �j D

ˇ̌
.gz;  j /L2.S2/

ˇ̌2
= kgzk2

L2.S2/ is nonnegative with †j�j = 1. An
elementary argument (theorem of dominated convergence) yields convergence

1X
jD1

�j
�j j�j j
j�j j2 C " �!

1X
jD1

�j
�j

j�j j D
1X
jD1

�j sj

as " tends to zero where again sj D �j =j�j j. The properties of �j imply that
the limit belongs to the closure C of the convex hull of the complex numbers
fsj W j 2 Ng. The same argument as in the proof of Theorem 13 yields that C
has a positive distance c from the origin, i.e.,

ˇ̌
ˇP1

jD1 �j sj

ˇ̌
ˇ � c which proves

the lower bound. The upper estimate is seen directly from (88).
(b) Let now z … D, and assume on the contrary that there exists a sequence f"ng

which tends to zero and such that jvn (z/j is bounded. Here we have set vn D
vgz;"n

for abbreviation. Since sj converges to 1, there exists j0 2 N with Re �j >
0 for j � j0. From (87) for " D "n, we get

vn.z/ D
j0�1X
jD1

�j

j�j j2 C "n
ˇ̌
.�z;  j /L2.S2/

ˇ̌2 C
1X
jDj0

�j

j�j j2 C "n
ˇ̌
.�z;  j /L2.S2/

ˇ̌2
:

Since the finite sum is certainly bounded for n 2 N, there exists c1 > 0 such
that

ˇ̌
ˇ̌
ˇ̌

1X
jDj0

�j

j�j j2 C "n
ˇ̌
.�z;  j /L2.S2/

ˇ̌2
ˇ̌
ˇ̌
ˇ̌ � c1 for all n 2 N:
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Observing that for any complex number w 2 C with Re w � 0 and Im w � 0
we have that Re wC Im w � jwj, we conclude (note that also Im�j > 0)

2c1 � 2

ˇ̌
ˇ̌
ˇ̌

1X
jDj0

�j

j�j j2 C "n
ˇ̌
.�z;  j /L2.S2/

ˇ̌2
ˇ̌
ˇ̌
ˇ̌ �

1X
jDj0

Re�j C Im�j
j�j j2 C "n

ˇ̌
.�z;  j /L2.S2/

ˇ̌2

�
1X
jDj0

j�j j
j�j j2 C "n

ˇ̌
.�z;  j /L2.S2/

ˇ̌2 �
JX

jDj0

j�j j
j�j j2 C "n

ˇ̌
.�z;  j /L2.S2/

ˇ̌2

for all n 2 N and all J � j0. Letting n tend to infinity yields boundedness
of the finite sum uniformly w.r.t. J and thus convergence of the seriesP1

jDj0

1
j�j j

ˇ̌
.�z;  j /L2.S2/

ˇ̌2
. From (62) therefore follows that z 2 D, which

is the desired contradiction. �

Obviously, this kind of modification of the original linear sampling method can
be done for all inverse scattering problems for which Theorem 14 holds. This
includes scattering by acoustically hard obstacles or inhomogeneous nonabsorbing
media or, with appropriate modifications, scattering by open arcs.

MUSIC

The linear sampling method investigates “to what extent” the far field equation

Fg D �z

is solvable for a number of sampling points z within some region of interest. As
we have mentioned before, this equation has a solution in very rare cases only and
usually not for every z 2 D.

However, if the obstacle is very small, then it turns out that the far field operator
almost degenerates to a finite rank operator, in which case the “numerical range” of
F and .F �F /1=4 would be the same finite-dimensional subspace, where the latter
is known to contain �z for every z 2 D – under appropriate assumptions on the
particular problem setting (see Sects. 2 and 3).

To investigate this observation in more detail, we embed the real scene in a
parameterized family of problems, where the parameter ı > 0 reflects the scale
of the problem. Assume that the scatterer D D [miD1 Di consists of m obstacles
given as

Di D zi C ıUi i D 1; : : : ; m; (89)

where each domain Ui contains the origin and has Lipschitz continuous boundary
and the closure of Ui has a connected complement. We shall call zi the location
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of Di and Ui its shape. We focus our presentation on an inhomogeneous medium
setting for acoustic scattering, i.e., the Helmholtz equation, to provide analogies to
both settings from Sect. 3. Let �0 and c0 be the density and the speed of sound in
vacuum, k D !=c0 be the associated wave number with frequency !, and ui .x/ D
exp .ikx � O�/ be an incoming plane wave. Then, if we assume that the density �i and
the sound of speed ci in each object Di are real and constant, then the total field
uı D ui C usı solves the Helmholtz equation (see, e.g., [36])

div

�
1

�
grad uı

�
C !2�uı D 0 in R

3; (90)

with the radiation condition

@usı
@r
� ikusı D O.r�2/ for r D jxj ! 1; (91)

uniformly with respect to Ox D x=jxj, and the parameter � equals �0 D 1=�0 in
R

3nD, and �i D c2
0=.c

2
i �i / in Di; i D 1; : : : ; m, respectively. We mention that for

constant � D 1=�0, it has been shown in [72] that the standard factorization method
(with F# D .F �F /1=2) applies for this setting with fixed scaling parameter ı. We
know of no result, however, where the factorization method is used to reconstruct
the supports of � � �0 and � � �0 in this setting simultaneously, although there are
partial results for a similar problem (in a bounded domain and with a different sign
of �) arising in optical tomography, cf. [43, 59].

The idea to approach this problem is based on an asymptotic expansion of the far
field u1

ı of the scattered wave with respect to the parameter ı in (89). We quote the
following result from [4].

Theorem 20. The far field of the scattering problem (90) and (91) for the scatterers
given in (89) satisfies

u1
ı . OxI O�/

D ı3k2
mX
iD1

��
�i

�0
� 1

�
Ox �Mi

O� �
�
�i

�0
� 1

�
jUi j

�
exp .ik. O� � Ox/ � zi /C o.ı3/;

(92)

and the associated far field operator can be rewritten as

F D ı3 OF C o.ı3/ (93)

in the norm of L.L2.S2//, where the rank of the operator OF is at most 4m. Here,
jUi j is the Lebesgue measure of Ui , and Mi 2 R

3�3 are symmetric positive definite
matrices that depend on the shape Ui , the so-called polarization tensors.
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As is obvious, the scattered field and its far field vanish as ı ! 0. The
corresponding rate ı3 reflects the space dimension; in R

2, the corresponding field
decays like ı2 as ı ! 0.

The importance of Theorem 20 stems from the fact that the leading order
approximation OF of the far field operator F has finite rank, whereas F has infinite
dimensional range. The rank of OF is 4m, unless some of the scatterers have the same
material parameters as the background vacuum. Note that the dominating term of
u1
ı consists of two parts: the first contribution stems from the change in the density
� and corresponds to the far field of a dipole (point source) in zi ; likewise, the second
term corresponds to the far field of a monopole in zi , and this is the result of a change
in the parameter �.

It is easy to deduce from Theorem 20 that we can factorize OF quite naturally in
three factors.

Theorem 21. The operator OF W L2.S2/ ! L2.S2/ admits a factorization of the
form

OF D �BMB 0; (94)

where B W C4m ! L2.S2/ maps a vector Œp1; : : : ; pm; a1; : : : ; am�
T 2 C

4m with
pi 2 C

3 and ai 2 C; i D 1; : : : ; m, to the far field of

u.x/ D
mX
iD1

.pi � gradzˆ.x; zi /C aiˆ.x; zi //;

whereˆ is as in (51),M 2 R
4m�4m is a real block diagonal matrix withm blocks of

size 3 � 3 andm single elements on its diagonal, andM is nonsingular, if and only
if �i ¤ �0 and �i ¤ �0 for all i D 1; : : : ; m. The operator B 0 is the dual operator
of B with respect to the bilinear forms of C4m and L2.S2/, i.e., B 0g consists of the
gradients and point values of the Herglotz wave function

vg.x/ D
Z
S2
g. O�/ exp.ikx � O�/ds. O�/; x 2 R

3;

evaluated at the points zi ; i D 1; : : : ; m.

As M in (94) is invertible, the range of OF and the range of B coincide, and it
consists of the far fields of the monopoles and all possible dipoles emanating from
the locations zi of Di; i D 1; : : : ; m. Using the unique continuation principle, we
can thus conclude the following result.

Corollary 2. If each scatterer has a different parameter � than the background
medium, then a point z 2 R

3 is the location zi of one of the scatterers, if and only if
�z of (55) belongs to the range of OF .
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When ı is small, it follows from (93) that numerically the range of F and the
range of OF are the same, essentially. By this we mean that the dominating 4m
singular values of F are small perturbations of the nonzero singular values of OF ,
and the corresponding singular subspaces are also close to each other. Moreover,
we expect to see a sharp gap between the 4mth and the 4m C 1st singular value
of F . We can search for this gap to determine the number m of the scatterers
and then determine the angle between the test function �z and the 4m-dimensional
dominating singular subspace of F . When z is close to the location of one of the
scatterers, then this angle will be small, otherwise this angle will be larger. This
way images can be produced that enable one to visualize the approximate locations
of the scatterers, but not their shape.

This approach applies for all problem settings that have been discussed in Sects. 2
and 3 and many more. In impedance tomography, for example, the corresponding
asymptotic expansion of the boundary potential has the form

uı.x/ � u1.x/ D ın
mX
iD1

1 � �i
�i

gradz N.x; zi / �Mi grad u1.zi /C o.ın/; x 2 @
(95)

where n is again the space dimension, N the Neumann function (7), and Mi

the associated polarization tensor, cf. [28] or section “Asymptotic Analysis of
the Voltage Perturbations” in chapter �Expansion Methods. The leading order
approximation of the difference between the associated Neumann-Dirichlet oper-
ators, ƒı � ƒ1, can be factorized in a similar way as in Theorem 21 and has an
nm-dimensional range that is spanned by dipole potentials sitting in the locations zi
of the obstaclesDi; i D 1; : : : ; m; recall that n is the space dimension.

For the full Maxwell’s equations considered in section “Inverse Electromagnetic
Scattering by an Inhomogeneous Medium,” the range space of the corresponding far
field operator F of (77) consists of the magnetic far fields corresponding to electric
dipoles at the infinitesimal scatterers; if the scatterers also differ in their magnetic
permeability, then the range space also contains the far fields of the magnetic dipoles
in zi ; i D 1; : : : ; m.

The method described above for reconstructing the locations of small scatterers
is often called MUSIC in the inverse problems community. Originally, the MUSIC
algorithm is a signal processing tool for frequency estimation from the noisy
spectrum of some signal (MUSIC stands for MUltiple SIgnal Classification.), cf.,
e.g., [90]. In a seminal report (Devaney, Super-resolution processing of multi-static
data using time reversal and MUSIC. Unpublished manuscript, 2000), this algorithm
was suggested to detect “point scatterers” on the basis of the Born approximation,
which led to an algorithm that is not exactly the same, but related to the one we
have sketched above. The relation between this algorithm and the factorization
method has subsequently been recognized in [32, 69]. However, although the form
of the factorization (94) is similar to the ones for the factorization method derived
in Sects. 2 and 3, it is slightly different in its precise interpretation; this has been

http://dx.doi.org/10.1007/978-1-4939-0790-8_47
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exemplified in [2] by taking the limit of each of the factors from Theorem 4 as
ı ! 0.

The derivation of asymptotic formulas as in Theorem 20 goes back to the
landmark paper [41]. In [24], formula (95) from [28] was used to provide the
rigorous foundation of the MUSIC-type algorithm from above. Important extensions
and generalizations to other problem settings include [1, 4, 7, 46, 91]; for a more
detailed survey and further references, we refer to chapter �Expansion Methods
and the monographs [5, 6].

Numerical illustrations of this approach can be found in various papers (see, e.g.,
[3, 24, 46]).

The Singular Sources Method

As in section “Inverse Acoustic Scattering by a Sound-Soft Obstacle,” we reconsider
the simple inverse scattering problem for the Helmholtz equation in R

3 to determine
the shape of an acoustically soft obstacle D from the knowledge of the far field
pattern u1. OxI O�/ for all Ox; O� 2 S2. We refer again to (42)–(47) for the mathematical
model and the definition of the far field operator F from L2.S2/ into itself. Note
that again us D us.xI O�/ and u1 D u1. OxI O�/ denote the scattered field and far field
pattern, respectively, corresponding to the incident plane wave of direction O� 2 S2.

The basic tool in the singular sources method is to consider also the scattered
field vs D vs.xI z/ which corresponds to the incident field vi .x/ D ˆ.x; z/ of (51)
of a point source, where z … D is a given point. The scattered field vs.zI z/ evaluated
at the source point blows up when z tends to a boundary point. One can prove (see
[73, 86]) that there exists a constant c > 0 (depending onD and k only) such that

jvs.zI z/j � c

d.z; @D/
for all z … D: (96)

Here, d.z; @D/ D inf fjz� yj W y 2 @Dg denotes the distance of z to the boundary
of D.

The idea of the singular sources method is to fix z … D and " > 0 and a bounded
domain Gz � R

3 such that its exterior is connected and z … Gz and D � Gz.
Runge’s approximation theorem (see, e.g., [73]) yields the existence of g 2 L2.S2/

depending on z, Gz and " such that

��vg �ˆ. �; z/
��
C.Gz/

� "; (97)

where vg denotes the Herglotz wave function, defined by

vg.x/ D
Z
S2
g. O�/ exp.ikx � O�/ds. O�/; x 2 R

3:

http://dx.doi.org/10.1007/978-1-4939-0790-8_47
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In the following, only the dependence on " is indicated by writing g". The following
convergence result for the Singular Sources Method is known (see [73, 86]).

Theorem 22. Let u1 D u1. OxI O�/, Ox; O� 2 S2 be the far field pattern of the
scattering problem (43–45). Fix z … D and a bounded domain Gz � R

3 such
that its exterior is connected and z … Gz and D � Gz. For any " > 0, choose
g D g" 2 L2.S2/ with (97). Then

lim
ı!0

lim
"!0

Z
S2
.Fg"/.� O�/gı. O�/ds. O�/ D vs.zI z/;

i.e., by substituting the form of F ,

lim
ı!0

lim
"!0

Z
S2

Z
S2

u1.� O� I O�/g". O�/gı. O�/ds. O�/ds. O�/ D vs.zI z/:

Note that the limits are iterated, i.e., first the limit w.r.t. " has to be taken and then
the limit w.r.t. ı.

Combining this result with (96) yields

lim
ı!0

lim
"!0

ˇ̌
ˇ̌Z
S2

Z
S2

u1.� O� I O�/g". O�/gı. O�/ds. O�/ds. O�/
ˇ̌
ˇ̌ � c

d.z; @D/
: (98)

This result assures that for z sufficiently close to the boundary @D (and regions Gz

chosen appropriately) the quantity

lim
ı!0

lim
"!0

ˇ̌
ˇ̌Z
S2

Z
S2

u1.� O� I O�/g". O�/gı. O�/ds. O�/ds. O�/
ˇ̌
ˇ̌

becomes large.
It is convenient to use domainsGz of the special form

Gz;p D .zC �p/C
�
x 2 R

3 W jxj < R; xjxj �p > � cosˇ



for some (large) radius R > 0, opening angle ˇ 2 Œ0; �=2/, direction of opening
p 2 S2, and � > 0. The dependence on ˇ, �, and R is not indicated since they are
kept fixed. This domain Gz;p is a ball centered at zC �p with radius R from which
the cone of direction �p and opening angle ˇ have been removed. Obviously, it
is chosen such that z … Gz;p . These sets Gz;p are translations and rotations of the
reference set

OG D
�
x 2 R

3 W jxj < R; xjxj � Op > � cosˇ
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for Op D .0; 0; 1/T, i.e., Gz;p D zCM OG for some orthogonalM 2 R
3�3.

With these transformations, we can consider the singular sources method as a
sampling method with sampling objects z and M .

From the arguments used in the proof of Theorem 22, it is not clear whether or
not the common limit lim"; ı!0 exists. However, if k2 is not a Dirichlet eigenvalue
of �� in D, then the following stronger result than (49) can be obtained by using
the factorization (49).

Theorem 23. Let z … D and Gz � R
3 be a bounded domain such that its exterior

is connected and z … Gz andD � Gz. For any " > 0, choose g" 2 L2.S2/ with (97)
with respect to the H 1 – norm, i.e.,

��vg" �ˆ. �; z/
��
H 1.Gz/

� ":

Assume furthermore that k2 is not a Dirichlet eigenvalue of �� in D. Then there
exists a constant c > 0 depending only onD and k such that

ˇ̌
ˇ̌lim
"!0

Z
S2

Z
S2

u1. O� I O�/g". O�/g". O�/ds. O�/ds. O�/
ˇ̌
ˇ̌ D lim

"!0

ˇ̌
.Fg"; g"/L2.S2/

ˇ̌ � c

d.z; @D/
:

For a proof we refer to [73]. Numerical reconstructions with the Singular Sources
Methods are shown in [86].

The ProbeMethod

The probe method has originally been proposed in [62] for the inverse problem of
impedance tomography of section “Conducting Obstacles,” and here we also restrict
our attention to this setting. To be precise, let 
 2 L1./ be a (complex valued)
admittivity function, and define u 2 H 1

}./ as the unique (weak) solution of the
boundary value problem

div.
grad u/ D 0 in  

@

@�
u D f on @

Z
@

uds D 0; (99)

where f 2 L2}.@/. For the spaces H 1}./ and L2}.@/, we refer to sec-
tion “Impedance Tomography in the Presence of Insulating Inclusions.”

As in section “Conducting Obstacles,” we assume that 
 2 L1./ is a
perturbation of the constant background admittivity function 
1 D 1. More
precisely, let D �  be again the finite union of domains such that nD is
connected and 
 D 1 in nD, and let there be a constant c0 > 0 such that

Im 
.x/ � 0 and Re 
.x/ � 1C c0 on D: (100)
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The case 0 < c0 � Re 
.x/ � 1 � c0 can be treated in a similar way (see [73]).
The unique solvability of the direct problem, i.e., the boundary value problem (99),
guarantees existence of the Neumann-to-Dirichlet operators ƒ; ƒ1 W L2}.@/ !
L2}.@/ corresponding to 
 and 
1 D 1, respectively.

As in section “Conducting Obstacles,” the goal of the inverse problem is to
determine the supportD of 
 � 1 from the knowledge of the absolute dataƒ or the
relative dataƒ�ƒ1. The difference to the setting in section “Conducting Obstacles”
is that 
 is now a scalar and complex-valued function.

In the probe method, the sampling objects are curves in  starting at the
boundary @ of . In the original paper [62], these curves are called needles. We
keep this notation but mention that – perhaps in contrast to the colloquial meaning
– these needles do not need to be straight segments but can be curved in general.
By choosing a family of needles, the probe method determines the first point on
the needle which intersects the boundary @D (see Theorem 24 below). Therefore,
in contrast to the factorization method and the linear sampling method, the probe
method tests on curves instead of points.

Definition 1. A needle C is the image of a continuously differentiable function � W
Œ0; 1� !  such that �.0/ 2 @ and �.t/ 2  for all t 2 .0; 1� and �0.t/ ¤ 0 for
all t 2 Œ0; 1� and �.t/ ¤ �.s/ for t ¤ s. We call � a parameterization of the needle.

The following monotonicity property is the basic ingredient for the Probe
Method.

Under the above assumptions on 
 2 L1./, there exists c > 1 such that

1

c

Z
D

jgrad u1j2dx � Rehf; .ƒ1 �ƒ/f i � c
Z
D

jgrad u1j2dx (101)

for every f 2 L2}.@/. Here, u1 2 H 1}./ denotes the unique solution of (99) for
the constant background case 
1 D 1.

Let � W Œ0; 1� !  be the parameterization of a given needle, t 2 .0; 1� a fixed
parameter, and Ct D f�.s/ W 0 � s � tg the part of the needle from s D 0 to s D t .
Let ˆ.x; y/ denote the fundamental solution of the Laplace equation, e.g.,

ˆ.x; y/ D 1

4�jx � yj ; x ¤ y;

in R
3. Runge’s approximation theorem (see, e.g., [73]) yields the existence of a

sequence wn 2 H 1./ of harmonic functions in  such that

k wn �ˆ. �; �.t// kH 1.U /! 0; n!1 (102)

for every open subset U with U � nCt . We set fn D @wn=@) on @ and note
that fn depends on Ct but not on the unknown domain D. The dependence on Ct is
denoted by writing fn.Ct /. It can – at least in principle – be computed beforehand.
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Theorem 24. Let the above assumptions on 
 hold and fix a needle with parame-
terization � W Œ0; 1�! . Define the set T � Œ0; 1� by

T D
�
t 2 Œ0; 1� W sup

n2N
fjRehfn.Ct /; .ƒ �ƒ1/fn.Ct /ij <1g : (103)

Here, fn.Ct / D @wn=@) 2 H�1=2.@/ is determined from (102) (so far, we have
chosen the boundary current f in (99) from L2}.@/ for convenience; however,
the quadratic form in (103) extends as dual pairing hH�1=2.@/; H 1=2.@/i to
f 2 H�1=2.@/ with vanishing mean). Then T ¤ ;, and one can define t� D
sup ft 2 Œ0; 1� W Œ0; t � 2 T g, which satisfies

t� D
�

min ft 2 Œ0; 1� W �.t/ 2 @Dg; if C1 \ D ¤ ;
1; if C1 \ D ¤ ;: (104)

We recall that C1 D C D f�.t/ W t 2 Œ0; 1�g.
For a proof we refer to [62, 73].
Note that for every needle the set T of the form (103) is determined by the given

data: it depends on � and the approximating functions wn. Formula (104) provides
a constructive way to determine @D from ƒ � ƒ1: one has to choose a family
of needles which cover the domain , and for each needle one computes t� as
the largest point of T ; if t� < 1, then �.t�/ 2 @D. Obviously, this procedure is
very expensive from a computational point of view. However, if one samples with
“linear” needles only, i.e., rays of the form C D fzC tp W t � 0g \ for z 2  and
unit vectorsp 2 S2, then the computational effort can be reduced considerably since
the approximating sequence (102) has to be computed only once for a reference
needle. However, by using only rays as needles, one can not expect to detect the
boundary of D completely. Only the “visible points” of @D can be detected, i.e.,
those which can be connected completely in nD by straight lines to @.

In an implementation of the definition of T of (103), one has to decide whether
a supremum is finite or infinite. Numerically, this is certainly not an easy task. In
[62], it has been suggested to replace T of (103) by

TM D ft 2 Œ0; 1� W sup
n2N
fjRehfn.Ct /; .ƒ �ƒ1/fn.Ct /ij �M g

for some M > 0, for which a result analogously to the one in Theorem 24 can be
established. We refer to [62] for more details.

Again, the probe method is general enough to have extensions to a number of
related inverse problems in elasticity (see [63]) and scattering theory (see [61]). For
numerical reconstructions, we refer to [87].
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5 Conclusion

This chapter has considered a very general approach to identify obstacles within
a homogeneous background. The method requires the underlying physics to be
described by an elliptic differential equation and utilizes the fact that signals become
smoother the longer they travel through the homogeneous material.

This technique has been exemplified for two model problems from impedance
tomography and inverse scattering. Relations of this method to other techniques
such as the probe method and MUSIC have also been explored.

6 Appendix

In this appendix, we collect some functional analytic results on range identities.
The factorization method makes use of the fact that the unknown domain D can be
characterized by the range of some compact operator A W X ! Y where A is
related to the known operatorM W Y ! Y through the factorization

M D AGA�: (105)

Throughout this whole chapter, we assume that Y is a Hilbert space and X a
reflexive Banach space with dual X�. We denote by A� W Y ! X� the adjoint of
A, where Y is identified with its dual.

For a computable characterization of D, the range of the operator A has to be
expressed by the operatorM which is the goal of the range identity.

In the simplest case where also X is a Hilbert space and G is the identity I , the
range identity is easily obtained via the singular system of A and the Theorem of
Picard. We recall that f
j ; xj ; yj W j 2 J g is a singular system of a linear and
compact operator T W X ! Y between Hilbert spaces X and Y if fxj W j 2 J g
and fyj W j 2 J g are complete countable orthonormal systems in the subspaces
N .T /? � X and N .T �/? � Y , respectively, and 
j 2 R>0 such that Txj D 
j yj
and T � yj D 
j xj for all j 2 J .

We note that
n

2
j ; xj W j 2 J

o
, together with a basis of the null-space N .T / of

T and associated eigenvalue 0, is an eigensystem of the self-adjoint and nonnegative
operator T �T . Furthermore,

Tx D
X
j2J


j .x; xj /Xyj ; x 2 X;

T �y D
X
j2J


j .y; yj /Y xj ; y 2 Y

Theorem 25 (Picard). LetX; Y be Hilbert spaces and T W X ! Y be a compact
operator with singular system f
j ; xj ; yj W j 2 J g. Then there holds: An element
y 2 Y belongs to the range R.T / of T , if and only if,
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y 2 N .T �/? and
X
j2J

j.y; yj /Y j2

2
j

<1:

For a proof we refer to, e.g., [39]. Applying this theorem to the factorization (105)
with G D I , and when X� is identified with X , one obtains.

Corollary 3. LetA W X ! Y be a compact operator between Hilbert spacesX and
Y with dense range andM D AA� W Y ! Y . Then the ranges ofA andM 1=2 coin-
cide. Here, the self-adjoint and nonnegative operatorM 1=2 W Y ! Y is given by

M 1=2y D
X
j2J

q
�j .y; yj /Y yj ; y 2 Y;

where fyj W j 2 J g are the orthonormal eigenelements of the self-adjoint, compact,
and nonnegative operator M corresponding to the positive eigenvalues �j . It
follows that

y 2 R.A/”
X
j2J

ˇ̌
.y; yj /Y

ˇ̌2
�j

<1:

For more general factorizations of the formM D AGA�, the following (preliminary)
characterization is useful (see [68]; for an equivalent formulation, see Theorem 3
of [82]).

Theorem 26. LetX be a reflexive Banach space with dualX� and dual form h � ; � i
in hX�; Xi. Furthermore, let Y be a Hilbert space and M W Y ! Y and A W
X ! Y be linear-bounded operators such that the factorization (105) holds for
some linear and bounded operator G W X� ! X , which satisfies a coercivity
condition of the form: There exists c > 0 with

jh';G'ij � c k'k2
X� for all ' 2 R.A�/ � X�: (106)

Then, for any � 2 Y� ¤ 0,

� 2 R.A/” inf fj. ;M /Y j W  2 Y; . ; �/Y D 1g > 0: (107)

Proof. The form j. ; M /Y j can be estimated by

j. ;M /Y j D jhA� ;GA� ij � c kA� k2
X� for all  2 Y: (108)

Let first � D A'0 for some '0 2 X . For  2 Y with . ; �/Y = 1, there holds that
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j. ;M /Y j � c kA� k2
X� D c

k'0k2
X

kA� k2
X� k'0k2

X

� c

k'0k2
X

jhA� ; '0ij2 D c

k'0k2
X

ˇ̌
. ; A'0„ƒ‚…

D�
/Y
ˇ̌2 D c

k'0k2
X

:

This provides the lower bound of the infimum.
Second, assume that � … R.A/. Define the closed subspace V WD f 2 Y W

. ; �/Y D 0g. Then A� .V / is dense in R.A�/ � X�. Indeed, this is equivalent
to the statement that the annihilators ŒA�.V /�? and ŒR.A�/�? D N .A/ coincide.
Therefore, let ' 2 ŒA�.V /�?, i.e., hA� ; 'i D 0 for all  2 V , i.e., . ; A'/Y D 0
for all  2 V , i.e., A' 2 V ? D span f�g. Since � … R.A/, this implies A' D 0,
i.e., ' 2 N .A/. Therefore,A�.V / is dense in R.A�/.

Choose a sequence f O ng in V such thatA� O n ! � 1
k�k2

Y

A�� as n tends to infinity

and set n D O nC�= k�k2
Y . Then . n; �/Y D 1 andA� n ! 0. The first equation

of (108) yields

j. n;M n/Y j � kGk kA� nk2
X�

and thus . n;M n/Y ! 0; n! 1, which proves that inf fj. ;M /Y j W  2 Y;
. ; �/Y D 1g D 0.

We note that the inf-condition only depends on M and not on the factorization.
Therefore, we have as a corollary.

Corollary 4. Let Y be a Hilbert space and X1 and X2 be reflexive Banach spaces
with duals X�

1 and X�
2 , respectively. Furthermore, let M : Y ! Y have two

factorizations of the form M D A1 G1A
�
1 D A2 G2A

�
2 as in (105) with compact

operators Aj W Xj ! Y and bounded operators Gj W X�
j ! Xj , which both

satisfy the coercivity condition (106). Then the ranges of A1 and A2 coincide.

Corollary 4 is useful for the analysis of the factorization method as long asM is
normal. However, there are many scattering problems for which the corresponding
far field operator fails to be normal, e.g., in the case of absorbing media. For these
problems, one can utilize the self-adjoint operator

M# D jRe M j C Im M; (109)

which can be computed from M . Note that Re M D 1
2 .M CM �/ and Im M D

1
2i .M �M �/ are again self-adjoint and compact, and the absolute value jRe M j of
Re M is defined to be

jRe M j D
X
j2J
j�j j. ; j /Y  j ;  2 Y;

where {�j ,  j : j 2 J } denotes the spectral system of Re M.
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Now we can apply Corollary 4 to obtain the following result (see [73] for the
lengthy proof and [76] for a weaker form of assumption (d)).

Theorem 27. Let X be a reflexive Banach space with dual X� and dual form
h � , � i in hX�, Xi. Furthermore, let Y be a Hilbert space and M : Y ! Y and
A : X ! Y be linear-bounded operators such that the factorization (105) holds
true for some linear and bounded operator G : X� ! X . Furthermore, let the
following conditions be satisfied:

(a) The range of A is dense in Y .
(b) There holds Re G D G0 C G1, where G0 satisfies (106) and G1 : X� ! X is

compact.
(c) The imaginary part Im G of G is non-negative, i.e., Imh'; G'i � 0 for all

' 2 X�.
(d) G is injective or Im G is positive on the null-space of Re G.

Then the self-adjoint operator M# of (109) is positive, and the ranges of A and
M

1=2
# coincide.

As an immediate corollary, we have:

Corollary 5. Let M : Y ! Y and A : X ! Y and G : X� ! X be as in
Theorem 27, and let G be self-adjoint, i.e., G� D G, and satisfy (106). Then the
ranges of A andM 1=2 coincide, and

y 2 R.A/ ”
X
j2J

j.y; yj /Y j2
�j

<1;

where {�j , yj : j 2 J } denotes a spectral system of the self-adjoint and compact
operatorM D AGA�.
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Abstract
We give a survey of the mathematical basis of inverse scattering theory, con-
centrating on the case of time-harmonic acoustic waves. After an introduction
and historical remarks, we give an outline of the direct scattering problem.
This is then followed by sections on uniqueness results in inverse scattering
theory and iterative and decomposition methods to reconstruct the shape and
material properties of the scattering object. We conclude by discussing qualitative
methods in inverse scattering theory, in particular the linear sampling method and
its use in obtaining lower bounds on the constitutive parameters of the scattering
object.

1 Introduction

Scattering theory is concerned with the effects that obstacles and inhomogeneities
have on the propagation of waves and in particular time-harmonic waves. In the
context of this book, scattering theory provides the mathematical tools for imaging
via acoustic and electromagnetic waves with applications to such fields as radar,
sonar, geophysics, medical imaging, and nondestructive testing.

For reasons of brevity, in this survey, we focus our attention on the case of
acoustic waves and only give passing references to the case of electromagnetic
waves. We will furthermore give few proofs, referring the reader interested in further
details to [22]. Since the literature in the area is enormous, we have only referenced
a limited number of papers and hope that the reader can use these as starting point
for further investigations.

Mathematical acoustics begins with the modeling of acoustic waves, i.e., sound
waves. The two main media for the propagation and scattering of sound waves are
air and water (underwater acoustics). A third important medium with properties
close to those of water is the human body, i.e., biological tissue (ultrasound). Since
sound waves are considered as small perturbations in a gas or a fluid, the equation
of acoustics, i.e., the wave equation

1

c2

@2p

@t2
D �p (1)

for the pressure p D p.x; t/, is obtained by linearization of the equations for the
motion of fluids. Here, c D c.x/ denotes the local speed of sound, and the fluid
velocity is proportional to gradp. For time-harmonic acoustic waves of the form

p.x; t/ D Re
˚
u.x/ e�i!t
 (2)
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with frequency ! > 0, it follows that the complex-valued space-dependent part u
satisfies the reduced wave equation

�uC !2

c2
u D 0: (3)

Here we emphasize that the physical quantity describing the sound wave is the real-
valued sound pressure p.x; t/ and not the complex-valued amplitude u.x/ in the
representation u.x/ e�i!t . For a homogeneous medium, the speed of sound c is
constant and (3) becomes the Helmholtz equation

4 uC k2u D 0; (4)

where the wave number k is given by the positive constant k D !=c.
A solution to the Helmholtz equation whose domain of definition contains the

exterior of some sphere is called radiating if it satisfies the Sommerfeld radiation
condition

lim
r!1 r

�
@us

@r
� ikus

�
D 0; (5)

where r D jxj and the limit holds uniformly in all directions x=jxj. Here, and in the

sequel, jxj WD
q
x2

1 C x2
2 C x2

3 denotes the Euclidean norm of x D .x1; x2; x3/ 2
R3. For more details on the physical background of linear acoustic waves, the reader
is referred to [66].

We will confine our presentation of scattering theory for time-harmonic acoustic
waves to two basic problems, namely, scattering by a bounded impenetrable obstacle
and scattering by a penetrable inhomogeneous medium of compact support. For a
vector d 2 R3 with jd j D 1, the function eik x �d satisfies the Helmholtz equation
for all x 2 R3. It is called a plane wave, since ei.k x � d�!t/ is constant on the
planes k x � d � !t D const. Note that these wave fronts travel with velocity
c in the direction d . Assume that an incident field is given by the plane wave
ui .x/ D eik x � d . Then the simplest obstacle scattering problem is to find the
scattered field us as a radiating solution to the Helmholtz equation in the exterior
of a bounded scatterer D such that the total field u D ui C us satisfies the Dirichlet
boundary condition

u D 0 on @D (6)

corresponding to a sound-soft obstacle with the total pressure, i.e., the excess
pressure over the static pressure p0, vanishing on the boundary. Concerning the
geometry of scattering obstacles, for simplicity, we always will assume that D is
a bounded domain with a connected boundary @D of class C 2. In particular, this
implies that the complement R3nD is connected. However, our results remain valid
for a finite number of scattering obstacles.
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Boundary conditions other than the Dirichlet condition also need to be considered
such as the Neumann or sound-hard boundary condition

@u

@�
D 0 on @D (7)

or, more generally, the impedance boundary condition

@u

@�
C i�u D 0 on @D; (8)

where � is the outward unit normal to @D and � is a positive constant called
the surface impedance. More generally the impedance � can also vary on @D.
Since grad u is proportional to the fluid velocity, the impedance boundary condition
describes obstacles for which the normal velocity of the fluid on the boundary
is proportional to the excess pressure on the boundary. The Neumann condition
corresponds to a vanishing normal velocity on the boundary. In order to avoid
repetitions by considering all possible types of boundary conditions, we will in
general confine ourselves to presenting the basic ideas in acoustic obstacle scattering
for the case of a sound-soft obstacle.

The simplest scattering problem for an inhomogeneous medium assumes that
the speed of sound is constant outside a bounded domain D. Then the total field
u D ui C us satisfies

4 uC k2nu D 0 in R3; (9)

and the scattered wave us fulfills the Sommerfeld radiation condition (5), where the
wave number is given by k D !=c0 and n D c2

0

ı
c2 is the refractive index given by

the ratio of the square of the sound speeds c D c0 in the homogeneous host medium
and c D c.x/ in the inhomogeneous medium. The refractive index is positive and
satisfies n.x/ D 1 for x 62 D, and we assume n to be continuously differentiable in
R3 (our results are also in general valid for n being merely piecewise continuous in
R3). An absorbing medium is modeled by adding an absorption term which leads to
a refractive index with a positive imaginary part of the form

n D c2
0

c2
C i �

k

in terms of a possibly space-dependent absorption coefficient � .
Summarizing, given the incident wave and the physical properties of the scatterer,

the direct scattering problem is to find the scattered wave and in particular its
behavior at large distances from the scattering object, i.e., its far-field behavior. The
inverse scattering problem takes this answer to the direct scattering problem as its
starting point and asks what the nature of the scatterer that gave rise to such far-field
behavior is.
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To be more specific, it can be shown that radiating solutions us to the Helmholtz
equation have the asymptotic behavior

us.x/ D eikjxj

jxj
�

u1. Ox/CO
�

1

jxj
�

; jxj ! 1; (10)

uniformly for all directions Ox D x=jxj, where the function u1 defined on the
unit sphere S2 is known as the far-field pattern of the scattered wave. For plane
wave incidence, we indicate the dependence of the far-field pattern on the incident
direction d and the observation direction Ox by writing u1 D u1. Ox; d/. The inverse
scattering problem can now be formulated as the problem of determining either
the sound-soft obstacle D or the index of refraction n (and hence also D) from a
knowledge of the far-field pattern u1. Ox; d/ for Ox and d on the unit sphere S2 (or a
subset of S2).

One of the earliest mathematical results in inverse scattering theory was Schif-
fer’s proof in 1967 that the far-field pattern u1. Ox; d/ for Ox; d 2 S2 uniquely
determines the shape of a sound-soft obstacle D. Unfortunately, Schiffer’s proof
does not immediately generalize to other boundary conditions. This problem was
remedied by Kirsch and Kress in 1993 who, using an idea originally proposed by
Isakov, showed that u1. Ox; d/ for Ox; d 2 S2 uniquely determines the shape of D
as long as the solution of the direct scattering problem depends continuously on the
boundary data [54]. In particular, it is not necessary to know the boundary condition
a priori in order to guarantee uniqueness! The uniqueness problem for inverse
scattering by an inhomogeneous medium was solved by Nachman [68], Novikov
[70], and Ramm [79] in 1988 who based their analysis on the fundamental work of
Sylvester and Uhlmann [88]. Their uniqueness proof was subsequently considerably
simplified by Hähner [35].

The first attempt to reconstruct the shape of a sound-soft scattering obstacle
from a knowledge of the far-field pattern in a manner acknowledging the nonlinear
and ill-posed nature of the problem was made by Roger in 1981 using Newton’s
iteration method [81]. A characterization and rigorous proof of the existence of
the Fréchet derivative of the solution operator in Newton’s method were then
established by Kirsch [47] and Potthast [75] in 1993 and 1994, respectively. An
alternative approach to solving the inverse scattering problem was proposed by
Colton and Monk in 1986 and by Kirsch and Kress in 1987 who broke up the inverse
scattering problem into a linear, ill-posed problem and a nonlinear, well-posed
problem [24, 53]. The optimization method of Kirsch and Kress has the attractive
feature of needing only a single incident field for its implementation. On the other
hand, to use such methods, it is necessary to know the number of components of the
scatterer as well as the boundary condition satisfied by the field on the surface of
the scatterer. These problems were overcome by Colton and Kirsch in 1996 through
the derivation of a linear integral equation with the far-field data as its kernel (i.e.,
multistatic data is needed for its implementation) [19]. This method, subsequently
called the linear sampling method, was further developed by Colton et al. [29]
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and numerous other researchers. A significant development in this approach to
the inverse scattering problem was the introduction of the factorization method by
Kirsch in 1998 [48]. For further historical information on these “sampling” methods
in inverse scattering theory, we refer the reader to the chapter in this handbook on
sampling methods as well as the monographs [7, 52].

Optimization methods and sampling methods for the inverse scattering problem
for inhomogeneous media have been extensively investigated by numerous authors.
In general, the optimization methods are based on rewriting the scattering problem
corresponding to (9) as the Lippmann–Schwinger integral equation

u.x/ D eikx �d � k2

4�

Z
R3

eikjx�yj

jx � yj m.y/u.y/ dy; x 2 R3; (11)

wherem WD 1 � n and the object is to determinem from a knowledge of

u1. Ox; d/ D � k
2

4�

Z
R3
e�ik Ox � ym.y/u.y/ dy; Ox; d 2 S2: (12)

On the other hand, sampling methods have also been used to study the inverse
scattering problem associated with (9) where now the object is to only determine
the support of m. For details and further references, see [7, 22, 52].

Finally, as pointed out in [21], an alternative direction in inverse scattering theory
than that discussed above is to only try to obtain lower and upper bounds on a
few relevant features of the scattering object rather than attempting a complete
reconstruction. This relatively new direction in inverse scattering theory will be
discussed in Sect. 5.

2 Direct Scattering Problems

The Helmholtz Equation

Most of the basic properties of solutions to the Helmholtz equation (3) can be
deduced from the fundamental solution

ˆ.x; y/ WD 1

4�

eikjx�yj

jx � yj ; x ¤ y: (13)

For fixed y 2 R3, it satisfies the Helmholtz equation in R3nfyg. In addition, it
satisfies the radiation condition (5) uniformly with respect to y on compact subsets
of R3. Physically speaking, the fundamental solution represents an acoustic point
source located at the point y. In addition to plane waves, point sources will also
occur as incident fields in scattering problems.

Green’s integral theorems provide basic tools for investigating the Helmholtz
equation. As an immediate consequence, they imply the Helmholtz representation
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u.x/ D
Z
@D

�
@u

@�
.y/ˆ.x; y/ � u.y/

@ˆ.x; y/

@�.y/


ds.y/; x 2 D; (14)

for solutions u 2 C 2.D/ \ C 1.D/ to the Helmholtz equation. The representation
(2) implies that solutions to the Helmholtz equation inherit analyticity from the
fundamental solution. Any solution u to the Helmholtz equation in D satisfying

u D @u

@�
D 0 on � (15)

for some open subset � � @D must vanish identically in D. This can be seen via
extending the definition of u by (2) for x 2 .R3nD/ [ � . Then, by Green’s integral
theorem, applied to u and ˆ.x; � /, we have u D 0 in R3nD. Clearly u solves the
Helmholtz equation in .R3n@D/ [ � and therefore by analyticity u D 0 in D since
D and R3nD are connected through the gap � in @D.

As a consequence of the radiation condition (5), the Helmholtz representation is
also valid in the exterior domain R3nD, i.e., we have

u.x/ D
Z
@D

�
u.y/

@ˆ.x; y/

@�.y/
� @u

@�
.y/ˆ.x; y/


ds.y/; x 2 R3nD; (16)

for radiating solutions u 2 C 2.R3nD/ \ C 1.R3nD/ to the Helmholtz equation.
From Eq. (4) we observe that radiating solutions u to the Helmholtz equation satisfy
Sommerfeld’s finiteness condition

u.x/ D O
�

1

jxj
�
; jxj ! 1; (17)

uniformly for all directions and that the validity of the Sommerfeld radiation
condition (5) is invariant under translations of the origin.

We are now in a position to introduce the fundamental notion of the far-field
pattern of radiating solutions to the Helmholtz equation.

Theorem 1. Every radiating solution u to the Helmholtz equation has an asymp-
totic behavior of the form

u.x/ D eikjxj

jxj
�

u1. Ox/CO
�

1

jxj
�

; jxj ! 1; (18)

uniformly in all directions Ox D x=jxj, where the function u1 defined on the unit
sphere S2 is called the far-field pattern of u. Under the assumptions of (16), we
have

u1. Ox/ D 1

4�

Z
@D

(
u.y/

@e�ik Ox �y
@�.y/

� @u

@�
.y/ e�ik Ox �y

)
ds.y/; Ox 2 S2: (19)
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Proof. This follows from (16) by using the estimates

eikjx�yj

jx � yj D
eikjxj

jxj
�
e�ik Ox � y CO

�
1

jxj
�

;
@

@�.y/

eikjx�yj

jx � yj

D eikjxj

jxj

(
@e�ik Ox �y
@�.y/

CO
�

1

jxj
�)

which hold uniformly for all y 2 @D and all directions x=jxj as jxj ! 1. �

From the representation (19), it follows that the far-field pattern is an analytic
function on S2. As an extension of (18), each radiating solution u to the Helmholtz
equation has an Atkinson–Wilcox expansion of the form

u.x/ D eikjxj

jxj
1X
`D0

1

jxj` F`
�
x

jxj
�

(20)

that converges absolutely and uniformly on compact subsets of R3nB , where
B � D is a ball centered at the origin. The coefficients in the expansion (20) are
determined in terms of the far-field pattern F0 D u1 by the recursion

2ik`F` D `.` � 1/F`�1 C BF`�1; ` D 1; 2; : : : ; (21)

where B denotes the Laplace–Beltrami operator for the unit sphere. The following
consequence of the expansion (20) is known as Rellich’s lemma.

Lemma 1. Let u be a radiating solution to the Helmholtz equation for which the
far-field pattern u1 vanishes identically. Then u vanishes identically.

Proof. This follows from (20) and (21) together with the analyticity of solutions to
the Helmholtz equation. �

Corollary 1. Let u 2 C 2.R3nD/ \ C 1.R3nD/ be a radiating solution to the
Helmholtz equation in R3nD for which

Im
Z
@D

u
@Nu
@�

ds � 0: (22)

Then u D 0 in R3nD.

Proof. Using Green’s integral theorem, the radiation condition can be utilized to
establish that
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lim
r!1

Z
jxjDr

( ˇ̌
ˇ̌@u

@�

ˇ̌
ˇ̌2 C k2juj2

)
ds D �2k Im

Z
@D

u
@Nu
@�

ds:

Now the assumption (22) implies limr!1
R

jxjDr juj2 ds D 0, and the statement
follows from Lemma 1. �

Scattering from infinitely long cylindrical obstacles or inhomogeneities leads
to the Helmholtz equation in R2. The two-dimensional case can be used as an
approximation for scattering from finitely long cylinders, and more importantly,
it can serve as a model case for testing numerical approximation schemes in direct
and inverse scattering. Without giving details, we can summarize that our analysis
remains valid in two dimensions after appropriate modifications of the fundamental
solution and the radiation condition. The fundamental solution to the Helmholtz
equation in two dimensions is given by

ˆ.x; y/ WD i

4
H
.1/
0 .kjx � yj/; x ¤ y; (23)

in terms of the Hankel function H.1/
0 of the first kind of order zero. In R2 the

Sommerfeld radiation condition has to be replaced by

lim
r!1

p
r

�
@u

@r
� iku

�
D 0; r D jxj; (24)

uniformly for all directions x=jxj. According to the form (24) of the radiation
condition, the definition of the far-field pattern (18) has to be replaced by

u.x/ D eikjxjpjxj
�

u1. Ox/CO
�

1

jxj
�

; jxj ! 1; (25)

and the representation (19) assumes the form

u1. Ox/ D ei
�
4p

8�k

Z
@D

(
u.y/

@e�ik Ox �y
@�.y/

� @u

@�
.y/ e�ik Ox �y

)
ds.y/ (26)

for Ox D x=jxj.

Obstacle Scattering

After renaming the unknown functions, the direct scattering problem for sound-
soft obstacles is a special case of the following exterior Dirichlet problem: Given a
function f 2 C.@D/, find a radiating solution u 2 C 2.R3nD/ \ C.R3nD/ to the
Helmholtz equation that satisfies the boundary condition
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u D f on @D: (27)

Theorem 2. The exterior Dirichlet problem for the Helmholtz equation has at most
one solution.

Proof. Let u satisfy the homogeneous boundary condition u D 0 on @D. If u
were continuously differentiable up to the boundary, we could immediately apply
Corollary 1 to obtain u D 0 in R3nD. However, in the formulation of the exterior
Dirichlet problem, u is only assumed to be in C.R3nD/. We refrain from discussing
possibilities to overcome this regularity gap and refer to the literature [22]. �

Theorem 3. The exterior Dirichlet problem has a unique solution.

Proof. The existence of a solution can be elegantly based on boundary integral
equations. In the layer approach, one tries to find the solution in the form of a
combined acoustic double- and single-layer potential

u.x/ D
Z
@D

�
@ˆ.x; y/

@�.y/
� iˆ.x; y/


'.y/ ds.y/ (28)

for x 2 R3nD with a density ' 2 C.@D/. Then, after introducing the single- and
double-layer integral operators S;K W C.@D/! C.@D/ by

.S'/.x/ WD 2
Z
@D

ˆ.x; y/'.y/ ds.y/; x 2 @D; (29)

.K'/.x/ WD 2
Z
@D

@ˆ.x; y/

@�.y/
'.y/ ds.y/; x 2 @D; (30)

and using their regularity and jump relations, it can be seen that (28) solves the
exterior Dirichlet problem provided the density ' is a solution of the integral
equation

' CK' � iS' D 2f: (31)

Due to their weakly singular kernels, the operators S andK turn out to be compact.
Hence, the existence of a solution to (31) can be established with the aid of the
Riesz–Fredholm theory for compact operators by showing that the homogeneous
form of (31) only allows the trivial solution ' D 0.

Let ' be a solution of the homogeneous equation, and let the subscripts˙ denote
the limits obtained by approaching @D from R3nD and D, respectively. Then the
potential u defined by (28) in all of R3n@D satisfies the homogeneous boundary
condition uC D 0 on @D whence u D 0 in R3nD followed by Theorem 2. The
jump relations for single- and double-layer potentials now yield
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�u� D '; �@u�
@�
D i' on @D:

Hence, using Green’s first integral theorem, we obtain

i

Z
@D

j'j2ds D
Z
@D

Nu�
@u�
@�

ds D
Z
D

˚j grad uj2 � k2juj2
dx;

and taking the imaginary part yields ' D 0. �

We note that, in addition to existence of a solution, the Riesz–Fredholm theory
also establishes well-posedness, i.e., the continuous dependence of the solution on
the data. Instead of the classical setting of continuous function spaces, the existence
analysis can also be considered in the Sobolev space H 1=2.@D/ for the boundary
integral operators leading to solutions in the energy space H 1

loc.R
3nD/ (see [64,

69]).
We further note that without the single-layer potential included in (28), the

corresponding double-layer integral equation suffers from nonuniqueness if k
is a so-called irregular wave number or internal resonance, i.e., if there exist
nontrivial solutions u to the Helmholtz equation in the interior domainD satisfying
homogeneous Neumann boundary conditions @u=@� D 0 on @D.

For the numerical solution of the boundary integral equations in scattering theory
via spectral methods in two and three dimensions, we refer to [22]. For boundary
element methods, we refer to [80].

In general, for the scattering problem, the boundary values are as smooth as
the boundary, since they are given by the restriction of the analytic function ui to
@D. Therefore, we may use the Helmholtz representation (16) and Green’s second
integral theorem applied to ui and ˆ.x; � / to obtain the following theorem.

Theorem 4. For scattering from a sound-soft obstacle D, we have

u.x/ D ui .x/ �
Z
@D

@u

@�
.y/ˆ.x; y/ ds.y/; x 2 R3nD; (32)

and the far-field pattern of the scattered field us is given by

u1. Ox/ D � 1

4�

Z
@D

@u

@�
.y/ e�ik Ox � y ds.y/; Ox 2 S2: (33)

The representation (32) for the scattered field through the so-called secondary
sources on the boundary is known as Huygens’ principle. Here we will use it for
the motivation of the Kirchhoff or physical optics approximation as an intuitive
procedure to simplify the direct scattering problem. For large wave numbers k, i.e.,
for small wave lengths, in a first approximation, a convex object D locally may be
considered at each point x of @D as a plane with normal �.x/. This suggests
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@u

@�
D 2

@ui

@�

on the part @D� WD fx 2 @D W �.x/ �d < 0g that is illuminated and

@u

@�
D 0

in the shadow region @DC WD fx 2 @D W �.x/ �d � 0g. Thus, the Kirchhoff
approximation for the scattering of a plane wave with incident direction d at a
convex sound-soft obstacle is given by

u.x/ 	 eik x � d � 2
Z
@D�

@eik y �d
@�.y/

ˆ.x; y/ ds.y/ (34)

for x 2 R3nD.

Scattering by an InhomogeneousMedium

Recall the scattering problem for an inhomogeneous medium with refractive index
n as described by (9) for the total wave u D ui C us with incident field ui and
the scattered wave us satisfying the Sommerfeld radiation condition. The function
m WD 1 � n has supportD.

The counterpart of the Helmholtz representation is given by the Lippmann–
Schwinger equation

u.x/ D ui .x/ � k2
Z
D

ˆ.x; y/m.y/u.y/ dy; x 2 R3; (35)

which can be shown to be equivalent to the scattering problem.
In order to establish existence of a solution to (35) via the Riesz–Fredholm

theory, it must be shown that the homogeneous equation has only the trivial solution
or, equivalently, that the only solution to (9) satisfying the radiation condition is
identically zero. For this, in addition to Rellich’s lemma, the following unique
continuation principle is required: Any solution u 2 C 2.G/ of Eq. (9) in a domain
G � R3 such that n 2 C.G/ and u vanishes in an open subset of G vanishes
identically. Hence, we have the following result on existence and uniqueness for the
inhomogeneous medium scattering problem.

Theorem 5. For a refractive index n 2 C 1.R3/ with Re n � 0 and Imn � 0,
the Lippmann–Schwinger equation or, equivalently, the inhomogeneous medium
scattering problem has a unique solution.

Proof. From Green’s first integral theorem, it follows that
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Z
@D

u
@Nu
@�

ds D
Z
D

˚j grad uj2 � k2njuj2
dx:

Taking the imaginary part and applying Corollary 1 yields u D 0 inR3nD in view of
the assumptions on n, and the proof is finished by the unique continuation principle.
�

From (35) we see that

us.x/ D �k2
Z
R3
ˆ.x; y/m.y/u.y/ dy; x 2 R3:

Hence, the far-field pattern u1 is given by

u1. Ox/ D � k
2

4�

Z
R3
e�ik Ox �ym.y/u.y/ dy; Ox 2 S2: (36)

We note that for k2kmk1 sufficiently small, u can be obtained by the method of
successive approximations. If in (36) we replace u by the first term in this iterative
process, we obtain the Born approximation

u1. Ox/ 	 � k
2

4�

Z
R3
e�ik Ox �ym.y/ui .y/ dy; Ox 2 S2: (37)

For numerical solutions of the inverse medium scattering problem by finite
element methods coupled with boundary element methods via nonlocal boundary
conditions, we refer to [65].

TheMaxwell Equations

We now consider the Maxwell equations as the foundation of electromagnetic
scattering theory. Our presentation is organized parallel to that on the Helmholtz
equation, i.e., on acoustic scattering, and will be confined to homogeneous isotropic
media. Consider electromagnetic wave propagation in an isotropic dielectric
medium in R3 with constant electric permittivity " and magnetic permeability
�. The electromagnetic wave is described by the electric field E and the magnetic
field H satisfying the time-dependent Maxwell equations

curlE C � @H
@t
D 0; curlH � " @E

@t
D 0: (38)

For time-harmonic electromagnetic waves of the form

E.x; t/ D Re
˚
"�1=2E.x/ e�i!t
 ; H.x; t/ D Re

˚
��1=2H.x/ e�i!t
 (39)
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with frequency ! > 0, the complex-valued space-dependent parts E and H satisfy
the reduced Maxwell equations

curlE � ikH D 0; curlH C ikE D 0; (40)

where the wave number k is given by the positive constant k D p"�!. We will
only be concerned with the reduced Maxwell equations and will henceforth refer to
them as the Maxwell equations.

A solution E;H to the Maxwell equations whose domain of definition contains
the exterior of some sphere is called radiating if it satisfies one of the Silver–Müller
radiation conditions

lim
r!1.H � x � rE/ D 0 (41)

or

lim
r!1.E � x C rH/ D 0; (42)

where r D jxj and the limits hold uniformly in all directions x=jxj. For more details
on the physical background of electromagnetic waves, we refer to [46, 67].

For the Maxwell equations, the counterpart of the Helmholtz representation (2)
is given by the Stratton–Chu formula

E.x/D� curl
Z
@D

�.y/ � E.y/ˆ.x; y/ ds.y/

C 1

ik
curl curl

Z
@D

�.y/ �H.y/ˆ.x; y/ ds.y/; x 2 D;
(43)

for solutions E;H 2 C 1.D/ \ C.D/ to the Maxwell equations. A correspond-
ing representation forH can be obtained from (43) with the aid ofH D curlE=ik.

The representation (43) implies that each continuously differentiable solution to
the Maxwell equations automatically has analytic Cartesian components. Therefore,
one can employ the vector identity curl curlE D ��E C grad divE to prove that
for a solution E;H to the Maxwell equations, both E and H are divergence-free
and satisfy the vector Helmholtz equation. Conversely, if E is a solution to the
vector Helmholtz equation 4E C k2E D 0 satisfying divE D 0, then E and
H WD curlE=ik satisfy the Maxwell equations.

It can be shown that solutions E;H to the Maxwell equations in D satisfying

� �E D � �H D 0 on � (44)

for some open subset � � @D must vanish identically in D.
As a consequence of the Silver–Müller radiation condition, the Stratton–Chu

formula is also valid in the exterior domain R3nD, i.e., we have
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E.x/D curl
Z
@D

�.y/ �E.y/ˆ.x; y/ ds.y/

� 1

ik
curl curl

Z
@D

�.y/ �H.y/ˆ.x; y/ ds.y/; x 2 R3nD;
(45)

for radiating solutions E;H 2 C 1.R3nD/ \ C.R3nD/ to the Maxwell equations.
Again, a corresponding representation forH can be obtained from (45) with the aid
of H D curlE=ik.

From (45) it can be seen that the radiation condition (41) implies (42) and vice
versa. Furthermore, one can deduce that radiating solutions E;H to the Maxwell
equations automatically satisfy the Silver–Müller finiteness conditions

E.x/ D O
�

1

jxj
�
; H.x/ D O

�
1

jxj
�
; jxj ! 1; (46)

uniformly for all directions and that the validity of the Silver–Müller radiation
conditions (41) and (42) is invariant under translations of the origin. From the
Helmholtz representation (16) for radiating solutions to the Helmholtz equation and
the Stratton–Chu formulas for radiating solutions to the Maxwell equations, it can
be deduced that for solutions to the Maxwell equations, the Silver–Müller radiation
condition is equivalent to the Sommerfeld radiation condition for the Cartesian
components of E and H .

The Stratton–Chu formula (45) can be used to introduce the notion of the electric
and magnetic far-field patterns.

Theorem 6. Every radiating solution E;H to the Maxwell equations has the
asymptotic form

E.x/ D eikjxj

jxj
�
E1. Ox/CO

�
1

jxj
�

; H.x/ D eikjxj

jxj
�
H1. Ox/CO

�
1

jxj
�

(47)
for jxj ! 1 uniformly in all directions Ox D x=jxj, where the vector fields E1
and H1 defined on the unit sphere S2 are called the electric far-field pattern and
magnetic far-field pattern, respectively. They satisfy

H1 D � � E1 and � �E1 D � �H1 D 0 (48)

with the unit outward normal � on S2. Under the assumptions of (45), we have

E1. Ox/ D ik

4�
Ox �

Z
@D

f�.y/ � E.y/C Œ�.y/ �H.y/� � Oxg e�ik Ox � y ds.y/
(49)

for Ox 2 S2 and a corresponding expression forH1.

Rellich’s lemma carries over immediately from the Helmholtz to the Maxwell
equations.
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Lemma 2. LetE;H be a radiating solution to the Maxwell equations for which the
electric far-field patternE1 vanishes identically. ThenE andH vanish identically.

The electromagnetic counterpart of Corollary 1 is given by the following result.

Corollary 2. Let E;H 2 C 1.R3nD/ \ C.R3nD/ be a radiating solution to the
Maxwell equations in R3nD for which

Re
Z
@D

� �E � NH ds � 0:

Then E D H D 0 in R3nD.

For two vectors d; p 2 R3 with jd j D 1 and p �d D 0, the plane waves

Ei.x/ D p eik x �d ; H i .x/ D d � p eik x �d (50)

satisfy the Maxwell equations for all x 2 R3. The orthogonal vectors p and
d � p describe the polarization direction of the electric and the magnetic field,
respectively. Given the incident field Ei;H i and a bounded domain D � R3,
the simplest obstacle scattering problem is to find the scattered field Es;Hs as a
radiating solution to the Maxwell equations in the exterior of the scatterer D such
that the total field E D Ei C Es; H D Hi C Hs satisfies the perfect conductor
boundary condition

� �E D 0 on @D; (51)

where � is the outward unit normal to @D. A more general boundary condition is
the impedance or Leontovich boundary condition

� �H � � .� � E/ � � D 0 on @D; (52)

where � is a positive constant or function called the surface impedance.

Theorem 7. The scattering problem for a perfect conductor has a unique solution.

Proof. Uniqueness follows from Corollary 2. The existence of a solution again can
be based on boundary integral equations. In the layer approach, one tries to find the
solution in the form of a combined magnetic and electric dipole distribution

Es.x/D curl
Z
@D

a.y/ˆ.x; y/ ds.y/

Ci curl curl
Z
@D

�.y/ � �S2
0a
	
.y/ˆ.x; y/ ds.y/; x 2 R3n@D:

(53)
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Here S0 denotes the single-layer operator (29) in the potential theoretic limit
case k D 0, and the density a is assumed to belong to the space C 0;˛

div .@D/ of
Hölder continuous tangential fields with Hölder continuous surface divergence.
After defining the electromagnetic boundary integral operatorsM and N by

.Ma/.x/ WD 2
Z
@D

�.x/ � curlx fa.y/ˆ.x; y/g ds.y/; x 2 @D; (54)

and

.Na/.x/ WD 2 �.x/� curl curl
Z
@D

�.y/� a.y/ˆ.x; y/ ds.y/; x 2 @D; (55)

it can be shown that Es given by (53) together with Hs D curlEs=ik solves the
perfect conductor scattering problem provided the density a satisfies the integral
equation

aCMaC iNPS2
0a D �2 � � Ei: (56)

Here the operator P is defined by Pb WD .��b/�� for (not necessarily tangential)
vector fields b. Exploiting the smoothing properties of the operator S0, it can be
shown that M C iNPS2

0 is a compact operator from C
0;˛
div .@D/ into itself. The

existence of a solution to (56) can now be based on the Riesz–Fredholm theory
by establishing that the homogeneous form of (56) only has the trivial solution [22].
�

Note that, analogous to the acoustic case, without the electric dipole distribution
included in (53), the corresponding magnetic dipole integral equation is not uniquely
solvable if k is a irregular wave number, i.e., if there exists a nontrivial solution
E;H to the Maxwell equations in D satisfying the homogeneous boundary
condition � � E D 0 on @D.

Instead of the classical setting of Hölder continuous functions, the integral
equation can also be considered in the Sobolev space H 1=2

div .@D/ of tangential fields
in H 1=2.@D/ that have a weak surface divergence in H 1=2.@D/ (see [69]).

In addition to electromagnetic obstacle scattering, one can also consider scat-
tering from an inhomogeneous medium where outside a bounded domain D the
electric permittivity " and magnetic permeability� are constant and the conductivity

 vanishes, i.e., " D "0, � D �0 and 
 D 0 in R3nD. For simplicity we will assume
that the magnetic permeability is constant throughout R3. Then, again assuming the
time-harmonic form (39) with " and � replaced by "0 and �0, respectively, the total
fields E D Ei C Es; H D Hi CHs satisfy

curlE � ikH D 0; curlH C iknE D 0 in R3 (57)
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and the scattered waveEs;Hs satisfies the Silver–Müller radiation condition, where
the wave number is given by k D p"0�0 ! and n D ."C i 
=!/ ="0 is the
refractive index. Establishing uniqueness requires an electromagnetic analogue of
the unique continuation principle, and existence can be based on an electromagnetic
variant of the Lippmann–Schwinger equation [22].

The scattering of time-harmonic electromagnetic waves by an infinitely long
cylinder with a simply connected cross sectionD leads to boundary value problems
for the two-dimensional Helmholtz equation in the exterior R2nD of D. If the
electric field is polarized parallel to the axis of the cylinder and if the axis of the
cylinder is parallel to the x3 axis, then

E D .0; 0; u/; H D 1

ik

�
@u

@x2
;� @u

@x1
; 0

�

satisfies the Maxwell equations if and only if u D u.x1; x2/ satisfies the Helmholtz
equation. The homogeneous perfect conductor boundary condition is satisfied on the
boundary of the cylinder if the homogeneous Dirichlet boundary condition u D 0 on
@D is satisfied. If the magnetic field is polarized parallel to the axis of the cylinder,
then the roles of E and H have to be reversed, i.e.,

H D .0; 0; u/; E D i

k

�
@u

@x2
;� @u

@x1
; 0

�
;

and the perfect conductor boundary condition corresponds to the Neumann bound-
ary condition @u=@� D 0 on @D with the unit normal � to the boundary @D of the
cross sectionD. Hence, the analysis of two-dimensional electromagnetic scattering
problems coincides with that of two-dimensional acoustic scattering problems.

Historical Remarks

Equation (4) carries the name of Helmholtz (1821–1894) for his contributions
to mathematical acoustics. The radiation condition (5) was introduced by Som-
merfeld in 1912 to characterize an outward energy flux. The expansion (20) was
first established by Atkinson in 1949 and generalized by Wilcox in 1956. The
fundamental Lemma 1 is due to Rellich (1943) and Vekua (1943). The combined
single- and double-layer approach (28) for the existence analysis was introduced
independently by Leis, Brakhage and Werner, and Panich in the 1960s in order to
remedy the nonuniqueness deficiency of the classical double-layer approach due to
Vekua, Weyl, and Müller from the 1950s. Huygens’ principle is also referred to as
the Huygens–Fresnel principle and named for Huygens (1629–1695) and Fresnel
(1788–1827) in recognition of their contributions to wave optics. The physical
optics approximation (34) is named for Kirchhoff (1824–1887) for his contributions
to optics. The terms Lippmann–Schwinger equation and Born approximation are
adopted from quantum physics. Equation (38) is named for Maxwell (1831–
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1879) for his fundamental contributions to electromagnetic theory. The radiation
conditions (41) and (42) were independently introduced in the 1940s by Silver and
Müller. The integral representations (43) and (45) were first presented by Stratton
and Chu in 1939. Extending the ideas of Leis, Brakhage and Werner, and Panich
from acoustics to electromagnetics, the approach (53) was introduced independently
by Knauff and Kress, Jones, and Mautz and Harrington in the 1970s in order to
remedy the nonuniqueness deficiency of the classical approach due to Weyl and
Müller from the 1950s.

3 Uniqueness in Inverse Scattering

Scattering by an Obstacle

The first step in studying any inverse scattering problem is to establish a uniqueness
result, i.e., if a given set of data is known exactly, does this data uniquely determine
the support and/or the material properties of the scatterer? We will begin with the
case of scattering by an impenetrable obstacle and then proceed to the case of a
penetrable obstacle.

From section “Obstacle Scattering,” we recall that the direct obstacle scattering
problem is to find u 2 C 2.R3nD/ \ C.R3nD/ such that the total field u D ui C us

satisfies the Helmholtz equation

�uC k2u D 0 in R3nD (58)

and the sound-soft boundary condition

u D 0 on @D; (59)

where ui .x/ D eik x � d , jd j D 1, and us is a radiating solution. We also recall from
Theorem 1 that us has the asymptotic behavior

us.x; d/ D eikjxj

jxj
�

u1. Ox; d/CO
�

1

jxj
�

; jxj ! 1; (60)

uniformly for all directions Ox D x=jxj, where u1 is the far-field pattern of the
scattered fieldEs . By Green’s integral theorem and the far-field representation (33),
it can be shown that the far-field pattern satisfies the reciprocity relation [22]

u1. Ox; d/ D u1.�d;�Ox/; Ox; d 2 S2: (61)

The inverse scattering problem we are concerned with is to determine D from a
knowledge of u1. Ox; d/ for Ox and d on the unit sphere S2 and fixed wave number
k. In particular, for the acoustic scattering problem (58) and (59), we want to show
that D is uniquely determined by u1. Ox; d/ for Ox; d 2 S2. We note that by the
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reciprocity relation (61), the far-field pattern u1 is an analytic function of both Ox
and d , and hence it would suffice to consider u1 for Ox and d restricted to a surface
patch of the unit sphere S2.

Theorem 8. Assume that D1 and D2 are two obstacles such that the far-field
patterns corresponding to the exterior Dirichlet problem (58) and (59) for D1 and
D2 coincide for all incident directions d . Then D1 D D2.

Proof. Let us1 and us2 be the scattered fields corresponding to D1 and D2, respec-
tively. By the analyticity of the scattered field as a function of x and Rellich’s
Lemma 1, the scattered fields satisfy us1. �; d / D us2. �; d / in the unbounded
component G of the complement of D1 [ D2 for all d 2 S2. This in turn implies
that the scattered fields corresponding to ˆ. �; z/ as incident field and D1 or D2 as
the scattering obstacle satisfy us1.x; z/ D us2.x; z/ for all x; z 2 G. Now assume
that D1 ¤ D2. Then, without loss of generality, there exists x� 2 @G such
that x� 2 @D1 and x� 62 D2. Then setting zn WD x� C 1

n
�.x�/, we have that

limn!1 us2.x
�; zn/ exists but limn!1 us1.x

�; zn/ D 1 which is a contradiction and
henceD1 D D2. �

An open problem is to determine if one incident plane wave at a fixed wave
number k is sufficient to uniquely determine the scatterer D. If it is known a priori
that in addition to the sound-soft boundary condition (59)D is contained in a ball of
radiusR such that kR < 4:49, thenD is uniquely determined by its far-field pattern
for a single incident direction d and fixed wave number k [32] (see also [22]). D
is also uniquely determined if instead of assuming that D is contained in a ball of
sufficiently small radius, it is assumed that D is close to a given obstacle [87]. It is
also known that for a wide class of sound-soft scatterers, a finite number of incident
fields are sufficient to uniquely determine D [82]. Finally, if it is assumed that D
is polyhedral, then a single incident plane wave is sufficient to uniquely determine
D [1, 63].

We conclude this section on uniqueness results for the inverse scattering problem
for an obstacle by considering the scattering of electromagnetic waves by a perfectly
conducting obstacle D. From section “The Maxwell Equations” we recall that the
direct obstacle scattering problem is to find E;H 2 C 2.R3nD/ \ C.R3nD/ such
that the total field E D Ei C Es; H D Hi CHs satisfies the Maxwell equations

curlE � ikH D 0; curlH C ikE D 0 in R3nD (62)

and the perfect conductor boundary condition

� �E D 0 on @D; (63)

where Ei;H i is the plane wave given by (50) and Es;Hs is a radiating solution.
We also recall from Theorem 1 that us has the asymptotic behavior
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Es.x; d; p/ D eikjxj

jxj
�
E1. Ox; d; p/CO

�
1

jxj
�

; jxj ! 1; (64)

where E1 is the electric far-field pattern of the scattered field Es .
The inverse scattering problem is to determine D from a knowledge of

E1. Ox; d; p/ for Ox and d on the unit sphere S2, three linearly independent
polarizations p, and fixed wave number k. We note that E1 is an analytic function
of Ox and d and is linear with respect to p. The following theorem can be proved
using the same ideas as in the proof of Theorem 8.

Theorem 9. Assume that D1 and D2 are two perfect conductors such that for a
fixed wave number k, the electric far-field patterns for both scatterers coincide for
all incident directions d and three linearly independent polarizationsp. ThenD1 D
D2.

In the case when D consists of finitely many polyhedra, a single incident wave
is sufficient to uniquely determineD [62].

Scattering by an InhomogeneousMedium

We now return to scattering of acoustic waves, but instead of scattering by a sound-
soft obstacle, we consider scattering by an inhomogeneous medium where the
governing equation (see section “Scattering by an Inhomogeneous Medium”) is

�uC k2nu D 0 in R3 (65)

for u D ui C us 2 C 2.R2/, where n 2 C 1.R3/ is the refractive index satisfying
Re n > 0 and Imn � 0, ui .x/ D eik x � d and us is radiating. We let D denote
the support of m WD 1 � n. By Theorem 1 the scattered wave us again has the
asymptotic behavior (60). The inverse scattering problem we are now concerned
with is to determine the index of refraction n (and hence D) from a knowledge of
u1. Ox; d/ for Ox and d on the unit sphere S2 and fixed wave number k. In particular,
we want to show that n is uniquely determined from u1. Ox; d/ for Ox; d 2 S2 and
fixed wave number k.

Theorem 10. The refractive index n in (65) is uniquely determined by u1. Ox; d/ for
Ox; d 2 S2 and a fixed value of the wave number k.

Proof. Let B be an open ball centered at the origin and containing the support of
m D 1 � n. The first step in the proof is to construct a solution of (65) in B of the
form

w.x/ D ei z �x .1C r.x// ; (66)
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where z � z D 0; z 2 C
3, and

krkL2.B/ �
C

jRe zj

for some positive constant C and jRe zj sufficiently large. This is done in [35] by
using Fourier series. The second step is to show that, given two open balls B1 and
B2 centered at the origin and containing the support ofm such that B1 � B2, the set
of solutions

˚
u. �; d / W d 2 S2



satisfying (65) is complete in

H WD ˚w 2 C 2.B2/ W �wC k2nw D 0 in B2



with respect to the norm in L2.B1/ [35]. Now assume that n1 and n2 are
refractive indices such that the corresponding far-field patterns satisfy u1;1. �; d / D
u2;1. �; d /; d 2 S2, and assume that the supports of 1�n1 and 1�n2 are contained
in B1. Then using Rellich’s Lemma 1 and Green’s integral theorem, it can be shown
that

Z
B1

u1. �; Qd/u2. �; d /.n1 � n2/ dx D 0

for all d; Qd 2 S2 and hence

Z
B1

w1w2.n1 � n2/ dx D 0 (67)

for all solutions w1;w2 2 C 2.B2/ of �w1 C k2n1w D 0 and �w2 C k2n2w2 D 0
in B2. Now choose z1 WD y C �a C ib and z2 WD y � �a � ib such that fy; a; bg
is an orthogonal basis in R3 with the properties that jaj D 1 and jbj2 D jyj2 C �2,
and substitute these values of z into (66) arriving at functions w1 and w2. Substitute
these functions into (67), and let �!1 to arrive at

Z
B1

e2i y �x .n1.x/ � n2.x// dx D 0

for arbitrary y 2 R3, i.e., n1.x/ D n2.x/ for x 2 B1 by the Fourier integral theorem.
�

In the case of scattering by a sound-soft obstacle, the proof of uniqueness given
in Theorem 8 remains valid in R2. However, this is not the case for scattering
by an inhomogeneous medium. Indeed, until recently, the question of whether or
not Theorem 10 remains valid in R2 was one of the outstanding open problems in
inverse scattering theory. The problem was finally resolved in 2008 by Bukhgeim [4]
who showed that in R2 the index of refraction n is uniquely determined by u1. Ox; d/
for Ox; d 2 S1 and a fixed value of the wave number k.
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We conclude this section with a few remarks on scattering by an anisotropic
medium. Let n be as above and recall that D is the support of m WD 1 � n. Let A
be a 3 � 3 matrix-valued function whose entries ajk are continuously differentiable
functions in D such that A is symmetric and satisfies

� � .ImA/� � 0; � � .ReA/� > � j�j2

for all � 2 C
3 and x 2 D, where � is a positive constant. We assume thatA.x/ D I

for x 2 R3nD. The anisotropic scattering problem is to find u D uiCus 2 H 1
loc.R

3/

such that

r �AruC k2nu D 0 in R3 (68)

in the weak sense where again ui .x/ D eik x �d and us is radiating. The existence of
a unique solution to this scattering problem has been established by Hähner [36].

The scattered field again has the asymptotics (60). The inverse scattering problem
is now to determineD from a knowledge of the far-field pattern u1. Ox; d/ for Ox; d 2
S2. We note that the matrix A is not uniquely determined by u1, and hence without
further a priori assumptions, the determination of D is the most that can be hoped
for [33, 74]. To this end we have the following theorem due to Hähner [36].

Theorem 11. Assume � > 1. Then D is uniquely determined by u1. Ox; d/ for
Ox; d 2 S2.

We note that Theorem 11 remains valid if the condition on ReA is replaced by
the condition

� � .ReA�1/� � �j�j2

for all � 2 C
3 and x 2 D where � is a positive constant such that � > 1 [7]. Note

that the isotropic case when A D I is handled by Theorem 10.
Uniqueness theorems for the Maxwell equations in an isotropic inhomogeneous

medium have been established by Colton and Päivärinta [27] and Hähner [37]. The
proof is similar to that of Theorem 10 for the scalar problem except that technical
problems arise due to the fact that we must now construct a solution E;H to the
Maxwell equations in an inhomogeneous isotropic medium such that E has the
form

E.x/ D eiz �x .�C r.x// ;

where z; � 2 C
3; � � z D 0, and z � z D k2. In contrast to the case of acoustic waves,

it is no longer true that r.x/ decays to zero as jRe zj tends to infinity. Finally, the
generalization of Theorem 11 to the case of the Maxwell equations in an anisotropic
media has been done by Cakoni and Colton [5].
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Historical Remarks

As previously mentioned, the first uniqueness theorem for the acoustic inverse
obstacle problem was given by Schiffer in 1967 for the case of a sound-soft obstacle
[61], whereas in 1988 Nachman [68], Novikov [70], and Ramm [79] established a
uniqueness result for the inverse scattering problem for an inhomogeneous medium.
In 1990 Isakov [40,41] proved a series of uniqueness theorems for the transmission
problem with discontinuities of u across @D. His ideas were subsequently utilized
by Kirsch, Kress, and their coworkers to establish uniqueness theorems for a variety
of inverse scattering problems for both acoustic and electromagnetic waves (for
references, see [22]). In particular, the proofs of Theorems 8 and 9 are based on
the ideas of Kirsch and Kress [22, 54].

A global uniqueness theorem for the Maxwell equations in an isotropic inhomo-
geneous medium was first established in 1992 by Colton and Päivärinta [27] (see
also [37]). The results of [27, 37] are for the case when the magnetic permeability
� is constant. For uniqueness results in the case when � is no longer constant, we
refer to [71, 72].

4 Iterative and Decomposition Methods in Inverse
Scattering

Newton Iterations in Inverse Obstacle Scattering

We now turn to reconstruction methods for the inverse scattering problem for sound-
soft scatterers, and as a first group we describe iterative methods. Here the inverse
problem is interpreted as a nonlinear ill-posed operator equation which is solved
by iteration methods such as regularized Newton methods, Landweber iterations,
or conjugate gradient methods. For a fixed incident field ui , the solution to the
direct scattering problem defines the boundary to far field operator F W @D 7! u1
which maps the boundary @D of the scatterer D onto the far-field pattern u1 of the
scattered wave us. In particular, F is the imaging operator that takes the scattering
object D into its image u1 via the scattering process. In terms of this imaging
operator, i.e., the boundary to far field operator, given a far-field pattern u1, the
inverse problem consists in solving the operator equation

F.@D/ D u1 (69)

for the unknown boundary @D. As opposed to the direct obstacle scattering problem
which is linear and well-posed, the operator equation (69), i.e., the inverse obstacle
scattering problem, is nonlinear and ill-posed. It is nonlinear since the solution to
the direct scattering problem depends nonlinearly on the boundary, and it is ill-posed
because the far-field mapping is extremely smoothing due to the analyticity of the
far-field pattern.
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In order to define the operator F properly, the most appropriate approach is to
choose a fixed reference domain D and consider a family of scatterers Dh with
boundaries represented in the form @Dh D fxCh.x/ W x 2 @Dg, where h W @D ! R3

is of class C 2 and is sufficiently small in the C 2 norm on @D. Then we may consider
the operator F as a mapping from a ball

V WD ˚h 2 C 2.@D/ W khkC 2 < a

 � C 2.@D/

with sufficiently small radius a > 0 into L2.S2/. However, for ease of presentation,
we proceed differently and restrict ourselves to boundaries @D that can be parame-
terized by mapping them globally onto the unit sphere S2, i.e.,

@D D ˚p. Ox/ W Ox 2 S2



(70)

for some injective C 2 function p W S2 ! R3. As a simple example, the reader
should consider the case of starlike domains where

p. Ox/ D r. Ox/ Ox; Ox 2 S2; (71)

with a radial distance function r WS2 ! .0;1/. Then, with some appropriate
subspaceW � C 2.S2/, we may interpret the operator F as a mapping

F W W ! L2.S2/; F W p 7! u1;

and consequently the inverse obstacle scattering problem consists in solving

F.p/ D u1 (72)

for the unknown function p.
Since F is nonlinear we may linearize

F.p C q/ D F.p/C F 0.p/q CO �q2
	

in terms of a Fréchet derivative F 0. Then, given an approximation p for the solution
of (72), in order to obtain an update pCq, we solve the approximate linear equation

F.p/C F 0.p/q D u1 (73)

for q. We note that the linearized equation inherits the ill-posedness of the nonlinear
equation and therefore regularization is required. As in the classical Newton
iterations, this linearization procedure is iterated until some stopping criteria is
satisfied.

In principle the parameterization of the update @DpCq D fp. Ox/Cq. Ox/ W Ox 2 S2g
is not unique. To cope with this ambiguity, the simplest possibility is to allow only
perturbations of the form
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q. Ox/ D z. Ox/ �.p. Ox//; x 2 S2; (74)

with a scalar function z. We denote the corresponding linear space of normal L2

vector fields by L2
normal.S

2/.
The Fréchet differentiability of the operator F is addressed in the following

theorem.

Theorem 12. The boundary to far-field mapping F Wp 7! u1 is Fréchet differen-
tiable. The derivative is given by

F 0.p/q D vq;1;

where vq;1 is the far-field pattern of the radiating solution vq to Helmholtz equation
in R3nD satisfying the Dirichlet boundary condition

vq D �� � q @u

@�
on @D (75)

in terms of the total field u D ui C us .

The boundary condition (75) for the derivative can be obtained formally by using
the chain rule to differentiate the boundary condition u D 0 on @D with respect to
the boundary. Extensions of Theorem 12 to the Neumann boundary condition, the
perfect conductor boundary condition, and to the impedance boundary condition in
acoustics and electromagnetics are also available.

To justify the application of regularization methods for stabilizing (73), injec-
tivity and dense range of the operator F 0.p/ W L2

normal.S
2/ ! L2.S2/ need to be

established. This is settled for the Dirichlet condition and, for� sufficiently large, for
the impedance boundary condition and remains an open problem for the Neumann
boundary condition. In the classical Tikhonov regularization, (73) is replaced by

˛q C �F 0.p/
�� F 0.p/q D �F 0.p/

�� fu1 �F.p/g (76)

with some positive regularization parameter ˛ and theL2 adjoint ŒF 0.p/�� of F 0.p/.
For details on the numerical implementation, we refer to [22] and the references
therein. The numerical examples strongly indicate that it is advantageous to use
some Sobolev norm instead of the L2 norm as the penalty term in the Tikhonov
regularization. Numerical examples in three dimensions have been reported by
Farhat et al. [31] and by Harbrecht and Hohage [38].

In closing this section on Newton iterations, we note as their main advantages
that this approach is conceptually simple and, as the numerical examples in the
literature indicate, leads to highly accurate reconstructions with reasonable stability
against errors in the far-field pattern. On the other hand, it should be noted that
for the numerical implementation, an efficient forward solver is needed and good a
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priori information is required in order to ensure convergence. On the theoretical side,
the convergence of regularized Newton iterations for inverse obstacle scattering
problems has not been completely settled, although some progress has been made
through the work of Hohage [39] and Potthast [77].

Newton-type iterations can also be employed for the simultaneous determination
of the boundary shape and the impedance function � in the impedance boundary
condition (8) [58].

DecompositionMethods

The main idea of decomposition methods is to break up the inverse obstacle
scattering problem into two parts: The first part deals with the ill-posedness by
constructing the scattered wave us from its far-field pattern u1 and the second
part deals with the nonlinearity by determining the unknown boundary @D of the
scatterer as the location where the boundary condition for the total field ui C us is
satisfied in a least-squares sense. In the potential method, for the first part, enough a
priori information on the unknown scattererD is assumed so one can place a closed
surface � inside D. Then the scattered field us is sought as a single-layer potential

us.x/ D
Z
�

'.y/ˆ.x; y/ ds.y/; x 2 R3nD; (77)

with an unknown density ' 2 L2.�/. In this case the far-field pattern u1 has the
representation

u1. Ox/ D 1

4�

Z
�

e�ik Ox �y'.y/ ds.y/; Ox 2 S2:

Given the far-field pattern u1, the density ' is now found by solving the integral
equation of the first kind

S1' D u1 (78)

with the compact integral operator S1 W L2.�/! L2.S2/ given by

.S1'/. Ox/ WD 1

4�

Z
�

e�ik Ox �y'.y/ ds.y/; Ox 2 S2:

Due to the analytic kernel of S1, the integral equation (78) is severely ill-posed.
For a stable numerical solution of (78), Tikhonov regularization can be applied, i.e.,
the ill-posed equation (78) is replaced by

˛'˛ C S�1S1'˛ D S�1u1 (79)

with some positive regularization parameter ˛ and the adjoint S�1 of S1.
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Given an approximation of the scattered wave us˛ obtained by inserting a solution
'˛ of (79) into the potential (77), the unknown boundary @D is then determined by
requiring the sound-soft boundary condition

ui C us D 0 on @D (80)

to be satisfied in a least-squares sense, i.e., by minimizing theL2 norm of the defect

��ui C us˛
��2

L2.ƒ/
(81)

over a suitable set of admissible surfaces ƒ. Instead of solving this minimization
problem, one can also visualize @D by color coding the values of the modulus juj of
the total field u 	 ui C us˛ on a sufficiently fine grid over some domain containing
the scatterer.

Clearly we can expect (78) to have a solution ' 2 L2.�/ if and only if u1 is the
far field of a radiating solution to the Helmholtz equation in the exterior of � with
sufficiently smooth boundary values on � . Hence, the solvability of (78) is related
to the regularity properties of the scattered wave which in general cannot be known
in advance for the unknown scatterer D. Nevertheless, it is possible to provide a
solid theoretical foundation to the above procedure [22, 53]. This is achieved by
combining the minimization of the Tikhonov functional for (78) and the defect
minimization for (81) into one cost functional

kS1' � u1k2
L2.S2/

C ˛k'k2
L2.�/

C � ��ui C us˛
��2

L2.ƒ/
: (82)

Here � > 0 denotes a coupling parameter which has to be chosen appropriately for
the numerical implementation in order to make the two terms in (82) be of the same
magnitude, for example, � D ku1kL2.S2/=kuik1.

Note that the potential approach can also be employed for the inverse problem
to recover the impedance given the shape of the scatterer. In this case the far-
field equation (78) is solved with � replaced by the known boundary @D. After
the density ' is obtained, � can be determined in a least-squares sense from
the impedance boundary condition (8) after evaluating the trace and the normal
derivative of the single-layer potential (77) on @D.

The point source method of Potthast [76] can also be interpreted as a decompo-
sition method. Its motivation is based on Huygens’ principle from Theorem 4, i.e.,
the scattered field representation

us.x/ D �
Z
@D

@u

@�
.y/ˆ.x; y/ ds.y/; x 2 R3nD; (83)

and the far-field representation

u1. Ox/ D � 1

4�

Z
@D

@u

@�
.y/ e�ik Ox �y ds.y/; Ox 2 S2: (84)
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For z 2 R3nD we choose a domain Bz such that z 62 Bz and D � Bz

and approximate the point source ˆ. �; z/ by a Herglotz wave function, i.e., a
superposition of plane waves such that

ˆ.y; z/ 	
Z
S2
eik y �dgz.d/ ds.d/; y 2 Bz; (85)

for some gz 2 L2.S2/. Under the assumption that there does not exist a nontrivial
solution to the Helmholtz equation in Bz with homogeneous Dirichlet boundary
condition on @Bz, the Herglotz wave functions are dense in H 1=2.@Bz/ [23, 30], and
consequently the approximation (85) can be achieved uniformly with respect to y
on compact subsets of Bz. We can now insert (85) into (32) and use (33) to obtain

us.z/ 	 4�
Z
S2
gz. Ox/u1.�Ox/ ds. Ox/ (86)

as an approximation for the scattered wave us . Knowing an approximation for the
scattered wave, the boundary @D can be found as above from the boundary condition
(80).

The approximation (85) can in practice be obtained by solving the ill-posed linear
integral equation

Z
S2
eik y �dgz.d/ ds.d/ D ˆ.y; z/; y 2 @Bz; (87)

via Tikhonov regularization and the Morozov discrepancy principle. Note that
although the integral equation (87) is in general not solvable, the approximation
property (86) is ensured through the above denseness result on Herglotz wave
functions.

An advantage of decomposition methods is that the separation of the ill-
posedness and the nonlinearity is conceptually straightforward. A second and main
advantage consists in the fact that their numerical implementation does not require a
forward solver. As a disadvantage, as in the Newton method of the previous section,
if we go beyond visualization of the level surfaces of juj and proceed with the
minimization, good a priori information on the unknown scatterer is needed for the
iterative solution of the optimization problem. The accuracy of the reconstructions
using decomposition methods is slightly inferior to that using Newton iterations.

IterativeMethods Based on Huygens’ Principle

We recall Huygens’ principle (83) and (84). In view of the sound-soft boundary
condition, from (83), we conclude that

ui .x/ D
Z
@D

@u

@�
.y/ˆ.x; y/ ds.y/; x 2 @D: (88)
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Now we can interpret (84) and (88) as a system of two integral equations for the
unknown boundary @D of the scatterer and the induced surface flux

' WD �@u

@�
on @D:

It is convenient to call (84) the data equation since it contains the given far field for
the inverse problem and (88) the field equation since it represents the boundary
condition. Both equations are linear with respect to the flux and nonlinear with
respect to the boundary. Equation (84) is severely ill-posed whereas (88) is only
mildly ill-posed.

Obviously there are three options for an iterative solution of (84) and (88). In
a first method, given an approximation for the boundary @D, one can solve the
mildly ill-posed integral equation of the first kind (88) for '. Then, keeping ' fixed,
Eq. (84) is linearized with respect to @D to update the boundary approximation. This
approach has been proposed by Johansson and Sleeman [45]. In a second approach,
following ideas first developed for the Laplace equation by Kress and Rundell [59],
one also can solve the system (84) and (88) simultaneously for @D and ' by Newton
iterations, i.e., by linearizing both equations with respect to both unknowns. This
idea has been analyzed by Ivanyshyn and Kress [42,43]. Whereas in the first method
the burden of the ill-posedness and nonlinearity is put on one equation, in a third
method, a more even distribution of the difficulties is obtained by reversing the
roles of (84) and (88), i.e., by solving the severely ill-posed equation (84) for ' and
then linearizing (88) to obtain the boundary update. With a slight modification, this
approach may also be interpreted as a decomposition method since to some extent
it separates the ill-posedness and the nonlinearity. It combines the decomposition
method from the previous section “Decomposition Methods” with elements of
Newton iterations from section “Newton Iterations in Inverse Obstacle Scattering”.
Therefore, it has also been termed as a hybrid method and as such was analyzed by
Kress and Serranho [57, 85].

For a more detailed description of these three methods, using the parameteriza-
tion (70), we introduce the parameterized single-layer operator and far-field operator
A;A1 WC 2.S2/ � L2.S2/! L2.S2/ by

A.p; /. Ox/ WD
Z
S2
ˆ.p. Ox/; p. Oy// . Oy/ ds. Oy/; Ox 2 S2;

and

A1.p;  /. Ox/ WD 1

4�

Z
S2
e�ik Ox �p. Oy/ . Oy/ ds. Oy/; Ox 2 S2:

Then (84) and (88) can be written in the operator form

A1.p;  / D u1 (89)
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and

A.p; / D �ui ı p; (90)

where we have incorporated the surface element into the density function via

 . Ox/ WD J. Ox/ '.p. Ox// (91)

with the Jacobian J of the mapping p. The linearization of these equations requires
the Fréchet derivatives of the operators A and A1 with respect to p. These can be
obtained by formally differentiating their kernels with respect to p, i.e.,

.A0.p;  /q/. Ox/ D
Z
S2

gradx ˆ.p. Ox/; p. Oy// � Œq. Ox/ � q. Oy/�  . Oy/ ds. Oy/; x 2 S2;

and

�
A01.p;  /q

	
. Ox/ D � ik

4�

Z
S2
e�ik Ox �p. Oy/ Ox � q. Oy/ . Oy/ ds. Oy/; x 2 S2:

For fixed p, provided k2 is not a Dirichlet eigenvalue of the negative Laplacian
in D, both in a Hölder space setting A.p; � / W C 0;˛.S2/ ! C 1;˛.S2/ or in a
Sobolev space setting A.p; � / W H�1=2.S2/ ! H 1=2.S2/, the operator A.p; � /
is a homeomorphism [22]. In this case, given an approximation to the boundary
parameterization p, the field equation (90) can be solved for the density  . Then,
keeping  fixed, linearizing the data equation (89) with respect to p leads to the
linear equation

A01

0
B@p; ŒA.p; � /��1.ui ı p/„ ƒ‚ …

� 

1
CA q D �u1�A1

0
B@p; ŒA.p; � /��1.ui ı p/„ ƒ‚ …

� 

1
CA (92)

for q to update the parameterization p via p C q. This procedure can be iterated.
For fixed p the operator A01.p; ŒA.p; � /��1.ui ı p// has a smooth kernel

and therefore is severely ill-posed. This requires stabilization, for example, via
Tikhonov regularization. The following theorem ensures injectivity and dense range
as prerequisites for Tikhonov regularization. We recall the form (74) introduced for
uniqueness of the parameterization of the update and the corresponding linear space
L2

normal.S
2/ of normal L2 vector fields.

Theorem 13. Assume that k2 is not a Neumann eigenvalue of the negative Lapla-
cian in D. Then the operator

A01
�
p; ŒA.p; � /��1.ui ı p/	 W L2

normal.S
2/! L2.S2/

is injective and has dense range.
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One can relate this approach to the Newton iterations for the nonlinear equation
(69) for the boundary to far-field operator of section “Newton Iterations in Inverse
Obstacle Scattering”. In the case when k2 is not a Dirichlet eigenvalue of the
negative Laplacian in D, one can write

F.p/ D �A1
�
p; ŒA.p; � /��1.ui ı p/	 :

By the product and chain rule, this implies

F 0.p/qD�A01
�
p; ŒA.p; � /��1.ui ı p/	 q

CA1
�
p; ŒA.p; � /��1A0.p; ŒA.p; � /��1.ui ı p//q	

�A1
�
p; ŒA.p; � /��1..grad ui / ı p/ � q	 :

(93)

Hence, we observe a relation between the above iterative scheme and the Newton
iterations for the boundary to far-field map as expressed by the following theorem.

Theorem 14. The iteration scheme given by (92) can be interpreted as Newton
iterations for (69) with the derivative of F approximated by the first term in the
representation (93).

As to be expected from this close relation to Newton iterations for (69), the
quality of the reconstructions via (92) can compete with those of Newton iterations
with the benefit of reduced computational costs.

The second approach for iteratively solving the system (89) and (90) consists in
simultaneously linearizing both equations with respect to both unknowns. In this
case, given approximationsp and both for the boundary parameterization and the
density, the system of linear equations

A01.p;  /q C A1.p; 	/ D �A1.p;  /C u1 (94)

and

A0.p;  /q C ..grad ui / ı p/ � q CA.p; 	/ D �A.p; / � ui ı p (95)

has to be solved for q and 	 in order to obtain updates p C q for the boundary
parameterization and  C 	 for the density. This procedure again is iterated and
coincides with Newton’s method for the system (89) and (90).

For uniqueness reasons the updates must be restricted, for example, to normal
fields of the form (74). Due to the smoothness of the kernels, both Eqs. (94) and (95)
are severely ill-posed and require regularization with respect to both unknowns. In
particular for the parameterization update, it is appropriate to incorporate penalties
for Sobolev norms of q to guarantee smoothness of the boundary whereas for the
density L2 penalty terms on 	 are sufficient.

The simultaneous iterations (94) and (95) again exhibit connections to the
Newton iteration for (69).
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Theorem 15. Assume that k2 is not a Dirichlet eigenvalue of the negative Lapla-
cian inD, and set  WD �ŒA.p; � /��1.ui ıp/. If q satisfies the linearized boundary
to far-field equation (73), then q and

	 WD �ŒA.p; � /��1.A0.p;  /q C ..grad ui / ı p/ � q/

satisfy the linearized data and field equations (94) and (95). Conversely, if q and 	
satisfy (94) and (95), then q satisfies (73).

Theorem 15 illustrates the difference between the iteration method based on
(94) and (95) and the Newton iterations for (69). In general when performing (94)
and (95) in the sequence of updates, the relation A.p; / D �.ui ı p/ between
the approximations p and  for the parameterization and the density will not
be satisfied. This observation also indicates a possibility to use (94) and (95) for
implementing a Newton scheme for (69). It is only necessary to replace the update
 C 	 for the density by �ŒA.p C q; � /��1.ui ı .p C q//, i.e., at the expense of
throwing away 	 and solving a boundary integral equation for a new density. For a
numerical implementation and three-dimensional examples, we refer to [44].

In a third method, in order to evenly distribute the burden of the ill-posedness
and the nonlinearity of the inverse obstacle scattering problem, instead of solving
the field equation (90) for the density and then linearizing the data equation, one can
also solve the severely ill-posed data equation (91) for the density and then linearize
the mildly ill-posed field equation (92) to update the boundary. In this case, given an
approximation for the boundary parameterization p, first the data equation (91) is
solved for the density . Then, keeping fixed, the field equation (92) is linearized
to obtain the linear equation

A0.p;  / q C ..grad ui / ı p/ � q D �A.p; / � ui ı p (96)

for q to update the parameterization p via p C q. This procedure of alternatingly
solving (91) and (96) can be iterated. To some extent this procedure mimics a
decomposition method in the sense that it decomposes the inverse problem into
a severely ill-posed linear problem and a nonlinear problem.

The hybrid method suggested by Kress and Serranho [57, 85] can be considered
as a slight modification of the above procedure. In this method, given an approxi-
mation p for the parameterization of the boundary, the data equation (91) is solved
for the density  via regularization. Injectivity and dense range of the operator
A1.p; � / W L2.S2/ ! L2.S2/ are guaranteed provided k2 is not a Dirichlet
eigenvalue for the negative Laplacian in D [22]. Then one can define the single-
layer potential

us.x/ D
Z
S2
ˆ.x; p. Oy// . Oy/ ds. Oy/
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and evaluate the boundary values of u WD ui C us and its derivatives on the surface
represented by p via the jump relations. Finally an update p C q is found by
linearizing the boundary condition u ı .p C q/ D 0, i.e., by solving the linear
equation

u ı p C ..grad u/ ı p/ � q D 0 (97)

for q. For uniqueness of the update representation, the simplest possibility is to allow
only perturbations of the form (74). Then injectivity for the linear equation (97) can
be established for the exact boundary.

After introducing the operator

� QA.p; / q	 . Ox/ WD
Z
S2

gradx ˆ.p. Ox/; p. Oy// � q. Ox/ . Oy/ ds. Oy/

� 1

2

 . Ox/ Œ�.p. Ox// � q. Ox/�
J. Ox/

and observing the jump relations for the single-layer potential and (91), Eq. (97) can
be rewritten as

QA.p; / q C ..grad ui / ı p/ � q D �A.p; / � ui ı p: (98)

Comparing this with (96), we discover a relation between solving the data and
field equation iteratively via (89) and (96) and the hybrid method of Kress and
Serranho. In the hybrid method, the Fréchet derivative of A with respect to p is
replaced by the operator QA where one linearizes only with respect to the evaluation
surface for the single-layer potential but not with respect to the integration surface.
For the numerical implementation of the hybrid method and numerical examples in
three dimensions, we refer to [86].

All three methods of this section can be applied to the Neumann boundary
condition, the perfect conductor boundary condition, and to the impedance boundary
condition in acoustics and electromagnetics. They also can be employed for the
simultaneous reconstruction of the boundary shape and the impedance function � in
the impedance boundary condition (8) [84].

Newton Iterations for the Inverse Medium Problem

Analogously to the inverse obstacle scattering problem, we can reformulate the
inverse medium problem as a nonlinear operator equation. To this end we define
the far-field operator F W m 7! u1 that mapsm WD 1�n to the far-field pattern u1
for plane wave incidence ui .x/ D eik x �d . Since by Theorem 10 we know that m is
uniquely determined by a knowledge of u1. Ox; d/ for all incident and observation
directions Ox; d 2 S2, we interpret F as an operator from C.B/ into L2.S2 � S2/

for a ball B that contains the unknown support of m.
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In view of the Lippmann–Schwinger equation (35) and the far-field representa-
tion (36), we can write

.F.m//. Ox; d/ D � k
2

4�

Z
B

e�ik Ox �ym.y/u.y; d/ dy; Ox; d 2 S2; (99)

where u. �; d / is the unique solution of

u.x; d/C k2
Z
B

ˆ.x; y/m.y/u.y; d/ dy D ui .x; d/; x 2 B: (100)

From (100) it can be seen that the Fréchet derivative vq of u with respect to m (in
direction q) satisfies the Lippmann–Schwinger equation

vq.x; d/Ck2
Z
B

ˆ.x; y/Œm.y/vq.y; d/Cq.y/u.y; d/� dy D 0; x 2 B: (101)

From this and (99), it follows that the Fréchet derivative of F is given by

.F 0.m/ q/. Ox; d/ D � k
2

4�

Z
B

e�ik Ox �yŒm.y/vq.y; d/Cq.y/u.y; d/� dy; Ox; d 2 S2;

which coincides with the far-field pattern of the solution vq. �; d / of (101). Hence,
we have proven the following theorem.

Theorem 16. The far-field mapping F W m 7! u1 is Fréchet differentiable. The
derivative is given by

F 0.m/q D vq;1;

where vq;1 is the far-field pattern of the radiating solution vq to

�vC k2nv D �k2uq in R3: (102)

This characterization of the Fréchet derivative can be used to establish injectivity
of F 0.m/. We now have all the prerequisites available for a regularized Newton
iteration analogous to (76).

A similar approach as that given above is also possible for the electromagnetic
inverse medium problem.

Least-Squares Methods for the InverseMedium Problem

In view of the Lippmann–Schwinger equation (35) and the far-field representation
(36), the inverse medium problem is equivalent to solving the system consisting of
the field equation
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u.x; d/C k2
Z
B

ˆ.x; y/m.y/u.y; d/ dy D ui .x; d/; x 2 B; d 2 S2; (103)

and the data equation

� k2

4�

Z
B

e�ik Ox �ym.y/u.y; d/ dy D u1. Ox; d/; Ox; d 2 S2; (104)

whereB is a ball containing the support ofm. In principle one can first solve the ill-
posed linear equation (104) to determine the source mu from the far-field pattern and
then solve the nonlinear equation (103) to construct the contrast m. After defining
the volume potential operator T W L2.B � S2/ ! L2.B � S2/ and the far-field
operator F W L2.B � S2/! L2.S2 � S2/ by

.T v/.x; d/ WD �k2
Z
B

ˆ.x; y/v.y; d/ dy; x 2 B; d 2 S2;

and

.F v/. Ox; d/ WD � k
2

4�

Z
B

e�ik Ox �dv.y; d/ dy; Ox; d 2 S2;

we rewrite the field equation (103) as

ui C Tmu D u (105)

and the data equation (104) as

Fmu D u1: (106)

We can now define the cost function

�.m; u/ WD
kui C Tmu � uk2

L2.B�S2/

kuik2
L2.B�S2/

C
ku1 � Fmuk2

L2.S2�S2/

ku1k2
L2.S2�S2/

(107)

and reformulate the inverse medium problem as the optimization problem to
minimize � over the contrast m 2 V and the fields u 2 W where V and W are
appropriately chosen admissible sets. The weights in the cost function are chosen
such that the two terms are of the same magnitude.

This optimization problem is similar in structure to that used in (82) in connection
with the decomposition method for the inverse obstacle scattering problem. How-
ever, since by Theorem 10 all incident directions are required, the discrete versions
of the optimization problem suffer from a large number of unknowns. Analogous
to the two step approaches of sections “Decomposition Methods” and “Iterative
Methods Based on Huygens’ Principle” for the inverse obstacle scattering problem,
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one way to reduce the computational complexity is to treat the fields and the contrast
separately, for example, by a modified conjugate gradient method as proposed by
Kleinman and van den Berg [55]. In a modified version of this approach, van den
Berg and Kleinman [89] transformed the Lippmann–Schwinger equation (105) into
the equation

mui CmTw D w (108)

for the contrast sources w WD mu, and instead of simultaneously updating the
contrastm and the fields u, the contrast is updated together with the contrast source
w. The cost function (107) is now changed to

�.m;w/ WD
kmui C mTw � wk2

L2.B�S2/

kuik2
L2.B�S2/

C
ku1 � Fmuk2

L2.S2�S2/

ku1k2
L2.S2�S2/

:

The above approach for the acoustic inverse medium problem can be adapted to the
case of electromagnetic waves.

Born Approximation

The Born approximation turns the inverse medium scattering problem into a linear
problem and therefore is often employed in practical applications. In view of (36),
for plane wave incidence, we have the linear integral equation

� k2

4�

Z
R3
e�ik . Ox�d/ �ym.y/ dy D u1. Ox; d/ Ox; d 2 S2: (109)

Solving (109) for the unknownm corresponds to inverting the Fourier transform of
m restricted to the ball of radius 2k centered at the origin, i.e., only incomplete data
is available. This causes uniqueness ambiguities and leads to severe ill-posedness
of the inversion. Thus, the ill-posedness which seemed to have disappeared through
the inversion of the Fourier transform is back on stage. For details, we refer to [60].

A counterpart of the Born approximation in inverse obstacle scattering starts
from the far field of the physical optics approximation (36) for a convex sound-soft
scatterer D in the back scattering direction, i.e.,

u1.�d I d/ D � 1

4�

Z
�.y/ �d<0

@

@�.y/
e2ik d �y ds.y/:

Analogously, replacing d by �d , we have

u1.d I �d/ D � 1

4�

Z
�.y/ �d>0

@

@�.y/
e�2ik d �y ds.y/:
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Combining the last two equations and using Green’s integral theorem, we find

Z
R3
	.y/e2ik d �y dy D �

k2

n
u1.�d I d/C u1.d I �d/

o
; d 2 S2; (110)

with the characteristic function 	 of the scatterer D. Equation (110) is known
as the Bojarski identity. Hence, in the physical optics approximation, the Fourier
transform has again to be inverted from incomplete data since the physical optics
approximation is valid only for large wave numbers k. For details, we refer to [60].

Historical Remarks

The boundary condition (75) was obtained by Roger [81] who first employed
Newton-type iterations for the approximate solution of inverse obstacle scattering
problems. Rigorous foundations for the Fréchet differentiability were given by
Kirsch [47] in the sense of a domain derivative via variational methods and by
Potthast [75] via boundary integral equation techniques. The potential method
as a prototype of decomposition methods has been proposed by Kirsch and
Kress [53]. The point source method has been suggested by Potthast [76]. The
iterative methods based on Huygens’ principle were introduced by Johansson and
Sleeman [45], by Ivanyshyn and Kress [43] (extending a method proposed by
Kress and Rundel [59] from potential theory to acoustics), and by Kress [57] and
Serranho [85]. The methods described in sections “Newton Iterations for the Inverse
Medium Problem,” “Least Squares Methods for the Inverse Medium Problem,” and
“Born Approximation” have been investigated by numerous researchers over the
past 30 years.

5 Qualitative Methods in Inverse Scattering

The Far-Field Operator and Its Properties

A different approach to solving inverse scattering problems than the use of iterative
methods is the use of qualitative methods [7]. These methods have the advantage of
requiring less a priori information than iterative methods (e.g., it is not necessary to
know the topology of the scatterer or the boundary conditions satisfied by the total
field) and in addition reduce a nonlinear problem to a linear problem. On the other
hand, the implementation of such methods often requires more data than iterative
methods do and in the case of a penetrable inhomogeneous medium only recovers
the support of the scatterer together with some estimates on its material properties.

We begin by considering the scattering problem for a sound-soft obstacle (58)
and (59). The far-field operator F WL2.S2/ ! L2.S2/ for this problem is defined
by
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.Fg/. Ox/ WD
Z
S2

u1. Ox; d/g.d/ ds.d/; Ox 2 S2; (111)

where u1 is the far-field pattern associated with (58) and (59). By superposition,
Fg is seen to be the far-field pattern corresponding to the Herglotz wave function

vg.x/ WD
Z
S2
eikx �dg.d/ ds.d/; x 2 R3; (112)

as incident field. The function g 2 L2.S2/ is known as the kernel of the Herglotz
wave function. The far-field operator F is compact. It can also be shown that for the
case of scattering by a sound-soft obstacle, the far-field operator is normal [7]. Of
basic importance to us is the following theorem [22].

Theorem 17. The far-field operator F corresponding to (58) and (59) is injective
with dense range if and only if there does not exist a Dirichlet eigenfunction for D
which is a Herglotz wave function.

Proof. The proof is based on the reciprocity relation (61). In particular, for the L2

adjoint F � WL2.S2/! L2.S2/, the reciprocity relation implies that

F �g D RFRg; (113)

whereR W L2.S2/! L2.S2/ is defined by .Rg/.d/ WD g.�d/. Hence, the operator
F is injective if and only if its adjoint F � is injective. Recalling that the denseness
of the range of F is equivalent to the injectivity of F �, by (113), we need only
to show the injectivity of F . To this end, we note that Fg D 0 is equivalent to the
existence of a Herglotz wave function vg with kernel g for which the far-field pattern
of the corresponding scattered field vs is v1 D 0. By Rellich’s lemma this implies
that vs D 0 in R3nD and the boundary condition vg C vs D 0 on @D now shows
that vg D 0 on @D. Since by hypothesis vg is not a Dirichlet eigenfunction, we can
conclude that vg D 0 in D and hence g D 0. �

We will now turn our attention to the far-field operator associated with the
inhomogeneous medium problems (65) and (68). In both cases we again define
the far-field operator by (111) where u1 is now the far-field pattern corresponding
to (65) or (68). We first consider Eq. (65) which corresponds to scattering by an
inhomogeneous medium. The analogue of Theorem 17 is the following [22].

Theorem 18. The far-field operatorF corresponding to (65) is injective with dense
range if and only if there does not exist a solution v;w 2 L2.D/; v�w 2 H 2.D/ of
the interior transmission problem

�vC k2v D 0 in D (114)
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�wC k2nw D 0 in D (115)

v D w on @D (116)

@v

@�
D @w

@�
on @D (117)

such that v is a Herglotz wave function. Values of k > 0 for which there exists a
nontrivial solution of (114)–(117) are called transmission eigenvalues.

A similar theorem holds for Eq. (68) which corresponds to scattering by an
anisotropic medium where now (115) is replaced by

r �ArwC k2nw D 0 in D (118)

and in (117) the normal derivative @w
@�

is replaced by � �Arw. If the coefficients in
(115) or (118) are real valued, then the far-field operator is normal.

In the case of electromagnetic waves, the far-field operator becomes

.Fg/. Ox/ WD
Z
S2
E1. Ox; d; g.d// ds.d/; Ox 2 S2; (119)

where now g 2 L2
t .S

2/, the space of square integrable tangential vector fields
defined on S2, and E1 is the electric far-field pattern defined by (64). Theorems
analogous to Theorems 17 and 18 are also valid in this case [22].

The Linear Sampling Method

The linear sampling method is a non-iterative method for solving the inverse
scattering problem that was first introduced by Colton and Kirsch [19] and Colton
et al. [29]. To describe this method, we first consider the case of scattering by a
sound-soft obstacle, i.e., (58) and (59), and assume that for every z 2 D, there
exists a solution g D g. �; z/ 2 L2.S2/ to the far-field equation

Fg D ˆ1. �; z/; (120)

where

ˆ1. Ox; z/ D 1

4�
e�ik Ox � z; Ox 2 S2:

Since the right-hand side of (120) is the far-field pattern of the fundamental solution
(13), it follows from Rellich’s lemma that

Z
S2

us.x; d/g.d/ ds.d/ D ˆ.x; z/
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for x 2 R3nD. From the boundary condition u D 0 on @D, we see that

vg.x/Cˆ.x; z/ D 0 for x 2 @D; (121)

where vg is the Herglotz wave function with kernel g. We can now conclude from
(121) that vg becomes unbounded as z! x 2 @D and hence

lim
z!@D

z2D
kg. �; z/kL2.S2/ D 1;

i.e., @D is characterized by points z where the solution of (120) becomes unbounded.
Unfortunately, in general, the far-field equation (120) does not have a solution

nor does the above analysis say anything about what happens when z 2 R3nD. To
address these issues, we first define the single-layer operator S W H�1=2.@D/ !
H 1=2.@D/ by

.S'/.x/ WD
Z
@D

'.y/ˆ.x; y/ ds.y/; x 2 @D;

define the Herglotz operatorH W L2.@D/! H�1=2.@D/ as the operator mapping g
to the trace of the Herglotz wave function (112) on @D, and let F W H�1=2.@D/ !
L2.S2/ be defined by

.F'/. Ox/ WD
Z
@D

'.y/e�ik Ox � y ds.y/; Ox 2 S2:

Then, using on the one hand the fact that Herglotz wave functions are dense in the
space of solutions to the Helmholtz equation in D with respect to the norm in the
Sobolev space H 1.D/ and on the other the factorization of the far-field operator F
as

F D � 1

4�
FS�1H;

one can prove the following result [7, 52].

Theorem 19. Assume that k2 is not a Dirichlet eigenvalue of the negative Lapla-
cian for D, and let F be the far-field operator corresponding to (58) and (59).
Then:

1. For z 2 D and a given � > 0, there exists gz;� 2 L2.S2/ such that

kFgz;� �ˆ1. �; z/kL2.S2/ < �

and the corresponding Herglotz wave function vgz;� converges to a solution of
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�uC k2uD 0 in D

uD�ˆ. �; z/ on @D

in H 1.D/ as �! 0.
2. For z 2 R3nD and a given � > 0, every gz;� 2 L2.S2/ that satisfies

kFgz;� �ˆ1. �; z/kL2.S2/ < �

is such that lim�!0 kvgz;�kH 1.D/ D 1.

We note that the difference between cases (1) and (2) of this theorem is that for
z 2 D, the far-field pattern ˆ1. �; z/ is in the range of F , whereas for z 2 R3nD
this is no longer true. The linear sampling method is based on attempting to
compute the function gz;� in the above theorem by using Tikhonov regularization
to solve Fg D ˆ1. �; z/. In particular, one expects that the regularized solution
will be relatively smaller for z in D than z in R3nD, and this behavior can be
visualized by color coding the values of the regularized solution on a grid over some
domain containing D. A more precise statement of this observation will be made
in the next section after we have discussed the factorization method for solving
the inverse scattering problem. Further discussion of why linear sampling works if
regularization methods are used to solve (120) can be found in [2, 3]. In addition
to the inverse scattering problems (58) and (59), it is also possible to treat mixed
boundary value problems as well as scattering by both isotropic and anisotropic
inhomogeneous media where in the latter case we must assume that k is not a
transmission eigenvalue. For full details we refer the reader to [7]. Note that in each
case, it is not necessary to know the material properties of the scatterer in order to
determine the support of the scatterer from a knowledge of the far-field pattern via
solving the far-field equation Fg D ˆ1. �; z/.

The linear sampling method can also be extended to the case of electromagnetic
waves where the far-field equation (120) is now replaced by

Z
S2
E1 . Ox; d; g.d// ds.d/ D Ee;1. Ox; z; q/;

whereE1. Ox; d; p/ is the electric far-field pattern corresponding to the incident field
(50), g 2 L2

t .S
2/, and Ee;1 is the electric far-field pattern of the electric dipole

Ee.x; z; q/ WD i

k
curlx curlx qˆ.x; z/; He.x; z; q/ WD curlx qˆ.x; z/: (122)

Full details can be found in the lecture notes [12].
We close this section by briefly describing a version of the linear sampling

method based on the reciprocity gap functional which is applicable to objects sit-
uated in a piecewise homogeneous background medium. Assume that an unknown
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scattering object is embedded in a portionB of a piecewise inhomogeneous medium
where the index of refraction is constant with wave number k. Let B0 � B be a
domain in B having a smooth boundary @B0 such that the scattering obstacle D
satisfies D � B0, and let � be the unit outward normal to @B0. We now define the
reciprocity gap functional by

R.u; v/ WD
Z
@B0

�
u
@v

@�
� v

@u

@�

�
ds;

where u and v are solutions of the Helmholtz equation in B0nD and u; v 2
C 1.B0nD/. In particular, we want u to be the total field due to a point source situated
at x0 2 BnB0 and v D vg to be a Herglotz wave function with kernel g. We then
consider the integral equation

R.u; vg/ D R.u; ˆz/;

where ˆz WD ˆ. �; z/ is the fundamental solution (13) and u D u. �; x0/ where x0 is
now assumed to be on a smooth surfaceC inBnB0 that is homotopic to @B0. IfD is
a sound-soft obstacle, we assume that k2 is not a Dirichlet eigenvalue of the negative
Laplacian inD, and if D is an isotropic inhomogeneous medium, we assume that k
is not a transmission eigenvalue. We then have the following theorem [17].

Theorem 20. Assume that the above assumptions on D are satisfied. Then:

1. If z 2 D, then there exists a sequence fgng in L2.S2/ such that

lim
n!1R.u; vgn/ D R.u; ˆz/; x0 2 C;

and vgn converges in L2.D/.
2. If z 2 B0nD, then for every sequence fgng in L2.S2/ such that

lim
n!1R.u; vgn/ D R.u; ˆz/; x0 2 C;

we have that limn!1 kvgnkL2.D/ D1.

In particular, Theorem 20 provides a method for determining D from a knowl-
edge of the Cauchy data of u on @B0 in a manner analogous to that of the linear
sampling method. Numerical examples using this method can be found in [17].
The extension of Theorem 20 to the Maxwell equations, together with numerical
examples, can be found in [13].
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The Factorization Method

The linear sampling method is complicated by the fact that in general ˆ1. �; z/ is
not in the range of the far-field operator F for either z 2 D or z 2 R3nD. For the
case of acoustic waves whenF is normal (e.g., the scattering problem corresponding
to (58) and (59) or (65) for n real valued), the problem was resolved by Kirsch in
[48, 49] who proposed replacing the far field equation Fg D ˆ1. �; z/ by

.F �F /1=4g D ˆ1. �; z/; (123)

where F � is again the adjoint of F in L2.S2/. In particular, if G W H 1=2.@D/ !
L2.S2/ is defined by Gf D v1 where v1 is the far field pattern of the solution to
the radiating exterior Dirichlet problem (see Theorem 3) with boundary data f 2
L2.@D/, then the following theorem is valid [48].

Theorem 21. Assume that k2 is not a Dirichlet eigenvalue of the negative Lapla-
cian for D. Then the ranges of G W H 1=2.@D/ ! L2.S2/ and .F �F /1=4 W
L2.S2/! L2.S2/ coincide.

A result analogous to Theorem 21 is also valid for the scattering problem
corresponding to (65) for n real valued where we now must assume the k is not an
interior transmission eigenvalue [49]. Note that Theorem 21 provides an alternate
method to the linear sampling method for solving the inverse scattering problem
corresponding to the scattering of acoustic waves by a sound-soft obstacle. This
follows from the fact that ˆ1. �; z/ is in the range of G if and only if z 2 D, i.e.,
Eq. (123) is solvable if and only if z 2 D. This is an advantage over the linear
sampling method since if (123) is solved by using Tikhonov regularization, then as
the noise level on u1 tends to zero, the norm of the regularized solution remains
bounded if and only if z 2 D. A similar statement cannot be made if regularization
methods are used to solve Fg D ˆ1. �; z/. However, using Theorem 21, the
following theorem has been established by Arens and Lechleiter [3] (see also [52]).

Theorem 22. Let F be the far-field operator associated with the scattering prob-
lems (58) and (59), and assume that k2 is not a Dirichlet eigenvalue of the
negative Laplacian for D. For z 2 D, let gz 2 L2.S2/ be the solution of
.F �F /1=4gz D ˆ1. �; z/, and for every z 2 R3 and � > 0, let gz;� be the solution
of Fg D ˆ1. �; z/ obtained by Tikhonov regularization, i.e., the unique solution of
�g C F �Fg D F �ˆ1. Then the following statements are valid:

1. Let vgz;� be the Herglotz wave function with kernel gz;� . Then for every z 2 D,
the limit lim�!0 vgz;� .z/ exists. Furthermore, there exists c > 0, depending only
on F , such that for every z 2 D we have that

ckgzk2
L2.S2/

k � lim
�!0

ˇ̌
vgz;� .z/

ˇ̌ � kgzk2
L2.S2/

:

2. For z 62 D we have that lim�!0 vgz;� .z/ D 1.
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Using Theorem 21 to solve the inverse scattering problem associated with the
scattering problems (58) and (59) is called the factorization method. This method
has been extended to a wide variety of scattering problems for both acoustic and
electromagnetic waves, and for details we refer the reader to [52]. Since this
method and its generalizations are fully discussed in the chapter in this handbook
on sampling methods, we will not pursue the topic further here. A drawback of
both the linear sampling method and the factorization method is the large amount of
data needed for the inversion procedure. In particular, although the linear sampling
method can be applied for limited aperture far-field data, one still needs multistatic
data defined on an open subset of S2.

Lower Bounds for the Surface Impedance

One of the advantages that the linear sampling method has over other qualitative
methods in inverse scattering theory is that the far-field equation can not only be
used to determine the support of the scatterer but in some circumstances can also
be used to obtain lower bounds on the constitutive parameters of the scattering
object. In this section we will consider two such problems: the determination of the
surface impedance of a partially coated object and the determination of the index of
refraction of a non-absorbing scatterer. In the first case, we will need to consider a
mixed boundary value problem for the Helmholtz equation, whereas in the second
case, we will need to investigate the spectral properties of the interior transmission
problem introduced in Theorem 18 of the previous section.

Mixed boundary value problems typically model the scattering by objects that
are coated by a thin layer of material on part of the boundary. In the study of inverse
problems for partially coated obstacles, it is important to mention that, in general,
it is not known a priori whether or not the scattering object is coated and if so
what the extent of the coating is. We will focus our attention in this section on the
special case when on the coated part of the boundary, the total field satisfies an
impedance boundary condition and on the remaining part of the boundary, the total
field (or the tangential component in the case of electromagnetic waves) vanishes.
This corresponds to the case when a perfect conductor is partially coated by a thin
dielectric layer. For other mixed boundary value problems in scattering theory and
their associated inverse problems, we refer the reader to [7] and the references
contained therein.

Let D � R3 be as described in Sect. 1, and let @D be dissected as @D D �D [
… [ �I where �D and �I are disjoint, relatively open subsets of @D having … as
their common boundary. Let � 2 L1.�I / be such that �.x/ � �0 > 0 for all
x 2 �I . We consider the scattering problem for the Helmholtz equation (58) where
u D ui C us satisfies the boundary condition

uD 0 on �D;
@u

@�
C i�uD 0 on �I ;

(124)
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ui .x/ D eik x � d , and us is a radiating solution. It can be shown that this direct
scattering problem has a unique solution in Hloc.R

3nD/ [7]. We again define the
far-field operator by (111) where u1 is now the far-field pattern corresponding to
the boundary condition (124).

In [7] it is shown that there exists a unique solution uz 2 H 1.D/ of the interior
mixed boundary value problem

�uz C k2uz D 0 in D (125)

uz Cˆ. �; z/ D 0 on �D (126)

@

@�
.uz Cˆ. �; z//C i� .uz Cˆ. �; z// D 0 on �I (127)

for z 2 D where ˆ is the fundamental solution to the Helmholtz equation. Then, if
ˆ1. �; z/ is the far-field pattern of ˆ. �; z/, we have the following theorem [7].

Theorem 23. Let � > 0, z 2 D, and uz be the unique solution of (125–127). Then
there exists a Herglotz wave function vgz;� with kernel gz;� 2 L2.S2/ such that

kuz � vgz;�kH 1.D/ � �:

Moreover, there exists a positive constant c independent of � such that

kFgz;� �ˆ1. �; z/kL2.S2/ � c�:

We can now use Green’s formula to show that [6]

Z
@D

�juz Cˆ. �; z/j2 ds D � k

4�
� Im uz.z/:

From this we immediately deduce the inequality

k�kL1.�I / �
�k=4� � Im uz.z/

kuz Cˆ. �; z/k2
L2.@D/

: (128)

How is the inequality (128) of practical use? To evaluate the right-hand side of
(128), we need to know @D and uz. Both are determined by solving the far field
equation Fg D ˆ1. �; z/ using Tikhonov regularization and then using the linear
sampling method to determine @D and the regularized solution g 2 L2.S2/ to
construct the Herglotz wave function vg . By Theorem 23 we expect that vg is an
approximation to uz. However, at this time, there is no analogue of Theorem 22 for
the mixed boundary value problem, and hence this is not guaranteed. Nevertheless
in all numerical experiments to date, this approximation appears to be remarkably
accurate and thus allows us to obtain a lower bound for k�kL1.�I / via (128).
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The corresponding scattering problem for the Maxwell equations is to find a
solution E D Ei C Es to (62) satisfying the mixed boundary condition

� � E D 0 on �D

� � curlE � i�.� � E/ � � D 0 on �I ; (129)

where Ei is the plane wave (50) and Es is radiating. The existence of a unique
solutionE in an appropriate Sobolev space is shown in [11]. We again define the far-
field operator by (119) whereE1 is now the electric far-field pattern corresponding
to (129). Analogous to (125–127) we now have the interior mixed boundary value
problem

curl curlEz � k2Ez D 0 in D (130)

� � ŒEz C Ee. �; z; q/� D 0 on �D (131)

� � curl ŒEz C Ee. �; z; q/� � i� Œ� � .Ez C Ee. �; z; q//� D 0 on �I ; (132)

where z 2 D and Ee is the electric dipole defined by (122). The existence of a
unique solution to (130–132) in an appropriate Sobolev space is established in [11].
From the analysis in [6], we have the inequality

k�kL1.�I / �
�k2jqj2=6� C k Re.q �Ez/

kEz C Ee. �; z; q/k2
L2
t .@D/

(133)

analogous to (128) for the Helmholtz equation. For numerical examples using (133),
we refer the reader to [26].

Similar inequalities as those derived above for the impedance boundary value
problem can also be obtained for the conductive boundary value problem, i.e., the
case when a dielectric is partially coated by a thin, highly conducting layer [7, 26].

Transmission Eigenvalues

We have previously encountered transmission eigenvalues in Theorem 18 where
they were connected with the injectivity and dense range of the far-field operator. In
this section we shall examine transmission eigenvalues and the interior transmission
problem in more detail. This investigation is particularly relevant to the inverse
scattering problem since transmission eigenvalues can be determined from the far
field pattern [10] and, as will be seen, can be used to obtain lower bounds for the
index of refraction.

We begin by considering the interior transmission problem (114–117) from
Theorem 18 and will be concerned with the existence and countability of transmis-
sion eigenvalues. The existence of transmission eigenvalues was first established
by Päivärinta and Sylvester [73], and their results were strengthened by Cakoni
et al. [14].
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Theorem 24. Assume that n is real valued such that n.x/ > 1 for all x 2 D or
0 < n.x/ < 1 for all x 2 D. Then there exist an infinite number of transmission
eigenvalues.

We note that it can be shown that as supx2D jn.x/ � 1j ! 0, then the
first transmission eigenvalue tends to infinity, i.e., in the Born approximation
transmission, eigenvalues do not exist [28].

Similar results as in Theorem 24 can be obtained for an anisotropic medium and
for the Maxwell equations [14].

By Theorem 24 the existence of transmission eigenvalues is established. It can
also be shown that the set of transmission eigenvalues is discrete [15, 20, 50, 83].
The following theorem [28] establishes a lower bound for the first transmission
eigenvalue which is reminiscent of the famous Faber–Krahn inequality for the first
Dirichlet eigenvalue for the negative Laplacian (which we denote by �1).

Theorem 25. Assume that n.x/ > 1 for x 2 D, and let k1 > 0 be the first
transmission eigenvalue for the interior transmission problem (114–117). Then

k2
1 �

�1.D/

sup
x2D

n.x/
:

Theorem 25 has been generalized to the case of anisotropic media and the Maxwell
equations [8].

Finally, in the case of the interior transmission problem (114–117) where there
are cavities inD, i.e., regionsD0 � D where n.x/ D 1 for x 2 D0, it can be shown
that transmission eigenvalues exist and form a discrete set and the first transmission
eigenvalue k1 satisfies [9]

k2
1 �

�1.D/

sup
x2DnD0

n.x/
:

Note that since in each of the above cases D can be determined by the linear
sampling method, �1.D/ is known, and hence given k1, the above inequalities yield
a lower bound for the supremum of the index of refraction.

Historical Remarks

The use of qualitative methods to solve inverse scattering problems began with the
1996 paper of Colton and Kirsch [19] and the 1997 paper of Colton et al. [29].
These papers were in turn motivated by the dual space method of Colton and Monk
developed in [24,25]. Both [19] and [29] were concerned with the case of scattering
of acoustic waves. The extension of the linear sampling method to electromagnetic
waves was first outlined by Kress [56] and then discussed in more detail by Colton
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et al. [18] and Haddar and Monk [34]. The factorization method was introduced
in 1998 and 1999 by Kirsch [48, 49] for acoustic scattering problems. Attempts to
extend the factorization method to the case of electromagnetic waves have been
only partly successful. In particular, the factorization method for the scattering of
electromagnetic waves by a perfect conductor remains an open question.

In addition to the linear sampling and factorization methods, there have been
a number of other qualitative methods developed primarily by Ikehata and Potthast
and their coworkers. Although space is too short to discuss these alternate qualitative
methods in this survey, we refer the reader to [52, 78] for details and references.

The countability of transmission eigenvalues for acoustic waves was established
by Colton et al. [20] and Rynne and Sleeman [83] and for the Maxwell equations by
Cakoni and Haddar [15] and Kirsch [50]. The existence of transmission eigenvalues
for acoustic waves was first given by Päivärinta and Sylvester [73] for the isotropic
case and for the anisotropic case by Cakoni and Haddar [16] and Kirsch [51] who
also established the existence of transmission eigenvalues for Maxwell’s equations.
These results were subsequently improved by Cakoni et al. [14]. Inequalities for the
first transmission eigenvalues were first obtained by Colton et al. [28] and Cakoni
et al. [8, 9].
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(or conductivity and permittivity) of the interior of a body from knowledge of
electrical stimulation and measurements on its surface. This problem is also
known as the inverse conductivity problem and its mathematical formulation is
due to A. P. Calderón, who wrote in 1980, the first mathematical formulation
of the problem, “On an inverse boundary value problem.” EIT has interesting
applications in fields such as medical imaging (to detect air and fluid flows in the
heart and lungs and imaging of the breast and brain) and geophysics (detection of
conductive mineral ores and the presence of ground water). It is well known that
this problem is severely ill-posed, and thus this chapter is devoted to the study of
the uniqueness, stability, and reconstruction of the conductivity from boundary
measurements. A detailed distinction between the isotropic and anisotropic case
is made, pointing out the major difficulties with the anisotropic case. The issues
of global and local measurements are studied, noting that local measurements are
more appropriate for practical applications such as screening for breast cancer.

1 Introduction

Electrical impedance tomography (EIT) is the recovery of the conductivity (or
conductivity and permittivity) of the interior of a body from a knowledge of currents
and voltages applied to its surface. In geophysics, where the method is used in
prospecting and archaeology, it is known as electrical resistivity tomography. In
industrial process tomography it is known as electrical resistance tomography or
electrical capacitance tomography. In medical imaging, when at the time of writing
it is still an experimental technique rather than routine clinical practice, it is called
EIT. A very similar technique is used by weakly electric fish to navigate and
locate prey and in this context it is called electrosensing. An example of a medical
application of EIT is given in Fig. 1, which shows a 10-day-old healthy neonate
breathing spontaneously and lying in the prone position with the head turned to the
left. Sixteen EIT electrodes are placed in a transverse plane around the chest, and
EIT data acquired with the Goe MF-II system. This child was a subject in a study
which used EIT to examine patterns of breathing in neonates and the relationship
to body posture [57]. In this study, EIT was able to show, for the first time, that, in
a prone position, the lung on the opposite side (contralateral) to the face receives
significantly larger air flows.

The simplest mathematical formulation of inverse problem of EIT can be stated
as follows. Let  be a conducting body described by a bounded domain in R

n,
n � 2, with electrical conductivity a bounded and positive function �.x/ (later
complex � will be considered). In the absence of internal sources, the electrostatic
potential u in  is governed by the elliptic partial differential equation

L�u WD r � �ru D 0 in : (1)

It is natural to consider the weak formulation of (1) in which u 2 H 1./ is a
weak solution to (1). Given a potential � 2 H 1=2.@/ on the boundary, the induced
potential u 2 H 1./ solves the Dirichlet problem
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Fig. 1 10-day-old
spontaneously breathing
neonate lying in the prone
position with the head turned
to the left. Sixteen medical
grade Ag/AgCl electrodes
were placed in a transverse
plane and connected to a Geo
MF-II EIT system [57]

�
L�u D 0 in ;

uj@ D �: (2)

The currents and voltages measurements taken on the surface of , @, are
given by the so-called Dirichlet-to-Neumann map (associated with � ) or voltage-
to-current map

ƒ� W uj@ 2 H 1=2.@/ �! �
@u

@�
2 H�1=2.@/:

Here, � denotes the unit outer normal to @ and the restriction to the boundary
is considered in the sense of the trace theorem on Sobolev spaces. Here, @ must
be at least Lipschitz continuous and � 2 L1./ with ess inf Re � D m > 0.

The forward problem under consideration is the map � 2 Dm 7! ƒ� , where
Dm D f� 2 L1./jess inf� � mg The inverse problem for complete data is then
the recovery of � from ƒ� . As is usual in inverse problems, consideration will be
given to questions of (1) uniqueness of solution (or from a practical point of view
sufficiency of data), (2) stability/instability with respect to errors in the data, and
(3) practical algorithms for reconstruction. It is also worth pointing out to the reader
who is not very familiar with EIT the well-known fact that the behavior of materials
under the influence of external electric fields is determined not only by the electrical
conductivity � but also by the electric permittivity " so that the determination of
the complex valued function �.x; !/ D 
.x/ C i!".x/ would be the more general
and realistic problem, where i D p�1 and ! is the frequency. The simple case
where ! D 0 will be treated in this work. For a description of the formulation of the
inverse problem for the complex case, refer for example to [20]. Before addressing
questions (1)–(3) mentioned above, it is interesting to consider how the problem
arises in practice.
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Measurement Systems and Physical Derivation

For the case of direct current, that is the voltage applied is independent of time, the
derivation is simple. Of course here  � R

3. First suppose that it is possible to
apply an arbitrary voltage � 2 H 1=2./ to the surface. It is typical to assume that
the exterior R3n is an electrical insulator. An electric potential (voltage) u results
in the interior and the current J that flows satisfies the continuum Ohm’s law J D
��ru; the absence of current sources in the interior is expressed by the continuum
version of Kirchoff’s law r � J D 0 which together result in (1). The boundary
conditions are controlled or measured using a system of conducting electrodes
which are typically applied to the surface of the object. In some applications,
especially geophysical, these may be spikes that penetrate the object, but it is
common to model these as points on the surface. Most EIT systems are designed to
apply a known current on (possibly a subset) or electrodes and measure the voltage
that results on electrodes (again possibly a subset, in some cases disjoint from those
carrying a nonzero current). In other cases it is a predetermined voltage applied
to electrodes and the current measured; there being practical reasons determined
by electronics or safety for choosing one over the other. In medical EIT applying
known currents and measuring voltages is typical. One reason for this is the desire
to limit the maximum current for safety reasons. In practice the circuit that delivers a
predetermined current can only do so while the voltage required to do that is within
a certain range so both maximum current and voltage are limited. For an electrode
(let us say indexed by `) not modeled by a point but covering a regionE` � @ the
current to that electrode is the integral

I` D
Z
E`

�J � � dx: (3)

Away from electrodes,

�
@u

@�
D 0; on @n

L[
`D1

E` (4)

as the air surrounding the object is an insulator. On the conducting electrode, ujE` D
V` a constant, or as a differential condition

� � ru D 0 on @n
L[
`D1

E`: (5)

Taken together, (3)–(5) are called the shunt model. This ideal of a perfectly
conducting electrode is of course only an approximation. Note that while the
condition u 2 H 1./ is a sensible condition, which ensures finite total dissipated
power, it is not sufficient to ensure (3) is well defined. Indeed for smooth � and
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smooth @E` the condition results in a square root singularity in the current density
on the electrode. A more realistic model of electrodes is given later.

It is more common to use alternating current in geophysical and process
monitoring applications, and essential in medical applications. Specifically the
direction of the current must be reversed within a sufficiently short time to avoid
electrochemical effects. This also means that the time average of the applied current
should be zero. In medical applications, current in one direction for sufficient
duration would result in transport of ions, and one of the effects of this can be
stimulation of nerves. It would also degrade electrode behavior due to charge build
up and ionic changes in the electrode. As a general rule higher levels of current
and voltage are considered safer at higher temporal frequencies. The simplest EIT
system therefore operates at a fixed frequency using an oscillator or digital signal
processing to produce a sinusoidal current. Measurements are then taken of the
magnitude, or in some cases the components that are in phase and �=2 out of phase
with the original sine wave. When an EIT system switches from stimulating one
set of electrodes to the next set in a stimululation pattern, the measurements adapt
to the new pattern over a finite time, and typical EIT systems are designed to start
measuring after this transient term has decayed so as to be negligible.

In geophysics a technique that is complementary to EIT called induced polar-
ization tomography IPT is used to find polarizable minerals. In effect this uses a
square wave pulse and measures the transient response [85]. In process tomography
a technique known as electrical capacitance tomography is designed for imaging
insulating materials with different dielectric permittivities, for example oil and gas
in a pipe [60, 101]. Again square waves or pulses are used.

In medical and geophysical problems the response of the materials may vary with
frequency. For example in a biological cell higher frequency current might penetrate
a largely capacitive membrane and so be influenced by the internal structures
of the cell, while lower frequency currents pass around the cell. This has led
to electrical impedance tomography spectroscopy (EITS) [47], and in geophysics
spectral induced polarization tomography (SIPT) [85]. The spectral response can
be established either by using multiple sinusoidal frequencies or by sampling the
transient response to a pulse.

Our starting point for the case of alternating current is the time harmonic
Maxwell equations at a fixed angular frequency !. Here it is assumed that the
transient components of all fields are negligible and represent the time harmonic
electric and magnetics vector fields using the complex representation F.x; t/ D
Re .F exp.i!t//, yielding

r � E D �i!B; (6)

r �H D JC i!D: (7)

The electric and magnetic fields E and H are related to the current density J,
electric displacement D, and magnetic flux B by the material properties conductivity

 , permittivity �, and permeability � by
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J D 
E; D D �E; B D �H: (8)

The fields E and H are evaluated on directed curves, while the “fluxes” J;D and
B on surfaces. In biomedical applications one can typically take � to be constant
and to be the same inside the body as outside in air. In non-destructive testing and
geophysical applications there may well be materials with differing permeability.
Here (8) assumes linear relations. For example the first is the continuum Ohm’s
law. Here, the material properties may be frequency dependent. This dispersion
is important in EIS and SIPT. For the moment a first approximation is to assume
isotropy (so that the material properties are scalars).

There are many inverse problems governed by time harmonic Maxwell’s equa-
tions.. These occur at large values of ! and include optical and microwave
tomographic techniques and scattering problems such as radar which are not
discussed in this chapter. There are also systems where the fields arise from
alternating current in a coil, and measurements are made either with electrodes or
with other coils. Mutual (or magnetic) induction tomography (MIT) falls into this
category and has been tried in medical and process monitoring applications [46].
In these cases the eddy current approximation [9] to Maxwell’s equations is used.
While for direct current EIT (i.e., ERT) the object is assumed surrounded by an
insulator, in MIT one must account for the magnetic fields in the surrounding space,
there being no magnetic “shielding.”

The assumptions used to justify the usual mathematical model of EIT make it
distinct from many other inverse problems for Maxwell’s equations. Given

Assumption 1. Transients components of all fields are negligible.

This assumption simply means that a sufficient “settling time” has been given
before making measurements.

The interest in relatively low frequencies, where magnetic effects can be
neglected, translates into two assumptions

Assumption 2. !
p
�� is small compared with the size of.

This means that the wavelength of propagating waves in the material is large. A
measurement accuracy of 2�12 D 1=4096 is ambitious at higher frequencies means
that for wave effects to be negligible

d !
p
�� < cos�1 4095

4096
; (9)

where d is the diameter of the body. Taking the relative permittivity to be 10 and
R D 0:3 m gives a maximum frequency of 1 MHz.

Assumption 3.
p
!
�=2 is small compared with the size of.
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Fig. 2 A system of electrodes used for chest EIT at Oxford Brookes University. The positions
of the electrodes were measured manually with a tape measure and the cross-sectional shape was
also determined by manual measurements. These electrodes have a disk of jell containing silver
chloride solution that makes contact with the skin. Each electrode was attached to the EIT system
by a screened lead, not shown in this picture for clarity

The quantity

ı D
s

2

!
�
(10)

is known as the skin depth. For a frequency of 10 kHz and a conductivity of
0:5 Sm�1 typical in medical applications, the skin depth is 7 m. In geophysics lower
frequencies are typical but length scales are larger. In a conducting cylinder the
electric field decays with distance r from the boundary at a rate e�r=ı due to the
opposing magnetic field. At EIT frequencies this simple example suggests that
accurate forward modeling of EIT should take account of this effect although it
is currently not thought to be a dominant source of error.

The effect of Assumptions 2 and 3 combined together is that it is reasonable to
neglectr�E in Maxwell’s equations resulting in the standard equation for complex
EIT

r � .
 C i!�/ru D 0: (11)

Here the expression � D 
 C i!� is called complex conductivity, or logically
the admittivity, while 1=
 is called resistivity and the rarely-used complex 1=�
impedivity. A scaling argument is given for the approximation (11) in [31], and
numerical checks on the validity of the approximation in [37, 104] (Fig. 2).

It is often not so explicitly stated but while in the direct current case one can
neglect the conductivity of the air surrounding the body, for the alternating current
case the electrodes are coupled capacitively and, while 
 can be assumed to be
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Fig. 3 A cross section
through a typical ECT sensor
around a pipe (internal wall)
showing the external screen
with radial screens designed
to reduce the external
capacitive coupling between
electrodes

Inclusions
electrode

radial earthed
screen

earthed Screen

internal wall

zero for air, the permittivity of any material is no smaller than that of a vacuum
�0 D 8:85 � 10�12, although dry air approaches that value. One requires then

Assumption 4. !� in the exterior is negligible compared to j
Ci!�j in the interior.

For example, with a conductivity or 0:2 Sm�1, the magnitude of the exterior
admittivity reaches 2�12 of that value for a frequency of 0.88 MHz. For a more
detailed calculation the capacitance between the electrodes externally could be
compared with the impedance between electrodes. In ECT frequencies above 1 MHz
are used and the exterior capacitance cannot be neglected. Indeed an exterior
grounded shield is used so that the exterior capacitive coupling is not affected by
the surroundings (see Fig. 3).

The Concentric Anomaly: A Simple Example

A simple example helps us to understand the instability in the inverse conductivity
problem. Let  be the unit disk in R

2 with polar coordinates .r; �/ and consider a
concentric anomaly in the conductivity of radius � < 1

�.x/ D
�
a1; jxj � �
a0; � < jxj � 1:

(12)

From separation of variables, matching Dirichlet and Neumann boundary condi-
tions at jxj D �, for n 2 Z
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ƒ�ein� D jnj1C ��
2jnj

1 � ��2jnj ein� ; (13)

where � D .a1 � a0/=.a1 C a0/. From this one sees the effect of the Dirichlet
to Neumann map on the complex Fourier series, and the effect on the real Fourier
series is easily deduced. This example was considered in [64] as an example of the
eigenvalues and eigenfunctions of ƒ� , and also by [2] as an example of instability.
Thus jj� � a0jjL1./ D ja1 � a0j independently of � and yet ƒ� ! ƒa0 in the
operator norm. Hence if an inverse map ƒ� 7! � exists, it cannot be continuous
in this topology. Similar arguments can be used to show instability of inversion in
other norms.

This example reveals many other features of the more general problem. For
example experimentally one observes saturation: for an object placed away from
the boundary, changes in the conductivity of an object with a conductivity close
to the background are fairly easily detected, but for an object of very high or low
conductivity further changes in conductivity of that object have little effect. This
saturation effect was explored for offset circular objects (using conformal mappings)
by Seagar [98]. This is also an illustration of the nonlinearity of � ! ƒ� . One can
also see in this example that smaller objects (with the same conductivity) produce
smaller changes in measured data as one might expect.

On the unit circle S1 one can define an equivalent norm on the Sobolev space
Hs˘.S1/ (see definitions in the section “The Neumann-to-Dirichlet Map”) by

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

1X
nD�1;n¤0

cnmrein�

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
2

s

D
1X

nD�1;n¤0

n2sc2
n: (14)

It is clear for this example that ƒ� W Hs˘.S1/ ! Hs�1� .S1/, for any s. Roughly the
current is a derivative of potential and one degree of differentiability less smooth.
Technically ƒ� (for any positive � 2 C1./) is a first order pseudo-differential
operator [80]. The observation that for the example e�in�ƒ�ein� D jnj C o.n�p/
as jnj ! 1 for any p > �1 illustrates that the change in conductivity and
radius of the interior object is of somewhat secondary importance! In the language
of pseudodifferential operators for a general � such that � � 1 vanishes in a
neighborhood of the boundary,ƒ� andƒ1 differ by a smoothing operator.

Since (13), ƒ�1
� is also a well-defined operator on L2� ! L2� with eigenvalues

O.jnj�1/ and is therefore a Hilbert–Schmidt operator. This is also known for the
general case [36].

Early work on medical applications of EIT [58, 74] hoped that the forward
problem in EIT would be approximated by generalized ray transform – that is
integrals along current stream lines. The example of a concentric anomaly was
used to illustrate that EIT is nonlocal [99]. If one applies the voltage cos.� C ˛/,
which for a homogeneous disk would result in current streamlines that are straight
and parallel, a change in conductivity in a small radius � from the center changes
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all measured currents, not just on lines passing through the region of changed
conductivity jxj � �. In the 1980s a two-dimensional algorithm that backprojected
filtered data along equipotential lines was popularized by Barber and Brown [11].
Berenstein [17] later showed that the linearized EIT problem in a unit disc can
be interpreted as the Radon transform with respect to the Poincaré metric and a
convolution operator and that Barber and Brown’s algorithm is an approximate
inverse to this.

In process applications of EIT and related techniques the term soft field imaging
is used, which by analogy to soft field X-rays means a problem that is nonlinear
and nonlocal. However in the literature when the “soft field effect” is invoked, it is
often not clear if it is the nonlinear or nonlocal aspect to which they refer and, in the
authors’ opinion, the term is best avoided.

Measurements with Electrodes

A typical electrical imaging system uses a system of conducting electrodes attached
to the surface of the body under investigation. One can apply current or voltage
to these electrodes and measure voltage or current respectively. For one particular
measurement the voltages (with respect to some arbitrary reference) are V` and
the currents I`, which are arranged in vectors as V and I 2 C

L . The discrete
equivalent of the Dirichlet-to-Neumann ƒ� map is the transfer admittance, or
mutual admittance matrix Y which is defined by I D YV.

It is easy to see that the vector 1 D .1; 1; : : : ; 1/T is in the null space of Y,
and that the range of Y is orthogonal to the same vector. Let S be the subspace
of CL perpendicular to 1; then it can be shown that YjS is invertible from S to S .
The generalized inverse (see chapter �Linear Inverse Problems) Z D Y� is called
the transfer impedance. This follows from uniqueness of solution of shunt model
boundary value problem.

The transfer admittance, or equivalently transfer impedance, represents a com-
plete set of data which can be collected from the L electrodes at a single frequency
for a stationary linear medium. It can be seen from the weak formulation of (11) that
Y and Z are symmetric (but for ! ¤ 0 not Hermittian). In electrical engineering this
observation is called reciprocity. The dimension of the space of possible transfer
admittance matrices is clearly no bigger than L.L � 1/=2, and so it is unrealistic
to expect to recover more unknown parameters than this. In the analogous case
of planar resistor networks with L “boundary” electrodes the possible transfer
admittance matrices can be characterized completely [33], a characterization which
is known at least partly to hold in the planar continuum case [63]. A typical electrical
imaging system applies current or voltage patterns which form a basis of the space
S , and measures some subset of the resulting voltages which as they are only defined
up to an additive constant can be taken to be in S .

The shunt model is nonphysical; in medical application with electrodes applied to
skin and in “phantom” tanks used to test EIT systems with ionic solutions in contact
with metal electrodes, a contact impedance layer exists between the solution or skin

http://dx.doi.org/10.1007/978-1-4939-0790-8_1
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and the electrode. This modifies the shunting effect so that the voltage under the
electrode is no longer constant. The voltage on the electrode is still a constant V` so
now on E` there is a voltage drop across the contact impedance layer

� C z`

@�

@�
D V`; (15)

where the contact impedance z` could vary overE` but is usually assumed constant.
Experimental studies have shown [56] that a contact impedance on each electrode
is required for an accurate forward model. This new boundary condition together
with (3) and (4) form the Complete Electrode Model or CEM. For experimental
validation of this model see [30], theory [103], and numerical calculations [96,111].
A nonzero contact impedance removes the singularity in the current density,
although high current densities still occur at the edges of the electrodes (Fig. 4).
For further details on the singularity in the current density, see [32]. While “point
electrodes,” in which the current density is a sum of delta functions, are a limiting
case of the CEM, they are not physically realistic as they result in nonphysical
potentials not in H 1./. The trace on the boundary cannot be evaluated at a point,
so point measurements of voltage are undefined. However it can be shown that if
the conductivity is changed only in the compliment of a neighborhood of @ the
resulting voltage difference at the boundary can be evaluated at points [52].

The set of imposed current patterns, or excitation patterns, is designed to span
S , or at least that part of it that can be accurately measured in a given situation. In
medical EIT, with process ERT following suit, early systems designed at Sheffield
[11] assumed a two-dimensional circular domain. Identical electrodes were equally
spaced on the circumference and, taking them to be numbered anticlockwise, the
excitation patterns used were adjacent pairs, that is proportional to

I i` D
8<
:

1; i D `
�1; i D `C 1
0; otherwise ;

(16)

for i D 1; : : : L�1. The electronics behind this is balanced current source connected
between two electrodes [59, Chap. 2], and this is somewhat easier to achieve in
practice than a variable current source at more than two electrodes. For general
geometries, where the electrodes are not placed on a closed curve, other pairs of
electrodes are chosen. For example I i1 D �1, while I i` D ıi`; ` ¤ 1.

Measurements of voltage can only be differential and so voltage measurements
are taken between pairs of electrodes, for example adjacent pairs, or between each
and some fixed electrode. In pair drive systems, similar to the original Sheffield
system, voltages on electrodes with nonzero currents are not measured, resulting in
incomplete knowledge of Z.

In geophysical surface resistivity surveys it is common to use a pair drive and
pair measurement system, using electrodes in a line where a two-dimensional
approximation is used, or laid out in a rectangular or triangular grid where the
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Fig. 4 The current density on the boundary with the CEM is greatest at the edge of the electrodes,
even for passive electrodes. This effect is reduced as the contact impedance increases. Diagrams
courtesy of Andrea Borsic. (a) Current density on the boundary for passive and active electrodes. In
fact there is a jump discontinuity at the edge of electrodes for nonzeros contact impedance although
the plotting routine has joined the left and right limits. (b) The effect of contact impedance on the
potential beneath an electrode. The potential is continuous. (c) Interior current flux near an active
electrode. (d) Interior current flux near a passive electrode

full three-dimensional problem is solved. Measurements taken between pairs of
non-current carrying electrodes. The choice of measurement strategy is limited
by the physical work involved in laying out the cables and by the switching
systems. Often electrodes will be distributed along one line and a two-dimensional
approximate reconstruction is used as this gives adequate information for less
cost. A wider spacing of the current electrodes is used where the features of
interest is located at a greater depth below the ground. In another geophysical
configuration, cross borehole tomography, electrodes are deployed down several
vertical cylindrical holes in the ground, typically filled with water, and current
passed between electrodes in the same or between different bore holes. Surface
electrodes may be used together with those in the bore holes. In some systems the
current is measured to account for a non-ideal current source.

In capacitance tomography a basis of voltage patterns is applied and the choice
V i
` D ıi` is almost universal. The projection of these vectors to S (denoted as an

“electrode-wise basis”) is convenient computationally as a current pattern.
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Given a multiple drive system capable of driving an arbitrary vector of currents
in S (in practice with in some limits on the maximum absolute current and on
the maximum voltage) there remains a choice of excitation patterns. While exact
measurements of ZIi for Ii in any basis for S is clearly sufficient, the situation is
more complicated with measurements of finite precision in the presence of noise.
If a redundant set of currents is taken, the problem of estimating Z becomes
one of multivariate linear regression. The choice of current patterns is then a
design matrix. Another approach seeks the minimum set of current patterns that
results in usable measurements. Applying each current pattern and taking a set of
measurements take a finite time, during which the admittivity changes. Without
more sophisticated statistical methods (such as Kalman filters [112]), there are
diminishing returns in applying redundant current patterns. Suppose that the total
power V�ZI is constrained (to keep the patient electrically safe) and the current best
estimate of the admittivity gives a transfer admittance Zcalc, then it is reasonable to
apply currents I such that .Z�Zcalc/I is above the threshold of voltages that can be
accurately measured and modeled. One approach is to choose current patterns that
are the right generalized singular vectors of Z � Zcalc with singular values bigger
than an error threshold. The generalized singular values are with respect to the norm
jjIjjZ WD jjZIjj on S and are the extrema of the distinguishability defined as

jj.Z� Zcalc/Ijj
jjIjjZ ; (17)

for I 2 S . These excitation patterns are called “optimal current patterns” [45] and
can be calculated from an iterative procedure involving repeated measurement. For
circular disk with rotationally symmetric admittivity and equally spaced identical
electrodes, the singular vectors will be discrete samples of a Fourier basis and these
trigonometric patterns are a common choice for multiple drive systems using a
circular array of electrodes.

2 Uniqueness and Stability of the Solution

Uniqueness of solution is very important in inverse problems, although when talking
to engineers it is often better to speak of sufficiency of data to avoid confusion.
Interestingly it is generally true that results that show insufficiency of data, that one
cannot recover an unknown function even if an infinite number of measurements
of arbitrary precision are taken, have more impact in applied areas. While there
are still unsolved problems in the uniqueness theory for the EIT inverse problem,
there has been considerable progress over the last three decades and many important
questions have been answered. While for an isotropic real conductivity � (with
certain smoothness assumptions for dimensions n � 3), � is uniquely determined
by the complete data ƒ� (see [10, 24, 107]), an anisotropic conductivity tensor is
not uniquely determined by the boundary data, although some progress on what
can be determined in this case has been made (see [3, 6, 43, 79]). Aside from
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knowing what can and cannot be determined with ideal data, there are two important
ways the theoretical work has a practical impact. Firstly in some cases the proof
of uniqueness of solution suggests a reconstruction algorithm. As for the two-
dimensional case (below) the most effective approach (the so-called N@-method) to
uniqueness theory has now been implemented as a fast, practical algorithm. The
other is an understanding of the instability and conditional stability of the inverse
problem. This helps us to determine what a priori information is helpful in reducing
the sensitivity of the solution to errors in the data.

In 1980 Calderón published a paper with the title “On a inverse boundary
value problem” [26], where he addressed the problem of whether it is possible to
determine the conductivity of a body by making current and voltage measurements
at the boundary. It seems that Calderón thought of this problem when he was
working as an engineer in Argentina for the Yacimientos Petroliféros Fiscales
(YPF), but it was only decades later that he decided to publish his results. This
short paper is considered the first mathematical formulation of the problem. For a
reprinted version of this manuscript, refer to [27]. The authors wish to recall also
the work due to Druskin (see [38–40]) which has been carried on independently
from Calderón’s approach and has been devoted to the study of the problem from a
geophysical point of view.

The Isotropic Case

Calderón’s Paper
Calderón considered a domain  in R

n, n � 2, with Lipschitz boundary @. He
took � be a real bounded measurable function in with a positive lower bound. Let
Q� be the quadratic form (associated with ƒ� ) defined by

Q�.�/ D
˝
�;ƒ��

˛ D
Z


� jru j2 dx; (18)

where u 2 H 1./ solves the Dirichlet problem (2). Physically Q�.�/ is the
Ohmic power dissipated when the boundary voltage � is applied. The bilinear form
associated with Q� is then obtained by using the polarization identity

B�.�;  / D 1

2

�
Q�.� C  / �Q�.�/ �Q�. /



D 1

2

� Z


�
� jr.uC v/j2 � � jruj2 � � jrvj2	 dx



D
Z


�ru � rv dx; (19)
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where L�v D 0 in  and vj@ D  2 H 1
2 .@/: Clearly a complete knowledge of

any of ƒ� , Q� and B� are equivalent. Calderón considered the “forward” map

Q W � �! Q�

and proved that Q is bounded and analytic in the subset of L1./ consisting of
functions � which are real and have a positive lower bound. He then investigated
the injectivity of the map and in order to do so, he linearized the problem. He in
fact proved the injectivity of the Fréchet derivative of Q at � D 1. Here, a few
details of the linearization for a general � are given. Let u be the solution to (2) and
U D u C w satisfy L�CıU D 0, with U j@ D �. The perturbation in potential
satisfies wj@ D 0, by considering the Dirichlet data fixed and investigating how the
Neumann data varies when � is perturbed to � C ı. This yields

LıuC L�wC Lıw D 0: (20)

Now let G W H�1./ ! H 1
0 ./ be the Green’s operator that solves the

equivalent of Poisson’s equation for L� with zero Dirichlet boundary conditions.
That is for g 2 H�1./, L�Gg D g and G.g/j@ D 0, the operator equation is
given

.1CGLı/w D �GLıu: (21)

An advantage of using the L1 norm is that it is clear jjLıjj ! 0 in the H 1./ !
H�1./ operator norm as jjıjj1 ! 0. This means one can choose ı small enough
that jjGLıjj < 1 (in the operator norm on H 1./) and this ensures that the term in
the bracket in (21) is invertible and the operator series in

w D �
 1X
kD1

.�GLı/k
!

u (22)

is convergent. This proves that the map � 7! u and hence Q is not just C1 but
analytic with (22) its Taylor series. Thus, the linearization of the map � 7! ƒ� is

ƒ�Cı� D ƒ�� C � @
@�
GLıuC ı @u

@�
CO.jjıjj21/: (23)

A strength of this argument is that it gives the Fréchet derivative in these norms,
rather than just the Gateaux derivative. It is easy to deduce that the Fréchet derivative
of Q at � in the direction ı is given by

dQ.�/ı.�/ D
Z


ıjruj2 dx: (24)
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In many practical situations it is more common to fix the Neumann boundary
conditions and measure the change in boundary voltage as the conductivity changes.
Suppose L�u D 0; L�CıU D 0, w D U � u with

�@u=@� D .� C ı/@U=@� D g 2 H�1=2� .@/

then a similar argument to the above shows

Z
@

w�
@u

@�
dx D �

Z


ıjruj2 dx CO.jjıjj21/: (25)

The polarization identity is often applied to (25) giving

Z
@

w�
@v

@�
dx D �

Z


ıru � rv dx CO.jjıjj21/; (26)

where L�v D 0. This is often used in practice with

�
@v

@�
D 	Ei =jEi j � 	Ej =jEj j; (27)

which represents the difference in the characteristic functions of a pair of electrodes.
In the case of the shunt model this makes the left-hand side of (25) equal to change
that occurs in the difference between voltages on that pair of electrodes when the
conductivity is perturbed. The formula (25) and its relatives are referred to as the
Geselowitz Sensitivity Theorem in the bioengineering literature. With the CEM (25)
still holds, but with u and v satisfying (15) [97].

Returning to Calderón’s argument: for � D 1 one has L1u D r2u. To prove the
injectivity of dQ.1/ one must show that if the integral appearing in (24) vanishes
for all the harmonic functions in , then ı D 0 in . Suppose the integral in (24)
vanishes for all u 2 H 1./ such that r2u D 0 in , then

Z


ıru � rv D 0; (28)

whenever r2u D r2v D 0 in . For any z 2 R
n consider a 2 R

n such that
jaj D jzj, a � z D 0 and consider the harmonic functions

u.x/ D e�i.z �x/C�.a �x/;
v.x/ D e�i.z �x/��.a �x/; (29)

which is equivalent to choosing

u.x/ D ex � �; v.x/ D e�x � N�;
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where � 2 C
n with

� � � D 0:

Here the real dot product on complex vectors is used � � � WD �T �. With the choice
made in (29), (28) leads to

2�jzj2
Z
ı.x/e2�i.z �x/ dx D 0; for each z;

therefore ı.x/ D 0, for all x 2 . Calderón also observed that if the linear
operator dQ.1/ had a closed range, then one could have concluded thatQ itself was
injective in a sufficiently small neighborhood of �=constant. However conditions on
the range of dQ.1/, that would allow us to use the implicit function theorem, are
either false or not known. Furthermore if the range was closed, one could have also
concluded that the inverse of dQ.1/ was a bounded linear operator by the open
mapping theorem. Calderón concluded the paper by giving an approximation for
the conductivity � if

� D 1C ı

and ı is small enough in the L1 norm, by making use of the same harmonic
functions (29). Calderón’s technique is based on the construction of low frequency
oscillating solutions. Sylvester and Uhlmann proved in their fundamental paper
[107] a result of uniqueness using high frequencies oscillating solutions ofL�u D 0.
Their solutions are of type

u.x; �; t/ D ex � � �� 1
2 .1C  .x; �; t//;

which behaves (for high frequencies �) in the same way as the solutions used
by Calderón. These oscillating solutions have come to be known as complex
geometrical optics (CGO) solutions. Before going into more details of the use of
CGO solutions, an earlier result using a different approach is given.

Uniqueness at the Boundary
In 1984 Kohn and Vogelius [75] proved that boundary values, and derivatives at
the boundary, of a smooth isotropic conductivity � could be determined from the
knowledge of Q� . Their result is given by the following theorem.

Theorem 1. Let  be a domain in R
n (n � 2) with smooth boundary @. Suppose

�i 2 C1. N/, i D 1; 2 is strictly positive and that there is a neighborhood B of
some x? 2 @ so that

Q�1.f / D Q�2.f /; for all f; f 2 H 1
2 .@/; supp.f / � B:
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Then

@j˛j

@x˛
�1.x

?/ D @j˛j

@x˛
�2.x

?/; 8˛:

Theorem 1 is a local result in the sense that one only need to knowQ� in a open
set of the boundary in order to determine the Taylor series of � on that open set. The
global reformulation of this result given in terms of ƒ� is given below.

Theorem 2. Let �i 2 C1. N/, i D 1; 2 be strictly positive. If ƒ1 D ƒ2, then

@j˛j

@x˛
�1 D @j˛j

@x˛
�2; on @; 8˛:

For a sketch of the proof of Theorem 2 see [110, Sketch of proof of Theorem 4.1,
pp 6]. This result settled the identifiability question in the real-analytic category
of conductivities. Kohn and Vogelius have extended this result to piecewise real-
analytic (e.g., piecewise constant) conductivities in [76]. The proof of this result
is based on [75] together with the Runge approximation theorem for solutions of
L�u D 0.

CGO Solutions for the Schrödinger Equation
In 1987 Sylvester and Uhlmann [106, 107] constructed in dimension n � 2 CGO
solutions in the whole space for the Schrödinger equation with potential q. Before
giving their result, the well-known relation between the conductivity equation and
the Schrödinger equation will be derived. This relationship is also important in
diffuse optical tomography (see chapter �Optical Imaging).

Lemma 1. Let � 2 C 2. N/ be strictly positive, yielding

�� 1
2L�.�

� 1
2 / D r2 � q; (30)

where

q D r
2.�

1
2 /

�
1
2

:

Proof of Lemma 1.

L�u D �r2uCr� � ru (31)

therefore

�� 1
2L�u D � 1

2r2uC r � � ru

�
1
2

:

http://dx.doi.org/10.1007/978-1-4939-0790-8_21
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Consider for w D � 1
2 u

r2w � q w D r2
�
�

1
2 u
�
�
�
r2�

1
2

�
u

D r �
�
r.� 1

2 u/
�
�
�
r2�

1
2

�
u

D r �
�
.r� 1

2 u/C � 1
2 .ru/

�
�
�
r2�

1
2

�
u

D .r2�
1
2 /uC 2r� 1

2 � ruC � 1
2r2u � .r2�

1
2 /u

D � 1
2r2uC r� � ru

�
1
2

D �� 1
2L�u;

which proves (30). ut

The term q is usually called the potential of the Schrödinger equation, by analogy
with the potential energy in quantum mechanics, this definition being somehow
confusing given that in EIT u is the electric potential. The results in [106, 107]
state the existence of CGO solutions for the Schrödinger equation with potential
q bounded and compactly supported in R

n. This result is as given in [110], which
relies on the weightedL2 spaceL2

ı .R
n/ D ff W R

Rn

.1Cjxj2/ıjf .x/j2 dxg. For ı < 0

this norm controls the “growth at infinity.” The Sobolev spaces Hk
ı .R

n/ are formed
in the standard way from L2

ı.R
n/

Hk
ı .R

n/ D ff 2 W k.Rn/ jD˛f 2 L2
ı .R

n/; for all j˛j � kg;

where ˛ is a multi-index, D˛f denotes the ˛th weak derivative of f and W k.Rn/

is the set of k times weakly differentiable functions on R
n.

Theorem 3. Let q 2 L1.Rn/, n � 2, with q.x/ D 0 for jxj � R > 0 and
�1 < ı < 0. Then there exists �.ı/ and such that for every � 2 C

n satisfying

� � � D 0

and

jj.1C jxj2/1=2qjjL1.Rn/ C 1

j�j � �

there exists a unique solution to

.r2 � q/u D 0 (32)
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of the form

u.x; �/ D ex � � �1C  q.x; �/	 ; (33)

with  q. � ; �/ 2 L2
ı.R

n/. Moreover  q. � ; �/ 2 H 2
ı .R

n/ and for 0 � s � 2 there
exists C D C.n; s; ı/ > 0 such that

jj q. � ; �/jjH 2 � C

j�j1�s : (34)

Sketch of the proof of Theorem 3. Let u be a solution of (32) of type (33), then  q
must satisfy

.r2 C 2� � r � q/ q D q: (35)

The idea is that Eq. (35) can be solved for  q by constructing an inverse for
.r2 C 2� � r/ and solving the integral equation

 q D .r2 C 2� � r/�1 �q.1C  q/	 (36)

for  q . For more details about how to solve the above equation, refer to [110,
Lemma 5.2] where it is shown that the integral equation (36) can only be solved
in L2

ı .R
n/ for large j�j. ut

Other approaches for the construction of CGO solutions for the Schrödinger
equation have been considered in [36, 49]. The reader may refer to [110] for more
details about references on this topic and a more in-depth explanation about the
constructions of this kind of solutions.

Dirichlet-to-NeumannMap and Cauchy Data for the Schrödinger
Equation
If 0 is not a Dirichlet eigenvalue for the Schrödinger equation, then the Dirichlet-to-
Neumann map associated with a potential q can be defined by

Qƒq.f / D @u

@�
j@;

where u solves the Dirichlet problem

�
.r2 � q/u D 0 in
uj@ D f:

As a consequence of Lemma 1, for any q D r2�1=2

�1=2 ,
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Qƒq.f / D @

@�
.�

1
2 �� 1

2 u/j@

D
 
@�

1
2

@�
.�� 1

2 u/C � 1
2
@.�� 1

2 u/

@�

!
j@

D
 

1

2
�� 1

2
@�

@�
�� 1

2 C � 1
2
@.�� 1

2 u/

@�

!
j@

D 1

2

�
��1 @�

@�

�
j@ f C � 1

2 j@ ƒ�

�
�� 1

2 j@ f
	
:

So the two Dirichlet-to-Neumann maps Qƒq andƒ� are related in the following way

Qƒq.f / D 1

2

�
��1 @�

@�

�
j@ f C � 1

2 j@ ƒ�

�
�� 1

2 j@ f
	
; (37)

for any f 2 H 1
2 .@/. For q 2 L1.@/, the Cauchy data are defined as the set

Cq D
��

uj@; @u

@�
j@
�
j u 2 H 1./; .r2 � q/u D 0 in 


:

If 0 is not an eigenvalue of r2 � q, then Cq is the graph given by

Cq D
n�
f; Qƒq.f /

	 2 H 1
2 .@/ �H� 1

2 .@/
o
:

The result so far is very general and holds in any dimension n � 2. In the rest
of the discussion on the uniqueness of Calderón’s problem, a distinction is made
between the higher dimensional case n � 3 and the two-dimensional one.

Global Uniqueness for n � 3
Sylvester and Uhlmann proved in [107] a result of global uniqueness for C 2. N/
conductivities by solving in this way the identifiability question with the following
result. Their result follows in dimension n � 3 from a more general one for the
Schrödinger equation, which is useful in its own right for other inverse problems.

Theorem 4. Let qi 2 L1./, i=1, 2. Assume Cq1 D Cq2 , then q1 D q2.

Proof of Theorem 4. This result has been proved by constructing oscillatory solu-
tions of .r2�qi /ui D 0 in R

n with high frequencies. Beginning with the following
equality

Z


.q1 � q2/u1u2 D 0 (38)
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is true for any ui 2 H 1./ solution to

.r2 � qi /ui D 0 in ; i D 1; 2:

Equality (38) follows by

Z


.q1 � q2/u1u2 D
Z
@

�
@u1

@�
u2 � u1

@u2

@�

�
dS;

which can be easily obtained by the divergence theorem. This extends qi on the
whole Rn by taking qi D 0 on R

n n and taking solutions of

.r2 � qi /ui D 0 in R
n; i D 1; 2

of the form

ui D ex � �i �1C  qi .x; �i /	 ; i D 1; 2; (39)

with j�i j large. This type of solutions are known as CGO solutions. �i , i D 1; 2 is
chosen of type

�1 D �

2
C i

�
k C l

2

�

�2 D ��
2
C i

�
k � l

2

�
; (40)

with �, k, l 2 R
n and satisfying

� � k D k � k D � � l D 0; j�j2 D jkj2 C jl j2; (41)

the choices of �, k, l having been made so that �i � �i D 0, i D 1; 2. With these
choices of �i , i D 1; 2,

u1u2 D
�

ex �
�
2 Cix �� kCl

2

�
C ex �

�
2 Cix �� kCl

2

�
 q1

�

�
h
e�x � �2 Cix � . k�l

2 / C e�x � �2 Cix � . k�l
2 / q2

i

D eix � k �1C  q1 C  q2 C  q1 q2

	

and therefore

3.q1 � q2/.�k/ D �
Z


eix � k.q1 � q2/. q1 C  q2 C  q1 q2/dx: (42)
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By recalling that

jj qi jjL2./ �
C

j�i j

and letting jl j ! 1 one obtains q1 D q2 (see [110, proof of Theorem 6.2, pp 10]).
ut

As a consequence of this result, the result [107] stated below is finally obtained.

Theorem 5. Let �i 2 C 2. N/, �i strictly positive, i=1, 2. If ƒ�1 D ƒ�2 , then �1 D
�2 in N.

Theorem 5 has been proved in [107] in a straightforward manner by constructing
highly oscillatory solutions to L�u D 0 in . In this chapter, the line of [110]
is followed in the exposition of such result as a consequence of the more general
Theorem 4. Such a choice has been made because of the clearer exposition made in
[110].

One can proceed by showing that Theorem 4 implies Theorem 5 for the sake
of completeness. The reader can find it also in [110]. The argument used is the
following. Let �i 2 C 2. N/ be strictly positive andƒ�1 D ƒ�2 . Then by [75],

�1j@ D �2j@;
@�1

@�
j@ D @�2

@�
j@;

therefore (37) implies Cq1 D Cq2 i.e., q1 D q2 DW q because of Theorem 4. Recall
that

qi D r
2�

1=2
i

�
1=2
i

; i D 1; 2;

which leads to

r2�
1
2

1 � q �
1
2

1 D 0

r2�
1
2

2 � q �
1
2

2 D 0

i.e.,

r2
�
�

1
2

1 � �
1
2

2

�
� q

�
�

1
2

1 � �
1
2

2

�
D 0
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with �
�

1
2

1 � �
1
2

2

�
j@ D 0:

Therefore it must be that

�1 D �2 in ;

by uniqueness of the solution of the Cauchy problem.
The identifiability question was then pushed forward to the case of � 2 C 1; 1. N/

with an affirmative answer by Nachman et al. in 1988 [90]. Nachman extended
then this result to domains with C 1; 1 boundaries (see [88]). The condition on the
boundary was relaxed to @ Lipschitz by Alessandrini in 1990 in [3]; he proved
uniqueness at the boundary and gave stability estimates for � 2 W 1; p./, with
p > n by making use of singular solutions with an isolated singularity at the
center of a ball. This method enables one to construct solutions of L�u D 0 on
a ball behaving asymptotically like the singular solutions of the Laplace–Beltrami
equation with separated variables. His results hold in dimension n � 2. Results of
global uniqueness in the interior were also found in [3] among piecewise analytic
perturbations of � , giving an extension of Kohn and Vogelius result in [76] to
Lipschitz domains.

Going back to the issue of global uniqueness, Brown [22] relaxed the regularity
of the conductivity to 3

2 C " derivatives, which was followed by the uniqueness

result of Päivärinta et al. [95] for W
3
2 ;1 conductivities. Their result is based on the

construction of CGO solutions for conductivities � 2 W 1;1.Rn/ (n � 2). Recalling
in what follows, their construction of the CGO followed by their uniqueness result.

Theorem 6 ([95]). Let � 2 W 1;1.R�/, � strictly positive and � D 1 outside a
large ball. Let �1 < ı < 0, then for j�j sufficiently large there is a unique solution
of

div.�ru/ D 0 in R
�

of the form

u D ex � �
�
�� 1

2 C  �.x; �/
�
; (43)

with  � 2 L2
ı.R

n/. Moreover,  � has the form

 �.x; �/ D
�
!0.x; �/ � �� 1

2

�
C !1.x; �/; (44)

where !0, !1 satisfy

lim
j�j!1

jj!0.x; �/ � �� 1
2 jjH 1

ı
D 0 (45)
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and

lim
j�j!1

jj!1.x; �/jjL2
ı
D 0: (46)

Here, the idea behind the proof of the above Theorem 6 is recalled. The first step
is to rewrite the conductivity equation

div.�ru/ D 0 in R
n

as

�uC A � ru D 0 in R
n;

where

ACr log� 2 L1.Rn/

has compact support. By introducing

ˆ" D "�n �x
"

�
;

with ˆ.x/ a mollifier, one can define

'" D ˆ" � log �

A" D ˆ" � A
!0.x; "/ D e� '".x/

2

and with the above choice of !0 one can show that

lim
"!0
jj !0 � �� 1

2 jjH 1
ı
D 0: (47)

Let � 2 C
n be such that � � � D 0 and define the operators

��u WD e�x � ��.ex � �u/ D �uC 2� � ru (48)

r�u WD e�x � �r.ex � �u/ D ruC �u: (49)

One can then define for any f 2 C1
0 .Rn/

��1
� f D

1

.2�/n

Z
e
ix � � Of .�/

�j�j2C2i� � � d �;
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which can then be extended to a bounded operator

��1
� W Hs

ıC1.R
n/! Hs

ı .R
n/;

for any �1 < ı < 0 and s � 0. Moreover

jj��1
� jjHs

ıC1!Hs
ı
� C.s; ı; n/

j�j ;

for some C > 0. The idea is now to construct !1 solution to

.�� C A � r�/!1 D �.�� CA � r�/!0; (50)

recalling that !0.x; "/ D e� '".x/
2 and therefore depends on ". If one sets now

!1 D ��1
� Q!;

one can then rewrite (50) as

.I C A � r���1
� /„ ƒ‚ …

WDT�.�/

Q! D f"; (51)

where

f" WD �.�� C A � r�/!0

D �e� '"
2

�
�1

2
�'" C 1

4
.r'"/2 � 1

2
A � r'" C .A� A"/ � �

�
:

An approximate inverse of T�.�/ is given by

S�.�/ WD �� 1
2 .I �A � r�ı�1

� /�
1
2

D �� 1
2T�.�

�1/�
1
2 ;

therefore (51) has a unique solution in an appropriate space. To study now the
behavior of !1 as "! 0 and j�j ! 1, recall that

!1.x; "; �/ D ��1
� S�f" C��1

� .T
�1
� � S�/f"„ ƒ‚ …
WDh�

(52)

and now one can show that

lim
j�j!1

jjh�jjH 1
ı .R

n/ D 0; (53)
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which concludes the proof. Theorem 43 is then used in [95] to prove global
uniqueness for conductivities � 2 W

3
2 ;1./, where  is a bounded domain in

R
n, with n � 3. More precisely they prove the following theorem.

Theorem 7. Let n � 3. Let �i 2 W 3
2 ;1./ be strictly positive on N, i D 1; 2. If

ƒ�1 D ƒ�2 ;

then

�1 D �2 on :

Again, the idea is to give to the reader a flavor of how Theorem 7 is proven in
[95]. The main idea is that if �i 2 W 1;1./ and ƒ�1 D ƒ�2 , with ai D p�i ,
i D 1; 2, then the identity

Z


.ra1 � r.u1v/� ra2 � r.u2v// �
Z


.r.a1u1/ � rv � r.a2u2/ � rv/ dx D 0;

(54)
holds true 8v 2 H 1./, 8ui 2 H 1./ solution to div.�irui / D 0 in  D 1; 2.
The reader should notice that so far the results obtained hold true for conductivities
of type � 2 W 1;1./. It is at this stage that one needs to assume

� 2 W 3
2 ;1.Rn/

to show the following technical results for !1.x; �/ D !1.x; "; �/ as in (52),
" D j�j�1

lim
j�j!1

Z
eix � �r� 1

2 � r!1 dx D 0: (55)

With this choice of !1, by substituting the CGO solutions (44) into identity (54),
one then can gain the desired uniqueness result.

The above result was then followed by uniqueness for W
3
2 ;p (with p > 2n)

in [23]. Recently Haberman and Tataru [48] proved that uniqueness holds for C 1

conductivities and Lipschitz conductivities close to the identity. Their result is the
following.

Theorem 8. Let n � 3 and � R
n be a bounded domain with Lipschitz boundary.

Let �i 2 W 1;1. N/ be a real conductivity, i D 1; 2. Suppose there exists a constant
C D C.n;/ such that �i , i D 1; 2 satisfies either

jjr log �i jjL1. N/ � C (56)
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or

�i 2 C 1. N/: (57)

If

ƒ�1 D ƒ�2 ;

then

�1 D �2:

Global Uniqueness in the Two-Dimensional Case
The two-dimensional inverse conductivity problem must often be treated as a special
case. Although results in [76] gave a positive answer to the identifiability question
in the case of piecewise analytic conductivities, it was not until 1996 that Nachman
[89] proved a global uniqueness result to Calderón problem for conductivities in
W 2; p./, for some p > 1. An essential part of his argument is based on the
construction of the CGO solutions and the N@-method (sometimes written “d-bar
method”) in inverse scattering introduced in one dimension by Beals and Coifman
(see [14,15]). The result of [89] has been improved in 1997 for conductivities having
one derivative in an appropriate sense (see [24]) and the question of uniqueness
was settled in L1./ finally by Astala and Päivärinta [10] using N@-methods. They
proved

Theorem 9. Let  be a bounded domain in R
2 and �i 2 L1, i D 1; 2 be real

functions such that for some constantM ,M�1 < �i < M . Then

ƒ�1 D ƒ�2 H) �1 D �2:

Let us first explain the complex version of the problem used by [10]. Using the
complex variable z D x1 C ix2, and the notation @ D @=@z; N@ D @=@Nz. Then the
following result is available [10]:

Lemma 2. Let  be the unit disk in the plane and u 2 H 1./ be a solution of
L�u D 0. Then there exists a real function v 2 H 1./, unique up to a constant,
such that f D uC iv satisfies the Beltrami equation

N@f D �@f ; (58)

where � D .1 � �/=.1C �/.
Conversely if f 2 H 1./ satisfies (58), with a real valued �, then u D Re f

and v D Im f satisfy

L�u D 0 and L��1 v D 0; (59)

where � D .1 � �/=.1C �/.
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Astala and Päivärinta reduce the general case of to that of the disk, and show that
the generalized Hilbert transform H� W uj@ 7! vj@ uniquely determines, and is
determined by ƒ� . They go on to construct CGO solutions to (58) of the form

f�.z; k/ D eikz

�
1CO

�
1

z

��
as jzj ! 1 (60)

and using a result connecting pseudoanalytic functions with quasi-regular maps
prove that H� determines �. The original method Nachman used to prove unique-
ness has resulted in the development of N@ reconstruction methods which are
described below (section “Direct Nonlinear Solution”). See also the work of Druskin
[38], which provides some answers to the 2-D geophysical settings.

Some Open Problems for the Uniqueness
One of the main open problems in dimension n � 3 is to investigate whether
global uniqueness holds for the minimal assumption � 2 L1./ or else to find
what are the minimal assumptions on � in order to guarantee uniqueness. The
inverse conductivity problem makes sense for conductivities that are indeed merely
L1. There are neither proofs nor counter-examples for this in any dimension, to
the authors’ knowledge, but it has been conjectured by Uhlmann that the optimal
assumption is that the conductivities are Lipschitz. These open problems influence
of course also the stability issue of finding appropriate assumptions (possibly on � )
in order to improve the unstable nature of EIT. This issue will be studied in the next
section.

Stability of the Solution at the Boundary
The result of uniqueness at the boundary of Theorem 2 has been improved in [108]
to a stability estimate. The result is the following.

Theorem 10. Let �i 2 C1. N/, i D 1; 2, satisfy

0 <
1

E
� �i � E; i D 1; 2 (61)

jj�i jjC 2. N/ � E; i D 1; 2: (62)

Given any 0 < 
 < 1
nC1 , there exists C D C.;E; n; 
/ such that

jj�1 � �2jjL1.@/ � C jjƒ�1 �ƒ�2 jj� (63)

and
ˇ̌
ˇ̌
ˇ̌
ˇ̌@�1

@�
� @�2

@�

ˇ̌
ˇ̌
ˇ̌
ˇ̌
L1.@/

� C jjƒ�1 �ƒ�2 jj
�; (64)
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where jj � jj� denotes the norm in the space of bounded linear operators from
H

1
2 .@/ to H� 1

2 .@/.

This result improves the one of Theorem 2 in the sense that it is no longer
necessary to require � 2 C1. N/ to determine � itself and its derivative at the
boundary. It is only needed that � be continuous on N to determine the boundary
values of � , where if � 2 C 1. N/ then one can determine � and its first derivative
on @ as well. Subsequent results of stability at the boundary along the same lines
have been proved in [3, 7, 22, 43, 88, 91].

Global Stability for n � 3
In 1988 Alessandrini [2] proved that, in dimension n � 3, under an a priori
assumption on � of type

jj� jjHs./ � E; for some s >
n

2
C 2;

� depends continuously on ƒ� with a modulus of continuity of logarithmic type.
The result is stated below.

Theorem 11. Let n � 3. Suppose that s > n
2 and that �i 2 C1. N/, i D 1; 2 is a

conductivity satisfying

0 <
1

E
� �i � E; i D 1; 2 (65)

jj�i jjHsC2./ � E; i D 1; 2: (66)

Then there exists C D C.;E; n; s/ and � D �.n; s/, with 0 < � < 1 such that

jj�1 � �2jjL1./ � C
�j log jjƒ�1 �ƒ�2 jj�j�� C jjƒ�1 �ƒ�2 jj�

	
: (67)

It has been proved [3, 4] that a similar stability estimate holds if (66) is replaced
by

jj�i jjW 2;1./ � E; i D 1; 2: (68)

Mandache [86] proved that logarithmic stability is optimal for dimension n � 2
if the a priori assumption is of the form

jj� jjCk. N/ � E; (69)

for any finite k D 0; 1; 2; : : : . One of the main open problems in the stability issue
is then to improve this logarithmic-type stability estimate under some additional a
priori condition. In [8] it has been shown that (67) can be improved to a Lipschitz-
type estimate in the case in which � is piecewise constant with jumps on a finite



Electrical Impedance Tomography 731

number of domains. For piecewise constant complex conductivities a similar result
has been proved in [16], where piecewise constant potentials of the Schrödinger
equation have been investigated in [18] and Lipschitz stability estimates have been
proved in this case as well. For more in-depth discussion about the stability in EIT
and open problems in that regard refer to [5]. A similar estimate to (67) for the
potential case can be found in [110].

Global Stability for the Two-Dimensional Case
Logarithmic-type stability estimates in dimension n D 2 were obtained by [12, 13,
82]. The results obtained in [82] last require only � be Hölder continuous of positive
exponent

jj� jjC˛. N/ � E; (70)

for some ˛; 0 < ˛ � 1.

Some Open Problems for the Stability
The main open problem is to improve the logarithmic-type estimate found in [2] in
any dimension n � 2. One approach would be to investigate whether the a priori
regularity assumptions (68) can be further relaxed. On the other hand, since it has
been observed [86] that this logarithmic type of estimate cannot be avoided under
any a priori assumption of type (69) for any finite k D 0; 1; 2; : : : , it seems natural
to think that another direction to proceed would be the one of looking for different a
priori assumptions rather than the one of type (69). For a complete analysis of open
problems in this area, refer to [5].

The Anisotropic Case

The Non-uniqueness
In anisotropic media the conductivity depends on the direction, therefore it is
represented by a matrix � D .�ij /

n
i; jD1, which is symmetric and positive definite.

Anisotropic conductivity appears in nature, for example as a homogenization limit
in layered or fibrous structures such as rock stratum or muscle, as a result of
crystalline structure or of deformation of an isotropic material. Let  � R

n be a
domain with smooth boundary @ (a Lipschitz boundary will be enough in most
cases). The Dirichlet problem associated in the anisotropic case takes the form

8<
:

nP
i;jD1

@
@xi
.�ij

@u
@xj
/ D 0 in 

uj@ D f;
(71)

where f 2 H 1
2 .@/ is a prescribed potential at the boundary. The Dirichlet-to-

Neumann map associated with � is defined by
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ƒ�f D �ru � �j@; (72)

for any u solution to (71). Here �ru � � DPn
i;jD1

�
�ij

@u
@xj

	
�i j@ and as usual � D

.�i /
n
iD1 is the unit outer normal to @. The weak formulation of (72) is commonly

used and will be given below for the sake of completeness.

Definition 1. The Dirichlet-to-Neumann map associated with (71) is

ƒ� W H 1
2 .@/ �! H� 1

2 .@/

given by

hƒ� f; �i D
Z



.x/ru.x/ � r�.x/ dx; (73)

for any f , � 2 H 1
2 .@/, u; � 2 H 1./, �j@ D � and u is the weak solution

to (71).

A conductor is isotropic when � D .�ij / is rotation invariant, i.e., when at each
point

RT �R D �;

for all rotations R. This is the case exactly when � D ˛ I , where ˛ > 0 is a scalar
function and I the identity matrix.

In the section “The Isotropic Case,” the uniqueness problem for the isotropic case
was considered solved; on the other hand, in the anisotropic case, ƒ� does not in
general determine � . Tartar (see [75]) observed the following non-uniqueness result.

Proposition 1. If  W N �! N is a C 1 diffeomorphism such that  .x/ D x,

for each x 2 @, then � and Q� D .D /�.D�/T

det.D / ı  �1 have the same Dirichlet-to-
Neumann map.

The proof of this result is given below as a tutorial for the first-time reader of this
material.

Proof. Let us consider the change of variables y D  .x/ on the Dirichlet integral

Z


�ij .x/
@u

@xi
@u

@xj
dx D

Z


Q�ij .y/ @Qu
@yi

@Qu
@yj

dx (74)

where
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Q�.y/ D .D / �.D /T

det.D /
ı �1.y/

and

Qu.y/ D u ı  �1.y/:

Notice that the solution u of the Dirichlet problem

� r � �ru D 0 in 

uj@ D f

minimizes the integral appearing on the left-hand side of (74), therefore Qu D uı �1

minimizes the Dirichlet integral appearing on the right-hand side of the same. One
can then conclude that Qu solves

� r � . Q�rQu/ D 0 in 

Quj@ D Qf D u ı  �1:

Let us consider now the solution v of

� r � .�rv/ D 0 in 

vj@ D g

and let Qv be obtained by v by the change of variable, therefore Qv solves

� r � . Q�rQv/ D 0 in 

Qvj@ D Qg D g ı  �1:

By the change of variables in the Dirichlet integrals,

Z


�ij
@u

@xi
@v

@xj
dx D

Z


Q�ij @Qu
@yi

@Qv
@yj

dy;

which can be written as
Z


�ru � rv dx D
Z


Q�rQu � rQv dy;

which is equivalent to

Z


r � .v�ru/ dx �
Z


vr � .�ru/ dx D
Z


r � .Qv Q�rQu/ dy �
Z


Qvr � . Q�rQu/ dy

and by the divergence theorem
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Z
@

v�ru � � ds D
Z
@

Qv Q�rQu � � ds;

but Qv D v ı  �1 D v D g and Qu D u ı  �1 D u D f at the boundary @, then

Z
@

gƒ�.f / ds D
Z
@

gƒQ� .f / ds

then ƒ� D ƒQ� . ut

Since Tartar’s observation has been made, different lines of research have been
pursued. One direction was to prove the uniqueness of � up to diffeomorphisms that
fix the boundary, whereas the other direction was to study conductivities with some
a priori information. The first direction of research is summarized in what follows.

Uniqueness up to Diffeomorphism
The question here is to investigate whether Tartar’s observation is the only obstruc-
tion to unique identifiability of the conductivity. A first observation is that the
physical problem of determining the conductivity of a body is closely related to
the geometrical problem of determining a Riemannian metric from its Dirichlet-to-
Neumann map for harmonics functions [80].

Let .M; g/ be a compact Riemannian manifold with boundary. The Laplace–
Beltrami operator associated with the metric g is given in local coordinates by

�g WD
nX

i j D 1

.detg/�
1
2
@

@xi

(
.detg/

1
2 gij

@u

@xj

)
:

The Dirichlet-to-Neumann map associated with g is the operator ƒg mapping
functions uj@M 2 H 1=2.@M/ into .n � 1/-formsƒ
.uj@M / 2 H�1=2

�
n�1.@M/

	

ƒg.f / D i?.�gdu/; (75)

for any u 2 H 1.M/ solution to �gu D 0 in M , with uj@M D f . Here i is the
inclusion map i W @M ! M and i? denotes the pull-back of forms under the map
i . In any local coordinates (75) becomes

ƒg.f / D
nX

i;jD1

�igij
@u

@xj

p
detgj@M : (76)

The inverse problem is to recover g from ƒg . In dimension n � 3, the
conductivity � uniquely determines a Riemannian metric g such that

� D �g; (77)
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where �g is the Hodge operator associated the metric g mapping 1-forms onM into
.n � 1/-forms (see [42, 80, 81]). In any local coordinates (77) becomes

.gij / D .det �kl /
1

n�2 .�ij / and .�ij / D .detgkl /
1
2 .gij /; (78)

where .gij /, .� ij / denotes the matrix inverse of .gij / and .�ij / respectively. It has
been shown in [80] that if M is a domain in R

n, then for n � 3

ƒg D ƒ�: (79)

In dimension n � 3 if  is a diffeomorphism of NM that fixes the boundary,

ƒ �g D ƒg; (80)

where  �g is the pull-back of g under  . For the case n D 2 the situation is
different as the two-dimensional conductivity determines a conformal structure of
metrics under scalar field, i.e., there exists a metric g such that � D '�g, for a
positive function '. Therefore in n D 2, if  is a diffeomorphism of NM that fixes
the boundary,

ƒ' �g D ƒg; (81)

for any smooth positive function such that 'j@M D 1. It seems natural to think
that (80) and (81) are the only obstructions to uniqueness for n � 3 and n D
2 respectively. In 1989 Lee and Uhlmann [80] formulated the following two
conjectures.

Conjecture 1. Let NM be a smooth, compact n-manifold, with boundary, n � 3 and
let g, Qg be smooth Riemannian metrics on NM such that

ƒg D ƒQg:

Then there exists a diffeomorphism  W NM ! NM with  j@M D Id , such that
g D  ? Qg.

Conjecture 2. Let NM be a smooth, compact 2-manifold with boundary, and let g, Qg
be smooth Riemannian metrics on NM such that

ƒg D ƒQg:

Then there exists a diffeomorphism W NM ! NM with  j@M D Id , such that  ? Qg
is a conformal multiple of g, in other words there exists � 2 C1. NM/ such that

 ? Qg D � g:
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Conjecture 1 has been proved in [80] in a particular case. The result is the
following.

Theorem 12. Let NM be a compact, connected, real-analytic n-manifold with con-
nected real-analytic boundary, and assume that �1. NM; @M/ D 0 (this assumption
means that every closed path in NM with base point in @M is homotopic to some path
that lies entirely in @M ). Let g and Qg be real-analytic metrics on NM such that

ƒg D ƒQg;

and assume that one of the following conditions holds:

1. NM is strongly convex with respect to both g and Qg;
2. either g or Qg extends to a complete real-analytic metric on a non-compact real-

analytic manifold QM (without boundary) containing NM .

Then there exists a real-analytic diffeomorphism  W NM ! NM with  j@M D Id ,
such that g D  ? Qg.

Theorem 12 has been proved by showing that one can recover the full Taylor
series of the metric at the boundary from ƒg . The diffeomorphism  is then
constructed by analytic continuation from the boundary. As previously mentioned,
the full Taylor series of � was recovered by Kohn and Vogelius in [75] from the
knowledge of ƒ� in the isotropic case and then a new proof was given in [106] by
showing that the full symbol of the pseudodifferential operator ƒ� determines the
full Taylor series of � at the boundary. In [80] a simpler method suggested by R.
Melrose consisting of factorizing �g, is used. In 1990 Sylvester proved in [105]
Conjecture 2 in a particular case. His result is the following.

Theorem 13. Let  be a bounded domain in R
2 with a C 3 boundary and let �1; �2

be anisotropic C 3 conductivities in N such that

k log .det �i/ kC 3< " .M; /; for i D 1; 2; (82)

with M �k �i kC 3 , for i=1, 2 and ".M; / sufficiently small. If

ƒ�1 D ƒ�2 ;

then there exists a C 3 diffeomorphism  of N such that  j@ D Id and such that

 ? �1 D �2:

Nachman [89] extended this result in 1995 by proving the same theorem but
removing the hypothesis (82). In 1999 Lassas and Uhlmann [78] extended the result
of [80]. They assumed that the Dirichlet-to-Neumann map is measured only on
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a part of the boundary which is assumed to be real-analytic in the case n � 3
and C1-smooth in the two-dimensional case. The metric is here recovered (up to
diffeomorphism) and the manifold is reconstructed. Since a manifold is a collection
of coordinate patches, the idea is to construct a representative of an equivalent class
of the set of isometric Riemannian manifolds .M; g/. Recalling that if � is an open
subset of @M , and defining

ƒg;�.f / D ƒg.f /j�;

for any f with suppf � � . The main result of [78] is given below.

Theorem 14. Let us assume that one of the following conditions is satisfied:

1. M is a connected Riemannian surface;
2. n � 3 and .M; g/ is a connected real-analytic Riemannian manifold and the

boundary @M is real-analytic in the nonempty set � � @M .

Then

1. For dimM D 2 the ƒg; � -mapping and � determine the conformal class of the
Riemannian manifold .M; g/.

2. For a real-analytic Riemannian manifold .M; g/, dimM > 2 which boundary is
real analytic in � , theƒg; � -mapping and � determine the Riemannian manifold
(M, g).

This result improved the one in [80] also because here the only assumption on
the topology of the manifold is the connectedness, while in [80] the manifold was
simply connected and the boundary of the manifold was assumed to be geodesically
convex. Theorem 14 has been extended in [79] to a completeness hypothesis on NM .

Anisotropy Which Is Partially A Priori Known
Another approach to the anisotropic problem is to assume that the conductivity �
is a priori known to depend on a restricted number of unknown spatially dependent
parameters. In 1984 Kohn and Vogelius (see [75]) considered the case where the
conductivity matrix � D .�ij / is completely known with the exception of one
eigenvalue. The main result is the following.

Theorem 15. Let �; Q� be two symmetric, positive definite matrices with entries
in L1./, and let f�ig; f Q�ig and feig; f Qeig be the corresponding eigenvalues and
eigenvectors. For x0 2 @, let B be a neighborhood of x0 relative to N, and suppose
that

�; Q� 2 C1.B/I (83)

@ \ B is C1I (84)
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ej D Qej ; �j D Q�j in B; for 1 � j � n � 1I (85)

en.x0/ � �.x0/ ¤ 0: (86)

If

Q�.�/ D Q Q� .�/ for every � 2 H 1
2 .@/;

with supp� � B \ @, then

Dk Q�n.x0/ D Dk�n.x0/;

for every k D .k1; : : : ;kn/, ki 2 Z
C, i D 1; : : : ; n.

In 1990 Alessandrini [3] considered the case in which � is a priori known to be of
type

�.x/ D A.a.x//;

where t ! A.t/ is a given matrix-valued function and a D a.x/ is an unknown
scalar function. He proved results of uniqueness and stability at the boundary
and then uniqueness in the interior among the class of piecewise real-analytic
perturbations of the parameter a.x/. The main hypothesis he used is the so-called
monotonicity assumption

DtA.t/ � C I;

where C > 0 is a constant. In 1997 Lionheart [81] proved that the parameter a.x/
can be uniquely recovered for a conductivity � of type

�.x/ D a.x/ A0.x/;

where A0.x/ is given. Results in [3] have been extended in 2001 by Alessandrini
and Gaburro [6] to a class of conductivities

�.x/ D A.x; a.x//;

where A.x; t/ is given and satisfies the monotonicity condition with respect to the
parameter t

DtA.x; t/ � C I;

where C > 0 is a constant (see [6] or [41] for this argument). In [6] the authors
improved results of [3] since they relaxed the hypothesis on A. � ; t/ for the global
uniqueness in the interior and the result there obtained can be applied to [81] as well.
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The technique of [6] can also be applied to the so-called one-eigenvalue problem
introduced in [75]. Results of [6] have been recently extended to manifolds [43]
and to the case when the local Dirichlet-to-Neumann map is prescribed on an open
portion of the boundary [7].

Some Remarks on the Dirichlet-to-NeumannMap

EIT with Partial Data
In many applications of EIT one can actually only take measurements of voltages
and currents on some portion of the boundary. In such situation the Dirichlet-to-
Neumann map can only be defined locally.

Let  � R
n be a domain with conductivity � . If � is a nonempty open portion

of @, the subspace of H
1
2 .@/ is introduced

H
1
2
co.�/ D

˚
f 2 H 1

2 .@/ j supp f � �
: (87)

Definition 2. The local Dirichlet-to-Neumann map associated with � and � is the
operator

ƒ�
� W H

1
2
co.�/ �! .H

1
2
co.�//

� (88)

defined by

hƒ�
� f; �i D

Z


�ru � r� dx; (89)

for any f , � 2 H 1
2
co.�/, where u 2 H 1./ is the weak solution to

� r � .�.x/ru.x// D 0; in ;

u D f; on @;

and � 2 H 1./ is any function such that �j@ D � in the trace sense.

Note that, by (89), it is easily verified thatƒ�

 is self adjoint. The inverse problem

is to recover � fromƒ�
� .

The procedure of reconstructing the conductivity by local measurements has
been studied first by Brown [22], where the author gives a formula for reconstructing
the isotropic conductivity pointwise at the boundary of a Lipschitz domain 

without any a priori smoothness assumption of the conductivity. Nakamura and
Tanuma [91] give a formula for the pointwise reconstruction of a conductivity
continuous at one point x0 of the boundary from the local D-N map when the
boundary is C 1 near x0. Under some additional regularity hypothesis the authors
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give a reconstruction formula for the normal derivatives of � on @ at x0 2 @
up to a certain order. A direct method for reconstructing the normal derivative of
the conductivity from the local Dirichlet-to-Neumann (D-N) map is presented in
[92]. The result in [91] has been improved by Kang and Yun [70] to an inductive
reconstruction method by using only the value of � at x0. The authors derive
here also Hölder stability estimates for the inverse problem to identify Riemannian
metrics (up to isometry) on the boundary via the local D-N map. An overview on
reconstructing formulas of the conductivity and its normal derivative can be found
in [93].

For related uniqueness results in the case of local boundary data, refer to
Alessandrini and Gaburro [7], Bukhgeim and Uhlmann [25], Kenig et al. [73] and
Isakov [68], and, for stability, [7] and Heck and Wang [55]. Recent results are
also provided by Kenig and Salo [71, 72]. It is worth noting that [72] generalizes
the results obtained in both [73] and [68] by making use of improved Carleman
estimates with boundary terms, CGO solutions involving reflected Gaussian beam
quasimodes and invertibility of (broken) geodesics ray transforms. Results of
stability for cases of piecewise constant conductivities and local boundary maps
have also been obtained by Alessandrini and Vessella [8], and by Di Cristo [35].
Another useful reference is [110, Sect. 7].

The Neumann-to-Dirichlet Map
In many applications of EIT especially in medical imaging, rather than the local
Dirichlet-to-Neumann map, one should consider the so-called local Neumann-to-
Dirichlet (N-D) map. That is, the map associating the specified current densities
supported on a portion of � � @ to the corresponding boundary voltages, also
measured on the same portion � of @. Usually electrodes are only applied to part
of the body. Geophysics, of course, gives an extreme example where � is a small
portion of the surface of the earth . It seems appropriate at this stage to recall the
definition of the N-D map and its local version for the sake of completeness [7].

Let us introduce the following function spaces (see [7])

H
1
2˘ .@/ D

�
� 2 H 1

2 .@/j
Z
@

� D 0


;

H
� 1

2˘ .@/ D
n
 2 H� 1

2 .@/j h ; 1i D 0
o
:

Observe that, if considering the (global) D-N map ƒ� , that is the map introduced

in (88) ƒ�
� in the special case when � D @, then it maps onto 0H

� 1
2 .@/, and,

when restricted toH
1
2˘ .@/, it is injective with bounded inverse. Then one can define

the global Neumann-to-Dirichlet map as follows.

Definition 3. The Neumann-to-Dirichlet map associated with � , N� W H� 1
2˘ .@/

�! H
1
2˘ .@/ is given by
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N� D
�
ƒ� j

0H
1
2 .@/

��1
: (90)

Note that N� can also be characterized as the self-adjoint operator satisfying

h ; N� i D
Z


�.x/ru.x/ � ru.x/ dx; (91)

for every  2 H
� 1

2˘ .@/, where u 2 H 1./ is the weak solution to the Neumann
problem

8<
:
L�u D 0; in ;

�ru � �j@ D  ; on @;R
@

u D 0:
(92)

At this point, it is useful to introduce the local version of the N-D map. Let � be

an open portion of @ and let � D @ n N� . Here, H
1
2

00.�/ denotes the closure in

H
1
2 .@/ of the space H

1
2
co.�/ previously defined in (87) and introducing

H
� 1

2˘ .�/ D
�
 2 H� 1

2˘ .@/j h ; f i D 0; for any f 2 H 1
2

00.�/


; (93)

that is the space of distributions  2 H� 1
2 .@/ which are supported in N� and have

zero average on @. The local N-D map is then defined as follows.

Definition 4. The local Neumann-to-Dirichlet map associated with � , � is the
operatorN�

� W 0H
� 1

2 .�/ �! �
0H

� 1
2 .�/

	? � 0H
1
2 .@/ given by

hN�
� i; j i D hN� i; j i; (94)

for every i; j 2 0H
� 1

2 .�/.

3 The Reconstruction Problem

Locating Objects and Boundaries

The simplest form of the inverse problem is to locate a single object with a
conductivity contrast in a homogeneous medium. Some real situations approximate
this, such as a weakly electric fish locating a single prey or the location of an
insulating land mine in homogeneous soil. Typically the first test done on an EIT
system experimentally is to locate a cylindrical or spherical object in a cylindrical
tank. Linearization about � D 1 simplifies to
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r2w D �rı � ruCO �jjıjj2L1

	
: (95)

Here, the disturbance in the potential w is, to first order, the solution of Poisson’s
equation with a dipole source centered on the object oriented in the direction
of the unperturbed electric field. With practice experienced experimenters (like
electric fish) can roughly locate the object from looking at a display of the voltage
changes. When it is known a priori that there is a single object, either small or
with a known shape, the reconstruction problem is simply fitting a small number of
model parameters (e.g., position, diameter, conductivity contrast) to the measured
voltage data, using an analytical or numerical forward solver. This can be achieved
using standard nonlinear optimization methods. For the two-dimensional case a fast
mathematically rigorous method of locating an object (not required to be circular)
from one set of Cauchy data is presented by Hanke [50]. Results on the recovery
of the support of the difference between two piecewise analytic conductivities by
solving the linearized problem are given in [53].

In the limiting case where the object is insulating, object location becomes a free
boundary problem, where the Dirichlet-to-Neumann map is known on the known
boundary and only zero Neumann data known on the unknown boundary. This
is treated theoretically for example by [61] and numerically in [62]. A practical
example is the location of the air core of a hydrocyclone, a device used in chemical
engineering [114].

In more complex cases the conductivity may be piecewise constant with a jump
discontinuity on a smooth surface. In that case there are several methods that have
been tested at least on laboratory data for locating the surface of the discontinuity.
One would expect in general that the location of a surface can be achieved more
accurately or with less data than the recovery of a spatially varying function and
this is confirmed by numerical studies.

A natural method of representing the surface of discontinuity is as a level set
of a smooth surface (see chapter �Level Set Methods for Structural Inversion
and Image Reconstruction). This approach has the advantage that no change in
parameterization is required as the number of connected components changes, in
contrast for example to representing a number of star-shaped objects using spherical
polar coordinates. The approach to using the level set method in EIT is exactly the
same as its use in scattering problems apart from the forward problem (see chapter
� Inverse Scattering). Level set methods have been tested on experimental ERT and
ECT data by Soleimani et al. [102]. Here some of their results are reproduced in
Fig. 5.

Another approach to locating a discontinuity, common with other inverse
boundary value problems for PDEs are “sampling and probe methods” in which
a test is performed at each point in a grid to determine if that point is in
the object. Linear sampling and factorization methods are treated in the chapter
� Sampling Methods. Theory and numerical results for the application of Linear
Sampling to ERT for a half space are given by Hanke and Schappel [51]. Sampling
methods generally require the complete transfer impedance matrix and where only
incomplete measurements are available they must be interpolated.

http://dx.doi.org/10.1007/978-1-4939-0790-8_11
http://dx.doi.org/10.1007/978-1-4939-0790-8_48
http://dx.doi.org/10.1007/978-1-4939-0790-8_12
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Fig. 5 Comparison of level set reconstruction of 2D experimental data compared to generalized
Tikhonov regularization using a Laplacian smoothing matrix (EIDORS-2D [113]). Thanks to
Manuchehr Soleimani for reconstruction results, and Wu Quaing Yang and colleagues for the ECT
data [116], the experimental ERT data was from [113]

Also in the spirit of probe methods is the monotonicity method of Tamburrino
and Rubinacci [109]. This method follows from the observation that for � real the
map � 7! Z� is monotone in the sense that �1 � �2 ) Z�1 � Z�2 � 0, where a
matrix Z � 0 if its eigenvalues are non-negative. Suppose that for some partition
fig of  (e.g., pixels or voxels)

� D
X
i

�i	i (96)

and each �i 2 fm;M g, 0 < m < M . For each i let Zmi be the transfer impedance for
a conductivity that is M on i and m elsewhere. Supposing Z � Zmi has a negative
eigenvalue, then �i D m. For each set in the partition the test is repeated, and it
is inferred that some of the conductivity values are definitely m. The equivalent
procedure is repeated for each ZMi . In practice, for large enough sets in the partition
andM�m big enough, most conductivity values in the binary image are determined,
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although this is not guaranteed. In practice the method is very fast as Zmi and ZMi can
be precomputed and one only needs to find the smallest eigenvalue of two modestly
sized matrices for each set in the partition. In the presence of noise, of course, one
needs a sufficiently negative eigenvalue to be sure of the result of the test, and the
method does assume that the conductivity is of the given form (96). Recently a
partial converse of the monotonicity result has been found [54] and this promises
more accurate fast methods of reconstructing the shape of an inclusion.

If conductivities on some sets are undetermined, they can then be found using
other methods. For example [115] use a Markov Chain Monte Carlo method to
determine the expected value and variance of undetermined pixels in ECT.

Forward Solution

Most reconstruction algorithms for EIT necessitate solution of the forward problem,
that is to predict the boundary data given the conductivity. In addition, methods
that use linearization typically require electric fields in the interior. The simplest
case is an algorithm that uses a linear approximation calculated at a homogenous
background conductivity. For simple geometries this might be done using an
analytical method, while for arbitrary boundaries Boundary Element Method is a
good choice, and is also suitable for the case where the conductivity is piecewise
constant with discontinuities on smooth surfaces. For general conductivities the
choice is between finite difference, finite volume and finite element methods
(FEMs). All have been used in EIT problems. FEM has the advantage that the
mesh can be adapted to a general boundary surface and to the shape and location
of electrodes, whereas regular grids in finite difference/volume methods can result
in more efficient computation, traded off against the fine discretization needed to
represent irregular boundaries. One could also use a hybrid method such as finite
element on a bounded domain of variable conductivity coupled to BEM for a
homogeneous (possibly unbounded) domain.

In reconstruction methods that iteratively adjust the conductivity and resolve the
forward problem, a fast forward solution is needed, whereas in methods using a
linear approximation, the forward solution can be solved off-line and speed is much
less important.

The simplest, and currently in EIT the most widely used, FE method is first order
tetrahedral elements. Here a polyhedral approximation h to  is partitioned into
a finite set of tetrahedra Tk, k D 1; : : : ; nt which overlap at most in a shared face,
and with vertices xi ; i D 1 < nv. The potential is approximated as a sum

uh.x/ D
X

ui�i .x/; (97)

where the �i are piecewise linear continuous functions with �i.xj / D ıij . The finite
element system matrixK 2 C

nv�nv is given by
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Kij D
Z

p

�r�i � r�j dx: (98)

On each tetrahedron r�i is constant which reduces calculation of (98) in the
isotropic case to the mean of � on each tetrahedron. One then chooses an
approximation to the conductivity in some space spanned by basis functions  i.x/

� D
X
i

�i i : (99)

One can choose these functions to implement some a priori constraints such as
smoothness and to reduce the number of unknowns in the discrete inverse problem.
Or one can choose basis functions just as the characteristic functions of the
tetrahedra, which makes the calculation, and updating, of the system matrix very
simple. In this case, all a priori information must be incorporated later, such as by a
regularization term. In general the integrals

Z

p

 lr�i � r�j dx (100)

are evaluated using quadrature if they cannot be done explicitly. If the inverse
solution uses repeated forward solutions with updated conductivity but with a fixed
mesh, the coefficients (100) can be calculated once for each mesh and stored. For a
boundary current density j D �ru � � the current vector Q 2 R

nv is defined by

qi D
Z

@

j�i dx (101)

and the FE system is

Ku D Q; (102)

where u is the vector of ui . One additional condition is required for a unique
solution, as the voltage is only determined up to an additive constant. One way
to do this is to choose one (“grounded”) vertex ig and enforce uig D 0 by deleting
the ig row and column from the system (102). It is clear from (98) that for a pair
of vertices indexed by i; j that are not both in any tetrahedron, Kij D 0. The
system (102) is equivalent to Ohm’s and Kirchoff’s law for a resistor network with
resistors connecting nodes i and j when the corresponding vertices in the FE mesh
share and edge (where some dihedral angles are obtuse, there is the possibility of
negative conductances). It is worth noting that whatever basis is user to represent the
approximate conductivity (including an anisotropic conductivity) the finite element
system has only one degree of freedom per edge and one cannot hope, even with
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perfect data and arithmetic, to recover more than ne (the number of edges) unknowns
from the discretization of the inverse problem.

The above formulation implements the shunt model. The CEM with specified
currents can be implemented following Vauhkonen [111] using an augmented
matrix. Defining

Kı
ij D Kij C

LX
lD1

1

zl

Z
El

�i�j dx; (103)

where, here, jEl j denotes the area of the l th electrode, and

K@
`` D

1

z`
jE`j for ` D 1; : : : ; L; (104)

Kı@
i` D �

Z
El l

1

z`
�i dx i D 1; ::; n; ` D 1; ::; L: (105)

The system matrix for the CEM, KCEM 2 C
.nvCL/�.nvCL/ is

KCEM D
�
Kı Kı@
Kı@T K@

�
: (106)

In this notation, the linear system of equations has the form

KCEM Qu D QQ; (107)

where Qu D .u1; : : : ; unv ; V1; ::VL/
T and QQ D .0; : : : ; 0; I1; : : : ; IL/

T . The constraint
V 2 S (see section “Measurements with Electrodes”) is often used to ensure
uniqueness of solution. The transfer impedance matrix is obtained directly as

Z D �K@ �Kı@TKı �Kı@	� (108)

although it is usual to solve the system (106) as u in the interior is used in the
calculation of the linearization. This formulation should only be used for reasonably
large z`, as small z` will result in the block K@ dominating the matrix. For an
accurate forward model it is necessary to estimate the contact impedance accurately.
This is more important when measurements from current carrying electrodes are
used in the reconstruction, or when the electrodes are large (even if they are
“passive” I` D 0). The CEM boundary condition is rather unusual and most
commercial FE systems will not include the boundary condition easily. This is
one of the reasons forward solution code for EIT is generally written specifically
for the purpose, such as the EIDORS project [1]. It is possible to calculate the
transadmitance matrix Y D Z� more easily with standard solvers. One sets Robin
boundary u C z`�@u=@� D V` on each E` and the zero Neumann condition (4)
using V forming a basis for S , one then takes the integral of the current over each
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electrode as the current I D YV. For a given current pattern I one applies the Robin
conditions V D Y�I and the solver gives the correct u. Advantages of commercial
solver are that they might contain a wide variety of element types, fast solvers,
and mesh generators. Disadvantages are that they may be hard to integrate as part
of a nonlinear inverse solver, and it might be harder to calculate the linearization
efficiently.

In fact implementing code to assemble a system matrix is quite straightforward;
much harder for EIT is the generation of three-dimensional meshes. For human
bodies with irregular boundaries of inaccurately known shape this is a major
problem. To apply boundary conditions accurately without overfine meshes it is also
important that the electrodes are approximated by unions of faces of the elements.
While the accuracy of the FEM is well understood in terms of the error in the
solution u, in EIT it is necessary to require that the dependence of the boundary
data on the conductivity be accurate, something that is not so well understood. In
addition if the conductivities vary widely it may be necessary to remesh to obtain
the required accuracy, and ideally this capability with be integrated with the inverse
solver [87].

Regularized Linear Methods

Methods based on linearization are popular in medical and process versions of
EIT. The reasons are twofold. Process and medical applications benefit from very
rapid data acquisition times with even early systems capable measuring a transfer
impedance matrix in less that 0:04 s, and it was often required to produce an image in
real time. The application of a precomputed (regularized) inverse of the linearized
forward problem required only about 1

2L
2.L � 1/2 floating point operations. For

reasons of both speed and economy early systems also assumed a two-dimensional
object with a single ring of electrodes arranged in a plane. The second reason
for using a linear approximation is that in medical applications especially there is
uncertainty in the body shape, electrode position and contact impedance. This means
that a computed forward solution, based on an assumed conductivity (typically
constant), has a much larger error than the errors inherent in the measurements.
A compromise called difference imaging (by contrast to absolute imaging) uses a
forward solution to calculate the linearization (25) and then forms an image of the
difference of the conductivities between two different times, for example inspiration
and expiration in a study of the lungs. Alternatively measurements can be taken
simultaneously at two frequencies and a difference image formed of the permittivity.

Given a basis of applied current patterns Ii and a chosen set of measurements Mi

expressed as a set of independent vectors in S that are 1=jEl j for one electrode El ,
�1=jEkj for another electrode Ek (the two electrodes between which the voltage
is measured), and a set of functions  i with the approximate admittivity satisfying
Q� DP �k k , the discretization of the Fréchet derivative is the Jacobian matrix
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J.ij /k D @

@�k
MT
i ZIj D �

Z


 krvi � ruj dx; (109)

where LQ�ui D LQ�vj D 0 (at least approximately) with ui satisfying the CEM
with current Ii and vj with Mj . If the finite element approximation is used to solve
the forward problem it has the interesting feature that the natural approximation
to the Fréchet derivative in the FE context coincides with the Fréchet derivative
of them FE approximation. The indices .ij / are bracketed together as they are
typically “flattened” so the matrix of measurements becomes a vector and J a matrix
(rather than a tensor). Let QV be the vector of all voltage measurements, QVcalc the
calculated voltages, and � the vector of �i . Our regularized least-squares version of
the linearized problem is now

� reg D arg min
�

jjJ� � . QV � QVcalc/jj2 C ˛2‰.�/; (110)

where ‰ is a penalty function and ˛ a regularization parameter. The same
formulation is used for difference imaging where QVcalc is replaced by measured
data at a different time or frequency. Typical choices for ‰ are quadratic penalties
such a weighted sum of squares of the �i , the two norm of (a discretization) a
partial differential operator R applied to � � �0, for some assumed background
�0. jjR .� � �0/ jj2. Another common choice is a weighted sum of squares, i.e., L a
positive diagonal matrix. In Total Variation regularization‰ approximates jjr.� �
�0/jj1, and can be used where discontinuities are expected in the conductivity. Where
there is a jump discontinuity on a surface (a curve in the two-dimensional case) the
total variation is the integral of the absolute value of the jump over the surface
(curve). The choice of regularization parameter ˛, the choice of penalty function,
and the solution methods are covered in the chapters �Linear Inverse Problems
and “Total Variation in Imaging.” The singular values of J are found to decay
faster than exponentially (see Fig. 9), so it is a severely illconditioned problem and
regularization is needed even for very accurate data. There are also to some extent
diminishing returns in increasing the number of electrodes without also increasing
the measurement accuracy.

For a quadratic penalty function the minimization problem with‰.�/ D jjR.��
�0/jj2 the solution to (110) is given by the well-known Tikhonov inversion formula

� reg � �0 D
�
J�JC ˛2R�R

	�1
J� � QV � QVcalc

�
: (111)

For a total variation penalty ‰.�/ D jjR.� � �0/jj1 minimization is more
difficult, and standard gradient based optimization methods have difficulty with the
singularity in ‰ where a component of R� vanishes. One way around this is to use
the Primal Dual Interior Point Method; for details, see [21] and for comparison of
TV and a quadratic penalty applied to a difference image of the chest, see Fig. 6.

http://dx.doi.org/10.1007/978-1-4939-0790-8_1
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a b

Fig. 6 Time difference EIT image of a human thorax during breathing, comparison of generalized
Tikhonov jjR�jj2

2 and of the TV jjR� jj1 regularized algorithms. Both are represented on the same
color scale and in arbitrary conductivity units. See [21] for details (a) Generalized Tikhonov (b)
Total variation

Regularized Iterative Nonlinear Methods

As the problem is nonlinear clearly a solution based on linearization is inaccurate.
Intuitively there are two aspects to the nonlinearity that are lost in a linear approxi-
mation. If one considers an object of constant conductivity away from the boundary
the norm of the voltage data will exhibit a sigmoid curve as the conductivity of
that object varies, as seen in the example of a concentric anomaly and illustrated
numerically in Fig. 10. This means that voltage measurements saturate, or tends to
a limiting value, as the conductivity contrast to the background tends to zero or
infinity. Typically this means that linear approximations underestimate conductivity
contrast. One has to be careful in communications between mathematicians and
engineers: the latter will sometimes take linearity (e.g., of Y.�/) to mean a function
that is homogenous of degree one, ignoring the requirement for “superposition of
solutions.” Considering two small spherical objects in a homogeneous background,
it is known from (22) that to first order the change in u due to the objects is approx-
imately the sum of two dipole fields. The effect of nonlinearity, the higher order
terms in (22) can be thought of as interference between these two fields, analogous
to higher order scattering in wave scattering problems. The practical effect is that
linear approximations are poor not only at getting the correct conductivity contrast,
but also at resolving a region between two objects that are close together. Many
nonlinear solution methods calculate an update of the admittivity from solving a
linear system, that update is applied to the conductivity in the model and the forward
solution solved again. One severe problem with linear reconstruction methods that
do not include a forward solver is that one cannot test if the updated admittivity even
fits the data better than the initial assumption (e.g., of a constant admittivity). Such
algorithms tend to produce some plausible image even if the data are erroneous.
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The usual approach taken in geophysical and medical EIT to nonlinear recon-
struction is to numerically perform the (nonlinear generalized Tikhonov) minimiza-
tion

� reg D arg min
�

jj QVcalc.�/ �Vjj2 C ˛2‰.�/ (112)

using standard numerical optimization techniques. As the Jacobian is known
explicitly it is efficient to use gradient optimization methods such as Gauss–
Newton, and in that context the update step is very similar to the solution of
the linear problem (110), and is a linear system for quadratic ‰. Assuming
conductivity initialized as the background level �0 a typical iterative update scheme
for successive approximations to the conductivity is

�nC1 D �n C .J�
nJn C ˛2Ł�Ł/�1

�
J�
n.
QV � QVcalc.�n/C ˛2Ł�Ł.�0 � �n/

�
:

(113)
In contrast to the linearized problem, the nonlinear problem requires repeated
solution of the forward solution QVcalc.�n/ for variable conductivity, typically
using the finite element or finite difference method. One also has to constrain
the conductivity Re � to be positive and this is made easier by a choice of �i
as the characteristic functions of a partition on . This could be a rectangular
grid or a courser tetrahedral mesh than that used for u. Accurate modeling of
electrodes requires a fine discretization near electrodes, and yet one cannot hope
to recover that level of detail in the admittivity near an electrode. In many practical
situations a priori bounds are known for the conductivity and permittivity and as
the logarithmic stability result predicts, enforcing these bounds has a stabilizing
effect on the reconstruction. The positivity constraint can be enforced by a change
of variables to log � and this is common practice, with the Jacobian adjusted
accordingly. It is generally better to perform a line search in the update direction
from (113) to minimize the cost function in (112) rather than simply applying the
update. Most commonly this search is approximated, for example, by fitting a few
points to a low order polynomial although implementation details of this are rarely
well documented. It is also worth mentioning that most absolute reconstruction
algorithms start by finding a homogeneous conductivity �0 best fitting the data
before the iterative method starts.

In geophysical ERT nonlinear solution is well established. Although it is more
common, for reasons of economy, to measure only along a line and reconstruct on
the plane beneath that line, fully three-dimensional reconstruction is also widely
used. The most common reconstruction code used is RES3DINV [44] which builds
on the work of Loke and Barker at the University of Birmingham [84]. The code
is available commercially from Loke’s company Geotomo Software. RES3DINV
has a finite difference forward solver used when the ground is assumed flat, and
a finite element solver for known non-flat topography. In geophysical applications
there is the advantage that obtaining a trangularization of the surface is a common
surveying practice. The Jacobian is initialized using an analytical initial solution
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assuming homogeneous conductivity. Regularized nonlinear inversion is performed
using Gauss–Newton, with recalculation of Jacobian [44], or using a quasi-Newton
method in which a rank one update is performed on the Jacobian. The penalty
function used in the regularization is of the form ‰.�/ D jjR�jj22 where R is an
approximate differential operator that penalizes horizontal and vertical variations
differently. Total variation regularization ‰.�/ D jjR�jj1 is also an option in this
code. When data is likely to be noisy one can select a “robust error norm,” in which
the one-norm is used also to measure the fit of the data to the forward solution. A
maximum and minimum value of the regularization parameter can be set by the user,
but in a manner similar to the classical Levenburg–Marquard method for well-posed
least squares problems the parameter can be varied within that range depending on
the residual at each iteration.

Although it is common in inverse problems to think of (112) as a regularization
scheme a more rational justification for the method is probabilistic. Here, error
in the measured data is considered to be sampled from a zero mean, possibly
correlated, random variables. The a priori belief about the distribution of � is
then represented as a probability distribution. The minimization (112) is the
Maximum a posteriori (MAP) estimate for the case of independent Gaussian
error and with prior distribution with log probability density proportional to
�‰.�/. A more sophisticated approach goes beyond Gauss distributions and MAP
estimates and samples the posterior distribution using Markov Chain Monte Carlo
methods [69]. As this involves a large number of forward problem solutions,
this is infeasible for large scale three-dimensional EIT problems. However as
computers increase in speed and memory size relative to price, it is reasonable
to expect this will eventually become a feasible approach. It will make it easier
to approach EIT with a specific question such as “what is the volume of the
region with a specified conductivity” with the answer expressed as an estimate of
the probability distribution. Going back to (112) the regularization parameter ˛2

controls the ratio of the variances of the prior and error distribution. In practice
this choice of this parameter is somewhat subjective, and the usual techniques
in choice of regularization parameter, and the caution in their application, are
relevant (Fig. 7).

Results of a geophysical ERT study are shown in Fig. 8, thanks to the Geophys-
ical Tomography Team, British Geological Survey (http://www.bgs.ac.uk/research/
tomography) for this figure and the description of the survey summarized below.
In this case ERT was used to identify the concentrations of leachate, the liquid
that escapes from buried waste in a landfill site. The leachate can be extracted and
recirculated to enhance the production of landfill gas, which can ultimately be used
for electricity generation. It was important to use a non-invasive technique – the
more standard practice of drilling exploratory wells could lead to new flow paths.
Data were collected sequentially on 64 parallel survey lines, using a regular grid
of electrode positions. The inter-line spacing was 15 m with a minimum electrode
spacing of 5 m along line. For the current sources, electrode spacings between 15 m
and 95 m were used, while electrode spacings for the measurement electrodes were
between 5 m and 225 m (Figs. 9 and 10).

http://www.bgs.ac.uk/research/tomography
http://www.bgs.ac.uk/research/tomography
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Fig. 7 An “L-curve”: data mismatch jjV � Vcalc.�/jj2 (vertical) versus regularization norm
jjR.���0/jj2 (horizontal) for a range of six orders of magnitude of the regularization. In each case,
a single step of the iterative solution was taken. Three representative images are shown illustrating
the “overregularization,” appropriate regularization, and “underregularization.” The data are from
the RPI chest phantom [65] shown left

Fig. 8 A three-dimensional ERT survey of a commercial landfill site to map the volumetric
distribution of leachate (opaque blue). Leachate is abstracted and reproduction of any BGS
materials does not amount to an endorsement by NERC or any of its employees of any product
or service and no such endorsement should be stated or implied
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Fig. 9 Normalized singular values of the Jacobian matrix from circular 2D model with L D
16, 24, and 32 electrodes. EIT measurements are made with trigonometric patterns such that the
number of independent measurements from L electrodes is 1

2 .L � 1/L. Note the use of more
degrees of freedom in the conductivity than the data so as to be able to study the effect of different
numbers of electrodes using SVD
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Fig. 10 Saturation of EIT signals as a function of conductivity contrast. Left: Slices through a
finite element model of a 2D circular medium with a circular conductivity target at four horizontal
positions. EIT voltages are simulated at 32 electrodes for 31 trigonometric current patterns. Right:
change in a voltage difference as a function of conductivity contrast (target vs. background)
for each horizontal position (horizontal center of contrast specified in legend). Vertical axis is
normalized with respect to the maximum change from the central target, and scaled by the sign of
conductivity change

The inversion was performed using RES3DINV with the FE forward solver with
a mesh generated using the measured surface topography. The two norm was used
for both penalty term and error norm. Due to the large number of datum points
(approx 85,000 in total), the dataset was split in four approximately equal volumes
for subsequent inversion. The resulting resistivity models were then merged to
produce a final model for the entire survey area. The resulting 3D resistivity model
was used to identify a total of 14 drilling locations for intrusive investigation.
Eight wells were drilled and the results (i.e., initial leachate strikes within these
wells) were used to calibrate the resistivity model. Based on this ground-truth
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calibration a resistivity threshold value of 4 m was used to represent the spatial
distribution of leachate for volumetric analysis within the waste mass. A commercial
visualization package was used to display cross sections, iso-resistivity surfaces as
well as topography and features on the surface and the boreholes. For other similar
examples of geophysical ERT see [28, 29].

Experiments on tanks in process tomography or as simulated bodies for medical
EIT show that several iterations of a nonlinear method can improve the accuracy
of conductivity and the shape of conductivity contours for known objects. In
medical EIT it has yet to be demonstrated that the shape and electrode position
can be measured and modeled with sufficient accuracy that the error in the linear
approximation is greater than the modeling error. These technical difficulties are
not, hopefully, insurmountable (Fig. 11).

Direct Nonlinear Solution

Nachman’s [88, 89] (see also [94]) uniqueness result for the two-dimensional
case was essentially constructive and has resulted in a family of reconstruction
algorithms called N@-methods or scattering transform methods. Nachman’s method
was implemented by Siltanen et al. [100] in 2000. Of course there are few practical
situations in which the two-dimensional approximation is a good one – both the
conductivity and the electrodes have to be translationally invariant. Flow in a pipe
with long electrodes is one example in which it is a good approximation. The main
steps in the method are sketched (following Knudsen et al. [77]) and the interested
reader referred to the references for details.

Assuming is the unit disk for simplicity and starting with the Faddeev Green’s
function

Gk.x/ WD eikxgk.x/; gk.x/ D 1

.2�/2

Z

R2

eix � �
j�j2 C 2k.�1 C i�2/

d� (114)

I

Fig. 11 (continued) Iteration (horizontal axis) and regularization parameter selection (vertical
axis) for two choices of regularization matrix R. Data are from the RPI chest phantom [65]. The
regularization parameter [˛ in (113)] in the middle row (1) was selected at the “knee” of the L-
curve, indicating an appropriate level of regularization. Overregularization (top row) is shown for
10˛, and underregularization (bottom row) for 0:1˛. Columns indicate 1, 3, or 5 iteration of (113).
With increased iteration, one can see improved separation of targets and more accurate conductivity
estimates, although these improvements trade off against increased electrode artifacts due to
model mismatch. The difference between the Laplacian and weighted diagonal regularization is
shown in the increased smoothness of (a), especially in the underregularized case. (a) Laplacian
regularization. (b) Weighted diagonal regularization
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and the single layer potential

.Sk�/.x/ WD
Z

@

Gk.x � y/�.y/ d�.y/: (115)

Here k D k1 C ik2 and, by abuse of notation, considering x as a vector in x � �
and a complex number x1 C ix2 in the complex product kx. Here �.y/ means the
angular polar coordinate of y. Here, it is assumed that the measured Dirichlet-to-
Neumann map ƒ� is available and, of course, that ƒ1 is known. The first step in
the algorithm is for each fixed k to solve the linear Fredholm integral equation for a
function  . � ; k/ on the boundary.

 . � ; k/j@ D eikx � Sk.ƒ� �ƒ1/ . � ; k/j@: (116)

This is an explicit calculation of the Complex Geometrics Optics solution of
Theorem 3. It is fed into the calculation of what is called the non-physical scattering
transform t W C! C defined by

t.k/ D
Z

@

e
Nk Nx.ƒ� �ƒ1/ . � ; k/ d�: (117)

Note here that (116) is a linear equation to solve the resulting depends nonlinearly
on the data ƒ� , and of course as  depends on the data t is a nonlinear function of
the data. The second step is to find the conductivity from the scattering data as
follows. Let ex.k/ WD exp.i.kx C Nk Nx//. For each fixed x another integral equation
is solved

V.x; k/ D 1C 1

.2�/2

Z

R2

t.k0/
.k � k0/ Nk0 e�x.k0/V .x; k0/ dk0

1 dk
0
2 (118)

finally setting �.x/ D V.x; 0/2. The integral equation (118) is the solution to the
partial differential equation

N@kV .x; k/ D 1

4� Nk t.k/e�x.k/V .x; k/; k 2 C; (119)

where N@k D @=@ Nk. Equation (119) is referred to as the N@ equation hence the name of
the method.

The reconstruction procedure is therefore a direct nonlinear method in which
the steps are the solution of linear equations. The only forward modeling required
is the construction of ƒ1. In some practical realizations of this methods [65] an
approximation to the scattering transform is used in which  is replaced by an
exponential
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texp.k/ D
Z

@

e
Nk Nx.ƒ� �ƒ1/ d�: (120)

In practical reconstruction schemes t or texp are replaced by an approximation
truncated to zero for jkj > R for some R > 0, which effectively also truncates
the domain of integration in (118) to the disk of radius R. Reconstruction of data
from a two-dimensional agar phantom simulating a chest was performed in [65]
using truncated texp, and in [66] a difference imaging version of the N@-method is
implemented using a truncated scattering transform and applied to chest data. A
rigorous regularization scheme for two-dimensional N@-reconstruction is given in
[77]. In this case the regularization is applied to the data, in a similar spirit to X-ray
CT reconstruction in which the data is filtered and then backprojected (see chapter
�Tomography) and the regularization is applied in the filter on the data. In this
sense it is harder to understand the regularized algorithm in terms of systematic a
priori information applied to the image. As in CT this is traded off against having a
fast explicit reconstruction algorithm that avoids iteration.

So far the discussion of N@-methods has been confined to two-dimensional
problems. At the time of writing three-dimensional direct reconstruction methods
are in their infancy. A three-dimensional N@-algorithm for small conductivities is
outlined in [34], and it is yet to be seen if this will result in practical implementation
with noisy data on a finite array of electrodes. See the thesis of Bikowski [19] for
the latest steps in this direction. If these efforts are successful, the impact on EIT is
likely to be revolutionary.

4 Conclusion

Electrical impendence tomography and its relatives are among the most challenging
inverse problems in imaging as the problem is nonlinear and highly illposed. The
problem has inspired detailed theoretical and numerical study, and this has had an
influence across a wide range of related inverse boundary value problems for (sys-
tems of) partial differential equations. Medical and industrial process applications
have yet to realize their potential as routine methods while the equivalent methods
in geophysics are well established. A family of direct nonlinear solution techniques
until recently only valid for the two-dimensional problem may soon be extended
to practical three-dimensional algorithms. If this happens fast three-dimensional
nonlinear reconstruction may be possible on relatively modest computers. In some
practical situations in medical and geophysical EIT the conductivity is anisotropic,
in which case the solution is non-unique. A specification of the a priori information
needed for a unique solution is poorly understood and practical reconstruction
algorithms have yet to be proposed in the anisotropic case.

For a more complete summary of uniqueness results, the reader is referred to the
review article of Uhlmann [110]. Similarly, for a review of biomedical applications
of EIT, see the book by Holder [59], while subsequent progress in the medical area

http://dx.doi.org/10.1007/978-1-4939-0790-8_16
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can generally be found in special issues of the journal Physiological Measurement
arising from the annual conferences on Biomedical Applications of EIT. A good
reference for the details of geophysical EIT reconstruction can be found in the
manual [44] and the notes by Loke [83]. For applications in process tomography
see [117] and the proceedings of the biennial World Congress on Industrial Process
Tomography (http://www.isipt.org/wcipt).
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Abstract
The purpose of this chapter is to explain the basics of radar imaging and
to list a variety of associated open problems. After a short section on the
historical background, the chapter includes a derivation of an approximate scalar
model for radar data. The basics in inverse synthetic aperture radar (ISAR) are
discussed, and a connection is made with the Radon transform. Two types of
synthetic aperture radar (SAR), namely, spotlight SAR and stripmap SAR, are
outlined. Resolution analysis is included for ISAR and spotlight SAR. Some
numerical algorithms are discussed. Finally, the chapter ends with a listing of
open problems and a bibliography for further reading.

1 Introduction

“Radar” is an acronym for RAdio Detection And Ranging. Radar was originally
developed [7, 8, 64, 67, 72] as a technique for detecting objects and determining
their positions by means of echolocation, and this remains the principal function
of modern radar systems. However, radar systems have evolved over more than
seven decades to perform an additional variety of very complex functions; one such
function is imaging [9, 20–22, 26, 29, 35, 41, 59, 61].

Radar-based imaging is a technology that has been developed mainly within
the engineering community. There are good reasons for this: some of the critical
challenges are (1) transmitting microwave energy at high power, (2) detecting
microwave energy, and (3) interpreting and extracting information from the received
signals. The first two problems are concerned with the development of appropriate
hardware; however, these problems have now largely been solved, although there
is ongoing work to make the hardware smaller and lighter. The third problem
essentially encompasses a set of mathematical challenges, and this is the area where
most of the current effort is taking place.

Radar imaging shares much in common with optical imaging: both processes
involve the use of electromagnetic waves to form images. The main difference
between the two is that the wavelengths of radar are much longer than those of
optics. Because the resolving ability of an imaging system depends on the ratio of
the wavelength to the size of the aperture, radar imaging systems require an aperture
many thousands of times larger than optical systems in order to achieve comparable
resolution. Since kilometer-sized antennas are not practicable, fine-resolution radar
imaging has come to rely on the so-called synthetic apertures in which a small
antenna is used to sequentially sample a much larger measurement region.

2 Historical Background

Radar technology underwent rapid development during World War II; most of this
work concerned developing methods to transmit radio waves and detect scattered



Synthetic Aperture Radar Imaging 765

waves. The invention of synthetic aperture radar (SAR) is generally credited to
Carl Wiley, of the Goodyear Aircraft Corporation, in 1951. The mid-1950s saw
the development of the first operational systems, under the sponsorship of the US
Department of Defense. These systems were developed by a collaboration between
universities, such as the University of Illinois and the University of Michigan,
together with companies such as Goodyear Aircraft, General Electric, Philco, and
Varian. In the late 1960s, the National Aeronautics and Space Administration
(NASA) began sponsoring unclassified work on SAR. Around this time, the first
digital SAR processors were developed (earlier systems having used analogue
optical processing). In 1978, the SEASAT-A satellite was sent up, and even though
it operated only for 100 days, the images obtained from it were so useful that it
became obvious that more such satellites were needed. In 1981, the shuttle imaging
radar (SIR) series began, and many shuttle missions since then have involved radar
imaging of the earth. In the 1990s, satellites were sent up by many countries
(including Canada, Japan, and the European Space Agency), and SAR systems
were sent to other planets and their moons, including Venus, Mars, and Titan.
Since the beginning of the new millennium, more satellites have been launched, for
example, the new European Space Agency satellite ENVISAT and the TerraSAR-X
satellite, which was developed and launched by a (mainly European) public–private
partnership.

Code letters for the radar frequency bands were originally used during wartime,
and the usage has persisted. These abbreviations are listed in Table 1. The HF band
usually carries radio signals; VHF carries radio and broadcast television; the UHF
band carries television, navigation radar, and cell phone signals. Some radar systems
operate at VHF and UHF; these are typically systems built for penetrating foliage,
soil, and buildings. Most of the satellite synthetic aperture radar systems operate in
the L-, S-, and C-bands. The S-band carries wireless Internet. Many military systems
operate at X-band.

Table 1 Radar frequency bands

Band designation Approximate frequency range Approximate wavelengths

HF (high frequency) 3–30 MHz 50 m

VHF (very high frequency) 30–300 MHz 5 m

UHF (ultrahigh frequency) 300–1,000 MHz 1 m

L-band 1–2 GHz 20 cm

S-band 2–4 GHz 10 cm

C-band 4–8 GHz 5 cm

X-band 8–12 GHz 3 cm

Ku-band (under K) 12–18 GHz 2 cm

K-band 18–27 GHz 1.5 cm

Ka-band (above K) 27–40 GHz 1 cm

mm-wave 40–300 GHz 5 mm
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3 Mathematical Modeling

SAR relies on a number of very specific simplifying assumptions about radar
scattering phenomenology and data-collection scenarios:

1. Most imaging radar systems make use of the start–stop approximation [29], in
which both the radar sensor and scattering object are assumed to be stationary
during the time interval over which the pulse interacts with the target.

2. The target or scene is assumed to behave as a rigid body.
3. SAR imaging methods assume a linear relationship between the data and scene.

Scattering of Electromagnetic Waves

The present discussion considers only scattering from targets that are stationary.
For linear materials, Maxwell’s equations can be used [34] to obtain an inhomo-

geneous wave equation for the electric field E at time t and position x:

r2E.t; x/ � 1

c2.x/
@2E.t; x/
@t2

D s.t; x/ (1)

and a similar equation for the magnetic field B. Here c.x/ denotes the speed of
propagation of the wave (throughout the atmosphere, this speed is approximately
independent of position and equal to the constant vacuum speed c) and s is a source
term that, in general, can involve E and B. For typical radar problems, the wave
speed is constant in the region between the source and the scattering objects (targets)
and varies only within the target volume. Consequently, here scattering objects are
modeled solely via the source term s.t; x/.

One Cartesian component of Eq. (1) is

�
r2 � 1

c2

@2

@t2

�
E.t; x/ D s.t; x/; (2)

where atmospheric propagation between source and target has been assumed.

Basic Facts About theWave Equation

A fundamental solution [69] of the inhomogeneous wave equation is a generalized
function [30, 69] satisfying

�
r2 � 1

c2

@2

@2
t

�
g.t; x/ D �ı.t/ı.x/: (3)

The solution of (3) that is useful is
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g.t; x/ D ı.t � jxj=c/
4�jxj D

Z
e�i!.t�jxj=c/

8�2jxj d!; (4)

where in the second equality the identity

ı.t/ D 1

2�

Z
e�i!t d! (5)

was used. The function g.t; x/ can be physically interpreted as the field at .t; x/ due
to a source at the origin x D 0 at time t D 0 and is called the outgoing fundamental
solution or (outgoing) Green’s function.

The Green’s function [62] can be used to solve the constant-speed wave equation
with any source term. In particular, the outgoing solution of

�
r2 � 1

c2

@2

@2
t

�
u.t; x/ D s.t; x/; (6)

is

u.t; x/ D �
“

g.t � t 0; x � y/s.t 0; y/ dt 0 dy: (7)

In the frequency domain, the equations corresponding to (3) and (4) are

.r2 C k2/G D �ı and G.!; x/ D eikjxj

4�jxj ; (8)

where the wave number k is defined as k D !=c.

Basic Scattering Theory

In constant-wave velocity radar problems, the source s is a sum of two terms, s D
sin C ssc, where sin models the transmitting antenna and ssc models the scattering
object. The solution E to Eq. (1), which is written as E tot, therefore splits into two
parts: E tot D E inCE sc. The first term, E in, satisfies the wave equation for the known,
prescribed source sin. This part is called the incident field, because it is incident upon
the scatterers. The second term, Esc, is due to target scattering, and this part is called
the scattered field. We use the same decomposition in the simplified scalar model.

One approach to finding the scattered field is to simply solve (2) directly, using,
for example, numerical time-domain techniques. For many purposes, however, it is
convenient to reformulate the scattering problem in terms of an integral equation.
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The Lippmann–Schwinger Integral Equation
In scattering problems the source term ssc (typically) represents the target’s response
to an incident field. This part of the source function will generally depend on the
geometric and material properties of the target and on the form and strength of the
incident field. Consequently, ssc can be quite complicated to describe analytically,
and in general, it will not have the same direction as sin. Fortunately, for this
article, it is not necessary to provide a detailed analysis of the target’s response;
for stationary objects consisting of linear materials, the scalar model ssc is written
as the time-domain convolution

ssc.t; x/ D
Z

v.t � t 0; x/E tot.t 0; x/ dt 0; (9)

where v.t; x/ is called the reflectivity function and depends on target orientation. In
general, this function also accounts for polarization effects.

The expression (9) is used in (7) to express E sc in terms of the Lippmann–
Schwinger integral equation [47]

E sc.t; x/ D
Z
g.t � �; x � z/

“
v.� � t 0; z/E tot.t 0; z/ dt 0 d� dz: (10)

The Lippmann–Schwinger Equation in the Frequency Domain
In the frequency domain, the electric field and reflectivity function become

E.!; x/ D
Z

ei!tE.t; x/ dt and V.!; z/ D
Z

ei!tv.t; z/ dt; (11)

respectively. Thus the frequency-domain version of (2) is

�
r2 C !2

c2

�
E.!; x/ D S.!; x/ (12)

and of (10) is

Esc.!; x/ D �
Z
G.!; x � z/V .!; z/E tot.!; z/ dz : (13)

The reflectivity function V.!; x/ can display a sensitive dependence on !

[34, 36, 53]. When the target is small in comparison with the wavelength of the
incident field, for example, V is proportional to !2 (this behavior is known as
“Rayleigh scattering”). At higher frequencies (shorter wavelengths), the dependence
on ! is typically less pronounced. In the so-called optical region, V.!; x/ is
often approximated as being independent of ! (see, however, [56]); the optical
approximation is used in this chapter, and the ! dependence is simply dropped.
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In the time domain, this corresponds to v.t; z/ D ı.t/V .z/, and the delta function
can be used to carry out the t 0 integration in (10).

The Born Approximation
For radar imaging, the field E sc is measured at the radar antenna, and from these
measurements, the goal is to determine V . However, both V and E sc in the
neighborhood of the target are unknown, and in (10) these unknowns are multiplied
together. This nonlinearity makes it difficult to solve for V . Consequently, almost
all work on radar imaging relies on the Born approximation, which is also known
as the weak-scattering or single-scattering approximation [38, 47]. The Born
approximation replaces E tot on the right side of (10) by E in, which is known. This
results in a linear formula for E sc in terms of V :

E sc.t; x/ 	 EB.t; x/ 

“

g.t � �; x � z/V .z/E in.�; z/ d� dz: (14)

In the frequency domain, the Born approximation is

Esc
B .!; x/ D �

Z
eikjx�zj

4�jx � zjV.z/E
in.!; z/ dz: (15)

The Born approximation is very useful because it makes the imaging problem linear.
It is not, however, always a good approximation; see Sect. 6.

The Incident Field

The incident field E in is obtained by solving (2), where sin is taken to be the relevant
component of the current density on the source antenna and ssc is zero. This article
uses a simplified point-like antenna model, for which sin.t; x/ D p.t/ı.x � x0/,
where p is the waveform transmitted by the antenna. Typically p consists of a
sequence of time-shifted pulses, so that p.t/ DPp0.t � tn/.

In the frequency domain, the corresponding source for (12) is S in.!; x/ D
P.!/ı.x � x0/, where P denotes the inverse Fourier transform of p:

p.t/ D 1

2�

Z
e�i!tP.!/ d!: (16)

Use of (8) shows that the incident field in the frequency domain is

Ein.!; x/ D �
Z
G.!; x� y/P.!/ı.y � x0/ dy

D �P.!/ eikjx�x0j

4�jx� x0j : (17)
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Model for the Scattered Field

In monostatic radar systems, the transmit and receive antennas are colocated – often
the same antenna is used. Use of (17) in (15) shows that the Born-approximated
scattered field at the transmitter location x0 is

Esc
B .!; x

0/ D P.!/
Z

e2ikjx0�zj

.4�/2jx0 � zj2V.z/ dz: (18)

Fourier transforming (18) results in an expression for the time-domain field:

E scB .t; x0/ D
“

e�i!.t�2jx0�zj=c/

2�.4�jx0 � zj/2P.!/V.z/ d! dz

D
Z
p.t � 2jx0 � zj=c/
.4�jx0 � zj/2 V.z/ dz: (19)

Under the Born approximation, the scattered field is a superposition of scattered
fields from point-like targets V.z0/ / ı.z� z0/.

TheMatched Filter

An important aspect of (19) is the 1=R2 geometrical decay (where R D jx0 � zj).
When R is large (which it usually is), this decay factor results in a received signal
that is extremely small – so small, in fact, that it can be dominated by thermal noise
in the receiver. Thus it is difficult even to detect the presence of a target. Target
detection is typically accomplished by means of a matched filter [19, 25, 50].

Below the matched filter is derived for scattering from a single fixed, point-like
target. For such a target, by Eqs. (9) and (19), the signal scattered is simply a time-
delayed version of the transmitted waveform:

srec.t/ D �s.t � �/C n.t/;

where � corresponds to the 2R=c delay, � is a proportionality factor related to the
scatterer reflectivity V.z/ and the geometric decay .4�jx0 � zj/�2, and n denotes
noise.

The strategy is to apply a filter (convolution operator) to srec in order to improve
the signal-to-noise ratio. The filter’s impulse response (convolution kernel) is
denoted by h, which implies that the filter output is

�.t/ D .h � srec/.t/ D ��s.t/C �n.t/; (20)

where
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�s.t/ D
Z
h.t � t 0/s.t 0 � �/ dt 0 and �n.t/ D

Z
h.t � t 0/n.t 0/ dt 0:

The signal output �s.�/ at time � should be as large as possible, relative to the noise
output �n.�/.

The noise is modeled as a random process. Thermal noise in the receiver is well
approximated by white noise, which means that hn.t/n�.t 0/i D Nı.t � t 0/, where
N corresponds to the noise power and h � i denotes expected value. Since the noise
is random, so is �n. Thus the signal-to-noise (SNR) ratio to be maximized is

SNR D j�s.�/j2
hj�n.�/j2i : (21)

First, the denominator of (21) is

hj�n.�/j2i D
*ˇ̌
ˇ̌Z h.� � t 0/n.t 0/ dt 0

ˇ̌
ˇ̌2
+

D
�Z

h.� � t 0/n.t 0/ dt 0
�Z

h.� � t 00/n.t 00/ dt 00
���

D
“

h.� � t 0/h�.� � t 00/ hn.t 0/n�.t 00/i„ ƒ‚ …
Nı.t 0�t 00/

dt 0 dt 00

D N
Z ˇ̌

h.� � t 0/ˇ̌2 dt 0 D N
Z
jh.t/j2 dt;

where in the last line the change of variables t D � � t 0 has been made and where
the star denotes complex conjugation. Thus (21) becomes

SNR D
ˇ̌R
h.� � t 0/s.t 0 � �/ dt 0

ˇ̌2
N
R jh.t/j2 dt

D
ˇ̌R
h.t/s.�t/ dt

ˇ̌2
N
R jh.t/j2 dt

; (22)

where in the numerator the change of variables t D � � t 0 has been made. To the
numerator of (22), the Cauchy–Schwarz inequality can be used to conclude that the
numerator, and therefore the quotient (22), is maximized when h is chosen, so that

h.t/ D s�.�t/:

This is the impulse response of the matched filter. Thus to obtain the best signal-
to-noise ratio, the received signal should be convolved with the time-reversed,
complex-conjugated version of the expected signal.

With this choice, the filter (20) can be written as
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�.t/ D
Z
h.t�t 00/srec.t

00/ dt 00 D
Z
s�.t 00�t/srec.t

00/ dt 00 D
Z
s�.t 0/srec.t

0Ct/ dt 0;
(23)

which is a correlation between s and srec. If s D srec, (23) is called an autocorre-
lation. Radar receivers which perform this kind of signal processing are known as
“correlation receivers.”

The Effect of Matched Filtering on Radar Data When applied to (18), the output
of the correlation receiver is

�.t; x0/ 	
Z
p�.t 0 � t/E scB .t 0; x0/dt 0

D
Z �

1

2�

Z
ei!

0.t 0�t /P �.!0/d!0
�“

e�i!.t 0�2jx0�zj=c/

2�.4�jx0 � zj/2P.!/V.z/d!d z dt 0

D
•

1

2�

Z
ei.!�!/t 0dt 0

„ ƒ‚ …
ı.!0�!/

e�i!.t�2jx0�zj=c/

.4�jx0 � zj/2 P.!/P
�.!0/V .z/d!0d!d z

D
“

e�i!.t�2jx0�zj=c/

.4�jx0 � zj/2 jP.!/j
2V.z/d!d z: (24)

Thus, the effect of matched filtering is simply to replaceP.!/ in the first line of (19)
by 2�jP.!/j2.

The Small-Scene Approximation

The small-scene approximation, namely,

jx� yj D jxj � Ox � yCO
� jyj2
jxj
�
; (25)

where Ox denotes a unit vector in the direction x and is often applied to situations in
which the scene to be imaged is small in comparison with its average distance from
the radar. This approximation is valid for jxj � jyj.

Use of (25) in (4) gives rise to the large-jxj expansion of the Green’s function:
[12, 19]

G.!; x � y/ D eikjx�yj

4�jx� yj D
eikjxj

4�jxje
�ik Ox � y

�
1CO

� jyj
jxj
���

1CO
�
kjyj2
jxj

��
:

(26)
Here, the first-order term must be included in the exponential because k Ox � y can take
on values that are large fractions of 2� .
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Small-Scene, Matched-Filtered Radar Data In (19), the origin of coordinates can
be chosen to be in or near the target, and then the small-scene expansion (26) (with
z playing the role of y) can be used in the matched-filtered version of (19). This
results in the expression for the matched-filtered data:

�B.t/ D 1

.4�/2jx0j2
“

e�i!.t�2jx0j=cC2Ox0 � z=c/jP.!/j2V.z/ d! dz: (27)

The inverse Fourier transform of (27) gives

DB.!/ D e2ikjx0j

.4�/2jx0j2 jP.!/j
2
Z

e�2ik Ox0 � zV.z/ dz
„ ƒ‚ …

F ŒV �.2k Ox0
/

: (28)

Thus we see that each frequency component of the data provides us with a Fourier
component of the reflectivity V .

The Range Profile

Signals with large bandwidth are commonly used in synthetic aperture imaging.
When the bandwidth is large, the pulse p is said to be a high-range-resolution
(HRR) pulse. An especially simple large-bandwidth signal is one for which jP.!/j2
is constant over its support. In this case, the!-integral in Eq. (27) reduces to a scaled
sinc.t/ function centered on

t D 2jx0j=c C 2Ox0 � z=c;

and the width of this sinc function is inversely proportional to the bandwidth. When
the support of jP.!/j2 is infinite, of course, this sinc.t/ becomes a delta function.
Thus large-bandwidth (HRR), matched-filtered data can be approximated by

�B.t/ 	 1

.4�/2jx0j2
Z
ı.t � 2jx0j=c C 2Ox0 � z=c/V .z/ dz: (29)

Since time delay and range are related in monostatic radar systems as t D 2R=c,
Eq. (29) can be seen to be a relation between the radar data �B.t/ and the integral of
the target reflectivity function over the plane

R D jx0j C Ox0 � z

(with respect to the radar). Such data are said to form a “range profile” of the target.
An example of an HRR range profile is displayed in Fig. 1.
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Fig. 1 Example of an HRR range profile of an aircraft (orientation displayed in inset)

4 Survey onMathematical Analysis of Methods

The mathematical models discussed above assume that the target V.z/ is stationary
during its interaction with a radar pulse. However, synthetic aperture imaging
techniques assume that the target moves with respect to the radar between pulses.

Inverse Synthetic Aperture Radar (ISAR)

A fixed radar system staring at a rotating target is equivalent (by change of
reference frame) to a stationary target viewed by a radar moving (from pulse
to pulse) on a circular arc. This circular arc will define, over time, a synthetic
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aperture, and sequential radar pulses can be used to sample those data that would
be collected by a much larger radar antenna. Radar imaging based on such a
data-collection configuration is known as inverse synthetic aperture radar (ISAR)
imaging [5, 15, 41, 59, 66, 74]. This imaging scheme is typically used for imaging
airplanes, spacecraft, and ships. In these cases, the target is relatively small and
usually isolated.

Modeling Rotating Targets The target reflectivity function in a frame fixed to
the target is denoted by q. Then, as seen by the radar, the reflectivity function is
V.x/ D q.O.�n/x/, where O is an orthogonal matrix and where tn D �n denotes
the time at the start of the nth pulse of the sequence.

For example, if the radar is in the plane perpendicular to the axis of rotation
(so-called turntable geometry), then the orthogonal matrix O can be written as

O.�/ D
0
@cos � � sin � 0

sin � cos � 0
0 0 1

1
A (30)

and V.x/ D q.x1 cos � � x2 sin �; x1 sin � C x2 cos �; x3/.

Radar Data from Rotating Targets The use of V.x/ D q .O.�n/x/ in (28)
provides a model for the data from the nth pulse:

DB.!; �n/ D e2ikjx0j

.4�/2jx0j2 jP0.!/j2
Z

e�2ik Ox0 � zq.O.�n/z„ƒ‚…
y

/ dz: (31)

In (31), the change of variables y D O.�n/z is made. Then use is made of the
fact that the inverse of an orthogonal matrix is its transpose, which means that
x0 �O�1.�n/y D O.�n/x0 � y. The result is that (31) can be written in the form

DB.!; �n/ D e2ikjx0j

.4�/2jx0j2 jP0.!/j2
Z

e�2ikO.�n/Ox0 � yq.y/ dy
„ ƒ‚ …

/F Œq�.2kO.�n/Ox0
/

: (32)

Thus, the frequency-domain data are proportional to the inverse Fourier transform
of q, evaluated at points in a domain defined by the angles of the sampled target
orientation and the radar bandwidth (see Fig. 2). Consequently, a Fourier transform
produces a target image.

The target rotation angle is usually not known. However, if the target is rotating
with constant angular velocity, the image produced by the Fourier transform gives
rise to a stretched or contracted image, from which the target is usually recognizable
[5, 41, 66, 72].



776 M. Cheney and B. Borden

Fig. 2 The data-collection
manifold for turntable
geometry

w1

w 2

φ

The Data-Collection Manifold
The Fourier components of the target that can be measured by the radar are those in
the set

z D f2kO.�n/Ox0g; (33)

where n ranges over the indices of pulses for which the point z is in the antenna beam
and where k D !=c with ! ranging over the angular frequencies received by the
radar receiver. The region determined in this manner is called the data-collection
manifold. The extent of the set of angles is called the synthetic aperture, and the
extent of the set of frequencies is called the bandwidth. Typical synthetic apertures
are on the order of a few degrees, and bandwidths of 2� � 500 � 106 rad/s are not
uncommon. Figure 2 shows an example of data-collection manifold corresponding
to turntable geometry; Fig. 3 shows others that correspond to more complex motion.
Typical SAR data-collection manifolds are two-dimensional manifolds. The larger
the data-collection manifold at z, the better the resolution at z.

Examples of ISAR images are shown in Figs. 4 and 5.

ISAR in the Time Domain
Fourier transforming (32) into the time-domain results in

�B.t; �n/ /
“

e�i!.t�2jx0j=cC2O.�n/Ox0 � y=c/jP0.!/j2 d! q.y/ dy: (34)

Evaluation of �B at a shifted time results in the simpler expression

�B

�
t C 2jx0j

c
; �n

�
D
“

e�i!.tC2O.�n/Ox � y=c/jP0.!/j2 d! q.y/ dy: (35)
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Fig. 3 The dark surfaces represent some typical data-collection manifolds that are subsets of a
more complete “data dome”

With the temporary notation � D �2O.�n/Ox � y=c, the ! integral on the right side
of (35) can be written as

Z
e�i!.t��/jP0.!/j2 d! D

Z
ı.s � �/ˇ.t � s/ ds; (36)

where

ˇ.t � s/ D
Z

e�i!.t�s/jP0.!/j2 d!:

With (36), �B can be written

�B

�
t C 2jx0j

c
; �n

�
D
Z
ˇ.t � s/

Z
ı

�
s C 2O.�n/Ox

c
� y
�
q.y/ dy ds

D ˇ �RŒq�
��2O.�n/Ox

c

�
;

where

RŒq�.s; O�/ D
Z
ı.s � O� � y/q.y/ dy (37)

is the Radon transform [43, 46]. Here O� denotes a unit vector. In other words, the
Radon transform of q is defined as the integral of q over the plane s D O� � y.
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Fig. 4 An ISAR image of a Boeing 727 from a 5ı aperture [70]

Fig. 5 On the left is an ISAR image of a ship; on the right is an optical image of the same ship
(Courtesy Naval Research Laboratory)
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ISAR systems typically use a high-range-resolution (large-bandwidth) wave-
form, so that ˇ 	 ı (see section “The Range Profile”). Thus ISAR imaging from
time-domain data becomes a problem of inverting the Radon transform.

Synthetic Aperture Radar

In ISAR, the target rotates and the radar is stationary, whereas in synthetic aperture
radar (SAR), the target is stationary and the radar moves. (In typical ISAR data-
collection scenarios, both the radar and the target are actually in motion, and so this
distinction is somewhat arbitrary.) For most SAR systems [9, 20, 21, 29, 35, 60], the
antenna is pointed toward the earth. For an antenna viewing the earth, an antenna
beam pattern must be included in the model. For highly directive antennas, often
simply the antenna “footprint,” which is the illuminated area on the ground, is used.

For a receiving antenna at the same location as the transmitting antenna, the
scalar Born model for the received signal is

SB.!/ D
Z

e2ikjx0�yjA.!; x0; y/V .y/ dy; (38)

where A incorporates the geometrical spreading factors jx0 � yj�2, transmitted
waveform, and antenna beam pattern. More details can be found in [15].

SAR data-collection systems are usually configured to transmit a series of pulses
with the nth pulse transmitted at time tn. The antenna position at time tn is denoted
by �n. Because the time scale on which the antenna moves is much slower than the
time scale on which the electromagnetic waves propagate, the time scales separate
into a slow time, which corresponds to the n of tn, and a fast time t .

In (38) the antenna position x0 is replaced by �n:

D.!; n/ D F ŒV �.!; s/ 

Z

e2ikj�n�yjA.!; n; y/V .y/ dy; (39)

where with a slight abuse of notation, the x0 in the argument of A has been replaced
by n. This notation also allows for the possibility that the waveform and antenna
beam pattern could be different at different points along the flight path. The time-
domain version of (39) is

d.t; n/ D
Z

e�i!Œt�2j�n�yj=c�A.!; n; y/V .y/ dy: (40)

The goal of SAR is to determine V from the data d .
As in the case of ISAR, assuming that � and A are known, the data depend

on two variables, so it should be possible to form a two-dimensional image. For
typical radar frequencies, most of the scattering takes place in a thin layer at the
surface. The ground reflectivity function V is therefore assumed to be supported on
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Fig. 6 In spotlight SAR, the radar is trained on a particular location as the radar moves. In
this figure, the equi-range circles (dotted lines) are formed from the intersection of the radiated
spherical wave front and the surface of a (flat) earth

a known surface. For simplicity this surface is assumed to be a flat plane, so that
V.x/ D V.x/ı.x3/, where x D .x1; x2/.

SAR imaging comes in two basic varieties: spotlight SAR [9, 35] and stripmap
SAR [20, 21, 29, 60].

Spotlight SAR
Spotlight SAR is illustrated in Fig. 6. Here, the moving radar system stares at a
specific location (usually on the ground), so that at each point in the flight path the
same scene is illuminated from a different direction. When the ground is assumed
to be a horizontal plane, the iso-range curves are large circles whose centers are
directly below the antenna at �n. If the radar antenna is highly directional and the
antenna footprint is sufficiently far away, then the circular arcs within the footprint
can be approximated as lines. Consequently, the imaging method is mathematically
the same as that used in ISAR.

In particular, the origin of coordinates is taken within the footprint, and the small-
scene expansion is used, which results in an expression for the matched-filtered
frequency-domain data:

D.!; n/ D e2ikj�nj
Z

e2ikb�n � yV.y/A.!; n; y/ dy: (41)

Within the footprint, A is approximated as a product A D A1.!; n/A2.y/. The
function A1 can be taken outside the integral; the function A2 can be divided out
after inverse Fourier transforming.

As in the ISAR case, the time-domain formulation of spotlight SAR leads to a
problem of inverting the Radon transform. An example of a spotlight SAR image is
shown in Fig. 12.
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Fig. 7 Stripmap SAR acquires data without staring. The radar typically has fixed orientation with
respect to the flight direction, and the data are acquired as the beam footprint sweeps over the
ground

Stripmap SAR
Stripmap SAR sweeps the radar beam along with the platform without staring at
a particular location on the ground (Fig. 7). The equi-range curves are still circles,
but the data no longer depend only on the direction from the antenna to the scene.
Moreover, because the radar does not stare at the same location, there is no natural
origin of coordinates for which the small-scene expansion is valid.

To form a stripmap SAR image, the expression (39) must be inverted without the
help of the small-scene approximation. One strategy is to use a filtered adjoint of
the forward map F defined by Eq. (39).

The Formal Adjoint of F The adjoint F � is an operator such that

hf; Fgi!;s D hF �f; gix; (42)

where h � ; � i denotes inner product in the appropriate variables. More specifi-
cally, (42) can be written as

Z
f .!; s/ .Fg/� .!; s/ d! ds D

Z
.F �f /.x/g�.x/ dx: (43)

Use of (39) in (43) and an interchange of the order of integration leads to

F �f .x/ D
“

e�2ikj�.s/�xjA.!; s; x/f .!; s/ d! ds: (44)
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The Imaging Operator Thus, the imaging operator is assumed to be of the form

I.z/ D BŒD�.z/ 

“

e�2ikj�.s/�zT jQ.!; s; z/D.!; s/ d! ds; (45)

where zT D .z; 0/ and Q is a filter to be determined below. The time-domain
version is

I.z/ D BŒd �.z/ 

“

ei!.t�2j�.s/�zT j=c/Q.!; s; z/ d!d.t; s/ ds dt: (46)

If the filter Q were to be chosen to be identically 1, then, because of (5), the time-
domain inversion would have the form

I.z/ D
“

ı.t � 2j�.s/ � zT j=c/d.t; s/ ds dt

D
Z
d.2j�.s/� zT j=c; s/ ds; (47)

which can be interpreted as follows: at each antenna position s, the data is
backprojected (smeared out) to all the locations z that are at the correct travel
time 2j�.s/ � zT j=c from the antenna location �.s/. Then all the contributions are
summed coherently (i.e., including the phase). Figure 8 shows the partial sums over
s as the antenna (white triangle) moves along a straight flight path from bottom to
top.

An alternative interpretation is that to form the image at the reconstruction point
z, all the contributions from the data at all points .t; s/ for which t D 2j�.s/� zT j=c
are coherently summed.

Note the similarity between (47) and (61): (61) backprojects over lines or planes,
whereas (47) backprojects over circles. The inversion (46) first applies the filter Q
and then backprojects.

Other SAR Algorithms The image formation algorithm discussed here is filtered
backprojection. This algorithm has many advantages, one of them being great
flexibility. This algorithm can be used for any antenna beam pattern, for any flight
path, and for any waveform; a straightforward extension [48] can be used in the case
when the topography is not flat.

Nevertheless, there are various other algorithms that can be used in special cases,
for example, if the flight path is straight, if the antenna beam is narrow, or if a
chirp waveform is used. Discussions of these algorithms can be found in the many
excellent radar imaging books such as [9, 20, 29, 35, 61].
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Resolution for ISAR and Spotlight SAR

To determine the resolution of an ISAR image, the relationship between the image
and the target is analyzed.

For turntable geometry, (30) is used. The viewing direction is taken to be x0 D
.1; 0; 0/, with Oe� D O.�/x0 and Qk D 2k. Then (32) is proportional to

eD. Qk; �/ D
Z

e�i QkOe� � yq.y/ dy

D
“

e�i Qk.y1 cos �Cy2 sin �/
Z
q.y1; y2; y3/ dy3

„ ƒ‚ …
Qq.y1;y2/

dy1 dy2: (48)

The data depend only on the quantity Qq.y1; y2/ D
R
q.y1; y2; y3/ dy3, which is a

projection of the target onto the plane orthogonal to the axis of rotation. In other
words, in the turntable geometry, the radar imaging projection is the projection onto
the horizontal plane. With the notation y D .y1; y2/, so that y D .y; y3/, it is clear
that Oe� � y D .P Oe� / � y, where P W R3 ! R

2 denotes the projection onto the first two
components of a three-dimensional vector.

The data-collection manifold  D f QkOe� W !1 < ! < !2 and j� j < ˆg is shown
in Fig. 2. Then (48) can be written as

eD. Qk; �/ D 	. Qk Oe� /F Œ Qq�. Qk Oe� /; (49)

where 	. QkOe� / denotes the function that is 1 if QkOe� 2  and 0 otherwise.
The image is formed by taking the two-dimensional inverse Fourier transform

of (49):

I.x/ D
“

eix � Qk.P Oe� /eD. Qk; �/ Qk d Qkd� /
Z


eix � Qk.P Oe� /
“
e�iy � Qk.P Oe� / Qq.y/ dy Qk d Qk d�

D
Z “



ei.x�y/ � Qk.P Oe� / Qk d Qk d�

„ ƒ‚ …
K.x � y/

Qq.y/ dy: (50)

The function K is the point-spread function (PSF); it is also called the imaging
kernel, impulse response, or sometimes ambiguity function. The PSF can be written
as

K.x/ /
“


eix � Qk.P Oe� / Qk d Qk d� D
Z j�jD Qk2

j�jD Qk1

Z ˆ

�ˆ
eix � Qk.P Oe� / Qk d Qk d�: (51)
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It can be calculated by writing

x D r.cos ; sin / and .P Oe� / D .cos�; sin �/; (52)

so that x � .P Oe� / D r cos.�� /. The “down-range” direction corresponds to D 0
and “cross-range” corresponds to  D �=2.

Down-Range Resolution in the Small-Angle Case
For many radar applications, the target is viewed from only a small range of aspects
Oe� ; in this case, the small-angle approximations cos� 	 1 and sin � 	 � can be
used.

In the down-range direction ( D 0), under the small-angle approximation, (51)
becomes

K.r; 0/ 	
Z Qk2

Qk1

Qk
Z ˆ

�ˆ
ei Qkr d� d Qk

D 2ˆ
Z Qk2

Qk1

Qkei Qkr d Qk D 2ˆ

i

d

dr

Z Qk2

Qk1

ei Qkr d Qk

D 2ˆ

i

d

dr

�
ei Qk0r

b

2
sinc

br

2

�
; (53)

where b D Qk2� Qk1 D 4�B=c, B is the bandwidth in hertz, and Qk0 D . Qk1C Qk2/=2 D
2�.�1 C �2/ D 2��0, where �0 is the center frequency in hertz.

Since Qk0 � b, the leading order term of (53) is obtained by differentiating the
exponential:

K.r; 0/ 	 b Qk0ˆ ei Qk0r sinc
1

2
br; (54)

yielding peak-to-null down-range resolution 2�=b D c=.2B/. Here, it is the sinc
function that governs the resolution.

Cross-Range Resolution in the Small-Angle Case
In the cross-range direction ( D �=2), the approximation cos.�� / D sin� 	 �
holds under the small-angle assumption. With this approximation, the computation
of (51) is

K.0; r/ 	
Z Qk2

Qk1

Qk
Z ˆ

�ˆ
ei Qkr� d� d Qk

D
Z Qk2

Qk1

Qk ei Qkrˆ � e�i Qkrˆ

i Qkr d Qk

D 1

ir

�
ei Qk0rˆb sinc

�
1

2
brˆ

�
� e�i Qk0rˆb sinc

�
1

2
brˆ

��

D 2b Qk0ˆ sinc

�
1

2
brˆ

�
sinc. Qk0rˆ/: (55)
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Since Qk0 � b,

K.0; r/ Ð 2b Qk0ˆ sinc. Qk0rˆ/: (56)

Thus the peak-to-null cross-range resolution is �=. Qk0ˆ/ D c=.4�0ˆ/ D �0=.4ˆ/.
Since the angular aperture is 2ˆ, the cross-range resolution is �0 divided by twice
the angular aperture.

Example Figure 9 shows a numerical calculation of K for � D 12ı and two
different frequency bands: Œ Qk1; Qk2� D Œ0; 300� (i.e., b D 300 and Qk0 D 150, and
Œ Qk1; Qk2� D Œ200; 300�) (i.e., b D 100 and Qk0 D 250). The first case is not relevant
for most radar systems, which do not transmit frequencies near zero, but is relevant
for other imaging systems such as X-ray tomography. These results are plotted in
Fig. 9.
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Fig. 9 From left to right: the data-collection manifold, the real part of K , cross sections
(horizontal is rapidly oscillating; vertical is slowly oscillating) through the real part of K for the
two cases. Down range is horizontal (Reprinted with permission from [45])
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5 Numerical Methods

ISAR and Spotlight SAR Algorithms

The Polar Format Algorithm (PFA) For narrow-aperture, turntable-geometry
data, such as shown in Fig. 2, the polar format algorithm (PFA) is commonly used.
The PFA consists of the following steps, applied to frequency-domain data:

1. Interpolate from a polar grid to a rectangular grid (see Fig. 10.)
2. Use the two-dimensional discrete (inverse) Fourier transform to form an image

of q.

Alternatively, algorithms for computing the Fourier transform directly from a
nonuniform grid can be used [33, 46, 57].

Inversion by Filtered Backprojection For the n-dimensional Radon transform,
one of the many inversion formulas [43, 44] is

f D 1

2.2�/n�1
R�I1�n .RŒf �/ ; (57)

where I1�n is the Riesz operator (filter)

I˛f D F�1 Œj�j�˛Ff � (58)

operating on the s variable, and the operator R� is the formal adjoint of R. (Here
the term “formal” means that the convergence of the integrals is not considered; the

Fig. 10 This illustrates the
process of interpolating from
a polar grid to a rectangular
grid

Polar data grid

Rectangular
interpolating grid

Measured data

Interpolated data
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identities are applied only to functions that decay sufficiently rapidly, so that the
integrals converge.) The adjoint is defined by the relation

hRf; hi
s;b� D hf;R�hix; (59)

where

hRf; hi
s;b� D

“
R.s;b�/h�.s;bu/ ds db� (60)

and

hf;R�hix D
Z
f .x/ŒR�h��.x/ dx:

Using (37) in (60) and interchanging the order of integration show that the adjoint
R� operates on h.s;�/ via

.R�h/.x/ D
Z
Sn�1

h.x �b�;b�/ db�: (61)

Here R� integrates over the part of h corresponding to all planes (n D 3) or
lines (n D 2) through x. When R� operates on Radon data, it has the physical
interpretation of backprojection. For example, in the case where h represents Radon
data from a point-like target, for a fixed direction O�, the quantity h.x �b�;b�/, as a
function of x, is constant along each plane (or line if n D 2) x � O� D constant. Thus,
at each O�, the function h.x �b�;b�/ can be thought of as an image in which the data h
for direction Ou is backprojected (smeared) onto all points x that could have produced
the data for that direction. The integral in (61) then sums the contributions from all
the possible directions. (See Fig. 11.) The inversion formula (57) is thus a filtered
backprojection formula. Fast backprojection algorithms have been developed by a
number of authors (e.g., [24, 76]).

Range Alignment

ISAR imaging relies on target/radar relative motion. An assumption made through-
out is that the target moves as a rigid body – an assumption that ignores the flexing of
aircraft lift and control surfaces or the motion of vehicle treads. Moreover, arbitrary
rigid-body motion can always be separated into a rotation about the body’s center of
mass and a translation of that center of mass. Backprojection shows how the rotation
part of the relative radar/target motion can be used to reconstruct a two-dimensional
image of the target in ISAR and spotlight SAR. But, usually while the target is
rotating and the radar system is collecting data, the target will also be translating,
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Single pulse ambiguity

Multiple pulse “imaging”

Fig. 11 This figure illustrates the process of backprojection. The range profiles (inset) suggest
the time delays that would result from an interrogating radar pulse incident from the indicated
direction. Note that scatterers that lie at the same range from one view do not lie at the same range
from other views

and this has not been accounted for in the imaging algorithm. In Eqs. (27) and (28),
for example, R D jx0j was implicitly set to a constant (Fig. 12).

Typically, the radar data are preprocessed to subtract out the effects of target
translation before the imaging step is performed. Under the start–stop approxima-
tion, the range profile data �B.t; �n/ is approximately a shifted version of the range
profile (see section “The Range Profile”) at the previous pulse. Thus �B.t; �nC1/ 	
�B.t C �tn; �n/, where �tn is a range offset that is determined by target motion
between pulses.

The collected range profiles can be shifted to a common origin if �tn can be
determined for each �n. One method to accomplish this is to assume that one of the
peaks in each of the range profiles (e.g., the strongest peak) is always due to the
same target feature and so provides a convenient origin. This correction method is
known as “range alignment” and must be very accurate in order to correct the offset
error within a fraction of a wavelength. (Note that the wavelength in question is
that of the signal output by the correlation receiver and not the wavelength of the
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Fig. 12 A radar image from a circular flight path, together with an optical image of the same
scene. The bright ring in the top half of the radar image is a “top-hat” calibration target used to
focus the image (Courtesy US Air Force Sensors Directorate)

transmitted waveform. In HRR systems, however, this wavelength can still be quite
small.) Typically, �B.tC�tn; �n/ is correlated with �B.t; �nC1/, and the correlation
maximum is taken to indicate the size of the shift �tn. This idea is illustrated in
Fig. 13 which displays a collection of properly aligned range profiles.

When the scattering center used for range alignment is not a single point but,
rather, several closely spaced and unresolved scattering centers, then additional con-
structive and destructive interference effects can cause the range profile alignment
feature – assumed to be due to a single well-localized scatterer – to vary rapidly
across the synthetic aperture (i.e., such scattering centers are said to “scintillate”).
For very complex and scintillating targets, other alignment methods are used: for
example, if the target is assumed to move along a “smooth” path, then estimates



Synthetic Aperture Radar Imaging 791

0.2

0.1

0.0

0 10 20 30
y (m)

Alignment peak

10
 lo

g|
h B

|2 
(d

B
)

q °

Fig. 13 Range alignment preprocessing in synthetic aperture imaging. The effects of target
translation must be removed before backprojection can be applied

of its range, range rate, range acceleration, and range jerk (time derivative of
acceleration) can be used to express target range as a polynomial in time

R.�n/ D R.0/C PR�n C 1

2
RR�2
n C

1

6
«R�3

n : (62)

In terms of this polynomial,

�tn D 2
R.�n/ �R.0/

c
D 2

PR�n C 1
2
RR�2
n C 1

6
«R�3

n

c
; (63)

where PR, RR, and «R are radar measurables.
Of course, the need for range alignment preprocessing is not limited to ISAR

imaging; similar motion compensation techniques are needed in SAR as well
(Fig. 14).

6 Open Problems

In the decades since the invention of synthetic aperture radar imaging, there has
been much progress, but many open problems still remain. And most of these open
problems are mathematical in nature.

As outlined at the beginning of Sect. 3, SAR imaging is based on specific
assumptions, which in practice may not be satisfied. When they are not satisfied,
artifacts appear in the image.
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Motion compensated

Uncompensated

Three-meter resolution

Fig. 14 The effect of motion compensation in a Ku-band image (Courtesy Sandia National
Laboratories)

Problems Related to UnmodeledMotion

SAR image formation algorithms assume the scene to be stationary. Motion in the
scene gives rise to mispositioning or streaking (see Figs. 15 and 16). This effect is
analyzed in [28].

However, it is of great interest to use radar to identify moving objects; systems
that can do this are called moving target indicator (MTI) systems or ground moving
target indicator (GMTI) systems.

1. How can artifacts associated with targets that move during data collection [54] be
mitigated? Moving targets cause Doppler shifts and also present different aspects
to the radar [14]. An approach for exploiting unknown motion is given in [65].

2. Both SAR and ISAR are based on known relative motion between the target and
sensor, for example, the assumption that the target behaves as a rigid body. When
this is not the case, the images are blurred or uninterpretable. Better methods for
finding the relative motion between the target and sensor are also needed [6,65].
Better algorithms are needed for determining the antenna position from the radar
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Fig. 15 A Ku-band image showing streaking due to objects moving in the scene (Courtesy Sandia
National Laboratories and SPIE)

data itself. Such methods include autofocus algorithms [35, 40], some of which
use a criterion such as image contrast to focus the image.

3. When the target motion is complex (pitching, rolling, and yawing), it may be
possible to form a three-dimensional image; fast, accurate methods for doing
this are needed [65]. How can moving objects be simultaneously tracked [58]
and imaged?

Problems Related to Unmodeled Scattering Physics

1. How can images be formed without the Born approximation? The Born approx-
imation leaves out many physical effects, including not only multiple scattering
and creeping waves but also shadowing, obscuration, and polarization changes.
But without the Born approximation (or the Kirchhoff approximation, which is
similar), the imaging problem is nonlinear. In particular, how can images be
formed in the presence of multiple scattering? (See [6, 13, 31, 49, 73].) Artifacts
due to the Born approximation can be seen in Fig. 4, where the vertical streaks
near the tail are due to multiple scattering in the engine inlets. Can multiple
scattering be exploited [13, 39] to improve resolution?
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Fig. 16 A 4-in. resolution of SAR image from Sandia National Laboratories. Only certain parts
of the airplanes reflect radar energy. The inset is an optical image of the airplanes (Courtesy Sandia
National Laboratories)

2. Scattering models need to be developed that include as much of the physics as
possible but are still simple enough for use in the inverse problem. An example
of a simple model that includes relevant physics is [56].

3. How can polarization information [4, 17, 18, 55, 71] be exploited? This problem
is closely connected to the issue of multiple scattering: the usual linear models
predict no change in the polarization of the backscattered electric field. Conse-
quently linear imaging methods cannot provide information about how scatterers
change the polarization of the interrogating field. A paper that may be useful here
is [68].

4. How can prior knowledge about the scene be incorporated in order to improve
resolution? There is interest in going beyond simple aperture/bandwidth-defined
resolution [45,66]. One approach that has been suggested is to apply compressive
sensing ideas [1, 10, 42] to SAR.

5. How can information in the radar shadow be exploited? In many cases it is
easier to identify an object from its shadow than from its direct-scattering image.
(See Fig. 17.) A backprojection method for reconstructing an object’s three-
dimensional shape from its shadows obtained at different viewing angles is
proposed in [23]. What determines the resolution of this reconstruction?
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Fig. 17 A 4-in. resolution image from Sandia National Laboratories. Note the shadows of the
historical airplane, helicopter, and trees (Courtesy of Sandia National Laboratories)

New Applications of Radar Imaging

1. Can radar systems be used to identify individuals by their gestures or gait? Time-
frequency analysis of radar signals gives rise to micro-Doppler time-frequency
images [11], in which the motion of arms and legs can be identified.

2. How can radar be used to form images of urban areas? It is difficult to form SAR

images of urban areas, because in cities the waves undergo complicated multipath
scattering. Areas behind buildings lie in the radar shadows, and images of tall
buildings can obscure other features of interest. In addition, urban areas tend to
be sources of electromagnetic radiation that can interfere with the radiation used
for imaging.

One approach that is being explored is to use a persistent or staring radar sys-
tem [27] that would fly in circles [61] around a city of interest (see, e.g., Fig. 12).
Thus, the radar would eventually illuminate most of the areas that would be shad-
owed when viewed from a single direction. However, this approach has the added
difficulty that the same object will look different when viewed from different
directions. How can the data from a staring radar system be used to obtain the
maximum amount of information about the (potentially changing) scene?
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3. If sensors are flown on unoccupied aerial vehicles (UAVs), where should these
UAVs fly? The notion of swarms of UAVs [2] gives rise not only to challenging
problems in control theory but also to challenging imaging problems.

4. Many of these problems motivate a variety of more theoretical open problems
such as the question of whether backscattered data uniquely determines a
penetrable object or a non-convex surface [63, 72]. There is a close connection
between radar imaging and the theory of Fourier integral operators [48]. How
can this theory be extended to the case of dispersive media and to nonlinear
operators? Is it possible to develop a theory of the information content [37, 52]
of an imaging system?

7 Conclusion

Radar imaging is a mathematically rich field with many interesting open problems.
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Abstract
We define tomography as the process of producing an image of a distribution (of
some physical property) from estimates of its line integrals along a finite number
of lines of known locations. We touch upon the computational and mathematical
procedures underlying the data collection, image reconstruction, and image
display in the practice of tomography. The emphasis is on reconstruction
methods, especially the so-called series expansion reconstruction algorithms.

We illustrate the use of tomography (including three-dimensional displays
based on reconstructions) both in electron microscopy and in X-ray computerized
tomography (CT), but concentrate on the latter. This is followed by a classifica-
tion and discussion of reconstruction algorithms. In particular, we discuss how to
evaluate and compare the practical efficacy of such algorithms.
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1 Introduction

To get the flavor of tomography in general, we first discuss a special case: X-
ray computerized tomography (CT) for reconstructing the distribution within a
transverse section of the human body of a physical parameter (the “relative linear
attenuation at energy Ne” whose value at the point .x; y/ in the section is denoted
by �Ne.x; y/) from multiple X-ray projections. A typical method by which data
are collected for transverse section imaging in CT is indicated in Fig. 1. A large
number of measurements are taken. Each of these measurements is related to an
X-ray source position combined with an X-ray detector position, and from the
measurements we can (based on physical principles) estimate the line integral of
�Ne along the line between the source and the detector. The mathematical problem
is: given a large number of such projections, reconstruct the image �Ne.x; y/.

A chapter such as this can only cover a small part of what is known about
tomography. A much extended treatment in the same spirit as this chapter is given in
[23]. For additional information on mathematical matters related to CT, the reader
may consult the books [7, 17, 24, 29, 50]. In particular, because of the mathematical
orientation of this handbook, we will not get into the details of the how the line
integrals are estimated from the measurements. (Such details can be found in [23].
They are quite complicated: in addition to the actual measurement with the patient
in the scanner a calibration measurement needs to be taken, both of these need to be
normalized by the reference detector indicated in Fig. 1, correction has to be made
for the beam hardening that occurs due to the X-ray beam being polychromatic
rather than consisting of photons at the desired energy Ne, etc.)

2 Background

The problem of image reconstruction from projections has arisen independently
in a large number of scientific fields. A most-important version of the problem
in medicine is CT; it has revolutionized diagnostic radiology over the past four
decades. The 1979 Nobel prize in physiology and medicine was awarded to Allan
M. Cormack and Godfrey N. Hounsfield for the development of X-ray computerized
tomography [9, 31]. The 1982 Nobel prize in chemistry was awarded to Aaron
Klug, one of the pioneers in the use of reconstruction from electron microscopic
projections for the purpose of elucidation of biologically important molecular
complexes [11,13]. The 2003 Nobel prize in physiology and medicine was awarded
to Paul C. Lauterbur and Peter Mansfield for their discoveries concerning magnetic
resonance imaging, which also included the use of image reconstruction from
projections methods [38].

In some sense this problem was solved in 1917 by Johann Radon [52]. Let `
denote the distance of the line L from the origin, let � denote the angle made with
the x axis by the perpendicular drawn from the origin to L (see Fig. 1), and let
m.`; �/ denote the integral of �Ne along the line L. Radon proved that
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Fig. 1 Data collection for CT (reproduced from [23])

�Ne.x; y/ D � 1

2�2
lim
"!0

Z 1

"

1

q

Z 2�

0
m1.x cos � C y sin � C q; �/ d� dq; (1)

where m1.`; �/ denotes the partial derivative of m.`; �/ with respect to `. The
implication of this formula is clear: the distribution of the relative linear attenuation
in an infinitely thin slice is uniquely determined by the set of all its line integrals.
However:

(a) Radon’s formula determines an image from all its line integrals. In CT we have
only a finite set of measurements; even if they were exactly integrals along lines,
a finite number of them would not be enough to determine the image uniquely,
or even accurately. Based on the finiteness of the data one can produce objects
for which the reconstructions will be very inaccurate (Section 15.4 of [23]).

(b) The measurements in computed tomography can only be used to estimate the
line integrals. Inaccuracies in these estimates are due to the width of the X-ray
beam, scatter, hardening of the beam, photon statistics, detector inaccuracies,
etc. Radon’s inversion formula is sensitive to these inaccuracies.

(c) Radon gave a mathematical formula; we need an efficient algorithm to evaluate
it. This is not necessarily trivial to obtain. There has been a very great deal of
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Fig. 2 Engineering rendering of a 2008 CT scanner (provided by GE Healthcare)

activity to find algorithms that are fast when implemented on a computer and yet
produce acceptable reconstructions in spite of the finite and inaccurate nature of
the data. This chapter concentrates on this topic.

3 Mathematical Modeling and Analysis

The mathematical model for CT is illustrated in Fig. 1. An engineering realization of
this model is shown in Fig. 2. The tube contains a single X-ray source, the detector
unit contains an array of X-ray detectors. Suppose for the moment that the X-ray
Tube and Collimator on the one side and the Data Acquisition/Detector Unit on the
other side are stationary, and the patient on the table is moved between them at a
steady rate. By shooting a fan beam of X-rays through the patient at frequent regular
intervals and detecting them on the other side, we can build up a two-dimensional
X-ray projection of the patient that is very similar in appearance to the image that
is traditionally captured on an X-ray film. Such a projection is shown in Fig. 3a.
The brightness at a point is indicative of the total attenuation of the X-rays from the
source to the detector. This mode of operation is not CT, it is just an alternative way
of taking X-ray images. In the CT mode, the patient is kept stationary, but the tube
and the detector unit rotate (together) around the patient. The fan beam of X-rays
from the source to the detector determines a slice in the patient’s body. The location
of such a slice is shown by the horizontal line in Fig. 3a.

Data are collected for a number of fixed positions of the source and detector;
these are referred to as views. For each view, we have a reading by each of
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Fig. 3 (a) Digitally radiograph with line marking the location of the cross section for which the
following images were obtained. (b) Sinogram of the projection data. (c) Reconstruction from the
projection data (images were obtained using a Siemens Sensation CT scanner by R. Fahrig and J.
Starman at Stanford University)

the detectors. All the detector readings for all the views can be represented as a
sinogram, shown in Fig. 3b. The intensities in the sinogram are proportional to
the line integrals of the X-ray attenuation coefficient between the corresponding
source and detector positions. From these line integrals, a two-dimensional image
of the X-ray attenuation coefficient distribution in the slice of the body can be
produced by the techniques of image reconstruction. Such an image is shown in
Fig. 3c. Inasmuch as different tissues have different X-ray attenuation coefficients,
boundaries of organs can be delineated and healthy tissue can be distinguished from
tumors. In this way CT produces cross-sectional slices of the human body without
surgical intervention.

We can use the reconstructions of a series of parallel transverse sections to
discover and display the precise shape of selected organs; see Fig. 4. Such displays
are obtained by further computer processing of the reconstructed cross sections [59].

As a second illustration of the many applications of tomography (for a more
complete coverage see Section 1.1 of [23]), we note that three-dimensional recon-
struction of nano-scale objects (such as biological macromolecules) can be accom-
plished using data recorded with a transmission electron microscope (see Fig. 5)
that produces electron micrographs, such as the one illustrated in Fig. 6, in which
the grayness at each point is indicative of a line integral of a physical property of
the object being imaged. From multiple electron micrographs one can recover the
structure of the object that is being imaged; see Fig. 7.

What we have just illustrated in our electron microscopy example is a reconstruc-
tion of a three-dimensional object from two-dimensional projections; as opposed to
what is shown in Fig. 1, which describes the collection of data for the reconstruction
of a two-dimensional object. In fact, recently developed CT scanners are not like
that, they collect a series of two-dimensional projections of the three-dimensional
object to be reconstructed.

Helical CT (also referred to as spiral CT) first started around 1990 [10, 34]
and has become standard for medical diagnostic X-ray CT. Typical state-of-the-
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Fig. 4 Three-dimensional displays of bone structures of patients produced during 1986–1988 by
software developed in the author’s research group at the University of Pennsylvania for the General
Electric Company. (a) Facial bones of an accident victim prior to operation. (b) The same patient at
the time of a 1-year postoperative follow-up. (c) A tibial fracture. (d) A pelvic fracture (reproduced
from [23])

art versions of such systems have a single X-ray source and multiple detectors in
a two-dimensional array. The main innovation over previously used technologies
is the presence of two independent motions: while the source and detectors rotate
around the patient, the table on which the patient lies is continuously moved between
them (typically orthogonally to the plane of rotation), see Fig. 8. Thus, the trajectory
of the source relative to the patient is a helix (hence the name “helical CT”).
Helical CT allows rapid imaging as compared with the previous commercially
viable approaches, which has potentially many advantages. One example is when
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Fig. 5 Schematic drawing of a transmission electron microscope (illustration provided by C. San
Martín of the Centro Nacional de Biotecnología, Spain)

we wish to image a long blood vessel that is made visible to X-rays by the injection
of some contrast material: helical CT may very well allow us to image the whole
vessel before the contrast from a single injection washes out and this may not be
possible by the slower scanning modes. We point out that the CT scanner illustrated
in Fig. 2 is in fact modern helical CT scanner.

For the sake of not over-complicating our discussion, in this chapter we restrict
our attention (except where it is explicitly stated otherwise) to the problem of
reconstructing two-dimensional objects from one-dimensional projections, rather
than to what is done by modern helical cone-beam scanning (as in Fig. 8) and
volumetric reconstruction. Schematically, the method of our data collection is shown
in Fig. 9. The source and the detector strip are on either side of the object to be
reconstructed and they move in unison around a common center of rotation denoted
by O in Fig. 9. The data collection takes place in M distinct steps. The source and
detector strip are rotated between two steps of the data collection by a small angle,
but are assumed to be stationary while the measurement is taken. The M distinct
positions of the source during the M steps of the data collection are indicated by
the points S0; : : : ; SM�1 in Fig. 9. In simulating this geometry of data collection,
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Fig. 6 Part of an electron
micrograph containing
projections of multiple copies
of the human adenovirus type
5 (illustration provided by C.
San Martín of the Centro
Nacional de Biotecnología,
Spain)

Fig. 7 Top: Reconstructed values, from electron microscopic data such as in Fig. 6, of the human
adenovirus type 5 in three mutually orthogonal slices through the center of the reconstruction.
Bottom: Computer graphic display of the surface of the virus based on the three-dimensional
reconstruction (illustration provided by C. San Martín of the Centro Nacional de Biotecnología,
Spain)
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Fig. 8 Helical (also known as spiral) CT (illustration provided by G. Wang of the Virginia
Polytechnic Institute & State University)
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Fig. 9 Schematic of a standard method of data collection (divergent beam). This is consistent with
the data collection mode for CT that is shown in Fig. 1 (reproduced from [23])

we assume that the source is a point source. The detector strip consists of 2N C 1
detectors, spaced equally on an arc whose center is the source position. The line
from the source to the center of rotation goes through the center of the central
detector. (This description is that of the geometry that is assumed in much of what
follows and it does not exactly match the data collection by any actual CT scanner.
In particular, in real CT scanners the central ray usually does not go through the
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middle of the central detector, as a 1/4 detector offset is quite common.) The object
to be reconstructed is a picture such that its picture region (i.e., a region outside of
which the values assigned to the picture are zero) is enclosed by the broken circle
shown in Fig. 9. We assume that the origin of the coordinate system (with respect
to which the picture values �Ne.x; y/ are defined) is the center of rotation, O, of the
apparatus.

Until now we have used �Ne.x; y/ to denote the relative linear attenuation at the
point .x; y/, where .x; y/ was in reference to a rectangular coordinate system, see
Fig. 1. However, it is often more convenient to use polar coordinates. We use the
phrase a function of two polar variables to describe a function f whose values
f .r; �/ represent the value of some physical parameter (such as the relative linear
attenuation) at the geometrical point whose polar coordinates are .r; �/.

We define the Radon transform Rf of a function f of two polar variables as
follows: for any real number pairs .`; �/,

ŒRf � .`; �/ D
Z 1

�1
f
�p

`2 C z2; � C tan�1.z=`/
�
d z; if ` ¤ 0;

ŒRf � .0; �/ D
Z 1

�1
f .z; � C �=2/ d z:

(2)

Observing Fig. 1, we see that ŒRf � .`; �/ is the line integral of f along the line
L. (Note that the dummy variable z in (2) does not exactly match the variable z as
indicated in Fig. 1. In (2) z D 0 corresponds to the point where the perpendicular
dropped on L from the origin meets L.)

In tomography we may assume that a picture function has bounded support; i.e.,
that there exists a real number E , such that f .r; �/ D 0 if r > E. (E can be chosen
as the radius of the broken circle in Fig. 9, which should enclose the square-shaped
reconstruction region in Fig. 1.) For such a function, ŒRf � .`; �/ D 0 if ` > E.

The input data to a reconstruction algorithm are estimates (based on physical
measurements) of the values of ŒRf � .`; �/ for a finite number of pairs .`; �/; its
output is an estimate, in some sense, of f . Suppose that estimates of ŒRf � .`; �/
are known for I pairs: .`1; �1/ ; : : : ; .`I ; �I /. For 1 � i � I , we define Ri f by

Ri f D ŒRf � .`i ; �i /: (3)

In what follows we use yi to denote the available estimate of Rif and we use y to
denote the I -dimensional vector whose i th component is yi . We refer to the vector y
as the measurement vector. When designing a reconstruction algorithm we assume
that the method of data collection, and hence the set f.`1; �1/ ; : : : ; .`I ; �I /g, is fixed
and known. The reconstruction problem is

given the data y; estimate the picture f:

We shall usually use f � to denote the estimate of the picture f .
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In the mathematical idealization of the reconstruction problem, what we are
looking for is an operator R�1, which is an inverse of R in the sense that, for
any picture function f , R�1Rf is f (i.e., R�1 associates with the function Rf
the function f ). Just as (2) describes how the value of Rf is defined at any real
number pair .`; �/ based on the values f assumes at points in its domain, we need
a formula that for functions p of two real variables defines R�1p at points .r; �/.
Such a formula is

�
R�1p

�
.r; �/ D 1

2�2

Z �

0

Z E

�E
1

r cos.� � �/� `p1.`; �/ d` d�; (4)

where p1.`; �/ denotes the partial derivative of p.`; �/ with respect to `; it is of
interest to compare this formula with (1). That the R�1 defined in this fashion is
indeed the inverse of R is proven, for example, in Section 15.3 of [23].

A major category of algorithms for image reconstruction calculate f � based
on (4), or on alternative expressions for the inverse Radon transform R�1. We refer
to this category as transform methods. While (4) provides an exact mathematical
inverse, in practice it needs to be evaluated based on finite and imperfect data using
the not unlimited capabilities of computers. The essence of any transform method
is a numerical procedure (i.e., one that can be implemented on a digital computer),
which estimates the value of a double integral, such as the one that appears on the
right-hand side of (4), from given values of yi D p .`i ; �i /, 1 � i � I: A very
widely used example of transform methods is the so-called filtered backprojection
(FBP) algorithm. The reason for this name can be understood by looking at the right-
hand side of (4): the inner integral is essentially a filtering of the projection data for
a fixed � and the outer integral backprojects the filtered data into the reconstruction
region. However, the implementational details for the divergent beam data collection
specified in Fig. 9 are less than obvious, the solution outlined below is based on [28].

The data collection geometry we deal with is also described in Fig. 10. The X-ray
source is always on a circle of radiusD around the origin. The detector strip is an arc
centered at the source. Each line can be considered as one of a set of divergent lines
.
; ˇ/, where ˇ determines the source position and 
 determines which of the lines
diverging from this source position we are considering. This is an alternative way
of specifying lines to the .`; �/ notation used previously (in particular in Fig. 1). Of
course, each .
; ˇ/ line is also an .`; �/ line, for some values of ` and � that depend
on 
 and ˇ. We use g.
; ˇ/ to denote the line integral of f along the line (
; ˇ).
Clearly,

g.
; ˇ/ D ŒRf � .D sin 
; ˇ C 
/: (5)

As shown in Fig. 9, we assume that projections are taken for M equally spaced
values of ˇ with angular spacing �, and that for each view the projected values
are sampled at 2N C 1 equally spaced angles with angular spacing �. Thus g is
known at points .n�;m�/; �N � n � N; 0 � m � M � 1; and M� D 2� .
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Fig. 10 Geometry of divergent beam data collection. Every one of the diverging lines is
determined by two parameters ˇ and 
 . Let O be the origin and S be the position of the source,
which always lies on a circle of radius D around O . Then ˇC�=2 is the angle the lineOS makes
with the baseline B and 
 is the angle the divergent line makes with SO . The divergent line is also
one of a set of parallel lines. As such it is determined by the parameters ` and � . Let P be the
point at which the divergent line meets the line through O that is perpendicular to it. Then ` is the
distance from O to P and � is the angle that OP makes with the baseline (reproduced from [22],
Copyright 1981)

Even though the projection data consist of estimates (based on measurements)
of g.n�;m�/, we use the same notation g.n�;m�/ for these estimates. The
numerical implementation of the FBP method for divergent beams is carried out
in two stages.

First we define, for �N � n0 � N ,

gc.n
0�;m�/ D �

NX
nD�N

cos.n�/g.n�;m�/q.1/
�
.n0 � n/�	

C� cos.n0�/
NX

nD�N
g.n�;m�/q.2/

�
.n0 � n/�	 : (6)

The functions q.1/ and q.2/ determine the nature of the “filtering” in the filtered
backprojection method. They are not arbitrary, but there are many possible choices
for them, for a detailed discussion see Chapter 10 of [23]. Note that the first sum
in (6) is a discrete convolution of q.1/ and the projection data weighted by a cosine
function, and the second sum is a discrete convolution of q.2/ and the projection
data.
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Second we specify our reconstruction by

f �.r; �/ D D�

4�2

M�1X
mD0

1

W 2
gc
�

 0; m�

	
; (7)

where


 0 D tan�1 r cos.m� � �/
D C r sin.m�� �/ ; ��

2
� 
 0 � �

2
; (8)

and

W D
�
.r cos.m�� �//2 C .D C r sin.m�� �//2

�1=2
; W > 0: (9)

The meanings of 
 0 and W are that when the source is at angle m�, the line that
goes through .r; �/ is .
 0; m�/ and the distance between the source and .r; �/
is W . Implementation of (7) involves interpolation for approximating gc.
 0; m�/
from values of gc.n0�;m�/. The nature of such an interpolation is discussed in
some detail in Section 8.5 of [23]. Note that (7) can be described as a “weighted
backprojection.” Given a point .r; �/ and a source position m�, the line .
 0; m�/
is exactly the line from the source position m� through the point .r; �/. The
contribution of the convolved ray sum gc.


0; m�/ to the value of f � at points .r; �/
that the line goes through is inversely proportional to the square of the distance of
the point .r; �/ from the source positionm�.

In this chapter we concentrate on the other major category of reconstruction
algorithms, the so-called series expansion methods. In transform methods the
techniques of mathematical analysis are used to find an inverse of the Radon
transform. The inverse transform is described in terms of operators on functions
defined over the whole continuum of real numbers. For implementation of the
inverse Radon transform on a computer we have to replace these continuous
operators by discrete ones that operate on functions whose values are known only for
finitely many values of their arguments. This is done at the very end of the derivation
of the reconstruction method. The series expansion approach is basically different.
The problem itself is discretized at the very beginning: estimating the function is
translated into finding a finite set of numbers. This is done as follows.

For any specified picture region, we fix a set of J basis functions fb1; : : : ; bJ g.
These ought to be chosen so that, for any picture f with the specified picture
region that we may wish to reconstruct, there exists a linear combination of the
basis functions that we consider an adequate approximation to f .

An example of such an approach is the n � n digitization in which we cover the
picture region by an n�n array of identical small squares, called pixels. In this case
J D n2. We number the pixels from 1 to J , and define
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bj .r; �/ D
�

1; if .r; �/is inside the j th pixel,
0; otherwise.

(10)

Then the n � n digitization of the picture f is the picture Of defined by

Of .r; �/ D
JX
jD1

xj bj .r; �/; (11)

where xj is the average value of f inside the j th pixel. A shorthand notation we

use for equations of this type is Of DPJ
jD1 xj bj .

Another (and usually preferable) way of choosing the basis functions is the
following. Generalized Kaiser–Bessel window functions, which are also known by
the simpler name blobs, form a large family of functions that can be defined in a
Euclidean space of any dimension [40]. Here we restrict ourselves to a subfamily in
the two-dimensional plane, whose elements have the form

ba;˛;ı.r; �/ D
8<
:
Ca;˛;ı

�
1 � � r

a

	2
�
I2

�
˛

q
1 � � r

a

	2
�
; if 0 � r � a;

0; otherwise,
(12)

where Ik denotes the modified Bessel function of the first kind of order k, a stands
for the nonnegative radius of the blob, and ˛ is a nonnegative real number that
controls the shape of the blob. The multiplying constant Ca;˛;ı is defined below.
Note that such a blob is circularly symmetric, since its value does not depend on �.
It has the value zero for all r � a and its first derivatives are continuous everywhere.
The “smoothness” of blobs can be controlled by the choice of the parameters a, ˛
and ı, they can be made very smooth indeed as shown in Fig. 11.

For now let us consider the parameters a, ˛ and ı, and hence the function ba;˛;ı ,
to be fixed. This fixed function gives rise to a set of J basis functions fb1; : : : ; bJ g
as follows. We define a set G D fg1; : : : ; gJ g of grid points in the picture region.
Then, for 1 � j � J , bj is obtained from ba;˛;ı by shifting it in the plane so that its
center is moved from the origin to gj . This definition leaves a great deal of freedom
in the selection of G, but it was found in practice advisable that it should consist of
those points of a set (in rectangular coordinates)

Gı D
(  

mı

2
;

p
3nı

2

!ˇ̌
ˇ̌
ˇm and n are integers andmC n is even

)
(13)

that are also in the picture region. Here ı has to be a positive real number and Gı
is referred to as the hexagonal grid with sampling distance ı. Having fixed ı, we
complete the definition in (12) by
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Fig. 11 (a) A 243 � 243 digitization of a blob. (b) Its values on the central row (reproduced from
[23])

Ca;˛;ı D
p

3ı2˛

4�a2I3.˛/
: (14)

Pixel-based basis functions (10) have a unit value inside the pixels and zero
outside. Blobs, on the other hand, have a bell-shaped profile that tapers smoothly
in the radial direction from a high value at the center to the value 0 at the edge of
their supports (i.e., at r D a in (12)); see Fig. 11. The smoothness of blobs suggests
that reconstructions of the form (11) are likely to be resistant to noise in the data.
This has been shown to be particularly useful in fields in which the projection data
are noisy, such as positron emission tomography and electron microscopy.

For blobs to achieve their full potential, the selection of the parameters a, ˛,
and ı is important. When they are properly chosen [46], one can approximate
homogeneous regions very well, in spite of the bell-shaped profile of the individual
blobs. This is illustrated in Fig. 12b, in which a bone cross section shown in Fig. 12a
is approximated by a linear combination of blob basis functions with the parameters
a D 0:1551, ˛ D 11:2829, and ı D 0:0868. There are some inaccuracies very near
the sharp edges, but the interior of the bone is approximated with great accuracy.
However, if we change the parameters ever so slightly to a D 0:16, ˛ D 11:28, and
ı D 0:09, then the best approximation that can be obtained by a linear combination
of blob basis functions is shown in Fig. 12c, which is clearly inferior.

Irrespective of how the basis functions have been chosen, any picture Of that
can be represented as a linear combination of the basis functions bj is uniquely
determined by the choice of the coefficients xj , 1 � j � J , in the formula (11). We
use x to denote the vector whose j th component is xj and refer to x as the image
vector.

It is easy to see that, under some mild mathematical assumptions,
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Fig. 12 (a) A 243 � 243 digitization of a bone cross section. (b) Its approximation with default
blob parameters and (c) with slightly different parameters. The display window is very narrow for
better indication of errors (reproduced from [23])

Rif ' Ri
Of D

JX
jD1

xjRi bj ; (15)

for 1 � i � I . Since the bj are user-defined, usually the Ri bj can be easily
calculated by analytical means. For example, in the case when the bj are defined
by (10), Ri bj is just the length of intersection with the j th pixel of the line of the
i th position of the source-detector pair. We use ri;j to denote our calculated value
of Ri bj . Hence,

ri;j ' Ri bj : (16)

Recall that yi denotes the physically obtained estimate of Ri f: Combining this
with (15) and (16), we get that, for 1 � i � I;

yi '
JX
jD1

ri;j xj : (17)

Let R denote the matrix whose .i; j /th element is ri;j : We refer to this matrix
as the projection matrix. Let e be the I -dimensional column vector whose i th
component, ei , is the difference between the left- and right-hand sides of (17). We
refer to this as the error vector. Then (17) can be rewritten as

y D Rx C e: (18)

The series expansion approach leads us to the following discrete reconstruction
problem: based on (18),

given the data y; estimate the image vector x:
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If the estimate that we find as our solution to the discrete reconstruction problem is
the vector x�, then the estimate f � to the picture to be reconstructed is given by

f � D
JX
jD1

x�
j bj : (19)

In (18), the vector e is unknown. The simple approach of trying to solve (18) by
first assuming that e is the zero vector is dangerous: y D Rx may have no solutions,
or it may have many solutions, possibly none of which is any good for the practical
problem at hand. Some criteria have to be developed, indicating which x ought to
be chosen as a solution of (18). One way of doing this is by considering both the
image vector x and the error vector e to be samples of random variables, denoted
by X and E , respectively.

As an example of such an approach, let � denote a J -dimensional vector of
real numbers and let V denote a J � J positive definite symmetric matrix of real
numbers. We can define a function pX over the set of all J -dimensional vectors of
real numbers by

pX.x/ D 1

.2�/J=2.detV /1=2
exp

�
�1

2
.x � �/T V �1 .x � �/

�
: (20)

This pX is a probability density function of a random variable X on the set of all
J -dimensional vectors of real numbers whose mean vector is �x D � and whose
covariance matrix is VX D V . A random variable X defined in such a fashion is
called a multivariate Gaussian random variable.

Let us now consider the random variables X and E associated with x and e
of (18) without assuming any special form for them. In any case, pX is referred
to as the prior probability density function, since pX.x/ indicates the likelihood of
coming across an image vector similar to x. In CT it makes sense to adjust pX to the
area of the body we are imaging; the probabilities of the same picture representing
a cross section of the head or of the thorax should be different. Based on pX and
pE , a reasonable approach to solving the discrete reconstruction problem is: given
the data y, choose the image vector x for which the value of

pE.y �Rx/pX.x/ (21)

is as large as possible. Note that the second term in the product is large for vectors
x that have large prior probabilities, while the first term is large for vectors x that
are consistent with the data (at least if pE peaks at the zero vector). The relative
importance of the two terms depends on the nature of pX and pE . If pX is flat (many
image vectors are equally likely) and pE is highly peaked near the zero vector,
then our criterion will produce an image vector x� that fits the measured data y in
the sense that Rx� will be nearly the same as y. On the other hand, if pE is flat
(large errors are nearly as likely as small ones) but pX is highly peaked, our having
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made our measurements will have only a small effect on our preconceived idea as
to how the image vector should be chosen. The x� that maximizes (21) is called the
Bayesian estimate. The discussion in this paragraph is quite general, since we have
not assumed anything regarding the form of the random variablesX and E .

If we assume that bothX andE are multivariate Gaussian, then maximizing (21)
becomes relatively simple. In that case it is easy to see from (20) that, assuming that
�E is the zero vector, the x that maximizes (21) is the same x that minimizes

.y � Rx/T V �1
E .y �Rx/C .x � �X/T V �1

X .x � �X/ : (22)

When more precise information regarding the mean vector �X is not available,
one can use for it a uniform picture, with an estimated (based on the projection
data) average value assigned to every pixel; how well this works out in practice is
illustrated below in the section on Numerical Methods and Case Examples. We also
illustrate there an alternative choice that is appropriate for cardiac imaging in which
�X is a time-averaged reconstruction. The noise model expressed by the first term
of (22) is only approximate, but it is a reasonable accurate approximation of the
effect of photon statistics in CT (see Section 3.1 of [23]).

As representative examples of the series expansion methods for image
reconstruction we now discuss thealgebraic reconstruction techniques (ART).
All ART methods of image reconstruction are iterative procedures: they
produce a sequence of vectors x.0/; x.1/; : : : that is supposed to converge to
x�. The process of producing x.kC1/ from x.k/ is referred to as an iterative
step.

In ART, x.kC1/ is obtained from x.k/ by considering a single one of the I
approximate equations, see (17). In fact, the equations are used in a cyclic order.
We use ik to denote k.mod I / C 1; i.e., i0 D 1; i1 D 2; : : : ; iI�1 D I; iI D
1; iIC1 D 2; : : : ; and we use ri to denote the J -dimensional column vector whose
j th component is ri;j . In other words, ri is the transpose of the i th row of R. (In
what follows we assume that, for 1 � i � I; krik2 D hri ; rii ¤ 0, where, as usual,
k�k denotes the norm and h�; �i denotes the inner product.) An important point here
is that this specification is incomplete because it depends on how we index the lines
for which the integrals are estimated. As stated above, we assume that estimates
of ŒRf � .`; �/ are known for I pairs: .`1; �1/, : : :, .`I ; �I /: However, we have not
specified the geometrical locations of the lines that are parametrized by these pairs.
Since the order in which we do things in ART depends on the indexing i for the set
of lines for which data are collected, the specification of ART as a reconstruction
algorithm is complete only if it includes the indexing method for the lines, which we
refer to as the data access ordering. We return to this point later on in this chapter.

A particularly simple variant of ART is the following.

x.0/ is arbitrary,
x.kC1/ D x.k/ C c.k/rik ;

(23)
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Fig. 13 Demonstration of the method of (23) and (24) (with �.k/ D 1, for all k) for the simple
case when I D J D 2 (illustration based on [25], Copyright 1976, with permission from Elsevier)

where

c.k/ D �.k/ yik �
˝
rikx

.k/
˛

krikk2 ; (24)

with each �.k/ a real number, referred to as a relaxation parameter. It is easy to
check that, for k � 0, if �.k/ D 1, then

yik D
JX
jD1

rik ;j x
.kC1/
j ; (25)

i.e., the ik th approximate equality is exactly satisfied after the kth step. This behavior
is illustrated in Fig. 13 for a two-dimensional case with two equalities.

This method has an interesting, although by itself not particularly useful,
mathematical property. Let

L D fxjRx D yg : (26)
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A sequence x.0/; x.1/; x.2/; : : : generated by (23) and (24) converges to a vector x�
in L, provided that L is not empty and that, for some "1 and "2 and for all k,

0 < "1 � �.k/ � "2 < 2: (27)

Furthermore, if x0 is chosen to be the vector with zero components, then

kx�k < kxk ; (28)

for all x in L other than x�. A proof of this can be found in Section 11.2 of [23].
The reason why this result is not useful by itself is that the condition that L is not

empty is unlikely to be satisfied in a real tomographic situation. However, as it is
shown in Section 11.3 of [23], it can be used to derive an alternative ART algorithm
that is useful in real applications, as we now explain.

Let us make the simplifying assumptions in (22) that VX and VE are both
multiples of identity matrices of appropriate sizes. In other words, we assume that
components of a sample of X � �X are uncorrelated, and that each component
is a sample from the same Gaussian random variable; and we also assume that
components of a sample of E are uncorrelated and that each component is a sample
from the same zero mean Gaussian random variable. We use s2 to denote the
diagonal entries of VX and n2 to denote the diagonal entries of VE and let t D s=n.
According to (22), the Bayesian estimate is the vector x that minimizes

t2 ky �Rxk2 C kx � �Xk2 : (29)

Note that a small value of t indicates that prior knowledge of the expected value of
the image vector is important relative to the measured data, while a large value of
t indicates the opposite. The following variant of ART converges to this Bayesian
estimate, provided only that the condition expressed in (27) holds:

u.0/ is the I -dimensional zero vector,
x.0/ D �X;
u.kC1/ D u.k/ C c.k/eik ;
x.kC1/ D x.k/ C tc.k/rik ;

(30)

where

c.k/ D �.k/ t
�
yik �

˝
rik ; x

.k/
˛	 � u.k/ik

1C t2 krikk2 : (31)

Note that both in (23) and in (30) the updating of x.k/ is very simple: we just
add to x.k/ a multiple of the vector rik : In practice, this updating of x.k/ can
be computationally very inexpensive. Consider, for example, the basis functions
associated with a digitization into pixels (10). Then ri;j is just the length of
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Fig. 14 A digital difference analyzer (DDA) for lines (reproduced from [23])

intersection of the i th line with the j th pixel. This has two consequences. First, most
of the components of the vector rik are zero. At most 2n�1 pixels can be intersected
by a straight line in an n�n digitization of a picture. Thus, of the n2 components of
rik , at most 2n�1 (and typically only about n) are nonzero. Second, the location and
size of the nonzero components of rik can be rapidly calculated from the geometrical
location of the ikth line relative to the n � n grid using a digital difference analyzer
(DDA) methodology demonstrated in Fig. 14 (for details, see Section 4.6 of [23]).
Thus, the projection matrix R does not need to be stored in the computer. Only one
row of the matrix is needed at a time, and all information about this row is easily
calculable. For this reason such methods are also referred to as row-action methods.

We investigate this point further, since it is basic to the understanding of the
computational efficacy of ART. Suppose that we have obtained, using a DDA, the
list j1; : : : ; jU of indices such that rik;j D 0 unless j is one of the j1; : : : ; jU : Then
evaluation of

˝
rik ; x

.k/
˛

or of krikk2 requires only U multiplications, which in our
application is much smaller than J . The updating of x can be achieved by a further
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U multiplications. This is because only those xj need to be altered for which j D ju

for some u, 1 � u � U , and the alteration requires adding to x.k/j a fixed multiple of
rik;j . This shows that a single step of either of the ART algorithms described above
is very simple to implement in a computationally efficient way.

The ART are, in fact, a subclass of the class of projection methods, which have
been demonstrated to be very effective in practice for solving convex feasibility
problems with linear inequality constraints [6]. A recent advance in this direction
is the development of the superiorization methodology [30] whose underlying idea
is the following. There are many efficient iterative algorithms that produce feasible
solutions for given constraints. Often the algorithm is perturbation resilient in the
sense that, even if certain kinds of changes are made at the end of each iterative
step, the algorithm still produces a feasible solution. This property is exploited in
superiorization by using the perturbations to steer the algorithm to a solution that is
not only constraints-compatible, but is also desirable according to an optimization
criterion. This approach is applicable to many iterative procedures and optimization
criteria.

4 Numerical Methods and Case Examples

Having seen that there is a variety of reconstruction algorithms, it is natural to
ask for guidance as to when it is better to apply one rather than the others.
Unfortunately, any general answer is likely to be misleading since the relative
efficacy of algorithms depends on many things: the underlying task at hand, the
method of data collection, the hardware/software available for implementing the
algorithms, etc. The practical appropriateness of an algorithm under some specific
circumstances needs experimental evaluation.

We are now going to illustrate this by comparing, from certain points of view,
the various reconstruction algorithms mentioned in the previous section. Except
where otherwise stated, the generation of images and their projection data, the
reconstructions from such data, the evaluation of the results, and the graphical
presentation of both the images and the evaluation results were done within the
software package SNARK09 [12, 37].

We studied a cross section of a human head that was reconstructed by CT
(see Fig. 15). Based on this cross section we described a skull enclosing the brain
with ventricles, two tumors, and a hematoma (blood clot) using five ellipses, eight
segments of circles, and two triangles. The tumors were placed so that they are
vertically above the blood clot in the display. We used SNARK09 to obtain the
density in each of 243�243 pixels of size 0.0752 cm. The resulting array of numbers
is represented in Fig. 16. The nature of this display deserves careful discussion. The
displayed values are linear attenuation coefficients �Ne.x; y/ at energy Ne D 60 keV
of the appropriate tissue types measured in cm�1. Thus the values range between
0 (background, can be thought of as air) and 0.416 (bone of the skull). However,
the interesting part of the picture is inside the skull. The values there range from
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Fig. 15 Central part of an X-ray CT reconstruction of a cross section of the head of a patient. This
served as the basis for our piecewise-homogeneous head phantom (reproduced from [23])

0.207 (cerebrospinal fluid) to 0.216 (metastatic breast tumor). The small differences
between these tissues would not be noticeable if we used black to display zero, white
to display 0.5, and corresponding grayness for values in between. To see clearly
the features in the interior of the skull, we use zero (black) to represent the value
0.204 (or anything less) and 255 (white) to represent the value 0.21675 (or anything
more). This way the small change in density by 0.001 corresponds to a change of 20
in display grayness, which is visible. We did this to produce Fig. 16 and the displays
of all the reconstructions of the head phantoms used as illustrations in this chapter.

In Fig. 17a we show an actual brain cross section. The left half of the image shows
a malignant tumor that has a highly textured appearance. In order to simulate the
occurrence of a similarly textured object in our phantom we produced the phantom
shown in Fig. 17b. Because of the medical relevance of imaging brains with such
tumors, for the rest of this chapter we use the head phantom with this tumor added
to it. (Due to our display method, it seems that there is a large range of values in the
tumor. However, this is an illusion: the range of values in the tumor is less than 7 %
of the range of values in the picture that is displayed in Fig. 16.)

One problem with the phantoms as defined so far is that a brain is far from
being homogeneous: it has gray matter, white matter, blood vessels and capillaries
carrying oxygenated blood to and deoxygenated blood from the brain, etc. This is
even more so for bone, whose strength to a large extent is derived from its structural
properties. There are methods that can obtain remarkably accurate reconstruction
of piecewise homogeneous objects, but their performance may not be medically
efficacious when applied to CT data from real objects with local inhomogeneities.
So as not to fall into the trap of drawing too optimistic conclusions from experiments
using piecewise homogeneous objects, we superimposed on our head phantom
a random local variation that is obtained by picking, for each pixel, a sample
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Fig. 16 A piecewise-homogeneous head phantom (reproduced from [23])

Fig. 17 (a) An actual brain cross section with a tumor (image is reproduced, with permission,
from the Roswell Park Cancer Institute website). (b) The head phantom of Fig. 16 with a “large
tumor” added to it (reproduced from [23])

from a Gaussian random variable X with mean �X D 1 and standard deviation

X D 0:0025 and then multiplying the previously estimated linear attenuation
coefficient at that energy level with that sample. In Fig. 18 we show the result of
this.
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Fig. 18 (a) A head phantom with local inhomogeneities with the 131st of the 243 columns
indicated by a vertical line. (b) The densities along this column in the phantom (reproduced from
[23])

A reconstruction is a digitized picture. If it is a reconstruction from simulated
projection data of a test phantom, we can judge its quality by comparing it with the
digitization of the phantom. Naturally, both the picture region and the grid must be
the same size for the reconstruction and the digitized phantom. We now discuss how
to illustrate and measure the resemblance between a reconstruction and a phantom.
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Visual evaluation is of course the most straightforward way. One may display
both the phantom and the reconstruction and observe whether all features in
which one is interested in the phantom are reproduced in the reconstruction and
whether any spurious features have been introduced by the reconstruction process. A
difficulty with such a qualitative evaluation is its subjectivity, people often disagree
on which of two pictures resembles a third one more closely.

A more quantitative way of evaluating pictures is the following. Select a column
of pixels that goes through a number of interesting features. For example, in our
digitized head phantom the 131st of the 243 columns goes through the ventricles,
both tumors, and the hematoma. In Fig. 18a we indicate this column. A way to
evaluate the quality of a reconstruction is to compare the graphs of the 243 pixel
densities for this column in the phantom (shown in Fig. 18b) and the reconstruction.

It also appears desirable to use a single value that provides a rough measure of
the closeness of the reconstruction to the phantom. We now describe two different
methods of doing this. In our definition of these two picture distance measures we
use tu;v and ru;v to denote the densities of the vth pixel of the uth row of the digitized
test phantom and the reconstruction, respectively, and Nt to denote the average of the
densities in the digitized test phantom. We assume that both pictures are n � n. Let

d D
 

nX
uD1

nX
vD1

.tu;v � ru;v/
2=

nX
uD1

nX
vD1

.tu;v � Nt /2
!1=2

: (32)

r D
nX

uD1

nX
vD1

jtu;v � ru;vj=
nX

uD1

nX
vD1

jtu;vj: (33)

(jxj denotes the absolute value of x.) These are often-used measures in the literature.
These measures emphasize different aspects of picture quality. The first one, d , is

a normalized root mean squared distance measure. A large difference in a few places
causes the value of d to be large. Note that the value of d is 1 if the reconstruction
is a uniformly dense picture with the correct average density. The second one, r , is
a normalized mean absolute distance measure. As opposed to d , it emphasizes the
importance of a lot of small errors rather than of a few large errors. Note that the
value of r is 1 if the reconstruction is a uniformly dense picture with zero density.

However, a collection of a few numbers cannot possibly take care of all the ways
in which two pictures may differ from each other. Rank ordering reconstructions
based on a few measures of closeness to the phantom can be misleading. We
recommend instead a statistical hypothesis testing based methodology that allows
us to evaluate the relative efficacy of reconstruction methods for a given task.

This evaluation methodology considers the following to be the relevant basic
question: given a specific medical problem, what is the relative merit of two (or
more) image reconstruction algorithms in presenting images that are helpful for
solving the problem? (Compare this with the alternative essentially unanswerable
question: which is the best reconstruction algorithm?) Ideally, the evaluation should
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be based on the performance of human observers. However, that is costly and
complex, since a number of observers have to be used, each has to read many
images, conditions have to be carefully controlled, etc. Such reasons lead us to use
numerical observers instead of humans. The evaluation methodology consists of
four steps:

(i) Generation of random samples from a statistically described ensemble of
images (phantoms) representative of the medical problem and computer simu-
lation of the data collection by the device under investigation.

(ii) Reconstruction from the data so generated by each of the algorithms.
(iii) Assignment of a figure of merit (FOM) to each reconstruction. The FOM should

measure the usefulness of the reconstruction for solving the medical problem.
(iv) Calculation of statistical significance (based on the FOMs of all the reconstruc-

tions) by which the null hypothesis that the reconstructions are equally helpful
for solving the problem at hand can be rejected.

We now discuss details. For relevance to a particular medical task, the steps must be
adjusted to that task. The task for which comparative evaluations of various pairs of
reconstruction algorithms are reported below is that of detecting small low-contrast
tumors in the brain based on reconstructions from CT data.

The ensemble of images generated for this task is based on the head phantom
with a large tumor and local inhomogeneities. Note that this by itself provides
us a statistical ensemble because the local inhomogeneities are introduced using
a Gaussian random variable. However there is an additional (for the task more
relevant) variability within the ensemble that is achieved as follows. We specify
a large number of pairs of potential tumor sites, the locations of the sites in a pair
are symmetrically placed in the left and right halves of the brain. In any sample
from the ensemble, exactly one of each pair of the sites will actually have a tumor
placed there, with equal probability for either site. The tumors are circular in shape
of radius 0.1 cm and with linear attenuation as for the meningioma in the original
phantom. In Fig. 19a we illustrate one sample from this ensemble. Once a sample
has been picked, we generate projection data for it by simulating a CT scanner, with
all its physical inaccuracies as compared to the idealized Radon transform. (Such
inaccuracies include: the finite number of measurements, statistical noise due to the
finite number of X-ray photons used during the measurements, the hardening of the
polychromatic X-ray beam as it passes through the body, the width of the detector,
and the scattering of X-ray photons.) Further variability is introduced at this stage,
since the data are generated by simulating noise due to photon statistics. In Fig. 19b
we show a reconstruction from one such projection data set. The tumors are hard
to see in this reconstruction, but that is exactly the point: we are trying to evaluate
which of two reconstruction algorithms provides images in which the tumors are
easier to identify. If we make the task too easy (by having large and/or high-contrast
tumors), then all reasonable reconstruction algorithms would perform perfectly from
the point of view of the task. On the other hand, if the task is too difficult (very small
and very low-contrast tumors), then correct detection would become essentially a
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Fig. 19 (a) A random sample from the ensemble of phantoms for the task-oriented comparison of
reconstruction algorithms. (b) A reconstruction from noisy projection data taken of the phantom
illustrated in (a) (reproduced from [23])

matter of luck, rather than of algorithm performance. Our ensemble was chosen to
be in-between these extremes. The FOM that we chose to use is specific to the type
of ensemble of phantoms that we have just specified.

Given a phantom and one of its reconstructions, as in Fig. 19, we define the
image-wise region of interest FOM (IROI) as

IROI D

BX
bD1

�
˛rt .b/ � ˛rn.b/

	
vuut BX

bD1

 
˛rn.b/ �

1

B

BX
b0D1

˛rn.b
0/
!2
=

BX
bD1

�
˛
p
t .b/� ˛pn .b/

	
vuut BX

bD1

 
˛pn .b/ �

1

B

BX
b0D1

˛pn .b
0/
!2
:

(34)

The specification of the terms in this formula is as follows. For any digitized picture
and for any potential tumor site, let the average density in that picture for that site be
the sum over all pixels whose center falls within the site of the pixel densities divided
by the number of such pixels. Let us number the pairs of potential tumor sites from
1 to B , and let (for 1 � b � B) ˛pt .b/ (respectively, ˛pn .b/) denote the average
density in the phantom for site of the bth pair that has (respectively, has not) the
tumor in it. We specify similarly ˛rt .b/ (respectively, ˛rn.b/), for the reconstruction.
The first thing to note about the resulting formula (34) is that the numerator and
the denominator in the big fraction are exactly the same except that the numerator
refers to the reconstruction and the denominator refers to the phantom. Thus, if
the reconstruction is perfect (in the sense of being identical to the phantom) then
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IROI D 1. Analyzing the contents of the numerator and the denominator, we see
that they are (except for constants that cancel out) the mean difference between
the average values at the sites with tumors and the sites without tumors, divided
by the standard deviation of the average values at the non-tumor sites. It has been
found by experiments with human observers that this FOM correlates well with the
performance of people [49].

In order to obtain statistically significant results we need to sample the ensemble
of phantoms and generate projection data a number (say C ) of times. (For the
experiments reported below we used C D 30.) Suppose that we wish to compare
the task-oriented performance of two reconstruction algorithms. For 1 � c � C ,
let IROI1.c/ and IROI2.c/ denote the values of IROI, as defined by (34), for the
reconstructions by the two algorithms from projection data of the cth phantom. The
null hypothesis that the two reconstruction methods are equally good for the task at
hand translates into the statistical statement that each value of IROI1.c/� IROI2.c/

is a sample of a continuous random variable D whose mean is 0. We have no idea
of the shape of the probability density function pD of this random variable, but by
the central limit theorem (see, e.g., Section 1.2 of [23]), for a sufficiently large C ,

s D
CX
cD1

�
IROI1.c/ � IROI2.c/

	
(35)

can be assumed to be a sample from a Gaussian random variableS with mean 0. This
fact allows us to say (for details see Section 5.2 of [23]) that, at least approximately,
S is a Gaussian random variable whose mean is 0 and whose variance is

VS D
CX
cD1

�
IROI1.c/ � IROI2.c/

	2
: (36)

It is a consequence of the null hypothesis that s is a sample from a zero-mean
random variable. However, even if that were true, we would not expect our particular
sample s to be exactly 0. Suppose for now that s > 0. This makes us suspect that
in fact the first algorithm is better than the second one (for our task) and so the null
hypothesis may be false. The question is: how significant is the observed value s
for rejecting the null hypothesis? To answer this question we consider the P-value,
which is the probability of a sample of S being as large or larger than s. If the
null hypothesis were correct, we would not expect to come across an s defined by
(35) for which the P -value is very small. Thus, the smallness of the P -value is a
measure of significance for rejecting the null hypothesis that the two reconstruction
algorithms are equally good for our task in favor of the alternative hypothesis that
the first one is better than the second one. This is for the case when s > 0. If s < 0,
then the P -value is the probability of a sample of S being as small or smaller than s
and the alternative hypothesis is that the second algorithm is better than the first one.

Having specified various methodologies for reconstruction algorithm evaluation,
we now apply them to specific algorithms. Whenever we report on the performance
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of an algorithm for the reconstruction of a single two-dimensional phantom,
the phantom is the one shown in Fig. 18. For experiments involving statistical
hypothesis testing, we use the ensemble illustrated by Fig. 19. In either case,
the data collection geometry is the one described in Fig. 9 with the number of
source positions M D 720. Consequently, the angle m� shown in Fig. 9 is 0.5m
degrees. The source positions are equally spaced around a circle of radius 78 cm.
The distance of the source from the detector strip is 110.735 cm. There are 345
detectors, and the distance between two detectors along the arc of the detector strip
is 0.10668 cm. We refer to this geometry of data collection as the standard geometry.

The reconstruction algorithm estimates a digitization of the phantom from the
projection data. Figure 20 shows the 243 � 243 digitization of the head phantom, a
reconstruction by FBP from perfect projections (line integrals) for the geometry just
described, and the values of the digitized phantom and the reconstruction along the
131st column. The picture distance measures for this reconstruction are d D 0:0531
and r D 0:0185. Even though the data are perfect, the reconstruction is not. This is
because a picture is not uniquely determined by its integrals along a finite number
of lines. The best that a reconstruction algorithm can do is to estimate the picture.

There are interesting observations that one can make regarding this reconstruc-
tion. One is that, generally speaking, the brain appears smoother in it than in the
phantom. This is because the FBP algorithm that we use was designed to perform
efficaciously on real data and it does some smoothing to counteract the effect of
noise. Consequently, small variations due to inhomogeneity are also smoothed. The
most noticeable features in the reconstruction that are not present in the phantom
are the streaks that seem to emanate from straight interfaces between the skull
and the brain. (Similar features are observable in the real reconstruction shown
in Fig. 15.) Their presence can be explained by considering Radon’s formula (1),
which expresses the distribution of the linear attenuation coefficient in terms of its
line integrals. Consider an ` and a � such that m.`; �/ is the integral along a line
that is very near to a straight edge between the skull and the brain. Due to the fact
that attenuation is much larger for bone than for brain, numerical estimation of the
partial derivative m1 .`; �/ from the discretely sampled projection data is likely to
be inaccurate, introducing errors into the calculated reconstruction. Phantoms that
lack such anatomical features should not be used for algorithm evaluation, since
the resulting reconstructions do not indicate the errors that will occur in a real
application in which the object to be reconstructed is likely to have such straight
interfaces. This is illustrated in Fig. 21.

The reconstructions shown in Figs. 20 and 21 are from “perfect” data; i.e., from
line integrals based on the geometrical description of the phantoms. When data
are collected by an actual CT scanner there are many physical reasons why the
data so obtained can only provide approximations to such line integrals. In testing
reconstruction algorithms we should use realistic projection data, which is what
was done for the remaining two-dimensional reconstructions in this chapter. The
exact method of simulated data collection (using SNARK09 [12, 37]) is described
in Section 5.8 of [23], here we just give an outline. The data were collected
for the head phantom shown in Fig. 20a according to the standard geometry. For
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Fig. 20 (a) Head phantom (the same as Fig. 18a). (b) Its reconstruction from “perfect” data
collected for the standard geometry. (c) Line plots of the 131st column of the phantom (light)
and the reconstruction (dark) (reproduced from [23])

photon statistics we chose an average of million X-ray photons originating in the
direction of each detector during the scanning of the head. A realistic spectrum of
the polychromatic X-ray source was also simulated. The focal spot of the X-ray
source was assumed to be a point, but the detectors were assumed to have width of
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Fig. 21 (a) A simple head phantom without straight edges between bone and brain. (b) Its
reconstruction from “perfect” data collected for the standard geometry. In this reconstruction there
are no false features of the kind that emanate from the straight edges in Fig. 20b (reproduced from
[23])

0.10668 cm (i.e., there are no gaps between the detectors). It was assumed that the
number of scattered photons that are counted during the measurements is 5 % of the
number of unscattered photons that are counted. The data so obtained was corrected
for beam-hardening, to provide us with an estimate of the monochromatic projection
data. The outcome of this correction is what we refer to as the standard projection
data. For the experiments involving statistical evaluation, the same assumptions
were made except that the phantom was randomly selected from the previously
described ensemble; for an example, see Fig. 19a. Our illustrations are restricted
to demonstrating the effects of various choices that can be made in ART and the
comparison of ART with FBP.

We start with the variant of ART described by (23) and (24). We choose x.0/ to
represent a uniform picture, with the estimated (based on the standard projection
data) average value of the phantom assigned to every pixel. (The estimation of the
average value from projection data is described in Section 6.4 of [23].)

We first show that the order of equations in the system (the data access
ordering discussed in the previous section) can have a significant effect on the
practical performance of the algorithm, especially on the early iterates. With
data collection such as the geometry depicted in Fig. 9, it is tempting to use the
sequential ordering: access the data in the order g.�N�; 0/; g..�N C 1/�; 0/; : : : ;
g.N�; 0/; g.�N�;�/; g..�NC1/�;�/; : : : ; g.N�;�/; : : : ; : : : ; g.�N�; .M�
1/�/; g..�N C 1/�; .M � 1/�/; : : : ; g.N�; .M � 1/�/, where g.
; ˇ/ denotes
here the measured value of what is mathematically defined in (5). However, this
sequential ordering is inferior to what is referred to as the efficient ordering in which
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Fig. 22 Values of the picture distance measure r for ART reconstructions from the standard
projection data with sequential ordering (light) and efficient ordering (dark), plotted at multiples
of I iterations (reproduced from [23])

the order of projection directions m� and, for each view, the order of lines within
the view is chosen so as to minimize the number of commonly intersected pixels
by a line and the lines selected recently. This can be made mathematically precise
by considering the decomposition into a product of prime numbers of M and of
2N C1 [27]. SNARK09 [12,37] calculates the efficient order, but this is only useful
if both M and of 2N C 1 decompose into several prime numbers, as is the case
for our standard geometry for which M D 720 D 2 � 2 � 2 � 2 � 3 � 3 � 5 and
2N C 1 D 345 D 3� 5� 23. While the sequential ordering produces the sequences
m D 0; 1; 2; 3; 4; : : : and n D 0; 1; 2; 3; 4; : : :, the efficient ordering produces the
sequences m D 0; 360; 180; 540; 90; : : : and n D 0; 115; 230; 23; 138; : : : These
changes in data access ordering (keeping all other choices the same) translate
into faster initial convergence of ART, as is illustrated in Fig. 22 by plotting the
picture distance measure r of (33) against the number of times the algorithm cycled
through all the data (all I equations). To produce this illustration we used blob basis
functions and �.k/ D 0:05, for all k. While it is clearly demonstrated that initially
r gets reduced much faster with the efficient ordering, for the standard projection
data it does not seem to matter much, since both orderings need about five cycles
through the data to obtain a near-minimal value of r . In other applications in which
the number of projection directions is much larger (e.g., in the order of 10,000
as is often the case in electron microscopy), one cycle through the data using the
efficient ordering yields about as good a reconstruction as one is likely to get, but the
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Fig. 23 Reconstructions from the standard projection data using ART. (a) ART with blobs, �.k/ D
0:05, 5I th iteration and efficient ordering. (b) ART with blobs, �.k/ D 0:05, 5I th iteration and
sequential ordering. (c) ART with pixels, �.k/ D 0:05, 5I th iteration and efficient ordering. (d)
ART with blobs, �.k/ D 1:0, 2I th iteration and efficient ordering (based on Fig. 11.4 of [23])

sequential ordering needs several cycles through the data. In addition, the efficacy
of the reconstruction produced by the efficient ordering may very well be superior
to that produced by the sequential ordering.

This is illustrated in Fig. 23 and Table 1. The reconstructions produced by the
efficient and sequential orderings after five cycles through the data (the images
of x.5I /) are shown in Figs. 23a and b, respectively. Visually there is hardly any
difference between them. This is confirmed by the picture distance measures in
Table 1, they are only slightly better for the efficient ordering than for the sequential
ordering. On the other hand, the execution time (within the SNARK09 [12, 37]
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Table 1 Picture distance measures and timings (in seconds, of the implementations in SNARK09)
for the reconstructions in Figs. 23 and 25

Reconstruction in d r t IROI

Figure 23a 0:0874 0:0373 163:7 0.1794

Figure 23b 0:0876 0:0391 148:9 0.1624

Figure 23c 0:0874 0:0470 29:2 0.1592

Figure 23d 0:0768 0:0488 66:2 0.1076

Figure 25b 0:1060 0:0423 8:7 0.1677

The last column reports the values, produced by a task-oriented evaluation experiment, of the IROI
for the various algorithms (based on Table 11.1 of [23])

ART with blobs :: Relative Error

ART 0.05 pixel

ART 0.05 blob

R
el

at
iv

e 
E

rr
or

0.105

0.1

0.095

0.09

0.085

0.08

0.075

0.07

0.065

0.06

0.055

0.05

0.045

0.04

0.035
0 2 4 6 8 10 12 14 16 18 20

Iteration

Fig. 24 Values of the picture distance measure r for ART reconstructions from the standard
projection data with pixels (light) and blobs (dark), plotted at multiples of I iterations (reproduced
from [23])

environment) is somewhat less for the sequential ordering. However, the task-
oriented evaluation is unambiguous in its result: the IROI is larger for the efficient
ordering and the associated P -value is less than 10�9. This means that we can reject
the null hypothesis that the two data access orderings are equally good in favor of the
alternative hypothesis that the efficient ordering is better with extreme confidence.

Next we emphasize the importance of the basis functions. In Fig. 24 we plot the
picture distance measure r against the number of times ART cycled through all the
data, where we kept all other choices the same (in particular, efficient data access
ordering and �.k/ D 0:05, for all k). The two cases that we compare are when the
basis functions are based on pixels (10) and when they are based on blobs (12). The
results are impressive: as measured by r , blob basis functions are much better. The
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result of the 5I th iteration of the blob reconstruction is shown in Fig. 23a, while
that of the 5I th iteration of the pixel reconstruction is shown in Fig. 23c. The blob
reconstruction appears to be clearly superior. In Table 1 we see a great improvement
in the picture distance measure r but not in d . This reflects the fact, not visible
in our display mode, that there are a few but relatively large errors in the blob
reconstruction near the edges of the bone of the skull. From the points of view of the
task-oriented figure of merit IROI, ART with blobs is found superior to ART with
pixels with the relevant P -value less than 10�10. As implemented in SNARK09,
ART with blobs requires significantly more time than ART with pixels, but there
exist more sophisticated implementations of ART with blobs that are much faster.

Underrelaxation is also a must when ART is applied to real, and hence imperfect,
data. In the experiments reported so far �.k/ was set equal to 0.05 for all k. If we
do not use underrelaxation (that is, we set �.k/ to 1 for all k), we get from the
standard projection data the unacceptable reconstruction shown in Fig. 23d. Note
that in this case we used the 2I th iterate, further iterations give worse results. The
reason for this is in the nature of ART: after one iterative step with �.k/ D 1, the
associated measurement is satisfied exactly as shown in (25) and so the process
jumps around satisfying the noise in the measurements. Underrelaxation reduces the
influence of the noise. The correct value of the relaxation parameter is application
dependent; the noisier the data the more we should be underrelaxing. Note in Table 1
that the figure of merit IROI produced by the task-oriented study for the case without
underrelaxation is much smaller than for the other cases.

Now we compare the best of our ART reconstruction (Fig. 23a, reproduced in
Fig. 25a) with one produced by a carefully selected variant of FBP, see (6)–(9). For
comparison, we show in Fig. 25b the reconstruction from our standard projection
data obtained by FBP for divergent beams with linear interpolation and sinc window
(also called the Shepp–Logan window, see [56]). For details of the meanings of
these choices and the reasons for them, see Chapter 10 of [23]. The visual quality is
similar to the best ART reconstruction. According to the picture distance measures
in Table 1, ART is superior to FBP, and the same is true according to IROI with
extreme significance (the P -value is less than 10�13). This experiment confirms
the reports in the literature that ART with blobs, underrelaxation and efficient
ordering generally outperforms FBP in numerical evaluations of the quality of the
reconstructions.

One thing though is indisputable: the ART with blob reconstruction took nearly
19 times longer than FBP. However, this should not be the determining factor,
especially since the implementation of ART with blobs in SNARK09 is far from
optimal and can be greatly improved. An advantage of ART over FBP is its
flexibility. Even though until now we have reported its application only to data
collected according to the standard geometry, ART is capable of reconstructing from
data collected over any set of lines, as we soon demonstrate by an example of using
ART for helical CT. FBP-type algorithms need to be reinvented for each new mode
of data collection.
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Fig. 25 Comparison of reconstructions from the standard projection data using (a) ART (the same
as Fig. 23a) and (b) FBP (based on Fig. 11.4 of [23])

We now switch over to demonstrating the ART algorithm specified in (30)
and (31). As stated before, that algorithm converges to the Bayesian estimate that is
the minimizer of (29), provided that the condition expressed in (27) holds. This is
the case if we set �.k/ D 0:05, for all k, which is what we chose for the experiments
on which we now report. The other choices that we made are blob basis functions,
efficient ordering and that, in (29), t D 10 and �X represents a uniform picture with
the estimated average value of the phantom assigned to every component.

There are alternative methods in the literature for minimizing (29), a particularly
popular one is the method of conjugate gradients (CG); for a description of it that
is appropriate for our context, see Section 12.5 of [23]. The CG method is also an
iterative one, but one in which all the data are considered simultaneously in each
iterative step. For this reason, the time of one iterative step of the CG method is
approximately the same as that needed by ART for one cycle through all the data.
In Fig. 26 we show a comparison of the picture distance measure r for CG and for
ART.

Figure 26 and the picture distance measures in Table 2 imply that the quality
of the reconstruction obtained by the 20th iterate of the conjugate gradient method
should be as good as that obtained by the 5I th iterate of additive ART. However
this is not really so, as can be seen by looking at the reconstructed image in
Fig. 27b. Indeed it needs another 20 iterations of the conjugate gradient method
before the visual quality of the reconstruction matches that of the ART of (30)
and (31) after 5I iterations, shown in Fig. 27a. So (for the standard projection data)
the conjugate gradient method is not as fast as ART. This slower convergence of
conjugate gradients relative to ART seems to be shared by other series expansion
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Fig. 26 Values of the picture distance measure r for reconstructions from the standard projection
data using the conjugate gradient method (light) and ART (dark), plotted for comparable
computational costs (reproduced from [23])

Table 2 Picture distance measures and timings (in seconds) for the reconstructions that mini-
mize (29)

Algorithm d r t

ART, 5I th iterate 0:0878 0:0374 166.5

Conjugate gradient method, 20th iterate 0:0799 0:0387 489.1

Based on Table 12.2 of [23]

reconstruction methods that use all the data simultaneously in each iteration; see,
for example, [58].

If we wish to reconstruct a three-dimensional body by the methods discussed till
now, the only option available to us is to reconstruct the body cross section by cross
section and then stack the cross sections to form the three-dimensional distribution.
This may cause a number of problems, the most important of which are associated
with time requirements. During the time needed to collect all the data, the patient
may move, causing a misalignment between the cross sections. More basically, in
moving organs such as the heart, changes in the organ over time are unavoidable,
and it is usually not possible to collect data for all cross sections simultaneously.

Sometimes, it is actually the change in the object over time that is the desired
information. If we wish to see cardiac wall motion, then it is essential that we
reconstruct the whole three-dimensional object at short time intervals. One may
consider this as a four-dimensional (spatio-temporal) reconstruction. One approach
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Fig. 27 Reconstructions from the standard projection data using iterative methods that minimize
(29). (a) ART, 5I th iterate. (b) Conjugate gradient method, 20th iterate (based on Fig. 12.2 of [23])

to obtaining reconstructions of dynamically moving objects, such as the heart, from
data that can be collected by helical CT (see Fig. 8) is to assume that the movement
is cyclic. Assuming also that there exists a way of recording where we are in the
cyclic movement as we take the 2D views of the moving 3D object, it is possible
to bin the views into subsets such that all views that are binned into any one of the
subsets have been taken at approximately the same phase of the cyclic movement,
and so they are views of approximately the same (time frozen) 3D object. In the
case of the heart this can be done by recording the electrocardiogram and noting on
it the times when views have been taken. These views can then be binned, after the
fact, according to the phases of the cardiac cycle.

We complete this section by giving a summary of such experiments, details can
be found in Chapter 13 of [23]. The reconstructions were done by ART (here we
made good use of the fact that ART does not require any particular arrangement
of the lines for which the data were collected), using three-dimensional blobs [41]
as the basis functions. We designed a phantom of the human thorax based on the
description of the so-called FORBILD thorax phantom. We added to that stationary
phantom two dynamically changing spheres representing the myocardium and a
single contrast material filled cavity. We assumed that we are interested in this
phantom at 24 equally spaced (in time) phases of the cardiac cycle. The first row of
Fig. 28 shows a central cross section of this dynamic phantom at the two extremes
of the 24 phases.

Projection taking was done by integrating the density of the phantom along
lines between the X-ray source position and detectors in a two-dimensional array.
For every source position, data were collected for 384 equally spaced detectors
in each of 16 rows in the array. The size of each detector was assumed to be
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Fig. 28 The central cross section of the thorax phantom at the two extreme phases of the cardiac
cycle. First row: the phantom. Second row: reconstruction from data collected at the time when
the heart was in the appropriate phase after five cycles of simple ART. Third row: reconstruction
from data collected at the time when the heart was in the appropriate phase after three cycles of
Bayesian ART initialized with the reconstruction by two cycles of simple ART (based on Fig. 13.1
of [23])
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0:425 � 0:425 cm. Data were collected (i.e., the pulsing of the X-ray source was
simulated) at every 0.0015 second, using a total of 8,400 pulses. The number of turns
of the helix in which the X-ray source moved during the data collection was 30. The
radius of the helix was 57 cm, and the total movement parallel to the axis of the
helix was 17.28 cm. The distance from the source to the detector array was 104 cm.
Integrals of the density were collected for I D 51;609;600 rays (8,400 pulses
times 16 rows of 384 detectors). Detector area and the effect of photon statistics
were also simulated. The numbers used in this paragraph are not inappropriate
for helical CT, but a state-of-the-art helical CT scanner would have more and
smaller detectors and would be pulsed more frequently. In all our experiments we
used J D 2;153;935 three-dimensional blobs to describe the reconstructed three-
dimensional distributions.

In the first experiment we reconstructed the 24 phases of the cardiac cycle
independently of each other. This was done by subdividing all the projection data
into 24 subsets, each corresponding to one of the phases. A ray sum was put into a
particular subset if it was collected due to a pulsing of the X-ray source at a time
nearer to the central time for that phase than to the central time of any other phase.
This results in a number of consecutive pulses producing data for the same phase and
then there is a relatively large gap before the collected data are again used for that
phase. This very nonuniform mode of data collection results in unacceptably bad
reconstructions, two of which are demonstrated in the second row of Fig. 28. These
reconstructions were produced using the simple ART of (23) and (24) with the three-
dimensional blob basis functions, with all components of x0 given the estimated
average value based on the projection data, all �.k/ D 0:05 and an efficient ordering.
The results are shown at the end of the fifth cycle through the data associated with
the particular phase of the cardiac cycle.

In the second experiment we used the other extreme: all the data were combined
into a single projection data set, without any attention paid to the phases of
the cardiac cycle. Because of the stationarity of most of the phantom and the
overabundance of the projection data, we get (using the same choices for ART
as in the previous paragraph) reconstructions that are good overall, but naturally
the movement of the heart is blurred out due to the various views used in the
reconstruction having been taken all through the cardiac cycle. We note that in this
case there is no need to cycle through the data five times: the reconstruction at the
end of the second cycle through the data is just about indistinguishable from the
reconstruction at the end of the fifth cycle through the data.

However, our aim here is to see the dynamic changes in the heart. This can be
achieved by using the Bayesian approach of (30) and (31). We selected in (29) �X
as the reconstruction obtained at the end of the second ART cycle through all the
data as described in the previous paragraph and t D 0:8. For each separate phase of
the cardiac cycle, we used the algorithm specified by (30) and (31) for a further three
cycles through the data that are associated with that particular phase. The relaxation
parameter was again the constant 0.05. The results, for the two extreme phases of the
cardiac cycle, are shown in the last row of Fig. 28. Here the overall reconstruction
of the thorax is quite good and, at the same time, one can observe that the heart is
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dynamically changing. With a state-of-the-art helical CT scanner (that would have
more and smaller detectors and would be pulsed more often) we would get even
better reconstructions.

5 Conclusion

Tomography is the process of producing an image of a distribution from estimates
of its line integrals along a finite number of lines of known locations. There are a
number of mathematical approaches to achieve this and we discussed and illustrated
some of them. Of the investigated approaches, we found the performance of the
method referred to as ART with blobs particularly good, especially if it is used with
the appropriate data access ordering and relaxation parameters.

We subdivided the recommended readings into categories. For additional relevant
information see [23] that has 280 references, 83 of which have been published since
2005.

Books related tomography [2, 7, 17–19, 23, 24, 29, 33, 50, 51, 59].
Papers on transform reconstruction methods and their applications [3, 9, 10, 13–

15, 28, 34, 35, 52, 53, 56].
Papers on series expansion reconstruction methods and their applications [4, 5,

16, 20, 25, 27, 31, 32, 39–41, 44–46, 54, 57].
Papers on comparison of reconstruction methods [6, 12, 21, 30, 36, 37, 43, 47–

49, 55, 58].
Papers on three-dimensional display of reconstructions [1, 8, 26, 42].
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Abstract
Several limited data problems in tomography will be presented in this chapter,
including ones for X-ray tomography, electron microscopy, and radar imaging.
First, reconstructions from limited data will be evaluated to observe their
strengths and weaknesses. Then, the basic analytic properties of the transforms
will be presented. The concept of microlocal analysis will be introduced to
make the notion of singularity precise. Finally, the microlocal properties of the
tomographic transforms are given and then used to explain the observed strengths
and limitations of the reconstructions. This will show that these limitations are
intrinsic to these limited data problems themselves.

1 Introduction

In this chapter, a range of tomography problems are introduced, including X-
ray imaging, limited data problems, electron microscopy, and radar imaging. The
goal is to recover the singular features of the medium or object rather than to
develop exact inversion formulas. Toward this end, microlocal analysis is used to
understand the strengths and limitations inherent in these tomography problems.
Microlocal analysis aids researchers in understanding those singular features that
can be stably recovered, which could be very important when only limited or partial
data are available. Furthermore, it helps explain the presence of artifacts in certain
image reconstruction methods. In some cases, it might help to distinguish the true
singularities from the false ones. These are the themes emphasized in this chapter.

In Sect. 2, the tomography problems are introduced. Reconstructions are pre-
sented for each problem and reconstruction quality is evaluated with the goal of
finding strengths and limitations for each method. In Sect. 3, some basic properties
of tomographic transforms are introduced. Microlocal analysis is introduced in
Sect. 4. Finally, several applications in tomography and radar imaging are given in
Sect. 5 with the goal of emphasizing the microlocal properties of these transforms.
This powerful tool is used to clarify the strengths and limitations that are really
intrinsic to the data.

2 Motivation

Several modalities in tomography, including X-ray tomography, limited data tomog-
raphy, electron microscope tomography, and synthetic-aperture radar (SAR), are
introduced in this section. For each problem, some history is given and then
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reconstructions using such data are evaluated for strengths and weaknesses. The
goal of this section is to observe, for each problem, object features that are well
reconstructed and features that are not. These reconstructions are provided to
motivate the study of microlocal analysis, which will be used in Sect. 5 to explain
these reconstructions.

X-Ray Tomography (CT) and Limited Data Problems

In the 1970s, X-ray tomography revolutionized diagnostic medicine. For the first
time, doctors were able to get clear and accurate pictures of the inside of the body
without doing exploratory surgery. One part of this story began in the early 1960s.
At that time, Allan Cormack consulted as a medical physicist at the Groote Schuur
hospital in Cape Town, South Africa, and he checked whether X-ray machines were
calibrated properly. He felt that there should be more information in the X-ray data
than just what is obtained from single pictures, which project all organs onto the
same plane, and he believed that X-rays could be used more effectively. He posited
that if one takes X-ray images from multiple directions, one should be able to piece
together the internal structure of the body. He then developed two algorithms [10,
11] for the problem. To give a proof of concept, he built a prototype scanner that
showed his second algorithm was effective. Along with Godfrey Hounsfield of EMI
in England, he received the 1979 Nobel Prize in Medicine. You can read more about
him in the excellent biography [97].

X-ray CT is now used routinely in medicine and in industrial nondestructive
testing, and it allows doctors to image the internal structure of the body without
exploratory surgery. The basic physics and mathematical model are now described.
Let ` be a line along which X-rays travel, and for x 2 `, let I.x/ be the intensity
(number of photons) at the point x. Let f .x/ be the attenuation coefficient of the
body at x. For monochromatic light, f is proportional to the density at x, and by
using a scale factor, they become the same. Beer’s law [66] states that the decrease in
intensity at x is proportional to the intensity I.x/, and the proportionality constant
is �f .x/:

dI

dx
D �f .x/I.x/: (1)

This makes sense heuristically because the more dense the material at x (i.e., the
larger f .x/ is), the more the beam is attenuated and the greater the decrease of I
at x. Equation (1) is a simple differential equation for I that can be solved using
separation of variables. If I0 is the intensity at the X-ray emitter – the point x0 2 `
– and I1 is the intensity at the detector, x1 2 `, then one can integrate (1) to find

ln

�
I0

I1

�
D
Z x1

x0

f .x/ dx D
Z
x2`

f .x/ dx :

This leads to the definition

RL.f /.`/ D
Z
x2`

f .x/ dx
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where in this case, dx is the arc length measure on `. The transform RL was studied
by the Austrian mathematician Johann Radon [84] in the early twentieth century
because it was intriguing pure mathematics. This transform is called the Radon line
transform (or X-ray transform).

To proceed mathematically, more notation is given. Let ! 2 S1 and let p 2 R.
Then, the line

`.!; p/ D fx 2 R
2 W x �! D pg (2)

is perpendicular to ! and contains p!. Sometimes it will be useful to let ! be a
function of polar angle ' 2 R,

!.'/ D .cos.'/; sin.'// :

In this parameterization

RLf .!; p/ D
Z
x2`.!;p/

f .x/ dx D
Z
t2R

f .p! C t!?/ dt (3)

where !? is the unit vector �=2 radians counterclockwise from !. This integral is
defined for f 2 Cc.R2/, and in fact RL is continuous in a number of norms (see
section “Continuity Results for the X-Ray Transform”). The basic properties of this
transform are proven in Sect. 3.

First, consider the forward problem and a simple case that will show in a naive
sense how the X-ray transform detects object boundaries.

Example 1. Let f be the characteristic function of the unit disk in R
2. Then, using

the Pythagorean Theorem, one sees that

RLf .!; p/ D
(

2
p

1 � p2 jpj � 1

0 jpj > 1
: (4)

The function RLf .!; p/ in (4) is smooth except at p D ˙1, that is, except for
lines `.!;˙1/ as can be seen from Fig. 1. The data are not smooth at those lines and
those lines are tangent to the boundary of the disk. This suggests that lines tangent
to boundaries give special information about the specimen. In Sect. 4, the reader will
discover what is mathematically special about those lines, and this will be related
back to limited data tomography in Sect. 5.

For complete data, that is, data over all lines through the object, good reconstruc-
tion methods such as filtered backprojection (Theorem 9) are effective to reconstruct
from X-ray CT data.

However, one cannot obtain complete data in many important tomography
problems. These are called limited data tomography problems, and several important
ones are now described. The goal at this point is to observe how the reconstructions
look compared to the original objects.
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Fig. 1 This graph shows the
calculation of the Radon
transform in (4). The unit
disk is above the graph. For
jpj 	 1, the Pythagorean
theorem shows that the length
of the intersection of `.!; p/
and the disk is 2

p
1 � p2

p

f= 1

f= 0

y

x

Here are some guidelines as you read this section. For each problem and
reconstruction, conjecture what is special about the object boundaries that are well
reconstructed (and those that are badly reconstructed) in relation to the limited data
set used.

Exterior X-Ray CT Data
Exterior CT data are data for lines that are outside an excluded region. Typically,
that region is a circle of radius r > 0, so lines `.!; p/ for jpj � r are in the data
set. Theorem 5 in the next section shows that compactly supported functions can be
uniquely reconstructed outside the excluded region from exterior data.

The exterior problem came about in the early days of tomography for CT scans
around the beating heart. In those days, a single scan of a planar cross section could
take several minutes, and movement of the heart would create artifacts in the scan.
If an excluded region were chosen to contain the heart and be large enough so the
outside of that region would not move, then data exterior to that region would be
usable. However, scanners soon began to use fan beam data (see section “Fan Beam
and Cone Beam CT”), and data could be acquired much more quickly. If the data
acquisition is timed (gated), then data are acquired while the heart is in the same
position over several heartbeats. Because more data can be taken more quickly with
fan beam data, the heart can now be imaged using newer scanners, and movement
of the heart is not as large a problem.

Exterior data are still important for imaging large objects such as rocket shells.
Even with an industrial CT scanner, the X-rays will not penetrate the thick center
of the rocket [88]. However, they can penetrate the outer rocket shell, and this gives
exterior data.

One can recover functions of compact support from exterior data, at least outside
the excluded region (see Theorem 5). Effective inversion methods were developed
for exterior data by researchers including Bates and Lewitt [3], Natterer [65],
Quinto [77, 79], and a stability analysis using singular value decompositions was
done in [58].
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Fig. 2 Exterior reconstruction. Phantom (left) and reconstruction (right) from simulated data [77,
c�IOP Publishing. Reproduced by permission of IOP Publishing. All rights reserved]. The outer

diameter of the annulus is 1:5 times the inner diameter

Figure 2 is a reconstruction from exterior data: integrals are given over lines
that do not meet the black central disk. The reconstruction method uses a singular
value decomposition for the exterior Radon transform that includes a null space; it
recovers the component of the object in the orthogonal complement of the null space
and does an extrapolation to recover the null space component [77].

Note how some boundaries of the small circles are clearly reconstructed and
others are not. In this case, how can you describe the boundaries that are well
reconstructed in relation to the data set? Another question is whether the fuzzy
boundaries are fuzzy because the algorithm is bad or could there be an additional
explanation.

Allan Cormack’s first algorithm [10] solved the exterior problem, but the
algorithm was not numerically effective. The integrals in his algorithm were difficult
to evaluate numerically with any accuracy because the integrand grew too rapidly.
Other mathematicians tried to improve this method, but it was difficult. Because of
this problem, Cormack developed a second method that uses full data and that gave
good reconstructions [11].

It would be useful to know if limitations of Quinto’s and Cormack’s algorithms
are problems with their algorithms or reflect something intrinsic to this limited data
problem.

Limited Angle Data
Limited angle tomography is a classical problem from the early days of tomography
[3, 60, 61]. In this case, data are given over all lines in a limited range of directions,
or data for f.!.'/; p/ W ' 2 .�˚;˚/; p 2 Rg where ˚ 2 .0; �=2/. One can
uniquely recover compactly supported functions from limited angle data, but this is
not true for arbitrary functions (see Theorem 3).

Limited angle tomography is used in certain luggage scanners in which the X-
ray source is on one side of the luggage and the detectors are on the other, and
they move in opposite directions. Limited angle data are used in important current
problems including dental X-ray scanning [68] and tomosynthesis (a tomographic
technique to image breasts using transmitter and receiver that move on opposite
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sides of the breast) [72]. Other algorithms were developed for this problem such as
[12, 26, 49, 68].

The reconstruction in Fig. 3 is from limited angle data. Data are taken over all
lines `.!.'/; p/ for p 2 R and ' 2 Œ��=4; �=4�.

The algorithm used in this reconstruction is a truncated filtered backprojection
(FBP) algorithm which is given in (26). Some boundaries in this reconstruction are
well reconstructed and others are not. How do these boundaries relate to lines in the
data set? How do the streaks in the reconstruction relate to the data set?

Region of Interest (ROI) Data
In region of interest tomography, one chooses a subset of the object, called a region
of interest (ROI), to reconstruct. ROI data consist of all lines that meet this region,
and the ROI problem is to reconstruct the structure of the ROI from these data. Such
data are also called interior data (and the interior problem). ROI CT is important in
the CT of small parts of objects, so-called micro-CT [18, p. 460]. Other algorithms
in ROI CT include [104] (when one knows the value of a function in part of the
interior) and [105] (when the density is piecewise constant in the ROI), as well as
algorithms including [52]. A singular value decomposition was developed for this
problem in [63].

ROI CT is useful for medical CT and industrial nondestructive evaluation in
which one is interested only in a small region of interest in an object, not the entire
object. An advantage for medical applications is that ROI data gives less radiation
than with complete data.

Lambda tomography [17], [18] is one important algorithm for ROI CT which will
be described in section “Filtered Backprojection (FBP) for the X-Ray Transform,”
and the ROI reconstruction presented here uses this algorithm. The data are severely
limited – they include only lines near the disk and the ROI transform is not injective
(see Theorem 6), so why do the reconstructions look so good?

Limited Angle Region of Interest Tomography
In this modality data are given over lines in a limited angular range and that are
restricted to pass through a given ROI. It comes up in single axis tilt electron
microscopy (ET) (see Öktem’s chapter in this book [71]). However, in general, ET
is better understood as a three-dimensional problem, and this will be presented in
the next paragraph.

Electron Microscope Tomography (ET) Over Arbitrary Curves

Now a full three-dimensional problem, electron microscope tomography (ET), is
considered. The notation is as in Öktem’s chapter in this book [71], which has
detailed information about the physics, biology, model, and mathematics of ET.
A reconstruction of a simple 3D phantom – the union of the following disks: with
center .0; 0; 0/, radius 1=2; center .0; 0; 1/, radius 1=2; center .1;�1; 1/, radius 1=4;
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Fig. 4 Reconstruction from conical tilt data. Cross section with the x � y plane of the phantom
described in this section (left), L� reconstruction (center, see Eq. (28)) and LS reconstruction
(right, see Eq. (29)). The center of the cross section is the origin, and the range in x and y is from
�2 to 2. This research was done with Sohhyun Chung and Tania Bakhos while they were Tufts
undergraduates [82, c�Scuola Normale Superiore, Pisa. Reproduced by permission with Scuola
Normale Superiore, Pisa, all rights reserved]
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Fig. 5 Reconstruction from conical tilt data. Cross section of phantom in the plane x D �y
(left) and L� reconstruction in that plane (right). The x � y plane cuts the picture in half with
a horizontal line [82, c�Scuola Normale Superiore, Pisa. Reproduced by permission with Scuola
Normale Superiore, Pisa, all rights reserved]

and center .�1; 1;�1=2/, radius 1=4 – is analyzed. The disks above the x�y plane
have density two and the others have density one.

Conical tilt ET data is described in section “Algorithms in Conical Tilt ET” and
Öktem’s chapter in this book [71]. In this example, line integrals are given over all
lines in space with angle ˛ D �=4 with the z�axis. Reconstructions are given from
two algorithms that are described in section “Electron Microscope Tomography
(ET) Over Arbitrary Curves.” The operators are L� (given in Eq. (28)) and LS
(given in Eq. (29)).

Artifacts are added in the L� reconstruction in Fig. 4 and in Fig. 5 which shows
the plane containing the centers of the disks and the z�axis (axis of rotation of
the scanner). These figures are remarkable because the L� reconstruction has so
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many added artifacts compared to the LS reconstruction, although these operators
are not very different (see section “Algorithms in Conical Tilt ET”). Why are the
reconstructions so different?

Reconstructions of real specimens from single axis tilt data show some of the
same strengths and limitations (see, e.g., [80, 83] and Öktem’s chapter in this book
[71]). However, the added artifacts have different properties, and since the data are
so noisy, other factors affect reconstructions.

Synthetic-Aperture Radar Imaging

In synthetic-aperture radar (SAR) imaging, a region of interest on the surface of the
earth is illuminated by electromagnetic waves from an airborne platform such as a
plane or satellite. For more detailed information on SAR imaging, including several
open problems in SAR imaging, the reader is referred to [7, 8] and to the chapter
in this handbook by Cheney and Borden [9]. The backscattered waves are picked
up at a receiver or receivers, and the goal is to reconstruct an image of the region
based on such measurements. In monostatic SAR, the transmitter and receiver are
located on the same platform. In bistatic SAR, the transmitter and receiver are on
independently moving trajectories.

While monostatic SAR imaging is the one that is widely used, bistatic SAR
imaging offers several advantages. The receivers in comparison to transmitters are
not active sources of electromagnetic radiation and hence are more difficult to
detect if flown in an unsafe environment. Since the transmitter and receiver are
at different points in space, bistatic SAR systems are more resistant to electronic
countermeasures such as target shaping to reduce scattering in the direction of
incident waves [48].

The reconstruction of the image based on the measurement of the backscattered
waves is in general a hard problem. However, ignoring contributions of multiply
backscattered waves linearizes the relation between the image to be recovered
and the backscattered waves and is easier to analyze. Due to this reason, a
linearizing approximation called the Born approximation that ignores contribution
from multiply scattered waves is widely used in SAR image reconstruction.

The Linearized Model in SAR Imaging
Let �T .s/ and �R.s/ for s 2 .s0; s1/ be the trajectories of the transmitter and receiver,
respectively. The propagation of electromagnetic waves can be described by the
scalar wave equation

�
� � 1

c2
@2
t

�
E.x; t/ D �P.t/ı.x � �T .s//; (5)

where c is the speed of electromagnetic waves in the medium, E.x; t/ is each
component of the electric field, and P.t/ is the transmit waveform sent to the
transmitter antenna. The wave speed c is spatially varying due to inhomogeneities
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present in the medium, and one can assume that it is a perturbation of the constant
background speed of propagation c0 of the form

1

c2.x/
D 1

c2
0

C QV .x/:

One assumes that QV .x/ only varies over a two-dimensional surface: the surface of
the earth. Therefore, QV can be represented as a function of the form

QV .x/ D V.x/ı0.x3/

where it will be assumed that the earth’s surface is represented by the x D .x1; x2/

plane. The background Green’s function g is the solution of the following equation:

�
� � 1

c2
0

@2
t

�
g.x; t/ D �ı0.x/ı0.t/:

This is given by

g.x; t/ D ı.t � kxk =c0/

4� kxk : (6)

Now the incident field E in due to the source s.x; t/ D P.t/ı.x � �T .s// is

E in.x; t/ D
Z
g.x � y; t � �/s.y; �/dyd�

D P.t � kx � �T .s/k =c0/

4� kx � �T .s/k :

Let E denote the total field of the medium, E D E in C Esc, where Esc is the
scattered field. This can be written using the Lippmann-Schwinger equation:

Esc.z; t/ D
Z
g.z � x; t � �/@2

t E.x; �/V .x/dxd�: (7)

This equation is linearized by replacing the total field E on the right-hand side of
the above equation byE in. This is known as the Born approximation. The linearized
scattered wave field Esc

lin.�R.s/; t/ at the receiver location �R.s/ is then

Esc
lin.�R.s/; t/ D

Z
g.x � �R.s/; t � �/@2

t E
in.x; �/V .x/dxd�:

Substituting the expression for E in into this equation and integrating, one obtains
the following expression for the linearized scattered wave field:



858 V.P. Krishnan and E.T. Quinto

−2 −1 0 1 2
−2

−1

0

1

2

Fig. 6 Reconstruction of a disk centered on the positive y-axis from integrals over ellipses (with
constant distance between the foci) centered on the x-axis and with foci in [�3,3]. Notice that
some boundaries of the disk are missing, and there is a copy of the disk below the axis. This
was originally from the Tufts University Senior Honors thesis of Howard Levinson and published
in [55, Reproduced with kind permission from Springer ScienceCBusiness Media: c� Springer
Verlag]

Esc
lin.�R.s/; t/ D

Z
e

�i!.t� 1
c0
R.s;x//

A.s; x; !/V .x/dxd!; (8)

where

R.s; x/ D k�T .s/ � xk C kx � �R.s/k

and

A.s; x; !/ D !2p.!/..4�/2 k�T .s/ � xk k�R.s/� xk/�1; (9)

where p is the Fourier transform of P . The function A includes terms that take into
account the transmitted waveform and geometric spreading factors. The inverse of
the norms appears in A due to the background Green’s function, (6).

The reconstruction in Fig. 6 of a disk centered on the positive y-axis from
integrals of it over ellipses with foci moving along the x-axis offset by a constant
distance (which is simplified model of (8)) highlights some of the features in SAR
image reconstruction. Some part of the boundary is not stably reconstructed, and an
artifact of the true image appears as a reflection about the x-axis along with streak
artifacts. Looking at the reconstructed image, one sees that at least visually, the
created artifact is as strong as the true image. Microlocal analysis of the operators
appearing in SAR imaging will make precise and justify all these observations. This
will be addressed in section “SAR Imaging.”
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General Observations

In each reconstruction in this section, some object boundaries are visible and others
are not. In fact, if one looks more carefully at the reconstructions, one can notice that
in each case, the only feature boundaries that are clearly defined are those tangent
to lines in the data set for the problem. Example 1 illustrates this in a naive way:
one sees singularities in the Radon data exactly when the lines of integration are
tangent to the boundary of the object. The goal of this chapter is to make the idea
mathematically rigorous.

The conical tilt ET reconstructions in section “Electron Microscope Tomography
(ET) Over Arbitrary Curves” have artifacts if one uses a certain algorithm but
apparently not when one uses another similar one. The reconstruction related to
radar in Fig. 6 has an artifact that is a reflected image of the disk.

In Sect. 4, deep mathematical ideas from microlocal analysis will be introduced
to classify singularities and what certain operators do to them. In Sect. 5 these
microlocal ideas will be used to explain the visible and invisible singularities for
limited data X-ray CT as well as the added singularities in ET and radar.

3 Properties of Tomographic Transforms

In this section, after introducing some functional analysis, basic properties of trans-
forms in X-ray tomography and electron microscope tomography are presented. The
microlocal properties of radar will be given later in section “SAR Imaging.”

Function Spaces

The open disk in R
2 centered at the origin and of radius r > 0 will be denotedD.r/.

The set C1.Rn/ consists of all smooth functions on R
n, that is, functions that

are continuous along with their derivatives of all orders, and D.Rn/ is the set of
smooth functions of compact support. Its dual space – the set of all continuous
linear functionals on D.Rn/ (given the weak-* topology) – is denoted D0.Rn/ and
is called the set of distributions. If u is a locally integrable function, then u is a
distribution with the standard definition

hu; f i D u.f / D
Z
Rn

u.x/f .x/ dx

for f 2 D.Rn/ since u.x/f .x/ is an integrable function of compact support.
If ˝ is an open set in R

n, then D.˝/ is the set of smooth functions compactly
supported in ˝ . Its dual space with the weak-* topology is denoted D0.˝/.

The Schwartz space of rapidly decreasing functions is the set S.Rn/ of all
smooth functions that decrease (along with all their derivatives) faster than any
power of 1= kxk at infinity. Its dual space, S 0.Rn/, is the set of all continuous linear
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functionals on S.Rn/ with the weak-* topology (convergence is pointwise: uk ! u
in S 0.Rn/ if, for each f 2 S.Rn/, uk.f / ! u.f /). They are called tempered
distributions. Any function that is measurable and bounded above by some power
of .1C kxk/ is in S 0.Rn/ since its product with any Schwartz function is integrable.

A distribution u is supported in the closed set K if for all functions f 2 D.Rn/
with support disjoint from K , u.f / D 0. The support of u, supp.u/, is the smallest
closed set in which u is supported.

Example 2. The Dirac delta function at zero is an important distribution that is not
a function. It is defined hı0; f i D ı0.f / D f .0/. Note that if f is supported away
from the origin, then ı0.f / D 0 since f .0/ D 0. Therefore, the Dirac delta function
has support f0g.

Let E 0.Rn/ be the set of distributions that have compact support in R
n. If˝ is an

open set in R
n, then E 0.˝/ is the set of distributions with compact support contained

in ˝ . For example, on the real line, ı 2 E 0 ..�1; 1//.
If f 2 L1.Rn/, then its Fourier transform and inverse are

Ff .�/ D Of .�/ D 1

.2�/n=2

Z
x2Rn

e�ix � �f .x/ dx

F�1f .x/ D Lf .x/ D 1

.2�/n=2

Z
�2Rn

eix � �f .�/ d� :

(10)

The Fourier transform is linear and continuous from L1.Rn/ to the space of contin-
uous functions that converge to zero at 1. Furthermore, F is an isomorphism on
L2.Rn/ and an isomorphism on S.Rn/ and, therefore, on S 0.Rn/. More information
about these topics can be found in [86], for example.

Basic Properties of the Radon Line Transform

In this section fundamental properties of the Radon line transform, RL, are derived,
see [66]. This will provide a connection between the transforms and microlocal
analysis in Sect. 4.

Theorem 1 (General Projection Slice Theorem). Let f 2 L1.R2/. Now let h 2
L1.R/ and ! 2 S1. Then,

Z
x2R2

f .x/h.x �!/ dx D
Z 1

pD�1
RLf .!; p/h.p/ dp: (11)

Proof. Let ! 2 S1. First, note that the function x 7! f .x/h.x �!/ is in L1.R2/

since h is bounded and measurable. For the same reason, the function
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.p; t/ 7! f .p! C t!?/h.p/

is in L1.R2/. Therefore,

Z
x2R2

f .x/h.x �!/ dx D
Z 1

pD�1

Z 1

tD�1
f .p! C t!?/h .p/ dt dp (12)

D
Z 1

pD�1
RLf .!; p/h.p/ dp (13)

where (12) holds by rotation invariance of the Lebesgue integral and then Fubini’s
theorem and since p D ! � .p! C t!?/. The equality (13) holds by the definition
of RL. ut

Let S.S1�R/ be the set of smooth functions on S1�R that decrease (along with
all their derivatives) faster than any power of 1= jpj at infinity uniformly in !, and let
S 0.S1�R/ be its dual. The partial Fourier transform is defined for g 2 L1.S1�R/
as

Fpg.!; �/ D 1p
2�

Z
p2R

e�ip�g.!; �/ d� : (14)

Because the Fourier transform is an isomorphism on S.R/, this transform and its
inverse are defined and continuous on S 0.S1 � R/.

The Fourier Slice Theorem is an important corollary of Theorem 1.

Theorem 2 (Fourier Slice Theorem). Let f 2 L1.R2/. Then for .!; �/ 2 S1�R,

Ff .�!/ D 1p
2�

FpRf .!; �/ :

To prove this theorem, one applies the General Projection Slice Theorem 1 to the
function h.p/ D e�ip� .

The Fourier Slice Theorem provides a proof that RL is invertible on domain
L1.R2/ sinceFp is invertible on domainL1.S1�R/. Zalcman constructed a nonzero
function that is integrable on every line in the plane and whose line transform is
identically zero [107]. Of course, his function is not in L1.R2/.

This theorem also provides a proof of invertibility for the limited angle problem.

Theorem 3 (Limited Angle Theorem). Let f 2 E 0.R2/ and let ˚ 2 .0; �=2/. If
RLf .!.'/; p/ D 0 for ' 2 .�˚;˚/ and all p, then f D 0.

However, there are nonzero functions f 2 S.R2/ with RLf .!.'/; p/ D 0 for
' 2 .�˚;˚/ and all p.
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Proof. Let f 2 E 0.R2/ and assume RLf .!.'/; p/ D 0 for ' 2 .�˚;˚/ and all p.
By the Fourier Slice Theorem, which is true for E 0.R2/ [45],

Ff .�!.'// D 1p
2�

FpRLf .!.'/; �/ D 0 for ' 2 .�˚;˚/, � 2 R (15)

and this expression is zero because RLf .!.'/; �/ D 0 for such .'; �/. This shows
that Ff is zero on the open cone

V D f�!.'/ W � ¤ 0; ' 2 .�˚;˚/g:

Since f has compact support, Ff is real analytic, and so Ff must be zero
everywhere since it is zero on the open set V . This shows f D 0.

To prove the second part of the theorem, let Qf be any nonzero Schwartz function

supported in the cone V and let f D F�1
� Qf �. Since Qf is nonzero and in S.R2/,

so is f . Using (15) but starting with Ff D 0 in V , one sees that RLf is zero in
the limited angular range. ut

Another application of these theorems is the classical Range Theorem for this
transform.

Theorem 4 (Range Theorem [28,41]). Let g 2 S.S1 �R/. Then g is in the range
of RL on domain S.R2/ if and only if

1. g.!; p/ D g.�!;�p/ for all .!; p/ 2 S1 � R

2. For each m 2 f0; 1; 2; : : :g,
Z
p2R

g.!; p/pm dp is a polynomial in ! 2 S1 that

is homogeneous of degreem.

Proof (Sketch). The necessary part of the theorem follows by applying the General
Projection Slice Theorem to h.p/ D pm form a nonnegative integer:

Z
p2R

RLf .!; p/p
m dp D

Z
x2R2

f .x/.x �!/m dx

and after multiplying out .x �!/m in the coordinates of !, one sees that the right-
hand integral is a polynomial in these coordinates homogeneous of degree m. The
sufficiency part is much more difficult to prove. One uses the Fourier Slice Theorem
to construct a function f satisfying Ff .�!/ D 1p

2�
Fpg.!; �/. Since Fpg is

smooth and rapidly decreasing in p, Ff is smooth away from the origin and rapidly
decreasing in x. The subtle part of the proof in [41] is to show Ff is smooth at the
origin, and this is done using careful estimates on derivatives using the moment
conditions, (2) of Theorem 4. Once that is known, one can conclude Ff 2 S.R2/

and so f 2 S.R2/. ut



Microlocal Analysis in Tomography 863

The support theorem for RL is elegant and has motivated a large range of
generalizations such as [5, 6, 42, 53, 57, 78].

Theorem 5 (Support Theorem [10, 28, 41]). Let f be a distribution of compact
support (or a function in S.R2/) and let r > 0. Assume RLf is zero for all lines
that are disjoint from the disk D.r/. Then supp.f / � D.r/.

This theorem implies that the exterior problem has a unique solution; in this
case, D.r/ is the excluded region. The proof is tangential to the main topics of this
chapter, and it can be found in [10, 28, 41, 43, 92].

Counterexamples to the support theorem exist for functions that do not decrease
rapidly at1 (e.g., [43, 106] or the singular value decompositions in [73, 76]).

A corollary of these theorems shows that exact reconstruction is impossible from
ROI data where D.r/ is the disk centered at the origin in R

2 and of radius r > 0.

Theorem 6. Consider the ROI problem with region of interest the unit disk D.1/.
Let r 2 .1;1/. Then there is a function f 2 D.D.r// that is not identically zero in
D.1/ but for which RLf is zero for all lines that intersect D.1/.

Proof (Sketch). Let h.p/ be a smooth nonzero nonnegative function supported in
.1; r/ and let g.!; p/ D h.jpj/. Since g is independent of!, the moment conditions
from the Range Theorem (Theorem 4), are trivially satisfied, so that theorem shows
that there is a function f 2 S.R2/ with RLf D g. By the support theorem, f is
supported in the disk D.r/. To show f is nonzero in the ROI, D.1/, one uses [10,
p. 2725, equation (18)]. This is also proven in [66, p. 169, VI.4], and Natterer shows
that such null functions do not oscillate much in the ROI. It will be shown in Sect. 5
that null functions are smooth in the ROI, too. ut

Continuity Results for the X-Ray Transform

In this section some basic continuity theorems for RL are presented.
A simple proof shows that RL is continuous from Cc.D.M// to Cc.SM / where

we define SM D S1 � Œ�M;M�. First, one uses uniform continuity of f to show
RLf is a continuous function. Then, the proof that RL is continuous is based on
the estimate

jRLf .!; p/j � �M 2 kf k1

where kf k1 is the (essential) supremum norm of f . A stronger theorem has been
proven by Helgason.

Theorem 7 ([41]). RL W S.R2/! S.S1 � R/ is continuous.
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The proof of the next theorem follows from the calculations in the proof of the
General Projection Slice Theorem.

Theorem 8. RL W L1.R2/! L1.S1 � R/ is continuous.

Proof. By taking absolute values in (11) with h D 1 and then integrating with
respect to !, one sees that kf kL1.R2/ � .2�/ kRLf kL1.S1�R/ and so RL is
continuous on L1. ut

Continuity results for RL in Sobolev spaces were given in [40, 45, 59] for
functions of fixed compact support.

Filtered Backprojection (FBP) for the X-Ray Transform

To state the most commonly used inversion formula, filtered backprojection, one
first defines the dual line transform. For g 2 L1.S1 � R/ and x 2 R

2,

R�
Lg.x/ D

Z
!2S1

g.!; x �!/ d!: (16)

For each ! 2 S1, x 2 `.!; x �!/, so R�
Lg.x/ is the integral of g over all lines

through x. The transform R�
L is the formal dual to RL in the sense that for f 2

S.R2/ and g 2 S.S1 �R/,

hRLf; giL2.S1�R/ D hf;R�
LgiL2.R2/ :

Because RL W S.R2/ ! S.S1 � R/ is continuous, R�
L W S 0.S1 � R/ ! S 0.R2/ is

weakly continuous.
The Lambda operator is defined on functions g 2 S.S1 � R/ by

+pg.!; p/ D F�1
p .j� j �Fpg.!; � /	/ : (17)

Theorem 9 (Filtered Backprojection (FBP) [66, 85, 87]). Let f 2 S.R2/. Then,

f D 1

4�
R�
L+pRLf: (18)

This formula is valid for f 2 E 0.R2/.

Filtered backprojection is an efficient, fast reconstruction method that is easily
implemented [67] by using an approximation to the operator+p that is convolution
with a function (see, e.g., [66] or [87]). Note that FBP requires data over all lines
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Fig. 7 FBP reconstructions of phantom consisting of three ellipses. The left reconstruction uses
18 angles, the middle 36 angles, and the right one 180 angles

through the object – it is not local: in order to find f .x/, one needs data RLf over
all lines in order to evaluate+pRLf (which involves a Fourier transform).

To see the how sensitive FBP is to the number of the angles used, reconstructions
are provided in Fig. 7 using 18, 36, and 180 angles. One can see that using too
few angles creates artifacts. An optimal choice of angles and values of p can be
determined using sampling theory [15, 16, 66].

Proof (Proof of Theorem 9). Let f 2 S.R2/. First, one writes the two-dimensional
Fourier inversion formula in polar coordinates:

f .x/ D 1

2.2�/

Z
!2S1

Z
�2R

eix � .�!/ Of .�!/j� j d� d! (19)

D 1

4�

Z
!2S1

Z
�2R

ei�.! �x/p
2�
j� j �FpRLf

	
.!; �/ d� d! (20)

D 1

4�

Z
!2S1

�
+pRLf

	
.!; ! �x/ d! D 1

4�
R�
L+pRLf .x/ : (21)

The factor of 1=2 in front of the integral in (19) occurs because the integral is over
� 2 R rather than � 2 Œ0;1/. The Fourier Slice Theorem (Theorem 2) is used
in (20), and the definitions of +p and of R�

L are used in (21). The integrals above
exist because f , Ff , and RLf are all rapidly decreasing at infinity.

The proof that the FBP formula is valid for f 2 E 0.R2/ will now be given. Since
f 2 E 0.R2/, the Fourier Slice Theorem holds for f [45], and

FpRLf .!; �/ D
p

2�Ff .�!/

is a smooth function that is polynomially increasing [86]. So, j� jFpRL.!; �/ is
a polynomially increasing continuous function and therefore in S 0.S1 � R/. Since
the inverse Fourier transform, F�1

p , maps S 0 to S 0, +pRLf is a distribution in
S 0.S1 � R/. By duality with S, R�

L W S 0.S1 � R/ ! S 0.R2/, so R�
L+pRLf is

defined for f 2 E 0.R2/. Since the Fourier Slice Theorem holds for f [45], the FBP
formula can be proved for f as is done above for S (see [26] more generally). ut
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Fig. 8 ROI reconstruction by
Tufts undergraduate Stephen
Bidwell from simulated data
for the characteristic function
of a circle using the operator
Lx;� given in (23) [4, c�Tufts
University]

Limited Data Algorithms

In limited data problems, some data are missing, and reconstruction methods are
now presented for ROI CT, limited angle CT, and limited angle ROI CT.

ROI Tomography

Lambda tomography [17,18,96] is an effective and easy-to-implement algorithm for
ROI CT. The fundamental idea is to replace +p by �d 2=dp2 in the FBP formula.
The relation between these two operators is that +2

p D �d 2=dp2, which will be
justified in Example 9. This motivates the definition

Lxf WD 1

4�
R�
L

�
� d

2

dp2
RLf

�
: (22)

FBP is not local; to calculate+pRLf .!; p/, one needs data over all lines to take
the Fourier transformFp . Therefore, one needs data over all lines through the object
to calculate f using FBP (18). This means that FBP cannot be used on ROI data.

The advantage of Lambda tomography over FBP is that Lx is local in the
following sense. To calculate Lxf , one needs the values of

��d 2=dp2
	
RLf at all

lines through x (since R�
L evaluated at x integrates over all such lines). Furthermore,��d 2=dp2

	
is a local operator, and to calculate

��d 2=dp2
	
RLf at a line through

x, one needs only data RLf over lines close to x. Therefore, one needs only data
over all lines near x to calculate Lxf . Therefore, Lx can be used on ROI data.
Although Lambda CT reconstructs Lxf , not f itself, it shows boundaries very
clearly (see Fig. 8 and [17]).

Kennan Smith developed an improved local operator that shows contours of
objects, not just boundaries. His idea was to add a positive multiple of R�

LRLf

to the reconstruction to get
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Lx;�f D 1

4�
R�
L

��
� d

2

dp2
C �

�
RLf

�
(23)

for some � > 0. Using (35), one sees that

R�
L .�RLf / .x/ D

�
2�

kxk � f
�
.x/; (24)

so this factor adds contour to the reconstruction since the convolution with 2�= kxk
emphasizes the values of f near x. Lambda reconstructions look much like FBP
reconstructions even though they are local. A discussion of how to choose � to
counteract a natural cupping effect of Lx is given in [17]. The operator Lx;� is local
for the same reasons as Lx is, and it was used in the ROI reconstruction in Fig. 8.

The ideas behind Lambda CT can be adapted to a range of limited data problems
including limited angle tomography(e.g., [49, 56]), exterior tomography [79], and
three-dimensional problems such as cone beam CT [2, 25, 51, 103] and conical tilt
electron microscopy [23]. Here is one such application.

Limited Angle CT

There are several algorithms for limited angle tomography (e.g., [3,12,49,61,104]),
and two will be presented that are generalizations of FBP and Lambda CT. The key
to each is to use the limited angle backprojection operator that uses angles in an
interval .�˚;˚/ with ˚ 2 .0; �=2/:

R�
L;limg.x/ D

Z ˚

'D�˚
g.!.'/; x �!.'//d' : (25)

The limited angle FBP and limited angle Lambda algorithms are

R�
L;lim+pRLf and R�

L;lim

�
� d

2

dp2

�
RLf (26)

respectively. The objects in Fig. 3 are reconstructed using this limited angle FBP
algorithm. Limited angle Lambda CT is local, so it can be used for the limited angle
ROI data in electron microscope tomography [80, 83].

Fan Beam and Cone Beam CT

The parallel beam parameterization of lines in the plane used above is more
convenient mathematically, but modern CT scanners use a single X-ray source that
emits X-rays in a fan or cone beam. The source and detectors (on the other side of
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the body) move around the body and quickly acquire data. This requires different
parameterizations of lines.

The fan beam parameterization is used if the X-rays are collimated to one
reconstruction plane. Let C be the curve of sources in the plane, typically a circle
surrounding the object, and let .!; �/ 2 C � S1. Then,

L.!; �/ D f! C t� W t > 0g

is the ray starting at ! in direction � , and the fan beam line transform is

Z 1

tD0
f .! C t�/ dt:

In this case the analogs of the formulas proved above are a little more complicated.
For example, a Lambda-type operator can be designed by taking the negative second
derivative in � 2 S1. The other formulas are similar and one can find them in
[66, 90].

In cone beam tomography, the source is collimated to illuminate a cone in space,
and the source moves in a curve around the body along with the detectors. This
scanner images a volume in the body, rather than a planar region as RL, and the
fan beam transform does. However, the reconstruction formulas are more subtle
[50], and one can understand these difficulties using microlocal analysis [25, 30].
Related issues come up in conical tilt ET as will be described in section “Microlocal
Analysis of Conical Tilt Electron Microscope Tomography (ET).”

These data acquisition methods have several advantages over parallel beam data
acquisition. First, the scanners are simpler to build than the original CT scanners,
which took data using the parallel geometry, and so a single X-ray source (or several
collimated sources) and detector(s) were translated to get data over parallel lines in
one direction, and then the source and detector were rotated to get lines for other
directions. Second, they can acquire data more quickly than old style parallel beam
scanners since the fan beam X-ray source and detector array move in a circle around
the object.

This is all discussed in Herman’s chapter in this book [44].

Algorithms in Conical Tilt ET

Conical tilt ET [108] is a new data acquisition geometry in ET that has the potential
to provide faster data acquisition as well as clearer reconstructions. The algorithms
used for the conical tilt ET reconstructions will be given in section “Electron Micro-
scope Tomography (ET) Over Arbitrary Curves.” This will lay the groundwork to
understand why the reconstructions in that section from two very similar algorithms
are so dramatically different. The model and mathematics are fully discussed in
Öktem’s chapter in this book [71].
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First the notation is established. For ! 2 S2, denote the plane through the origin
perpendicular to ! by

!P D fx 2 R
3 W x �! D 0g: (27)

The tangent space to the sphere S2 is

T .S2/ D f.!; x/ W ! 2 S2; x 2 !P g

since the plane !P is the tangent plane to S2 at !. This gives the parallel beam
parameterization of lines in space: for .!; x/ 2 T .S2/, the line

L.!; x/ D fx C t! W t 2 Rg:

If ! is fixed, then the linesL.!; x/ for x 2 !P are all parallel. As noted in Öktem’s
chapter in this book [71], ET data are typically taken on a curve S � S2. This means
the lines in the data set are parameterized by

MS D f.!; x/ W ! 2 S; x 2 !P g :

So, for f 2 L1.R3/, the ET data of f for lines parallel to S can be modeled as the
parallel beam transform

PSf .!; x/ D
Z
t2R

f .x C t!/ dt for .!; x/ 2MS .

Its dual transform is defined for functions g on MS as

P�
S g.x/ D

Z
!2S

g.!; x � .x �!/!/d!;

where d! is the arc length measure on S . This represents the integral of g over all
lines through x.

In this section, conical tilt ET is considered; an angle ˛ 2 .0; �=2/ is chosen, and
data are taken for angles on the latitude circle:

S˛ D f.sin.˛/ cos.'/; sin.˛/ sin.'/; cos.˛//g W ' 2 Œ0; 2��g:

Let C˛ be the cone with vertex at the origin and opening angle ˛ from the vertical
axis:

C˛ D ft! W ! 2 S˛g:

Note that C˛ is the cone generated by S˛ .
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Here are the two algorithms for which reconstructions were given in sec-
tion “Electron Microscope Tomography (ET) Over Arbitrary Curves.” The first
operator is a generalization of one developed for cone beam CT by Louis and Maaß
[62]:

L�f D P�
S .��S/PSf; (28)

where�S is the Laplacian on the detector plane,!P . The second operator is defined

LSf D P�
S .�DS /PSf; (29)

where DS is the second derivative on the detector plane !P in the tangent direction
to the curve S at ! (see Öktem’s chapter in this book [71]). The next theorem helps
clarify these operators by writing them as convolution operators.

Theorem 10. Let PS be the conical tilt ET transform with angle ˛ 2 .0; �=2/. Let
f 2 E 0.R3/. Then

P�
SPSf D f � I D

Z
y2C˛

f .x C y/
kyk dy (30)

L�f D .��/ .f � I / (31)

LSf D
�
��C csc2.˛/

@2

@z3

�
f � I (32)

where I is the distribution defined for f 2 D.R2/ by

I.f / D
Z
y2C˛

f .y/
1

kykdy

and dy is the surface area measure on the cone C˛ .

Equation (30) makes sense since P�
S integrates PSf over all lines in the data set

through x, and these are exactly the lines in the shifted cone x C C˛. The theorem
implies that each of the operators is related to a simple convolution with a singular
weighted integration over the cone C˛.

Proof. The theorem is first proven for f 2 D.R3/, by calculating (30):

P�
SPSf .x/ D

Z
!2S

Z
t2R

f .x � .x �!/! C t!/dt d!

D
Z
!2S

Z
t2R

f .x C s!/ ds d!
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where the substitution s D t � .x �!/ is used. Now, one converts this to an integral
over C˛:

P�
SPSf .x/ D

Z
!2S

Z
s2R

f .x C s!/ 1

jsj jsj dsd!

D
Z
y2C˛

f .x C y/
kyk dy

since the measure on the cone C˛ is dy D jsj ds d! where y D s!.
To prove (31), one moves� inside the integral. Then one uses rotation invariance

of � (to write � in coordinates:

.s; t; p/ 7! .s! C t!0 C p! � !0/

where !0 is the unit vector tangent to S at ! and in direction of increasing ').
Finally, one uses an integration by parts to show that P�

S intertwines � and �S . To

prove (32), one uses (31) and a calculation to show that
�
��C csc2.˛/ @

2

@z2

�
and DS

are intertwined by P�
S .

The theorem is now proven for f 2 E 0.R3/. Since f has compact support, the
convolution f � I is defined by [86, 6.37 Theorem]. Then, the proof is completed
using the fact that the equalities are true for f 2 D.R3/ and continuity of the
operators (since PS is a Fourier integral operator, which will be discussed in
section “Microlocal Analysis of Conical Tilt Electron Microscope Tomography
(ET)”). ut

4 Microlocal Analysis

The reader has seen how limited data reconstructions can image different singular-
ities (or add artifacts) depending on the type of data. This section will be devoted
to developing the mathematics to understand those differences. The key point is to
develop a precise definition of singularities and to understand what our tomographic
transforms do to singularities.

Singular Support andWavefront Set

Definition 1. Let ˝ � R
n be an open set and let u 2 D0.˝/. The singular support

of u, denoted by ssupp.u/, is the complement in ˝ of the largest open set on which
u is C1 smooth.

In other words, a point x0 2 ˝ is not in the singular support of u if u is smooth in a
neighborhood of x0. Let us consider some examples.
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f= 1

f= 0

Fig. 9 The function f D 1 in the interior of the square and f D 0 in the complement. The
singular support, ssupp.f /, is the boundary of the rectangle, and the wavefront set directions are
shown in the figure

Example 3. Consider the square S D Œ0; 1�2 in R
2. Let f be the characteristic

function

u.x; y/ D
(

1 if .x; y/ 2 S I
0 otherwise.

(33)

Then ssupp.u/ is the boundary of the square because that is where u is not
smooth; see Fig. 9.

Smoothness of a distribution u 2 E 0.Rn/ is related to the rapid decay of its
Fourier transform. Recall the following definition.

Definition 2. A function f W Rn ! C is rapidly decaying at infinity if for every
N � 0, there is a CN such that jf .x/j � CN .1C kxk/�N for all x 2 R

n.

Theorem 11 ([86]). A distribution u 2 E 0.˝/ is inC1
c .˝/ if and only if its Fourier

transform is rapidly decaying at infinity.

This theorem implies that if a distribution u is not C1 smooth, then there are
nonzero frequency directions � such that the Fourier transform Ou does not satisfy
the estimate of Theorem 11 in any conic neighborhood , containing �. However,
this is global information; it does not yet relate to singular support – the points
where u is not smooth. To make this connection, one needs to consider directions
near which a localized Fourier transform of u does not satisfy these estimates. This
leads us to the concept of C1 wavefront set.
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Definition 3. Let u be a distribution defined on an open set˝ � R
n. One says that

.x0; �0/ 2 ˝ � R
n n 0 is not in the wavefront set of u, if there is a  2 C1

c .X/

identically 1 near x0 and an open cone , containing �0 such that given anyN , there
is a CN such that

ˇ̌
ˇc u.�/

ˇ̌
ˇ � CN .1C k�k/�N for � 2 ,:

On the other hand, the C1 wavefront set of a distribution u will be denoted by
WF.u/.

Remark 1. To be more precise, one views elements of the wavefront set to be
elements of the cotangent bundle T �˝ n 0 using the notation

�dx D �1dx1 C � � � C �ndxn for � 2 R
n n 0:

Through this, one can define wavefront sets for distributions on manifolds.

Note that the cutoff function,  , in this definition is somewhat more restrictive
than what is sometimes given (just that  .x0/ ¤ 0) but it is equivalent [47].

Theorem 12 ([47]). Let u be a distribution defined on an open set ˝ � R
n and �x

denote the x-projection WF.u/. Then �x .WF.u// D ssupp.u/.

Example 4. Consider the Dirac delta distribution ı0 in R
n. Then ssupp.ı0/ D f0g

because ı0 is zero away from the origin and supported at the origin. So, by
Theorem 12, x D 0 is the only point above in which there can be wavefront set.
Furthermore, if  is a cutoff function at x0 D 0, then F. ı0/ D 1=.2�/n=2, so
WF.ı0/ D f.0; �dx/; � ¤ 0g.

Example 5. Consider the function f given in Example 3. The wavefront set WF.f /
consists of the nonzero normal directions at all the singular support points except the
four corner points. At these corner points, all nonzero directions are in the wavefront
set, as illustrated in Fig. 9.

The proof is as follows. Consider first a non-corner point x0 in the singular
support. One can assume that this point is on the x-axis, x0 D .a; 0/, where
a 2 .0; 1/. Fix a direction �0 D .�0

1 ; �
0
2 / with �0

1 ¤ 0. One can show that the
localized Fourier transform is rapidly decaying in a conic neighborhood of �0. To see
this, one can find a narrow conic neighborhood , containing �0 such j�1j � c k�k
for some c > 0 and all � 2 , (here � D .�1; �2//. Let ' 2 C1

c .R
2/ be a function

of the form '.x1; x2/ D '1.x1/'2.x2/ that is identically 1 near x0. Without loss of
generality, one can assume '1 is even about a and '2 is even about 0. Consider
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c'f .�/ D 1p
2�

1Z

�1
e�ix1 � �1'1.x1/dx1

1p
2�

1Z

0

e�ix2�2'2.x2/dx2 :

Denote the left-hand integral in this expression by L.�1/ and the right-hand integral
by R.�2/. Note that the R is bounded in �2 because the integrand is uniformly
bounded and of compact support. Because '1 is in S.R/, L.�1/ is also in S.R/,
since it is the one-dimensional Fourier transform of '1. Therefore, L.�1/ is rapidly
decaying at infinity as a function of �1. Since j�1j > c k�k in , , the function
� 7! L.�1/ decays rapidly at infinity for � in, . Since the functionR.�2/ is bounded,
one sees that c'f .�/ decays rapidly in , . This shows that the only possible vectors
in WF.f / above x0 D .a; 0/ are vertical ones.

Since f is not smooth at x0, at least one vertical vector at x0 must be in WF.f /
by Theorem 11. Therefore, R.�2/ must not rapidly decay in either the positive
direction .�2 > 0/ or the negative direction. Since '2 is an even function in S.R/,
F.'2/.�2/ D R.�2/ C R.��2/ is rapidly decreasing at ˙1, so R.�2/ must not be
rapidly decaying for �2 > 0 and for �2 < 0 (since R.�2/ is not rapidly decaying in
at least one direction and the sum is rapidly decaying in both positive and negative
directions). Therefore, both vertical vectors are in WF.f / at x0. (In another proof,
one shows R.�2/ D O.1= j�2j/ by performing two integrations by parts on that
integral.)

Now it will be shown that all directions are in WF.f / above .0; 0/. One can use
symmetric cutoffs in x1 and x2 at 0. Then

c'f .�/ D 1p
2�

1Z

0

e�ix2�2'2.x2/dx2
1p
2�

1Z

0

e�ix1 � �1'1.x1/dx1:

The proof for R.�2/ above can be used to show that neither integral decays rapidly
at infinity in this case. This shows that WF.'f / consists of all directions at x0 D 0.
The proofs at the other corners are similar.

Example 6. If f is the characteristic function of a set, ˝ with a smooth boundary,
then WF.f / is the conormal bundle:

N �.˝/ D f.x; �dx/ W x 2 bd.˝/; � is normal to bd.˝/ at xg

This is suggested by Example 5 and it follows from the results in [47].
If f is a linear combination of characteristic functions of sets with smooth

boundary, then WF.f / is the union of the conormal sets of the individual sets unless
cancelation occurs along shared boundaries.
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Pseudodifferential Operators

To motivate the definition of these operators, consider the following example.

Theorem 13. For f 2 S.R2/,

R�
LRLu.x/ D

Z
eix � � 2

k�k Ou.�/d� D
1

�

Z
ei.x�y/ � � 1

k�ku.y/dyd� : (34)

Proof. Using a polar integration about x, one shows that

R�
LRLf D f � 2

kxk : (35)

Then, since F .1= kxk/ D 1= k�k [43, Lemma 6.2, p. 238], one sees that

R�
LRLu D F�1F

�
u � 2

kxk
�
D F�1

�
2�

2

k�k Ou
�

using the fact that the Fourier transform of a convolution in R
2 (with the normaliza-

tion of (10)) is the product of the Fourier transforms times 2� . Writing F�1 as an
integral in the right-hand expression proves the theorem. ut

It should be pointed out that the left-hand integral in (34) converges for f 2
S.R2/, but the right-hand integral in (34) does not converge. However, one can do
integrations by parts at infinity to make it converge for f 2 S.R2/ or f 2 E 0.R2/

as is done for pseudodifferential operators (e.g., [74]).
With this as the model, consider operators with integral representation

Pu.x/ D
Z
ei.x�y/ � �p.x; y; �/u.y/dyd�: (36)

The study of the operator P is important in imaging for the following reasons:

1. Assuming p satisfies certain estimates (see Definition 4), one can describe
precisely the action of P on the singularities of u.

2. If one has a procedure to invert or approximately invert the operatorP by another
operator Q having a similar integral representation as that of P , then by (a),
one would have that the singularities of QPu are identical to those of u. Now
through this approximate inversion process, one has a procedure to recover the
singularities of u.
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An operator P of the form (36) with p satisfying certain estimates is called a
pseudodifferential operator (�DO) [33, 47, 89, 93, 94]. This will be given below
(see Definition 5).

In order to motivate the appropriate conditions and estimates that p should
satisfy, let us look at the following simple example:

Consider a linear partial differential operator of the form

P.x;D/ D
X

j�j	m
a�.x/D

�
x: (37)

Here � D .�1; � � � ; �n/ is a multi-index and

D�
x D .�i/.�1C���C�n/ @

�1

@x
�1
1

� � � @
�n

@x
�n
n

:

For simplicity let u be a compactly supported function. Applying the Fourier
transform,

bD�
xu.�/ D 1

.2�/n=2

Z
e�ix � �D�

xu.x/dx: (38)

Integrating by parts j�j times, one obtains

bD�
xu.�/ D �� Ou.�/: (39)

With this one has

P.x;D/u.x/ D 1

.2�/n=2

Z
ei.x�y/ � �p.x; �/u.y/dyd� (40)

where

p.x; �/ D
X
�

a�.x/�
� :

The function p.x; �/ is called the symbol of the partial differential operator (PDO),
P.x;D/.

The function p.x; �/ satisfies the following property: Let ˛ D .˛1; � � � ; ˛n/ be
a multi-index. Then @˛� p.x; �/ lowers the degree with respect to � of the resulting

function by j˛j, whereas @ˇxp.x; �/ where ˇ D .ˇ1; � � � ; ˇn/ is a multi-index does
not alter the degree of homogeneity with respect to � of the resulting function.

More precisely one has the following estimate:
Let ˛ and ˇ be any multi-indices. For x in a bounded subset of Rn, there is a

constant C such that
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ˇ̌
ˇ@˛� @ˇxp.x; �/

ˇ̌
ˇ � C.1C k�k/m�j˛j: (41)

Herem is the order of the PDO, P.x;D/. In order to get this inequality, first rewrite
the terms of p.x; �/ by combining terms of the same homogeneous degree with
respect to the � variable.

Differentiate �� ˛ D .˛1; � � � ; ˛n/ times with respect to �1; � � � ; �n, where the
number of times one differentiates �� with respect to each particular �l is ˛l . One
sees that this reduces the degree of homogeneity of �� by j˛j and the highest-order
terms dominate. On a bounded subset of Rn, all derivatives of the a� are bounded.
This gives the estimate (41).

Now one can generalize the class of operators that have Fourier integral
representations of the form (40) by admitting a larger class of functions p.x; �/ to
be symbols. Consider those functions p that satisfy the estimate as in (41) and that
behave like polynomials or the inverse of polynomials in � as k�k ! 1. In other
words, one wants p.x; �/ to grow or decay in powers of k�k, and differentiation with
respect to � lowers the order of growth or raises the order of decay. Furthermore, in
order to include R�

LRL in the class of operators considered (see Example 13), one
can allow some latitude at � D 0.

In the interest of flexibility, one can also let the function p depend on x; y, and
�. Such functions will be denoted as amplitudes.

Definition 4 ([33, 47, 89, 93, 94]). Let X � R
n be an open subset. An amplitude of

orderm is a function that satisfies the following properties:

1. p.x; y; �/ 2 C1.X �X � R
n n f0g/,

2. For every compact set K � X and for multi-index ˛; ˇ; � ,
(a) There is a constant C D C.K; ˛; ˇ; �/ such that

ˇ̌
ˇD˛

� D
ˇ
xD

�
yp.x; y; �/

ˇ̌
ˇ � C.1Ck�k/m�j˛j for x and y in K and k�k > 1, and

(b) p.x; y; �/ is locally integrable for x and y in K and k�k � 1.

It is important to note that in Definition 4, p need not be a polynomial in � and m
can be any real number. The local integrability condition can be relaxed if p is a
sum of homogeneous terms in � [74].

Now pseudodifferential operators are defined.

Definition 5. LetX � R
n be an open subset. A pseudodifferential operator (�DO)

is an operator of the form

Pu.x/ D 1

.2�/n

Z
ei.x�y/ � �p.x; y; �/u.x/dyd�;

where p.x; y; �/ is a function that satisfies the properties of Definition 4.
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The operator P has order m if its amplitude is of order m, and P is elliptic of
order m if for each compact set K � ˝ , there is a constant CK > 0 such that for x
and y in K and k�k � CK

jp.x; y; �/j � C�1
K .1C k�k/m : (42)

The next theorem highlights two fundamental properties of �DOs.

Theorem 14 (Pseudolocal Property [94]). If P is a �DO, then P satisfies the
pseudolocal property:

ssupp.Pu/ � ssupp.u/ and WF.Pu/ �WF.u/ :

If, in addition, P is elliptic, then

ssupp.Pu/ D ssupp.u/ and WF.Pu/ D WF.u/ :

Note that, although �DOs can spread out the support of the function u, they do
not spread out its singular support or wavefront set. Elliptic �DOs preserve singular
support and wavefront set.

Equation (34) shows that the compositionR�
LRL is a pseudodifferential operator

since its symbol .4�/= k�k satisfies the conditions in Definition 4. Furthermore,
because the symbol satisfies the ellipticity estimate (42), R�

LRL is an elliptic �DO
of order �1.

Example 7. The powers of d=dp and � as �DOs.
According to (40), the symbol of �d 2=dp2 is j� j2 where � is the dual variable to

p. So, the symbol of
p�d 2=dp2 can be considered to be j� j. The rationale is that if

one calculates

� d
2

dp2
f D F�1 j� j2 Ff D F�1 j� jF �F�1 j� jFf 	

D
s
� d

2

dp2
ı
s
� d

2

dp2
f :

(43)

This justifies why

+p D
p
�d 2=dp2 : (44)

Since

�� D D2
x1
C � � � CD2

xn
;
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its symbol is k�k2. Since the symbol of �� is k�k2, one can easily find symbols
of powers of the Laplacian. For example,

p�� has symbol k�k and Fourier
representation

p��u D 1

.2�/n

Z
ei.x�y/ � � k�k u.y/dyd�

and .��/�1=2 has symbol 1= k�k

.��/�1=2 u D 1

.2�/n

Z
ei.x�y/ � � 1

k�ku.y/dyd�:

Now, as a calculation in distributions using Fourier transforms (similar to (43)), one
sees that .��/�1=2 ı p�� is the identity map.

Note that
p�d 2=dp2,

p��, .��/�1=2 are all elliptic �DOs since the corre-
sponding symbols satisfy the ellipticity estimate (42).

Example 8. Example 7 allows one to justify why the operator +p is reallyp�d 2=dp2. So, the FBP inversion formula (18) can be written

f D 1

4�
R�
L

�p
�d 2=dp2RLf

�
: (45)

Equation (34) shows that R�
LRL D 4� .��/�1=2. Using the observation at the

end of Example 7, one obtains a different version of the filtered backprojection
inversion formula for RL:

f D 1

4�

p��R�
LRLf : (46)

These calculations can be justified for distributions of compact support [43, 45].

Example 9. Now consider the Lambda operators given in (22) and (23). To get the
Lambda operator, Lx , from the FBP operator, one replaces the

p�d 2=dp2 in (45)
by its square, �d 2=dp2.

Here is another way to understand Lambda tomography. By evaluating anotherp�� in (46), one sees that

p��f D � 1

4�
�R�

LRLf D 1

4�
R�
L

�
� d

2

dp2
RLf

�

where the second equality holds because R�
L intertwines �� and �d 2=dp2 (this

is proven using an argument similar to the intertwining argument in the proof of
Theorem 10). Because R�

LRL is an elliptic �DO with symbol 4�= k�k, the symbol
of Lx;� is
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k�k C �

k�k

and it is elliptic of order one. Therefore, Lx;� and Lx (corresponding to � D 0) are
both elliptic �DOs.

The operator Lx;� does not reconstruct f but
�
.��/1=2 C �

�
f . The natural

question then is how different is this from f ? It has just been established that Lx and
Lx;� are elliptic �DOs. Therefore, by Theorem 14 this means that these operators
recover ssupp.f / and WF.f /. The reconstructions in Fig. 8 and others in [17, 18]
show that it is effective in practice.

Fourier Integral Operators

In the analysis thus far, one studied the composition of a generalized Radon trans-
form with its adjoint. This composed operator, as was shown, is a pseudodifferential
operator. Theorem 14 shows us how �DOs act on singularities and wavefront sets.
In this section, more general operators will be considered, and how they change
wavefront sets will be described.

Example 10. Consider RL in a special Fourier representation.

RLf .!; p/ D 1

.2�/1=2

Z
�2R

eip�Fp .RLf / .!; �/ d�

D
Z
�2R

eip� Of .�!/d�

D
Z
�2R

Z
x2R2

ei.p�.x �!//� 1

2�
f .x/dxd� :

(47)

The last expression in (47) looks like a �DO except that the � and x integrals are
over different sets and the exponent is not the one for �DOs.

In many applications, it might be necessary to understand the properties of the
Radon transform directly, rather than the composition with its adjoint. In the last
example one saw that the Radon transform RL had an integral representation of the
form

Pu.x/ D
Z
ei�.x;y;�/p.x; y; �/u.y/dyd�: (48)

The important differences between the operator P in (48) and a �DO are the
following:
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• The functions Pu and u, in general, are functions on different sets X and Y ,
respectively. The spaces X and Y can be of different dimensions as well.

• The phase function � in (48) is more general than that of a �DO, but it shares
similar features. See Definition 6.

• The dimension of the frequency variable � can be different from that of the spaces
X and Y , unlike as in the case of a �DO.

Another simple example where an integral representation of (48) arises is when
one uses Fourier transform techniques to determine the solution to a constant
coefficient wave equation:

�
@2
t ��x

	
u D 0; u.x; 0/ D 0; @tu.x; 0/ D g: (49)

Now by taking Fourier transform in the space variable, one has the following integral
representation for the solution to the wave equation:

u.x; t/ D 1

2i.2�/n

� Z
ei.x�y/ � �Ctk�k 1

k�kg.y/dyd�

�
Z
ei.x�y/ � ��tk�k 1

k�kg.y/dyd�
�
:

Note that the phase functions in the above solution are �˙.x; y; �/ D .x � y/ � � ˙
t k�k.

If f W Rn ! R, then the notation

@xf .x/ D @f

@x1
dx1 C � � � C @f

@x1
dxn (50)

will be used for the differential of f with respect to x. If g is a function of .'; p/,
then

@';pg.'; p/ D @g

@'
d' C @g

@p
dp

will denote the differential of g with respect to the variables .'; p/.

Definition 6. Let X � R
m and Y � R

n be open subsets. A real-valued function
� 2 C1.X � Y � R

N n f0g/ is called a phase function if

1. � is positive homogeneous of degree 1 in �. That is, �.x; y; r�/ D r�.x; y; �/

for all r > 0.
2. .@x�; @��/ and .@y�; @��/ do not vanish for all .x; y; �/ 2 X � Y � R

N n f0g.
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The phase function � is called nondegenerate if on the zero-set @�� D 0, the set of
vectors f@x;y;� @�@�j , 1 � j � N g is linearly independent.

Definition 7. A Fourier integral operator (FIO) P is defined as

Pu.x/ D
Z
ei�.x;y;�/p.x; y; �/u.y/dyd�;

where � is a nondegenerate phase function, and the amplitudep.x; y; �/ 2 C1.X�
Y �RN / satisfies the following estimate: for every compact setK � X �Y and for
every multi-index ˛; ˇ; � , there is a constant C D C.K; ˛; ˇ; �/ such that

ˇ̌
ˇD˛

� D
ˇ
xD

�
yp.x; y; �/

ˇ̌
ˇ � C.1C k�k/m�j˛j for all x; y 2 K and for all � 2 R

N :

Finally, one has two important sets associated with this FIO.
The auxiliary manifold

˙� D
˚
.x; y; �/ 2 X � Y � �RN n 0

	 W @��.x; y; �/ D 0



(51)

and the canonical relation

C WD ˚�x; @x�.x; y; �/Iy;�@y�.x; y; �/	 W .x; y; �/ 2 ˙�



: (52)

Note that since the phase function � is nondegenerate, the sets ˙� and C have
smooth manifold structures.

One can also include the local integrability condition 2b of Definition 4 for the
amplitude of FIOs.

Note that RL satisfies these conditions with phase function �.!; p; x; �/ D .p�
x �!/� and amplitude p.x; y; �/ D 1=.2�/, so RL is an FIO. Guillemin originally
proved that a broad range of Radon transforms are FIOs [35, 36, 38]. The operator
RL will be studied more carefully in the next section.

Every �DO is an FIO with phase function �.x; y; �/ D .x � y/ � �. However,
RL is an FIO that is not a �DO since its phase function is not of that form.

Definition 8. Let C � T �X � T �Y; QC � T �Y � T �X , and A � T �Y . Define

C ı A D
n
.x; �dx/ W 9 .y; �dy/ 2 A with .x; �dxIy; �dy/ 2 C

o

QC ı C D
n
. Qy; Q�d QyIy; �dy/ W 9 .x; �dx/ with . Qy; Q�d QyI x; �dx/ 2 QC;

and .x; �dxIy; �dy/ 2 C
o
:
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The key theorem on what FIOs do to wavefront sets is the following result.

Theorem 15 ([47]). Let P be an FIO and let C be the associated canonical
relation. Then

WF.Pu/ � C ıWF.u/:

Example 11. In this example, the canonical relation of any�DO will be calculated.
First note that since � D .x � y/ � �,

@x� D �dx @y� D ��dy @�� D .x � y/d�:

Therefore, ˙� D f.x; y; �/ W x � y D 0g. Now, use (52) and these calculations to
see that the canonical relation for �DOs is

C D f.x; �dxI x; �dx/ W � ¤ 0g

which is the diagonal in .T �.Rn/ n 0/ and which will be denoted by �. Using
Theorem 15, one sees that if P is a �DO, WF.Pu/ �WF.u/.

This section will be concluded with a key theorem on the wavefront set of the
composition of two FIOs known as the Hörmander-Sato Lemma.

Theorem 16 (Hörmander-Sato Lemma [47]). Let P1 and P2 be two FIOs with
canonical relations C1 and C2, respectively. Assume P1 ı P2 is defined for
distributions of compact support, and let u be a distribution of compact support.
Then

WF..P1 ı P2/u/ � .C1 ı C2/ ıWF.u/:

From an imaging point of view, the operator that is studied is the image recon-
struction operator P�P where P� is the adjoint of the FIO P . Using Hörmander-
Sato Lemma, one can study the wavefront set of the image reconstruction operator.
For this one requires the canonical relation of the adjoint P� [46] which is given by

C t D f.y; �dyI x; �dx/ W .x; �dxIy; �dy/ 2 C g :

Now from Hörmander-Sato Lemma, when the composition is defined, one has

WF.P�Pf / � �C t ı C 	 ıWF.f /:
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5 Applications to Tomography

In this section microlocal analysis will be used to explain strengths and limitations
of the reconstructions from Sect. 2.

Microlocal Analysis in X-Ray CT

As seen in section “X-Ray Tomography (CT) and Limited Data Problems,” recon-
structions from different limited data problems have different strengths and weak-
nesses. The information in the last section will now be used to understand the
microlocal properties of RL.

To make the cotangent space calculations simpler, the following coordinates will
be used on S1 � R: .'; p/ 7! .!.'/; p/ where !.'/ D .cos.'/; sin.'// and
!?.'/ D !.' C �=2/. Thus, functions on S1 � R will now be written in terms
of .'; p/.

Theorem 17. The Radon transform RL is an elliptic FIO associated with the
canonical relation

CL D
n �
'; p; ˛.�x �!?.'/d' C dp/I x; ˛!.'/dx	

W .'; p/ 2 Œ0; 2�� � R; x 2 R
2; ˛ ¤ 0; x �!.'/ D p

o: (53)

For f 2 E 0.R2/,

WF.RLf / D CL ıWF.f / : (54)

Furthermore, C t
L ı CL D � is the diagonal in

�
T �.R2/ n 0

	2
.

Proof. In Example 10, it was shown that RL is an FIO associated to the phase
function

�.'; p; x; �/ D �.p � x �!.'// :

To calculate the canonical relation for RL, the general methods outlined in
section “Fourier Integral Operators” (see also [47, p. 165] or [95, (6.1) p. 462])
will be followed. First, the differentials of � will be calculated:

@x� D ��!.'/dx; @.';p/� D �
��x �!?.'/d' C dp

	
@�� D .p � x �!.'//d�:

(55)
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Note that the conditions for � to be a nondegenerate phase function [95, (2.2)–
(2.4), p. 315] hold because @x� and @.';p/� are not zero for � ¤ 0. Therefore,
RL is a Fourier integral operator. RL has order �1=2 because its symbol 1=2� is
homogeneous of degree zero, 2 D dimR

2 D dimY , and 
 is one dimensional (see
[95, p. 462 under (6.3)]). Since the symbol, 1=2� , is homogeneous and nowhere
zero, RL is elliptic (see [46]).

The auxiliary manifold˙� is

˙� D f.'; p; x; �/ 2 .Œ0; 2�� � R/ � R
2 � .R n 0/ W p � x �!.'/ D 0g : (56)

The canonical relation, CL, associated to RL is defined by the map

˙� 3 .x; '; p; �/ 7!
�
'; .x �!.'// ; @.';p/�I x;�@x�

	
:

One uses this and a calculation to justify the expression (53).
To show C t

L ı CL D �, one starts with .x; �dx/ 2 T �.R2/ and then follows
through the calculation of C t

L ı CL using (53): First, choose ' 2 Œ0; 2�� such that
� D a!.'/ for some a > 0. Then, there are two vectors associated to .x; �dx/ in
CL,

�1 D
�
'; x �!.'/I a.�x �!?.'/d' C dp/

	
;

�2 D
�
' C �; x �!.' C �/I �a.�x �!?.' C �/d' C dp/

	
:

Under C t
L, �1 is associated with

�
.x �!.'//!.'/C x �!?.'/; a!.'/dx

	
and this

is exactly .x; �dx/, and there is no other vector in T �.R2/ associated with �1. In a
similar way, one shows that the only vector in T �.R2/ associated with �2 is .x; �dx/.
Therefore,

C t
L ı CL D

˚
.x; �dxI x; �dx/ W .x; �dx/ 2 T �.R2/ n 0


 D �:
Because the symbol of RL, 1=2� , is nowhere zero and homogeneous, RL

is elliptic [95]. Furthermore, because CL is a local canonical graph (e.g., [75]
and can be seen from the calculation in the last paragraph), a stronger version
of the Hörmander-Sato Lemma for elliptic operators [95] can be used to show
WF.RLf / D CL ıWF.f /. ut

Note that the fact C t
L ı CL D � implies that WF

�
R�
LRL.f /

	 �WF.f /, by the
Hörmander-Sato Lemma (Theorem 16). This and the composition calculus of FIO
[46, Theorem 4.2.2] provide another proof that R�

LRL is a �DO.
This theorem has the following important corollaries.

Corollary 1 (Propagation of Singularities for RL). Let f 2 E 0.R2/.
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1. Let .x0; �0dx/ 2 T �.R2/ n 0 and let '0 be chosen so that �0 D ˛!.'0/ for some
˛ ¤ 0. If .x0; �0dx/ 2WF.f /, then

�
'0; x0 �!.'0/I˛.�x0 �!?.'0/d' C dp/

	 2 WF.RLf /:

2. Let .'0; p0/ 2 Œ0; 2�� � R and A 2 R. Assume .'0; p0I˛.�Ad' C dp// 2
WF.RLf /. Then, .x0; �0dx/ 2 WF.f / where x0 D p0!.'0/ C A!?.'0/ and
�0 D ˛!.'0/.

This provides the paradigm:
RL detects singularities of f perpendicular to the line of integration (“visible”

singularities), but singularities of f in other (“invisible”) directions do not create
singularities of RLf near the line of integration.

Remark 2. The paradigm has implications for limited data tomography. A wave-
front direction .x0; �0dx/ 2 WF.f / will be visible from limited Radon data if and
only if the line through x0 perpendicular to �0 is in the data set.

Proof (Proof of Corollary 1). Using (54), one sees that

.x0; �0dx/ 2WF.f / if and only if CL ı f.x0; �0dx/g 2WF.RLf /:

Part (a) follows from the forward implication of this equivalence and part (b) follows
from the reverse implication using the expression for CL, (53).

Part (a) implies that RL detects singularities perpendicular to the line being
integrated over, since !.'0/ is perpendicular to the line L.!.'0/; x0 �!.'0//.
Part (b) implies that if a singularity is visible in RLf at .'0; p0/, it must come from
a point on L.!.'0/; p0/ and in a direction perpendicular to this line. This explains
the paradigm in the theorem. ut

Corollary 2 (Propagation of Singularities for Reconstruction Operators). Let
f 2 E 0.R2/.

(a) Let L be either the FBP (see (18)), Lambda (Lx , (22)), or Lambda + contour
(Lx;�, (23)) operator. Let f 2 E 0.R2/. Then, WF.f / DWF.Lf /.

(b) Let R�
L;lim be the limited angle backprojection operator in (25) for angles a <

' < b (where b � a < �). Let

V D f.x; �dx/ W � D ˛!.'/; ' 2 .a; b/g :

If Llim is any of the operators

R�
L;lim+pRL; R�

L;lim

�
� d

2

dp2
RL

�
; R�

L;lim

��
� d

2

dp2
C �

�
RL

�
;



Microlocal Analysis in Tomography 887

then

WF.Llimf /\ V D WF.f / \ V :

Note that V is the set of visible singularities for the limited angle transform.

Proof. Part (a) follows from the fact that both Lx and Lx;� are elliptic, as noted in
Example 9 and the equalities stated in Theorem 14.

Part (b) follows from the fact that when one cuts off angles, one can see only
wavefront parallel to the angles in the data set, that is, the visible directions in V . A
complete proof of this result is given in [26]. ut

Remark 3. The paradigms in Corollaries 1 and 2 have especially simple interpre-
tations if f is the sum of characteristic functions of sets with smooth boundaries.
The tangent line to any point on the boundary of a region is normal to the wavefront
direction of f at that point (since the wavefront set at that point is normal to the
boundary, as noted in Example 6).

So, a boundary at x (with conormal .x; �dx/) will be visible from the data RLf

near .!.'/; p/ if .x; �/ is normal to the line of integration. This can be stated more
simply as follows: the boundary at x is tangent to a line in the data set.

Finally, note that Example 1 provides a simple case for whichRLf is not smooth
when the line L.'; p/ is tangent to the boundary of supp.f /. The paradigm shows
this principle is true generally.

Limited Data X-Ray CT

Each of the limited data problems discussed in Sect. 2 will now be examined in light
of the corollaries and paradigm of the last section.

Exterior X-Ray CT Data

In the reconstruction in Fig. 2, the boundaries tangent to lines in the data set are
clearer and less fuzzy than the one not tangent to lines in the data set. The paradigm
in Corollary 1 and Remarks 2 and 3 explains this perfectly. When a line in the data
set is tangent to a boundary, then the boundary is visible in the reconstruction. For
the exterior reconstruction in Fig. 2, this is true for the inside boundary of the disk at
about eight o’clock on the circle (lower left), even though that boundary is imaged
by only a few lines in the exterior data set. If the line tangent to the boundary at x is
not in the data set, then the boundary is fuzzier, as can be seen in that figure.

This is reflected in Quinto’s algorithm [77] in the following way. That algorithm
expands the reconstruction in a polar Fourier series
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f .r!.'// D
X
`2Z

f`.r/e
i`' ;

where f`.r/ is approximated by a polynomial which is calculated using quadrature.
The calculation of f` could be done stably only up to about j`j D 25. However, for
each ` for which this could be done, the recovery of f`.r/ is very accurate and could
be done up to a polynomial of order about 100. Thus, the algorithm has good radial
resolution but bad resolution in the polar direction. However, this is, at least in part,
a limitation of the problem, not just the algorithm. The singularities in Fig. 2 that
are smoothed by the algorithm are intrinsically difficult to reconstruct.

Limited Angle Data

In Fig. 3, data are given over lines L.!.'/; p/ for ' 2 Œ��=4; �=4�, and the only
boundaries that are visible are exactly those normal to such lines. This reflects
Corollary 1 and Remarks 2 and 3. The algorithm used is FBP but with a limited
angle backprojection (see (25) and the discussion below it) between ��=4 and
˚ D �=4. In this case, Corollary 2 implies that the only singularities of f that
will be visible in Llimf (where Llim is given in that corollary) are those in the cone
V D fr!.'/ W ' 2 .��=4; �=4/; r ¤ 0g.

However, there is also a marked streak along the lines with angle ' D ˙�=4 that
are tangent to the boundary of the region. Frikel and Quinto have recently explained
this using microlocal analysis [26], see also [49]. They also explained that in order
to decrease those streaks, one needs to make the backprojection operator a standard
FIO by including a smooth cutoff function supported in .��=4; �=4/ that is equal
to 1 on most of that interval:

RL
�
 g.x/ D

Z �=4

'D��=4
g.!.'/; x �!.'// .'/d' :

Region of Interest (ROI) Data

The reconstruction in Fig. 8 is from Lambda CT, and all singularities of the circle
are visible. This is expected because of Corollary 2 Part (a), the Lambda operator
preserves wavefront set. Recall that Lx.f /.x/ determined by data RLf for lines
near x. This means that the wavefront of f above x (which is the same as the
wavefront set of Lx.f / above x), can be determined by local data for lines near x.
This is why all singularities are visible in the Lambda reconstruction in that figure.

This also means that any null function for the interior problem must be smooth
in the ROI since its Radon data are zero (e.g., smooth) for lines meeting the ROI.
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Microlocal Analysis of Conical Tilt Electron Microscope Tomography
(ET)

Using the notation of section “Algorithms in Conical Tilt ET,” let

S˛ D f.sin.˛/ cos.'/; sin.˛/ sin.'/; cos.˛// W ' 2 Œ0; 2��g
C˛ D RS˛ :

Using Theorem 10, one writes the operators L� (see (28)) and LS (see (29)) using
the convolution

f � I.x/ D
Z
y2C˛

f .x C y/ 1

kykdy

where dy is the surface area measure on the cone C˛. In particular the conclusion
of that theorem is

P�
SPSf D f � I
L�f D .��/ .f � I /

LSf D
�
��C csc2.˛/

@2

@z3

�
f � I :

As one can see from the reconstruction in the x�y plane, Fig. 4, there are circular
artifacts. In the reconstruction in the vertical plane x D �y, Fig. 5, there are streak
artifacts coming off from each of the balls at a 45ı angle.

These artifacts can be understood intuitively as follows. Let f be the character-
istic function of a ball B . Then, f � I.x/ integrates f over the cone x C C�=4.
When this cone is tangent to B at a point besides x, it is normal to a singularity
of f at this point. This singularity will cause a singularity of f � I at x. The
reason is, when x is perturbed, the cone moves in and out of B , so the integral
changes from 0 (when the cone is disjoint from B) to nonzero values as the cone
intersects B . A calculation will convince one that the singularity is a discontinuity
in the first derivative. Because L� is a derivative of f � I , that singularity is
accentuated in L�f at x. One can see this phenomenon from the artifacts in L�
reconstructions in section “Electron Microscope Tomography (ET) Over Arbitrary
Curves.” In the x�y plane, the artifacts are circular shadows from the disks outside
of the plane; in the y D �x plane, the artifacts follow along the generating lines
of the cone. However, this is not a rigorous explanation since it does not apply to
arbitrary functions. It also does not explain why the L� reconstruction has apparent
singularities, but the LS reconstruction seems not to.

The next theorem explains this using microlocal analysis. To state the theorem,
recall the definition of conormal bundle of a submanifold B � R

3 as
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N �.B/ D f.y; �dx/ W y 2 B; � is normal to B at yg :

Theorem 18 ([23]). The conical tilt ET operator PS is an elliptic Fourier integral
operator. Let f 2 E 0.R3/ and let ˛ 2 .0; �=2/. Let L be either L� or LS . Then,

WF.L.f // � .WF.f / \ V/[A.f /

where

V D R
3 � ˚� 2 R

3 n 0 W 9! 2 S˛; � �! D 0



represents the set of possible visible singularities. The added artifacts come from

A.f / D f.x; �dx/ W 9 .y; �dx/ 2 N �.x C C˛/ \WF.f /g :

Furthermore, the added artifacts in A.f / are more pronounced (stronger in Sobolev
scale) in L�f than in LSf .

Here V is the set of visible singularities, those from f that should appear in Lf .
The set A.f / consists of added artifacts, those caused by wavefront of f normal to
xCC˛ at points besides x. In Fig. 4, the added artifacts in the L� reconstruction are
exactly those that come from cones x C C˛ that are tangent to boundaries of disks
in supp.f /, and this gives the same conclusions as the heuristic description given
above Theorem 18.

The final statement in the theorem follows from the fact that L� is in a class of
singular FIOs (so-called Ip;l classes studied in [31,32,39,64]) and LS is in a better
behaved class. These classes of singular FIOs also come up in radar imaging, as
discussed in the next section.

The set of visible singularities V is larger for conical tilt ET than for the standard
data acquisition geometry, single axis tilt ET, and this is one reason to take conical
tilt data, even though acquiring data can be technically more difficult.

The proof of this theorem uses the Hörmander-Sato Lemma (Theorem 16).
One first calculates the canonical relation, C , and then one calculates C t ı C and
shows C t ı C has two parts. One part generates V , the set of visible singularities,
singularities of f that will be visible in L�f . The second part generates the set of
added artifacts, A.f /.

Deep results in [31] are used to explain why LS suppresses the added singu-
larities better than L�. This can be explained intuitively as follows. If an added
singularity at x comes from a point .y; �dx/ 2 N �.x C C˛/ \ WF.f /, DS

takes a derivative corresponding to a derivative in x that is normal to � (so
it does not increase the order of this singularity) and � takes a derivative in
the direction of this singularity (so it does increase the order of this singular-
ity).
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This conical tilt transform is an admissible Radon transform [27]. The microlocal
analysis of such transforms was first studied in [36], and the microlocal properties
of these transforms were completely analyzed in a very general setting in [30]
including general results for backprojection that are related to Theorem 18.

Quinto and Rullgård have proven similar results for a curvilinear Radon trans-
form for which the more effective differential operator (analogous to DS ) decreases
the strength of artifacts only locally [81].

SAR Imaging

In this section, some recent results on SAR imaging will be described from the
viewpoint of microlocal analysis. The notation is from section “Synthetic-Aperture
Radar Imaging.” Recall that the forward operator under consideration is

PV.s; t/ D
Z
e�i!.t�.kx��T .s/kCkx��R.s/k/=c0/A.s; t; x; !/V .x/dxd!: (57)

In this section ! 2 R. The canonical relation wherever it is well defined is given as
follows. This is an important set that relates the singularities of the object V to that
of the data PV :

C D
(
s; t;�!

 �
x � �T .s/
kx � �T .s/k � �

0
T .s/C

x � �R.s/
kx � �R.s/k � �

0
R.s/

�
ds C dt

!
I

x1; x2;�!
�
x � �T .s/
kx � �T .s/k C

x � �R.s/
kx � �R.s/k

�
dx (58)

W c0t D kx � �T .s/k C kx � �R.s/k ; ! ¤ 0

)
:

Note that .s; x; !/ is a global parametrization for C . Let us denote

Y D f.s; t/ 2 .0;1/ � .0;1/g

and fx1; x2g space as X . One is interested in studying the imaging operator P�P .
The standard composition calculus of FIOs, the so-called transverse intersection
calculus of Hörmander [46], and the clean intersection calculus of Duistermaat and
Guillemin [14, 34] and Weinstein [98] do not apply in general in these situations.
Therefore, one approach to understanding the imaging operator is to study the
canonical left and right projections from the canonical relation C � T �Y � T �X
to T �Y and T �X , respectively.
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C

T ∗ Y
�

πL

T ∗ X

π
R

�

(59)

In order to motivate the results that follow, let us consider the following example.

Example 12. Let us consider a simple example from SAR imaging. This example
will help us explain via microlocal analysis, some of the artifacts introduced by
image reconstruction operator in 6.

Assume that a colocated transmitter/receiver traverses the straight trajectory
�.s/ D .s; 0; h/ with h fixed. The forward operator in this case is

Pf .s; t/ D
Z
e

�i!
�
t� 2

c0

p
.x�s/2Cy2Ch2

�
A.s; t; x; y; !/f .x; y/dxdyd!:

Using (51) and (52), the canonical relation of this operator is easily computed to be

C D
(
s;

2

c0

p
.x � s/2 C y2 C h2;�!

 
2

c0

x � sp
.x � s/2 C y2 C h2

ds C dt

!
I

x; y;�2!

c0

 
x � sp

.x � s/2 C y2 C h2
dx C yp

.x � s/2 C y2 C h2
dy

!)
:

Now using Hörmander-Sato Lemma, one sees that

WF.P�P/ �
(
x; y;

2!

c0

 
x � sp

.x � s/2 C y2 C h2
dx C yp

.x � s/2 C y2 C h2
dy

!
I

z;w;
2!

c0

 
z � sp

.z � s/2 C w2 C h2
dzC wp

.z � s/2 C w2 C h2
dw

!
W

p
.x � s/2 C y2 C h2 D

p
.z � s/2 C w2 C h2 and

x � sp
.x � s/2 C y2 C h2

D z � sp
.z � s/2 C w2 C h2

; ! ¤ 0

)
:

This implies that .z;w/ D .x; y/ or .z;w/ D .x;�y/. The first equality contributes
to the diagonal relation of the wavefront set of P�P , while the second contributes
to the relation formed by reflection about the x-axis. In other words,

WF.P�P/ � 4[G; where4 D f.x; y; �dx C �dy W x; y; �dx C �dy/g
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and G D f.x; y; �dx C �dyI x;�y; �dx � �dy/g:

The presence of the set G as in the above example (the non-diagonal part)
indicates that the imaging operator introduces artifacts in the reconstructed image.
A detailed study of the class of distributions as in the example above, called Ip;l

classes, was introduced in [31, 32, 39, 64]. These classes of distributions have come
up in the study of several imaging problems including X-ray, seismic, SAR, and
electron tomography [1, 13, 21–24, 30–32, 54, 69]. In instances where the imaging
operator introduces artifacts, it is of interest to determine whether the artifacts are of
the same strength in a suitable sense as that of the true singularities and whether the
artifacts can be suppressed or displaced from the true singularities. These questions
are answered in the references given above.

Monostatic SAR Imaging
In monostatic SAR imaging, the transmitter and receiver are located at the same
point. In other words, �T .s/ D �R.s/. Nolan and Cheney in [70] investigated
the microlocal properties of the forward operator P and the associated image
reconstruction operator P�P . Using microlocal tools, synthetic-aperture inversion
in the presence of noise and clutter was done in [102]. Other imaging methods
in the context of SAR imaging, again using microlocal tools, were considered in
[99, 101]. The forward operator P was further investigated by Felea in [19], and
she made a detailed analysis of the image reconstruction operator for various flight
trajectories. Felea in [19] showed that for �.s/ D .s; 0; h/ with h > 0 fixed, the
operator P�P belongs to I 2m;0.�;G/ where� D f.x; �; x; �/ 2 T �X � T �X n 0g
and G is the graph of the function 	.x1; x2; �1; �2/ D .x1;�x2; �1;��2/. If �.s/ D
.cos s; sin s; h/, it was shown in [20] that P�P 2 I 2m;0.�;G/, where G is a 2-
sided fold. Mappings with singularities (such as folds and blowdowns) are defined
in [29, 37]. Furthermore, in [20], Felea showed that in some instances such as the
flight trajectory being circular, the artifact singularities of the same strength as the
true singularities can be displaced far away from the true singularities, and those that
are not displaced are of lesser strength compared to the true singularities. In [91],
the authors show that cancelation of singularities, that is, only certain singularities
are recoverable, can occur even in curved flight paths.

Bistatic SAR Imaging
Some recent results by the authors and their collaborators investigating the microlo-
cal properties of transforms that appear in bistatic SAR imaging are now described.
For related work, the reader is referred to [100].

Common Offset Bistatic SAR Imaging
In common offset SAR imaging, the transmitter and receiver travel in a straight line
offset by a constant distance at all times. More precisely, let
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�T .s/ D .s C ˛; 0; h/ and �R.s/ D .s � ˛; 0; h/

be the trajectories of the transmitter and receiver, respectively, with ˛ and h fixed
positive quantities. A detailed microlocal analysis of associated forward operator P
and the imaging operatorP�P was done in [54]. The authors obtained the following
results analogous to the ones obtained by Nolan and Cheney in [70] and Felea in [19]
for the monostatic case.

Theorem 19 ([54]). Let �T .s/ D .s C ˛; 0; h/ and �R.s/ D .s � ˛; 0; h/ where
˛ > 0; h > 0 are fixed. The operator P defined in (57) is an FIO. The canonical
relation C associated to P defined in (58) satisfies the following: the projections �L
and �R defined in (59) are a fold and blowdown, respectively.

Theorem 20 ([54]). Let P be defined with �T and �R given in Theorem 19. Then
P�P 2 I 3;0.�;G/, where � is the diagonal relation andG is the graph of the map
	.x1; x2; �1; �2/ D .x1;�x2; �1;��2/.

One important consequence of this result is that the artifacts given by the graphG of
the map 	 have the same strength in a Sobolev sense as that of the true singularities
given by the diagonal relation �.

CommonMidpoint SAR Imaging
In common midpoint SAR imaging, the transmitter and receiver travel in a straight
line at a constant height above the ground at equal speeds away from a common
midpoint. The trajectories of the transmitter and receiver for the common midpoint
geometry considered here are

�T .s/ D .s; 0; h/ and �R.s/ D .�s; 0; h/: (60)

A detailed microlocal analysis of the forward operator (58) associated to �T and
�R and the imaging operator P�P was done in [1]. In contrast to the results in
[19, 54, 70], here the canonical relation C associated to P is a 4-1 relation, and this
is reflected in the fact the canonical left and right projections �L and �R drop rank
on a union of two disjoint sets. More precisely, one obtains the following results for
the forward operator and the imaging operator, respectively.

Theorem 21 ([1]). Let P be as in (57) with the trajectories given by (60). Then
P is an FIO and the canonical relation associated to P defined in (58) has global
parametrization

.0;1/ � �R2 n 0
	 � .R n 0/ 3 .s; x1; x2; !/ 7! C;

and it satisfies the following: the left and right projections �L and �R drop rank
simply by one on a set ˙ D ˙1 [ ˙2 where in the coordinates .s; x; !/, ˙1 D
f.s; x1; 0; !/ W s > 0; jx1j > �0; ! ¤ 0g and ˙2 D f.s; 0; x2; !/ W s > 0; jx2j >
�0; ! ¤ 0g for 0 < �0 small enough. The canonical relation C associated to P
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satisfies the following: the projections �L and �R defined in (59) are a fold and
blowdown, respectively, along˙ .

Theorem 22 ([1]). Let P be as in (57) with the trajectories given by (60). Then
P�P can be decomposed into a sum belonging to I 2m;0.�;G1/C I 2m;0.�;G2/C
I 2m;0.G1; G3/ C I 2m;0.G2; G3/, where Gi for i D 1; 2; 3 are the graphs of the
following functions 	i for i D 1; 2; 3 on T �X :

	1.x; �/ D .x1;�x2; �1;��2/; 	2.x; �/ D .�x1; x2;��1; �2/ and 	3 D 	1 ı 	2:

As with the common offset case, the artifacts given by graphs of the maps 	1,
	2, and 	3 have the same strength in a Sobolev sense as that of the true singularities
given by the diagonal relation �.

6 Conclusion

Finally, some important themes of this chapter will be highlighted.
Microlocal analysis can help understand strengths and limitations of tomographic

reconstruction methods. For limited data X-ray tomography, microlocal analysis
was used in this chapter to show which singularities of functions will be visible
depending on the data, and reconstructions in this chapter illustrate the paradigm.

Each of the reconstruction methods described in this chapter is of the form

L D P�DP

where the forward operator (operator modeling the tomography problem) P is a
Fourier integral operator and P� is an adjoint and D is a pseudodifferential operator.
In SAR imaging, D D Id is the identity operator and the reconstruction method is
P�P – the normal operator. Since the operator D is a differential or pseudodifferen-
tial operator, it does not add to the wavefront set of Pf , WF.DPf / � WF.Pf /.
If D is elliptic (on the range of P , which is true in the cases considered here),
WF.DPf / D WF.Pf /. Then, one needs to understand what P� does, and this is
determined by the structure ofC t ıC by the Hörmander Sato Lemma (Theorem 16):

WF
�
P� .DPf /

	 � �C t ı C 	 ıWF.f / :

However, in limited angle tomography, because R�
L;lim is not a standard FIO,

R�
L;limDRL adds singularities along lines at the ends of the limited angular range.
In the case of SAR and conical tilt ET, C t ıC is more complicated; it includes�

and another set. In conical tilt ET, this second set generates A.f /, the extra artifacts
given in Theorem 18. Also, for conical tilt ET, that theorem implies that a well-
chosen differential operator (.�DS / rather than .��S/) decreases the strength of
the added singularities; they are visible if one looks carefully at the reconstructions,
but they are smoother than when .��S/ is used.
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The only exact reconstruction method presented in this chapter is FBP (Theo-
rem 9). The other algorithms, such as Lambda CT, involve differential operators and
backprojection. Microlocal analysis was used to demonstrate that they do recover
many (or all) singularities of the object.

Recovering singularities does not recover the object. So, these algorithms are not
useful when one needs density values, such as in distinguishing tumor cells from
benign cells in diagnostic radiology. However, in many cases (e.g., ET or industrial
nondestructive evaluation) one is interested in the shapes of regions, not actual
density values, so knowing the location of singularities is useful. The algorithm must
be designed so that it clearly shows singularities in the reconstruction. For example,
an algorithm that turns jump discontinuities in the object into discontinuities of
a derivative in the reconstruction might not provide a clear picture of the object.
Lambda CT and the algorithms given here for conical tilt ET actually accentuate
singularities; they make the singularities more apparent since they are operators of
order one (like a first derivative). The implementation smooths out the derivative
since it uses numerical differentiation.

In conical tilt ET and SAR the reconstruction methods, that included a backpro-
jection (adjoint, P�), produce added artifacts (as shown in Figs. 5 and 6), and these
were explained using microlocal analysis.

Microlocal analysis will not make a bad algorithm good, but it can show
that some limitations in reconstruction quality are intrinsic to the underlying
tomographic problem. It can point to where reconstruction methods need to be
regularized more strongly because of intrinsic instability in the specific tomography
problem. In summary, microlocal analysis can be used to understand practical and
theoretical issues in tomography.
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Abstract
In this chapter, we present the mathematical formulation of the inverse Radon
transform and of the inverse attenuated Radon transform (IART), which are used
in PET and SPECT image reconstruction, respectively. Using a new method for
deriving transform pairs in one and two dimensions, we derive the inverse Radon
transform and the IART. Furthermore, we discuss an alternative approach for
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computing the Hilbert transform using cubic splines. This new approach, which
is referred to as spline reconstruction technique, is formulated in the physical
space, in contrast to the well-known filtered backprojection (FBP) algorithm
which is formulated in the Fourier space. Finally, we present the results of
several rigorous studies comparing FBP with SRT for PET. These studies, which
use both simulated and real data and which employ a variety of image quality
measures including contrast and bias, indicate that SRT has certain advantages in
comparison with FBP.

1 Introduction

Positron emission tomography (PET) is an important, noninvasive, nuclear medicine
modality that measures the in vivo distribution of imaging agents labeled with
positron-emitting radionuclides. The importance of PET in detecting, staging, and
monitoring the progress of several diseases has been established in a plethora
of rigorous clinical studies [1]. Furthermore, small-animal PET is becoming an
essential imaging modality for preclinical research [2–4], as well as for drug
development and discovery [5].

Single-photon emission computed tomography (SPECT) is the most widely
available diagnostic imaging technique which uses short-lived radiographic iso-
topes. In particular, it is extensively used in cardiology. For example, in 2012, nine
million myocardial perfusion scintigraphic imaging studies were performed in the
USA.

Image reconstruction is an essential component in tomographic medical imaging,
allowing a tomographic image to be obtained from a set of two-dimensional
projections. The existing image reconstruction methods can be classified into two
broad categories: (a) analytic methods and (b) iterative (or algebraic) methods.
In what follows, we will discuss only analytic methods. In this respect, we first
consider a simple model for SPECT: let�.x1; x2/ denote the gamma-ray attenuation
coefficient of the tissue at the point .x1; x2/. This means that a gamma ray traveling
a small distance �� at .x1; x2/ suffers a relative intensity loss

�I

I
D ����: (1)

We denote by Io the initial intensity of a gamma ray and by If the measured
intensity after undergoing attenuation through tissue of lengthL; the above equation
can be written in the form

If D Io exp

�
�
Z
L

�.�/ d�


: (2)

This equation expresses the well-known Beer’s law.
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Let f .x1; x2/ denote the distribution in the tissue of the radioactive material
under consideration, and let L.x/ denote the part of the ray from the tissue to the
detector. Then, in SPECT, it is assumed that the following integral, ISPECT, is known
from the measurements:

ISPECT D
Z
L

exp

�
�
Z
L.x/

� ds


f d�; (3)

where the integral is measured over a finite number of lines L. Equation (3) is valid
under the following assumptions:

(a) The lines L are lying within a specified imaging plane,
(b) The imaging system has perfect imaging characteristics,
(c) The detector is collimated and can pick up radiation only along the straight lines

L,
(d) The collimator has an infinitely high spatial resolution,
(e) The attenuation coefficient � obeys Eq. (2),
(f) There is no scatter radiation in the object.

In PET, the integral in Eq. (3) simplifies to

IPET D exp f� O�g
Z
L

f d�; (4)

where O� denotes the Radon transform of �, i.e.,

O� D
Z
L

� d�: (5)

In order to derive Eq. (4) from Eq. (3), we recall that positrons eject particles
pairwise in opposite directions, and in PET the radiation in opposite directions is
measured simultaneously. Thus,

Z
L.x/

� ds D
Z
L�.x/

� dsC
Z
LC.x/

� ds D
Z
L

� ds (6)

and Eq. (3) becomes Eq. (4).
In both PET and SPECT, a projection is formed by combining a set of line

integrals along a line L. Here, we will consider parallel-ray integrals at a specific
angle � , i.e., we will assume a parallel-beam geometry.

We recall that the Radon transform of the X-ray attenuation coefficient denoted
by �CT is measured via computed tomography (CT). Using the values of �CT, it is
possible to estimate �.x1; x2/ by appropriate scaling (this is necessary due to the
energy difference between X-rays and gamma rays).
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Equation (4) implies that in PET one needs to reconstruct a function f from the
knowledge of its Radon transform denoted by Of ,

Of D
Z
L

f d�; (7)

where Of can be computed via

Of D IPET exp f O�g : (8)

Hence, both CT and PET involve the computation of a function from the knowledge
of its Radon transform. More specifically, in CT one needs to compute�CT from the
knowledge of O�CT, whereas in PET one needs to compute f from the knowledge of
IPET exp f O�g. The relevant formula, known as the inverse Radon transform, is given
by

f .x1; x2/ D 1

4�
.@x1 � i@x2/

Z 2�

0
ei�J.x1; x2; �/ d�; (9)

where J is defined in terms of Of by

J.x1; x2; �/ D 1

i�

I
L

Of .�; �/ d�
� � .x2 cos � � x1 sin �/

; 0 � � < 2�; (10)

and throughout this chapter,
H

denotes the principal value integral.

Let Of� denote the right-hand side (RHS) of Eq. (3). We call Of� the attenuated
Radon transform of f (with attenuation specified by the given function �). Hence,
SPECT involves the computation of a function f from the knowledge of its
attenuated Radon transform Of� and of the function�. The relevant formula is known
as the inverse attenuated Radon transform (IART).

According to Eq. (9), the numerical implementation of the inverse Radon trans-
form involves the computation of the Hilbert transform .Hf /.�/ of a given function
f .�/, where

.Hf /.�/ D 1

�

I
L

f .r/

r � � dr: (11)

The most well-known method for this computation uses the fast Fourier transform
technique, exploiting the fact that the Hilbert transform is a convolution. The
application of this method to the computation of the inverse Radon transform is
called filtered backprojection (FBP).

Most PET systems have options for both FBP and Ordered Subset Expectation
Maximization (OSEM), which is the predominant iterative technique.
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The analytical approach to SPECT requires the numerical implementation of
the IART. However, since no analytical formula was available until recently for
the IART, currently the FBP implementation to SPECT generally makes the crude
approximation of� D 0 or incorporates a uniform attenuation map [6]. On the other
hand, since OSEM is based on an iterative statistical approach, it does not require
the analytical inversion formula, and hence OSEM considers the actual values of �.
Hence, in SPECT, OSEM produces more accurate images than FBP. However, for
several reasons including speed (1 s vs. 2.5 min for a typical study), FBP is still used
extensively. Indeed, most SPECT systems have options for both FBP and OSEM,
and both are used clinically. Actually, some clinicians prefer FBP for quantification.

In this review, we will discuss an alternative approach for computing the Hilbert
transform. This approach, in contrast to FBP which is formulated in the Fourier
space, is formulated in the physical space, and it is based on “custom-made” cubic
splines. We will refer to the application of this approach to the computation of the
inverse Radon transform and to the IART as spline reconstruction technique (SRT)
for PET and SRT for SPECT, respectively.

The results of rigorous studies comparing FBP with SRT for PET are published in
[7]. In these studies, which use both simulated and real data, by employing a variety
of image quality measures, including contrast and bias, it is established that SRT
has certain advantages in comparison with FBP. As a result of these studies, SRT is
now included in STIR (Software for Tomographic Image Reconstruction) [8], which
is a widely used open-source software library in tomographic imaging (FBP and
SRT are the only algorithms based on analytical formulae which are incorporated in
STIR).

Rigorous studies comparing SRT for SPECT with FBP and OSEM are work in
progress. Preliminary results suggest that SRT is preferable to FBP and also that
SRT is comparable with OSEM; see Fig. 1 [9].

The clinical importance of PET and SPECT, as well as the mathematical
formulation of the inverse Radon transform and of the IART, is further discussed
in the following section. A new method for deriving transforms in one and two
dimensions was introduced in [10]. Using this method, both the inverse Radon
transform and the IART are derived in Sect. 3. The SRT for PET is presented in
Sect. 4, and the studies of Kastis et al. [7] comparing SRT with FBP for PET are
reviewed in Sect. 5. SRT for SPECT is briefly discussed in Sect. 6.

2 Background

The Importance of PET and SPECT

In 1964, the research group of Dr. David E. Kuhl, known as the “Father of Emission
Tomography,” developed the Mark II SPECT series, which is a single-emission
computed tomography camera. Using this unit, this group succeeded in producing
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Fig. 1 Reconstructions of two consecutive slices (a and b) of the myocardium acquired with
SPECT fused with CT scan. The images on the right are obtained by the currently used commercial
software and on the left with SRT

the world’s first tomographic images of the human body. This achievement was
considerably earlier than Godfrey Hounsfield’s development of the X-ray CT
device in 1972. A crucial element in the evolution of emission tomography was
the choice of the radioisotope injected in the patient. An important such class is
those radioisotopes that emit positrons. An emitted positron almost immediately
combines with a nearby electron; they annihilate each other, emitting in the process
two gamma rays traveling in nearly opposite directions. PET cameras detect these
gamma rays.

FDG (18F-2-deoxy-2-fluoro-D-glucose) is the most suitable positron emitter that
can be used with humans. It is a deoxyglucose analog with the normal hydroxyl
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group in the glucose molecule substituted with the radioactive isotope 18F. FDG
is taken up by high-glucose-using cells, and it is metabolically trapped following
phosphorylation by the hexokinase enzyme [11]. Thus, the measurement of the
positron-emitting 18F provides a quantitative measure of the glucose consumed
in the corresponding tissue. Glucose metabolism in cancerous tissue is higher
than in normal tissue. Thus, PET-CT devices are proving to be highly effective
in the early detection of cancer. For example, among 91 patients with non-small-
cell lung cancer, 38 pathologically confirmed mediastinal lymph node metastases
were missed by CT, whereas among 98 similar patients, only 21 metastases were
missed by PET-CT [12] (this means that in the former case, there were 38 futile
thoracotomies, whereas in the latter case, there were only 21). Furthermore, using
more specific positron emitters, it is possible to obtain additional useful information.
For example, using F-fluoro-17-ˇ-estradiol, it is possible to access in vivo the
density of estrogen receptors as well as to monitor the response of the treatment
for estrogen receptor-positive breast cancer. Similarly, using 18F-annexin V, it is
possible to follow tumor cell apoptosis (death) in vivo, as well as to monitor
treatment response to various cancer types. It should also be noted that PET-
CT is useful for prognosis. For example, the 2-year failure-free survival rate of
patients with positive scans after chemotherapy treatment for early-stage Hodgkin’s
lymphoma was 69 %, as compared with 95 % of patients with negative scans [13].

In addition to oncology, PET is now used in several other areas of medicine,
including cardiology and neurology. As an example of the usefulness of PET in
neurology, we note that PET with the use of the Pittsburgh compound B(PIB) can
be used to quantify the concentration of amyloid-beta (Aˇ) deposition in the brain,
a precursor of Alzheimer’s disease [14].

SPECT is used extensively in cardiology, oncology, and neurology. In cardiology,
SPECT is part of the common stress-testing procedures for the evaluation of chest
pain [15]. As an example of the use of SPECT in oncology, we mention the study
in [16], where lymphoscintigraphy was performed using SPECT-CT to establish
a preoperative road map of lymph nodes that are at risk for metastatic melanoma
and to facilitate intraoperative identification of the “sentinel” nodes (the rationale
for sentinel-node biopsy relies on the concept that different regions of the skin
have specific patterns of lymphatic drainage to the regional nodes, and for a given
region of the skin, there exists at least a specific node, the sentinel node, in
which lymphatic vessels drain first, and it is this node the most likely first site of
metastasis).

In neurology, SPECT can be used to image the distribution of the blood flow in
the brain, and this has been used in a plethora of pathological situations. Further-
more, by employing specific radioisotopes, it is possible to obtain useful information
about several diseases. For example, using SPECT with 123I-labeled CIT, it is shown
in [17] that although levodopa treatment is highly effective as dopamine replacement
in Parkinson’s disease, this treatment apparently downregulates the endogenous
dopamine transporters.
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Fig. 2 Parallel-beam projections through an object with attenuation coefficient �.x1; x2/. The
local and Cartesian coordinates of the mathematical formulation are indicated

TheMathematical Foundation of the IART

Consider a line L specified by two real numbers � and � , where �1 < � <1 and
0 � � < 2� (Fig. 2). A unit vector along this line is given by

ek D .cos �; sin �/ : (12)

A unit vector perpendicular to L is given by

e? D .� sin �; cos �/ : (13)

A point x on this line can be expressed in the form

x D � e? C � ek: (14)

Hence,

x1 D � cos � � � sin �; (15)

x2 D � sin � C � cos �: (16)

Solving these equations for .�; �/ in terms of .x1; x2; �/, we find

� D x2 sin � C x1 cos �; (17)

� D x2 cos � � x1 sin �: (18)
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Writing .x1; x2/ in terms of the local coordinates .�; �/, it follows that the equation
defining the Radon transform, Of , of a function f takes the form

Of .�; �/ D
Z 1

�1
f .� cos � � � sin �; � sin � C � cos �/ d�;

�1 < � <1; 0 � � < 2�: (19)

Similarly, the following equation provides the definition of the attenuated Radon
transform, Of� (with attenuation specified by �), of a function f :

Of�.�; �/ D
Z 1

�1
exp

�
�
Z 1

�

�.s cos � � � sin �; s sin � C � cos �/ds


�

f .� cos � � � sin �; � sin � C � cos �/d�; �1 < � <1; 0 � � < 2�: (20)

The inverse Radon transform, expressing f in terms of Of , is given by Eqs. (9)
and (10). Similarly, the IART, expressing f in terms of Of� and �, is given by

f .x1; x2/ D 1

4�
.@x1 � i@x2/

Z 2�

0
ei�J.x1; x2; �/d�; �1 < x1; x2 <1;

(21)
where the function J is defined by

J.x1; x2; �/ D exp

�Z 1

�

�.s cos � � � sin �; s sin � C � cos �/ds



�L�.�; �/ Of�.�; �/
ˇ̌
ˇ
�Dx2 sin �Cx1 cos �
�Dx2 cos ��x1 sin �

(22)

and the operator L�.�; �/ is defined by

L�.�; �/ D exp fP� O�.�; �/gP� exp f�P� O�.�; �/g
C exp

˚�PC O�.�; �/
PC exp
˚
PC O�.�; �/
 ; (23)

with O�.�; �/ denoting the Radon transform of �.x1; x2/ and the operators P˙
denoting the usual projection operators in the variable �, i.e.,

.P˙g/.�/ D ˙g.�/
2
C 1

2i�

I 1

�1
g.r/

r � �dr; �1 < � <1: (24)

AGeneral Methodology for Constructing Transform Pairs

The study of nonlinear integrable equations led to the emergence of a general
method for deriving transform pair in one and two dimensions [10]. In particular,
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using this method, it was shown in [10] that the two-dimensional Fourier transform
of a function u.x1; x2/ can be constructed via the spectral analysis of the equation

@�

@x1
C i@�

@x2
� k� D u.x1; x2/; .x1; x2/ 2 R2; k 2 C; (25)

where �.x1; x2; k; Nk/ is a scalar function and bar denotes complex conjugate.
R. Novikov and one of the authors re-derived in [18] the Radon transform by

performing the spectral analysis of the equation

1

2

�
k C 1

k

�
@�

@x1
C 1

2i

�
k � 1

k

�
@�

@x2
D f .x1; x2/; .x1; x2/ 2 R2; k 2 C: (26)

Although the Radon transform can be derived in a much simpler way by using
the two-dimensional Fourier transform, the advantage of the derivation of [18] was
demonstrated later by Novikov [19] who showed that the inverse attenuated Radon
transform can be derived by applying a similar analysis to the following slight
generalization of Eq. (26):

1

2

�
k C 1

k

�
@�

@x1
C 1

2i

�
k � 1

k

�
@�

@x2
� �.x1; x2/�

D f .x1; x2/; .x1; x2/ 2 R2; k 2 C: (27)

3 The Inverse Radon Transform and the Inverse Attenuated
Radon Transform

In what follows, we discuss an algorithmic approach for the construction of a
transform pair ff; Of g. The relevant analysis, which is usually referred to as spectral
analysis, involves two main steps: (i) solve a given eigenvalue equation in terms
of f . If k denotes the eigenvalue parameter, this involves constructing a solution
� of the given eigenvalue equation which is bounded for all complex values of k.
This problem will be referred to as the direct problem. (ii) Using the fact that �
is bounded for all complex k, construct an alternative representation of � which
(instead of depending on f ) depends on some “spectral function” of f denoted by
Of . This problem will be referred to as the inverse problem.

It turns out that the inverse problem gives rise to certain problems in complex
analysis known as the Riemann-Hilbert and the d -bar problems. Indeed, for certain
eigenvalue problems, the function � is sectionally analytic in k, i.e., it has different
representations in different domains of the complex k-plane, and each of these
representations is analytic. In this case, if the “jumps” of these representations
across the different domains can be expressed in terms of Of , then it is possible
to reconstruct � as the solution of a Riemann-Hilbert problem which is uniquely
defined in terms of Of . However, for a large class of eigenvalue problems, there
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exists a domain in the complex k-plane where � is not analytic. In this case, if
@�=@ Nk can be expressed in terms of Of , then � can be reconstructed through the
solution of a d -bar problem which is uniquely defined in terms of Of .

We recall that the classical derivation of transform pairs involves the integration
in the complex k-plane of an appropriate Green’s function. However, this derivation
is based on the assumption that the Green’s function is an analytic function of k
and it also assumes completeness. The assumption of analyticity corresponds to
the case that � is sectionally analytic. Therefore, the approach reviewed here has
the advantage that not only it provides a simpler approach to deriving classical
transforms avoiding the problem of completeness, but also it can be applied to
problems that the associated Green’s function is not an analytic function of k.

In addition to the construction of the Inverse attenuated Radon transform, the
approach reviewed here has led to the construction of the X-ray fluorescence
computed tomography [20].

The Construction of the Inverse Radon Transform

Let S.R2/ denote the space of Schwartz functions. Define the Radon transform
Of .�; �/ of the function f .x1; x2/ 2 S.R2/ by Eq. (19). Then, for all .x1; x2/ 2 R2,
f .x1; x2/ is given by Eq. (9).

We will derive the Radon transform pair by performing the spectral analysis
of the eigenvalue Eq. (26). In order to solve the direct problem, we first simplify
Eq. (26) by introducing a change of variables from .x1; x2/ to .z; Nz/, where z is
defined by

z D 1

2i

�
k � 1

k

�
x1 � 1

2

�
k C 1

k

�
x2; (28)

and Nz follows via complex conjugation, i.e.,

Nz D � 1

2i

�
Nk � 1
Nk
�
x1 � 1

2

�
Nk C 1
Nk
�
x2; .x1; x2/ 2 R2; k 2 C:

Using the identities

@x1 D
1

2i

�
k � 1

k

�
@z � 1

2i

�
Nk � 1
Nk
�
@Nz (29)

and

@x2 D �
1

2

�
k C 1

k

�
@z � 1

2

�
Nk C 1
Nk
�
@Nz; (30)

Eq. (26) becomes
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�.jkj/@�
@Nz .x1; x2; k/ D f .x1; x2/; .x1; x2/ 2 R2; k 2 C; (31)

where the function �.jkj/ is defined by

�.jkj/ D 1

2i

�
1

jkj2 � jkj
2

�
: (32)

We supplement Eq. (31) with the boundary condition

� D O
�

1

z

�
; z!1: (33)

In order to solve Eqs. (31) and (33), we will use the Pompeiu formula, namely,

f .z; Nz/ D 1

2i�

Z
@D

f .�; N�/d�
� � z

C 1

2i�

Z Z
D

@f

@ N� .�;
N�/d� ^ d

N�
� � z

; z 2 D; (34)

where @D denotes the boundary of the domainD. Using this formula, we find

� D 1

2�i

Z Z
R2

f .x0
1; x

0
2/

�.jkj/
d z0 ^ d Nz0

z0 � z
; .x1; x2/ 2 R2; k 2 C; jkj ¤ 1: (35)

Hence, using the identity

d z ^ d Nz D 1

2i

ˇ̌
ˇ̌jkj2 � 1

jkj2
ˇ̌
ˇ̌dx1dx2 (36)

it follows that for all .x1; x2/ 2 R2 and k 2 C, jkj ¤ 1, � satisfies

�.x1; x2; k/ D 1

2�i
sgn

�
1

jkj2 � jkj
2

�Z Z
R2
f .x0

1; x
0
2/
dx0

1dx
0
2

z0 � z
: (37)

If k is either inside or outside the unit circle, the only dependence of � on k is
through z0 and z; thus, � is a sectionally analytic function with a “jump” across the
unit circle of the complex k-plane. Equation (37) provides the solution of the direct
problem.

In order to solve the inverse problem, we will formulate a Riemann-Hilbert
problem in the complex k-plane. In this respect, we note that Eq. (37) implies

� D O
�

1

k

�
; k !1: (38)

Furthermore, we will show that for all .x1; x2/ 2 R2, � satisfies the following
“jump” condition:
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�C � �� D i.H Of /.�; �/; �1 < � <1; 0 � � < 2�; (39)

where H denotes the Hilbert transform in the variance � defined in Eq. (11). This
equation is a direct consequence of the following equations: let �C and �� denote
the limits of � as k approaches the unit circle from inside and outside, i.e.,

�˙ 
 lim
"!0

�
�
x1; x2; .1� "/ei�

	
: (40)

Then, for all .x1; x2/ 2 R2,

�˙ D �.P Of /.�; �/ �
Z 1

�

F .�; s; �/ds; �1 < � <1; 0 � � < 2�;

(41)
where P˙ denote the usual projectors in the variable �, i.e.,

.P˙ Of /.�/ D ˙f .�/
2
C 1

2i
.Hf /.�/ (42)

and F denotes f in the coordinates .�; �; �/, i.e.,

F.�; �; �/ D f .� cos � � � sin �; � sin � C � cos �/: (43)

Indeed, in order to derive Eq. (41), we note that the definition of z implies

.z� z0/ D 1

2i

�
k � 1

k

�
.x1 � x0

1/�
1

2

�
k C 1

k

�
.x2 � x0

2/: (44)

Let

kC D .1 � "/ei� ; k� D .1C "/ei� ; 0 � � < 2�; " > 0: (45)

Thus

�
kC � 1

kC

�
D .1 � "/ei� � .1C "/e�i� CO."2/ (46)

and similarly for .k� � 1=k�/.
Hence, for computing �˙ via Eq. (37), we must use the formulae

z0 � z D �x0
1 � x1

	
sin � � �x0

2 � x2
	

cos �

˙i" ��x0
1 � x1

	
cos � C �x0

2 � x2
	

sin �
�CO."2/: (47)

We recall that solving Eqs. (15) and (16) for .�; �/ in terms of .x1; x2/ we find
Eqs. (17) and (18). The Jacobian of this transformation equals 1, hence dx1dx2 D
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d�d� . Replacing in Eq. (37) z � z0 by the RHS of equation (47) and then changing
variables in the resulting equation from .x0

1; x
0
2/ to .�0; � 0/ and from .x1; x2/ to

.�; �/, we find

�˙ D � 1

2i�
lim
"!0

Z Z
R2

F.�0; � 0; �/d�0d� 0

�0 � Œ�˙ i".� 0 � �/� : (48)

In order to evaluate this limit, we must control the sign of � 0 � � . This suggests
splitting the integral over d� 0 as shown below:

�˙ D � 1

2i�
lim
"!0

Z 1

�1

�Z �

�1
Fd� 0

�0 � Œ�˙ i".� 0 � �/� C
Z 1

�

Fd� 0

�0 � Œ�˙ i".� 0 � �/�

d�0:
(49)

In the first and second integral above, � 0 � � is negative and positive, respectively:
hence

�˙ D � 1

2i

Z �

�1
˚�iF .�; � 0; �/C .HF /.�; � 0; �/



d� 0

� 1

2i

Z 1

�

˚˙iF .�; � 0; �/C .HF /.�; � 0; �/


d� 0: (50)

Adding and subtracting in the RHS of this equation the expression

� 1

2i

Z 1

�

.�/iF.�; � 0; �/d� 0; (51)

we find Eqs. (41).
The sectionally analytic function � satisfies the estimate (38) and has a jump

across the unit circle; thus, for all .x1; x2/ 2 R2, it admits the following
representation:

� D 1

2i�

Z 2�

0

.�C � ��/.�; � 0/iei� 0

d� 0

ei�
0 � k ; k 2 C; jkj ¤ 1; �1 < � <1:

(52)
Replacing in this equation �C � �� by the RHS of (39), we find the following
expression valid for all .x1; x2/ 2 R2:

� D � 1

2i�

Z 2�

0

ei�
0

.H Of /.�; � 0/d� 0

ei�
0 � k ; k 2 C; jkj ¤ 1; �1 < � <1: (53)

This expression provides the solution of the inverse problem.
Using Eqs. (26) and (53), it is straightforward to express f in terms of Of . One

way of achieving this is to replace in Eq. (26) � by the RHS of Eq. (53). A simpler
alternative way is to compute the large k behavior of � : Equation (53) implies
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� �
�

1

2i�

Z 2�

0
ei� .H Of /.�; �/d�


1

k
CO

�
1

k2

�
; k !1: (54)

Substituting this expression in Eq. (26), we find that theO.1/ term of Eq. (26) yields

f D 1

4i�

�
@x1 C

1

i
@x2

�Z 2�

0
ei� .H Of /.�; �/d�; (55)

which is Eq. (9).

The Construction of Inverse Attenuated Radon Transform

Let k˙ denote the limiting values of k 2 C as it approaches the unit circle in
the complex k-plane from inside and outside the unit circle; see Eq. (45). Let z be
defined in terms of .x1; x2/ 2 R2 and k 2 C by Eq. (28), and let �.jkj/ be defined
by Eq. (32). Then

lim
k!k˙

�
@�1Nz

�
f .x1; x2/

�.jkj/
�
D �.P Of /.�; �/ �

Z 1

�

F .�; s; �/ds;

�1 < � <1; 0 � � < 2�; (56)

where Of is the Radon transform of f (see Eq. (19)), P˙ are the usual projectors
in the variable � (see Eq. (42)), .�; �/ are defined in terms of .x1; x2/ by Eqs. (17)
and (18), and F denotes f in the variables .�; �; �/ (see Eq. (43)). Indeed, Eq. (56)
is direct consequence of Eqs. (31) and (41).

It turns out that the derivation of the attenuated Radon transform pair is a direct
consequence of Eqs. (27) and (56). Indeed, define the attenuated Radon transform
Of�.�; �/ of the function f .x1; x2/ 2 S.R2/ by Eq. (20). Then, f .x1; x2/ is given by

Eq. (21).
In order to derive the above result, we note that Eq. (27) can be rewritten in the

form

@�

@Nz C
�

�
� D f

�
: (57)

Hence

@

@Nz
h
�e@

�1
Nz .

�
� /
i
D f

�
e@

�1
Nz .

�
� /; (58)

or

�e@
�1
Nz .

�
� / D @�1Nz

��
f

�

�
e@

�1
Nz .

�
� /

�
; .x1; x2/ 2 R2; k 2 C: (59)
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This equation provides the solution of the direct problem, i.e., it defines a sectionally
analytic function� with the estimate (38), which has a jump across the unit circle of
the complex k-plane. Hence, � is given by Eq. (52). All that remains is to determine
the jump �C � ��. This involves computing the limits as k ! k˙ of @�1Nz .�=�/;
thus, it can be achieved using Eq.(56). Let M denote � in the variables .�; �; �/:
then using in Eq. (59) the identity (56) with f replaced by �, we find

�˙eP� O�e� R1
� M.�;s;�/ds D lim

k!k˙

@�1Nz
�
f

�
eP� O�e� R1

� M.�;s;�/ds


: (60)

For the computation of the RHS of this equation, we use again Eq. (56) where f
is now replaced by f times the two exponentials appearing in the curly bracket of
Eq. (60). Hence, the RHS of Eq. (60) yields

� PeP� O� Of� �
Z 1

�

F .�; � 0; �/eP� O�e� R1

� 0 M.�;s;�/dsd� 0: (61)

The term expŒ�P O�� is independent of � 0; hence, this term comes out of the
integral

R1
�

, and furthermore, the same terms appear in the left-hand side of
Eq. (60). Hence,

�C � �� D �J; (62)

where J is defined in Eq. (22). Then Eq. (52) yields

� D � 1

2�

Z 2�

0

ei�
0

J.�; �; � 0/d� 0

ei�
0 � k : (63)

Hence,

� D
�

1

2�

Z 2�

0
ei�J.�; �; �/d�


1

k
CO

�
1

k2

�
; k !1: (64)

Substituting this expression in Eq. (27), we find that the O.1/ term of Eq. (27)
yields (21).

4 SRT for PET

According to Eq. (9), the inverse Radon transform can be written in the form

f .x1; x2/ D 1

2i�

�
@

@x1
� i @

@x2

�Z 2�

0
ei�F.�; �/

ˇ̌
ˇ̌
ˇ
�Dx2 cos ��x1 sin �

d�; (65)
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where F .�; �/ denotes half the Hilbert transform of Of .�; �/ with respect to �,
namely,

F.�; �/ 
 1

2�

I 1

�1

Of .r; �/
r � � dr; �1 < � <1; 0 � � < 2�: (66)

Inserting the operator
�

@
@x1
� i @

@x2

�
inside the integral in the right- hand side of

Eq. (65), we find

�
@

@x1
� i @

@x2

�
F.x2 cos � � x1 sin �; �/

D � .sin � C i cos �/
@F.�; �/

@�

ˇ̌
ˇ̌
ˇ
�Dx2 cos ��x1 sin �

: (67)

Using Eq. (67) in Eq. (65), we find

f .x1; x2/ D � 1

2�

Z 2�

0

�
@F.�; �/

@�

�
�Dx2 cos ��x1 sin �

d�; �1 < x1; x2 <1:
(68)

For the numerical calculation of F.�; �/, we assume that Of .�; �/ has support in the
interval �1 � � � 1 and that Of .�; �/ is given for every � at the n points f�i gn1. We

denote the value of Of at �i by bfi , i.e.,

Ofi D Of .�i ; �/; �i 2 Œ�1; 1�; 0 � � < 2�; i D 1; : : : ; n: (69)

Furthermore, we assume that

Of .�1; �/ D Of .1; �/ D 0: (70)

In the interval �i � � � �iC1, we approximate Of .�; �/ by cubic splines:

Of .�; �/ D ai .�/C bi .�/�C ci .�/�2 C di .�/�3; �i � � � �iC1; (71)

0 � � < 2�; i D 1; : : : ; n;

with fai .�/; bi .�/; ci .�/; di .�/gn1 given by the following expressions:

ai .�/ D �iC1
Ofi � �i OfiC1

�i

C
Of 00
i

6

 
��iC1�i C �3

iC1

�i

!
C
Of 00
iC1

6

�
�i�i � �3

i

�i

�
;

(72)
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bi.�/ D
OfiC1 � bfi
�i

�
Of 00
i

6

 
��i C 3�2

iC1

�i

!
C
Of 00
iC1

6

�
��i C 3�2

i

�i

�
; (73)

ci .�/ D 1

2�i

�
�iC1

Of 00
i � �i Of 00

iC1

�
; (74)

di.�/ D
Of 00
iC1 � Of 00

i

6�i

; (75)

where

�i D �iC1 � �i (76)

and Of 00
i denotes the second derivative of Of .�; �/ with respect to � evaluated at �i ,

i.e.,

Of 00
i D

@2 Of .�; �/
@�2

ˇ̌
ˇ̌
ˇ
�D�i

; i D 1; : : : ; n: (77)

It is straightforward to establish the identity

@

@�

I �iC1

�i

h.r/

r � �dr D h.�iC1/

� � �iC1
� h.�i /

� � �i C
I �iC1

�i

@h.r/

@r

r � �dr; �1 � � � 1: (78)

Employing this identity for the function Of .�; �/ and recalling Eqs. (69) and (70),
we find

@

@�

I 1

�1

Of .r; �/
r � � dr D

n�1X
iD1

I �iC1

�i

@ Of .r;�/
@r

r � � dr: (79)

Equation (71) implies

I �iC1

�i

@ Of .r;�/
@r

r � � dr D bi .�/
I �iC1

�i

dr

r � � C 2ci .�/
I �iC1

�i

rdr

r � �

C 3di.�/
I �iC1

�i

r2dr

r � � : (80)

The integrals appearing in this equation can be evaluated by employing the
following identities:

I �iC1

�i

dr

r � � D Ii .�/; (81)
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I �iC1

�i

rdr

r � � D �i C �Ii .�/; (82)

I �iC1

�i

r2dr

r � � D
1

2
.�2
iC1 � �2

i /C ��i C �2Ii .�/; (83)

where

Ii .�/ D ln

ˇ̌
ˇ̌�iC1 � �
�i � �

ˇ̌
ˇ̌ : (84)

Using Eqs. (80)–(84), Eq. (79) becomes

@

@�

I 1

�1

Of .r; �/
r � � dr D C.�/C 3

 
n�1X
iD1

di .�/�i

!
�C

n�1X
iD1

Di.�/ ln

ˇ̌
ˇ̌�iC1 � �
�i � �

ˇ̌
ˇ̌ ;
(85)

where C.�/ and fDi.�; �/gn�1
1 are defined by the equations

C.�/ D
n�1X
iD1

�
2ci .�/�i C 3

2
di .�/

�
�2
iC1 � �2

i

	�
; (86)

Di.�; �/ D bi .�/C 2ci .�/�C 3di.�/�
2; �i � � � �iC1; i D 1; : : : ; n:

(87)

After simplifying Eq. (85), we find

@F.�; �/

@�
D 1

2�

�
C.�/C 1

2

� Of 00
n � Of 00

1

�
�CDn�1.�; �/ ln j� � �nj �D1.�; �/

ln j� � �1j C
n�2X
iD1

ŒDi .�; �/ �DiC1.�; �/� ln j� � �iC1j
)
;

1 � � � 1; 0 � � < 2�: (88)

In order to eliminate the logarithmic singularities at � D f�1gn1 , we impose the
following n equations:

Di.�iC1; �/ D DiC1.�iC1; �/; i D 1; : : : ; n � 2; 0 � � < 2�; (89)

D1.�1; �/ D Dn�1.�n; �/ D 0: (90)

In summary, the inverse Radon transform of a function Of .�; �/ approximated by
the cubic spline expression (71) can be written in the form
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f .x1; x2/ D � 1

4�2

Z 2�

0

�
C.�/C 1

2

� Of 00
n � Of 00

1

�
�CDn�1.�; �/

ln j� � �nj �D1.�; �/ ln j� � �1j

C
n�2X
iD1

ŒDi .�; �/ �DiC1.�; �/� ln j� � �iC1j
)
d�; (91)

where C.�/ and fDi gn�1
1 are defined by Eqs. (86) and (87) in terms of

fbi.�/; ci .�/; di .�/gn1, which are defined by Eqs. (73)–(75) via
n Ofi and Of 00

i

on
1
. It is

assumed that the functions
n Ofi .�/

on
1

are given, whereas
n Of 00

i .�/
on

1
can be computed

in terms of Ofi .�/ by solving Eqs. (89) and (90).
In the construction of the so-called “natural” splines, one requires continuity of

the first derivative, as well as the conditions Of 00
1 D Of 00

n D 0. The former requirement
implies Eq. (89), which eliminates the logarithmic singularities at the interior points
� D �i ; i D 2; : : : ; n� 1. In order to eliminate the logarithmic singularities at the
end points �1 D �1 and �n D 1, we impose Eq. (90) (instead of Of 00

1 D Of 00
n D 0).

In this way, we construct a set of splines “custom-made” for the evaluation of the
Hilbert transform.

For a discrete numberN of projection angles � , Eq. (68) yields

f .x1; x2/ � � 1

4�2N

8<
:
N�1X
jD0

G

�
x1; x2;

2�j

N

�
C 1

2
G.x1; x2; 0/C 1

2
G.x1; x2; 2�/

9=
;;

(92)
where G.x1; x2; �/ denotes the evaluation of the RHS of Eq. (88) at � D x2 cos � �
x1 sin � .

Comparison between FBP and SRT for PET

FBP is reviewed in several publications; see, for example, [21–27]. Here, we only
note that the inverse Radon transform implemented via the FBP algorithm can be
expressed by the following formula [28]:

f .x1; x2/ D 1

2�N

N�1X
nD0

F�1
�
S.��; �n/ �H.��/

�
; (93)

where F�1 denotes the inverse Fourier transform in the variable � and S.��; �/ is
the sinogram in the spatial frequency domain given by the expression

S.��; �/ D Ff Of .�; �/g; (94)
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Fig. 3 The product of the
ramp function with typical
filters used with FBP. The
cutoff frequency �c is set at
0.5 cycles/pixel

Fig. 4 The two phantoms used for the simulation studies

with F denoting the direct Fourier transform. The function H.��/ appearing in
Eq. (93) denotes the product of the ramp function j�j by some appropriate filter
function. Figure 3 depicts H.��/ for some commonly used filters in the FBP
reconstruction algorithm.

In what follows, we compare FBP (with ramp filter) with SRT using certain well-
known “quality measures.” These rigorous comparisons appear to indicate that SRT
has certain advantages. Further comparisons can be found in [9] and [7].

Simulated Data
We will employ two well-known phantoms, namely, an image quality (IQ) phantom
and a slice of a digital 3D Hoffman phantom [29]. These two phantoms are displayed
in Fig. 4.

The IQ phantom, which simulates the human torso, will be used in order to
establish how well each algorithm can determine hot and cold lesions of variable
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size inside a warm background. It consists of two circular cold regions (with
diameters of 38 and 32 mm) and four circular hot regions (with diameters of 25,
19, 15, and 12 mm) inside a larger warm region that simulates the background.
The radioactive concentration ratio (RCR) between hot regions and the surrounding
warm background is 4:1 for the three hot regions.

The Hoffman phantom simulates a cerebral PET study. It contains a complicated
radioactivity distribution within small anatomical features; thus, it allows the
investigation of the performance of each algorithm in a more realistic situation. The
Hoffman phantom contains three distinct radioactive regions: gray matter (GM),
white matter (WM), and cerebrovascular fluid (CSF). The RCR between GM and
WM is 5:1. The radioactivity concentration in the CSF region is zero.

The GE Discovery ST PET scanner is simulated by employing STIR. Details of
the scanner can be found elsewhere [30]. The two phantoms are placed in the center
of the imaging system, and 2D projections are generated in STIR using a ray-tracing
technique. Scatter and attenuation are not modeled. The relevant sinograms provide
the noiseless PET measurements. For each noiseless sinogram, 20 Poisson noise
realizations are generated at 5 different levels (NL1–NL5), where NL5 corresponds
to the highest noise level applied.

The SRT algorithm constructs an image in a raster scan format, by scan-
ning all pixel locations .x1; x2/ and then calculating the integral over � of
the derivative of the half-Hilbert transform, which is approximated by Eq. (88).
In the important case that the boundary of the object being imaged is con-
vex, a pixel which is outside the object and hence has zero value, can be
singled out from the sinogram by first identifying the detector locations for all
angles � that receive contribution from this pixel; then, for every .x1; x2/, if
there is even one � such that Of .�; �/ D 0, it follows that f .x1; x2/ must be
zero. Using this condition, we can restrict the reconstruction process only to
pixels within the object boundary and hence obtain a “cleaner” reconstructed
image.

By restricting reconstruction within the object boundaries (described above) and
by employing certain symmetry conditions (see [7]), it is possible to decrease
substantially the reconstruction time. The actual time depends on the size of the
sinogram, the reconstruction grid, and the size and the complexity of the object
being imaged. For example, for the simulated Hoffman phantom (sinograms of size
221 � 210 and 221 � 221 reconstruction grid), the reconstruction time is about
2.1 s per sinogram, executed on a PC with Intel R� CoreTMi7-920 Processor. We
note that no parallel programming or other accelerating techniques are employed,
which of course will decrease further the reconstruction time. The corresponding
reconstruction time for FBP in STIR is about 0.3 s.

In order to determine the quality of the reconstructed images, the contrast and
bias for the IQ and Hoffman phantom are calculated. The contrast for the hot and
cold regions are calculated according to [30]. The bias is defined as the mean
deviation over all realizations of the mean pixel value within a region of interest
(ROI) from the actual activity concentration, i.e.,
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bias D
(

1

R

RX
rD1

Xr

)
�Xtrue; (95)

where R is the total number of realizations, Xtrue is the true activity concentration,
and Xr is the mean activity concentration within an ROI of realization r with M
number of pixels; Xr is given by

Xr D 1

N

NX
iD1

Xi : (96)

The coefficient of variations (COV) is calculated using the expression

COV D 


m
; (97)

where 
 and m are the standard deviation and the mean of the measured activity in
the background ROI, averaged over all realizations.

For the IQ simulated phantom, comparisons between SRT and FBP reconstructed
images with no noise as well as with noise (NL2, NL4, and NL5) are shown in
Fig. 5. For economy of presentation, images from NL1 and NL3 are not shown. The
noisy images presented are representative reconstructions of one realization at the
specific noise level. Both SRT and FBP can generate negative values in pixels (for
cases where the value of the original phantom is very low or zero). In all images
presented, the all-black color corresponds to zero values, whereas the white color
represents the maximum value of the distribution.

Although the reconstructions from both methods appear similar, there exist two
main differences: From visual inspection, it is clear that there exist differences in
the noise texture between the SRT and the FBP reconstructions. Specifically, the
reconstructions obtained from SRT appear more noisy than those obtained from FBP
at every noise level. Furthermore, the SRT reconstructions are completely clear from
streak artifacts outside the object, whereas some small streak artifacts are present in
the FBP reconstructions.

The contrast, Chot, for the two smallest hot spheres of the IQ phantom (15 and
12 mm) as a function of COV is presented in Fig. 6. The SRT algorithm exhibits
higher contrast in all three lesions independently of noise level. This advantage
in contrast increases as the size of the lesion decreases. Indeed, we observe no
differences in Ccold for the 38-mm and 32-mm cold spheres but a small improvement
for the SRT images in Chot for the 25-mm lesion and larger improvement for the 19-
mm lesion.

The percent bias generated by the reconstruction algorithms for the two smaller
hot lesions as a function of noise level is presented in Fig. 6. The bias is negative
in all cases. There are no considerable differences in bias between SRT and FBP
for the cold lesion and for the largest hot lesion. The bias had small variations as
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Fig. 5 Reconstructed images of the simulated IQ phantom at various noise levels (the noise level
increases moving from left to right): (a) no noise, (b) noise level 2, (c) noise level 4, and (d) noise
level 5

Fig. 6 Contrast and bias vs. COV for the two reconstruction algorithms obtained from the
reconstructed images of the simulated IQ Phantom. Note that the leftmost data point in each line
curve corresponds to the noiseless case, while the rightmost data point corresponds to the NL5 case

a function of COV for both SRT and FBP. FBP appears to give a higher bias in all
cases reaching about 9 % for the 12-mm lesion. The percent bias for the FBP images
increases as the lesion size decreases. The percent bias for SRT has small variations
as a function of lesion size. The situation is similar for the 19-mm hot lesion.

For the Hoffman simulated phantom, comparisons between SRT and FBP
reconstructed images with no noise as well as with noise (NL2, NL4, and NL5)
are shown in Fig. 7. The noisy images presented are representative reconstructions
of one realization at the specific noise level. All anatomical features of this phantom
can clearly be identified by both algorithms for all selected noise levels. Small streak
artifacts outside the object are present in the FBP reconstructions, whereas the SRT
reconstruction provides images with no such artifacts.
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a b c d

Fig. 7 Reconstructed images of the simulated Hoffman phantom at various noise levels: (a) no
noise, (b) noise level 2, (c) noise level 4, and (d) noise level 5

Contrast plots between GM/CSF and WM/CSF as a function of noise level
are presented in Fig. 8a, b. There exists a small improvement in contrast for
the SRT algorithm, particularly for the case of the WM. RCR plots comparing
the two reconstruction algorithms as a function of noise level are presented in
Fig. 8c. The RCR calculations between GM and WM suggest that FBP slightly
underestimates the actual RCR value (dotted line), whereas the RCR calculated
from SRT reconstructions is closer to the actual value. The percent bias for the
GM as a function of noise level is depicted in Fig. 8d. There is a negative bias in
both algorithms, similar to the case of the IQ phantom. The bias is 4 % for the FBP
and about 2 % for the SRT algorithm. The bias for the GM is under 0.8 % for both
algorithms.

Real Data
Real-data acquisitions are performed using a commercial ARGUS-CT small-animal
PET-CT system (SEDECAL S.A., Madrid, Spain). The PET tomograph of this
system is identical to the GE Healthcare eXplore VISTA small-animal PET scanner
which is described elsewhere [31].

The following two phantoms are used: (a) a NEMA image quality phantom and
(b) an in-house Derenzo phantom. A NEMA phantom, designed in accordance to the
specifications of the NEMA NU 4-2008 quality phantom [32], is employed in order
to determine the noise and contrast properties of each algorithm. This phantom is
separated into three main parts: a fillable cylindrical region 30 mm in diameter and
30 mm in length; a solid region with 5 fillable rods with dimensions of 1, 2, 3, 4, and
5 mm each; and a uniform region with two cold region chambers 8 mm in diameter.
Schematics of the three distinct parts of the NEMA phantom are shown in Fig. 9.
The entire phantom is filled with 15.8 MBq of 18F aqueous solution, and one of the
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a

c

b

d

Fig. 8 Contrast, RCR, and bias vs. COV comparisons between the two reconstruction algorithms
for the simulated Hoffman phantom. Contrast was determined for GM with respect to CSF (a) and
for WM with respect to CSF (b). RCR between GM and WM was also determined (c). The dashed
line indicates the actual RCR between GM and WM of the simulated Hoffman phantom being
imaged. The bias is presented as a percentage of the true activity concentration of the lesion being
measured (d). Note that the leftmost data point in each line curve corresponds to the noiseless case,
while the rightmost data point corresponds to the NL5 case

Fig. 9 Schematics of the three distinct parts of the NEMA NU 4-2008 phantom used for the real-
data studies

8-mm cold chambers is filled with nonradioactive water while the other one remains
with air. A 30-min PET scan is acquired in two bed positions.

An in-house Derenzo phantom is used in order to test the resolution limitations
of each algorithm. The Derenzo phantom consists of 31 microcapillaries arranged
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Fig. 10 Reconstructions of three slices of the NEMA NU 4-2008 image quality phantom and a
slice of the Derenzo phantom, acquired by the ARGUS-CT small-animal PET-CT system: (a) SRT
with no thresholding, (b) SRT with thresholding, and (c) FBP with a ramp filter. Note that the
8-mm cold chamber on the left of the NEMA 2 slice is filled with nonradioactive water and the one
on the right with air

in six different sectors. The capillaries are separated by 2, 3, 4, 5, 6, and 8 mm,
respectively, and there is no material between them. The phantom is filled with
5.6 MBq of 18F aqueous solution, and a 60-min PET scan is performed.

Reconstructed images obtained via SRT and FBP (including SRT without
sinogram thresholding) of three slices of the NEMA NU 4-2008 image quality
phantom are presented in Fig. 10. Small streak artifacts are present in both SRT and
FBP reconstructions. These artifacts are reduced in SRT after applying sinogram
thresholding.

COV and contrast calculations using the uniform slice and the cold chamber slice
of the NEMA phantom are presented in Fig. 11a, b. The SRT reconstructed images
exhibit slightly higher COV values in comparison to FBP. The contrast values for
both the water and air chambers are similar for both algorithms.

Reconstructed images of the Derenzo phantom are shown in Fig. 10. All recon-
structed circular sources are clearly visible with both methods. Fig. 11c illustrates
the contrast for the various sectors of the Derenzo phantom calculated from the SRT
and FBP reconstructed images. The contrast in the SRT reconstructed images is
higher than the contrast of the FBP images; the difference in contrast between SRT
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a b

dc

Fig. 11 Results from analyzing real NEMA NU 4-2008 and Derenzo phantom images: (a) COV,
(b) contrast for water to background and air to background, (c) contrast for the different sections
of the Derenzo phantom, and (d) line profiles obtained along the 2-mm separated capillaries of the
Derenzo phantom. The dashed lines correspond to the normalized profile values through the actual
phantom

and FBP images becomes larger as the center-to-center spacing between the lesions
of the Derenzo phantom becomes smaller. Figure 11d illustrates the line profiles
obtained along the 2-mm separated capillaries of the phantom. SRT resolves the
2-mm separated holes slightly better than FBP.

5 SRT for SPECT

In order to derive the final formula for IART, we first derive the following
simplification of Eq. (21):

f .x1; x2/ D 1

2�

Z 2�

0
exp fM.x1; x2; �/g

("
� cos �

@M.x1; x2; �/

@x2

C sin �
@M.x1; x2; �/

@x1

#
G.�; �/� @G.�; �/

@�

)

�Dx2 cos ��x1 sin �

d�; (98)
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where the functionsM and G are defined by

M.x1; x2; �/ D
Z 1

�

�.s cos � �� sin �; s sin �C� cos �/ds

ˇ̌
ˇ̌
ˇ
�Dx2 sin�Cx1 cos �
�Dx2 cos ��x1 sin �

(99)

and

G.�; �/ D exp

�
� O�.�; �/

2

 �
cos.F.�; �//GC .�; �/C sin.F.�; �//GS.�; �/

�
;

(100)
with F , GC , GS defined by

F.�; �/ D 1

2�

I 1

�1
O�.r; �/
r � � dr; (101)

GC .�; �/ D 1

2�

I 1

�1
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� O�.r; �/
2


cos.F.r; �// Of�.r; �/ dr

r � � ; (102)

GS.�; �/ D 1

2�

I 1

�1
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� O�.r; �/
2


sin.F.r; �// Of�.r; �/ dr

r � � ;

�1 < � <1; 0 � � < 2�: (103)

In order to derive Eq. (98), we insert the operator @x1 � i@x2 inside the integral in the
RHS of (21) and use the identity

.@x1 � i@x2/ D
@x1

@�
@� C @x1

@�
@� � i

�
@x2

@�
@� C @x2

@�
@�

�

D .cos � � i sin �/ @� C .� sin � � i cos �/ @� D e�i� .@� � i@�/:
(104)

Then, Eq. (21) becomes

.@x1 � i@x2/J.x1; x2; �/ D e�i� eM
("
� �.x1; x2/L� Of�C

�
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@x1
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�#�
iL� Of�

�
� @

@�

�
iL� Of�

� )
�Dx2 sin �Cx1 cos �
�Dx2 cos ��x1 sin �

:

(105)

The contribution to Eq. (21) of the first term of the RHS of Eq. (105) vanishes.
Indeed, this contribution equals
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� �.x1; x2/
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0
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But Eqs. (1.8) and (2.9) of [33] evaluated at � D 0 imply

Z 2�

0
J.x1; x2; �/d� D 0: (107)

Thus, using Eq. (105) in Eq. (21), we find Eq. (98) provided that the following
identity is valid:

i
�
L� Of�

�
.�; �/ D 2G.�; �/: (108)

In order to derive this equation, we will use the equations
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where F denotes half the Hilbert transform of O� in the variable �; see Eq. (101).
Hence,
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where H denotes the Hilbert transform in the variable � defined in Eq. (11). Using
the above equations in Eq. (23) and simplifying, we find
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It is important to note that the RHS of Eq. (111) is real.
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Using the definitions (102) and (103), after some simplifications, Eq. (111)
becomes

i
�
L� Of�

�
.�; �/ D exp

�
� O�

2
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cos.F /GC C sin.F /GS

�
: (112)

6 Conclusion

PET and SPECT constitute two important medical imaging techniques. Using
these techniques, images can be obtained by employing either analytic methods or
iterative methods.

Regarding analytical methods, we note that simple models for PET and SPECT
can be formulated in terms of the inverse Radon transform and the IART, respec-
tively. FBP provides the most well-known numerical implementation of the inverse
Radon transform. FBP is currently used commercially for both PET and SPECT, in
spite of the fact that SPECT involves the IART and not the inverse Radon transform
(this is a consequence of the fact that until recently no analytic formula was available
for the IART).

Here, we have reviewed a general method for deriving transform pairs and have
used this method to derive the inverse Radon transform and the IART. Furthermore,
we have presented a novel numerical technique based on “custom-made” cubic
splines for the numerical implementation of both the above inverse transforms.
Rigorous studies comparing this novel technique (called SRT) with FBP for PET
suggest that SRT has certain advantages. In future clinical studies, efforts will be
made to delineate this advantage in concrete clinical situations.

The main advantages of the analytical methods, like FBP and SRT, are speed and
simplicity. However, in these methods, it is difficult to incorporate complex physical
phenomena such as attenuation and scatter. In FBP, noise issues are treated by
selecting appropriate filtering parameters, such as the roll-off and cutoff frequencies
of the reconstruction filter (usually at the expense of spatial resolution). Another
disadvantage of FBP is the streak artifacts that are particularly prominent near hot
regions of the object. For SRT, it is possible to eliminate these effects at least outside
the main region of interest and hence to obtain a “cleaner” image.

The predominant iterative algorithms are the maximum likelihood expectation
maximization (MLEM) algorithm [34] and its accelerated successor the ordered
subset expectation maximization (OSEM) algorithm [35]. The main advantage
of the iterative algorithms is the ability to model several aspects of the imaging
system, including elements of the noise characteristics, sinogram blurring due to
detector crystal penetration, inter-crystal scatter, depth of interaction, and photon
attenuation [36,37]. As a consequence, iterative methods can improve image quality
and achieve considerable resolution recovery. However, iterative algorithms require
more computing time and power, particularly when details of the physical model are
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included. Iterative techniques are now in widespread use in clinical and preclinical
systems. This is due to the speed improvement provided by OSEM and the recent
computer hardware improvements (processing and storage).

Most commercial clinical and preclinical PET systems allow the use of either
FBP or OSEM for image reconstruction. Currently, in OSEM, the main challenge
is the selection of the proper number of subsets and iterations [38], as well as the
choice of a suitable post-reconstruction filter (if needed). Stopping the algorithm at
the proper number of iterations is important, since EM-based algorithms suffer from
noise/bias trade-off. Stopping the iteration process after convergence is reached
results in a noisy image, whereas stopping the process too soon results in a less
noisy image which however is biased toward the image assumed at the initial step.
In order to resolve this issue, several regularization schemes have been proposed
[39]. In spite of these improvements, a recent dynamic brain PET study by Reilhac
et al. [40] concludes that analytical methods are more robust to low-count data than
iterative methods. Furthermore, the positivity constraint imposed to the sinogram
and image space by the EM-based reconstruction algorithms leads to overestimation
(positive bias) of the low-activity regions [40–42].

The advantage of analytical methods for low-count data will be increasingly more
important. Indeed, in the 1980s, medical imaging was responsible for only about
15 % of the total radiation exposure to US population from all sources; now this
proportion is 50 % [43]. In 2010, 70 million CT scans were performed in the USA,
and the radiation dose from CT scans is 100–500 times those from conventional
radiography. Taking into consideration that CT is now used for screening for lung
cancer [44] and that the use of PET-CT and SPECT-CT is expanding, it is imperative
to be able to produce images with the least possible radiation.

7 Cross-References

�Tomography
�EM Algorithms
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Abstract
This survey starts with a brief description of the scientific relevance of electron
tomography in life sciences followed by a survey of image formation models.
In the latter, the scattering of electrons against a specimen is modeled by
the Schrödinger equation, and the image formation model is completed by
adding a description of the transmission electron microscope optics and detector.
Electron tomography can then be phrased as an inverse scattering problem and
attention is now turned to describing mathematical approaches for solving that
reconstruction problem. This part starts out by explaining challenges associated
with the aforementioned inverse problem, such as the extremely low signal-
to-noise ratio in the data and the severe ill-posedness due to incomplete data,
which naturally brings up the issue of choosing a regularization method for
reconstruction. Here, the review surveys both methods that have been developed,
as well as pointing to new promising approaches. Some of the regularization
methods are also tested on simulated and experimental data. As a final note,
this is not a traditional mathematical review in the sense that focus here is on
the application to electron tomography rather than on describing mathematical
techniques that underly proofs of key theorems.

Acronyms

ART Algebraic Reconstruction Technique
CCD Charged Coupled Device
CPMV Cowpea Mosaic Virus
CTF Contrast Transfer Function
EELS Electron Energy Loss Spectroscopy
EDS Energy-Dispersive X-ray Spectroscopy
ET Electron (microscopy) Tomography
ELT Electron+-Tomography
FBP Filtered Back-Projection
HAADF High-Angle Annular Dark-Field
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HRTEM High-Resolution TEM
POCS Projection Onto Convex Sets
LDDM Large Deformation Diffeomorphic Metric Mapping
ML Maximum-Likelihood
ML-EM Maximum-Likelihood Expectation Maximization
MTF Modulation Transfer Function
PSF Point Spread Function
SART Simultaneous ART
SEM Scanning Electron Microscope
SIRT Simultaneous Iterative Reconstruction Technique
SSC Slow-Scan CCD camera
STEM Scanning Transmission Electron Microscope
TEM Transmission Electron Microscope
TMV Tobacco Mosaic Virus
TV Total Variation
WBP Weighted Back-Projection
WKB Wentzel–Kramers–Brillouin

1 Introduction

Imaging is today an essential tool in many different areas of scientific and
technological research. It is also widely used in investigations in fields as diverse
as arts and jurisprudence. As such, it is integrated into a variety of devices and
procedures routinely used in society. A prime example is microscopy that enables
investigation of objects that are too small for the naked eye at a variety of scales,
from atomic to sub-millimeter. Therefore, various forms of microscopy are crucial
in industrial processes, in life sciences, in comparative studies of chemistry and
geology, and in diagnostic medicine.

Traditional imaging techniques provide 2D images whose usage involves signifi-
cant portion of interpretation since the object/phenomena under investigation almost
always takes place in three spatial dimensions, plus time if temporal variation is
included. 3D images are therefore to be preferred whenever possible. This applies in
particular to life sciences and drug discovery, where a central topic is to understand
the machinery within the cell responsible for supporting life and disease. An
important part in this quest is to map the spatial and temporal arrangement of the
molecules engaged in this machinery. The structure determination problem, which
seeks to recover the three-dimensional structure of an individual molecule at highest
possible resolution in its natural environment, has therefore come to play a central
role.

Addressing the structure determination problem is, not surprisingly, both exper-
imentally and computationally very challenging. X-ray crystallography and nuclear
magnetic resonance are two established approaches, but these cannot recover the
structure of an individual molecule in its natural environment within the cell.
Electron microscopy offers alternative means to study macromolecules, molecular
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complexes and supramolecular assemblies in 3D. Three approaches have been
developed, electron crystallography [68], single particle analysis [61], and ET.

This review focuses on ET, which is the only method for 3D structural studies of
individual assemblies and subcellular structures in their natural environment. The
idea in ET is to recover the structure of a specimen from a series of micrographs,
which are 2D TEM images, using principles of tomography. Since its introduction
to the scientific community in 1968 [41, 85, 179], there has been tremendous
progress in instrumentation and sample preparation that has resolved many of the
difficulties associated with data collection. Most of the computational challenges
however remain to be addressed. Established approaches for image reconstruction
are direct adaptations of methods from medical imaging, used with inadequate
appreciation for the finer points of mathematics. Therefore, 3D reconstructions
have a resolution that is reliable only for studying cellular substructures, rather
than studying individual small molecules (“small” in this context refers to protein
molecules of size smaller than 200 kDa). This in turn has severely limited the
usefulness of ET in life sciences.

Another rapidly growing application area for ET is 3D characterization and
metrology of nano-structures in material sciences and semiconductor manufactur-
ing. In these applications, data is often acquired using a variety of different TEM
imaging modes (paragraph on p. 941), see [126, 127, 181] for a nice review. The
focus in this review is on life sciences, even though we occasionally mention
material science applications.

2 The Transmission Electron Microscope (TEM)

The starting point of electron microscopy can be attributed to Hans Busch who
laid the theoretical basis for the electron microscope and designed the first working
electron lens [23, 24]. Ten years later, based on the work of Busch, Ernst Ruska
constructed the first operational TEM [98]. Ruska was later awarded the 1986 Nobel
Prize in physics.

The operational principle of an electron microscope is similar to a light micro-
scope (Fig. 1). A source emits electrons that are accelerated (typically by 200 kV)
on their way to the specimen. A condenser system controls how the specimen is
illuminated. After passing through the electron–transparent specimen, an electron
optical system collects the electrons of interest and directs them onto the image
plane, where an intensity is generated. This is detected and converted to a gray-
scale image (micrograph) by means of a detector system. The beam electrons scatter
elastically and/or inelastically against the atoms in the specimen. This interaction
can generate a range of secondary signals whose analysis reveal different properties
of the specimen.

A modern TEM can be operated under different settings (imaging modes) to
image some of the aforementioned signals. Each imaging mode is determined by
(1) how the specimen is illuminated, (2) which electrons that are selected to take part
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Electron source/gun

Condenser system

Specimen (thin)

Objective lens
Projector lenses

Fig. 1 A modern TEM with its column exposed. The electron gun with the source is at the top.
Electrons travel downwards, passing through the condenser system before they scatter against the
specimen. Scattered electrons pass through the optics (objective and projector lenses) and form an
image at the bottom (image courtesy of FEI)

in the image formation and where they are registered, and (3) the type of detector. As
an example, dark-field mode uses only the deflected electrons for image formation,
whereas in bright-field mode only the undeflected electrons take part in the image
formation.

ET in life sciences is mostly based on conventional bright-field TEM imaging.
The specimen is here illuminated by a parallel beam of incident electrons (uniform
illumination mode), and transmitted electrons that pass through the aperture in the
back focal plane of the objective lens form an image in the image plane. The aperture
is centered (bright-field mode), so only electrons that scatter with very small angle
take part in the image formation.

TEM Imaging Modes
The specimen can be illuminated by focusing the electrons onto a spot (scanning
mode), which leads to Scanning Transmission Electron Microscope (STEM). Next,
the objective aperture can be placed as to block the direct beam of un-scattered
electrons, while one or more diffracted beams are allowed to pass (dark-field mode).
Finally, instead of registering the image in the image plane, it can be registered
in the back-focal plane of the objective lens (diffraction contrast mode), which
corresponds to imaging the diffraction pattern of the specimen.

http://www.fei.com
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A common mode is selected area electron diffraction that uses uniform illumina-
tion with diffraction contrast imaging, suitable for investigating spatial variation
of diffraction properties in a (crystalline) specimen. Convergent-beam electron
diffraction is the corresponding set-up based on scanning mode illumination.
Another mode is High-Angle Annular Dark-Field (HAADF) that uses scanning
mode illumination and micrographs are acquired in dark-field mode. The electrons
that take part in image formation are incoherent elastically scattered electrons,
so contrast depends strongly on the average atomic number of the scatterer
(“Z”-contrast). Finally we mention analytical TEM that uses energy resolving
detectors, Energy-Dispersive X-ray Spectroscopy (EDS) or Electron Energy Loss
Spectroscopy (EELS), combined with scanning mode for illumination. This allows
one to acquire a “chemical map” of the specimen. An EDS spectrometer does this
by measuring the X-rays emitted from the specimen, whereas an EELS spectrometer
measures those transmitted electrons that undergo a pre-specified energy loss.

The above modes are mostly used in material sciences and semiconductor
industry, even though there are usages in life sciences. The interested reader may
consult [63] and [7, chapter 3] for a more detailed account.

Sample Preparation

Samples to be imaged in an electron microscope generally require processing to
produce a suitable specimen. Sample preparation techniques depend on the sample,
the information one seeks to image, and the type of microscope. A mathematician
may safely ignore most issues related to sample preparation, but some aspects of
it that do have algorithmic implications. Before we discuss these (in paragraph
on p. 943), we provide a very brief overview of sample preparation.

Overview
In general, all sample preparation techniques include some kind of fixation that aims
at solidifying the specimen. This is needed because electron microscopy imaging
is performed under high vacuum conditions. Next, thinning might be required to
ensure that the specimen is thin enough so that electrons can pass through. Both
these steps are done while preserving as much as possible of the structural integrity
of the specimen. Finally, a user might choose to add substrates into the specimen in
order to increase contrast (contrast enhancement). A wide range of techniques are
now available, see [7, 8] for a comprehensive review.

In life sciences, the preferred fixation technique is by freezing (cryo-electron
microscopy) [148, section 3.1]. If the specimen is liquid, or thin enough (<10 �m),
then one can use plunge-freezing. Here the specimen is applied to a support and
then dropped into a cryogen (such as liquid ethane at less than �160 ıC) where
sufficiently fast cooling speeds are reached that prevent the formation of crystalline
ice. This solidifies the specimen with minimal artifacts. It is the preferred cryo-
fixation method for in vitro specimens, i.e., specimens that contain free particles
(proteins and macromolecular assemblies) in an aqueous solution. Samples that
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are too thick for plunge-freezing are treated with high-pressure freezing, which
combines rapid temperature decrease with the application of high pressure that
lowers the melting point of water. It allows vitrification of specimens up to 200 �m
in thickness.

Relevance to Mathematics
Let us first consider usage of contrast enhancement, like in negative staining. The
high atomic numbers for contrast agents improve the signal-to-noise properties
of the micrographs, so noise becomes less of a problem. On the other hand,
contrast agents have difficulties reaching the interior of the molecular assemblies,
so micrographs show outlines of the molecules rather than their internal structure.
Therefore, contrast enhancement is reserved for low- or medium-resolution TEM
imaging. In the context of ET, we can in the forward model often disregard phase
contrast (section “Forward Operator for Amplitude Contrast Only”). Next, since
focus is on determining the 3D shape of the sub-structures within the specimen,
rather than their internal structure, 3D reconstruction methods should preserve edge
information whereas smooth gray scale variations are of less interest. The impact
of local data (p. 974) can also be quite severe in this setting (section on p. 985), so
if possible, one should use reconstruction methods that are less sensitive to such
issues.

Cryo-fixated unstained specimens are on the other hand thin and weakly scatter-
ing. ET of High-Resolution TEM (HRTEM) imaging data from such specimens
must model phase contrast. Specimens that contain particles in aqueous buffer
(in vitro specimens) are fixated by plunge freezing. These are imaged using a very
low electron dose, so micrographs are very noisy and 3D reconstruction methods
must efficiently utilize whatever a priori information that is available, like regularity
or sparsity adapted to this setting. Impact from local data is on the other hand less
severe since most of the specimen is vitrified aqueous buffer.

Specimens that are derived from tissue (in situ specimens) typically result
in micrographs with much better signal-to-noise ratio (although not as good as
negatively stained specimens). The background will have significant structure, so
regularity assumptions, like sparsity, will have to be quite different from those used
for in vitro specimens. The impact from local data is also more severe as compared
to imaging data from in vitro specimens.

3 Basic Notation and Definitions

R and C denote the fields of real and complex numbers, RC and CC are positive
numbers (for complex numbers, this means positive real and imaginary parts), and
R
n denotes the n-dimensional vector space over R. Next, for x 2 R

3 we let x?
denote the hyperplane in R

3 that is orthogonal to x, i.e., x? WD fy 2 R
3 W x �y D

0g. S2 � R
3 is the 3D sphere, and for ! 2 S2 and p 2 R, we let p!C!? denote

the hyperplane of points x D p!C y where y 2 !?.
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Next, F and � denote the Fourier transform and convolution of functions defined
on R

n. Furthermore, given a function U WR3 ! C that decreases sufficiently fast at
infinity, say U 2 S .˝;C/, its ray transform P.U / (also called projection in the
ET community) is defined as

P.U /.!;x/ WD
Z 1

�1
U.x C s!/ ds for ! 2 S2 and x 2 !?. (1)

More precise mathematical conditions that are required for the existence of the ray
transform are stated in [122, section 3.5]. Finally, following [136, eqs. (2.29) and
(2.30)], for fixed ! 2 S2 we let F!? and ~!? denote the corresponding Fourier
transform and convolution on the (two-dimensional) hyperplane !?:

F!?ŒU � .�/ WD
Z
!?

U.x/e�ix � � dx for � 2 !?,

.U ~
!?

H/.x/ WD
Z
!?

U.x � y/H.y/ dy for x 2 !?.

4 The ForwardModel

This section gives an overview of TEM image formation models (forward models)
relevant for ET. It includes a short derivation of various models with discussions on
their validity and computational feasibility. Much of the material is therefore physics
related, so a reader primarily interested in image reconstruction could skip this part
and directly consult (57) (or section “Forward Operator for Combined Phase and
Amplitude Contrast” for a slightly more detailed summary).

Basic Assumptions
We only consider conventional bright-field TEM imaging of amorphous specimens,
since this is the prevalent imaging mode for ET in life sciences. The starting point
is to assume that the imaging electron and the specimen form a closed system, i.e.,
there is no interaction with the environment. Next, we also assume that successive
imaging electrons can be treated independently and any interaction between them
can be neglected (independent electron assumption). This holds under typical TEM
imaging conditions in ET where the mean separation between two successive
electrons is much larger than the specimen thickness and the length of the electron
wave packet [63, p. 85]. Hence, wave mechanical notions, like “interference,” refer
to the wave crests of an individual electron (i.e., self-interference).

Bearing in mind these two basic assumptions, an ideal model would be based
on solving the Schrödinger equation for the electron microscope (including the
specimen) as a whole. This is clearly unfeasible, so the first step is to separate
the problem into four parts: (1) illumination, (2) electron–specimen interaction,
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(3) optics, and (4) detection. A great number of approaches have been developed
for modeling each of the above parts.

Contrast Mechanisms
Models for TEM imaging fall into two categories depending on how image contrast
is related to electron–specimen interaction and optics.

Amplitude contrast models (section “Forward Operator for Amplitude Contrast
Only”) assume all contrast variations in a micrograph are due to the removal of
electrons from then beam (amplitude contrast). This is adequate at medium and low
resolution. At higher resolution, like in HRTEM where image features of interest
are smaller than the coherence length of the electron, one also needs to account for
the phase shift that an electron undergoes as it scatters against the specimen (phase
contrast). Combined phase and amplitude contrast models, that are briefly described
below, account for both the amplitude and phase contrast.

The starting point for the combined phase and amplitude contrast model is to
assume perfect coherent imaging where incident electron waves are monochromatic
plane waves (uniform coherent illumination) and electrons scatter only elastically.
This leads to a stationary scattering problem where the specimen remains in the
same quantum state with scattering properties fully described by its electrostatic
potential. The treatment of the electron is quantum mechanical. The electron–
specimen interaction is then modeled by the scalar Schrödinger equation and
the picture is completed by adding a description of the effects of the optics
and the detector of the TEM, both modeled as convolution operators. Inelastic
scattering and incoherent illumination introduce partial incoherence, so the basic
assumption of perfect coherent imaging must be relaxed. Inelastic scattering can be
accounted for within the coherent framework by introducing an imaginary part to
the scattering potential (absorption potential). Incoherence from the illumination is
usually accounted for by modifying the convolution kernel that models the optics.
Finally, linearizing the scattering model and the intensity yields an explicit linear
relation between the measured intensity and the scattering potential.

Illumination

This is where incident electrons are generated (source/gun) and controlled (con-
denser).

Basic Components
Commercially available TEMs either use a thermionic or a field-emission (electron)
source. The first produces electrons by heating the source, whereas the second
produces electrons by applying a large electric potential between an anode and the
source. The performance of the source is characterized by its brightness, temporal
coherency, energy spread, spatial coherency, and stability. The brightness (the
current density per unit solid angle of the source) is the most important parameter
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and it influences the resolution, contrast, and signal-to-noise capabilities of the
microscope. A source with smaller size gives higher brightness and better spatial
coherency, but is also less stable.

The source is incorporated into a gun that can control and focus the electrons.
According to the type of the source, we have either thermionic gun or field-emission
gun. The size of the first one is bigger, so it can illuminate large areas on the
specimen at relatively low image magnification (<50–100,000�) without losing
current density. The field emission gun has become the preferable electron source
for HRTEM imaging (for both uniform and scanning mode illumination) due to its
high brightness and small source size. More information can be found in standard
text books on electron microscopy, see, e.g., [80, sections 43–50].

After leaving the gun, the electrons pass through a condenser system that
typically consists of two condenser lenses and an aperture. This is the second most
important part of the TEM, the objective lens (section “Optics”) being the most
important, since it determines how the specimen is illuminated. One can illuminate
the specimen with a wide collimated parallel beam (uniform illumination) or with a
parallel narrow beam (scanning mode illumination).

Model for Illumination
Since we consider conventional TEM, micrographs are acquired using uniform
illumination mode. Furthermore, we will not directly model the source, gun, or
condenser. Instead, as a starting point, we assume that an incident electron leaving
the condenser is a monochromatic plane wave traveling along a fixed direction
! 2 S2 that is parallel to the TEM optical axis:

�.x; t/ D exp.�i tE=„/ exp.ikx �!/:

Here, E is the energy of the electron, „ is the reduced Planck constant, and k is the
wave number of the electron, so k D 2�=� where � is the wavelength.

In reality, however, the illumination is only partially coherent. The effective size
at the electron source is small but not point-like, and the energy spread is narrow
but still appreciable. A perfectly coherent source would require vanishingly small
source and negligible energy spread. The effects of such partial coherence is usually
modeled by a perturbation procedure and incorporated into the TEM optics PSF, as
outlined in paragraph on p. 961.

Electron–Specimen Interaction

This is the model for the scattering of an electron against the atoms in the specimen.
In the general setting, it is a fairly complex process involving a variety of phenomena
depending on the energy of the electron, the atomic composition of the specimen,
and the type of chemical bindings between the atoms in the specimen. An accurate
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and complete model for all electron scattering phenomena, that includes both
quantum and relativistic aspects, requires the theory of quantum electrodynamics.
A slightly less complete framework is based on the time-dependent multi-body
Schrödinger equation where one approximately accounts for relativistic effects.
Here, in the full model, the specimen is a quantum-mechanical many-body system
whose scattering properties are accounted for by the corresponding Hamiltonian.
This leads to a computationally unfeasible model, so we need further simplifica-
tions. One is to considering elastic scattering.

Elastic Scattering
Elastic scattering refers to the case when there is no (or negligible) transfer or
energy from the electron to the specimen. This allows us to treat the electron–
specimen interaction as a two-body problem where the specimen is described
by its electrostatic potential and the electron is represented by its wave function
� WR3 � R ! C, and the aforementioned multi-body Schrödinger equation for the
system simplifies to a one-body Schrödinger equation [146, section 1.5]:

i„@�
@t
.x; t/ D 1

2m

h
� i„r CeA.x/

i2
�.x; t/� eU.x/�.x; t/: (2)

In the above,m is the rest mass of the electron, e the absolute value of the elementary
charge, U WR3 ! R

3 is the electrostatic potential, and AWR3 ! R
3 is the magnetic

vector potential for the stationary electromagnetic field surrounding the system.

Stationary Model
Since the electrostatic potential U in (2) does not depend on time, it is sufficient to
consider standing wave solutions to (2):

�.x; t/ D exp.�i tE=„/ .x/: (3)

In the above,  WR3 ! C is the complex valued space dependent part of � ,
henceforth called the electron wave. Inserting (3) into (2), and canceling the
common factor exp.�i tE=„/ that appears throughout, results in a partial differ-
ential equation (4a) (stationary Schrödinger equation) for the electron wave  .
Furthermore, in TEM imaging the specimen is typically “slab-like,” meaning that
its extension along the TEM optical axis is much smaller than its extension in the
plane orthogonal to the optical axis. A natural model is therefore to assume U is
supported in an infinite slab ˝ � R

3 that is bounded by two parallel hyperplanes
,in and ,out.

To summarize, the electron–specimen interaction is modeled by the stationary
Schrödinger equation with a Dirichlet boundary condition on ,in given by the
incident electron wave and a boundary condition at infinity (Sommerfeld radiation
condition):



948 O. Öktem

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

E .x/ D 1

2m

h
� i„r CeA.x/

i2
 � eU.x/ .x/ for x 2 ˝ , (4a)

 .x/ D exp.ikx �!/ for x 2 ,in. (4b)

lim
r!1r

h
nr .x/ � r  sc.x/� ik sc.x/

i
D 0 for jxj D r . (4c)

Here,  sc in (4c) is the scattered part of  , i.e.,  .x/ D exp.ikx �!/C sc.x/ and
nr .x/ is the outwards normal at x to the sphere with radii r . Note also that ˝ is not
necessarily orthogonal to the TEM optical axis.

A further simplification is when scattering takes place in a “field-free” region,
i.e., curlA D B 
 0 in˝ . Due to the invariance under Gauge transformations, this
implies that A 
 0 in ˝ . Combined with E D „2k2=2m, transforms (4a) into an
equation of Helmholtz type:

�4Ck2
	
 .x/ D �2m

„2
eU.x/ .x/ for x 2 ˝ . (5)

The Scattering Operator
The scattering operator T sc

! maps a potential U to the electron wave on the
specimen exit plane ,out, i.e.,

T sc
! .U / WD  

ˇ̌
,out

where  solves (4a)–(4c). (6)

Uniqueness and Stability
The scattering operator in (6) is well defined only when (4a)–(4c) has a unique
solution. This follows from existence and uniqueness for the magnetic Schrödinger
equation (4a) in a half space [149, theorem 2.16].

Remark 1. Formally, the uniqueness result [149, theorem 2.16] is for the case when
! is orthogonal to ,out. The proof however extends directly to the case when  D
 0 on ,in where  0 2 L 2

c .H;C/.

Remark 2. Standard uniqueness results for the direct scattering problem, like in [36,
p. 16], assume˝ is bounded and Dirichlet condition is on all of the boundary of˝ .
In our scattering problem (4a)–(4c), ˝ is unbounded and we only have Dirichlet
conditions on a part of the boundary.

Another important aspect is stability for the direct scattering problem (4a)–(4c),
which together with uniqueness implies well-posedness. The author is unaware of
any stability results that are directly applicable to (4a)–(4c). On the other hand,
[87] provides analytical evidence of increasing stability of the Cauchy problem for
the Helmholtz equation (5) for increasing wavenumber k. Since TEM imaging is
associated with high wave numbers, it is reasonable to conjecture that (4a)–(4c) has
good stability properties.
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Relativistic Corrections
The Schrödinger equation (2) is valid only for non-relativistic electron motion. In
practice, this means kinetic energies should not exceed 10 keV. In TEM imaging,
electron energies are between 100 and 300 keV, so one must consider relativistic
wave equations.

A relativistically correct framework is offered by Dirac’s equation that accurately
models electron interaction and propagation in practically all electron optical
systems. The computational complexity associated with using Dirac’s equation has
however limited its usefulness. An alternative approach is to use relativistically
corrected quantities in (2) [146, section 1.9]. This is justified from a pragmatic point
of view if since these corrections provide a model that has a good agreement with
experimental results.

Remark 3. The Pauli approximation, which holds for TEM imaging in ET, allows
one to reduce Dirac’s equation to a scalar relativistic wave equation of the same
type as (2) [79, section 56.3]. This introduces relativistic corrections into (2) in a
way that has stronger theoretical justification.

Inelastic Scattering
Inelastic electron scattering is characterized by transfer of energy from the incident
electron to the specimen, causing the latter to change state. For many TEM imaging
modes, including conventional bright-field TEM imaging, inelastic scattering man-
ifests itself as a blurring superimposed onto the image generated by the elastically
scattered electrons [100]. Therefore, if possible, energy filters are used to remove
inelastically scattered electrons. This however does not completely resolve the issue
of inelastic scattering, since energy filtered micrographs have contributions from
inelastic scattering events associated with energy losses too small to be filtered (<1–
5 eV) [45].

The Absorption Potential
In a rigorous quantum mechanical model for inelastic electron scattering, the
quantum state of the specimen is changed. Formally, this requires a time-dependent
scattering model with a wave function and an interaction potential that depends
on all internal degrees of freedom of the system (specimen and electron). This
is clearly computationally unfeasible. An alternative approach, that is frequently
used for modeling TEM imaging of amorphous specimens at 100–300 keV, is to
approximately account for inelastic scattering within the framework offered by the
one-body Schrödinger equation (2).

The idea is to split the aforementioned interaction potential into two parts, one
time-dependent and the other time-independent [146, p. 3]. The time-independent
part is obtained by taking the time-average of the interaction potential and it models
elastic scattering, whereas the time-dependent part models inelastic scattering.
Inelastic scattering can now be accounted for using a first-order perturbation
analysis w.r.t. time as it tends to infinity. This gives rise to the appearance of
an additive imaginary part of the time-averaged potential (absorption (optical)
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potential) [146, p. 3], thus formally replacing the real valued function electrostatic
potential in (2) with a complex valued one, i.e., U D UreCiUim whereUreWR3 ! R

is the electrostatic potential and UimWR3 ! R is the aforementioned absorption
potential.

Interpretation of the Absorption Potential
The electrostatic potential Ure models the phase shift that an electron undergoes as
it scatters against the specimen (phase contrast), whereas the absorption potential
Uim models the decrease in the flux, due to inelastic scattering, of the non-scattered
and elastically scattered electrons (see [146, p. 5 and section 1.10] for a definition of
the notion of flux in wave mechanics). Hence, the absorption potential accounts for
amplitude contrast due to inelastic scattering. A more detailed quantum mechanical
interpretation of the absorption potential is provided in [128][146, section 1.8 and
chapter 13] [176, section 5.9].

Now, any computational treatment of TEM imaging data where phase contrast
is important, like HRTEM data, has to address the phase problem (section “Phase
Retrieval”). In many applications, like for ET in life sciences, the specimen is
viewed only once from a fixed direction. Resolving the phase problem in such cases
requires one to utilize further knowledge about the complex valued potential U .
Now, in the context of TEM imaging in life sciences, we argue below that Ure and
Uim can be considered approximately proportional. This is enough for resolving the
phase problem in the context of ET.

Most inelastic scattering events in conventional bright-field TEM imaging are
either due to plasmon excitation or atomic inner-shell ionization (atom core losses),
where the former is considered more dominant. Next, inelastic scattering events are
more frequent for scattering against light atoms, they are almost always incoherent
and associated with low scattering angles, and their likelihood increases with
specimen thickness. To summarize, plasmon excitation from light atoms constitute
the main contribution to the inelastic scattering that damps the interpretable phase
contrast signal. For TEM imaging of amorphous biological specimens, the light
atoms mostly make up the background, which for cryo-fixated specimens would
be the embedding medium, i.e., the main contribution to inelastic scattering comes
from the vitrified aqueous buffer. Now, the imaginary part of the potential associated
with plasmon excitation for an amorphous embedding medium, like vitreous ice, is
expressible by the inelastic mean free path+inel:

Uim D 1

2
+inel
where 
 WD me

k„2
.

This forms the basis for a common assumption in ET, namely that the real and
imaginary parts Ure and Uim of U in (2) are proportional to the path length of the
electron through the specimen. Stated more precisely, there is a functionQWS2 ! R

such that

P.Uim/.!;x/ 	 Q.!/P.Ure/.!;x/ for x 2 !? and ! 2 S2. (7)
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Here, P is the ray transform in (1) and ! is the direction of the incident electron. A
common further simplification is to let Q be a constant (amplitude contrast ratio),
which then can be estimated from data (section on p. 985).

Remark 4. Assumptions of the type in (7) that relate the real and imaginary parts
of U are known as the “Pagnini approach” in X-ray phase contrast tomography
community [139].

More Accurate Quantum Mechanical Models
A fundamental difference between modeling inelastic, as opposed to elastic,
scattering is that the former requires knowledge of the local scattering and excitation
properties of the specimen. The scattering properties of the specimen are no longer
fully described by a single real-valued function (the electrostatic potential). In
general one would need to specify the elements of the transition matrix that encode
the probability that a specimen undergoes a specific transition from one excited state
to another. This situation can be somewhat simplified, under certain conditions it is,
e.g., possible to express the inelastic cross section without explicit knowledge of
these excited states [79, section 68.6]. It is also clear that a computationally feasible
approach cannot be based on migrating a wave function that depends on the spatial
location of all subatomic particles in the specimen.

A theoretically stringent, yet computationally feasible, framework is based
on migrating the mutual coherence function instead of the wave function, the
former being the least amount of information needed to describe interference. The
scattering properties of the specimen are then modeled by the mixed dynamic
form factor that accounts for the interference in Fourier space of different scattered
partial electron waves by their mutual coherence [160]. Approaches based on this
framework are, e.g., described in [107, 129, 183]. Unfortunately, these approaches
are still computationally unfeasible in the setting when the specimen is amorphous
and/or thicker than a few atomic layers, thus limiting their usefulness in ET in life
sciences.

Importance of Inelastic Scattering
The absorption potential model outlined above is adequate for modeling most
conventional bright-field HRTEM imaging problems with amorphous specimens.
Combined with (7) and geometric optics approximations (section on p. 954), one
gets a computationally feasible model for the electron–specimen interaction in the
context of ET.

The validity of this image formation model is less clear for TEM imaging of
specimens in material sciences. As an example, the absorption potential approach
is not sufficiently accurate when imaging crystalline specimens in diffraction mode
and most of [146, chapters 1 and 7–8] is devoted to presenting various models that
are more accurate. Another situation that requires more accurate models of inelastic
scattering is when specimens are imaged using lower voltages. The motivation is
from material sciences where thin crystalline specimens undergo radiation damage
when imaged using acceleration voltages beyond 100 kV. For low accelerating
voltages (�20 kV), most specimens act as strong scatterers. This requires accurate
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modeling of inelastic scattering, especially when atoms are light as in biological
specimens. In this context, models based on the mutual coherence function are the
most promising [107].

Properties of the Scattering Potential
Let X denote the set of complex valued functions on R

3 that can serve as a potential
U WR3 ! C in (2). Elements in X have to posses certain regularity, both from a
mathematical and a physics point-of-view. One such regularity property motivated
from the physics is that U fulfills the Rollnick condition, which is the case when

X � L 1.˝;C/
\

L 2.˝;C/:

The Rollnick condition guarantees that the corresponding Hamiltonian is self-
adjoint and one has asymptotic completeness. The latter means that no matter how
the wave-packet is made, particles go far apart from each other when time becomes
large, so the probability of finding them together in an arbitrary finite region of space
goes to zero. This allows one to go from the time-dependent Schrödinger description
to the time-independent description characterized by solutions of type (3) [31,
p. 133]. See also [195] for the other regularity properties associated with physics.

Next, we claim that U WR3 ! CC whenever U 2 X . The positivity of the
imaginary part follows from the observation that once there is an inelastic scattering
event, that partial wave can never be considered as un-scattered or inelastically
scattered (for that it would have to gain energy from the specimen). Next, the real
part is the electrostatic potential that, at sub-atomic scale, might actually change
sign. It is made up of two contributions, one “atomic” given by the superposition
of atomic potentials as if each atom was in isolation, and one from the charge
redistribution due to the solvent, ions, and molecular interactions. In the context
of ET, the isolated atom superposition approximation allows one to account for
the latter contributions within the “atomic” contributions. Hence, the specimen can
be seen as consisting of isolated neutral atoms, each modeled as a point charge
representing the nuclei surrounded by a spherical shell. The sphere represents the
screening imposed by the shell electrons, so the electrostatic potential from the
electrons cancels the one from the nucleus outside the sphere (the atom is neutral).
Since the radius of the sphere is much larger than the radius of the nucleus (which
here is a point charge), the electrostatic potential from the nucleus must dominate
the electrostatic potential from the shell electrons within the sphere. Hence, the
electrostatic potential is non-negative everywhere.

As a final note, one can put further regularity on elements in X , e.g., X �
S .˝;C/ (rapidly decreasing) and/or X � BV .˝;C/ (bounded variation).



Mathematics of Electron Tomography 953

Computationally Feasibility

The Multi-scale Nature of Electron Scattering
Calculating the scattered electron wave, i.e., numerically solving (4a)–(4c), is a
multi-scale problem. To see this, we compare the wavelength � of the electron to the
(1) size of the region of interest, (2) the variation of the electrostatic potential, and
(3) size of pixels where the intensity is formed. TEM imaging typically operates
with energies between 200 and 300 kV resulting in electrons with a wavelength
between 0.0025 and 0:0020 nm. In the example below, we consider the case of
200 kV TEM imaging, so � 	 0:0025 nm.

Size of region: When imaging biological specimens, a typical region of interest
˝0 � ˝ is a rectangular box where the smallest side is the slab thickness,
which typically is �50 nm. For simplicity, let ˝0 be a cube with a side length
of 50 nm 	 20;000�. A straightforward numerical discretization of (4a) would
require about ten points per wavelength (in theory, two points per wavelength
is enough but with limited precision arithmetic, one needs 10–20 points per
wavelength to reliably solve Helmholtz type of wave equations using a finite
element method [121]). In this case we would have to sample .10 � 25;000/3 	
1:6 � 1016 points. Even in single precision (four bytes per value), this would
require 58;200 Tbytes of memory!

Contrast: To compare the variation of the electrostatic potential U against the
wavelength �, we introduce

C WD �2 me

2�2„2
max
x2˝0

ˇ̌
ˇU.x/

ˇ̌
ˇ:

For water U.x/ 	 4:9 V so C 	 1:26 � 10�5, for proteins 30 V � U.x/ �
70 V, so C 	 1:8 � 10�4, and for single colloidal gold particles (typically
embedded in biological specimens as fiducial markers) U.x/ 	 280 V so
C 	 7:2 � 10�4.

Size of pixels: If we image at 65;000� magnification (a rather common setting for
imaging subcellular structures in biology), the effective pixels size of a typical
TEM detector becomes 0:23 nm 	 115 �. Hence, the intensity (square norm
of the scattered wave that is a solution to (4a)–(4c)) will be averaged over 2D
squares with a side length of 115 �.

In summary, the multi-scale nature of numerically solving (4a)–(4c) requires one to
consider various approximations.
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Geometrical Optics Approximation
Geometrical optics is an approximate treatment of wave propagation where the
wavelength is considered to be infinitesimally small (semi-classical approximation).
The idea is to represent the highly oscillating solution as a product of a slowly
varying amplitude function and an exponential function of a slowly varying phase
multiplied by a large parameter.

The starting point is the Wentzel–Kramers–Brillouin (WKB) approximation
for the stationary Schrödinger equation (4a). For a first order approximation, this
method seeks an asymptotic solution of the form

 .x/ D a.x/ exp
�
iS.x/=„	CO.„/ (8)

where the amplitude a and the phase S are smooth real-valued functions indepen-
dent of „. Substituting (8) into the stationary Schrödinger equation (4a), equating the
real and imaginary parts, canceling the common phase factor exp.iS.x; t/=„/ that
appears throughout, and ignoring „2-order terms (first order WKB approximation)
give us

ˇ̌r S.x/C eA.x/ˇ̌2 D 2meU.x/C 2mE (9)

div
h
a. � /2�r S. � /C eA. � /	i.x/ D 0: (10)

Thus, within the first order WKB approximation, (4a) is solved by (8) in which the
phase function S solves (9) (an eikonal equation of Hamilton–Jacobi type), and the
amplitude term a solves (10) (transport equation).

The eikonal equation (9) can be solved by the ray tracing method [147],
which in turn is based on the method of characteristics. In brief, one introduces
a family of curves (rays) s 7! �.s/ which are perpendicular to the level curves
(wavefronts) of S . These rays define a new coordinate system where the eikonal
equation reduces to a far simpler, linear, ordinary differential equation. This ordinary
differential equation for the phase S can be solved simply by integrating along the
aforementioned ray, leading to

S
�
�.t/

	 D S��.0/	C
Z t

0
H
�
�.s/

	 � e P�.s/ �A��.s/	 ds: (11)

In the above,H WR3 ! R is given by H.x/ WD p
2meU.x/C 2mE and the ray �

is given by the Lorentz equation:

d

ds

�
H
�
�.s/

	 P�.s/
�
D rH ��.s/	C eB��.s/	 � P�.s/ (12)

where B D curlA is the magnetic field [79, eq. (57.11)]. Finally, combining (11)
with (8) and (6) gives us
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T sc
! .U /.x/ 	  0.x/ exp

�
i

„
Z t

0
H
�
�.s/

	 �p2mE ds

�
(13)

with  0 denoting the incident un-scattered electron wave.

Validity of the WKB Approximation
In our specific setting, the first order WKB approximation is valid if

ˇ̌
ˇ4 a.x/
a.x/

ˇ̌
ˇ� 1

�2
: (14)

For TEM imaging, the above is valid for electron motion in macroscopic fields,
far from their singularities. The situation for scattering in microscopic fields is less
obvious. One issue is that the eikonal equation (9) can become singular (caustic
formation) at points where rays intersect and the amplitude blows up. There could
also be several ray trajectories joining the two points, even though this particular
issue can be handled within the semiclassical limit, see, e.g., [89, theorem 1.2].

Remark 5. The expression in (13) only makes use of the first order WKB approx-
imation. The correct semiclassical limit to (4a) contains several phases, so the
asymptotic solution is a sum of functions of the form (8).

Remark 6. Gaussian beams is another high frequency asymptotic model that is
closely related to geometrical optics. Here the phase is complex-valued, so there
is no breakdown at caustics. The solution is still assumed to be of the form (8), but
it is concentrated near a single ray of geometrical optics, see [113, 167] for further
details. See also [142] for a closely related approach.

The Small Angle, Projection, andWeak Phase Object Approximations
The following approximations all aim to further simplify (13). These approxima-
tions apply in particular to TEM imaging of weakly scattering specimens, such as
unstained biological specimens.

The Small Angle Approximation
If
ˇ̌
eU.x/

ˇ̌� E , which typically holds for TEM imaging in life sciences, then

1

„H.x/�
p

2mE D 1

„
p

2meU.x/C 2mE �p2mE 	 m

„2k2
eU.x/:

Hence, introducing 
 WD me=k„2, (13) becomes

T sc
! .U /.x/ 	  0.x/ exp

�
i


Z t

0
U
�
�.s/

	
ds

�
for x D �.t/ 2 ,out. (15)

This approximation is usually referred to as the small angle approximation.
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The Projection Approximation
Assume ˝ is thin enough that we can disregard the curvature of the electron
trajectories, i.e., the un-scattered electrons travel along straight lines parallel to the
direction ! of the incident plane wave  0. Assuming x C t! 2 ,out, the above
considerations combined with (15) result in

T sc
! .U /.xCt!/ 	  0.xCt!/ exp

�
i


Z t

0
U.xCs!/ ds

�
for x 2 ,in. (16)

Furthermore, one frequently replaces  0.x C t!/ with  0.x/, which is perfectly
fine when  0 is a plane wave traveling along ! (the difference is then merely a
constant pure phase factor). This is the projection assumption [78].

Weak Phase Object Approximation
The weak phase object approximation is simply based on linearizing the exponential
in (16), i.e.,

T sc
! .U /.xC t!/ 	  0.xC t!/

�
1C i


Z t

0
U.xC s!/ ds

�
for x 2 ,in. (17)

Other Approaches
A variety of approaches have been developed for simulating electron scattering in a
TEM. Most of them, like the Bloch wave method, are only of interest for modeling
TEM imaging in diffraction mode which is important in electron crystallography
and in some material sciences applications. There are however approaches that
are also applicable for computational treatment of conventional bright-field TEM
imaging of amorphous specimens.

First Order Born Approximation
The starting point is to reformulate (4a) as an integral equation (Lippmann–
Schwinger equation). The latter can be solved by means of an iterative procedure,
and the first step in that procedure yields the first order Born approximation. This
results in an affine model for T sc

! , the details are given in [51, section 4.3]. Related
approximations of T sc

! are the paraboloid approximation [90] and the thick-phase
grating approximation [189].

Multi-Slice Method
Here one assumes that  .x/ D �.x/ exp.ikx �!/ where � is the slowly varying
part whose sampling in real space may be spaced many wavelengths apart. Inserting
into (4a) and making use of the Lippmann–Schwinger formulation result in an
equation for the slowly varying part �. The differential operators in this equation
can now be separated into operators along ! and operators acting in !?. Ignoring
back-scattering yields a recursive scheme for calculating T sc

! on ,out, see [146,
section 3.4].
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DistortedWave Born Approximation
The idea here is to express the potential as a sum of two terms,U D U0C4U where
U0 is not necessarily small and4U is sufficiently small that only linear terms in the
expression for the scattered electron wave need to be retained. This expression for
U is inserted into the Lippmann–Schwinger formulation of (4a), thereby giving rise
to a series expansion [146, eq. (7.8)] where one can collect terms in 4U and U0.
Retaining a first order correction for U0 results in the approximate description of the
scattered electron wave, see [146, section 7.2] for details.

Optics

After interacting with the specimen, electrons pass through the TEM optics as they
migrate from the specimen exit plane ,out to the image plane ,imag (note that the
former is not necessarily orthogonal to the optical axis whereas the latter always is).
An obvious role of the optics is to magnify the image. Another equally important,
but more subtle, role is related to phase contrast. The optics is necessary to make
phase contrast visible, which is important for HRTEM imaging. Phase contrast
would be lost if one would measure intensity data directly on ,out.

Remark 7. There are situations when one can, at least approximately, reconstruct
the electron wave function from measured image intensity. Some of these techniques
involve unconventional imaging modes, of which the most successful is off-axis
holography using an electron biprism, see [79, section 63.2].

Thus, any forward model that seeks to account for phase contrast must model the
TEM optics. This is especially important for imaging weakly scattering specimens,
like unstained thin biological specimens.

Here we only state the model for the TEM optics and refer to [51, section 5]
for its derivation. See also [80, 161, 162] and [79, sections 64–66] for a thorough
description of models for various electron optical elements.

The General Setting
The optics of the TEM is the portion between the specimen exit plane ,out and the
image plane ,imag (Fig. 2). Here there is no specimen, but there are strong magnetic
fields that can deflect the electron beam in a desirable manner. Disregarding
polarization and the precession imposed by the electron spin (which does not
appreciably affect the motion of the electron), the TEM optics is fully characterized
by a specification of apertures and the magnetic vector potential that corresponds to
the aforementioned magnetic fields.

We define the optics operator as the mapping that associates an electron wave
in ,out to the corresponding wave in ,imag. In the general setting, it is the solution
to (4a) with U 
 0 (no specimen) and appropriate boundary conditions:



958 O. Öktem

ω

Γin

Γout

Ω

Ω0

Γobj Γlens Γfocal Γimag
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Fig. 2 The optical set-up (˝ and ˝0 are in reality much smaller) for a single thin lens with an
aperture in the focal plane (section on p. 960). The case for lens-less imaging (section on p. 960) is
obtained by removing the lens and its aperture. The incident electron wave  in (plane wave from
left traveling along the optical axis !) scatters against the atoms in the specimen characterized by
U W˝ ! C (scattering potential) with support in a slab˝ (light-gray region). The subset ˝0 � ˝

(dark-gray region) is the region of interest. The operator T sc
! .U / in (6) maps  in on ,in to  sc on

,out. The operator T op in (19) maps an electron wave on the object plane ,obj onto an electron
wave on the image plane ,imag. Finally, T tiltcorr defined on paragraph on p. 961 maps the electron
wave on the specimen exit plane ,out onto the wave on the object plane ,obj

8̂
ˆ̂̂<
ˆ̂̂̂
:

E D 1

2m

h
� i„r CeA

i2
 on R

3 n˝ ,

 D  sp on ,out,

 fulfls (4c).

(18)

Since ,imag WD !? C p!, the optics operator is given as

T op. sp/.x/ D  .x C p!/ for x 2 !? and  solves (18). (19)

The magnetic vector potentialA in (18) is given by the magnetic fields generated by
the optical system and the electron wave  sp on ,out is the scattered electron wave
leaving the specimen.

Ray Optics
Many electron optical elements, including electron lenses, are modeled by con-
sidering geometric optics approximation of (18) where the electron is a point-like
charged mass whose motion is governed by the laws of classical mechanics [162,
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chapter 1] and [79, p. 1262]. The relation between the wave mechanical and
classical formulations can in fact be seen directly from (12). This shows that the
eikonal curve derived within the WKB approximation coincides with the classical
electron trajectory, so the fundamental laws of geometrical electron optics are
an approximate consequence of wave mechanics based on the first order WKB
approximation. In conclusion, electron lenses and their aberrations are adequately
modeled using geometrical charged-particle optics. Modeling diffraction by an
aperture (which is an opaque screen with a suitable opening) needs however to
be based on wave mechanics.

Remark 8. A theory of electron optics that does not make use of geometric optics
approximation becomes quite complicated, see, e.g., [79, sections 59.4–59.6] [111].
Furthermore, there are many other elements of the TEM that we do not model,
notably alignment coils, stigmators, and phase plates. Stigmators are used to correct
for the unavoidable third-order (and possibly higher) spherical aberration of the
objective lens [80, chapter 41].

The Optical Set-Up
The most important component of the optics is the objective lens, which provides
the first stage of magnification (about 20–50 times). It is followed by a number of
projector lenses that provide further magnification. Apertures are present at several
places, e.g., in the back-focal plane of the objective lens (Fig. 1).

To model phase contrast imaging in ET, it turns out that one can model the entire
TEM optical system as a single thin lens with an aperture in its focal plane as
illustrated in Fig. 2 (see Remark 9 for an motivation). Within this setting, except
for the specimen exit plane ,out, all the other planes are parallel to each other and
orthogonal to the optical axis, i.e., orthogonal to !. Since the magnification of the
single thin lens corresponds to the magnification M of the entire optical system
(objective and projector lenses taken together), we get

M D p=q and 1=f D 1=p C 1=q: (20)

Here, f is the focal length of the lens, and q; p > 0 are the distances from the lens
to the objective and images planes ,obj and ,imag, respectively. This set-up does not
correspond to a physical optical system, so one needs to set values for f , p, and q
(section “Illumination and Optics Parameters”).

Remark 9. The nontrivial part in replacing the TEM optical system with a the
system in Fig. 2 is to argue that the thin lens in Fig. 2 has the same aberration
properties as the objective lens. The motivation for this is as follows: Due to the
initial magnification by the objective lens, the angular range of electron beams
impinging upon the first image plane is very small relative to the angular range
of electron beams entering the object lens from the specimen. Since aberrations are
worse at high angles than at low angles, the lens that is most affected by aberrations
will be the objective lens as it has to deal with largest range of angles in the whole
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microscope. The lenses below the objective lens (projector lenses) also magnify, and
as the magnification increases, the range of angles that each subsequent lens must
deal with is reduced. The first lens of the projector system (sometimes called the
“intermediate” or “diffraction” lens) matters a little bit, but one can forget about all
the other lenses. Even though they provide a huge amount of magnification, they
have virtually no influence on the final image resolution.

Lens-Less Imaging
This is the simplest model where the optics is replaced by free space propagation
corresponding to the distance between the parallel object and image planes. Thus,
one ignores any magnetic fields (so A 
 0, see text preceding (5)), apertures, and
the effect of specimen tilt (see paragraph on p. 961). Despite its simplicity, this
model is much better than simply assuming the intensity is taken directly at the
specimen exit plane. The reason is that free-space propagation gives time for the
phase shift induced by the specimen to develop into visible contrast, thereby partly
addressing the phase problem.

Stated mathematically, free-space propagation is given as the solution to (18)
with A 
 0 and ,out replaced by ,obj. The resulting equation can be solved
under the Fresnel approximation and the solution is expressible in terms of a 2D
convolution in the object plane:

T op. sp/.x/ 	 exp
�
ik.p � q/	T fsp

p�q
�
 sp.q!C � /

	
.x/ for x 2 !?, (21)

where, for d > 0,

8̂
ˆ̂<
ˆ̂̂:

T fsp
d .�/.x/ WD k

2�id

n
PSFfsp

d ~
!?

�
o
.x/ (22a)

PSFfsp
d .x/ WD exp

�
i
k

2d

ˇ̌
x
ˇ̌2�
: (22b)

Single Thin Lens with an Aperture
Here we consider the setup in Fig. 2. The optics operator can then be modeled by a
suitable combination of free-space propagation (22a), a model for a thin lens, and a
model for diffraction by an aperture.

For simplicity let us disregard the correction for the specimen tilt (section “Model
Refinements”). After some lengthy manipulation, shown in [51], one arrives at the
following explicit expression for the optics operator:

T op. sp/.x/ 	 ˚.x/

.2�/2M

n
PSFop ~

!?

 sp.q!C � /
o� x
M

�
for x 2 !?. (23)

Here, M D .p � f /=f denotes the magnification, ˚ is a pure phase factor (soˇ̌
˚.x/

ˇ̌ D 1) whose precise expression is given in [51, eq. (21)], and
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PSFop.x/ WD F!?

�
A˙

�f
k
� C f !

�
exp

�
iW

�j � j2	�
�
.x/ for x 2 !?. (24)

The Fourier transform of PSFop, which by above has a closed form expression, is
usually called the Contrast Transfer Function (CTF). The function A˙ W!? ! R

is the characteristic function for the aperture ˙ � ,focal (pupil function) and
W WS2�R! R encodes the phase shift associated with imperfections on the optics
(e.g., defocus, aberrations). The latter has an explicit expression [79, eq. (65.29)],
which in the context of ET can be significantly simplified since terms accounting
for astigmatism and higher order aberrations can be ignored [79, eq. (65.30)]:

W.t/ WD � 1

4k
t
�Cs
k2
t � 24z

�
for t 2 R. (25)

The constant Cs is the third-order spherical aberration of the lens and 4z is the
defocus (the deviation from the focal length and error in the positioning of the
specimen plane).

Remark 10. The convolution with the optics PSF in (24) is actually taken against
 
� � q! � � /. The minus sign in the argument of  comes from the fact that a

single thin lens reverses the image. The actual optics consists of several lenses and
microscope manufacturers do compensate for such effects, so we may disregard
these minus signs.

Model Refinements

Specimen Tilt
When the specimen is tilted, i.e., when the slab ˝ is not orthogonal to the optical
axis, then one needs to migrate the electron wave from the specimen exit plane ,out

to the object plane ,obj. We define T tiltcorr as the operator that maps an electron
wave on the specimen exit plane to the corresponding electron wave on ,obj. Since
,out and ,obj are not parallel, this amounts to a free-space propagation between two
non-parallel planes.

Free-space propagation between non-parallel planes has been worked out for
electromagnetic waves in [6, 125], but the methods are also applicable to TEM
imaging. Approaches in TEM imaging are based on modifying the point spread
function for the lens operator (“tilted CTF”), see, e.g., [78, section 3.3] and
[184, 185].

Partially Incoherent Illumination
For perfect coherent illumination, the incident electron beam should have no energy
spread (perfect temporal coherence) and electrons are emitted from a vanishingly
small source (perfect spatial coherence). In practice, energy spread may reach a
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few eV depending on the type of electron source and the finite source size spreads
the directions of arrival of the incident electrons at the specimen input plane
,in.

The standard approach for accounting these effects is to represent each of them
by a damping in the Fourier space of the optics PSF. The details are given [79,
sections 66.2–66.3], below we simply state the resulting modified optics PSF that
replaces the one in (24):

PSFop.x/ WD F!?

�
A˙

�f
k
� C f !

�
exp

�
iW

�j � j2	�Espr

�
j � j2

�
Esize

�
j � j2

��
.x/:

The functionsEspr and Esize are the envelope functions that accounts for the energy
spread and the extension of the source, respectively:

Espr.t/ WD exp
�
� �2

4f 4
�2
mC

0
c

2
t2
�

Esize.t/ WD exp

�
� 1

4

k2

f 2
˛2
c t
�Cs
f 2
t �4z

�2
�
:

In the above, �m denotes the mean energy spread,

C 0
c WD

1C 2�Uacc

Uacc.1C �Uacc/
Cc where � WD e

2mc2

with Uacc denoting the acceleration voltage of the source, Cc is the chromatic
aberration of the objective lens, and ˛c is the aperture angle of the beam furnished
by the condenser.

Detection

Intensity Generated by a Single Electron
As the electron wave  reaches the image plane ,imag D !?Cp! (Fig. 2), it forms
an intensity distribution, a process that is encoded by the intensity operator:

I. /.x/ WD ˇ̌ .x C p!/ˇ̌2 for x 2 !?. (26)

If the scattered part is a small perturbation 4 to the incident wave  0, then it is
natural to linearize the intensity:

I. 0 C4 /.x/ 	
ˇ̌
 0.x C p!/

ˇ̌2 C  0.x C p!/4 .x C p!
C  0.x C p!/4 .x C p!/: (27)
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The Total Intensity and Its Detector Response
The micrograph is given by the intensity generated from all electrons reaching
the image plane. In an ideal detection system, this would model the image in the
micrograph, but all detection systems introduce noise and distortions which we now
model.

First, one can treat each electron independently (independent electron assump-
tion, see Sect. 4). Next, the models for the distribution of intensity and detector
response are identical for each electron. Hence, in the absence of stochasticity, the
micrograph is simply given by the detector response distribution for a single electron
scaled by a factor corresponding to the number of electrons.

Detectors Types
Charged Coupled Device (CCD) cameras, or more precisely detectors based on
slow-scan CCD sensors, have become the detection technique of choice in ET, so
here we consider the modeling of such detectors.

Detection of electrons by a slow-scan CCD sensor can be divided into three
separate stages [197]: (1) the conversion of incident electrons into photons in the
scintillator (material that converts high-energy radiation like X-rays/electrons into
visible light), (2) transport of photons from the scintillator to the CCD array (via
fiber-optic or lens coupling), and (3) conversion of photons into electrons and
the readout of the resulting digital signal. Each of these steps can be modeled at
different levels of accuracy. The model outlined below is accurate enough for most
computational treatments of micrographs.

Remark 11. It may seem strange to first convert an incident electron to photons,
which are then converted back to an electric signal (electrons). The problem with
using incident electrons directly to generate electron–hole pairs at the CCD is that
they are too energetic, so they saturate the CCD, see, e.g., [146, p. 389]. In this
context, it is worth mentioning the new generation detectors that directly detect
the electron without an intermediate conversion to photons, and therefore posses
significantly better sensitivity and noise properties [55].

Detector Response Distribution for a Single Electron
Consider a slow-scan CCD sensor placed at the image plane ,imag, so the scintillator
entrance surface of the detector is ,imag. The single electron intensity distribution,
which is the intensity distribution generated by a single electron at the scintillator
entrance surface, is now given by

I.x/ WD I. /.x/ for x 2 !?. (28)

The corresponding detector response distribution at the plane adjacent to the
CCD, which models for the detector response per unit area (given as ADU per unit
area) to a single electron in the absence of stochasticity, can then be modeled as
[146, p. 391]
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x 7! Cgain.x/
˚
I ~
!?

PSFdet


.x/C Ib.x/ for x 2 !?. (29)

Here, Cgain is the overall gain that measures the average number of digital counts
that a single incident electron gives rise to, Ib is the distribution of the background
signal, and PSFdet is the detector response function that models the spreading of
the signal generated by a single incident electron within the scintillator and fiber-
optic/lens coupling. All these components can be determined from specifications
of the detector and/or estimated from specific calibration measurements (section on
p. 982).

Total Detector Response Distribution
Let N0 denote the image dose, which is defined as the average number of incident
electrons per unit area at ,imag used when the micrograph is acquired. Then, (29)
combined with the independent electron assumption allows us to model the total
detector response distribution in the absence of stochasticity as

C.x/ WD N0Cgain.x/
˚
I ~
!?

PSFdet


.x/CN0Ib.x/ for x 2 !?. (30)

Characteristics of the Noise
To model the detector response for a pixel in the micrograph, we need to integrate
the total detector response distribution in (30) over the pixel and model the
stochasticity.

Shot Noise
The emission of electrons at the source (section “Illumination”) is a stochastic
process. This gives rise to shot noise whose influence is most severe in low-dose
micrographs, such as in ET when one records multiple micrographs of biological
cryo-specimens.

Shot noise is not Gaussian but depends on the signal level. It originates from
the fact that emission of electrons is a Poisson process, so the actual image dose is a
Poisson distributed random variable with mean equal to the nominal image doseN0.
To model shot noise, consider first the single electron intensity distribution I in (28).
Each point x 2 !? gives rise to an intensity distribution at the plane adjacent to the
CCD:

y 7! Cgain.x/I.x/ PSFdet.x � y/C Ib.x/ for y 2 !?.

Now, consider a micrograph acquired using a image dose ofN0 and let C.4/ denote
the corresponding detector response from a (measurable) set 4 � !?. Due to the
Poisson stochasticity of the total dose, it is given by

C.4/ D
Z

4

Z
!?

Cgain.x/I.x/ PSFdet.x � y/C Ib.x/ dN.x/ dy; (31)



Mathematics of Electron Tomography 965

where N is a Poisson random measure (see [34, chapter VI]) with mean given by
N0 dx, i.e.,

N.4/ � Poisson

�
N0

Z
4

1 dx

�
: (32)

Remark 12. The expression in (31) models the noise in a continuum setting. The
reason for insisting on a continuum model is that there is no natural pixelization
of the image plane (scintillator entrance plane), which is where the Poisson
stochasticity is realized since the electrons generate intensities in that plane. Similar
models for Poisson distributed data when data sampling is in continuum are given
in [83, 84].

Pixelization and Read-Out Noise
Besides the shot noise, there is additive and multiplicative noise. Both are related to
a CCD pixel, so we next consider the pixelization in the CCD.

A pixelization in the CCD corresponds to a finite tessellation f4j gj of the
bounded subregion of !? that constitutes the CCD detector. The subsets4j repre-
sent pixels and are typically given as square regions centered around some suitably
chosen point xj (often the midpoint). Disregarding multiplicative stochasticity,
measured data from a single pixel can be modeled as a sample of the stochastic
variable

Cdata.j / WD C.4j /C E.j / for j D 1; : : : ; ndet. (33)

In the above, C is given by (31) and E.j / � Normal.�j ; 
j / is a Gaussian random
variable with mean �j and variance 
j that models additive read-out noise, and ndet

is the total number of pixels. The corresponding stochastic model for a micrograph
is the stochastic ndet-vector

Cdata WD �Cdata.1/; : : : ;Cdata.ndet/
	
: (34)

Probability Distribution of Image Data
It is quite difficult to derive a closed form expression for the probability distribution
of Cdata whose samples represent micrographs. One can however derive closed-form
expressions for the expected value and covariance:

E
h
Cdata.j /

i
D N0

Z
4j

h
Cgain.x/

˚
I ~
!?

PSFdet 
.x/CN0Ib.x/
i

dx C �j

Cov
h
Cdata.j /;Cdata.l/

i
D N0

Z
4j

Z
4l

Z
!?

h
Cgain.x/Cgain.y/

PSFdet.x � y/ PSFdet.z � y/I.y/
i

dy dz dx C Cov
h
E.j /;E.l/

i
: (35)
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TheMeasured Image Data
The detector operator T det maps a single electron intensity distribution to the
expected detector response distribution, so it is defined through the relation

E
h
Cdata.j /

i
D
Z

4j

T det.I /.x/ dx C �j (36)

where I is the aforementioned single electron intensity distribution. From (35) we
get

T det.I /.x/ D N0Cgain.x/
˚
I ~
!?

PSFdet


.x/CN0Ib.x/ for x 2 !?, (37)

so, T det.I / equals (30), the total detector response distribution in the absence of
stochasticity.

A common approximation is to replace the integration over 4j in (36) with a
point-evaluation at a suitable point:

E
h
Cdata.j /

i
	 j4j j

˚
T det.I / ~

!?

PSFpix
j



.xj /C �j : (38)

Here, j4j j is the pixel area, xj 2 4j is some suitable evaluation point (typically

the mid-point), and PSFpix
j is the associated pixel-shape function.

Remark 13. Further simplification of (38) is obtained when one considers measured
data that has undergone basic pre-processing (section “Basic Pre-processing”). Then
Cgain is constant and expected background signal �j can be estimated and deducted
from data, so we may set �j D 0. It is also common to consider the simplest pixel-
shape function PSFpix

j D ıxj . With these simplifications in place, the measured data
associated with pixel j is modeled as

E
h
Cdata.j /

i
	 j4j jN0Cgain

˚
I ~
!?

PSFdet


.xj /: (39)

Forward Operator for Combined Phase and Amplitude Contrast

The forward operator is defined as T WX ! H , where X is a vector space of
functions U W˝ ! CC that represents a scattering potential (section on p. 952) and
H is a vector space of functions x 7! g.!;x/ 2 RC for x 2 !?. Here, the
function g.!; � / represents the expected detector response distribution at the plane
adjacent to the CCD (just prior to sampling and read-out) when the TEM image is
acquired using incident electrons traveling along ! 2 S2.

In order to derive an expression for the forward operator, we first observe that
by (6), (19), and (26), the single electron intensity distribution is given as
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I.U /.!;x/ D I ı T op ı T sc
! .U /.x/ x 2 !?. (40)

The forward operator corresponds to the expected detector response distribution, so
by (36)–(37) we get

T .U /.!;x/ WD T det
�
I.U /.!; � /

�
.x/

	 N0.!/Cgain

n
I.U /.!; � / ~

!?

PSFdet
o
.x/ for x 2 !?. (41)

Here, N0.!/ denotes the image dose used to acquire the micrograph, I is the
corresponding single electron intensity distribution given by (40), and the last
approximate equality follows from setting Ib 
 0 (Remark 13).

To get a more explicit expression for T , we now consider various approximations
of the single electron intensity distribution I.U /:

Lens-less imaging: This is the setting considered in section on p. 960 that results in
the model (21) for T op, so (40) becomes

I.U /.!;x/ 	 k2

.2�/4.p � q/2
ˇ̌
ˇ̌n PSFfsp

p�q ~
!?

T sc
! .U /.q!C � /

o
.x/

ˇ̌
ˇ̌2 (42)

where PSFfsp
p�q is given by (22b).

Single thin lens with an aperture: This is the setting considered in section on p. 960
that results in the model (23) for T op, so (40) becomes

I.U /.!;x/ 	 1

.2�/4M 2

ˇ̌
ˇ̌n PSFop ~

!?

T sc
! .U /.q!C � /

o� x
M

�ˇ̌ˇ̌2: (43)

where PSFop is given by (24).

We conclude by providing the most common closed form expressions for T relevant
for combined phase and amplitude contrast modeling in HRTEM imaging. These are
based on combining specific models of the scattered wave T sc

! .U / with the above
expressions of the single electron intensity distribution.

Standard Phase Contrast Model
For TEM imaging of thin weakly scattering specimens, such as cryo-fixated
biological specimens, one can combine a series of approximations that ultimately
result in an affine forward model. Currently this is the best trade-off between
computational feasibility and accuracy for ET on HRTEM data.

The first step is to employ the weak phase object approximation (17), so

T sc
! .U /.x C q!/ 	  0.x C q!/

�
1C i
P.U /.!;x/

�
for x 2 !?. (44)
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Next, assume the real and imaginary parts Ure and Uim of U are coupled like in (7).
Insert (44) with (7) into (43), linearize the intensity as in (27), and use the fact that
 0 is a plane wave, so j 0j2 
 1. Then, as worked out in [51, eqs. (37)–(38)], the
single electron intensity distribution (43) becomes

I.U /.!;x/ 	 1

M 2

�
1 � 2


.2�/2

n
PSFop

tot.!; � / ~
!?

P.Ure/.!; � /
o� x
M

��
: (45)

Here, PSFop
tot.!; z/ WD PSFop

imCQ.!/ PSFop
re , with PSFop

re and PSFop
im denoting the real

and imaginary parts of PSFop in (24), i.e.,

PSFop
im.x/ D F!?

�
A˙

�f
k
� C f !

�
sin
h
W
�j � j2	i

�
.x/

PSFop
re .x/ D F!?

�
A˙

�f
k
� C f !

�
cos

h
W
�j � j2	i

�
.x/:

Finally, inserting (45) into (41) gives the following expression for the forward
operator:

T .U /.!;x/ 	 N0.!/Cgain

M 2

"n
PSFdet ~

!?

1
o
.x/

� 2


.2�/2

n
PSFtot.!; � / ~

!?

P.Ure/.!; � /
o� x
M

�#
(46)

where PSFtot.!;x/ WD
n

PSFdet ~
!?

�
PSFop

imCQ.!/ PSFop
re

	o
.x/ for x 2 !?.

Phase Contrast Model with Lens-Less Imaging
One can also consider the simpler lens-less imaging model (42) for the intensity.
Combine the weak phase object approximation (44) with (7), and insert that
into (42), linearize the intensity as in (27), and use the fact that  0 is a plane wave,
so j 0j2 
 1. The end result is an expression of the type (46) but with a different
PSF.

Phase Contrast Model with Ideal Detector Response and Optics
This is the case whenA˙ 
 1,W 
 0, and PSFdet 
 ı!? in (46). Then, PSFop

im 
 0
and PSFop

re D PSFdet 
 ı!? , so

T .U /.!;x/ 	 N0.!/Cgain

M 2

 
1 � 2


.2�/2
Q.!/P.Ure/

�
!;

x

M

�!
: (47)



Mathematics of Electron Tomography 969

Remark 14. If Q.!/ D 0, then there is no detectable signal from the specimen.
This is to be expected since the optics is needed to image phase contrast.

Forward Operator for Amplitude Contrast Only

Here we ignore the phase shift imposed by the specimen, so all the contrast in
the micrograph is assumed to arise from electrons that are blocked from reaching
the image plane (amplitude contrast). This is adequate for modeling essentially all
medium-resolution contrast (beyond 2–3 nm) seen in micrographs, e.g., contrast
from negatively stained specimens. Furthermore, all the early, successful attempts
at 3D reconstruction relied on such a model [43, 97].

The Intensity
The starting point for modeling amplitude contrast is to consider electrons as
particles and use a model similar to the Lambert–Beer law for the attenuation of
X-rays in computed tomography. Thus, consider an incident beam of electrons
traveling along ! 2 S2 and let �˛ WR3 ! RC denote the mass attenuation
coefficient of the specimen for an angle ˛. Hence, �˛.x/ is proportional to the
probability that an incident electron traveling along ! scatters with an angle larger
than ˛ at x. A large value therefore implies that the electrons scatter with high
angles and a small value means that the specimen is relatively transparent to the
electron beam.

After interacting with the specimen, the incident beam gives rise to a (total)
intensity distribution at the scintillator entrance surface x 7! N0I.x/ where N0 is
the incoming dose and I is the single electron intensity distribution defined in (28).
The latter is now modeled as [176, p. 157]:

I.x/ D I0.x/ exp
� � P.�˛/.!;x/

	
for x 2 !?. (48)

Here, P is the ray transform in (1) and I0 is the single electron intensity distribution
one would obtain in the absence of a specimen.

The Forward Operator
The forward operator is obtained in the same way as (41) is obtained from (40), i.e.,

T .�˛/.!;x/ 	 N0.!/Cgain

n
I.�˛/.!; � / ~

!?

PSFdet
o
.x/ for x 2 !?. (49)

Here, I.�˛/.!; � / is given by the left-hand side of (48), N0.!/ is the image dose,
and �˛ WR3 ! RC fully characterizes the specimen for scattering with angles up to
˛. Hence, if (49) holds, one can pre-process data so that the corresponding forward
operator equals the ray transform P in (1).
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Connection to QuantumMechanics
The particle model in (48) can be related to the wave model based on the
Schrödinger equation (5). To do this we need to take a closer look at �˛ .

First, in the amplitude contrast only model the phase contrast is ignored, so  sc

and  0 have the same phase. Since I D j scj2, (48) yields

 sc.x/ D  0.x/ exp
�
� 1

2

Z 1

�1
�˛.x C s!/ ds

�
:

Next, consider the projection approximation (16) for the  sc. Equating the above
expression for sc with the one in (16) yields�˛ D 2
Uim with 
 WD me=k„2. This
relates the linear attenuation coefficient�˛ to the imaginary partUim of the potential
U in (2). This relation however only makes sense if one removes the explicit model
for the aperture in the phase contrast model (simply set A˙ 
 1 in (24)). Then, Uim

acts as an attenuation term that accounts for both aperture and inelastic scattering.
Another connection is provided through the (elastic and inelastic) scattering

cross-section. From [176, eq. (6.1)] we get that

�˛.x/ D �.x/NA

M.x/

˛

� x
jxj
�

for x 2 R
3,

where 
˛ WS2 ! RC represents the local (elastic and inelastic) scattering cross-
section, �WR3 ! RC is the density,M WR3 ! RC is the local molecular weight (in
mol per unit volume), and NA is Avogadro’s constant (in mol per unit mass). Next,
by [36, theorem 2.6], we can express the solution to (4a)–(4c) with A 
 0 as

 .x/ 	 exp.ikx �!/C  1
� x
jxj
�exp.ikjxj/

jxj :

The term  1WS2 ! C is called the far-field pattern and i 1 is the complex
scattering amplitude, which in turn is related to the local scattering cross section
by [78, eq. (6)]


˛.x/ D
Z
S2n˙˛

ˇ̌
ˇ 1

� x
jxj
�ˇ̌
ˇ2 d
.x/:

In the above,˙˛ � S2 is the region defined by the aperture (i.e., the angular range
that is blocked by the aperture).

Summary

The model for the intensity depends on the type of contrast one seeks to model.
The model presented in section “Forward Operator for Amplitude Contrast Only”
for the amplitude contrast is only valid for thin specimens, e.g., unstained biological
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specimens imaged using 100 keV electrons have to be thinner than 10 nm. If the
specimen is thicker, this approach is only applicable to model low resolution image
features.

At higher resolution, like in HRTEM imaging, one needs to account for the
phase contrast, leading to the combined phase and amplitude contrast model (section
“Forward Operator for Combined Phase and Amplitude Contrast”). This modeling
framework depends highly on the model for the scattering operator T sc

! defined
in (6). In section “Electron–Specimen Interaction” we have presented several
approximations to the scattering operator. The most accurate model is the one
given by the multi-slice method that accounts for multiple scattering and does
not assume weakly scattering specimen. The downside is that this results in a
nonlinear model for image formation that is computationally challenging within
an inverse problems setting. The first order Born approximation leads to an affine
model that is more accurate than the geometrical optics approximation. It is valid
whenever kd4U � � where d is the size of features one seeks to resolve
and 4U is the contrast (actually it is the ray transform of the contrast) [135].
Its implementation is however more complex requiring usage of nonuniform fast
Fourier transform techniques for efficient evaluation of the scattering operator.
Finally, for approaches based on geometrical optics approximation (13), only the
weak phase object approximations (17) result in an affine model.

Currently there is no computationally feasible theory for modeling 2D image
features in the micrographs at an intermediate resolution range (<1 nm) in an
amorphous specimen that is not ultra thin (thickness between 15 and 20 nm) [176,
p. 157]. Models for simulation of such micrographs, see, e.g., [176, section 6.7],
are computationally to demanding to be used within an 3D image reconstruction
scheme. This is also confirmed by a recent study in [189] that considers cryo-
electron microscopy (section on p. 942) of amorphous biological specimens. There,
one concludes that the projection and weak-phase object approximations are
satisfied for simulation of TEM image features not smaller than 0:5 nm, so higher
resolution simulations require more advanced models for the scattering operator, see
also [78]. In ET life-science applications one typically does not attempt to interpret
3D image features that are smaller than 3 nm, so a model for the scattering operator
that is to be used within a tomographic reconstruction scheme can be based on the
weak-phase object approximation.

5 Data Acquisition Geometry

The reconstruction problem in ET is an example of a tomographic inverse problem.
Data naturally divides into sub-datasets, each containing data acquired when the
object has undergone a specific Euclidean transformation (tomographic data). The
associated data acquisition geometry is a specification of the Euclidean transfor-
mations that describe how the object moves in between the acquisition of the
sub-datasets.
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In ET each sub-dataset corresponds to a micrograph, a 2D TEM image, acquired
using uniform illumination mode (Sect. 2). A tilt-series refers to the series of
micrographs, and the zero-tilt micrograph is the one recorded when the specimen
input plane is as orthogonal as possible to the optical axis. The specimen is only
rotated (no translations) in-between sub-datasets, so the data acquisition geometry
follows a parallel beam geometry, i.e., all electrons that generate an image travel
along the same direction and the detector is planar and orthogonal to this incident
direction of propagation.

Parallel Beam Geometries

For parallel beam geometry, continuum tomographic data is represented as a real-
valued function defined on the tangent bundle T .S2/:

T .S2/ WD f.!;x/ 2 S2 � R
3 W x 2 !?g:

T .S2/ provides natural coordinates for tomographic data since .!;x/ 2 T .S2/

represents data at x in the detector plane when the orientation of the detector is
given by ! 2 S2 (normal to the detector plane).

In ET data is given on a 3D subset of T .S2/, typically be restricting ! 2 S2 to a
curve S0 � S2. Hence, the subsets of T .S2/ we consider are of the following form:

Definition 1. A parallel beam line complex (also called Orlov’s pencil) is a subset
MS0 � T .S2/ where

MS0 WD
˚
.!;x/ 2 T .S2/ W ! 2 S0



for fixed S0 � S2.

S0 is sometimes called the angular data collection aperture [42]. Next, for a given
region of interest ˝0 � R

3, we define

MS0.˝0/ WD
˚
.!;x/ 2MS0 W x D y � .y �!/! for some y 2 ˝0.



:

For parallel beam geometries, continuum tomographic data is represented by a
function gWMS0 ! R and the data acquisition geometry is a specification of the
curve S0.

Examples Relevant for ET

Here we give some examples of parallel beam geometries that occur in ET. The
corresponding curves S0 are shown in Fig. 3. For single- and double-axis tilting,
coordinates .x; y; z/ in R

3 are chosen so that the x-axis is parallel to the tilt-axis
and the z-axis parallel to the electron beam when the specimen is in the zero-tilt
position.
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Fig. 3 Illustrating S0 � S2 for the three most common data collection geometries in ET, single-
axis titling (left), double-axis tilting (middle), and conical-axis tilting (right). The z-axis is the
electron beam direction, and in the case of single-tilting, the specimen is tilted around the x-axis

Single-axis tilting: Here S0 WD
˚
.0; sin �; cos �/ W ��max < � < �max



where a

typical value of the tilt-angle is �max D 60ı.
Double-axis tilting: S0 is here the union of two single-axis tilting geometries, one

along the x- and the other along the y-axis. As for single-axis tilting, a typical
value for the tilt-angle is �max D 60ı.

Conical-axis tilting: Fix ˇ, typically ˇ D 45ı, and define

S0 WD
˚
.sinˇ sin �; sinˇ cos �; cos �/ W 0 < � < 180ı
:

In the ET community, the curve S0 is often parametrized in terms of the Euler angles
[143, p. 6] instead of describing it, like above, as a curve on S2. This is also the
convention used by most software packages for ET.
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6 The Reconstruction Problem in ET

Mathematical Formulation

We will state two variants of the 3D reconstruction problem in ET, one for contin-
uum noise-free tomographic data and one for finitely sampled noisy tomographic
data.

The Specimen
In the combined phase and amplitude contrast model (section “Forward Operator for
Combined Phase and Amplitude Contrast”), the specimen is fully characterized by
its 3D scattering potentialUtrueWR3 ! CC. In the amplitude contrast model (section
“Forward Operator for Amplitude Contrast Only”), it is fully characterized by its 3D
mass attenuation coefficient �˛ WR3 ! RC. Since the mass attenuation coefficient
can be identified with the imaginary part of the scattering potential (paragraph
on p. 970), we will henceforth use the same notation, Utrue, for both these functions
and refer to them as the signal.

Next, the specimen is contained in an infinite slab ˝ � R
3 given as an

unbounded region enclosed between two parallel hyperplanes, ,in (specimen input
plane) and ,out (specimen exit plane). We also introduce the region of interest
˝0 � ˝ , which is a bounded domain where we seek to recover the true signal
Utrue. Note that Utrue has compact support in ˝ , but its support is not necessarily
contained in ˝0. In ET this is not the case (section “Incomplete Data, Uniqueness
and Stability”). Finally, we introduce X (reconstruction space), the vector space of
feasible signals. Elements inX are complex-valued functions with compact support
in ˝ with reasonable regularity (section on p. 952).

Continuum Tomographic Data
Here tomographic data is represented by a function gWMS0.˝0/ ! RC where
MS0.˝0/ � T .S2/ given as in Definition 1. The data space H is a suitable set of
such functions, typically one requires that it is contained in S

�
MS0.˝0/;R

	
.

The inverse problem in ET is to recover the signal Utrue 2 X on ˝0 from
continuum tomographic data gWMS0.˝0/! RC where

g.!;x/ D T .Utrue/.!;x/ for .!;x/ 2MS0.˝0/. (50)

Here T WX ! H is the forward operator associated with TEM imaging (section
“Forward Operator for Combined Phase and Amplitude Contrast” for combined
phase and amplitude contrast and section “Forward Operator for Amplitude Contrast
Only” for amplitude contrast only). Finally, ET is local tomography problem,
meaning that the support of Utrue is not contained in ˝0.
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Sampled Tomographic Data
Finitely sampled tomographic data directly corresponds to a tilt-series. To each
micrograph in the tilt-series, we associate a directional vector !i 2 S0 an image
dose N0.!i /. The former is given by the angle between the incident beam and the
specimen input plane ,in (zero-tilt is when !i ? ,in), and the latter is the total
dose used to acquire the micrograph. Furthermore, there is a pixelization f4j gj
associated with the CCD chip. If there are mtlt micrographs in the tilt-series and the
CCD chip has ndet pixels, then tomographic data is represented as a vector in R

mC
with m D mtltndet.

Next, we introduce the sampled forward operator T WX ! R
m as

T .U /.i; j / WD E
h
Cdata.i; j /

i
for i D 1; : : : ; mtlt and j D 1; : : : ; ndet (51)

where Cdata.i; j / is the stochastic model in (33) for the measured value at the
j :th pixel in the i :th micrograph (the dependency on U is suppressed in the
notation). From (36) we can express the sampled forward operator in terms of the
forward operator T WX ! H (section “Forward Operator for Combined Phase
and Amplitude Contrast” for combined phase and amplitude contrast and section
“Forward Operator for Amplitude Contrast Only” for amplitude contrast only):

T .U /.i; j / D
Z

4j

T .U /.!i ;x/ dx 	 j4j j
˚
T .U /.!; � / ~

!?

PSFpix
j



.xj /C �j

	 j4j jT .U /.!;xj /:
(52)

The last two approximations follow from (38) and (39), respectively.
The corresponding inverse problem is to recover the signal Utrue 2 X on ˝0

from a tilt-series g 2 R
mC where

g D T .Utrue/C gnoise: (53)

In the above, T is the sampled forward operator and gnoise.i; j / (noise component
of data) is a sample of the random variable Cdata.i; j /� T .Utrue/.i; j /.

Fully Discrete Setting
This is the case when the reconstruction space X is discretized by mapping an
element in X to a vector in R

nC. The inverse problem is to recover the n-vector
U true 2 R

n from sampled tomographic data g 2 R
mC where

g D T .U true/C gnoise: (54)

In the above,T WRn ! R
m is the fully discretized forward operator that corresponds

to T .
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Notion of Solution

An issue that often arise when dealing with inverse problems with noisy data
and/or uncertain forward operator, like in ET, is that data is not in the range of the
forward operator (inconsistent data). For such cases, (53) (or its fully discretized
version (54)) will not have a solution (non-existence). A common approach to
address this issue is to introduce a relaxed notion of solution by considering

argmin
U2X

D
�
T .U /;g

�
for given DWRm � R

m ! RC: (55)

In the above,D is the data discrepancy that quantifies the goodness-of-fit. Choosing
it as the 2-norm in R

m yields least-squares solutions, and more generally, deriving
it from the data likelihood yields Maximum-Likelihood (ML) solutions. Existence
for (53) with the above notion of a solution translates into existence of solutions
to (55), see [196] for an overview of such results. In general, such results are highly
dependent on the (i) space X , (ii) data discrepancy D, and (iii) forward operator
T WX ! R

m.
Besides existence, one also has the issue of uniqueness. As with most inverse

problems involving function spaces and finite data, if the inverse problem (53) has
a solution, it will not be unique. Furthermore, in ET the number of data points
is almost always less than the number of 3D voxels, so the same also holds for
the fully discretized version (54). Hence, assuming (55) has solutions, there are
infinitely many of them (non-uniqueness). Handling the issue of non-uniqueness is
the art of regularization, where the basic idea is to make use of a priori knowledge
about Utrue 2 X .

Expressions for the Data Discrepancy
Choosing D as a suitable affine transformation of the negative log-likelihood of the
random variable in (51) (that models measured data g) allows one to interpret (55)
as Maximum-Likelihood (ML) estimation of (53).

Retaining the above interpretation of (55), data with additive Gaussian noise
(with zero mean and known covariance matrix ˙ ) leads to choosing D as the
Mahalanobis distance. It weights the usual 2-norm with the covariance matrix ˙
of data to make the distance metric scale-invariant:

D
�
T .U /;g

�
WD 1

2

�
T .U /� g	t �˙�1 � �T .U /� g	:

On the other hand, for Poisson data, D is given by the Kullback–Leibler divergence
in the data space:
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D
�
T .U /;g

�
WD

mX
iD1

�
gi logT .U /i � T .U /i

�
:

Now, the ET noise model in (34) is more complex. Deconvolving the
detector noise leads to data that is Poisson with additive Gaussian noise. It
turns out that the corresponding log-likelihood has a closed form expression
[16]. If one insists on a closed form expression for the data discrepancy D,
this is probably the most accurate noise model for images acquired using
a low photon/electron count and high detector noise. A difficulty however
is that D becomes non-convex and non-smooth. Therefore, a variety of
approximations have been suggested, like [15, 32] and [67, 110], the latter
two based on formulating a Mahalanobis distance that approximates the log-
likelihood.

7 Specific Difficulties in Addressing the Inverse Problem

The inverse problem in ET is associated with a number of difficulties that make it a
challenging problem.

The Dose Problem

This is the single most important factor limiting the usefulness of ET in life
sciences. As explained below, the dose problem arises due to damage induced by
the electron–specimen interaction and limits the total number of micrographs that
can be recorded.

When a specimen is irradiated by an electron beam, it gets progressively
damaged due to ionization. The actual mechanisms underlying specimen damage
are more complex and outside the scope of this review, the reader may consult
[9, 46] and the references therein for further information. For our purposes, the
implication of specimen damage is that the number of electrons used to irradiate the
specimen need to be low enough to preserve the structural integrity of the specimen.
For biological materials, the total dose varies between 1,000 and 10;000 e�=nm2

[148, section 3.2], depending on the size of image features that are of interest,
the type of specimen, and the sample preparation method. Similar thresholds are
presented by [103, section 3.2] and [19]. Hence, we are roughly dealing with a total
of 300–3;000 e�=pixel (at 25;000�magnification using a detector with a pixel-size
of 14 �m) distributed over 60 or 120 images, so micrographs have very low signal-
to-noise ratio with significant influence of shot noise, see also Fig. 4.
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Fig. 4 Micrographs of an in vitro specimen containing microsomes (small spherical shells with
diameter � 60 nm) recorded using a 200 kV TEM. Both micrographs represent the same
rectangular subregion (H�W: 150�106 nm) of a zero-tilt micrograph. Note that the microsome,
which is visible in the high-dose micrograph (b), is not visible in the low-dose micrograph (a).
The high-dose micrograph is not used for reconstruction due to specimen damage. (a) Low-dose
(about 3;000 e�=nm2) micrograph recorded at 1 �m under-focus. (b) High-dose micrograph taken
at 12 �m under-focus at the end of the ET data collection

As a final note, the dose problem is less of an issue for ET applied to material
sciences since those specimens are not as sensitive to damage induced by the
electron–specimen interaction as biological specimens.

Incomplete Data, Uniqueness, and Stability

Mathematical uniqueness and stability results are only meaningful for inverse
problems with continuum data (50) or in the fully discrete setting (54). For both
cases, results are highly dependent on the forward operator, the data collection
geometry, and the choice of the reconstruction and data spaces. Here we focus
on (50), the case with continuum data.

It is easy to see that the inverse problem (50) cannot have a unique solution. One
source for non-uniqueness is the phase problem (section “Phase Retrieval”), another
is the fact that tomographic data is local, e.g., the support of Utrue is not contained in
˝0 whereas data is given only on MS0.˝0/. Furthermore, even if one can address
the issue of non-uniqueness, there are strong indications that the inverse problem is
severely ill-posed due to limitations in the data acquisition geometry (limited angle
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data). These claims are supported by first considering the situation in a simplified
setting, namely the standard phase contrast and the amplitude contrast models.

Standard Phase Contrast Model
The forward operator is given by (46), i.e., a ray transform followed by convolutions.
Since the real and imaginary parts of the potential are related as in (7), any
non-uniqueness issues associated with the phase problem are resolved. Hence,
uniqueness rests upon the ability to uniquely invert the ray transform on MS0.˝0/,
and stability refers to the aforementioned inversion and the deconvolution of the
optics and detector PSFs.

Uniqueness
If the support of Utrue is contained in the region of interest ˝0, then uniqueness
for inversion of the ray transform follows from [122, theorem 3.144] whenever
S0 is infinite (uncountable), no matter how small it is. On the other hand, there
is non-uniqueness for any finite set of directions, no matter how many [122,
corollary 3.147]. As already mentioned on p. 974, ET is a local tomography
problem. Hence, without additional prior information about Utrue, the ray transform
is not uniquely invertible [134, section VI.4]. One option is then to reconstruct
features that are uniquely recoverable (section on p. 994).

Stability
Even when Utrue is supported in ˝0 (so there is uniqueness), we still have the issue
of stability. Uniqueness is by analytic continuation, a non-constructive method that
is highly vulnerable to noise in the data. Hence, this approach cannot be used to give
reliable information about Utrue from data.

Now, any reasonable form of stability is based on the possibility to obtain
stability estimates in Sobolev spaces, analogous to those for the complete data case
S0 D S2, which in turn requires that S0 � S2 fulfills Orlov’s criteria (every great
circle on S2 has a nonzero intersection with S0) [42, section 2.3] [134, chapter VI]
[141, chapter 6]. This does not hold for the parallel beam data collection geometries
that occur in ET (section “Examples Relevant for ET”), leading to severe ill-
posedness. The ill-posedness is easy to see in the single-axis tilting scheme, where
the inversion of the ray transform reduces to inversion of the 2D Radon transform
in planes orthogonal to the tilt-axis. The limitation on the tilt-angle means that each
such 2D Radon inversion problem is a limited angle problem, which is known to
be severely ill-posed [40, 114]. Finally, the deconvolution in ET of the optics and
detector PSFs are unstable operations, further adding to the ill-posedness of the
inverse problem (50).

Amplitude Contrast Model
The forward operator is (49), and the deconvolution of the detector response PSFdet

does not affect uniqueness. Hence, just as for the standard phase contrast model
above, the issue of uniqueness/stability reduces to inversion of the ray transform on
MS0.˝0/.
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General Inverse Scattering
Here we consider the case when the intensity in (37) is given by the general
scattering operator in (6). Since deconvolution of the detector response does not
impair upon uniqueness, we can without loss of generality assume that PSFdet D
ı!? .

Uniqueness
As already argued for, we cannot expect uniqueness from local data, so we first
assume Utrue is supported in ˝0. Next, non-uniqueness from phase retrieval can be
resolved by making two measurements, or assuming the imaginary and real parts
of the complex valued scatterer are related (section “Phase Retrieval”). Hence, a
reasonable conjecture is that uniqueness holds for (50) under the same conditions
as for the standard phase contrast model (section on p. 979). More precisely, Utrue

in (50) can be recovered uniquely whenever the real and imaginary parts of Utrue

are related as in (7) and micrographs are acquired at nonzero defocus (for a single
thin lens section on p. 960) or at fixed distance form the specimen exit plane
(for lens-less imaging section on p. 960). These assumptions are needed for phase
retrieval (section “Phase Retrieval”), so another formulation is that Utrue is uniquely
determined from scattering data  sc.!; � / D T sc

! .Utrue/ for ! 2 S0 whenever S0 is
infinite.

What mathematical results support the above conjecture? For full scattering data,
there are uniqueness results for determining the far field pattern for (5) from a single
measurement [35, theorem 10] (see chapter � Inverse Scattering). One can also
prove uniqueness for the inverse scattering problem with the magnetic Schrödinger
operator in a slab geometry from a single scattered wave field, but this requires
full knowledge of the Dirichlet-to-Neumann operator [104]. None of these results
apply to our setting of tomographic data. The result closest to our setting is perhaps
the one in [66] where one proves uniqueness for the inverse scattering problem
when measurements are made on the reflected (backscattered) wave. For phase-less
scattering data, [88] clearly states that uniqueness cannot hold for the problem of
recovering Utrue from the modulus of the far field pattern for (5) associated with a
single direction !. Here, ˝ is assumed to be a bounded domain, and the scattered
wave fulfills (4c) and an impedance boundary condition at @˝ . A similar setting
is studied in [95, 96], but this time data is the modulus of the scattered wave  sc

(that solves the direct scattering problem) acquired using wavelengths that vary
continuously in an interval. A uniqueness result that is closest to our setting is
the one in [90], which considers (5) with lens-less imaging. It turns out that for
uniqueness one needs two micrographs for each direction, whereas stability requires
four images. The results are however only proved when S0 � S2 is the equator
and the scattering operator T sc

! is approximated by the first order Born (paragraph
on p. 956) or the paraboloid approximations. Nevertheless, it is highly probable that

http://dx.doi.org/10.1007/978-1-4939-0790-8_48
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the same result also holds when T sc
! is not approximated and when S0 an infinite

set. Furthermore, if the imaginary part of the scatterer is related to the real part, one
measurement should be enough for formal uniqueness.

Stability
All results cited here deal with stability in recovering Utrue from full scattering data
 sc.!; � / D T sc

! .Utrue/ for ! 2 S0.
There are various stability results for (4a) that assume full knowledge of the

Dirichlet-to-Neumann map. Results closer to our setting consider the inverse
scattering problem (5) with boundary conditions (4b)–(4c), S0 D S2, and ˝ a
bounded domain with smooth boundary. One can, e.g., show that stability increases
as the wave number k increases [131, Theorem 1.1 and eq. (1.4)]. Similarly, [4]
establishes Lipschitz stability for determining the low-frequency component of the
potential. In [140] one considers the case when Utrue D U0CıU whereU0 is known
(typically representing some background) and ıU is the (small) perturbation that is
to be recovered. The result is that the perturbation can be stably reconstructed up to
a certain frequency.

Stability in the context of phase contrast tomography is studied in [90], which
considers (5) with lens-less imaging and S0 � S2 being the equator. They observe
that numerical stability requires four measurements for each direction. A similar
result is given in [130], which studies the same inverse scattering problem. If the
real and imaginary parts of Utrue are proportional (a special case of (7)) and two
micrographs per direction are acquired, then the inversion is stable with respect
to high-frequency noise. The arguments are however based on the projection
assumption, but the result is interesting as it differs from situation in conventional
tomography, which is known to be mildly ill-posed. This observation that phase
contrast tomography is more stable than conventional tomography (assuming one
can handle the phase problem) might also extend to the setting when S0 � S2

does not fulfill Orlov’s criteria (section on p. 979). Hence, we expect wave imaging
problems to be less influenced by limited angle data than ray imaging problems.
The intuitive reason is that waves can “probe objects around corners” whereas rays
cannot, and Fig. 5 illustrates this. There are however no formal mathematical results
supporting this observation.

Nuisance Parameters

The formal statement of the inverse problem in ET in section “Mathematical
Formulation” leaves out an important difficulty, namely the presence of nuisance
parameters. These are parameters whose values need to be recovered alongside the
potential U . We next list some of these parameters and indicate how they can be
determined.
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Fig. 5 Sensitivity of wave and ray tomography in 2D against limited angle data (angular range is
˙60ı). Wave tomography is when data is restrictions of  .!; � / for ! 2 S0 to a line orthogonal
to! and where  .!; � / solves (5) with (4b)–(4c). The wavelength of the incident wave equals the
diameter of small white disc in the phantom in (a). It is clear that the limited angle artifacts
(bottom row) are much more severe for ray tomography than for wave tomography. (a) The
phantom. (b) Inversion from complete ray transform data. (c) Inversion from complete diffraction
tomography data. (d) Inversion from limited angle ray transform data. (e) Inversion from limited
angle diffraction tomography data (images courtesy of Frank Natterer)

Detector Parameters
The detector model outlined in (29) involves a detector response PSFdet, the overall
gain Cgain, and the distribution of the background signal. None of these are nuisance
parameters in the true sense since they can be determined by separate calibration
experiments in a way independent of the tilt-series.

The overall gain Cgain can be calculated from a detector specification and/or
from off-line data that has undergone basic pre-processing (section “Basic Pre-
processing”), see, e.g., [146, pp. 380–381]. The detector response PSFdet is rotation-
ally symmetric and positive since the spreading of the signal due to the scintillator
and fiber-optic/lens coupling is rotationally symmetric. Thus, PSFdet is fully char-
acterized by the Modulation Transfer Function (MTF), which is the modulus of its
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Fourier transform: F!?

�
PSFdet

�
.�/ D MTF

�j�j/, Here, MTFWR ! RC measures
how the signal amplitude is transferred for different spatial frequencies, and for
slow-scan CCD sensors it is commonly parametrized as [176, p. 279], [146, p. 394]:

MTF.q/ WD a

1C ˛q2
C b

1C ˇq2
C c: (56)

The above parameters can be estimated from off-line calibration measurements,
see, e.g., [188], which in turn yields the detector response PSFdet. Finally, the
background signal can also be estimated from similar calibration measurements.

Illumination and Optics Parameters
These are parameters associated with the illumination and optics. They are inde-
pendent of the specimen but they can be unique for a tilt-series. Some, like
the wavenumber k and magnification M , are considered constant and known to
sufficient degree of accuracy. On the other hand, the image dose and a number of
electron–optical parameters have nominal values that must be adjusted, either by an
analysis of the recorded micrographs and/or by performing additional measurements
after the ET data collection.

Image Dose
The image dose N0.!/ in (37) plays an important role in the interpretation of data
since it enters into the forward models in (41) and (49). It gives the number of
electrons per pixel in the absence of a specimen.

One way to estimate the image dose is based on assuming a constant electron–
current density J0 (number of electrons per unit area and unit time). This quantity
can be calculated by a Faraday cage and converted into the number of electrons
per second. From the exposure time t.!/ we then get the actual dose used for
the imaging by the relation N0.!/ D J0 t.!/. Another option is to set N0.!/ D
Cmax.!/=Cgain where Cgain is the overall gain (see section on p. 982 for how it
is estimated) and Cmax.!/ is the maximum pixel value in the micrograph. This
will always underestimate the image dose. To account for the specimen, consider
a linear absorption model where the specimen is a continuum medium in the
slab ˝ with thickness h. Hence, if C.!/ is the average detector response, then
C.!/ D C0.!/

�
1��h.!/	 in whichC0.!/ is the image dose,� is characterized by

the specimen, and h.!/ > 0 is the thickness along! (section “Forward Operator for
Amplitude Contrast Only”). If the image dose is the same, say C0, for two images,
then it is easy to see that it is given by C0 D

�
N0.!/�N0.!

0/
	
=
�
2�2h.!/=h.!0/

	
.

A more general approach is to use least-squares to fit a quadratic function to points
on! 7! Cmax.!/. This uses all data in the tilt-series and also allows one to estimate
the shape of the specimen boundaries (a slab is the simplest shape but a “meniscus”
type of membrane is more natural).
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Remark 15. In experimental protocols, one typically reports the total dose at the
object plane ,obj (Fig. 2). It roughly corresponds to the number of electrons per
unit area at the specimen input plane ,in. This is an important number as it directly
relates to the dose sensitivity of the specimen. The corresponding image dose is
obtained by first dividing with the number of micrographs in the tilt-series, and then
dividing by the magnification.

Optics Parameters
These parameters are only relevant for reconstruction methods based on forward
models that account for the TEM optics, like the standard phase contrast model
(section on p. 967).

First, we have parameters that describe the set-up for the optics (section “The
Optical Set-Up”) illustrated in Fig. 2. This set-up does not correspond to a physical
optical system. The parameters f , p, and q can be selected freely as long as (20)
holds. It is however wise to use the convention that f in (20) equals the focal length
of the actual objective lens. The two relations will then give the values for p and
q. An advantage of this convention is that the size of the aperture in the focal plane
,focal matches the size of the physical objective aperture. This convention provides
the parameter d WD p� q associated with lens-free imaging, the simplest model for
the optics (section on p. 960).

Next, a more advanced TEM optics model, like the one in section on p. 960,
requires values for electron–optical parameters (CTF estimation). These enter
into the definition of PSFop in (24) with defocus being the most important one.
In ET applications that do not require interpretation of 3D features smaller
than 4 nm, there is no need for CTF estimation since nominal values of the
electron–optical parameters are good enough. This is however not the case for high-
magnification/resolution applications [57]. In general, CTF estimation is based on
identifying shape and position of the so-called Thon rings in the power spectrum
density. These are resolution-dependent amplitude modulations caused by the optics
PSF [79, section 77.2]. This identification is an ill-posed problem [175] and a
variety of estimation techniques have been developed, mainly for single particle
applications, see [60, sections 2.37–2.38] and [51, section 8.5] for a more detailed
overview. Unfortunately, most of these approaches are not applicable to ET since
micrographs have too low contrast and/or are too noisy. One approach is based on
strip-based periodogram averaging, extended throughout the tilt-series to overcome
the low contrast conditions found in ET [57, 191]. Another alternative, that better
respects the true Poisson characteristics of the noise, is outlined in [186].

Remark 16. For material sciences applications, CTF estimation is important due to
the high resolution/magnification. The estimation problem is in part simpler since
micrographs have better contrast and signal-to-noise ratio, but more CTF parameters



Mathematics of Electron Tomography 985

have to be estimated as well. The reader may consult [176, chapter 10] for a survey
of approaches.

Specimen-Dependent Parameters
In ET there are also parameters that depend on the specimen. One such parameter
relates to local data (p. 974). Since the support of U is not contained in ˝0 � ˝ �
R

3, pixels in all micrographs (besides the zero-tilt image) will have contribution
from outside ˝0 (local tomography artifacts), see, e.g., [123, section 4]. These
artifacts become more pronounced when there is strongly scattering material
outside ˝0, as for biological in situ specimens and material sciences. A typical
approach is to “pad” the data, which here means removing contributions from
˝0 (long-object compensation). The simplest padding is based on assuming U
equals some constant average value outside ˝0 (constant continuation), which
then becomes a specimen-dependent parameter. One can also consider smooth
continuation in order to avoid introducing edge effects, but that results in introducing
further specimen-dependent parameters. Yet another approach is to consider a low-
resolution reconstruction from a larger region of interest, and use that to pad
data.

Another parameter is the scaling factor Q associated with the assumption
in (7) that relates the real and imaginary part of the potential. Current methods
for estimating the amplitude contrast ratio are based on performing additional
measurements, such as taking a defocus series. This is unfortunately not possible
for most biological specimens.

8 Data Pre-processing

This section describes data processing steps that are commonly applied to micro-
graphs in a tilt-series before they are used within a reconstruction method.

Basic Pre-processing

The degree of pre-processing of micrographs depends on how much one seeks to
include in the forward operator. For all ET applications it is highly recommended
to work with data that has been flat-fielded. Flat-fielding refers to the process of
compensating for different gains and dark currents in a detector, so a uniform signal
corresponds to a uniform output. This process also includes gain normalization that
removes image features associated with the structure of the scintillator crystal and
fiber-couplings (section on p. 963), see an example of this effect in [146, p. 393]. In
addition, it is customary to remove high frequency peaks (X-ray peaks) based on a
local mean value calculations.
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Alignment

Acquiring a tilt-series corresponds to sampling a real valued function defined on
MS0.˝0/ (Definition 1). The nominal specification for this sampling is unfortu-
nately not accurate enough since the specimen undergoes unintentional movements
during in between the acquisition of the micrographs. These movements result in
shifts, rotations, and other types of image distortions.

Alignment is the procedure that corrects for these distortions and determines
how MS0.˝0/ is sampled. Most alignment procedures follow a common four-step
scheme:

Initial processing: In addition to basic pre-processing (section “Basic Pre-
processing”), micrographs in tilt-series often also undergo further processing
that involves denoinsing and feature extraction specifically tailored for
alignment. These micrographs are only used during the alignment; to avoid
losing information, they are not used for reconstruction.

Coarse alignment: Despite high-precision mechanics, raw tilt series might contain
large shifts and rotations. Cross-correlation is used to coarsely align adjacent
images. After coarse alignment, we can assume a smooth trajectory of features
across images, facilitating subsequent alignment steps.

Feature tracking: The most common technique for feature detection is to define a
patch around the feature as a template, and cross-correlate this template with
other micrographs to search for the feature of interest. Due to high noise in
images, one often have many false positive detections.

Determine the geometric relation: Once the 2D location of each feature is estab-
lished and tracked across multiple images, epipolar geometry can be used to
establish the geometric relation between the various images.

The choice of alignment method is based on the type of feature one seeks to
track. Cryo-fixated specimens, especially in vitro specimens, lack visible features.
Hence, one has to add fiducial markers to align tilt-series of such specimens. These
are spherical gold beads that appear as high contrast point-like features in the
micrographs. Techniques from epipolar geometry can then be used to elucidate the
geometric relation between the micrographs, see [3] and the references therein for
more details.

Deconvolving Detector Response

The Fourier transform of the detector response is strictly positive (section on
p. 982), so it is fairly straightforward to deconvolve it, e.g., using a Wiener filter
or the Richardson–Lucy algorithm [197]. A benefit of deconvolving the detector
response, instead of including it into the forward model, is that the noise model for
(deconvolved) data (section on p. 964) becomes much simpler.
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Deconvolving Optics PSF

Deconvolving the optics response is only relevant for tilt-series from HRTEM
imaging where phase contrast is important.

For lens-free imaging (section on p. 960), this corresponds to deconvolving the
effect of free-space propagation. Several approaches exist for this within the X-ray
phase contrast imaging community, see [22] for a survey.

Optics models that are based on the single thin lens with an aperture model
(section on p. 960) are more involved to deconvolve since the CTF (the Fourier
transform of the PSF) in (24) has multiple zeros. As an example, for the standard
phase contrast model (section “Standard Phase Contrast Model”), one has to
deconvolve PSFop

tot given in (45). If Q.!/ D 0, then PSFop
tot.0/ D PSFop

im.0/ D 0,
i.e., low-frequency image information is lost. Hence, the optics deconvolution is
more challenging for HRTEM imaging specimens that act as “pure phase” objects.
In general, the challenge in regularizing the optics deconvolution is the difficulty in
specifying reasonable a priori information about the “true” signal, which here would
be the micrograph one would obtain without perfect optics.

The optics is on the other hand needed to make phase contrast visible, so its
deconvolution is only sensible if it is coupled with phase retrieval (section “Phase
Retrieval”). In conclusion, it is highly dubious to first deconvolve the optics and then
try 3D reconstruction if one does not couple that with some kind of phase retrieval.
Thus, one either ignores the optics or include it into the forward model, so optics
deconvolution is performed simultaneously with 3D reconstruction.

Phase Retrieval

For each direction! 2 S0, we have a phase retrieval problem (also called exit-wave
reconstruction problem) which amounts to inverting the intensity operator in (26).
In general this problem does not have a unique solution.

A common approach is to record two, or more, micrographs of the specimen
using different imaging conditions (like different defocus values). From such data
one can then reconstruct the phase of the wave [58]. This principle is put into action
in electron holography and approaches based on the transport-of-intensity equation
[99]. None of these approaches are however applicable to ET in life sciences since
they require multiple micrographs for each direction ! 2 S0, which is often not
possible due to the specimen dose sensitivity (section “The Dose Problem”). Thus,
we are left with considering “in-line” approaches that use only one micrograph at
each direction.

Let us first consider the simplest model for the optics (lens-less imaging, section
on p. 960), i.e., free-space propagation. In this setting, phase retrieval within ET is
identical to the corresponding problem in in-line X-ray phase contrast tomography.
A variety of methods have been developed for the former, all based on relating
the real and imaginary parts of the complex refractive index as in (7). The idea is
to make use of the optics operator T op, which in this case is given by free-space
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propagation (21), and perform the phase retrieval and optics deconvolution in one
step by inverting I ı T op. The resulting phase retrieval operation is expressible as a
convolution, see [22] for a nice survey. For ET, there is no obvious relation between
the electrostatic and the absorption potentials. Nevertheless, it is common to assume
that the latter is a multiple times the former, as discussed in section on p. 949.
Thus, the aforementioned approaches from in-line X-ray phase contrast tomography
should be applicable also on ET data as a pre-processing step for phase retrieval. A
similar approach should also be applicable when the optics model is more complex,
such as in (23).

Finally, one also has the option to include the intensity into the forward operator.
In that context, phase retrieval is performed jointly as part of 3D reconstruction. If
one seeks an affine forward operator, then one must linearize the intensity as in (26).

9 Reconstruction Methods

Before we describe the various reconstruction methods for ET, we state assumptions
and procedures that are common for all current methods in use.

Type of Forward Operator
Unless otherwise stated, all reconstruction methods assume the forward operator is
given by either the amplitude contrast (section “Forward Operator for Amplitude
Contrast Only”) or the standard phase contrast (section on p. 967) models. For
data that has undergone basic pre-processing (section “Basic Pre-processing”), both
these lead to affine forward operators expressible as

T .U /.!;x/ D C.!/ � C0

n
PSF.!; � / ~

!?

P.Ure/.!; � /
o
.x/ for x 2 !?.

(57)
The specific expression for the PSF depends on the model but the overall structure
remains the same for the amplitude and standard phase contrast models. In this
context, the term C.!/ represents data one would record if there would be no
specimen. It can be, together with C0, estimated from data (section “Nuisance
Parameters”), in which case the inverse problem in ET can be recast to a setting
with a linear forward operator.

Local Data
In ET we have local data (see p. 974), i.e., the support of Utrue is not contained in
˝0. Hence, each micrograph contains the contribution of a larger or smaller extent of
the specimen, so (53) becomes inconsistent. This is not an issue for reconstruction
methods that are not sensitive to such issues, like ELT (section on p. 994). Other
reconstruction methods should either pre-process data as to remove contributions
from outside ˝0, or adapt the evaluation of the forward operator and its adjoint to
account for this contribution (section on p. 985). This is referred to as long-object
compensation and is based on assumptions about Utrue outside ˝0, see [192] for
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artifacts that arise in ET when such compensation is not performed in iterative
methods (section “Iterative Methods with Early Stopping”).

Handling Nuisance Parameters
A reconstruction method for ET must handle how to assign values to nuisance
parameters (section “Nuisance Parameters”), like! 7! C.!/ andC0 in (57). Unless
otherwise stated, all reconstruction methods in ET assume these are determined
before reconstruction.

One can in principle consider the nuisance parameters as part of the signal
that is to be recovered and attempt at reconstructing these alongside the initial
signal. This is theoretically possible when using iterative and variational approaches.
On the other hand, the forward operator might be nonlinear w.r.t. the nuisance
parameters, the stability of the inversion w.r.t. the nuisance parameters could vary
considerably when compared to inversion of the original signal, it is unclear which
data discrepancy to use, etc. Hence, in practice one adopts an intertwined approach
in which the signal is first reconstructed keeping the nuisance fixed, then the
nuisance parameters are recovered keeping the signal fixed [165].

Type of Mathematical Results
From a strict mathematical point of view, a regularization involves a reconstruction
operator that is well-posed (unique and stable solution) when reconstruction
parameter(s) are chosen accordingly. Next, regularized solutions must converge to
a ML/least-squares solution as the data error kgnoisek ! 0. Besides these two
requirements, one often also studies convergence rates (estimate of the difference
between the regularized solution and a ML/least-squares solution) and stability
estimates (bounds to the difference between the regularized solution with noise-free
data and noisy data).

Analytic Methods

Overview
Analytic methods are applicable to inverse problems where the forward operator
has an inverse that has an analytic formula, which is a concatenation of “simple”
mathematical operators (such as finite number of differentiations to any order and
integrations, whereas analytic continuation or summation of infinite series is not
simple). The starting point is the reconstruction problem with continuum data given
in (50). Assuming this problem has a unique solution, one can define the recon-
struction operator as the inverse of the forward operator (exact reconstruction).
On the other hand, if there is instability and/or non-uniqueness, like in ET (section
“Incomplete Data, Uniqueness and Stability”), then an appropriate reconstruction
operator should recover a feature, such as an approximate identity, of the signal. The
actual implementation is given by an appropriate discretization of the reconstruction
operator.

In summary, analytical methods lead to algorithms in which the signal is directly
calculated from the measurements in a single step, without resorting to more time-
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consuming, iterative methods. In tomographic applications, the numerical analysis
basically employs filtering, backprojection, and summation operations, as well as
discrete Fourier transforms.

Backprojection-Based Methods
The Filtered Back-Projection (FBP) and Weighted Back-Projection (WBP) methods
are examples of backprojection-based methods that constitute the standard approach
within the ET community for solving the reconstruction problem, see [143] for a
recent survey.

Data Pre-processing
All backprojection-based methods assume data is (noisy) samples of the ray
transform, i.e., the forward operator is (57) with C.!/ D 0, C0 D 1, and
PSF.!; � / D ı!? . Hence, data should be pre-processed so that it fits this
assumption, i.e., nuisance parameters C.!/ and C0 need to be estimated and the
PSF needs to be deconvolved.

A Priori Information
The assumption is that noise is high frequency whereas relevant features of Utrue are
low frequency. Thus, by providing an approximate inverse, these relevant features
of Utrue are recovered while noise is suppressed.

Reconstruction Operator
The starting point for both FBP and WBP is an equality that relates the ray
transform to its back-projection. Let S0 � S2 be an infinite measurable set and
U 2 S .R3;R/. A simple modification to the arguments used in proving [136,
eq. (2.34)] allows us to prove the following identity on MS0.˝0/:

U �H D P�
S0

�
h ~
!?

P.U /
	

for h 2 S
�
MS0.˝0/;R

	
andH WD P�

S0
.h/. (58)

Here, P is the ray transform in (1) and P�
S0

is the (parallel beam) back-projection
defined as follows:

Definition 2 (Back-Projection). Let g 2 S
�
T .S2/;R

	
and S0 � S2 is a

measurable set. The (parallel beam) back-projection of g is then defined as

P�
S0
.g/.x/ WD

Z
S0

g
�
!;x � .x �!/!	 d! for x 2 R

3, (59)

with d! denoting the surface measure on S0.

Remark 17. S
�
T .S2/;R

	
is the Schwarz space for real-valued functions defined

on T .S2/, see [136, section 2.2] for the formal definition. P�
S0

maps such functions
to functions on R

3. Furthermore, if the L 2-inner product is considered for both the
domain and range of P�

S0
, then P�

S0
is the adjoint of P .
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The reconstruction operator for the FBP method is now defined as the right-hand
side of the equality in (58):

RFBP.g/ WD P�
S0

�
h ~
!?

g
	

for g 2 S
�
MS0 ;R

	
. (60)

Hence, by (58) we get that RFBP.g/ D Utrue � H whenever g D P.Utrue/ on
MS0.˝0/. In this context, hWMS0 ! R is called the reconstruction kernel and
H is the corresponding filter. The idea in FBP is now to choose h such that H 	 ı,
since this implies that RFBP.g/ 	 Utrue.

The WBP method is mathematically equivalent to FBP. It is based on taking
h D ı!? in (58). This means, of course, that the corresponding filter H will
not be an approximation of ı, so (60) does not directly yield a reconstruction
of Utrue. However, if one can derive an expression for the Fourier transform of
H 	 P�

S0
.ı!?/, then one can use this to recover Utrue by dividing the Fourier

transform of P�
S0
.g/ by the Fourier transform of H , and then apply the inverse

Fourier transform. This leads to the following reconstruction operator:

RWBP.g/ WD F�1

"
F
�
P�
S0
.g/
�

F ŒH �

#
:

For FBP, in order to get a useful reconstruction operator one must choose the
reconstruction kernel h such that convolution with P�

S0
.h/ represents extracting

some feature of U . The idea is to first derive the reconstruction kernel h for
exact reconstruction from ideal data, i.e., P�

S0
.h/ D ı. The regularized variant that

provides an approximative inverse for noisy data is then given as a band-limited
variant of the aforementioned reconstruction kernel. Similarly, in WBP we seek H
such that it approximately equals the backprojection of a Dirac delta.

Adaptation to ET
The adaptation to ET lies in finding an appropriate reconstruction kernel h for the
FBP method. The corresponding problem of finding H for WBP is discussed in
[143, 156].

For single-axis tilting (section “Examples Relevant for ET”), the entire 3D ray
transform inversion problem reduces to a sequence of 2D inversion problems that
can be handled separately. Hence, in that sense, single-axis tilting does not lead
to a truly 3D inversion problem. Likewise, the current approach for FBP/WBP
reconstruction from double-axis tilting data is to split such a data set into two single-
axis data sets, perform 3D reconstruction for each of these, and then combine the
two 3D reconstructions by some averaging. This might give the impression that
reconstruction from double-axis tilting is also not a “true 3D problem”. This is
however not the case.The two 3D reconstructions will have different limited angle
artifacts, so it is clear that a spatially dependent averaging will perform better than
just a regular average. One can derive a partition of unity to use for such a spatially
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dependent averaging by considering the reconstruction kernel for the 3D problem in
double axis tilting.

Let us now consider the reconstruction kernel for general parallel beam line
complexes in which S0 is a curve. To derive an equation for the reconstruction kernel
(filter equation), we first consider the following relation [136, theorem 2.17]:

F ŒH �.�/ D 1

j�j
Z
S0\�?

F!?Œh.!; � /� .�/ d! for h 2 S
�
MS0 ;R

	
,

whereH WD P�
S0
.h/. Exact reconstruction requiresH D ı, i.e., P�

S0
.h/ 
 1, so

Z
S0\�?

F!?Œh.!; � /� .�/ d! D j�j:

Hence, an obvious choice of reconstruction filter h, independent of !, is

F!?Œh.!; � /� .�/ WD j�jˇ̌
S0 \ �? ˇ̌ where

ˇ̌
S0 \ �? ˇ̌ WD

Z
S0

ı.! � �/ d!: (61)

This is fine as long as S0 satisfies Orlov’s criteria (section “Incomplete Data,
Uniqueness, and Stability”), which ensures that

ˇ̌
S0\�? ˇ̌ ¤ 0. Unfortunately, in ET

this is not the case. A natural modification to (61) is to set the Fourier transform of
h.!; � / to zero at points � where

ˇ̌
S0 \ �? ˇ̌ D 0. With this choice of reconstruction

filter, the FBP reconstruction operator in (60) provides a least-squares solution with
minimal 2-norm instead of an exact solution.

To get a more explicit expression for h, let AS0 be the set of all � ¤ 0 in R
n

such that �? is not tangent to S0 and intersects it at a finite number of points, with
N� denoting the number of such intersection points. Also, parametrize the curve
S0 by s 7! �.s/ where s 2 I is an interval and d! D ˇ̌

�.s/
ˇ̌
ds. From a direct

modification of the proof of [136, theorem 2.17], we get

F ŒH �.�/ D 2�

N�X
iD0

ˇ̌
�.si /

ˇ̌
ˇ̌
� � P�.si /

ˇ̌F!?

�
h
�
�.si /; �

	�
.�/ for � 2 AS0 ,

where s1; : : : ; sN� 2 I are such that � ��.s/ D 0. The above immediately gives us a
necessary condition for h (filter equation) if H D ı is to hold:

2�
N�X
iD0

ˇ̌
�.si /

ˇ̌
ˇ̌
� � P�.si /

ˇ̌F!?

�
h
�
�.si /; �

	�
.�/ D 1 for all � 2 AS0 . (62)

Thus, a natural choice of h is to define it as the inverse Fourier transform of
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� 7!

8̂
<
:̂

ˇ̌
� � P�.s/ˇ̌

2�N�
ˇ̌
�.s/

ˇ̌ wheneverN� ¤ 0,

0 otherwise.

(63)

Note that there are multiple choices for h whenever N� > 1 for some �.
Furthermore, the filter equation (62) is a necessary condition for H D ı, so an
interesting question is to find sufficient conditions.

Remark 18. There is a great deal of literature in the tomography community for
constructing filter equations, i.e., designing reconstruction kernels h for 3D FBP
methods such thatH D ı0. Most of these results are not applicable to ET since they
deal with data collection geometries (cone-beam or helical cone-beam) that arise
in medical X-ray tomography and therefore are not parallel beam. Some work on
filter equations in the parallel beam context can be found in early work on positron
emission tomography [42]. These results are not applicable to ET since they assume
S0 � S2 is an open set.

Remark 19. In the 3D electron microscopy literature there are several publications
devoted to deriving reconstruction kernels when S0 is not a curve, but rather some
irregular subset of S2. This is motivated from the needs in single particle analysis
when one seeks to invert the ray transform on a parallel beam line complex in which
S0 is an open set and the sampling is irregular/random within S0. These results are
nicely surveyed in [143].

Comments and Discussion
The main advantage of FBP/WBP is that it is fairly easy to implement, so most
software packages for ET have at least one of these methods implemented as listed
in [143]. The methods are furthermore efficient enough to allow for large scale
3D reconstructions in short time. Next, the reconstruction quality is sufficient for
answering biological questions that only require interpretation of 3D structural
details larger than 60–80 nm.

There are several disadvantages that comes with using FBP/WBP. First, one
assumes a forward model given by the ray transform, so data should be pre-
processed accordingly to reflect that assumption. Next is to choose a reconstruction
kernel to yield an approximative inverse, which in FBP is governed by the
band-limit that becomes the regularization parameter. Techniques from sampling
theory can now be used to identify efficient sampling schemes, provide qualitative
understanding of certain artifacts, and provide guidelines for how to band-limit
given a sampling scheme. This is well understood in the planar setting (i.e., in
R

2) for complete and moderately noisy fan or parallel beam data [52, 53, 134],
but the situation is less clear in 3D and/or when data is incomplete. Guidelines,
like Crowther’s criterion [145, p. 316], that relate the “resolution” to the sampling
scheme are therefore not applicable to ET even when data is collected by single-
axis tilting. Finally, FBP/WBP are not really based on a model of the stochasticity
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of the data. Both methods are essentially a discretization of an inversion formula.
Therefore, it is difficult (if not impossible) to devise schemes for selecting the filter h
that takes into account the specific stochasticity of the data, which in the ET setting
is essentially Poisson distributed.

A common approach when using FBP/WBP in ET is to post-process recon-
structions to remove speckle, enhance features, and reduce limited angle streak
artifacts. The simplest approach for single-axis data is to average over slices. Most
software packages offer this possibility to reduce the influence of noise. Other
post-process approaches seek to reduce the well-known streak artifacts, see, e.g.,
[62, 133] in which the latter uses microlocal analysis to explain the appearance of
the aforementioned artifacts.

Electron	-Tomography (ELT)
ET data are local so the corresponding inverse problem does not have a unique
solution even for continuum noise-free data (section “Incomplete Data, Uniqueness,
and Stability”). A natural question is to determine what features that are uniquely
recoverable from such local data and to provide stable means for their recovery.

As we shall see, one such feature is the “visible singularities” that provide
location of certain edges of objects in the specimen. The visibility depends on the
data collection geometry. Furthermore, it turns out that the recovery of the visible
singularities is only mildly ill-posed (comparable to inversion of the ray transform
on complete data). ELT is a local reconstruction method that recovers these visible
singularities that is based on+-tomography. The description given here is based on
[151, 155], see also chapter �Microlocal Analysis in Tomography.

Data Pre-processing
Same as for backprojection-based methods (section “Backprojection-Based Meth-
ods”).

A Priori Information
Relevant edge information can be recovered by suppressing high-frequency phe-
nomena.

Uniquely Recoverable Signal Features
The analysis of signal features that are uniquely recoverable from local tomo-
graphic data relies heavily on microlocal analysis. Microlocal analysis was initially
introduced to study how singularities propagated in solutions of partial differential
equations [86, 168], and its application to integral geometry was first given in [76].
Somewhat later, microlocal analysis was used in a series of papers for studying the
admissibility problem for various restricted generalized ray transforms (integrating
over families of geodesics) [73–75]. Further applications in integral geometry came
with [20] (support theorems) and [150] (limited data problems for the ray transform
in R

2 and R
3), see chapter �Microlocal Analysis in Tomography for a more detailed

description.

http://dx.doi.org/10.1007/978-1-4939-0790-8_36
http://dx.doi.org/10.1007/978-1-4939-0790-8_36
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The central idea in microlocal analysis is that singularities are characterized not
only by their location, but also by the high frequencies that cause them. To make
this more precise, one makes use of the well-known Fourier characterization of
smoothness, i.e., U is smooth if and only if its Fourier transform decays faster than
any power of 1=j�j as j�j ! 1. Localizing this characterization yields a description
of the singular support (location of the singularity). The formal definition of a
wavefront set is given by a further localization, microlocalization, that characterizes
those directions in Fourier space where we lack smoothness (i.e., direction of those
high frequencies causing the singularities):

Definition 3 (The Wavefront Set). Let x0 2 R
n and �0 2 R

n n f0g. We say that U
is smooth near x0 in the direction �0 if there is a smooth cut-off function � near x0

(i.e. � has compact support and �.x0/ ¤ 0) such that F ŒU��is rapidly decaying in
some open conical neighborhood of �0. The wave front set, WF.U /, of U are those
points .x0; �0/ where U is not smooth near x0 in the direction �0.

A simple example might aid the intuitive understanding. IfU has a jump discontinu-
ity along a smooth hyper-surface , � R

n, then WF.U / consists of .x0; �0/ where
x0 2 , and �0 is normal to , .

Remark 20. The above definition skips some mathematical technicalities, e.g.,
�0 is actually a cotangent vector and not an element in the same space as
x0. This distinction becomes important when one defines the wavefront set for
functions (or distributions) defined on smooth manifolds. Furthermore, one can also
introduce Sobolev wavefront sets that encodes Sobolev regularity, see [151] and
chapter �Microlocal Analysis in Tomography for details.

Next, for inverse problems it is natural to seek to characterize singularities of the
signal that are detectable in data. In the context of inverting the ray transform, a
singularity .x; �/ 2WF.U / is said to be visible from ray transform data g D P.U /
if it corresponds to a singularity in WF.g/. Thus, visible singularity are those that
leave traces in data, and these can be characterized if data g is given on a parallel
beam line complex:

Theorem 1 (Microlocal Regularity Principle). A singularity .x; �/ 2 WF.U /
is visible from ray transform data g D P.U / on MS0.˝0/ if and only if there
is a line in MS0.˝0/ through x to which � is co-normal (with a few exceptions).
Furthermore, the recovery of the visible singularities is mildly ill-posed in the sense
that the singularities in the data g are weaker than those of U by 1/2 Sobolev order
(good enough to allow stable detection in practice).

An important special case is when U , as in the example following Definition 3, is
smooth except for a jump discontinuity along a smooth hyper-surface , . Then, a
singularity at x 2 , is visible if and only if there is a line in MS0.˝0/ that goes
through x and is tangent to MS0.˝0/ (with a few exceptions).

http://dx.doi.org/10.1007/978-1-4939-0790-8_36
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Remark 21. In order to simplify the presentation, we have left out an array of
technicalities in the formulation of Theorem 1, see, e.g., [151, theorem 6.3] for
a rigorous formulation in the single-axis tilting case. Note also that this theorem
is not dealing with a specific reconstruction method. It is more analogous to a
“uniqueness” result describing what is possible to recover (assuming one has no
further a priori information) irrespective of the reconstruction method.

Reconstruction Operator
We have seen that visible singularities are signal features that are uniquely recov-
erable from continuum ray transform data on MS0.˝0/. ELT is a reconstruction
method that recovers such singularities from ET data. It is an adaptation of +-
tomography, which was developed independently of microlocal analysis and first
introduced in [173, 178] as a local tomographic reconstruction method.

To describe ELT, we start off by considering S0 D S2. Then, [52, eqs. (4–6)]
yields the following generalization of (58) form � �1:

+m.U / �H D P�
S0

�
h ~
!?

P.U /
	

on MS0.˝0/ for H WD P�
S0
+�m.h/. (64)

Here, P�
S0

is the backprojection operator given in (59) and + is Calderón’s operator
that is defined in terms of the Fourier transforms as F Œ+.U /�.�/ WD j�jF ŒU �.�/
for U 2 S .R3;C/. Now, we proceed like in the FBP method, i.e., we first derive a
reconstruction kernel h for exact recovery of +m.U / by selecting h so that H D ı

in (64). The regularized variant is obtained by band-limiting the aforementioned
reconstruction kernel, which in turn provides an approximative inverse of +m.U /.
The case m D 1 is of specific interest since +.U /.x/ is unaffected by local
tomography artifacts (section on p. 985) as its calculation by (64) only involves lines
passing through a small neighborhood of x.

In ET, S0 � S2 is a curve. For simplicity, consider the case when S0 is the
equator in the .x; y/-plane. Then P�

S0
PU D k � U where

k.x/ WD cı.z/ 1

jx0j with x0 D .x; y/.

Let+0 and40 denote the 2D variants of+ and the Laplacian restricted to the .x; y/-

plane, i.e., +0 WD
q
�@2

1 � @2
2 and40 WD @2

1 C @2
2. Then,

+0P�
S0
PU D cU so 40 P�

S0
PU D c+0U: (65)

Since the tangent to the great circle !3 D 0 is contained in !3-plane and is
orthogonal to !, we can write (65) as

+0P�
S0
PU D P�

S0

q
�D2

S0
PU D cU and 40 P�

S0
PU D P�

S0
D2
S0
PU D c+0U
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where D2
S0
WD .�!2@1 C !1@2/

2. To summarize, we obtain

c+0U D P�
S0
D2
S0
P.U /: (66)

Generalizing the above calculation to arbitrary curves S0 � S2 provides the+-term
for the reconstruction operator in ELT [151]:

RELT.g/ WD �P�
S0

�
D2
S0
.g/
	
: (67)

Here, D2
S0

is a second order differentiation in !?-plane along the tangential
direction to the curve S0, i.e.

D2
S0
.g/.!;y/ WD d 2

ds2
g.!;y C s
 	

ˇ̌
ˇ
sD0

(68)

with 
 denoting the unit tangent to S0 at ! 2 S0. Analogous to (66), it is shown
in [56, theorem 5.1]. that if S0 fulfills Orlov’s criterion, then RELT.g/ recovers a
singular pseudodifferential operator acting on Utrue (the cited theorem does not hold
for single-axis data but the result is true also for that case as shown in [151]). When
Orlov’s criterion is not fulfilled, then for single-axis data it turns out that the visible
singularities of Utrue correspond to singularities of RELT.g/whenever g D P.Utrue/,
see [151] and chapter �Microlocal Analysis in Tomography.

Adaptation to ET
The actual reconstruction operator in ELT is given as

RELT.g/ WD P�
S0

�
� �D2

S0
.g/
	
: (69)

This represents a local inversion method that recovers two important signal features.
The pure + term defined in (67) emphasizes differences in data that occur at
boundaries, i.e., this term picks up visible singularities. However, it does not
distinguish interiors from exteriors since the derivative in these areas is typically
small. The pure backprojection term (� term) adds an averaged version of U that
introduces contour to the reconstruction and allows one to distinguish objects from
their surrounding.

In the implementation of ELT, the D2
S0

operator in (69) is evaluated using a filter
that is a smoothed version of the second derivative (a smoothed central second
difference), and the half-width of the filter is determined by the signal-to-noise
characteristics of the data. Hence, ELT has two regularization parameters, � and
the width of the derivative kernel. A method for choosing � is given in [54] where
the idea is to pick � so that the RELT reconstruction is as flat as possible inside a
pre-specified feature. Furthermore, like in FBP, one can also convolve in the detector
plane along the direction perpendicular to 
 (see (68)), which for single-axis tilting
is just averaging over slices.

http://dx.doi.org/10.1007/978-1-4939-0790-8_36


998 O. Öktem

Fig. 6 A three-dimensional surface plot of the point response of FBP and ELT (� D 0) for single
axis tilting (beam direction is vertical, and the tilt-axis is perpendicular to the plane) with maximum
tilt-angle is 60ı. Point response is more localized in ELT (right) than in FBP (left) (image from
[155])

Comments and Discussion
There are several advantages in using ELT as compared to FBP/WBP. First, let us
compare the convolution kernels for ELT and FBP as done in [151, Figure 1]. The
ELT kernel is local, so it is zero away from the origin whereas the FBP kernel is
not. In fact, the oscillations of the FBP kernel on the interval where the ELT kernel
is zero are about 7 % of the maximum amplitude.

Next, ELT reconstruction operator has a more localized point response than FBP
as shown in Fig. 6. The “X”-like wings at the end of the angular range in both
point responses are expected in any limited angle backprojection algorithm. The
point response is however less localized in the FBP case, so the artifacts spread out
causing a dilution of the actual signal relative to the background. This renders the
FBP more noisy than the ELT and there is a higher chance to lose a weak signal
using FBP.

Generalized Ray Transform
Illuminating larger fields of view (regions that extend about 8;000 nm from the
optical axis) requires using wider electron beams. Then we must account for the
fact that electrons, especially those farther from the central axis, travel along helical
curves. Hence, the scattering operator is better modeled by (15) instead of (16), i.e.,
the ray transform P in (57) is replaced by a generalized ray transform that integrates
over curves s 7! �.s/ that are solutions to (12).

The FBP approach is extended in [106] to handle such generalized ray transforms
that integrate over curved electron trajectories. This paper also considers alignment,
which in this new setting is far more complex, see also [3, section 4.1.2]. In a
similar manner, ELT has also been extended to the above setting. This involves
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characterizing visible singularities analogous to theorem 1, and deriving local
inversion methods [152, 154].

Approximative Inverse

Overview
The method of approximate inverse was originally developed in [118] for solving
ill-posed integral equations of first kind. It has since then been extended to a more
general setting. The starting point is, as with analytic methods, the reconstruction
problem with continuum data (50). The idea is to derive a reconstruction kernel that
is independent of data (so it can be pre-computed), and reconstruction is obtained by
applying the kernel to data. The kernel is given as a solution of an adjoint equation
that involves a mollifier. The regularizing property of approximate inverse comes
from the choice of mollifier and robustness of the kernel against noise in data.

The approximative inverse method is by now a well-established approach for
regularization with applications to a wide range of inverse problems, see the survey
by [170]. Recent developments include extending the framework to a Banach space
setting and to handle certain nonlinearities in the forward problem [171, part V]. See
also [115] for an interesting unification concept for general regularization methods
based on approximate inverse. The application to ET is given in [101, 102].

A Priori Information
As the name suggests, the original formulation of approximate inverse seeks
provide an approximative inverse solution to the inverse problem. In this setting,
the prior information is the same as for backprojection-based methods (section
“Backprojection-Based Methods”). The approximate inverse method is in some
sense the natural generalization of the FBP/WBP method to the setting where the
forward operator is a general affine operator, like in (57).

Data Pre-processing
Computationally feasible implementations require an affine forward operator, which
in particular includes operators of the type in (57).

Reconstruction Operator
We describe the reconstruction operator for linear operators in the Hilbert space
setting and refer to [170] for its extensions to more general settings.

Consider a linear forward operator T WX !H between Hilbert spaces X and
H , each with inner products h � ; � iX and h � ; � iH , respectively. Next, let E� WR3�
R

3 ! C be a mollifier for X . The formal definition in the Hilbert space setting is
given on [170, p. 26], but for our purposes it is enough to think ofE� as a smoothing
operator that converges to a ı-distribution as � ! 0:

˝
E�.x; � /; U

˛
X
! U.x/ as � ! 0 for all U 2X .
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Fix a point x and a mollifier and define the reconstruction kernel ��x 2 H as the
solution to the adjoint equation

T ����x	 D E�.x; � /: (70)

Note that the above calculation does not depend on data. Moreover, if the above
equation lacks a solution, we consider the minimal norm solution, i.e., ��x is the
element in X that minimizes the X -norm of � 7! T ���	 � E�.x; � /. The
reconstruction operator RAIWH !X is now defined as

RAI.g/.x/ WD
˝
g; ��x

˛
H

for g 2H . (71)

The rationale for (71) is that it provides a mollified solution to our inverse problem.
To see this, let g D T .Utrue/, so

RAI.g/.x/ D
˝
g; ��x

˛
H
D ˝T .Utrue/; �

�
x

˛
H

D
D
Utrue; T ����x	

E
X
D ˝Utrue; E�.x; � /

˛
X
:

Next, calculating the reconstruction kernel requires solving the adjoint equa-
tion (70), which can be done in three different ways: (1) By means of an inversion
formula for T , (2) through a singular value decomposition, and (3) to use a
projection method that recasts the adjoint equation into the finite dimensional setting
where it can be solved using numerical methods.

One issue is that the adjoint equation (70) needs to be solved for each evaluation
point x. This is clearly unfeasible for 3D tomographic reconstruction problems.
If the inverse problem is translation invariant, then it is natural to use convolution
type mollifiers that only depend on the difference of the argument: E�.x;y/ D
e� .x �y/. Given such mollifiers, the structure of the adjoint equation (70) does not
depend on the point x:

T ����	 D e� : (72)

Hence, the reconstruction kernel �� is independent of x and the reconstruction
operator yields RAI.g/ D Utrue � e� whenever g D T .Utrue/.

Adaptation to ET
The adaptation to ET lies in the computation of the reconstruction kernel which in
turn depends on the mollifier and the forward operator. The choice of the mollifier
should match the a priori information about Utrue and choice of � (regularization
parameter) depends on the noise level in data. Since ET is a translation invariant
inverse problem, the reconstruction kernel can be computed given these choices by
solving (72).

In ET we consider T as the linear part of (57), i.e., if A convolves with PSF
in (57) then (72) becomes .P�

S0
ı A�/.�� / D e� . We can now first compute v�

by solving P�
S0
ı v� D e� , and then compute the reconstruction kernel �� from
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A�.�� / D v� . A common mollifier is to take e� .x/ WD ��1�.x=�/ where � is a
scaling function. PSF.!; � / has a closed form expression in Fourier space, which
provides a closed form expression for the reconstruction kernel in Fourier space for
parallel beam geometries relevant for ET. Hence, in ET the convolution with ��

that defines the reconstruction operator is preferably computed in Fourier space, see
[101, 102] for details. A special case is when the PSF.!; � / D ı!? in (57), i.e.,
we consider the inversion of the ray transform. The corresponding adjoint equation
reads as P�

S0
.�� / D e� , so RAI.g/ D RFBP.g/ where h in (60) given by �� .

Comments and Discussion
The benefit of approximative inverse, as compared to iterative (section “Iterative
Methods with Early Stopping”) and variational (section “Variational Methods”)
methods, lies in the combination of computational efficiency and flexibility regard-
ing the type of forward operators it can handle, and to some extent, the type of a
priori information it can encode. It is in fact easy, at a first glance, to underestimate
the diversity of the a priori information that the approximate inverse method can
encode.

First, it is possible to work with a mollifier that is not rotation invariant [116,
section 3]. This can be beneficial for ET since resolution is anisotropic due to the
limited angle problem. Another possibility is given in [117] where approximative
inverse is used for combined reconstruction and feature detection. The feature
detection is here represented by a linear operator LWX ! Y (Y is the Hilbert
space of features). To compute an approximate inverse to L.Utrue/ requires us to
modify the adjoint equation (70) that provides the reconstruction kernel. In this
new setting, it becomes T ����x	 D L

�
E�.x; � /

	
. If L is translational invariant,

the adjoint equation is again independent of the evaluation point x and it can be
written as T ����	 D L

�
e�
	
. The case when L is an edge detector is treated in

[117]. One can also select T D + and thereby perform +-tomography (section on
p. 994), so approximate inverse extends ELT to the setting where one also includes
deconvolution of the PSF.

A drawback with the approximative inverse method is that it is difficult (if not
impossible) to devise schemes for selecting the filter � that takes into account the
specific stochasticity of the data.

IterativeMethods with Early Stopping

Iterative methods are a broad class of well-studied methods, see [11,50,77] for good
surveys of both theory and implementation. The idea is to construct an iterative
scheme in X that, in the limit, converges to a solution of (55), i.e., one of possibly
infinitely many ML/least-squares solutions of (53).

Overview
There are three classes of iterative methods, conjugate gradient, Maximum-
Likelihood Expectation Maximization (ML-EM), and iterative algebraic methods.
These have over the years been extended in various ways, e.g., to handle nonlinear
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forward operators, to account for different types of a priori information (like
positivity), and to handle more complex noise models for data. Surveys of these,
and other developments, are provided in [25, 81] for iterative algebraic techniques,
in [92] and chapter � Iterative Solution Methods for conjugate gradient type of
methods, and in chapter EM Algorithms for ML-EM type of methods.

In the context of ET, only iterative algebraic methods are used. Hence, we focus
on this category following the excellent exposition in [136, section 5.3], see also
chapter �Tomography. The main idea is to split the inverse problem in (53) into
a finite number of sub-problems. A cyclic iteration over these sub-problems is
required to generate the next iterate. The specific choice of splitting leads to different
iterative algebraic methods, such as the Algebraic Reconstruction Technique (ART)
and the Simultaneous Iterative Reconstruction Technique (SIRT). The common
theme is however to generate an iterative sequence that, in the limit, converges to a
least-squares solution of (53).

Data Pre-processing
Same as for the approximate inverse method (section “Approximative Inverse”).

A Priori Information
Iterative methods with early stopping share a common a priori assumption, namely
that the iterative scheme is semi-convergent. This means that initial iterates recover
low-frequency components of the signal in (53). Now, assume noise from data
mainly influences the high-frequency components of the signal. Then, an ill-posed
problem can be regularized by stopping the iterates before too much of the data noise
impairs the reconstruction, i.e., the number of iterates becomes a regularization
parameter. Iterates are also often smoothed for further regularization.

One can also account for additional a priori information. A common case is to
require that Utrue is a positive function, or more generally, belongs to a convex set.
Such constraints can be enforced by projecting iterates onto the said convex set,
albeit at a significant computational cost.

Reconstruction Operator
Consider (53) and split the data (tilt-series) g 2 R

m into N subsets:

g D �g1; : : : ;gN
	

with gj 2 R
mj and m D m1 C � � � CmN . (73)

Next, let �j WRm ! R
mj be the projection onto the j :th data component, so

�j .g/ WD gj , and introduce the partial forward operator T j WX ! R
mj as

T j .U / WD .�j ı T /.U / for j D 1; : : : ; N .

Then (53) splits into the following set of N sub-problems:

gj WD T j .Utrue/C gnoise
j where gnoise

j WD �j .gnoise/. (74)

http://dx.doi.org/10.1007/978-1-4939-0790-8_9
http://dx.doi.org/10.1007/978-1-4939-0790-8_16
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The k:th iterate in an iterative algebraic method is obtained by performing an
inner N -step iteration:

8̂
ˆ̂<
ˆ̂̂:

U 0
k WD Uk�1

U
j

k WD U j�1
k C ��T �

j ı C�1
j

	�
gj � T j .U

j�1
k /

	
; j D 1; : : : ; N

Uk WD UN
k�1:

(75)

Here, C j WRmj ! R
mj is a fixed linear positive definite operator, and a typical

choice for linear T j is C j WD T j ı T �
j . The parameter � > 0 is a relaxation

parameter that is needed for noisy problems, like the one in ET, to reduce the impact
of noise in data and speed up convergence.

Remark 22. There is a geometric interpretation of the iterates in (75). Each can be
seen as the result of performing N consecutive projections in reconstruction space
X . More precisely, the j -iteration in (75) can be written as U j

k WD �
�
j .U

j�1
k /

where ��j .U / WD .1��/U C ��j .U / with �j WX !X denoting the projection
operator

�j .U / WD U C
�
T �
j ı C�1

j

	�
gj � T j .U /

	
for j D 1; : : : ; N .

Note that whenC j WD T j ıT �
j , then �j .U / is merely the projection of the residual

gj � T j .U / onto the solution space of T j .U / � gj D 0.

The specific choice of splitting and choice of C j determines the type of iterative
algebraic method. The three most common ones are listed below:

Algebraic Reconstruction Technique (ART): This is when data (73) is split up so
that gj is a scalar corresponding to a single data point, i.e., N D m, and
C j D T j ıT �

j . The iterative sequence in (75) is now easier to understand when
expressed in the full discretized setting. The (fully discretized) linear forward
operator is given by multiplication with a .m � n/-matrix whose rows are
denoted by aj 2 R

n for j D 1; : : : ; m. The corresponding sub-problems (74)
are now given as

gj D aj �U true C gnoise
j for j D 1; : : : ; m,

and the projection calculation in (75) is expressible as

U
j

k WD U j�1
k C � 1

kajk2

�
gj � aj �U j�1

k

	 �aj for j D 1; : : : ; m.

The ART, first introduced in [70], is perhaps the first iterative algebraic
technique used for tomographic reconstruction. Later it was recognized it as
a special case of Kaczmarz’s method.
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Simultaneous Iterative Reconstruction Technique (SIRT): Compared to ART,
SIRT is the other extreme in the sense that data is not slit, i.e., N D 1. Hence,
SIRT reconstruction is given as

UkC1 WD Uk C �T ��g � T .Uk/
	
: (76)

Thus, each iterate corresponds to a full update of the signal that involves a
complete sweep through all the data points.
The SIRT was introduced to the scientific community in the context of
tomography by [65] as an alternative to ART. It was later discovered that the
SIRT is equivalent to Landweber iteration.

Simultaneous ART (SART): SART, also called block iterative ART, was first
introduced to the imaging community by [5]. It is a compromise between ART
and SIRT in the sense that N equals the number of views. For ET this means
thatN is the number micrographs in the tilt-series, i.e.,N D mtlt and gj 2 R

ndet

corresponds to the j :th micrograph.

The regularizing property of iterative algebraic techniques is far from resolved in the
general setting. Most of the literature focuses on proving convergence properties, as
reviewed in [25]. Such results are of less interest for ill-posed problems since iterates
are stopped long before convergence (assuming the iterates do converge to some
point). A fast convergence is nonetheless desirable since this would require fewer
iterates before a “good” reconstruction is obtained. In general, the convergence of
iterative algebraic methods depends on the splitting. For tomographic data, a good
strategy is to do a splitting so that the directions are as orthogonal as possible to the
previous ones. Curiously enough, a random choice of directions is almost as good
as the optimal choice. This was also recently proved mathematically in [26].

Adaptation to ET
The adaptation of iterative algebraic methods to ET lies in the choice of forward
operator and its adjoint, and in how to select the number of iterates kmax and the
relaxation parameter �.

In ET it is rather natural to split the tilt-series into micrographs (2D TEM
images), so current implementations of iterative algebraic methods are based on
SART rather than ART (even though this is not explicitly mentioned). Modern
implementations also include possibility for more involved projection schemes, like
component and block component averaging.

As of writing, in the context of ET there is no theory that provides a practically
useful criteria for how to choose the number of iterates kmax. This is perhaps not
that big of an issue since one can always run a couple of extra iterates. If one saves
intermediate iterates, each such iterate corresponds to a specific choice of kmax.
Concerning �, an analysis of how its choice influences the qualitative behavior
of the iterates must exploit the specific structure of the forward operator. For the
2D ray transform one can show that a strong under-relaxation, i.e., small � results
in iterations that first determine the smooth parts of the signal, while the higher
resolution details appear later [136, pp. 113–115]. It is reasonable to expect that the
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same holds for a forward operator of the type (57), so the common suggestion in ET
is � D 0:01 (recommended range between 0 and 0.1).

Yet another aspect is related to how the reconstruction space X is discretized in
an implementation. The straight-forward approach is to simply evaluate the function
at each voxel center. In [64, 109] one claims that a discretization based on Kaiser–
Bessel window functions (blobs) improves the robustness against noise.

Finally, we consider the issue of a priori information. A variety of a priori
information relevant for ET can be incorporated into iterative algebraic methods.
One can beforehand determine regions where the signal has to attain a given value
(say zero), one can set upper and lower values for the signal, or only update parts of
the signal. Such Projection Onto Convex Sets (POCS)-type of constraints, that can
be formulated as the signal belonging to a convex set, can be enforced by projecting
iterates. POCS was introduced to the electron microscopy community in [28], but
convincing evidence of benefits is lacking in ET [145, p. 315]. Iterative algebraic
methods can also be used to solve variational regularization methods (section
“Variational Methods”) with quadratic energy functionals. A final development
is the so-called discrete ART where one discretizes the range of the allowed
reconstructions. This is obviously suitable for specimens that consist of only a
few different materials (gray levels), like in material sciences, and results are
encouraging [13, 72].

Comments and Discussion
Iterative algebraic methods offer flexibility regarding the type of forward operators
it can handle, and to some extent, the type of a priori information it can encode.
Compared to approximate inverse (section “Approximative Inverse”), the flexibility
is greater, but so is the computational burden.

SIRT is considered to give smoother reconstructions, but converges more slowly.
Still, it is now part of most software packages for ET in both life and material
sciences. Both SART and SIRT perform better than FBP/WBP [120], even though
the difference is not that dramatic. There are in fact few situations where the
significantly longer run-time associated with SART/SIRT is worth the effort. The
run-time of SART/SIRT is however becoming less of an issue thanks to recent
parallel implementations that make use of hardware acceleration. These allow
reconstructions within a reasonable time of regions as large as 2048 � 2048 � 512
voxels from tilt-series of 60–80 micrographs, each with a size of 2048�2048 pixels
[177]. We finally mention [72] where SIRT, total variation regularization (section
on p. 1008), and the discrete algebraic reconstruction technique are compared for
material sciences application of ET.

Variational Methods

Variational methods provide a flexible framework for regularization of (53). Here,
the reconstruction is given as a solution to an optimization problem:
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min
U2X �S.U /CD

�
T .U /;g

�
for g 2 R

m given as in (53). (77)

In the above, T WX ! R
m is the sampled forward operator, which for ET is given

by (52), SWX ! RC is the regularization functional that enforces uniqueness and
stability by incorporating a priori knowledge about Utrue 2 X , DWRm ! RC is
the data discrepancy functional that quantifies the goodness-of-fit against measured
data, and � > 0 is a regularization parameter quantifying the compromise between
accuracy and stability. Its choice should depend on the model for the noise, as well
as on estimates of the size of the error. Formally, without knowledge of the latter,
it is not possible to guarantee a result with low error, neither absolutely nor as a
percentage [10].

If (77) is to be a regularization of (53), then solving (77) must be well-posed.
Such issues form a central part of the general theory, and current state of the art is
nicely surveyed by [169] in the context of imaging.

In the fully discrete setting (54), there is also a nice connection to statistical
regularization. If D is chosen as an affine transformation of the negative log-
likelihood of the random variable modeling g, then (77) corresponds to a maximum
a posteriori estimate where the prior probability distribution is given as a Gibbs
measure with an energy S [91, subsection 3.3.2]. Extending this analogy to (53) is
more elaborate since it requires a notion of Gibbs measure on the Hilbert/Banach
space X .

Data Pre-processing
Same as for the approximate inverse method (section “Approximative Inverse”).

Entropy Regularization

Overview
Entropy regularization refers to the case when the regularization functionalS in (77)
is given by an entropy type of functional. There are plenty of examples, mainly from
astronomy, where entropy type of functionals are used for regularization.

Existence, uniqueness, stability, convergence, and convergence rate for the
maximum entropy method are studied in [47] when the forward operator is a
Fredholm integral operator, but most results seem to be valid for an arbitrary
bounded linear operator from L 1 to a Hilbert space. A similar setting is dealt
with in [49], which obtains stability, convergence, and convergence rate results. A
wider class of regularization functionals is considered in [159], where convergence
rates and error estimates are proved when the forward operator is a compact linear
operator between Banach spaces, see also [137] for the case when the forward
operator is given by convolution. Likewise, [82] establishes existence and regularity
of solutions for convolution type of forward operators and a wide range of entropy
type of regularization functionals.

The application to ET is in [172] with a mathematical analysis in the language of
regularization theory given in [165].
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A Priori Information
It is clear that entropy type of functionals do penalize complexity in some sense,
thereby acting as a regularization. Entropy type of functionals also measure
information content [44], so many attempts to rationalize the usage of entropy for
regularization are based on this principle. This motivation is artificial unless there is
a natural probability distribution on X . This leads us to the framework of statistical
regularization in which entropy is applied to the set of probability measures on X
[119, Method 3], but that is an entirely different approach for reconstruction.

Another motivation is provided by [38, 174] that considers reconstruction meth-
ods (called selection rules) for linear inverse problems with exact data. One starts
off by postulating a set of axioms (consistency, distinctness, continuity, locality, and
composition consistency) that a reconstruction method should satisfy. Next, it is
proved that the least squares method is the only reconstruction method consistent
with these axioms when the signal to be reconstructed is a real-valued function,
having both negative and positive values, and entropy regularization is the only
reconstruction method consistent when the signal to be reconstructed is positive.

Reconstruction Operator
The case we consider here makes use of the relative entropy, so we are given a fixed
prior � 2X and the regularization functional is

S�.U / WD
Z
˝

�
U.x/ ln

�
U.x/

�.x/

�
� U.x/C �.x/

�
dx for U 2X . (78)

Then, U 7! S�.U / is convex and S�.U / � 0. Note also that when U; � 2 X
represent probability measures, then S�.U / D 0 if and only if U D � almost
everywhere and �S�.U / equals the Kullback–Leibler divergence.

Adaptation to ET
In [172] one regularizes the inverse problem in ET by (77) with (78) and a data
discrepancy given by a Mahalanobis distance (section “Notion of Solution”). The
forward operators are as in (57) and the regularization parameter is chosen according
to the Morozov principle, so a user must supply an estimate of the data error.

The Morozov principle for choosing the regularization parameter is not usable
for highly noisy data since it requires unreasonably accurate estimates of the data
error. Furthermore, a higher reconstruction resolution requires one to estimate the
nuisance parameters. Thus, the approach in [172] is extended in [165], which uses
an iterated regularization scheme (not to be confused with iterative regularization
in section “Iterative Methods with Early Stopping”) that generates a sequence
of regularization problems. Within this sequence, the estimate of the data error
is “updated.” The nuisance parameters ! 7! C.!/ and C0 are recovered by
intertwining the iterates that update the signal U 2 X with least-squares iterates
that update the nuisance parameters and locality in tomographic data is accounted
for by constant continuation (section on p. 985). To formulate the precise scheme,
for given data g 2 R

m and nuisance parameters c 2 V (the space of nuisance
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parameters), we introduce

�min.g; c/ WD inf
U2X

���T .U; c/ � g
���2

Rm
:

Hence, �min.g; c/ is the smallest possible data error (it is zero for exact data). Also,
define Ab as a smoothing operator whose degree of smoothing is regulated by a
parameter b > 0, it can, e.g., be a low-pass filter where b is the cut-off threshold in
the Fourier space. Finally, 0 � ı � 1 is the regularization parameter that governs
the updating of the estimate of the data error. Then, for a user provided choice of
regularization parameters ı; b > 0, the iterates .Uj ; cj / 2 X � V in [165] are
defined recursively as

cj WD argmin c2V
���T .Uj�1; c/ � g

���
Rm

(79)

�j WD
(
Ab.Uj�1/ if prior is to be updated,

� if prior is not updated,
(80)

�j WD �min.g; cj /C ı
����T .�j ; cj / � g

���
H
� �min.g; cj /

�
(81)

Uj WD

8̂
<
:̂

argminU2X S�j .U /
���T .U; cj / � g

���2

Rm
� �j :

(82)

Comments and Discussion
Entropy type of regularization performs fairly well, especially on cryo-fixated
in vitro specimens that contain isolated particles in aqueous environment. The idea
of updating the estimate of the data error through (81) by choosing 0 < ı < 1
is much more robust than directly specifying an estimate for it in (82). On the
other hand, one has to be careful in updating of the prior (80). If the prior is
updated, reconstructions appear de-noised and de-speckled, but there is a significant
risk of creating structures that tend to grow as iterates proceed and therefore are
erroneously interpreted as true structures. If the prior is to be updated, it is highly
recommended that one uses an edge preserving filter as Ab . Finally, the nuisance
parameters can equally well be estimated off-line by a least-squares approach,
removing the need for (79).

TV Type of Regularization

Overview
We use the term “TV type” of regularization for variational methods in which S
in (77) is chosen as
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S.U / WD
�Z

˝0

ˇ̌rU.x/ˇ̌p dx

�1=p

: (83)

Standard TV regularization is when p D 1, see chapters �Total Variation in Imag-
ing and �Numerical Methods and Applications in Total Variation Image Restora-
tion for surveys of its role in imaging. The emphasis here is on its usage in ET.

A Priori Information
Standard TV regularization is based on the a priori assumption that the signal to be
recovered has a sparse gradient, e.g., like a step function.

Reconstruction Operator
The reconstruction operator is given as the solution of (77) with S as in (83) and D
a suitable data discrepancy functional (section “Notion of Solution”). If the forward
operator is affine, and the data discrepancy is strictly convex, then (77) has a unique
solution.

Adaptation to ET
The first usage of TV regularization in ET was [1]. The approach is specifically
tailored towards single axis tilting data (section “Examples Relevant for ET”)
since one performs a series of 2D reconstruction in slices orthogonal to the tilt-
axis. The regularizing functional is an anisotropic variant of TV that accounts for
the anisotropy in resolution due to limited angle data (section “Incomplete Data,
Uniqueness and Stability”). Standard TV regularization has also been applied in
[71] on STEM data of specimens from material sciences (nano-particles). Results
are compared against SIRT and TV regularization performs significantly better.

Both publications above that deal with TV regularization for ET have a number
of weaknesses. First, no guidance is offered on how to select the regularization
parameter. Next, both publications unnecessarily assume a forward operator given
as the ray transform, so ET data needs to be pre-processed in the same way as
for backprojection-based methods (section “Backprojection-Based Methods”). This
is not an issue when an amplitude contrast model (section “Forward Operator for
Amplitude Contrast Only”) is good enough for modeling micrograph contrast, like
for incoherent STEM imaging in material sciences, but it is inadequate for ET
based on HRTEM data. Finally, the data discrepancy functional D is the 2-norm,
corresponding to the assumption of additive Gaussian noise whereas the actual
noise is more complex. This is however probably not that big of an issue (paragraph
on p. 976).

The first two points raised above are in fact addressed in [164] that considers
variational regularization of (53) with an affine forward operator of the form (57).
The data discrepancy functional D in (77) is given by the 2-norm and the
regularization functional S is of the form

S.U / WD �
�Z

˝0

ˇ̌r U.x/ˇ̌p dx

�1=p

C �
�Z

˝0

ˇ̌
U.x/

ˇ̌q
dx

�1=q

: (84)

http://dx.doi.org/10.1007/978-1-4939-0790-8_23
http://dx.doi.org/10.1007/978-1-4939-0790-8_24
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Hence, choosing p D 1 and � D 0 gives the usual TV regularization. The
implementation works with a forward operator that models both amplitude and
phase contrast for any parallel beam geometry. Nuisance parameters! 7! C.!/ and
C0 are estimated by least-squares from tilt-series data and locality in tomographic
data is accounted for by constant continuation (section on p. 985). The main
scientific contribution of [164] is however a method for choosing the regularization
parameter that is specifically designed for highly noisy ET data.

Comments and Discussion
Variational methods, like TV regularization, often perform very well in reducing
speckle and noise if the choice of regularization functional correctly encodes
some of the a priori regularity properties of Utrue. An issue is however their
computational feasibility, and this is especially so for TV regularization in 3D
imaging. The non-differentiability of the regularization functional in TV makes it
difficult to directly use efficient gradient-based methods for solving (77). There are
several iterative approaches for this purpose, see chapter �Numerical Methods and
Applications in Total Variation Image Restoration for further details. This issue of
computational feasibility is also related to choosing the regularization parameter.
In contrast to iterative methods (section “Iterative Methods with Early Stopping”),
for variational approaches each choice of regularization parameter requires a new
iterative sequence. Hence, a critical part of computational feasibility is the ability to
choose the regularization parameter.

Another issue with TV regularization relates to the suitability of using the (83)
with p D 1. This results in reconstructions that often have too narrow dynamic
range and suffer from stair-casing. This might not be an issue for automated image
analysis tasks, like segmentation, but biologists consider such reconstructions to
have an “unnatural” appearance. As an alternative to standard TV regularization, one
could consider using other TV-like energy (semi) norms, e.g., empirical tests show
that using 1:1 � p � 1:5 in (84) gives reconstructions that compare favorably to TV
(the case p D 1) regarding noise/speckle reduction, while gray-scale variations are
recovered better. One can also consider Besov norms that are discretization-invariant
and better at recovering smoothly varying parts of the signal [105]. An interesting
approach is to consider the norm parameter p as a nuisance parameters and try
to estimate it from data, like in [182] for the Besov norm. Another is to combine
TV regularization with Bregman iterates and/or use higher-order TV methods to
better recover smoothly varying parts of the signal and reduce stair-casing [14].
An example, [193] considers a variant of Dirichlet regularization that makes use of
geometric information. This corresponds to choosing the regularization functional
S in (77) as

S.U / WD
Z
˝0

u
�

.U /.x/; �.U /.x/

	ˇ̌r U.x/ˇ̌2 dx

where 
.U /.x/ denotes the mean Gaussian curvature of the level-set surface of U
at x, and uWR2 ! RC is a user specified function. The optimization problem is by

http://dx.doi.org/10.1007/978-1-4939-0790-8_24
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solving an L2-gradient flow using calculus of variations. The method is compared
against SART, SIRT, and WBP on a tilt-series of a cryo-fixated in vitro specimen
with isolated HIV virions in aqueous buffer.

Finally, one may also consider using a norm in a variable Lebesgue space
(Theorem 2.15 and 2.17 in [36]). Already in [18] it was suggested that in image
reconstruction, a smoother image could be obtained by an interpolation technique
that uses a variable exponent that decreases monotonically from two to one as rU
increases, see comments in pp. 7–8 in [36]. This however leads to a non-convex
functional that is computationally difficult to handle. One approach is then use
+-tomography to determine the variable exponent. More precisely, consider the
regularization functional

S.U / WD
Z
˝0

ˇ̌r U.x/ˇ̌p.jr�.x/j/ dx (85)

where pWRC ! Œ1; 2� is monotonically decreasing, e.g., p.t/ D 2=.1C 2t/, and �
is pre-computed from data. If the singularities of � are at the same location as Utrue,
then using (85) instead of (83) yields much smoother reconstructions in regions of
moderate gradient and thus prevents stair-casing [33]. One can use ELT to calculate
� and use microlocal analysis to characterize the singularities of � that coincide with
those of Utrue (section on p. 994). Albeit convex, the downside of using (85) is that
it is not 1-homogenous, so multiplicative scaling might change the values of the
regularization functional.

Sparsity Promoting Regularization

Overview
As we have seen, sampling theory is at the heart of many image reconstruction algo-
rithms for tomography, like FBP/WBP (section “Backprojection-Based Methods”).
These methods make the assumption that noise is predominantly a high frequency
phenomena, whereas relevant image features occupy low frequencies of the signal.
Most signals are however sparse (compressible) is some suitable representation. It
turns out that this a priori knowledge, if properly utilized, allows one to recover the
signal from relatively few and/or highly noisy measurements.

A straightforward way to take advantage of sparsity often leads to solving (77)
with an 0-norm as regularization functional, which unfortunately is computationally
unfeasible. Within geophysics and other scientific/engineering disciplines, it has
been known since the late 1970s that one can use the computationally feasible
1-norm instead of the 0-norm is certain cases. This observation was put into a
formal mathematical setting in 2004 with the advent of a new sampling theory,
compressed sensing, which puts precise conditions on a linear inverse problem
for when the 1-norm on U 7! �.U / in (77) gives the sparsest solution [27]. The
field has since then exploded with several remarkable and far-reaching results, see
chapter �Compressive Sensing and the recent book [59] for an up-to-date survey.
Below we focus on the role of sparsity in ET.

http://dx.doi.org/10.1007/978-1-4939-0790-8_6
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A Priori Information
Let us start by formalizing the notion of sparsity. We say that �WX ! Y is a
sparsifying map for Utrue 2X whenever �.Utrue/ is “well approximated” by a low-
dimensional subspace of Y (Y is here some suitable vector space). A common
example is when there is a fixed set f�igi �X (dictionary) such that U �Pi ˛i�i
with most ˛i 	 0. In such case, Y is the space of sequences and �.U / WD f˛igi .
Another example is �.U / WD ˇ̌r U ˇ̌, which leads to TV regularization (section on
p. 1008).

Reconstruction Operator
Assume that � is a sparsifying map for Utrue 2X in (53) (or (54)). It is now natural
to consider the most sparse ML solution (55) by solving (77) using a regularization
functional given as the 0-norm of U 7! �.U /.

Much of the theoretical development in compressed sensing deals with when one
can replace this 0-norm with a 1-norm, the latter being computationally feasible.
Most of the mathematical results apply for linear finite dimensional reconstruction
problems (54) where the noise in data is additive Gaussian. If the matrix representing
the fully discretized forward operator (sensing matrix) fulfills certain mathematical
criteria (restricted isometry property and coherence w.r.t. the sparsifying map), then
the optimization below yields the sparsest solution to (54):

min
U2Rn �

���.U /��1 C
��T .U / � g��2

Rm
for g 2 R

m given as in (54).

Adaptation to ET
Ideas of applying compressed sensing to ET have been discussed in [17] for STEM
data from material science specimens. The forward operator is the ray transform
and the data discrepancy functional is based on additive Gaussian noise model.
The paper discusses dictionaries, like blobs (p. 1005), but examples show TV
regularization.

Comments and Discussion
A key step in using sparsity is to suggest a sparsifying map. There is a wide
range of (possibly over-complete) dictionaries, both analytic and learned, to choose
from for sparsely representing texture/gray scale and edge information in images
[48, 163]. Which ones are suitable for a specific ET application? As an example,
the sparsest representation of a molecule is simply given by listing its atoms and
their positions, e.g., following the RCSB Protein Data Bank specification. The
corresponding sparsifying map is however only applicable when the electrostatic
potential (the real part of the signal) is resolved to a 3D resolution of about 0:1 nm,
which is way beyond what is reachable in ET applications in biology. Still, there
are several notions for describing 3D structural information in macromolecular
assemblies that could be used in the design of dictionaries. As an example, tertiary
and quaternary structure descriptions are resolvable in ET, but it is unclear what
dictionaries to use for encoding such structural information.
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The next key issue is to what extent we have a sensing matrix that fulfills
the criteria for replacing the 0-norm with the 1-norm. Unfortunately, there are no
efficient methods for determining whether a sensing matrix is coherent w.r.t. a
dictionary and/or fulfills the restricted isometry property. As an example, it is an
open problem to provide deterministic and explicit methods that yield matrices that
fulfill the restricted isometry property. On the other hand, it is well known that a
random matrix will satisfy the restricted isometry property with high probability if
its entries are samples of any sub-gaussian distribution [39, section 1.4.4]. There are
also results in this direction for certain deterministic sensing matrices [21], but none
of these results are applicable to ET.

Other Reconstruction Schemes

Here we very briefly mention other reconstruction methods used in ET. In [2]
one applies geometric tomography to ET on STEM data from material sciences
specimens. A similar approach is discrete tomography that was applied in [29] to
ET on TEM data from biological specimens. This did not bring any benefits, but the
situation is different in material sciences [12], see also comments regarding discrete
ART on p. 1005.

Another approach deals with simultaneous reconstruction and segmentation
within the framework of variational methods. Here, the Mumford–Shah functional
can be used, see chapter �Mumford and Shah Model and Its Applications to Image
Segmentation and Image Restoration for an extensive review. In [94] one applies
this approach to simulated ET data, and results are encouraging.

Finally, there is the possibility of making use of a priori shape information in the
regularization (shape-based regularization). Shapes constitute the most important
a priori knowledge that biologists use in their analysis of 3D reconstructions. A
difficulty is that shapes are complex objects that are difficult to precisely describe as
mathematical entities in a way feasible for computational treatment. Next, in biology
no two objects have identical shape. Hence, the notion of shape must incorporate
some form of statistics. The first approach to demonstrate the importance of shape
information in the context of ET was taken in [69]. Here, variational regularization
is used with a regularization functional that is based on a spatial prior that encodes
local shape related geometric information. The interesting outcome of this attempt
is that prescribing shape information on a small sub-set of the region of interest
sharpens the entire reconstruction. An entirely different approach, that is much more
robust against misspecification in a priori shape information, is based on shape
metrics from the Large Deformation Diffeomorphic Metric Mapping (LDDM)
framework in [194], see also chapter � Shape Spaces. The idea is that one has shape
information given as a set of regionsO WD f˝j gjD1;:::;k � ˝0 with associated shape
templates I WD fIj gjD1;:::;k where Ij W˝j ! R is such that

Utrue

ˇ̌
˝j
	 �j :Ij for some admissible diffeomorphism �j 2 G.

http://dx.doi.org/10.1007/978-1-4939-0790-8_25
http://dx.doi.org/10.1007/978-1-4939-0790-8_55
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Here, G is the group of admissible diffeomorphisms that acts by the natural group
action on the set X of potentials. The above simply encodes the assumption that
shapes of certain substructures in the specimen, namely those contain in ˝j , are
known up to a deformation. Such information can be obtained from an initial 3D
reconstruction, or by prior knowledge. Shape-based regularization is now defined
as variational regularization (77) with S given as

S.U / WD Sreg.U /C ˛Sshape.U IO;I;�/ (86)

where Sreg encodes a priori regularity properties of Utrue and Sshape is the shape
functional accounting for shape information given by O and I:

Sshape
�
U IO;I;�	 WD min

�1;:::;�k2G

kX
jD1

�
dshape

�
U
ˇ̌
˝j
; Ij

	2 C �j
����j :Ij � U ˇ̌˝j

���
2

�
:

In the above, dshape is the shape metric given by LDDM [194] that measures the
shape similarity between the shape template and Utrue. Hence, one combines an
energy functional for regularity (like TV or Dirichlet energy) with a shape metric
against a shape template [138]. Initial tests on 2D tomography (see Fig. 7) show that
it is clear that a priori shape information, even imperfect, has a great potential in
improving the reconstruction.

10 Validation

A serious obstacle in the development of computational methods for ET is the lack
of proper validation tools. None of the reconstruction methods mentioned in this
review has been validated mathematically (e.g., proof of convergence and error
estimates) in a context that is relevant for ET. Moreover, there are no theoretical
results that give bounds on the best possible “resolution,” partly because it is unclear
what notion of resolution to use. Hence, validation must be based on ET data
from phantoms (specimens whose structure/potential is precisely known). Physical
phantoms, i.e., physical specimens with a precisely known structure, only exist in
material sciences. Hence, for many ET application one is confined to simulated data.
To avoid committing an “inverse crime,” both the simulator and phantom generator
need to be as accurate as possible. This is nontrivial as explained in [166, 187].

Finally, there is the issue of defining objective criteria for evaluating the quality
of a reconstruction. This is closely related to the problem of defining a notion of
resolution. Statistical approaches based on defining figures-of-merit are outlined in
[30], but this approach only works for validation against simulate data.

Notion of Resolution
Intuitively one would expect that resolution quantifies the size of the smallest
features that can be reliably reconstructed. Due to formal non-uniqueness (section
“Incomplete Data, Uniqueness and Stability”) in ET, one needs a notion of
resolution for the visible wavefront set. This in turn requires precise control of the
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Slightly noisy 2D parallel beam tomographic data of (b) from three directions,
0◦, 45◦, and 90◦.
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larization using (c).
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smooth edges).

Shaped based regu-
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Fig. 7 Test of 2D tomography with imperfect shape information. All reconstructions are based
on data in (a). It is interesting to see how edge smoothness of the shape template affects the
reconstruction. (a) Slightly noisy 2D parallel beam tomographic data of (b) from three directions,
0ı, 45ı, and 90ı. (b) The phantom. (c) Shape template. (d) Shape-based regularization using (c).
(e) FBP reconstruction. (f) Shape template (with smooth edges). (g) Shape-based regularization
using (f)

constants in the Sobolev estimates that characterize the visible wavefront set. Some
work in this direction is pursued in [153]. Secondly, it would also be of interest to
have the corresponding characterization of visible wavefronts when the PSFs for
the TEM optics and detector are included, and/or when on considers the full inverse
scattering problem (i.e., the scattering operator is given by (6)).

The notions of resolution used in ET are all essentially different ways of
estimating the spectral signal-to-noise ratio [144]. A serious drawback is that these
notions do not account for the main degrading factor, the influence of the shot noise
(section “Characteristics of the Noise”). Thus, a notion of resolution in ET has to
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Fig. 8 Surface rendered electrostatic potentials calculated from atomic resolution models of a
CPMV (left), a bacteriophage T4 head (middle), and a TMV (right) particle. The CPMV virion has
a diameter of 28 nm [112], T4 bacteriophage head has a “diameter” of about 80 nm [108], and a
TMV virion is about 300 nm long and 18 nm in diameter [132]. Hence, the diameter of the CPMV
is about 1/3 of the diameter of the bacteriophage T4 head and 1.5 times the diameter of the TMV

include probabilistic concepts, see, e.g., [157, 180, 190] for ideas along these lines.
To summarize, there is still no useful notion of resolution for ET.

11 Examples

This section shows results of different reconstructions methods applied to simulated
and experimental single-axis tilt-series data, the latter courtesy of FEI. The WBP
and SIRT reconstructions are obtained using IMOD v. 4.3.7 [124], the approximate
inverse reconstructions are from Holger Kohr based on [102], and the variational
regularization reconstructions are by software from Hans Rullgård based on [164].

Regularization Parameters
For WBP, it is the distance r (in pixels) of the radial reconstruction kernel in Fourier
space before it is cut-off by a Gaussian with variance 
 . For SIRT it is the number
of iterations. For approximate inverse, it is the width � of the Gaussian mollifier
(paragraph on p. 999), and for variational methods, it is � in (77).

Tilt-series data is not processed. WBP and SIRT assume data are samples
of the ray transform, whereas the variational and approximate inverse methods
implement (57) in which the PSF models the optics and the detector in the standard
phase contrast model (section on p. 967).

Balls

This is a simulated single-axis tilt-series generated using the TEM simulation
software in [166] of a phantom consisting of 40 balls with different size and contrast
embedded in aqueous buffer.

Simulations represent a single-axis tilt-series acquired from a 300 keV con-
ventional bright-field TEM. The tilt-angle ranges from �60ı to 60ı with one

http://www.fei.com
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a b c

d e f
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Fig. 9 Simulated data from a balls phantom. (a) shows a 2D cross-section of the phantom and (b)
is the zero-tilt image, with (c) showing the noise-free version. The remaining images show the same
2D cross section as in (a) through different reconstructions. (a) 3D phantom. (b) 0ı micrograph.
(c) 0ı micrograph (no noise). (d) WBP with r D 1:10 and 
 D 0:1. (e) SIRT stopped after ten
iterations. (f) Approximate inverse with � D 30. (g) TV (p D 1 in (83)) with � D 800. (h) The
case p D 1:5 in (83) and � D 800. (i) The case p D 2 in (83) and � D 800
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a

b c d

Fig. 10 Summary of experimental tilt-series. Top image (a) shows the zero-tilt micrograph and
bottom row (b)–(d) show the three extracted regions that contain the particles illustrated in Fig. 8.
(a) The 0:12ı tilt micrograph, a 4096 � 4096 image in the aligned tilt-series. (b) Region 1 with
CPMV. (c) Region 2 with bacteriophage T4 head. (d) Region 3 with TMV (Data courtesy of http://
www.fei.com/)

I

Fig. 11 (continued) 2D slices through 3D reconstructions of the three regions of interest using
different reconstruction methods. Images (a)–(f) are from region 1, (g)–(l) are from region 2,
and (m)–(r) are from region 3. (a) WBP with r D 1:1 and 
 D 0:2. (b) SIRT stopped after
ten iterations. (c) Approximate inverse with � D 42. (d) TV (p D 1 in (83)) with � D 1;500. (e)
The case p D 1:5 in (83) and � D 1;500. (f) The case p D 2 in (83) and � D 1;500. (g) WBP
with r D 1:2 and 
 D 0:4. (h) SIRT stopped after ten iterations. (i) Approximate inverse with
� D 42. (j) TV (p D 1 in (83)) with � D 1;500. (k) The case p D 1:5 in (83) and � D 1;500.
(l) The case p D 2:0 in (83) and � D 1;500. (m) WBP with r D 1:01 and 
 D 0:5. (n) SIRT
stopped after ten iterations. (o) Approximate inverse with � D 30. (p) TV (p D 1 in (83)) with
� D 1;500. (q) The case p D 1:5 in (83) and � D 1;500. (r) The case p D 2:0 in (83) and
� D 1;500 (Data courtesy of http://www.fei.com/)

http://www.fei.com/
http://www.fei.com/
http://www.fei.com/
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Fig. 11 (continued)
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micrograph every second degree, i.e., 61 micrographs in total. The 3D region of
interest ˝0 is a rectangular 210 � 250 � 40 voxel region, with 0:5 nm voxels.
Magnification is 25;000�, defocus is 3 �m, f D 2:7 mm (focal length), Cs D
2:1 mm (spherical aberration), Cc D 2:2 mm (chromatic aberration), aperture
diameter is 40 �m, and ˛c D 0:1 mrad (condenser aperture angle). The detector has
16 �m pixels, Cgain D 80, and detector response follows (56) with a D 0:7; b D
0:2; c D 0:1; ˛ D 10, and ˇ D 40. Finally, the total dose is 6;000 e�=nm2, which
corresponds to 40 e�=pixel in each micrograph.

Virions and Bacteriophages in Aqueous Buffer

This is an experimental single-axis tilt series of a cryo-fixated in vitro specimen
that contains a mixture of TMV, Keyhole Limpet Hemocyanin, CPMV, and
T4 bacteriophage particles in aqueous buffer, see Fig. 8.

The single-axis tilt-series was acquired by FEI using a 300 keV conventional
bright-field TEM (FEI Titan Krios with a Falcon direct electron detector). It consists
of 81 micrographs that were aligned using IMOD software [124]. There are three
regions of interest listed below (voxel size is 0:4767 nm):

Region 1: 512 � 256 � 200 containing mainly CPMV virions, see Fig. 10b for
corresponding cut-out from the zero-tilt micrograph.

Region 2: 512 � 256 � 350 containing mainly a single bacteriophage T4 head, see
Fig. 10c for corresponding cut-out from the zero-tilt micrograph.

Region 3: 512 � 256 � 350 containing mainly portion of a single TMV virion, see
Fig. 10d for corresponding cut-out from the zero-tilt micrograph.

Micrographs are acquired at 29;370� magnification using a defocus of 6:0 �m
and a detector with a pixel size of 14 �m. The total dose is unknown. So are the
parameters for the TEM electron optical elements and illumination (Figs. 9, 10,
and 11).

12 Conclusion

Much of the development in ET has circled around new improved and sample
preparation. There has been tremendous progress in increasing the resolving power
in electron optical elements, which in turn is important for imaging in material
sciences. Current state-of-the-art TEMs have an optical resolving power of 0:05 nm
[93], which is to be compared to the “size” of an isolated neutral atom that ranges
between 0.03 and 0:3 nm. There are also strong indications that we are reaching the
physical limits for the optical resolving power of an electron microscope, and that is
not due to imperfections in optics but rather “noise” from the specimen [158]. Thus,
it is reasonable to assume that the optical resolving power will not improve much
beyond 0:05 nm.

http://www.fei.com
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For ET in life sciences, the aforementioned development is not that relevant
since the resolving power of the TEM optics does not limit the 3D “resolution.”
Instead, the limitation here is due to the noise in image data, which in turn is due
to the limited dose (section “The Dose Problem”). On the other hand, technological
development regarding automation in sample preparation and data collection will
have a big impact on ET in life sciences. TEMs are now stable enough to allow
for automated recording of multiple tilt-series from multiple regions of interests
within one or multiple specimens. Thus, the amount of available high-quality tilt-
series is rapidly increasing and mathematics will have a key role in providing
better 3D reconstructions as well as extracting useful information from such 3D
reconstructions.

The inverse problem in ET also contains open mathematical problems, e.g., there
are open problems related to uniqueness and stability (section “Incomplete Data,
Uniqueness, and Stability”). Furthermore, the design of regularization methods need
to better account for the regularity/sparsity that a specimen poses. An example
is the variants of TV type of regularization which need to be analyzed carefully
from this viewpoint. Notions of sparsity and shape that are applicable to flexible
molecular assemblies and/or subcellular structures is a central theme. Yet another
central topic is the regularization parameter selection in problems with highly noisy
data and/or complex noise models (Poisson and Gaussian, or correlated Poisson
and Gaussian). Another area where much remains to be done is to mathematically
analyze intertwined reconstruction schemes. These are approaches for handling
nuisance parameters (paragraph on p. 989) in the context of classical regularization
that often work surprisingly well. Finally, the high level of noise in ET indicates
that the best framework for reconstruction is offered by statistical regularization.
This framework is yet to be applied to ET in the sense that one recovers not only
a single estimator but also a measure of the uncertainty. Statistical regularization is
computationally demanding, so it has had limited applications to imaging problems.
Nevertheless, it can be successfully applied to real 3D tomography problems [182],
so the approach should also be applicable to ET.
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Abstract
This chapter discusses diffuse optical tomography. We present the origins of this
method in terms of spectroscopic analysis of tissue using near-infrared light and
its extension to an imaging modality. Models for light propagation at the macro-
scopic and mesoscopic scale are developed from the radiative transfer equation
(RTE). Both time- and frequency-domain systems are discussed. Some formal
results based on Green’s function models are presented, and numerical methods
are described based on discrete finite element method (FEM) models and a
Bayesian framework for image reconstruction. Finally, some open questions are
discussed.

1 Introduction

Optical imaging in general covers a wide range of topics. In this chapter, we mean
techniques for indirect imaging using light as a method for obtaining observations
of a subject. In a typical experiment, a highly scattering medium is illuminated by
a narrow collimated beam, and the light that propagates through the medium is
collected by an array of detectors. There are many variants of this basic scenario.
For instance, the source may be pulsed or time harmonic, coherent, or incoherent,
and the illumination may be spatially structured or multispectral. Likewise, the
detector may be time or frequency resolved, polarization or phase sensitive, located
in the near or far field, and so on. The inverse problem that is considered is to
reconstruct the optical properties of the medium from boundary measurements.
The mathematical formulation of the corresponding forward problem is dictated
primarily by spatial scale, ranging from the Maxwell equations at the microscale
to the radiative transport equation at the mesoscale and to the diffusion theory at
the macroscale. In addition, experimental time scales vary from the femtosecond on
which light pulses are generated, through the nanosecond on which diffuse waves
propagate, to the millisecond scale on which biological activation takes place and
still longer for pathophysiologic changes.

In this chapter, we concentrate primarily on the macroscopic scale and the
diffusion model for light propagation. The derivation of this model and its limits
of applicability are discussed in section “Radiative Transfer Equation.” Historically,
a large amount of early development considered analytic forms for the Green’s func-
tion of the diffusion equation and series expressions for the effect of perturbations of
these propagators by inhomogeneities; usually, only first-order linear methods were
considered. These are discussed in section “Green’s Functions and the Robin to
Neumann Map.” As computational methods become more readily available, more
sophisticated approaches using optimization and Bayesian methods are becoming
more accepted. We discuss these approaches in Sect. 4.
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2 Background

Figure 1 schematically illustrates the two main types of measurement system: time
resolved and intensity modulated. In the former, a short duration pulse �5–10 ps
is employed, and in the latter, a steady-state intensity is created, modulated at a
frequency in the range 100–1;000 MHz. Obviously, the spectrum of frequencies
in the time domain is many order higher than in the frequency-domain systems
themselves, although the higher frequencies are very heavily damped and carry no
information. A third domain is “DC” systems – these are the same as frequency
domain, without the modulation. They are much simpler and cheaper, but without a
complex wave, the inverse problem is nonunique [6].

Spectroscopic Measurements

Attenuation of light in the near infrared (NIR) is due to absorption and scattering.
The parameter of most interest is absorption which is caused by chromophores
of variable concentration such as hemoglobin in its oxygenated and deoxygenated
states. In the absence of scattering, the change in light intensity obeys the Beer–
Lambert law

� ln
Iin

Iout
D �a d D ˛cŒc�d; (1)

where d is the source-detector separation, which is equal to the optical path length,
Œc� is the concentration of chromophore c, and ˛c is the absorption coefficient per
unit length per unit concentration of chromophore c and can usually be obtained in
vitro. In the presence of scattering, the optical path length of transmitted photons

T
is

su
e

Time

T
is

su
e

Phase shift

DC amplitude

AC amplitude

Time

Iin = Ain(1+Mineiwt) Iout = Aout(1+Moute
iwt)

Fig. 1 Optical transillumination measurements made with a time-resolved system (left) or an
intensity-modulated system (right)
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follows a much more complex relationship. Hence, attenuation measurements alone
do not allow quantification of chromophore concentration.

Continuous intensity (DC) instruments measure changes in the intensity of light
leaving the tissue surface [56]. This is frequently done in a purely spectroscopic
manner, i.e., to obtain only global changes in chromophore concentration. In order
to quantify concentration changes, additional information is required. One approach
is to derive an approximate differential path length factor (DPF), which restores the
approximate Beer–Lambert law for small changes in concentration

� ı ln
Iin

Iout
D DPF ı�a d: (2)

Since there are typically several contributing chromophores, light of different
wavelengths in the NIR region is employed, and regression techniques are used
to find their relative weightings [26]. It was shown empirically [29] that the DPF
is simply the mean time of light multiplied by the speed of light in the tissue. In
fact, this relationship follows naturally from the diffusion approximation of light
transport [8]. Furthermore, it is equally well approximated by the change in phase
of an intensity-modulated system, at least at low modulation frequencies.

Intensity-modulated measurements were first reported by [69]. Most systems use
a heterodyne technique to mix the transmitted light with a reference beam of slightly
different modulation frequency, thus producing a lower frequency envelope that is
easier to detect using RF equipment. Time-resolved systems were first developed
using a streak camera [29, 49, 73], an instrument with exceptionally high time
resolution in the picosecond range but with high cost, relatively low dynamic range,
and a significant inherent temporal nonlinearity due to a sinusoidal ramp voltage.
Alternatively, time-correlation single photon counting (TCSPC) systems measure
arrival times of individual photons by comparison with a reference pulse using a
time-to-amplitude converter (TAC) device [20, 79, 83]. These systems have a high
dynamic range and excellent temporal linearity.

Imaging Systems

Imaging methods can be divided into direct systems which seek to detect het-
erogeneities in tissue by analyzing the transmitted (or, in some cases, reflected)
light and indirect systems which attempt to solve the inverse problem of image
reconstruction. The latter is the main emphasis of this article although the former is
historically the precedent, in a similar manner in which x-ray radiographs were the
precursor to x-ray computed tomography (CT).

Transillumination of candle light for a patient suffering from hydrocephalus was
reported as early as 1831, but the first significant attempt at diagnostic imaging using
optical radiation was for breast lesions and was made by Cutler [27], who used a
lamp held under the breast in a darkened room. However, even at this stage, multiple
scattering effects caused a notable degradation in image quality. The recognition
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of this fact led to many attempts to eliminate or minimize the degradation due to
scattering ranging from collimation [55] and polarization discrimination [84] to
coherence gating using holographic gating [90] or heterodyne detection [82].

With the introduction of time-resolved detectors came the natural attempt to
use temporal gating to discriminate early arriving photons (which necessarily have
the shortest optical path and therefore suffer the least number of scatterings) from
later arriving photons which have undergone multiple scatterings and therefore have
ill-determined photon paths. The early implementations of this idea used a Kerr
gate as an ultrafast shutter [99]. However, this technique is limited to relatively
low-scattering media due to the small dynamic range of the Kerr shutter. Other
studies have been based on the streak camera [42] or TCSPC [19] systems described
in section “Spectroscopic Measurements.”

The attempt to physically discriminate between photons that have undergone
different numbers of scattering events is inherently limited by the statistical
likelihood of the low scattering number photons arriving at the detector. For the
relatively optically thick tissues that are of interest in breast cancer screening or
brain imaging, these photons are overwhelmed by noise. For this reason, indirect
methods that solve an inverse problem based on recovering the spatially varying
optical parameters that provide the best fit of a photon transport model with the
measured data are becoming more prevalent. Within this framework, the three
basic strategies (time resolved, intensity modulated, and DC systems) have all been
developed and reported. In addition, many different geometrical arrangements have
been investigated. Initial studies have been on 2D slice-by-slice imaging, although it
is apparent that the photon propagation must in reality be described by a 3D model.
Fully 3D methods are now appearing.

In the remainder of this article, we will discuss the inverse problem and the
strategies that have been adopted in order to solve it. In order to analyze this
problem, we first have to consider the model of photon transport in dense media.

3 Mathematical Modeling and Analysis

Radiative Transfer Equation

In optical imaging, light transport through a medium containing scattering particles
is described by transport theory [54]. In transport theory, the particle conservation
within a small volume element of phase space is investigated. The wave phe-
nomenon of particles is ignored. The transport theory can be modeled through
stochastic methods and deterministic methods. In the stochastic approach, individ-
ual particle interactions are modeled as the particles are scattered and absorbed
within the medium. The two stochastic methods that have been used in optical
imaging are the Monte Carlo method and the random walk theory, of which two,
the Monte Carlo is the most often used [5].

In deterministic approach, particle transport is described with integrodifferential
equations which can be solved either analytically or numerically [5]. In optical
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imaging, a widely accepted model for light transport is the radiative transport
equation (RTE). The RTE is a one-speed approximation of the transport equation,
and thus it basically assumes that the energy (or speed) of the particles does not
change in collisions and that the refractive index is constant within the medium. For
discussion of photon transport in medium with spatially varying refractive index,
see, e.g., [16, 36, 62, 72].

Let  � R
n; n D 2 or 3 denote the physical domain where n is the dimension of

the domain. The medium is considered isotropic in the sense that the probability of
scattering between two directions depends only on the relative angle between those
directions and not on an absolute direction. For discussion of light propagation in
anisotropic medium, see, e.g., [44]. Furthermore, let @ denote the boundary of the
domain and Os 2 Sn�1 denote a unit vector in the direction of interest. The RTE is
written in time domain as

1

c

@�.r; Os/
@t

C Os � r�.r; Os/C .�s C �a/�.r; Os/

D �s

Z
Sn�1

‚.Os � Os0/�.r; Os0/dOs0 C q.r; Os/ (3)

and in frequency domain as

i!

c
�.r; Os/C Os � r�.r; Os/C .�s C �a/�.r; Os/

D �s

Z
Sn�1

‚.Os � Os0/�.r; Os0/dOs0 C q.r; Os/; (4)

where c is the speed of light in the medium, i is the imaginary unit, ! is the angular
modulation frequency of the input signal, and �s D �s.r/ and �a D �a.r/ are the
scattering and absorption coefficients of the medium, respectively. The scattering
coefficient represents the probability per unit length of a photon being scattered,
and the absorption coefficient represents the probability per unit length of a photon
being absorbed. Furthermore, �.r; Os/ is the radiance,‚.Os � Os0/ is the scattering phase
function, and q.r; Os/ is the source inside . The radiance can be defined such that
the amount of power transfer in the infinitesimal angle dOs in direction Os at time t
through an infinitesimal area dS is given by

�.r; OsI t/Os � O�dSdOs;

where O� is the normal to the surface dS [54]. The scattering phase function‚.Os � Os0/
describes the probability that a photon with an initial direction Os0 will have a
direction Os after a scattering event. In optical imaging, the most usual phase function
for isotropic material is the Henyey–Greenstein scattering function [47] which is of
the form
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‚.Os � Os0/ D

8̂
<
:̂

1
2�

1�g2

.1Cg2�2g Os � Os0/ ; n D 2;

1
4�

1�g2

.1Cg2�2g Os � Os0/3=2 ; n D 3;
(5)

where g is the scattering shape parameter that defines the shape of the probability
density and it gets values between�1 < g < 1. With the value g D 0, the scattering
probability density is a uniform distribution. For forward dominated scattering, g >
0, and for backward dominated scattering, g < 0. The time-domain and frequency-
domain representations of the RTE are related through Fourier transform.

In order to obtain a unique solution for the RTE, the ingoing radiance distribution
on the boundary @, that is, �.r; Os/ for Os � O� < 0, where O� is the outward unit
normal, needs to be known [24]. Several boundary conditions can be applied to the
RTE [1, 33, 57]. In optical imaging, the boundary condition which assumes that no
photons travel in an inward direction at the boundary @ is used [5]

�.r; Os/ D 0; r 2 @; Os � On < 0: (6)

This boundary condition, also known as the free surface boundary condition and
the vacuum boundary condition, implies that once a photon escapes the domain
, it does not reenter it. The boundary condition (6) can be modified to include a
boundary source �0.r; Os/ at the source position "j � @, and it can be written in
the form [96]

�.r; Os/ D
(
�0.r; Os/; r 2 [j "j ; Os � On < 0

0; r 2 @n [j "j ; Os � On < 0:
(7)

In optical imaging, the measurable quantity is the exitance Jn.r/ on the boundary
of the domain. It is defined as [5]

Jn.r/ D
Z
Sn�1

.Os � O�/�.r; Os/dOs; r 2 @: (8)

Diffusion Approximation

In optical imaging, light propagation in tissues is usually modeled with the diffusion
approximation (DA) to the RTE. The most typical approach to derive the DA from
the RTE is to expand the radiance, the source term, and the phase function into series
using the spherical harmonics and truncate the series [5, 24, 33]. If the spherical
harmonics series is truncated at the N th moment, PN approximation is obtained
[5, 33]. The first-order spherical harmonics approximation is referred to as the P1

approximation, and the DA can be regarded as a special case for that. The most
typical approach for utilizing the PN approximations in optical imaging has been to
use them in angular discretization of the numerical solution of the RTE [14, 100].
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An alternative to the PN approximation is the Boltzmann hierarchy approach,
in which moments of radiance are used to form a set of coupled equations that
approximate the RTE [38]. Furthermore, the DA can be derived using asymptotic
techniques [7, 17] leading to generalized diffusion equation or by using projection
algebra [33, 57]. If the speed of light is not constant, a diffusion equation with
spatially varying indices of refraction can be derived [16].

Here, a short review of the derivation of the DA is given according to [54, 57].
First, the P1 approximation is derived, and then, the DA is formed as a special case
for that. In the DA framework, the radiance is approximated by

�.r; Os/ 	 1

jSn�1jˆ.r/C
n

jSn�1j Os � J.r/; (9)

whereˆ.r/ and J.r/ are the photon density and photon current which are defined as

ˆ.r/ D
Z
Sn�1

�.r; Os/dOs (10)

J.r/ D
Z
Sn�1
Os�.r; Os/dOs: (11)

By inserting the approximation (9) and similar approximations written for the source
term and phase function into Eq. 4 and following the derivation in [5, 54], the P1

approximation is obtained

�
i!

c
C �a

�
ˆ.r/Cr � J.r/ D q0.r/; (12)

�
i!

c
C �a C �0

s

�
J.r/C 1

n
rˆ.r/ D q1.r/; (13)

where �0
s D .1�g1/�s is the reduced scattering coefficient, q0.r/ and q1.r/ are the

isotropic and dipole components of the source, and g1 is the mean of the cosine of
the scattering angle [5, 57]

g1 D
Z
Sn�1

.Os � Os0/‚.Os � Os0/dOs: (14)

In the case of the Henyey–Greenstein scattering function, Eq. 5, we have g1 D g.
To derive the diffusion approximation, it is further assumed that the light source

is isotropic, thus q1.r/ D 0, and that i!
c
J.r/ D 0. The latter assumption, which in

time-domain case is of the form 1
c

@J.r/

@t
D 0, is usually justified by specifying the

condition �a � �0
s [5]. Utilizing these approximations, Eq. 13 gives the Fick’s law

J.r/ D ��rˆ.r/; (15)
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where

� D �.r/ D �n ��a C �0
s

		�1
(16)

is the diffusion coefficient. Substituting Eq. 15 into Eq. 12, the frequency-domain
version of the DA is obtained. It is of the form

� r � �rˆ.r/C �aˆ.r/C i!

c
ˆ.r/ D q0.r/: (17)

The DA has an analogue in time domain as well. It is of the form

� r � �rˆ.r/C �aˆ.r/C 1

c

@ˆ.r/

@t
D q0.r/: (18)

The time-domain and frequency-domain representations of the DA are related
through Fourier transform, similarly as in the case of the RTE.

Boundary Conditions for the DA
The boundary condition (6) cannot be expressed in terms of variables of the
diffusion approximation. Instead, there are a few boundary conditions that have
been applied to the DA. The simplest boundary condition is the Dirichlet boundary
condition which is also referred to as the zero-boundary condition. It sets the photon
density to zero on the boundary; thus, ˆ.r/ D 0; r 2 @ [40, 87]. Alternatively,
an extrapolated boundary condition can be used [33, 40, 87]. In the approach, the
photon density is set to zero on an extrapolated boundary which is a virtual boundary
outside the medium located at a certain distance from the real boundary. Both the
zero-boundary condition and the extrapolated boundary condition are physically
incorrect, and they have mostly been used because of their mathematical simplicity
[40].

The most often used boundary condition in optical imaging is the Robin bound-
ary condition which is also referred to as the partial current boundary condition
[4, 24, 33, 40, 54, 87]. It can be derived as follows. Within the P1 approximation
framework (9), the total inward- and outward-directed photon fluxes at a point
r 2 @ are

J�.r/ D �
Z

Os � On<0
.Os � On/�.r; Os/dOs D �nˆ.r/ � 1

2
O� �J.r/ (19)

JC.r/ D
Z

Os � On>0
.Os � On/�.r; Os/dOs D �nˆ.r/C 1

2
O� � J.r/; (20)

where �n is a dimension-dependent constant which obtains values �2 D 1=� and
�3 D 1=4 [57]. To derive the Robin boundary condition for the DA, it is assumed
that the total inward-directed photon flux on the boundary is zero; thus,

J�.r/ D 0; r 2 @: (21)
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Utilizing Eq. 19 and the Fick’s law (15), the Robin boundary condition can be
derived. It is of the form

ˆ.r/C 1

2�n
�
@ˆ.r/

@ O� D 0; r 2 @: (22)

The boundary condition (22) can be extended to include the reflection on the
boundary that is caused by different refractive indices between the object and the
surrounding medium. In that case, Eq. 21 is modified to the form

J�.r/ D RJC.r/; r 2 @; (23)

where R D R.x/ is the reflection coefficient on the boundary @, with 0 � R � 1
[57]. Thus, if R D 0, no boundary reflection occurs, and Eq. 23 is reduced into
Eq. 21. The parameter R can be derived from Fresnel’s law [40] or, if the refractive
index of the surrounding medium is nout D 1, by an experimental fit

R 	 �1:4399n�2
in C 0:7099n�1

in C 0:6681C 0:0636nin; (24)

where nin is the refractive index of the medium [87]. Utilizing Eqs. 19 and 20 and the
Fick’s law (15), the Robin boundary condition with mismatched refractive indices
can be derived. It takes the form

ˆ.r/C 1

2�n
��
@ˆ.r/

@ O� D 0; r 2 @; (25)

where � D .1 C R/=.1 � R/, with � D 1 in the case of no surface reflection.
The boundary conditions of the DA for an interface between two highly scattering
materials have been discussed, for example, in [4].

The exitance, Eq. 8, can be written utilizing Eqs. 19 and 20, the Fick’s law (15),
and the boundary condition (25). In the DA framework, the exitance is of the form

Jn.r/ D JC.r/ � J�.r/ D O� �J.r/

D �� @ˆ.r/
@ O� D 2�n

�
ˆ.r/; r 2 @: (26)

Source Models for the DA
In the DA framework, light sources are usually modeled by two approximate
models, namely, the collimated source model and the diffuse source model. In the
case of the collimated source model, the source is modeled as an isotropic point
source

q0.r/ D ı.r � rs/; (27)
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where position rs is located at a depth 1=�0
s below the source site [40, 87]. In the

case of the diffuse source model, the source is modeled as an inward-directed diffuse
boundary current Is at the source position "j � @ [87]. In the case of the diffuse
source model, Eq. 23 can be modified as

J�.r/ D RJC.r/C .1 � R/Is; r 2 [j "j : (28)

Then, following the similar procedure as earlier, the Robin boundary condition with
the diffuse source model is obtained. It is of the form

ˆ.r/C 1

2�n
��
@ˆ.r/

@ O� D
(
Is
�n
; r 2 [j "j

0; r 2 @n [j "j :
(29)

Validity of the DA
The basic condition for the validity of the DA is that the angular distribution of the
radiance is almost uniform. In order to achieve this, the medium must be scattering
dominated; thus, �a � �s . Most of the tissue types are highly scattering and the
DA can be regarded as a good approximation for modeling light propagation within
them. The DA has been found to describe light propagation with a good accuracy
in situations in which its assumptions are valid [63,80] and it has been successfully
applied in many applications of optical tomography.

However, the condition stating that the angular distribution of the radiance must
be almost uniform is violated close to the highly collimated light sources. In
addition, the condition cannot be fulfilled in strongly absorbing or low-scattering
tissues such as the cerebrospinal fluid which surrounds the brain and fills the
brain ventricles. Furthermore, in addition to the above conditions, the DA cannot
accommodate realistic boundary conditions or discontinuities at interfaces. The
diffusion theory has been found to fail in situations in which its approximations are
not valid such as close to the sources [35, 87] and within the low-scattering regions
[37, 48].

Numerical SolutionMethods for the DA
The analytical solutions of the RTE and its approximations are often restricted to
certain specific geometries, and therefore, their exploitability in optical imaging is
limited. Therefore, the equations describing light propagation are usually solved
with numerical methods. The most often applied numerical methods are the finite
difference method and the finite element method (FEM). The latter is generally
regarded as more flexible when issues of implementing different boundary con-
ditions and handling complex geometries are considered, and therefore, it is most
often chosen as the method for solving equations governing light transport in tissues.

The FE model for the time-varying DA was introduced in [9]. It was later
extended to address the topics of boundary conditions and source models [80, 87]
and the frequency-domain case of the DA [86]. It can be regarded as the most typical
approach to numerically solve the DA.
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Hybrid Approaches Utilizing the DA

To overcome the limitations of the diffusion theory close to the light sources and
within low-scattering and non-scattering regions, different hybrid approaches and
approximate models have been developed.

The hybrid Monte Carlo diffusion method was developed to overcome the
limitations of the DA close to the light sources. In the approach, Monte Carlo
simulation is combined with the diffusion theory. The method was introduced in [98]
to describe light reflectance in a semi-infinite turbid medium, and it was extended
for turbid slabs in [97]. In the hybrid Monte Carlo diffusion approach, Monte
Carlo method is used to simulate light propagation close to the light source and
the DA is analytically solved elsewhere in the domain. Monte Carlo is known to
describe light propagation accurately. However, it has the disadvantage of requiring
a long computation time. This has effects on computation times of the hybrid
Monte Carlo approaches as well. A hybrid radiative transfer–diffusion model to
describe light propagation in highly scattering medium was introduced in [93].
In the approach, light propagation is modeled with the RTE close to the light
sources, and the DA is used elsewhere in the domain. The solution of the RTE
is used to construct a Dirichlet boundary condition for the DA on a fictitious
interface within the object. Both the RTE and the DA are numerically solved with
the FEM.

Different hybrid approaches and approximate models have been applied for
highly scattering media with low-scattering and non-scattering regions. Methods
that combine Monte Carlo simulation with diffusion theory have been applied
for turbid media with low-scattering regions. The finite element approximation of
the DA and the Monte Carlo simulation was combined in [41] to describe light
propagation in a scattering medium with a low-scattering layer. However, also
in this case, the approach suffers from the time-consuming nature of the Monte
Carlo methods. Moreover, the hybrid Monte Carlo diffusion methods often require
iterative mapping between the models which increases computation times even
more. The radiosity–diffusion model [10, 37] can be applied for highly scattering
media with non-scattering regions. The method uses the FE solution of the DA to
model light propagation within highly scattering regions and the radiosity model
to model light propagation within non-scattering regions. A coupled transport and
diffusion model was introduced in [18]. In the model, the transport and diffusion
models are coupled, and iterative mapping between the models is used for the
forward solution. Furthermore, a coupled radiative transfer equation and diffusion
approximation model for optical tomography was introduced in [94] and extended
for domains with low-scattering regions in [92]. In the approach, the RTE is used
as the forward model in sub-domains in which the assumptions of the DA are not
valid and the DA is used elsewhere in the domain. The RTE and DA are coupled
through boundary conditions between the RTE and DA sub-domains and solved
simultaneously using the FEM.
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Green’s Functions and the Robin to Neumann Map

Some insight into light propagation in diffusive media can be gained by examin-
ing infinite media. In particular, verification of optical scattering and absorption
parameters is frequently made with source and detector fibers immersed in a
large container and far from the container walls. In a finite domain, however,
we will need to use boundary conditions. We will distinguish between solutions
to the homogeneous equation with inhomogeneous boundary conditions and the
inhomogeneous equation with homogeneous boundary conditions. In the latter case,
we can use a Green’s function acting on q0. In the former case, we use a Green’s
function acting on a specified boundary function.

We will use the notationG for the Green’s function for the inhomogeneous form
of (18) with homogeneous boundary conditions and G@ for the Green’s function
for the homogeneous form of (18) with inhomogeneous boundary conditions, i.e.,
we have G solving

�r � �.r/rG.r; r0; t; t 0/C
�
�a.r/C 1

c

@

@t

�
G.r; r0; t; t 0/ D ı.r0/ı.t 0/(30)

r; r0 2 n@; t > t 0

G.rd; r0; t; t 0/C 2��.rd/
@G.rd; r0; t; t 0/

@�
D 0 (31)

rd 2 @

and G@ solving

�r � �.r/rG@.r; rs; t; t
0/C

�
�a.r/C 1

c

@

@t

�
G@.r; rs; t; t

0/ D 0 (32)

r 2 n@; t > t 0

G@.rd; rs; t; t
0/C 2��.rd/

@G@.rd; rs; t; t
0/

@�
D ı.rs/ı.t

0/ (33)

rs; rd 2 @:

For a given Green’s function G, we define the corresponding Green’s operator as
the integral transform with G as its kernel:

Gf :D
Z 1

�1

Z


G.r; r0; t; t 0/f .r0; t 0/dnr0dt:

For the measureable, we define the boundary derivative operator as
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B :D � � @
@�
;

where appropriate we will use the simplifying notation

GB :DBG

to mean the result of taking the boundary data for a Green’s function.
Since (18) is parabolic, we must not simultaneously specify both Dirichlet

and Neumann boundary conditions on the whole of @. The same is true if we
convert to the frequency domain and use a complex elliptic equation to describe
the propagation of the Fourier transform of ˆ. Instead, we specify their linear
combination through the Robin condition (25). Then, for any specified value q on
@, we will get data y given by (26). The linear mapping ƒq ! y is termed the
Robin to Neumann map and can be considered the result of a boundary derivative
operator B acting on the Green’s operator with kernel G@

ƒRtN.�; �a/q D BG@q:

Since the Neumann data and Dirichlet data are related by (25), we may also define
the Robin to Dirichlet map ƒRtD.�; �a/ and specify the relationship

ƒRtD.�; �a/� 2�ƒRtN.�; �a/� I D 0 (34)

The Forward Problem

The Robin to Neumann map is a linear operator mapping boundary sources to
boundary data. For the inverse problem, we have to consider a nonlinear mapping
from the space of �a; � coefficients to the boundary data.

When considering an incoming flux J� with corresponding boundary term q, the
data is a function of one variable

yq D Fq
�
�a

�

�
; (35)

which gives the boundary data for the particular source term q D D�.J�/. Using
this notation, we consider the forward mapping for a finite number of sources˚
qj I j D 1 : : : S



as a parallel set of projections

y D F
�
�a

�

�
; (36)

where

F :D .F1; : : : ;FS /T (37)

y :D .y1; : : : ; yS /
T : (38)
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We will consider (36) as a mapping from two continuous functions in solution
space �a; � 2 X./ � X./ to continuous functions in data space y 2 Y.@/. If
the data is sampled as well (which is the case in practice), then F is sampled at a set
of measurement positions frdi I i D 1; : : :M g.

The inverse problem of diffusion-based optical tomography (DOT) is to deter-
mine �; �a from the values of y for all incoming boundary distributions q. If �; �a

are found, we can determine �0
s through (16).

Schrödinger Form

Problem (17) can be put into Schrödinger form using the Liouville transformation.
We make the change of variables U D �1=2ˆ, by which (17) becomes

��r 2ˆ � 2�1=2r�1=2 � rˆC
�
�a C i!

c

�
ˆ D q0:

Using

r 2U D �1=2r 2ˆC 2rˆ � r�1=2 Cˆr 2�1=2

leads to

� r 2U.rI!/C k2.rI!/U.rI!/ D q0.rI!/
�1=2.r/

(39)

r 2 =@ (40)

U.rdI!/C 2��.rd/
@U.rdI!/

@�
D �1=2.rd/q.rdI!/ (41)

rd 2 @; (42)

where

k2 D r
2�1=2

�1=2
C �a

�
C i!

c�
:

If k2 is real (i.e., ! D 0), there exist infinitely many �; �a pairs with the same
real k2, so that the measurement of DC data cannot allow the separable unique
reconstruction of � and �a [6]. For ! ¤ 0, the unique determination of a complex
k2 should be possible by extension of the uniqueness theorem of Sylvester and
Uhlmann [91]. From the complex k2, it is in principle possible to obtain separable
reconstruction of first � from the imaginary part of k2 and �a from the real part;
see [74] for further discussion.

In a homogeneous medium, with constant optical parameters �a; �, we can
simplify (42) to

� r 2ˆ.rI!/C k2ˆ.rI!/ D qH .rI!/; (43)
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with the same boundary condition (25) and with

k2 D
�
�ac C i!

c�

�
I qH D q0.rI!/

�
: (44)

This equation is also seen directly from (17) for constant �.
The solution in simple geometries is easily derived using the appropriate Green’s

functions [8]. In an infinite medium, this is simply a spherical wave

ˆ.rI!/ 
 G.r; rsI!/ D e˙kjr�rsj

jr � rsj ; (45)

where the notation G.r; rsI!/ defines Green’s function for a source at position rs.
Due to the real part of the wave number k, this wave is damped. This fact is the main
reason that results from diffraction tomography are not always straightforwardly
applicable in optical tomography. In particular, for the case ! D 0, the wave is
wholly non-propagating. Even as ! ! 1, the imaginary part of the wave number
never exceeds the real part. This is a simple consequence of the parabolic nature of
the diffusion approximation. Although hyperbolic approximations can be made too,
they do not ameliorate the situation.

Perturbation Analysis

An important tool in scattering problems in general is the approximation of the
change in field due to a change in state, developed in a series based on known
functions for the reference state. There are two common approaches which we now
discuss.

Born Approximation
For the Born approximation, we assume that we have a reference state x0 D
.�a; �/

T, with a corresponding wave ˆ, and that we want to find the scattered wave
ˆı due to a change in state xı D .˛; ˇ/T. We have

� D � C ˇ ; �a D �a C ˛ : (46)

Note that it is not necessary to assume that the initial state is homogeneous.
Putting (46) into (17) gives

� r � .� C ˇ/r Q̂ .rI!/C
�
�a C ˛ C i!

c

�
Q̂ .rI!/ D q0.rI!/ (47)

with

Q̂ D ˆCˆı: (48)
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Equation 47 can be solved using the Green’s operator for the reference state

Q̂ D G0
�
q0 Cr � ˇr Q̂ � ˛ Q̂

�
: (49)

With G0, Green’s function for the reference state, we have

Q̂ .rI!/ D ˆ.rI!/C
Z


�
G0.r; r0I!/rr 0 �ˇ.r0/rr 0 Q̂ .r0I!/ � ˛.r0/ Q̂ .r0I!/	 dnr0

D ˆ.rI!/ �
Z


�
ˇ.r0/rr 0G0.r; r0I!/ � rr 0 Q̂ .r0I!/

˛.r0/G0.r; r0I!/ Q̂ .r0I!/	 ; (50)

where we used the divergence theorem and assumed ˇ.rd/ D 0I rd 2 @.
If we define a “potential” as the differential operator

V.˛; ˇ/ :Dr � ˇr � ˛; (51)

we can recognize (49) as a Dyson equation and write it in the form

ŒI � G0V � Q̂ D G0q0: (52)

This may by formally solved by a Neumann series,

G0

ŒI� G0V �
D G0 C G0VG0 C G0VG0VG0 C � � � (53)

or, equivalently, by using (48) in (50) to obtain the Born series

Q̂ D ˆ.0/ Cˆ.1/ Cˆ.2/ C � � � ; (54)

where

ˆ.0/ D ˆ
ˆ.1/ D G0Vˆ

ˆ.2/ D G0VG0Vˆ
:::

Rytov Approximation
The Rytov approximation is derived by considering the logarithm of the field as a
complex phase [54, 60]:

ˆ.rI!/ D eu.rI!/ (55)
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so that, in place of (48), we have

ln Q̂ D lnˆC uı: (56)

Putting ˆ D eu0 into (17), we get

�ˆr � �ru0 �ˆ� jru0j2 C Q̂
�
�a C i!

c

�
D q0: (57)

Putting ˆ D ˆeuı and (46) into (17), we get

� Q̂ r � .� C ˇ/r �u0 C uı
	� Q̂ .� C ˇ/ ˇ̌r �u0 C uı

	ˇ̌2 C Q̂ ��a C ˛ C i!
c

	 D q0:

(58)

Subtracting (57) from (58) and assuming Q̂ D ˆ over the support of q0, we get

��
�

2ru0 � ruı C ˇ̌ruı
ˇ̌2�� r � �ruı

D r � ˇr �u0 C uı
	C ˇ ˇ̌r �u0 C uı

	ˇ̌2 � ˛: (59)

We now make use of the relation

r � �ruıˆ D ˆr � �ruı C 2�rˆ � ruı C uır � �rˆ (60)

D ˆ �r � �ruı C 2ˆ�ru0 � ruı
	C uır � �rˆ: (61)

The last term on the right is substituted from (17) to give

r � �ruı C 2�ru0 � ruı D r � �ruıˆ

ˆ
C uı

�
�a C i!

c

�
� q0

ˆ
: (62)

Substituting (62) into (59) and using

ˆr � ˇru0 Cˆˇ jru0j2 D r � ˇr .ˆu0/

we arrive at

�r � �ruıˆC
�
�a C i!

c

�
uıˆ

D r � ˇrˆ � ˛ˆCˆr � ˇruı C � ˇ̌ruı
ˇ̌2
: (63)

The approximation comes in neglecting the last two terms on the right, which
are second order in the small perturbation. The left-hand side is the unperturbed
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Fig. 2 Top: absorption and scattering images used to generate complex fields. Disk diameter
50 mm, absorption range �a 2 Œ0:01–0:04�mm�1, scatter range �0

s 2 Œ1–4�mm�1. The complex
field ˆ was calculated using a 2D FEM for a ı-function source on the boundary at the 3 o’clock
position. A reference field ˆ was calculated for the same source and a homogeneous disk with
�a D 0:025 mm�1, �0

s D 2 mm�1. Bottom: the difference in fields ˆ � ˆ (real and imaginary)
and the difference of logs lnˆ� lnˆ (real and imaginary)

operator, and so the formal solution for uıˆ is again obtained through Green’s
operator with kernelG0. Thus, the first-order Rytov approximation becomes

uı.rI!/ D ˆ.1/.rI!/
ˆ.rI!/ (64)

D �1

ˆ.rI!/
�
ˇ.r0/rr 0G0.r; r0I!/ � rr 0ˆ.r0I!/

˛.r0/G0.r; r0I!/ˆ.r0I!/	 : (65)

The Rytov approximation is usually argued to be applicable for larger perturba-
tions than the Born approximation, since the neglected terms are small as long as the
gradient of the field is slowly varying. See [60] for a much more detailed discussion.

Illustrations of the scattered field in the Born and Rytov formulations are shown
in Fig. 2. Since in the frequency domain the field is complex, so is its logarithm. The
real part corresponds to the log of the field amplitude and its imaginary part to the
phase. From the images in Fig. 2, it is apparent that perturbations are more readily
detected in amplitude and phase than in the field itself. This stems from the very
high dynamic range of data acquired in optical tomography which in turn stems
from the high attenuation and attendant damping. It is the primary motivation for
the use of the Rytov approximation, despite the added complications.
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Linearization

Linearization is required either to formulate a linear reconstruction problem (i.e.,
assuming small perturbations on a known background) or as a step in an iterative
approach to the nonlinear inverse problem. We will formulate this in the frequency
domain. In addition, we may work with either the wave itself, which leads to the
Born approximation, or its logarithm, which leads to the Rytov approximation.

Linear Approximations
In the Born approximation to the linearized problem, we assume that the difference
in measured data is given just by the first term in the Born series (54)

ˆı.rI!/ 
 ˆ.1/.rI!/ (66)

D �
Z


�
ˇ.r0/rr 0G;0.r; r0I!/ � rr 0ˆ.r0I!/˛.r0/G;0.r; r0I!/ˆ.r0I!/	 dnr0:

From (26), we obtain for a detector at position rd 2 @

y.rdI!/ D y0.rdI!/C
Z


KT
q .rd; r0I!/

�
˛.r0/
ˇ.r0/

�
dnr0; (67)

where Kq is given by

Kq.rd; r0I!/ D
 

GB
;0.rd; r0I!/ˆ.r0I!/

rr 0GB
;0.rd; r0I!/ � rr 0ˆ.r0I!/

!
: (68)

The subscript q refers to the incoming flux that generates the boundary condition
for the particular field ˆ.

Since the Rytov approximation was derived by considering the change in the
logarithm of the field, we have in place of (68) simply

KRyt
q .rd; r0I!/ D 1

y0.rdI!/Kq.rd; r0I!/: (69)

Assuming that we are given measured data g for a sufficient number of input
fluxes, the linearized problem consists in solving for ˛; ˇ from

yı D Kq

�
˛

ˇ

�
; (70)

where Kq is a linear operator with kernel given by (68) or (69) and

yı D g � y0; (71)

where y0 is the data that would arise from state x0.
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We can now distinguish between a linearized approach to the static determination
of x D x0 C .˛; ˇ/T and a dynamic imaging problem that assumes a reference
measurement g0. In the former case, we assume that our model is sufficiently
accurate to calculate y0. In the latter case, we use the reference measurement to
solve

yı D g � g0: (72)

This in fact is where the majority of reported results with measured data are taken.
By this mechanism, inconsistencies in the modeling of the forward problem (most
notably using 2D instead of 3D) are minimized. However, for static or “absolute”
imaging, we still require an accurate model, even for the linearized problem.

Sensitivity Functions
If we take q to be a ı-function at a source position rs 2 @, then ˆ is given by
a Green’s function too, and we obtain the Photon Measurement Density Function
(PMDF)

�.rd; r0; rsI!/ D
 

GB
;0.rd; r0I!/G@;0.r0; rsI!/

rr 0GB
;0.rd; r0I!/ � rr 0G@;0.r0; rsI!/

!
(73)

with the Rytov form being

�Ryt.rd; r0; rsI!/ D 1

GB
@;0.rd; rsI!/�.rd; r0; rsI!/:

It is instructive to visualize the various �-functions which exhibit notable differences
for �a and � and between the Born and Rytov functions, as seen in Fig. 3.

Clearly

Kq D
Z
@

�.rd; r0; rsI!/q.rs/drs D G0q;

where G0 is a linear operator with kernel �.
We can also define the linearized Robin to Neumann map

ƒ0
RtN.�a; �/

�
˛

ˇ

�
D
Z
@

H.rd; rsI!/q.rs/drs D Hq;

where H is a linear operator with kernel H given by

H.rd; rs/ D
Z


�T .rd; r0; rsI!/
�
˛.r0/
ˇ.r0/

�
dnr:
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Fig. 3 Top row: sensitivity function � for �a; left to right: real, imaginary, amplitude, and phase;
bottom row: the same functions for �

Note that there are no equivalent Rytov forms. This is because the log of the
Robin to Neumann map is not linear.

Adjoint Field Method

A key component in the development of a reconstruction algorithm is the use of the
adjoint operator. The application of these methods in optical tomography has been
discussed in detail by Natterer and coworkers [31, 74].

Taking the adjoint of Kq defines a mapping Y.@/! X./ � X./

K�
qb D

Z
@

Kq.rd; r0I!/b.rdI!/ dS (74)

D
Z
@

 
G

B
;0.rd; r0I!/ˆ.r0I!/

rr 0G
B
;0.rd; r0I!/ � rr 0ˆ.r0I!/

!
b.rdI!/ dS: (75)

Consider the reciprocity relation

G
B
;0.rd; rI!/ D �G�

@;0.r; rdI!/ (76)

with G�
@;0, Green’s function that solves the adjoint problem

�r � �.r/rG�
@;0.r; rdI!/C

�
�a.r/� i!

c

�
G�

@;0.r; rdI!/ D 0 (77)

r 2 n@
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G�
@;0.r; rdI!/C 2��.rd/

@G�
@;0.r; rdI!/
@�

D ı.rdI!/
(78)

rd 2 @:

Now, we can define a function ‰ by applying the adjoint Green’s operator to the
function b 2 Y.@/ to give

‰.rI!/ D �
Z
@

G
B
;0.rd; rI!/b.rdI!/ dS (79)

D
Z
@

G�
@;0.r; rdI!/b.rdI!/ dS: (80)

By using (78), we have that ‰ solves

� r � �.r/r‰.rI!/C
�
�a.r/ � i!

c

�
‰.rI!/ D 0 r 2 n@ (81)

‰.rdI!/C 2��.rd/
@‰.rdI!/

@�
D b.rdI!/ rd 2 @ (82)

and therefore, K�
q is given by

K�
qb D

� �ˆ‰
�rˆ � r‰

�
: (83)

Finally, we have an adjoint form for the PMDF (73)

�.rd; r0; rsI!/ D
 

�G�
@;0.r0; rdI!/G@;0.r0; rsI!/

�rr 0 G
�
@;0.r0; rdI!/ � rr 0G@;0.r0; rsI!/

!
(84)

Time-Domain Case
In the time domain, we form the correlation of the propagated wave and the back-
propagated residual. Equation 83 becomes

K�
qb D

 R T
0 �ˆ.t/‰.t/dtR T

0 �rˆ.t/ � r‰.t/dt

!
; (85)

where ‰.t/ is the solution to the adjoint equation
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Fig. 4 Top row: time-window sensitivity function � for �a – left to right: time gates 500–1,000,
1,500–2,000, 2,500–3,000, 3,500–4,000 ps. Bottom row: the same functions for �

�
�1

c

@

@t
� r � �.r/r C �a.r/

�
‰.r; t/ D 0 r 2 n@; t 2 Œ0; T � (86)

‰.r; T / D 0; r 2  (87)

‰.rd; t/C 2��.rd/
@‰.rd; t/

@�
D b.rd; t/ rd 2 @; t 2 Œ0; T �: (88)

This is much more expensive, although it allows to apply temporal domain
filters to optimize the effect of “early light” (that light that has undergone relatively
few scattering events). In Fig. 4, the sensitivity functions over a sequence of time
intervals are shown. Notice that the functions are more concentrated along the direct
line of propagation for early times and become more spread out for later times.

Light Propagation and Its Probabilistic Interpretation

In time-domain systems, the source is a pulse in time which we express as a ı-
function
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Fig. 5 Example of temporal response functions for different source-detector spacings. Circles
represent measured data and dashed lines are the modeled data using a 3D finite element method.
Each curve is normalized to a maximum of 1 (Data courtesy of E. Hillman and J. Hebden,
University College London)

q.rd; t/ D q.rd/ı.t/; (89)

where q.rd/ is the source distribution on @. Furthermore, if the input light fiber is
small, the spatial distribution can be considered a ı-function too, located at a source
position rsj 2 @

q.rd; t/ D ı.rd � rsj /ı.t/: (90)

For this model, the measured signal y.rd; t/ is the impulse response (Green’s
function) of the system, restricted to the boundary. When measured at a detector
rdi 2 @, it is found to be a unimodal positive function of t with exponential decay
to zero as t !1. Some examples are shown in Fig. 5, showing measured data from
the system described in [83] together with modeled data using a 3D finite element
method. The function can be interpreted as a conditional probability density of the
time of arrival of a photon, given the location of its arrival.

Consider the Green’s functions for (18) in infinite space:

G.r; r0; t; t 0/ D e��at� jr�r0j2
4�.t�t0/

.4��t/3=2
t > t 0: (91)
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Equation 91 has the form of the Probability Density Function (PDF) for a lossy
random walk; for a fixed point in time, the distribution is spatially a Gaussian; for
a fixed point in space, the distribution in time shows a sharp rise followed by an
asymptotically exponential decay. In the probabilistic interpretation, we assume

G.r; t; r0; t 0/R
G.r; t; r0; t 0/dt


 Pr0;t 0.t jr/ (92)

as a conditional PDF in the sense that a photon that has arrived at a given point does
so in time interval Œt; t C ıt� with probability Pr0;t .t jr/ıt . Furthermore, the absolute
PDF for detecting a photon at point r at time t is given by

G.r; t; r0; t 0/ 
 Pr0;t 0.r; t/ D Pr0.r/Pr0;t 0.t jr/:
Here, Pr0.r/ is interpreted as the relative intensity I.r/=I0 of the detected number
of photons relative to the input number.

For most PDFs based on physical phenomena, there exists a Moment-Generating
Function (MGF)

M.s/ D EŒP.t/est �; (93)

where EŒ:� is the expectation operator, whence the moments (around zero) are deter-
mined by

mn D @nM.s/

@sn

ˇ̌
ˇ̌
sD0

(94)

and in principle the PDF P.t/ can be reconstructed via a Taylor series for its MGF

M.s/ D m0 Cm1s C � � �mn

sn

nŠ
C (95)

However, explicit evaluation of this series is impractical. Furthermore, we may
assume that only a small number of independent moments exist, in which case we
reconstruct the series implicitly given only the first few moments. In the results
presented here, only the first three moments m0, m1, and m2 are used. They have
the physical interpretations

m0 Total intensity I.r/
m1

m0
Mean time < t > .r/

m2

m0
�
�
m1

m0

�2

Variance time 
2
t .r/.

In order to test the validity of the moment method to construct the time-varying
solution, we created a finite element model of a 4� 7� 4 cm slab. The optical
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Fig. 6 An example of the output time-of-flight histograms at each of nine detectors on the
transmission surface of a slab. Solid curves are computed from (95) using the zeroth, first, and
second moments and implicit extrapolation; crosses are computed using finite differencing in time
of the system (18) and 300 steps of size 10 ps

parameters were set to an arbitrary heterogeneous distribution by adding a number
of Gaussian blobs of different amplitude and spatial width in both �a and � to a
background of�aD 0:1 cm�1; �D 0:03 cm. A source was placed at the center of one
face of the slab and nine detectors placed in a rectangular array on the opposite face
of the slab. The time-of-flight histogram of transmitted photons at each detector was
calculated in two ways: (1) by solving the time-dependent system (18) using a fully
implicit finite differencing step in time (2) by solving for the moments m0; m1; m2

using (94) and deriving the time-varying solution via (95).
One case is shown in Fig. 6. The comparison is virtually perfect despite the

grossly heterogeneous nature of the example which precludes the exact specification
of a Green’s function. The moment-based method is several hundred times faster.

4 Numerical Methods and Case Examples

Image Reconstruction in Optical Tomography

Optical tomography is generally recognized as a nonlinear inverse problem; linear
methods can certainly be applied (e.g., [85]) but are limited to the case of small
perturbations on a known background.

The following is an overview of the general approach: we construct a physically
accurate model that describes the progress of photons from the source optodes
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through the media and to the detector optodes. This is termed the forward problem
(section “The Forward Problem”). This model is parameterized by the spatial
distribution of scattering and absorption properties in the media. We adjust these
properties iteratively until the predicted measurements from the forward problem
match the physical measurements from the device. This is termed the inverse
problem.

The model-based approach is predicated on the implicit assumption that there
exists in principle an “exact model” given by the physical description of the
problem, and the task is to develop a computational technique that matches
measured data within an accuracy below the expected level of measurement error.
In other words, we assume that model inaccuracies are insignificant with respect
to experimental errors. However, the computational effort in constructing a forward
model of sufficient accuracy can be prohibitive at best. In addition, the physical
model may have shortcomings that lead to the data being outside the range of the
forward model (nonexistence of solution).

In the approximation error method [57], we abandon the need to produce
an “exact model.” Instead, we attempt to determine the statistical properties of
the modeling errors and compensate for them by incorporating them into the
image reconstruction using a Bayesian approach (section “Approximation Error
Approach”). The steps involved in using the approximation error theory are (1) the
construction and sampling of a prior, (2) the construction of a mapping between
coarse and fine models, (3) calculation of forward data from the samples on both
coarse and fine models, and (4) statistical estimation of the mean and covariance of
the differences between data from the coarse and fine models. In [11], this technique
was shown to result in reconstructed images using a relatively inaccurate forward
model that were of almost equal quality to those using a more accurate forward
model; the increase in computational efficiency was an order of magnitude.

Reconstruction from optical measurements is difficult because it is fundamen-
tally ill posed. We usually aim to reconstruct a larger number of voxels than there
are measurements (which results in nonuniqueness), and the presence of noisy
measurements can result in an exponential growth in the image artifacts. In order to
stabilize the reconstruction, regularization is required. Whereas such regularization
is often based on ad hoc considerations for improving image quality, the Bayesian
approach provides a rigorous framework in which the reconstructed images are
chosen to belong to a distribution with principled characteristics (the prior).

Bayesian Framework for Inverse Optical Tomography Problem

In the Bayesian framework for inverse problems, all unknowns are treated and
modeled as random variables [57]. The measurements are often considered as
random variables also in non-Bayesian framework for inverse problems. The actual
modeling of the measurements as random variables is, however, often implicit,
which is most manifest when least squares functionals are involved in the formu-
lation of the problem. In the Bayesian framework, however, both the measurements
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and the unknowns are explicitly modeled as random variables. The construction of
the likelihood (observation) models and the prior models is the starting point of the
Bayesian approach to (inverse) problems.

Once the probabilistic models for the unknowns and the measurement process
have been constructed, the posterior distribution �.x jy/ is formed, which distribu-
tion reflects the uncertainty of the interesting unknowns x given the measurements
y. This distribution can then be explored to answer all questions which can be
expressed in terms of probabilities. For general discussion of Bayesian inference,
see, for example, [21].

Bayesian inverse problems are a special class of problems in Bayesian inference.
Usually, the dimension of a feasible representation of the unknowns is significantly
larger than the number of measurements, and thus, for example, a maximum
likelihood estimate is either impossible or extremely unstable to compute. In
addition to the instability, the variances of the likelihood model are almost invariably
much smaller than the variances of the prior models. The posterior distribution is
often extremely narrow and, in addition, may be a nonlinear manifold.

Bayesian Formulation for the Inverse Problem
In the following, we denote the unknowns with the vector x, the measurements with
y, and all probability distributions (densities) by � . Typically, we would have x D
.�a; �s/, with �a and �s identified with the coordinates in the used representations.

The complete statistical information of all the random variables is given by
the joint distribution �.x; y/. This distribution expresses all the uncertainty of the
random variables. Once the measurements y have been obtained, the uncertainty
in the unknowns x is (usually) reduced. The measurements are now reduced from
random variables to numbers, and the uncertainty of x is expressed as the posterior
distribution �.x j y/. This distribution contains all information on the uncertainty of
the unknowns x when the information on measurements y is utilized.

The conditional distribution of the measurements given the unknown is called the
likelihood distribution and is denoted by �.y j x/. The marginal distribution of the
unknown is called the prior (distribution) and is denoted by �.x/. By the definition
of conditional probability, we have

�.x; y/ D �.y jx/�.x/ D �.x jy/�.y/: (96)

Furthermore, the marginal distributions can be obtained by marginalizing (inte-
grating) over the remaining variables, that is, �.x/ D R

�.x; y/ y. and �.y/ DR
�.x; y/ x. . The following rearrangement is called Bayes’ theorem

�.x jy/ D �.y/�1�.y j x/�.x/: (97)

If we were given the joint distribution, we could simply use the above definitions
to compute the posterior distribution. Unfortunately, the joint distribution is prac-
tically never available in the first place. However, it turns out that in many cases,
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the derivation of the likelihood density is a straightforward task. Also, a feasible
probabilistic model for the unknown can often be obtained. Then, one can use
Bayes’ theorem to obtain the posterior distribution. The demarcation between the
Bayesian and frequentist paradigms is that, here, the posterior is obtained by using
a (prior) model for the distribution of the unknown rather than the marginal density,
which cannot be computed since the joint distribution is not available in the first
place. We stress that all distributions have to be interpreted as models.

Inference
Point estimates are the Bayesian counterpart of the “solutions” suggested by regular-
ization methods. The most common point estimates are the maximum a posteriori
estimate (MAP) and the conditional mean estimate (CM). Let the unknowns and
measurements be the finite-dimensional random vectors x 2 R

N , y 2 R
M .

The computation of the MAP estimate is an optimization problem, while the
computation of the CM estimate is an integration problem:

xMAP D sol max
x
�.x jy/ (98)

xCM D E.x j y/ D
Z
x �.x j y/ x. ; (99)

where sol reads as “solution of” the maximization problem, E. � / denotes expecta-
tion, and the integral in (99) is an N -tuple integral.

The most common estimate of spread is the conditional covariance

�xjy D
Z
.x � E.x j y//.x � E.x j y//T �.x jy/ x. : (100)

Here, �x j y is anN �N matrix and the integral (100) refers to a matrix of associated
integrals.

Often, the marginal distributions of single variables are also of interest. These
are formally obtained by integrating over all other variables

�.x` j y/ D
Z

x�`

�.x jy/ x. �`; (101)

where the notation . � /�` refers to all components excluding the `th component.
Note that �.x` j y/ is a function of a single variable and can be visualized by
plotting. The credibility intervals are the Bayesian counterpart to the frequentist
confidence intervals, but the interpretation is different. The p%-credibility interval
is a subset which contains p% of the probability mass of the posterior distribution.

Likelihood and Prior Models
The likelihood model �.y j x/ consists of modeling the forward problems and the
related observational errors. In the likelihood model, all unknowns are treated as
fixed. The most common likelihood model is based on the additive error model
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y D F.x/C e;

where e is the additive error term with distribution �e.e/ which is usually modeled
as mutually independent with x. In this case, we can get rid of the unknown additive
error term by pre-marginalizing over it. We have formally �.y j x; e/ D ı.y �
F.x/C e/ and using the Bayes theorem

�.y jx/ D �e.y � F.x//:

For more general derivation and other likelihood models, see, for example, [57].
In the special case of Gaussian additive errors �e.e/ D N .e�; �e/, we get

�.y j x/ / exp

�
�1

2
kLe.y � F.x/� e�/k2

�
;

where ��1
e D LT

e Le . In the very special case of �e.e/ D N .0; �2I /, we of
course get the ordinary least squares functional for the posterior potential. This
particular model, however, should always be subjected to assessment since it usually
corresponds to an idealized measurement system.

For prior models �.x/ for the unknowns whose physical interpretation is a
distributed parameter, Markov random fields are a common choice. The most
common type is an improper prior model of the form

�.x/ / exp

�
�1

2
kLx.x � x�/k2

�
; (102)

whereLx is derived from a spatial differential operator. For example, kLx.x�x�/k2

might be a discrete approximation for
R
 j�x.Er/j2 dEr . Such improper prior models

may work well technically since the null space ofLx is usually such that it is annihi-
lated in the posterior model. It must be noted, however, that there are constructions
that yield proper prior models [57, 59, 67]. These are needed, for example, for the
construction of approximation error models discussed in section “Approximation
Error Approach.” Moreover, structural information related to inhomogeneities and
anisotropicity of smoothness can be decoded in these models [59].

Nonstationary Problems
Inverse problems in which the unknowns are time varying are referred to as
nonstationary inverse problems [57]. These problems are also naturally cast in
the Bayesian framework. Nonstationary inverse problems are usually written as
evolution–observation models in which the evolution of the unknown is typically
modeled as a stochastic process. The related algorithms are sequential and in the
most general form are of the Markov chain Monte Carlo type [32]. However, the
most commonly used algorithms are based on the Kalman recursions [3, 57, 61].

A suitable statistical framework for dealing with unknowns that are modeled with
stochastic processes and which are observed either directly or indirectly is the state
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estimation framework. In this formalism, the unknown is referred to as the state
variable, or simply the state. For treatises on state estimation and Kalman filtering
theory in general, see, for example, [3, 34]. For the general nonlinear non-Gaussian
treatment, see [32], and for state estimation with inverse problems, see [57].

The general discrete time state space representation of a dynamical system is of
the form

xkC1 D Fk.xk;wk/ (103)

yk D Ak.xk; vk/; (104)

where wk is the state noise process, vk is the observation noise process, and (103)
and (104) are the evolution model and observation model, respectively. Here, the
evolution model replaces the prior model in stationary inverse problems, while the
observation model is usually the same as the (stationary) likelihood model. We do
not state the exact assumptions here, since the assumptions may vary somewhat
resulting in different variations of Kalman recursions; see, for example, [3]. It
suffices here to state that the sequences of mappings Ft and At are assumed to
be known and that the state and observation noise processes are temporally uncorre-
lated and that their (second-order, possibly time-varying) statistics are known. With
these assumptions, the state process is a first-order Markov process. The first-order
Markov property facilitates recursive algorithms for the state estimation problem.
The Kalman recursions were first derived in [61].

Formally, the state estimation problem is to compute the distribution of a state
variable xk 2 R

N given a set of observations yj 2 R
M ; j 2 I where I is a set

of time indices. In particular, the aim is to compute the related conditional means
and covariances. Usually, I is a contiguous set of indices and we denote Y` D
.y1; : : : ; y`/.

We can then state the following common state estimation problems:

• Prediction. Compute the conditional distribution of xk given Y`, k > `.
• Filtering. Compute the conditional distribution of xk given Y`, k D `.
• Smoothing. Compute the conditional distribution of xk given Y`, k < `.

The solution of the state estimation problems in linear Gaussian cases is usually
carried out by employing the Kalman filtering or smoothing algorithms that are
based on Kalman filtering. These are recursive algorithms and may be either real-
time, online, or batch-type algorithms.

In nonlinear and/or non-Gaussian cases, extended Kalman filtering (EKF) vari-
ants are usually employed. The EKF algorithms form a family of estimators that
do not possess any optimality properties. For many problems, however, the EKF
algorithms provide feasible state estimates. For EKF algorithms, see, for example,
[3, 57]. Since the observation models with optical tomography are nonlinear,
the EKF algorithms are a natural choice for nonstationary DOT problems; see
[30, 66, 81].
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The idea in extended Kalman filters is straightforward: the nonlinear mappings
are approximated with the affine mappings given by the first two terms of the Taylor
expansion. The version of extended Kalman filter that is most commonly used is
the local linearization version, in which version the mappings are linearized at the
best currently available state estimates, either the predicted or the filtered state. This
necessitates the recomputation of the Jacobians @At=@xt at each time instant.

The EKF recursions take the form

xkjk�1 D Fk�1.xk�1jk�1/C sk�1 C Bk�1.uk�1/ (105)

�kjk�1 D JFk�1�k�1jk�1JFk�1
T C �wk�1 (106)

Kk D �kjk�1JAk
T �JAk�kjk�1JAk

T C �vk

	�1
(107)

�kjk D
�
I �KkJAk

	
�kjk�1 (108)

xkjk D xkjk�1 CKk

�
yk �Ak.xkjk�1/

	
; (109)

where xkjk�1 and xkjk are the prediction and filtering estimates, respectively,
and �kjk�1 and �kjk are the approximate prediction and filtering covariances,
respectively. Note that the Jacobian mappings (linearizations) are needed only in
the computation of the covariances and the Kalman gainKt .

The applications of EKF algorithms to nonstationary DOT problems have been
considered in [30, 66, 81]. In [66], a random walk evolution model was constructed
and used for tracking of targets in a cylindrical tank geometry. In [81], a cortical
mapping problem was considered, in which the evolution model was augmented to
include auxiliary periodic processes to allow for separation of cyclical phenomena
from evoked responses. In [30], an elaborate physiological model was added to that
of [81] to form the evolution model.

Approximation Error Approach
The approximation error approach was introduced in [57, 58] originally to handle
pure model reduction errors. For example, in electrical impedance (resistance)
tomography (EIT, ERT) and deconvolution problems, it was shown that signif-
icant model reduction is possible without essentially sacrificing the quality of
estimates. With model reduction, we mean that very low-dimensional finite element
approximations can be used for the forward problem. The approximation error
approach relies heavily on the Bayesian framework of inverse problems, since the
approximation and modeling errors are modeled as additive errors over the prior
model.

In this following, we discuss the approximation error approach in a setting in
which one distributed parameter is of interest, while another one is not, and there
are additional uncertainties that are related, for example, to unknown boundary data.
In addition, we formulate the problem to take into account model reduction errors.
In the case of optical tomography, this would mean using very approximate forward
solvers, for example.
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Let now the unknowns be .�a; �s; �; e/, where e represents additive errors and
� represents auxiliary uncertainties, such as unknown boundary data, and �a is of
interest only. Let

y D NA.�a; �s; �/C e 2 R
m

denote an accurate model for the relation between the measurements and the
unknowns.

In the approximation error approach, we proceed as follows. Instead of using
the accurate forward model .�a; �s; �/ 7! NA.�a; �s; �/ with .�a; �s; �/ as the
unknowns, we fix the random variables .�s; �/  .�s;0; �0/ and use a computa-
tionally (possibly drastically reduced) approximate model

�a 7! A.�a; �s;0; �0/:

Thus, we write the measurement model in the form

y D NA.�a; �s; �/C e (110)

D A.�a; �s;0; �0/C
� NA.�a; �s; �/ � A.�a; �s;0; �0/

	C e (111)

D A.�a; �s;0; �0/C "C e; (112)

where we define the approximation error " D '.�a; �s; �/ D NA.�a; �s; �/ �
A.�a; �s;0; �0/. Thus, the approximation error is the discrepancy of predictions
of the measurements (given the unknowns) when using the accurate model
NA.�a; �s; �/ and the approximate model A.�a; �s;0; �0/.

Using the Bayes’ formula repeatedly, it can be shown that

�.y j x/ D
Z
�e.y �A.x;�s;0; �0/ � "/�"jx." jx/ d" (113)

since e and x are mutually independent. Note that (112) and (113) are exact.
In the approximation error approach, the following Gaussian approximations are

used: �e 	 N .e�; �e/ and �"jx 	 N ."�;�a ; �"j�a /. Let the normal approximation
for the joint density �."; �a/ be

�."; �a/ / exp

(
�1

2

�
" � "�

�a � �a;�
�T �

�"" �"�a
��a" ��a�a

��1 �
" � "�

�a � �a;�
�)

(114)

whence

"�;�a D "� C �"�a��1
�a�a

.�a � �a;�/ (115)

�"j�a D �"" � �"�a��1
�a�a

��a": (116)

Define the normal random variable � D e C " so that � j�a � N .��j�a ; ��j�a /.
Thus, we obtain for the approximate likelihood distribution



Optical Imaging 1067

�.y j�a/ 	 N .y �A.�a; �s;0; �0/� ��j�a ; ��j�a /:

Since we are after computational efficiency, a normal approximation �.�a/ 	
N .�a;�; ��a / for the prior model is also usually employed. Thus, we obtain the
approximation for the posterior distribution

�.�a jy/ / �.y j�a/�.�a/ (117)

/ exp

�
�1

2
kL�j�a .y � A.�a; �s;�; ��/� ��j�a /k2 (118)

C kL�a.�a � �a;�/k2	 ; (119)

where ��1
� j�a D LT

�j�aL�j�a and ��1
�a�a
D LT

�a
L�a . See [68] or more details on the

particular problem of marginalizing over the scattering coefficient.
The approximation error approach has been applied to various kinds of approx-

imation and modeling errors as well as other inverse problems. Model reduction,
domain truncation, and unknown anisotropy structures in diffuse optical tomogra-
phy were treated in [12, 45, 46, 67]. Missing boundary data in the case of image
processing and geophysical EIT were considered in [23] and [70], respectively.
Furthermore, in [76–78], the problem of recovery from simultaneous geometry
errors and model reduction was found to be possible. In [95], the radiative transfer
model was replaced with the diffusion approximation. It was found that also in this
kind of a case, the statistical structure of the approximation errors enabled the use
of a significantly less complex model, again simultaneously with significant model
reduction for the diffusion approximation. But also here, both the absorption and
scattering coefficients were estimated simultaneously.

The approximation error approach was extended to nonstationary inverse prob-
lems in [51] in which linear nonstationary (heat transfer) problems were considered
and in [50] and [52] in which nonlinear problems and state space identification
problems were considered, respectively. A modification in which the approximation
error statistics can be updated with accumulating information was proposed in [53]
and an application to hydrogeophysical monitoring in [71].

Experimental Results

In this section, we show an example where the error model is employed for
compensating the modeling errors caused by reduced discretization accuracy h and
experimental DOT data is used for the observations.

Experiment andMeasurement Parameters
The experiment was carried out with the frequency-domain (FD) DOT instrument at
Helsinki University of Technology [75]. The measurement domain  is a cylinder
with radius r D 35 mm and height 110 mm; see Fig. 7. The target consists of
homogeneous material with two small cylindrical perturbations, as illustrated in
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Fig. 7 Top: Measurement
domain . The dots denote
the location of the sources
and detectors. The (red) lines
above and below the sources
and detectors denote the
truncated model domain .
The green line denotes the
central slice of the domain .
Bottom: Central slice of the
target (�a left, �0

s right)

ma,bg ≈ 0.01 mm−1

m′s,bg ≈ 1 mm−1

ma= 2ma,bg

m′s = m′s,bg

m′s = 2m′s,bg

ma = ma,bg

Fig. 7. The background optical properties of the phantom are approximately�a;bg D
0:01 mm�1 and �s;bg D 1 mm�1 at wavelength � 	 800 nm. The cylindrical
perturbations, which both have diameter and height of 9:5 mm, are located such
that the central plane of the perturbations coincides with the central xy-plane of
the cylinder domain . For an illustration of the cross sections of �a and �0

s, see
bottom row in Fig. 7. The optical properties of perturbation 1 are approximately
�a;p1 D 0:02 mm�1, �s;p1 D 1 mm�1 (i.e., purely absorption contrast) and the
properties of perturbation 2 are �a;p2 D 0:01 mm�1, �s;p2 D 2 mm�1 (i.e.,
purely scatter contrast), respectively. The source and detector configuration in the
experiment consisted of 16 sources and 16 detectors arranged in interleaved order
on two rings located 6 mm above and below the central xy-plane of the cylinder
domain. The locations of sources and detectors are shown with dots in Fig. 7. The
measurements were carried out at � D 785 nm with an optical power of 8 mW and
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modulation frequency 2�f D 100 MHz. The log amplitude and phase shift of the
transmitted light was recorded at 12 farthermost detector locations for each source,
leading to a real-valued measurement vector

y D
�

re.log.z//
im.log.z//

�
2 R

384

for the experiment. The statistics of measurement noise in the measurement y are
not known. Thus, we employ the same implicit (ad hoc) noise model that was
used for reconstructions from the same measurement realization in [88]. The noise
model is

e � N .0; �e/;

where �e is a diagonal data scaling matrix which is tuned such that the initial
(weighted) least squares (LS) residual

kLe.y � y0/k2 D 2; ��1
e D LT

e Le

between the measured data y and forward solution y0 at the initial guess x D x0

becomes unity for both data types (log amplitude re.log.z// and phase im.log.z//).

Prior Model
In this study, we use a proper Gaussian smoothness prior as the prior model for the
unknowns. The absorption and scatter images �a and �0

s are modeled as mutually
independent Gaussian random fields with a joint prior model

�.xı/ / exp

�
�1

2
kLxı .xı � xı�/k2


; LT

xı
Lxı D ��1

xı
; (120)

where

�xı D
�
��a 0
0 ��0

s

�
:

The construction of the blocks ��a and ��0
s

has been explained for a two-
dimensional case in [11], and the extension to three-dimensional case is straightfor-
ward. The parameters in the prior model were selected as follows. The correlation
length for both �a and �0

s in the prior was set as 11 mm. The correlation length
can be viewed (roughly) as our prior estimate about the expected spatial size of
perturbations in the target domain. The prior mean for absorption and scatter were
set as �a� D 0:01 mm�1 and �s� D 1 mm�1, and the marginal standard deviations
of absorption and scatter in each voxel were chosen such that 3
�a D 0:01 and
3
�0

s
D 1, respectively. This choice corresponds to assuming that the values of

absorption and scatter are expected to lie within the intervals �a 2 Œ0; 0:02� and
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0.001 0.022 0.1 2.2

0.001 0.022 0.1 2.2

Fig. 8 Two random samples from the prior density (120). The images display the cross section of
the 3D parameters at the central slice of the cylinder domain. Left: Absorption �a. Right: Scatter
�0

s

�0
s 2 Œ0; 2� with prior probability of 99:7 %. Figure 8 shows two random samples

from the prior model.

Selection of FEMMeshes and Discretization Accuracy
To select the discretization accuracy ı for the accurate forward model A;ı.xı/, we
adopted a similar procedure as in [11]. In this process, we computed relative error
in the FEM solution with respect to the discretization level h and identified ı as that
mesh density beyond which the relative error

kA;h �A;h0k
kA;h0k

in both amplitude and phase parts of the forward solution was stabilized. The mesh
for the reference model A;h0 in the convergence analysis consisted of Nn D
253;981 node points and Ne D 1;458;000 (approximately) uniform tetrahedral
elements. We found that the errors in the FEM solution were stabilized when using a
(uniform) tetrahedral mesh with (approximately) 150,000 nodes or more, and thus,
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Table 1 Mesh details for test case. Nn is the number of nodes, Ne is the number of tetrahedral
elements in the mesh, and np is the number of voxels in the representation of �a and �0

s. t is the
wall clock time for one forward solution

Model Nn Ne np t (s)

A;ı 148,276 843,750 7,668 178

A;h 2,413 11,664 7,668 0.4
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Fig. 9 Modeling error between the accurate model A;ı and target model A;h; see Table 1.
Left: Covariance structure of the approximation error ". The displayed quantity is the signed
standard deviation sign.�"/ � pj�"j, where the product refers to the element-by-element (array)
multiplication. Right: Normalized eigenvalues �=�max of �". of �"

we chose for the accurate model A;ı a mesh with Nn D 148;276 node points.
For the target model A;h, we chose a mesh with Nn D 2;413 nodes; see Table 1.
For the representation of the unknowns

�
�a; �

0
s

	
, the domain  was divided into

np D 7;668 cubic voxels (i.e., number of unknowns n D 15;336) in both models
A;ı and A;h. Thus, the projector P W xı 7! xh between the models is the identity
matrix.

Construction of Error Models
To construct the enhanced error model, we proceeded as in section “Approximation
Error Approach.” The size of the random ensemble S from the prior model �.xı/,
Eq. 120, was L D 384. Figure 8 shows central xy-slices from two realizations
of absorption and scatter images from the ensemble (the location of the slice is
denoted by green line in Fig. 7). Using the ensemble, Gaussian approximations " �
N ."�; �"/ for the error between the accurate modelA;ı and the target models were
computed.

To assess the magnitude of the modeling error, we estimate signal-to-noise (SNR)
ratio of the modeling error as
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SNR D 10 log10

 
kA;ık2

k"�k2 C trace.�"/

!
;

where A;ı is the mean of the accurate model A;ı over the ensemble S . The SNR
is estimated separately for the amplitude and phase part of the forward model.

Consider now the modeling error between the accurate model A;ı (Nn D
148;276 nodes) and target model A;h (Nn D 2;413 nodes) in the first test
case. In this case, the estimated SNRs for the modeling error in log amplitude
and phase are approximately 20 and 13, corresponding to error levels of 10 and
22 %, respectively. These error levels exceed clearly typical levels of measurement
noise in DOT measurements. Left image in Fig. 9 displays the covariance matrix
�", revealing the correlation structure of ". Combining the high magnitude and
complicated correlation structure of the modeling error " with the fact that the
inverse problem is sensitive to modeling errors, one can expect significant artifacts
in the reconstructions with conventional noise model when employing the target
model A;h.

Right image in Fig. 9 shows normalized eigenvalues �=�max of �" for the
modeling error between models A;ı and A;h in the first test case. As can be seen,
the eigenvalues are decaying rapidly and already the 40th eigenvalue is less than
1 % of the maximum. Roughly speaking, this rapid decay of the eigenvalues can be
interpreted such that the variability in the modeling error can be well explained with
a relatively small number of principal components. In other words, one can take this
as a sign that the structure of the modeling error is not “heavily dependent” on the
realization of x or the prior model �.x/, and thus, the error model can be expected
to perform well.

Notice that the setting up of the error model is a computationally intensive
task, while the use of the model is as with the conventional error model. The
computation time for setting up the error model is roughly equivalent to the size of
the ensemble times, the time for forward solution in the accurate and approximate
models. However, the error model needs to be estimated only once for a fixed
measurement setup, and this estimation can be offline.

Computation of the MAP Estimates
The MAP-CEM and MAP-EEM estimates are computed by a Polak Ribiere conju-
gate gradient algorithm which is equipped with an explicit line search. Similarly as
in the initial estimation, the positivity prior of the absorption and scatter images is
taken into account by using (scaled) logarithmic parameterization

log

�
�a

�a0

�
; log

�
�0

s

�s0

�

in the unconstrained optimization process; for details, see [88].
Results are shown in Figs. 10 and 11 and computation times in Table 2.
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0.0073

0.0050 0.0068 0.0076 0.0085 0.61 0.95 1.01 1.12

0.0091 0.94 1.32

Fig. 10 Pure discretization errors. Central horizontal slice from the 3D reconstructions of
absorption �a and scattering �0

s. Top row: MAP estimate with the conventional error model (MAP-
CEM) using the accurate forward model A;ı (number of nodes in the FEM mesh Nn D 148;276).
Left: �a;CEM. Right: �a;EEM. Bottom row: MAP estimates with the conventional (MAP-CEM)
and enhanced error models (MAP-EEM) using the target model A;h (the number of nodes
Nn D 2;413). Correct model domain  D  is used in the target model A;h. Columns from
left to right: �a;CEM, �a;EEM, �s;CEM, and �s;EEM. The number of unknowns x D �

�a; �
0
s

	
T in the

estimation with both models, A;ı and A;h, was 15;336

The images in the top row display the MAP estimate with the conventional noise
model using the accurate forward model A;ı (Nn D 148;276). The estimated
values of global parameters �a0 D 0:0079 mm�1 and �s0 D 1:086 mm�1 are
relatively close to the background values �a;bg D 0:01 mm�1 and �s;bg D 1 mm�1

of the target phantom. As can be seen, the structure of the phantom is reconstructed
well, but the contrast of the recovered inclusions is low compared to the (presumed)
contrast. However, the low contrast is related to the measurement setup, not the
reconstruction algorithm; the same measurement realization has previously been
used for absolute reconstructions with different algorithm in [88], resulting to
similar reconstruction quality and contrast in the optical properties. See also [89]
for similar results with the same measurement system. The MAP-CEM estimate
with the accurate model A;ı can be considered here as a reference estimate
using conventional noise model in absence of modeling errors caused by reduced
discretization or domain truncation.

The MAP-CEM estimate using the coarse target model A;h (Nn D 2;413)
is shown in the first and third images in the bottom row in Figs. 10 and 11. As
can be seen, the use of reduced discretization has caused significant errors in the
reconstruction and also the levels of �a and �0

s are erroneous.
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0.0073 0.0091

0.0050 0.0068 0.0076 0.0085 0.61 0.95 1.01 1.12

0.94 1.32

Fig. 11 Pure discretization errors. Vertical slices from the 3D reconstructions of absorption �a

and scattering �0
s. The slices have been chosen such that the inclusion in the parameter is visible.

The arrangement of the images is equivalent to Fig. 10

Table 2 Reconstruction times for Figs. 10 and 11. tinit is the (wall clock) time for initial
estimation, tMAP for the MAP estimation, and ttot the total reconstruction time (initial + MAP)

Noise model Forward model tinit .s/ tMAP .s/ ttot .s/

CEM A;ı 126 min 20 s 173 min 22 s 299 min 44 s

CEM A;h 1 min 11 s 7 min 18 s 8 min 29 s

EEM A;h 28 s 7 min 34 s 8 min 2 s

The MAP estimate with the enhanced error model using the coarse target model
A;h is shown in the second and fourth images in the bottom row in Figs. 10 and 11.
As can be seen, the estimate is very similar to the MAP-CEM estimate with the
accurate model A;ı, showing that the use of enhanced error model has efficiently
compensated for the errors caused by reduced discretization accuracy. These results
indicate that the enhanced error model allows significant reduction in computation
time without compromise in the reconstruction quality; whereas the reconstruction
time for the MAP-CEM using accurate model A;ı is very close to 5 h, the
computation time for MAP-EEM is only 8 min.
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5 Conclusion

In this chapter, we mainly discussed the use of the diffusion approximation for
optical tomography. Because of the exponentially ill-posed nature of the corre-
sponding inverse problem, diffuse optical tomography (DOT) gives low resolution
images. Current research is focused on several areas: the use of auxiliary (multi-
modality) information to improve DOT images, the development of smaller-scale
(mesoscopic) imaging methods based on the radiative transfer equation, and the
development of fluorescence and bioluminescence imaging techniques which give
stronger contrast to features of interest. These methods are closely tied to the
development of new experimental systems and to application areas which are
driving the continued interest in this technique.
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Abstract
Photoacoustic tomography (PAT), also known as thermoacoustic or optoacoustic
tomography, is a rapidly emerging imaging technique that holds great promise
for biomedical imaging. PAT is a hybrid imaging technique, and can be viewed
either as an ultrasound mediated electromagnetic modality or an ultrasound
modality that exploits electromagnetic-enhanced image contrast. In this chapter,
we provide a review of the underlying imaging physics and contrast mechanisms
in PAT. Additionally, the imaging models that relate the measured photoacoustic
wavefields to the sought-after optical absorption distribution are described in
their continuous and discrete forms. The basic principles of image reconstruction
from discrete measurement data are presented, which includes a review of
methods for modeling the measurement system response.

1 Introduction

Photoacoustic tomography (PAT), also known as thermoacoustic or optoacoustic
tomography, is a rapidly emerging imaging technique that holds great promise for
biomedical imaging [30, 31, 45, 61, 63]. PAT is a hybrid technique that exploits the
thermoacoustic effect for signal generation. It seeks to combine the high electro-
magnetic contrast of tissue with the high spatial resolution of ultrasonic methods.
Accordingly, PAT can be viewed either as an ultrasound mediated electromagnetic
modality or an ultrasound modality that exploits electromagnetic-enhanced image
contrast [65]. Since the 1990s, there have been numerous fundamental studies
of photoacoustic imaging of biological tissue [19, 31, 41, 44, 46, 47, 57], and the
development of PAT continues to progress at a tremendous rate [18, 24, 28, 30, 31,
33, 45, 64, 65].

When a short electromagnetic pulse (e.g., microwave or laser) is used to
irradiate a biological tissue, the thermoacoustic effect results in the emission of
acoustic signals that can be measured outside the object by use of wideband
ultrasonic transducers. The objective of PAT is to produce an image that represents
a map of the spatially variant electromagnetic absorption properties of the tissue,
from knowledge of the measured acoustic signals. Because the optical absorption
properties of tissue are highly related to its molecular constitution, PAT images
can reveal the pathological condition of the tissue [11, 26] and therefore facilitate
a wide range of diagnostic tasks. Moreover, when employed with targeted probes or
optical contrast agents, PAT has the potential to facilitate high-resolution molecular
imaging [32, 58] of deep structures, which cannot be achieved easily with pure
optical methods.

From a physical perspective, the image reconstruction problem in PAT can be
interpreted as an inverse source problem [6]. Accordingly, PAT is a computed
imaging modality that utilizes an image reconstruction algorithm to form the
image of the absorbed optical energy distribution. A variety of analytic image
reconstruction algorithms have been developed for three-dimensional (3D) PAT,
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assuming point-like ultrasound transducers with canonical measurement apertures
[22, 23, 30, 31, 35, 64–66]. All known analytic reconstruction algorithms that are
mathematically exact and numerically stable require complete knowledge of the
photoacoustic wavefield on a measurement aperture that either encloses the entire
object or extends to infinity. In many potential applications of PAT imaging, it
is not feasible to acquire such measurement data. Because of this, iterative, or
more generally, optimization-based, reconstruction algorithms for PAT are being
developed actively [4, 5, 18, 48, 50] that provide the opportunity for accurate
image reconstruction from incomplete measurement data. Iterative reconstruction
algorithms also allow for accurate modeling of physical nonidealities in the data,
such as those introduced by acoustic inhomogeneity and attenuation, or the response
of the imaging system.

In this chapter, the physical principles of PAT are reviewed. We start with
a review of the underlying imaging physics and contrast mechanisms in PAT.
Subsequently, the imaging models that relate the measured photoacoustic wavefields
to the sought-after optical absorption distribution are described in their continuous
and discrete forms. The basic principles of image reconstruction from discrete
measurement data are presented, which includes a review of methods for modeling
the measurement system response. We defer a detailed description of analytic
reconstruction algorithms and the mathematical properties of PAT in �Mathematics
of Photoacoustic and Thermoacoustic Tomography.

2 Imaging Physics and Contrast Mechanisms

In PAT, a laser or microwave source is used to irradiate an object, and the
thermoacoustic effect results in the generation of a pressure wavefield p.r; t/
[45, 54, 65], where r 2 R

3 and t is the temporal coordinate. The resulting pressure
wavefield can be measured by use of wideband ultrasonic transducers located on a
measurement aperture 0 � R

3, which is a 2D surface that partially or completely
surrounds the object. In this section, we review the physics that underlies the image
contrast mechanism in PAT employing laser and microwave sources.

The Thermoacoustic Effect and Signal Generation

The generation of photoacoustic wavefields in an inviscid and lossless medium is
described by the general photoacoustic wave equation [55, 56]

�
r2 � 1

c2

@2

@t2

�
p.r; t/ D � ˇ

�c2

@2T .r; t/
@t2

; (1)

where r2 is the 3D Laplacian operator, T .r; t/ denotes the temperature rise within
the object at location r and time t due to absorption of the probing electromagnetic
radiation, and p.r; t/ denotes the resulting induced acoustic pressure. The quantities

http://dx.doi.org/10.1007/978-1-4939-0790-8_51
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ˇ, �, and c denote the thermal coefficient of volume expansion, isothermal
compressibility, and speed of sound, respectively. Because an inviscid medium is
assumed, the propagation of shear waves is neglected in Eq. (1), which is typically
reasonable for soft-tissue imaging applications. Note that the spatial–temporal
samples of p.r; t/, which are subsequently degraded by the response of the imaging
system, represent the measurement data in a PAT experiment.

When the temporal width of the exciting electromagnetic pulse is sufficiently
short, the pressure wavefield is produced before significant heat conduction can
take place. In this situation, the excitation is said to be in thermal confinement.
Specifically, this occurs when the temporal width � of the exciting electromagnetic
pulse satisfies [56]

� <
d 2
c

4˛th
; (2)

where dc and ˛th denote the characteristic dimension (m) of the heated region and
the thermal diffusivity .m2=s/.

Under conditions of thermal confinement, the temperature function T .r; t/
satisfies

�CV
@T .r; t/
@t

D H.r; t/; (3)

where � and CV denote the mass density .kg=m3/ and specific heat capacity of the
medium at constant volume. The quantity H.r; t/ ŒJ=.m3s/� is called the heating
function that describes the energy per unit volume and time that is deposited in the
medium by the exciting electromagnetic pulse. On substitution from Eq. (3) into
Eq. (1), one obtains the simplified photoacoustic wave equation

�
r2 � 1

c2

@2

@t2

�
p.r; t/ D � ˇ

Cp

@H.r; t/
@t

; (4)

where Cp D �c2�CV [J/(kg K)] denotes the specific heat capacity of the medium at
constant pressure. It is sometimes convenient to work the velocity potential �.r; t/
that is related to the pressure as p.r; t/ D �� @�.r;t /

@t
. It can be readily verified that

Eq. (4) can be reexpressed in terms of �.r; t/ as

�
r2 � 1

c2

@2

@t2

�
�.r; t/ D ˇ

�Cp
H.r; t/: (5)

The photoacoustic wave equations described by Eqs. (4) and (5) have been
solved for a variety of canonical absorbers [15–17]. Figure 1 shows an example
corresponding to a uniform spherical absorber. In this case, the optical absorber
was assumed to possess a speed of sound c0 that matched the background medium.
Note that the pressure possesses an “N-shape” waveform. Solutions have also been
derived for the case where the optical absorbers have acoustical properties that are
different from those of the background medium [15].
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Fig. 1 The pressure (a) and
velocity potential (b)
waveforms produced by the
thermoacoustic effect for a
uniform sphere of radius Rs
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In practice, it is appropriate to consider the following separable form for the
heating function

H.r; t/ D A.r/I.t/; (6)

where A.r/ .J=m3/ is the absorbed energy density and I.t/ denotes the temporal
profile of the illuminating pulse.

When the exciting electromagnetic pulse duration � is short enough to satisfy the
acoustic stress-confinement condition

� <
dc

c
; (7)

in addition to the thermal-confinement condition in Eq. (2), one can approximate
I.t/ by a Dirac delta function I.t/ 	 ı.t/. Physically, Eq. (7) requires that all of
the thermal energy has been deposited by the electromagnetic pulse before the mass
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density or volume of the medium has had time to change. In this case, the absorbed
energy density A.r/ is related to the induced pressure wavefield p.r; t/ at t D 0 as

p.r; t D 0/ D �A.r/; (8)

where � is the dimensionless Gruneisen parameter. As discussed in detail later, the
goal of PAT is to determineA.r/ or, equivalently,p.r; t D 0/ from measurements of
p.r; t/ acquired on a measurement aperture. It is also useful to note that under the
acoustic stress-confinement condition, Eq. (4) coupled with appropriate boundary
conditions is mathematically equivalent to the initial value problem [34]

�
r2 � 1

c2

@2

@t2

�
p.r; t/ D 0; (9)

subject to

p.r; t D 0/ D �A.r/ and
@p.r; t/
@t

ˇ̌
ˇ
tD0
D 0: (10)

The effects of heterogeneous speed of sound or acoustic attenuation are not
addressed above, but will be described later. In the following two subsections, a
review of the physical object properties that give rise to image contrast, that is,
variations in A.r/, are reviewed for the case of optical and microwave illumination.

Image Contrast in Laser-Based PAT

When an optical laser pulse is employed to induce the thermoacoustic effect, the
heating function can be explicitly expressed as

H.r; t/ D �a.r/ˆ.r; t/; (11)

where �a.r/ (1/m) is the optical absorption coefficient of the medium and
ˆ.r; t/ ŒJ=.m2s/� is the optical fluence rate [39]. Assuming ˆ.r; t/ 
 ˆs.r/I.t/,
Eq. (11) can be expressed as

H.r; t/ D �a.r/ˆs.r/„ ƒ‚ …
A.r/

I.t/; (12)

where the absorbed energy density, which is the sought-after quantity in PAT, is now
identified as

A.r/ 
 �a.r/ˆs.r/: (13)

Equation (13) reveals that image contrast in laser-based PAT is determined by the
optical absorption properties of the object as well as variations in the fluence of
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the illuminating optical radiation. Because only the optical absorption properties
are intrinsic to the object, in implementation of PAT it is desirable to make the
optical fluence ˆs.r/ as uniform as possible so one can unambiguously interpret
A.r/ / �a.r/. This presents experimental challenges, and computational methods
for quantitative determination of �a.r/ are being developed actively [9, 12, 68].
However, in most current implementations of PAT, an estimate of A.r/ represents
the final image.

There are many desirable characteristics of laser-based PAT for biological
imaging. The optical absorption coefficient �a.r/ is a function of the molecular
composition of tissue [11] and is therefore sensitive to tissue pathologies and
functions. Specifically, PAT can deduce physiological parameters such as the
oxygen saturation of hemoglobin and the total concentration of hemoglobin, as
well as certain features of cancer such as elevated blood content of tissue due to
angiogenesis [65].

Although pure optical imaging methods also are sensitive to such physiological
parameters, they are limited by their relatively poor spatial resolution and inability
to image deep tissue structures. PAT circumvents these limitations because diffusely
scattered photons that are absorbed at deep locations are still useful for signal
generation via the thermoacoustic effect. When the wavelength of the optical source
lies in the range 700–900 nm, light can penetrate up to several centimeters in
biological tissue. As described by Eq. (13), the optical fluenceˆs.r/, which contains
ballistic and diffusely scattered photons, modulates �a.r/. However, as described
later, the spatial resolution of the reconstructed estimate of A.r/ is not directly
affected by this and is determined largely by the properties of the measured pressure
signal p.r; t/.

Image Contrast in RF-Based PAT

When an RF pulse is employed to induce the thermoacoustic effect, the nature of
the image contrast is different from that described above. A detailed analysis of this
has been conducted by Li et al., in [40]. Consider the case of an RF pulse whose
temporal width is much longer than the oscillation period of the electromagnetic
wave at the center frequency !c . The RF source is assumed to produce a plane-
wave with linear polarization and can be described as

ein.t/ D S.t/cos.!ct/; (14)

where S.t/ is a slowly varying envelope function. Furthermore, consider that the
medium is isotropic and the electrical conductivity of the medium 
.r; !/ can be
approximated as


.r; !/ 	 
.r; !c/; (15)

where ! represents the temporal frequency variable. Under the stated conditions, it
is the short-time averaged heating function
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< H.r; t/ >
 1

Tc

Z tCTc

t

dt jH.r; t/j; (16)

where Tc D 2�
!c

, which gives rise to signal generation in RF-based PAT [40]. It has
been demonstrated [40] that this quantity can be expressed as

< H.r; t/ >D A.r/S
2.t/

2
; (17)

where S2.t/

2 represents the electric field intensity of the RF source and

A.r/ 
 
.r; !c/j QE.r; !c/j2
j Qein.!c/j2 ; (18)

where QE.r; !c/ and Qein.!c/ denote the temporal Fourier transforms of E.r; t/ and
ein.t/ evaluated at ! D !c , with E.r; t/ denoting the local electric field. Note that
Eq. (18) represents the quantity that is estimated by conventional PAT reconstruction
algorithms.

Equation (18) reveals that image contrast in RF-based PAT is determined by
the electrical conductivity of the material, which is described by the complex
permittivity, as well as variations in the illuminating electric field at temporal
frequency component ! D !c . Because only the electrical conductivity is intrinsic
to the object material, it is desirable to make j QE.r; !c/j2 as uniform as possible,
so one can unambiguously interpret as the distribution of the conductivity. It
has been demonstrated in computer-simulation and experimental studies [40] that
estimates of A.r/ produced by conventional image reconstruction algorithms can be
nonuniform and contain distortions due to diffraction of the electromagnetic wave
within the object to be imaged. There remains a need to develop improved image
reconstruction methods to mitigate these.

The complex permittivity of tissue has a strong dependence on the water content,
temperature, and ion concentration. Because of this, any variations in blood flow in
tissue will give rise to changes in the quantity of water and consequently to changes
in its complex permittivity. RF-based PAT therefore has the high sensitivity to tissue
properties of a microwave technique but requires solution of a tractable acoustic
inverse source problem for image reconstruction.

Functional PAT

A highly desirable characteristic of PAT is its ability to provide detailed functional,
in additional to anatomical, information regarding biological systems. In this
section, we provide a brief review of functional imaging using PAT. For additional
details, the reader is referred to parts IX and X in reference [55] and the references
therein.
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Due to optical contrast mechanism discussed in section “Image Contrast in
Laser-Based PAT,” laser-based functional PAT operating in the near-infrared (NIR)
frequency range can be employed to determine information regarding the oxy-
genated and deoxygenated hemoglobin within the blood of tissues. This can permit
the study of vascularization and hemodynamics, which is relevant to brain imaging
and cancer detection.

Functional PAT imaging of hemoglobin can be achieved by exploiting the
known characteristic absorption spectra of oxygenated hemoglobin .HbO2/ and
deoxygenated hemoglobin (Hb). Consider the situation where the optical fluence
ˆs.r/ is known, and therefore the optical absorption coefficient �a.r/ can be
determined from the reconstructed absorbed energy density A.r/ via Eq. (13). Let
��1
a .r/ and ��2

a .r/ denote the reconstructed estimates of �a.r/ corresponding to the
cases where the wavelength of the optical source is set at �1 and �2. From knowledge
of these two estimates, the hemoglobin oxygen saturation distribution, denoted by
SO2.r/, is determined as

SO2.r/ D ��2
a .r/�

�1
Hb � ��1

a .r/�
�2
Hb

�
�1
a .r/�

�2
�Hb � ��2

a .r/�
�1
�Hb

; (19)

where ��Hb and ��HbO2
denote molar extinction coefficients of Hb and HbO2, and

���Hb 
 ��HbO2
���Hb. The distribution of the total hemoglobin concentration, denoted

by HbT.r/, can be determined as

HbT.r/ D ��1
a .r/�

�2
�Hb � ��2

a .r/�
�1
�Hb

�
�1
Hb�

�2
HbO2
� ��2

Hb�
�1
HbO2

: (20)

An experimental investigation of functional PAT imaging of a rat brain was
described in [59]. While in different physiological states, a rat was imaged using
laser light at wavelengths 584 and 600 nm to excite the photoacoustic signals. A two-
dimensional (2D) scanning geometry was employed, and the estimates of A.r/were
reconstructed by use of a backprojection reconstruction algorithm. Subsequently,
estimates of SO2.r/ and HbT.r/ were computed and are displayed in Fig. 2.

3 Principles of PAT Image Reconstruction

In the remainder of this chapter, we describe some basic principles that underlie
image reconstruction in PAT. We begin by considering the image reconstruc-
tion problem in its continuous form. Subsequently, issues related to discrete
imaging models that are employed in iterative image reconstruction methods are
reviewed.

A schematic of a general PAT imaging geometry is shown in Fig. 3. A short
laser or RF pulse is employed to irradiate an object and, as described earlier, the
thermoacoustic effect results in the generation of a pressure wavefield p.r; t/. The
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Fig. 2 Noninvasive spectroscopic photoacoustic imaging of HbT and SO2 in the cerebral cortex
of a rat brain. (a) and (b) Brain images generated by 584 and 600 nm laser light, respectively; (c)
and (d) image of SO2 and HbT in the areas of the cortical venous vessels (Reproduced from Wang
et al. [59])

pressure wavefield propagates out of the object and is measured by use of wideband
ultrasonic transducers located on a measurement aperture 0 � R

3, which is
a 2D surface that partially or completely surrounds the object. The coordinate
r0 2 0 will denote a particular transducer location. Although we will assume
that the ultrasound transducers are point-like, it should be noted that alternative
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Fig. 3 A schematic of the PAT imaging geometry

implementations of PAT are being actively developed that employ integrating
ultrasound detectors [24, 49].

PAT ImagingModels in Their Continuous Forms

When the object possesses homogeneous acoustic properties that match a uniform
and lossless background medium, and the duration of the irradiating optical pulse is
negligible (acoustic stress confinement is obtained), the pressure wavefield p.r0; t/

recorded at transducer location r0 can be expressed [65] as a solution to Eq. (9):

p.r0; t/ D ˇ

4�Cp

Z
V

d 3rA.r/
d

dt

ı
�
t � jr0�rj

c0

�

jr0 � rj ; (21)

where c0 is the (constant) speed of sound in the object and background medium.
The function A.r/ is compactly supported, bounded, and nonnegative, and the inte-
gration in Eq. (21) is performed over the object’s support volume V . Equation (21)
represents a canonical imaging model for PAT. The inverse problem in PAT is to
determine an estimate of A.r/ from knowledge of the measured p.r0; t/. Note
that, as described later, the measured p.r0; t/ will generally need to be corrected
for degradation caused by the temporal and spatial response of the ultrasound
transducer.

The imaging model in Eq. (21) can be expressed in an alternate but mathemati-
cally equivalent form as

g.r0; t/ D
Z
V

d 3r A.r/ ı
�
t � jr0 � rj

c0

�
; (22)
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where the integrated data function g.r0; t/ is defined as

g.r0; t/ 
 4�Cpc0

ˇ
t

Z t

0
dt 0 p.r0; t

0/: (23)

Note that g.r0; t/ represents a scaled version of the acoustic velocity potential
�.r0; t/. Equation (22) represents a spherical Radon transform [22,43] and indicates
that the integrated data function describes integrals over concentric spherical
surfaces of radii c0t that are centered at the receiving transducer location r0. When
these spherical surfaces can be approximated as planes, which would occur when
imaging sufficiently small objects that are placed at the center of the scanning
system, Eq. (22) can be approximated as a 3D Radon transform [30, 31].

Universal Backprojection Algorithm

A number of analytic image reconstruction algorithms [22, 34, 64, 65] for PAT have
been developed in recent years for inversion of Eq. (21) or (22). A detailed descrip-
tion of analytic algorithms will be provided in �Mathematics of Photoacoustic
and Thermoacoustic Tomography. However, the so-called universal backprojection
algorithm [64] is reviewed below.

The three canonical measurement geometries in PAT employ measurement
apertures 0 that are planar [66], cylindrical [67], or spherical [61]. The universal
backprojection algorithm proposed by Xu and Wang [64] has been explicitly derived
for these geometries. In order to present the algorithm in a general form, let S denote
a surface, where S D 0 for the spherical and cylindrical geometries. For the planar
geometry, let S D 0 C0

0, where 0
0 is a planar surface that is parallel to 0 and

the object resides between0 and 0
0.

It has been verified that the initial pressure distribution p.r; t D 0/ D �A.r/ can
be mathematically determined from knowledge of the measured p.r0; t/, r0 2 0,
by use of the formula

p.r; t D 0/ D 1

�

Z
S

dS

Z 1

�1
dk Qp.r0; k/

h
nS0 � r0 QG.in/

k .r; r0/
i
; (24)

where Qp.r0; k/ denotes the temporal Fourier transform of p.r0; t/ that is defined
with respect to the reduced variable Nt D c0 t as

Qp.r0; k/ D
Z 1

�1
d Nt p.r0; Nt / exp.ik Nt /: (25)

Here, nS0 denotes the unit vector normal to the surface S pointing toward the source,

r0 denotes the gradient operator acting on the variable r0, and QG.in/

k .r; r0/ D
exp.�ikjr�r0j/

4�jr�r0j is a Green’s function of the Helmholtz equation.

http://dx.doi.org/10.1007/978-1-4939-0790-8_51
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Equation (24) can be expressed in the form of a filtered backprojection algo-
rithm as

p.r; t D 0/ D
Z
†0

d†0
b.r0; Nt D jr � r0j/

†0
; (26)

where†0 is the solid angle of the whole measurement surface0 with respect to the
reconstruction point inside0. Note that †0 D 4� for the spherical and cylindrical
geometries, while †0 D 2� for the planar geometry. The solid angle differential
d†0 is given by

d†0 D d0

jr � r0j2
nS0 � .r � r0/

jr � r0j ; (27)

where d0 is the differential surface area element on 0. The filtered data function
b.r0; Nt / is related to the measured pressure data as

b.r0; Nt/ D 2p.r0; Nt/ � 2Nt @p.r0; Nt /
@Nt : (28)

Equation (26) has a simple interpretation. It states that p.r; t D 0/, or
equivalently A.r/, can be determined by backprojecting the filtered data function
onto a collection of concentric spherical surfaces that are centered at each transducer
location r0.

The Fourier-Shell Identity

Certain insights regarding the spatial resolution of images reconstructed in PAT can
be gained by formulating a Fourier domain mapping between the measured pressure
data and the Fourier components of A.r/ [6]. Below we review a mathematical
relationship between the pressure wavefield data function and its normal derivative
measured on an arbitrary aperture that encloses the object and the 3D Fourier
transform of the optical absorption distribution evaluated on concentric (Ewald)
spheres [6]. We have referred to this relationship as a “Fourier-shell identity,” which
is analogous to the well-known Fourier slice theorem of X-ray tomography.

Consider a measurement aperture0 that is smooth and closed, but is otherwise
arbitrary, and let Os 2 S2 denote a unit vector on the 3D unit sphere S2. The 3D spatial
Fourier transform of A.r/, denoted as NA.�/, is defined as

NA.�/ D
Z
V

drA.r/ e�i� � r; (29)

where the 3D spatial frequency vector � D .�x; �y; �z/ is the Fourier conjugate of r.
It has been demonstrated [6] that
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NA.� D k Os/ D iCp

kˇ QI .k/
Z
0

dS 0 � On0 � r Qp �r 0
0; k

	C ik On0 � Os Qp �r 0
0; k

	�
e�ikOs � r 0

0 ;

(30)
where Qp.r0; k/ is defined in Eq. (25), dS 0 is the differential surface element on 0,
and On0 is the unit outward normal vector to 0 at the point r 0

0 2 0. Equation (30)
has been referred to as the Fourier-shell identity of PAT. Because Os can be chosen
to specify any direction, NA.� D k Os/ specifies the Fourier components of A.r/
that reside on a spherical surface of radius jkj, whose center is at the origin.
Therefore, Eq. (30) specifies concentric “shells” of Fourier components of A.r/
from knowledge of Qp.r0; k/ and its derivative along the On0 direction at each point on
the measurement aperture. As reviewed below, this will permit a direct and simple
analysis of certain spatial resolution characteristics of PAT.

For a 3D time-harmonic inverse source problem, it is well known [10,13,14] that
measurements of the radiated wavefield and its normal derivative on a surface that
encloses the source specify the Fourier components of the source function that reside
on an Ewald sphere of radius k D !

c
, where ! is the temporal frequency. In PAT,

the temporal dependence I.t/ of the heating function H.r; t/ is not harmonic and,
in general, QI .k/ ¤ 0. In the ideal case where I.t/ D ı.t/, QI .k/ D c. Consequently,
when Eq. (30) is applied to each temporal frequency component k of Qp.r0; k/,
the entire 3D Fourier domain, with exception of the origin, is determined by the
resulting collection of concentric spherical shells. This is possible because of the
separable form of the heating function in Eq. (6).

Special Case: PlanarMeasurement Geometry
The Fourier-shell identity can be used to obtain reconstruction formulas for
canonical measurement geometries. For example, consider the case of an infinite
planar aperture 0. Specifically, we assume a 3D object is centered at the origin of
a Cartesian coordinate system, and the measurement aperture 0 coincides with
the plane y D d > R, where R is the radius of the object. In this situation,
r 0

0 D .x0; d; z0/, dS 0 D dx0d z0, and On0 D Oy, where Oy denotes the unit vector
along the positive y-axis. The components of the unit vector Os will be denoted as
.sx; sy; sz/. Equation (30) can be expressed as the following two terms:

NA.� D k Os/ D NA1.� D k Os/C NA2.� D k Os/; (31)

where

NA1.� D k Os/ 
 iCp

kcˇ QI .k/e�ikdsy
ZZ

1
dx0d z0 @ Qp.x0; y; z0; k/

@y

ˇ̌
ˇ̌
yDd

e�ik.x0sxCz0sz/;

(32)
and

NA2.� D k Os/ 
 �Cp sy
cˇ QI .k/ e�ikdsy

ZZ
1
dx0d z0 Qp.x0; d; z0; k/ e�ik.x0sxCz0sz/; (33)
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where, without confusion, we employ the notation Qp.x; y; z; k/ D Qp.r0; k/.
It can be readily verified that Eqs. (32) and (33) can be reexpressed as

NA1.� D k Os/ 
 iCp

kcˇ QI .k/e�ikdsy @
@y
NQp.ksx; y; ksz; k/

ˇ̌
ˇ
yDd (34)

and

NA2.� D k Os/ 
 �Cp sy
cˇ QI .k/ e�ikdsy NQp.ksx; d; ksz; k/; (35)

where NQp.�x; y; �z; k/ is the 2D spatial Fourier transform of Qp.x; y; z; k/ with respect
to x and z (the detector plane coordinates):

NQp.�x; y; �z; k/ 
 1

4�2

ZZ
1
dxd z Qp.x; y; z; k/ e�i.x�xCz�z/: (36)

The free-space propagator for time-harmonic homogeneous wavefields (see, e.g.,
Ref. [36], Chapter 4.2) can be utilized to compute the derivative in Eq. (34) as

@ NQp.ksx; y; ksz; k/

@y
D ik

q
1 � s2

x � s2
z
NQp.ksx; y; ksz; k/ D iksy NQp.ksx; y; ksz; k/;

(37)
where sy � 0. Equations (34)–(37) and (31) establish that

NA.� D k Os/ D 2 NA2.� D k Os/ for sy � 0: (38)

Equation (38) permits estimation of NA.� D k Os/ on concentric half shells in the
domain �y � 0 and is mathematically equivalent to previously studied Fourier-
based reconstruction formulas [29, 66]. Note that A.r/ is real valued, and therefore
the Fourier components in the domain �y < 0 can be determined by use of the
Hermitian conjugate symmetry property of the Fourier transform.

Spatial Resolution from a Fourier Perspective

The Fourier-shell identity described in section “The Fourier-Shell Identity” is a
convenient tool for understanding the spatial resolution characteristics of PAT.
Below, we analyze the effects of finite transducer temporal bandwidth and aperture
size on spatial resolution [6, 62]. The analysis is applicable to any measurement
aperture 0 that corresponds to a coordinate surface of a curvilinear coordinate
system.
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Effects of Finite Transducer Bandwidth
Consider a point-like ultrasonic transducer whose temporal filtering characteristics
are described by the transfer function QB.kI r0/. The r0-dependence of QB.kI r0/

permits transducers located at different measurement locations to be characterized
by distinct transfer functions. The temporal Fourier transform of the measured
pressure signal that has been degraded by the temporal response of the transducer
will be denoted as Qpb.r0; k/, in order to distinguish it from the ideal pressure signal
Qp.r0; k/. Because the temporal transducer response can be described by a linear

time-invariant system, the degraded and ideal pressure data are related as

Qpb.r0; k/ D QB.kI r0/ Qp.r0; k/: (39)

Consider the case where 0 corresponds to a coordinate surface of a curvilinear
coordinate system, that is, r0 2 0 is a vector that varies in only two of its
three components. For such surfaces, B

�
kI r 0

0

	
can be interpreted as a 3D function

that does not vary in the On0 direction and therefore On0� r QB �kI r 0
0

	 D 0. If the
Fourier-shell identity in Eq. (30) is applied with the degraded data function Qpb.r0; k/

replacing the ideal data, the 3D Fourier components of the resulting image, denoted
by Ab.r/, are recovered as

NAb.� D k Os/ D iCp

kˇ QI .k/
Z
0

dS 0 QB �kI r 0
0

	
Œ On0� r Qp �r0

0; k
	C ik On0� Os Qp �r0

0; k
	
�e�ikOs�r0

0 :

(40)
On comparison of Eqs. (30) and (40), we observe that the spatially variant transducer
transfer function QB.kI r0/ modulates the integrand of the Fourier-shell identity. In
this general case, the spatial resolution of A.r/ will be spatially variant.

If a collection of identical transducers spans 0, QB.kI r0/ D QB.k/ will not
depend on r0 and Eq. (40) reduces to the simple form

NAb.� D k Os/ D QB.k/ NA.� D k Os/; (41)

where NA.� D k Os/ is the exact Fourier data as defined in Eq. (30). As shown in
Fig. 4, the one-dimensional (1D) transfer function QB.k/ of the transducer serves as
a radially symmetric 3D filter that modifies NA.� D k Os/. This establishes that the
image degradation is described by a shift-invariant linear system:

Ab.r/ D A.r/ � B.r/; (42)

where � denotes a 3D convolution and

B.r/ D B.jrj/ D
Z 1

0
dk QB.k/ sin.kjrj/

kjrj k2 (43)

is the point-spread function. Equation (43) is consistent with the results derived in
Ref. [62].
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Fig. 4 (a) An example of a transducer transfer function QB.k/. (b) The 1D function QB.k/ acts as
a radially symmetric filter in the 3D Fourier domain. The shaded region indicates the bandpass
of 3D Fourier components that results from application of Eq. (41) (Reproduced from Anastasio
et al. [6])

Effects of Nonpoint-Like Transducers
In addition to a nonideal temporal response, a transducer cannot be exactly point-
like and will have a finite aperture size. To understand the effects of this on spatial
resolution, we consider here a transducer that has an ideal temporal response (i.e.,
QB.kI r0/ D 1) but a finite aperture size [6]. We will assume that the surface of the

transducer aperture is a subset of the measurement aperture0.
It will be useful to employ a local 3D coordinate system whose origin coincides

with the center of the detecting surfaceL � 0, for a transducer at some arbitrary
but fixed location r 0

0 2 0. A vector in this system will be denoted as rL, and the
collection of rL 2 L spans all locations on the detecting surface of this transducer.
For a transducer located at a different position r0 2 0, the local coordinate vector
will be denoted as

r 0
L D Tr0frLg; (44)
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where Tr0f � g denotes the corresponding coordinate transformation. This indicates
that the collection of vectors r 0

L corresponding to rL 2 L reside in a local
coordinate system whose origin is at r0 and span all locations on the detecting
surface of the transducer centered at that location.

The measured pressure data Qpa.r0; k/, where the subscript “a” denotes the data
are obtained in the presence of a finite aperture, can be expressed as

Qpa.r0; k/ D
Z
L

dSL W.rL/ Qp
�
r0 C r 0

L; k
	
; (45)

where dSL is the differential surface element on L and the aperture function
W.rL/ describe the sensitivity of the transducers at location rL on their surfaces. We
assume the aperture function is identical for all transducers, and thereforeW.rL/ can
be described simply in terms of the local coordinate rL. Note that r 0

L is a function
of rL, as described by Eq. (44).

If the Fourier-shell identity in Eq. (30) is applied with the degraded data function
Qpa.r0; k/, the 3D Fourier components of the corresponding image Aa.r/ are

recovered as

NAa.� D k Os/ D iCp

kˇ QI .k/
Z
L

dSL W.rL/

�
Z
0

d0
0 e�ikOs�r 0

0
� On0� r Qp �r 0

0 C r 0
L; k

	C ik On0� Os Qp �r 0
0 C r 0

L; k
	�
:

(46)

By use of the change-of-variable r0 
 r 0
0 C r 0

L in Eq. (46), one obtains

NAa.� D k Os/ D iCp

kˇ QI .k/
Z
L

dSL W.rL/

�
Z
0

d0 e�ikOs�.r0�r 0
L/Œ On0� r Qp.r0; k/C ik On0� Os Qp.r0; k/�; (47)

which cannot be simplified further.
The fact that Eq. (47) does not reduce to a simple form analogous to Eq. (41)

reflects that the image degradation due to a finite transducer aperture is generally not
described by a shift-invariant system [62]. A shift-invariant description is obtained
for planar apertures where Eq. (44) reduces to r 0

L D rL, where r 0
L no longer has a

dependence on r0. In this case, Eq. (47) can be expressed as

NAa.� D k Os/ D NW .k Os/ NAa.� D k Os/; (48)

where

NW .k Os/ 

Z
L

dSL W.rL/ eikOs�rL: (49)
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Because, in this case, rL resides on a plane and W.rL/ is a real-valued function,
Eq. (49) corresponds to the complex conjugate of the 2D Fourier transform of the
aperture function. The point-spread function obtained by computing the 3D inverse
Fourier transform of NW .k Os/ reduces to a result given in [62].

4 Speed-of-Sound Heterogeneities and Acoustic
Attenuation

In practice, the object to be imaged may not possess uniform acoustic properties,
and the images reconstructed by use of algorithms that ignore this can contain
artifacts and distortions. Below, we review some methods that can compensate for
an object’s frequency-dependent acoustic attenuation and heterogeneous speed-of-
sound distribution.

Frequency-Dependent Acoustic Attenuation

Because the thermoacoustically inducted pressure signals measured in PAT are
broadband and ultrasonic attenuation is frequency dependent, in certain applications
it may be important to compensate for this effect. Below, we describe a method
described in [37] for achieving this.

Acoustic waves propagating in a lossy medium are attenuated with a linear
attenuation coefficient ˛.!/ of the general form [53]

˛.!/ D ˛0 j!jn ; (50)

where ! is the angular frequency of the wave [53]. For ultrasonic waves in tissue,
n 	 1 and ˛0 	 .10�7=2�/ cm�1 rad�1 s.

Assuming a uniform speed-of-sound distribution, a photoacoustic wave equation
with consideration of acoustic attenuation can be expressed as [37]

r2p .r; t/ � 1

c2
0

@2

@t2
p .r; t/C L.t/ � p .r; t/ D � ˇ

Cp
A.r/

@

@t
I .t/ ; (51)

where � denotes temporal convolution, c0 is now a reference phase velocity, and the
function L.t/ describes the effect of acoustic attenuation and is defined as

L.t/ D 1

2�

Z 1

�1
d!

�
K.!/2 � !

2

c2
0

�
exp.�i!t/; (52)

where

K.!/ 
 !

c.!/
C i˛.!/: (53)
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Note that in this section, p .r; t/ denotes the pressure that is affected by acoustic
attenuation.

The phase velocity, denoted here by c.!/, also has a temporal frequency
dependence according to the Kramers–Kronig relations. For n D 1, this relationship
is given by

1

c.!/
D 1

c0
� 2

�
˛0 ln

ˇ̌
ˇ̌ !
!0

ˇ̌
ˇ̌ ; (54)

where !0 is the reference frequency for which c.!0/ D c0.
Letep .r; !/ denote the temporal Fourier transform of the pressure data:

ep .r; !/ D
Z 1

�1
dt p .r; t/ exp .i!t/ : (55)

It has been shown [37] that the Fourier transform of the attenuated dataep .r; !/
is related to the unattenuated data pideal .r; t/ as

ep .r; !/ D I.!/
�
c0

c.!/
C ic0˛0sgn.!/

��1

�
Z 1

�1
pideal .r; t/ exp

�
i

�
!
c0

c.!/
C ic0˛0 j!j

�
t


dt; (56)

where

pideal .r; t/ D ˇ

Cp

Z
dr0A.r0/

d

dt

ı
�
t � jr�r0j

c0

�

4� jr � r0j ; (57)

is the solution to the photoacoustic wave equation in the absence of attenuation.
Equation (56) permits one to investigate the effect of acoustic attenuation in PAT.

It can also be discretized to produce a linear system of equations that can be inverted
numerically for removal of the effects of acoustic dispersion in the measured
photoacoustic signals. Subsequently, a conventional PAT image reconstruction
algorithm could be employed to estimate A.r/. A numerical example of this is
provided in Ref. [37].

Weak Variations in the Speed-of-Sound Distribution

The conventional PAT imaging models described in section “PAT Imaging Models
in Their Continuous Forms” assume that the object’s speed of sound is constant and
equal to that of the background medium. In certain biomedical imaging applications,
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this assumption does not reasonably hold true. For example, the speed of sound
of breast tissue can vary from 1,400 to 1,540 m/s. Acoustic inhomogeneities can
introduce significant wavefront aberrations in the photoacoustic signal that are not
accounted for in the available reconstruction algorithms.

For a weakly acoustic scattering object, with consideration of phase aberrations
due to the acoustic heterogeneities effects, the forward PAT imaging model can be
expressed as a generalized Radon transform [4, 63]

Og.r0; Nt / D
Z
V

d 3rA.r/ıŒNt � c0tf .r; r0/�
c0tf .r; r0/

jr0 � rj ; (58)

where tf .r; r0/ is the time of flight (TOF) for a pressure wave to travel from point
r within the object to transducer location r0. For objects possessing weak acoustic
heterogeneities, the TOF can be computed accurately as

tf .r; r0/ D
Z

r 02L.r;r0/

d 3r 0 1

c.r 0/
; (59)

where c.r/ is the spatially variant acoustic speed and the set L.r; r0/ describes a
line connecting r0 and r.

The generalized Radon transform describes weighted integrals of A.r/ over iso-
TOF surfaces that are not spherical in general. The iso-TOF surfaces are determined
by the heterogeneous acoustic speed distribution c.r/ of the object. In the absence
of acoustic heterogeneities, these are spherical surfaces with varying radii that are
centered at r0, and Eq. (58) reduces to the spherical Radon transform in Eq. (22). To
establish this imaging model for PAT imaging, the iso-TOF surfaces that Eq. (58)
integrates over need to be determined explicitly by use of a priori knowledge of the
speed-of-sound distribution c.r/. Estimates of c.r/ can be obtained by performing
an adjunct ultrasound computed tomography study of the object [25]. Subsequently,
ray-tracing methods can be employed to identify the iso-TOF surfaces for each
transducer position r0. Once these path lengths are computed, the points in the object
that have the same path lengths can be grouped together to form iso-TOF surfaces.
No known analytic methods are available for inversion of Eq. (58). Accordingly,
iterative methods have been employed for image reconstruction [3, 25].

A higher-order geometrical acoustics-based imaging model has also been
recently proposed [42] that takes into account the first-order effect in the
amplitude of the measured signal and higher-order perturbation to the travel
times. By incorporating higher-order approximations to the travel time that
incorporates the effect of ray bending, the accuracy of reconstructed images was
significantly improved. More general reconstruction methods based on the concept
of time-reversal are discussed in chapter �Mathematics of Photoacoustic and
Thermoacoustic Tomography.

http://dx.doi.org/10.1007/978-1-4939-0790-8_51
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5 Data Redundancies and the Half-Time Reconstruction
Problem

In this section, we review data redundancies that result from symmetries in the
PAT imaging model [2, 5, 51, 70], which are related to the so-called half-time
reconstruction problem of PAT [4]. Specifically, we describe how an image can
be reconstructed accurately from knowledge of half of the temporal components
recorded at all transducer locations on a closed measurement aperture.

Data Redundancies

Consider the spherical Radon transform imaging model in Eq. (22). Two half-time
data functions g.1/.r0; Nt/ and g.2/.r0; Nt/ can be defined as

g.1/.r0; Nt / D
�
g.r0; Nt/ W R0 �RA � Nt � R0

0 W otherwise;
(60)

and

g.2/.r0; Nt / D
�
g.r0; Nt / W R0 < Nt � R0 CRA
0 W otherwise:

(61)

Here, R0 denotes the radius of the measurement aperture 0, and RA denotes the
radius of support of A.r/. We assume that the object is acoustically homogeneous
with speed of sound c0 and Nt 
 c0 t . Note that the data functions g.1/.r0; Nt/ and
g.2/.r0; Nt/ each cover different halves of the complete data domain 0 � ŒR0 �
RA;R0 CRA�, and therefore g.r0; Nt / D g.1/.r0; Nt /C g.2/.r0; Nt /.

In the limit where R0 ! 1, the spherical Radon transform reduces to a
conventional Radon transform that integrates over 2D planes. In that case, an
obvious conjugate-view symmetry exists [10], and therefore, either of the half-
time data functions g.1/.r0; Nt / and g.2/.r0; Nt / contains enough information, in a
mathematical sense, for exact image reconstruction. Accordingly, a twofold data
redundancy exists because the complete data function g.r0; Nt/ contains twice as
much information as is theoretically necessary for exact image reconstruction.

In the case where R0 is finite, a simple conjugate view symmetry does not exist.
Nevertheless, it has been demonstrated that a twofold data redundancy exists in the
complete data function g.r0; Nt/. This has been heuristically [50] and mathematically
[5] by use of a layer-stripping procedure [2,5,50,70]. This established thatA.r/ can
be recovered uniquely and stably from knowledge of either half-time data functions
g.1/.r0; Nt/ or g.2/.r0; Nt /. A similar conclusion has been derived in Ref. [22] using a
different mathematical approach.

Analytic inversion formulae for recoveringA.r/ from knowledge of the half-time
data functions g.1/.r0; Nt/ or g.2/.r0; Nt / are not currently available. However, iterative
reconstruction algorithms can be employed [4, 5] to determine A.r/.
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Mitigation of Image Artifacts Due to Acoustic Heterogeneities

If the spatially variant speed of sound c.r/ is known, one can numerically invert a
discretized version of Eq. (58) to determine an estimate of A.r/ [3]. However, in
many applications of PAT, c.r/ is not known, and images are simply reconstructed
by use of algorithms that assume a constant speed of sound. This can result in
conspicuous image artifacts.

Let Og.r0; Nt/ denote a data function that is contaminated by the effects of speed-
of-sound variations within the object that is related to A.r/ according to Eq. (58).
Let OA.r/ denote an estimate of A.r/ that is reconstructed from Og.r0; Nt / by use of
a conventional reconstruction algorithm that assumes an acoustically homogeneous
object. The quantities Og.1/.r0; Nt / and Og.2/.r0; Nt/ denote half-time data functions that
are defined in analogy with Eqs. (60) and (61) with g.r0; Nt / replaced by Og.r0; Nt/.

An image reconstructed from Og.1/.r0; Nt/ can sometimes contain reduced artifact
levels as compared to one reconstructed from the complete data Og.r0; Nt/. To
demonstrate this, in the discussion below, we consider the 2D problem and the
spatially variant speed-of-sound distribution shown in Fig. 5. This speed-of-sound
distribution is comprised of two uniform concentric disks that have c0 and c1, with
c0 ¤ c1, and radii r0 and r1, respectively. The background medium is assumed to
have a speed of sound, c0.

The acoustic heterogeneity will cause the data function Og.r0; Nt/ to differ from the
ideal one g.r0; Nt /. The magnitude of this difference will be smaller, in general, for
small values of Nt than for large values of Nt . This can be understood by noting that,

in general,
ˇ̌
ˇtf .r; r0/� jr0�rj

c0

ˇ̌
ˇ will become larger as the path length through the

speed-of-sound heterogeneity increases. This causes the surfaces of integration that
contribute to Og.r0; Nt/ to become less spherical for larger values of Nt . Accordingly, the

r0

r1

c0 c1

R0

t2

t1

Ultrasound
receiver

Fig. 5 A speed-of-sound distribution comprised of two uniform concentric regions. Superim-
posed on the figure are examples of how the surfaces of integration that contribution to the data
function g.r0; t/ are perturbed
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Fig. 6 Images of a phantom object reconstructed from experimentally measured (a) full-time, (b)
first half-time data functions (Reproduced from Anastasio et al. [4])

data function Og.r0; Nt/ becomes less consistent with the spherical Radon transform
model.

The discussion above suggests that a half-time reconstruction method that
employs Og.1/.r0; Nt/ can produce images with reduced artifact and distortion levels
than contained in images reconstructed from the complete, or full-time, data
Og.r0; Nt /. An example of this is shown in Fig. 6. The data corresponded to a physical
phantom study using a microwave source, as described in Ref. [61]. Measurements
were taken at 160 equally spaced positions on the 2D circular scanning aperture of
radius 70 mm, and for each measurement, the received pressure signal was sampled
at 2;000 points, at a sampling frequency of 50 MHz. Images were reconstructed
from full- and half-time data, via the EM algorithm as described in Ref. [4]. The
contrast and resolution of the images reconstructed from half-time data appears to
be superior to that of the images reconstructed from the full-time data.

6 Discrete ImagingModels

The imaging models discussed so far were expressed in their continuous forms.
In practice, PAT imaging systems record temporal and spatial samples of p.r0; t/,
while the absorbed energy density is described by the function A.r/. Accordingly,
a realistic imaging model should be described mathematically as a continuous-to-
discrete (C–D) mapping [8]. Moreover, when iterative reconstruction algorithms
are employed, a discrete representation of A.r/ is required to establish a suitable
discrete-to-discrete approximate imaging model. In this section, we review these
concepts within the context of PAT.

The remainder of this section is organized as follows. In section “Continuous-
to-Discrete Imaging Models,” we review the C–D versions of the continuous-to-
continuous (C–C) models in Eqs. (21) and (22). Finite-dimensional object represen-
tations are surveyed in section “Finite-Dimensional Object Representations” that
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are used to establish the discrete-to-discrete (D–D) models in section “Discrete-to-
Discrete Imaging Models.” In section “Iterative Image Reconstruction,” we briefly
review some approaches to iterative image reconstruction that have been applied in
PAT. The section concludes with a numerical example that demonstrates the effects
of object representation error on image reconstruction accuracy.

Continuous-to-Discrete ImagingModels

In practice, p.r0; t/ and g.r0; t/ are discretized temporally and determined at
a finite number of receiver locations. The vectors p; g 2 R

N will represent
lexicographically ordered representations of the sampled data functions, where the
dimensionN is defined by the product of the number of temporal samples acquired
at each transducer location (S ) and the number of transducer locations (M ). Let
Eqs. (21) and (22) be expressed in operator notation as

p.r0; t/ D HpA.r/; (62)

and

g.r0; t/ D HgA.r/: (63)

In general, a C–D operator can be interpreted as a discretization operator D
�

acting on C–C operator HCC [8]. Let y denote p or g and let HCC denote Hp or
Hg . The notation yŒn� will be used to denote the nth element of the vector y. The
C–D versions of Eqs. (21) and (22) can be expressed as

y D D
�HCCA.r/ D HCDA.r/; (64)

where D
� is discretization operator that characterizes the temporal and spatial
sampling characteristics of the ultrasonic transducer.

For the case where y D p and p.r0; t/ D HpA.r/, D
� will be denoted as D.p/

�

and is defined as

pŒmSCs� D
�
D.p/

� p.r0; t/

�
ŒmSCs� 


Z 1

�1
dt �s.t/

Z
0

d0 p.r0; t/
m.r0/; (65)

where m D 1; 2; : : : ;M is the index that specifies the mth transducer location
r0;m on the measurement aperture 0, s D 1; 2; : : : ; S is the index of the time
sample, and 
m.r0/ and �s.t/ are functions that describe the spatial and temporal
sampling apertures, respectively. They are determined by the sampling properties of
ultrasonic transducers. In the ideal case, where both apertures are described by Dirac
delta functions, the sth temporal sample for the mth transducer location represents
the pressure at time s�T and location r0;m, where �T is the temporal sampling
interval, that is,
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p ŒmSCs� D p.r0;m; s�T /: (66)

We can express explicitly the C–D imaging model involving the pressure data as

p ŒmSCs� D
Z
V

d 3r A.r/ hmSCs.r/; (67)

where V denotes the support volume of A.r/ and

hmSCs.r/ 

Z 1

�1
dt0 �s.t0/

Z
0

d0 h.r; r0I t0/
m.r0/ (68)

defines a point response function. The kernel h.r; r0I t0/ is defined as

h.r; r0I t0/ D
Z 1

�1
dt I.t/G.r; r0I t; t0/; (69)

where I.t/ is the temporal illumination function and G.r; r0I t; t0/ is the Green’s
function

G.r; r0I t; t0/ D ˇ

4�Cpjr � r0j
dı.t/

dt

ˇ̌
ˇ̌
tDt0� jr�r0j

c0

: (70)

By use of the singular value decomposition of the C–D operator in Eq. (67), a
pseudoinverse solution can be computed numerically to estimate A.r/ [8].

In order to establish a C–D imaging model involving the integrated pressure data,
to first order, we can approximate the integral operator in Eq. (23) as

gŒmSCs� D 4�Cpc0s�T

ˇ

sX
qD1

p ŒmSCq�: (71)

For the case where y D g and g.r0; t/ D HgA.r/, D
� will be denoted as D.g/

� and

is defined as

gŒmSCs� D
�
D.g/

� g.r0; t/

�
ŒmSCs�


 s�T
sX

qD1

Z 1

�1
dt �q.t/

Z
0

d0 
m.r0/
d

dt

�
g.r0; t/

t

�
: (72)

Note that, in practice, g is not measured and is computed from the measured p by
use of Eq. (71). Therefore, it is not physically meaningful to interpret g as being
directly sampled from the raw measurement data.
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Finite-Dimensional Object Representations

When iterative image reconstruction algorithms are employed, a finite-dimensional
representation of A.r/ [8] is required. In this section, we review some finite-
dimensional representations that have been employed in PAT. In the subsequent
section, computer-simulation studies are conducted to demonstrate the effects of
error in the object representation.

An N -dimensional representation of A.r/ can be described as

Aa.r/ D
NX
nD1

�Œn��n.r/; (73)

where the subscript a indicates that Aa.r/ is an approximation of A.r/. The
functions�n.r/ are called expansion functions and the expansion coefficients �Œn� are
elements of the N -dimensional vector � . The goal of iterative image reconstruction
methods is to estimate � , for a fixed choice of the expansion functions �n.r/.

The most commonly employed expansion functions are simple image voxels

�n.x; y; z/ D
�

1; if jx � xnj; jy � ynj; jz� znj � �=2
0; otherwise

(74)

where rn D .xn; yn; zn/ specify the coordinates of the nth grid point of a uniform
Cartesian lattice and � defines the spacing between lattice points.

In PAT, spherical expansion functions of the form

�n.x; y; z/ D
�

1; if
p
.x � xn/2 C .y � yn/2 C .z � zn/2 � �=2

0; otherwise
(75)

have also proven to be useful [18, 27]. The merit of this kind of expansion function
is that the acoustic wave generated by each voxel can be calculated analytically.
This facilitates determination of the system matrix utilized by iterative image
reconstruction methods, as discussed below. Numerous other effective choices for
the expansion functions [38] exist, including wavelets or other sets of functions that
can yield sparse object representations [52].

In addition to an infinite number of choices for the expansion functions, there are
an infinite number of ways to define the expansion coefficients � . Some common
choices include

�Œn� D Vcube

Vvoxel

Z
V

d 3r�n.r/A.r/; (76)

or

�Œn� D
Z
V

d 3r ı.r� rn/A.r/: (77)
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For a givenN , different choices of �n and � will yield object representations that
possess different representation errors

ıA.r/ D A.r/ �Aa.r/: (78)

An example of the effects of such representation errors on iterative reconstruction
methods is provided in section “Iterative Image Reconstruction.”

Discrete-to-Discrete ImagingModels

Discrete-to-discrete (D–D) imaging models are required for iterative image
reconstruction. These can be obtained systematically by substitution of a finite-
dimensional object representation into the C–D imaging model in Eq. (64):

ya D HCDAa.r/ D
NX
nD1

�Œn�HCDf�n.r/g 
 H�; (79)

where the D–D operator H is commonly referred to as the system matrix. The
system matrix H is of dimension .MS/ � N , and an element of H will be denoted
by HŒn;m�. Note that the data vector ya ¤ y, due to the fact that a finite-dimensional
approximate object representation was employed. In other words, ya represents an
approximation of the measured pressure data, denoted by pa, or the corresponding
approximate integrated pressure data ga.

For the case where ya D pa, the system matrix H will be denoted as H.p/ and its
elements are defined as

H
.p/

ŒmSCs; n� D
Z
V

d 3r�n.r/hmSCs.r/ D D.p/

�

˚
pn.r0; t0/



; (80)

where hmSCs.r/ is defined in Eq. (68) and

pn.r0; t0/ D
Z
V

d 3r�n.r/h.r; r0I t0/: (81)

Equation (80) provides a clear two-step procedure for computing the system
matrix. First, pn.r0; t0/ is computed. Physically, this represents the pressure data, in
its continuous form, received by an ideal point transducer when the absorbing object
corresponds to �n.r/. Secondly, a discretization operator is applied that samples the
ideal data and degrades it by the transducer response. Alternatively, the elements of
the system matrix can be measured experimentally by scanning an object whose
form matches the expansion functions through the object volume and recording
the resulting pressure signal at each transducer location r0;m, for each value of n
(location of expansion function), at time intervals s�T . For the case of spherical
expansion elements, this approach was implemented in [18].
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This two-step approach for determining H be formulated as

H D S ıH0; (82)

where “ı” denotes an element-wise product. Each element of H0 is defined as

H0ŒmSCs;n� D pn.r0;m; s�T /: (83)

The MS �N matrix S can be interpreted as a sensitivity map, whose elements are
defined as

SŒmSCs;n� D D
�

˚
pn.r0; t0/



pn.r0;m; s�T /

: (84)

For the case where ya D ga, similar interpretations hold. The system matrix H
will be denoted as H.g/, and its elements are defined as

H
.g/

ŒmSCs;n� D D.g/

�

˚
gn.r0; t0/



; (85)

where

gn.r0; t0/ D 4�Cpc0t0

ˇ

Z t0

0
d�0

Z
V

d 3r�n.r/h.r; r0I �0/: (86)

Numerical Example: Impact of Representation Error on Computed
Pressure Data
Consider a uniform sphere of radius Rs D 5 mm as the optical absorber (acoustic
source). Assuming Dirac delta (i.e., ideal) temporal and spatial sampling, the
pressure data were computed at a measurement location r0 65 mm away from the
center of the sphere by use of D–D and C–C imaging models. For the uniform
sphere, the pressure waveform can be computed analytically as

p.r0; s�T / D d

dt

�
ˇ

4�Cpc0t
g.r0; t/

�ˇ̌
ˇ̌
tDs�T

D
(

ˇc2
0

2Cp jr0�rc j .jr0 � rcj � c0s�T /; if
ˇ̌
c0s�T � jr0 � rjˇ̌ � Rs

0; otherwise
(87)

where rc is the center of the spherical source and �T is the sampling interval.
As discussed in section “The Thermoacoustic Effect and Signal Generation,” the
pressure possesses an “N” shape waveform as shown as the dashed red curve
in Fig. 7. Finite-dimensional object representations of the object were obtained
according to Eq. (73) with �n.r/ corresponding to the uniform spheres described
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Fig. 7 Pressure data generated by continuous imaging model (red dash) and discrete imaging
model using 256 � 256 � 256 voxels (blue solid) and 64 � 64 � 64 voxels (green solid)

in Eq. (75). The expansion coefficients were computed according to Eq. (76).
Two approximate object representations were considered. The first representation
employed N D 2563 spherical expansion functions of radius 0:04 mm, while the
second employed N D 643 expansion functions of radius 0:16 mm. The resulting
pressure signals are shown as Fig. 7, where the speed of sound c0 D 1:521 mm=�s
and �T D 0:05�s. As expected, the error in the computed pressure data increases
as the voxel size is increased. In practice, this error would represent a data
inconsistency between the measured data and the assumed D–D imaging model,
which can result in image artifacts as demonstrated by the example below.

Iterative Image Reconstruction

Once the system matrix H is determined, as described in the previous section, an
estimate of A.r/ can be computed in two distinct steps. First, from knowledge of
the measured data and system matrix, Eq. (79) is inverted to estimate the expansion
coefficients � . Second, the estimated expansion coefficients are employed with
Eq. (73) to determine the finite-dimensional approximation Aa.r/. Each of steps
introduces error into the final estimate of A.r/. In the first step, due to noise in
the measured data ya, modeling errors in H, and/or if H is not full rank, the true
values coefficients � cannot generally be determined. The estimated � will therefore
depend on the definition of the approximate solution and the particular numerical
algorithm used to determine it. Even if � could somehow be determined exactly,
the second step would introduce error due to the approximate finite-dimensional
representation of A.r/ employed. This error is influenced by the choice of N and
�n.r/ and is object dependent.
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Fig. 8 The 2D numerical phantom � representing the object function A.r/

Due to the large size of H, iterative methods are often employed to estimate
� . Iterative approaches offer a fundamental and flexible way to incorporate a prior
information regarding the object, to improve the accuracy of the estimated � . A vast
literature on iterative image reconstruction methods exists [7, 20, 21, 60], which we
leave to the reader to explore. Examples of applications of iterative reconstruction
methods in PAT are described in references [1,4,5,18,48,69]. A numerical example
demonstrating how object representation error can affect the accuracy of iterative
image reconstruction is provided next.

Numerical Example: Influence of Representation Error on Image
Accuracy
We assume focused transducers are employed that receive only acoustic pressure
signals transmitted from the imaging plane and therefore the 3D spherical Radon
transform imaging model to a 2D circular mean model. A 2D phantom comprised
of uniform disks possessing different gray levels, radii, and locations was assumed
to represent A.r/. The radius of the phantom was 1.0 (arbitrary units). A finite-
dimensional representationAa.r/was formed according to Eq. (73), withN D 2562

and �n.r/ chosen to be conventional pixels described by a 2D version of Eq. (74).
The expansion coefficients �Œn� were computed by use of Eq. (77). Figure 8 displays
the computed expansion coefficient vector � that has been reshaped into a 256�256
for display purposes.

A circular measurement aperture 0 of radius 1.2 that enclosed the object was
employed. At each of 360 uniformly, spaced transducer locations, r0;m, on the
measurement circle, simulated pressure data pa were computed from the integrated
data g by use of the formula
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Fig. 9 Images reconstructed by the least-squares conjugate gradient algorithm from pressure data
obtained by (a) numerical imaging model and (b) analytical imaging model. (c) Vertical profiles
through the center of subfigure (a) (solid blue), subfigure (b) (solid green), and Fig. 8 (dashed red)

paŒmSCs� D ˇ

4�Cpc0

�
gŒmSCsC1�=.s C 1/� gŒmSCs�1�=.s � 1/

2�T 2

�
: (88)

Two versions of the pressure data were computed, corresponding to the cases where
g was computed analytically or by use of the assumed D–D imaging model. These
simulated pressure data are denoted by panalya and pnum

a , respectively. At each
transducer location, 300 temporal samples of p.r0; t/ were computed. Accordingly,
the pressure vector pa was a column vector of length 360 � 300.

The conjugate gradient algorithm was employed to find the least-squares esti-
mate O� ,

O� D arg min
�
kpa �H�k2; (89)
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where pa D panalya or pnum
a . For the noiseless data, the images reconstructed

from panalya and pnum
a after 150 iterations are shown as Fig. 9a, b, respectively.

The image reconstructed from the data pnum
a is free of significant artifacts and

is nearly identical to the original object. This is expected because the finite-
dimensional object representation was used to produce the simulated measurement
data and establish the system matrix, and therefore the system of equations in
Eq. (79) is consistent. Generating simulation data in this way would constitute an
“inverse crime.” Conversely, the image reconstructed from the data panalya contained
high-frequency artifacts due to the fact that the system of equations in Eq. (79)
is inconsistent. The error in the reconstructed images could be minimized by
increasing the dimension of the approximate object representation. This simple
example demonstrates the importance of carefully choosing a finite-dimensional
object representation in iterative image reconstruction.

7 Conclusion

Photoacoustic tomography is a rapidly emerging biomedical imaging modality
that possesses many challenges for image reconstruction. In this chapter, we have
reviewed the physical principles of PAT. Contrast mechanisms in PAT were dis-
cussed, and the imaging models that relate the measured photoacoustic wavefields
to the sought-after optical absorption distribution were described in their continuous
and discrete forms.
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Abstract
The chapter surveys the mathematical models, problems, and algorithms of the
thermoacoustic tomography (TAT) and photoacoustic tomography (PAT). TAT
and PAT represent probably the most developed of the several novel “hybrid”
methods of medical imaging. These new modalities combine different physical
types of waves (electromagnetic and acoustic in case of TAT and PAT) in such
a way that the resolution and contrast of the resulting method are much higher
than those achievable using only acoustic or electromagnetic measurements.

1 Introduction

We provide here just a very brief description of the thermoacoustic tomogra-
phy/photoacoustic tomography (TAT/PAT) procedure, since the relevant physics and
biology details can be found in another chapter [94] in this volume, as well as in
the surveys and books [93, 95]. In TAT (PAT), a short pulse of radio-frequency
EM wave (correspondingly, laser beam) irradiates a biological object (e.g., in the
most common application, human breast), thus causing small levels of heating. The
resulting thermoelastic expansion generates a pressure wave that starts propagating
through the object. The absorbed EM energy and the initial pressure it creates are
much higher in the cancerous cells than in healthy tissues (see the discussion of
this effect in [93–95]). Thus, if one could reconstruct the initial pressure f .x/,
the resulting TAT tomogram would contain highly useful diagnostic information.
The data for such a reconstruction are obtained by measuring time-dependent
pressure p.x; t/ using acoustic transducers located on a surface S (we will call
it the observation or acquisition surface) completely or partially surrounding the
body (see Fig. 1). Thus, although the initial irradiation is electromagnetic, the actual
reconstruction is based on acoustic measurements. As a result, the high contrast
is produced due to a much higher absorption of EM energy by cancerous cells
(ultrasound alone would not produce good contrast in this case), while the good
(submillimeter) resolution is achieved by using ultrasound measurements (the radio-
frequency EM waves are too long for high-resolution imaging). Thus, TAT, by using
two types of waves, combines their advantages, while eliminating their individual
deficiencies.

The physical principle upon which TAT/PAT is based was discovered by Alexan-
der Graham Bell in 1880 [19], and its application for imaging of biological tissues
was suggested a century later [21]. It began to be developed as a viable medical
imaging technique in the middle of the 1990s [53, 69].

Some of the mathematical foundations of this imaging modality were originally
developed starting in the 1990s for the purposes of the approximation theory,
integral geometry, and sonar and radar (see [4,7,38,54,60] for references and exten-
sive reviews of the resulting developments). Physical, biological, and mathematical
aspects of TAT/PAT have been recently reviewed in [4, 38, 39, 54, 70, 89, 92, 93, 95].

TAT/PAT is just one, probably the most advanced at the moment, example of
the several recently introduced hybrid imaging methods, which combine different
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Fig. 1 Thermoacoustic
tomography/photoacoustic
tomography (TAT/PAT)
procedure with a partially
surrounding acquisition
surface

types of radiation to yield high quality of imaging unobtainable by single-radiation
modalities (see [10, 11, 40, 55, 95] for other examples).

2 Mathematical Models of TAT

In this section, we describe the commonly accepted mathematical model of the TAT
procedure and the main mathematical problems that need to be addressed. Since
for all our purposes PAT results in the same mathematical model (although the
biological features that TAT and PAT detect are different; see details in Ref. [13]),
we will refer to TAT only.

Point Detectors and theWave EquationModel

We will mainly assume that point-like omnidirectional ultrasound transducers,
located throughout an observation (acquisition) surface S , are used to detect the
values of the pressure p.y; t/, where y 2 S is a detector location and t � 0
is the time of the observation. We also denote by c.x/ the speed of sound at a
location x. Then, it has been argued that the following model describes correctly
the propagating pressure wave p.x; t/ generated during the TAT procedure (e.g.,
[13, 31, 88, 94, 97]):

�
ptt D c2.x/�xp; t � 0; x 2 R

3

p.x; 0/ D f .x/; pt .x; 0/ D 0:
(1)

Here f .x/ is the initial value of the acoustic pressure, which one needs to find in
order to create the TAT image. In the case of a closed acquisition surface S , we will
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Fig. 2 The observation surface S and the domain  containing the object to be imaged

denote by  the interior domain it bounds. Notice that in TAT the function f .x/ is
naturally supported inside . We will see that this assumption about the support of
f sometimes becomes crucial for the feasibility of reconstruction, although some
issues can be resolved even if f has nonzero parts outside the acquisition surface.

The data obtained by the point detectors located on a surface S are represented
by the function

g.y; t/:Dp.y; t/ for y 2 S; t � 0: (2)

Figure 2 illustrates the space-time geometry of (1).
We will incorporate the measured data g into the system (1), rewriting it as

follows:

8̂
<̂
ˆ̂:
ptt D c2.x/�xp; t � 0; x 2 R

3

p.x; 0/ D f .x/; pt .x; 0/ D 0

pjS D g.y; t/; .y; t/ 2 S �R
C:

(3)

Thus, the goal in TAT/PAT is to find, using the data g.y; t/ measured by
transducers, the initial value f .x/ at t D 0 of the solution p.x; t/ of (3).

We will use the following notation:

Definition 1. We will denote by W the forward operator

W W f .x/ 7! g.y; t/; (4)

where f and g are described in (3).
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Remark 1.
• The reader should notice that if a different type of detector is used, the system (1)

will still hold, while the measured data will be represented differently from (2)
(see section “Variations on the Theme: Planar, Linear, and Circular Integrating
Detectors”). This will correspondingly influence the reconstruction procedures.

• We can consider the same problem in the space R
n of any dimension, not just

in 3D. This is not merely a mathematical abstraction. Indeed, in the case of the
so-called integrating line detectors (section “Variations on the Theme: Planar,
Linear, and Circular Integrating Detectors”), one deals with the 2D situation.

Acoustically Homogeneous Media and Spherical Means

If the medium being imaged is acoustically homogeneous (i.e., c.x/ equals to a
constant, which we will assume to be equal to 1 in appropriate units), as it is
approximately the case in breast imaging, one deals with the constant coefficient
wave equation problem

8̂
<̂
ˆ̂:
ptt D �xp; t � 0; x 2 R

3

p.x; 0/ D f .x/; pt .x; 0/ D 0

pjS D g.y; t/; .y; t/ 2 S �R
C:

(5)

In this case, the well-known Poisson–Kirchhoff formulas [27, Chap. VI, Sect. 13.2,
Formula (15)] for the solution of the wave equation give in 3D

p.x; t/ D a @
@t
.t.Rf /.x; t// ; (6)

where

.Rf /.x; r/:D 1

4�

Z

jyjD1

f .x C ry/dA.y/ (7)

is the spherical mean operator applied to the function f .x/, dA is the standard area
element on the unit sphere in R

3, and a is a constant. (Versions in all dimensions are
known; see (16) and (15).) One can derive from here that knowledge of the function
g.x; t/ for x 2 S and all t � 0 is equivalent to knowing the spherical meanRf .x; t/
of the function f for any points x 2 S and any t � 0. One thus needs to study the
spherical mean operator R W f ! Rf , or, more precisely, its restriction to the
points x 2 S only, which we will denote by M:

Mf .x; t/ WD 1

4�

Z

jyjD1

f .x C ty/dA.y/; x 2 S; t � 0: (8)
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Due to the connection between the spherical mean operator and the wave equation,
one can choose to work with the former, and in fact many works on TAT do
so. The spherical mean operator M resembles the classical Radon transform, the
common tool of computed tomography [63], which integrates functions over planes
rather than spheres. This analogy with Radon transform, although often purely
ideological, rather than technical, provides important intuition and frequently points
in reasonable directions of study. However, when the medium cannot be assumed to
be acoustically homogeneous, and thus c.x/ is not constant, the relation between
TAT and integral geometric transforms, such as the Radon and spherical mean
transforms to a large extent breaks down, and thus one has to work with the wave
equation directly.

In what follows, we will address both models of TAT (the PDE model and the
integral geometry model) and thus will deal with both forward operators W and M.

MainMathematical Problems Arising in TAT

We now formulate a list of problems related to TAT, which will be addressed in
detail in the rest of the article. (This list is more or less standard for a tomographic
imaging method.)

Sufficiency of the data: The first natural question to ask is as follows: Is the data
collected on the observation surface S sufficient for the unique reconstruction
of the initial pressure f .x/ in (3)? In other words, is the kernel of the forward
operator W zero? Or, to put it differently, for which sets S 2 R

3 the data
collected by transducers placed along S determines f uniquely? Yet another
interpretation of this question is through observability of solutions of the wave
equation on the set S : does observation on S of a solution of the problem (1)
determine the solution uniquely?
When the speed of sound is constant, and thus the spherical mean model
applies, the equivalent question is whether the operatorM has zero kernel on an
appropriate class of functions (say, continuous functions with compact support).
As it is explained in [7], the choice of precise conditions on the local function
class, such as continuity, is of no importance for the answer to the uniqueness
question, while behavior at infinity (e.g., compactness of support) is. So,
without loss of generality, when discussing uniqueness, one can assume f .x/
in (3) to be infinitely differentiable.

Inversion formulas and algorithms: Since a practitioner needs to see the actual
tomogram, rather than just know its existence, the next natural question arises: If
uniqueness the data collected on S is established, what are the actual inversion
formulas or algorithms? Here again one can work with smooth functions, in the
end extending the formulas by continuity to a wider class.

Stability of reconstruction: If we can invert the transform and reconstruct f from
the data g, how stable is the inversion? The measured data are unavoidably
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corrupted by errors, and stability means that small errors in the data lead to
only small errors in the reconstructed tomogram.

Incomplete data problems: What happens if the data is “incomplete,” for instance,
if one can only partially surround the object by transducers? Does this lead
to any specific deterioration in the tomogram and if yes, to what kind of
deterioration?

Range descriptions: The next question is known to be important for the analysis of
tomographic problems: What is the range of the forward operator W W f 7! g

that maps the unknown function f to the measured data g? In other words, what
is the space of all possible “ideal” data g.t; y/ collected on the surface S? In the
constant speed of sound case, this is equivalent to the question of describing the
range of the spherical mean operator M in appropriate function spaces. Such
ranges often have infinite co-dimensions, and the importance of knowing the
range of Radon type transforms for analyzing problems of tomography is well
known. For instance, such information is used to improve inversion algorithms,
complete incomplete data, and discover and compensate for certain data errors
(e.g., [41, 45, 63, 68, 70] and references therein). In TAT, range descriptions are
also closely connected with the speed of sound determination problem listed
next (see section “Reconstruction of the Speed of Sound” for a discussion of
this connection).

Speed of sound reconstruction: As the reader can expect, reconstruction proce-
dures require the knowledge of the speed of sound c.x/. Thus, the problem
arises of the recovery of c.x/ either from an additional scan or (preferably)
from the same TAT data.

Variations on the Theme: Planar, Linear, and Circular Integrating
Detectors

In the most basic and well-studied version of TAT described above, one utilizes
point-like broadband transducers to measure the acoustic wave on a surface sur-
rounding the object of interest. The corresponding mathematical model is described
by the system (3). In practice, the transducers cannot be made small enough,
since smaller detectors yield weaker signals resulting in low signal-to-noise ratios.
Smaller transducers are also more difficult to manufacture.

Since finite size of the transducers limits the resolution of the reconstructed
images, researchers have been trying to design alternative acquisition schemes using
receivers that are very thin but long or wide. Such are 2D planar detectors [24, 43]
and 1D linear and circular [23, 42, 73, 103] detectors.

We will assume throughout this section that the speed of sound c.x/ is constant
and equal to 1.

Planar detectors are made from a thin piezoelectric polymer film glued onto a
flat substrate (see, e.g., [75]). Let us assume that the object is contained within
the sphere of radius R. If the diameter of the planar detector is sufficiently large
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(see [75] for details), it can be assumed to be infinite. The mathematical model
of such an acquisition technique is no longer described by (3). Let us define
the detector plane ….s; !/ by equation x �! D s, where ! is the unit normal
to the plane and s is the (signed) distance from the origin to the plane. Then,
while the propagation of acoustic waves is still modeled by (1), the measured data
gplanar.s; t; !/ (up to a constant factor which we will, for simplicity, assume to be
equal to 1) can be represented by the following integral:

gplanar.s; !; t/ D
Z

….s;!/

p.x; t/dA.x/

where dA.x/ is the surface measure on the plane. Obviously,

gplanar.s; !; 0/ D
Z

….s;!/

p.x; 0/dA.x/ D
Z

….s;!/

f .x/dA.x/ 
 F.s; !/;

i.e., the value of g at t D 0 coincides with the integral F.s; !/ of the initial pressure
f .x/ over the plane….s; !/ orthogonal to !.

One can show [24, 43] that for a fixed !, function gplanar.s; !; t/ is the solution
to 1D wave equation

@2g

@s2
D @2g

@t2
;

and thus

gplanar.s; !; t/ D 1

2

�
gplanar.s; !; s � t/C gplanar.s; !; s C t/

�

D 1

2
ŒF .s C t; !/C F.s � t; !/� :

Since the detector can only be placed outside the object, i.e., s � R, the term F.sC
t; !/ vanishes, and one obtains

gplanar.s; !; t/ D F.s � t; !/:
In other words, by measuring gplanar.s; !; t/, one can obtain values of the planar
integrals of f .x/. If, as proposed in [24, 43], one conducts measurements for all
planes tangent to the upper half sphere of radius R (i.e., s D R;! 2 S2C), then the
resulting data yield all values of the standard Radon transform of f .x/. Now the
reconstruction can be carried out using one of the many known inversion algorithms
for the latter transform [63].

Linear detectors are based on optical detection of acoustic signal. Some of the
proposed optical detection schemes utilize as the sensitive element a thin straight
optical fiber in combination with Fabry–Perot interferometer [23, 42]. Changes of
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acoustic pressure on the fiber change (proportionally) its length; this elongation,
in turn, is detected by the interferometer. A similar idea is used in [73]; in this
work the role of a sensitive element is played by a laser beam passing through the
water in which the object of interest is submerged, and thus the measurement does
not perturb the acoustic wave. In both cases, the length of the sensitive element
exceeds the size of the object, while the diameter of the fiber (or of the laser beam)
can be made extremely small (see [75] for a detailed discussion), which removes
restrictions on resolution one can achieve in the images.

Let us assume that the fiber (or laser beam) is aligned along the line
l.s1; s2; !1; !2/ D fxjx D s1!1C s2!2C s!g, where vectors !1; !2, and ! form an
orthonormal basis in R

3. Then the measured quantities glinear.s1; s2; !1; !2; t/ are
equal (up to a constant factor which, we will assume, equals to 1) to the following
line integral:

glinear.s1; s2; !1; !2; t/ D
Z

R1

p.s1!1 C s2!2 C s!; t/ds:

Similar to the case of planar detection, one can show [23,42,73] that for fixed vectors
!1; !2 the measurements glinear.s1; s2; !1; !2; t/ satisfy the 2D wave equation

@2g

@s2
1

C @2g

@s2
2

D @2g

@t2
:

The initial values glinear.s1; s2; !1; !2; 0/ coincide with the line integrals of f .x/
along lines l.s1; s2; !1; !2/. Suppose one makes measurements for all values of
s1.�/; s2.�/ corresponding to a curve � D fxjx D s1.�/!1C s2.�/!2; �0 � � � �1g
lying in the plane spanned by!1; !2. Then one can try to reconstruct the initial value
of g from the values of g on � . This problem is a 2D version of (3), and thus the
known algorithms (see Sect. 4) are applicable.

In order to complete the reconstruction from data obtained using line detectors,
the measurements should be repeated with different directions of !. For each value
of !, the 2D problem is solved; the solutions of these problems yield values of line
integrals of f .x/. If this is done for all values of ! lying on a half circle, the set
of the recovered line integrals of f .x/ is sufficient for reconstructing this function.
Such a reconstruction represents the inversion of the well known in tomography X-
ray transform. The corresponding theory and algorithms can be found, for instance,
in [63].

Finally, the use of circular integrating detectors was considered in [103]. Such a
detector can be made out of optical fiber combined with an interferometer. In [103],
a closed-form solution of the corresponding inverse problem is found. However, this
approach is very new, and neither numerical examples nor reconstructions from real
data have been obtained yet.
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3 Mathematical Analysis of the Problem

In this section, we will address most of the issues described in section “Main
Mathematical Problems Arising in TAT,” except the reconstruction algorithms,
which will be discussed in Sect. 4.

Uniqueness of Reconstruction

The problem discussed here is the most basic one for tomography: Given an
acquisition surface S along which we distribute detectors, is the data g.y; t/ for
y 2 S; t � 0 (see (3)) sufficient for a unique reconstruction of the tomogram f ? A
simple counting of variables shows that S should be a hypersurface in the ambient
space (i.e., a surface in R

3 or a curve in R
2). As we will see below, although there

are some simple counterexamples and remaining open problems, for all practical
purposes, the uniqueness problem is positively resolved, and most surfaces S do
provide uniqueness. We address this issue for acoustically homogeneous media first
and then switch to the variable speed case.

Before doing so, however, we would like to dispel a concern that arises when
one looks at the problem of recovering f from g in (3). Namely, an impression
might arise that we consider an initial-boundary value (IBV) problem for the wave
equation in the cylinder  � R

C, and the goal is to recover the initial data f
from the known boundary data g. This is clearly impossible, since according to
standard PDE theorems (e.g., [27]), one can solve this IBV problem for arbitrary
choice of the initial data f and boundary data g (as long as they satisfy simple
compatibility conditions, which are fulfilled, for instance, if f vanishes near S
and g vanishes for small t , which is the case in TAT). This means that apparently
g contains essentially no information about f at all. This argument, however, is
flawed, since the wave equation in (3) holds in the whole space, not just in . In
other words, S is not a boundary, but rather an observation surface. In particular,
considering the wave equation in the exterior of S , one can derive that if f is
supported inside , the boundary values g of the solution p of (3) also determine
the normal derivative of p at S for all positive times. Thus, we in fact have (at
least theoretically) the full Cauchy data of the solution p on S , which should be
sufficient for reconstruction. Another way of addressing this issue is to notice that
if the speed of sound is constant, or at least non-trapping (see the definition below
in section “Acoustically Inhomogeneous Media”), the energy of the solution in any
bounded domain (in particular, in ) must decay in time. The decay when t ! 1
together with the boundary data g guarantees the uniqueness of solution and thus
uniqueness of recovery f .

These arguments, as the reader will see, play a role in understanding reconstruc-
tion procedures.
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Acoustically Homogeneous Media
We assume here the sound speed c.x/ to be constant (in appropriate units, one can
choose it to be equal to 1, which we will do to simplify considerations).

In order to state the first important result on uniqueness, let us recall the system
(5), allowing an arbitrary dimension n of the space:

8̂
<̂
ˆ̂:
ptt D �xp; t � 0; x 2 R

n

p.x; 0/ D f .x/; pt .x; 0/ D 0

pjS D g.y; t/; .y; t/ 2 S �R
C:

(9)

We introduce the following useful definition:

Definition 2. A set S is said to be a uniqueness set if when used as the acquisition
surface, it provides sufficient data for unique reconstruction of the compactly
supported tomogram f (i.e., the observed data g in (9) determines uniquely function
f ). Otherwise, it is called a nonuniqueness set.

In other words, S is a uniqueness set if the forward operator W (or, equivalently,
M) has zero kernel.

We have not indicated above the smoothness class of f .x/. However, it is not
hard to show (e.g., [7]) that the uniqueness does not depend on the smoothness of
f ; for simplicity, the reader can assume that f is infinitely differentiable. On the
other hand, compactness of support is important in what follows.

We will start with a very general statement about the acquisition (observation)
sets S that provide insufficient information for unique reconstruction of f (see [7]
for the proof and references):

Theorem 1. If S is a nonuniqueness set, then there exists a nonzero harmonic
polynomialQ, which vanishes on S .

This theorem implies, in particular, that all “bad” (nonuniqueness) observation
sets are algebraic, i.e., they have a polynomial vanishing on them. Turning this
statement around, we conclude that any set S that is a uniqueness set for harmonic
polynomials is sufficient for unique TAT reconstruction (although, as we will see in
section “Incomplete Data,” this does not mean practicality of the reconstruction).

The proof of Theorem 1, which the reader can find in [7, 54], is not hard and
in fact is enlightening, but providing it would lead us too far from the topic of this
survey.

We will consider first the case of closed acquisition surfaces, i.e., the ones that
completely surround the object to be imaged. We will address the general situation
afterward.
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Closed Acquisition Surfaces S
Theorem 2 ([7]). If the acquisition surface S is the boundary of bounded domain
 (i.e., a closed surface), then it is a uniqueness set. Thus, the observed data g in
(9) determines uniquely the sought function f 2 L2

comp.R
n/. (The statement holds,

even though f is not required to be supported inside S .)

Proof. Indeed, since there are no nonzero harmonic functions vanishing on a closed
surface S , Theorem 1 implies Theorem 2. �

There is, however, another more intuitive explanation of why Theorem 2 holds
true (although it requires somewhat stronger assumptions or a more delicate proof
than the one indicated below). Namely, since the solution p of (9) has compactly
supported initial data, its energy is decaying inside any bounded domain, in
particular inside  (see section “Acoustically Inhomogeneous Media” and [32, 47]
and references therein about local energy decay). On the other hand, if there is
nonuniqueness, there exists a nonzero f such that g.y; t/ D 0 for all y 2 S and t .
This means that we can add homogeneous Dirichlet boundary conditions p jSD 0
to (9). But then the standard PDE theorems [27] imply that the energy stays constant
in . Combination of the two conclusions means that p is zero in  for all times t .
It is well known [27] that such a solution of the wave equation must be identically
zero everywhere, and thus f D 0.

This energy decay consideration can be extended to some classes of non-
compactly supported functions f of the Lp classes, leading to the following result
of [1]:

Theorem 3 ([1]). Let S be the boundary of a bounded domain in R
n and f 2

Lp.Rn/. Then:

1. If p � 2n
n�1 and the spherical mean of f over almost every sphere centered on S

is equal to zero, then f D 0.
2. The previous statement fails when p > 2n

n�1 and S is a sphere.

In other words, a closed surface S is a uniqueness set for functions f 2 Lp.Rn/
when p � 2n

n�1 and might fail to be such when p > 2n
n�1 .

This result shows that the assumption, if not necessarily of compactness of
support of f , but at least of a sufficiently fast decay of f at infinity, is important for
the uniqueness to hold.

General Acquisition Sets S
Theorems 1 and 2 imply the following useful statement:

Theorem 4. If a set S is not algebraic, or if it contains an open part of a closed
analytic surface � , then it is a uniqueness set.
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ΣN

Fig. 3 Coxeter cross of N lines

Indeed, the first claim follows immediately from Theorem 1. The second one
works out as follows: if an open subset of an analytic surface � is a nonuniqueness
set, then by an analytic continuation type argument (see [7]), one can show that the
whole � is such a set. However, this is impossible, due to Theorem 2.

There are simple examples of nonuniqueness surfaces. Indeed, if S is a plane
in 3D (or a line in 2D or a hyperplane in dimension n) and f .x/ in (3) is odd
with respect to S , then clearly the whole solution of (3) has the same parity and
thus vanishes on S for all times t . This means that, if one places transducers on a
planar S , they might register zero signals at all times, while the function f to be
reconstructed is not zero. Thus, there is no uniqueness of reconstruction when S is
a plane. On the other hand (see [27, 51]), if f is supported completely on one side
of the plane S (the standard situation in TAT), it is uniquely recoverable from its
spherical means centered on S and thus from the observed data g.

The question arises on what are other “bad” (nonuniqueness) acquisition surfaces
than planes. This issue has been resolved in 2D only. Namely, consider a set of N
lines on the plane intersecting at a point and forming at this point equal angles. We
will call such a figure the Coxeter cross †N (see Fig. 3). It is easy to construct a
compactly supported function that is odd simultaneously with respect of all lines
in †N . Thus, a Coxeter cross is also a nonuniqueness set. The following result,
conjectured in [60] and proven in the full generality in [7], shows that up to adding
finitely many points, this is all that can happen to nonuniqueness sets:

Theorem 5 ([7]). A set S in the plane R
2 is a nonuniqueness set for compactly

supported functions f , if and only if it belongs to the union †N
S
ˆ of a Coxeter

cross †N and a finite set of points ˆ.
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Φ Σ

Fig. 4 The conjectured structure of a most general nonuniqueness set in 3D

Again, compactness of support is crucial for the proof provided in [7]. There are
no other proofs known at the moment of this result (see the corresponding open
problem in Sect. 5). In particular, there is no proven analogue of Theorem 3 for
non-closed sets S (unless S is an open part of a closed analytic surface).

The n-dimensional (in particular, 3D) analogue of Theorem 5 has been conjec-
tured [7], but never proven, although some partial advances in this direction have
been made in [8, 36].

Conjecture 1. A set S in R
n is a nonuniqueness set for compactly supported

functions f , if and only if it belongs to the union †
S
ˆ, where † is the cone of

zeros of a homogeneous (with respect to some point in R
n) harmonic polynomial,

and ˆ is an algebraic subset of Rn of dimension at most n � 2 .see Fig. 4/.

Uniqueness Results for a Finite Observation Time
So far, we have addressed only the question of uniqueness of reconstruction in
the nonpractical case of the infinite observation time. There are, however, results
that guarantee the uniqueness of reconstruction for a finite time of observation. The
general idea is that it is sufficient to observe for the time that it takes the geometric
rays (see section “Acoustically Inhomogeneous Media”) from the interior  of S
to reach S . In the case of a constant speed, which we will assume to be equal to 1,
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the rays are straight and are traversed with the unit speed. This means that if D is
the diameter of  (i.e., the maximal distance between two points in the closure of
), then after time t D D, all rays coming from  have left the domain. Thus, one
hopes that waiting till time t D D might be sufficient. In fact, due to the specific
initial conditions in (3), namely, that the time derivative of the pressure is equal to
zero at the initial moment, each singularity of f emanates two rays, and at least one
of them will reach S in time not exceeding D=2. And indeed, the following result
of [36] holds:

Theorem 6 ([36]). If S is smooth and closed surface bounding domain  and D
is the diameter of , then the TAT data on S collected for the time 0 � t � 0:5D
uniquely determines f .

Notice that a shorter collection time does not guarantee uniqueness. Indeed, if
S is a sphere and the observation time is less than 0:5D, due to the finite speed of
propagation, no information from a neighborhood of the center can reach S during
observation. Thus, values of f in this neighborhood cannot be reconstructed.

Acoustically Inhomogeneous Media
We assume that the speed of sound is strictly positive, c.x/ > c > 0, and such that
c.x/ � 1 has compact support, i.e., c.x/ D 1 for large x.

Trapping and Non-trapping
We will frequently impose the so-called non-trapping condition on the speed of
sound c.x/ in R

n. To introduce it, let us consider the Hamiltonian system in R
2n
x;�

with the HamiltonianH D c2.x/

2 j�j2:

8̂
<̂
ˆ̂:
x0
t D @H

@�
D c2.x/�

� 0
t D � @H@x D � 1

2r
�
c2.x/

	 j�j2
xjtD0 D x0; �jtD0 D �0:

(10)

The solutions of this system are called bicharacteristics, and their projections into
R
n
x are rays (or geometric rays).

Definition 3. We say that the speed of sound c.x/ satisfies the non-trapping
condition, if all rays with �0 ¤ 0 tend to infinity when t !1.

The rays that do not tend to infinity are called trapped.

A simple example, where quite a few rays are trapped, is the radial parabolic
sound speed c.x/ D cjxj2.

It is well known (e.g., [46]) that singularities of solutions of the wave equation
are carried by geometric rays. In order to make this statement more precise, we need
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to recall the notion of a wave front set WF.u/ of a distribution u.x/ in R
n. This set

carries detailed information on singularities of u.x/.

Definition 4. Distribution u.x/ is said to be microlocally smooth near a point
.x0; �0/, where x0; �0 2 R

n, and �0 ¤ 0, if there is a smooth “cutoff” function �.x/
such that �.x0/ ¤ 0 and that the Fourier transform c�u.�/ of the function �.x/u.x/
decays faster than any power j�j�N when j�j ! 1, in directions that are close
to the direction of �0. (We remind the reader that if this Fourier transform decays
that way in all directions, then u.x/ is smooth (infinitely differentiable) near the
point x0.)

The wave front set WF.u/ � R
n
x �

�
R
n
�n0

�
of u consists of all pairs .x0; �0/

such that u is not microlocally smooth near .x0; �0/.

In other words, if .x0; �0/ 2 WF.u/, then u is not smooth near x0, and the
direction of �0 indicates why it is not: the Fourier transform does not decay well
in this direction. For instance, if u.x/ consists of two smooth pieces joined non-
smoothly across a smooth interface †, then WF.u/ can only contain pairs .x; �/
such that x 2 † and � is normal to † at x.

It is known that the wave front sets of solutions of the wave equation propagate
with time along the bicharacteristics introduced above. This is a particular instance
of a more general fact that applies to general PDEs and can be found in [46, 84].
As a result, if after time T all the rays leave the domain  of interest, the solution
becomes smooth (infinitely differentiable) inside .

The notion of so-called local energy decay, which we survey next, is important
for the understanding of the non-trapping conditions in TAT.

Local Energy Decay Estimates
Assuming that the initial data f .x/ (1) is compactly supported and the speed c.x/
is non-trapping, one can provide the local energy decay estimates [32, 90, 91].
Namely, in any bounded domain , the solution p.x; t/ of (1) satisfies, for a
sufficiently large T0 and for any .k;m/, the estimate

ˇ̌
ˇ̌
ˇ
@kCjmj

@kt @
m
x

ˇ̌
ˇ̌
ˇ � Ck;m�k.t/kf kL2 ; for x 2 ; t > T0: (11)

Here �k.t/ D t�nC1�k for even n and �k.t/ D e�ıt for odd n and some ı > 0. Any
value T0 larger than the diameter of  works in this estimate.

Uniqueness Result for Non-trapping Speeds
If the speed is non-trapping, the local energy decay allows one to start solving
the problem (3) from t D 1, imposing zero conditions at t D 1 and using
the measured data g as the boundary conditions. This leads to recovery of the
whole solution and in particular its initial value f .x/. As the result, one obtains
the following simple uniqueness result of [3]:
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Theorem 7 ([3]). If the speed c.x/ is smooth and non-trapping and the acquisition
surface S is closed, then the TAT data g.y; t/ determines the tomogram f .x/

uniquely.

Notice that the statement of the theorem holds even if the support of f is not
completely inside of the acquisition surface S .

Uniqueness Results for Finite Observation Times
As in the case of constant coefficients, if the speed of sound is non-trapping,
appropriately long finite observation time suffices for the uniqueness. Let us denote
by T ./ the supremum of the time it takes the ray to reach S , over all rays
originating in . In particular, if c.x/ is trapping, T ./ might be infinite.

Theorem 8 ([86]). The data g measured till any time T larger than T ./ is
sufficient for the unique recovery of f .

Stability

By stability of reconstruction of the TAT tomogram f from the measured data g,
we mean that small variations of g in an appropriate norm lead to small variations
of the reconstructed tomogram f , also measured by an appropriate norm. In other
words, small errors in the data lead to small errors in the reconstruction.

We will try to give the reader a feeling of the general state of affairs with stability,
referring to the literature (e.g., [5, 48, 54, 71, 86]) for further exact details.

We will consider as functional spaces the standard Sobolev spaces Hs of
smoothness s. We will also denote, as before, by W the operator transforming the
unknown f into the data g.

Let us recall the notions of Lipschitz and Hölder stability. An even weaker
logarithmic stability will not be addressed here. The reader can find discussion of
the general stability notions and issues, as applied to inverse problems, in [49].

Definition 5. The operation of reconstructing f from g is said to be Lipschitz
stable between the spaces Hs2 and Hs1 , if the following estimate holds for some
constant C :

kf kHs1 � CkgkHs2 :

The reconstruction is said to be Hölder stable (a weaker concept), if there are
constants s1; s2; s3; C; � > 0, and ı > 0 such that

kf kHs1 � Ckgk�Hs2

for all f such that kf kHs3 � ı.
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Stability can be also interpreted in the terms of the singular values 
j of the
forward operator f 7! g inL2, which have at most power decay when j !1. The
faster is the decay, the more unstable the reconstruction becomes. The problems with
singular values decaying faster than any power of j are considered to be extremely
unstable. Even worse are the problems with exponential decay of singular values
(analytic continuation or solving Cauchy problem for an elliptic operator belong to
this class). Again, the book [49] is a good source for finding detailed discussion of
such issues.

Consider as an example inversion of the standard in X-ray CT and MRI Radon
transform that integrates a function f over hyperplanes in R

n. It smoothes function
by “adding .n � 1/=2 derivatives.” Namely, it maps continuously Hs-functions in
 into the Radon projections of class HsC.n�1/=2. Moreover, the reconstruction
procedure is Lipschitz stable between these spaces (see [63] for detailed discussion).

One should notice that since the forward mapping is smoothing (it “adds
derivatives” to a function), the inversion should produce functions that are less
smooth than the data, which is an unstable operation. The rule of thumb is that
the stronger is the smoothing, the less stable is the inversion (this can be rigorously
recast in the language of the decay of singular values). Thus, problems that require
reconstructing non-smooth functions from infinitely differentiable (or even worse,
analytic) data are extremely unstable (with super-algebraic or exponential decay of
singular values correspondingly). This is just a consequence of the standard Sobolev
embedding theorems (see, e.g., how this applies in TAT case in [65]).

In the case of a constant sound speed and the acquisition surface completely
surrounding the object, as we have mentioned before, the TAT problem can be
recast as inversion of the spherical mean transform M (see Sect. 2). Due to analogy
between the spheres centered on S and hyperplanes, one can conjecture that the
Lipschitz stability of the inversion of the spherical mean operator M is similar
to that of the inversion of the Radon transform. This indeed is the case, as long
as f is supported inside S , as has been shown in [71]. In the cases when closed-
form inversion formulas are available (see section “Constant Speed of Sound”), this
stability can also be extracted from them. If the support of f does reach outside,
reconstruction of the part of f that is outside is unstable (i.e., is not even Hölder
stable, due to the reasons explained in section “Incomplete Data”).

In the case of variable non-trapping speed of sound c.x/, integral geometry
does not apply anymore, and one needs to address the issue using, for instance,
time reversal. In this case, stability follows by solving the wave equation in reverse
time starting from t D 1, as it is done in [3]. In fact, Lipschitz stability in this
case holds for any observation time exceeding T ./ (see [86], where microlocal
analysis is used to prove this result).

The bottom line is that TAT reconstruction is sufficiently stable, as long as the
speed of sound is non-trapping.

However, trapping speed does cause instability [48]. Indeed, since some of the
rays are trapped inside , the information about some singularities never reaches
S (no matter for how long one collects the data), and thus, as it is shown in [65],
the reconstruction is not even Hölder stable between any Sobolev spaces, and the
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singular values have super-algebraic decay. See also section “Incomplete Data”
below for a related discussion.

Incomplete Data

In the standard X-ray CT, incompleteness of data arises, for instance, if not all
projection angles are accessible or irradiation of certain regions is avoided, or as
in the ROI (region of interest) imaging, only the ROI is irradiated.

It is not that clear what incomplete data means in TAT. Usually one says that one
deals with incomplete TAT data if the acquisition surface does not surround the
object of imaging completely. For instance, in breast imaging it is common that
only a half-sphere arrangement of transducers is possible. We will see, however,
that incomplete data effects in TAT can also arise due to trapping, even if the
acquisition surface completely surrounds the object.

The questions addressed here are the following:

1. Is the collected incomplete data sufficient for unique reconstruction?
2. If yes, does the incompleteness of the data have any effect on the stability and

quality of the reconstruction?

Uniqueness of Reconstruction
Uniqueness of reconstruction issues can be considered essentially resolved for
incomplete data in TAT, at least in most situations of practical interest. We will
briefly survey here some of the available results. In what follows, the acquisition
surface S is not closed (otherwise the problem is considered to have complete data).

Uniqueness for Acoustically HomogeneousMedia
In this case, Theorem 4 contains some useful sufficient conditions on S that
guarantee uniqueness. Microlocal results of [7,61,85], as well as the PDE approach
of [36] further applied in [8], provide also some other conditions. We assemble some
of these in the following theorem:

Theorem 9. Let S be a non-closed acquisition surface in TAT. Each of the
following conditions on S is sufficient for the uniqueness of reconstruction of any
compactly supported function f from the TAT data collected on S :

1. Surface S is not algebraic (i.e., there is no nonzero polynomial vanishing on S ).
2. Surface S is a uniqueness set for harmonic polynomials (i.e., there is no nonzero

harmonic polynomial vanishing on S ).
3. Surface S contains an open piece of a closed analytic surface � .
4. Surface S contains an open piece of an analytic surface � separating the space

R
n such that f is supported on one side of � .

5. For some point y 2 S , the function f is supported on one side of the tangent
plane Ty to S at y.
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For instance, if the acquisition surface S is just a tiny non-algebraic piece of a
surface, data collected on S determines the tomogram f uniquely. However, one
realizes that such data is unlikely to be useful for any practical reconstruction. Here
the issue of stability of reconstruction kicks in, as it will be discussed in the stability
subsection further down.

Uniqueness for Acoustically Inhomogeneous Media
In the case of a variable speed of sound, there still are uniqueness theorems for
partial data [86, 87], e.g.:

Theorem 10 ([86]). Let S be an open part of the boundary @ of a strictly convex
domain , and the smooth speed of sound equals 1 outside . Then the TAT data
collected on S for a time T > T ./ determines uniquely any function f 2 H 1

0 ./,
whose support does not reach the boundary.

A modification of this result that does not require strict convexity is also available
in [87].

While useful uniqueness of reconstruction results exists for incomplete data
problems, all such problems are expected to show instability. This issue is discussed
in the subsections below. This will also lead to a better understanding of incomplete
data phenomena in TAT.

“Visible” (“Audible”) Singularities
According to the discussion in section “Acoustically Inhomogeneous Media,” the
singularities (the points of the wave front set WF.f / of the function f in (3)) are
transported with time along the bicharacteristics (10). Thus, in the x-space they
are transported along the geometric rays. These rays may or may not reach the
acquisition surface S , which triggers the introduction of the following notion:

Definition 6. A phase space point .x0; �0/ is said to be “visible” (sometimes the
word “audible” is used instead), if the corresponding ray (see (10)) reaches in finite
time the observation surface S .

A region U � R
n is said to be in the visibility zone, if all points .x0; �0/ with

x0 2 U are visible.

An example of wave propagation through inhomogeneous medium is presented
in Fig. 5. The open observation surface S in this example consists of the two
horizontal and the left vertical sides of the square. Figure 5a shows some rays
that bend, due to acoustic inhomogeneity, and leave through the opening of the
observation surface S (the right side of the square). Figure 5b presents a flat
phantom, whose wave front set creates these escaping rays, and thus is mostly
invisible. Then Fig. 5c–f shows the propagation of the corresponding wave front.

Since the information about the horizontal boundaries of the phantom escapes,
one does not expect to reconstruct it well. Figure 6 shows two phantoms and
their reconstructions from the partial data: (a–b) correspond to the vertical flat
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Fig. 5 (a) Some rays starting along the interval x 2 Œ�0:7;�0:2� in the vertical directions escape
on the right; (b) a flat phantom with “invisible wave front”; (c–f) propagation of the flat front: most
of the energy of the signal leaves the square domain through the hole on the right

phantom, whose only invisible singularities are at its ends. One sees essentially
good reconstruction, with a little bit of blurring at the end points. On the other
hand, reconstruction of the horizontal phantom with almost the whole wave front
set invisible does not work. The next Fig. 7 shows a more complex square phantom,
whose singularities corresponding to the horizontal boundaries are invisible, while
the vertical boundaries are fine. One sees clearly that the invisible parts have
been blurred away. On the other hand, Fig. 11a in Sect. 4 shows that one can
reconstruct an image without blurring and with correct values, if the image is
located in the visibility region. The reconstructed image in this figure is practically
indistinguishable from the phantom shown in Fig. 10a.

Remark 2. If S is a closed surface and x0 is a point outside of the convex hall of
S , there is a vector �0 ¤ 0 such that .x0; �0/ is “invisible.” Thus, the visibility zone
does not reach outside the closed acquisition surface S .

Stability of Reconstruction for Incomplete Data Problems
In all examples above, uniqueness of reconstruction held, but the images were still
blurred. The question arises whether the blurring of “invisible” parts is avoidable
(after all, the uniqueness theorems seem to claim that “everything is visible”). The
answer to this is, in particular, the following result of [65], which is an analogue of
similar statements in X-ray tomography:
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Fig. 6 Reconstruction with the same speed of sound as in Fig. 5: (a–b) a phantom with strong
vertical fronts and its reconstruction; (c–d) a phantom with strong horizontal fronts and its
reconstruction

Fig. 7 Reconstruction with the same speed of sound as in Fig. 5: (a) a phantom; (b) its
reconstruction; (c) a magnified fragment of (b)

Theorem 11 ([65]). If there are invisible points .x0; �0/ in  �
�
R
n
�n0

�
, then

inversion of the forward operator W is not Hölder stable in any Sobolev spaces.
The singular values 
j of W in L2 decay super-algebraically.
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Thus, the presence of invisible singularities makes the reconstruction severely
ill-posed. In particular, according to Remark 2, this theorem implies the following
statement:

Corollary 1. Reconstruction of the parts of f .x/ supported outside the closed
observation surface S is unstable.

On the other hand,

Theorem 12 ([86]). All visible singularities of f can be reconstructed with Lips-
chitz stability (in appropriate spaces).

Such a reconstruction of visible singularities can be obtained in many ways,
for instance, just by replacing the missing data by zeros (with some smoothing
along the junctions with the known data, in order to avoid artifact singularities).
However, there is no hope for stable recovery of the correct values of f .x/, if there
are invisible singularities.

Discussion of the Visibility Condition

Visibility for Acoustically Homogeneous Media
In the constant speed case, the rays are straight, and thus the visibility condition has
a simple test:

Proposition 1 (e.g., [48, 99, 100]). If the speed is constant, a point x0 is in the
visible region, if and only if any line passing through x0 intersects at least once
the acquisition surface S (and thus a detector location).

Figure 8 illustrates this statement. It shows a square phantom and its reconstruc-
tion from complete data and from the data collected on the half circle S surrounding
the left half of object. The parts of the interfaces where the normal to the interface
that does not cross S are blurred.

Visibility for Acoustically Inhomogeneous Media
When the speed of sound is variable, an analogue of Proposition 1 holds, with lines
replaced by rays.

Proposition 2 (e.g., [48, 65, 86]). A point x0 is in the visible region, if and only
if for any �0 ¤ 0 at least one of the two geometric rays starting at .x0; �0/ and
at .x0;��0/ .see (10)/ intersects the acquisition surface S (and thus a detector
location).

The reader can now see an important difference between the acoustically
homogeneous and inhomogeneous media. Indeed, even if S surrounds the support
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Fig. 8 Reconstruction from incomplete data using closed-form inversion formula in 2D; detectors
are located on the left half circle of radius 1.05: (a) phantom; (b) reconstruction from complete
data; and (c) reconstruction from the incomplete data

of f completely, trapped rays will never find their way to S , which will lead, as we
know by now, to instabilities and blurring of some interfaces.

Thus, the presence of rays trapped inside the acquisition surface creates effects
of incomplete data type. This is exemplified in Fig. 9 with a square phantom and its
reconstruction shown in the presence of a trapping (parabolic) speed. Notice that the
square centered at the center of symmetry of the speed is reconstructed very well
(see Fig. 9d), since none of the rays carrying its singularities is trapped.

Range Conditions

In this section we address the problem of describing the ranges of the forward
operators W (see (4)) and M (see (8)), the latter in the case of an acoustically
homogeneous medium (i.e., for c D const). The ranges of these operators,
similarly to the range of the Radon and X-ray transforms (see [63]), are of
infinite co-dimensions. This means that ideal data g from a suitable function space
satisfy infinitely many mandatory identities. Knowing the range is useful for many
theoretical and practical purposes in various types of tomography (reconstruction
algorithms, error corrections, incomplete data completion, etc.), and thus this topic
has attracted a lot of attention (e.g., [41, 45, 63, 68, 70] and references therein).

As we will see in the next section, range descriptions in TAT are also intimately
related to the recovery of the unknown speed of sound.

We recall [41, 45, 63] that for the standard Radon transform

f .x/! g.s; !/ D
Z

x �!Ds
f .x/dx; j!j D 1;

where f is assumed to be smooth and supported in the unit ball B D fx j jxj � 1g,
the range conditions on g.s; !/ are:
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Fig. 9 Reconstruction of a square phantom from full data in the presence of a trapping parabolic
speed of sound (the speed is radial with respect to the center of the picture): (a) an off-center
phantom; (b) its reconstruction; (c) a magnified fragment of (b); (d) reconstruction of a centered
square phantom

1. Smoothness and support: g 2 C1
0 .Œ�1; 1� � S/, where S is the unit sphere of

vectors !
2. Evenness: g.�s;�!/ D g.s; !/
3. Moment conditions: for any integer k � 0, the kth moment

Gk.!/ D
1Z

�1
skg.!; s/ds

extends from the unit sphere S to a homogeneous polynomial of degree k in !.

The seemingly “trivial” evenness condition is sometimes the hardest to generalize
to other transforms of Radon type, while it is often easier to find analogues of the
moment conditions. This is exactly what happens in TAT.
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For the operators W ;M in TAT, some sets of range conditions of the moment
type had been discovered over the years [7,60,78], but complete range descriptions
started to emerge only since 2006 [2, 4–6, 9, 37, 54].

Range descriptions for the more general operator W are harder to obtain than for
M, and complete range descriptions are not known for even dimensions or for the
case of the variable speed of sound.

Let us address the case of the spherical mean operator M first.

The Range of the Spherical Mean OperatorM
The support and smoothness conditions are not hard to come up with, at least when
S is a sphere. By choosing an appropriate length scale, we can assume that the
sphere is of radius 1 and centered at the origin and that the interior domain  is
the unit ball B D fx j jxj D 1g. If f is smooth and supported inside B (i.e.,
f 2 C1

0 .B/), then it is clear that the measured data satisfies the following:

Smoothness and support conditions:

g 2 C1
0 .S � Œ0; 2�/: (12)

An analogue of the moment conditions for g.y; r/ WD Mf was implicitly
present in [7, 60] and explicitly formulated as such in [78]:

Moment conditions: for any integer k � 0, the moment

Mk.y/ D
1Z

0

r2kCd�1g.y; r/dr (13)

extends from S to a (in general, nonhomogeneous) polynomial Qk.x/ of degree
at most 2k.

These two types of conditions happen to be incomplete, i.e., infinitely many
others exist. The Radon transform experience suggests to look for an analogue of
evenness conditions. And indeed, a set of conditions called orthogonality conditions
was found in [5, 9, 37].

Orthogonality conditions: Let ��2
k be the eigenvalue of the Laplace operator �

in B with zero Dirichlet conditions and  k be the corresponding eigenfunctions.
Then the following orthogonality condition is satisfied:

Z

S�Œ0;2�
g.x; t/@� �.x/jn=2�1.�t/t

n�1dxdt D 0: (14)

Here jp.z/ D cpz�pJp.z/ is the so-called spherical Bessel function.
The range descriptions obtained in [5, 9, 37] demonstrated that these three types

of conditions completely describe the range of the operator M on functions f 2
C1

0 .B/. At the same time, the results of [5,37] showed that the moment conditions
can be dropped in odd dimensions. It was then discovered in [2] that the moment
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conditions can be dropped altogether in any dimension, since they follow from the
other two types of conditions:

Theorem 13 ([2]). Let S be the unit sphere. A function g.y; t/ on the cylinder S �
R

C can be represented as Mf for some f 2 C1
0 .B/ if an only if it satisfied the

above smoothness and support and orthogonality conditions (12), (14).
The statement also holds in the finite smoothness case, if one replaces the

requirements by f 2 Hs
0 .B/ and g 2 HsC.n�1/=2

0 .S � Œ0; 2�/.
The range of the forward operator M has not been described when S is not a

sphere, but, say, a convex smooth closed surface. The moment and orthogonality
conditions hold for any S , and appropriate smoothness and support conditions can
also be formulated, at least in the convex case. However, it has not been proven that
they provide the complete range description.

It is quite possible that for nonspherical S the moment conditions might have to
be included into the range description.

A different range description of the Fredholm alternative type was developed in
[71] (see also [39] for description of this result).

The Range of the Forward OperatorW
We recall that the operator W (see (4)) transforms the initial value f in (3) into
the observed S values g of the solution. There exist Kirchhoff–Poisson formulas
representing the solution p and thus g D Wf in terms of the spherical means of
f (i.e., in terms of Mf ). However, translating the result of Theorem 13 into the
language of W is not straightforward, since in even dimensions these formulas are
nonlocal ([27] p. 682):

Wf .y; t/ D
p
�

2�.n=2/

�
1

t

@

@t

�.n�3/=2

tn�2 .Mf / .y; t/; for odd n: (15)

and

Wf .y; t/ D 1

�.n=2/

�
1

t

@

@t

�.n�2/=2
tZ

0

rn�1 .Mf / .y; r/p
t2 � r2

dr; for even n: (16)

The nonlocality of the transformation for even dimensions reflects the absence of
Huygens’ principle (i.e., absence of sharp rear fronts of waves) in these dimensions;
it also causes difficulties in establishing the complete range descriptions. In
particular, due to the integration in (16), Mf .y; t/ does not vanish for large times
t anymore. One can try to use other known operators intertwining the two problems
(see [5] and references therein), and some of which do preserve vanishing for large
values of t , but this so far has led only to very clumsy range descriptions.

However, for odd dimensions, the range description of W can be obtained. In
order to do so, given the TAT data g.y; t/, let us introduce an auxiliary time-reversed
problem in the cylinder B � Œ0; 2�:
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8̂
<̂
ˆ̂:
qt t ��q D 0 for .x; t/ 2 B � Œ0; 2�/;
q.x; 2/ D qt .x; 2/ D 0 for x 2 B;
q.y; t/ D g.y; t/ for .y; t/ 2 S � Œ0; 2�/:

(17)

We can now formulate the range description from [37, 39]:

Theorem 14 ([37, 39]). For odd dimensions n and S being the unit sphere, a
function g 2 C1

0 .S � Œ0; 2�/ can be represented as Wf for some f 2 C1
0 .B/

if and only if the following condition is satisfied:

The solution q of (17) satisfies qt .x; 0/ D 0 for all x 2 B .

Orthogonality type and Fredholm alternative type range conditions, equivalent to
the one in the theorem above, are also provided in [37, 39].

Reconstruction of the Speed of Sound

Unsurprisingly, all inversion procedures outlined in Sect. 4 rely upon the knowledge
of the speed of sound c.x/. Although often, e.g., in breast imaging, the medium is
assumed to be acoustically homogeneous, this is not a good assumption in many
other cases. It has been observed (e.g., [48,50]) that replacing even slightly varying
speed of sound with its average value might significantly distort the image; not
only the numerical values, but also the shapes of interfaces between the tissues
will be reconstructed incorrectly. Thus, the question of estimating c.x/ correctly
becomes important. One possible approach [50] is to use an additional transmission
ultrasound scan to reconstruct the speed beforehand. The question arises of whether
one could determine the speed of sound c.x/ and the tomogram f .x/ (assuming
that f is not zero) simultaneously from the TAT data. In fact, one needs only to
determine c.x/ (without knowing f ), since then inversion procedures of Sect. 4
would apply to recover f .

At the first glance, this seems to be an overly ambitious project. Indeed, if we
denote the forward operator W by Wc , to indicate its dependence on the speed of
sound c.x/, then the problem becomes, given the data g, to find both c and f from
the equality

Wcf D g: (18)

A similar situation arises in the SPECT emission tomography (see [63] and
references therein), where the role of the speed of sound is played by the unknown
attenuation. It is known, however, that in SPECT the attenuation can be recovered
for a “generic” f .

What is the reason for such a strange situation? It looks like for any c one could
solve Eq. (18) for an f , and thus no information about c is contained in the data
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g. This argument is incorrect for the following reason: the range of the forward
operator, as we know already from the previous section, has infinite co-dimension.
Thus, this range has a lot of space to “rotate” when c changes. Imagine for an
instance that the rotation is so powerful that for different values of c the ranges
have only zero (the origin) in common. Then, knowing g in the range, one would
know which c it came from. Thus, the problem of recovering the speed of sound
from the TAT data is closely related to the range descriptions.

Numerical inversions using algebraic iterative techniques (e.g., [102,104]) show
that recovering both c and f might be indeed possible.

Unfortunately, very little is known at the moment concerning this problem.
Direct usage of range conditions attempted in [48] has led only to extremely weak
and not practically useful results so far. A revealing relation to the transmission
eigenvalue problem well known in inverse problems (see [26] for the survey)
was recently discovered by D. Finch. Unfortunately, the transmission eigenvalue
problem remains still unresolved. However, one can derive from this relation the
following result regarding uniqueness of the reconstruction of the speed of sound,
due to M. Agranovsky (a somewhat restricted version is due to D. Finch et al., both
unpublished):

Theorem 15. If two speeds satisfy the inequality c1.x/ � c2.x/ for all x 2  and
produce for some functions f1; f2 the same nonzero TAT data g (i.e., Wc1f1 D
g;Wc2f2 D g), then c1.x/ D c2.x/.

It is known [49, Corollary 8.2.3] that if a function f .x/ is such that �f.x/ ¤ 0
and for two acoustic speeds c1.x/ and c2.x/, it produces the same TAT data g, then
c1 D c2.

It is clear that the problem of finding the speed of sound from the TAT data is
still mostly unresolved.

4 Reconstruction Formulas, Numerical Methods,
and Case Examples

Numerous formulas, algorithms, and procedures for reconstruction of images from
TAT measurements have been developed by now. Most of these techniques require
the data being collected on a closed surface (closed curve in 2D) surrounding the
object to be imaged. Such methods are discussed in section “Full Data (Closed
Acquisition Surfaces).” We review methods that work under the assumption of
constant speed of sound in section “Constant Speed of Sound.” The techniques
applicable in the case of the known variable speed of sound are considered in
section “Constant Speed of Sound.” Closed surface measurements cannot always
be implemented, since in some practical situations the object cannot be completely
surrounded by the detectors. In this case, one has to resort to various approximate
reconstruction techniques as discussed in section “Partial (Incomplete) Data.”
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Full Data (Closed Acquisition Surfaces)

Constant Speed of Sound
When the speed of sound within the tissues is a known constant, the TAT problem
can be reformulated (see Sect. 2) in terms of the values of the spherical means of the
initial condition f .x/. These means can be easily recovered from the measurements
of the acoustic pressure using formulas (15) and (16) (see the discussion in [7]). In
this case, image reconstruction becomes equivalent to inverting the spherical mean
transform M. Thus, in what follows, we consider the problem of reconstructing
a function f .x/ supported within the region bounded by a closed surface S from
known values of its spherical integrals g.y; r/ with centers on S

g.y; r/ D
Z

Sn�1

f .y C r!/rn�1d!; y 2 S; (19)

where d! is the standard measure on the unit sphere.

Series Solutions for Spherical Geometry
The first inversion procedures for the case of closed acquisition surfaces were
described in [66, 67], where solutions were found for the cases of circular (in 2D)
and spherical (in 3D) surfaces, respectively. These solutions were obtained by the
harmonic decomposition of the measured data and of the sought function f .x/,
followed by equating coefficients of the corresponding Fourier series. In particular,
the 2D algorithm of [66] pertains to the case when the detectors are located on a
circle of radius R. This method is based on the Fourier decomposition of f and g
in angular variables

f .x/ D
1X

�1
fk.�/e

ik'; x D .� cos.'/; � sin.'// (20)

g.y.�/; r/ D
1X

�1
gk.r/e

ik� ; y D .R cos.�/; R sin.�//;

where

.Hmu/ .s/ D 2�
Z 1

0
u.t/Jm.st/tdt

is the Hankel transform and Jm.t/ is the Bessel function. As shown in [66], the
Fourier coefficients fk.�/ can be recovered from the known coefficients gk.r/ by
the following formula:

fk.�/ D Hm

�
1

Jk.�jRj/H0

�
gk.r/

2�r

��
:
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This method requires division of the Hankel transform of the measured data by
the Bessel functions Jk , which have infinitely many zeros. Theoretically, there is
no problem: the range conditions (section “Range Conditions”) on the exact data g
imply that the Hankel transform H0

�
.2�r/�1gk.r/

�
has zeros that cancel those in

the denominator. However, since the measured data always contain errors, the exact
cancelation does not happen, and one needs a sophisticated regularization scheme
to guarantee that the error remains bounded.

This difficulty can be avoided (see, e.g., [54]) by replacing the Bessel function J0

in the inner Hankel transform by the Hankel functionH.1/
0 . This yields the following

formula for fk.�/ W

fk.�/ D Hk

 
1

H
.1/
k .�jRj/

Z 1

0
gk.r/H

.1/
0 .�r/dr

!
:

Unlike Jm, Hankel functions H.1/
m .t/ do not have zeros for any real values of

t , which removes the problems with division by zeros [66]. (A different way of
avoiding divisions by zero was found in [44].)

This derivation can be repeated in 3D, with the exponentials eik� replaced by
the spherical harmonics and with cylindrical Bessel functions replaced by their
spherical counterparts. By doing this, one arrives at the Fourier series method of
[67] (see also [97]). The use of the Hankel functionH.1/

0 above is similar to the way

the spherical Hankel function h.1/0 is utilized in [67] to avoid the divisions by zero.

Eigenfunction Expansions for a General Geometry
The series methods described in the previous section rely on the separation of
variables that occurs only in spherical geometry. A different approach was proposed
in [58]. It works for arbitrary closed surfaces, but is practical only for those
with explicitly known eigenvalues and eigenfunctions of the Dirichlet Laplacian in
the interior. These include, in particular, the surfaces of such bodies as spheres,
half spheres, cylinders, cubes, and parallelepipeds, as well as the surfaces of
crystallographic domains.

Let �2
m and um.x/ be the eigenvalues and an orthonormal basis of eigenfunctions

of the Dirichlet Laplacian �� in the interior of a closed surface S :

�um.x/C �2
mum.x/ D 0; x 2 ;  � R

n; (21)

um.x/ D 0; x 2 S;

jjumjj22 

Z



jum.x/j2dx D 1:

As before, one would like to reconstruct a compactly supported function f .x/ from
the known values of its spherical integrals g.y; r/ (see (19)) with centers on S . Since
um.x/ is the solution of the Dirichlet problem for the Helmholtz equation with zero
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boundary conditions and the wave number �m, this function admits the Helmholtz
representation

um.x/ D
Z
S

ˆ�m.jx � yj/
@

@n
um.y/ds.y/ x 2 ; (22)

whereˆ�m.jx�yj/ is a free-space Green’s function of the Helmholtz equation (21)
and n is the exterior normal to S .

The function f .x/ can be expanded into the series

f .x/ D
1X
mD0

˛mum.x/; where (23)

˛m D
Z


um.x/f .x/dx:

A reconstruction formula for ˛m (and thus for f .x/) will result, if one substitutes
representation (22) into (23) and interchanges the orders of integration

˛m D
Z


um.x/f .x/dx D
Z
S

I.y; �m/
@

@n
um.y/dA.x/; (24)

where

I.y; �/ D
Z


ˆ�.jx � yj/f .x/dx D
Z diam

0
g.y; r/ˆ�.r/dr: (25)

Now f .x/ can be obtained by summing the series (23). This method becomes
computationally efficient when the eigenvalues and eigenfunctions are known
explicitly, especially if a fast summation formula for the series (23) is available.
This is the case when the acquisition surface S is the surface of a cube, and thus
the eigenfunctions are products of sine functions. The resulting 3D reconstruction
algorithm is extremely fast and precise (see [58]).

The above method has an interesting property. If the support of the source f .x/
extends outside; the algorithm still yields theoretically an exact reconstruction of
f .x/ inside . Indeed, the value of the expression (22) for all x lying outside  is
zero. Thus, when one computes (24) for x 2 R

nn, values of f .x/ are multiplied
by zero and do not affect further computation in any way. This feature is shared
by the time-reversal method (see the corresponding paragraph in section “Constant
Speed of Sound”). The closed-form FBP-type reconstruction techniques considered
in the next subsection do not have this property. In other words, in the presence of a
source outside the measurement surface, reconstruction within  can be incorrect.

The reason for this difference is that all currently known closed-form FBP-type
formulas rely (implicitly or explicitly) on the assumption that the wave propagates
outside S in the whole free space and has no sources outside. On the other hand,
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the eigenfunction expansion method and the time reversal rely only upon the time
decay of the wave inside S , which is not influenced by f having a part outside S .

Closed-Form Inversion Formulas
Closed-form inversion formulas play a special role in tomography. They bring
about better theoretical understanding of the problem and frequently serve as
starting points for the development of efficient reconstruction algorithms. A well-
known example of the use of explicit inversion formulas is the so-called filtered
backprojection (FBP) algorithm in X-ray tomography, which is derived from one of
the inversion formulas for the classical Radon transform (see, e.g., [63]).

The very existence of closed-form inversion formulas for TAT had been in doubt,
till the first such formulas were obtained in odd dimensions by Finch et al. in [36],
under the assumption that the acquisition surface S is a sphere. Suppose that the
functionf .x/ is supported within a ball of radiusR and that the detectors are located
on the surface S D @B of this ball. Then some of the formulas obtained in [36] read
as follows:

f .x/ D � 1

8�2R
�x

Z

@B

g.y; jy � xj/
jy � xj dA.y/; (26)

f .x/ D � 1

8�2R

Z

@B

�
1

r

@2

@r2
g.y; r/

� ˇ̌
ˇ̌
ˇ̌
ˇ
rDjy�xj

dA.y/; (27)

f .x/ D � 1

8�2R

Z

@B

�
1

r

@

@r

�
r
@

@r

g.y; r/

r

�� ˇ̌
ˇ̌
ˇ̌
ˇ
rDjy�xj

dA.y/; (28)

where dA.y/ is the surface measure on @B and g represents the values of the
spherical integrals (19).

These formulas have an FBP (filtered backprojection) nature. Indeed, differenti-
ation with respect to r in (27) and (28) and the Laplace operator in (26) represent
the filtration, while the (weighted) integrals correspond to the backprojection, i.e.,
integration over the set of spheres passing through the point of interest x and
centered on S .

The so-called universal backprojection formula in 3D was found in [98] (it is
also valid for the cylindrical and plane acquisition surfaces, see section “Partial
(Incomplete) Data”). In our notation, this formula takes the form

f .x/ D 1

8�2
div

Z

@B

n.y/

�
1

r

@

@r

g.y; r/

r

� ˇ̌
ˇ̌
ˇ̌
ˇ
rDjy�xj

dA.y/; (29)
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or, equivalently,

f .x/ D � 1

8�2

Z

@B

@

@n

�
1

r

@

@r

g.y; r/

r

� ˇ̌
ˇ̌
ˇ̌
ˇ
rDjy�xj

dA.y/; (30)

where n.y/ is the exterior normal vector to @B . One can show [4, 64, 98] that
formulas (26) through (29) are not equivalent on non-perfect data: the result will
differ if these formulas are applied to a function that does not belong to the range
of the spherical mean transform M. A family of inversion formulas valid in R

n for
arbitrary n � 2 was found in [57]

f .x/ D 1

4.2�/n�1
div

Z

@B

n.y/h.y; jx � yj/dA.y/; (31)

where

h.y; t/ D
Z

RC

Y.�t/

2
4

2RZ

0

J.�r/g.y; r/dr�J.�t/
2RZ

0

Y.�r/g.y; r/dr

3
5�2n�3d�;(32)

J.t/ D Jn=2�1.t/

tn=2�1
; Y.t/ D Yn=2�1.t/

tn=2�1
; (33)

and Jn=2�1.t/ and Yn=2�1.t/ are, respectively, the Bessel and Neumann functions of
order n=2� 1. In 3D, J.t/ and Y.t/ are simply t�1 sin t and t�1 cos t , and formulas
(31) and (32) reduce to (30).

In 2D, Eq. (32) also can be simplified [4], which results in the formula

f .x/ D 1

2�2
div

Z

@B

n.y/

2
4

2RZ

0

g.y; r/
1

r2 � jx � yj2 dr
3
5dl.y/; (34)

where @B now stands for the circle of radiusR and dl.y/ is the standard arc length.
A different set of closed-form inversion formulas applicable in even dimensions

was found in [35]. Formula (34) can be compared to the following inversion
formulas from [35]

f .x/ D 1

2�R
�

Z

@B

2RZ

0

g.y; r/ log.r2 � jx � yj2/ dr d l.y/; (35)

or

f .x/ D 1

2�R

Z

@B

2RZ

0

@

@r

�
r
@

@r

g.y; r/

r

�
log.r2 � jx � yj2/ dr d l.y/: (36)
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Finally, a unified family of inversion formulas was derived in [64]. In our
notation, it has the following form

f .x/ D � 4

�R

Z

@B

�
@

@t
Kn.y; t/

� ˇ̌
ˇ̌
ˇ̌
ˇ
tDjx�yj

< y � x; y � � >
jx � yj dA.y/; (37)

Kn.y; t/ D � 1

16.2�/n�2

Z

RC

�2n�3Y.�t/

0
B@
Z

RC

J.�r/g.y; r/dr

1
CA d�

where @B is the surface of a ball in R
n of radius R; functions J and Y are in (33),

and � is an arbitrary fixed vector. In particular, in 3D

J.t/ D
r

2

�

sin t

t
; J.t/ D

r
2

�

cos t

t

and, after simple calculation, the above inversion formula reduces to

f .x/ D � 1

8�2R

Z

@B

�
@

@r

1

r

@

@r

g.y; r/

r

� ˇ̌
ˇ̌
ˇ̌
ˇ
rDjx�yj

< y � x; y � � >
jx � yj dA.y/:

(38)
Different choices of vector � in the above formula result in different inversion
formulas. For example, if � is set to zero, the ratio <y�x;y��>

jx�yj equalsR cos˛; where
˛ is the angle between the exterior normal n.y/ and the vector y�xIwhen combined
with the derivative in t , this factor produces the normal derivative, and the inversion
formula (38) reduces to (30). On the other hand, the choice of � D x in (38) leads
to a formula

f .x/ D � 1

8�2R

Z

@B

�
r
@

@r

1

r

@

@r

g.y; r/

r

� ˇ̌
ˇ̌
ˇ̌
ˇ
rDjx�yj

dA.y/;

which is reminiscent of formulas (26)–(28).

Green’s Formula Approach and Some Symmetry Considerations
Let us suppose for a moment that the acoustic detectors could measure not only
the pressure p.y; t/ at each point of the acquisition surface S , but also the normal
derivative @p=@n on S . Then the problem of reconstructing the initial pressure f .x/
becomes rather simple. Indeed, one can use the knowledge of the free-space Green’s
function for the wave equation and invoke the Green’s theorem to represent the
solution p.x; t/ of (3) in the form of integrals over S involving p.x; t/ and its
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normal derivative and the Green’s function and its normal derivative. (This can be
done in the Fourier or time domains.) This would require infinite observation time,
but in 3D the time T ./ will suffice, after which the wave escapes the region of
interest (a cutoff also would work approximately in 2D similar to the time-reversal
method). This Green’s function approach happens to be, explicitly or implicitly, the
starting point of all closed-form inversions described above. The trick is to rewrite
the formula in such a way that the unknown in reality normal derivative @p=@n
disappears from the formula.

This was achieved in [57] by reducing the question to some integrals involving
special functions and making the key observation that the integral

I�.x; y/ D
Z

@B

J.�jx � zj/ @
@n
Y.�jy � zj/dA.z/; x; y 2 B � R

n

is a symmetric function of its arguments:

I�.x; y/ D I�.y; x/ for x; y 2 B � R:n (39)

Similarly, the derivation of (37) in [64] employs the symmetry of the integral

K�.x; y/ D
Z

@B

J.�jx � zj/Y.�jy � zj/dA.z/; x; y 2 B � R
n:

In fact, the symmetry holds for any integral

W�.x; y/ D
Z

@B

U.�jx � zj/V .�jy � zj/dA.z/; x; y 2 B � R
n;

where U.�jxj/ and V.�jxj/ are any two radial solutions of the Helmholtz equation

�u.x/C �2u.x/ D 0: (40)

It is straightforward to verify this symmetry when S is a sphere and B is the
corresponding ball, and the points x; y lie on the boundary S only, rather than
anywhere in B . This follows immediately from the rotational symmetry of S . The
same is true for the normal derivatives on S of W�.x; y/ in x and y.

This boundary symmetry happens to imply the needed full symmetry (39)
for x; y 2 B .

Indeed,W�.x; y/ is a solution of the Helmholtz equation separately as a function
of x and of y: Let us introduce a family of solutions fwn.x/g1nD0 of (40) in B , such
that the members of this family form an orthonormal basis for all solutions of the
latter equation in B . For example, the spherical waves, i.e., the products of spherical
harmonics and Bessel functions, can serve as such a basis.
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Then W�.x; y/ can be expanded n the following series:

W�.x; y/ D
1X
nD0

1X
mD0

bn;mwm.y/wn.x/: (41)

Since W�.x; y/ is a solution to the Helmholtz equation in @B � @B; coefficients
bn;m are completely determined by the boundary values of W�. Since the boundary
values are symmetric, the coefficients are symmetric, i.e., bn;m D bm;n which by
(41) immediately implies W�.x; y/ D W�.y; x/ for all pairs .x; y/ 2 B �B .

This consideration extends to infinite cylinders and planes. This explains why
the “universal backprojection formula” (30) is valid also for infinite cylinders and
planes [98]. Since the sort of symmetry used is shared only by these three smooth
surfaces, we believe it is unlikely that a closed-form formula could exist for any
other smooth acquisition surface. However, an exact formula has recently been
obtained by L. Kunyansky for the case when observation surface S is a surface
of a cube (unpublished).

Algebraic Iterative Algorithms
Iterative algebraic techniques are among the favorite tomographic methods of
reconstruction and have been used in CT for quite a while [63]. They amount
to discretizing the equation relating the measured data with the unknown source,
followed by iterative solution of the resulting linear system. Iterative algebraic
reconstruction algorithms frequently produce better images than those obtained by
other methods. However, they are notoriously slow. In TAT, they have been used
successfully for reconstructions with partial data [14, 15, 76], see section “Partial
(Incomplete) Data.”

Parametrix Approaches
Some of the earlier non-iterative reconstruction techniques [53] were of approxi-
mate nature. For example, by approximating the integration spheres by their tangent
planes at the point of reconstruction and by applying one of the known inversion
formulas for the classical Radon transform, one can reconstruct an approximation
to the image. Due to the evenness symmetry in the classical Radon projections
(see section “Range Conditions”), the normals to the integration planes need only
fill a half of a unit sphere, in order to make possible the reconstruction from an
open measurement surface. A more sophisticated approach is represented by the
so-called straightening methods [81, 82] based on the approximate reconstruction
of the classical Radon projections from the values of the spherical mean transform
Mf of the function f .x/ in question. These methods yield not a true inversion,
but rather what is called in microlocal analysis a parametrix. Application of a
parametrix reproduces the function f with an additional, smoother term. In other
words, the locations (and often the sizes) of jumps across sharp material interfaces,
as well as the whole wave front set WF.f /, are reconstructed correctly, while the
accuracy of the lower spatial frequencies cannot be guaranteed. (Sometimes, the
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reconstructed function has a more general form Af , where A is an elliptic pseudo-
differential operator [46, 84] of order zero. In this case, the sizes of the jumps
across the interfaces might be altered.) Unlike the approximations resulting from the
discretization of the exact inversion formulas (in the situations when such formulas
are known), the parametrix approximations do not converge, when the discretization
of the data is refined and the noise is eliminated. Parametrix reconstructions can
be either accepted as approximate images or used as starting points for iterative
algorithms.

These methods are closely related to the general scheme proposed in [20] for
the inversion of the generalized Radon transform with integration over curved
manifolds. It reduces the problem to a Fredholm integral equation of the second
kind, which is well suited for numerical solution. Such an approach amounts to
using a parametrix method as an efficient preconditioner for an iterative solver;
the convergence of such iterations is much faster than that of algebraic iterative
methods.

Numerical Implementation and Computational Examples
By discretizing exact formulas presented above, one can easily develop accurate and
efficient reconstruction algorithms. The 3D case is especially simple: computation
of derivatives in the formulas (26)–(30) and (38) can be easily done, for instance,
by using finite differences; it is followed by the backprojection (described by the
integral over @B), which requires prescribing quadrature weights for quadrature
nodes that coincide with the positions of the detectors. The backprojection step is
stable; the differentiation is a mildly unstable operation. The sensitivity to noise
in measurements across the formulas presented above seems to be roughly the
same. It is very similar to that of the widely used FBP algorithm of classical X-ray
tomography [63]. In 2D, the implementation is just a little bit harder: the filtration
step in formulas (34)–(36) can be reduced to computing two Hilbert transforms (see
[54]), which, in turn, can be easily done in the frequency domain.

The number of floating point operations (flops) required by such algorithms is
determined by the slower backprojection step. In 3D, if the number of detectors is
m2 and the size of the reconstruction grid is m � m � m, the backprojection step
(and the whole algorithm) will requireO.m5/ flops. In practical terms, this amounts
to several hours of computations on a single processor computer for a grid of size
129 � 129 � 129:

In 2D, the operation count is justO.m3/. As it is discussed in section “Variations
on the Theme: Planar, Linear, and Circular Integrating Detectors,” the 2D problem
needs to be solved, when integrating line detectors are used. In this situation, the
2D problem needs to be solved m times in order to reconstruct the image, which
raises the total operation count to O.m4/ flops.

Figure 10 shows three examples of simulated reconstruction using formula (34).
The phantom we use (Fig. 10a) is a linear combination of several characteristic
functions of disks and ellipses. Figure 10b illustrates the image reconstruction
within the unit circle from 257 equi-spaced projections each containing 129
spherical integrals. The detectors were placed on the concentric circle of radius 1.05.
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Fig. 10 Example of a reconstruction using formula (34): (a) phantom; (b) reconstruction
from accurate data; (c) reconstruction from the data contaminated with 15 % noise; (d) recon-
struction from the noisy data with additional smoothing

The image shown in Fig. 10c corresponds to the reconstruction from the simulated
noisy data that were obtained by adding to projections values of a random variable
scaled so that the L2 intensity of the noise was 15 % of the intensity of the signal.
Finally, Fig. 10d shows how the application of a smoothing filter (in the frequency
domain) suppresses the noise; it also somewhat blurs the edges in the image.

Variable Speed of Sound
The reconstruction formulas and algorithms described in the previous section work
under the assumption that the speed of sound within the region of interest is constant
(or at least close to a constant). This assumption, however, is not always realistic,
e.g., if the region of interest contains both soft tissues and bones, the speed of
sound will vary significantly. Experiments with numerical and physical phantoms
show [48, 50] that if acoustic inhomogeneities are not taken into account, the
reconstructed image might be severely distorted. Not only the numerical values
could be reconstructed incorrectly, but so would the material interface locations and
discontinuity magnitudes.

Below we review some of the reconstruction methods that work in acoustically
inhomogeneous media. We will assume that the speed of sound c.x/ is known,
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smooth, positive, constant for large x, and non-trapping. In practice, a transmission
ultrasound scan can be used to reconstruct c.x/ prior to thermoacoustic reconstruc-
tion, as it is done in [50].

Time Reversal
Let us assume temporarily that the speed of sound c is constant and the spatial
dimension is odd. Then Huygens’ principle guarantees that the sound wave will
leave the region of interest  in time T D c=.diam/, so that p.x; t/ D 0 for all
x 2  and t � T . Now one can solve the wave equation back in time from t D T

to t D 0 in the domain  � ŒT; 0�, with zero initial conditions at T and boundary
conditions on S provided by the data g collected by the detectors. Then the value of
the solution at t D 0 will coincide with the initial condition f .x/ that one seeks to
reconstruct. Such a solution of the wave equation is easily obtained numerically
by finite difference techniques [42, 48]. The required number of floating point
operations is actually lower than that of methods based on discretized inversion
formulas (O.m4/ for time reversal on a grid m � m � m in 3D versus O.m5/ for
inversion formulas), which makes this method quite competitive even in the case of
constant speed of sound.

Most importantly, however, the method is also applicable if the speed of sound
c.x/ is variable and/or the spatial dimension is even. In these cases, the Huygens’
principle does not hold, and thus the solution to the direct problem will not vanish
within @ in finite time. However, the solution insidewill decay with time. Under
the non-trapping condition, as it is shown in (11) (see [32,90,91]), the time decay is
exponential in odd dimensions, but only algebraic in even dimensions. Although, in
order to obtain theoretically exact reconstruction, one would have to start the time
reversal at T D 1, and numerical experiments (e.g., [48]) and theoretical estimates
[47] show that in practice it is sufficient to start at the values of T when the signal
becomes small enough and to approximate the unknown value of p.x; T / by zero
(a more sophisticated cutoff is used in [86]). This works [42,48] even in 2D (where
decay is the slowest) and in inhomogeneous media. However, when trapping occurs,
the “invisible” parts blur away (see section “Incomplete Data” for the discussion).

Eigenfunction Expansions
An “inversion formula” that reconstructs the initial value f .x/ of the solution of
the wave equation from values on the measuring surface S can be easily obtained
using time reversal and Duhamel’s principle [3]. Consider in  the operator A D
�c2.x/� with zero Dirichlet conditions on the boundary S D @. This operator
is self-adjoint, if considered in the weighted space L2.I c�2.x//. Let us denote
by E the operator of harmonic extension, which transforms a function � on S to a
harmonic function on  that coincides with � on S . Then f can be reconstructed
[3] from the data g in (3) by the following formula:

f .x/ D .EgjtD0/�
1Z

0

A� 1
2 sin

�
�A

1
2

�
E.gtt /.x; �/d�; (42)
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which is valid under the non-trapping condition on c.x/. However, due to the
involvement of functions of the operator A, it is not clear how useful this formula
can be.

One natural way to try to implement numerically the formula (42) is to use the
eigenfunction expansion of the operator A in  (assuming that such expansion is
known). This quickly leads to the following procedure [3]. The function f .x/ can
be reconstructed inside from the data g in (3), as the followingL2.B/-convergent
series:

f .x/ D
X
k

fk k.x/; (43)

where the Fourier coefficients fk can be recovered from the data using one of the
following formulas:

fk D ��2
k gk.0/� ��3

k

1R
0

sin .�kt/g00
k .t/dt;

fk D ��2
k gk.0/C ��2

k

1R
0

cos .�kt/g0
k.t/dt; or

fk D ���1
k

1R
0

sin .�kt/gk.t/dt D ���1
k

1R
0

R
S

sin .�kt/g.x; t/
@ k
@n
.x/dxdt;

(44)
where

gk.t/ D
Z

S

g.x; t/
@ k

@n
.x/dx:

One notices that this is a generalization of the expansion method of [58]
discussed in section “Eigenfunction Expansions for a General Geometry” to the
case of a variable speed of sound. Unlike the algorithm of [58], this method does
not require the knowledge of the whole space Green’s function for A (which is
in this case unknown). However, computation of a large set of eigenfunctions
and eigenvalues followed by the summation of the series (43) at the nodes of the
computational grid may prove to be too time-consuming.

It is worthwhile to mention again that the non-trapping condition is crucial for the
stability of any TAT reconstruction method in acoustically inhomogeneous media.
As it was discussed in section “Discussion of the Visibility Condition,” trapping can
significantly reduce the quality of reconstruction. It is, however, most probable that
trapping does not occur much in biological objects.

Partial (Incomplete) Data

Reconstruction formulas and algorithms of the previous sections work under the
assumption that the acoustic signal is measured by detectors covering a closed
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surface S that surrounds completely the object of interest. However, in many
practical applications of TAT, detectors can be placed only on a certain part of
the surrounding surface. Such is the case, e.g., when TAT is used for breast
screening – one of the most promising applications of this modality. Thus, one
needs methods and algorithms capable of accurate reconstruction of images from
partial (incomplete) data, i.e., from the measurements made on open surfaces (or
open curves in 2D).

Most exact inversion formulas and methods discussed above are based (explicitly
or implicitly) on some sort of the Green’s formula, Helmholtz representation, or
eigenfunction decomposition for closed surfaces, and thus they cannot be extended
to the case of partial data. The methods that do work in this situation rely on
approximation techniques, as discussed below.

Constant Speed of Sound
Even the case of an acoustically homogeneous medium is quite challenging when
reconstruction needs to be done from partial data (i.e., when the acquisition surface
S is not closed). As it was discussed in section “Incomplete Data,” if the detectors
located around the object in such a way that the “visibility” condition is not satisfied,
accurate reconstruction is impossible: the “invisible” interfaces will be smoothed
out in the reconstructed image. On the other hand, if the visibility condition is
satisfied, the reconstruction is only mildly unstable (similarly to the inversion of the
classic Radon transform) [71, 86]. If, in addition, the uniqueness of reconstruction
from partial data is guaranteed (which is usually the case, see section “Uniqueness
of Reconstruction”), one can hope to be able to develop an algorithm that would
reconstruct quality images.

Special cases of open acquisition surfaces are a plane or an infinite cylinder, for
which exact inversion formulas are known (see, e.g., [16,34,41,96] for the plane and
[101] for a cylinder). Of course, the plane or a cylinder would have to be truncated
in any practical measurements. The resulting acquisition geometry will not satisfy
the visibility condition, and material interfaces whose normals do not intersect the
acquisition surface will be blurred.

Iterative algebraic techniques (see the corresponding paragraph in section “Con-
stant Speed of Sound”) were among the first methods successfully used for
reconstruction from surfaces only partially surrounding the object (e.g., [14,15,76]).
As it is mentioned in section “Constant Speed of Sound,” such methods are very
slow. For example, reconstructions in [14] required the use of a cluster of computers
and took 100 iterations to converge.

Parametrix-type reconstructions in the partial data case were proposed in [17]. A
couple of different parametrix-type algorithms were proposed in [72, 74]. They are
based on applying one of the exact inversion formulas for full circular acquisition to
the available partial data, with zero-filled missing data, and some correction factors.
Namely, since the missing data is replaced by zeros, each line passing through
a node of the reconstruction grid will be tangent either to one or to two circles
of integration. Therefore, some directions during the backprojection step will be
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represented twice and some only once. This, in turn, will cause some interfaces to
appear twice stronger than they should be. The use of weight factors was proposed
in [72, 74] in order to partially compensate for this distortion. In particular, in [72]
smooth weight factors (depending on a reconstruction point) are assigned to each
detector in such a way that the total weight for each direction is exactly one. This
method is not exact; the error is described by a certain smoothing operator. However,
the singularities (or jumps) in the image will be reconstructed correctly. As shown
by numerical examples in [72], such a correction visually significantly improves
the reconstruction. Moreover, iterative refinement is proposed in [72, 74] to further
improve the image, and it is shown to work well in numerical experiments.

Returning to non-iterative techniques, one should mention an interesting attempt
made in [78, 79] to generate the missing data using the moment range conditions
for M (see section “Range Conditions”). The resulting algorithm, however, does
not seem to recover the values well, although, as expected, it reconstructs all visible
singularities.

An accurate 2D non-iterative algorithm for reconstruction from data measured
on an open curve S was proposed in [59]. It is based on precomputing approxima-
tions of plane waves in the region of interest  by the single-layer potentials of the
form

Z

S

Z.�jy � xj/�.y/d l.y/;

where �.y/ is the density of the potential, which needs to be chosen appropriately,
dl.y/ is the standard arc length, and Z.t/ is either the Bessel function J0.t/ or the
Neumann function Y0.t/. Namely, for a fixed � one finds numerically the densities
��;J .y/ and ��;Y .y/ of the potentials

WJ .x; ��;J / D
Z
S

J0.�jy � xj/��;J .y/d l.y/; (45)

WY .x; ��;Y / D
Z
S

Y0.�jy � xj/��;Y .y/d l.y/; (46)

where � D j�j; such that

WJ .x; ��;J /CWY .x; ��;Y / Ð exp.�i� � x/ for all x 2 : (47)

Obtaining such approximations is not trivial. One can show that exact equality in
(47) cannot be achieved, due to different behavior at infinity of the plane wave and
the approximating single-layer potentials. However, as shown by numerical exam-
ples in [59], if each point in  is “visible” from S , very accurate approximations
can be obtained, while keeping the densities ��;J and ��;Y under certain control.

Once the densities ��;J and ��;Y have been found for all �, function f .x/ can be

easily reconstructed. Indeed, for the Fourier transform Of .�/ of f .x/
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Of .�/ D 1

2�

Z


f .x/ exp.�i� � x/dx;

one obtains, using (47)

Of .�/ Ð 1

2�

Z


f .x/
�
WJ .x; ��;J /CWY .x; ��;Y /

�
dx

D 1

2�

Z
S

�Z


f .x/J0.�jy � xj/dx
�
��;J .y/d l.y/

C 1

2�

Z
S

�Z


f .x/Y0.�jy � xj/dx
�
��;Y .y/d l.y/; (48)

where the inner integrals are computed from the data g

Z


f .x/J0.�jy � xj/dx D
Z
RC

g.y; r/J0.�r/dr; (49)

Z


f .x/Y0.�jy � xj/dx D
Z
RC

g.y; r/Y0.�r/dr: (50)

Formula (48), in combination with (49) and (50), yields values of Of .�/ for
arbitrary �. Now f .x/ can be recovered by numerically inverting the Fourier
transform or by a reduction to an FBP inversion [63] of the regular Radon transform.

The most computationally expensive part of the algorithm, which is computing
the densities ��;J and ��;Y , needs to be done only once for a given acquisition sur-
face. Thus, for a scanner with a fixed S , the resulting densities can be precomputed
once and for all. The actual reconstruction part then becomes extremely fast.

Examples of reconstructions from incomplete data using this technique of [59]
are shown in Fig. 11. The images were reconstructed within the unit square Œ�1; 1��
Œ�1; 1�, while the detectors were placed on the part of the concentric circle of radius
1.3 lying to the left of line x1 D 1. We used the same phantom as in Fig. 10a; the
reconstruction from the data with added 15 % noise is shown in Fig. 11b; Fig. 11c
demonstrates the results of applying additional smoothing filter to reduce the effects
of noise in the data.

Variable Speed of Sound
The problem of numerical reconstruction in TAT from the data measured on open
surfaces in the presence of a known variable speed of sound currently remains
largely open. One of the difficulties was discussed in section “Incomplete Data”:
even if the speed of sound c.x/ is non-trapping, it can happen that some of the
characteristics escape from the region of interest to infinity without intersecting
the open measuring surface. Then stable reconstruction of the corresponding
interfaces will become impossible. It should be possible, however, to develop stable
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Fig. 11 Examples of reconstruction from incomplete data using the technique of [59]. Detectors
are located on the part of circular arc of radius 1.3 lying left of the line x1 D 1. (a) Reconstruction
from accurate data, (b) reconstruction from the data with added 15 % noise, (c) reconstruction from
noisy data with additional smoothing filter

reconstruction algorithms in the case when the whole object of interest is located in
the visible zone.

The generalization of the method of [59] to the case of variable speed of sound is
so far problematic, since this algorithm is based on the knowledge of the open space
Green’s function for the Helmholtz equation. In the case of a nonconstant c.x/, this
Green’s function is position dependent, and its numerical computation is likely to
be prohibitively time-consuming.

A promising approach to this problem, currently under development, is to use
time reversal with the missing data replaced by zeros or maybe by a more clever
extension (e.g., using the range conditions, as in [78, 79]). This would produce an
initial approximation to f .x/, which one can try to refine by fixed-point iterations;
however, the pertinent questions concerning such an algorithm remain open.

An interesting technique of using a reverberant cavity enclosing the target to
compensate for the missing data is described in [28].

5 Final Remarks and Open Problems

We list here some unresolved issues of mathematics of TAT/PAT, as well as some
developments that were not addressed in the main text.

1. The issue of uniqueness acquisition sets S (i.e., such that transducers distributed
along S provide sufficient information for TAT reconstruction) can be considered
to be resolved, for most practical purposes. However, there remain significant
unresolved theoretical questions. One of them consists of proving an analogue of
Theorem 5 for non-compactly supported functions with a sufficiently fast (e.g.,
super-exponential) decay at infinity. The original (and the only known) proof
of this theorem uses microlocal techniques [7, 85] that significantly rely upon
the compactness of support. However, one hopes that the condition of a fast
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decay should suffice for this result. In particular, there is no proven analogue
of Theorem 3 for non-closed sets S (unless S is an open part of a closed analytic
surface).

Techniques developed in [36] (see also [8] for their further use in TAT) might
provide the right approach.

This also relates to still unresolved situation in dimensions 3 and higher.
Namely, one would like to prove Conjecture 1.

2. Concerning the inversion methods, one notices that closed-form formulas are
known only for spherical, cylindrical, and planar acquisition surfaces. The
question arises whether closed-form inversion formulas could be found for any
other smooth closed surface? It is the belief of the authors that the answer to this
question is negative.

Another feature of the known closed-form formulas that was mentioned
before is that they do not work correctly if the support of the sought function
f .x/ lies partially outside the acquisition surface. Time reversal and eigenfunc-
tion expansion methods do not suffer from this deficiency. The question arises
whether one could find closed-form formulas that reconstruct the function inside
S correctly, in spite of it having part of its support outside. Again, the authors
believe that the answer is negative.

3. The complete range description of the forward operator W in even dimensions
is still not known. It is also not clear whether one can obtain complete range
descriptions for nonspherical observation sets S or for a variable sound speed.
The moment and orthogonality conditions do hold in the case of a constant speed
and arbitrary closed surface, but they do not provide a complete description of
the range. For acoustically inhomogeneous media, an analogue of orthogonality
conditions exists, but it also does not describe the range completely.

4. The problem of unique determination of the speed of sound from TAT data is
largely open.

5. As it was explained in the text, knowing full Cauchy data of the pressure p (i.e.,
its value and the value of its the normal derivative) on the observation surface
S leads to unique determination and simple reconstruction of f . However, the
normal derivative is not measured by transducers and thus needs to be either
found mathematically or measured in a different experiment. Thus, feasibility of
techniques [12,25] relying on full Cauchy data requires further mathematical and
experimental study.

6. In the standard X-ray CT, as well as in SPECT, the local tomography technique
[33, 56] is often very useful. It allows one to emphasize in a stable way
singularities (e.g., tissue interfaces) of the reconstruction, even in the case of
incomplete data (in the latter case, the invisible parts will be lost). An analogue of
local tomography can be easily implemented in TAT, for instance, by introducing
an additional high-pass filter in the FBP-type formulas.

7. The mathematical analysis of TAT presented in the text did not take into account
the issue of modeling and compensating for the acoustic attenuation. This
subject is addressed in [22, 52, 62, 80, 83], but probably cannot be considered
completely resolved.
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8. Quantitative PAT: This chapter, as well as most other papers devoted to
TAT/PAT, is centered on finding the initial pressure f .x/. This pressure, which is
proportional to the initial energy deposition, is related to the optical parameters
(attenuation and scattering coefficients) of the tissue. The nontrivial issue of
recovering these parameters, after the initial pressure f .x/ is found, is addressed
in the recent works [18, 29, 30].

9. The TAT technique discussed in the chapter uses active interrogation of the
medium. There is a discussion in the literature of a passive version of TAT,
where no irradiation of the target is involved [77].
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Abstract
In this chapter a general mathematical model of Optical Coherence Tomography
(OCT) is presented on the basis of the electromagnetic theory. OCT produces
high-resolution images of the inner structure of biological tissues. Images are
obtained by measuring the time delay and the intensity of the backscattered
light from the sample considering also the coherence properties of light. The
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scattering problem is considered for a weakly scattering medium located far
enough from the detector. The inverse problem is to reconstruct the susceptibility
of the medium given the measurements for different positions of the mirror.
Different approaches are addressed depending on the different assumptions made
about the optical properties of the sample. This procedure is applied to a full field
OCT system and an extension to standard (time and frequency domain) OCT is
briefly presented.

1 Introduction

Optical Coherence Tomography (OCT) is a noninvasive imaging technique pro-
ducing high-resolution images of biological tissues. OCT is based on Low (time)
Coherence Interferometry and takes into account the coherence properties of light
to image microstructures with resolution in the range of few micrometers. Standard
OCT operates using broadband and continuous wave light in the visible and
near-infrared spectrum. OCT images are obtained by measuring the time delay
and the intensity of backscattered or back-reflected light from the sample under
investigation. Since it was first established in 1991 by Huang et al. [24], the
clinical applications of OCT have been greatly improved. Ophthalmology remains
the dominant one, initially applied in 1993 [17, 41]. The main reason is that OCT
has limited penetration depth in biological tissues, but high resolution. The theory
of OCT has been analyzed in details in review papers [14, 16, 32, 36, 44] in book
chapters [15, 19, 42] and in books [4, 5, 10].

To derive a mathematical model for the OCT system, the scattering properties
of the sample need to be described. There exist several different approaches to
model the propagation of light within the sample: the radiative transfer equation
with scattering and absorption coefficients [9, 38, 45], Lambert–Beer’s law with the
attenuation coefficient [39,46], the equations of geometric optics with the refractive
index [7], and Maxwell’s equations with the susceptibility (or the refractive index)
as optical parameters of the medium [6, 12, 27, 37, 43]. Also statistical approaches
using Monte Carlo simulations are used [2, 11, 26, 31, 40].

This chapter describes the propagation of the electromagnetic wave through the
sample using Maxwell’s equations and adopts the analysis based on the theory of
electromagnetic fields scattered by inhomogeneous media [8, 20]. The sample is
hereby considered as a linear dielectric medium (potentially inhomogeneous and
anisotropic). Moreover, the medium is considered weakly scattering so that the
first-order Born approximation can be used and, as it is usually assumed in OCT,
the backscattered light is detected far enough from the sample so that the far field
approximation is valid. Starting from this model, different reconstruction formulas
for special cases regarding the inner structure of the sample are presented.

This chapter is organized as follows. In Sect. 2, the principles of OCT and
different variants of OCT systems are presented. Section 3 describes the solution
of Maxwell’s equations and an appropriate formula for the measurements of OCT
is derived. Given the initial field and the optical properties (the susceptibility) of the
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sample, the solution of the direct problem is obtained in Sect. 4. An iterative scheme
is derived in the last section for the reconstruction of the unknown susceptibility,
which is the inverse problem of OCT.

2 Basic Principles of OCT

OCT is used to gain information about the light scattering properties of an object by
illuminating it with some short laser pulse and measuring the backscattered light.

The name “Optical Coherence Tomography” is motivated by the way the
scattering data are measured: To get more precise measurements, the backscattered
light is not directly detected, but first superimposed with the original laser pulse
and then the intensity of this interference pattern is measured (this means that one
measures the “coherence” of these two light beams).

Experimentally, this is done by separating the incoming light at a beam splitter
into two identical beams which travel two different paths. One beam is simply
reflected by a mirror and sent back to the beam splitter, while the other beam is
directed to the sample. At the beam splitter, the beam reflected by the mirror and
the backscattered light from the sample are recombined and sent to the detector
[16, 25, 44]. See Fig. 1 for an illustration of this procedure.

There exist different variants of the OCT regarding the way the measurements
are done:

Time and frequency domain OCT: In time domain OCT, the position of the
mirror is varied and for each position one measurement is performed. On
the other hand, in frequency domain OCT, the reference mirror is fixed and
the detector is replaced by a spectrometer. Both methods provide equivalent
measurements which are connected by a Fourier transform.

Standard and full field OCT: In standard OCT, the incoming light is focused
through objective lenses to one spot in a certain depth in the sample and the
backscattered light is measured in a point detector. This means that to obtain
information of the whole sample, a transversal-lateral scan has to be performed

Fig. 1 Schematic diagram of
the light traveling in an OCT
system. The laser beam
emitted by the source is
divided at the beam splitter
into two light beams; one is
reflected at a mirror, the other
one backscattered from the
sample. The superposition of
the two reflected beams is
then measured at the detector



1172 P. Elbau et al.

(by moving the light beam over the frontal surface of the sample). In full
field OCT, the entire frontal surface of the sample is illuminated at once and
the single point detector is replaced by a two-dimensional detector array, for
instance by a charge-coupled device (CCD) camera.

Polarization-sensitive OCT: In classical OCT setups, the electromagnetic wave is
simply treated as a scalar quantity. In polarization-sensitive OCT, however, the
illuminating light beams are polarized and the detectors measure the intensity
of the two polarization components of the interfered light.

There are also further modifications such as Doppler OCT and quantum OCT, which
are not addressed here. In this chapter, the focus is mainly on time domain full field
OCT, but also the others are discussed.

3 The Direct Scattering Problem

To derive a mathematical model for an OCT system, one has to describe on one
hand the propagation and the scattering of the laser beam in the presence of the
sample and on the other hand the way how this scattered wave is measured at the
detectors. For the first part, the interaction of the incoming light with the sample can
be modeled with Maxwell’s macroscopic equations.

Maxwell’s Equations

Maxwell’s equations in matter consist of the partial differential equations

divxD.t; x/ D 4��.t; x/; t 2 R; x 2 R3; (1a)

divxB.t; x/ D 0; t 2 R; x 2 R3; (1b)

curlxE.t; x/ D �1

c

@B

@t
.t; x/; t 2 R; x 2 R3; (1c)

curlxH.t; x/ D 4�

c
J.t; x/C 1

c

@D

@t
.t; x/; t 2 R; x 2 R3; (1d)

relating the following physical quantities (at some time t 2 R and some location
x 2 R3):

Speed of light c R

External charge density �.t; x/ R

External electric current density J.t; x/ R3

Electric field E.t; x/ R3

Electric displacement D.t; x/ R3

Magnetic induction B.t; x/ R3

Magnetic field H.t; x/ R3
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Maxwell’s equations do not yet completely describe the propagation of the light
(even assuming that the charge density � and the current density J are known, there
are only 8 equations for the 12 unknownsE , D, B , and H ).

Additionally to Maxwell’s equations, it is therefore necessary to specify the
relations between the fields D and E as well as between B and H .

Let  � R3 denote the domain where the sample is located. It is considered as
a nonmagnetic, dielectric medium without external charges or currents, this means
that for all t 2 R and all x 2  the electric and magnetic fields fulfil the relations

D.t; x/ D E.t; x/C
Z 1

0
	.�; x/E.t � �; x/d�; (2a)

B.t; x/ D H.t; x/; (2b)

�.t; x/ D 0; (2c)

J.t; x/ D 0; (2d)

where the function 	 W R � R3 ! R3�3 (for convenience, 	 is also defined
for negative times by 	.t; x/ D 0 for t < 0, x 2 R3) is called the (electric)
susceptibility and is the quantity to be recovered. The time dependence of 	 hereby
describes the fact that a change in the electric field E cannot immediately cause a
change in the electric displacementD. Since this delay is quite small, it is sometimes
ignored and 	.t; x/ is then replaced by ı.t/	.x/. Moreover, the medium is often
considered to be isotropic, which means that 	 is a multiple of the identity matrix.

The sample is situated in vacuum and the assumptions (2) are modified by setting
for all t 2 R and all x 2 R3 n

D.t; x/ D E.t; x/; (3a)

B.t; x/ D H.t; x/; (3b)

�.t; x/ D 0; (3c)

J.t; x/ D 0: (3d)

This simply corresponds to extend the Eq. (2) to R�R3 and to assume 	.t; x/ D 0
for all t 2 R, x 2 R3 n.

In this case of a nonmagnetic medium, Maxwell’s equations result into one
equation for the electric fieldE . To get rid of the convolution in (2a), it is practical to
consider the Fourier transform with respect to time. In the following, the convention

Of .!; x/ D
Z 1

�1
f .t; x/ei!tdt;

for the Fourier transform of a function f with respect to t is used.
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Proposition 1. Let E , D, B , and H fulfil Maxwell’s equations (1). Moreover, let
assumptions (2) and (3) be satisfied. Then the Fourier transform OE of E fulfils the
vector Helmholtz equation

curlxcurlx OE.!; x/ � !
2

c2
.1C O	.!; x// OE.!; x/ D 0; ! 2 R; x 2 R3: (4)

Proof. Applying the curl to (1c) and using (1d) with the assumptions B D H and
J D 0; yields

curlxcurlxE.t; x/ D �1

c

@curlxB

@t
.t; x/ D � 1

c2

@2D

@t2
.t; x/: (5)

The Fourier transform of (2a) and (3a) and the Fourier convolution theorem (recall
that 	 is set to zero outside ) imply that

OD.!; x/ D .1C O	.!; x// OE.!; x/; for all ! 2 R; x 2 R3:

Therefore, the Eq. (4) follows by taking the Fourier transform of (5). ut

Initial Conditions

The sample is illuminated with a laser beam described initially (before it interacts
with the sample) by the electric field E.0/ W R �R3 ! R3 which is (together with
some magnetic field) a solution of Maxwell’s equations (1) with the assumptions (3)
for all x 2 R3. Then, it follows from the proof of the Proposition 1, for 	 D 0, that

curlxcurlx OE.0/.!; x/ � !
2

c2
OE.0/.!; x/ D 0; ! 2 R; x 2 R3: (6)

Moreover, it is assumed that E.0/ does not interact with the sample until the time
t D 0, which means that supp E.0/.t; � /\ D ; for all t � 0.

The electric field E W R �R3 ! R3 generated by this incoming light beam in
the presence of the sample is then a solution of Maxwell’s equations (1) with the
assumptions (2) and the initial condition

E.t; x/ D E.0/.t; x/ for all t � 0; x 2 R3: (7)

Since Maxwell’s equations forE in Proposition 1 are reformulated as an equation
for the Fourier transform OE , it is helpful to rewrite the initial condition in terms of OE .

Proposition 2. Let E (together with some magnetic field H ) fulfil Maxwell’s
equations (1) with the assumptions (2) and (3) and with the initial condition (7).
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Then the Fourier transform of E � E.0/ fulfils that the function ! 7! OE.!; x/ �
OE.0/.!; x/, defined on R, can be extended to a square integrable, holomorphic

function on the upper half plane H D f! 2 C j =m.!/ > 0g for every x 2 R3.

Proof. From the initial condition (7) it follows that E.t; x/ � E.0/.t; x/ D 0 for
all t � 0: Thus, the result is a direct consequence form the Paley–Wiener theorem,
which is based on the fact that in this case

OE.!; x/ � OE.0/.!; x/ D
Z 1

0
.E � E.0//.t; x/ei!tdt

is well defined for all ! 2 H and complex differentiable with respect to ! 2 H. ut

Remark that the electric field E is uniquely defined by (4) and Proposition 2.

TheMeasurements

The measurements are obtained by the combination of the backscattered field from
the sample and the back-reflected field from the mirror. In practice, see Fig. 1, the
sample and the mirror are in different positions. However, without loss of generality,
a placement of them around the origin is assumed in the proposed formulation, in
order to avoid rotating the coordinate system. To do so, the simultaneously illumi-
nation of the sample and the mirror is suppressed and two different illumination
schemes are considered. The gain is to keep the same coordinate system but the
reader should not be confused with illumination at different times.

Thus, the electric field E , which is obtained by illuminating the sample with the
initial field E.0/ (that is E solves (4) with the initial condition (7)), is combined
with Er which is the electric field obtained by replacing the sample by a mirror and
illuminating with the same initial field E.0/.

The mirror is placed orthogonal to the unit vector e3 D .0; 0; 1/ through the point
re3. As in (7), it is assumed that suppE.0/.t; � / does not interact with the mirror for
t < 0, so that

Er.t; x/ D E.0/.t; x/ for all t < 0; x 2 R3: (8)

Then the resulting electric field Er W R � R3 ! R3 is given as the solution of
the same equations as E (Maxwell’s equations (1) together with the assumptions
(2) and initial condition (8)) with the susceptibility 	 replaced by the susceptibility
	r of the mirror at position r . One sort of (ideal) mirror can be described via the
susceptibility 	r .t; x/ D 0 for x3 > r and 	r.t; x/ D Cı.t/1 for x3 � r with an
(infinitely) large constant C > 0.

The intensity Ir of each component of the superposition of the electric fields E
and Er averaged over all time is measured at some detector points. The detectors
are positioned at all points on the plane
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Fig. 2 The two scattering problems involved in OCT: On the left hand side the scattering of the
initial wave on the sample ; on the right hand side the reference problem where the initial wave
E.0/ is reflected by a perfect mirror at a tunable position r 2 .�1; R/. The two resulting electric
fields, E and Er , are then combined and this superposition E C Er is measured at the detector
surface D

D D fx 2 R3 j x3 D d g

parallel to the mirror at a distance d > 0 from the origin. The mirror and the sample
are both located in the lower half plane of the detector surface with some minimal
distance to D. Moreover, the highest possible positionR 2 .ı; d � 2ı/ of the mirror
shall be by some distance ı > 0 closer to the detector than the sample, this means
(see Fig. 2)

sup
x2

x3 < R � ı and r 2 .�1; R/: (9)

To simplify the argument, let us additionally assume that the incoming electric
field E.0/ does not influence the detector after the time t D 0, meaning that

E.0/.t; x/ D 0 for all t � 0; x 2 D: (10)

At the detector array, the data are obtained by measuring

Ir;j .x/ D
Z 1

0
jEj .t; x/C Er;j .t; x/j2dt; x 2 D; j 2 f1; 2; 3g: (11)

In standard OCT, the polarization is usually ignored. In this case, only the total
intensity Ir D P3

jD1 Ir;j needs to be measured, see Sect. 5 for the reconstruction
formulas in the isotropic case.
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In this measurement setup, it is easy to acquire besides the intensity Ir also
the intensity of the two waves E and Er separately by blocking one of the
two waves E and Er at a time. Practically, it is sometimes not even neces-
sary to measure them since the intensity of the reflected laser beam Er can
be explicitly calculated from the knowledge of the initial beam E.0/, and the
intensity of E is usually negligible compared with the intensity Ir (because of
the assumption (10), the field E contains only backscattered light at the detector
after the measurement starts). Therefore, one can consider instead of Ir the
function

Mr;j .x/ D 1

2

�
Ir;j �

Z 1

0
jEj .t; x/j2dt �

Z 1

0
jEr;j .t; x/j2dt

�
(12)

for r 2 .�1; R/, j 2 f1; 2; 3g, and x 2 D as the measurement data.

Proposition 3. Let the initial conditions (7) and (8) and the additional assump-
tion (10) be satisfied. Then, for all x 2 D, r 2 .�1; R/, and j 2 f1; 2; 3g the
measurementsMr , defined by (12), fulfil

Mr;j .x/ D
Z 1

�1
.Ej � E.0/

j /.t; x/.Er;j �E.0/
j /.t; x/dt (13a)

D
Z 1

�1
. OEj � OE.0/

j /.!; x/.
OEr;j � OE.0/

j /.!; x/d!; (13b)

Proof. Expanding the function Ir;j , given by (11), gives

Ir;j .x/ D
Z 1

0

�jEj .t; x/j2 C jEr;j .t; x/j2 C 2Ej .t; x/Er;j .t; x/
	
dt:

Thus, by the Definition (12) of Mr , it follows that

Mr;j .x/ D
Z 1

0
Ej .t; x/Er;j .t; x/dt;

which, using the assumption (10), can be rewritten in the form

Mr;j .x/ D
Z 1

0
.Ej � E.0/

j /.t; x/.Er;j �E.0/
j /.t; x/dt:

Then, since E and Er coincide with E.0/ for t < 0, see (7) and (8), the integration
can be extended to all times. This proves the formula (13a) for Mr . The second
formula follows from Plancherel’s theorem. ut
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4 Solution of the Direct Problem

In this section the solution of the direct problem, to determine the measurements
Mr , defined by (13a), from the susceptibility 	, is derived using Born and far field
approximation for the electric field.

Proposition 4. Let E be a solution of the Eqs. (4) and (7). Then, the Fourier
transform OE solves the Lippmann–Schwinger integral equation

OE.!; x/ D OE.0/.!; x/C
�
!2

c2
1C gradxdivx

�Z
R3
G.!; x�y/ O	.!; y/ OE.!; y/dy;

(14)
where G is the fundamental solution of the Helmholtz equation given by

G.!; x/ D ei !c jxj

4�jxj ; x ¤ 0; ! 2 R:

Proof. Equation (4) can be rewritten in the form

curlxcurlx OE.!; x/ � !
2

c2
OE.!; x/ D �.!; x/

with the inhomogeneity

�.!; x/ D !2

c2
O	.!; x/ OE.!; x/: (15)

Using that OE.0/ solves (6), the difference OE � OE.0/ satisfies the inhomogeneous
vector Helmholtz equation

curlxcurlx. OE � OE.0//.!; x/ � !
2

c2
. OE � OE.0//.!; x/ D �.!; x/: (16)

The divergence of this equation, using that divxcurlx. OE � OE.0// D 0; implies

divx. OE � OE.0//.!; x/ D � c
2

!2
divx�.!; x/: (17)

Applying the vector identity

curlxcurlx. OE � OE.0// D gradxdivx. OE � OE.0// ��x. OE � OE.0//

in (16) and using (17) yields
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�x. OE � OE.0//.!; x/C !2

c2
. OE � OE.0//.!; x/ D � c

2

!2
gradxdivx�.!; x/� �.!; x/:

This is a Helmholtz equation for OE � OE.0/ and the general solution which is (with
respect to!) holomorphic in the upper half plane (equivalent to (7) by Proposition 2)
is given by, see [8]

. OE � OE.0//.!; x/ D � c
2

!2

Z
R3
G.!; x � y/

�
!2

c2
1C gradydivy

�
�.!; y/dy

D � c
2

!2

�
!2

c2
1C gradxdivx

�Z
R3
G.!; x � y/�.!; y/dy:

For the last equality, integration by parts and gradxG.!; x�y/ D �gradyG.!; x�
y/ were used. The Lippmann–Schwinger equation (14) follows from the last
expression inserting the expression (15) for �: ut

This integral equation uniquely defines the electric field E: The reader is referred
to [1, 8] for the isotropic case and to [33] for an anisotropic medium.

Born and Far Field Approximation

To solve the Lippmann–Schwinger equation (14), the medium is assumed to be
weakly scattering, which means that O	 is sufficiently small (implying that the dif-
ference E � OE.0/ becomes small compared to E.0/) so that the Born approximation
E.1/, defined by

OE.1/.!; x/ D OE.0/.!; x/C
�
!2

c2
1C gradxdivx

�

Z
R3
G.!; x � y/ O	.!; y/ OE.0/.!; y/dy; (18)

is considered a good approximation for the electric field E , see [3]. To describe
multiple scattering events, one considers higher order Born approximations. For
different linearization techniques, the reader is referred to [1, 23]. Moreover, since
the detector in OCT is typically quite far away from the sample, one can simplify
the expression (18) for the electric field at the detector array by replacing it with its
asymptotic behavior for jxj ! 1, that is replace the formula forE.1/ by its far field
approximation (the far field approximation could also be applied to the solution E
of the Lippmann–Schwinger equation (14)).

Proposition 5. Consider, for a given function � W R3 ! R3 with compact support
and some parameter a 2 R; the function
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g W R3 ! R3; g.x/ D
Z
R3

eiajx�yj

jx � yj�.y/dy:

Then, it follows, asymptotically for �!1 and uniformly in # 2 S2; that

.a2 C gradxdivx/g.�#/ ' �a
2eia�

�

Z
R3
# � .# � �.y//e�iah#;yidy (19)

Proof. Consider the function

� W R3 ! C; �.x/ D eiajxj

jxj :

Then

@2�

@xj @xk
.x/ D @

@xj

��
ia

jxj2 �
1

jxj3
�
xkeiajxj

�

D
��

ia

jxj2 �
1

jxj3
�
ıjk C

�
ia

jxj2 �
1

jxj3
�

iaxj xk
jxj

C
�
�2

ia

jxj3 C 3
1

jxj4
�
xj xk

jxj
�

eiajxj:

Therefore, writing x in spherical coordinates: x D �# with � > 0, # 2 S2, for
�!1 uniformly in #; it can be seen that

@2�

@xj @xk
.�#/ D �a

2eia�

�
#j#k CO

�
1

�2

�
;

The approximation (locally uniformly in y 2 R3/

j�# � yj D �
s
j#j2 � 2

�
h#; yi C 1

�2
jyj2 D � � h#; yi CO

�
1

�

�
;

implies that (again uniformly in # 2 S2)

@2�

@xj @xk
.�# � y/ D �a

2eia.��h#;yi/

�
#j#k CO

�
1

�

�
:

Now, considering the compact support of � and using that x 2 R3 n supp�

.gradxdivxg/j .x/ D
3X

kD1

@

@xj

Z
R3

@�

@xk
.x � y/�k.y/dy
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D
Z
R3

3X
kD1

@2�

@xj @xk
.x � y/�k.y/dy:

Asymptotically for jxj ! 1 (again using the compact support of �) one obtains

a2gj .�#/C .gradxdivxg/j .�#/ ' a2
Z
R3

3X
kD1

eia.��h#;yi/

�

�
ıjk � #j#k

	
�k.y/dy:

The approximation (19) follows from the vector identity # � .# � �/ D h#; �i# �
j#j2� and j#j D 1: ut

The application of both the far field and the Born approximation, this means
Proposition 5 for the expression (18) of E.1/; that is setting a D !=c and � D

1
4� O	 OE.0/ in Proposition 5, imply the asymptotic behavior

OE.1/.!; �#/ ' OE.0/.!; �#/�!
2ei !c �

4��c2

Z
R3
#��#�. O	.!; y/ OE.0/.!; y//

	
e�i !c h#;yidy:

(20)

The Forward Operator

To obtain a forward model for the measurements described in Sect. 3, the (approx-
imative) formula (20) is considered as a model for the solution of the scattering
problem. To make this formula concrete, one has to plug in a function E.0/

describing the initial illumination (recall that E.0/ has to solve (6)).
The specific illumination is a laser pulse propagating in the direction �e3,

orthogonal to the detector surface D D fx 2 R3 j x3 D d g, this means

E.0/.t; x/ D f .t C x3
c
/p; (21)

which solves Maxwell’s equations (1) with the assumptions (3) for some fixed vector
p 2 R3;with p3 D hp; e3i D 0; describing the polarization of the initial laser beam.

Proposition 6. The functionE.0/, defined by (21) with hp; e3i D 0, solves together
with the magnetic field H.0/, defined by

H.0/.t; x/ D f .t C x3
c
/p � e3;

Maxwell’s equations (1) in the vacuum, that is with the additional assumptions (3).

Proof. The four equations of (1) can be directly verified:
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divxE.0/.t; x/ D 1

c
f 0.t C x3

c
/ he3; pi D 0;

divxH.0/.t; x/ D 1

c
f 0.t C x3

c
/ he3; p � e3i D 0;

curlxE.0/.t; x/ D 1

c
f 0.t C x3

c
/e3 � p D �1

c

@H.0/

@t
.t; x/;

curlxH
.0/.t; x/ D 1

c
f 0.t C x3

c
/e3 � .p � e3/ D 1

c
f 0.t C x3

c
/p D 1

c

@E.0/

@t
.t; x/:

ut

To guarantee that the initial field E.0/ (and also the magnetic field H.0/) does
not interact with the sample or the mirror for t � 0 and neither contributes to the
measurement at the detectors for t � 0 as required by (8) and (10) the vertical
distribution f W R! R should satisfy (see Fig. 2)

suppf � .R
c
; d
c
/: (22)

In the case of an illuminationE.0/ of the form (21), the electric fieldEr produced
by an ideal mirror at the position r is given by

Er.t; x/ D
( �
f .t C x3

c
/� f .t C x3

c
C 2 r�x3

c
/
	
p if x3 > r;

0 if x3 � r:
(23)

This just corresponds to the superposition of the initial wave with the (orthogonally)
reflected wave, which travels additionally the distance 2 x3�r

c
. The change in

polarization of the reflected wave (from p to �p) comes from the fact that the
tangential components of the electric field have to be continuous across the border
of the mirror.

The following proposition gives the form of the measurements Mr , described in
Sect. 3, on the detector surface D for the specific illumination (21).

Proposition 7. Let E.0/ be an initial illumination of the form (21) satisfying (22).
Then, the equations for the measurementsMr from Proposition 3 are given by

Mr;j .x/ D �pj
Z 1

�1
.Ej �E.0/

j /.t; x/f .t C 2r�x3
c
/dt; (24a)

D �pj
2�

Z 1

�1
. OEj � OE.0/

j /.!; x/
Of .�!/ei !c .2r�x3/d! (24b)

for all j 2 f1; 2; 3g, r 2 .�1; R/, and x 2 D.
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Proof. Since the electric field Er reflected on a mirror at vertical position r 2
.�1; R/ is according to (23) given by

Er.t; x/ D
�
f .t C x3

c
/� f .t C 2r�x3

c
/
	
p for all t 2 R; x 2 D;

the measurement functions Mr (defined by (12) and computed with (13a)) are
simplified, for the particular initial illumination E.0/ of the form (21), to (24a) for
x 2 D:

Since formula (24a) is just a convolution, the electric field E � E.0/ can be
rewritten, in terms of its Fourier transform, in the form

Mr;j .x/ D �pj
2�

Z 1

�1

Z 1

�1
. OEj � OE.0/

j /.!; x/e
�i!tf .t C 2r�x3

c
/d!dt:

Interchanging the order of integration and applying the Fourier transform Of of f; it
follows Eq. (24b). ut

In the limiting case of a delta impulse as initial wave, that is for f .�/ D ı.���0/

with some constant �0 2 .Rc ; dc / satisfying (22), the measurements provide directly
the electric field. Indeed, it can be seen from (24a) that

Mr;j .x/ D �pj .Ej �E.0/
j /.

x3�2r
c
C �0; x/:

By varying r 2 .�1; R/, the electric field E can be obtained (to be more precise,
its component in direction of the initial polarization) as a function of time at every
detector position.

The following assumptions are made:

Assumption 5. The susceptibility 	 is sufficiently small so that the Born approx-
imation E.1/ for the solution E of the Lippmann–Schwinger equation (14) can be
applied.

Assumption 6. The detectors are sufficiently far away from the object so that one
can use the far field asymptotics (20) for the measured field.

Under these assumptions, one can approximate the electric field by the far field
expression of the Born approximation E.1/ and plug in the expression in (20) to
obtain the measurementsMr;j ; j 2 f1; 2; 3g:

The above analysis, introducing appropriate operators, can then be formulated as
an operator equation. The integral equation (20) can be formally written as

. OE.1/ � OE.0//.!; x/ D .K0 O	/.!; x/;

for a given OE.0/ where the operator K0 W O	 7! OE.1/ � OE.0/ is given by



1184 P. Elbau et al.

.K0v/.!; �#/ D �!
2ei !c �

4��c2

Z
R3
# � �# � .v.!; y/ OE.0/.!; y//

	
e�i !c h#;yidy;

� > 0; # 2 S2:

It is emphasized that O	 W R �R3 ! C3�3 and OE.1/ � OE.0/ W R �R3 ! C3; that
is K0v is a function from R �R3 into C3: Equivalently, considering the Eq. (13b),
one has

M.r; x/ D �Mr;j .x/
	3
jD1 D

�
M. OE.1/ � OE.0//

	
.r; x/;

where the operator M is defined by

.Mv/.r; x/ D
�Z 1

�1
vj .!; x/. OEr;j � OE.0/

j /.!; x/d!

�3

jD1
; x 2 D:

Here, Mv is a function from R � D to R3: Thus, combining the operators K0 and
M, the forward operator F W O	 7! M; F DMK0 models the direct problem. The
inverse problem of OCT is then formulated as an operator equation

F O	 D M: (25)

For the specific illumination (21), one has

OE.0/.!; x/ D
�Z 1

�1
f .t C x3

c
/ei!tdt

�
p D Of .!/e�i !c x3p: (26)

Then, the operators K0 and M simplify to

.K0v/.!; �#/ D �!
2ei !c �

4��c2
Of .!/

Z
R3
# � �# � .v.!; y/ p/	e�i !c h#Ce3;yidy (27)

and, recalling that Mr;3 D 0 since p3 D 0 (the polarization in the incident direction
is zero),

.Mv/.r; x/ D
�
�pj

2�

Z 1

�1
vj .!; x/ Of .�!/ei !c .2r�x3/d!

�2

jD1
: (28)

The operator K0 is derived from the Born approximation taking into account the
far field approximation for the solution of the Lippmann–Schwinger equation (14).
But, one could also neglect Assumption 5 and Assumption 6 and use the operator K
corresponding to Eq. (14), that is,
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.Kv/.!; x/ D
�
!2

c2
1C gradxdivx

�Z
R3
G.!; x � y/v.!; y/ OE.!; y/dy;

and considering the nonlinear forward operator F DMK:
The next section focuses on the solution of (25), considering the operators K0

and M; given by (27) and (28), respectively. The inversion of F is performed in
two steps, first M is inverted and then K0:

5 The Inverse Scattering Problem

In optical coherence tomography, the susceptibility 	 of the sample is imaged from
the measurements Mr.x/, r 2 .�1; R/, x 2 D. In a first step, it is shown that the
measurements allow us to reconstruct the scattered field on the detector D; that is
inverting the operator (28).

The vertical distribution f W R! R should additionally satisfy (see Fig. 2)

suppf � .R
c
; R
c
C 2ı

c
/ � .R

c
; d
c
/ for some ı > 0: (29)

This guarantees that the initial field E.0/ (and also the magnetic field H.0/) not
interact with the sample or the mirror for t � 0 and neither contribute to the
measurement at the detectors for t � 0 as required by (8) and (10).

The condition that the length of the support of E.0/ is at most 2ı (the assumption
that the support starts at R

c
is only made to simplify the notation) is required for

Proposition 8. It ensures that the formula (13a) for the measurement data Mr.x/,
x 2 D, vanishes for values r � R so that the integral on the right hand side of (30)
is only over the interval .�1; R/ where measurement data are obtained (recall that
measurements are only performed for positions r < R of the mirror).

Proposition 8. Let E.0/ be an initial illumination of the form (21) satisfying (29).
Then, the measurementsMr from Proposition 7 imply for the electric field E:

. OEj � OE.0/
j /.!; x/

Of .!/pj D �2

c

Z R

�1
Mr;j .x/e�i !c .2r�x3/dr (30)

for all j 2 f1; 2; 3g, ! 2 R, and x 2 D.

Proof. Remark that the formula (24a) can be extended to all r 2 R by setting
Mr;j .x/ D 0 for r � R. Indeed, from (29) it follows that E.t; � / D E.0/.t; � / for
all t < ı

c
. SinceE is a solution of the linear wave equation with constant wave speed

c on the half space given by x3 > R� ı; the difference between E and E.0/ caused
by the sample needs at least time d�RCı

c
to travel from the point at x3 D R � ı to

the detector at x3 D d , so:

E.t; x/ D E.0/.t; x/ for all x 2 R3 with x3 D d and ct < 2ı C d � R:
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This means that the integrand vanishes for t < 2ıCd�R
c

. In the case of t � 2ıCd�R
c

;

it holds for r � R that

ct C 2r � d � 2ı C d �RC 2R � d D RC 2ı;

so that f .t C 2r�d
c
/ D 0 by the assumption (29) on the support of f: Therefore, for

r � R, always one of the factors in the integrand in (24a) is zero which implies that
Mr.x/ D 0 for r � R and x 2 D.

Thus, Eq. (24b) holds for all r 2 R and applying the inverse Fourier transform

with respect to r; using that Of .�!/ D Of .!/ because f is real valued, yields

2

c

Z 1

�1
Mr;j .x/e

�i 2!r
c dr D �pj . OEj � OE.0/

j /.!; x/
Of .!/e�i !c x3 ;

which can equivalently be written as (30). ut

This means that one can calculate from the Fourier transform of the measure-
ments r 7! Mr.x/ at some frequency ! the Fourier transform of the electric field
at ! as long as the Fourier transform of the initial wave E.0/ does not vanish at !,
that is for Of .!/ ¤ 0. Thus, under the Assumption 5 and Assumption 6, Eq. (30)
can be solved for the electric field OE . Proposition 8 thus provides the inverse of the
operator M defined by (28). Now, the inversion of the operator K0 given by (27) is
performed considering the optical properties of the sample.

Proposition 9. Let E.0/.t; x/ be given by the form (21) with p3 D 0 and the
additional assumption (29). Then, for every ! 2 R n f0g with Of .!/ ¤ 0, the
formula

pj
�
# � .# � Q	.!; !

c
.# C e3//p/

�
j
' 8��c

!2j Of .!/j2
Z R

�1
Mr;j .�#/e�i !c .2r��.#3�1//dr

(31)
holds for all j 2 f1; 2g, # 2 S2C WD f� 2 S2 j �3 > 0g, and � D d

#3
(asymptotically

for 	! 0 and �!1).
Here Q	 denotes the Fourier transform of 	 with respect to time and space, that is

Q	.!; k/ D
Z 1

�1

Z
R3
	.t; x/e�ihk;xiei!tdxdt D

Z
R3
O	.!; x/e�ihk;xidx: (32)

Proof. Because of (26), the Fourier transform of the electric field E � E.0/ can be
approximated, using (20) with E ' E.1/ (by Assumption 5 and Assumption 6), by

. OE � OE.0//.!; �#/ ' �!
2 Of .!/ei !c �

4��c2

Z
R3

e�i !c .hy;#iCy3/# � .# � O	.!; y/p/dy:
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Then, applying (32), one obtains

. OE � OE.0//.!; �#/ ' �!
2 Of .!/ei !c �

4��c2
# � .# � Q	.!; !

c
.# C e3//p/: (33)

From (30), it is known that, for Of .!/ ¤ 0 and pj ¤ 0;

. OEj � OE.0/
j /.!; �#/ D �

2

pj c Of .!/

Z R

�1
Mr;j .�#/e

�i !c .2r��#3/dr:

This identity together with (33), asymptotically for ! ¤ 0; yields the statement
(31). ut

To derive reconstruction formulas, Proposition 9 is used, which states that from
the measurementsMr (under the Assumption 5 and Assumption 6) the expression

pj
�
# � .# � Q	.!; !

c
.# C e3//p/

�
j
; j D 1; 2; (34)

can be calculated. Here, p 2 R2 � f0g denotes the polarization of the initial
illumination E.0/, see (21), and # 2 S2C is the direction from the origin (where
the sample is located) to a detector.

The Isotropic Case

This section analyzes the special case of an isotropic medium, meaning that the
susceptibility matrix 	 is just a multiple of the unit matrix, so in the following 	 is
identified with a scalar.

Then, from the sum of the measurements Mr;1 and Mr;2; using the formula (31),
one obtains the expression

Q	.!; !
c
.# C e3// hp; # � .# � p/i D Q	.!; !c .# C e3//.h#; pi2 � jpj2/:

Since h#; pi2 < jpj2 for every combination of p 2 R2 � f0g and # 2 S2C, one has
direct access to the spatial and temporal Fourier transform

Q	.!; !
c
.# C e3//; ! 2 R n f0g; # 2 S2C; (35)

of 	 in a subset of R �R3:

However, it remains the problem of reconstructing the four-dimensional suscep-
tibility data 	 from the three-dimensional measurement data (35). In the following,
some different additional assumptions are discussed to compensate the lack of
dimension, see Table 1.
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Table 1 Different assumptions about the susceptibility and the corresponding reconstruction
formulas

Assumptions Reconstruction method Section

Q	.!; k/ D Q	.k/ Reconstruction from partial (three
dimensional) Fourier data:
Q	.k/, k 2 R3,
].k; e3/ 2 .� �

4 ;
�
4 /

Non-dispersive Medium in
Full Field OCT

Q	.!; k/ D Q	.k3/ Reconstruction from full (one
dimensional) Fourier data:
Q	.k3/, k3 2 R n f0g

Non-dispersive Medium with
Focused Illumination

supp 	. � ; x/ � Œ0; T �
R.	.�; � //. � ; '/ is
piecewise constant

Recursive formula to get limited
angle Radon data
R.	.�; � //.
; '/, 
 2 R, ' 2 S2

with ].'; e3/ 2 .� �
4 ;

�
4 /

Dispersive Medium

	.�; x/ D
ı.x1/ı.x2/	.�; x3/,
supp 	. � ; x/ � Œ0; T �, and
	.�; � / is piecewise constant

Recursive formula to
reconstruct 	

Dispersive Layered Medium
with Focused Illumination

Here, .Rg/.
; '/ D R
fx2R 3jhx;'iD
g g.y/ds.y/, 
 2 R, ' 2 S2, denotes the Radon transform

of a function g W R3 ! R.

Non-dispersive Medium in Full Field OCT
The model is simplified by assuming an immediate reaction of the sample to the
exterior electric field in (2a). This means that 	 can be considered as a delta
distribution in time so that its temporal Fourier transform O	 does not depend on
frequency, that is O	.!; x/ D O	.x/: Thus, the reconstruction reduces to the problem
of finding O	 from its partial (spatial) Fourier data

Q	.k/ for k 2 f!
c
.# C e3/ 2 R3 j # 2 S2C; ! 2 R n f0gg
D f� 2 R3 n f0g j arccos.h �j�j ; e3i/ 2 .��4 ; �4 /g:

Thus, only the Fourier data of 	 in the right circular cone C with axis along e3

and aperture �
2 are observed (see Fig. 3). In practice, these data are usually only

available for a small range of frequencies !.
Inverse scattering for full field OCT, under the Born approximation, has been

considered by Marks et al. [28, 29] where algorithms to recover the scalar suscepti-
bility were proposed.

Non-dispersive Mediumwith Focused Illumination
In standard OCT, the illumination is focused to a small region inside the object so
that the function 	 can be assumed to be constant in the directions e1 and e2 (locally
the illumination is still assumed to be properly described by a plane wave). Then,
the problem can be reduced by two dimensions assuming that the illumination is
described by a delta distribution in these two directions. As before, 	 is assumed to
be frequency independent, so that

O	.!; x/ D ı.x1/ı.x2/ O	.x3/;
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Fig. 3 Region C Š R � .S2
C

C e3/ of the available Fourier data of 	

this means that the spatial and temporal Fourier transform (32) fulfils Q	.!; k/ D
Q	.k3/: In this case, the two-dimensional detector array can be replaced by a single
point detector located at de3.

Then, the measurement data (35) in direction # D e3 provide the Fourier
transform

Q	. 2!
c
/ for all ! 2 R n f0g:

Therefore, the reconstruction of the (one dimensional) susceptibility x3 7! O	.x3/

can be simply obtained by an inverse Fourier transform.
This one-dimensional analysis, has been used initially by Fercher et al. [18],

reviewed in [13] and by Hellmuth [22] to describe time domain OCT. Ralston et al.
[34,35] described the OCT system using a single backscattering model. The solution
was given through numerical simulation using regularized least squares methods.

Dispersive Medium
However, in the case of a dispersive medium, that is frequency-dependent O	; the
difficulty is to reconstruct the four-dimensional function 	 W R�R3 ! C from the
three-dimensional data

Om W R � S2C ! C; Om.!; #/ D Q	.!; !
c
.# C e3//: (36)

Lemma 1. Let Om be given by (36). Then its inverse Fourier transform m W R �
S2C ! C with respect to the first variable is given by

m.t; #/ D cp
2.1C #3/

Z 1

�1
N	.� I � � t; #/d�; t 2 R; # 2 S2C; (37)
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Fig. 4 Discretization of 	 with respect to the detection points

where

N	.� I 
; #/ D
Z
E
;#

	.�; y/ds.y/; �; 
 2 R; # 2 S2C;

and E
;# denotes the plane

E
;# D fy 2 R3 j h# C e3; yi D c
g; 
 2 R; # 2 S2C: (38)

Proof. Taking the inverse temporal Fourier transform of Om and using (32), it follows
that

m.t; #/ D 1

2�

Z 1

�1
Q	.!; !

c
.# C e3//e

�i!td!

D 1

2�

Z 1

�1

Z
R3
O	.!; x/e�i !c h#Ce3;xie�i!tdxd!:

Interchanging the order of integration, the integral over ! is again described by an
inverse Fourier transform and the previous equation becomes
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m.t; #/ D
Z
R3
	.t C 1

c
h# C e3; xi ; x/dx:

Substituting then the variable x3 by � D t C 1
c
h# C e3; xi, this can be written as

m.t; #/ D c

1C #3

Z 1

�1

Z 1

�1

Z 1

�1
	.�;  ��t;# .x1; x2//dx1dx2d� (39)

with the function

 
;# W R2 ! R3;  
;# .x1; x2/ D
�
x1; x2;

c


1C #3
� #1x1 C #2x2

1C #3

�
:

Now,  
;# is seen to be the parametrization of the plane

E
;# D fy 2 R3 j hv# ; yi D a
;# g with v# D

0
B@

#1
1C#3
#2

1C#3

1

1
CA and a
;# D c


1C #3
;

see Fig. 4. The square root of the Gram determinant of the parametrization  
;# is
now given by the length of the vector v# D @ 
;#

@x1
� @ 
;#

@x2
, which implies that

Z 1

�1

Z 1

�1
	.�;  ��t;# .x1; x2//dx1dx2 D

r
1C #3

2

Z
E��t;#

	.�; y/ds.y/:

Plugging this into (39) yields the claim. ut

Thus, the measurements give the combination (37) of values N	 of the Radon
transform of the function 	.�; � /. It seems, however, impossible to recover the
values N	.� I 
; #/ from this combination

m.t; #/ D cp
2.1C #3/

Z 1

�1
N	.� I � � t; #/d�;

since (for every fixed angle # 2 S2C) one would have to reconstruct a function on
R2 from one dimensional data.

To overcome this problem, the function N	.� I � ; #/ is going to be discretized for
every � 2 R and # 2 S2C, where the step size will depend on the size of the support
of 	. � ; x/.

Let us therefore consider the following assumption.

Assumption 7. The support of 	 in the time variable is contained in a small
interval Œ0; T � for some T > 0:
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supp	. � ; x/ � Œ0; T � for all x 2 R3:

Then, the following discretization

N	n.�; #/ D
Z
EnT;#

	.�; y/ds.y/; n 2 Z; � 2 .0; T /; # 2 S2C;

of the Radon transform of the functions 	.�; � / is considered, where E
;# denotes
the plane defined in (38).

Assumption 8. The value N	n.�; #/ is a good approximation for the integral of the
function 	.�; � / over the planes EnTC";# for all " 2 Œ�T2 ; T2 / (see Fig. 4), that is

N	n.�; #/ 	
Z
EnTC";#

	.�; y/ds.y/; " 2 Œ�T2 ; T2 /; n 2 Z; � 2 .0; T /; # 2 S2C:

Under the Assumption 8, Eq. (37) can be rewritten in the form

m.t; #/ 	 cp
2.1C #3/

Z T

0
N	N.��t /.�; #/d�;

where N.
/ D �


T
C 1

2

˘
denotes the integer closest to 


T
. This (approximate)

identity can now be iteratively solved for N	.

Proposition 10. Let

Nm.t; #/ D cp
2.1C #3/

Z T

0
N	N.��t /.�; #/d�; # 2 S2C; t 2 R;

for some constant T > 0 with the integer-valued function N.
/ D � 

T
C 1

2

˘
.

Then, N	 fulfils the recursion relation

N	n.�; #/ D N	nC1.�; #/C
p

2.1C #3/

c

@ Nm
@t
.� � .nC 1

2 /T; #/;

n 2 Z; � 2 .0; T /; # 2 S2C: (40)

Proof. Let t D �nT C " with " 2 Œ�T2 ; T2 / and n 2 Z, then

N.� � t/ D
(
n if � 2 .0; T2 C "/;
nC 1 if � 2 Œ T2 C "; T /:

Taking an arbitrary " 2 Œ�T2 ; T2 / and n 2 Z; Nm can be formulated as
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Nm.�nT C "; #/ D cp
2.1C #3/

 Z T
2 C"

0
N	n.�; #/d� C

Z T

T
2 C"
N	nC1.�; #/d�

!
:

Differentiating this equation with respect to ", it follows that

@ Nm
@t
.�nT C "; #/ D cp

2.1C #3/

� N	n.T2 C "; #/� N	nC1.
T
2 C "; #/

	
;

which (with � D T
2 C ") is equivalent to (40). ut

Thus, given that N	n.t; #/ D 0 for sufficiently large n 2 Z (recall that supp
	.�; � / �  for all � 2 .0; T /), one can recursively reconstruct N	, to obtain the data

Z
E
;#

	.�; y/ds.y/ for all � 2 Œ0; T /; 
 2 R; # 2 S2C

for the Radon transform of 	.�; � /.
However, since the plane E
;# is by its Definition (38) orthogonal to the vector

# C e3 for # 2 S2C, this provides only the values of the Radon transform
corresponding to planes which are orthogonal to a vector in the cone C, see Fig. 3.
For the reconstruction, one therefore still has to invert a limited angle Radon
transform.

Dispersive LayeredMediumwith Focused Illumination
Except from ophthalmology, OCT is also widely used for investigation of skin
deceases, such as cancer. From the mathematical point of view, this simplifies the
main model since the human skin can be described as a multilayer structure with
different optical properties and varying thicknesses in each layer.

Here the incident field is considered to propagate with normal incidence to the
interface x3 D L and the detector array is replaced by a single point detector located
at de3: The susceptibility is simplified as

	.t; x/ D ı.x1/ı.x2/	.t; x3/;

and therefore the measurements provide the data, see (37) with Q	.!; k/ D Q	.!; k3/;

Om.!/ D Q	.!; !
c

2e3/; ! 2 R n f0g:

Considering the special structure of a layered medium, the susceptibility is
described by a piecewise constant function in x3. This means explicitly that 	 has
the form

	.t; x3/ D
�
	0 WD 0; x3 … Œ0; L�
	n.t/; x3 2 ŒLn; LnC1/

; n D 1; : : : ; N (41)
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with (unknown) parameters L D L1 > L2 > : : : > LNC1 D 0 characterizing the
thicknesses of the N layers and (unknown) functions 	n:

Lemma 1, for # D e3; gives

m.t/ D c

2

Z 1

�1
N	.� I � � t/d�; where N	.� I 
/ D 	.�; c
2 /:

Remarking that N	 is piecewise constant (41) and additionally assuming that
	. � ; x3/ has compact support, see Assumption 7, with T < 2

c
minn.Ln � LnC1/

Proposition 10 can be applied for # D e3 to iteratively reconstruct 	 starting from
	0 D 0:

Modified Born Approximation
In the proposed iteration scheme, Proposition 10, the traveling of the incident field
through the sample before reaching a “specific” layer, where the susceptibility is
to be reconstructed, is not considered. To do so, a modified iteration method is
presented describing the traveling of the light through the different layers using
Frensel’s equations.

The main idea is to consider, for example, in the second step of the recursive
formula, given 	1 to find 	2; as incident the field OE.0/; given by (26), traveled also
through the first layer. This process can be continued to the next steps.

Let us first introduce some notations which will be used in the following. The
fields OE.r/

n and OE.t/
n denote the reflected and the transmitted fields, with respect to

the boundaryLn; respectively. The transmitted field OE.t/
n after traveling through the

n-th layer is incident on the LnC1 boundary and is denoted by OE.0/
nC1: The reflected

field by the LnC1 boundary back to the Ln boundary will be denoted by OE.r/
nC1 and

by OE.r 0/
n after traveling through the n-th layer (see Fig. 5). To simplify this model,

multiple reflections are not included and the electric fields are taken to be tangential
to the interface planes.

Lemma 2. Let the sample have susceptibility given by (41) and let �n and �n denote
the reflection and the corresponding transmission coefficients for the Ln boundary,
respectively. Then, the field incident on the n-th layer with respect to the initial
incident field OE.0/ WD OE.0/

1 is given by

 
OE.0/
n

0

!
D .M1 �M2 � : : : �Mn�1/

�1

 OE.0/

OE.r/
1

!
for n D N � 1; : : : ; 2

assuming no backward field in the n-th layer, where

Mn D 1

�n

 
ei
!
c

p
	nC1.Ln�LnC1/ �ne�i

!
c

p
	nC1.Ln�LnC1/

�nei
!
c

p
	nC1.Ln�LnC1/ e�i

!
c

p
	nC1.Ln�LnC1/

!
:
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Fig. 5 Layered medium. Propagation of the initial field through the sample incident on the second
layer (left image) and in general on the n-th layer, for n D 3; : : : ; N (right image)

Proof. Because of the assumptions (normal incidence, OE.0/ tangential to the
boundary) the boundary conditions require the continuity of the total (upward
and downward) electric and magnetic fields. Then, the reflection �n and the
corresponding transmission �n coefficients for the Ln boundary in terms of the
susceptibility are given by [21]

�n D
p
	n�1 C 1 �p	n C 1p
	n�1 C 1Cp	n C 1

; �n D 1C �n:

To determine the propagation equations for the electric fields, the transfer matrices
formulation is applied [30]. In particular, the fields at the top of the n-th layer can
be computed with respect to the fields at the top of the .nC 1/th using

 OE.0/
n

OE.r/
n

!
DMn

 OE.0/
nC1

OE.r/
nC1

!
for n D N � 1; : : : ; 1:

and with respect to the incident field,

 OE.0/
1

OE.r/
1

!
DM1 � : : : �Mn�1

 OE.0/
n

OE.r/
n

!
for n D N � 1; : : : ; 2:

ut
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From the previous result, given 	n (by the recursion relation of Proposition 10),
the matrix MnC1 is computed to obtain the update OE.0/

nC1 which is then incident to

the rest part of the sample. This means that OE.0/ is replaced by OE.0/
nC1 in the derivation

of the measurements and the recursion relation (Lemma 1 and Proposition 10) for
computing 	nC1: For example, in the second step to reconstruct 	2; the incident
field is simply given by

OE.0/
2 D �1e�i

!
c

p
	1C1.L1�L2/ OE.0/:

The only unknown in this representation is the boundary L2 which can be
approximated considering the point where change in the value of the measured
function Nm is observed. The following analysis can be also extended for anisotropic
media, but in a more complicated context since the displacementD and the electric
field E are not always parallel.

A simplification usually made here is to consider the sample field as the sum
of all the discrete reflections and neglect dispersion. This mathematical model was
adopted by Bruno and Chaubell [7] for solving the inverse scattering problem of
determining the refractive index and the width of each layer from the output data.
The solution was obtained using the Gauss–Newton method and the effect of the
initial guesses was also considered.

In conclusion, the traveling of the scattered field from the n-th layer through the
sample could also be considered. Since the spherical waves can be represented as
a superposition of plane waves by using similar techniques, in a more complicated
form, one can obtain the transmitted scattered field.

The Anisotropic Case

In the anisotropic case, the susceptibility 	 cannot be considered a multiple of the
identity. Therefore, the problem is to reconstruct from the expressions

pj
�
# � .# � Q	.!; !

c
.# C e3//p/

�
j
; j D 1; 2;

see (34), the matrix-valued function 	 W R � R3 ! R3�3, where it is assumed
that measurements for every polarization p 2 R2 � f0g of the initial field E.0/ are
available.

Introducing in analogy to (36) the function

Omp;j W R � S2C ! C; Omp;j .!; #/ D Q	#;p;j .!; !c .# C e3//;

where Q	#;p;j is for every # 2 S2C, p 2 R2 � f0g, and j 2 f1; 2g the (spatial and
temporal) Fourier transform of

	#;p;j W R �R3 ! R; 	#;p;j .t; x/ D pj
�
# � .# � 	.t; x/p/�

j
;
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Lemma 1 (withm replaced bymp;j and 	 replaced by 	#;p;j ) can be applied to find
that the inverse Fourier transform of Omp;j with respect to its first variable fulfils

mp;j .t; #/ D cp
2.1C #3/

Z 1

�1

Z
E��t;#

	#;p;j .�; y/ds.y/d�:

Now, the same assumptions as in the isotropic case are considered, namely
Assumption 7 and similar to Assumption 8:

Assumption 9. The approximation

Z
EnT;#

	#;p;j .�; y/ds.y/ 	
Z
EnTC";#

	#;p;j .�; y/ds.y/ for all " 2 Œ�T2 ; T2 /

is for every � 2 R, # 2 S2C, n 2 Z, p 2 R2 � f0g, and j 2 f1; 2g justified.

Then, Proposition 10 provides an approximate reconstruction formula for the
functions

N	p;j .� I 
; #/ D
Z
E
;#

	#;p;j .�; y/ds.y/ D pj Œ# � .# � N	.� I 
; #/p/�j (42)

for all p 2 R2 � f0g, � 2 R, 
 2 R, # 2 S2C, and j 2 f1; 2g, where

N	.� I 
; #/ D
Z
E
;#

	.�; y/ds.y/ (43)

denotes the two-dimensional Radon transform data of the function 	.�; � /.

Proposition 11. Let # 2 S2C be fixed and ap;j , p 2 R2 � f0g, j D 1; 2, be such
that the equations

pj Œ# � .# �Xp/�j D ap;j for all p 2 R2 � f0g; j 2 f1; 2g; (44)

for the matrix X 2 R3�3 have a solution.
Then X 2 R3�3 is a solution of (44) if and only if

.P#X/k` D Bk`; B D
� �ae1 ;1 ae1 ;1 � ae1Ce2;1

ae2;2 � ae1Ce2;2 �ae2 ;2

�
; k; ` 2 f1; 2g;

(45)
where P# 2 R3�3 denotes the orthogonal projection in direction # .

Proof. First, remark that the equation system (44) is equivalent to the four equations
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ae1 ;1 D Œ# � .# �Xe1/�1; ae1Ce2 ;1 D ae1;1 C Œ# � .# �Xe2/�1;

ae2 ;2 D Œ# � .# �Xe2/�2; ae1Ce2 ;2 D ae2;2 C Œ# � .# �Xe1/�2;
(46)

which correspond to the Eq. (44) for .p; j / 2 f.e1; 1/; .e2; 2/; .e1 C e2; 1/; .e1 C
e2; 2/g. Indeed, for arbitrary polarization p D p1e1 C p2e2, the expression pj Œ# �
.# �Xp/�j can be written as a linear combination of the four expressions Œ# � .# �
Xei/�k , i; k D 1; 2:

p1Œ# � .# �Xp/�1 D p2
1 Œ# � .# �Xe1/�1 C p1p2Œ# � .# �Xe2/�1;

p2Œ# � .# �Xp/�2 D p1p2Œ# � .# �Xe1/�2 C p2
2 Œ# � .# �Xe2/�2;

and is thus determined by (46).
Now, the equation system (46) written in matrix form reads

Œ# � .# �Xp/�k D �
�
B

�
p1

p2

��
k

; k 2 f1; 2g; (47)

for all p 2 R2 � f0g with B defined by (45).
Decomposing Xp D h#;Xpi# C P#Xp, where P# 2 R3�3 denotes the

orthogonal projection in direction # , and using that

# � .# �Xp/ D # � .# � P#Xp/ D h#;P#Xpi# � P#Xp D �P#Xp;

the Eq. (47) can be written in the form (45). ut

Proposition 11 applied to the Eq. (42) for the matrix X D N	.� I 
; #/ for some
fixed values �; 
 2 R and # 2 S2C shows that the data ap;j D pj Œ# � .# �
N	.� I 
; #//�j for j D 1; 2 and the three different polarization vectors p D e1,
p D e2, and p D e1 C e2 uniquely determine with Eq. (45) the projection

.P# N	.� I 
; #//k;` D
Z
E
;#

.P#	.�; y//k;` ds.y/ for k; ` 2 f1; 2g:

Moreover, measurements for additional polarizations p do not provide any further
information so that at every detector point, corresponding to a direction # 2 S2C,
only the four elements .P#	/k;`, k; ` D 1; 2, of the projection P#	 influence the
measurements.

To obtain additional data which make a full reconstruction of 	 possible, one can
carry out extra measurements after slight rotations of the sample.

So, let R 2 SO.3/ describe the rotation of the sample. Then the transformed
susceptibility 	R is given by

	R.t; y/ D R	.t; RTy/RT: (48)
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Lemma 3. Let 	 W R�R3 ! R3�3 be the susceptibility of the sample and # 2 S2C
be given. Furthermore, let R 2 SO.3/ be such that there exists a constant ˛R > 0
and a direction #R 2 S2C with

#R C e3 D ˛RR.# C e3/ (49)

and define the susceptibility 	R of the rotated sample by (48).
Then, the data

N	R;p;j .� I 
; #R/ D pj
"
#R �

 
#R �

Z
E
;#R

	R.�; y/ds.y/

!#

j

; (50)

corresponding to the measurements of the rotated sample at the detector in direction
#R, see (42), fulfil that

N	R;p;j .� I˛R
; #R/ D pj Œ#R � .#R � R N	.� I 
; #/RT�j (51)

for all �; 
 2 R, p 2 R2 � f0g, j D 1; 2, where N	 is given by (43).

Proof. Inserting Definition (48) and substituting z D RTy, formula (50) becomes

N	R;p;j .� I 
; #R/ D pj
"
#R �

 
#R �

Z
RTE
;#R

R	.�; z/RTds.z/

!#

j

:

Since now, by the Definition (38) of the planeE
;# and by the Definition (49) of #R,

RTE
;#R D fRTy 2 R3 j h#R C e3; yi D c
g
D fz 2 R3 j ˝RT.#R C e3/; z

˛ D c
g
D fz 2 R3 j ˛R h# C e3; zi D c
g D E 


˛R
;# ;

it follows (51). ut

This means that the data N	R;p;j .� I˛R
; #R/ obtained from a detector placed
in the direction #R, defined by (49), depends only on the Radon transform data
N	.� I 
; #/. However, it still remains the algebraic problem of solving the Eq. (51)
for different rotationsR to obtain the matrix N	.� I 
; #/ 2 R3�3.

Proposition 12. Let A 2 R3�3 and # 2 S2C be given. Moreover, let R0; R1; R2 2
SO.3/ be rotations so that every proper subset of fRT

0 e3; R
T
1 e3; R

T
2 e3; # C e3g is

linearly independent and such that there exist for every R 2 fR0; R1; R2g constants
˛R > 0 and #R 2 S2C fulfilling (49).
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Let further P 2 R2�3 be the orthogonal projection in direction e3, P� 2 R3�3

the orthogonal projection in direction � 2 R3, and

BR D
� �aR;e1 ;1 aR;e1 ;1 � aR;e1Ce2;1

aR;e2 ;2 � aR;e1Ce2;2 �aR;e2 ;2

�
;

aR;p;j D pj Œ#R � .#R � RARTp/�j ;

for every R 2 fR0; R1; R2g.
Then, the equations

PP#RRXR
TP T D BR; R 2 fR0; R1; R2g (52)

have the unique solution X D A.

Proof. Using that #R D ˛RR.# C e3/� e3, see (49), it follows with Pe3 D 0 that

PP#R D P.1 � #R#T
R/ D P � ˛RPR.# C e3/#

T
R:

With this identity, the Eq. (52) can be written in the form

PR.X � ˛R.# C e3/#
T
RRX/R

TP T D BR: (53)

Let now �R 2 R3 denote a unit vector orthogonal to # C e3 and orthogonal to
RTe3. Then R�R is orthogonal to e3 and therefore, with P TP D Pe3 ,

.PR�R/
TPR D .Pe3R�R/

TR D .R�R/TR D �T
R:

Thus, multiplying the Eq. (53) from the left with .PR�R/T, it follows that

�T
R.X � ˛R.# C e3/#

T
RRX/R

TP T D .PR�R/TBR:

Since now �R is orthogonal to # C e3, this simplifies to

�T
RXR

TP T D .PR�R/TBR: (54)

Remarking that the orthogonal projection onto the line R�R can be written as the
composition of two orthogonal projections onto orthogonal planes with intersection
R�R:

�R�
T
R D P�RP#Ce3 ;

where �R is a unit vector orthogonal to �R and # C e3, and multiplying Eq. (54)
from the left with �R, one finds that
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P�R.P#Ce3X/R
TP T D �R.PR�R/TBR:

Applying then the projection P from the right and using that RTP TP D RTPe3 D
PRTe3

RT, this can be written in the form

P�R.P#Ce3X/PRTe3
D �R.PR�R/TBRPR: (55)

Evaluating this equation now forR D R0; R1; R2 and remarking that f�R0 ; �R1 ; �R2g
and fRT

0 e3; R
T
1 e3; R

T
2 e3g are linearly independent, one concludes that the 3�3 matrix

P#Ce3X is uniquely determined by (55).
However, it is also possible to calculate X (and not only its projection P#Ce3X/

from Eq. (53). Because

X D P#Ce3X C
1

j# C e3j2 .# C e3/.# C e3/
TX;

it follows from (53) that

PR

�
# C e3

j# C e3j2 .1 � ˛R#
T
RR.# C e3//.# C e3/

TX

�
RTP T

D BR � PR.1� ˛R.# C e3/#
T
RR/P#Ce3XR

TP T: (56)

Plugging in the identity

˛R#
T
RR.# C e3/ D #T

R.#R C e3/ D 1C #R;3;

which follows from the Definition (49) of #R, applyingP T from the left and P from
the right, and using as beforeRTP TP D PRTe3

RT, the Eq. (56) yields

� #R;3PRTe3

�
# C e3

j# C e3j2 .# C e3/
TX

�
PRTe3

D RTP TBRPR � PRTe3
.1 � ˛R.# C e3/#

T
R/P#Ce3XPRTe3

: (57)

Since the right hand side is already known (it depends only on P#Ce3X ), the
equation system (57) for R D R0; R1; R2 can be uniquely solved for

# C e3

j# C e3j2 .# C e3/
TX:

Therefore, the Eq. (52) uniquely determine X and because A is by construction
a solution of the equations, this implies that X D A. ut
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Thus, applying Proposition 12 to the matrix A D N	.� I 
; #/ shows that the mea-
surements aR;p;j obtained at the detectors #R for the polarizations p D e1; e2; e1 C
e2 and rotations R D R0; R1; R2, fulfilling the assumptions of Proposition 12
provide sufficient information to reconstruct the Radon data N	.� I 
; #/. Calculating
these two-dimensional Radon data for all directions # in some subset of S2C (by
considering some additional rotations so that for every direction # , there exist three
rotations fulfilling the assumptions of Proposition 12), it is possible via an inversion
of a limited angle Radon transform to finally recover the susceptibility 	.

6 Conclusion

In this chapter, a general mathematical model of OCT based on Maxwell’s equations
has been presented. As a consequence of this modeling, OCT was formulated as
an inverse scattering problem for the susceptibility 	. It was shown that without
additional assumptions about the optical properties of the medium, in general, 	
cannot be reconstructed due to lack of measurements. Some reasonable physical
assumptions were presented, under which the medium can, in fact, be reconstructed.
For instance, if the medium is isotropic, iterative schemes to reconstruct the sus-
ceptibility were developed. Dispersion and focus illumination are also considered.
For an anisotropic medium, it follows that different incident fields, with respect to
direction (rotating the sample) and polarization, should be considered to completely
recover 	:
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Abstract
This chapter discusses imaging methods related to wave phenomena, and in
particular, inverse problems for the wave equation will be considered. The first
part of the chapter explains the boundary control method for determining a
wave speed of a medium from the response operator, which models boundary
measurements. The second part discusses the scattering relation and travel times,
which are different types of boundary data contained in the response operator.
The third part gives a brief introduction to curvelets in wave imaging for media
with nonsmooth wave speeds. The focus will be on theoretical results and
methods.
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1 Introduction

This chapter discusses imaging methods related to wave phenomena. Of the
different types of waves that exist, we will focus on acoustic waves and problems
which can be modeled by the acoustic wave equation. In the simplest case, this is
the second-order linear hyperbolic equation

@2
t u.x; t/ � c.x/2�u.x; t/ D 0

for a sound speed c.x/. This equation can be considered as a model for other
hyperbolic equations, and the methods presented here can in some cases be extended
to study wave phenomena in other fields such as electromagnetism or elasticity.

We will mostly be interested in inverse problems for the wave equation. In these
problems, one has access to certain measurements of waves (the solutions u) on
the surface of a medium, and one would like to determine material parameters (the
sound speed c) of the interior of the medium from these boundary measurements.
A typical field where such problems arise is seismic imaging, where one wishes to
determine the interior structure of Earth by making various measurements of waves
at the surface. We will not describe seismic imaging applications in more detail here,
since they are discussed elsewhere in this volume.

Another feature in this chapter is that we will consistently consider anisotropic
materials, where the sound speed depends on the direction of propagation. This
means that the scalar sound speed c.x/, where x D .x1; x2; : : : ; xn/ 2  � R

n,
is replaced by a positive definite symmetric matrix .gjk.x//nj;kD1, and the wave
equation becomes

@2
t u.x; t/ �

nX
j;kD1

gjk.x/
@2u

@xj @xk
.x; t/ D 0:

Anisotropic materials appear frequently in applications such as in seismic imaging.
It will be convenient to interpret the anisotropic sound speed .gjk/ as the

inverse of a Riemannian metric, thus modeling the medium as a Riemannian
manifold. The benefits of such an approach are twofold. First, the well-established
methods of Riemannian geometry become available to study the problems, and
second, this provides an efficient way of dealing with the invariance under changes
of coordinates present in many anisotropic wave imaging problems. The second
point means that in inverse problems in anisotropic media, one can often only
expect to recover the matrix .gjk/ up to a change of coordinates given by some
diffeomorphism. In practice, this ambiguity could be removed by some a priori
knowledge of the medium properties (such as the medium being in fact isotropic,
see section “From Boundary Distance Functions to Riemannian Metric”).
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2 Background

This chapter contains three parts which discuss different topics related to wave
imaging. The first part considers the inverse problem of determining a sound speed
in a wave equation from the response operator, also known as the hyperbolic
Dirichlet-to-Neumann map, by using the boundary control method; see [5, 7, 42].
The second part considers other types of boundary measurements of waves, namely,
the scattering relation and boundary distance function, and discusses corresponding
inverse problems. The third part is somewhat different in nature and does not
consider any inverse problems but rather gives an introduction to the use of curvelet
decompositions in wave imaging for nonsmooth sound speeds. We briefly describe
these three topics.

Wave Imaging and Boundary Control Method

Let us consider an isotropic wave equation. Let  � R
n be an open, bounded

set with smooth boundary @, and let c.x/ be a scalar-valued positive function in
C1./ modeling the wave speed in . First, we consider the wave equation

@2
t u.x; t/ � c.x/2�u.x; t/ D 0 in  � RC; (1)

ujtD0 D 0; ut jtD0 D 0;

c.x/�nC1@nu D f .x; t/ in @ �RC;

where @n denotes the Euclidean normal derivative and n is the unit interior normal.
We denote by uf D uf .x; t/ the solution of (1) corresponding to the boundary
source term f .

Let us assume that the domain  � R
n is known. The inverse problem is to

reconstruct the wave speed c.x/ when we are given the set

˚�
f j@�.0;2T /; uf j@�.0;2T /

	 W f 2 C1
0 .@ � RC/



;

that is, the Cauchy data of solutions corresponding to all possible boundary sources
f 2 C1

0 .@ � RC/, T 2 .0;1�. If T D 1, then this data is equivalent to the
response operator

ƒ W f 7! uf j@�RC
; (2)

which is also called the nonstationary Neumann-to-Dirichlet map. Physically,ƒf

describes the measurement of the medium response to any applied boundary source
f , and it is equivalent to various physical measurements. For instance, measuring
how much energy is needed to force the boundary value c.x/�nC1@nuj@�RC

to
be equal to any given boundary value f 2 C1

0 .@ � RC/ is equivalent to



1208 M. Lassas et al.

measuring the map ƒ on @�RC; see [42,44]. Measuringƒ is also equivalent
to measuring the corresponding Neumann-to-Dirichlet map for the heat or the
Schrödinger equations or measuring the eigenvalues and the boundary values of
the normalized eigenfunctions of the elliptic operator �c.x/2�; see [44].

The inverse problems for the wave equation and the equivalent inverse problems
for the heat or the Schrödinger equations go back to works of M. Krein at the
end of the 1950s, who used the causality principle in dealing with the one-
dimensional inverse problem for an inhomogeneous string, ut t � c2.x/uxx D 0;
see, for example, [46]. In his works, causality was transformed into analyticity of
the Fourier transform of the solution. A more straightforward hyperbolic version
of the method was suggested by A. Blagovestchenskii at the end of 1960s to
1970s [12, 13]. The multidimensional case was studied by M. Belishev [4] in the
late 1980s who understood the role of the PDE control for these problems and
developed the boundary control method for hyperbolic inverse problems in domains
of Euclidean space. Of crucial importance for the boundary control method was
the result of D. Tataru in 1995 [77, 79] concerning a Holmgren-type uniqueness
theorem for nonanalytic coefficients. The boundary control method was extended to
the anisotropic case by M. Belishev and Y. Kurylev [7]. The geometric version of
the boundary control method which we consider in this chapter was developed in
[7,41,42,47]. We will consider the inverse problem in the more general setting of an
anisotropic wave equation in an unbounded domain or on a non-compact manifold.
These problems have been studied in detail in [39, 43] also in the case when the
measurements are done only on a part of the boundary. In this paper we present a
simplified construction method applicable for non-compact manifolds in the case
when measurements are done on the whole boundary. We demonstrate these results
in the case when we have an isotropic wave speed c.x/ in a bounded domain of
Euclidean space. For this, we use the fact that in the Euclidean space, the only
conformal deformation of a compact domain fixing the boundary is the identity
map. This implies that after the abstract manifold structure .M; g/ corresponding
to the wave speed c.x/ in a given domain  is constructed, we can construct in an
explicit way the embedding of the manifoldM to the domain and determine c.x/
at each point x 2 . We note on the history of this result that using Tataru’s unique
continuation result [77], Theorem 2 concerning this case can be proven directly
using the boundary control method developed for domains in Euclidean space in [4].

The reconstruction of non-compact manifolds has been considered also in [11,
27] with different kind of data, using iterated time reversal for solutions of the wave
equation. We note that the boundary control method can be generalized also for
Maxwell and Dirac equations under appropriate geometric conditions [50, 51], and
its stability has been analyzed in [1, 45].

Travel Times and Scattering Relation

The problem considered in the previous section of recovering a sound speed from
the response operator is highly overdetermined in dimensions n � 2. The Schwartz
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kernel of the response operator depends on 2n variables, and the sound speed c
depends on n variables.

In section “Travel Times and Scattering Relation,” we will show that other
types of boundary measurements in wave imaging can be directly obtained from
the response operator. One such measurement is the boundary distance function, a
function of 2n � 2 variables, which measures the travel times of shortest geodesics
between boundary points. The problem of determining a sound speed from the travel
times of shortest geodesics is the inverse kinematic problem. The more general
problem of determining a Riemannian metric (corresponding to an anisotropic
sound speed) up to isometry from the boundary distance function is the boundary
rigidity problem. The problem is formally determined if n D 2 but overdetermined
for n � 3.

This problem arose in geophysics in an attempt to determine the inner structure
of the Earth by measuring the travel times of seismic waves. It goes back to
Herglotz [37] and Wiechert and Zoeppritz [84] who considered the case of a radial
metric conformal to the Euclidean metric. Although the emphasis has been in
the case that the medium is isotropic, the anisotropic case has been of interest in
geophysics since the Earth is anisotropic. It has been found that even the inner core
of the Earth exhibits anisotropic behavior [24].

To give a proper definition of the boundary distance function, we will consider
a bounded domain  � R

n with smooth boundary to be equipped with a
Riemannian metric g, that is, a family of positive definite symmetric matrices
g.x/ D �

gjk.x/
	n
j;kD1 depending smoothly on x 2 . The length of a smooth

curve � W Œa; b�!  is defined to be

Lg.�/ D
Z b

a

0
@ nX
j;kD1

gjk
�
�.t/

	 P�j .t/ P�k.t/
1
A

1=2

dt:

The distance function dg.x; y/ for x; y 2  is the infimum of the lengths of all
piecewise smooth curves in  joining x and y. The boundary distance function is
dg.x; y/ for x; y 2 @.

In the boundary rigidity problem, one would like to determine a Riemannian
metric g from the boundary distance function dg . In fact, since dg D d �g for any
diffeomorphism  W  !  which fixes each boundary point, we are looking
to recover from dg the metric g up to such a diffeomorphism. Here,  �g.y/ D
D .y/tg

�
 .y/

	
D .y/ is the pullback of g by  .

It is easy to give counterexamples showing that this cannot be done in general;
consider, for instance, the closed hemisphere, where boundary distances are given
by boundary arcs so making the metric larger in the interior does not change dg .
Michel [55] conjectured that a simple metric g is uniquely determined, up to an
action of a diffeomorphism fixing the boundary, by the boundary distance function
dg.x; y/ known for all x and y on @. A metric is called simple if for any two
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points in , there is a unique length minimizing geodesic joining them, and if the
boundary is strictly convex.

The conjecture of Michel has been proved for two-dimensional simple manifolds
[60]. In higher dimensions, it is open, but several partial results are known, including
the recent results of Burago and Ivanov for metrics close to Euclidean [15] and close
to hyperbolic [16] (see the survey [40]). Earlier and related works include results
for simple metrics conformal to each other [8, 10, 26, 56–58], for flat metrics [34],
for locally symmetric spaces of negative curvature [9], for two-dimensional simple
metrics with negative curvature [25,59], a local result [70], a semiglobal solvability
result [54], and a result for generic simple metrics [71].

In case the metric is not simple, instead of the boundary distance function, one
can consider the more general scattering relation which encodes, for any geodesic
starting and ending at the boundary, the start point and direction, the end point and
direction, and the length of the geodesic. We will see in section “Travel Times and
Scattering Relation” that also this information can be determined directly from
the response operator. If the metric is simple, then the scattering relation and
boundary distance function are equivalent, and either one is determined by the
other.

The lens rigidity problem is to determine a metric up to isometry from the
scattering relation. There are counterexamples of manifolds which are trapping, and
the conjecture is that on a nontrapping manifold the metric is determined by the
scattering relation up to isometry. We refer to [72] and the references therein for
known results on this problem.

Curvelets andWave Equations

In section “Curvelets and Wave Equations,” we describe an alternative approach to
the analysis of solutions of wave equations, based on a decomposition of functions
into basic elements called curvelets or wave packets. This approach also works
for wave speeds of limited smoothness unlike some of the approaches presented
earlier. Furthermore, the curvelet decomposition yields efficient representations of
functions containing sharp wave fronts along curves or surfaces, thus providing
a common framework for representing such data and analyzing wave phenomena
and imaging operators. Curvelets and related methods have been proposed as
computational tools for wave imaging, and the numerical aspects of the theory are a
subject of ongoing research.

A curvelet decomposition was introduced by Smith [67] to construct a solution
operator for the wave equation with C 1;1 sound speed and to prove Strichartz
estimates for such equations. This started a body of research on Lp estimates for
low-regularity wave equations based on curvelet-type methods; see, for instance,
Tataru [80–82], Smith [68], and Smith and Sogge [69]. Curvelet decompositions
have their roots in harmonic analysis and the theory of Fourier integral operators,
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where relevant works include Córdoba and Fefferman [23] and Seeger et al. [65]
(see also Stein [73]).

In a rather different direction, curvelet decompositions came up in image analysis
as an optimally sparse way of representing images with C 2 edges; see Candés
and Donoho [20] (the name “curvelet” was introduced in [19]). The property
that curvelets yield sparse representations for wave propagators was studied in
Candés and Demanet [17, 18]. Numerical aspects of curvelet-type methods in wave
computation are discussed in [21,30]. Finally, both theoretical and practical aspects
of curvelet methods related to certain seismic imaging applications are studied in
[2, 14, 29, 31, 64].

3 Mathematical Modeling and Analysis

Boundary Control Method

Inverse Problems on RiemannianManifolds
Let  � R

n be an open, bounded set with smooth boundary @ and let c.x/ be
a scalar-valued positive function in C1./, modeling the wave speed in . We
consider the closure  as a differentiable manifold M with a smooth, nonempty
boundary. We consider also a more general case, and allow .M; g/ to be a possibly
non-compact, complete manifold with boundary. This means that the manifold
contains its boundary @M and M is complete with metric dg defined below.
Moreover, near each point x 2 M , there are coordinates .U;X/, where U � M is
a neighborhood of x and X W U ! R

n if x is an interior point, or X W U ! R
n�1 �

Œ0;1/ if x is a boundary point such that for any coordinate neighborhoods .U;X/
and . QU ; QX/, the transition functionsX ı QX�1 W QX.U \ QU /! X.U \ QU / are C1-
smooth. Note that all compact Riemannian manifolds are complete according to this
definition. Usually we denote the components ofX byX.y/ D �x1.y/; : : : ; xn.y/

	
.

Let u be the solution of the wave equation

ut t .x; t/C Au.x; t/ D 0 in M �RC; (3)

ujtD0 D 0; ut jtD0 D 0;

B�;�uj@M�RC
D f:

Here, f 2 C1
0 .@M �RC/ is a real-valued function, and A D A.x;D/ is an elliptic

partial differential operator of the form

Av D �
nX

j;kD1

�.x/�1jg.x/j� 1
2
@

@xj

�
�.x/jg.x/j 12 gjk.x/ @v

@xk
.x/

�
C q.x/v.x/; (4)

where gjk.x/ is a smooth, symmetric, real, positive definite matrix, jgj D
det
�
gjk.x/

	�1
, and �.x/ > 0 and q.x/ are smooth real-valued functions. On
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existence and properties of the solutions of Eq. (3), see [52]. The inverse of the
matrix

�
gjk.x/

	n
j;kD1, denoted

�
gjk.x/

	n
j;kD1 defines a Riemannian metric on M .

The tangent space of M at x is denoted by TxM , and it consists of vectors p
which in local coordinates .U;X/, X.y/ D �

x1.y/; : : : ; xn.y/
	

are written as
p D Pn

kD1 p
k @

@xk
. Similarly, the cotangent space T �

x M of M at x consists of
covectors which are written in the local coordinates as � D Pn

kD1 �kdx
k . The

inner product which g determines in the cotangent space T �
x M of M at the point

x is denoted by h�; �ig D g.�; �/ D Pn
j;kD1 g

jk.x/�j �k for �; � 2 T �
x M . We

use the same notation for the inner product at the tangent space TxM , that is,
hp; qig D g.p; q/ DPn

j;kD1 gjk.x/p
j qk for p; q 2 TxM .

The metric defines a distance function, which we call also the travel time
function,

dg.x; y/ D inf j�j; j�j D
Z 1

0
h@s�.s/; @s�.s/i1=2

g ds;

where j�j denotes the length of the path �, and the infimum is taken over all
piecewise C 1-smooth paths � W Œ0; 1�!M with �.0/ D x and �.1/ D y.

We define the space L2.M; dV�/ with inner product

hu; viL2.M;dV�/ D
Z
M

u.x/v.x/ dV�.x/;

where dV� D �.x/jg.x/j1=2dx1dx2 : : : dxn. By the above assumptions, A is
formally self-adjoint, that is,

hAu; viL2.M;dV�/ D hu; AviL2.M;dV�/ for u; v 2 C1
0 .M int/:

Furthermore, let

B�;�v D �@�vC �v;

where � W @M ! R is a smooth function and

@�v D
nX

j;kD1

�.x/gjk.x/�k
@

@xj
v.x/;

where �.x/ D .�1; �2; : : : ; �m/ is the interior conormal vector field of @M , satisfyingPn
j;kD1 g

jk�j �k D 0 for all cotangent vectors of the boundary, � 2 T �.@M/. We

assume that � is normalized, so that
Pn

j;kD1 g
jk�j �k D 1. If M is compact, then

the operator A in the domain D.A/ D fv 2 H 2.M/ W @�vj@M D 0g, where
Hs.M/ denotes the Sobolev spaces on M , is an unbounded self-adjoint operator
in L2.M; dV�/.
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An important example is the operator

A0 D �c2.x/�C q.x/ (5)

on a bounded smooth domain  � R
n with @�v D c.x/�nC1@nv, where @nv is the

Euclidean normal derivative of v.
We denote the solutions of (3) by

u.x; t/ D uf .x; t/:

For the initial boundary value problem (3), we define the nonstationary Robin-to-
Dirichlet map or the response operatorƒ by

ƒf D uf j@M�RC
: (6)

The finite time response operator ƒT corresponding to the finite observation time
T > 0 is given by

ƒT f D uf j@M�.0;T /: (7)

For any set B � @M � RC, we denote L2.B/ D ff 2 L2.@M � RC/ W
supp.f / � Bg. This means that we identify the functions and their zero contin-
uations.

By [78], the map ƒT can be extended to bounded linear map ƒT W L2.B/ !
H 1=3

�
@M � .0; T /	 when B � @M � .0; T / is compact. Here, Hs

�
@M � .0; T /	

denotes the Sobolev space on @M � .0; T /. Below we consider ƒT also as a linear
operatorƒT W L2

cpt

�
@M � .0; T /	! L2

�
@M � .0; T /	, where L2

cpt

�
@M � .0; T /	

denotes the compactly supported functions in L2
�
@M � .0; T /	.

For t > 0 and a relatively compact open set � � @M , let

M.�; t/ D fx 2 M W dg.x; �/ < tg: (8)

This set is called the domain of influence of � at time t .
When � � @M is an open relatively compact set and f 2 C1

0 .� � RC/, it
follows from finite speed of wave propagation (see, e.g., [38]) that the wave uf .t/ D
uf .� ; t/ is supported in the domainM.�; t/, that is,

uf .t/ 2 L2�M.�; t/	 D fv 2 L2.M/ W supp.v/ �M.�; t/g: (9)

We will consider the boundary of the manifold @M with the metric g@M D #�g
inherited from the embedding # W @M ! M . We assume that we are given the
boundary data, that is, the collection

.@M; g@M / and ƒ; (10)
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where .@M; g@M / is considered as a smooth Riemannian manifold with a known
differentiable and metric structure and ƒ is the nonstationary Robin-to-Dirichlet
map given in (6).

Our goal is to reconstruct the isometry type of the Riemannian manifold .M; g/,
that is, a Riemannian manifold which is isometric to the manifold .M; g/. This is
often stated by saying that we reconstruct .M; g/ up to an isometry. Our next goal
is to prove the following result:

Theorem 1. Let .M; g/ to be a smooth, complete Riemannian manifold with a
nonempty boundary. Assume that we are given the boundary data (10). Then it is
possible to determine the isometry type of manifold .M; g/.

From Boundary Distance Functions to RiemannianMetric
In order to reconstruct .M; g/, we use a special representation, the boundary
distance representation, R.M/, of M and later show that the boundary data (10)
determine R.M/. We consider next the (possibly unbounded) continuous functions
h W C.@M/ ! R. Let us choose a specific point Q0 2 @M and a constant C0 > 0
and using these, endow C.@M/ with the metric

dC .h1; h2/ D jh1.Q0/ � h2.Q0/j C sup
z2@M

min.C0; jh1.z/ � h2.z/j/: (11)

Consider a map R WM ! C.@M/,

R.x/ D rx. � /I rx.z/ D dg.x; z/; z 2 @M; (12)

that is, rx. � / is the distance function from x 2 M to the points on @M . The image
R.M/ � C.@M/ of R is called the boundary distance representation ofM . The set
R.M/ is a metric space with the distance inherited from C.@M/ which we denote
by dC , too. The map R, due to the triangular inequality, is Lipschitz,

dC .rx; ry/ � 2dg.x; y/: (13)

We note that whenM is compact andC0 D diam .M/, the metric dC W C.@M/! R

is a norm which is equivalent to the standard norm kf k1 D maxx2@M jf .x/j of
C.@M/.

We will see below that the map R W M ! R.M/ � C.@M/ is an embed-
ding. Many results of differential geometry, such as Whitney or Nash embedding
theorems, concern the question how an abstract manifold can be embedded to some
simple space such as a higher dimensional Euclidean space. In the inverse problem,
we need to construct a “copy” of the unknown manifold in some known space, and
as we assume that the boundary is given, we do this by embedding the manifoldM
to the known, although infinite dimensional function space C.@M/.

Next we recall some basic definitions on Riemannian manifolds; see, for
example, [22] for an extensive treatment. A path � W Œa; b� ! N is called a
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geodesic if, for any c 2 Œa; b�, there is " > 0 such that if s; t 2 Œa; b� such that
c � " < s < t < c C ", the path �.Œs; t �/ is a shortest path between its endpoints,
that is,

j�.Œs; t �/j D dg
�
�.s/; �.t/

	
:

In the future, we will denote a geodesic path � by � and parameterize � with its
arclength s, so that j�.Œs1; s2�/j D dg

�
�.s1/; �.s2/

	
. Let x.s/,

x.s/ D �x1.s/; : : : ; xn.s/
	
;

be the representation of the geodesic � in local coordinates .U;X/. In the interior
of the manifold, that is, for U � M int the path x.s/ satisfies the second-order
differential equations

d 2xk.s/

ds2
D �

nX
i;jD1

�kij
�
x.s/

	dxi .s/
ds

dxj .s/

ds
; (14)

where �kij are the Christoffel symbols, given in local coordinates by the formula

�kij .x/ D
nX

pD1

1

2
gkp.x/

�
@gjp

@xi
.x/C @gip

@xj
.x/ � @gij

@xp
.x/

�
:

Let y 2 M and � 2 TxM be a unit vector satisfying the condition g
�
�; �.y/

	
> 0

in the case when y 2 @M . Then, we can consider the solution of the initial value
problem for the differential equation (14) with the initial data

x.0/ D y; dx

ds
.0/ D �:

This initial value problem has a unique solution x.s/ on an interval Œ0; s0.y; �//

such that s0.y; �/ > 0 is the smallest value s0 > 0 for which x.s0/ 2 @M , or
s0.y; �/ D 1 in case no such s0 exists. We will denote x.s/ D �y;� .s/ and say that
the geodesic is a normal geodesic starting at y if y 2 @M and � D �.y/.

Example 1. In the case when .M; g/ is such a compact manifold that all geodesics
are the shortest curves between their endpoints and all geodesics can be continued
to geodesics that hit the boundary, we can see that the metric spaces .M; dg/ and
.R.M/; k � k1/ are isometric. Indeed, for any two points x; y 2 M , there is a
geodesic � from x to a boundary point z, which is a continuation of the geodesic
from x to y. As in the considered case the geodesics are distance minimizing curves,
we see that
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rx.z/ � ry.z/ D dg.x; z/ � dg.y; z/ D dg.x; y/;

and thus krx � ryk1 � dg.x; y/. Combining this with the triangular inequality, we
see that krx � ryk1 D dg.x; y/ for x; y 2 M and R is isometry of .M; dg/ and
.R.M/; k � k1/.

Notice that when even M is a compact manifold, the metric spaces .M; dg/ and
.R.M/; k � k1/ are not always isometric. As an example, consider a unit sphere in
R

3 with a small circular hole near the South pole of, say, diameter ". Then, for any
x; y on the equator and z 2 @M , �=2�" � rx.z/ � �=2 and �=2�" � ry.z/ � �=2.
Then dC .rx; ry/ � ", while dg.x; y/ may be equal to � .

Next, we introduce the boundary normal coordinates on M . For a normal
geodesic �z;�.s/ starting from z 2 @M consider dg.�z;�.s/; @M/. For small s,

dg.�z;�.s/; @M/ D s; (15)

and z is the unique nearest point to �z;�.s/ on @M . Let �.z/ 2 .0;1� be the largest
value for which (15) is valid for all s 2 Œ0; �.z/�. Then for s > �.z/,

dg.�z;�.s/; @M/ < s;

and z is no more the nearest boundary point for �z;�.s/. The function �.z/ 2 C.@M/

is called the cut locus distance function, and the set

! D f�z;�
�
�.z/

	 2M W z 2 @M; and �.z/ <1g; (16)

is the cut locus of M with respect to @M . The set ! is a closed subset of M having
zero measure. In particular, Mn! is dense in M . In the remaining domain Mn!,
we can use the coordinates

x 7! �
z.x/; t.x/

	
; (17)

where z.x/ 2 @M is the unique nearest point to x and t.x/ D dg.x; @M/. (Strictly
speaking, one also has to use some local coordinates of the boundary, y W z 7!�
y1.z/; : : : ; y.n�1/.z/

	
and define that

x 7! �
y
�
z.x/

	
; t.x/

	 D �y1.z.x/
	
; : : : ; y.n�1/

�
z.x/

	
; t.x/

	 2 R
n; (18)

are the boundary normal coordinates.) Using these coordinates, we show that R W
M ! C.@M/ is an embedding. The result of Lemma 1 is considered in detail for
compact manifolds in [42].
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Lemma 1. Let .M; dg/ be the metric space corresponding to a complete Rie-
mannian manifold .M; g/ with a nonempty boundary. The map R W .M; dg/ !
.R.M/; dC / is a homeomorphism. Moreover, given R.M/ as a subset of C.@M/,
it is possible to construct a distance function dR on R.M/ that makes the metric
space .R.M/; dR/ isometric to .M; dg/.

Proof. We start by proving thatR is a homeomorphism. Recall the following simple
result from topology:

Assume that X and Y are Hausdorff spaces, X is compact, and F W X ! Y is a
continuous, bijective map from X to Y . Then F W X ! Y is a homeomorphism.

Let us next extend this principle. Assume that .X; dX/ and .Y; dY / are metric
spaces and let Xj � X , j 2 ZC be compact sets such that

S
j2ZC

Xj D X .
Assume that F W X ! Y is a continuous, bijective map. Moreover, let Yj D F.Xj /
and assume that there is a point p 2 Y such that

aj D inf
y2Y nYj

dY .y; p/!1 as j !1: (19)

Then by the above, the maps F W [njD1Xj ! [njD1Yj are homeomorphisms for all
n 2 ZC. Next, consider a sequence yk 2 Y such that yk ! y in Y as k ! 1.
By removing first elements of the sequence .yk/1kD1 if needed, we can assume that
dY .yk; y/ � 1. Let now N 2 ZC be such that for j > N , we have aj > b WD
dY .y; p/ C 1. Then yk 2 SN

jD1 Yj and as the map F W SN
jD1Xj !

SN
jD1 Yj is

a homeomorphism, we see that F �1.yk/ ! F �1.y/ in X as k ! 1. This shows
that F�1 W Y ! X is continuous, and thus F W X ! Y is a homeomorphism.

By definition,R WM ! R.M/ is surjective and, by (13), continuous. In order to
prove the injectivity, assume the contrary, that is, rx. � / D ry. � / but x ¤ y. Denote
by z0 any point where

min
z2@M rx.z/ D rx.z0/:

Then

dg.x; @M/ D min
z2@M rx.z/ D rx.z0/ (20)

D ry.z0/ D min
z2@M ry.z/ D dg.y; @M/;

and z0 2 @M is a nearest boundary point to x. Let �x be the shortest path from z0

to x. Then, the path �x is a geodesic from x to z0 which intersects @M first time
at z0. By using the first variation on length formula, we see that �x has to hit to
z0 normally; see [22]. The same considerations are true for the point y with the
same point z0. Thus, both x and y lie on the normal geodesic �z0;�.s/ to @M . As the
geodesics are unique solutions of a system of ordinary differential equations (the
Hamilton–Jacobi equation (14)), they are uniquely determined by their initial points
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and directions, that is, the geodesics are non-branching. Thus, we see that

x D �z0.s0/ D y;

where s0 D rx.z0/ D ry.z0/. Hence, R WM ! C.@M/ is injective.
Next, we consider the condition (19) for R W M ! R.M/. Let z 2 M and

consider closed sets Xj D fx 2 M W dC
�
R.x/;R.z/

	 � j g, j 2 ZC. Then for
x 2 Xj , we have by definition (11) of the metric dC that

dg.x;Q0/ � j C dg.z;Q0/;

implying that the sets Xj , j 2 ZC are compact. Clearly,
S
j2ZC

Xj D X . Let next
Yj D R.Xj / � Y D R.M/ and p D R.Q0/ 2 R.M/. Then for rx 2 Y nYj , we
have

dC .rx; p/ � rx.Q0/� p.Q0/ D dg.x;Q0/

� j � dg.z;Q0/ � C0 !1 as j !1

and thus the condition (19) is satisfied. As R W M ! R.M/ is a continuous,
bijective map, it implies that R WM ! R.M/ is a homeomorphism.

Next we introduce a differentiable structure and a metric tensor, gR, on R.M/ to
have an isometric diffeomorphism

R W .M; g/! .R.M/; gR/: (21)

Such structures clearly exists – the map R pushes the differentiable structure of M
and the metric g to some differentiable structure on R.M/ and the metric gR WD
R�g which makes the map (21) an isometric diffeomorphism. Next we construct
these coordinates and the metric tensor in those on R.M/ using the fact that R.M/

is known as a subset of C.@M/.
We will start by construction of the differentiable and metric structures on

R.M/nR.!/, where ! is the cut locus of M with respect to @M . First, we show
that we can identify in the set R.M/ all the elements of the form r D rx 2 R.M/

where x 2 Mn!. To do this, we observe that r D rx with x D �z;�.s/; s < �.z/ if
and only if:

1. r. � / has a unique global minimum at some point z 2 @M ;
2. There is Qr 2 R.M/ having a unique global minimum at the same z and r.z/ <
Qr.z/. This is equivalent to saying that there is y with ry. � / having a unique global
minimum at the same z and rx.z/ < ry.z/.

Thus, we can findR.Mn!/ by choosing all those r 2 R.M/ for which the above
conditions (1) and (2) are valid.
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Next, we choose a differentiable structure onR.Mn!/which makes the mapR W
Mn! ! R.Mn!/ a diffeomorphism. This can be done by introducing coordinates
near each r0 2 R.Mn!/. In a sufficiently small neighborhood W � R.M/ of r0

the coordinates

r 7! �
Y.r/; T .r/

	 D
�
y.argminz2@Mr/; min

z2@M r
�

are well defined. These coordinates have the property that the map x 7!�
Y.rx/; T .rx/

	
coincides with the boundary normal coordinates (17) and (18).

When we choose the differential structure on R.Mn!/ that corresponds to these
coordinates, the map

R WMn! ! R.Mn!/

is a diffeomorphism.
Next we construct the metric gR on R.M/. Let r0 2 R.Mn!/. As above, in

a sufficiently small neighborhood W � R.M/ of r0, there are coordinates r 7!
X.r/ WD �

Y.r/; T .r/
	

that correspond to the boundary normal coordinates. Let
.y0; t0/ D X.r0/. We consider next the evaluation function

Kw W W ! R; Kw.r/ D r.w/;

where w 2 @M . The inverse of X W W ! R
n is well defined in a neighborhood

U � R
n of .y0; t0/, and thus we can define the function

Ew D Kw ıX�1 W U ! R

that satisfies

Ew.y; t/ WD dg
�
w; �z.y/;�.y/.t/

	
; .y; t/ 2 U; (22)

where �z.y/;�.y/.t/ is the normal geodesic starting from the boundary point z.y/ with
coordinates y D .y1; : : : ; yn�1/ and �.y/ is the interior unit normal vector at y.

Let now gR D R�g be the push-forward of g to R.Mn!/. We denote its
representation in X -coordinates by gjk.y; t/. Since X corresponds to the boundary
normal coordinates, the metric tensor satisfies

gmm D 1; g˛m D 0; ˛ D 1; : : : ; n � 1:

Consider the function Ew.y; t/ as a function of .y; t/ with a fixed w. Then its
differential, dEw at point .y; t/ defines a covector in T �

.y;t/.U / D R
n. Since the

gradient of a distance function is a unit vector field, we see from (22) that
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kdEw.y; t/k2
.gjk/
WD
�
@

@t
Ew.y; t/

�2

C
n�1X
˛;ˇD1

.gR/
˛ˇ.y; t/

@Ew

@y˛
.y; t/

@Ew

@yˇ
.y; t/ D 1:

Let us next fix a point .y0; t0/ 2 U . Varying the point w 2 @M , we obtain a

set of covectors dEw.y
0; t0/ in the unit ball of

�
T �
.y0;t0/

U; gjk

�
which contains an

open neighborhood of .0; : : : ; 0; 1/. This determines uniquely the tensor gjk.y0; t0/.
Thus, we can construct the metric tensor in the boundary normal coordinates at
arbitrary r 2 R.Mn!/. This means that we can find the metric gR on R.Mn!/
when R.M/ is given.

To complete the reconstruction, we need to find the differentiable structure and
the metric tensor near R.!/. Let r.0/ 2 R.!/ and x.0/ 2 M int be such a point that
r.0/ D rx.0/ D R.x.0//. Let z0 be some of the closest points of @M to the point
x.0/. Then there are points z1; : : : ; zn�1 on @M , given by zj D �z0;�j .s0/, where
�z0;�j .s/ are geodesics of .@M; g@M / and �1; : : : ; �n�1 are orthonormal vectors of
Tz0.@M/ with respect to metric g@M and s0 > 0 is sufficiently small, so that the
distance functions y 7! dg.zi ; y/, i D 0; 1; 2; : : : ; n � 1 form local coordinates

y 7! �
dg.zi ; y/

	n�1
iD0 onM in some neighborhood of the point x.0/ (we omit here the

proof which can be found in [42, Lemma 2.14]).
Let now W � R.M/ be a neighborhood of r.0/ and let Qr 2 W . Moreover, let

V D R�1.W / � M and Qx D R�1.Qr/ 2 V . Let us next consider arbitrary points
z1; : : : ; zn�1 on @M . Our aim is to verify whether the functions x 7! Xi.x/ D
dg.x; zi /; i D 0; 1; : : : ; n � 1 form smooth coordinates in V . As Mn! is dense on
M and we have found topological structure of R.M/ and constructed the metric
gR on R.Mn!/, we can choose r.j / 2 R.Mn!/ such that limj!1 r.j / D Qr in
R.M/. Let x.j / 2 Mn! be the points for which r.j / D R

�
x.j /

	
. Now the function

x 7! �
Xi.x/

	n�1
iD0 defines smooth coordinates near Qx if and only if for functions

Zi.r/ D Kzi .r/, we have

lim
j!1 det

��
gR
�
dZi .r/; dZl .r/

		n�1
i;lD0

�
jrDr.j / (23)

D lim
j!1 det

��
g
�
dXi.x/; dXl .x/

		n�1
i;lD0

�
jxDx.j / 6D 0:

Thus, for all Qr 2 W we can verify for any points z1; : : : ; zn�1 2 @M whether the
condition (23) is valid or not and this condition is valid for all Qr 2 W if and only if
the functions x 7! Xi.x/ D dg.x; zi /; i D 0; 1; : : : ; n�1 form smooth coordinates
in V . Moreover, by the above reasoning, we know that any r.0/ 2 R.!/ has some
neighborhoodW and some points z1; : : : ; zn�1 2 @M for which the condition (23)
is valid for all Qr 2 W . By choosing such points, we find also near r.0/ 2 .!/

smooth coordinates r 7! �
Zi.r/

	n�1
iD0 which make the map R W M ! R.M/ a

diffeomorphism near x.0/.



Wave Phenomena 1221

Summarizing, we have constructed differentiable structure (i.e., local coordi-
nates) on the whole set R.M/, and this differentiable structure makes the map
R W M ! R.M/ a diffeomorphism. Moreover, since the metric gR D R�g is a
smooth tensor, and we have found it in a dense subset R.Mn!/ of R.M/, we can
continue it in the local coordinates. This gives us the metric gR on the wholeR.M/,
which makes the map R WM ! R.M/ an isometric diffeomorphism. �

In the above proof, the reconstruction of the metric tensor in the boundary normal
coordinates can be considered as finding the image of the metric in the travel time
coordinates.

Let us next consider the case when we have an unknown isotropic wave speed
c.x/ in a bounded domain  � R

n. We will assume that we are given the set
 and an abstract Riemannian manifold .M; g/, which is isometric to  endowed
with its travel time metric corresponding to the wave speed c.x/. Also, we assume
that we are given a map  W @ ! @M , which gives the correspondence between
the boundary points of  and M . Next we show that it is then possible to find an
embedding from the manifold M to  which gives us the wave speed c.x/ at each
point x 2 . This construction is presented in detail, e.g., in [42].

For this end, we need first to reconstruct a function 
 on M which corresponds
to the function c.x/2 on . This is done on the following lemma.

Lemma 2. Assume we are given a Riemannian manifold .M; g/ such that there
exists an open set  � R

n and an isometry ‰ W �; �
.x/	�1
ıij
	 ! .M; g/ and

a function ˛ on M such that ˛
�
‰.x/

	 D 
.x/. Then knowing the Riemannian
manifold .M; g/, the restriction  D ‰j@ W @ ! @M , and the boundary value

 j@, we can determine the function ˛.

Proof. First, observe that we are given the boundary value ˛j@M of ˛
�
‰.x/

	 D

.x/. By assumption, the metric g on M is conformally Euclidean, that is, the
metric tensor, in some coordinates, has the form gjk.x/ D 
.x/�1ıjk , where

.x/ > 0. Hence, the function ˇ D 1

2 ln.˛/, when m D 2, and ˇ D ˛.n�2/=4,
when n � 3, satisfies the so-called scalar curvature equation

�gˇ � kg D 0 .n D 2/; (24)

4.n � 1/

n � 2
�gˇ � kgˇ D 0 .n � 3/; (25)

where kg is the scalar curvature of .M; g/,

kg.x/ D
nX

k;j;lD1

gjl .x/Rkjkl .x/

where Rijkl is the curvature tensor given in terms of the Christoffel symbols as
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Rijkl .x/ D
@

@xk
�ilj .x/ �

@

@xl
�ikj .x/C

nX
rD1

�
�rlj .x/�

i
kr .x/ � �rkj .x/�ilr .x/

�
:

The idea of these equations is that if ˇ satisfies, for example, Eq. (25) in the case
m � 3, then the metric ˇ4=.n�2/g has zero scalar curvature. Together with boundary
data (10) being given, we obtain Dirichlet boundary value problem for ˇ in M .

Clearly, Dirichlet problem for Eq. (24) has a unique solution that gives ˛ when
n D 2. In the case n � 3, to show that this boundary value problem has a
unique solution, it is necessary to check that 0 is not an eigenvalue of the operator
4.n�1/
n�2 �g � kg with Dirichlet boundary condition. Now, the function ˇ D ˛.n�2/=4

is a positive solution of the Dirichlet problem for Eq. (25) with boundary condition
ˇj@M D ˛.n�2/=4

ˇ̌
@M

. Assume that there is another possible solution of this problem,

Q̌ D vˇ; v > 0; vj@M D 1: (26)

Then both
�
M;ˇ4=.n�2/g

	
and

�
M; Q̌4=.n�2/g

�
have zero scalar curvatures. Denot-

ing g1 D ˇ4=.n�2/g, g2 D Q̌4=.n�2/g, we obtain that v should satisfy the scalar
curvature equation

4.n � 1/

n � 2
�g1v � kg1 v D 0:

Here, we have kg1 D 0 as g1 has vanishing scalar curvature. Together with boundary
condition (26), this equation implies that v 
 1, that is, ˇ D Q̌. This immediately
yields that 0 is not the eigenvalue of the Dirichlet operator (25) because, otherwise,
we could obtain a positive solution Q̌ D ˇ C c0 0, where  0 is the Dirichlet
eigenfunction, corresponding to zero eigenvalue, and jc0j is sufficiently small. Thus,
ˇ, and henceforth ˛, can be uniquely determined by solving Dirichlet boundary
value problems for (24) and (25). �

Our next goal is to embed the abstract manifold .M; g/ with conformally
Euclidean metric into  with metric

�

.x/

	�1
ıij . To achieve this goal, we use the

a priori knowledge that such embedding exists and the fact that we have already
constructed ˛ corresponding to 
.x/ on M .

Lemma 3. Let .M; g/ be a compact Riemannian manifold, ˛.x/ a positive smooth
function on M , and  W @ ! @M a diffeomorphism. Assume also that there is a
diffeomorphism‰ W !M such that

‰j@ D  ; ‰�g D �˛�‰�x/		�1
ıij :

Then, if , .M; g/, ˛, and  are known, it is possible to construct the diffeomor-
phism ‰ by solving ordinary differential equations.
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Proof. Let � D .z; �/ be the boundary normal coordinates on Mn!. Our goal is to
construct the coordinate representation for ‰�1 D X ,

X W Mn! ! ;

X.z; �/ D �x1.z; �/; : : : ; xn.z; �/
	
:

Denote by hij .x/ D ˛
�
‰.x/

	�1
ıij the metric tensor in . Let �i;jk D P

p gip�
p

jk

be the Christoffel symbols of .; hij / in the Euclidean coordinates and let Q�
;�� be
Christoffel symbols of .M; g/, in �-coordinates. Next, we consider functions hij ,
�k;ij , etc., as functions on Mn! in .z; �/-coordinates evaluated at the point x D
x.z; �/, for example, �k;ij .z; �/ D �k;ij

�
x.z; �/

	
. Then, since ‰ is an isometry, the

transformation rule of Christoffel symbols with respect to the change of coordinates
implies

Q�
;�� D
nX

i;j;kD1

�k;ij
@xi

@��
@xj

@��
@xk

@�

C

nX
i;jD1

hij
@xi

@�

@2xj

@��@��
; (27)

where

hij .z; �/ D 1

˛
�
‰.z; �/

	ıij : (28)

Using Eqs. (27) and (28), we can write @2xj

@��@��
in the form

@2xj

@��@��
.�/ D

nX
p;
;�;�D1

˛.�/ıjp

 
Q�
;�� @�




@xp
�

nX
nD1

1

2

@˛�1

@�


�
�
@�


@xn
ıpi C @�


@xi
ıpn � @�




@xp
ıni

�
@xi

@��
@xn

@��

!
: (29)

As ˛ and Q�
;�� are known as a function of �, the right-hand side of (29) can be
written in the form

@2xj

@��@��
D F j

�;�

�
�;
@x

@�

�
; (30)

where F j
�;� are known functions. Choose � D m, so that

@2xj

@��@�n
D d

d�

�
@xj

@��

�
:
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Then, Eq. (30) becomes a system of ordinary differential equations along normal

geodesics for the matrix
�
@xj

@��
.�/
�n
j;�D1

. Moreover, since diffeomorphism ‰ W
@! @M is given, the boundary derivatives @xj

@��
, � D 1; : : : ; n� 1, are known for

�n D � D 0. By relation (28),

@xj

@�n
D @xj

@�
D ˛�1 @x

j

@n
D �˛�1nj

for �n D � D 0 where n D .n1; : : : ;nn/ is the Euclidean unit exterior normal vector.
Thus, @x

j

@�
.z; 0/ are also known. Solving a system of ordinary differential equations

(30) with these initial conditions at � D 0, we can construct @xj

@��
.z; �/ everywhere

on Mn!. In particular, taking � D n, we find dxj

d�
.z; �/. Using again the fact that�

x1.z; 0/; : : : ; xn.z; 0/
	 D  .z/ are known, we obtain the functions xj .z; �/, z fixed,

0 � � � �@M .z/, that is, reconstruct all normal geodesics onwith respect to metric
hij . Clearly, this gives us the embedding of .M; g/ onto .; hij /. �

Combining the above results, we get the following result for the isotropic wave
equation.

Theorem 2. Let  � R
n to be a bounded, open set with smooth boundary and

c.x/ 2 C1./ be a strictly positive function. Assume that we know , cj@, and
the nonstationary Robin-to-Neumann mapƒ@. Then it is possible to determine the
function c.x/.

We note that in Theorem 2, the boundary value cj@ of the wave speed c.x/ can
be determined using the finite velocity of wave propagation (9) and the knowledge
of  and ƒ@, but we will not consider this fact in this chapter.

From Boundary Data to Inner Products of Waves
Let uf .x; t/ denote the solutions of the hyperbolic equation (3), ƒ2T be the finite
time Robin-to-Dirichlet map for Eq. (3) and let dSg denote the Riemannian volume
form on the manifold .@M; g@M /. We start with the Blagovestchenskii identity.

Lemma 4. Let f; h 2 C1
0 .@M � RC/. Then

Z
M

uf .x; T /uh.x; T / dV�.x/ D (31)

D 1

2

Z
L

Z
@M

�
f .x; t/.ƒ2T h/.x; s/ � .ƒ2T f /.x; t/h.x; s/

	
dSg.x/dtds;
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where

L D f.s; t/ W 0 � t C s � 2T; t < s; t; s > 0g:

Proof. Let

w.t; s/ D
Z
M

uf .x; t/uh.x; s/ dV�.x/:

Then, by integration by parts, we see that

�
@2
t � @2

s

	
w.t; s/ D

Z
M

�
@2
t u
f .x; t/uh.x; s/ � uf .x; t/@2

su
h.x; s/

�
dV�.x/ D

D �
Z
M

ŒAuf .x; t/uh.x; s/ � uf .x; t/Auh.x; s/� dV�.x/ D

D �
Z
@M

ŒB�;�u
f .t/uh.s/� uf .t/B�;�u

h.s/� dSg.x/ D

D
Z
@M

Œƒ2T uf .x; t/uh.x; s/ � uf .x; t/ƒ2T uh.x; s/� dSg.x/:

Moreover,

wjtD0 D wjsD0 D 0;

@twjtD0 D @swjsD0 D 0:

Thus, w is the solution of the initial boundary value problem for the one-dimensional
wave equation in the domain .t; s/ 2 Œ0; 2T � � Œ0; 2T � with known source and zero
initial and boundary data (10). Solving this problem, we determine w.t; s/ in the
domain where t C s � 2T and t < s (see Fig. 1). In particular, w.T; T / gives the
assertion. �

The other result is based on the following fundamental theorem by D. Tataru
[77, 79].

Theorem 3. Let u.x; t/ solve the wave equation ut t C Au D 0 in M � R and
uj��.0;2T1/ D @�uj��.0;2T1/ D 0, where 0= ¤ � � @M is open. Then

u D 0 in K�;T1 ; (32)

where

K�;T1 D
˚
.x; t/ 2M �R W dg.x; �/ < T1 � jt � T1j
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Fig. 1 Domain of integration
in the Blagovestchenskii
identity

t

(T, T )

2T

L

s

Fig. 2 Double cone of
influence

Γ

t = 0

t = T1

t = 2T1

is the double cone of influence (see Fig. 2).

(The proof of this theorem, in full generality, is in [77]. A simplified proof for
the considered case is in [42].)

The observability Theorem 3 gives rise to the following approximate controlla-
bility:



Wave Phenomena 1227

Corollary 1. For any open � � @M and T1 > 0,

clL2.M/

˚
uf . � ; T1/ W f 2 C1

0

�
� � .0; T1/

	
 D L2�M.�; T1/
	
:

Here,

M.�; T1/ D fx 2 M W dg.x; �/ < T1g D K�;T1 \ ft D T1g

is the domain of influence of � at time T1 and L2
�
M.�; T1/

	 D fa 2 L2.M/ W
supp.a/ �M.�; T1/g.

Proof. Let us assume that a 2 L2
�
M.�; T1/

	
is orthogonal to all uf . � ; T1/; f 2

C1
0 .� � .0; T1/). Denote by v the solution of the wave equation

.@2
t C A/v D 0I vjtDT1 D 0; in M �R;

@tvjtDT1 D aI B�;�vj@M�R D 0:

Using integration by parts, we obtain for all f 2 C1
0

�
� � .0; T1/

	

Z T1

0

Z
@M

f .x; s/v.x; s/ dSg.x/ ds D
Z
M

a.x/uf .x; T1/dV�.x/ D 0;

due to the orthogonality of a and the solutions uf .t/. Thus, vj��.0;T1/ D 0.
Moreover, as v is odd with respect to t D T1, that is, v.x; T1Cs/ D �v.x; T1�s/, we
see that vj��.T1;2T1/ D 0. As u satisfies the wave equation, standard energy estimates
yield that u 2 C �RIH 1.M/

	
, and hence uj@M�R 2 C

�
RIH 1=2.@M/

	
. Combining

the above, we see that vj��.0;2T1/ D 0, and as B�;�vj��.0;2T1/ D 0, we see using
Theorem 3 that a D 0. �

Recall that we denote uf .t/ D uf .� ; t/.

Lemma 5. Let T > 0 and �j � @M , j D 1; : : : ; J , be nonempty, relatively
compact open sets, 0 � T �

j < TC
j � T . Assume we are given .@M; g@M / and the

response operatorƒ2T . This data determines the inner product

J TN .f1; f2/ D
Z
N

uf1.x; t/uf2.x; t/ dV�.x/

for given t > 0 and f1; f2 2 C1
0 .@M � RC/, where

N D
J\
jD1

�
M
�
�j ; T

C
j

�/
M
�
�j ; T

�
j

��
�M:
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Proof. Let us start with the case when f1 D f2 D f and T �
j D 0 for all j D

1; 2; : : : ; J .
Let B D SJ

jD1.�j � ŒT � Tj ; T �/: For all h 2 C1
0 .B/, it holds by (9) that

supp
�
uh.� ; T /	 � N , and thus

kuf .T / � uh.T /k2
L2.M;dV�/

D
Z
N

�
uf .x; T /� uh.x; T /

	2
dV�.x/C

Z
MnN

�
uf .x; T /

	2
dV�.x/:

Let 	N .x/ be the characteristic function of the set N . By Corollary 1, there is h 2
C1

0 .B/ such that the norm k	N uf .T / � uh.T /kL2.M;dV�/ is arbitrarily small. This
shows that J TN .f1; f2/ can be found by

J TN .f; f / D kuf .T /k2
L2.M;dV�/

� inf
h2C1

0 .B/
F .h/; (33)

where

F.h/ D kuf .T / � uh.T /k2
L2.M;dV�/

:

As F.h/ can be computed with the given data (10) by Lemma 4, it follows that we
can determine J TN .f; f / for any f 2 C1

0 .@M �RC/. Now, since

J TN .f1; f2/ D 1

4

�
J TN .f1 C f2; f1 C f2/ � J TN .f1 � f2; f1 � f2/

	
;

the claim follows in the case when T �
j D 0 for all j D 1; 2; : : : ; J .

Let us consider the general case when T �
j may be nonzero. We observe that we

can write the characteristic function 	N .x/ of the set N D TJ
jD1

�
M
�
�j ; T

C
j

�/

M
�
�j ; T

�
j

��
as

	N .x/ D
K1X
kD1

ck	Nk .x/ �
K2X

kDK1C1

ck	Nk .x/;

where ck 2 R are constants which can be determined by solving a simple linear
system of equations and the sets Nk are of the form

Nk D
[
j2Ik

M.�j ; tj /;
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where Ik � f1; 2; : : : ; J g and tj 2
n
TC
j W j D 1; 2; : : : ; J

o
[

n
T �
j W j D

1; 2; : : : ; J
o
: Thus,

J TN .f1; f2/ D
K1X
kD1

ckJ
T
Nk
.f1; f2/�

K2X
kDK1C1

ckJ
T
Nk
.f1; f2/;

where all the terms J TNk .f1; f2/ can be computed using the boundary data (10). �

From Inner Products of Waves to Boundary Distance Functions
Let us consider open sets �j � @M; j D 1; 2; : : : ; J and numbers TC

j > T �
j � 0.

For a collection
n�
�j ; T

C
j ; T

�
j

�
W j D 1; : : : ; J

o
, we define the number

P
�n�

�j ; T
C
j ; T

�
j

�
W j D 1; : : : ; J

o�
D sup

f

J TN .f; f /;

where T D
�

maxTC
j

�
C 1,

N D
J\
jD1

�
M
�
�j ; T

C
j

�/
M
�
�j ; T

�
j

��

and the supremum is taken over functions f 2 C1
0

�
@M � .0; T /	 satisfying

kuf .T /kL2.M/� 1. When �
q
j � @M , j D 1; 2; : : : ; J , are open sets, so that

�
q
j ! fzj g as q ! 1, that is, fzj g � �qj � �q�1

j for all q and
T1
qD1 �

q

j D fzj g,
we denote

P
�n�

zj ; T
C
j ; T

�
j

�
Wj D 1; : : : ; J

o�
D lim
q!1P

�n�
�
q
j ; T

C
j ; T

�
j

�
Wj D 1; : : : ; J

o�
:

Theorem 4. Let fzng1nD1 be a dense set on @M and r. � / 2 C.@M/ be an arbitrary
continuous function. Then r 2 R.M/ if and only if for all N > 0 it holds that

P

���
zj ; r.zn/C 1

N
; r.zn/� 1

N

�
W j D 1; : : : ; N

�
> 0: (34)

Moreover, condition (34) can be verified using the boundary data (10). Hence, the
boundary data determine uniquely the boundary distance representation R.M/ of
.M; g/ and therefore determine the isometry type of .M; g/.

Proof. “If”–part. Let x 2 M and denote for simplicity r. � / D rx. � /. Consider a
ball B1=N .x/ �M of radius 1=N and center x in .M; g/. Then, for z 2 @M



1230 M. Lassas et al.

B1=N .x/ �M
�

z; r.z/C 1

N

�
nM

�
z; r.z/ � 1

N

�
:

By Corollary 1, for any T > r.z/, there is f 2 C1
0

�
@M � .0; T /	 such that the

function uf .� ; T / does not vanish a.e. in B1=N .x/. Thus, for any N 2 ZC and
T D maxfr.zn/ W nD 1; 2; : : : ; N g, we have

P

���
zj ; r.zn/C 1

N
; r.zn/� 1

N

�
W j D 1; : : : ; N

�

�
Z
B1=N .x/

juf .x; T /j2 dV�.x/ > 0

“Only if”–part. Let (34) be valid. Then for all N > 0, there are points

xN 2 AN D
N\
nD1

�
M

�
zn; r.zn/C 1

N

�
nM

�
zn; r.zn/� 1

N

��
(35)

as the set AN has to have a nonzero measure. By choosing a suitable subsequence
of xN (denoted also by xN ), there exists a limit x D limN!1 xN .

Let j 2 ZC. It follows from (35) that

r.zj /� 1

N
� dg.xN ; zj / � r.zj /C 1

N
for all N � j:

As the distance function dg on M is continuous, we see by taking limit N ! 1
that

dg.x; zj / D r.zj /; j D 1; 2; : : : :

Since fzj g1jD1 are dense in @M , we see that r.z/ D dg.x; z/ for all z 2 @M , that is,
r D rx . �

Note that this proof provides an algorithm for construction of an isometric copy
of .M; g/ when the boundary data (10) are given.

Alternative Reconstruction of Metric via Gaussian Beams
Next we consider an alternative construction of the boundary distance representation
R.M/, developed in [6,41,42]. In the previous considerations, we used in Lemma 5

the sets of type N D TJ
jD1

�
M
�
�j ; T

C
j

�/
M
�
�j ; T

�
j

��
� M and studied

the norms k	N uf .� ; T /kL2.M/. In the alternative construction considered below, we
need to consider only the sets N of the form N D M.�0; T0/. For this end, we
consider solutions uf .x; t/ with special sources f which produce wave packets,
called the Gaussian beams [3, 63]. For simplicity, we consider just the case when
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A D ��g C q;

and give a very short exposition on the construction of the Gaussian beam solutions.
Details can be found in, for example, Ref. [42], Chapter 2.4, where the properties of
Gaussian beams are discussed in detail. In this section, we consider complex valued
solutions uf .x; t/.

Gaussian beams, called also “quasiphotons,” are a special class of solutions
of the wave equation depending on a parameter " > 0 which propagate in a
neighborhood of a geodesic � D �y;� .Œ0; L�/, g.�; �/ D 1. Below, we consider
first the construction in the case when � is in the interior ofM .

To construct Gaussian beams, we start by considering an asymptotic sum, called
formal Gaussian beam,

U".x; t/ D M" exp f�.i"/�1�.x; t/g
NX
kD0

uk.x; t/.i"/
k; (36)

where x 2 M , t 2 Œt�; tC�, and M" D .�"/�n=4 is the normalization constant.
The function �.x; t/ is called the phase function and uk.x; t/, k D 0; 1; : : : ; N
are the amplitude functions. A phase function �.x; t/ is associated with a geodesic
t 7! �.t/ 2M if

Im �
�
�.t/; t

	 D 0; (37)

Im �.x; t/ � C0dg
�
x; �.t/

	2
; (38)

for t 2 Œt�; tC�. These conditions guarantee that for any t , the absolute value
of U".x; t/ looks like a Gaussian function in the x variable which is centered at
�.t/. Thus, the formal Gaussian beam can be considered to move in time along the
geodesic �.t/. The phase function can be constructed, so that it satisfies the eikonal
equation

�
@

@t
�.x; t/

�2

� gjl .x/ @
@xj

�.x; t/
@

@xl
�.x; t/ � 0; (39)

where � means the coincidence of the Taylor coefficients of both sides considered
as functions of x at the points �.t/; t 2 Œt�; tC�, that is,

v.x; t/ � 0 if @˛xv.x; t/jxD�.t/ D 0 for all ˛ 2 N
n and t 2 Œt�; tC�:

The amplitude functions uk, k D 0; : : : ; N can be constructed as solutions of the
transport equations

L�uk �
�
@2
t ��g C q

	
uk�1; with u�1 D 0: (40)
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Here L� is the transport operator

L�u D 2@t�@tu � 2hr�;ruig C
�
@2
t ��g

	
� � u; (41)

where ru.x; t/D P
j g

jk.x/ @u
@xk
.x; t/ @

@xk
is the gradient on .M; g/ and hV;W igDPn

jD1 g
jk.x/Vj .x/Wk.x/. The following existence result is proven, for example,

in [3, 42, 63].

Theorem 5. Let y 2 M int, � 2 TxM be a unit vector and � D �y;� .t/; t 2
Œt�; tC� � R be a geodesic lying in M int when t 2 .t�; tC/.

Then there are functions �.x; t/ and uk.x; t/ satisfying (38)–(40) and a solution
u".x; t/ of equation

�
@2
t ��g C q

	
u".x; t/ D 0; .x; t/ 2M � Œt�; tC�; (42)

such that

ju".x; t/ � �.x; t/U".x; t/j � CN" QN.N/; (43)

where QN.N/ ! 1 when N ! 1. Here � 2 C1
0 .M � R/ is a smooth cut-off

function satisfying � D 1 near the trajectory f.�.t/; t/ W t 2 Œt�; tC�g �M � R.

In the other words, for an arbitrary geodesic in the interior of M , there is a
Gaussian beam that propagates along this geodesic.

Next we consider a class of boundary sources in (3) which generate Gaussian
beams. Let z0 2 @M , t0 > 0, and let x 7! z.x/ D �

z1.x/; : : : ; zn�1.x/
	

be a
local system of coordinates on W � @M near z0. For simplicity, we denote these
coordinates as z D .z1; : : : ; zn�1/ and make computations without reference to the
point x. Consider a class of functions f" D f";z0 ;t0.z; t/ on the boundary cylinder
@M � R, where

f".z; t/ D B�;�
�
.�"/�n=4�.z; t/ exp fi"�1‚.z; t/gV.z; t/	 : (44)

Here � 2 C1
0 .@M � R/ is one near .z0; t0/ and

‚.z; t/ D �.t � t0/C 1

2
hH0.z � z0/; .z � z0/i C i

2
.t � t0/2; (45)

where h� ; � i is the complexified Euclidean inner product, ha; bi D P
aj bj , and

H0 2 C
n�n is a symmetric matrix with a positive definite imaginary part, that is,

.H0/jk D .H0/kj and ImH0 > 0, where .ImH0/jk D Im .H0/jk . Finally, V.z; t/
is a smooth function supported in W � RC, having nonzero value at .z0; t0/. The
solution uf".x; t/ of the wave equation
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@2
t u ��guC qu D 0; in M � RC;

ujtD0 D @tujtD0 D 0; (46)

B�;�u
ˇ̌
@M�RC

D f".z; t/

is a Gaussian beam propagating along the normal geodesic �z0;� . Let S.z0/ 2 .0;1�
be the smallest values s > 0, so that �z0;�.s/ 2 @M , that is, the first time when the
geodesic �z0;� hits to @M , or S.z0/ D 1 if no such value s > 0 exists. Then the
following result in valid (see, e.g., [42]).

Lemma 6. For any function V 2 C1
0 .W � RC/ being one near .z0; t0/, t0 > 0,

and 0 < t1 < S.z0/ and N 2 ZC, there are CN so that the solution uf".x; t/ of
problem (46) satisfies estimates

juf".x; t/ � �.x; t/U".x; t/j � CN" QN.N/; 0 � t < t0 C t1 (47)

where U".x; t/ is of the form (36), for all 0 < " < 1, where QN.N/ ! 1 when
N !1 and � 2 C1

0 .M �R/ is � one near the trajectory f.�z0;� .t/; t C t0/ W t 2
Œ0; t1�g �M � R.

Let us denote

Py;� v.x/ D 	M.y;�/.x/v.x/:

Then, the boundary data .@M; g@M / and the operator ƒ uniquely determine the
values kPy;�uf .t/kL2.M/ for any f 2 C1

0 .@M � RC/, y 2 @M and t; � > 0.
Let f" be of form (44) and (45) and u".x; t/ D uf .x; t/; f D f" be a Gaussian
beam propagating along �z0;� described in Lemma 6. The asymptotic expansion (36)
of a Gaussian beam implies that for s < S.z0/ and � > 0,

lim
"!0
kPy;�u".� ; s C t0/kL2.M/ D

(
h.s/; for dg.�z0;�.s/; y/ < �;

0; for dg.�z0;�.s/; y/ > �;
(48)

where h.s/ is a strictly positive function. By varying � > 0, we can find
dg.�z0;�.s/; y/ D rx.y/, where x D �z0;� .t/. Moreover, we see that S.z0/ can be
determined using the boundary data and (48) by observing that S.z0/ is the smallest
number S > 0 such that if tk ! S is an increasing sequence, then

dg.�z0;�.sk/; @M/ D inf
y2@M dg.�z0;�.sk/; y/! 0 as k !1:

Summarizing, for any z0 2 @M , we can find S.z0/, and furthermore, for any 0 �
t < S.z0/, we can find the boundary distance function rx.y/ with x D �z0;�.t/. As
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any point x 2M can be represented in this form, we see that the boundary distance
representationR.M/ can be constructed from the boundary data using the Gaussian
beams.

Travel Times and Scattering Relation

We will show in this section that if .; g/ is a simple Riemannian manifold,
then by looking at the singularities of the response operator, we can determine
the boundary distance function dg.x; y/; x; y 2 @; that is, the travel times of
geodesics going through the domain. The boundary distance function is a function
of 2n�2 variables. Thus, the inverse problem of determining the Riemannian metric
from the boundary distance function is formally determined in two dimensions and
formally overdetermined in dimensions n � 3.

Let  � R
n be a bounded domain with smooth boundary. If the response

operators for the two manifolds .; g1/ and .; g2/ are the same then we can
assume, after a change of variables which is the identity at the boundary, the two
metrics g1 and g2 have the same Taylor series at the boundary [76]. Therefore, we
can extend both metrics smoothly to be equal outside  and Euclidean outside a
ball of radius R. We denote the extensions to R

n by gj ; j D 1; 2; as before. Let
uj .t; x; !/ be the solution of the continuation problem

8̂
<̂
ˆ̂:

@2u

@t2
��gj uj D 0; in R

n �R

uj .x; t/ D ı.t � x �!/; t < �R;
(49)

where ! 2 S
n�1 D fx 2 R

nI jxj D 1g:
It was shown in [76] that if the response operators for .; g1/ and .; g2/ are

equal, then the two solutions coincide outside , namely,

u1.t; x; !/ D u2.t; x; !/; x 2 R
nn: (50)

In the case that the manifold .; gj /; j D 1; 2 is simple, we will use methods
of geometrical optics to construct solutions of (49) to show that if the response
operators of g1 and g2 are the same, then the boundary distance functions of the
metrics g1 and g2 coincide.

Geometrical Optics
Let g denote a smooth Riemannian metric which is Euclidean outside a ball of
radiusR.

We will construct solutions to the continuation problem for the metric g (which
is either g1 or g2). We fix !: Let us assume that there is a solution to Eq. (49) of the
form
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u.x; t; !/ D a.x; !/ı�t � �.x; !/	C v.x; !/; u D 0; t < �R; (51)

where a; � are functions to be determined and v 2 L2
loc . Notice that in order to

satisfy the initial conditions in (49), we require that

a D 1; �.x; !/ D x �! for x �! < �R: (52)

By replacing Eq. (51) in Eq. (49), it follows that

@2u

@t2
��gu D Aı00�t � �.x; !/	C Bı0�t � �.x; !/	

�.�ga/ı
�
t � �.x; !/	C @2v

@t2
��gv; (53)

where

A D a.x; !/

0
@1 �

nX
i;jD1

gij
@�

@xi
@�

@xj

1
A (54)

B D 2
nX

j;kD1

gjk
@a

@xk
@�

@xj
C a�g�: (55)

We choose the functions �; a in the expansion (53) to eliminate the singularities ı00
and ı0 and then construct v, so that

@2v

@t2
��gv D .�ga/ı

�
t � �.x; !/	; v D 0; t < �R: (56)

The Eikonal Equation
In order to solve the equation A D 0, it is sufficient to solve the equation

nX
i;jD1

gij
@�

@xi
@�

@xj
D 1; �.x; !/ D x �!; x �! < �R: (57)

Equation (57) is known as the eikonal equation. Here we will describe a method,
using symplectic geometry, to solve this equation.

Let Hg.x; �/ D 1
2

�Pn
i;jD1 g

ij .x/�i �j � 1
�

the Hamiltonian associated to the

metric g: Note that the metric induced by g in the cotangent space T �
R
n is

given by the principal symbol of the Laplace–Beltrami operator g�1.x; �/ DPn
i;jD1 g

ij .x/�i �j . Equation (57) together with the initial condition can be rewritten
as

Hg.x; d�/ D 0; �.x; !/ D x �!; x �! < �R;
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where d� DPn
iD1

@�

@xi
dxi is the differential of �.

Let S D f.x; �/ W Hg.x; �/ D 0g, and let M� D f
�
x;r�.x/	 W x 2 R

ng, then
solving Eq. (57), is equivalent to finding � such that

M� � S; with M� D f.x; !/I x �! < �Rg: (58)

In order to find � so that (58) is valid, we need to find a Lagrangian submanifold
L, so that L � S;L D f.x; !/I x �! < �Rg and the projection of T �

R
n to R

n is a
diffeomorphism [32]. We will construct such a Lagrangian manifold by flowing out
from N D f.x; !/ W x �! D s and s < �Rg by the geodesic flow associated to the
metric g. We recall the definition of geodesic flow.

We define the Hamiltonian vector field associated to Hg

Vg D
�
@Hg

@�
;�@Hg

@x

�
: (59)

The bicharacteristics are the integral curves ofHg

d

ds
xm D

nX
jD1

gmj �j ;
d

ds
�m D �1

2

nX
i;jD1

@gij

@xm
�i �j ;m D 1; : : : ; n: (60)

The projections of the bicharacteristics in the x variable are the geodesics of the
metric g and the parameter s denotes arc length. We denote the associated geodesic
flow by

Xg.s/ D
�
xg.s/; �g.s/

	
:

If we impose the condition that the bicharacteristics are in S initially, then they
belong to S for all time, since the Hamiltonian vector field Vg is tangent to S . The
Hamiltonian vector field is transverse to N ; then the resulting manifold obtained
by flowing N along the integral curves of Vg will be a Lagrangian manifold L
contained in S . We shall write L D Xg.N /:

Now the projection of N into the base space is a diffeomorphism, so that L D
f.x; dx�/g locally near a point ofN:We can construct a global solution of (58) near
 if the manifold is simple. We recall the definition of simple domains.

Definition 1. Let  be a bounded domain of Euclidean space with smooth
boundary and g a Riemannian metric on . We say that .; g/ is simple if given
two points on the boundary there is a unique minimizing geodesic joining the two
points on the boundary and, moreover, @ is geodesically convex.

If .; g/ is simple, then we extend the metric smoothly in a small neighborhood,
so that the metric g is still simple. In this case we can solve the eikonal equation
globally in a neighborhood of :
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The Transport Equation
The equation B D 0 is equivalent to solving the following equation:

nX
i;jD1

gij
@�

@xj
@a

@xi
C a

2
�g� D 0: (61)

Equation (61) is called the transport equation. It is a vector field equation for
a.x; !/, which is solved by integrating along the integral curves of the vector field
v D Pn

i;jD1 g
ij @�

@xj
@
@xi

. It is an easy computation to prove that v has length 1 and
that the integral curves of v are the geodesics of the metric g:

The solution of the transport equation (61) is then given by

a.x; !/ D exp

�
�1

2

Z
�

�g�

�
; (62)

where � is the unique geodesic such that �.0/ D y, P�.0/ D !, y �! D 0 and �
passes through x. If .; g/ is a simple manifold, then a 2 C1.Rn/.

To end the construction of the geometrical optics solutions, we observe that
the function v.t; x; !/ 2 L2

loc by using standard regularity results for hyperbolic
equations.

Now we state the main result of this section in the following theorem.

Theorem 6. Let .; gi /; i D 1; 2 be simple manifolds, and assume that the
response operators for .; g1/ and .; g2/ are equal. Then dg1 D dg2 :

Sketch of proof 1. Assume that we have two metrics g1; g2 with the same response
operator. Then by (50), the solutions of (49) are the same outside . Therefore, the
main singularity of the solutions in the geometrical optics expansion must be the
same outside : Thus, we conclude that

�1.x; !/ D �2.x; !/; x 2 R
nn: (63)

Now �j .x; !/ measures the geodesic distance to the hyperplane x �! D �R in
the metric g: From this, we can easily conclude that the geodesic distance between
two points in the boundary for the two metrics is the same, that is, dg1.x; y/ D
dg2.x; y/; x; y 2 @:

This type of argument was used in [61] to study a similar inverse problem for the
more complicated system of elastodynamics. In particular, it is proven in [61] that
from the response operator associated to the equations of isotropic elastodynamics,
one can determine, under the assumption of simplicity of the metrics, the lengths of
geodesics of the metrics defined by

ds2 D cp.x/ds2
e ; ds2 D cs.x/2ds2

e ; (64)
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where dse is the length element corresponding to the Euclidean metric and cp.x/ Dq
.�C2�/

�
, cs.x/ D

q
�

�
denote the speed of compressional waves and shear waves,

respectively. Here �;� are the Lamé parameters and � the density.
Using Mukhometov’s result [56, 57], we can recover both speeds from the

response operator. This shows in particular that if we know the density, one can
determine the Lamé parameters from the response operator. By using the transport
equation of geometrical optics, similar to (61), and the results on the ray transform
(see, e.g., [66]), Rachele shows that under certain a priori conditions one can also
determine the density � [62].

Scattering Relation
In the presence of caustics (i.e., the exponential map is not a diffeomorphism), the
expansion (51) is not valid since we cannot solve the eikonal equation globally in
: The solution of (50) is globally a Lagrangian distribution (see, e.g., [38]). These
distributions can locally be written in the form

u.t; x; !/ D
Z
Rm

ei�.t;x;!;�/a.t; x; !; �/ d�; (65)

where � is a phase function and a.t; x; !/ is a classical symbol.
Every Lagrangian distribution is determined (up to smoother terms) by a

Lagrangian manifold and its symbol. The Lagrangian manifold associated to
u.t; x; !/ is the flow out from t D x �!; t < �R by the Hamilton vector field
of pg.t; x; �; �/ D �2 �Pn

j;kD1 gjk.x/�
j �k . Here .�; �/ are the dual variables to

.t; x/, respectively. The projection in the .x; �/ variables of the flow is given by the
flow out from N by geodesic flow, that is, the Lagrangian submanifold L described
above.

The scattering relation (also called lens map) Cg �
�
T �.R�@/n0	� �T �.R�

@/n0	 of a metric g D .gij / on  with dual metric g�1 D .gij / is defined as
follows. Consider bicharacteristic curves, � W Œa; b�! T �.�R/, of the Hamilton
function pg.t; x; �; �/, which satisfy the following: �.�a; bŒ/ lies in the interior, �
intersects the boundary non-tangentially at �.a/ and �.b/, and time increases along
� . Then the canonical projection from

�
T �
R�@.R �/n0

	 � �T �
R�@.R �/n0

	
onto

�
T �.R � @/n0	 � T �.R � @/n0	 maps the endpoint pair

�
�.b/; �.a/

	
to a

point in Cg . In other words, Cg gives the geodesic distance between points in the
boundary and also the points of exit and direction of exit of the geodesic if we know
the point of entrance and direction of entrance.

It is well known that Cg is a homogeneous canonical relation on
��
T �.R �

@/n0	 � �T �.R � @/n0	. (See [35] for the concept of a scattering relation.) Cg
is, in fact, a diffeomorphism between open subsets of T �.R � @/n0.

In analogy with Theorem 6, we have the following theorem.

Theorem 7. Let gi ; i D 1; 2 be Riemannian metrics on  such that the response
operators for .; g1/ and .; g2/ are equal. Then
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Cg1 D Cg2 :

Sketch of proof 2. Since by (49), we know the solutions of (48) outside . There-
fore, the associated Lagrangian manifolds to the Lagrangian distributions uj must
be the same outside : By taking the projection of these Lagrangians onto the
boundary, we get the desired claim.

In the case that .; g/ is simple, the scattering relation does not give any new
information. In fact

�
.t1; x1; �; �1/; .t0; x0; �; �0/

	 2 Cg if t1 � t0 D dg.x1; x0/ and

�j D �� @dg.x1;x0/

@xj
; j D 0; 1: In other words dg is the generating function of the

scattering relation.
This result was generalized in [36] to the case of the equations of elastodynamics

with residual stress. It is shown that knowing the response operator, we can recover
the scattering relations associated to P and S waves. For this, one uses Lagrangian
distributions with appropriate polarization.

The scattering relation contains all travel time data; not just information about
minimizing geodesics as is the case of the boundary distance function. The natural
conjecture is that on a nontrapping manifold, this is enough to determine the metric
up to isometry. We refer to [72] and the references therein for results on this
problem.

Curvelets andWave Equations

In this section we will discuss in more detail the use of curvelets in wave imaging.
We begin by explaining the curvelet decomposition of functions, using the standard
second dyadic decomposition of phase space. The curvelets provide tight frames of
L2.Rn/ and give efficient representations of sharp wave fronts. We then discuss
why curvelets are useful for solving the wave equation. This is best illustrated
in terms of the half-wave equation (a first-order hyperbolic equation), where a
good approximation to the solution is obtained by decomposing the initial data
in curvelets and then by translating each curvelet along the Hamilton flow for the
equation. Then we explain how one deals with wave speeds of limited smoothness,
and how one can convert the approximate solution operator into an exact one by
doing a Volterra iteration.

The treatment below follows the original approach of Smith [67] and focuses on
explaining the theoretical aspects of curvelet methods for solving wave equations.
We refer to the works mentioned in the introduction for applications and more
practical considerations.

Curvelet Decomposition
We will explain the curvelet decomposition in its most standard form, as given
in [67]. In a nutshell, curvelets are functions which are frequency localized in
certain frequency shells and certain directions, according to the second dyadic
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a

2k

2
k
2

2
k
2

b

2−k

–

Fig. 3 A curvelet '� with � D .k; !; x/ is concentrated (a) in the frequency domain near a box
of length �2k and width �2k=2 and (b) in the spatial side near a box of length �2�k and width
�2�k=2

decomposition and parabolic scaling. On the spatial side, curvelets are concentrated
near lattice points which correspond to the frequency localization.

To make this more precise, we recall the dyadic decomposition of the frequency
space f� 2 R

ng into the ball fj�j � 1g and dyadic shells
˚
2k � j�j � 2kC1



.

The second dyadic decomposition further subdivides each frequency shell f2k �
j�j � 2kC1g into slightly overlapping “boxes” of width roughly 2k=2 (thus each
box resembles a rectangle whose major axis has length�2k and all other axes have
length �2k=2). See Fig. 3a for an illustration. The convention that the width (2k=2)
of the boxes is the square root of the length (2k) is called parabolic scaling; this
scaling is crucial for the wave equation as will be explained later.

In the end, the second dyadic decomposition amounts to having a collection of
nonnegative functions h0; h

!
k 2 C1

c .R
n/, which form a partition of unity in the

sense that

1 D h0.�/
2 C

1X
kD0

X
!

h!k .�/
2:

Here, for each k, ! runs over roughly 2.n�1/k=2 unit vectors uniformly distributed
over the unit sphere, and h!k is supported in the set

2k�1=2 � j�j � 2kC3=2;

ˇ̌
ˇ̌ �
j�j � !

ˇ̌
ˇ̌ � 2�k=2:

We also require a technical estimate for the derivatives

jh!; @�ij @˛� h!k .�/j � Cj;˛2�k.jCj˛j=2/;

with Cj;˛ independent of k and !. Such a partition of unity is not hard to construct;
we refer to [73, Sect. 20.9.4] for the details.
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On the frequency side, a curvelet at frequency level 2k with direction ! will
be supported in a rectangle with side length �2k in direction ! and side lengths
�2k=2 in the orthogonal directions. By the uncertainty principle, on the spatial
side, one expects a curvelet to be concentrated in a rectangle with side length
�2�k in direction ! and �2�k=2 in other directions. Motivated by this, we define
a rectangular lattice „!

k in R
n, which has spacing 2�k in direction ! and spacing

2�k=2 in the orthogonal directions, thus

„!
k D

8<
:x 2 R

n I x D a2�k! C
nX

jD2

bj2�k=2!j where a; bj 2 Z

9=
;

and f!;!2; : : : ; !ng is a fixed orthonormal basis of Rn. See Fig. 3b.
We are now ready to give a definition of the curvelet frame.

Definition 2. For a triplet � D .k; !; x/ with ! as described above and for x 2 „!
k ,

we define the corresponding fine-scale curvelet '� in terms of its Fourier transform
by

O'�.�/ D .2�/�n=22�k.nC1/=4e�ix � �h!k .�/:

The coarse-scale curvelets for � D .0; x/ with x 2 Z
n are given by

O'�.�/ D .2�/�n=2e�ix � �h0.�/:

The distinction between coarse- and fine-scale curvelets is analogous to the
case of wavelets. The coarse-scale curvelets are used to represent data at low
frequencies fj�j � 1g, and they are direction independent, whereas the fine-scale
curvelets depend on the direction !.

The next list collects some properties of the (fine-scale) curvelets '� .

• Frequency localization. The Fourier transform O'�.�/ is supported in the shell
f2k�1=2 < j�j < 2kC3=2g and in a rectangle with side length �2k in the !
direction and side length �2k=2 in directions orthogonal to !.

• Spatial localization. The function '�.y/ is concentrated in (i.e., decays away
from) a rectangle centered at x 2 „!

k , having side length 2�k in the ! direction
and side lengths 2�k=2 in directions orthogonal to !.

• Tight frame. Any function f 2 L2.Rn/ may be written in terms of curvelets as

f .y/ D
X
�

c�'� .y/;

where c� are the curvelet coefficients of f :
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c� D
Z
Rn

f .y/'�.y/ dy:

One has the Plancherel identity

Z
Rn

jf .y/j2 dy D
X
�

jc� j2:

The last statement about how to represent a function f 2 L2.Rn/ in terms of
curvelets can be proved by writing

Of .�/ D h0.�/
2 Of .�/C

1X
kD0

X
!

h!k .�/
2 Of .�/

and then by expanding the functions h!k .�/
Of .�/ in Fourier series in suitable

rectangles, and finally by taking the inverse Fourier transform. Note that any L2

function can be represented as a superposition of curvelets '� , but that the '� are
not orthogonal and the representation is not unique.

Curvelets andWave Equations
Next we explain, in a purely formal way, how curvelets can be used to solve the
Cauchy problem for the wave equation

�
@2
t C A.x;Dx/

	
u.t; x/ D F.t; x/ in R � R

n;

u.0; x/ D u0.x/;

@tu.0; x/ D u1.x/:

Further details and references are given in the next section. Here A.x;Dx/ DPn
j;kD1 g

jk.x/Dxj Dxk is a uniform elliptic operator, meaning that gjk D gkj and

0 < � �Pn
j;kD1 g

jk.x/�j �k � ƒ <1 uniformly over x 2 R
n and � 2 Sn�1. We

assume that gjk are smooth and have uniformly bounded derivatives of all orders.
It is enough to construct an operator S.t/ W u1 7! u.t; � / such that u.t; x/ D

.S.t/u1/.x/ solves the above wave equation with F 
 0 and u0 
 0. Then, by
Duhamel’s principle, the general solution of the above equation will be

u.t; x/ D
Z t

0
S.t � s/F.s; x/ ds C .@tS.t/u0/ .x/C .S.t/u1/ .x/:

To construct S.t/, we begin by factoring the wave operator @2
t CA.x;Dx/ into two

first-order hyperbolic operators, known as half-wave operators. Let P.x;Dx/ Dp
A.x;Dx/ be a formal square root of the elliptic operatorA.x;Dx/. Then we have
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@2
t C A.x;Dx/ D .@t � iP /.@t C iP /

and the Cauchy problem for the wave equation with data F 
 0, u0 
 0, u1 D f is
reduced to solving the two first-order equations

.@t � iP /v D 0; v.0/ D f;

.@t C iP /u D v; u.0/ D 0:

If one can solve the first equation, then solvability of the second equation will follow
from Duhamel’s principle (the sign in front of P is immaterial).

Therefore, we only need to solve

.@t � iP /v.t; x/ D 0;

v.0; x/ D f .x/:

For the moment, let us simplify even further and assume that A.x;Dx/ is the
Laplacian ��, so that P will be the operator given by

bPf .�/ D j�j Of .�/:

Taking the spatial Fourier transform of the equation for v and solving the resulting
ordinary differential equation give the full solution

v.t; y/ D .2�/�n
Z
Rn

ei.y � �Ct j�j/ Of .�/ d�:

Thus, the solution is given by a Fourier integral operator acting on f :

v.t; y/ D .2�/�n
Z
Rn

eiˆ.t;y;�/a.t; y; �/ Of .�/ d�:

In this particular case, the phase function isˆ.t; y; �/ D y � �C t j�j, and the symbol
is a.t; y; �/ 
 1.

So far we have not used any special properties of f . Here comes the key point.
If f is a curvelet, then the phase function is well approximated on supp.f / by its
linearization in �:

ˆ.t; y; �/ 	 r�ˆ.t; y; !/ � � for � 2 supp.f /:

(This statement may seem somewhat mysterious, but it really is one reason why
curvelets are useful for wave imaging. A slightly more precise statement is as
follows: if ‰.t; y; �/ is smooth for � ¤ 0, homogeneous of order 1 in �, and its
derivatives are uniformly bounded over t 2 Œ�T; T � and y 2 R

n and � 2 Sn�1, then
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j‰.t; y; �/ � r�‰.t; y; !/ � �j . 1

whenever � �! � 2k and j� � .� �!/!j . 2k=2. Also the derivatives of ‰.t; y; �/ �
r�‰.t; y; !/ � � satisfy suitable symbol bounds. Parabolic scaling is crucial here;
we refer to [18, section “Travel Times and Scattering Relation”] for more on this
point.) Thus, if f D '� then the solution v with this initial data is approximately
given by

v.t; y/ 	 .2�/�n
Z
Rn

ei.yCt!/ � � O'�.�/ d� D '�.y C t!/:

Thus the half-wave equation for P D p��, whose initial data is a curvelet in
direction !, is approximately solved by translating the curvelet along a straight line
in direction !.

We now return to the general case, where A.x; �/ is a general elliptic symbolPn
j;kD1 g

jk.x/�j �k . We define

p.x; �/ D
p
A.x; �/:

Then p is homogeneous of order 1 in �, and it generates a Hamilton flow
�
x.t/; �.t/

	
in the phase space T �

R
n D R

n � R
n, determined by the ordinary differential

equations

Px.t/ D r�p
�
x.t/; �.t/

	
;

P�.t/ D �rxp
�
x.t/; �.t/

	
:

If A.x; �/ is smooth, then the curves
�
x.t/; �.t/

	
starting at some point�

x.0/; �.0/
	 D .x; !/ are smooth and exist for all time. Note that if p.x; �/ D j�j,

then one has straight lines
�
x.t/; �.t/

	 D .x C t!; !/.
Similarly as above, the half-wave equation

.@t � iP /v.t; x/ D 0;

v.0; x/ D f .x/

can be approximately solved as follows:

1. Write the initial data f in terms of curvelets as f .y/ DP� c�'�.y/.
2. For a curvelet '�.y/ centered at x pointing in direction !, let '�.t; y/ be

another curvelet centered at x.t/ pointing in direction �.t/. That is, translate
each curvelet '� for time t along the Hamilton flow for P .

3. Let v.t; y/ DP� c�'�.t; y/ be the approximate solution.
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Thus, the wave equation can be approximately solved by decomposing the initial
data into curvelets and then by translating each curvelet along the Hamilton flow.

Low-RegularityWave Speeds and Volterra Iteration
Here we give some further details related to the formal discussion in the previous
section, following the arguments in [67]. The precise assumption on the coefficients
will be

gjk.x/ 2 C 1;1.Rn/:

This means that @˛gjk 2 L1.Rn/ for j˛j � 2, which is a minimal assumption
which guarantees a well-defined Hamilton flow.

As discussed in section “Curvelets and Wave Equations,” by Duhamel’s formula,
it is sufficient to consider the Cauchy problem

�
@2
t C A.x;Dx/

	
u.t; x/ D 0 in R � R

n;

u.0; x/ D 0;

@tu.0; x/ D f:

Here, A.x;Dx/ D Pn
j;kD1 g

jk.x/Dxj Dxk and gjk 2 C 1;1.Rn/, gjk D gkj , and

0 < � �Pn
j;kD1 g

jk.x/�j �k � ƒ <1 uniformly over x 2 R
n and � 2 Sn�1.

To deal with the nonsmooth coefficients, we introduce the smooth approxima-
tions

Ak.x; �/ D
nX

i;jD1

g
ij

k .x/�i �j ; g
ij

k D 	.2�k=2Dx/g
ij

where 	 2 C1
c .R

n/ satisfies 0 � 	 � 1, 	.�/ D 1 for j�j � 1=2, and
	.�/ D 0 for j�j � 1. We have written

�
	.2�k=2Dx/g

	O.�/ D 	.2�k=2�/ Og.�/. Thus

g
ij

k are smooth truncations of gij to frequencies � 2k=2. We will use the smooth
approximationAk in the construction of the solution operator at frequency level 2k ,
which is in keeping with paradifferential calculus.

Given a curvelet '�.y/ where � D .k; !� ; x� /, we wish to consider a curvelet
'�.t; y/ which corresponds to a translation of '� for time t along the Hamilton flow
forHk.x; �/ D

p
Ak.x; �/. In fact, we shall define

'�.t; y/ D '�
�
‚�.t/

�
y � x�.t/

	C x�	 ;
where x� .t/ and the n � n matrix‚�.t/ arise as the solution of the equations

Px D r�Hk.x; !/;

P! D �rxHk.x; !/C .! � rxHk.x; !// !;
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x γ

t = 0

ϕγ(t, ·)

xγ(t )

ωγ(t )

ωγ

ϕγ(·)

Fig. 4 The translation of a curvelet '� for time t along the Hamilton flow

P‚ D �‚.! ˝rxHk.x; !/ � rxHk.x; !/˝ !/

with initial condition
�
x� .0/; !�.0/;‚�.0/

	 D .x� ; !� ; I /. Here v˝w is the matrix
with .v ˝ w/x D .w �x/v. The idea is that

�
x� .t/; !� .t/

	
is the Hamilton flow for

Hk restricted to the unit cosphere bundle S�
R
n D f.x; �/ 2 T �

R
n I j�j D 1g,

and ‚�.t/ is a matrix which tracks the rotation of !� along the flow and satisfies
‚�.t/!�.t/ D !� for all t . See Fig. 4 for an illustration.

We define an approximate solution operator at frequency level 2k by

Ek.t/f .y/ D
X

� 0Wk0Dk
.f; '� 0/L2.Rn/'� 0.t; y/:

Summing over all frequencies, we consider the operator

E.t/f D
1X
kD0

Ek.t/f:

This operator essentially takes a function f , decomposes it into curvelets, and then
translates each curvelet at frequency level 2k for time t along the Hamilton flow for
Hk .

It is proved in [67, Theorem 3.2] that E.t/ is an operator of order 0, mapping
H˛.Rn/ toH˛.Rn/ for any ˛. The fact thatE.t/ is an approximate solution operator
is encoded in the result that the wave operator applied to E.t/,

T .t/ D �@2
t C A.x;Dx/

	
E.t/;

which is a priori a second-order operator, is in fact an operator of order 1 and maps
H˛C1.Rn/ to H˛.Rn/ for �1 � ˛ � 2. This is proved in [67, Theorem 4.5] and
is due to the two facts. The first one is that when A is replaced by the smooth
approximationAk , the corresponding operator
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X
k

�
@2
t C Ak.x;Dx/

	
Ek.t/

is of order 1 because the second-order terms cancel. Here, one uses that translation
along the Hamilton flow approximately solves the wave equation. The second fact
is that the part involving the nonsmooth coefficients

X
k

.Ak.x;Dx/� A.x;Dx//Ek.t/

is also of order 1 using thatAk is truncated to frequencies� 2k=2 and using estimates
for A �Ak obtained from the C 1;1 regularity of the coefficients.

To obtain the full parametrix, one needs to consider the Hamilton flows both forp
Ak and �pAk , corresponding to the two half-wave equations appearing in the

factorization of the wave operator, and one also needs to introduce corrections to
ensure that the initial values of the approximate solution are the given functions.
For simplicity, we will not consider these details here and only refer to [67, Sect. 4].
The outcome of this argument is an operator s.t; s/, which is strongly continuous in
t and s as a bounded operatorH˛.Rn/! H˛C1.Rn/ satisfies s.t; s/f jtDs D 0 and
@t s.t; s/f jtDs D f , and further the operator

T .t; s/ D �@2
t C A.x;Dx/

	
s.t; s/

is boundedH˛.Rn/! H˛.Rn/ for �1 � ˛ � 2.
We conclude this discussion by explaining the Volterra iteration scheme, which

is used for converting the approximate solution operator to an exact one, as in [67,
Theorem 4.6]. We look for a solution in the form

u.t/ D s.t; 0/f C
Z t

0
s.t; s/G.s/ ds

for some G 2 L1 .Œ�t0; t0� I H˛.Rn//. From the properties of s.t; s/, we see that u
satisfies

�
@2
t C A.x;Dx/

	
u D T .t; 0/f CG.t/C

Z t

0
T .t; s/G.s/ ds:

Thus, u is a solution if G is such that

G.t/C
Z t

0
T .t; s/G.s/ ds D �T .t; 0/f:

Since T .t; s/ is bounded on H˛.Rn/ for �1 � ˛ � 2, with norm bounded by
a uniform constant when jt j; jsj � t0, the last Volterra equation can be solved by
iteration. This yields the required solution u.
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4 Conclusion

In this chapter, inverse problems for the wave equation were considered with
different types of data. All considered data correspond to measurements made
on the boundary of a body in which the wave speed is unknown and possibly
anisotropic. The case of the complete data, that is, with measurements of amplitudes
and phases of waves corresponding to all possible sources on the boundary, was
considered using the boundary control method. We showed that the wave speed can
be reconstructed from the boundary measurements up to a diffeomorphism of the
domain. This corresponds to the determination of the wave speed in the local travel
time coordinates. Next, the inverse problem with less data, the scattering relation,
was considered. The scattering relation consists of the travel times and the exit
directions of the wave fronts produced by the point sources located on the boundary
of the body. Such data can be considered to be obtained by measuring the waves
up to smooth errors or measuring only the singularities of the waves. The scattering
relation is a generalization of the travel time data, that is, the travel times of the
waves through the body. Finally, we considered the use of wavelets and curvelets
in the analysis of the waves. Using the curvelet representation of the waves, the
singularities of the waves can be efficiently analyzed. In particular, the curvelets
are suitable for the simulation of the scattering relation, even when the wave speed
is nonsmooth. Summarizing, in this chapter, modern approaches to study inverse
problems for wave equations based on the control theory, the geometry, and the
microlocal analysis were presented.
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Abstract
This paper deals with the inverse problem of the wave equation, which is
of relevance in fields such as ultrasound tomography, seismic imaging, and
nondestructive testing. We study the linearized problem by Fourier analysis,
and we describe an iterative reconstruction method for the fully nonlinear
problem in the time domain. We discuss practical problems such as the spectral
incompleteness in reflection imaging and finding a good initial approximation.
We demonstrate by numerical reconstructions from synthetic data what can be
achieved.

1 Introduction

Imaging with ultrasound, or sonography, is a well-established technique in medicine
and many other fields. It goes back to the middle of the last century [21]. The human
body is scanned by a (usually handheld) transducer that emits the sound signals
and records the reflected signals. The mathematical models used in present days
are fairly simple. In particular they assume straight line propagation of the sound
signals. More refined models take into account the bending of the rays. They go
under the name of diffraction tomography [15, 32, 56].

In this article we deal with an even more refined method of ultrasound imaging
which is based on the wave equation. This permits to take into account not only
bent rays but also multiple reflections. These techniques are not yet part of current
medical practice, but prototype scanners based on these principles have already been
built and tested in a clinical environment [4, 20].

Speaking in mathematical terms, we deal with the ultrasound imaging problem
as the inverse problem for the wave equation. We determine parameters such as
the speed of sound and the attenuation from measurements of the field outside
the object. Imaging with the wave equation plays an important role not only in
medical radiology, but also in nondestructive testing and seismic exploration. Our
goal is to deal with the fully nonlinear problem. We start with a survey on the
results obtained by linearization. For the fully nonlinear problem, we describe in
detail the Kaczmarz method in the time domain. It turns out that Kaczmarz method,
whose linear version is widely used in X-ray tomography [25], can be viewed in a
very intuitive way as consecutive time reversal. We show by numerical examples
that Kaczmarz method easily solves the standard problems, such as transmission
tomography and reflection imaging with broadband data. We also study the behavior
of the method in nonstandard situations, such as caustics, trapped rays, and, in
particular, missing low frequencies in the source pulse.

The literature on inverse problems for the wave equation is inexhaustible. So we
restrict our discussion to the exact solution of the fully nonlinear coefficient inverse
problem for general objects. We do not even mention the important work on obstacle
scattering [12], where the object is homogeneous and only the shape of the object
is sought for, nor do we deal with level set methods [18]. Neither do we discuss the
many approximate methods, except for the Born approximation, because it gives so
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much insight into the fully nonlinear problem. Other problems which we ignore are
the linear inverse source problems [29] and phase contrast tomography [31].

2 TheModel Problem

We consider the following initial value problem for the wave equation. Let ˝ be a
domain in Rn; n D 2; 3 and let , D @˝ . Let c.x/ be the speed of sound in x 2 ˝ .
Let T > 0 be the observation time. Let u be a solution of the initial-boundary value
problem

@2u

@t2
.x; t/ D c2.x/�u.x; t/; x 2 ˝; 0 < t < T; (1)

@u

@�
D q.t/ı,;s.x/; x 2 ,; 0 < t < T; (2)

u.x; t/ D 0; t < 0 (3)

with � the exterior normal on , . We consider the inverse problem of determining c
from the values of u.x; t/ on, �.0; T /, or on part of it. The function q represents the
source pulse, and ı,;s is the Dirac ı-function on , concentrated at the source s 2 , .
We always assume that c2.x/ D c2

0.x/=.1 C f .x// with the (known) background
velocity c0 and a function f > �1 which has to be determined.

We remark that everything we are doing in this paper can also be done for more
general problems, such as problems with varying density [26], in moving media [61]
and problems with attenuation [4, 20, 40].

3 The Born Approximation

Even though the underlying differential equation is linear, the inverse problem
is nonlinear. Most of the literature on the problem makes use of some kind of
linearization, mostly the Born approximation. Our goal is definitely to deal with
the fully nonlinear problem. However linearization leads to valuable insights also
for the nonlinear problem. Therefore we discuss the Born approximation in some
detail.

An Explicit Formula for the Slab

We restrict ourselves to a very simple geometry: ˝ is just the slab 0 < xn < D.
Sources and receivers are sitting either on both boundaries (transmission mode)
or on only one of them (reflection mode). It is more convenient to work with the
inhomogeneous initial value problem
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@2u

@t2
.x; t/ D c2.x/ .�u.x; t/C q.t/ı.x � s// ; x 2 Rn; 0 < t < T; (4)

u.x; t/ D 0; t < 0 (5)

with ı the Dirac function in Rn and s a source. We also assume c.x/ D c0 > 0
constant in this section. Equations (4), (5) is a simplified version of (1)–(3).

We also look at the problem in the frequency domain. For the Fourier transform
in Rn, we use the notation

Of .�/ D .2�/�n=2
Z
Rn
e�ix � �f .x/dx

and we denote the inverse Fourier transform of f by Qf . Doing an inverse Fourier
transform with respect to t in (4), we get

�Qu.x; !/C k2.1C f /Qu.x; !/ D �Qq.!/ı.x � s/ (6)

where k D !=c0 is the wave number. Because of (5) this equation has to be
complemented by the Sommerfeld radiation condition for outgoing radiation, i.e.,

@Qu
@jxj � ik Qu! 0; jxj ! 1:

In this section we derive an explicit representation of the Born approximation by
Fourier analysis. We follow [14, 42].

For f D 0, the solution of (6) is Qq.!/Gk.x � s/ with Gk the free space Green’s
function which we give in the plane wave decomposition

Gk.x/ D icn
Z
Rn�1

ei.jxnj�.�0/�x0 � �0/ d�
0

�.� 0/
(7)

where c2 D 1=.4�/; c3 D 1=.8�2/; �.z/ D pk2 � z2. For z > k, �.z/ is defined
to be i

p
z2 � k2.

For arbitrary f , we put Qu.x/ D Qq.!/Gk.x � s/C v.x; s/, obtaining for v

�xv.x; s/C k2.1C f .x//v.x; s/ D �k2 QqGk.x � s/f .x/:

Neglecting f v leads to the Born approximation

�xv.x; s/C k2v.x; s/ 	 �k2 Qq.!/Gk.x � s/f .x/

or

v.x; s/ 	 k2 Qq.!/
Z
˝

Gk.x � y/Gk.y � s/f .y/dy:
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With x0 the first n� 1 coordinates of x and correspondingly for s; y we rewrite this
as

v.x0; xn; s0; sn/ 	 k2 Qq.!/
Z D

0

Z
Rn�1

Gk.x
0 � y0; xn � yn/f .y0; yn/

Gk.y
0 � s0; yn � sn/dy0dyn:

Inserting (7) we get

v.x0; xn; s0; sn/ 	 �c2
nk

2 Qq.!/
Z D

0

Z
Rn�1

Z
Rn�1

ei.jxn�yn j�.�0/�.x0�y0/ � �0/

Z
Rn�1

f .y0; yn/ei.jyn�snj�.
 0/�.y0�s0/ � 
 0/ d� 0d
 0

�.� 0/�.
 0/
dy0dyn:

The y0 integral is just a .n � 1/-dimensional Fourier transform, hence

v.x0; xn; s0; sn/ 	 �.2�/n�1k2c2
n Qq.!/

R D
0

R
Rn�1

R
Rn�1

ei.jxn�ynj�.�0/Cjyn�snj�.
 0/�x0 � �0Cs0 � 
 0/ Of .
 0 � � 0; yn/ d�0d
 0

�.�0/�.
 0/
dyn: (8)

where Of is the .n � 1/-dimensional Fourier transform of f with respect to the first
n � 1 variables. Fourier transforms of dimensions n � 1 with respect to x0 and s0
yield

Ov.� 0; xn; 
 0; sn/ 	 �k2c2
n Qq.!/

.2�/2.n�1/

�.� 0/�.
 0/

Z D

0
ei jxn�ynj�.�0/Ci jyn�sn j�.
 0/

Of .� 0 C 
 0; yn/dyn:

In particular we have

Ov.� 0; 0; 
 0; 0/ 	 A Of .� 0 C 
 0;��.� 0/� �.
 0//; (9)

Ov.� 0;D; 
 0; 0/ 	 AeiD�.�0/ Of .� 0 C 
 0; �.� 0/ � �.
 0// (10)

where Of is now the n-dimensional Fourier transform of f and A D
�k2 Qq.!/c2

n.2�/
3n=2�1=.�.� 0/�.
 0//. Equations (9), (10) is the solution of the

inverse problem of reflection and transmission imaging, resp., in the Born
approximation. Note that the derivation of (9), (10) depends entirely on the plane
wave decomposition of Gk which was used first in this context in [14].

Let’s look at the transmission case, i.e., (10). For simplicity, we consider the 2D
case. Consider the semicircle of radius k in the upper half plane around the origin.
Attach to each point of this semicircle the semicircle of radius k around this point
that opens downward. According to (10), Of is determined by the data along each
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ξn

ξn

ξ ′

ξ ′

– k

– k

k

k

Fig. 1 Left: Fourier coverage for transmission imaging. Right: Fourier coverage for reflection
imaging. k is the wave number. The figures are for n D 2. For n D 3, one has to rotate the
figures around the vertical axis

of these semicircles. These semicircles fill the circles of radius k with midpoints
.˙k; 0/; see Fig. 1. In the reflection case (9) we proceed in the same way, except
that we start out from the semicircle in the lower half plane. Now the attached
semicircles fill the semicircle of radius 2k in the lower half plane, except for the
circles of radius k around .˙k; 0/.

Thus we see a fundamental difference between transmission and reflection
imaging: In transmission imaging low frequency features f can be recovered
irrespectively of the frequency content of the source pulse q, whereas in reflection
imaging one needs low frequencies in the source pulse to recover low frequency
features in f . This is one of the main difficulties in seismic imaging; see [9, 19, 22,
30,60]. To the best of our knowledge, Fig. 1 appeared first in [35,64]. The difficulties
in reflection imaging without low frequencies will be discussed in section “Missing
Low Frequencies”.

We also conclude from (9), (10) that combined transmission and reflection
measurements determine Of within the ball of radius 2k. In other words, since
� D 2�=k is the wavelength of the irradiating sources, the spatial resolution
according to Shannon’s sampling theorem is 2�=2k D �=2. This is a classical
result already known to Born.

The numerical evaluation of (9), (10) is by no means trivial. In principle it
can be done by Fourier transforms. However this requires a sophisticated software
for non-equispaced fast Fourier transforms. Assuming uniform sampling of Ov in
� 0 and 
 0 leads to non-equispaced sampling of Of on a grid of the type shown in
Fig. 2. An implementation similar to the filtered backprojection algorithm of X-ray
computerized tomography has been given in [14].

An Error Estimate for the Born Approximation

We now assume that ˝ is a ball of radius r , the background speed is constant as in
the previous section, and that the illumination done is by plane waves. This leads to
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Fig. 2 Non-equidistant grid
at which Of is given by (9),
(10) for n D 2

the problem

�uC k2.1C f /u D 0; (11)

u D ui C us (12)

where ui D exp ikx � � is the incoming wave with direction � 2 Sn�1 and
wave number k and us is the scattered wave satisfying the Sommerfeld radiation
condition of exterior radiation. We assume f to be supported in ˝ . � runs
through all of S1 for n D 2 and through a great circle of S2 for n D 3. The
problem is to determine f from g�.z/ D us.s� C z/ for some s with jsj > r

and z 2 �?. The decisive tool for the error estimate is an estimate for the
operator

Gku.x/ D k2
Z
Gk.x � y/u.y/dy

in L2.jxj < r/. In [41] it has been shown that

jjGkjjL2.jxj<r/ D kr�n.kr/

where �n is a function with N�n D sup.0;1/ �n < 1. For instance, N�2 � 0:8. We
have us D k2Gk.f .ui C us//, hence, with q D kr�n.kr/; qjjf jjL1.jxj<r/ <
1

jjusjjL2.jxj<r/ � q

1 � qjjf jjL1.jxj<r/
jjf jjL2.jxj<r/: (13)

We introduce the propagation operator

.U�f /.z/ D
Z
Gk.s� C z � y/f .y/ui .y/dyI
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see [14]. For the .n � 1/-dimensional Fourier transform of U� in �?, we
have

.U�f /
^.�/ D i

r
�

2
ei jsj�.�/

1

�.�/
Of ..��.�/� k/� C �/

where �.�/ D p
k2 � j�j2 and � D sgn.s/. This is essentially Theorem 3.1 of

[50].
We have

k�2g� D U�f C U� us
ui
f

hence

k�2 Og�.�/ D i
r
�

2
ei jsj�.�/

1

�.�/

� Of ..��.�/ � k/� C �/C .usf /^..��.�/� C �/
�
:

Now let � 2 Rn be in the ball j�j < 2k. We can find � 2 Sn�1; � 2 �? with
� D .��.�/� k/� C �. For any such choice of � and �, the last formula yields

Of .�/ D OfB.�/ � .usf /^.� C k�/; OfB.�/ D �i
r

2

�
e�i jsj�.�/�.�/k�2 Og�.�/:

Since

j.usf /^j � .2�/�n=2jjusjjL2.jxj<r/jjf jjL2.jxj<r/

we have for j�j � 2k

ˇ̌
ˇ Of .�/ � OfB.�/

ˇ̌
ˇ � .2�/�n=2 q

1� qjjf jjL1.jxj<r/
jjf jj2L2.jxj<r/: (14)

Thus we obtained an approximation of second order in f for Of in the ball j�j �
2k. This is what we expect from the Born approximation. The restriction to the
bandwidth 2k is also natural as this corresponds to the maximal spatial resolution
of �=k.

We see from (14) that the decisive quantity for the Born approximation to be
valid is qjjf jjL1.jxj<r/. In the engineering literature, see, e.g., [32], it is well known
that this is a measure for the phase shift generated by the object f . Thus we arrive
at the conclusion that the Born approximation works if the phase shift is sufficiently
small. We also conclude from (14) that the reconstruction process, if restricted to the
resolution �=k is fairly stable: there are no unstable operations in the computation
of OfB . It has been shown in [53] that this is also the case for the fully nonlinear
problem, provided the geodesics behave reasonably. Thus the frequently discussed
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instability of the inverse scattering problem is just a consequence of an inadequate
choice of the frequency of the irradiating waves.

4 The Nonlinear Problem in the Time Domain

In this section we deal with the problem in the form (1)–(3). We suggest a very
simple but practically useful iterative method and discuss some theoretical and
practical aspects of it.

The Kaczmarz Method in the Time Domain

For a finite number of sources sj ; j D 1; : : : ; p we have to solve a system of the
form

Rj .f / D gj ; j D 1; : : : ; p: (15)

where Rj is an operator between a Hilbert space H of functions on ˝ � .0; T / and
certain Hilbert spaces Hj of functions on , � .0; T /. In our case the operator Rj
is defined by Rj .f / D uj j, �.0;T /, where uj is the solution of (1)–(3) for the source
s D sj .

A natural method for solving (15) is the Kaczmarz method. This is an iterative
method with the update

fjC1 D fj C ˛.R0
j 0.fj //

�C�1
j 0 .gj 0 �Rj 0.fj //; j D 1; 2; : : :

where j 0 D j mod p . Here, R0
j is the Fréchet derivative of Rj , R0

j
� its adjoint,

and Cj is a positive definite operator. Going through all the equations once is called
a complete sweep of the Kaczmarz method.

In the linear case, i.e., if Rj W H ! Hj is a linear bounded operator the
convergence of the Kaczmarz method is well understood, in particular for the case
of CT; see, e.g., [50], Theorem 5.1.

If Cj � RjR�
j is positive semidefinite, the sequence fj converges for 0 <

˛ < 2 to Pf1 C RCg, where P is the orthogonal projection on the nullspace of
R D .R1; : : : ; Rp/ andRC is the Moore–Penrose generalized inverse of R. In the
nonlinear case the situation is much less clear, see [6] for a theoretical discussion of
the issue.

The Kaczmarz method is not to be confused with the Landweber iteration. In
the Landweber method one does the update only after all the equations have been
processed, while in Kaczmarz we do the update as soon as a single equation is
processed. In practice Kaczmarz turns out to be much faster than Landweber. In
the linear finite dimensional case Kaczmarz is identical to the SOR method, see
Theorem 5.2 in [50]. Also, the speed of convergence depends on the ordering
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of the sources. Sequential ordering does not yield the best results. Sophisticated
arrangements, in particular random orderings, are much better. For the case of CT,
see Section 5.3.1 of [50].

In order to compute R0
j .f / for our imaging problem, we replace f by f C h

and uj by uj C w with h; w small and ignore higher order terms. We get for w the
differential equation

1

c2

@2w

@t2
D �w� h

c2
0

@2uj
@t2

; x 2 ˝; 0 < t < T; (16)

@w

@�
D 0; x 2 ,; 0 < t < T; (17)

w D 0; t < 0: (18)

Hence we expect that

R0
j .f /h D wj, �.0;T /:

In fact it has been shown in [16] that with a suitable choice of Hilbert spacesH;Hj

the operator Rj is Fréchet differentiable and the expression above is the derivative.
A possible choice is H D H 2.˝/, restricted to functions f > �1, and Hj D
H 1=2., � .0; T //.

Now we come to the problem of computing the adjoint of R0
j . For this we have

to specify the spaces H;Hj . To make things easy, we put H D L2.˝/;Hj D
L2., �.0; T //, i.e., we considerR0

j as an unbounded operator between these spaces.
Then the adjoint R0

j
� satisfies

.R0
j .f /h; g/L2.˝�.0;T // D .h;R0

j .f /
�
/g/L2.,�.0;T //

for sufficiently smooth functions h; g. Determining the exact domain of definition
of the adjoint is a more tricky question which is not considered here.

To find an explicit form of the adjoint, we follow [38]. We start out from the
identity

Z
˝

Z T

0

�
1

c2

@2w

@t2
��w

�
zdtdx �

Z
˝

Z T

0

�
1

c2

@2z

@t2
��z

�
wdtdx

D
Z
,

Z T

0

�
@z

@�
w � z

@w

@�

�
dtdx C

�Z
˝

1

c2

�
@w

@t
z� w

@z

@t

�
dx

�T
0
:

where � is the exterior normal on, . This holds for any sufficiently smooth functions
w; z on˝�.0; T /. Choosing for w the solution of (16)–(18) with u D uj the solution
of (1)–(3) for source j and for z the solution of the final value problem
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@2z

@t2
D c2�z in ˝ � .0; T /; (19)

@z

@�
D g on , � .0; T /; (20)

z D 0 for t > T (21)

we obtain

�
Z
˝

h

c2
0

Z T

0

@2uj
@t2

zdtdx D
Z
,

Z T

0
g.R0

j .f /h/dtdx;

or, using inner products,

�
�
h;

1

c2
0

Z T

0

@2uj
@t2

zdt

�
L2.˝/

D
�
R0
j .f /h; g

�
L2.,�.0;T // :

Hence

.R0
j .f //

�g D � 1

c2
0

Z T

0

@2uj
@t2

zdt (22)

with z the solution of the final value problem (19)–(21). Note that z is nothing but
the time reversed field. Thus the Kaczmarz method is just a consecutive form of
time reversal, a technique that is used extensively for imaging problems [2, 3, 57].

Numerical Example (Transmission)

In this section we show what can be achieved for a mammography scanner patterned
after [20] for the Salt Lake City breast phantom suggested in [4]. The reconstruction
region is a circle of radius 8 cm. On the boundary we have 128 receivers and a
modest number of sources, namely 8, see Fig. 3. The source pulse at the sources
is q.t/ D cos.!t/exp.�.t=�/2/ with � D �=!. The frequency of the irradiating
waves is 1 MHz, i.e., ! D 2�106/s. With a background speed c0 D 1;500 m/s this
corresponds to a wavelength of 1.5 mm, hence to a spatial resolution of 0.75 mm.
In Fig. 4 we display the rays, suggesting that a straight line assumption is useless.
We show the reconstruction after 1 sweep and after 6 sweeps of the Kaczmarz
method with relaxation parameter ˛ D 2 � 1012 and Cj D 1. Note that the
number of sources as well as the number of sweeps is very small, leading to very
reasonable reconstruction times. The spatial stepsize was chosen to be 0.33 mm,
which corresponds to 1/6 of the wavelength.

For truly 3D examples, see [23, 39].
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Fig. 3 Kaczmarz method in time domain for breast phantom. Left: Phantom with 8 sources and
128 receivers. Middle: One sweep of the Kaczmarz method. Right: Six sweeps of the Kaczmarz
method. Grey window in all panels is from �0:1 to 0.1

Fig. 4 Rays for breast
phantom

Numerical Examples (Reflection)

In this example the reconstruction region is the slab 0 � xn � D, and we have
sources and receivers on xn D 0 only. This is the situation, e.g., in seismic imaging
and in supine mammography [17, 26, 44]. In our example we adjust the Salt Lake
City breast phantom of the previous section to the supine position of the patient,
see Fig. 5. The five tumors have a diameter of 1.5 mm. To discover them, we need
incoming waves of wavelength 3 mm, which, assuming a background speed of
sound of 1,500 m/s, corresponds to a frequency of 500 kHz. From the section on the
Born approximation we know that for reflection imaging we need low frequencies.
So we are not surprised that the Kaczmarz method, as probably any other iterative
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Fig. 5 Left: Breast phantom for patient in supine position. Right: Reconstruction

method, does not work for the comparatively high frequency of 500 kHz. What
we do to circumvent this difficulty is to start the iteration with data for 30 kHz,
use the result as an initial approximation for 1.2 MHz, and use the result again
as an initial approximation for the final reconstruction with 500 kHz. This idea of
starting with low frequencies is due to [8]. On each level we do only 6 sweeps,
with relaxation parameters ˛ chosen by trial and error. From Fig. 5 we see that the
tumors are easily recovered, as we expect from the theory. Height of the pictures
is 7.5 cm. The numerical work has been done on a 20 cm � 10 cm rectangle with a
step size of 0.5 mm. We remark that only 19 sources sitting on the top boundary of
the reconstruction region were used, but the number of receivers (400) was much
larger. In the computation we did not use these 19 sources consecutively. We rather
chose the sources in a random order.

5 The Nonlinear Problem in the Frequency Domain

This problem was considered in the early nineties as the paradigm of a nonlinear
ill-posed problem. It was treated by regularized versions of Newton’s method.
Numerical examples were restricted to objects of the size of the wavelength, see
[24, 27, 33]. However in medical applications, e.g., in mammography, the object
size is typically 100 wavelengths.

Initial Value Techniques for the Helmholtz Equation

In order to carry out the Kaczmarz method in the frequency domain, we have to
solve the forward problem (6) and the corresponding adjoint problem repeatedly.
In particular for high wave numbers k this is a numerical challenge [27]. For-
tunately it is possible to use initial value techniques for the solution of elliptic
equations such as (6). Such methods are notoriously unstable. However it is
possible to stabilize them, simply by removing the evanescent waves, see [34,
48, 51]. These methods are effective only if the true speed of sound deviates
from the background only a little, typically by not more than 10 %, as is
the case in mammography. An improved version that is able to handle much
greater variations of the velocity, as they occur, e.g., in seismics, can be found
in [59].
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The Kaczmarz Method in the Frequency Domain

Based on the initial value techniques of the previous section, an extremely efficient
implementation of the Kaczmarz method in the frequency domain is possible [49].
We describe the method for ˝ the ball of radius r and plane wave irradiation. f
may now be a complex-valued function

f .x/ D c2
0

c.x/2
� 1 � i

k

2�.x/c0

c.x/

with �.x/ the (unknown) attenuation. Let ,j̇ be the planes or straight lines

perpendicular to �j touching , . We assume the functions gj̇ D us on ,j̇ to

be known, i.e., ,j̇ play the role of the detectors. The operator Rj W L2.˝/ !
L2.,

C
j /, where us is the solution of the initial value problems for (11) with

us D g�
j

@Qus
@xn

.x0/ D .2�/.1�n/=2
Z
R.n�1/

i�.� 0/OQus.� 0/e�ix0 � �0

d� 0

on , �
j , where x0; � 0 are the local variables on , �

j , �.� 0/ D p
k2 � j� 0j2

and O stands for the .n � 1/-dimensional Fourier transform with respect to x0.
The last equation is a finite form of the Sommerfeld radiation condition, see,
e.g., [11]. As in section (4.1), see also [38], we compute the adjoint of the
derivative .R0

j .f //
� W L2.,

C
j / ! L2.˝/: .R0

j .f // � .r/ D z, where z is the
solution of

�zC k2.1C f /z D 0 between , �
j and , C

j ; (23)

z D 0;
@z

@�j
D rus on , C

j : (24)

We remark that (23), (24) is just the frequency domain form of time reversal.

6 Initial Approximations

The biggest problem with Kaczmarz method is to find an initial approximation for
which the process converges. In this section we derive a heuristic criterion that
works surprisingly well in practice, at least for transmission imaging. The condition
reads

ˇ̌
ˇ
Z
.f � f0/ds

ˇ̌
ˇ � � (25)
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where � is the largest wavelength contained in the spectrum of the pulse q and the
integral is taken along the geodesics belonging to the initial guess c0 for c.

We give two derivations of (25). Both of them are heuristic but fortunately they
agree, and they perform well in practice. The first derivation uses the frequency
domain formulation (6) of the problem. The forward operator Rj is defined by
Rj .f / D Quj, with Qu the solution of (6) with s D sj . With w D Qu � Qu0; Qu0 the
solution of (6) with f D f0; s D sj we have

Rj .f / �Rj .f0/ D wj, ; (26)

��w � k2.1C f0/w D k2.f � f0/Qu: (27)

For simplicity, we assume that we do the Kaczmarz method with Cj D
R0
j .fj /.R

0
j .fj //

�. Then the first approximation f1 of the Kaczmarz method
satisfies

R0
j .f0/.f1 � f0/ D ˛.Rj .f / �Rj .f0//:

Let w1 be the solution of

��w1 � k2.1C f0/w1 D k2.f1 � f0/Qu0=˛: (28)

Then

w1j, D R0
j .f0/.f1 � f0/=˛ D Rj .f /�Rj .f0/:

Thus the solutions w; w1 of (27), (28) coincide on , . Comparing (27) and (28), we
see that f1 can be similar to f only if Qu; Qu0 have similar phase,

jphase.Qu/ � phase.Qu0/j < �; (29)

say. If this condition is not satisfied, then even the first iterate f1 goes astray.
Thus we consider (25) as a highly necessary condition for the convergence of the
Kaczmarz method with starting element f0. According to the WKB-approximation
of Qu, we have

Qu 	 A exp.ik˚/

where the phase ˚ satisfies the eikonal equation jr˚ j2 D 1C f and A is the real-
valued amplitude. The same holds for Qu0 with an amplitude A0 and a phase ˚0. For
f close to f0, we have

˚ 	 ˚0 C 1

2

Z
.f � f0/ds
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Fig. 6 Example for
non-convergence if (25) is not
satisfied. Left: True object.
Right: Object to which the
method converges

where the integral is along the geodesics of the background; see [53]. Combining
the last three equations leads to (25).

The second derivation of (25) takes place in the time domain. We look at the
traces u.x0; 0; t/ and u0.x

0; 0; t/. Qualitatively they look similar: They resemble
time delayed and scaled versions of the pulse q. The delays are roughly the
integrals of 1=c; 1=c0, resp., along the geodesics. Thus the difference of the delays
is approximately

Z
ds

c
�
Z
ds

c0
D
Z �p

1C f �
p

1C f0

� ds
c0
D
Z
f � f0

2

ds

c0
:

The width w of the pulse q is determined by the lowest frequency ! in the pulse.
We have approximately w D �=!. Minimization of the norm of the difference of
the traces has an effect only if the traces overlap, i.e., if the difference of the delays
is smaller that the width of the pulse. This means that

j
Z
f � f0

2

ds

c0
j < �=!

Since � D 2�c0=!, this is equivalent to (25).
We remark that (25) has been derived in [54] as the condition for the validity of

the ray method for the inverse problem.
In order to confirm (25) numerically we created a simple test phantom which is

0.125 in the circle of radius 6 cm, the ambient speed of sound c0 being 1,500 m/s. It
was illuminated by 8 sources sitting on the circle of radius 8 cm. The sources had a
constant signature from 350 down to 120 and 80 kHz, respectively. In this case the
left hand side of (25) is 1.5 cm for f0 D 0, while the largest wavelength is 1.25 and
1.875 cm, respectively. Thus (25) is satisfied for the lowest frequency 80 kHz, and in
fact we observed convergence to the true object. For the lowest frequency 120 kHz
(25) is not satisfied. The method became stationary at an object that is quite different
from the true object; see Fig. 6. We remark the highest frequency (350 kHz) is of no
relevance here. If we double it, the convergence behavior is the same.



Sonic Imaging 1269

7 Pecularities

Missing Low Frequencies

Often the source pulse q contains only high frequencies, i.e., Qq (the signature in
the jargon of seismic imaging) vanishes near 0. As we have seen previously this
is not much of a problem in transmission imaging; it only forces us to use a good
initial approximation. But it is one of the main difficulties in reflection imaging.
We mentioned this in the framework of the Born approximation in Sect. 3. Again
we restrict ourselves to the two-dimensional case. Assuming that the source pulse
q has wave numbers in Œkmin; kmax�, we conclude from (9) that Of is determined by
the reflection data inside the circle of radius 2kmax, except for the circles with radius
kmin around .˙kmin; 0/; see Fig. 7. This means that the reconstruction is essentially
a high pass filtered version of the true object.

For special media, we can do better [47]. For instance, if the medium in the slab
0 < xn < D is layered, i.e., f depends on xn only, then the n-dimensional Fourier
transform of f becomes Of .� 0; �n/ D .2�/.n�1/=2ı.� 0/ Of .�n/, where ı is the Dirac
ı function in Rn�1 and Of on the right hand side is the one-dimensional Fourier
transform. In the reflection case we have xn D sn D 0 in (8), and since the problem
is invariant with respect to translation in Rn�1 we can restrict s0 to 0. Hence (8)
assumes the form

v.x0; 0; 0; 0/ 	 �c2
nk

2.2�/n�1=2 Qq.!/
Z
Rn�1

e�ix0 � �0 Of .�2�.� 0//
d� 0

k2 � j� 0j2
or

.�x0 C k2/v.x0; 0; 0; 0/ 	 c2
nk

2.2�/n�1=2 Qq.!/
Z
Rn�1

e�ix0 � �0 Of .�2�.� 0//d� 0:
(30)

If x0 runs through all of Rn�1, we can recover Of from this relation in the interval
Œ0; 2k�. However in practice x0 is restricted to a finite aperture jx0j � R. This makes

Fig. 7 Fourier coverage for
reflection data with smallest
wavenumber kmin and largest
wavenumber kmax

kmin 2kmax

x1

x2
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Fig. 8 Left: Luneburg lens with rays focussing on a focal point on the rim. Middle: Luneburg lens
with a few tumors. Right: Reconstruction with 6 sweeps of the Kaczmarz method

it difficult to determine Of in all of Œ0; 2k�. For instance, let f represent a point
object in depth z, i.e., f .xn/ D ı.xn � z/. Then, Of .�2�.� 0// D .2�/�1=2e2i�.�0/ is
a smooth function away from j� 0j D k, but oscillates rapidly near this manifold, in
particular for large z. In the vicinity of a point � 0, j� 0j < k it looks like a function of
bandwidth

�2zjr�0�.� 0/j D 2zj� 0j=�.� 0/:

Thus, by the sampling theorem, Of .� 0/ can be recovered from (30) only if R >

2zj� 0j=�.� 0/, i.e., for j� 0j < k=
p

1C 4z2=R2. Summing up we arrive at the
following conclusion:

We can determine Of .� 0/ for objects up to depth z from reflection data with
aperture R and wave number k only for

k=
p

1C 4z2=R2 � j� 0j � 2k: (31)

The derivation for (31) given here is entirely heuristic, but it has been corroborated
in many numerical experiments. For an alternative derivation, see [62]. Making use
of analytic continuation one can go beyond this result and determine the remaining
part of Of provided that k;R; z satisfy a certain condition, see [47].

Another case in which we can do something without low frequencies is the case
of media with a small dip angle, see [46].

Caustics and Trapped Rays

It seems that the Kaczmarz method is very robust with respect to pecularities, such
as caustics and trapped rays. As an example in which caustics occur we treat the
famous Luneburg lens [36], which generates a focal spot on the rim of the lens, see
Fig. 8. We see that the Kaczmarz method does not have the slightest problem with
the reconstruction.
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Fig. 9 Top left: Medium with trapped rays. Middle: Trapped rays medium with tumors. Right:
Reconstruction with 6 sweeps of the Kaczmarz method

With trapped rays we have the same situation. In Fig. 9 we display the ray pattern
for a medium with trapped rays [28]. We add some tumors and do the reconstruction.
As in the previous example the Kaczmarz method does the reconstruction without
any trouble.

The Role of Reflectors

It belongs to the lore of seismic imaging that reflectors greatly improve the
reconstructed images; see [10, 13, 63]. In this section we study this phenomenon
within the Born approximation and we demonstrate its practical relevance by
numerical simulations; see also [45].

We again assume ˝ to be the strip 0 < xn < D. We use the form (4), (5) of
the inverse problem. We put the sources on xn D D and model the reflector at
xn D 0 by stipulating the Neumann boundary condition @u=@xn D 0 on xn D 0.
Proceeding exactly as in section “An Explicit Formula for the Slab” we get for the
Born approximation

v.x0; xn; s0; sn/ 	 k2 Qq.!/
Z
˝

G0
k.x

0 � y0; xn; yn/G0
k.y

0 � s0; yn; sn/f .y/dy:

where

G0
k.x

0 � y0; xn; yn/ D Gk.x0 � y0; xn � yn/CGk.x0 � y0; xn C yn/

is Green’s function for the Neumann boundary condition at xn D 0. We first do
.n � 1/-dimensional Fourier transforms with respect to x0 and s0, obtaining

Ov.� 0; xn; 
 0; sn/ 	 k2 Qq.!/
DZ

0

Z

Rn�1

OG0
k.�

0; xn; yn/ OG0
k.


0; yn; sn/e�i.�0C
 0/ �y0

dy0dyn

(32)
where the hat stands for the .n�1/-dimensional Fourier transform. From (7) we see
that
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OGk.� 0; xn/ D i.2�/.n�1/=2cn
ei jxnja.�0/

�.� 0/
:

Thus,

OG0
k.�

0; xn; yn/ D i.2�/.n�1/=2cn
ei jxn�ynj�.�0/ C ei jxnCynj�.�0/

�.� 0/
:

It follows that for xn D sn D D; 0 � yn � D

OG0.�
0; xn; yn/ D 2i.2�/.n�1/=2cn

eirn�.�
0/

�.� 0/
cos.yn�.�

0//

OG0.

0; yn; sn/ D 2i.2�/.n�1/=2cn

eisn�.

0/

�.
 0/
cos.yn�.
 0//

Inserting this into (32) leads to

Ov.� 0;D; 
 0;D/ 	 A
Z D

0

Z
Rn�1

e�i.�0C
 0/ �y0

cos.�.� 0/yn/ cos.�.
 0/yn/f .y0; yn/

dy0dyn;

A D �4c2
n.2�/

n�1k2 Qq.!/e
i.D�.�0/CD�.
 0//

�.� 0/�.
 0/
:

The y0 integral is a .n � 1/-dimensional Fourier transform. Hence

Ov.� 0;D; 
 0;D/ 	 .2�/.n�1/=2A

DZ

0

cos.�.� 0/yn/ cos.�.
 0/yn/ Of .� 0 C 
 0; yn/dyn:

(33)
Here Of is the .n � 1/-dimensional Fourier transform of f with respect to x0. Since

cos.�.� 0/yn/ cos..�.
 0/yn/ D 1
2fcos..�.� 0/C �.
 0//yn/C

cos..�.� 0/ � �.
 0//yn/g

we have

Ov.�0;D; 
 0;D/ 	.2�/.n�1/=2A

2
f.C Of .� 0 C 
 0; � //.�.� 0/C �.
 0//C

.C Of .� 0 C 
 0; � //.�.�/ � �.
 0//g (34)

where C denotes the cosine transform:
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Fig. 10 Top: Principle of
CARI. Bottom:
Reconstruction from
CARI-data with 20 Kaczmarz
sweeps

fatmetal plate (reflector)

transducer/receiver array

gel filling

fat

glandular tissue

tumor

.Cf /.�/ D
DZ

0

cos.�x/f .x/dx:

Equation (34) is the solution in the Born approximation of the inverse scattering
problem with a reflector. The essential difference to the solution without a reflector,
as given in (9), is that the argument �.�0/ � �.
 0/ shows up, indicating that small
frequencies are involved.

In [43] it is shown that (34) in fact permits the determination of the Fourier
transform of f for frequencies down to 0. In [45] it is shown what can be achieved
by a combination of reflectors with the Kaczmarz method in mammography [5, 58]
see Fig. 10. Again we use 19 sources at the top boundary. The relaxation parameter
˛ is 3 �107. We work with a source pulse whose signature is uniform from 50 to
500 kHz. Without the mirror the results would be completely unsatisfactory.

8 Direct Methods

In this section we mention some non-iterative methods which provide exact
solutions to the nonlinear problem.

Boundary Control

The boundary control method for inverse problems of hyperbolic differential equa-
tion has been developed in [1]. We follow [55] and start out from the formulation
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(1)–(3) of the inverse problem. Let uh be the solution of (1) with @u=@� D h on
, � .0; T / and aC.t/ D .a.t/C a.2T � t//=2 for any function a. Let for functions
h; g on , � .0; T /

Œh; g� D
Z
˝

c�2.x/uht .x; T /ugt .x; T /dx;

Œh; g�1 D
Z
˝

ruh.x; T / � rug.x; T /dx:

The key to the boundary control method are the relations

Œh; g� D
Z
,

Z T

0
.uC
g h� gCuh/dxdt; (35)

Œh; g�1 D
Z
,

Z T

0
.uC
gt
hC gCuht /dxdt: (36)

Note that the right hand sides of (35), (36) can be evaluated without knowing c. All
we need to know is uh; ug on , � .0; 2T / for the functions h; g, and this is just the
data for the inverse problem.

Now let ' be any harmonic function in ˝ . We determine a function h' on , �
.0; T / such that uh' D '. Let hs.x; t/ D q.t/ı.x � s/ for each source s on , . We
try the Ansatz

h' D
X
s

ashs

with certain coefficients as , i.e.,

'.x/ D
X
s

asuhs .x; T /:

The coefficients as may be determined from the equations

Z
˝

r'.x/ � ruhw.x; T /dx D
X
s

as

Z
˝

ruhs .x; T / � ruhw.x; T /dx

which, by the Gauss integral theorem can be written as

Z
,

@'

@�
.x/uhw.x; T /dx D

X
s

asŒhw; hs�1 (37)

The left hand side and the coefficients on the right hand side are determined by the
data. Solving (37) for as we get the function h' . We do this for many harmonic
functions '; . By (35) we then can compute the numbers
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Z
˝

c�2' dx D Œh'; h �:

Since the products of harmonic functions are complete in L2.˝/, this determines c.

Inverse Scattering

The inverse problem of ultrasound tomography is a typical case of inverse scattering.
Uniqueness questions have been dealt with in [37, 52]. Since the methods in these
papers are, in principle, constructive, numerical methods can be based on these
methods, see [7].

9 Conclusion

The mathematics of sonic imaging is well understood, at least for the linearized
problem with constant background. Reasonably efficient iterative methods for the
fully nonlinear problems are available for transmission imaging. Time domain as
well as frequency domain methods are being used. In reflection imaging the main
problem is the lack of low frequencies in the source pulse. It is not clear at present
if this problem ever finds a satisfactory solution.
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Abstract
We give a self-contained presentation of coherent array imaging in random
media, which are mathematical models of media with uncertain small-scale
features (inhomogeneities). We describe the challenges of imaging in random
media and discuss the coherent interferometric (CINT) imaging approach. It is
designed to image with partially coherent waves, so it works at distances that do
not exceed a transport mean-free path. The waves are incoherent when they travel
longer distances, due to strong cumulative scattering by the inhomogeneities, and
coherent imaging becomes impossible. In this article we base the presentation of
coherent imaging on a simple geometrical optics model of wave propagation with
randomly perturbed travel time. The model captures the canonical form of the
second statistical moments of the wave field, which describe the loss of coherence
and decorrelation of the waves due to scattering in random media. We use it to
give an explicit resolution analysis of CINT which includes the assessment of
statistical stability of the images.

1 Introduction

Sensor array imaging is an important technology in a variety of applications such
as medical ultrasound, nondestructive evaluation of materials, underwater acoustics,
geophysical prospecting, radar, and elsewhere. In general terms, it seeks to estimate
wave sources or reflecting structures in a medium using measurements at the
sensors, which are devices that transform one form of energy into another. In
radar the sensors are antennas that convert electromagnetic waves to/from electrical
signals. In underwater acoustics they are hydrophones that convert changes in water
pressure to electrical signals, and so on.

The array consists of many sensors which are placed close together on a
measurement surface, so that they behave like a collective entity. It occupies a
bounded set, the array aperture, which we denote by A. In problems like synthetic
aperture radar [16], there isn’t an actual array. Instead, one or more sensors mounted
on a moving platform span a long path, the synthetic aperture. To fix ideas we
assume throughout an actual array, but most of the results presented here extend
to problems with synthetic apertures.

When the sensors are just receivers, we say that the array is passive. The
sources of waves are typically far away from the passive array, and the problem
is to determine them from the measurements at the receivers. Active arrays consist
of sensors that are sources and receivers. They probe the medium with waves
emitted by one or many sources and receive the echoes from the unknown reflecting
structures.

The recordings at the receivers are called the array data. We are concerned with
coherent imaging systems, meaning that the data are time-resolved measurements
of the waves. Equivalently, in the Fourier domain, the data are measurements
of the amplitude and the phase of the Fourier components of the waves, for all
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the frequencies in the bandwidth. Incoherent imaging systems like in infrared or
optical tomography measure the net intensity of the waves, which are typically
single frequency or narrow-band. They image at distances that are larger than a
transport mean-free path, a length scale which marks the onset of diffusion in
random media [29, 35]. They involve very different data processing and give worse
image resolution than the coherent ones.

Imaging is a simplified inverse problem for the wave equation. One example of
an inverse problem is to determine the coefficients in the wave equation, like the
wave speed, from measurements of the solution at the sensor locations. This is a
nonlinear and ill-posed problem that is difficult to solve [30, 33, 34]. Imaging seeks
less information about the medium, such as the loci of jumps of the wave velocity,
which model the location of reflecting structures. It is an easier problem as long as
we know the source of waves and how the waves propagate.

An imaging system is useful only if it is robust to uncertainties in the problem.
We may think of uncertainties as “noise,” but not all noise is the same. Some is easier
to deal with, like additive measurement noise considered in most of the applied
imaging literature. However, uncertainties in the model of wave propagation are
much harder to mitigate. We study the effect of such uncertainties arising in imaging
in complex media with numerous small inhomogeneities, i.e., with microstructure.
This is unknown in practice and cannot be estimated from the necessarily band-
limited data as part of the imaging process. The microstructure may not even be
interesting in applications. However, it cannot be ignored because although one
inhomogeneity by itself is negligible, there are many of them and their cumulative
wave scattering effect builds up as the waves travel in the medium.

We deal with the unknown microstructure by modeling it with random processes,
and thus study imaging in random media. We describe first the forward problem, that
is the mapping from the random microstructure to the solution of the wave equation
at the location of the sensors. This solution is a random field. The data are one
realization of this field, corresponding to one realization of the random medium.
The challenge is to find imaging methods that are robust, i.e., that produce images
which do not change significantly with the realization of the random medium. The
robustness is called statistical stability.

To analyze imaging in random media, we study the statistics of the wave field
at the sensors. Specifically, we calculate the mean field, which we call the coherent
field, and its random fluctuations, the incoherent field. When the fluctuations are
small, the data is coherent and imaging is easier. When the fluctuations dominate
the mean field, the data is incoherent. This is a typical regime in applications like
diffusion tomography. We look at a regime between these two, where the data is
partially coherent. The cumulative scattering effects are important in this regime,
and mathematics allows us to understand them under simplifying assumptions
like: the inhomogeneities are weak scatterers; there is separation of scales; the
microstructure decorrelates rapidly with distance. Recent results [22, 25] have
relaxed the latter assumption to media with long range correlation, and the case
of strong inhomogeneities can be handled in some media [21].
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The analysis of wave propagation in random media is quite involved, and it
is specific to the scaling regime. There is no universal treatment of the problem,
no one fits all regime. The detailed quantification of cumulative scattering effects
and the calculation of important scales such as the scattering mean-free path and
the transport mean-free path depend on the assumptions on the microstructure and
the frequency range [35]. However, there are canonical effects such as the loss of
coherence and decorrelation of the waves that can be given a generic description,
via the second statistical moments of the random wave field. We describe them with
the simplest model of wave propagation in random media, which accounts only
for random wavefront distortions. It is a geometrical optics approximation of the
solution of the wave equation, with randomly perturbed travel time. We use this
model for the purpose of a self-contained analysis of coherent imaging in random
media. The results extend to more general wave scattering regimes, as described in
[3, 7–9, 18, 27].

2 Main Text

The presentation is organized as follows: We begin in Sect. 3 with the basics of
imaging. We formulate the data model and the reverse time migration imaging
function as an approximate least squares solution of the inverse problem. Migration
is the basic imaging method in many applications. We describe in Sect. 4 the
challenges of imaging in complex media. The analysis of imaging in such media
is in Sects. 7 and 8. It uses the random travel time model described in Sect. 5 and the
setup given in Sect. 6. We show with detailed calculations in Sect. 7 how migration
imaging fails in complex media with significant cumulative wave scattering by the
microstructure. Then we analyze in Sect. 8 the coherent interferometric (CINT)
approach, which is designed to image with partially coherent waves. We give a
detailed resolution analysis of this method, including the assessment of its statistical
stability and illustrate the results with numerical simulations.

3 Basic Imaging

In this section we present a mathematical formulation of imaging with sensor
arrays. We begin in section “The Forward Model” with the description of the model
of the data recorded by passive and active arrays. We call it the forward model
because it maps the source distribution or the reflectivity, the unknowns in the
imaging problem, to the wave field measured by the sensors. In general there is
no explicit inverse mapping from the array data to the unknown source density or
reflectivity. We show in section “Least Squares Inversion” how we can state the
imaging problem in variational, least squares data fit form. The mathematical model
of the time reversal process can be viewed as an approximation of the solution of
the least squares problem, as described in section “The Normal Operator and the
Time Reversal Process”. It can be computed and used for imaging only when we
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know the medium through which the waves propagate. We discuss its refocusing in
smooth media and robustness to additive noise in section “Imaging in Smooth and
Known Media.”

The ForwardModel

We base the forward model of the array data on the scalar wave equation for the
acoustic pressure p.t; Ex/

1

c2.Ex/
@2p.t; Ex/
@t2

��p.t; Ex/ D F.t; Ex/; Ex 2 R
3; t > 0; (1)

where c.Ex/ is the wave speed and F.t; Ex/ the source density. We call p.t; Ex/ the
wave field and relate it to the source using Duhamel’s principle

p.t; Ex/ D
Z t

0
ds

Z
Rn

d EyF.s; Ey/G.t�s; Ey; Ex/ D
Z
Rn

d EyF.t; Ey/?t G.t; Ey; Ex/: (2)

Here G.t; Ex; Ey/ is the causal Green’s function, the solution in the sense of distribu-
tions of

1

c2.Ex/
@2G.t; Ex; Ey/

@t2
��ExG.t; Ex; Ey/ D ı.Ex� Ey/ı.t/; Ex; Ey 2 R

n; t > 0; (3)

G.t; Ex; Ey/ D 0; t < 0; (4)

where �Ex is the Laplace operator in the Ex variable, and ı is the Dirac distribution.
The second equality in (2) is because both the source and Green’s function are causal
(supported at time t > 0), and we can write

Z t

0
ds F.s; Ey/G.t � s; Ex; Ey/ D

Z 1

�1
ds F.s; Ey/G.t � s; Ey; Ex/ D F.t; Ey/ ?t G.t; Ex; Ey/:

Convolutions are not convenient for the analysis, so we often work in the Fourier
(frequency) domain. The Fourier transform of the wave field is defined as

Op.!; Ex/ D
Z 1

�1
dt p.t; Ex/ei!t ; (5)

and the inverse transform is

p.t; Ex/ D
Z 1

�1
d!

2�
Op.!; Ex/e�i!t : (6)
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The dual variable to time t in these transformations, denoted by !, is the angular
frequency (measured in radians per second). It is related to the frequency (measured
in Hz) by a factor of 2� . We also relate ! to the wavenumber k and the wavelength
� using a reference wave speed scale co,

k D !

co
D 2�

�
: (7)

The advantage of working in the Fourier domain is that the convolution in (2)
becomes a product

Op.!; Ex/ D
Z
Rn

d Ey OF .!; Ey/ OG.!; Ey; Ex/; (8)

with OG.!; Ey; Ex/ the Fourier transform of the causal Green’s function. This is the
same as the outgoing Green’s function of the Helmholtz equation.

Passive Array Data Model
When imaging with passive arrays, F.t; Ex/ is unknown. We assume for simplicity
that it has the separable form

F.t; Ex/ D f .t/�.Ex/; (9)

where the same signal f .t/ is emitted from all the points in the support of the source
density �.Ex/. In some applications like synthetic aperture radar, f .t/ is a complex
valued and long (chirped) signal. But in other applications f .t/ is a function of
small temporal support, a pulse. We assume henceforth such a pulse and model
f .t/ as a base-band pulse fB.t/modulated by an harmonic signal at carrier (central)
frequency !o=.2�/,

f .t/ D ei!otfB.t/: (10)

The terminology becomes clear in the frequency domain, where

Of .!/ D
Z 1

�1
d! f .t/ei!t D OfB.! � !o/: (11)

The signal fB.t/ is called base-band pulse because its Fourier transform OfB.!/ is
supported at ! 2 Œ��B; �B�. Then, the frequencies !=2� in the support of Of .!/
lie in the interval centered at !o=.2�/ of bandwidth B .

The Nr receivers located at Exr in the aperture A of the array measure the data

D.t/ D ˚d.t; Exr /
 ; t 2 .0; T �; Exr 2 A; r D 1; : : : ; Nr; (12)

over the time duration T . Equivalently, in the Fourier domain we have
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OD.!/ D
n Od.!; Exr /

o
; j! � !oj � �B; Exr 2 A; r D 1; : : : ; Nr : (13)

The goal of imaging is to estimate from these data the support of �, which is
contained in a compact set IW � R

n called the imaging window.
We use a terminology borrowed from the seismic imaging literature, and refer

to d.t; Exr / as time traces, to emphasize that they are time recordings. Their model
comes from (2),

d.t; Exr / D 1.0;T �.t/

"Z 1

�1
d!

2�

Z
IW

d Ey OF .!; Ey/ OG.!; Exr ; Ey/ e�i!t CNr .t/

#
;

(14)
where we added the noise Nr .t/ indexed by the receiver. We assume as is typical
that Nr .t/ is white noise, i.e., a real-valued stationary Gaussian generalized process
with zero expectation, covariance equal to the delta distribution, and independent
over the receivers

E ŒNr .t/� D 0; E
�
Nr .t/Nr 0.t 0/

� D 
2
N ı.t � t 0/ır;r 0 : (15)

Here E denotes statistical expectation; ır;r 0 is the Kronecker delta symbol; the
parameter 
N scales the noise level and the time window 1.0;T �.t/ is equal to one
when t 2 .0; T � and zero otherwise. The waves are transient and thus can be
captured for large enough T . We assume such a T so we can ignore the window
1.0;T �.t/ in the first term of (14), and obtain the following relation in the Fourier
domain,

Od.!; Exr / 	
Z
IW

d Ey OF .!; Ey/ OG.!; Exr ; Ey/C ON T
r .!/;

ON T
r .!/ D

Z T

0
dt Nr .t/e

i!t :

(16)
The forward map M takes the unknown source density � to the data space D. We

show in the next section how to formulate the inverse problem as an optimization
that computes an “approximate inverse” of M in some sense. This is not an actual
inverse which may not even exist. For optimization, it is convenient to work in
function spaces with inner products. Thus we assume that �.Ey/ lies in L2.IW /, the
Hilbert space of real valued and square integrable functions supported in IW , with
inner product

.�; �/ D
Z
IW

d Ey�.Ey/�.Ey/ ; 8 �; � 2 L2.IW / ; (17)

and norm k�k2 D
p
.�; �/. The data lies in the vector space of functions of finite

energy
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D D
(
Od.!; Exr / 2 C; s.t.

NrX
rD1

Z
j!�!o j	�B

d!
ˇ̌
ˇ Od.!; Exr /

ˇ̌
ˇ2 <1

)
; (18)

endowed with the complex inner product

D Od; OgE D
Z

j!�!o j	�B
d!

NrX
rD1

Od.!; Exr / Og.!; Exr /; 8 Od; Og 2 D; (19)

and the norm k Od kD D
rD Od; Od E:

The forward map M W L2.IW /! D is the linear operator defined by

ŒM�� .!; Exr / D Of .!/
Z
IW

d Ey �.Ey/ OG.!; Exr ; Ey/: (20)

It assumes that we know the pulse and the wave speed c.Ex/, i.e., the Green’s
function. The latter assumption turns out to be critical, and it is not satisfied in
complex media with microstructure.

Active Array DataModel
To state the model for active arrays, we redefine the coefficient in the wave equation
as

1

c2.Ex/ Ý 1

c2.Ex/ C
�.Ex/
c2
o

; (21)

where c.Ex/ is the assumed known wave speed in the medium which hosts the
perturbation (reflectivity) �.Ex/ that we wish to estimate. It is supported in a compact
set IW � R

n that defines the imaging region. The name reflectivity suggests that we
expect it to cause reflected waves (echoes) that can be measured at the array. This
is relevant for most imaging setups where the array lies on one side of the medium.
For example, in exploration geophysics, the receivers lie on the surface of the earth
and do not see waves that interact with the subsurface unless � reflects them.

Suppose that the excitation comes from a source in the array, idealized as a point
at Exs 2 A,

F.t; Ex/ D f .t/ı.Ex � Exs/: (22)

The array has Ns � 1 sources which may emit simultaneously, but we assume here
that the excitation is with one source at a time, and we emphasize with the notation
p.t; Ex; Exs/ the dependence of the wave field on the source location. It satisfies
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1

c2.Ex/
@2p.t; Ex; Exs/

@t2
��Ex p.t; Ex; Exs/ D �

�.Ex/
c2
o

@2p.t; Ex; Exs/
@t2

C (23)

f .t/ı.Ex � Exs/; t > 0;

with initial condition

p.0; Ex; Exs/ D @

@t
p.0; Ex; Exs/ D 0; (24)

and we can write it in terms of the causal Green’s function using Duhamel’s
principle

p.t; Ex; Exs/ D f .t/ ?t G.t; Ex; Exs/�
Z
IW

d Ey �.Ey/
c2
o

@2p.t; Ey; Exs/
@t2

?t G.t; Ex; Ey/: (25)

In the forward model we evaluate (25) at the receiver locations Ex D Exr 2 A,
for r D 1; : : : ; Nr . (The sources and receivers may be collocated). The first term
f .t/ ?t G.t; Exr ; Exs/ is the direct wave that does not interact with the reflectivity. We
can remove it by time windowing, assuming that it arrives much earlier than the
echoes from the medium. Thus, we redefine the origin of time of the measurements
after the direct arrival of the wave from Exs , and let henceforth p.t; Exr ; Exs/ model
the echoes from the medium for t 2 .0; T �. The second term in (25) depends
nonlinearly on �. We use its linearization, known as the Born approximation, as
is typical in imaging. The approximation holds when � has small amplitude and/or
small support, although numerical experiments suggest that it may have a wider
range of validity. We refer to [32] for its analysis in media with general bounded
background wave speed c.Ex/.

The Born data model is

d.t; Exr ; Exs/ 	
Z 1

�1
d!

2�
k2 Of .!/

Z
IW

d Ey�.Ey/ OG.!; Exr ; Ey/ OG.!; Ey; Exs/e�i!tC

1.0;T �.t/Nrs.t/; (26)

where Nrs.t/ is the additive noise indexed by the receivers and the sources. The
latter index reminds us that the noise varies from one illumination to another. We
suppose as before that Nrs.t/ is white noise, independent over the array sensors

E ŒNrs.t/� D 0; E
�
Nrs.t/Nr 0s0.t

0/
� D 
2

N ı.t � t 0/ır;r 0ıs;s0 : (27)

We also choose a large enough T , so that we can neglect the effect of the window
in the first term of the right-hand side of (26).

The forward map M W L2.IW /! D takes square integrable reflectivity functions
� to functions in the data space
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D D
(
Od.!; Exr ; Exs/ 2 C;

NrX
rD1

NsX
sD1

Z
j!�!oj	�B

d!
ˇ̌
ˇ Od.!; Exr ; Exs/

ˇ̌
ˇ2 <1

)
; (28)

with complex inner product

D Od; OgE D
Z

j!�!o j	�B
d!

NrX
rD1

NsX
sD1

Od.!; Exr ; Exs/ Og.!; Exr ; Exs/; 8 Od; Og 2 D; (29)

and induced norm k Od kD D
rD Od; Od E. It is given by

ŒM�� .!; Exr ; Exs/ D k2 Of .!/
Z
IW

d Ey�.Ey/ OG.!; Exr ; Ey/ OG.!; Ey; Exs/; (30)

and it assumes that we know both the pulse Of .!/ and the Green’s function, i.e.,
c.Ex/.

Least Squares Inversion

The imaging problem is to estimate from the array measurements the location of
the unknown remote sources and/or reflectors in the medium. We show here how
it relates to the problem of least squares minimization of the misfit between the
measured data and the model prediction. Because the data space depends on the
type of the array, we treat separately passive and active arrays. In both cases the
unknown lies in the Hilbert space L2.IW / with inner product (17).

Connection to Bayesian Inversion
The least squares minimization of the misfit between the measured data and the
model prediction is widely used in the literature. It arises in Bayesian inversion,
where the least squares minimizer is known as the maximum likelihood estimator.

Denote by �.d j�/ the density of the likelihood function, which is the probability
that we observe the data d given �. Bayes’ rule says that the posterior probability
density �.�jd/ of �, given the data, is

�.�jd/ D �.d j�/�.�/
�.d/

;

where �.�/ is the prior probability density of � and �.d/ is the marginal likelihood
density of the data. Assuming no information about � prior to the measurements,
we take a uniform density �.�/ over the imaging region. The marginal likelihood
�.d/ tells us if the data can be achieved by measurements. We suppose that this is
so, which means that �.d/ is just a constant which plays no role in the estimation.
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Under all these assumptions, we obtain that maximizing the posterior �.�jd/ is the
same as maximizing the likelihood function �.d j�/. This is given by

�.d j�/ � exp

"
�kd �M�k2

D

2
2
T

#
; (31)

and its maximizer, the maximum likelihood estimate, is the same as the least squares
solution described in the next sections. The symbol� in Eq. (31) means equal up to
a normalization constant. We have a normal probability density because we assume
white noise which is Gaussian and independent over the receivers. The variance

2
T D T
2

N is the noise power at a sensor, calculated over the duration T of the
measurements. The noise is essentially uncorrelated over the frequencies when the
bandwidth is sampled at intervals �! � 2�=T , as follows by a straightforward
calculation.

Imagingwith Passive Arrays
The variational formulation of the inverse problem is: Find � 2 L2.IW /, a minimizer
of the data misfit

O.�/ D k Od �M�k2
D
D
Z

j!�!o j	�B
d!

NrX
rD1

ˇ̌
ˇ Od.!; Exr /� ŒM�� .!; Exr /

ˇ̌
ˇ2 : (32)

We may add a penalty term in (32), such as a multiple of k�k2
2 to regularize the

problem. We do not do so because it does not play a role in the basic imaging
methods derived below. However, regularization is important and one can use other
penalties, such as total variation and sparsity promoting norms, to improve the
quality of images [15, 26].

The first-order optimality condition satisfied by the minimizer of (32) is

ŒM?M�� .Eys/ D
h
M? Od

i
.Eys/; 8 Eys 2 IW ; (33)

where the operator M? W D! L2.I
W
/ is the adjoint of M, defined formally by the

relation

D Od ;M�
E
D
�
M? Od ; �

�
; 8 � 2 L2.IW /;

Od 2 D: (34)

It is given explicitly by

h
M? Od

i
.Eys/ D

Z
j!�!oj	�B

d! Of .!/
NrX
rD1

Od.!; Exr / OG.!; Eys; Exr /; (35)
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where Eys are the search points that sweep the imaging region IW , and the bar denotes
the complex conjugate.

Equation (33) are the normal equations and M?M W L2.IW / ! L2.IW / is the
normal operator

ŒM?M�� .Eys/ D
Z
IW

d Ey �.Ey/Kpas.Ey; Eys/; (36)

with kernel

Kpas.Ey; Eys/ D
Z

j!�!o j	�B
d!

ˇ̌
ˇ Of .!/

ˇ̌
ˇ2

NrX
rD1

OG.!; Ey; Exr / OG.!; Eys; Exr /: (37)

It is usually not invertible, so one way of solving (33) is to compute the pseudo-
inverse ofM?M, which is typically very expensive. However, the kernelKpas.Ey; Eys/
has the important property that is large for points Ey in the vicinity of Eys and small
otherwise, as we explain in more detail in section “The Normal Operator and the
Time Reversal Process.” Thus, from the point of view of approximating the support
of �, we may replace the normal operator in (33) by the identity, and obtain that

�.Eys/ �
h
M? Od

i
.Eys/ D

Z
j!�!o j	�B

d! Of .!/
NrX
rD1

Od.!; Exr / OG.!; Eys; Exr /: (38)

The factor Of .!/ is not essential in imaging with pulses, although it is important
when the source emits a long chirped signal or a stationary noise signal. In that case
the factor Of .!/ arises in a data pre-processing step known as pulse compression.
Since we assume that the source emits a pulse, we may neglect Of .!/ in (38) to
obtain

�.Eys/ � J .Eys/ D
Z

j!�!oj	�B
d!

2�

NrX
rD1

Od.!; Exr / OG.!; Eys; Exr /: (39)

This is useful for applications where f .t/ may not be known. The normalization
constant 1=.2�/ is convenient for inverting the Fourier transform.

The meaning of the symbol � in (38) and (39) is that large values of the
right-hand sides correspond to points in the vicinity of the support of �. Thus,h
M? Od

i
.Eys/ or its simplification J .Eys/ are imaging functions.

Imagingwith Active Arrays
The case of active arrays is similar to the above, except that the data space is given by
(28), and the complex inner product is (29). The unknown reflectivity � is estimated
by a minimizer of
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O.�/ D k Od �M�k2
D
D
Z

j!�!o j	�B
d!

NrX
rD1

NsX
sD1

ˇ̌
ˇ Od.!; Exr ; Exs/� ŒM�� .!; Exr ; Exs/

ˇ̌
ˇ2 ;

(40)
and satisfies the normal equations

ŒM?M�� .Eys/ D
h
M? Od

i
.Eys/; 8 Eys 2 IW : (41)

The adjoint operator M? W D! L2.IW / defined formally by

D Od ;M�
E
D
�
M? Od ; �

�
; 8 � 2 L2.I

W
/; Od 2 D; (42)

has the explicit expression

h
M? Od

i
.Eys/ D

Z
j!�!oj	�B

d! k2 Of .!/
NrX
rD1

NsX
sD1

Od.!; Exr ; Exs/ OG.!; Eys; Exr / (43)

OG.!; Eys; Exs/;

and the normal operator M?M W L2.I
W
/! L2.I

W
/,

ŒM?M�� .Eys/ D
Z
IW

d Ey �.Ey/Kact.Ey; Eys/; (44)

has the kernel

Kact.Ey; Eys/ D
Z

j!�!oj	�B
d! k4

ˇ̌
ˇ Of .!/

ˇ̌
ˇ2

NrX
rD1

OG.!; Ey; Exr / OG.!; Eys; Exr /

NsX
sD1

OG.!; Ey; Exs/ OG.!; Eys; Exs/: (45)

We discuss this kernel in some detail in section “The Normal Operator and the
Time Reversal Process,” and we relate it to the kernel (37) arising in imaging with
passive arrays. Again, we expect that Kact peaks near its diagonal, so we can estimate
the support of the reflectivity by replacing M?M with the identity in the normal
equations. We obtain

�.Eys/ �
h
M? Od

i
.Eys/ D

Z
j!�!o j	�B

d! k2 Of .!/
NrX
rD1

NsX
sD1

Od.!; Exr ; Exs/ OG.!; Eys; Exr /

OG.!; Eys; Exs/; (46)
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with symbol� having the same meaning as in (39).
The factor !2 Of .!/ in (46) amounts to convolving the second derivative f 00.t/

of the emitted signal with the time reversed data. But in the Born approximation
(26) the time reversed data is determined by f 00.�t/ convolved with the Green’s
functions. Thus, we have f 00.t/ ?t f 00.�t/ in (46). Such convolutions are important
only when the emitted signals are long, like chirps, or noise signals. Because our
f .t/ is a pulse, we can estimate the support of the reflectivity using the imaging
function

�.Eys/ � J .Eys/ D
Z

j!�!oj	�B
d!

2�

NrX
rD1

NsX
sD1

Od.!; Exr ; Exs/ OG.!; Eys; Exr / (47)

OG.!; Eys; Exs/:

The Normal Operator and the Time Reversal Process

We draw here an analogy between the normal operator and the time reversal process,
to give a physical meaning of its replacement by the identity in Eqs. (38) and (46).
The time reversal process is described in section “The Time Reversal Process.” The
connection to the normal operator is in section “The Normal Operator.”

The Time Reversal Process
The time reversal process is a physical experiment that uses an array of N sensors
which act as both receivers and sources. It is a two-step process. In the first step
the sensors are receivers which record over a time window 	T .t/ of duration T ,
the waves generated by a remote point-like source at Ey that emits a pulse '.t/. This
may be the same as f .t/, but it is convenient for the discussion to take an arbitrary
function '.t/, with the same bandwidth as f .t/. We can model the density of the
point-like source by letting � be supported in a ball B

R
.Ey/ centered at Ey of radius

R � �o. This allows us to approximate the Green’s function in the model of the
data by its value at Ey, and obtain a net source amplitude equal to the integral of
� over B

R
.Ey/. The wave equation and the imaging function are linear in �, so we

normalize the net source amplitude to one.
In the second step of the experiment, the array time reverses the recordings

and re-emits them simultaneously from all the sensors, which act as sources. The
resulting wave propagates in the medium, and it refocuses near the original source,
due to the time reversibility of the wave equation. The quality of the refocusing
depends on how large the array is, the length of time of the recordings, and the
medium.

The recordings at the receivers are denoted by

d	.t; Exr / D 	T .t/'.t/ ?t G.t; Exr ; Ey/; (48)
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and their time reversed version dTR.t; Exr / D d	.T � t; Exr / has the Fourier transform

OdTR.!; Exr / D ei!T Od	.!; Exr /; (49)

for r D 1; : : : ; N . This is the ideal model, without additive noise. We obtain from
(48) that

Od	.!; Exr / D
Z
d!0

2�
O	.!0T / O'.! � !0/ OG.! � !0; Exr ; Ey/ 	 O'.!/ OG.!; Exr ; Ey/ ;

(50)

where we let

	
T
.t/ D 1

T
	

�
t

T

�
;

for a function 	 of dimensionless argument and support of order one. The
approximation in (50) is for large recording times T satisfying !oT � 1, and for
the window normalization 	

T
.0/ D 1:

The array emits the time reversed field d
TR

from all the sensors at once, and the
wave observed at the search points Eys is modeled by

p
TR
.T C t; Eys; Ey/ D

NX
rD1

Z
d!

2�
Od
TR
.!; Exr / OG.!; Exr ; Eys/e�i!.TCt /

D
NX
rD1

Z
d!

2�
Od	.!; Exr / OG.!; Exr ; Eys/e�i!t

	
NX
rD1

Z
d!

2�
O'.!/ OG.!; Exr ; Ey/ OG.!; Exr ; Eys/e�i!t ; (51)

where we used the approximation (50). Because of the time reversibility of the wave
equation, it refocuses at the original source, at offset time t D 0. The time reversal
point spread function

K
TR
.Eys; Ey/ D p

TR
.T; Eys; Ey/ 	

NX
rD1

Z
d!

2�
O'.!/ OG.!; Exr ; Ey/ OG.!; Exr ; Eys/ (52)

models the refocused wave field. We describe it briefly in section “Imaging in
Smooth and Known Media” in the case of smooth media. The cross-range resolution
of the refocusing depends on the wavelength, the distance from the source to the
array and the array aperture. The range resolution is determined by the bandwidth.
In complex media the focusing may be improved. This is known as super-resolution.
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By improved we mean that with a limited aperture we may get better cross-range
resolution than we would if the medium were smooth. We refer to [6,19,27] for the
analysis and illustration of super-resolution.

The Normal Operator
In the case of passive arrays, the normal operator is given by (36). It is a linear
integral operator with kernel Kpass.Ey; Eys/ written explicitly in (37). We see that it is
the same as the time reversal point spread function (52) for '.!/ D j Of .!/j2. That
is to say, the kernel of the normal operator is mathematically equivalent to the time
reversal function for a source at Ey, emitting the pulse with Fourier transform equal
to j Of .!/j2. The tighter the refocusing of the wave at Ey in the time reversal process,
the more the kernel is peaked at Ey D Eys , and the closer the behavior of the normal
operator to an approximate identity in Eq. (38).

The normal operator for the case of active arrays is given by (44), and its kernel
is (45). Let us write it assuming that each sensor in the array acts as a source and
receiver, so that Nr D Ns D N . We have

Kact.Ey; Eys/ D
Z

j!�!o j	�B
d! k4j Of .!/j2

"
NX
rD1

OG.!; Exr ; Ey/ OG.!; Eys; Exr /
#2

; (53)

which can be related to the time reversal process using the time-dependent field

p.N/
TR
.T C t; Ey; Eys/ D

Z
j!�!o j	�B

d! k2j Of .!/j
NX
rD1

OG.!; Exr ; Ey/ OG.!; Eys; Exr /e�i!t :

(54)
This is the wave observed at location Eys and time T C t in the time reversal process,
in the case of a source at Ey, emitting a pulse with Fourier coefficient k2j Of .!/j. The
focusing in (54) is expected at t D 0, and the time reversal point spread function is
equal to p.N/

TR
.T; Ey; Eys/. The kernel (53) is, up to a constant, the time convolution of

p.N/
TR

with itself, evaluated at t D 0,

Kact.Ey; Eys/ D 2�p.N/
TR
.T C t; Ey; Eys/ ?t p.N/TR

.T C t; Ey; Eys/ˇ̌
tD0: (55)

If the wave field p.N/
TR
.T C t; Ey; Eys/ focuses at Eys D Ey around t D 0, so will the

kernel. Thus, the normal operator behaves as an approximate identity if the time
reversal process focuses with sharp resolution.

The generalization of (55) to arrays with Nr receivers and Ns sources is

Kact.Ey; Eys/ D 2�p.Nr /
TR

.T C t; Ey; Eys/ ?t p.Ns/TR
.T C t; Ey; Eys/ˇ̌

tD0: (56)
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In particular, for a single source Ns D 1, and there is no refocusing of p.Ns/
TR

.T C
t; Ey; Eys/ at Eys D Ey. The behavior of the kernel is determined by the refocusing of the
wave p.Nr /

TR
.T C t; Ey; Eys/.

Imaging in Smooth and KnownMedia

In known media the imaging function (39) is the mathematical analogue of the
time reversal point spread function. We describe it in this section for the case of
smooth media. In unknown media we cannot compute (39). We use instead the
reverse time migration imaging function that propagates the waves from the array
to the imaging region in a surrogate medium. It is the method of choice in many
imaging applications. The Kirchhoff migration imaging function is a high frequency
approximation of the reverse time migration function, where the propagation is
replaced by a synchronization of the waves using travel times.

Once we have defined the imaging functions, the question is how well do they
work? To answer it, we identify two properties that make an imaging method useful:

1. The image should focus at �, i.e., jJ .Eys/j should be large near the support of �
and small elsewhere.

2. The focusing should be robust.

We study in section “Robustness to Additive Noise.” We postpone the more involved
discussion of robustness to uncertainties in complex media until Sects. 7 and 8. The
characterization of the focusing of the image is known as resolution analysis. We
state the resolution limits for a setup with small arrays.

Passive Arrays
When we know the medium, and therefore the Green’s function OG, we can process
the data as in (39) to form an image. The data processing has the physical
interpretation of taking the traces received at the array, time reversing them, and
then back-propagating them to the imaging point via the Green’s function. Because
the Green’s function models the actual wave propagation in the known medium, the
back-propagation in J .Eys/ is equivalent to solving the wave equation with source
term

F.t; Ex/ D
NrX
rD1

d.�t; Exr /ı.Ex � Exr /;

and evaluating the pressure field at Eys 2 IW , at the expected time of refocus. The
imaging process is mathematically equivalent to the time reversal process described
in section “The Normal Operator and the Time Reversal Process” because we know
precisely the medium!
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To study the imaging function (39), let us recall the model (16) of the data and
write

J .Eys/ D
Z

j!�!o j	�B
d!

NrX
rD1

Od.!; Exr / OG.!; Eys; Exr / D
˝
J .Eys/˛C ıJ .Eys/: (57)

The first term is the model of the image in the absence of noise

˝
J .Eys/˛ D

Z
IW

d Ey �.Ey/
Z

j!�!o j	�B
d! Of .!/

NrX
rD1

OG.!; Exr ; Ey/ OG.!; Eys; Exr /; (58)

and the second term models the effect of the noise

ıJ .Eys/ D
Z

j!�!o j	�B
d!

NrX
rD1

ON T
r .!/

OG.!; Eys; Exr /: (59)

We study ıJ .Eys/ in section “Robustness to Additive Noise,” so we concentrate here
on
˝
J .Eys/˛, which we rewrite as

˝
J .Eys/˛ 	

Z
IW

d Ey�.Ey/
Z

j!�!oj	�B
d!

2�
Of .!/

NrX
rD1

˛.Exr ; Ey/˛.Exr ; Eys/ei!Œ�.Exr ;Eys /��.Exr ;Ey/�

(60)

D
Z
IW

d Ey�.Ey/
NrX
rD1

˛.Exr ; Ey/˛.Exr ; Eys/f
�
�.Exr ; Ey/ � �.Exr ; Eys/

	
: (61)

Here we used the geometrical optics approximation of the Green’s function in the
assumed smooth medium

OG.!; Ex; Ey/ 	 ˛.Ex; Ey/ei!�.Ex;Ey/ ; (62)

with amplitude ˛ and travel time � . They are calculated along rays (geodesics)
connecting Ex to Ey by solving with the method of characteristics a transport equation
and an eikonal equation [5,24]. In the case of homogeneous media with wave speed
co, they have the explicit expression

˛.Ex; Ey/ D ˛o.Ex; Ey/ WD 1

4�jEx � Eyj and �.Ex; Ey/ D �o.Ex; Ey/ WD jEx � Eyj
co

: (63)

We can understand what to expect from (61) by referring to the example in Fig. 1,
with a source of small support around point Ey. Because data d.t; Exr / are essentially
the emitted pulse delayed by the travel time �.Exr ; Ey/, we get a contribution to the
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Fig. 1 Plot of the passive array data traces for a point source in a homogeneous medium. They
solve the wave equation in a homogeneous medium with wave speed co D 1:5 km/s, for a source
emitting a pulse with wide frequency band [1.5–4.5] MHz. We plot d.t; Exr / in grey scale, as a
function of time in the abscissa and receiver location in the ordinate. All the lengths are scaled by
the central wavelength �o D 0:5 mm. The simulation setup is shown on the left

Fig. 2 Kirchhoff migration
image for one point source in
a homogeneous medium. This
is the image obtained using
(64) for the passive array data
traces shown in Fig. 1. We
plot the absolute value of the
imaging function. The
abscissa is range in �o and the
ordinate is cross-range in �o
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sum in (61) if Eys lies near the isochrone with travel time equal to �.Exr ; Ey/, at least
for one receiver. For example, in homogeneous media this means that Eys is near the
sphere of center Exr and radius jExr � Eyj, at least for one receiver. With this reasoning,
we expect that

˝
J .Eys/˛ is large near the intersection of all these isochrones, for all

receivers in the array. Such points are close to Ey, as we illustrate in Fig. 2. The
imaging function for point-like sources is called the point spread function and its
essential support around Ey defines the resolution limits.

We assume in this article a typical imaging regime with an array of linear size a
that is much smaller than the distance to the source, and with bandwidth B < !o.
The direction from the source to the array is called range, and the distance along it
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is of the order of the range scale L. The directions orthogonal to the range are called
cross-range. The support of the point spread function in cross-range, the cross-range
resolution, is of the order �oL=a. It improves as we increase the frequency and the
array aperture. The range resolution depends on the temporal support of the pulse,
which defines the precision of the arrival time estimation of the waves, and thus of
the distance to the source. Because the pulse f .t/ has the temporal supportO.1=B/,
it is of the order co=B . These resolution limits are widely known and can be deduced
from the calculations in Sect. 7.

A common imaging approach in the applied literature is a further simplification
of J M

.Eys/, known as Kirchhoff migration [4],

J KM
.Eys/ D

NrX
rD1

d
�
�.Exr ; Eys/; Exr

	
: (64)

It is similar to reverse time migration except that it neglects the geometrical
spreading factor ˛.Eys ; Exr / in the Green’s function, as if it were a constant across
the array. This approximation is justified in our setup because the array aperture is
much smaller than the distance between the array and the imaging region.

Active Arrays
The reverse time migration function for active arrays is

J M

.Eys/ D
Z

j!�!o j	�B
d!

2�

NrX
rD1

NsX
sD1

Od.!; Exr ; Exs/ OG.!; Exr ; Eys/ OG.!; Exs; Eys/

	
Z

j!�!o j	�B
d!

2�

NrX
rD1

NsX
sD1

Od.!; Exr ; Exs/˛.Exr ; Eys/˛.Exs; Eys/ei!Œ�.Exr ;Eys /C�.Exs ;Eys /�

D
NrX
rD1

NsX
sD1

d.�.Exr ; Eys/C �.Exs; Eys/; Exr ; Exs/˛.Exr ; Eys/˛.Exs; Eys/: (65)

The Kirchhoff migration function neglects the geometrical spreading factors
˛.Exr ; Eys/ of the Green’s function, and forms an image by simply summing the
traces “synchronized” by the expected round trip travel time,

J KM
.Eys/ D

NrX
rD1

NsX
sD1

d.�.Exr ; Eys/C �.Exs; Eys/; Exr ; Exs/: (66)

We show in Fig. 5 the Kirchhoff migration images obtained with the data traces in
Figs. 3 and 4. In each case we indicate the location of the scatterers with a black
circle (Fig. 5).
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Fig. 3 Plot of the active array data traces for a point reflector in a homogeneous medium, and
an illumination from the center element in A. The abscissa is time in �s and the ordinate is the
receiver location in �o. The simulation setup is shown on the left. It is the same as in Fig. 1 with
the source being replaced by a soft acoustic reflector, i.e., a disk of diameter �o with homogeneous
Dirichlet conditions on its boundary
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Fig. 4 Plot of the active array data traces for three reflectors in a homogeneous medium, and an
illumination from the center element in the array. The abscissa is time in �s and the ordinate is the
receiver location in �o. The simulation setup is shown on the left. The Born approximation used
in the derivation of the imaging function captures only the primary echoes shown by the strong
hyperbolae in the figure. The later arrivals are multiply scattered waves between the reflectors

We leave the interpretation of the imaging functions to the reader. They are
straightforward extensions of the results for passive arrays.

Robustness to Additive Noise

To quantify the effect of the noise, we view the imaging problem in a stochastic
framework, where J .Eys/ is a random process due to the noise. The expectation of
J .Eys/ is its coherent part E

�
J .Eys/� D ˝

J .Eys/˛ ; and the random fluctuations are
ıJ .Eys/ D J .Eys/�E �J .Eys/� : Intuitively, robustness of the imaging method means
that the coherent part hJ i dominates the fluctuations ıJ in the vicinity of its peaks,
so we can determine with high fidelity the support of the unknown �. That is to
say, the images do not change in essential ways with the realization of noise. In an
imaging experiment we can compute only one realization of the random process
J .Eys/, which is what we call an image. It corresponds to the one realization of the
noise in the data gathered by the receivers in the array. If we could compare such
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Fig. 5 Imaging results in homogeneous media using the traces plotted in Figs. 3 and 4. The images
are computed with Eq. (66). The absolute value of the image for one reflector is shown on the left
and for three reflectors on the right. The abscissa is range in �o and the ordinate is cross-range
in �o. The imaging function is based on the Born approximation, and the image has some faint
artifacts due to the multiply reflected waves seen in the right plot of Fig. 4

an image with
˝
J .Eys/˛, the ideal image with noiseless data, we would see many

spurious peaks distributed throughout the search domain IW , i.e., one realization
of ıJ .Eys/. If jıJ j is smaller than j hJ i j for points in the support of �, with high
probability, then the estimates of the support of � are essentially independent of the
realization of the noise and the method is robust.

We assess below the robustness of images with passive arrays. The case of active
arrays is similar. Recall Eqs. (57)–(59) and the assumptions (15) on Nr .t/. Assume
also a point-like source at Ey in order to simplify the calculations. The coherent part
of the image evaluated at Ey is

˝
J .Ey/˛ 	

Z
j!�!o j	�B

d! Of .!/
NrX
rD1

ˇ̌
ˇ OG.!; Exr ; Ey/

ˇ̌
ˇ2 	 f .0/

NrX
rD1

j˛.Exr ; Ey/j2; (67)

and we wish that its magnitude be larger than jıJ .Ey/j with high probability. We can
estimate this probability using Chebyshev’s inequality

P
�jJ .Ey/j > ˇ̌˝ıJ .Ey/˛ˇ̌ � D 1 � P �jıJ .Ey/j � ˇ̌˝J .Ey/˛ˇ̌ � � 1 � E

�jıJ .Ey/j2�ˇ̌˝
J .Ey/˛ˇ̌2

(68)

D 1 �
�

1

SNR.Ey/
�2

;
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where SNR stands for the signal to noise ratio

SNR.Ey/ D
ˇ̌˝
J .Ey/˛ˇ̌q

Var
�
J .Ey/�

; Var
�
J .Ey/� D

q
E
�jıJ .Ey/j2�: (69)

The “signal” is the coherent part (67) of the random process J .Ey/ and the “noise”
is ıJ .Ey/. Its model follows from (59) and the geometrical optics approximation of
the Green’s function

ıJ .Ey/ 	
NrX
rD1

˛.Exr ; Eys/
Z

j!�!o j	�B
d! ON T

r .!/e
i!�.Exr ;Eys /: (70)

It is a linear superposition of independent Gaussian noise terms, so it is Gaussian,
with mean E

�
ıJ .Eys/� D 0 and variance

Var
�
J .Eys/� 	 
2

N

NrX
rD1

j˛.Exr ; Eys/j2
“

j!�!o j	�B
d! d!0 ei.!�!0/�.Exr ;Eys /

Z T

0
dt e�i.!�!0/t

	 4�2B
2
N

NrX
rD1

j˛.Exr ; Eys/j2: (71)

The last approximation is for very large T and for B�.Exr ; Eys/ � 1, as is the case
under our assumption that the temporal widthO.1=B/ of the pulse is much smaller
than the travel times from the source to the array.

The SNR follows from (67) and (71)

SNR
�
J .Ey/� 	 jf .0/j

2�
N

p
B

vuut NX
rD1

ˇ̌
˛.Exr ; Ey/

ˇ̌2 � kf k
2�
N

vuut NX
rD1

ˇ̌
˛.Exr ; Ey/

ˇ̌2
; (72)

where

kf k2 D
Z
dt jf .t/j2 D 1

2�

Z
j!�!o j	�B

d! j Of .!/j2:

It increases linearly with the norm of the emitted signal and decreases with the
“noise level” 
N . Having more sensors is beneficial because the sum over r
increases. The amplitudes ˛ decrease with the distance from the source to the array,
so the noise level should be much lower than the norm of the emitted pulse in order
to have high fidelity images of remote sources.

We neglect henceforth additive noise, for simplicity. Noise is of course part of
any imaging experiment. It can be added easily in the analysis that follows and its
effects can be studied as described above.
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4 Challenges of Imaging in Complex Media

In the previous section we considered media that were largely known and smooth,
with the exception of a compactly supported embedded reflector. In many imaging
applications with active arrays the medium is complex, with wave speed c.Ex/ that
is not smooth and unknown. A natural idea is to estimate the function c.Ex/ by the

minimizer of the least squares functional
���F.c/ � Od

���2

D

; where F is the nonlinear

forward mapping that takes the wave speed c to the data space D. Given the
large number of unknowns, corresponding to a discretization of c.Ex/ on a grid, the
optimization would have to use a gradient-based optimization method like Gauss–
Newton [23], which linearizes locally F.c/. It turns out that it is easier to linearize
F.c/ with respect to localized perturbations of c.Ex/ than with respect to distributed
(smooth) ones. For example, the smooth part of c.Ex/ determines the travel times
� of the waves, and in high frequency regimes small perturbations of � give large
changes of the wave field that oscillates like ei!� . This indicates that it should be
easier to estimate a sparse set of large discontinuities of c.Ex/, which is the goal in
imaging, than the rest of the function.

There is computational experience on the least squares minimization over c.Ex/
in piecewise smooth media, and some convergence studies exist [30, 31, 34, 37].
The problem is difficult because the least squares functional is not convex, and the
optimization gets stuck easily in local minima that have nothing to do with the true
c.Ex/. Thus, success can be expected only when the initial guess of c.Ex/ is very good.
What this means exactly is complicated and poorly understood at the moment.

The most powerful idea that has emerged in inversion in complex media is that of
separation of scales. We already introduced it in Eq. (22), where we distinguished
between the background speed c.Ex/ (assumed smooth there) and the reflectivity
�. We extend it in the next section to media with microscale. Reverse time
migration is designed to estimate �, and as we explained in the previous section,
it is based on the linearization M of the forward mapping F . This linearization
works well in many cases, but when there are strong reflecting interfaces like air-
solid boundaries, the data contain strong multiply scattered echoes which cause
image artifacts. See for example [36] for data processing algorithms intended
to suppress such multiple reflections. In any case, migration imaging can work
well only when we know the background velocity, which determines the wave
propagation between the reflection events. When we have it wrong, the migration
images are not well focused and the reflectivity is mapped to wrong places. The
estimation of the background speed is called velocity analysis or inversion. We do
not discuss it here, but we note that it is strongly connected to migration imaging
[4]. On one hand, the quality of the migration images depends on knowing the
background speed, and on the other hand this speed can be estimated by comparing
migration images formed with various data subsets [14]. This idea is behind the
iterative migration-velocity analysis inversion methods that are popular in fields like
reflection seismology [4].
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ClutteredMedia

Imaging becomes complicated in media with rapidly fluctuating wave speed c.Ex/
due to numerous small inhomogeneities. Because the array data is necessarily
band limited, it is not possible to recover all these fluctuations in detail as part
of the inversion. This motivates us to separate the wave speed in two parts:
the “macrostructure” which can in principle be recovered in inversion, and the
“microstructure” or “clutter” which is the uncertain part of c.Ex/. What we call
macrostructure is the smooth part Nc.Ex/ of the wave speed assumed known, and
a sparse set of its large discontinuities modeled by the reflectivity �.Ex/. Strictly
speaking the reflectivity is a fine scale feature of c.Ex/, but it can be estimated from
the data so we think of it as part of the macrostructure. The assumption that Nc is
known is because we do not consider velocity estimation. We refer to [17] for an
example of robust velocity estimation in complex media with microstructure.

The separation of scales is now

1

c2.Ex/ D
1

Nc2.Ex/
�

1C 
�
� Ex
`

��
C �.Ex/

c2
o

; (73)

with �.Ex/ representing the uncertain microstructure or clutter, the rapid fluctuations
of c.Ex/ on scales ` comparable to the wavelength or less than that. The amplitude

 of �.Ex/ is typically small, meaning that an inhomogeneity by itself is a weak
scatterer with respect to �. It is the cumulative effect of the inhomogeneities
that becomes significant as the waves travel deeper in cluttered media. See for
example the illustration in Fig. 6, where we have the same setup as in Fig. 4,
but the wave speed has rapid fluctuations, as shown on the left. The amplitude
of these fluctuations is small in comparison with the reflectivity of the three
point-like scatterers modeled in the simulations as “sound soft,” with the acoustic
pressure vanishing at their boundary. These three scatterers cause strong echoes
that are somewhat visible in the noisy traces, with arrivals lying on curves that are
perturbations of the hyperbole in Fig. 4. But there are many other echoes recorded
before and after these arrivals, due to multiple scattering by the inhomogeneities.
They are more significant than the waves scattered between the reflectors in Fig. 4,
so we will make a big mistake if we neglect the clutter. Much worse than using the
Born approximation (linearization) with respect to �.

The RandomModel

The clutter (microstructure) is uncertain, so we model it mathematically as a
random process �.Ex/, a collection of random variables parametrized by Ex 2 R

n.
The macrostructure modeled with Nc and � in (73) is the deterministic part of
c.Ex/ because it is feasible to recover it from the array data. The wave field
p.t; Exr ; Exs/ at the array is a random process parameterized by time, the receiver
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Fig. 6 Plot of the active array data traces for three reflectors in a heterogeneous medium. The
abscissa is time in �s and the ordinate is receiver location in �o. The setup of the simulation is
shown on the left where the units in the color bar are Km/s

and source locations. The data fd.t; Exr ; Exs/g are one realization of this process. If
we had measurements in many media we could superpose them to approximate
the statistical average (expectation) EŒp.t; Exr ; Exs/� which we call the coherent part
of the data. This is useful in imaging because we can relate it in a robust way
to the unknown reflectivity. But in reality there is only one medium, with one
microstructure given by one realization of the random �.Ex/. Thus, we do not have
direct access to the coherent part of the data and must deal with its uncertain,
incoherent part d.t; Exr ; Exs/ � EŒp.t; Exr ; Exs/�: This impedes imaging and causes
uncertainty in the reconstructions.

The reflectivity � is deterministic, but the wave field p.t; Exr ; Exs/ is random so
we may view the reconstructions of � in a probabilistic setting. A reconstruction
is a mathematical model of an imaging function which involves the random field
p.t; Exr ; Exs/, so it is a random processes. We can compute only one realization of
this process because we have only one realization of the random wave field, the data
fd.t; Exr ; Exs/g. This realization is what we call an image.

We study the focusing of imaging functions in random media by looking first
at EŒJ .Eys/� and then at its SNR at the peaks. In the case of imaging functions
like reverse time migration, which are linear in fp.t; Exr ; Exs/g, the expectation
of the image is determined by the coherent part of the data EŒp.t; Exr ; Exs/�.
This is not the same as what we would measure in a medium without clut-
ter. Multiple scattering leads to loss of coherence of the waves, which mani-
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fests as an exponential decay of EŒp.t; Exr ; Exs/� with the distance of propagation.
The length scale of exponential decay is called the scattering mean-free path
and it depends on many factors like the wavelength, the range of propaga-
tion, and the statistics of �.Ex/. Energy is conserved, so the incoherent part of
the field, the random fluctuations, gain strength. We see in Fig. 6 a realization
of such fluctuations, the many echoes recorded before and after the coherent
arrivals.

Time Reversal Is Not Imaging

We already saw that, superficially, there is a connection between imaging and the
time reversal process. This is why they are often studied side by side. But the two
are not the same at all in cluttered media.

Time reversal works better in clutter [6, 19, 27] because scattering by the
inhomogeneities spreads out the time reversed wave field captured and then re-
emitted at the array, as if it came from an array of effective aperture ae > a. The
more scattering is, the larger the effective aperture, meaning that good focusing
in cross-range, with resolution of the order �oL=ae , can be achieved with very
small arrays [19, 20]. Moreover, the refocusing is statistically stabile under generic
assumptions [27]. This is due to the time reversability of the wave equation and the
fact that the time reversed field propagates to the source in the same medium it came
from.

In migration imaging the back-propagation is done analytically or numerically in
a surrogate medium with wave speed Nc because we do not know the microscale of
the real medium. Migration works well only when the clutter effects are weak, as
shown explicitly in Sect. 7. More precisely, when the array is closer than a scattering
mean-free path from the imaging region. Otherwise the coherent part of the data, the
“signal,” is exponentially damped due to scattering in clutter and the incoherent fluc-
tuations, and the “clutter noise” is significant. The images are difficult to interpret
and change unpredictably with the realization of clutter. The sole mechanism of
dealing with the “clutter noise” in migration is the summation over the sensors. If
we had only additive and uncorrelated noise like in section “Robustness to Additive
Noise,” it would average out approximately for arrays with many sensors like in the
law of large numbers. But clutter noise has persistent correlations over the sensors
and over frequencies, and it cannot be averaged out by summation. More involved
data processing is needed to mitigate it.

A natural question arises: Could we improve the migration results if we knew the
statistics of clutter? Could we just create a realization of the clutter with the given
statistics and then back-propagate the data in it instead of the medium with speed
Nc? The answer is no. In fact we would do much worse than back-propagating in the
smooth medium because we would essentially double the distance traveled by the
waves in clutter. The clutter effects are undone only when the waves go back through
the same medium as is the case in the time reversal process.
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Fig. 7 System of coordinates and setup for imaging with passive arrays in random media

5 The Random Travel TimeModel of Wave Propagation

In this section we describe a geometrical optics model of wave propagation in
random media. It allows an explicit and self-contained analysis of resolution and
statistical stability of images, and yet it captures canonical scattering effects on the
wavefront. That is to say, the first two statistical moments of the wave field, which
describe the loss of coherence and decorrelation of the waves due to scattering in the
random medium, look the same as those derived from more sophisticated models.
This makes the random travel time model a good testbed for studying imaging with
partially coherent waves in random media.

Consider the setup illustrated in Fig. 7, with a passive array at range L from the
source and the range axis z orthogonal to the aperture A D �� a2 ; a2

� � �� a2 ; a2
�
. We

use henceforth the notation Exr D .xr ; L/ for the points in the array with cross-range
components xr 2 A, and Ey D .y; �/ for the points in the support of the source, with
range � and cross-range vector y.

We are interested in the outgoing Green’s function OG.!; Exr ; Ey/ of the Helmholtz
equation in an medium with random wave speed c.Ex/ of the form (73) with
fluctuations around the constant value Nc D co. The fluctuations are modeled by
the random process � assumed stationary and twice differentiable with bounded
derivatives, almost surely. It has mean zero

EŒ�.Eu/� D 0; (74)

and an integrable covariance

R.Eu/ D E
�
�.EuC Eu0/�.Eu0/

�
; (75)

normalized by

R.0/ D 1;
Z
R3
d EuR.Eu/ D O.1/: (76)
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The length scale ` in (73) is the correlation length, the typical size of the
inhomogeneities, and 
 � 1 models the amplitude of the weak fluctuations of c.Ex/.
The fluctuations are isotropic, so the correlation length is the same in all directions,
and the covariance depends on the Euclidian norm of its argument R.Eu/ D R.jEuj/.
Any covariance will do, but to simplify the calculation of the statistical moments of
the Green’s function we take the Gaussian covariance

R.jEuj/ D e� jEuj2

2 : (77)

In the random travel time model the Green’s function is approximated by

OG.!; Exr ; Ey/ 	 ei!Œ�o.Exr ;Ey/C�� .Exr ;Ey/�

4�jExr � Eyj ; (78)

with reference travel time �o given by (63) perturbed by the random process �� .Exr ; Ey/
obtained by integrating � along the straight ray from Ey to Exr ,

�� .Exr ; Ey/ D 
 jExr � Eyj
2co

Z 1

0
dt �

�
.1 � t/Ey

`
C tExr

`

�
: (79)

We refer to [28] for the derivation of the model, which holds in the asymptotic
regime with separation of scales defined by

�� ` . L; (80)

and


 � min

( p
`�

L
;

�
`

L

� 3
2

)
: (81)

The high frequency assumption (80) is natural for the geometrical optics approxi-
mation. Assumption (81) guarantees that ray bending is negligible from the source
to the array, and the geometrical spreading factor (the amplitude of the Green’s
function) is approximately the same as in the homogeneous medium. It also gives
that the travel time �.Exr ; Ey/, the solution of the eikonal equation in the random
medium, is given by

�.Exr ; Ey/ D �o.Exr ; Ey/C �� .Exr ; Ey/C ı�; (82)

with negligible remainder ı� satisfying j! ı� j � 1:

Remark 1. Referring to the traces displayed in Fig. 6, the random travel time model
coupled with the Born approximation describes the echoes from the reflectors, but
not the many arrivals that occur before and after them. These arrivals are incoherent
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waves that do not contribute to the resolution analysis of coherent imaging methods,
as long as they do not dominate the coherent arrivals. Imaging does not work when
the incoherent echoes dominate unless we filter them out as explained for example
in [1, 2, 10, 13].

Long Range Scaling and Gaussian Statistics

We rewrite (79) as

�� .Exr ; Ey/ D .2�/1=4

p
L`

2co
�.Exr ; Ey/ ; (83)

in terms of the random process

�.Exr ; Ey/ D 1

.2�/1=4
p
`=L

Z 1

0
dt �

� Ey
`
C t En
`=L

�
; (84)

where L D jExr �Eyj and En D Exr�Ey
L is the unit vector from the point Ey in the source to

the receiver at Exr . The normalization by .2�/1=4 is convenient in the calculation of
the statistical moments of the Green’s function, for the choice (77) of the covariance
of the fluctuations.

We are interested in a long range regime where the waves interact with many
inhomogeneities as they travel from the source to the array

`� L D O.L/ ; (85)

and the random phase in (78) is large. We know from the central limit theorem that
as L=` ! 1, the right-hand side in (84) converges in distribution to a Gaussian
process. Thus, the long range assumption (85) allows us to approximate �.Exr ; Ey/ by
a Gaussian process, with mean zero and covariance calculated in Appendix 1,

E
�
�.Ex; Ey/�.Ex0; Ey0/

� 	
Z 1

�1
d Qtp
2�

Z 1

0
dt R

�
Qt EnC .1 � t/.Ey0 � Ey/C t.Ex0 � Ex/

`

�
:

(86)
Moreover, we can estimate the magnitude of the random phase in (78) by

!��.Exr ; Ey/ D O
 


p
L`

�

!
; (87)

and ask that it be large



p
L`

�
� 1 ; (88)
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so that the random medium has a significant effect on the wavefront, and imaging
becomes difficult.

When we compare the two assumptions (81) and (88) on 
 , we see that they are
consistent if `�pL� because then we have

�p
L`
� min

( p
�`

L
;

�
`

L

� 3
2

)
D
p
�`

L
:

Therefore, our regime is defined by the length scale separation

p
�L� `� L ; (89)

and the amplitude 
 of the fluctuations satisfying

�p
L`
� 
 �

p
�`

L
: (90)

Statistical Moments

Since �� is approximately Gaussian, we can estimate the moments of the Green’s
function in terms of the covariance (86). The calculations simplify for the Gaussian
covariance (77), where (86) becomes

E
�
�.Ex; Ey/�.Ex0; Ey0/

� 	
Z 1

0
dt e

� jt .x0�x/?C.1�t /.y0�y/?j2

2`2 	
Z 1

0
dt e

� jt .x0�x/C.1�t /.y0�y/j2

2`2 :

(91)

This follows by direct integration over Qt in (86), where .x0 � x/? and .y0 � y/?
are the projection of the vectors Ex � Ex0 and Ey0 � Ey on the plane orthogonal to the
ray direction En. The second approximation in (91) replaces these projections by the
cross-range components of Ex� Ex0 and Ey0 � Ey, and holds under the following scaling
assumptions on the array aperture and support of the source

j.Ex0 � Ex/ � Enj
`

D jx
0 � xj
`

sin � D O
�
a2

`L

�
� 1 ; (92)

jy0 � yj
`

sin � 	 jy
0 � yj
`

a

L
� 1 ;

j� � �0j
`

cos � 	 j�
0 � �j
`

� 1 : (93)

Loss of Coherence
Using (91) in the formula

E

h
ei!�� .Ex;Ey/

i
	 e� !2

2 EŒ�2
� .Ex;Ey/� ; (94)
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which is approximate because �� is only approximately Gaussian, we obtain that

E

h OG.!; Exr ; Ey/
i
	 OGo.!; Exr ; Ey/e� L

S.!/ ; (95)

where OGo.!; Exr ; Ey/ D eikL
4�L is the Green’s function in the homogeneous medium and

S.!/ D 4p
2� k2
2`

; k D !

co
: (96)

This result shows that the coherent part of OG, its expectation, is smaller than OGo. In
fact, it is much smaller under our scaling assumption (90), which gives

L
S.!/ D O

�

2`L

�2

�
� 1 : (97)

Since

E

h
j OG.!; Exr ; Ey/j2

i
D j OGo.!; Exr ; Ey/j2 D 1

.4�L/2 ; (98)

we see that the standard deviation of the field dominates its mean

r
E

h
j OG.!; Exr ; Ey/j2

i
�
ˇ̌
ˇE
h OG.!; Exr ; Ey/

iˇ̌
ˇ2 	

ˇ̌
ˇ OGo.!; Exr ; Ey/

ˇ̌
ˇ�

ˇ̌
ˇE
h OG.!; Exr ; Ey/

iˇ̌
ˇ :

(99)

That is to say, the random phase causes large random fluctuations of OG.
The wave emitted from Ey and recorded at Exr is given by the Fourier synthesis

p.t; Exr I Ey/ D
Z 1

�1
d!

2�
Of .!/ OG.!; Exr ; Ey/e�i!t 	 f

�
t � �o.Exr ; Ey/� �� .Exr ; Ey/

�
4�L

:

(100)
It is similar to the wave recorded in the homogeneous medium, but the arrival time of
the pulse f fluctuates as described by the process �� . When we take the expectation
of (100) we calculate the envelope of the pulses in (100), and obtain a deformed and
damped signal centered at time �o.Exr ; Ey/. Indeed, Eqs. (95) and (100) give that

E
�
p.t; Exr I Ey/

� 	
Z 1

�1
d!

2�

Of .!/
4�L e

� !2

22 �i!Œt��o.Exr ;Ey/� D f
�
t � �o.Exr ; Ey/

�
4�L ;

(101)
where we defined the deformed and damped pulse

f.t/ D
Z 1

�1
d!

2�
Of .!/e� !2

22 �i!t D p2� f .t/ ?t e
�2 t2

2 ; (102)
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and let

2 D 4c2
op

2�
2`L
	 !2S.!/

L � !2 : (103)

For example, when the emitted pulse is the Gaussian

f .t/ D e�i!ot e�B2t2
2 ; Of .!/ D

p
2�

B
e

� .!�!o/
2

2B2 ; (104)

the pulse f takes the form

f.t/ D
p

2 C B2
exp

�
�i
�

2

B2 C2

�
!ot � B22t2

2.2 CB2/
� !2

o

2.2 C B2/

�
:

(105)

Its central frequency is shifted to the lower value

�
2

B2 C2

�
!o < !o ;

its essential support is wider by a factor of
p

1C B2=2 than that of f .t/, and the
amplitude of the peak is smaller

f.0/ D
p

2 C B2
e

� !2
o

2.2CB2/ � f .0/ D 1 :

Remark 2. Formula (95) and the subsequent discussion on pulse deformation
capture the loss of coherence effects derived from more sophisticated models. The
loss of coherence manifests as an exponential decay of the mean wave field with
the distance L of propagation. The length scale S.!/ of decay is the scattering
mean-free path and it depends on the frequency and the second-order statistics (the
covariance) of the fluctuations �. The latter appears in the expression (96) of S as
the product 
2` in the denominator.

Statistical Decorrelation of theWaves
The second moments of the Green’s function are given by

E

h OG.!; Ex; Ey/ OG.!0; Ex0; Ey0/
i
	 OGo.!; Ex; Ey/ OGo.!0; Ex0; Ey0/e� 1

2E

h
.!�� .Ex;Ey/�!0�� .Ex0;Ey0//

2
i
;

(106)

where we used again that �� is approximately Gaussian. The expectation in the
exponent follows from definition (83) and the expression (91) of the covariance
of �,
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e
� 1

2 E

h
.!�� .Ex;Ey/�!0�� .Ex0;Ey0//

2
i
	 e

� .!�!0/2

22 � !!0

2

2
41�

Z 1

0
dt e

� jt .x�x0/C.1�t /.y�y0/j2

2`2

3
5
:

(107)

The term in the square parenthesis is non-negative, and recalling the scaling relation
(103), we note that the moments are essentially zero when jx�x0j and/or jy�y0j are
larger or equal to `. Indeed, the parenthesis in the exponent in the right-hand side of
(107) is order one in this case and

e
� 1

2E

h
.!�� .Ex;Ey/�!0�� .Ex0;Ey0//

2
i
D O

�
e

� !2
o

2

�
� 1 :

When the cross-range offsets are smaller than the correlation length `, we can
simplify the expression (107) using the series expansion of the exponential in the
square bracket, and obtain that

E

h OG.!; Ex; Ey/ OG.!0; Ex0; Ey0/
i
	 OGo.!; Ex; Ey/ OGo.!0; Ex0; Ey0/ (108)

e
� .!�!0/2

22 � jx�x0j2C.x�x0/ � .y�y0/Cjy�y0j2

2X2. N!/ :

Here N! D .! C !0/=2 is the central frequency and

X. N!/ D
p

3

N! ` : (109)

In the derivation of (109) we used that  � N!, as stated by the scaling relation
(103). The result says that the moments decay exponentially with the cross-range
offsets, on the scale X. N!/ � ` ; which is consistent with the assumption jx �
x0j; jy � y0j � ` used in the derivation. For larger cross-range offsets, the moments
are exponentially small, as noted above. This is precisely what (109) gives, so we
can use the result for all cross-range offsets, with negligible errors in the analysis of
imaging in the following sections.

It is clear that the maximum of (109) occurs at the same frequency !0 D !

and the same points in the cross-range plane x0 D x and y0 D y. The decay of
the moments with the frequency and cross-range offsets describes the statistical
decorrelation of the waves. Indeed, the correlation coefficient is defined by

Corr
h OG.!; Ex; Ey/; OG.!0; Ex0; Ey0/

i
D

E

h OG.!; Ex; Ey/ OG.!0; Ex0; Ey0/
i
� E

h OG.!; Ex; Ey/iE h OG.!0; Ex0; Ey0/
i

r
Var

h OG.!; Ex; Ey/iVar
h OG.!0; Ex0; Ey0/

i ;



Imaging in RandomMedia 1313

with variance estimated in (99). Recalling from (95) that the mean field is
exponentially small, we estimate the correlation as

ˇ̌
ˇCorr

h OG.!; Ex; Ey/; OG.!0; Ex0; Ey0/
iˇ̌
ˇ 	 e� .!�!0/2

22 � jx�x0j2C.x�x0/ � .y�y0/Cjy�y0j2

2X2. N!/ : (110)

It decays with the frequency offset on the scale, called the decoherence frequency,
and with the cross-range offsets on the length scale X , called the decorrelation
length. This scale is proportional to the wavelength, as stated in (109).

Remark 3. The expression of the moments in (109) is the same as that derived from
more sophisticated models of cumulative scattering effects in random media. The
detailed expressions of the decoherence frequency and decorrelation length change
with the model, but Eq. (109) captures the canonical form of the second moments,
and thus of the statistical decorrelation of the waves.

6 Setup for Imaging

We consider the setup for imaging with passive arrays illustrated in Fig. 7, with the
range axis originating from the center of the source and the array of aperture A
orthogonal to it. For active arrays, the excitation comes from a source in A and � is
the reflectivity that we wish to estimate. In either case the array is assumed planar
and square, with side length a satisfying the scaling relation (92). We let a be larger
or similar to the correlation length, so that the Fresnel number ˆa satisfies

ˆa D a2

�L
& `2

�L
� 1 : (111)

The waves are approximately planar in regimes with smaller Fresnel number and
we cannot estimate the cross-range location of the support of �.

We restrict the analysis to a paraxial regime, where we can write

!�o.Exr ; Ey/ D k
p
.L � �/2 C jxr � yj2 	 k

�
L � �C jxr j

2

2L
� xr � y

L

�
: (112)

This holds for apertures satisfying a4

�L3 � 1 ; and supports of � of radius R in

cross-range and R� in range, satisfying R2

�L
� 1 and R� � L2�

a2 . Merging all our
assumptions on a, we obtain that

p
�L� a� min

np
`L;

�
�L3

	1=4
o
D ��L3

	1=4
; (113)

where the last equality holds in our regime defined by (89) because
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p
`L

.�L3/
1=4
D
�

`p
�L

�1=2

� 1 :

The summary of the assumptions on the cross-range support of � is

R� min

�p
�L;

`L

a


D
p
�L ; (114)

where we recalled (93) and used that

`L

a
p
�L
D `p

�L

L

a
� 1 :

The range support of � satisfies

R� � min

�
`;
L2�

a2


: (115)

We take the complex-valued Gaussian pulse (104) for the sake of explicit
calculations. Its bandwidth B satisfies

co

L
� B � !o : (116)

The first inequality ensures that f .t/ is a pulse of small temporal support, so we
can determine the travel times �o.Exr ; Ey/ D O.L=co/ from the measurements of
the acoustic pressure p.t; Exr / at the array. The second inequality means that all
the frequencies in the bandwidth are of the order !o and therefore the wavelengths
satisfy � 	 �o. The decoherence frequency and decorrelation length defined in
Sect. 5 obey the scaling relations

� !o ; X.!/ 	 X.!o/� ` . a : (117)

To simplify the analysis of the CINT imaging function in Sect. 8, we assume in
addition that the decorrelation length satisfies

X.!o/�
p
�oL: (118)

Using the definition (109) of X.!o/, we see that this is equivalent to asking that

� !o

p
�oL

`
� !o; (119)

where the second inequality is implied by (89).
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We analyze in Sects. 7 and 8 the imaging function J .Eys/ of two methods:
Kirchhoff migration and coherent interferometry. We use the same symbol for the
imaging functions to simplify the notation, and define J .Eys/ at points Eys in a search
domain that contains the support of the source. The size of this domain is chosen,
so that we can use the paraxial approximation (112) for the travel time �o.Ex; Eys/.
We use for convenience the continuum aperture approximation, which is based on
the assumption that the sensors in the array are close together. The approximation
amounts to replacing sums over the sensors by scaled integrals over the aperture A.
The scaling factor is N=jAj, with N the number of sensors and jAj D a2 the area
of the aperture.

The resolution analysis of the imaging function J .Eys/ involves two steps: In
the first step we study the focusing of its expectation. Since the imaging process
occurs in one medium, corresponding to one realization of the random process �,
we do not have access to EŒJ .Eys/�. But if the imaging were robust, the result would
look almost the same independent of the realization, so J .Eys/ would be close to its
expectation, which is why we study it. The second step of the resolution analysis
is the assessment of the statistical stability of J .Eys/. It amounts to calculating the
SNR of the image at its peaks.

Most of our discussion is about imaging with passive arrays. The extension to
active arrays is straightforward for our random travel time model combined with the
Born approximation.

7 Migration Imaging

In this section we analyze migration imaging with passive arrays. We consider
only the Kirchhoff migration imaging function because it is essentially the same
as reverse time migration in the paraxial regime described in Sect. 6. It is given by

J .Eys/ D
NX
rD1

p
�
�o.Exr ; Eys/; Exr

	 	 N

jAj
Z

A
dxp

�
�o.Ex; Eys/; Ex

	
; Ex D .x; L/ ;

(120)

where p.t; Ex/ is the pressure field modeled by

p.t; Ex/ D
Z
R3
d Ey�.Ey/p.t; ExI Ey/ ; (121)

in terms of the spatial source density �.Ey/ and the field p.t; ExI Ey/ due to a point
source at Ey. The latter is defined in (100), and we rewrite it here using the
simplification of the Green’s function

OG.!; Exr ; Ey/ 	 ei!Œ�o.Exr ;Ey/C�� .Exr ;Ey/�

4�L
	 1

4�L
eik
�
L��C jxr j2

2L � xr � y
L

	
Ci!�� .Exr ;Ey/ ; (122)



1316 L. Borcea

that holds under the scaling assumptions (113) and (114). The wave field due to the
point source is given by

p.t; ExI Ey/ 	
Z 1

�1
d!

Of .!/
8�2L

ei!Œ�o.Ex;Ey/�t �Ci!�� .Ex;Ey/ 	
Z 1

�1
d!

Of .!/
8�2L

eik
�
L��C jxr j2

2L � xr � y
L

	
Ci!�� .Ex;Ey/�i!t : (123)

The Expectation

Taking the expectation in (120) and using (121), we obtain that

E
�
J .Eys/� D

Z
R3
d Ey�.Ey/E �J .EysI Ey/� ; (124)

with mean point spread function

E
�
J .EysI Ey/� 	 N

jAj
Z
A
dxE

�
p
�
�o.Ex; Eys/; ExI Ey

	�
: (125)

The expectation of p is given by (101), and using the approximation (112) of the
travel time we write

�o.Ex; Eys/� �o.Ex; Ey/ 	 1

co

�
�s � �C .ys � y/ � x

L

�
; (126)

for Eys D .ys; �s/. Equation (125) becomes

E
�
J .EysI Ey/� 	 N e

� !2
o

2.B2C2/

4�L
p
B2=2 C 1

Z
A

dx
jAj e

�
i

�
ko.�

s��/C
ko.ys�y/ � x

L

�

.B2=2C1/
�
B2
�
.�s��/C

.ys�y/ � x
L

�2

2c2o.B2=2C1/ ; (127)

where ko D !o=co is the central wave number, and it is not difficult to see that the
mean point spread function peaks at Ey D .y; �/, as it should.

To determine the range resolution, we evaluate (127) at ys D y

E
�
J .Eys D .y; �s/I Ey/� 	 N e

� !2
o

2.B2C2 /

4�L
p
B2=2 C 1

e
� iko.�

s��/

.B2=2C1/
� B2.�s��/2

2c2o .B2=2C1/ ; (128)
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and estimate the range resolution in terms of the standard deviation of the Gaussian

j�s � �j . co

B

p
B2=2 C 1 : (129)

The result in the homogeneous medium corresponds to letting  ! 1 in
this equation, in which case the range resolution would be co=B , as stated in
section “Imaging in Smooth and Known Media.” In our regime the resolution is
worse due to the broadening of the pulse f noted in section “Statistical Moments.”

The cross-range resolution is estimated from

E
�
J .Eys D .ys; �/I Ey/� 	 N e

� !2
o

2.B2=2C1/

4�L
p
B2 C2

Z
A

dx
jAj e

� iko.ys�y/ � x=L
.B2=2C1/

�B2Œko.ys�y/ � x=L�2
2!2
o.B

2=2C1/

	 N e
� !2

o
2.B2C2/

4�L
p
B2=2 C 1

Z
A

dx
jAj e

� iko.ys�y/ � x=L
.B2=2C1/

D N e
� !2

o
2.B2C2/

4�L
p
B2=2 C 1

2Y
jD1

sinc

�
koa.ys � y/ � ej
2L.B2=2 C 1/

�
:

(130)

The first approximation holds because B and  are much smaller than !o, and the
third line follows by integration over the square aperture A. We estimate the cross-
range resolution by the support of the main peak of the sinc function

j.ys � y/ � ej j . �oL

a

�
B2

2
C 1

�
: (131)

It is worse than that in the homogeneous medium of �oL=a because of the shift
of the central frequency of the deformed pulse f.t/ to a lower value, as noted in
section “Statistical Moments.”

The value of the mean point spread function at the peak is given by

E
�
J .EyI Ey/� 	 N e

� !2
o

2.B2C2/

4�L
p
B2=2 C 1

� Jo.EyI Ey/ D N

4�L
: (132)

It is much smaller than Jo.EyI Ey/, the peak of the point spread function in the homo-
geneous medium. Finally, the mean imaging function (124) equals the unknown
density � integrated against the blurring kernel (127).
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The SNR

To simplify the calculations, we consider only the SNR of the point spread function
J .EysI Ey/ evaluated at the peak Eys D Ey. We have

J .EyI Ey/ 	 N
Z
A

dx
jAj p

�
�o.Ex; Ey/; ExI Ey

	 	 N
p

2�

8�2LBjAj
Z
A
dx

Z 1

�1
d! e

� .!�!o/
2

2B2 Ci!�� .Ex;Ey/ ; (133)

where we used Eqs. (100) and (122) and the Gaussian pulse (104). The mean square
follows from (109)

E

hˇ̌
J .EyI Ey/ˇ̌2i 	 N 2

32�3L2B2jAj2
“

A
dxdx0

“ 1

�1
d!d!0e� .!�!o/

2

2B2 � .!0�!o/
2

2B2 � .!�!0/

22 � jx0�xj2

2X2.!o/ ;

and changing variables to

N! D ! C !0

2
; Q! D ! � !0 and Nx D xC x0

2
; Qx D x � x0 ;

we obtain

E

hˇ̌
J .EyI Ey/ˇ̌2i 	 N 2

32�3L2BjAj
Z
R2
d Qx e� jQxj2

2X2.!o/

Z 1

�1
d N!
B
e

� . N!�!o/
2

B2

Z 1

�1
d Q! e� Q!2

2

�
1
2 C 1

2B2

�
D N 2X2

8�L2jAjp2B2=2 C 1
: (134)

In the first line of this equation we integrated over Nx and used the scaling assumption
(117) on the decorrelation lengthX to extend the integral over Qx to the whole plane.
The second line follows by integrating the Gaussians in Qx, N! and Q!.

The variance of the point spread function at the peak is derived from (132) and
(134)

Var
�
J .EyI Ey/� D E

hˇ̌
J .EyI Ey/ˇ̌2i � ˇ̌E �J .EyI Ey/�ˇ̌2 	 N 2X2

8�L2jAjp2B2=2 C 1
;

(135)
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and the SNR is given by

SNR
�
J .EyI Ey/� D

ˇ̌
E
�
J .EyI Ey/�ˇ̌q

Var
�
J .EyI Ey/�

	 1p
2�

a

X

.2B2=2 C 1/1=4

.B2=2 C 1/1=2
e

� !2
o

2.B2C2/ ;

(136)
where we used that jAj D a2. Thus, we see that the SNR improves when we increase
the aperture and the bandwidth. We restricted the bandwidth by B � !o, so the
exponentially small factor plays an important role in the SNR. The definition (109)
of the decorrelation length gives that

a

X
D O

�a !o
 `

�

and to achieve a large SNR we need

a

`
� 

!o
exp

�
!2
o

2.B2 C2/

�
:

The first factor is small, but the exponential is huge and such large apertures cannot
be realized in practice. Therefore, the SNR of the Kirchhoff migration function is
small and that the imaging function is not robust.

8 CINT Imaging

The statistical instability of migration imaging is due to the large random phase
!��.Exr ; Ey/ in the Green’s function, so a natural idea for improving the imaging is to
cancel the random phase by data processing. We could cancel the phase exactly by
working with the intensities j Op.!; Exr /j2 of the measurements, but this is not a good
idea. To see why consider a point source at Ey, so that

Op.!; Exr / D Op.!; Exr I Ey/ D Of .!/ OG.!; Exr ; Ey/ : (137)

The intensity is

j Op.!; Exr I Ey/j2 D j Of .!/j2j OG.!; Exr ; Ey/j2 	 j Of .!/j2
.4�jExr � Eyj/2 	

j Of .!/j2
.4�L/2

and it is nearly impossible to estimate the location Ey from it because it is
approximately constant across the aperture. We need to keep the deterministic phase,
the travel time �o.Exr ; Ey/, in order to estimate Ey. At the same, we should reduce the
random phase !��.Exr ; Ey/.

The CINT imaging approach accomplishes this by migrating to Eys local cross-
correlations of the data instead of the data themselves. The local cross-correlations
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are defined by

C.t; Qt I Ex; Ex0/ D
Z 1

�1
ds ˆ Œ.t � s/� p �s C Qt=2; Ex	p �s � Qt=2; Ex0	

D
Z 1

�1
d!

2�

Z 1

�1
d Q!
2�
Ô
� Q!


�
Op.! C Q!=2; Ex/ Op .! � Q!=2; Ex0/

e�i Q! t�i! Qt : (138)

They are calculated around the time t , in a time window ˆ of duration 1= deter-
mined by the decoherence frequency with a purpose! To explain the advantage of
working with the cross-correlations (138), we analyze them in section “Analysis of
the Cross-Correlations for a Point Source” for the case of a imaging a point source.
Then we study in sections “Resolution Analysis of the CINT Imaging Function”
and “CINT Images for Passive Arrays as the Smoothed Wigner Transform” the
resolution of the CINT imaging method with passive arrays. It forms an image by
migrating to search points Eys in the imaging domain the cross-correlations (138).
Explicitly, the imaging function is given by

J .Eys/ D
NX

r;r 0D1

Z 1

�1
d!

2�

Z 1

�1
d Q!
2�

‰

�
xr � xr 0

X.!/

�
Ô
� Q!


�
Op.! C Q!=2; Exr /

Op .! � Q!=2; Exr 0/

� e�i Q!
�
�o.Exr ;Eys /C�o.Exr0 ;Ey

s /

2

�
�i!Œ�o.Exr ;Eys /��o.Exr0 ;Eys/�

; (139)

where‰ is another window function that keeps the cross-range offsets xr�xr 0 within
the distance X.!/. As was the case with the time window above, the support X.!/
is chosen equal to the decorrelation length with a purpose. Recalling from (117)
that in our scaling regime X.!/ 	 X.!o/ and using (138), we can approximate the
CINT imaging function as

J .Eys/ 	
NX

r;r 0D1

‰

�
xr � xr 0

X.!o/

�
C
�
�o.Exr ; Exr 0 ; Eys/; Q�o.Exr ; Exr 0 ; Eys/I Exr ; Exr 0

	
: (140)

This is just the superposition of the migrated local cross-correlations (138) at nearby
receivers. The migration amounts to evaluating the cross-correlations at the average
and differences of the travel times from the receivers to the search point

t D �o.Exr ; Exr 0 ; Eys/ D �o.Exr ; Eys/C �o.Exr 0 ; Eys/
2

;

Qt D Q�o.Exr ; Exr 0 ; Eys/ D �o.Exr ; Eys/� �o.Exr 0; Eys/ : (141)
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The resolution analysis below applies to any window functions, but for the sake
of explicit and simpler formulas, we consider the Gaussian windows

ˆ.s/ D e�s2=2 ; ‰.u/ D e�juj2=2 : (142)

Analysis of the Cross-Correlations for a Point Source

The model of the Fourier transform of the measurements is given by (137), with
OG.!; Exr ; Ey/ approximated by (122). Using a notation similar to (141) for the average

and differences of the travel times, and the Gaussian pulse (104), we get

C.t; Qt I Ex; Ex0/ 	 1

2�.4�L/2B2

Z 1

�1
d! e

� .!�!o/
2

B2

Z 1

�1
d Q! Ô

� Q!


�
e

� Q!2

4B2 Ci!ŒQ�o.Ex;Ex0 ;Ey/�Qt �

� ei Q!Œ�o.Ex;Ex0 ;Ey/�t �Ci.!C Q!=2/�� .Ex;Ey/�i.!� Q!=2/�� .Ex0;Ey/ : (143)

We calculate first the coherent part of C, its statistical expectation, to show that it
peaks at times

t D �o.Exr ; Exr 0 ; Ey/ and Qt D Q�o.Exr ; Exr 0 ; Ey/ :

Then we estimate the SNR at the peak to assess its statistical stability with respect
to the realizations of the random medium.

The expectation of (143) follows from (109)

E
�
C.t; Qt I Ex; Ex0/

� 	 1

2�.4�L/2B2
e

� jx�x0j2

2X2.!o/

Z 1

�1
d! e

� .!�!o/
2

B2 Ci!ŒQ�o.Ex;Ex0;Ey/�Qt �

Z 1

�1
d Q! Ô

� Q!


�
e

� Q!2
2

�
1
2 C 1

2B2

�
Ci Q!Œ�o.Ex;Ex0;Ey/�t �

; (144)

where we approximated the decorrelation length by that at the central frequency
!o, as stated in the scaling relation (117). Note that the essential support of Q! in
the second integral is limited to j Q!j . minf;Bg ; because the pulse has finite
bandwidth, and the waves decorrelate over frequency offsets that are larger than
. Thus, if we had a window ˆ with Fourier transform supported over a larger
frequency interval than , it would make no difference in (144). However, we will
see later that it will result in lower SNR, so we would lose in statistical stability.
Could we take a smaller frequency support of Ô than ? Such a choice would
reduce the variance of the fluctuations of C, but it would broaden the peak along
the t axis. This follows from the evaluation of the Q! integral in (144). The optimal
choice of the frequency support is the decoherence frequency , as we take it in
(144).
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TheMean
Using the Gaussian window defined in (142), and integrating over! and Q! in (144),
we obtain the following expression of the mean of the correlations

E
�
C.t; Qt I Ex; Ex0/

� 	
p

2� e
� jx�x0j2

2X2.!o/

.4�L/2
p

4B2=2 C 1

e
�i!oŒQ�o.Ex;Ex0;Ey/�Qt��B2ŒQ�o.Ex;Ex0 ;Ey/�Qt �2

4 �B2Œ�o.Ex;Ex0 ;Ey/�t �2

.4B2=2C1/ : (145)

They are indeed peaked at t D �o.Ex; Ex0; Ey/ and Qt D Q�o.Ex; Ex0; Ey/. The width of the
peak in Qt is inherited from the O.1=B/ support of the pulse. The width of the peak

in t is O
�p

1=B2 C 4=2
�

. It is similar to the width of the pulse f .t/ when the

bandwidth satisfies B . , but it is much broader than f .t/ for larger bandwidths
B � . The peak value of the mean is

max
t;Qt

E
�
C.t; Qt I Ex; Ex0/

� D E
�
C.�o.Ex; Ex0; Ey/; Q�o.Ex; Ex0; Ey/I Ex; Ex0/

�

	
p

2� e
� jx�x0j2

2X2.!o/

.4�L/2
p

4B2=2 C 1
: (146)

It decays exponentially with the cross-range offset, which is why we restrict it with
the window ‰ in the CINT function (140). This is essential for improving the SNR
of the imaging function, as we show next.

The SNR
We assess the statistical stability of the peak of the cross-correlations by estimating
the SNR, which is the ratio of (146) and the standard deviation of C.�o; Q�oI Ex; Ex0/.
We need the second moment

E

hˇ̌
C.�o.Ex; Ex0; Ey/; Q�o.Ex; Ex0; Ey/I Ex; Ex0/

ˇ̌2i

D 1

.32�3L2/2B4

“ 1

�1
d!1 d!2 e

� .!1�!o/
2

B2 � .!2�!o/
2

B2

“ 1

�1
d Q!1 d Q!2

� Ô
� Q!1

ˆ

�
Ô
� Q!2

ˆ

�
e

� Q!2
1 C Q!2

2
4B2 E

�
ei
�
!1�!2C Q!1� Q!2

2

	
�� .Ex;Ey/�i

�
!1�!2� Q!1� Q!2

2

	
�� .Ex0;Ey/

�
;

(147)

where we let the support of the windows be ˆ , not necessarily the same as , in
order to demonstrate how it affects the SNR. The peak value of the mean for this
choice is a slight modification of (146)
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E
�
C.�o.Ex; Ex0; Ey/; Q�o.Ex; Ex0; Ey/I Ex; Ex0/

� 	
p

2� e
� jx�x0j2

2X2.!o/

.4�L/2
q

2B2=2 C 2B2=2
ˆ
C 1

;

(148)

and the second moment follows from the calculation in Appendix 2

E

hˇ̌
C.�o.Ex; Ex0; Ey/; Q�o.Ex; Ex0; Ey/I Ex; Ex0/

ˇ̌2i 	
�

2B2

2
ˆ

C 1
�� 1

2

128�3L4

�
2B2

2

�
1 �

Z 1

0
dt e

� t2jx�x0j2

2`2

�
C 1

�� 1
2

�
"

2B2

2

�
1 �
Z 1

0
dt e

� t2jx�x0j2

2`2

�
C 2B2

2
ˆ

C 1

#� 1
2

: (149)

We distinguish two regimes:

1. When jx�x0j � X.!o/ the mean (148) and therefore the SNR are exponentially
small. The cross-correlations have large random fluctuations in this regime and
in CINT we make sure that we do not use them by restricting jx � x0j . X.!o/

with the window function ‰.
2. When jx � x0j . X.!o/, we can expand the exponential in (149) in series of
jx � x0j=`� 1 to obtain

2B2

2

�
1 �
Z 1

0
dt e

� t2jx�x0j2

2`2

�
	 B2

!2
o

jx � x0j2
X2.!o/

� 1 ;

and simplify (149) as

E

hˇ̌
C.�o.Ex; Ex0; Ey/; Q�o.Ex; Ex0; Ey/I Ex; Ex0/

ˇ̌2i 	
�

2B2

2
ˆ

C 1
��1

128�3L4
: (150)

The SNR is bounded by its value at x D x0, in which case Eqs. (148) and (150)
give

SNR .
jE �C.�o.Ex; Ex; Ey/; Q�o.Ex; Ex; Ey/I Ex; Ex/� jq
Var

�
C.�o.Ex; Ex; Ey/; Q�o.Ex; Ex; Ey/I Ex; Ex/

� 	
s
2

2
ˆ

C 2

2B2
: (151)

The subtraction of the random phases in the local cross-correlations (143) at
nearby receivers reduces substantially the random fluctuations and the SNR is no
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longer exponentially small. However, the SNR may still not be large enough and
it decreases when we increase ˆ , as stated before. A small ˆ gives a larger
SNR but it also reduces the resolution as discussed previously, so ˆ 	  is a
good compromise. Equation (151) shows that the stronger the random medium
effects (i.e., the smaller ) the lower the SNR. The local cross-correlations are
less sensitive to the realization of the random medium than the data themselves,
but still they are not statistically stable. They have random fluctuations that are
of the same order as the mean. These fluctuations are averaged out in the CINT
imaging function (140) by the summation over the sensors, if the aperture is large
enough. This is how we can achieve a statistically stable image, as we show in
the next section.

Resolution Analysis of the CINT Imaging Function

We calculate first the mean of the imaging function to estimate the resolution of the
expected focusing. The we estimate the SNR and state the conditions under which
CINT is statistically stable.

TheMean Point Spread Function
In the case of a point source at Ey, the expectation of the imaging function follows
directly from (140) and (145). Using the Gaussian window ‰ defined in (142) and
the approximation (126) of the differences of travel times, we obtain

E
�
J .EysI Ey/� 	

p
2�N 2

.4�L/2jAj2p4B2=2 C 1

“
A

dxdx0e� jx�x0j2

X2.!o/
Ciko .ys�y/ � .x�x0/

L � B2

4c2o

h
.ys�y/ � .x�x0/

L

i2

� e� B2

c2o .4B2=2C1/

h
�s��C .ys�y/

L �
�

xCx0

2

	i2

:

(152)

Here we used the same notation as in the previous section for the point spread
function J .EysI Ey/ to emphasize that the source is a point at Ey.

It is convenient to change variables in the integral in (152) to centered and
difference offsets

x D xC x0

2
; Qx D x � x0 ;

and since only jQxj . X.!o/� ` . a is in the essential support of the Gaussian, we
can approximate the right hand side in (152) by extending the integral over Qx to the
whole R2. Moreover, we note that under our scaling assumptions

B

co

ˇ̌
ˇ̌ .ys � y/ � .x � x0/

L

ˇ̌
ˇ̌ . B

!o

kojys � yjX.!o/
L

� 1 ;
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so we can neglect the third term in the exponential in (152). This is for search points
Eys satisfying

1 . jys � yj
�oL=X.!o/

� !o

B
;

where �oL=X.!o/ turns out to be the cross-range resolution limit, as shown below.
We obtain after integrating in Qx that

E
�
J .EysI Ey/� 	

p
2=�N 2X2.!o/

16L2jAjp4B2=2 C 1
e

� 1
4
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L
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Z
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� B2

c2o .4B2=2C1/

h
�s��C .ys�y/ �x

L

i2

; (153)

and note that the right-hand side peaks at Eys D Ey, as it should.

Range Resolution When we evaluate (153) at ys D y, we obtain

E
�
J .Eys D .y; �s/I Ey/� 	

p
2=�N 2X2.!o/

16L2jAjp4B2=2 C 1
e

� B2.�s��/2

c2o .4B2=2C1/ : (154)

The range resolution is given by

j�s � �j . co

B

p
4B2=2 C 1 : (155)

It is worse than in the homogeneous medium because of the factor
p

4B2=2 C 1.
This factor is large when the decoherence frequency satisfies  � B and reduces
the range resolution to O.co=/.

Cross-Range Resolution Evaluating (153) at �s D �, we obtain

E
�
J .EysI Ey/� 	

p
�=2N 2X2.!o/

32L2jAjp4B2=2 C 1
e

� 1
4

h
koX.!o/jys�yj

L

i2

2Y
jD1

erf

�
aB

2Lco
p

4B2=2C1
.ysj � yj /

�

aB

2Lco
p

4B2=2C1
.ysj � yj /

:

Both factors are peaked at ys D y, so we estimate the resolution by the width of the
tighter peak
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jys � yj . min

(
�oL

X.!o/
;
�oL

a

r
4!2

o

2
C !2

o

B2

)
: (156)

This is worse than the resolution �oL=a in homogeneous media because in our

scaling X.!o/� a and
q

4!2
o

2 C !2
o

B2 � 1.

The SNR
To calculate the SNR, we need the variance of J .EysI Ey/ and therefore the fourth-
order moments of the Green’s function. Their calculation is straightforward, due to
the Gaussianity of �� , but laborious. We state directly the result which distinguishes
between two cases:

1. When j�xj D jx� x0j � `, the fourth moments

M4
�
!;!0; Q!; Q!0; x; x0; Qx; Qx0/ D E

�
ei
�
!C Q!

2

	
��

�
ExC QEx

2 ;Ey
	

�i
�
!� Q!

2

	
��

�
Ex� QEx

2 ;Ey
	

�e�i
�
!0C Q!0

2

	
��

�
Ex0C Q

E
0x

2 ;Ey
	

Ci
�
!0� Q!0

2

	
��

�
Ex0� Q

E
0x

2 ;Ey
	�

factorize in the product of second moments

M4
�
!;!0; Q!; Q!0; x; x0; Qx; Qx0/ 	M2

�
!; Q!; x; Qx/M2

�
!0; Q!0; x0; Qx0/ ;

where

M2
�
!; Q!; x; Qx/ D E

�
ei
�
!C Q!

2

	
��

�
ExC QEx

2 ;Ey
	

�i
�
!� Q!

2

	
��

�
Ex� QEx

2 ;Ey
	�
	 e� Q!2

22 � jQxj2

2X2.!o/ ;

and Ex D .x; L/, QEx D .Qx; 0/. The same notation applies for the prime variables.
2. When j�xj . `, we have the expression

M4
�
!;!0; Q!; Q!0; x; x0; Qx; Qx0/ 	M2

�
!; Q!; x; Qx/M2

�
!0; Q!0; x0; Qx0/

� exp

(Z 1

0
dt e

� t2j�xj2

2`2

"
Q! Q!0

2
C 3

t2 Qx � Qx0

X2.!o/

 
1 � t

2j�xj2
2`2

!

�p3t2
�x
`
�
 
Q!0 Qx

X.!o/
� Q! Qx0

X.!o/

!#)
:

We no longer have the factorization of the moments, and the exponential factor
is bounded above and below by constants of order one.
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The factorization of the moments for j�xj � ` means that only the set fx; x0 2
A; jx�x0j . `g contributes to the calculation of the variance of J .Eys/. Explicitly,
we have

Var
�
J .EyI Ey/� 	 N 4

64jAj4�5L4B4

“ 1

�1
d!d!0

“ 1

�1
d Q!d Q!0

“
A
dxdx01Œ0;`�

.jx � x0j/
“

R�

d Qxd Qx0 � e� .!�!o/
2C.!0�!o/

2

B2 �. Q!2C Q!0 2/
�

1
2 C 1

4B2

	
� jQxj2CjQx0j2

2X2.!o/

�
(
e

R 1
0 dt e

�
t2j�xj2

2`2

�
Q! Q!0

2 C3 t2 Qx � Qx0

X2.!o/

�
1� t2j�xj2

2`2

	
�p

3t2 �x
` �
�

Q!0 Qx
X.!o/

� Q!Qx0

X.!o/

	�
� 1

)
:

This is a complicated expression but we can estimate it by replacing the last factor
by an order one constant. We obtain that

Var
�
J .EyI Ey/� � `2

jAj
ˇ̌
E
�
J .EyI Ey/�ˇ̌2 ; (157)

where the symbol � means approximate, up to a multiplicative constant of order
one. The SNR at the peak is given by

SNR
�
J .EyI Ey/� � a

`
; (158)

where we used that jAj D a2. Thus, the CINT point spread function J .EysI Ey/ has a
robust (statistically stable) focusing at the location Ey of the source only if the array
has aperture a � `. This is a significant improvement over the result in Sect. 7,
where for the migration method to be stable we needed that a=` be much larger
than a huge number, not one like above.

Remark 4. Our analysis above is restricted to the CINT point spread function. It
extends easily to the case of a distributed source density. We do not do it here
because the calculations are long and the result does not bring any significant insight
to the problem.

CINT Images for Passive Arrays as the SmoothedWigner Transform

The Wigner transform, also called the Wigner distribution, is a classic tool for study-
ing high frequency limits of the wave equation. It is very useful in imaging because
it allows us to extract the important phase information from the measurements at the
array: the travel times and the direction of arrival of the waves from the unknown
source location.
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The Wigner transform of the wave field Op.!; .x; L// evaluated in the plane of
the array, at range L from the source, is defined by

W.!; xI t;K/ D
Z
R2

d Qx
.2�/2

Z 1

�1
d Q!
2�
Op
�
! C Q!

2
;
�

xC Qx
2
; L
��

Op
�
! � Q!

2
;
�

x � Qx
2
; L
��
e�i!K � Qx�i Q!t : (159)

We cannot compute it in practice because the measurements of Op are limited to the
aperture, but we shall see in this section how W is related to the CINT imaging
function. Note that W is real valued and its integral over the last two arguments
gives the intensity of the wave field

Z
R2
dK!2

Z 1

�1
dtW.!; xI t;K/ D j Op .!; .x; L//j2 : (160)

Thus, we may think of W as the “energy density” of the waves resolved over the
phase space variables t and K, although W is not positive in general. The variable
t is dual to the frequency offset Q!, so it has units of time. The variable K is dual to
the cross-range offset, and is called the slowness vector because its units are time
over length, like 1=co.

We use the paraxial approximation (112) of the travel time and assumption (118)
to rewrite the expression (139) of the CINT imaging function J .Eys/ evaluated at
Eys D .ys; �s/ as

J .Eys/ 	 N 2

.2�/2jAj2
Z 1

�1
d!

Z 1

�1
d Q! Ô

� Q!


�Z
A
dx
Z
R2
d Qx‰

� Qx
X.!o/

�

� Op
�
! C Q!

2
;
�

xC Qx
2
; L
��
Op
�
! � Q!

2
;
�

x � Qx
2
; L
��

e�i Q!�o..x;L/;Eys/�i !co
.x�ys / � Qx

L : (161)

The cross-range variables x and Qx should take values in the set defined by the
constraint x ˙ Qx=2 2 A, so that the wave field is evaluated in the aperture of the
array. Nevertheless, since the window ‰ restricts jQxj to the decorrelation length
X.!o/, which is much smaller than the aperture a, we can approximate J .Eys/ by
extending the integral over Qx to the whole plane and letting x vary in A.

The relation between J .Eys/ and W follows from (161), after inverting the
transform in (159),

J .Eys/ 	 N 2X2.!o/

2�jAj2
Z 1

�1
d!

Z
A
dx
Z 1

�1
dt

Z
R2
dK!2W.!; xI t;K/

�ˆ ���o..x; L/; Eys/ � t	� O‰
�
!oX.!o/

�
K � x � ys

coL

��
: (162)
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Thus J .Eys/ is given by the Wigner transform smoothed over all its arguments.
The smoothing is by the integration over the bandwidth and the aperture and by
the convolution with the windows. The time window ˆ has support of order 1=,
and the convolution is evaluated at the travel time from the search point Eys to the
receiver location Ex D .x; L/ in the array. The window O‰ over the slowness vectors
has support of order !oX.!o/ D

p
3`; and the convolution is evaluated at the

slowness vector .x� ys/=.coL/, which is approximately the cross-range gradient of
the travel time rx�o.Ex; Eys/:

Remark 5. It turns out that the Wigner transform is weakly self-averaging for a
wide range of wave scattering regimes in random media. That is to say, although
W.!; xI t;K/ is random when evaluated pointwise, it becomes deterministic when
integrated against some test function '.!; xI t;K/, as in (162). The weak self-
averaging property of the Wigner transform is the basis of the proofs of statistical
stability of the time reversal process [3, 27] and of CINT imaging in random media
[9]. It is an asymptotic result obtained by taking various limits, depending on the
scaling regime. The smoothed Wigner transform is not deterministic in practice
because the limit is never realized, but its random fluctuations at the peaks are small,
i.e., the SNR is large.

Calculation of theWigner Transform
Here we calculate the Wigner transform in order to show explicitly the role of the
smoothing by the windowsˆ and‰ used in the local cross-correlations of the array
data. Again, we assume for simplicity a point source at Ey.

Using the model (137) of the array data with Green’s function (122) in the
definition (159) of the Wigner transform, we obtain

W.!; xI t; K/ 	 1

.4�L/2.2�/3

Z
R2
d Qx
Z 1

�1
d Q! Of

�
! C Q!

2

�
Of
�
! � Q!

2

�

� ei!
h
�
��

xC Qx
2 ;L
	
;Ey
�
��
��

x� Qx
2 ;L
	
;Ey
�
�K � QxiCi Q!

2

h
�
��

xC Qx
2 ;L
	
;Ey
�
C�

��
x� Qx

2 ;L
	
;Ey
�
�2t

i
:

(163)

Here � is the random travel time

�.Ex; Ey/ D �o.Ex; Ey/C �� .Ex; Ey/;

and assuming that the pulse Of is modeled by the Gaussian (105), we can integrate
over Q! in (163)

W.!; xI t; K/ 	 e�.!�!o/2=B2

.4�L/22�3=2B

Z
R2
d Qx e�B2

4

h
�
��

xC Qx
2 ;L
	
;Ey
�
C�

��
x� Qx

2 ;L
	
;Ey
�
�2t

i2

� ei!
h
�
��

xC Qx
2 ;L
	
;Ey
�
��
��

x� Qx
2 ;L
	
;Ey
�
�K � Qxi

: (164)
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It remains to evaluate the Qx integral which we cannot do explicitly in (164) because
there is no restriction on the cross-range offset Qx. However, when we smooth W
over the slowness vectors, as we do in the convolution with the window O‰ in (164),
we see that only small cross-range offsets contribute to the results. Explicitly, we
have

Z
R�

dK0 O‰ �!oX.!o/.K0 �K/
�
W.!; xI t IK0/ 	 2

p
�e�.!�!o/2=B2

.4�L/2BŒ!oX.!o/�2

e�B2Œ�..x;L/;Ey/�t �2 �
Z
R2
d Qx‰

� Qx
X.!o/

�
e
i!o

h
rx�

��
x;L
	
;Ey
�
�K

i � Qx
; (165)

where we used our scaling assumptions to approximate

B

2

�
�

��
xC Qx

2
; L
	
; Ey
�
C �

��
x � Qx

2
; L
	
; Ey
��
	 B� �.x; L/; Ey	 ;

!

�
�

��
xC Qx

2
; L
	
; Ey
�
� �

��
x � Qx

2
; L
	
; Ey
��
	 !orx�

�
.x; L/; Ey	 ;

for cross-range offsets in the support of ‰, satisfying jQxj . X.!o/. Now we can
integrate over Qx in (165) and over !

Z
R�

dK0 O‰ �!oX.!o/.K0 �K/
� Z 1

�1
d!W.!; xI t IK0/

	 2�

.4�L/2!2
o

e�B2Œ�..x;L/;Ey/�t �2 � O‰ �!oX.!o/ �rx�
�
.x; L/; Ey	�K

	�
: (166)

We conclude from (166) and the paraxial approximation (112) of the determin-
istic travel time �o that the Wigner transform smoothed over the slowness vector
peaks at the random arguments

t D �o
�
.x; L/; Ey	C�� �.x; L/; Ey	 and K D x � y

coL
Crx��

�
.x; L/; Ey	: (167)

The peak dances around the point
�
�o
�
.x; L/; Ey	; x�y

coL

�
in the .t;K/ phase space, as

modeled by �� in the t direction and by rx�� in the plane of the slowness vectors K.
In the CINT imaging function (163) we evaluate (166) at the expected peak location�
�o
�
.x; L/; Eys	; x�ys

coL

�
supposing that the source is at Eys . The role of the window O‰

is to mitigate the peak dancing in K. The standard deviation of the location of the
peaks is quantified in our model asO.1=.!oX.!o///, which is precisely the support
of O‰ in (166). Thus, in CINT we are essentially taking the envelope of the random
peaks in K to stabilize statistically the image, and thus increase the SNR.

The standard deviation of the peak location in t is O.1=/ in our model, and
the peak dancing is significant in (166) when B � . The CINT imaging function
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(163) is statistically stable because of the convolution with the windowˆ of support
O.1=/.

Remark 6. The results above reveal that on one hand the windows used in the calcu-
lation of the local cross-correlations are needed to stabilize the imaging process, but
on the other hand they blur the peaks of W and therefore of the image. In practice
it is unlikely that we would know the statistics of the medium fluctuations so we
cannot calculate the decorrelation length X.!o/ and the decoherence frequency 
using the formulas (103) and (109). In fact these formulas may not even apply
because the random travel time model may not be a good approximation of the
net scattering effects of the medium. It is the form of the second moment formulas
(109) which is general, and not the detailed definition of andX.!o/ that the CINT
imaging methodology should use. The scales X.!o/ and  should not be set based
on a specific model, they should be estimated as part of the imaging process. This
can be done in principle directly from the data, by calculating for example empirical
correlations and estimating how they decay with the frequency and cross-range
offsets. Alternatively, we may estimate X.!o/ and  while we form the image,
by exploiting the trade-off between the resolution (sharpness) of the image and its
SNR. The latter approach is known as adaptive CINT. It uses a figure of merit of the
quality of the image and estimates X.!o/ and  by optimizing it during the image
formation [8].

CINT Imaging with Active Arrays

The CINT imaging function for active arrays back-propagates the local cross-
correlations of the array measurements Op.!; Exr ; Exs/ to the search points Eys, using
the roundtrip travel times

�o.Exr ; Eys; Exs/ D �o.Exr ; Eys/C �0.Exs; Eys/: (168)

Here Exr D .xr ; L/ and Exs D .xs; L/ denote the location of the receivers and sources
in the aperture A, and the imaging function is given by

J .Eys/ D
NrX

r;r 0D1

NsX
s;s0D1

Z 1

�1
d!

2�
‰

�
xr � xr 0

X.!o/

�
‰

�
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X.!o/

� Z 1

�1
d Q!
2�
Ô
� Q!


�

Op
�
! C Q!

2
; Exr ; Exs

�
� Op

�
! � Q!

2
; Exr 0 ; Exs0

�

e
�i Q!

�
�o.Exr ;Eys ;Exs /C�o.Exr0 ;Ey

s ;Exs0 /
2

�
�i!Œ�o.Exr ;Eys ;Exs /��o.Exr0 ;Eys ;Exs0 /�

: (169)

The resolution analysis of (169) is more involved than that for passive arrays, even
for the Born model of the data
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Op.!; Exr ; Exs/ 	 Of .!/
Z
d Ey �.Ey/ OG.!; Exr ; Ey/ OG.!; Exr ; Eys/

	
Of .!/

.4�L/2

Z
d Ey �.Ey/ei!�o.Exr ;Ey;Exs /Ci!�� .Exr ;Ey/Ci!�� .Exs ;Ey/; (170)

because it requires higher moments of the random travel time perturbation �� . We
do not include it here because it does not bring any new insight. We only highlight
the relation between the imaging function and the Wigner transform, in the case of
a point-like reflector at Ey.

Using the model

Op.!; Exr ; Exs/ 	 Of .!/ OG.!; Exr ; Ey/ OG.!; Exs; Ey/;

we can rewrite (169) in terms of the Wigner transform W.!; xI t;K/ of
Of .!/1=2 OG.!; Ex; Ey/, which is like the square root of the data. Explicitly, we have

that

W.!; xI t;K/ D
Z
R2

d Qx
.2�/2

Z 1

�1
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�

xC Qx
2
; L
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x � Qx
2
; L
��
e�i!K � Qx�i Q!t ;

and (169) becomes

J .Eys/ 	
Z 1

�1
d!

2�

“
R2

dKdK0
“ 1

�1
dtdt 0

NrX
r;r 0D1

!2W.!; xr I t;K/‰
� Qxr
X.!o/

�

� ei!
�

K� xr�ys

L

� � Qxr �
NsX

s;s0D1

!2W.!; xsI t 0;K0/‰
� Qxs
X.!o/

�
e
i!
�

K0� xs�ys

L

� � Qxs

�ˆ� ��o�.xr ; L/; Eys	 � t C �o�.xs; L/; Eys	 � t 0	� ; (171)

where we let

xr D xr C xr 0

2
and Qxr D xr � xr 0 ;

integrated over Q!, and used the paraxial approximation (112) of the travel time and
the assumption (118) on the decorrelation length.

The result (171) is similar to that for passive arrays. To see this more explicitly, let
us suppose that Nr D Ns and use the continuum aperture approximation to rewrite
(171) as
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J .Eys/ 	 N 4Œ!oX.!o/�
4

2�jAj4
Z 1

�1
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dxdx0ˆ

�

�
�o
�
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: (172)

The K and K0 integrals are just like (165), except that now we have the square root
of the pulse, so we can write directly the result from there,

Z
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dKW.!; xI t;K/ O‰

�
!oX.!o/

�
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��
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L

��
:

We see the same random peak dancing as before, which is mitigated in the slowness
plane by the window O‰ of width chosen appropriately as 1=.!oX.!o//. The peak
dancing in t is visible in the case B � , but it is mitigated in the imaging function
by the convolution with the window ˆ. This can be seen from (172), once we use
the Gaussian window (142) and integrate in t and t 0

J .Eys/ 	 N 4X4.!o/.2B2=2 C 1/�1=2
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2�.4�L/4jAj4“
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dxdx0 O‰
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��o
�
.x;L/;Eys

	
��o
�
.x0;L/;Ey

	i2

: (173)

Numerical Simulations
We illustrate with numerical results the point spread function of CINT with active
arrays. The array data Op.!; Exr ; Exs/ is simulated with the random travel time
approximation (78) of the Green’s function in a medium with wave speed modeled
by (73) for a constant Nc D co. The standard deviation of the fluctuations of c.Ex/ is
either 
 D 0:04 % or 
 D 0:1 %, and the correlation length is ` D 100�o. The array
has aperture a D 4`. It is centered at the cross-range location y of the reflector,
and at range L D 99` from it. There are N D 101 sensors in each direction. All
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Fig. 8 Traces p.t; Exr ; Exs / in the homogeneous medium (top) and in one realization of the random
medium, for 
 D 0:1 %. The traces are similar, except for the wavefront distortion noted in the
bottom plot

of them are receivers except for the central one, which is also a source. It emits a
pulse f .t/ that is a modulated sinc function, with constant Fourier coefficients in
the bandwidth Œ125; 175�kHz. The central wavelength is �o D 2 cm.

We display in Fig. 8 the simulated data (traces) p.t; Exr ; Exs/ at the receiver
locations along one cross-range line in the array, with the source in the middle.
Each trace is obtained by Fourier synthesis of Op.!; Exr ; Exs/, for a discretization of
the bandwidth in one hundred equidistant frequency intervals of 0:5 kHz. The top
plot in Fig. 8 is for the homogeneous medium and the bottom plot for one realization
of the random medium, with 
 D 0:1 %. The traces look similar, but we note in the
bottom plot that the wavefront is distorted.

We show in Fig. 9 the sample estimates of the mean Kirchhoff migration and
CINT imaging functions, normalized by the standard deviation at their peak, which
is at the reflector location Ey. We display the square root for the CINT image, so we
can compare the resolution of the two methods. If we did not have the windows
in CINT, the imaging function would be the square of the migration one, which is
why we take the square root in Fig. 9. We note that, as predicted by the theory, the
CINT image is blurier than the migration one, but it has a much higher SNR at Ey.
Kirchhoff migration gives a very small SNR, so the images are expected to change
a lot with the realizations of the random medium. The SNR of the CINT image is
of order one in this simulation because the aperture a is not very large. Thus, the
CINT images change with the realizations as well, but the changes are smaller and
never exceed the mean. The peak is expected to stay close to Ey, independent of the
realization. This is illustrated in Fig. 10 where we display the migration images (top
row) and CINT images (bottom row) in three realizations of the random medium.
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Fig. 9 The mean of the Kirchhoff migration (left) and square root of CINT images (right) divided
by their standard deviation at the peak. The colorbar shows that the SNR of CINT is approximately
100 times larger than that of Kirchhoff migration. The axes are range and cross-range in �o,
measured from the source at the array. The true reflector location is in the middle of the search
domain, and it is indicated with the white circle

The migration images are quite different from each other: the first image is not as
well focused as the others and the peak changes its location. The CINT images
change much less with the realization and are very similar to their mean displayed
in the right plot in Fig. 9.

9 Appendix 1: SecondMoments of the Random Travel Time

We obtain by direct calculation from (75) and (84) that
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; (174)

where we made the change of variables .t; t 0/Ý .Qt ; t 0/ with

t 0 � t D `

L
Qt :
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We can rewrite the result as

E
�
�.Ex; Ey/�.Ex0; Ey0/

� D
Z 1

0
dt 0

Z 1

�1
d Qtp
2�

1Œ�L=`;L=`�.Qt /R
�
Qt EnC .1 � t 0/.Ey0 � Ey/C t 0.Ex0 � Ex/

`

�
; (175)

and note that the integrand converges to R
h
Qt EnC .1�t 0/.Ey0�Ey/Ct 0.Ex0�Ex/

`

i
pointwise,

from below, as L=`!1. Since R is integrable by assumption, we obtain from the
Lebesgue dominated convergence theorem that

E
�
�.Ex; Ey/�.Ex0; Ey0/

� 	 lim
L=`!1

Z 1

0
dt 0

Z 1

�1
d Qtp
2�

1Œ�L=`;L=`�.Qt /

R
�
Qt EnC .1 � t 0/.Ey0 � Ey/C t 0.Ex0 � Ex/

`

�

D
Z 1

�1
d Qtp
2�

R
�
Qt EnC .1 � t 0/.Ey0 � Ey/C t 0.Ex0 � Ex/

`

�
;

(176)

as stated in (86).

10 Appendix 2: SecondMoments of the Local
Cross-Correlations

Using the Gaussian windows in (147), we obtain

E

hˇ̌
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�
; (177)

and it remains to evaluate the expectation. Because �� is approximately Gaussian,
we have
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where we let �! D !1 � !2 and � Q! D Q!1 � Q!2. The exponent follows from (84)
and (91)
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Substituting in (177), we obtain
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1�R 1

0 dt e
�
t2jx�x0j2

2`2
�
;

(178)

and after evaluating the Gaussian integrals, we obtain (149).

11 Conclusion

This article reviews basic results on coherent array imaging in random media. The
random model is motivated by the uncertainty of the small-scale fluctuations of
the wave speed in complex media with numerous inhomogeneities. We consider
a simple model of wave propagation in random media that captures nevertheless
canonical scattering effects on the coherent part of the waves, and consider two
imaging methods: migration imaging and CINT imaging. They are both related to
an approximation of the solution of the least squares data fit formulation of the
inverse problem. Migration imaging is superficially connected to the time reversal
process, in the sense that it involves the back-propagation to the imaging region of
the time reversed waves measured at the receivers in the array. However, the back-
propagation is in a surrogate medium, not in the real one as in the time reversal
process, because the medium is not known in imaging. We know only its smooth
part, but not its inhomogeneities, which is why we model it as random. This subtle
difference between imaging and time reversal has profound effects in random media.
We give an explicit and self-contained study of these effects and show that migration
imaging is not useful when the waves propagate longer than a scattering mean-
free path in random media. The CINT method images by back-propagating to the
imaging region local cross-correlations of the measurements at the array. We analyze
in detail these local cross-correlations in order to explain why they are useful in
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imaging. Moreover, we give an explicit resolution analysis of CINT, which includes
an assessment of its statistical stability, and illustrate the results with numerical
simulations.
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Abstract
The theme of this chapter is statistical methods in imaging, with a marked
emphasis on the Bayesian perspective. The application of statistical notions and
techniques in imaging requires that images and the available data are redefined in
terms of random variables, the genesis and interpretation of randomness playing a
major role in deciding whether the approach will be along frequentist or Bayesian
guidelines. The discussion on image formation from indirect information, which
may come from non-imaging modalities, is coupled with an overview of how
statistics can be used to overcome the hurdles posed by the inherent ill-posedness
of the problem. The statistical counterpart to classical inverse problems and
regularization approaches to contain the potentially disastrous effects of ill-
posedness is the extraction and implementation of complementary information
in imaging algorithms. The difficulty in expressing quantitative and uncertain
notions about the imaging problem at hand in qualitative terms, which is a
major challenge in a deterministic context, can be more easily overcome once
the problem is expressed in probabilistic terms. An outline of how to translate
some typical qualitative traits into a format which can be utilized by statistical
imaging algorithms is presented. In line with the Bayesian paradigm favored
in this chapter, basic principles for the construction of priors and likelihoods
are presented, together with a discussion of numerous computational statistics
algorithms, including maximum likelihood estimators, maximum a posteriori and
conditional mean estimators, expectation maximization, Markov chain Monte
Carlo, and hierarchical Bayesian models. Rather than aiming to be a comprehen-
sive survey, the present chapter hopes to convey a wide and opinionated overview
of statistical methods in imaging.

1 Introduction

Images, alone or in sequences, provide a very immediate and effective way of
transferring information, as the human eye–brain complex is extremely well adapted
at extracting quickly their salient features, let them be edges, textures, anomalies, or
movement. While the amount of information that can be compressed in an image is
tremendously large and varied, the image processing ability of the human eye is so
advanced to outperform the most advanced of algorithms. One of the reasons why
the popularity of statistical tools in imaging continues to grow is the flexibility that
this modality offers when it comes to utilizing qualitative attributes of the images or
to recover them from indirect, corrupt specimens. The utilization of qualitative clues
to augment scarce data is akin to the process followed by the eye–brain system.

Statistics, which according to Pierre–Simon Laplace, is “common sense
expressed in terms of numbers,” is well suited for quantifying qualitative attributes.
The opportunity to augment poor quality data with complementary information
which may be based on our preconception of what we are looking for or on
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information coming from sources other than the data makes statistical methods
particularly attractive in imaging applications.

In this chapter, we present a brief overview of some of the key concepts and
most popular algorithms in statistical imaging, highlighting the similarity and the
differences with the closest deterministic counterparts. A particular effort is made
to demonstrate that the statistical methods lead to new ideas and algorithms that the
deterministic methods do not give.

2 Background

Images in the Statistical Setting

The mathematical vessel that we will use here to describe a black and white image
is a matrix with nonnegative entries, each representing the light intensity at one
pixel of the discretized image. Color images can be thought of as the result of
superimposing a few color intensity matrices; in most application, a color image
is represented by three matrices, for example, encoding the red, green, and blue
intensity at each pixel. While color imaging applications can also be approached
with statistical methods, here we will only consider gray-scale images. Thus, an
image X is represented as a matrix

X D �xij � ; 1 � i � n; 1 � j � m; xij � 0:

In our treatment, we will not worry about the range of the image pixel values,
assuming that, if necessary, the values are appropriately normalized. Notice that this
representation tacitly assumes that we restrict our discussion to rectangular images
discretized into rectangular arrays of pixels. This hypothesis is neither necessary
nor fully justified, but it simplifies the notation in the remainder of the chapter. In
most imaging algorithms, the first step consists of storing the image into a vector by
reshaping the rectangular matrix. We use here a columnwise stacking, writing

X D �x.1/ x.2/ : : : x.m/� ; x.j / 2 R
n; 1 � j � m;

and further

x D vec .X/ D

2
664
x.1/

:::

x.m/

3
775 2 R

N ; N D n �m:

Images can be either directly observed or represent a function of interest, as is,
for example, the case for tomographic images.
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Randomness, Distributions, and Lack of Information

We start this section by introducing some notations. A multivariate random variable
X W  ! R

N is a measurable mapping from a probability space  equipped
with a 
-algebra and a probability measure P. The elements of R

N , as well as
the realizations of X , are denoted by lowercase letters, that is, for ! 2  given,
X.!/ D x 2 R

N . The probability distribution �X is the measure defined as

�X.B/ D P
�
X�1.B/

	
; B � R

N measurable:

If �X is absolutely continuous with respect to the Lebesgue measure, there is a
measurable function �X , the Radon–Nikodym derivative of �X with respect to the
Lebesgue measure such that

�X.B/ D
Z
B

�X.x/dx:

For the sake of simplicity, we shall assume that all the random variables
define probability distributions which are absolutely continuous with respect to the
Lebesgue measure.

Consider two random variables X W  ! R
N and Y W  ! R

M . The joint
probability density is defined first over Cartesian products,

�X;Y .B �D/ D P
�
X�1.B/ \ Y �1.D/

	
;

and then extended to the whole product 
-algebra over R
N � R

M . Under the
assumption of absolute continuity, the joint density can be written as

�X;Y .B �D/ D
Z
B

Z
D

�X;Y .x; y/dydx;

where �X;Y is a measurable function. This definition extends naturally to the case
of more than two random variables.

Since the notation just introduced here gets quickly rather cumbersome, we will
simplify it by dropping the subscripts, writing �X;Y .x; y/ D �.x; y/, that is, letting
x and y be at the same time variables and indicators of their parent uppercase
random variables. Furthermore, since the ordering of the random variables is
irrelevant – indeed, P

�
X�1.B/ \ Y �1.D/

	 D P
�
Y �1.D/ \ X�1.B/

	
– we will

occasionally interchange the roles of x and y in the densities, without assuming that
the probability densities should be symmetric in x and y. In other words, we will
use � as a generic symbol for “probability density.”

With these notations, given two random variables X and Y , define the marginal
densities

�.x/ D
Z
RM

�.x; y/dy; �.y/ D
Z
RN

�.x; y/dx;
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which express the probability densities ofX and Y , respectively, on their own, while
the other variable is allowed to take on any value. By fixing y, and assuming that
�.y/ ¤ 0, we have that

Z
RN

�.x; y/

�.y/
dx D 1I

hence, the nonnegative function

x 7! �.x j y/ defD �.x; y/

�.y/
(1)

defines a probability distribution for X referred to as the conditional density of X ,
given Y D y. Similarly, we define the conditional density of Y given X D x as

�.y j x/ defD �.x; y/

�.x/
: (2)

This rather expedite way of defining the conditional densities does not fully explain
why this interpretation is legitimate; a more rigorous explanation can be found in
textbooks on probability theory [8, 18].

The concept of probability measure does not require any further interpretation
to yield a meaningful framework for analysis, and this indeed is the viewpoint of
theoretical probability. When applied to real-world problems, however, an interpre-
tation is necessary, and this is exactly where the opinions of statisticians start to
diverge. In frequentist statistics, the probability of an event is its asymptotic relative
frequency of occurrence as the number of repeated experiments tend to infinity,
and the probability density can be thought of as a limit of histograms. A different
interpretation is based on the concept of information. If the value of a quantity is
either known or it is at potentially retrievable from the available information, there
is no need to leave the deterministic realm. If, on the other hand, the value of a
quantity is uncertain in the sense that the available information is insufficient to
determine it, to view it as a random variable appears natural. In this interpretation
of randomness, it is immaterial whether the lack of information is contingent
(“imperfect measurement device, insufficient sampling of data”) or fundamental
(“quantum physical description of an observable”). It should also be noted that the
information, and therefore the concept of probability, is subjective, as the value of
a quantity may be known to one observer and unknown to another [14, 18]. Only in
the latter case the concept of probability is needed. The interpretation of probability
in this chapter follows mostly the subjective, or Bayesian tradition, although most
of the time the distinction is immaterial. Connections to non-Bayesian statistics are
made along the discussion.

Most imaging problems can be recast in the form of a statistical inference
problem. Classically, inverse problems are stated as follows: Given an observation
of a vector y 2 R

M , find an estimate of the vector x 2 R
N , based on the forward
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model mapping x to y. Statistical inference, on the other hand, is concerned with
identifying a probability distribution that the observed data is presumably drawn
from. In the frequentist statistics, the observation y is seen as a realization of a
random variable Y , the unknown x being a deterministic parameter that determines
the underlying distribution �.y j x/, or likelihood density, and hence the estimation
of x is the object of interest. In contrast, in the Bayesian setting, both variables x and
y are first extended to random variables, Y andX , respectively, as discussed in more
detail in the following sections. The marginal density �.x/, which is independent
of the observation y, is called the prior density and denoted by �prior.x/, while the
likelihood is the conditional density �.y j x/. Combining the formulas (1) and (2),
we obtain

�.x j y/ D �prior.x/�.y j x/
�.y/

;

which is the celebrated Bayes’ formula [3]. The conditional distribution �.x j y/ is
the posterior distribution and, in the Bayesian statistical framework, the solution of
the inverse problem.

Imaging Problems

A substantial body of classical imaging literature is devoted to problems where the
data consists of an image, represented here as a vector y 2 R

M that is either a noisy,
blurred, or otherwise corrupt version of the image x 2 R

N of primary interest. The
canonical model for this class of imaging problems is

y D Ax C “noise,” (3)

where the properties of the matrix A depend on the imaging problem at hand. A
more general imaging problems is of the form

y D F.x/C “noise,” (4)

where the function F W RN 7! R
M may be a nonlinear function and the data

y need not even represent an image. This is a common setup in medical imaging
applications with a nonlinear forward model.

In classical, nonstatistical framework, imaging problems, and more generally,
inverse problems, are often, somewhat arbitrarily, classified as being linear or
nonlinear, depending on whether the forward model F in (4) is linear or nonlinear.
In the statistical framework, this classification is rather irrelevant. Since probability
densities depend not only on the forward map but also on the noise and, in the
Bayesian case, the prior models, even a linear forward map can result in a nonlinear
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estimation problem. We review some widely studied imaging problems to highlight
this point.

1. Denoising: Denoising refers to the problem of removing noise from an image
which is otherwise deemed to be a satisfactory representation of the information.
The model for denoising can be identified with (3), withM D N and the identity
A D I 2 R

N�N as forward map.
2. Deblurring: Deblurring is the process of removing a blur, due, for example,

to an imaging device being out of focus, to motion of the object during
imaging (“motion blur”), or to optical disturbances in atmosphere during image
formation. Since blurred images are often contaminated by exogenous noise,
denoising is an integral part of the deblurring process. Given the image matrix
X D Œxij �, the blurring is usually represented as

yij D
X
k;`

aij;k`xk` C “noise.”

Often, but not without loss of generality, the blurring matrix can be assumed to
be a convolution kernel,

aij;k` D ai�k;j�`;

with the obvious abuse of notations. It is a straightforward matter to arrange the
elements, so that the above problem takes on the familiar matrix–vector form
y D Ax, and in the presence of noise, the model coincides with (3).

3. Inpainting: Here, it is assumed that part of the image x is missing due to an
occlusion, a scratch, or other damages. The problem is to paint in the occlusion
based on the visible part of the image. In this case, the matrix A in the linear
model (3) is a sampling matrix, picking only those pixels of x 2 R

N that are
present in y 2 R

M , M < N .
4. Image formation: Image formation is the process of translating data into the form

of an image. The process is common in medical imaging, and the description of
the forward model connecting the sought image to data may involve linear or
nonlinear transformations. An example of a linear model arises in tomography:
The image is explored one line at the time, in the sense that the data consist of line
integrals indirectly measuring the amount of radiation absorbed in the trajectory
from source to detector or the number of photons emitted at locations along the
trajectory between pairs of detectors. The problem is of the form (3). An example
of a nonlinear imaging model (4) arises in near-infrared optical tomography, in
which the object of interest is illuminated by near-infrared light sources, and the
transmitted and scattered light intensity is measured in order to form an image of
the interior optical properties of the body.
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Some of these examples will be worked out in more details below.

3 Mathematical Modeling and Analysis

Prior Information, Noise Models, and Beyond

The goal in Bayesian statistical methods in imaging is to identify and explore
probability distributions of images rather than looking for single images, while
in the non-Bayesian framework, one seeks to infer on deterministic parameter
vectors defining the distribution that the observations are drawn from. The main
player in non-Bayesian statistics is the likelihood function, in the notation of
section “Randomness, Distributions and Lack of Information,” �.y j x/, where
y D yobserved. In Bayesian statistics, the focus is on the posterior density �.x j y/,
y D yobserved, the likelihood function being a part of it as indicated by Bayes’
formula.

We start the discussion with the Bayesian concept of prior distribution, the non-
Bayesian modeling paradigm being discussed in connection with the likelihood
function.

Accumulation of Information and Priors

To the question, what should be in a prior for an imaging problem, the best answer
is whatever can be built using available information about the image which can
supplement the measured data. The information to be accounted by the prior can be
gathered in many different ways. Any visually relevant characteristic of the sought
image is suitable for a prior, including but not limited to texture, light intensity,
and boundary structure. Although it is often emphasized that in a strict Bayesian
framework the prior and the likelihood must be constructed separately, in several
imaging problems, the setup may be impractical, and the prior and likelihood need to
be set up simultaneously. This is the case, for example, when the noise is correlated
with the signal itself. Furthermore, some algorithms may contain intermediate steps
that formally amount to updating of the a priori belief, a procedure that may
seem dubious in the traditional formal Bayesian setting but can be justified in the
framework of hierarchical models. For example, in the restoration of images with
sharp contrasts from severely blurred, noisy copies, an initially very vague location
of the gray-scale discontinuities can be made more precise by extrapolation from
intermediate restorations, leading to a Bayesian learning model.

It is important to understand that in imaging, the use of complementary infor-
mation to improve the performance of the algorithms at hand is a very natural
and widespread practice and often necessary to link the solution of the under-
lying mathematical problem to the actual imaging application. There are several
constituents of an image that are routinely handled under the guidance of a priori
belief even in fully deterministic settings. A classical example is the assignment of
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boundary conditions for an image, a problem which has received a lot of attention
over the span of a couple of decades (see, e.g., [21] and references therein). In
fact, since it is certainly difficult to select the most appropriate boundary condition
for a blurred image, ultimately the choice is based on a combination of a priori
belief and algorithmic considerations. The implementation of boundary conditions
in deterministic algorithms can therefore be interpreted as using a prior, expressing
an absolute belief in the selected boundary behavior. The added flexibility which
characterizes statistical imaging methodologies makes it possible to import in the
algorithm the postulated behavior of the image at the boundary with a certain degree
of uncertainty.

The distribution of gray levels within an image and the transition between
areas with different gray-scale intensities are the most likely topics of a priori
beliefs, hence primary targets for priors. In the nonstatistical imaging framework,
a common choice of regularization, for the underlying least squares problems is
a regularization functional, which penalizes growth in the norm of the derivative
of the solution, thus discouraging solutions with highly oscillatory components.
The corresponding statistical counterpart is a Markov model, based, for example,
on the prior assumption that the gray-scale intensity at each pixel is a properly
weighted average of the intensities of its neighbors plus a random innovation term
which follows a certain statistical distribution. As an example, assuming a regular
quadrilateral grid discretization, the typical local model can be expressed in terms of
probability densities of pixel valuesXj conditioned on the values of its neighboring
pixels labeled according to their relative position to Xj as Xup, Xdown, Xleft, and
Xright, respectively. The conditional distribution is derived by writing

Xj
ˇ̌
.Xup D xup; Xdown D xdown; Xleft D xleft; Xright D xright/ (5)

D 1

4
.xup C xdown C xleft C xright/Cˆj ;

where ˆj is a random innovation process. For boundary pixels, an appropriate
modification reflecting the a priori belief of the extension of the image outside the
field of view must be incorporated. In a large variety of application,ˆj is assumed
to follow a normal distribution

ˆj � N
�

0; 
2
j

�
;

the variance 
2
j reflecting the expected deviation from the average intensity of the

neighboring pixels. The Markov model can be expressed in matrix–vector form as

LX D ˆ;

where the matrix L is the five-point stencil discretization of the Laplacian in two
dimensions and the vectorˆ 2 R

N contains the innovation termsˆj . As we assume
the innovation terms to be independent, the probability distribution of ˆ is
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ˆ � N .0; †/; † D

2
6664


2
1


2
2
: : :


2
N

3
7775 ;

and the resulting prior model is a second-order Gaussian smoothness prior,

�prior.x/ / exp

�
�1

2
k†�1=2Lxk2

�
:

Observe that the variances 
2
j allow a spatially inhomogeneous a priori control of

the texture of the image. Replacing the averaging weights 1=4 in (5) by more general
weights pk , 1 � k � 4 leads to a smoothness prior with directional sensitivity.
Random draws from such anisotropic Gaussian priors are shown in Fig. 1, where
each pixel with coordinate vector rj in a quadrilateral grid has eight neighboring
pixels with coordinates rkj , and the corresponding weights pk are chosen as

Fig. 1 Random draws from anisotropic Markov models. In the top row, the Markov model
assumes stronger dependency between neighboring pixels in the radial than in angular direction,
while in the bottom row, the roles of the directions are reversed. See text for a more detailed
discussion
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pk D 1

�

�
vT
j

�
rj � rkj

��2

ˇ̌
ˇrj � rkj

ˇ̌
ˇ2

; � D 1:1;

and the unit vector vj is chosen either as a vector pointing out of the center of the
image (top row) or in a perpendicular direction (bottom row). The former choice
thus assumes that pixels are more strongly affected by the adjacent values in the
radial direction, while in the latter case, they have less influence than those in the
angular direction. The factor � is added to make the matrix diagonally dominated.

The just described construction of the smoothness prior is a particular instance
of priors based on the assumption that the image is a Markov random field, (MRF).
Similarly to the four-point average example, Markov random fields assume that the
conditional probability distribution of a single pixel value Xj conditioned on the
remaining image depends only on the neighbors of Xj ,

�
�
xj j xk; k ¤ j

	 D � �xj j xk 2 Nj 	 ;
where Nj is the list of neighbor pixels of Xj , such as the four adjacent pixels in
the model (5). In fact, the Hammersley–Clifford theorem (see [5]) states that prior
distributions of MRF models are of the form

�prior.x/ / exp

0
@�

NX
jD1

Vj .x/

1
A ;

where the function Vj .x/ depends only on xj and its neighbors. The simplest
model in this family is a Gaussian white noise prior, where Nj D ; and Vj .x/ D
x2
j =.2


2/, that is,

�prior.x/ / exp

�
� 1

2
2
kxk2

�
:

Observe that this prior assumes mutual independency of the pixels, which has
qualitative repercussions on the images based on it.

There is no theoretical reason to restrict the MRFs to Gaussian fields, and in fact,
some of the non-Gaussian fields have had a remarkable popularity and success in the
imaging context. Two non-Gaussian priors are particularly worth mentioning here,
the `1-prior, where Nj D ; and Vj .x/ D ˛jxj j, that is,

�prior.x/ / exp .�˛kxk1/ ; kxk1 D
NX
jD1

jxj j;
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and the closely related total variation (TV) prior,

�prior.x/ / exp .�˛TV.x// ; TV.x/ D
NX
jD1

Vj .x/;

with

Vj .x/ D 1

2

X
k2Nj
jxj � xk j:

The former is suitable for imaging sparse images, where all but few pixels are
believed to coincide with the background level that is set to zero. The latter prior
is particularly suitable for blocky images, that is, for images consisting of piecewise
smooth simple shapes. There is a strong connection to the recently popular concept
of compressed sensing, see, for example, [11].

MRF priors, or priors with only local interaction between pixels, are by far the
most commonly used priors in imaging. It is widely accepted and to some extent
demonstrated (see [6] and the discussion in it) that the posterior density is sensitive
to local properties of the prior only, while the global properties are predominantly
determined by the likelihood. Thus, as far as the role of priors is concerned, it
is important to remember that until the likelihood is taken into account, there is
no connection with the measured data, hence no reason to believe that the prior
should generate images that in the large scale resemble what we are looking for.
In general, priors are usually designed to carry very general often qualitative and
local information, which will be put into proper context with the guidance of the
data through the integration with the likelihood. To demonstrate the local structure
implied by different priors, in Fig. 2, we show some random draws from the priors
discussed above.

Likelihood: ForwardModel and Statistical Properties of Noise

If an image is worth a thousand words, a proper model of the noise corrupting it
is worth at least a thousand more, in particular when the processing is based on
the statistical methods. So far, the notion of noise has remained vague, and its
role unclear. It is the noise, and in fact its statistical properties, that determines the
likelihood density. We start by considering two very popular noise models.

Additive, nondiscrete noise: An additive noise model assumes that the data and
the unknown are in a functional relation of the form

y D F.x/C e; (6)

where e is the noise vector. If the function F is linear, or it has been linearized, the
problem simplifies to
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Fig. 2 Random draws from various MRF priors. Top row: white noise prior. Middle row: sparsity
prior or `1-prior with positivity constraint. Bottom row: total variation prior

y D Ax C e: (7)

The stochastic extension of (6) is

Y D F.X/C E;

where Y , X , and E are multivariate random vectors.
The form of the likelihood is determined not only by the assumed probability

distributions of Y , X , and E but also by the dependency between pairs of these
variables. In the simplest case, X and E are assumed to be mutually independent
and the probability density of the noise vector known,

E � �noise.e/;
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resulting in a likelihood function of the form

�.y j x/ / �noise .y � F.x// ;

which is one of the most commonly used in applications. A particularly popular
model for additive noise is a Gaussian noise,

E � N .0; †/;

where the covariance matrix † is positive definite. Therefore, if we write †�1 D
DTD, where D can be the Cholesky factor of†�1 or D D †�1=2, the likelihood can
be written as

�.y j x/ / exp

�
�1

2
.y � F.x//T†�1.y � F.x//

�

D exp

�
�1

2
kD.y � F.x//k2

�
: (8)

In the general case whereX andE are not independent, we need to specify the joint
density

.X;E/ � �.x; e/

and the corresponding conditional density

�noise.e j x/ D �.x; e/

�prior.x/
:

In this case, the likelihood becomes

�.y j x/ / �noise.y � F.x/ j x/:

This clearly demonstrates the problems which may arise if we want to adhere
to the claim that “likelihood should be independent of the prior.” Because the
interdependency of the image x and the noise is much more common than we might
be inclined to believe, the independency of noise and signal is often in conflict with
reality. An instance of such situation occurs in electromagnetic brain imaging using
magnetoencephalography (MEG) or electroencephalography (EEG), when the eye
muscle during a visual task acts as noise source but can hardly be considered as
independent from the brain activation due to a visual stimulus. Another example
related to boundary conditions will be discussed later on. Also, since the noise
term should account not only for the exogenous measurement noise but also for
the shortcomings of the model, including discretization errors, the interdependency
is in fact a ubiquitous phenomenon too often neglected.
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Most additive noise models assume that the noise follows a Gaussian distribution,
with zero mean and given covariance. The computational advantages of a Gaussian
likelihood are rather formidable and have been a great incentive to use Gaussian
approximations of non-Gaussian densities. While it is commonplace and somewhat
justified, for example, to approximate Poisson densities with Gaussian densities
when the mean is sufficiently large [14], there are some important imaging applica-
tions where the statistical distribution of the noise must be faithfully represented in
the likelihood.

Counting noise: The weakness of a signal can complicate the deblurring and
denoising problem, as is the case in some image processing applications in
astronomy [49, 57, 63], microscopy [45, 68], and medical imaging [29, 60]. In fact,
in the case of weak signals, a charge-coupled device (CCD), instead of recording
an integrated signal over a time window, counts individual photons or electrons.
This leads to a situation where the noise corrupting the recorded signal is no longer
exogenous but rather an intrinsic property of the signal itself, that is, the input
signal itself is a random process with an unpredictable behavior. Under rather mild
assumptions – stationarity, independency of increments, and zero probability of
coincidence – it can be shown (see, e.g., [62]) that the counting signal follows a
Poisson distribution. Consider, for example, the astronomical image of a very distant
object, collected with an optical measurement device whose blurring is described
by a matrix A. The classical description of such data would follow (7), with the
error term collecting the background noise and the thermal noise of the device. The
corresponding counting model is

yj � Poisson
�
.Ax/j C b

	
; yj , yk independent if j ¤ k;

or, explicitly,

�.y j x/ D
mY
jD1

..Ax/j C b/yj
.yj /Š

exp
��.Ax/j C b	 ;

where b � 0 is a background radiation level, assumed known. Observe that while
the data are counts, therefore integer numbers, the expectation need not to be.

Similar or slightly modified likelihoods can be used to model the positron
emission tomography (PET) and single-photon emission computed tomography
(SPECT) signals; see [29, 54].

The latter example above demonstrates clearly that the description of imaging
problems as linear or nonlinear, without a specification of the noise model, in
the context of statistical methods, does not play a significant role: Even if the
expectation is linear, traditional algorithms for solving linear inverse problems are
useless, although they may turn out to be useful within iterative solvers for solving
locally linearized steps.
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Maximum Likelihood and Fisher Information

When switching to a parametric non-Bayesian framework, the statistical inference
problem amounts to estimating a deterministic parameter that identifies the proba-
bility distribution from which the observations are drawn. To apply this framework
in imaging problems, the underlying image x, which in the Bayesian context was
itself a random variable, can be thought of as a parameter vector that specifies the
likelihood function,

f .yI x/ D �.y j x/;

as implied by the notation f .yI x/ also.
In the non-Bayesian interpretation, a measure of how much information about

the parameter x is contained in the observation is given in terms of the Fisher
information matrix J,

Jj;k D E
�
@ logf

@xj

@ log f

@xk


D
Z
@ logf .yI x/

@xj

@ logf .yI x/
@xk

f .yI x/dy: (9)

In this context, the observation y only is a realization of a random variable Y , whose
probability distribution is entirely determined by the distribution of the noise. The
gradient of the logarithm of the likelihood function is referred to as the score, and
the Fisher information matrix is therefore the covariance of the score.

Assuming that the likelihood is twice continuously differentiable and regular
enough to allow the exchange of integration and differentiation, it is possible to
derive another useful expression for the information matrix. It follows from the
identity

@ log f

@xk
D 1

f

@f

@xk
; (10)

that we may write the Fisher information matrix as

Jj;k D
Z
@ logf

@xj

@f

@xk
dy D @

@xk

Z
@ logf

@xj
fdy �

Z
@2 logf

@xj @xk
fdy:

Using the identity (10) with k replaced by j , we observe that

Z
@ logf

@xj
fdy D

Z
@f

@xj
dy D @

@xj

Z
fdy D 0;

since the integral of f is one, which leads us to the alternative formula

Jj;k D �
Z
@2 logf

@xj @xk
fdy D �E

�
@2 logf

@xj @xk


: (11)
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The Fisher information matrix is closely related to non-Bayesian estimation theory.
This will be discussed later in connection with maximum likelihood estimation.

Informative or Noninformative Priors?

Not seldom the use of priors in imaging applications is blamed for biasing the
solution in a direction not supported by the data. The concern of the use of committal
priors has led to the search of “noninformative priors” [39] or weak priors that would
“let the data speak.”

The strength or weakness of a prior is a rather elusive concept, as the importance
of the prior in Bayesian imaging is in fact determined by the likelihood: the more
information we have about the image in data, the less has to be supplied by the
prior. On the other hand, in imaging applications where the likelihood is built on
very few data points, the prior needs to supply the missing information, hence has
a much more important role. As pointed out before, it is a common understanding
that in imaging applications, prior should carry small-scale information about the
image that is missing from the likelihood that in turn carries information about the
large-scale features and in that sense complements the data.

Adding Layers: Hierarchical Models

Consider the following simple denoising problem with additive Gaussian noise,

Y D X CN; N � N .0; †/;

with noise covariance matrix † presumed known, whose likelihood model is
tantamount to saying that

Y j X D x � N .x;†/:

From this perspective, the denoising problem is reduced to estimating the mean
of a Gaussian density in the non-Bayesian spirit, and the prior distribution is a
hierarchical model, expressing the degree of uncertainty of the mean x.

Parametric models are common when defining the prior densities, but similarly
to the above interpretation of the likelihood, the parameters are often poorly known.
For example, when introducing a prior

X � N .�; �/

with unknown � , we are expressing a qualitative prior belief that “X differs from
an unknown value by an error with a given Gaussian statistics,” which says very
little about the values of X itself unless information about � is provided. Similarly
as in the denoising problem, it is natural to augment the prior with another layer of
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information concerning the parameter � . This layering of the inherent uncertainty
is at the core of hypermodels, or Bayesian hierarchical models. Hierarchical models
are not restricted to uncertainties in the prior, but can be applied to lack of
information of the likelihood model as well.

In hierarchical models, both the likelihood and the prior may depend on
additional parameters,

�.y j x/! �.y j x; �/; �prior.x/! �prior.x j �/;

with both parameters � and � poorly known. In this case, it is natural to augment
the model with hyperpriors. Assuming for simplicity that the parameters � and �
are mutually independent so that we can define the hyperprior distributions �1.�/

and �2.�/, the joint probability distribution of all the unknowns is

�.x; y; �; �/ D �.y j x; �/�prior.x j �/�1.�/�2.�/:

From this point on, the Bayesian inference can proceed along different paths. It is
possible to treat the hyperparameters as nuisance parameters and marginalize them
out by computing

�.x; y/ D
Z Z

�.x; y; �; �/d�d�

and then proceed as in a standard Bayesian inference problem. Alternatively, the
hyperparameters can be included in the list of unknowns of the problem and their
posterior density

�.� j y/ D �.x; y; �; �/

�.y/
; � D

2
4x�
�

3
5

needs to be explored. The estimation of the hyperparameters can be based on the
optimization or on the evidence, as will be illustrated below with a specific example.

To clarify the concept of a hierarchical model itself, we consider some examples
where hierarchical models arise naturally.

Blind deconvolution: Consider the standard deblurring problem defined in sec-
tion “Imaging Problems.” Usually, it is assumed that the blurring kernel A is known,
and the likelihood, with additive Gaussian noise with covariance†, becomes

�.y j x/ / exp

�
�1

2
.y � Ax/T†�1.y � Ax/

�
: (12)

In some cases, although A is poorly known, its parametric expression is known and
the uncertainty only affects the values of some parameters, as is the case when the
shape of the continuous convolution kernel a.r � s/ is known but the actual width
is not. If we express the kernel a as a function of a width parameter,



Statistical Methods in Imaging 1361

a.r � s/ D a�.r � s/ D 1

�
a1.�.r � s//; � > 0;

and denote by A� the corresponding discretized convolution matrix, the likelihood
becomes

�.y j x; �/ / exp

�
�1

2
.y � A�x/T†�1.y � A�x/

�
;

and additional information concerning � , for example, bound constraints, can be
included via a hyperprior density.

The procedure just outlined can be applied to many problems arising from
adaptive optics imaging in astronomy [52]; while the uncertainty in the model is
more complex than in the explanatory example above, the approach remains the
same.

Conditionally Gaussian hypermodels: Gaussian prior models are often criticized
for being a too restricted class, not being able to adequately represent prior beliefs
concerning, for example, the sparsity or piecewise smoothness of the solution. The
range of qualitative features that can be expressed with normal densities can be
considerably expanded by considering conditionally Gaussian families instead. As
an example, consider the problem of finding a sparse image from linearly blurred
noisy copy of it. The likelihood model in this case may be written as in (12). To set
up an appropriate prior, consider a conditionally Gaussian prior

�prior.x j �/ /
�

1

�1
. . . �N

�1=2

exp

0
@�1

2

NX
jD1

x2
j

�j

1
A

D exp

0
@�1

2

NX
jD1

"
x2
j

�j
C log �j

#1
A : (13)

If �j D �0 D constant, we obtain the standard white noise prior which cannot be
expected to favor sparse solutions. On the other hand, since �j is the variance of the
pixel Xj , sparse images correspond to vectors � with most of the components close
to zero. Since we do not know a priori which of the variances should significantly
differ from zero, when choosing a stochastic model for � , it is reasonable to select
a hyperprior that favors sparsity without actually specifying the location of the
outliers. Two distributions that are particularly well suited for this are the gamma
distribution,

�j � Gamma.k; �0/; k; �0 > 0; �.�j / D �k�1
j exp

�
��j
�0

�
;

and the inverse gamma distribution,
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�j � InvGamma.k; �0/; k; �0 > 0; �.�j / D ��k�1
j exp

�
� �0

�j

�
:

The parameters k and �0 are referred to as the shape and the scaling, respectively.
The inverse gamma distribution corresponds to assuming that the precision, defined
as 1=�j , is distributed according to the gamma distribution Gamma.k; 1=�0/. The
computational price of introducing hyperparameters is that instead of one image
x, we need to estimate the image x and its variance image � . Fortunately, for
conditionally Gaussian families, there are efficient algorithms for computing these
estimates, which will be discussed in the section concerning algorithms.

The hyperprior based on the gamma distribution, in turn, contains parameters
(k and �0) to be determined. Nothing prevents us from defining another layer of
hyperpriors concerning these values. It should be noted that in hierarchical models,
the selection of the parameters higher up in the hierarchy tends to have less direct
effect on the parameters of primary interest. Since this last statement has not been
formally proved to be true, it should be considered as a piece of computational
folklore.

Conditionally Gaussian hypermodels have been successfully applied in machine
learning [66], in electromagnetic brain activity mapping [16], and in imaging
applications for restoring blocky images [15]. Recently, their use in compressed
sensing has been proposed [40].

4 Numerical Methods and Case Examples

The solution of an imaging inverse problem in the statistical framework is the
posterior probability density. Because this format of the solution is not practical
for most applications, it is common to summarize the distribution in one or a
few images. This leads to the challenging problem of exploring the posterior
distributions and finding single estimators supported by the distribution.

Estimators

In this section, we review some of the commonly used estimators and subsequently
discuss some of the popular algorithms suggested in the literature to compute the
corresponding estimates.

Prelude: Least Squares and Tikhonov Regularization
In the case where the forward model is linear, the problem of estimating an image
from a degraded, noisy recording is equivalent in a determinist setting to looking for
a solution of a linear system of equations of the form

Ax D y; (14)
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where the right-hand side is corrupt by noise. When A is not a square matrix
and/or it is ill conditioned, one needs to specify what a “solution” means. The most
straightforward way is to specify it as a least squares solution.

There is a large body of literature, and a wealth of numerical algorithms, for
the solution of large-scale least squares problems arising from problems similar
to imaging applications (see, e.g., [9]). Since dimensionality alone makes these
problems computationally very demanding, they may require an unreasonable
amount of computer memory and operations unless a compact representation of
the matrix A can be exploited. Many of the available algorithms make additional
assumptions about either the underlying image or the structure of the forward model
regardless of whether there is a good justification.

In a determinist setting, the entries of the least squares solution of (14) with a
right-hand side corrupted by noise are not necessarily in the gray-scale range of
the image pixels. Moreover, the inherent ill conditioning of the problem, which
varies with the imaging modality and the conditions under which the observations
were collected, usually requires reqularization, see, for example, [4, 33, 34, 41].
A standard regularization method is to replace the original ill-posed least squares
problem by a nearby well-posed problem by introducing a penalty term to avoid
that the computed solution is dominated by amplified noise components, reducing
the problem to minimizing a functional of the form

T .x/ D kAx � yk2 C ˛J.x/; (15)

where J.x/ is the penalty functional and ˛ > 0 is the regularization parameter. The
minimizer of the functional (15) is the Tikhonov regularized solution. The type of
additional information used in the design of the penalty term may include upper
bounds on the norm of the solution or of its derivatives, nonnegative constraints for
its entries, or bounds on some of the components. Often, expressing characteristics
that are expected of the sought image in qualitative terms is neither new nor difficult:
the translation of these beliefs into mathematical terms and their implementation is
a more challenging step.

Maximum Likelihood andMaximumA Posteriori
We begin with the discussion of the maximum likelihood estimator in the framework
of non-Bayesian statistics and denote by x a deterministic parameter determining
the likelihood distribution of the data, modeled as a random variable. Let Ox D Ox.y/
denote an estimator of x, based on the observations y. Obviously, Ox is also a random
variable, because of its dependency on the stochastic observations y; moreover, it is
an unbiased estimator if

E f Ox.y/g D x;

that is, if, in the average, it returns the exact value. The covariance matrix C of an
unbiased estimator therefore measures the statistical variation around the true value,
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Cj;k D E
˚
. Oxj � xj /. Oxk � xk/



;

thus the name mean square error. Evidently, the smaller the mean square error, for
example, in the sense of quadratic forms, the higher the expected fidelity of the
estimator. The Fisher information matrix (9) gives a lower bound for the covariance
matrix of all unbiased estimators. Assuming that J is invertible, the Cramér–Rao
lower bound states that for an unbiased estimator,

J�1 � C

in the sense of quadratic forms, that is, for any vector

uTJ�1u � uTCu:

An estimator is called efficient if the error covariance reaches the Cramér–Rao
bound.

The maximum likelihood estimator OxML.y/ is the maximizer of the function x 7!
f .xIy/, and in practice, it is found by locating the zero(s) of the score,

rx logf .xIy/ D 0) x D OxML.y/:

Notice that in the non-Bayesian context, likelihood refers solely to the likelihood
of the observations y, and the maximum likelihood estimation is a way to choose the
underlying parametric model so that the observations become as likely as possible.

The popularity of the maximum likelihood estimator, in addition to being an
intuitively obvious choice, stems from the fact that it is asymptotically efficient
estimator in the sense that when the number of independent observations of the data
increases, the covariance of the estimator converges toward the inverse of the Fisher
information matrix, assuming that it exists. More precisely, assuming a sequence
y1; y2; : : : of independent observations and defining Oxn D Ox �y1; : : : ; yn

	
as

Oxn D argmax

8<
:

1

n

nX
jD1

f
�
x; yj

	
9=
; ;

asymptotically the probability distribution of Oxn approaches a Gaussian distribution
with mean x and covariance J�1.

The assumption of the regularity of the Fisher information matrix limits the use
of the ML estimator in imaging applications. To understand this claim, consider the
simple case of linear forward model and additive Gaussian noise,

Y D Ax C E; E � N .0; †/:

The likelihood function in this case is
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f .xIy/ D
�

1

2�j†j
�1=N

exp

�
�1

2
.y � Ax/T†�1.y � Ax/

�
;

from which it is obvious that by formula (11),

J D AT†�1A:

In the simplest imaging problems such as of denoising, the invertibility of J is not an
issue. However, in more realistic and challenging applications such as deblurring,
the ill conditioning of A renders J singular, and the Cramér–Rao bound becomes
meaningless. It is not uncommon to regularize the information matrix by adding a
diagonal weight to it which, from the Bayesian viewpoint, is tantamount to adding
prior information but in a rather uncontrolled manner.

For further reading of mathematical methods in estimation theory, we refer to
[17, 46, 50].

We consider the maximum likelihood estimator in the context of regularization
and Bayesian statistics. In the case of a Gaussian additive noise observation model,
under the assumption that the noise at each pixel is independent of the signal and
that the forward map is linear, F.x/ D Ax, the likelihood (8) is of the form

�.y j x/ _ exp

�
�1

2
kD.Ax � y/k2

�
;

where † is the noise covariance matrix and DTD D †�1 is the Cholesky
decomposition of its inverse. The maximizer of the likelihood function is the
solution of the minimization problem

xML D argmin
˚kD.Ax � y/k2
 ;

which, in turn, is the least squares solution of the linear system

DAx D Dy:

Thus, we can reinterpret least squares solutions as maximum likelihood esti-
mates under an additive, independent Gaussian error model. Within the statistical
framework, the maximum likelihood estimator is defined analogously for any error
model which admits a maximizer for the likelihood, but in the general case, the
computation of the minimizer cannot be reduced to the solution of a linear least
squares problem.

In a statistical framework, the addition of a penalty terms to keep the solution of
the least squares problem from becoming dominated by amplified noise components
is tantamount to using a prior to augment the likelihood. If the observation model is
linear, the prior and the likelihood are both Gaussian,
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�prior.x/ / exp

�
�1

2
xT��1x

�
;

and the noise is independent of the signal, the corresponding posterior is of the form

�.x j y/ _ exp

�
�1

2

�kD.Ax � y/k2 C kRxk2
	�
;

where R satisfies RTR D ��1, so typically it is the Cholesky factor of ��1 or
alternatively, R D ��1=2.

The maximizer of the posterior density, or the maximum a posteriori (MAP)
estimate, is the minimizer of the negative exponent, hence the solution of the
minimization problem

xMAP D argminfkD.Ax � y/k2 C kRxk2g

D argmin

(����
�
DA
R

�
x �

�
Dy
0

�����
2
)
;

or, equivalently, the Tikhonov solution (15) with penalty J.x/ D kRxk2 and
regularization parameter ˛ D 1. Again, it is important to note that the direct
correspondence between the Tikhonov regularization and the MAP estimate only
holds for linear observation models and Gaussian likelihood and prior. The fact that
the MAP estimate in this case is the least squares solution of the linear system

�
DA
R

�
x D

�
Dy
0

�
(16)

is a big incentive to stay with Gaussian likelihood and Gaussian priors as long as
possible.

As in the case of the ML estimate, the definition of MAP estimate is independent
of the form of the posterior, hence applied also to non-Gaussian, nonindependent
noise models, with the caveat that in the general case, the search for a maximizer of
the posterior may require much more sophisticated optimization tools.

Conditional Means
The recasting in statistical terms of imaging problems effectively shifts the interest
from the image itself to its probability density. The ML and MAP estimators
discussed in the previous section suffer from the limitations, which come from
summarizing an entire distribution with one realization. The ML estimator is known
to suffer from instabilities due to the typical ill conditioning of the forward map in
imaging problems, and it will not be discussed further here. The computed MAP
estimate, on the other hand, may correspond to an isolated spike in the probability
density away from the bulk of the mass of the density, and its computation may
suffer from numerical complications. Furthermore, a conceptually more serious
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limitation is the fact that MAP estimators do not carry information about the
statistical dispersion of the distribution. A tight posterior density suggests that
any ensemble of images which are in statistical agreement with the data and the
given prior show little variability; hence, any realization from that ensemble can
be thought of as very representative of the entire family. A wide posterior, on
the other hand, suggests that there is a rather varied family of images that are in
agreement with the data and the prior, hence lowering the representative power of
any individual realization.

In the case where either the likelihood or the prior is not Gaussian, the mean
of the posterior density, often referred to as conditional mean (CM) or posterior
mean, may be a better choice because it is the estimator with least variance (see [3,
41]). Observe, however, that in the fully Gaussian case, the MAP and CM estimate
coincides.

The CM estimate is, by definition,

xCM D
Z
RN

x�.x j y/dx;

while the a posteriori covariance matrix is

�CM D
Z
RN

.x � xCM/.x � xCM/
T�.x j y/dx;

hence requiring the evaluation of the high-dimensional integrals. When the integrals
have no closed form solution, as is the case for many imaging problems where,
for example, the a priori information contains bounds on pixel values, a numerical
approximation of the integral must be used to estimate xCM and �CM. The large
dimensionality of the parameter space, which easily is of the order of hundreds
of thousands when x represents an image, rules out the use of standard numerical
quadratures, leaving Monte Carlo integration the only currently known feasible
alternative.

The conceptual simplicity of Monte Carlo integration, which estimates the
integral value as the average of a large sample of the integrand evaluated over the
support of the integration, requires a way of generating a large sample from the
posterior density. The generation of a sample from a given distribution is a well-
known problem in statistical inference, which has inspired families of sampling
schemes generically referred to as Markov chain Monte Carlo (MCMC) methods,
which will be discussed in section “Markov Chain Monte Carlo Sampling.”

Once a representative sample from the posterior has been generated, the CM
estimate is approximately the sample mean. By definition, the CM estimate must be
near the bulk of the density, although it is not necessarily a highly probable point.
In fact, for multimodal distributions, the CM estimate may fall between the modes
of the density and even belong to a subset of RN with probability zero, although
such a situation is rather easy to detect. There is evidence, however, that in some
imaging applications the CM estimate is more stable than the MAP estimate; see
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[23]. While the robustness of the CM estimate does not compensate for the lack
of information about the width of the posterior, the possibility of estimating the
posterior covariance matrix via sampling is an argument for the sampling approach,
since the sample can also be used to estimate the posterior width.

Algorithms

The various estimators based on the posterior distribution are simple to define, but
the actual computation may be a major challenge. In the case of Gaussian likelihood
and prior, combined with linear forward map, the MAP and CM estimates coincide
and an explicit formula exists. If the problem is very high dimensional, even this
case may be computationally challenging. Before going to specific algorithms, we
review the linear Gaussian theory.

The starting point is the linear additive model

Y D AX C E; X � N .0; �/; E � N .0; †/:

Here, we assume that the mean of X and the noise E both vanish, an assumption
that is easy to remove. Above, X and E need not be mutually independent, and we
may postulate that they are jointly Gaussian and the cross-correlation matrix

C D E
˚
XET
 2 R

N�M

may not vanish. The joint probability distribution of X and Y is also Gaussian, with
zero mean and variance

E
��
X

Y

� �
XT Y T

� D E
��

XXT X.AX C E/T
.AX C E/XT .AX CE/.AX C E/T

�

D
�

� �AT C C
A� C CT A�AT C†

�
:

Let L 2 R
.NCM/�.NCM/ denote the inverse of the above matrix, assuming that it

exists, and write a partitioning of it in blocks according to the dimensionsN andM ,

L D
�

� �AT C C
A� C CT A�AT C†

��1

D
�
L11 L12

L21 L22

�
:

With this notation, the joint probability distribution of X and Y is

�.x; y/ / exp

�
�1

2
.xTL11x C xTL12y C yTL21x C yTL22y/

�
:
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To find the posterior density, one completes the square in the exponent with respect
to x,

�.x j y/ / exp

�
�1

2

�
x � L�1

11 L12y
	T

L11
�
x � L�1

11 L12y
	�
;

where terms independent of x that contribute only to the normalization are left out.
Therefore,

X j Y D y � N
�
L�1

11 L12y;L�1
11

	
:

Finally, we need to express the matrix blocks Lij in terms of the matrices of
the model. The expressions follow from the classical matrix theory of Schur
complements [24]: We have

L�1
11 D � �

�
�AT C C

	 �
A�AT C†	�1 �

A� C CT	 ; (17)

and

L�1
11 L12y D

�
�AT C C

	 �
A�AT C†	�1

y: (18)

Although a closed form solution, to evaluate the expression (18) for the posterior
mean may require iterative solvers.

When the image and the noise are mutually independent, implying that C D 0,
we find a frequently encountered form of the MAP estimate arising from writing the
Gaussian posterior density directly by using Bayes’ formula, that is,

�.x j y/ / �prior.x/�.y j x/

/ exp

�
�1

2
xT��1x � 1

2
.y � Ax/T†�1.y � Ax/

�
;

and so the MAP estimate, and simultaneously the posterior mean estimate, is the
maximizer of the above expression, or, equivalently, the minimizer of the quadratic
functional

H.x/ D .y � Ax/T†�1.y � Ax/C xT��1x:

By substituting the factorizations

†�1 D DTD; ��1 D RTR;

the minimization problem becomes the previously discussed standard least squares
problem of minimizing

H.x/ D kD.y � Ax/k2 C kRxk2; (19)
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leading to the least squares problem (16). Whether one should use this formula or
(18) depends on the application and, in particular, on the sparsity properties of the
covariance matrices and their inverses.

Iterative Linear Least Squares Solvers
The computation of the ML or MAP estimate under the Gaussian additive linear
noise model and, in the latter case, with a Gaussian prior, amounts to the solution
of system of linear equations (14), (16), or (18) in the least squares sense. Since the
dimensions of the problem are proportional to the number of pixels in the image
except when the observation model has a particular structure or sparsity properties
which can be exploited to reduce the memory allocation, solution by direct methods
is unfeasible, hence making in general the iterative solvers the methods of choice.

Among the iterative methods specifically designed for the solution of least
squares problems, the LSQR version with shifts [55, 56] of the Conjugate Gradient
for Least Squares (CGLS) method originally proposed in [37] combines robustness
and numerical efficiency. CGLS-type iterative methods have been designed to solve
the system Ax D y, minimize kAx � yk2, or minimize kAx � yk2 C ıkxk2,
where the matrix A may be square or rectangular – either overdetermined or
underdetermined – and may have any rank. The matrix A does not need to be
stored, but instead its action is represented by a routine for computing matrix–vector
products of the forms v 7! Av and u 7! ATu.

Minimizing the expression (19) may be transformed in a standard form by
writing it as

min
˚kD �y � AR�1w

	 k2 C kwk2


; w D Rx

In practice, the matrix R�1 should not be computed, unless it is trivial to obtain.
Rather, R�1 acts as a preconditioner, and its action should be implemented together
with the action of the matrix A as a routine called from the iterative linear solver.
The interpretation of the action of the prior as a preconditioner has led to the concept
of prior conditioner; see [12, 14] for details.

Nonlinear Maximization
In the more general case where either the observation model is nonlinear or the
likelihood and prior are non-Gaussian, the computation of the ML and MAP
estimates requires the solution of a maximization problem. Maximizers of nonlinear
functions can be found by quasi-Newton methods with global convergence strategy.
Since Newton-type methods proceed by solving a sequence of linearized problems
whose dimensions are proportional to the size of the image, iterative linear
solvers are typically used for the solution of the linear subproblem [20, 43]. In
imaging applications, it is not uncommon that the a priori information includes
nonnegativity constraints on the pixel values or bounds on their range. In these
cases, the computation of the MAP estimate amounts to a constrained maximization
problem and may be very challenging. Algorithms for maximization problems with
nonnegativity constraints arising in imaging applications based on the projected
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gradient have been proposed in the literature; see [2] and references therein. We
shall not review Newton-based methods here, since usually the fine points are related
to the particular applications at hand and not so much to the statistical description
of the problem. Instead, we review some algorithms that stem directly from the
statistical setting of the problem and are therefore different from the methods used
in regularized deterministic literature.

EMAlgorithm
The MAP estimator is the maximizer of the posterior density �.x j y/, or,
equivalently, the maximizer the logarithm of it,

L.x j y/ D log�.x j y/ D log�.y j x/C log�prior.x/C constant;

where the simplest form of Bayes’ rule was used to represent the posterior density
as a product of the likelihood and the prior. However, note that above, the vector x
may represent the unknown of primary interest, or if hierarchical models are used,
the model parameters related to the likelihood and/or prior may be included in it.

The expectation–maximization algorithm is a method developed originally for
maximizing the likelihood function and later extended to the Bayesian setting to
maximize the posterior density, in a situation where part of the data is “missing.”
While in many statistical application the concept of missing data appears natural,
for example, when incomplete census data or patient data are discussed, in imaging
applications, this concept is a rather arbitrary and to some extent artificial. However,
during the years, EM has found its way to numerous imaging applications, partly
because it often leads to algorithms that are easy to implement. Early versions of the
imaging algorithms with counting data such as the Richardson–Lucy iteration [49,
57], popular in astronomical imaging, were independently derived. Later, similar
EM-based algorithms were rederived in the context of medical imaging [29,36,60].
Although EM algorithms are discussed in more detail elsewhere in this book, we
include a brief discussion here in order to put EM in the context of general statistical
imaging formalism.

As pointed out above, in imaging problems, data is not missing: Data, per
definitionem, is what one is able to observe and register. Therefore, the starting
point of the EM algorithm in image applications is to augment the actual data y
by fictitious, nonexistent data z that would make the problem significantly easier to
handle.

Consider the statistical inference problem of estimating a random variable X
based on an observed realization of Y , denoted by Y D y D yobs. We assume
the existence of a third random variable Z and postulate that the joint probability
density of these three variables is available and is denoted by �.x; y; z/. The EM
algorithm consists of the following steps:

1. Initialize x D x0 and set k D 0.
2. E-step: Define the probability distribution, or a fictitious likelihood density,
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�k.z/ D � �z j xk; y	 / � �xk; y; z	 ; y D yobs;

and calculate the integral

Qk.x/ D
Z
L.x j y; z/�k.z/d z; L.x j y; z/ D log.�.x j y; z//: (20)

3. M-step: Update xk by defining

xkC1 D argmaxQk.x/: (21)

4. If a given convergence criterion is satisfied, exit; otherwise, increase k by one
and repeat from step 2 until convergence.

The E-step above can be interpreted as computing the expectation of the real-
valued random variable log.�.x; y;Z//, x and y fixed, with respect to a conditional
measure of Z conditioned on X D xj and Y D y D yobs, hence the name
expectation step.

The use of the EM algorithm is often advocated on the basis of the convergence
proof given in [19]. Unfortunately, the result is often erroneously quoted as an
automatic guarantee of convergence, without verifying the required hypotheses.
The validity of the convergence is further obfuscated by the error in the proof
(see [70]), and in fact, counterexamples of lack of convergence are well known
[10, 69]. We point out that as far as convergence is concerned, global convergence
of quasi-Newton algorithm is well established, and compared to the EM algorithm,
the algorithm is often more effective [20].

As the concept of missing data is not well defined in general, we outline the use
of the EM algorithm in an example that is meaningful in imaging applications.

SPECT imaging: The example discussed here follows the article [29]. Consider
the SPECT image formation problem, where the two-dimensional object is divided
in N pixels, each one emitting photons that are recorded through collimators by
M photon counting devices. If xj is the expected number of photons emitted by the
j th pixel, the photon count at i th photon counter, denoted by Yi , is an integer-valued
random variable and can be modeled by a Poisson process,

Yi � Poisson

0
@ MX
jD1

aij xj

1
A D Poisson..Ax/i /;

the variables Yi being mutually independent and the matrix elements aij of A 2
R
M�N being known. We assume that X , the stochastic extension of the unknown

vector x 2 R
N , is a priori distributed according to a certain probability distribution,

X � �prior.x/ / exp.�V.x//:
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To apply the EM algorithm, we need to decide how to define the “missing data.”
Photon counter devices detect the emitted photons added over the line of sight;
evidently, the problem would be more tractable if we knew the number of emitted
photons from each pixel separately. Therefore, we define a fictitious measurement,

Zij � Poisson.aij xj /;

and posit that these variables are mutually independent. Obviously, after the
measurement Y D y, we have

NX
jD1

Zij D yi : (22)

To perform the E-step, assuming that xk is given, consider first the conditional
density �k.z/ D � �z j xk; y	.

A basic result from probability theory states that if N independent random
variables ƒj are a priori Poisson distributed with respective means �j , and in
addition

NX
jD1

ƒj D K;

then, a posteriori, the variables ƒj conditioned on the above data are binomially
distributed,

ƒj j
0
@ NX
jD1

ƒj D K
1
A � Binom

 
K;

�jPN
jD1�j

!
:

In particular, the conditional expectation of ƒj is

E

8<
:ƒj j

NX
jD1

ƒj D K
9=
; D K

�jPN
jD1�j

:

We therefore conclude that the conditional density �k.z/ is a product of binomial
distributions of Zij with a priori means �j D aij x

k
j ,
PN

jD1�j D .Axk/i , and
K D yi , so in particular,

E

8<
:Zij j

NX
jD1

Zij D yi
9=
; D

Z
zij �

k.z/d z D yi
aij x

k
j

.Axk/i
defD zkij : (23)
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Furthermore, by Bayes’ theorem,

�.x j y; z/ D �.x j z/ D �.z j x/�prior.x/;

where we used the fact that the true observations y add no information on x that
would not be included in z, we have, by definition of the Poisson likelihood and the
prior,

L.x j y; z/ D
X
ij

�
zij log.aij xj /� aij xj

	� V.x/C constant;

and therefore, up to an additive constant, we have

Qk.x/ D
X
ij

�
zkij log.aij xj /� aij xj

�
� V.x/;

where zkij is defined in (23). This completes the E-step.

The M-step requires the minimization of Qk.x/ given above. Assuming that V
is differentiable, the minimizer should satisfy

1

x`

mX
iD1

zki` �
mX
iD1

ai` � @V
@x`

.x/ D 0:

How complicated it is to find a solution to this condition depends on the prior con-
tribution V and may require an internal Newton iteration. In [29], an approximate
“one-step late” (OSL) algorithm was suggested, which is tantamount to a fixed-point
iteration: Initiating with Qx0 D xk , an update scheme Qxt ! QxtC1 is given by

QxtC1
` D

Pm
iD1 zki`Pm

iD1 ai` C @V
@x`
. Qxt / ;

and this step is repeated until a convergence criterion is satisfied at some t D t�.
Finally, the M-step is completed by updating xkC1 D Qxt�.

The EM algorithm has been applied to other imaging problems such as blind
deconvolution problem [44] and PET imaging [36, 71].

Markov ChainMonte Carlo Sampling
In Bayesian statistical imaging, the real solution of the imaging problem is the
posterior density of the image interpreted as a multivariate random variable. If a
closed form of the posterior is either unavailable or not suitable for the tasks at hand,
the alternative is to resort to exploring the density by generating a representative
sample from it. Markov chain Monte Carlo (MCMC) samplers yield samples from
a target distribution by moving from a point in a chain to the next by the transition



Statistical Methods in Imaging 1375

rule which characterizes the specific algorithm. MCMC sampling algorithms are
usually subdivided into those which are variants of the Metropolis–Hastings (MH)
algorithm or the Gibbs sampler. While the foundations of the MH algorithm were
laid first [25, 35, 51], Gibbs samplers have sometimes the appeal of being more
straightforward to implement.

The basic idea of Monte Carlo integration is rather simple. Assume that �.x/ is
a probability density in R

N , and let
˚
X1; X2; X3; : : :



denote a stochastic process,

where the random variables Xi are independent and identically distributed, Xi �
�.x/. The central limit theorem asserts that for any measurable f W RN ! R,

1

n

nX
iD1

f .Xi /
n!1�!

Z
RN

f .x/�.x/dx almost certainly, (24)

and moreover, the convergence takes place asymptotically with the rate 1=
p
n,

independently of the dimension N . The difficulty is to find a computationally
efficient way of drawing independently from a given distribution � . Indeed, when
N is large, it may be even difficult to decide where the numerical support of the
density is. In MCMC methods, instead of producing an independent chain, the idea
is to produce a Markov process

˚
Xi



with the property that � is the equilibrium
distribution. It can be shown (see [53, 61, 65]) that with rather mild assumptions
(irreducibility, aperiodicity), the limit (24) holds, due to the law of large numbers.

In applications to imaging, the computational burden associated with MCMC
methods has become proverbial and is often presented as the main obstacle to the
use of Bayesian method in imaging. It is easy to imagine that sampling random
variable with hundreds of thousands of components will require a large amount of
computer resources and that collecting and storing a large number of images will
require much more time than estimating a single one. On the other hand, since
an ensemble of images from a distribution carries a lot of additional information
which cannot be included in single-point estimates, it seems unreasonable to rate
methods simply according to computational speed. That said, since collecting a
well-mixed, representative sample poses several challenges, in the description of the
Gibbs sampling and Metropolis–Hastings algorithms, we will point out references
to variants which can improve the independence and mixing of the ensemble; see
[30–32].

In its first prominent appearance in the imaging arena [26], the Gibbs sampler
was presented as part of a stochastic relaxation algorithm to efficiently compute
MAP estimates. The systematic or fully conditional Gibbs sampler algorithm
proceeds as follows [61].

Let �.x/ be a probability density defined on R
N , denoted by �.x/ D

�.x1; : : : ; xN /, x 2 R
N to underline that it is the joint density of the components

of X . Furthermore, denote by �.xj j x�j / the conditional density of the j th
component xj given all the other components, collected in the vector x�j 2 R

N�1.
Let x1 be the initial element of the Markov chain. Assuming that we are at a point
xi in the chain, we need a rule stating how to proceed to the next point xiC1, i.e.,
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we need to describe the updating method of proceeding from the current element xi

to xiC1. This is done by updating sequentially each component as follows.
Fully conditional Gibbs sampling update: Given xi , compute the next element

xiC1 by the following algorithm:

draw xiC1
1 from �

�
x1 j xi�1

	 I
draw xiC1

2 from �
�
x2 j xiC1

1 ; xi3; : : : ; x
i
N

	 I
draw xiC1

3 from �
�
x3 j xiC1

1 ; xiC1
2 ; xi4 : : : ; x

i
N

	 I
:::

draw xiC1
N from �

�
xN j xiC1

�N
	
:

In imaging applications, this Gibbs sampler may be impractical because of the large
number of components of the random variable to be updated to generate a new
element of the chain. In addition, if some of the components are correlated, updating
them independently may slow down the chain to explore the full support of the
distribution, due to slow movement at each step. The correlation among components
can be addressed by updating blocks of correlated components together, although
this will imply that the draws must be from multivariate instead of univariate
conditional densities.

It follows naturally from the updating scheme that the speed at which the chain
will reach equilibrium is strongly dependent on how the system of coordinate axes
relates to the most prominent correlation directions. A modification of the Gibbs
sampler that can ameliorate the problems caused by correlated components performs
a linear transformation of the random variable using correlation information.
Without going into details, we refer to [48, 58, 61] for different variants of Gibbs
sampler.

The strategy behind the Metropolis–Hastings samplers is to generate a chain
with the target density as equilibrium distribution by constructing at each step the
transition probability function from the current Xi D x to next realization of XiC1

in the chain in the following way. Given an initial transition probability function
q.x; x0/ with Xi D x, x0 drawn from q.x; x0/ is a proposal for the value of XiC1.
Upon acceptance of XiC1 D x0, which occurs with probability ˛.x; x0/, defined by

˛.x; x0/ D min

�
�.x0/q.x0; x/
�.x; x0/

; 1


; �.x/q.x; x0/ > 0:

We add it to the chain; otherwise, we reject the proposed value and we set XiC1 D
x. In the latter case, the chain did not move and the value x is replicated in the chain.
The transition probability p.x; x0/ of the Markov chain thus defined is

p.x; x0/ D q.x; x0/˛.x; x0/;
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while the probability to stay put is

1 �
Z
RN

q.x; y/˛.x; y/dy:

This construction guarantees that the transition probability satisfies the detailed
balance equation �.x/p.x; x0/ D �.x0/p.x0; x/, from which it follows that, for
reasonable choices of the function q, �.x/ is the equilibrium distribution of the
chain.

This algorithm is particularly convenient when the target distribution �.x/ is a
posterior. In fact, since the only way in which � enters is via the ratio of its values at
two points, it is sufficient to compute the density modulo a proportionality constant,
which is how we usually define the posterior. Specific variants of the MH algorithm
correspond to different choices of q.x; x0/; in the original formulation [51], a
symmetric proposal, for example, a random walk, was used, so that q.x; x0/ D
q.x0; x/, implying that

˛.x; x0/ D minf�.x0/=�.x/; 1g;

while the general formulation above is due to Hastings [35]. An overview of the
different possible choices for q.x; x0/ can be found in [65].

A number of hybrid sampling schemes which combine different chains or use
MH variants to draw from the conditional densities inside Gibbs samplers have
been proposed in the literature; see [48,61] and references therein. Since the design
of efficient MCMC samplers must address the specific characteristics of the target
distribution, it is to be expected that as the use of densities becomes more pervasive
in imaging, new hybrid MCMC scheme will be proposed.

The convergence of Monte Carlo integration based on MCMC methods is a key
factor in deciding when to stop sampling. This is particularly pertinent in imaging
applications, where the calculations needed for additions of a point to the chain
may be quite time consuming. Due to the lack of a systematic way of translating
theoretical convergence results of MCMC chains [7, 65] into pragmatic stopping
rules, in practice, the issue is reduced to monitoring the behavior of the already
collected sample.

As already pointed out, MCMC algorithms are not sampling independently from
the posterior. When computing sample-based estimates for the posterior mean and
covariance,

OxCM D 1

n

nX
jD1

xj ; O�CM D 1

n

nX
jD1

�
xj � OxCM

	 �
xj � OxCM

	T
:

A crucial question is how accurately these estimates approximate the posterior mean
and covariance. The answer depends on the sample size n and the sampling strategy
itself. Ideally, if the sample vectors xj are realizations of independent identically
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distributed random variables, the approximations converge with the asymptotic rate
1=
p
n, in agreement with the central limit theorem. In practice, however, the MCMC

sampling produces sample points that are mutually correlated, and the convergence
is slower.

The convergence of the chain can be investigated using the autocovariance
function (ACF) of the sample [27, 64]. Assume that we are primarily interested
in estimating a real-valued function f W R

N ! R of the unknown, and we
have generated an MCMC sample or a realization

˚
x1; : : : ; xn



of a stationary

stochastic process
˚
X1; : : : ; Xn



. The random variablesXj are equally distributed,

their distribution being the posterior distribution �.x/ of a random variable X . The
estimation of the mean quantity f .X/ can be done by calculating

O� D 1

n

nX
jD1

f .xj /;

while the theoretical mean of f .X/ is

� D E ff .X/g D
Z
f .x/�.x/dx:

Each sample yields a slightly different value for O�, which is itself a realization of
the random variable F defined as

F D 1

n

nX
jD1

f .Xj /:

The problem is now how to estimate the variance of F , which gives us an
indication of how well the computed realization approximates the mean. The
identical distribution of the random variablesXj implies that

E fF g D 1

n

nX
jD1

E
˚
f .Xj /



„ ƒ‚ …

D�
D �;

while the variance of F , which we want to estimate starting from the available
realization of the by stochastic process, is

var.F / D E
˚
F 2
 � �2:

To this end, we need to introduce some definitions and notations.
We define the autocovariance function of the stochastic process f .Xj / with lag

k � 0 to be

C.k/ D E
˚
f .Xj /f .XjCk/


 � �2
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which, if the process is stationary, is independent of j . The normalized ACF is
defined as

c.k/ D C.k/

C.0/
:

The ACF can be estimated from an available realization as follows

OC.k/ D 1

n � k
n�kX
jD1

f .xj /f .xjCk/ � O�2: (25)

It follows from the definition of F that

E
˚
F 2

 D 1

n2

nX
i;jD1

E
˚
f .Xi /f .Xj /



:

Let us now focus on the random matrix
�
f .Xi /f .Xj /

�n
i;jD1. The formula above

takes its expectation and subsequently computes the average of its entries. By
stationarity, the expectation is a symmetric Toeplitz matrix; hence, its diagonal
entries are all equal to

E
˚
f .Xi /f .Xi /


 D C.0/C �2;

while the kth subdiagonal entries are all equal to

E
˚
f .Xi /f .XiCk/


 D C.k/C �2:

This observation provides us with a simple way to perform the summation by
accounting for the elements along the diagonals, leading to the formula

E
˚
F 2

 D 1

n2

 
nC.0/C 2

n�1X
kD1

.n � k/C.k/
!
C �2;

from which it follows that the variance of F is

var.F / D 1

n

 
C.0/C 2

n�1X
kD1

�
1 � k

n

�
C.k/

!
:

If we assume that the ACF is negligible when k > n0, for some n0 significantly
smaller than the sample size n, we may use the approximation

var.F / 	 1

n

 
C.0/C 2

n0X
kD1

C.k/

!
D C.0/

n
�;
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where

� D 1C 2
n0X
kD1

c.k/: (26)

If we account fully for all contributions,

� D 1C 2
n�1X
kD1

�
1 � k

n

�
c.k/; (27)

which is the Cesàro mean of the normalized ACFs or low-pass filtered mean with
the triangular filter. The quantity � is called the integrated autocorrelation time
(IACT) and can be interpreted as the time that it takes for our MCMC to produce an
independent sample. If the convergence rate for independence samplers is 1=

p
n,

the convergence rate for the MCMC sampler is 1=
p
n=� . If the variables Xj are

independent, then � D 1, and the result is exactly what we would expect from the
central limit theorem, because in this case, C.0/ D n var.f .X//.

The estimate of � requires an estimate for the normalized ACF, which can be
obtained with the formula (25), and a value for n0 to use in formula (26). In the
choice of n0, it is important to remember that OC.k/ is a realization of a random
sequence C.k/, which in practice contains noise. Some practical rules for choosing
n0 are suggested in [27].

In [27], it is shown that since the sequence

�.k/ D c.2k/C c.2k C 1/; k D 0; 1; 2; : : :

is strictly positive, strictly decreasing, and strictly convex, that is,

�.k/ > 0; �.k C 1/ < �.k/; �.k C 1/ <
1

2
.�.k/C �.k C 2//;

when the sample-based estimated sequence,

O�.k/ D Oc.2k/C Oc.2k C 1/; k D 0; 1; 2; : : :

fails to be so, this is an indication that the contribution is predominantly coming
from noise; hence, it is wise to stop summing the terms to estimate � . Geyer
proposes three initial sequence estimators, in the following order:

1. Initial positive sequence estimator (IPSE): Choose n0 to be the largest integer for
which the sequence remains positive,

n0 D nIPSE D maxfk j �.k/ > 0g:
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2. Initial monotone sequence estimator (IMSE): Choose n0 to be the largest integer
for which the sequence remains positive and monotone,

n0 D nIMSE D maxfk j �.k/ > 0; �.k/ < �.k � 1/g:

3. Initial convex sequence estimator (ICSE): Choose n0 to be the largest integer for
which the sequence remains positive, monotone, and convex,

n0 D nICSE D max

�
k j �.k/ > 0; �.k/ < �.k � 1/; �.k � 1/

<
1

2
.�.k/C �.k � 2//


:

From the proof in [27], it is obvious that also the sequence fc.k/g itself must be
positive and decreasing. Therefore, to find n0 for IPSE or IMSE, there is no need
for passing to the sequence f�.k/g. As for ICSE, again from the proof in the cited
article, it is also clear that the sequence

�.k/ D c.2k C 1/C c.2k C 2/; k D 0; 1; 2; : : :

too, is positive, monotonous, and convex. Therefore, to check the condition for
ICSE, it might be advisable to form both sequences f�.k/g and f�.k/g and set nICSE

equal to the maximum index for which both �.k/ and �.k/ remain strictly convex.
Summarizing a practical rule, using for instance, the IMSE, to compute � is:

1. Estimate the ACF sequence OC.k/ from the sample by formula (25) and normalize
it by OC.0/ to obtain Oc.k/.

2. Find n0 equal to the largest integer for which the sequence Oc.0/; Oc.1/; : : : ; Oc.n0/

remains positive and strictly decreasing. Notice that the computation of ACFs
can be stopped when such an n0 is reached.

3. Calculate the estimate for the IACT � ,

� D 1C 2
n0X
kD1

�
1 � k

n

�
c.k/ 	 1C 2

n0X
kD1

c.k/: (28)

Notice that if n is not much larger than n0, the sample is too small.
The accuracy of the approximation of � by O� is often expressed, with some

degree of imprecision, by writing an estimate

� D O�˙ 2

�
C.0/

n
�

�1=2

with the 95 % belief. This interpretation is based on the fact that, with a probability
of about 95 %, the values of a Gaussian random variable are within ˙2 STD from
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the mean. Such an approximate claim is justified when n is large, in which case the
random variable F is asymptotically Gaussian by the central limit theorem.

Statistical Approach: What Is the Gain?

Statistical methods are often pitted against deterministic ones, and the true gain of
the approach is sometimes lost, especially if the statistical methods are used only to
produce single estimates. Indeed, it is not uncommon that the statistical framework
is seen simply as an alternative way of explaining regularization. Another criticism
of statistical methods concerns the computation times. While there is no doubt
that computing a posterior mean using MCMC methods is more computationally
intensive than resorting to optimization-based estimators, it is also obvious that
a comparison in these terms does not make much sense, since a sample contains
enormously more information of the underlying distribution than an estimate of its
mode.

To emphasize what there is to be gained when using the statistical approach,
we consider some algorithms that have been found useful and are based on the
interpretation images as random variables.

Beyond the Traditional Concept of Noise
The range of interpretation of the concept of noise in imaging is usually very
restricted, almost exclusively referring to uncertainties in observed data due to
exogenous sources. In the context of deterministic regularization, the noise model
is almost always additive, in agreement with the paradigm that only acknowledges
noise as the difference between a “true” and “noisy” data, giving no consideration to
its statistical properties. Already the proper noise modeling of counting data clearly
demonstrates the shortcomings of such models. The Bayesian – or subjective – use
of probability as an expression of uncertainty allows to extend the concept of noise
to encompass a much richer terrain of phenomena, including shortcomings in the
forward model, prior, or noise statistics itself.

To demonstrate the possibilities of the Bayesian modeling, consider an example
where it is assumed that a forward model with additive noise,

y D F.x/C e: (29)

which describes, to the best of our knowledge, as completely as possible, the
interdependency of the data y and the unknown. We refer to it as the detailed model.
Here, the noise e is thought to be exogenous, and its statistical properties are known.

Assume further that the detailed model is computationally too complex to be
used with the imaging algorithms and the application at hand for one or several
of the following reasons. The dimensionality of the image x may be too high
for the model to be practical; the model may contain details such as boundary
conditions that need to be simplified in practice; the deblurring kernel may be non-
separable, while in practice, a fast algorithm for separable kernels may exist. To
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accommodate these difficulties, a simpler model is constructed. Let z be possibly a
simpler representation of x, obtained, for example, via a projection to a coarser grid,
and let f denote the corresponding forward map. It is a common procedure to write
a simplified model of the form

y D f .z/C e; (30)

which, however, may not explain the data as well as the detailed model (29). To
properly account for the errors added by the model reduction, we should write
instead

y D F.x/C e D f .z/C ŒF .x/ � f .z/�C e
D f .z/C ".x; z/C e; ".x; z/ D F.x/ � f .z/; (31)

where the term ".x; z/ is referred to as modeling error.
In the framework of deterministic imaging, modeling errors pose unsurmountable

problems because they depend on both the unknown image x and its reduced
counterpart z. A common way to address errors coming from model reduction is
to artificially increase the variance of the noise included in the reduced model until
it masks the modeling error. Such an approach introduces a statistical structure in the
noise that does not correspond to the modeling error and may easily waste several
orders of magnitude of the accuracy of the data. On the other hand, neglecting the
error introduced by model reduction may lead to overly optimistic estimates of the
performance of algorithms. The very questionable procedure of testing algorithms
with data simulated with the same forward map used for the inversion is referred to
as inverse crime [42]. Inverse criminals, who tacitly assume that ".x; z/ D 0, should
not be surprised if the unrealistically good results obtained from simulated data are
not robust when using real data.

While modeling error often is neglected also in the statistical framework, its
statistical properties can be described in terms of the prior. Consider the stochastic
extension of ".x; z/,

QE D ".X;Z/;

where X and Z are the stochastic extensions of x and z, respectively. Since, unlike
an exogenous noise term, the modeling error is not independent of the unknownsZ
and X , the likelihood and the prior cannot be described separately, but instead must
be specified together.

To illustrate how ubiquitous modeling error is, consider the following example.
Boundary clutter and image truncation: Consider a denoising/deblurring exam-

ple of the type encountered in astronomy, microscopy, and image processing. Let
u W R2 ! R be a continuous two-dimensional model of a scenery that is recorded
through an out-of-focus device. The noiseless model for the continuous problem is
a convolution integral,
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v.r/ D
Z
R2
a.r � s/u.s/ds; r 2 R

2;

the convolution kernel a.r�s/ describing the point spread of the device. We assume
that r 7! a.r/ decays rapidly enough to justify an approximation as a compactly
supported function.

Let Q � R
2 define a bounded field of view. We consider the following imaging

problem: Given a noisy version of the blurred image v over the field of view Q,
estimate the underlying image u over the field of view Q.

Assume that a sufficiently fine discretization of Q into N pixels is given, and
denote by ri 2 Q the center of the i th pixel. Assume further that the point spread
function a is negligibly small outside a disc D of radius ı > 0. By selecting an
extended field of view Q0 such that

QCD D ˚s 2 R
2 j s D r C r 0; r 2 Q; r 0 2 D
 � Q0;

we may restrict the domain of integration in the definition of the convolution integral

v.ri / D
Z
R2
a.ri � s/u.s/ds 	

Z
Q0

a.ri � s/u.s/ds:

After discretizingQ0 intoN 0 pixels pj with center points sj ,N of which are within
the field of view, coinciding with RJ we can restate the problem in the form

v.si / 	
Z
Q0

a.si � s/u.s/ds 	
N 0X
jD1

jpj ja.si � sj /u.sj /

D aij u.sj /; aij D jpj ja.si � sj /; 1 � i � N:

After accounting for the contribution of exogenous noise at each recorded pixel, we
arrive at the complete discrete model

y D A0x C e; A0 2 R
N�N 0

; (32)

where xj D u.sj / and yi represent the noisy observation of v.si /. If the pixelization
is fine enough, we may consider this model to be a good approximation of the
continuous problem.

A word of caution is in order when using this model, because the right-hand side
depends not only on pixels within the field of view, where we want to estimate the
underlying image, but also on pixels in the frame C D Q0nQ around it. The vector
x is therefore partitioned into two vectors, where the first one, denoted by z 2 R

N ,
contains values in the pixels within the field of view, and the second one, � 2 R

K ,
K D N 0 � N , consists of values of pixels in the frame. After suitably rearranging
the indices, we may write x in the form
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x D
2
4z

�

3
5 2

R
N

�
R
K

;

and, after partitioning the matrix A0 accordingly,

A0 D �A B
� 2 R

N�N � R
N�K;

we can rewrite the model (32) in the form

y D AzC B� C e D AzC "C e;

where the modeling errors are collected in second term ", which we will refer to as
boundary clutter. It is well known that ignoring the contribution to the recorded
image coming from and beyond the boundary may cause severe artifacts in the
estimation of the image x within the field of view. In a determinist framework,
the boundary clutter term is often compensated for by extending the image outside
the field of view in a manner believed to be closest to the actual image behavior.
Periodic extension or extensions obtained by reflecting the image symmetrically or
antisymmetrically are quite popular in the literature, because they will significantly
simplify the computations; details on such an approach can be found, for example,
in [21].

Consider a Gaussian prior and a Gaussian likelihood,

X � N .0; �/; E � N .0; †noise/;

and partition the prior covariance matrix according to the partitioning of x,

� 2
�
�11 �12

�21 �22

�
; �11 2 R

N�N ; �12 D �T
21 2 R

N�K; �22 2 R
K�K:

The covariance matrix of the total noise term, which also includes the boundary
clutter QE, is

E
n� QE C E	 � QE C E	To D B�22BT C†noise D †

and the cross covariance of the image within the field of view and the noise is

C D E
n
Z
� QE C E	To D �12BT:

The posterior distribution of the vector Z conditioned on Y D y now follows from
(17) and (18). The posterior mean is
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zCM D
�
�11AC �12BT	 �A�11AT C B�22BT C†noise

	�1
y;

and the posterior covariance is

�post D �11 �
�
�11AC �12BT	 �A�11AT C B�22BT C†noise

	�1 �
�11AC �12BT	T :

A computationally efficient and robust algorithm for computing the conditional
mean is proposed in [13]. For further applications of the modeling error approach in
imaging, see [1, 38, 47].

Sparsity and Hypermodels
The problem of reconstructing sparse images or more generally images that can
be represented as sparse linear combinations of prescribed basis images using data
consisting of few measurements has recently received a lot of attention and has
become a central issue in compressed sensing [11]. Bayesian hypermodels provide
a very natural framework for deriving algorithms for sparse reconstruction.

Consider a linear model with additive Gaussian noise, the likelihood being
given by (12) and a conditionally Gaussian prior (13) with hyperparameter � .
As explained in section “Adding Layers: Hierarchical Models,” if we select the
hyperprior�hyper.�/ in such a way that it favors solutions with variances‚j close to
zero except for only few outliers, the overall prior for .X;‚/ will be biased toward
sparse solutions. Two hyperpriors well suited for sparse solutions are the gamma
and the inverse gamma hyperpriors. For the sake of definiteness, consider the inverse
gamma hyperprior with mutually independent components,

�hyper.�j / D ��k�1
j exp

�
� �0

�j

�
D exp

�
� �0

�j
� .k C 1/ log �j

�
:

Then the posterior distribution for the pair .X;‚/ is of the form

�.x; � j y/ / exp

0
@�1

2
.y � Ax/T†�1.y � Ax/ � 1

2
xTD�1

� x �
NX
jD1

V.�j /

1
A

where

V.�j / D �0

�j
C
�
k C 3

2

�
log �j ; D� D diag.�/ 2 R

N�N :

An estimate for .X;‚/ can be found by maximizing �.x; � j y/ with respect to the
pair .x; �/ using, for example, a quasi-Newton optimization scheme. Alternatively,
the following two algorithms that make use of the special form of the expression
above can also be used.
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In the articles [66, 67] on Bayesian machine learning, the starting point is the
observation that the posterior density x 7! �.x; � j y/ is Gaussian and therefore it
is possible to integrate it explicitly with respect to x. It can be shown, after some
tedious but straightforward algebraic manipulations, that the marginal posterior
distribution is

�.� j y/ D
Z
RN

�.x; � j y/dx

/
�

1

det.M� /

�1=2

exp

0
@�

NX
jD1

V.�j /C 1

2
QyTM�1

� Qy
1
A ;

where

M� D AT†�1AC D�1
� ; Qy D AT†�1y:

The most probable estimate or the maximum evidence estimator O� of ‚ is, by
definition, the maximizer of the above marginal, or equivalently, the maximizer of
its logarithm,

L.�/ D �1

2
log .det.M� //�

NX
jD1

V.�j /C 1

2
QyTM�1

� Qy

which must satisfy

@L

@�j
D 0; 1 � j � N:

It turns out that, although the computation of the determinant may in general be a
challenge, its derivatives can be expressed in a formally simple form. To this end
separate the element depending on �j from D�1

� , writing

D�1
� D

1

�j
ej e

T
j C D�

� 0 ;

where ej is the j th coordinate unit vector, � 0 is the vector � with the j th element
replaced by a zero and “�” denotes the pseudo-inverse. Then

M� D AT†�1AC D�

� 0 C 1

�j
ej e

T
j D M� 0 C 1

�j
ej e

T
j (33)

D M� 0

�
IC 1

�j
qeT

j

�
; q D M�1

� 0 ej :
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It follows from the properties of the determinant that

det .M� / D det

�
IC 1

�j
qeT

j

�
det .M� 0/ D

�
1C qj

�j

�
det .M� 0/ ;

where qj D eT
j q. After expressing the inverse of M� in the expression of L.�/ via

the Sherman–Morrison–Woodbury formula [28] as

M�1
� D M�1

� 0 � 1

�j C qj qq
T;

we find that the function L.�/ can be written as

L.�/ D 1

2
log

�
1C qj

�j

�
� V.�j /C 1

2

.qT Qy/2
�j C qj

Cterms that are independent of �j .

The computation of the derivative of L.�/ with respect to �j and its zeros is now
straightforward, although not without challenges because reevaluation of the vector
q may potentially be expensive. For details, we refer to the article [67].

After having found an estimate O� , an estimate forX can be obtained by observing
that the conditional density �.x j y; O�/ is Gaussian,

�.x j y; O�/ / exp

�
�1

2
.y � Ax/T†�1.y � Ax/ � 1

2
xT O�x

�
;

and an estimate for x is obtained by solving in the least squares sense the linear
system

"
†�1=2A
D�1=2

O�

#
x D

�
†�1=2y

0

�
: (34)

In imaging applications, this is a large-scale linear problem and typically, iterative
solvers need to be employed [59].

A different approach leading to a fast algorithm of estimating the MAP estimate
.x; �/MAP was suggested in [15]. The idea is to maximize the posterior distribution
using an alternating iteration: Starting with an initial value � D �1, ` D 1, the
iteration proceeds as follows:

1. Find x`C1 that maximizes x 7! L.x; �`/ D log
�
�.x; �` j y/	.

2. Update �`C1 by maximizing � 7! L.x`C1; �/ D log
�
�.x`C1; � j y/	.
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The efficiency of this algorithm is based on the fact that for � D �` fixed, the
maximization of L.x; �`/ in the first step is tantamount to minimizing the quadratic
expression

1

2
k†�1=2.y � Ax/k2 C 1

2

���D�1=2
�`

x
���2
;

the non-quadratic part being independent of x. Thus, step 1 only requires an
(approximate) linear least squares solution of the system similar to (34). On the
other hand, when x D x`C1 is fixed, the minimizer of the second step is found as a
zero of the gradient of the function L.x`C1; �/ with respect to � . This step, too, is
straightforward, since the component equations are mutually independent,

@

@�j
L.x`C1; �/ D �

�
1

2

�
x`C1
j

�2 C �0

�
1

�2
j

C
�
k C 3

2

�
1

�j
D 0;

leading to the explicit updating formula

�`C1
j D 1

2k C 3

��
x`C1
j

�2 C 2�0

�
:

For details and performance of the method in image applications, we refer to [15].

5 Conclusion

This chapter gives an overview of statistical methods in imaging. Acknowledging
that it would be impossible to give a comprehensive review of all statistical methods
in imaging in a chapter, we have put the emphasis on the Bayesian approach,
while making repeated forays in the frequentists’ field. These editorial choices are
reflected in the list of references, which only covers a portion of the large body of
literature published on the topic. The use of statistical methods in subproblems of
imaging science is much wider than presented here, extending, for example, from
image segmentation to feature extraction, interpretation of functional MRI signals,
and radar imaging.

Cross-References

�EM Algorithms
� Iterative Solution Methods
�Linear Inverse Problems
�Total Variation in Imaging
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1 Introduction

The desire to learn from examples is as old as mankind but has reached a new
dimension with the invention of computers. This paper concentrates on learning
by support vector machines (SVMs) which meanwhile deliver state-of-the-art
performance in many real-world applications. However, it should be mentioned at
the beginning that there exist many alternatives to SVMs ranging from classical
k-nearest neighbor methods over trees and neural networks to other kernel-based
methods. Overviews can be found, e.g., in the books of Mitchell [73], Hastie et al.
[47], Duda et al. [34], and Bishop [9].

SVMs are a new-generation learning system based on various components
Including:

• Statistical learning theory,
• Optimization theory (duality concept),
• Reproducing kernel Hilbert spaces (RKHSs),
• Efficient numerical algorithms.

This synthesis and their excellent performance in practice make SVM-like learning
attractive for researchers from various fields. A non-exhaustive list of SVM applica-
tions includes text categorization (see Joachims [53] and Leopold and Kinderman
[64]), handwritten character recognition (see LeCun et al. [62]), texture and image
classification (see Chapelle et al. [23]), protein homology detection (see Jaakkola
and Haussler [51]), gene expression (see Brown et al. [17]), medical diagnostics
(see Strauss et al. [96]), and pedestrian and face detection, (see Osuna et al. [77]
and Viola and Jones [110]). There exist various benchmark data sets for testing and
comparing new learning algorithms and a good collection of books and tutorials on
SVMs as those of Vapnik [105], Burges, [19], Cristianini and Shawe-Taylor [27],
Herbrich [48], Schölkopf and Smola [87], and Steinwart and Christmann [93]. The
first and latter ones contain a mathematically more rigerous treatment of statistical
learning aspects. So-called least squares SVMs are handled in the book of Suykens
et al. [98], and SVMs from the approximation theoretic point of view are considered
in the book of Cucker and Zhou [29].

Let X � R
d , Y � R

Qd , where for simplicity only Qd D 1 is considered, and
Z WD X �Y . The aim of the following sections is to learn a target function X ! Y
from given training samples Z WD f.x1; y1/; : : : ; .xm; ym/g � Z . A distinction is
made between classification and regression tasks. In classification Y is a discrete
set, in general as large as the number of classes the samples belong to. Here binary
classification with just two labels in Y was most extensively studied. An example
where binary classification is useful is SPAM detection. Another example in medical
diagnostics is given in Fig. 1. Here it should be mentioned that in many practical
applications, the original input variables are pre-processed to transform them into
a new useful space which is often easier to handle but preserves the necessary
discriminatory information. This process is also known as feature extraction.
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Fig. 1 Examples of physiological (SR) and pathological (VT) electrical heart activity curves
measured by an implanted cardioverter-defibrillator. For the classification of such signals, see
Strauss and Steidl [95]

In contrast to classification, regression aims at approximating the “whole” real-
valued function from some function values, so that Y is not countable here. The
above examples, as all problems considered in this paper, are from the area of
supervised learning. This means that all input vectors come along with their
corresponding target function values (labeled data). In contrast, semi-supervised
learning makes use of labeled and unlabeled Data, and in unsupervised learning
labeled data are not available, so that one can only exploit the input vectors xi . The
latter methods can be applied for example to discover groups of similar exemplars
within the data (clustering), to determine the distribution of the data within the input
space (density estimation), or to perform projections of data from high-dimensional
spaces to lower-dimensional spaces. There are also learning models which involve
more complex interactions between the learner and the environment. An example
is reinforcement learning which is concerned with the problem of finding suitable
actions in a given situation in order to maximize the reward. In contrast to supervised
learning, reinforcement learning does not start from given optimal (labeled) outputs
but must instead find them by a process of trial and error. For reinforcement learning,
the reader may consult the book of Sutton and Barto [97].

Learning models can also differ in the way in which the training data are
generated and presented to the learner. For example, a distinction can be made
between batch learning, where all the data are given at the start of the training
phase, and online learning, where the learner receives one example at a time and
updates the hypothesis function in response to each new example.

This paper is organized as follows: An overview of the historical background is
given in Sect. 2. Section 3 contains an introduction into classical SVM methods. It
starts with linear methods for (binary) support vector classification and regression
and considers also linear least squares classification/regression. Then the kernel trick
is explained and used to transfer the linear models into so-called feature spaces
which results in nonlinear learning methods. Some other models related to SVM as
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well as multi-class classification and multitask learning are addressed at the end of
the section. Section 4 provides some mathematical background concerning RKHSs
and quadratic optimization. The last subsection sketches very briefly some results in
statistical learning theory. Numerical methods to make the classical SVMs efficient
in particular for large data sets are presented in Sect. 5. The paper ends with some
conclusions in Sect. 6.

2 Historical Background

Modern learning theory has a long and interesting history going back as far as
Gauss and Legendre but got its enormous impetus from the advent of computing
machines. In the 1930s revolutionary changes took place in understanding the
principles of inductive inference from a philosophical perspective, e.g., by Popper,
and from the point of view of statistical theory, e.g., by Kolmogorov, Glivenko,
and Cantelli, and applied statistics, e.g., by Fisher. A good overview over the
leading ideas and developments in this time can be found in the comments and
bibliographical remarks of Vapnik’s book, Vapnik [105]. The starting point of
statistical learning theory which considers the task of minimizing a risk functional
based on empirical data dates back to the 1960s. Support vector machines, including
their RKHS interpretation, were only discovered in the 1990s and led to an explosion
in applications and theoretical analysis.

Let us start with the problem of linear regression which is much older than linear
classification. The method of least squares was first published by Legendre [63].
It was considered as a statistical procedure by Gauss [43], who claimed, to the
annoyance of Legendre but in accordance with most historians, to have applied
this method since 1795. The original least squares approach finds for given points
xi 2 R

d and corresponding yi 2 R, i D 1; : : : ; m a hyperplane f .x/ D hw; xi C b
having minimal least squares distance from the points .xi ; yi /:

mX
iD1

.hw; xi i C b � yi /2 ! min
w;b

: (1)

This leads to the solution of a linear system of equations which can be ill conditioned
or possess several solutions. Therefore, regularized versions were introduced later.
The linear least squares approach is optimal in the case of linear targets corrupted
by Gaussian noise. Sometimes it is useful to find a linear function which does not
minimize the least squares error, but, for example, the `1-error

mX
iD1

jhw; xi i C b � yi j ! min
w;b

which is more robust against outliers. This model with the constraint that the sum
of the errors is equal to zero was already studied by Laplace in 1799; see Laplace
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Fig. 2 Linear approximation with respect to the `2-, `1- and `1-norm of the error (left to right).
The `1 approximation is more robust against outliers while the `1-norm takes them better into
account

[61]. Another popular choice is the `1-error

max
iD1;:::;m

jhw; xi i C b � yi j ! min
w;b

which better incorporates outliers. In contrast to the least squares method, the
solutions of the `1- and `1-problems cannot be computed via linear systems of
equations but require to solve linear optimization problems. Figure 2 shows a one-
dimensional example, where data are approximated by lines with minimal `2-, `1-
and `1 error norm, respectively. For more information on (regularized) least squares
problems, the reader may consult, e.g., the books of Golub and Van Loan [45] and
of Björck [10].

Regularized least squares methods which penalize the quadratic weight kwk2

as in section “Linear Least Squares Classification and Regression” were examined
under the name ridge regression by Hoerl and Kennard [49]. This method can be
considered as a special case of the regularization theory for ill-posed problems
developed by Tikhonov and Arsenin [102]. Others than the least squares loss
function like the �-insensitive loss were brought into play by Vapnik [105]. This loss
function enforces a sparse representation of the weights in terms of so-called support
vectors which are (small) subsets of the training samples fxi W i D 1; : : : ; mg.
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The simplest form of classification is binary classification, where one has just
to separate between two classes. Linear hyperplanes H.w; b/ separating points,
also called linear discriminants or perceptrons, were already studied by Fisher [41]
and became interesting for neural network researchers in the early 1960s. One of
the first algorithms that constructs a separating hyperplane for linearly separable
points was Rosenblatt’s perceptron; see Rosenblatt [84]. It is an iterative online
and mistake-driven algorithm which starts with an initial weight guess w for the
hyperplane and adapts the weight at each time a training point is misclassified
by the current weight. If the data are linearly separable, the procedure converges,
and the number of mistakes (number of updates of w) does not exceed .2R=�/2,
whereR WD miniD1;:::;m kxik and � is the smallest distance between a training point
and the hyperplane. For linearly separable points, there exist various hyperplanes
separating them.

An optimal hyperplane for linearly separable points in the sense that the minimal
distance of the points from the plane becomes maximal was constructed as so-called
generalized portrait algorithm by Vapnik and Lerner [108]. This learning method
is also known as linear hard margin support vector classifier. The method was
generalized to nonseparable points by Cortes and Vapnik [26] which leads to soft
margin classifiers. Finally, the step from linear to nonlinear classifiers via feature
maps was taken by Boser et al. [12]. Their idea to combine a linear algorithm with a
kernel approach inspired the further examination of specific kernels for applications.

However, the theory of kernels and their applications is older than SVMs.
Aronzajn [5], systematically developed the theory of RHKSs in the 1940s though
it was discovered that many results were independently obtained by Povzner [83].
The work of Parzen [78] brought the RKHS to the fore in statistical problems; see
also Kailath [54]. Kernels in pattern recognition were already applied by Aizerman
et al. [1]. Empirical risk minimization over RKHSs was considered by Wahba
[112] in connection with splines and by Poggio and Giriosi [81] in relation with
neural networks. Schölkopf et al. [89] realized that the kernel trick works not
only for SVMs but for many other methods as principal component analysis in
unsupervised learning.

The invention of SVMs has led to a gigantic amount of developments in learning
theory and practice. The size of this paper would be not enough to list the references
on this topic. Beyond various applications, also advanced generalization results,
suitable choices of kernels, efficient numerical methods in particular for large data
sets, relations to other sparse representation methods, multi-class classification, and
multitask learning were addressed. The reader will find some references in the
corresponding sections.

3 Mathematical Modeling and Applications

Linear Learning

This section starts with linear classification and regression which provide the easiest
algorithms to understand some of the main building blocks that appear also in the
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more sophisticated nonlinear support vector machines. Moreover, concerning the
classification task, this seems to be the best approach to explain its geometrical back-
ground. The simplest function to feed a classifier with or to use as an approximation
of some unknown function in regression tasks is a linear (multivariate) function

f .x/ D fw.x/ WD hw; xi; x 2 X � R
d : (2)

Often it is combined with some appropriate real number b, i.e., one considers the
linear polynomial f .x/ C b D hw; xi C b. In the context of learning, w is called
weight vector and b offset, intercept or bias.

Linear Support Vector Classification
Let us consider binary classification first and postpone multi-class classification
to section “Multi-class Classification and Multitask Learning.” As binary classifier
F D Fw;b W X ! f�1; 1g, one can use

F.x/ WD sgn.fw.x/C b/ D sgn.hw; xi C b/

with the agreement that sgn.0/ WD 0. The hyperplane

H.w; b/ WD fx W hw; xi C b D 0g

has the normal vector w=kwk, and the distance of a point Qx 2 R
d to the hyperplane

is given by ˇ̌
ˇ̌
�

w

kwk ; Qx
�
C b

kwk
ˇ̌
ˇ̌

see Fig. 3 left. In particular, jbj=kwk is the distance of the hyperplane from the
origin.

The training set Z consists of two classes labeled by ˙1 with indices IC WD
fi W yi D 1g and I� WD fi W yi D �1g. The training set is said to be separable
by the hyperplane H.w; b/ if hw; xi i C b > 0 for i 2 IC and hw; xi i C b < 0 for
i 2 I�, i.e.,

yi .hw; xi i C b/ > 0:

The points inZ are called (linearly) separable if there exists a hyperplane separating
them. In this case, their distance from a separating hyperplane is given by

yi

��
w

kwk ; xi
�
C b

kwk
�
; i D 1; : : : ; m:

The smallest distance of a point from the hyperplane

� WD min
iD1;:::;m

yi

��
w

kwk ; xi
�
C b

kwk
�

(3)
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x̃
−λ

w
w

|b|
w

w
w

H

class 1

class 2

γ

Fig. 3 Left: Hyperplane H with normal w=kwk and distance jbj=kwk from the origin. The
distance of the point Qx from the hyperplane is the value � fulfilling hw; Qx � �w=kwki C b D 0,
i.e., � D .hw; Qxi C b/=kwk. Right: Linearly separable training set together with a separating
hyperplane and the corresponding margin �

is called margin. Figure 3, right, shows a separating hyperplane of two classes
together with its margin. Of course for a separable training set, there may exist
various separating hyperplanes. One way to ensure a unique solution is to pose
additional requirements on the hyperplane in form of minimizing a cost functional.

Hard Margin Classifier One obvious way is to choose those separating hyper-
plane which has the maximal distance from the data, i.e., a maximal margin. The
corresponding classifiers are called maximal margin classifiers or hard margin
classifiers. The hyperplane and the corresponding half-spaces do not chance if the
defining vectors is rescaled to .c w; c b/, c > 0. The so-called generalized portrait
algorithm of Vapnik and Lerner [108], constructs a hyperplane that maximizes �
under the constraint kwk D 1. The same hyperplane can be obtained as follows:
by (3), it holds

� kwk D min
iD1;:::;m

yi .hw; xi i C b/

so that one can use the scaling

� kwk D 1 , � D 1

kwk :

Now � becomes maximal if and only if kwk becomes minimal, and the scaling
means that yi .hw; xi i C b/ � 1 for all i D 1; : : : ; m. Therefore, the hard
margin classifier aims to find parameters w and b solving the following quadratic
optimization problem with linear constraints:
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Linear SV hard margin classification (Primal problem)
1
2kwk2 ! min

w;b
subject to yi .hw; xi i C b/ � 1; i D 1; : : : ; m:

If the training data are linearly separable, the problem has a unique solution. A brief
introduction into quadratic programming methods is given in section “Quadratic
Optimization.” To transform the problem into its dual form, consider the Lagrangian

L.w; b; ˛/ D 1

2
kwk2 C

mX
iD1

˛i .1 � yi .hw; xi i C b// ; ˛i � 0:

Since

@L

@w
D w �

mX
iD1

˛iyixi D 0 , w D
mX
iD1

˛iyixi ; (4)

@L

@b
D

mX
iD1

˛iyi D 0 (5)

the Lagrangian can be rewritten as

L.w; b; ˛/ D �1

2

mX
iD1

mX
jD1

yi˛iyj ˛j hxi ; xj i C
mX
iD1

˛i (6)

and the dual problem becomes

Linear SV hard margin classification (Dual problem)

1
2

mP
iD1

mP
jD1

yi˛iyj ˛j hxi ; xj i �
mP
iD1

˛i!min
˛

subject to
Pm

iD1 yi˛i D 0;

˛i � 0; i D 1; : : : ; m:

Note that the dual maximization problem has been rewritten into a minimization
problem by using that max� D min��. Let 1m denote the vector with m

coefficients 1, ˛ WD .˛i /miD1, y WD .yi /miD1, Y WD diag.yi /miD1 and

K WD �hxi ; xj i	mi;jD1 : (7)

Note that K is symmetric and positive semi-definite. The dual problem can be
rewritten in matrix-vector form as

Linear SV hard margin classification (Dual problem)
1
2˛

TYKY˛ � h1m; ˛i ! min
˛

subject to hy; ˛i D 0; ˛ � 0:
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Let ˛� be the minimizer of this dual problem. The intercept b does not appear in
the dual problem, and one has to determine its optimal value in another way. By the
Kuhn-Tucker conditions, the equations

˛�
i

�
yi .hw�; xi i C b�/� 1

	 D 0; i D 1; : : : ; m

hold true, so that ˛�
i > 0 is only possible for those training data with yi .hw�; xi i C

b�/ D 1. These are exactly the (few) points having margin distance � from the
hyperplaneH.w�; b�/. Define

IS WD fi W ˛�
i > 0g; S WD fxi W i 2 IS g: (8)

The vectors from S are called support vectors. In general jS j � m and by (4) the
optimal weight w� and the optimal function fw� have a sparse representation in
terms of the support vectors

w� D
X
i2IS

˛�
i yixi ; fw�.x/ D

X
i2IS

˛�
i yi hxi ; xi: (9)

Moreover,

b� D yi � hw�; xi i D yi � fw�.xi /; i 2 Is (10)

and hence, using (5),

kw�k2 D
X
i2IS

˛�
i yi

X
j2IS

˛�
j yj hxi ; xj i D

X
i2IS

˛�
i yifw�.xi /

D
X
i2IS

˛�
i .1 � yib�/ D

X
i2IS

˛�
i

so that

� D 1=kwk D �X
i2IS

˛�
i

	�1=2
:

Soft Margin Classifier If the training data are not linearly separable which is the
case in most applications, the hard margin classifier is not applicable. The extension
of hard margin classifiers to the nonseparable case was done by Cortes and Vapnik
[26] by bringing additional slack variables and a a parameter C > 0 into the
constrained model:

Linear SV soft margin classification (Primal problem)

1
2kwk2 C C

mP
iD1

�i ! min
w;b;�

subject to yi .hw; xi i C b/ � 1� �i ;
�i � 0; i D 1; : : : ; m.
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For C D 1, this is again the hard margin classifier model. As before, the margin
is defined as � D 1=kw�k, where w� is the solution of the above problem. If the
slack variable fulfills 0 � ��

i < 1, then xi is correctly classified, and in the case
yi .hw�; xi i C b�/ D 1� ��

i the distance of xi from the hyperplane is � � ��
i =kw�k.

If 1 < ��
i , then one has a misclassification. By penalizing the sum of the slack

variables, one tries to keep them small.
The above constrained minimization model can be rewritten as an unconstrained

one by using a margin-based loss function. A function L W f�1; 1g�R! Œ0;1/ is
called margin based if there exists a representing function l W R! Œ0;1/ such that

L.y; t/ D l.yt/:

In soft margin classification the appropriate choice of a loss function is the hinge
loss function lh determined by

lh.x/ WD maxf0; 1� xg:

Then the unconstrained primal problem reads

Linear SV soft margin classification (Primal problem)

1
2kwk2 C C

mP
iD1

Lh .yi ; .hw; xi i C b// ! min
w;b

:

The Lagrangian of the linear constrained problem has the form

L.w; b; �; ˛/ D 1

2
kwk2 C C

mX
iD1

�i C
mX
iD1

˛i .1 � �i � yi .hw; xi i C b//�
mX
iD1

ˇi�i ;

where ˛i ; ˇi � 0. Partial differentiation of the Lagrangian with respect to w and b
results in (4), (5) and with respect to � in

@L

@�
D C 1m � ˛ � ˇ D 0:

Using these relations, the Lagrangian can be rewritten in the same form as in (6),
and the dual problem becomes in matrix-vector form

Linear SV soft margin classification (Dual problem)
1
2˛

TYKY˛ � h1m; ˛i subject to hy; ˛i D 0; 0 � ˛ � C:
Let ˛� be the minimizer of the dual problem. Then the optimal weight w� and fw�

are again given by (9) and depend only on the few support vectors defined by (8).
By the Kuhn-Tucker conditions, the equations

˛�
i

�
yi .hw�; xi i C b�/� 1C ��

i

	 D 0 and
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ˇ�
i �

�
i D .C � ˛�

i /�
�
i D 0; i D 1; : : : ; m

hold true. For 0 < ˛�
i < C , it follows that ��

i D 0 and yi .hw�; xi i C b�/ D 1, i.e.,
the points xi have margin distance � D 1=kw�k fromH.w�; b�/. Moreover,

b� D yi � hw�; xi i; i 2 QIS WD fi W 0<˛�
i <C g: (11)

For ˛�
i D C , one concludes that yi .hw�; xi i C b�/ D 1 � ��

i , i.e., xi has distance
� � ��

i =kw�k from the optimal hyperplane.

Linear Support Vector Regression
Of course one can also approximate unknown functions by linear (multivariate)
polynomials of the form (2).

Hard Margin Regression The model for linear hard margin regression is given by

Linear SV hard margin regression (Primal problem)
1
2kwk2 ! minw;b subject to hw; xi i C b � yi � �;

�hw; xi i � b C yi � �; i D 1; : : : ; m:

The constraints make sure that the test data yi lie within an � distance from the value
f .xi /C b of the approximating linear polynomial. The Lagrangian reads

L.w; b; �˙; ˛˙; ˇ˙/ D 1

2
kwk2 C

mX
iD1

˛�
i .hw; xi i C b � yi � �/

C
mX
iD1

˛C
i .�hw; xi i � b C yi � �/ ;

where ˛i̇ � 0. Setting partial derivatives to zero leads to

@L

@w
D wC

mX
iD1

�
˛�
i � ˛C

i

	
xi D 0 , w D

mX
iD1

�
˛C
i � ˛�

i

	
xi ; (12)

@L

@b
D

mX
iD1

�
˛C
i � ˛�

i

	 D 0: (13)

Using these relations and setting

˛ WD ˛C � ˛�;

the Lagrangian can be written as

L.w; b; �˙; ˛˙; ˇ˙/ D �1

2

mX
iD1

mX
jD1

˛i˛j hxi ; xj i � �
mX
iD1

�
˛C
i C ˛�

i

	C
mX
iD1

yi˛i
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and the dual problem becomes in matrix-vector form

Linear SV hard margin regression (Dual problem)
1
2 .˛

C � ˛�/TK.˛C � ˛�/C �h1m; ˛C C ˛�i � hy; ˛C � ˛�i ! min
˛C;˛�

subject to h1m; ˛C � ˛�i D 0; ˛˙ � 0:

This is a quadratic optimization problem with linear constraints. Let .˛C/�; .˛�/�
be the solution of this problem and ˛� D .˛C/��.˛�/�. Then, by (12), the optimal
weight and the optimal function have in general a sparse representation in terms of
the support vectors xi , i 2 IS , namely,

w� D
X
i2IS

˛�
i xi ; fw�.x/ D

X
i2IrS

˛�
i hxi ; xi; IrS WD fi W ˛�

i 6D 0g: (14)

The corresponding Kuhn-Tucker conditions are

.˛�
i /

� �� � hw�; xi i � b� C yi
	 D 0; (15)

.˛C
i /

� �� C hw�; xi i C b� � yi
	 D 0:

If .˛�
i /

� > 0 or .˛C
i /

� > 0, then

b� D yi � hw�; xi i C �; b� D yi � hw�; xi i � �;

respectively. Since both conditions cannot be fulfilled for the same index, it follows
that .˛�

i /
�.˛C

i /
� D 0 and consequently, either ˛�

i D .˛C
i /

� � 0 or ˛�
i D

�.˛�
i /

� � 0. Thus, one can obtain the intercept by

b� D yi � hw�; xi i � �; i 2 IS : (16)

Soft Margin Regression Relaxing the constraints in the hard margin model leads
to the following linear soft margin regression problem with C > 0:

Linear SV soft margin regression (Primal problem)
1
2kwk2 C C Pm

iD1

�
�C
i C ��

i

	!min
w;b;�˙

i
subject to hw; xi i C b � yi � � C ��

i ;

�hw; xi i � b C yi � � C �C
i ,

�C
i ; �

�
i � 0:

For C D 1, this recovers the linear hard margin regression problem. The above
constrained model can be rewritten as an unconstrained one by using a distance-
based loss function. A function L W Y � R ! Œ0;1/ is called distance based if
there exists a representing function l W R! Œ0;1/ such that

L.y; t/ D l.y � t/:
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Fig. 4 Vapnik’s �-insensitive loss function for � D 2 (left). Example of linear SV soft margin
regression (right)

In soft margin regression, the appropriate choice is Vapnik’s �-insensitive loss
function defined by

l�.x/ WD maxf0; jxj � �g:

The function l� is depicted in Fig. 4, left. Then the unconstrained primal model reads

Linear SV soft margin regression (Primal problem)

1
2kwk2 C C

mP
iD1

L�.yi ; hw; xi i C b/ ! min
w;b

:

The Lagrangian of the constrained problem is given by

L.w; b; �˙; ˛˙; ˇ˙/ D 1

2
kwk2 C C

mX
iD1

.�C
i C ��

i /

C
mX
iD1

˛�
i

�hw; xi i C b � yi � � � ��
i

	

C
mX
iD1

˛C
i

��hw; xi i � b C yi � � � �C
i

	

�
mX
iD1

ˇC
i �

C
i �

mX
iD1

ˇ�
i �

�
i ;

where ˛i̇ � 0 and ˇi̇ � 0, i D 1; : : : ; m. Setting the partial derivatives to zero
leads to (12), (13) and
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@L

@�C D C 1m � ˛C � ˇC D 0;
@L

@�� D C 1m � ˛� � ˇ� D 0:

Using these relations the Lagrangian can be written exactly as in the hard margin
problem, and the dual problem becomes in matrix-vector form

Linear SV soft margin regression (Dual problem)
1
2 .˛

C � ˛�/TK.˛C � ˛�/C �h1m; ˛C C ˛�i � hy; ˛C � ˛�i ! min
˛C;˛�

subject to h1m; ˛C � ˛�i D 0; 0 � ˛C; ˛� � C
If .˛C/�; .˛�/� are the solution of this problem and ˛� D .˛C/� � .˛�/�,
then the optimal weight w� and the optimal function fw� are given by (14). The
corresponding Kuhn-Tucker conditions are

.˛�
i /

� �� C .��
i /

� � hw�; xi i � b� C yi
	 D 0;

.˛C
i /

� �� C .�C
i /

� C hw�; xi i C b� � yi
	 D 0;

.C � .˛C
i /

�/.�C
i /

� D 0; .C � .˛�
i /

�/.��
i /

� D 0; i D 1; : : : ; m:

If 0 < .˛C
i /

� or 0 < .˛�
i /

�, then

b� D yi � hw�; xi i C � C �C
i ; b� D yi � hw�; xi i � � � ��

i ;

respectively. Both equations cannot be fulfilled at the same time so that one can
conclude that either ˛�

i D .˛C
i /

� � 0 or ˛�
i D �.˛�

i /
� � 0. In case ˛�

i D .˛C
i /

� <
C , this results in the intercept

b� D yi � hw�; xi i � �; i 2 QIS : (17)

Linear Least Squares Classification and Regression
Instead of the hinge loss function for classification and the �-insensitive loss
function for regression, other loss functions can be used. Popular margin-based and
distance-based loss functions are the logistic loss for classification and regression

l.yt/ WD ln.1C e�yt / and l.y � t/ WD � ln
4ey�t

.1C ey�t /2
;

respectively. In contrast to the loss functions in the previous subsections, logistic
loss functions are differentiable in t so that often standard methods as gradient
descent methods or Newton (like) methods can be applied for computing the
minimizers of the corresponding problems. For details, see, e.g., the book of
Mitchell [73] or of Hastie et al. [47]. Other loss functions for regression are the
pinball loss, the Huber function, and the p-th power absolute distance loss jy� t jp ,
p > 0. For p D 2, the latter is the least squares loss
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llsq.y � t/ D .y � t/2:

Since .y � t/2 D .1 � yt/2 for y 2 f�1; 1g, the least squares loss is also margin
based, and one can handle least squares classification and regression using just the
same model with y 2 f�1; 1g for classification and y 2 R for regression. In the
unconstrained form, one has to minimize

Linear LS classification/regression (Primal problem)

1
2kwk2 C C

2

mP
iD1

.hw; xi i C b � yi /2„ ƒ‚ …
Llsq.yi ;hw;xi iCb/

! min
w;b

:

This model was published as ridge regression by Hoerl and Kennard [49] and is a
regularized version of the Gaussian model (1). Therefore, it can be considered as a
special case of regularization theory introduced by Tikhonov and Arsenin [102]. The
minimizer can be computed via a linear system of equations. To this end, rewrite the
unconstrained problem in matrix-vector form

1

2
kwk2 C C

2
kXTwC b1m � yk2 ! min

w;b
;

where

X WD .x1 : : : xm/ D

0
B@
x1;1 : : : xm;1

:::

x1;d : : : xm;d

1
CA :

Setting the gradient (with respect to w and b) to zero, one obtains

0 D 1

C
wC XXTwC bX1m � Xy;

0 D 1T
mXTw� 1T

my Cmb , b D Ny � hw; Nxi; (18)

where Ny WD 1
m

Pm
iD1 yi and Nx WD 1

m

Pm
iD1 xi . Hence b and w can be obtained by

solving the linear system of equations

 
1 NxT

Nx 1
m

XXT C 1
mC
I

!�
b

w

�
D
� Ny

1
m

Xy

�
: (19)

Instead of the above problem, one solves in general the “centered” problem

Linear LS classification/regression in centered version (Primal problem)

1
2k Qwk2 C C

2

mP
iD1
.h Qw; Qxi i C Qb � yi /2 ! min

Qw;Qb
;
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where Qxi WD xi � Nx, i D 1; : : : ; m. The advantage is that NQx D 0m, where 0m is the
vector consisting of m zeros. Thus, (19) with Qxi instead of xi becomes a separable
system, and one obtains immediately that Qb� D Ny and that Qw� follows by solving
the linear system with positive definite, symmetric coefficient matrix

�
QX QXT C 1

C
I

�
w D QXy:

This means that Qw is just the solution of the centered primal problem without
intercept. Finally, one can check by the following argument that indeed w� D Qw�:

. Qw�; Qb�/ WD argminQw;Qb

(
1

2
k Qwk2 C C

2

mX
iD1

.h Qw; Qxi i C Qb � yi /2
)
;

Qw� D argminQw

(
1

2
k Qwk2 C C

2

mX
iD1

.h Qw; Qxi i C Ny � yi /2
)

D argminQw
�

1

2
k Qwk2 C C

2

mX
iD1

.h Qw; xi i C Ny � h Qw; Nxi � yi /2


and with (18) on the other hand

.w�; b�/ WD argminw;b

(
1

2
kwk2 C C

2

mX
iD1

.hw; xi i C b � yi /2
)
;

w� D argminw

(
1

2
kwk2 C C

2

mX
iD1

.hw; xi i C Ny � hw; Nxi � yi /2
)
:

Note that XTX D K 2 R
m;m; but this is not the coefficient matrix in (19). When

turning to nonlinear methods in section “Nonlinear Learning,” it will be essential to
work with K D XTX instead of XXT. This can be achieved by switching to the dual
setting. In the following, this dual approach is shown although it makes often not
sense for the linear setting since the size of the matrix K is in general larger than
those of XXT 2 R

d;d . First, one reformulates the primal problem into a constrained
one:

Linear LS classification/regression (Primal problem)

1
2kwk2 C C

2

mP
iD1

�2
i ! min

w;b;�
subject to hw; xi i C b � yi D �i ; i D 1; : : : ; m:

The Lagrangian reads

L.w; b; �; ˛/ D 1

2
kwk2 C C

2

mX
iD1

�2
i �

mX
iD1

˛i .hw; xi i C b � yi � �i /
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and

@L

@w
D w �

mX
iD1

˛ixi D 0 , w D
mX
iD1

˛ixi ;

@L

@b
D

mX
iD1

˛i D 0;

@L

@�
D C � C ˛ D 0:

The equality constraint in the primal problem together with the above equalities
leads to the following linear system of equations to determine the optimal ˛� and
b�:

 
0 1T

m

1m KC 1
C
I

!�
b

˛

�
D
�

0
y

�
: (20)

The optimal weight and the corresponding optimal function read

w� D
mX
iD1

˛�
i xi ; fw�.x/ D

mX
iD1

˛�
i hxi ; xi: (21)

In general there is no sparse representation with respect to the vectors xi ; see also
Theorem 8.36 in the book of Steinwart and Christman [93]. Therefore, this method
is not called a support vector method in this paper. Finally, note that the centered
approach also helps to avoid the intercept in the dual approach. Since this is no
longer true when turning to the nonlinear setting, the intercept is kept here.

Nonlinear Learning

A linear form of a decision or regression function may not be suitable for the task at
hand. Figure 5 shows two examples, where a linear classifier is not appropriate.

A basic idea to handle such problems was proposed by Boser et al. [12] and
consists of the following two steps which will be further explained in the rest of this
subsection:

1. Mapping of the input data X � X into a feature space ˆ.X / � `2.I /, where I
is a countable (possibly finite) index set, by a nonlinear feature map

ˆ W X ! `2.I /:

2. Application of the linear classification/regression model to the feature set
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Fig. 5 Two sets, where linear classification is not appropriate
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Fig. 6 Linearly nonseparable training data in the original space X � R
2 (left) and become

separable in the feature space ˆ.X /, where ˆ.x1; x2/ WD .x2
1 ; x

2
2/ (right)

f.ˆ.x1/; y1/; : : : ; .ˆ.xm/; ym/g:

This means that instead of a linear function (2), we are searching for a function
of the form

f .x/ D fw.x/ WD hw; ˆ.x/i`2.I / (22)

now. This nonlinear function on X becomes linear in the feature space ˆ.X /.

Figure 6 shows an example of a feature map. In this example, the set f.xi ; yi / W
i D 1; : : : ; 5g is not linearly separable while f.ˆ.xi /; yi / W i D 1; : : : ; 5g is linearly
separable. In practical applications, in contrast to this example, the feature map often
maps into a higher dimensional, possibly also infinite dimensional space.

Together with the so-called kernel trick to avoid the direct work with the feature
map ˆ, this approach results in the successful support vector machine (SVM).



1412 G. Steidl

Kernel Trick
In general, one avoids to work directly with the feature map by dealing with the
dual problem and applying the so-called kernel trick. For a feature map ˆ, define a
kernel K W X � X ! R associated with ˆ by

K.x; t/ WD hˆ.x/;ˆ.t/il2.I /: (23)

More precisely, in practice one often follows the opposite way, namely, one starts
with a suitable kernel which is known to have a representation of the form (23)
without knowing ˆ explicitly.

A frequently applied group of kernels are continuous, symmetric, positive (semi-)
definite kernels like the Gaussian

K.x; t/ D e�kx�tk2=c2
:

These kernels, which are also called Mercer kernels, will be considered in detail
in section “Reproducing Kernel Hilbert Spaces.” By Mercer’s theorem, it can be
shown that a Mercer kernel possesses a representation

K.x; t/ D
X
j2I

q
�j j .x/

q
�j j .t/; x; t 2 X

withL2-orthonormal functions j and positive values �j , where the right-hand side
converges uniformly. Note that the existence of such a representation is clear, but in
general without knowing the functions  j explicitly. The set f'j WD

p
�j j W j 2

I g forms an orthonormal basis of a reproducing kernel Hilbert space (RKHS) HK .
These spaces are considered in more detail in section “Reproducing Kernel Hilbert
Spaces.” Then the feature map is defined by

ˆ.x/ WD �'j .x/	j2I D
�q

�j j .x/

�
j2I

:

Using the orthonormal basis, one knows that for any f 2 HK there exists a unique
sequence w D wf WD .wj /j2I 2 `2.I / such that

f .x/ D
X
j2I

wj 'j .x/ D hw; ˆ.x/i; and wj D hf; 'j iHK ; (24)

where the convergence is uniformly. Conversely every sequence w 2 `2.I / defines
a function fw lying in HK by (24). Moreover, Parseval’s equality says that

kfwkHK WD kwk`2.I /: (25)
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For nonlinear classification and regression purposes, one can follow exactly the
lines of section “Linear Learning” except that one has to work in ˆ.X / instead of
X . Using (22) instead of (2) and

K WD �hˆ.xi /; ˆ.xj /i`2.I /

	m
i;jD1 D

�
K.xi ; xj /

	m
i;jD1 (26)

instead of the kernel matrix K WD �hxi ; xj i	mi;jD1 in (7), the linear models from
section “Linear Learning” can be rewritten as in the following subsections. Note
again that K is positive semi-definite.

Support Vector Classification
In the following, the linear classifiers are generalized to feature spaces.

Hard Margin Classifier The hard margin classification model is

SVM hard margin classification (Primal problem)
1
2kwk2

`2.I /
! min

w;b
subject to yi

�hw; ˆ.xi /i`2.I / C b
	 � 1; i D 1; : : : ; m:

Interestingly, ifˆ is associated with a Mercer kernelK , then f .x/ D hw; ˆ.x/i`2.I /

lies in the RKHS HK , and the model can be rewritten using (25) from the point of
view of RKHS as

SVM hard margin classification in RKHS (Primal problem)
1
2kf k2

HK
! min

f 2HK

subject to yi .f .xi /C b/ � 1; i D 1; : : : ; m:

The dual problem reads

SVM hard margin classification (Dual problem)

1
2

mP
iD1

mP
jD1

yi˛iyj ˛j hˆ.xi /; ˆ.xj /i`2.I / �
mP
iD1

˛i ! min
˛

subject to
mP
iD1

yi˛i D 0;

˛i � 0; i D 1; : : : ; m:

and with K defined by (26) the matrix-vector form of the dual problem looks as
those for the linear hard margin classifier.

Let ˛� be the minimizer of the dual problem. Then, by (9) together with the
feature space modification, the optimal weight and the function fw� become

w� D
X
i2IS

˛�
i yiˆ.xi /; fw�.x/ D

X
i2IS

˛�
i yi hˆ.xi /; ˆ.x/i`2.I / D

X
i2IS

˛�
i yiK.xi ; x/:

(27)
Thus, one can compute fw� knowing only the kernel and not the feature map itself.
One property of a Mercer kernel used for learning purposes should be that it can
be simply evaluated at points from X � X . This is, for example, the case for the
Gaussian. Finally, using (10) in the feature space, the intercept can be computed by
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b� D yi � hw�; ˆ.xi /i`2.I / D yi �
X
j2IS

˛�
j yjK.xj ; xi /; i 2 IS

and the margin � D 1=kw�k2
`2.I /

by using kw�k2
`2.I /
D .˛�/TYKY˛�.

Soft Margin Classifier The soft margin classification model in the feature space is

SVM soft margin classification (Primal problem)

1
2kwk2

`2.I /
C C

mP
iD1

�i!min
w;b;�

subject to yi
�hw; ˆ.xi /i`2.I / C b

	 � 1� �i ;
i D 1; : : : ; m
�i � 0; i D 1; : : : ; m:

If ˆ is associated with a Mercer kernelK , the corresponding unconstrained version
reads in the RKHS

SVM soft margin classification in RKHS (Primal problem)

1
2kf k2

HK
C C

mP
iD1

Lh .yi ; f .xi /C b/C ! min
f 2HK

:

With K defined by (26), the matrix-vector form of the dual problem looks as
those for the linear soft margin classifier. The function fw� reads as in (27), and,
using (11), the intercept can be computed by

b� D yi � hw�; ˆ.xi /i`2.I / D yi �
X
j2 QIS

˛�
j yjK.xj ; xi /; i 2 QIS :

Support Vector Regression
In the following, the linear regression models are generalized to feature spaces.

Hard Margin Regression One obtains

SVM hard margin regression (Primal problem)
1
2kwk2

`2.I /
! minw;b subject to hw; ˆ.xi /i`2.I / C b � yi � �;

�hw; ˆ.xi /i`2.I / � b C yi � �; i D 1; : : : ; m:

If ˆ is associated with a Mercer kernel K , then f .x/ D hw; ˆ.x/i`2.I / lies in the
RKHS HK , and the model can be rewritten using (25) from the point of view of
RKHS as

SVM hard margin regression in RKHS (Primal problem)
1
2kf k2

HK
! minf 2HK subject to f .xi /C b � yi � �;

�f .xi / � b C yi � �; i D 1; : : : ; m:

The dual problem reads in matrix-vector form as the dual problem for the linear
SV hard margin regression except that we have to use the kernel matrix K
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defined by (26). Let .˛C/�; .˛�/� be the solution of this dual problem and ˛� D
.˛C/�� .˛�/�. Then one can compute the optimal function fw� using (14) with the
corresponding feature space modification as

fw�.x/ D
X
i2IrS

˛�
i K.xi ; x/: (28)

One obtains sparse representations in terms of the support vectors. By (16), the
intercept can be computed by

b� D yi �
X
j2IrS

˛�
j K.xj ; xi /� �; i 2 IS :

Soft Margin Regression In the feature space, the soft margin regression model is

SVM soft margin regression (Primal problem)
1
2kwk2`2.I /

C C Pm
iD1.�

C
i C ��

i / ! min
w;b;�˙

i

s.t. hw; ˆ.xi /i`2.I / C b � yi � � C ��
i ;

�hw; ˆ.xi /i`2.I / � b C yi � � C �C
i ,

�C
i ; �

�
i � 0:

Having a feature map associated with a Mercer kernel K , the corresponding
unconstrained problem can be written as the following minimization problem in
the RKHS HK :

SVM soft margin regression in RKHS (Primal problem)

1
2kf kHK C C

mP
iD1

L�.yi ; f .xi /C b/ ! min
f 2HK

:

The dual problem looks as the dual problem for linear SV soft margin regression
but with kernel (26). From the solution of the dual problem .˛C/�; .˛�/�, one can
compute the optimal function fw� as in (28) and the optimal intercept using (17) as

b� D yi �
X
j2IrS

˛�
j K.xj ; xi /� �; i 2 QIS :

Figure 7, left, shows an SVM soft margin regression function for the data in Fig. 2.

Relations to Sparse Approximation in RKHSs, Interpolation by Radial
Basis Functions, and Kriging
SVM regression is related to various tasks in approximation theory. Some of them
will be sketched in the following.

Relation to Sparse Approximation in RKHSs Let HK be a RKHS with kernel
K . Consider the problem of finding for an unknown function Qf 2 HK with given
Qf .xi / D yi , i D 1; : : : ; m an approximating function of the form
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Fig. 7 SVM regression using the Gaussian with c D 8 for the data in Fig. 2. SVM soft margin
regression curve with C D 0:5 and � D 0:2 (left). Least squares SVM regression curve with
C D 40

f .x/ WD
mX
iD1

˛iK.x; xi / 2 HK (29)

with only few summands. A starting point would be to minimize the HK -norm of
the error and to penalize the so-called `0-norm of ˛ given by k˛k0 WD jfi W ˛i 6D 0gj
to enforce sparsity. Unfortunately, the complexity when solving such `0-penalized
problems increases exponentially with m. One remedy is to replace the `0-norm by
the `1-norm, i.e., to deal with

1

2
k Qf .x/ �

mX
iD1

˛iK.x; xi /k2
HK
C �k˛k1 ! min

˛
; (30)

where � > 0. This problem and its relation to support vector regression were
considered by Girosi [44] and Evgeniou et al. [37]. Using the relations in RKHS
from section “Reproducing Kernel Hilbert Spaces,” in particular the reproducing
property (H2), this problem becomes

1

2
˛TK˛ �

mX
iD1

˛iyi C 1

2
k Qf k2

HK
C �k˛k1 ! min

˛
; (31)

where K is defined by (26). With the splitting

˛i D ˛C
i � ˛�

i ; ˛i̇ � 0; ˛C
i ˛

�
i D 0; i D 1; : : : ; m

and consequently j˛i j D ˛C
i C ˛�

i , the sparse approximation model (30) has finally
the form of the dual problem of the SVM hard margin regression without intercept:
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SVM hard margin regression without intercept (Dual problem)
1
2 .˛

C � ˛�/TK.˛C � ˛�/C �h1m; ˛C C ˛�i � hy; ˛C � ˛�i ! min
˛C;˛�

subject to ˛˙ � 0:

Note that for � > 0 the additional constraints ˛C
i ˛

�
i D 0, i D 1; : : : ; m

are automatically fulfilled by the minimizer since otherwise, the Kuhn-Tucker
conditions (15) without intercept would imply the contradiction f .xi / D yi C � D
yi � �.

Relation to the Interpolation by Radial Basis Functions For � D 0, prob-
lem (30), resp. (31) becomes

F.˛/ WD 1

2
˛TK˛ � ˛Ty ! min

˛
:

If K is positive definite, the solution of this problem is given by the solution of

rF.˛/ D K˛ � y D 0; , K˛ D y

and the approximating function f reads

f .x/ D hK�1y; .K.x; xi //
m
iD1i: (32)

This is just the solution of the interpolation problem to find f of the form (29) such
that f .xi / D yi for all i D 1; : : : ; m. If the kernel K of the positive definite matrix
arises from a radial basis function �.x/ D k.kx � tk2/, i.e., K.x; t/ D �.x � t/ as,
e.g., from a Gaussian or an inverse multiquadric described in section “Reproducing
Kernel Hilbert Spaces,” this interpolation problem is called interpolation by radial
basis function.

If the kernel K arises from a conditionally positive definite radial function � of
order �, e.g., from a thin plate spline, the matrix K is in general not positive semi-
definite. In this case, it is useful to replace the function f in (29) by

f .x/ WD
mX
iD1

˛iK.x; xi /C
nX

kD1

ˇkpk.x/;

where n is the dimension of the polynomial space …��1.R
d / and fpk W k D

1; : : : ; ng is a basis of …��1.R
d /. The additional degrees of freedom in the

interpolation problem f .xi / D yi , i D 1; : : : ; m are compensated by adding the
new conditions

mX
iD1

˛ipk.xi / D 0; k D 1; : : : ; n:
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This leads to the final problem of finding ˛ WD .˛i /miD1 and ˇ WD .ˇk/nkD1 such that

�
K P
PT 0

��
˛

ˇ

�
D
�
y

0

�
; P WD .pk.xi //m;ni;kD1 : (33)

If the points fxi W i D 1; : : : ; mg, m � dim
�
…��1.R

d /
	

are …��1.R
d /-unisolvent,

i.e., the zero polynomial is the only polynomial from…��1.R
d / that vanishes on all

of them, then the linear system of equations (33) has a unique solution. To verify
that the coefficient matrix in (33) is indeed invertible, consider the corresponding
homogeneous system. Then the second system of equations PT˛ D 0 means that ˛
satisfies (39). Multiplying the first system of equations by ˛T gives 0 D ˛TK˛ C
.PT˛/Tˇ D ˛TK˛. By the definition of conditionally positive definite functions of
order �, this is only possible if ˛ D 0. But then Pˇ D 0. Since the points fxi W i D
1; : : : ; mg are …��1.R

d /-unisolvent, this implies that ˇ D 0.
The interpolation by radial basis functions having (conditionally) positive defi-

nite kernels was examined, including fast evaluation techniques for the interpolating
function f , by many authors; for an overview see, e.g., the books of Buhmann 2003
[18], Wendland [114], and Fasshauer 2007 [39].

Relation to Kriging The interpolation results can be derived in another way by
so-called kriging. Kriging is a group of geostatistical techniques to interpolate
the unknown value of a random field from observations of its value at nearby
locations. Based on the pioneering work of Krige [59] on the plotter of the distance-
weighted average gold grades at the Witwatersrand reef in South Africa, the French
mathematician Matheron [70] developed its theoretical foundations. Let S.x/
denote a random field such that the expectation value fulfillsE.S.X// D 0 which is
the setting in the so-called simple kriging. Let K.xi ; xj / WD Cov.S.xi /; S.xj //
and K WD �

K.xi ; xj /
	m
i;jD1. The aim is to approximate the value S.x0/ from

observations S.xi / D yi , i D 1; : : : ; m by the kriging estimator

OS.x0/ D
mX
iD1

!i .x0/S.xi /

in such a way that the variance of the error is minimal, i.e.,

Var. OS � S/ D Var. OS/CVar.S/� 2Cov.S; OS/

D
mX
iD1

mX
jD1

!i .x0/!j . Ox/K.xi ; xj /

�2
mX
iD1

!i .x0/K.x0; xi /C Var.S/ ! min
!.x0/

:
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Setting the gradient to zero, the minimizer !� D �
!�

1 .x0/; : : : ; !
�
m.x0/

	T
is given

by the solution of the following linear system of equations:

K! D .K.x0; xi //
m
iD1 :

In case K is invertible, we get

S.x0/ D hy;K�1 .K.x0; xi //
m
iD1i D hK�1y; .K.x0; xi //

m
iD1i:

Supposing the same valuesK.xi ; xj / as in the interpolation task, this is exactly the
same value as f .x0/ from the radial basis interpolation problem (32).

Least Squares Classification and Regression
Also in the feature space, least squares classification and regression can be treated by
the same model. So-called Least Squares Support Vector Classifiers were introduced
by Suykens and Vandevalle [99] while least squares regression was also considered
within regularization network approaches, e.g., by Evgeniou et al. [37] and Wahba
[112]. The least squares model in the feature space is

LS classification/regression in feature space (Primal problem)

1
2kwk2

`2.I /
C C

2

mP
iD1
.hw; ˆ.xi /i`2.I / C b � yi /2 ! min

w;b
:

and becomes in the case that the feature map is related with a Mercer kernel K a
problem in a RKHS HK :

LS classification/regression in RKHS (Primal problem)

1
2kf kHK C C

2

mP
iD1
.f .xi /C b � yi /2 ! min

w;b
:

Setting gradients to zero, one can try to solve this primal problem via a linear system
of equations (19) with X WD .ˆ.x1/ : : : ˆ.xm//. However, one has to compute with
XXT here which is only possible if the feature space is finite dimensional. In contrast,
the dual approach leads to the linear system of equations (20) which involves only
the kernel matrix K D XTX from (26). Knowing the dual variable ˛�, the optimal
function fw� can be computed using (21) with the feature space modification as

fw�.x/ D
mX
iD1

˛�
i hˆ.xi /; ˆ.x/i

mX
iD1

˛�
i K.xi ; x/:

In general there is no sparse representation with respect to the vectors xi . For more
information on least squares kernel methods, the reader may consult the book of
Suykens et al. [98]. Figure 7, right, shows a least squares SVM function for the data
in Fig. 2.
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OtherModels
There are numerous models related to the classification and regression models
of the previous subsections. A simple classification model which uses only the
hinge loss function without penalizing the weight was proposed by Bennet and
Mangasarian [7]:

mX
iD1

Lh .yi ; hw; xi i C b/ ! min
w;b

:

This approach is called robust linear programming (RLP) and requires only linear
programming methods. Note that the authors weighted the training errors by 1=n˙,
where n˙ WD jfi Iyi D ˙1gj. The linear SV soft margin classifier adds just the
penalizer �

2kwk2
2 with � D 1=C , 0 < C < 1 to the RLP term which leads to

quadratic programming. Alternatively, one can add instead the `2-norm the `1-norm
of the weight as it was done by Bradley and Mangasarian [16]:

mX
iD1

Lh .yi ; hw; xi i C b/C �kwk1 ! min
w;b

:

As in (30), the `1 penalizer enforces the sparsity of the solution vector w�. Note that
the sparsity of w� itself and not a sparse representation of w� as linear combination
of the support vectors xi is announced here. The `1-penalizer was introduced in
the statistical context of linear regression in conjunction with the least squares loss
function by Tibshirani [101] and is called “LASSO” (Least Absolute Shrinkage and
Selection Operator):

mX
iD1

Llsq .yi ; hw; xi i C b/C �kwk1 ! min
w;b

As emphasized in section “Support Vector Regression,” the `1-norm is more or less
a replacement for the `0-norm to make problems computable. Other substitutes of
the `0-norm are possible, e.g., kwk`0 	

Pd
jD1.1 � e�jwj j/, � > 0 which gives

mX
iD1

Lh .yi ; hw; xi i C b/C �
dX
jD1

.1 � e�jwj j/ ! min
w;b

:

This is a nonconvex model and was proposed by Bradley and Mangasarian [16] and
by Weston et al. [115] as FSV (Features Selection concaVe). Numerical solution
methods via successive linearization algorithms and difference of convex functions
algorithms by Tao and An [100] were applied.

Further, one can couple several penalizers and generalize the models to the
feature space to obtain nonlinear classifiers as it was done, e.g., by Neumann et
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Fig. 8 From left to right: (i) Sample CT slice from a three-dimensional scan of the data set with
contours of bladder and prostate. (ii) A zoom within the region of interest shows that the organs
are very difficult to distinguish visually. (iii) Manual classification by an expert as “accepted truth.”
(iv) A classification result: The images are filtered by a three-dimensional steerable pyramid filter
bank with 16 angular orientations and four decomposition levels. Then local histograms are built
for the filter responses with ten bins per channel. Including the original grey values, this results in
650 features per image voxel which are used for classification by the “`2-`0-SV” machine

al. [75]. Figure 8 shows an example for the binary classification of specific organs
in CT scans with a so-called “`2-`0-SV” machine taken from the above paper, where
more information can be found. In particular, a 	2 kernel was used here.

Multi-class Classification andMultitask Learning
So far only binary classification was considered. Assume now that one wants to learn
K > 2 classes. Figure 9 shows a typical example of 12 classes for the classification
of Mammals; see Amit et al. [2].

Some attempts to extend the binary case to multi-classes were achieved by adding
constraints for every class; see Weston and Watkins [116] and Vapnik [105]. In case
of many classes, this approach often results in quadratic problems which are hard
to solve and difficult to store. In the following, two general approaches to handle
multiple classes are presented, namely, with:

(i) Vector-valued binary class labeling,
(ii) K class labeling.

The dominating approach for solving multi-class problems using SVMs is based on
reducing a single multi-class problem to multiple binary problems. For instance,
a common method is to build a set of binary classifiers, where each classifier
distinguishes between one of the labels and the rest. This so-called one-versus-
all classifier cannot capture correlations between different classes since it breaks
the multi-class problem into independent binary problems. More general, one can
assign to each class a vector-valued binary class label .y.1/; : : : ; y.�//T 2 f�1; 1g�
and use a classifier based on

F.x/ WD �sgn.hw.k/; xi C b.k//	�
kD1 :
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Fig. 9 Classification of mammal images: 12 from 72 classes of animals which were used for
classification in Amit et al. [2]. Typically these classes share common characteristics as in the
different rows above (deers, canines, felines, rodents), e.g., the texture or shape

For example, in the one-versus-all method, the classes can be labeled by f.�1 C
2ır;k/KkD1 W r D 1; : : : ; Kg, i.e., � D K , and the assignment of x to a class can be
made according to the shortest Hamming distance of F.x/ from these class labels.
In the one-versus-all example, there was � D K . More sophisticated methods use
values � > K and error-correcting output codes as Dietterich and Bakiri [32]. Note
that 2� different labels are in general possible with binary vectors of length � which
is an upper bound for the number of classes that could be learned. In the learning
process, one can obtain w.k/ 2 R

m and b.k/ 2 R by solving, e.g.,

1

2

�X
kD1

kw.k/k2 C
�X

kD1

Ck

mX
iD1

L
�
yi ; hw.k/; xi i C b.k/

	 ! min
w.k/;b.k/

; (34)

whereL is some loss function. Note that this problem can be decoupled with respect
to k. LetW WD .w.1/ : : :w.�// 2 R

d;� be the weight matrix. Then the first sum in (34)
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coincides with the squared Frobenius norm of W defined by

kW k2
F WD

�X
kD1

dX
iD1

.w.k/i /
2:

Let us consider the second labeling approach. Here one assumes that each class label
is an integer from Y WD f1; : : : ; Kg. As before, one aims to learn weight vectors
w.k/, k D 1; : : : ; K (the intercept is neglected for simplicity here). The classifier is
given by

FW .x/ WD argmax
kD1;:::;K

hw.k/; xi:

A training sample .xi ; yi / is correctly classified by this classifier if

hw.yi /; xi i � hw.k/; xi i C 1; 8k D 1; : : : ; K; k 6D yi :

Without adding 1 at the left-hand side of the inequality, correct classification is still
attained if there is strong inequality for k 6D yi . This motivates to learn the weight
vectors by solving the minimization problem

1
2kW k2

F ! min
W

subject to hw.yi /; xi i C ıyi ;k � hw.k/; xi i � 1;

8k D 1; : : : ; K and i D 1; : : : ; m:

After introducing slack variables to relax the constraints, one gets

1
2kW k2

F C C
Pm

iD1 �i ! min
W;�i

subject tohw.yi /; xi i C ıyi ;k � hw.k/; xi i � 1 � �i ;
8k D 1; : : : ; K and i D 1; : : : ; m:

This can be rewritten as the following unconstrained problem:

1

2
kW k2

F C C
mX
iD1

lh

�
hw.yi /; xi i Cmax

k
.hw.k/; xi i � ıyi ;k/

�
! min

W
:

In this functional the learning tasks are coupled in the loss function.
In general the aim of multitask learning is to learn data that are common across

multiple related supervised learning tasks, i.e., to facilitate “cooperative” learning.
Recently, multitask learning has received attention in various applications; see
the paper of Caruana [21]. Learning of vector-valued functions in RKHSs was
considered, e.g., by Micchelli and Pontil [72]. Inspired by the “sparseness” models
in section “Other Models” which focus on the sparsity of the weight vector w, one
can ask for similar approaches for a weight matrix W . As a counterpart of the
`0-norm of a weight vector, there can serve a low rank of the weight matrix. But



1424 G. Steidl

as in `0-penalized minimization problems, such problems are computationally not
manageable. A remedy is to replace the low-rank condition by demanding a small
trace norm or nuclear norm of W defined by

kW k� WD
X
j


j ;

where 
j are the singular values of W . Then a minimization problem to learn the
weight matrix reads, for example, as

1

2
kW k� C C

KX
kD1

mX
iD1

L
�
yi ;
˝
w.k/; xi

˛	
;! min

W

where L is mainly the least squares loss function. Such models were considered by
Amit et al. [2], Obozinski et al. [76], and Pong et al. [82]. Other approaches use the
norm

kW k2;1 WD
dX
jD1

����
�

w.k/j

�K
kD1

����

which favors a small number of nonzero rows in W instead of the trace norm;
see Argyriou et al. [4] and Obozinski et al. [76]. Another interesting model was
proposed by Argyriou et al. [4] and learns in addition to a weight matrix an
orthogonal matrix U 2 O by minimizing

kW k2;1 C C
KX
kD1

mX
iD1

L
�
yi ;
˝
w.k/; Uxi

˛	
:! min

W;U2O :

The numerical solution of multitask problems which are convex but non-smooth
requires sophisticated techniques. The trace norm minimization problem can be, for
example, reformulated as a semi-definite program (SDP), and then existing SDP
solvers can be used as long as the size of the problem is moderate; see the papers
of Fazel et al. [40] and Srebro et al. [91]. A smooth, but nonconvex reformulation
of the problem and a subsequent solution by a conjugate gradient or alternating
minimization method was proposed, e.g., by Weimer et al. [113]. Accelerated
proximal gradient methods (multistep methods) and Bregman iterative methods
were applied in the papers of Lu et al. [66], Ma et al. [67], Cai et al. [20], and
Toh and Yun [103]. A new primal-dual reformulation of the problem in conjunction
with a gradient projection method to solve the reduced dual problem was given by
Pong et al. [82].
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Applications of SVMs
SVMs have been applied to many real-world problems. Some applications were
already sketched in the previous subsections. Very often SVMs are used in
connection with other techniques, in particular feature extraction/selection methods
to specify the input domain.

A non-exhaustive list of SVM applications includes text categorization (see
Joachims [53] and Leopold and Kinderman [64]), hand-written character recog-
nition (see LeCun et al. [62]), texture and image classification (see Chapelle et al.
[23]), protein homology detection (see Jaakkola and Haussler [51]), gene expression
(see Brown et al. [17]), medical diagnostics (see Strauss et al. [96]), and pedestrian
and face detection (see Osuna et al. [77], Viola and Jones [110]).

This subsection describes only two applications of SVM classification and shows
how the necessary design choices can be made. In particular, one has to choose an
appropriate SVM kernel for the given application. Default options are Gaussians or
polynomial kernels, and the corresponding SVMs often already outperform other
classification methods. Even for such parameterized families of kernels, one has to
specify the parameters like the standard deviation of the Gaussian or the degree of
the polynomial. In the Gaussian case, a good choice of the standard deviation in the
classification problem is the distance between closest points within different classes.
In the absence of reliable criteria, one could use a validation set or cross-validation
to determine useful parameters. Various applications require more elaborate kernels
which implicitly describe the feature space.

Handwritten Digit Recognition The problem of handwritten digit recognition
was the first real-world task on which SVMs were successfully tested. The results
are reported in detail in the book of Vapnik [105]. This SVM application was so
interesting because other algorithms incorporating prior knowledge on the USPS
database have been designed. The fact that SVMs perform better than these specific
systems without using prior detailed information is remarkable; see [62].

Different SVM models have been tested on two databases:

• United States Postal Service (USPS): 7,291 training and 2,007 test patterns of the
numbers 0; : : : ; 9, represented by 16 � 16 gray level matrices; see Fig. 10.

• National Institute of Standard and Technology (NIST): 60,000 training and
10,000 test patterns, represented by 20 � 20 gray-level matrices.

In the following, the results for the USPS database are considered.
For constructing the decision rules, SVMs with polynomial and Gaussian kernels

were used:

K.x; t/ WD .hx; ti=256/n ; K.x; t/ WD e�kx�tk2=.256
2/:
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Fig. 10 Examples of
patterns from the USPS
database; see [105]

The overall machine consists of 10 classifiers, each one separating one class from
the rest (one-versus-all classifier). Then the 10-class classification was done by
choosing the class with the largest output number.

All types of SVMs demonstrated approximately the same performance shown in
the following tables, cf. [105]. The tables contain the parameters for the hard margin
machines, the corresponding performance, and the average (over one classifier)
number of support vectors. Moreover, it was observed that the different types of
SVMs use approximately the same set of support vectors.

Degree n 1 2 3 4 5 6

Error 8.9 4.7 4.0 4.2 4.5 4.5

Number of SV 282 237 274 321 374 422

Results for SVM classification with polynomial kernels


 4.0 1.5 0.3 0.25 0.2 0.1

Error 5.3 4.9 4.2 4.3 4.5 4.6

Number of SV 266 237 274 321 374 422

Results for SVM classification with Gaussian kernels



Supervised Learning by Support Vector Machines 1427

Fig. 11 Labeled USPS examples of training errors for the SVM with second degree polynomial
kernel; see [105]

Finally, it is worth to mention that the training data are not linearly separable;
	5 % of these data were misclassified by a linear learning machine. For a degree
2 polynomial kernel, only the 4 examples in Fig. 11 were misclassified. For
polynomials of degree 3, the training data are separable. The number of support
vectors increases only slowly with the degree of the polynomial.

Color Image Recognition Image recognition is another area where SVMs were
successfully applied. Chapelle et al. [23] have reported their SVM classification
results for color image recognition. The database was a subset (Corel14) of the Corel
Stock Photo Collection consisting of 1,400 photos associated with 14 categories.
Each category was split into 2/3 for training and 1/3 for testing. Again the one-
versus-all classifier was applied.

The images were not used themselves as inputs, but each image was associated
to its color histogram. Since each color is a point in a three-dimensional vector
space and the number of bins per color was fixed at 16, the dimension of such a
histogram (and thus of the feature space) is d D 163. Note that low-level features
like histograms have the advantage that they are invariant with respect to many
operations and allow the comparison of images of different sizes. Of course, local
high-level image features like edges are not captured by low-level features. Chapelle
and co-workers [23] have used both the RGB (red, green, blue) and the HSV/HSB
(hue, saturation, value/hue, saturation, brightness) histogram representation. Note
that HSV arranges the geometry of RGB in an attempt to be more perceptually
relevant. As kernels they have used

K.x; t/ WD e�dist.x;t/=
2
;

where dist denotes a measure of similarity in the feature space which has to be
determined. For histograms, the 	2 function

dist.x; t/ WD
dX
iD1

.xi � ti /2
xi C ti
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is accepted as an appropriate distance measure. It is not clear if the corresponding
kernel is a Mercer kernel. For the distances distp.x; t/ WD kx � tkpp , p D 1; 2 this
is the case.

As can be seen in the following table, the SVM with the 	2 and the `1 distance
perform similarly and significantly better than the SVM with the squared `2

distance. Therefore, the Gaussian kernel is not the best choice here. RGB- and HSV-
based methods perform similarly.

Linear Degree 2 poly 	2 `1 Gaussian
RGB 42.1 33.6 28.8 14.7 14.7
HSV 36.3 35.3 30.5 14.5 14.7

Error rates (percent) using different SVM kernels

For comparision, Chapelle and co-workers conducted some experiments of color
image histogram (HSV-based) classifications with theK-nearest neighbor algorithm
with 	2 and `2. Here K D 1 gives the best result presented in the following table:

	2 `2

26.5 47.7

Error rates (percent) with k-nearest neighbor algorithm

The 	2-based SVM is roughly twice as good as the 	2-based k-nearest neighbor
technique.

4 Survey of Mathematical Analysis of Methods

Reproducing Kernel Hilbert Spaces

General theory For simplicity, let X � R
d be a compact set throughout this

subsection. Moreover, only spaces of real-valued functions are considered. Let
C.X / denote the set of continuous functions on X . Together with the norm

kf kC.X / D supfjf .x/j W x 2 X g

this becomes a Banach space. Further, let L2.X / be the Hilbert space of (equiva-
lence classes) quadratic integrable, real-valued functions on X with inner product
and norm given by

hf; giL2 WD
Z
X
f .x/g.x/ dx; kf kL2 D

�Z
X
f .x/2 dx

�1=2

:

Since X is compact, the space C.X / is continuously embedded into L2.X / which
means that kf kL2.X / � Ckf kC.X / for all f 2 C.X /. A functionK W X � X ! R
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is symmetric, if K.x; t/ D K.t; x/ for all x; t 2 X . With a symmetric function
K 2 L2.X �X /, one can associate an integral operator TK W L2.X /! L2.X / by

TKf .t/ WD
Z
X
K.x; t/f .x/ dx:

This operator is a compact and self-adjoint operator, and K is called its kernel. The
following spectral theorem holds true for compact, self-adjoint operators, i.e., in
particular for TK .

Theorem 1 (Spectral theorem for compact, self-adjoint operators). Let T be a
compact, self-adjoint operator on the Hilbert space H. Then there exists a countable
(possibly finite) orthonormal system f i W i 2 I g and a zero sequence .�i /i2I ,
�i 2 Rnf0g such that

H D kerT ˚ spanf i W i 2 I g

and

Tf D
X
j2I

�j hf; j iH  j 8f 2 H: (35)

The numbers �j are the nonzero eigenvalues of T and  j are the corresponding
eigenfunctions. If T is a positive operator, i.e.,

hTf; f iH D
Z
X

Z
X
K.x; t/f .x/f .t/ dxdt � 0 8f 2 H;

then the values �j are positive.

Consider the special operator TK for a symmetric kernelK 2 L2.X �X /. Using
the L2-orthonormal eigenfunctions f i W i 2 I g of TK , one can also expand the
kernel itself as

K.x; t/ D
X
j2I

�j j .x/ j .t/;

where the sum converges as those in (35) in general only in L2.X � X /. One can
tighten the statement if K is continuous and symmetric. Then TK W C.X /! C.X /
is a compact operator on the Pre-Hilbert spaces C.X / equipped with the L2-norm
into itself, and the functions  j are continuous. If f 2 C.X /, then the right-hand
side in (35) converges absolutely and uniformly. To prove such a convergence result
also for the kernel expansion, one needs moreover that the operator TK is positive.
Unfortunately, it is not true that a positive kernel K implies a positive operator
TK . There is another criterion which will be introduced in the following. A matrix
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K 2 R
m;m is called positive semi-definite if

˛TK ˛ � 0 8˛ 2 R
m

and positive definite if strong inequality holds true for all ˛ 6D 0. A symmetric kernel
K W X � X ! R is positive (semi)-definite if the matrix K WD �

K.xi ; xj /
	m
i;jD1 is

positive (semi)-definite for all finite sets fx1; : : : ; xmg � X . Now a symmetric kernel
K 2 C.X � X / is positive semi-definite if and only if the corresponding integral
operator TK is positive.

Theorem 2 (Mercer’s theorem). LetK 2 C.X �X / be a continuous, symmetric,
and positive semi-definite function with corresponding integral operator TK . Then
K can be expanded into an absolutely and uniformly convergent series in terms
of TK’s orthonormal eigenfunctions  j and the associated eigenvalues �j > 0 as
follows:

K.x; t/ D
X
j2I

�j j .x/ j .t/: (36)

Moreover, if K is positive definite, then f i W i 2 I g form an orthonormal basis of
L2.X /.

A continuous, symmetric, positive semi-definite kernel is called a Mercer kernel.
Mercer kernels are closely related to so-called reproducing kernel Hilbert spaces.

Let H be a real Hilbert space of functions f W X ! R. A functionK W X �X !
R is called a reproducing kernel of H if

(H1) Kt WD K. � ; t/ 2 H 8t 2 X ,
(H2) f .t/ D hf;Kt iH 8f 2 H and 8t 2 X (Reproducing Property):

In particular, property (H2) implies for f WD Pm
iD1 ˛iKxi and g WD Pn

jD1 ˇjKxj

that

hf; giH WD
mX
iD1

nX
jD1

˛iˇjK.xi ; tj /; kf k2
H D

mX
iD1

mX
i;jD1

˛i˛jK.xi ; tj / D ˛TK ˛;

(37)
where ˛ D .˛1; : : : ; ˛m/

T and K WD �
K.xi ; xj /

	m
i;jD1. If such a kernel exists for H,

then it is uniquely determined. A Hilbert space which exhibits a reproducing kernel
is called reproducing kernel Hilbert space (RKHS); write H D HK to emphasize
the relation with the kernel. In HK , the set of all finite linear combinations of Kt ,
t 2 X is dense, i.e.,

HK D span fKt W t 2 X g: (38)
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Moreover, the kernel K of a RKHS must be a symmetric, positive semi-definite
function; see Wendland [114]. Finally, based on the Riesz representation theorem,
another characterization of RKHSs can be given. It can be shown that a Hilbert
space H is a RKHS if and only if the point evaluation functionals ıx W H ! R

determined by ıxf WD f .x/ are continuous on H, i.e.,

jf .x/j � Ckf kH 8f 2 H:

Conversely, by the following theorem, any Mercer kernel gives rise to a RKHS.

Theorem 3. Let K 2 C.X � X / be a continuous, symmetric, and positive semi-
definite function. Then there exists a unique Hilbert space HK of functions on X
which is a RKHS with kernel K . The space HK consists of continuous functions on
X , and the embedding operator #K W HK.X /! C.X /

�! L2.X /
	

is continuous.

Proof. 1. First, one constructs a Hilbert space which fulfills (H1) and (H2). By
(H1), the space HK has to contains all functions Kt , t 2 X and since the space
is linear also their finite linear combinations. Therefore, define

H0 WD spanfKt W t 2 X g:

According to (37), this space can be equipped with the inner product and
corresponding norm

hf; giH0 WD
mX
iD1

nX
jD1

˛iˇjK.xi ; tj /; kf k2
H0
D ˛TK ˛:

It can easily be checked that this is indeed an inner product. In particular
kf kH0 D 0 for some f DPm

iD1 ˛iKxi implies that f .t/ DPm
iD1 ˛iK.t; xi / D

0 for all t 2 X by the following argument: set xmC1 WD t . By the positive semi-
definiteness of K is follows for any � 2 R that

.˛T; �/
�
K.xi ; xj /

	mC1
i;jD1

�
˛

�

�
D ˛TK ˛ C 2�

mX
iD1

˛iK.xi ; t/C �2K.t; t/ � 0:

With ˛TK ˛ D kf kH0 D 0, this can be rewritten as

� .2f .t/C �K.t; t// � 0:

Since K is positive semi-definite, it holds K.t; t/ � 0. Assume that f .t/ < 0.
Then choosing 0 < � < �2f .t/=K.t; t/ if K.t; t/ > 0 and 0 < � if
K.t; t/ D 0 leads to a contradiction. Similarly, assuming that f .t/ > 0 and
choosing �2f .t/=K.t; t/ < � < 0 if K.t; t/ > 0 and � < 0 if K.t; t/ D 0 gives
a contradiction. Thus f .t/ D 0.
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Now one defines HK to be the completion of H0 with the associated norm.
This space has the reproducing property (H2) and is therefore a RKHS with
kernel K .

2. To prove that HK is unique, assume that there exists another Hilbert space H of
functions on X with kernel K . By (H1) and (38), it is clear that H0 is a dense
subset of H. By (H2) it follows that hf; giH D hf; giHK for all f; g 2 H0. Since
both H and HK are completions of H0, the uniqueness follows.

3. Finally, one concludes by the Schwarz inequality that

jf .t/j D jhf;KtiHK j � kf kHKkKtkHK D kf kHK

p
K.t; t/

so that f is continuous since K is continuous. Moreover, kf kC.X / � Ckf kHK

with C WD maxt2X
p
K.t; t/ which means that the embedding #K is continuous.

ut

Since the completion of H0 is rather abstract, another characterization of HK

based on Mercer’s theorem is useful. Let f i W i 2 I g be the L2-orthonormal
eigenfunctions of TK with corresponding eigenvalues �j > 0 from the Mercer
theorem. Then it follows by Schwarz’s inequality and Mercer’s theorem for w WD
.wi /i2I 2 `2.I / that

X
i2I
jwi
p
�i i .x/j � kwk`2

 X
i2I

�i 
2
i .x/

!1=2

D kwk`2

p
K.x; x/

so that the series
P

i2I wi
p
�i i .x/ converges absolutely and uniformly for all

.wi /i2I 2 `2.I /. Now another characterization of HK can be given.

Corollary 1. Let K 2 C.X � X / be a continuous, symmetric, and positive semi-
definite kernel with expansion (36). Then the Hilbert space

H WD
(X
i2I

wi
p
�i i W .wi /i2I 2 `2.I /

)

with inner product

hf; giH WD
X
i2I

wi !i D
1X
jD1

1

�j
hf; j iL2hg; j iL2

for f WD P
i2I wi

p
�i i and g WD P

j2I !j
p
�j j is the RKHS with kernel K ,

i.e., H D HK . The system f'i WD
p
�i i W i 2 I g is an orthonormal basis of H.
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If K is positive definite, then H can be also characterized by

H D ˚f 2 L2.X / W
1X
jD1

1

�j
jhf; j iL2 j2 <1:




Proof. By the above definition of the inner product, the set fp�i i W i 2 I g is an
orthonormal basis of H. The second equality in the definition of the inner product
follows by the orthonormality of the  i in L2.

It remains to show thatK fulfills (H1) and (H2). Concerning (H1), it holdsKt DP
i2I
p
�i i .t/

p
�i i , and since

X
i2I
.
p
�i i .t//

2 D K.t; t/ <1;

it follows that Kt 2 H. Using the orthonormal basis property, one can conclude
with respect to (H2) that

hf;Kt iH D h
X
j2I

wj
q
�j j ;

X
i2I

p
�i i .t/

p
�i i iH D

X
i2I

wi
p
�i i .t/ D f .t/:

ut

For more information on RKHS, see the book of Berlinet and Thomas-Agnan [8].

Kernels The choice of appropriate kernels for SVMs depend on the application.
Default options are Gaussians or polynomial kernels which are described together
with some more examples of Mercer kernels below:

1. Let X WD fx 2 R
d W kxk � Rg with radiusR > 0. Then the dot product kernels

K.x; t/ WD
1X
jD0

aj .x � t/j ; aj � 0;
1X
jD1

ajR
2j <1

are Mercer kernels on X . A proof that these kernels are indeed positive semi-
definite is given in the book of Cucker and Zhou [29]. A special case appears if
X contains the coordinate vectors ej , j D 1; : : : ; d and the kernel is K.x; t/ D
1 C x � t . Note that even in one dimension d D 1, this kernel is not positive
definite. Here the corresponding RKHS HK is the space of linear functions and
f1; x1; : : : ; xd g forms an orthonormal basis of HK .

The special dot productK.x; t/ WD .c C x � t/n, c � 0, n 2 N, also known as
polynomial kernel was introduced in statistical learning theory by Vapnik 1998
[105]. More general dot products were described, e.g., by Smola, Schöllkopf and
Müller [89]. See also all-subset kernels and ANOVA kernels in [88].
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2. Next, consider translation invariant kernels

K.x; t/ WD �.x � t/;

where � W Rd ! R is a continuous function which has to be even, that is,
�.�x/ D �.x/ for all x 2 R

d to ensure that K is symmetric. Let us see if K
is a Mercer kernel on R

d and hence on any subset X of Rd . First, one knows
from Bochner’s theorem that K is positive semi-definite if and only if it is the
Fourier transform of a finite nonnegative Borel measure on R

d . Let � 2 L1.R
d /.

Then, K is positive definite if and only if � is bounded and its Fourier transform
is nonnegative and non-vanishing.

A special example on R (d D 1) is the spline kernel K generated by the
“hat function” �.x/ WD maxf0; 1 � jxj=2g. Its Fourier transform is O�.!/ D
2.sin!=!/2 � 0. Multivariate examples of this form can be constructed
by using, e.g., box splines. Spline kernels and corresponding RKHSs were
discussed, e.g., by Wahba [112].

3. A widely used class of translation invariant kernels are kernels associated with
radial functions. A function � W Rd ! R is said to be radial if there exists a
function k W Œ0;1/ ! R such that �.x/ D k.kxk2/ for all x 2 R

d . For radial
kernels define

K.x; t/ WD k.kx � tk2/:

A result of Schoenberg [85] says that K is positive semi-definite on R
d if

and only if the function k is completely monotone on Œ0;1/. Recall that k is
completely monotone on .0;1/ if k 2 C1.0;1/ and

.�1/lk.l/.r/ � 0 8l 2 N0 and 8r > 0:

The function k is called completely monotone on Œ0;1/ if it is in addition in
C Œ0;1/.

It holds that K is positive definite if and only if one of the following conditions
is fulfilled

(i) k.
p� / is completely monotone on Œ0;1/ and not constant,

(ii) There exists a finite nonnegative Borel measure � on Œ0;1/ that is not
concentrated at zero such that

k.r/ D
Z 1

0
e�r2t d�.t/:

The proofs of these results on radial kernels are contained, e.g., in the book of
Wendland [114].
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For c > 0, the kernelsK arising from the following radial functions � are positive
definite:

�.x/ WD e�kxk2=c2
Gaussian;

�.x/ WD .c2 C kxk2/�s; s > 0 inverse multiquadric;

where the positive definiteness of the Gaussian follows from (i) and those of the
inverse multiquadric from (ii) with

k.r/ D 1

�.s/

Z 1

0
t s�1e�c2 t e�r2t dt:

Positive definite kernels arising from Wendland’s radial basis functions with com-
pact support (see Wendland [114]) were applied in SVM classification by Strauss
and Steidl [95].

Finally, the following techniques for creating Mercer kernels are remarkable.

Theorem 4. Let Kj 2 C.X �X /, j D 1; 2 be Mercer kernels and p a polynomial
with positive coefficients. Then the following functions are also Mercer kernels:

(i) K.x; t/ WD K1.x; t/CK2.x; t/,
(ii) K.x; t/ WD K1.x; t/K2.x; t/,

(iii) K.x; t/ WD p.K1.x; t//,
(iv) K.x; t/ WD eK1.x;t/.

Beyond the above Mercer kernels other kernels like kernels for text and
structured data (strings, trees), diffusion kernels on graphs or kernel incorporating
generative information were used in practice; see the book of Shawe-Taylor and
Cristianini [88].

Conditionally positive semi-definite radial functions. In connection with radial
basis functions, so-called conditionally positive semi-definite functions �.x/ WD
k.kxk2/ were applied for approximation tasks. Let …��1.R

d / denote the space of
polynomials on R

d of degree < �. This space has dimension dim.…��1.R
d // D�

dC��1
�

	
. A continuous radial function � W Rd ! R is conditionally positive semi-

definite of order � if for all m 2 N, all pairwise distinct points x1; : : : ; xm 2 R
d ,

and all ˛ 2 R
mnf0g satisfying

mX
iD1

˛ip.xi / D 0 8p 2 …��1.R
d / (39)

the relation

˛TK˛ � 0; K WD ��.xi � xj /	mi;jD1
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holds true for all ˛ 2 R
m. If equality is attained only for ˛ D 0, the function � is

said to be conditionally positive definite of order �.
The following result is due to Micchelli [71]: For k 2 C Œ0;1/ \ C1.0;1/,

the function �.x/ WD k.kxk2/ is conditionally positive semi-definite of order � if
and only if .�1/�k.�/ is completely monotone on .0;1/. If k is not a polynomial
of degree at most �, then � is conditionally positive definite of order �.

Using this result, one can show that the following functions are conditionally
positive definite of order �:

�.x/ WD .�1/dse.c2 C kxk2/s ; s > 0; s 62 N; � D dse multiquadric;

�.x/ WD .�1/ds=2ekxks ; s > 0; s 62 2N; � D ds=2e;
�.x/ WD .�1/kC1kxk2k log kxk; k 2 N; � D k C 1 thin plate spline:

A relation of a combination of thin plate splines and polynomials to the reproducing
kernels of certain RKHSs can be found in Wahba [112].

Quadratic Optimization

This subsection collects the basic material from optimization theory to understand
the related parts in the previous Sect. 3, in particular the relation between primal
and dual problems in quadratic programming. More on this topic can be found
in any book on optimization theory, e.g., in the books of Mangasarian [68] or
Spellucci [90].

A (nonlinear) optimization problem in R
d has the general form

Primal problem (P)

�.x/ ! min
x

subject to g.x/ � 0; h.x/ D 0

where � W Rd ! R is a real-valued function and g W Rd ! R
m, h W Rd ! R

p

are vector-valued functions. In general, only the case p < d is of interest since
otherwise one is confronted with the solution of a (nonlinear) system of equations.
The region

G WD fx 2 R
d W g.x/ � 0; h.x/ D 0g;

where the objective function � is defined and where all constraints are satisfied, is
called feasible region. There are classes of problems (P) which are well examined as
convex optimization problems and in particular special classes of convex problems,
namely, linear and quadratic problems. Problem (P) is called convex, if � is a convex
function and G is a convex region. Recall, that x� 2 G is a local minimizer of �
in G if there exists a neighborhood U.x�/ of x� such that �.x�/ � �.x/ for all
x 2 U.x�/ \ G. For convex problems, any local minimizer x� of � in G is also a
global minimizer of � in G and therefore a solution of the minimization problem.
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This subsection deals mainly with the following setting which gives rise to a convex
optimization problem:

(C1) � convex and differentiable,
(C2) gi , i D 1; : : : ; m convex and differentiable,
(C3) hj , j D 1; : : : ; p affine linear.

Important classes of problems fulfilling (C1)–(C3) are quadratic programs, where
the objective function is quadratic and the constraints are (affine) linear and linear
programs, where the objective function is also linear. The constrained optimization
problems considered in Sect. 3 are of this kind.

The function L W Rd � R
mC � R

p ! R defined by

L.x; ˛; ˇ/ WD �.x/C
mX
iD1

˛igi .x/C
pX
jD1

ˇj hj .x/

is called the Lagrangian associated with (P), and the coefficients ˛i and ˇj are
called Lagrange multipliers. Recall that .x�; ��/ 2  � „,  � R

d , „ � R
n is

called a saddle point of a function ˆ W  �„! R if

ˆ.x�; �/ � ˆ.x�; ��/ � ˆ.x; ��/ 8.x; �/ 2  �„:

There is the following close relation between saddle point problems and min-max
problems:

Lemma 1. Let ˆ W  �„! R. Then the inequality

max
�2„ min

x2 ˆ.x; �/ � min
x2 max

�2„ ˆ.x; �/

holds true supposed that all extreme points exist. Moreover, in this case, the equality

max
�2„ min

x2ˆ.x; �/ D ˆ.x
�; ��/ D min

x2 max
�2„ ˆ.x; �/

is fulfilled if and only if .x�; ��/ is a saddle point of ˆ.

The solution of (P) is related to the saddle points of its associated Lagrangian as
detailed in the following theorem.

Theorem 5. If .x�; .˛�; ˇ�// 2 R
d�.RmC�Rp/ is a saddle point of the Lagrangian

associated with the minimization problem (P), i.e.,

L.x�; ˛; ˇ/ � L.x�; ˛�; ˇ�/ � L.x; ˛�; ˇ�/ 8x 2 R
d ;8.˛; ˇ/ 2 R

mC �R
p;
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then x� is a solution of (P). Assume that the functions �; g; h satisfy the conditions
(C1)–(C3) and that g fulfills in addition the following Slater condition:

there exists x0 2  such that g.x0/ > 0 and h.x0/ D 0:

Then, if x� is a solution of (P), there exist ˛� 2 R
mC and ˇ� 2 R

p such that
.x�; .˛�; ˇ�// is a saddle point of the associated Lagrangian.

By the next theorem, the minimizers of (P) can be also described via the following
conditions on the Lagrangian: there exist x� 2 G, ˛� 2 R

mC and ˇ� 2 R
p such that

.KKT1/ rxL.x�; ˛�; ˇ�/ D 0;

.KKT2/ .˛�/Tg.x�/ D 0; ˛� � 0:

These conditions were independently established by Karush and Kuhn and Tucker
[60] and are mainly called Kuhn-Tucker conditions.

Theorem 6. Let � , g and h fulfill (C1)–(C3). If x� satisfies (KKT1)–(KKT2), then
x� is a solution of (P). Assume that g fulfills in addition the Slater condition. Then,
if x� is a solution of (P), it also fulfills (KKT1)–(KKT2).

If there are only equality constraints in (P), then a solution is determined by

rxL.x�; ˇ�/ D 0; h.x�/ D 0:

For the rest of this subsection, assume that (C1)–(C3) and the Slater condition
hold true. Let a solution x� of (P) exist. Then, by Lemma 1 and Theorem 5, there
exist ˛� and ˇ� such that

L.x�; ˛�; ˇ�/ D max
˛2Rm

C
;ˇ

min
x
L.x; ˛; ˇ/:

Therefore, one can try to find x� as follows: for any fixed .˛; ˇ/ 2 R
mC � R

p ,
compute

Ox.˛; ˇ/ WD argminxL.x; ˛; ˇ/: (40)

If � is uniformly convex, i.e., there exists � > 0 such that

��.x/C.1��/�.y/ � �.�xC.1��/y/C�.1��/�kx�yk2 8x; y 2 R
d; � 2 Œ0; 1�;

then Ox.˛; ˇ/ can be obtained as the unique solution of

rxL.x; ˛; ˇ/ D 0:
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This can be substituted into L which results in  .˛; ˇ/ WD L. Ox.˛; ˇ/; ˛; ˇ/ and ˛�
and ˇ� are the solution of

 .˛; ˇ/ ! max
˛;ˇ

subject to ˛ � 0:

This problem, which is called the dual problem of (P) can often be more easily
solved than the original problem since one has only simple inequality constraints.
However, this approach is only possible if (40) can easily be solved. Then, finally
x� D Ox.˛�; ˇ�/.

The objective functions in the primal problems in Sect. 3 are not strictly
convex (and consequently also not uniformly convex) since there does not appear
the intercept b in these functions. So let us formulate the dual problem with
 .x; ˛; ˇ/ WD L.x; ˛; ˇ/ as follows:

Dual problem (D)

 .x; ˛; ˇ/ ! max
x;˛;ˇ

subject to rxL.x; ˛; ˇ/ D 0; ˛ � 0:

The solutions of the primal and dual problem, i.e., their minimum and maximum,
respectively, coincide according to the following theorem of Wolfe [117].

Theorem 7. Let � , g and h fulfill (C1)–(C3) and the Slater condition. Let x� be
a minimizer of (P). Then there exist ˛�; ˇ� such that x�; ˛�; ˇ� solves the dual
problem and

�.x�/ D  .x�; ˛�; ˇ�/:

Duality theory can be handled in a more sophisticated way using tools from
Perturbation Theory in Convex Analysis; see, e.g., the book of Bonnans and Shapiro
[11]. Let us briefly mention the general idea. Let v W Rm ! .�1;1� be an extended
function, where only extended functions 6
 1 are considered in the following. The
Fenchel conjugate of v is defined by

v�.˛/ WD sup
p2Rm
fh˛; xi � v.x/g

and the biconjugate of v by v�� WD .v�/�. In general, the inequality v��.x/ �
v.x/ holds true and becomes an equality if and only if v is convex and lower
semicontinuous. (Later the inequality is indicated by the fact that one minimizes
the primal and maximizes the dual problem.) For convex, lower semicontinuous
functions � W Rd ! .�1;1�, � W Rm ! .�1;1� and g W Rd ! R

m one
considers the primal problems

.Pu/ v.u/ D inf
x2Rd
f�.x/C �.g.x/C u/g;
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.P/ v.0/ D inf
x2Rd
f�.x/C �.g.x//g

where u 2 R
m is the “perturbation.” With L.x; ˛/ WD �.x/ C hg.x/; ˛i, the dual

problem reads

.Du/ v��.u/ D sup
˛2Rm
fh˛; ui � ��.˛/C inf

x2Rd
L.x; ˛/g;

.D/ v��.0/ D sup
˛2Rm
f���.˛/C inf

x2Rd
L.x; ˛/g:

For the special setting with the indicator function

�.y/ D #Rm�.y/ WD
�

0 if y � 0;
1 otherwise

the primal problem (P) is equivalent to

�.x/ ! min
x

subject to g.x/ � 0

and since �� D #Rm
C

the dual problem (D) becomes

sup
˛2Rm

inf
x2Rd

L.x; ˛/ subject to ˛ � 0:

Again, if � and g are convex and differentiable and � is uniformly convex, then the
unique solution Ox.˛/ of rxL.x; ˛/ D 0 is the solution of the infimum problem, and
the dual problem becomes sup˛2Rm L. Ox.˛/; ˛/ subject to ˛ � 0.

Results from Generalization Theory

There exists a huge amount of results on the generalization abilities of statistical
learning methods and in particular of support vector machines. The following
subsection can only give a rough impression on the general tasks considered in this
field from a simplified mathematical point of view that ignores technicalities, e.g.,
the definition of the correct measure and function spaces and what measurable in the
related context means. Most of the material is borrowed from the book of Steinwart
and Christmann [93], where the reader can find a sound mathematical treatment of
the topic.

To start with, remember that the aim in Sect. 3 was to find a function f W X ! R

from samples Z WD f.xi ; yi / W i D 1; : : : ; mg such that f .x/ is a good prediction
of y at x for .x; y/ 2 X � Y . Let P denote an unknown probability distribution on
X � Y . Then a general assumption is that the data used in training and testing are
identically independent distributed (iid) according to P . The loss function or cost
functionL W X �Y �R! Œ0;1/ describes the cost of the discrepancy between the
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prediction f .x/ and the observation y at x. The choice of the loss function depends
on the specific learning goal. In the models of this paper, the loss functions depend
on x only via f .x/ such that one can simply write L.y; f .x//. In Sect. 3, the hinge
loss function and the least squares loss function were used for classification tasks.
Originally, one was interested in the 0=1 classification loss L0=1 W Y � R ! f0; 1g
defined by

L0=1.y; t/ WD
�

0 if y D sgn.t/;
1 otherwise:

To the loss function, there is associated a risk which is the expected loss of f :

RL;P .f / WD
Z
X�Y

L.x; y; f .x//dP.x; y/ D
Z
X

Z
Y
L.x; y; f .x//dP.yjx/dPX :

For example, the 0=1 loss function has the risk

RL0=1;P .f / D P ..x; y/ 2 X � Y W sgnf .x/ 6D y/ :

A function f is considered to be “better” the smaller the risk is. Therefore, one is
interested in the minimal risk or Bayes risk defined by

R�
L;P WD inf

f WX!R

RL;P .f /; (41)

where the infimum is taken over all possible (measurable) functions. However, since
the distribution P is unknown, it is impossible to find a minimizer of RL;P . In
learning tasks one can exploit finite training sets Z of iid data. A learning method
on X � Y maps every data set Z 2 .X � Y/m to a function fZ W X ! R. A
learning methods should produce for sufficiently large training setsZ nearly optimal
decision functions fZ with high probability. A measurable learning method is called
L-risk consistent for P if

lim
m!1Pm

�
Z 2 .X � Y/m W RL;P .fZ/ � R�

L;P C "
	 D 1 8" > 0

and universally L-risk consistent, if it is L-risk consistent for all distributions P on
X � Y . The first learning method that was proved to be universally consistent was
the so-called nearest neighbor method; see Stone [94]. Many uniformly consistent
classification and regression methods are presented in the books of Devroye et al.
[30] and Györfi [46]. Consistency does not address the speed of convergence, i.e.,
convergence rates. Unfortunately, the no-free-lunch theorem of Devroye [31], says
that for every learning method there exists a distribution P for which the learning
methods cannot produce a “good” decision function in the above sense with an a
priori fixed speed of convergence. To obtain uniform convergence rates, one has to
pose additional requirements on P .
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Instead of the risk one can deal with the empirical risk defined by

RL;Z.f / WD 1

m

mX
iD1

L.xi ; yi ; f .xi // :

Then the law of large numbers shows that RL;Z.f / becomes a “good” approxi-
mation of RL;P .f / for a fixed f if m is “large enough.” However finding the
minimizer of

inf
f WX!R

RL;Z.f / (42)

does in general not lead to a good approximation ofR�
L;P . For example, the function

which classifies all xi 2 X correctly and is zero elsewhere is a minimizer of the
above functional (42) but gives in general a poor approximation of the optimal
decision function according to (41). This is an example of so-called overfitting,
where the learning method approximates the training data too closely and has
poor generalization/prediction properties. One common way to cope with this
phenomenon is to choose a smaller set F of functions, e.g., subsets of continuous
functions, which should have good approximation properties. In the SVMs treated
in Sect. 3, this set F was a RKHS HK . Then one considers the empirical risk
minimization (ERM)

inf
f 2F RL;Z.f /: (43)

Let a minimizer fZ of (43) be somehow “computed.” (In this subsection, the
question of the existence and uniqueness of a minimizer of the various functionals
is not addressed.) Then one is of course interested in the error RL;P .fZ/ � R�

L;P .
Using the infinite-sample counterpart of the ERM

R�
L;P;F WD inf

f 2F RL;P .f /

this error can be splitted as

RL;P .fZ/� R�
L;P D RL;P .fZ/ �R�

L;P;F„ ƒ‚ …
sample error

C R�
L;P;F �R�

L;P„ ƒ‚ …
approximation error

:

The first error, called sample error, is a probabilistic one since it depends on random
samples, while the second error, called approximation error, is a deterministic one.
Finding a good balance between both errors is sometimes called bias-variance
problem, where the bias is related to the approximation error and the variance to
the sampling error.
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Concerning the approximation error, it turns out that for RKHS F D HK on
compact metric spaces X which are dense in C.X / and continuous, P-integrable,
so-called Nemitski losses, this error becomes zero; see Corollary 5.29 in Steinwart
and Christmann [93]. In particular, this is true for RKHS with the Gaussian kernel
and the loss functions considered in Sect. 3. For relations between the approximation
error, interpolation spaces, and K-functionals, see the book of Cucker and Zhou [29]
and the references therein.

Concerning the sample error, there is a huge amount of results, and this paper
can only cover some basic directions. For a survey on recent developments in
the statistical analysis of classification methods, see Boucheron et al. [14]. Based
on Hoeffding’s inequality, the first of such relations goes back to Vapnik and
Chervonenkis [107]. See also the books of Tsypkin [104], Vapnik [105], Anthony
and Bartlett [3], and Vidyasagar [109]. To get an impression how such estimates
look like, two of them from Proposition 6.18 and 6.22 of the book of Steinwart and
Christmann [93] are presented in the following. If F is finite and L.x; y; f .x// �
B , then it holds for all m � 1 that

Pm

 
Z 2 .X � Y/m WRL;P .fZ/ �R�

L;P;F � B
r

2� C 2 ln.2jF j/
m

!
� e��8� > 0:

If the function class F is infinite, in particular not countable, one needs some bounds
on the “complexity” of F . The most classical of such a “complexity” measure
is the VC dimension (see Vapnik and Chervonenkis [107]) applied in connection
with the 0=1 loss function. Another possibility is the use of covering numbers or its
counterpart entropy numbers going back to Kolmogorov and Tikhomirov [57]. The
"-covering number of a metric set T with metric d is the size of the smallest "-net
of T , i.e.,

N.T; d; "/ WD inf

(
n � 1 W 9s1; : : : ; sn 2 T such that T �

n[
iD1

Bd.si ; "/

)
;

where Bd.s; "/ is the closed ball with center s and radius ". For the estimation of
covering numbers see Edmunds and Triebel [35] and Pinkus [79]. Then, for compact
F � L1.X/, one has basically to replace jF j in the above relation by its covering
number:

Pm

 
Z 2 .X � Y/m W RL;P .fZ/� R�

L;P;F

� B

r
2� C 2 ln.2N.F ; k � k1; "//

m
C 4"jLjM;1

!
� e��
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for all � > 0 and for all " > 0, where ones assumes in addition that kf k1 � M ,
f 2 F and that L is locally Lipschitz continuous with constant jLjM;1 here.

Next let us turn to the SVM setting, where an additional term comes along with
the loss function, namely, one is interested in minimizers of

inf
f 2HK

˚
RL;Z.f /C �kf k2

HK



; � > 0

with a regularization term �kf k2
HK

that penalizes functions f with large RKHS
norms. The techniques developed for ERM analysis can be extended to the SVM
setting.

First let us mention that under some assumptions on the loss function, which are
fulfilled for the setting in Sect. 3, a unique minimizer fZ;� exists and has the form

fZ;� D
mX
iD1

˛iK.xi ; � /:

This was established in the representer theorem by Kimeldorf and Wahba [56] for
special continuous loss functions and generalized, e.g., in Schölkopf et al. [86].
There also exist a representer-like theorems for the minimizer fP;� of the infinite-
sample setting

inf
f 2HK

˚
RL;P .f /C �kf k2

HK




(see Steinwart [92], de Vito [111], and Dinuzzo et al. [33]). One can show for the
infinite-sample setting that the error

A.�/ WD inf
f 2HK

˚
RL;P .f /C �kf k2

HK


 �R�
L;P;HK

tends to zero as � goes to zero and that lim�!0RL;P .fP;�/ D R�
L;P;HK

. Let us
come to the essential question how close RP;�.fZ;�/ is to R�

L;P . Recall that R�
L;P D

R�
L;P;HK

for the above mentioned RKHS. An ERM analysis like estimation has, for
example, the form

Pm

 
Z 2 .X � Y/m W RL;P .fZ;�/C �kfZ;�k2

HK
�R�

L;P;HK

� A.�/C .��1=2jLj��1=2;1 C 1/
s

2� C 2 ln.2N.BHK ; k � k1; �1=2"//

m
C 4"jLj��1=2;1

!
� e�� ;

for � > 0, where one assumes that the continuous kernel fulfills kKk1 � 1,
L.x; y; 0/ � 1 and BH is the closed unit ball in H (see Theorem 6.25 in Steinwart
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and Christmann [93] and also Cucker and Smale [28] and Bousquet and Elisseeff
[15]). For a certain decay of the covering number ln.2N.BHK ; k � k1; "// in " and
a RKHS for which the approximation error becomes zero, one can then conclude
that for zero sequences .�m/m�1 with an additional suitable decay property related
to the decay of the covering number, the relation RL;P .fZ;�m/ ! R�

L;P holds true
in probability.

The above relations can be further specified for classification and regression tasks
with special loss functions. With respect to classification, one can find, for example,
upper bounds for the risk in terms of the margin or the number of support vectors.
For the 0=1 loss function, the reader may consult, e.g., the book of Cristianini and
Shawe-Taylor [27]. For the hinge loss function and the soft margin SVM with C D
1=.2�m/, it holds, for example, that

jIS j
m
� 2�kfZ;�k2

HK
CRL;Z.fZ;�/

(see Proposition 8.27 in Steinwart and Christmann [93]). For a suitable zero
sequence .�m/m�1 and a RKHS with zero approximation error, the following
relation is satisfied:

lim
m!1Pm

�
Z 2 .X � Y/m W jfi W ˛

�
i .Z/ > 0gj
m

� R�
L;P � "

�
D 1; " > 0:

Finally, let us address the setting, where the risk function defining the learning
task is hard to handle numerically. One example is the risk function associated with
the 0=1 loss function. This function is neither continuous nor convex. One remedy
is to replace such unpleasant loss functionsL by a convex surrogateLsur where one
has to ensure that the minimizer fZ in (43) for the surrogate loss fulfillsRL;P .fZ/ 	
R�
L;P . For the hinge function as surrogate of the 0=1 loss function, Zhang [119], has

proved that

RL0=1;P .f / �R�
L0=1;P

� RLh;P .f / �R�
Lh;P

for all measurable functions f . Thus, if RLh;P .fZ/ � R�
Lh;P

is small, this follows
for the original risk function, too. For a systematical treatment of surrogate loss
functions, the reader may consult Chapter 3 in the book of Steinwart and Christmann
[93] which was partially inspired by the work of Barlett et al. [6].

5 Numerical Methods

This section concentrates on the support vector machines in Sect. 3. Numerical
methods for the other models were always sketched when they were introduced.
Support vector machines require finally the minimization of a quadratic func-
tional subject to linear constraints (QP). These minimization problems involve a
symmetric, fully populated kernel matrix having the size m of the training set.
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Hence, this matrix has in generalm.mC 1/=2 distinct nonzero coefficients one has
to work with. Therefore, one has to distinguish between small- to moderate-sized
problems, where such a matrix can be stored into the RAM of the computer, and
large-sized problems, say, with more than a million training data.

For quadratic programming with small to moderate data sizes, there exist various
meanwhile standard algorithms. They are implemented in commercial software
packages like CPLEX or MOSEK (see also the MATLAB optimization toolbox or in
freeware packages like MINOS and LOQO). Among them, the primal-dual interior
point algorithms belong to the most reliable and accurate techniques. The main idea
of interior point methods is to solve the primal and dual problems simultaneously
by enforcing the Kuhn-Tucker conditions to iteratively find a feasible solution. The
duality gap, i.e., the difference between the minimum of the primal problem and the
maximum of the dual problem, is used to determine the quality of the current set of
variables and to check whether the stopping criteria are fulfilled. For QP algorithms
including recent algorithms for solving large QPs, the reader may consult the new
book of Zdenek [118].

The problem of learning large data sets was mainly addressed based on so-called
“working set” methods. The idea is the following: if one knew in advance which
constraints were active, it would be possible to cancel all of the inactive constraints
which simplifies the problem.

The simplest method in this direction is known as chunking. It starts with an
arbitrary subset (“chunk”Dworking set) of the data and trains the SVM using
an optimizer on this subset. The algorithm then keeps the support vectors and
deletes the others. Next, theM points (M algorithm parameter) from the remaining
part of the data, where the “current SVM” makes the largest errors, are added to
these support vectors to form a new chunk. This procedure is iterated. In general,
the working set grows until in the last iteration the machine is trained on the
set of support vectors representing the active constraints. Chunking techniques in
SVMs were already used by Vapnik [106] and were improved and generalized in
various papers.

Currently, more advanced “working set” methods, namely, decomposition algo-
rithms, are one of the major tools to train SVMs. These methods select in each
iteration a small fixed size subset of variables as working set, and a QP problem
is solved with respect to this set (see, e.g., Osuna et al. [77]). A special type of
decomposition methods is the sequential minimal optimization (SMO) which uses
only working sets of two variables. This method was introduced by Platt [80] for
classification; see Flake and Lawrence [42] for regression. The main advantage of
these extreme small working sets is that the partial QP problems can be solved
analytically. For the soft margin SVM in the dual form from Sect. 3 (with a variable
exchange ˛ 7! Y˛)

1

2
˛TK˛ � hy; ˛i subject to h1m; ˛i D 0; 0 � y˛ � C:

the SMO algorithm looks as follows:
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SMO-type decomposition methods
1. Fix ˛.1/ as initial feasible solution and set k WD 1.
2. If ˛.k/ solves the dual problem up to a desired precision, stop.

Otherwise, select a working set B WD fi; j g � f1; : : : ; mg. Define N WD
f1; : : : ; mgnB
and ˛.k/B and ˛.k/N as sub-vectors of ˛.k/ corresponding to B and N , resp.

3. Solve the following subproblem with fixed ˛.k/N for ˛B :

1
2

�
˛T
B .˛

.k/
N /T

��
KBB KBN

KNB KNN

� 
˛B

˛
.k/
N

!
� �yT

B y
T
N

	 ˛B
˛
.k/
N

!

D 1
2

�
˛i ˛j

	 �Kii Kij

Kij Kjj

��
˛i

˛j

�
� �˛i ˛j 	

�
KBN˛

.k/
N � yB

�
C constant !

min˛B

subject to ˛i C ˛j D �1T
m�2˛

.k/
N ; 0 � yi˛i ; yj ˛j � C .

Set ˛.kC1/
B to be the minimizer.

4. Set ˛.kC1/
N WD ˛.k/N , k 7! k C 1 and goto Step 2.

The analytical solution in Step 3 is given as follows: for simplicity, set ˇ WD
�1T

m�2˛
.k/
N and .ci cj /T WD KBN˛

.k/
N � yB . Substituting ˛j D ˇ � ˛i from the

first constraint into the objective function, one gets

1

2
˛2
i .Kii � 2Kij CKjj /C ˛i .ˇKij � ˇKjj � ci C cj /C constant ! min

˛i
:

If K is positive definite, it holds that Kii � 2Kij CKjj > 0, and the above function
has a unique finite global minimizer ˛i;g . One has to take care about the second
constraint. This constraint requires that ˛i 2 ŒL; U �, where L and U are defined by

.L;U / WD

8̂
ˆ̂<
ˆ̂̂:

.max.0; ˇ � C/;min.C; ˇ// if yi D 1; yj D 1;

.max.0; ˇ/;min.C; ˇ C C// if yi D 1; yj D �1;

.max.�C; ˇ � C/;min.0; ˇ// if yi D �1; yj D 1;

.max.�C; ˇ/;min.0; ˇ C C// if yi D �1; yj D �1:

Hence the minimizer in Step 3 is given by .˛�
i ; ˇ � ˛�

i /, where

˛i WD

8̂
<
:̂
˛ig if ˛ig 2 ŒL; U � ;
L if ˛ig < L;

U if ˛ig > U:
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It remains to determine the selection of the working set. (The determination of the
stopping criteria is beyond the scope of this paper.) Indeed, current decomposition
methods vary mainly according to different working set selections. The SVMlight

algorithm of Joachims [52], was originally based on a rule for the selection
the working set of Zoutendijk [120]. Moreover, this algorithm uses a shrinking
technique to speed up the computational time. Shrinking is based on the idea
that if a variable ˛.k/i remains equal to zero or C for many iteration steps, then
it will probably not change anymore. The variable can be removed from the
optimization problem such that a more efficient overall optimization is obtained.
Another shrinking implementation is used in the software package LIBSVM of
Chang and Lin [22]. A modification of Joachims’ algorithm for regression called
“SVMTorch” was given by Collobert and Bengio [25]. An often addressed working
set selection due to Keerthi et al. [55] is the so-called maximal violating pair
strategy. A more general way of choosing the two-element working set, namely,
by choosing a constant factor violating pair, was given, including a convergence
proof, by Chen et al. [24]. For convergence results, see also the paper of Lin [65].
The maximal violating pair strategy relies on first-order (i.e., gradient) information
of the objective function. Now for QP, second-order information directly relates
to the decrease of the objective function. The paper of Fan et al. [38] proposes a
promising working set selection based on second-order information.

For an overview of SVM solvers for large data sets, the reader may also consult
the books of Huang et al. [50] and Bottou et al. [13] and the paper of Mangasagian
and Musicant [69] with the references therein. An extensive list of SVM software
including logistic loss functions and least squares loss functions can be found on the
webpages www.kernel-machines.org and www.support-vector-machines.org.

6 Conclusion

The invention of SVMs in the 1990s led to an explosion of applications and
theoretical results. This paper can only give a very basic introduction into
the meanwhile classical techniques in this field. It is restricted to supervised
learning although SVMs have also a large impact on semi- and unsupervised
learning.

Some new developments are sketched as multitask learning where, in contrast to
single-task learning, only limited work was involved until now and novel techniques
taken from convex analysis come into the play.

An issue that is not addressed in this paper is the robustness of SVMs. There is
some ongoing research on connections between stability, learning, and prediction of
ERM methods (see, e.g., the papers of Elisseeff et al. [36] and Mukherjee et al. [74]).

Another field that has recently attained attention is the use of kernels as diffusion
kernels on graphs (see Kondor and J. Lafferty [58] and also the book of Shawe-
Taylor and Cristianini [88]).

www.kernel-machines.org
www.support-vector-machines.org
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Abstract
The use of total variation as a regularization term in imaging problems was
motivated by its ability to recover the image discontinuities. This is on the basis
of his numerous applications to denoising, optical flow, stereo imaging and 3D
surface reconstruction, segmentation, or interpolation, to mention some of them.
On one hand, we review here the main theoretical arguments that have been given
to support this idea. On the other hand, we review the main numerical approaches
to solve different models where total variation appears. We describe both the
main iterative schemes and the global optimization methods based on the use
of max-flow algorithms. Then we review the use of anisotropic total variation
models to solve different geometric problems and its use in finding a convex
formulation of some non-convex total variation problems. Finally we study the
total variation formulation of image restoration.

1 Introduction

The total variation model in image processing was introduced in the context
of image restoration [55] and image segmentation, related to the study of the
Mumford–Shah segmentation functional [34]. Being more related to our purposes
here, let us consider the case of image denoising and restoration.

We assume that the degradation of the image occurs during image acquisition
and can be modeled by a linear and translation invariant blur and additive noise:

f D h � uC n; (1)

where u W R2 ! R denotes the ideal undistorted image, h W R2 ! R is a blurring
kernel, f is the observed image which is represented as a function f W R2 ! R, and
n is an additive white noise with zero mean and standard deviation 
 . In practice,
the noise can be considered as Gaussian.

A particular and important case contained in the above formulation is the
denoising problem which corresponds to the case where h D ı, so that Eq. (1)
is written as

f D uC n; (2)

where n is an additive Gaussian white noise of zero mean and variance 
2.
The problem of recovering u from f is ill-posed. Several methods have been

proposed to recover u. Most of them can be classified as regularization methods
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which may take into account statistical properties (Wiener filters), information
theoretic properties [35], a priori geometric models [55], or the functional analytic
behavior of the image given in terms of its wavelet coefficients (see [48] and
references therein).

The typical strategy to solve this ill-conditioning is regularization [56]. In the
linear case the solution of (1) is estimated by minimizing a functional

J�.u/ Dk Hu � f k2
2 C� k Qu k2

2; (3)

which yields the estimate

u� D .H tH C �QtQ/�1Htf; (4)

where Hu D h � u, and Q is a regularization operator. Observe that to obtain
u� we have to solve a system of linear equations. The role of Q is, on one
hand, to move the small eigenvalues of H away from zero while leaving the
large eigenvalues unchanged, and, on the other hand, to incorporate the a priori
(smoothness) knowledge that we have on u.

If we treat u and n as random vectors and we select � D 1 and Q D R�1=2
s R

1=2
n

withRs andRn the image and noise covariance matrices, then (4) corresponds to the
Wiener filter that minimizes the mean square error between the original and restored
images.

One of the first regularization methods consisted in choosing between all possible
solutions of (1) the one which minimized the Sobolev (semi) norm of u

Z
R2
jDuj2 dx; (5)

which corresponds to the case Qu D Du. In the Fourier domain the solution of

(3) given by (4) is Ou D Oh
j Ohj2C4��2j�j2

Of . From the above formula we see that high

frequencies of f (hence, the noise) are attenuated by the smoothness constraint.
This formulation was an important step, but the results were not satisfactory,

mainly due to the inability of the previous functional to resolve discontinuities
(edges) and oscillatory textured patterns. The smoothness required by the finiteness
of the Dirichlet integral (5) constraint is too restrictive. Indeed, functions in
W 1;2.R2/ (i.e., functions u 2 L2.R2/ such that Du 2 L2.R2/) cannot have discon-
tinuities along rectifiable curves. These observations motivated the introduction of
Total Variation in image restoration problems by L. Rudin, S. Osher, and E. Fatemi
in their work [55]. The a priori hypothesis is that functions of bounded variation (the
BV model) [9] are a reasonable functional model for many problems in image pro-
cessing, in particular, for restoration problems [55]. Typically, functions of bounded
variation have discontinuities along rectifiable curves, being continuous in some
sense (in the measure theoretic sense) away from discontinuities [9]. The disconti-
nuities could be identified with edges. The ability of total variation regularization
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to recover edges is one of the main features which advocates for the use of this
model, but its ability to describe textures is less clear, even if some textures can be
recovered, up to a certain scale of oscillation. An interesting experimental discussion
of the adequacy of the BV -model to describe real images can be found in [41].

In order to work with images, we assume that they are defined in a bounded
domain  � R

2 which we assume to be the interval Œ0; N Œ2. As in most of the
works, in order to simplify this problem, we shall assume that the functions h and
u are periodic of period N in each direction. That amounts to neglecting some
boundary effects. Therefore, we shall assume that h; u are functions defined in 
and, to fix ideas, we assume that h; u 2 L2./. Our problem is to recover as much
as possible of u, from our knowledge of the blurring kernel h, the statistics of the
noise n, and the observed image f .

On the basis of the BV model, Rudin–Osher–Fatemi [55] proposed to solve the
following constrained minimization problem:

Minimize
Z


jDuj

subject to
Z


jh � u.x/� f .x/j2 dx � 
2jj:
(6)

Notice that the image acquisition model (1) is only incorporated through a global
constraint. Assuming that h � 1 D 1 (energy preservation), the additional constraint
that

R

h�u dx D R


f .x/ is automatically satisfied by its minima [28]. In practice,

the above problem is solved via the following unconstrained minimization problem:

Minimize
Z


jDuj C 1

2�

Z


jh � u � f j2 dx (7)

where the parameter � is positive. Recall that we may interpret � as a penalization
parameter which controls the trade-off between the goodness of fit of the constraint
and the smoothness term given by the Total Variation. In this formulation, a
methodology is required for a correct choice of �. The connections between (6)
and (7) were studied by A. Chambolle and P.L. Lions in [28] where they proved that
both problems are equivalent for some positive value of the Lagrange multiplier �.

In the denoising case, the unconstrained variational formulation (7) with h D ı is

Minimize
Z


jDuj C 1

2�

Z


ju � f j2 dx; (8)

and it has been the object of much theoretical and numerical research (see [10, 56]
for a survey). Even if this model represented a theoretical and practical progress in
the denoising problem due to the introduction of BV functions as image models,
the experimental analysis readily showed its main drawbacks. Between them, let
us mention the staircasing effect (when denoising a smooth ramp plus noise, the
staircase is an admissible result), the pixelization of the image at smooth regions,
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and the loss of fine textured regions, to mention some of them. This can be
summarized with the simple observation that the residuals f �u, where u represents
the solution of (8), do not look like noise. This has motivated the development of
nonlocal filters [17] for denoising, the use of a stochastic optimization technique to
estimate u [47], or the consideration of the image acquisition model as a set of local
constraints [3, 38] to be discussed below.

Let us finally mention that, following the analysis of Y. Meyer in [48], the
solution u of (8) permits to obtain a decomposition of the data f as a sum of two
components uCv where u contains the geometric sketch of f while v is supposed to
contain its noise and textured parts.As Meyer observed, the L2 norm of the residual
v WD f � u in (8) is not the right one to obtain a decomposition of f in terms of
geometry plus texture and he proposed to measure the size of the textured part v in
terms of a dual BV norm showing that some models of texture have indeed a small
dual BV norm.

In spite of its limitations, the total variation model has become one of the basic
image models and has been adapted to many tasks: optical flow, stereo imaging
and 3D surface reconstruction, segmentation, interpolation, or the study of u C v
models to mention a few cases. On the other hand, when compared to other robust
regularization terms, it combines simplicity and geometric character and makes it
possible a rigorous analysis. The theoretical analysis of the behavior of solutions of
(8) has been the object of several works [6,13,14,20,48,50] and will be summarized
in Sects. 3 and 4.

Recall that one of the main reasons to introduce the Total Variation as a
regularization term in imaging problems was its ability to recover discontinuities
in the solution. This intuition has been confirmed by the experimental evidence and
has been the motivation for the study of the local regularity properties of (8) in
[20, 23]. After recalling in Sect. 2 some basic notions and results in the theory of
bounded variation functions, we prove in section “The Discontinuities of Solutions
of the TV Denoising Problem” that the set of jumps (in the BV sense) of the solution
of (8) is contained in the set of jumps of the datum f [20]. In other words, model (8)
does not create any new discontinuity besides the existing ones. As a refinement of
the above statement, the local Hölder regularity of the solutions of (8) is studied in
section “Hölder Regularity Results.” This has to be combined with results describing
which discontinuities are preserved. No general statement in this sense exists, but
many examples are described in the papers [5,10,13,14]. The preservation of a jump
discontinuity depends on the curvature of the level line at the given point, the size
of the jump, and the regularization parameter �. This is illustrated in the example
given in Sect. 4. The examples support the idea that total variation is not perfect but
may be a reasonable regularization term in order to restore discontinuities.

Being considered as a basic model, the numerical analysis of the total variation
model has been the object of intensive research. Many numerical approaches have
been proposed in order to give fast, efficient methods which are also versatile to
cover the whole range of applications. In Sect. 5 we review some basic iterative
methods introduced to solve the Euler–Lagrange equations of (8). In particular, we
review in section “Chambolle’s Algorithm” the dual approach introduced by A.
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Chambolle in [25]. In section “Primal-Dual Approaches” we review the primal-
dual scheme of Zhu and Chan [57]. Both of them are between the most popular
schemes by now. In Sect. 6 we discuss global optimization methods based on
graph-cut techniques adapted to solve a quantized version of (8). Those methods
have also become very popular due to its efficiency and versatility in applications
and are an active area of research, as it can be seen in the references. Then, in
section “Global Solutions of Geometric Problems” we review the applications of
anisotropic TV problems to find the global solution of geometric problems. Similar
anisotropic TV formulations appear as convexifications of nonlinear energies
for disparity computation in stereo imaging, or related problems [30, 52], and
they are reviewed in section “A Convex Formulation of Continuous Multilabel
Problems.”

In Sect. 8 we review the application of Total Variation in image restoration (6),
describing the approach where the image acquisition model is introduced as a set of
local constraints [3, 38, 54].

We could not close this chapter without reviewing in Sect. 9 a recent algorithm
introduced by C. Louchet and L. Moisan [47] which uses a Bayesian approach
leading to an estimate of u as the expected value of the posterior distribution of u
given the data f . This estimate requires to compute an integral in a high dimensional
space and the authors use a Monte-Carlo method with Markov Chain (MCMC) [47].
In this context, the minimization of the discrete version of (8) corresponds to a
Maximum a Posterior (MAP) estimate of u.

2 Notation and Preliminaries onBV Functions

Definition and Basic Properties

Let  be an open subset of R
N . Let u 2 L1

loc./. Recall that the distributional
gradient of u is defined by

Z



 �Du D �
Z


u.x/div 
.x/ dx 8C1
c .;R

N /;

where C1
c .IRN / denotes the vector fields with values in R

N which are infinitely
differentiable and have compact support in . The total variation of u in  is
defined by

V.u; / WD sup

�Z


u div
 dx W 
 2 C1
c .IRN /; j
.x/j � 1 8x 2 


; (9)

where for a vector v D .v1; : : : ; vN / 2 R
N we set jvj2 WD PN

iD1 v2
i . Following the

usual notation, we will denote V.u; / by jDuj./ or by
R

jDuj.
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Definition 1. Let u 2 L1./. We say that u is a function of bounded variation in
 if V.u; / <1. The vector space of functions of bounded variation in  will be
denoted by BV./.

Using Riesz representation Theorem [9], the above definition can be rephrased
by saying that u is a function of bounded variation in  if the gradient Du in the
sense of distributions is a (vector valued) Radon measure with finite total variation
V.u; /.

Recall that BV./ is a Banach space when endowed with the norm kuk WDR

juj dx C jDuj./. Recall also that the map u ! jDuj./ is L1

loc./-lower
semicontinuous, as a sup (9) of continuous linear forms [9].

Sets of Finite Perimeter: The Co-area Formula

Definition 2. A measurable set E �  is said to be of finite perimeter in  if
	
E 2 BV./. The perimeter of E in  is defined as P.E;/ WD jD	E j./. If
 D R

N , we denote the perimeter of E in R
N by P.E/.

The following inequality holds for any two sets A;B � :

P.A [ B;/C P.A \ B;/ � P.A;/C P.B;/: (10)

Theorem 1. Let u 2 BV./. Then for a.e. t 2 R the set fu > tg is of finite
perimeter in  and one has

Z


jDuj D
Z 1

�1
P.fu > tg; / dt:

In other words, the total variation of u amounts to the sum of the perimeters of its
upper level sets.

An analogous formula with the lower level sets is also true. For a proof we refer
to [9].

The Structure of the Derivative of a BV Function

Let us denote by LN and HN�1, respectively, theN -dimensional Lebesgue measure
and the .N � 1/-dimensional Hausdorff measure in R

N (see [9] for precise
definitions).

Let u 2 ŒL1
loc./�

m (m � 1). We say that u has an approximate limit at x 2  if
there exists � 2 R

m such that

lim
�#0

1

jB.x; �/j
Z
B.x;�/

ju.y/� �jdy D 0: (11)
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The set of points where this does not hold is called the approximate discontinuity
set of u, and is denoted by Su. Using Lebesgue’s differentiation theorem, one can
show that the approximate limit � exists at LN -a.e. x 2 , and is equal to u.x/, in
particular, jSuj D 0. If x 2  n Su, the vector � is uniquely determined by (11) and
we denote it by Qu.x/.

We say that u is approximately continuous at x if x 62 Su and Qu.x/ D u.x/, that
is, if x is a Lebesgue point of u (with respect to the Lebesgue measure).

Let u 2 ŒL1
loc./�

m and x 2 nSu; we say that u is approximately differentiable
at x if there exists an m �N matrix L such that

lim
�#0

1

jB.x; �/j
Z
B.x;�/

ju.y/� Qu.x/ � L.y � x/j
�

dy D 0: (12)

In that case, the matrix L is uniquely determined by (12) and is called the
approximate differential of u at x.

For u 2 BV./, the gradient Du is a N -dimensional Radon measure that
decomposes into its absolutely continuous and singular parts Du D Dau C Dsu.
Then Dau D ru dx where ru is the Radon–Nikodym derivative of the measure
Du with respect to the Lebesgue measure in R

N . The function u is approximately
differentiable LN -a.e. in  and the approximate differential coincides with ru.x/
LN -a.e. The singular part Dsu can be also split into two parts: the jump part Dj u
and the Cantor partDcu.

We say that x 2  is an approximate jump point of u if there exist uC.x/ 6D
u�.x/ 2 R and j�u.x/j D 1 such that

lim
�#0

1

jBC
� .x; �u.x//j

Z
B

C
� .x;�u.x//

ju.y/� uC.x/j dy D 0

lim
�#0

1

jB�
� .x; �u.x//j

Z
B�
� .x;�u.x//

ju.y/� u�.x/j dy D 0;

where BC
� .x; �u.x// D fy 2 B.x; �/ W hy � x; �u.x/i > 0g and B�

� .x; �u.x// D
fy 2 B.x; �/ W hy � x; �u.x/i < 0g. We denote by Ju the set of approximate jump
points of u. If u 2 BV./, the set Su is countably HN�1 rectifiable, Ju is a Borel
subset of Su, and HN�1.Su n Ju/ D 0 [9]. In particular, we have that HN�1-a.e.
x 2  is either a point of approximate continuity of Qu or a jump point with two
limits in the above sense. Finally, we have

Dju D Dsuj___ Ju D .uC � u�/�uHN�1j___ Ju and Dcu D Dsuj___ .nSu/:

For a comprehensive treatment of functions of bounded variation we refer to [9].
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3 The Regularity of Solutions of the TV Denoising Problem

The Discontinuities of Solutions of the TV Denoising Problem

Given a function f 2 L2./ and � > 0 we consider the minimum problem

min
u2BV./

Z


jDuj C 1

2�

Z


.u � f /2 dx : (13)

Notice that problem (13) always admits a unique solution u�, since the energy
functional is strictly convex.

As we mentioned in Sect. 1, one of the main reasons to introduce the Total
Variation as a regularization term in imaging problems was its ability to recover
the discontinuities in the solution. This section together with section “Hölder
Regularity Results” and Sect. 4 is devoted to analyze this assertion. In this section
we prove that the set of jumps of u� (in the BV sense) is contained in the set
of jumps of f , whenever f has bounded variation. Thus, model (13) does not
create any new discontinuity besides the existing ones. Section “Hölder Regularity
Results” is devoted to review a local Hölder regularity result of [23]: the local
Hol̈der regularity of the data is inherited by the solution. This has to be combined
with results describing which discontinuities are preserved. In Sect. 4 we give an
example of explicit solution of (13) which shows that the preservation of a jump
discontinuity depends on the curvature of the level line at the given point, the size
of the jump, and the regularization parameter �. Other examples are given in the
papers [2, 5, 10, 13, 14]. The examples support the idea that total variation may be a
reasonable regularization term in order to restore discontinuities.

Let us recall the following observation, which is proved in [5, 18, 24].

Proposition 1. Let u� be the (unique) solution of (13). Then, for any t 2 R, fu� >
tg (respectively, fu� � tg) is the minimal (resp., maximal) solution of the minimal
surface problem

min
E�P.E;/C

1

�

Z
E

.t � f .x// dx (14)

(whose solution is defined in the class of finite-perimeter sets, hence up to a
Lebesgue-negligible set). In particular, for all t 2 R but a countable set, fu� D tg
has zero measure and the solution of (14) is unique up to a negligible set.

A proof that fu� > tg and fu� � tg both solve (14) is found in [24, Prop. 2.2].
A complete proof of this proposition, which we do not give here, follows from the
co-area formula, which shows that, up to a renormalization, for any u 2 BV./ \
L2./,
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Z


jDuj C 1

2�

Z


.u � f /2 dx D
Z
R

�
P .fu > tg; /C 1

�

Z
fu>tg

.t � f / dx
�
dt ;

and from the following comparison result for solutions of (14) which is proved in
[5, Lemma 4]:

Lemma 1. Let f; g 2 L1./ and E and F be respectively minimizers of

min
E
P.E;/�

Z
E

f .x/ dx and min
F
P.F;/ �

Z
F

g.x/ dx :

Then, if f < g a.e., jE n F j D 0 (in other words, E � F up to a negligible set).

Proof. Observe that we have

P.E;/ �
Z
E

f .x/ dx � P.E \ F;/�
Z
E\F

f .x/ dx

P.F;/ �
Z
F

g.x/ dx � P.E [ F;/ �
Z
E[F

g.x/ dx:

Adding both inequalities and using that for two sets of finite perimeter we have (10)
P.E \ F;/C P.E [ F;/ � P.E;/C P.F;/, we obtain that

Z
EnF

.g.x/ � f .x// dx � 0:

Since g.x/ � f .x/ > 0 a.e., this implies that E n F is a null set. ut

The proof of this last lemma is easily generalized to other situations (Dirichlet
boundary conditions, anisotropic and/or nonlocal perimeters; see [5] and also [2] for
a similar general statement). Eventually, we mention that the result of Proposition 1
remains true if the term .u.x/ � f .x//2=.2�/ in (13) is replaced with a term of the
form‰.x; u.x//, with ‰ of class C 1 and strictly convex in the second variable, and
replacing .t � f .x//=� with @u‰.x; t/ in (14).

From Proposition 1 and the regularity theory for surfaces of prescribed curvature
(see for instance [8]), we obtain the following regularity result (see also [2]).

Corollary 1. Let f 2 Lp./, with p > N . Then, for all t 2 R the super-level
set Et WD fu� > tg (respectively, fu� � tg) has boundary of class C 1;˛, for all
˛ < .p � N/=p, out of a closed singular set † of Hausdorff dimension at most
N � 8. Moreover, if p D 1, the boundary of Et is of class W 2;q out of †, for all
q <1, and is of class C 1;1 if N D 2.
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We now show that the jump set of u� is always contained in the jump set of f .
Before stating this result let us recall two simple lemmas.

Lemma 2. Let U be an open set in R
N and v 2 W 2;p.U /, p � 1. We have that

div

 
rvp

1C jrvj2

!
.y/ D Trace

�
A.rv.y//D2v.y/

	
a.e. in U ;

where A.�/ D 1

.1Cj�j2/ 1
2

�
ıij � �i �j

.1Cj�j2/
�N
i;jD1

, � 2 R
N .

The proof follows simply by taking ' 2 C1
0 .U /, integrating by parts in U , and

regularizing v with a smoothing kernel.

Lemma 3. Let U be an open set in R
N and v 2 W 2;1.U /. Assume that u has a

minimum at y0 2 U and

lim
�!0C

1

B�.y0/

Z
B�.y0/

ju.y/� u.y0/� ru.y0/ � .y � y0/� 1
2 hD2v.y0/.y � y0/; y � y0ij

�2
dy D 0:

(15)

Then D2v.y0/ � 0.

If A is a symmetric matrix and we write A � 0 (respectively, A � 0) we mean
that A is positive (resp., negative) semidefinite.

The result follows by proving that HN�1-a.e. for � in SN�1 (the unit sphere in
R
N ) we have hD2v.y0/�; �i � 0.
Recall that if v 2 W 2;1.U /, then (15) holds a.e. on U [58, Theorem 3.4.2].

Theorem 2. Let f 2 BV./\L1./. Then, for all � > 0,

Ju� � Jf (16)

(up to a set of zero HN�1-measure).

Before giving the proof let us explain its main idea which is quite simple. Notice
that, by (14), formally the Euler–Lagrange equation satisfied by @Et is

�Et C
1

�
.t � f / D 0 on @Et ,
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where �Et is the sum of the principal curvatures at the points of @Et . Thus if x 2
Ju� nJf , then we may find two values t1 < t2 such that x 2 @Et1 \@Et2 nJf . Notice
that Et2 � Et1 and the boundaries of both sets have a contact at x. Of the two, the
smallest level set is the highest and has smaller mean curvature. This contradicts its
contact at x.

Proof. Let us first recall some consequences of Corollary 1. Let Et WD fu� > tg,
t 2 R, and let†t be its singular set given by Corollary 1. Since f 2 L1./, around
each point x 2 @Et n †t , t 2 R, @Et is locally the graph of a function in W 2;p for
all p 2 Œ1;1/ (hence C 1;˛ for any ˛ 2 .0; 1/). Moreover, if N WD S

t2Q†t , then
HN�1.N / D 0.

Let us prove that HN�1.Ju� n Jf / D 0. Observe that we may write [9]

Ju� D
[

t1;t2Q;t1<t2

@Et1 \ @Et2 :

Thus it suffices to prove that for all t1; t2 2 Q, t1 < t2, we have

HN�1 �@Et1 \ @Et2 n �N [ Jf 		 D 0: (17)

Let us denote byB 0
R the ball of radiusR > 0 in R

N�1 centered at 0. LetCR WD B 0
R�

.�R;R/. Let us fix t1; t2 2 Q, t1 < t2. Given x 2 @Et1 \ @Et2 nN , by Corollary 1,
we know that there is someR > 0 such that, after a change of coordinates that aligns
the xN -axis with the normal to @Et1 \ @Et2 at x, we may write the set @Eti \ CR as
the graph of a function vi 2 W 2;p.B 0

R/, 8p 2 Œ1;1/, x D .0; vi .0// 2 CR � ,
rvi .0/ D 0, i 2 f1; 2g. Without loss of generality, we assume that vi > 0 in B 0

R,
and that Eti is the supergraph of vi , i D 1; 2. From t1 < t2 and Lemma 1, it follows
Et2 � Et1 , which gives in turn v2 � v1 in B 0

R.
Notice that, since @Eti is of finite HN�1 measure, we may cover @Et1 \ @Et2 nN

by a countable set of such cylinders. Thus, it suffices to prove that

HN�1 �.@Et1 \ @Et2 \ CR/ n �N [ Jf 		 D 0: (18)

holds for any such cylinder CR as constructed in the last paragraph.
Let us denote the points x 2 CR as x D .y; z/ 2 B 0

R � .�R;R/. Then (18) will
follow if we prove that

HN�1.MR/ D 0; (19)

where

MR WD fy 2 B 0
R W v1.y/ D v2.y/g n fy 2 B 0

R W .y; v1.y// 2 Jf g:

Recall that, by Theorem 3.108 in [9], HN�1-a.e. in y 2 B 0
R, the function

f .y; � / 2 BV..�R;R// and the jumps of f .y; � / are the points z such that
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.y; z/ 2 Jf . Recall that vi is a local minimizer of

min
v

Ei .v/ WD
Z
B0
R

p
1C jrvj2 dy � 1

�

Z
B0
R

Z v.y/

0
.ti � f .y; z// d zdy:

By taking a positive smooth test function  .y/ of compact support in B 0
R, and

computing lim�!0C 1
�
.Ei .vC � / � Ei .v// � 0, we deduce that

div
rvi .y/p

1C jrvi .y/j2
C 1

�
.ti � f .y; vi .y/C 0/ � 0; HN�1-a.e. in B 0

R.

(20)
In a similar way, we have

div
rvi .y/p

1C jrvi .y/j2
C 1

�
.ti � f .y; vi .y/ � 0/ � 0; HN�1-a.e. in B 0

R.

(21)
Finally we observe that since v1; v2 2 W 2;p.B 0

R/ for any p 2 Œ1;1/ and v2 � v1

in B 0
R, by Lemma 3 we have that D2.v1 � v2/.y/ � 0 HN�1-a.e. on fy 2 B 0

R W
v1.y/ D v2.y/g.

Thus, if HN�1.MR/ > 0, then there is a point Ny 2 MR such that rv1. Ny/ D
rv2. Ny/, D2.v1 � v2/. Ny/ � 0, f . Ny; � / is continuous at v1. Ny/ D v2. Ny/, and both
Eqs. (20) and (21) hold at Ny. As a consequence, using Lemma 2 and subtracting the
two equations, we obtain

0 � trace.A.rv1. Ny//D2v1. Ny//� trace.A.rv2. Ny//D2v2. Ny// D t2 � t1
�

> 0;

This contradiction proves (19). ut

Hölder Regularity Results

Let us review the local regularity result proved in [23]: if the datum f is locally
Hölder continuous with exponent ˇ 2 Œ0; 1� in some region 0 � , then a local
minimizer u of (13) is also locally Hölder continuous in0 with the same exponent.

Recall that a function u 2 BV./ is a local minimizer of (13) if for any v 2
BV./ such that u � v has support in a compact subset K � , we have

Z
K

jDuj C 1

2

Z
K

ju.x/�f .x/j2 dx �
Z
K

jDvj C 1

2

Z
K

jv.x/�f .x/j2 dx (22)

It follows that u satisfies the equation [18]

� div zC u D f (23)

with z 2 L1.;RN / with kzk1 � 1, and z �Du D jDuj [10].
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As in section “The Discontinuities of Solutions of the TV Denoising Problem”
[20], the analysis of the regularity of the local minimizers of u is based on the
following observation: for any t 2 R, the level sets fu > tg (resp., fu � tg) are
solutions (the minimal and maximal, indeed) of the prescribed curvature problem
(14) which is defined in the class of finite-perimeter sets and hence up to a Lebesgue-
negligible set. The local regularity of u can be described in terms of the distance
of any two of its level sets. This is the main idea in [20] which can be refined to
obtain the Hölder regularity of solutions of (14). As we argued in section “The
Discontinuities of Solutions of the TV Denoising Problem,” outside the jump
discontinuities of f (modulo an HN�1-null set), any two level sets at different
heights cannot touch and hence the function u is continuous there. To be able to
assert a Hölder type regularity property for u one needs to prove a local estimate
of the distance of the boundaries of two level sets. This can be done here under the
assumption of local Hölder regularity for f [23].

Theorem 3. Let N � 7 and let u be a solution of (23). Assume that f is in C 0;ˇ

locally in some open set A � , for some ˇ 2 Œ0; 1�. Then u is also C 0;ˇ locally
in A.

The Lipschitz case corresponds to ˇ D 1.
One can also state a global regularity result for solutions of the Neumann

problem when  � R
N is a convex domain. Let f W  ! R be a uniformly

continuous function, with modulus of continuity !f W Œ0;C1/ ! Œ0;C1/, that
is, jf .x/ � f .y/j � !f .jx � yj/ for all x; y 2 . We consider the solution u
of (23) with homogeneous Neumann boundary condition, that is, such that (22) for
any compact setK �  and any v 2 BV./ such that v D u out ofK . This solution
is unique, as can be shown adapting the proof of [18, Cor. C.2.] (see also [10] for the
required adaptations to deal with the boundary condition), which deals with the case
 D R

N .
Then, the following result holds true [23]:

Theorem 4. Assume N � 7. Then, the function u is uniformly continuous in ,
with modulus !u � !f .

Again, it is quite likely here that the assumption N � 7 is not necessary for this
result.

4 Some Explicit Solutions

Recall that a convex body in R
N is a compact convex subset of RN . We say that a

convex body is nontrivial if it has nonempty interior.
We want to exhibit the explicit solution of (13) when f D 	C and C is a

nontrivial convex body in R
N . This will show that the preservation of a jump
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discontinuity depends on the curvature of @C at the given point, the size of the
jump, and the regularization parameter �.

Let u�;C be the unique solution of the problem:

min
u2BV.RN /

Z
RN

jDuj C 1

2�

Z
RN

.u � 	C /2 dx : (24)

The following result was proved in [5].

Proposition 2. We have that 0 � u�;C � 1, u�;C D 0 in R
N n C , and u�;C is

concave in fu�;C > 0g.

The proof of 0 � u�;C � 1 follows from a weak version of the maximum
principle [5]. Thanks to the convexity of C , by comparison with the characteristic
function of hyperplanes, one can show that u�;C D 0 out of C [5]. To prove that
u�;C is concave in fu�;C > 0g one considers first the case where C is of class C 1;1

and � > 0 is small enough. Then one proves that u�;C is concave by approximating
u�;C by the solution u� of

u � �div

 
rup

�2 C jruj2

!
in C

rup
�2 C jruj2 � �

C D 0 in @C ,

(25)

as � ! 0C, using Korevaar’s concavity Theorem [46]. Then one considers the case
whereC is of classC 1;1 and we take any � > 0. In this case, the concavity of u�;C in
fu�;C > 0g is derived after proving Theorems 5 and 6 below. The final step proceeds
by approximating a general convex body C by convex bodies of class C 1;1 [4].

Moreover, since u�;C D 0 out of C , the upper level set fu�;C > sg � C for any
s 2 .0; 1�. Then, as in Proposition 1, one can prove that for any s 2 .0; 1� the level
set fu�;C > sg is a solution of

.P /� min
E�C P.E/� �jEj: (26)

for the value of � D ��1.1 � s/. When taking � 2 .0;C1/ and s 2 .0; 1� we
are able to cover the whole range of � 2 Œ0;1/ [5]. By Lemma 1 we know that if
� < �0 and C�;C�0 are minimizers of .P /�, .P /�0 , respectively, then C� � C�0 .
This implies that the solution of .P /� is unique for any value � 2 .0;1/ up to a
countable exceptional set. Thus the sets C� can be identified with level sets of u�;C
for some � > 0 and, therefore, we obtain its uniqueness from the concavity of u�;C .
One can prove [4, 5, 21]:
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Theorem 5. There is a value �� > 0 such that

8̂
<̂
ˆ̂:

if � < ��; C� D ;;
if � > ��; C� is unique (and convex),

if � D ��; there are two solutions ; and C�� ;

where C�� is the unique Cheeger set of C . Moreover for any � < k	C k� we have

�� WD 1�ku�;C k1

�
and C� WD fu�;C > 1 � ��g for any � > ��, where

k	C k� WD max

�Z
RN

u	C dx W u 2 BV.RN /;
Z
RN

jDuj � 1


:

The set C�� coincides with the level set fu�;C D ku�;C k1g and is of class C 1;1.

We call a Cheeger set in a nonempty open bounded subset  of R
N any set

G �  which minimizes

C WD min
F�

P.F /

jF j : (27)

The Theorem contains the assertion that there is a unique Cheeger set in any
nonempty convex body of RN and �� D C. This result was proved in [21] for
uniformly convex bodies of class C 2, and in [4] in the general case. Notice that the
solution of (24) gives a practical algorithm to compute the Cheeger set of C .

Theorem 6. Let C be a nontrivial convex body in R
N . Let

HC .x/ WD
(
� inff� W x 2 C�g if x 2 C
0 if x 2 R

N n C:

Then u�;C .x/ WD .1C �HC .x//
C	C .

If N D 2 and � > ��, the set C� coincides with the union of all balls of
radius 1=� contained in C [6]. Thus its boundary outside @C is made by arcs of
circle which are tangent to @C . In particular, if C is a square, then the Cheeger set

corresponds to the arcs of circle with radius R > 0 such that
P.C�� /

jC�� j D 1
R

. We can

see that the corners of C are rounded and the discontinuity disappears as soon as
� > 0 (see the left part of Fig. 1). This is a general fact at points of @C where its
mean curvature is infinite.

Remark 1. By adapting the proof of Proposition 4 in [5] one can prove the following
result. If  is a bounded subset of R

N with Lipschitz continuous boundary, and
u 2 BV./\ L2./ is the solution of the variational problem
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Fig. 1 Left: The denoising of a square. Right: The Cheeger set of a cube

min
u2BV./\L2./

�Z


jDuj C 1

2�

Z


.u � 1/2 dx C
Z
@

juj dHN�1


; (28)

then 0 � u � 1 and for any s 2 .0; 1� the upper level set fu � sg is a solution of

min
F�P.F /� �

�1.1 � s/jF j: (29)

If � > 0 is big enough, indeed greater than 1=k	k�, then the level set fu D kuk1g
is the maximal Cheeger set of . In particular, the maximal Cheeger set can be
computed by solving (28), and for that we can use the algorithm in [25] described in
section “Chambolle’s Algorithm.” In the right side of Fig. 1 we display the Cheeger
set of a cube.

Other explicit solutions corresponding to the union of convex sets can be found in
[2, 13]. In particular, Allard [2] describes the solution corresponding to the union
of two disks in the plane and also the case of two squares with parallel sides
touching by a vertex. Some explicit solutions for functions whose level sets are a
finite number of convex sets in R

2 can be found in [14].

5 Numerical Algorithms: Iterative Methods

Notation

Let us fix our main notations. We denote by X the Euclidean space R
N�N . The

Euclidean scalar product and the norm in X will be denoted by h � ; � iX and k � kX ,
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respectively. Then the image u 2 X is the vector u D .ui;j /Ni;jD1, and the vector
field � is the map � W f1; : : : ; N g � f1; : : : ; N g ! R

2. To define the discrete total
variation, we define a discrete gradient operator. If u 2 X , the discrete gradient is a
vector in Y D X �X given by

ru WD .rxu;ryu/;

where

.rxu/i;j D
�

uiC1;j � ui;j if i < N
0 if i D N; (30)

.ryu/i;j D
�

ui;jC1 � ui;j if j < N
0 if j D N (31)

for i; j D 1; : : : ; N . Notice that the gradient is discretized using forward differences
and rC;Cu could be a more explicit notation. For simplicity we have preferred to
use ru. Other choices of the gradient are possible; this one will be convenient for
the developments below.

The Euclidean scalar product in Y is defined in the standard way by

h�; Q�iY D
X

1	i;j	N
.�1
i;j
Q�1
i;j C �2

i;j
Q�2
i;j /

for every � D .�1; �2/, Q� D . Q�1; Q�2/ 2 Y . The norm of � D .�1; �2/ 2 Y is, as usual,
k�kY D h�; �i1=2

Y . We denote the Euclidean norm of a vector v 2 R
2 by jvj. Then

the discrete total variation is

Jd .u/ D krukY D
X

1	i;j	N
j.ru/i;j j: (32)

We have

Jd .u/ D sup
�2Y; j�i;j j	1 8.i;j /

h�;ruiY : (33)

By analogy with the continuous setting, we introduce a discrete divergence div
as the dual operator of r, i.e., for every � 2 Y and u 2 X we have

h�div �; uiX D h�;ruiY :
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One can easily check that div is given by

.div �/i;j D

8̂
<
:̂
�1
i;j � �1

i�1;j if 1 < i < N
�1
i;j if i D 1

��1
i�1;j if i D N

C

8̂
<
:̂
�2
i;j � �2

i;j�1 if 1 < j < N
�2
i;j if j D 1

��2
i;j�1 if j D N

(34)

for every � D .�1; �2/ 2 Y .
We have

Jd .u/ WD max
�2V hu; div �i; (35)

where

V D f� 2 Y W j�i;j j2 � 1 � 0; 8 i; j 2 f1; : : : ; N gg

Chambolle’s Algorithm

Let us describe the dual formulation for solving the problem:

min
u2X Jd .u/C 1

2�
ku � f k2

X (36)

where f 2 X . Using (35) we have

min
u2X Jd .u/C

1

2�
ku � f k2

X D min
u2X max

�2V hu; div �i C 1

2�
ku � f k2

X

D max
�2V min

u2X hu; div �i C 1

2�
ku � f k2

X :

Solving explicitly the minimization in u, we have u D f � �div �. Then

max
�2V min

u2X hu; div �i C 1

2�
ku � f k2

X D max
�2V hf; div �i � �

2
kdiv �k2

X

D ��
2

min
�2V

 ����div � � f
�

����
2

X

�
����f�

����
2

X

!
:
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Thus if �� is the solution of

min
�2V

����div � � f
�

����
2

X

: (37)

then u D f � �div �� is the solution of (36).
Notice that div �� is the projection of f

�
onto the convex set

Kd WD fdiv � W j�i;j j � 1; 8 i; j 2 f1; : : : ; N gg:

As in [25], the Karush–Kuhn–Tucker Theorem yields the existence of Lagrange
multipliers ˛i;j � 0 for the constraints � 2 V , such that we have for each .i; j / 2
f1; : : : ; N g2

rŒdiv � � ��1f �i;j � ˛�
i;j �i;j D 0; (38)

with either ˛�
i;j > 0 and j�i;j j D 1, or ˛�

i;j D 0 and j�i;j j � 1. In the later case, we
have rŒdiv � � ��1f �i;j D 0. In any case, we have

˛�
i;j D jrŒdiv � � ��1f �i;j j: (39)

Let � > 0, �0 D 0, p � 0. We solve (38) using the following gradient descent
(or fixed point) algorithm:

�
pC1
i;j D �pi;j C �rŒdiv �p � ��1f �i;j � �jrŒdiv �p � ��1f �i;j j�pC1

i;j I (40)

hence

�
pC1
i;j D

�
p
i;j C �rŒdiv �p � ��1f �i;j

1C �jrŒdiv �p � ��1f �i;j j : (41)

Observe that j�pi;j j � 1 for all i; j 2 f1; : : : ; N g and every p � 0.

Theorem 7. In the discrete framework, assuming that � < 1
8 , then div �p converges

to the projection of f

�
onto the convex set Kd . If div �� is that projection, then

u D f � �div �� is the solution of (36).

In Fig. 2 we display some results obtained using Chambolle’s algorithm with
different set of parameters, namely, � D 5; 10.

Today, the algorithms Nesterov [49], Beck and Teboulle [12], or the primal-dual
approaches described in the next section provide more efficient ways to solve this
dual problem.
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Fig. 2 Denoising results obtained with Chambolle’s algorithm. (a) Top left: the original image.
(b) Top right: the image with a Gaussian noise of standard deviation 
 D 10. (c) Bottom left: the
result obtained with � D 5. (d) Bottom right: the result obtained with � D 10

Primal-Dual Approaches

The primal gradient descent formulation is based on the solution of (36). The dual
gradient descent algorithm corresponds to (41). The primal-dual formulation is
based on the formulation

min
u2X max

�2V G.u; �/ WD hu; div �i C 1

2�
ku � f k2

X

and performs a gradient descent in u and gradient ascent in �.
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Given the intermediate solution .uk; �k/ at iteration step k we update the dual
variable by solving

max
�2V G.uk; �/: (42)

Since the gradient ascent direction is r�G.uk; �/ D �ruk , we update � as

�kC1 D PV
�
�k � �k

�
ruk

�
; (43)

where �k denotes the dual stepsize and PV denotes the projection onto the convex
set V . The projection PV can be computed as in (41) or simply as

.PV�/i;j D �i;j

max.j�i;j j; 1/ :

Now we update the primal variable u by a gradient descent step of

min
u2X G.u; �

kC1/: (44)

The gradient ascent direction is ruG.u; �kC1/ and the update is

ukC1 D uk � �k
�
�div �kC1 C uk � f 	 ; (45)

where �k denotes the primal stepsize.
The primal-dual scheme was introduced in [57]. The convergence is empirically

observed for a variety of suitable stepsize pairs .�; �/ and is given in terms of
the product �� . For instance, convergence is reported for increasing values �k and
�k�k � 0:5, see [57]. This has been theoretically explained for a variant of the
scheme proposed in [29], while a general convergence proof has been given in [15].

The primal gradient descent and the dual projected gradient descent method are
special cases of the above algorithm. Indeed if one solves the problem (42) exactly
(taking �k D1 in (43)) the resulting algorithm is

ukC1 D uk � �k
�
��div

ruk

jrukj C uk � f
�
; (46)

with the implicit convention that we may take any element in the unit ball of R2

when ruk D 0.
If we solve (44) exactly and still apply gradient ascent to (42), the resulting

algorithm is

�kC1 D PV

�
�k C �kr

�
div �k � f

�

��
; (47)

which essentially corresponds to (41).
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The primal-dual approach can be extended to the total variation deblurring
problem

min
u2X Jd .u/C 1

2�
kBu � f k2

X (48)

where f 2 X and B is a matrix representing the discretization of the blurring
operatorH .

The primal-dual scheme is based on the formulation

min
u2X max

�2V hu; div �i C 1

2�
kBu � f k2

X ; (49)

and the numerical scheme can be written as

�kC1 D PV
�
�k � �kruk

	
ukC1 D uk � �k ��div �kC1 C �Bt .BukC1 � f /	 : (50)

Since B is the matrix of a convolution operator, the second equation can be solved
explicitly using the FFT. Convergence is empirically observed for a variety of
suitable stepsize pairs .�; �/ and is given in terms of the product �� , see [57] and
a proof in [15]. See also [29] for an explicit rule for acceleration, with proofs of
convergence. For a detailed study of different primal-dual methods we refer to [37].

6 Numerical Algorithms: Maximum-FlowMethods

It has been noticed probably first in [51] that Maximal-flow/minimum-cut tech-
niques could be used to solve discrete problems of the form (14), that is, to
compute finite sets minimizing a discrete variant of the perimeter and an additional
external field term. Combined with (a discrete equivalent of) Proposition 1, this
leads to efficient techniques for solving (only) the denoising problem (8), including
a method, due to D. Hochbaum, to compute an exact solution in polynomial time
(up to machine precision). A slightly more general problem is considered in [27],
where the authors describe in detail algorithms which solve the problem with an
arbitrary precision.

Discrete Perimeters and Discrete Total Variation

We will call a discrete total variation any convex, nonnegative function J W RM !
Œ0;C1� satisfying a discrete co-area formula:

J.u/ D
Z C1

�1
J.	fu�sg/ ds (51)
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where 	fu�sg 2 f0; 1gM denotes the vector such that 	fu�sg
i D 0 if ui � s and

	
fu�sg
i D 1 if ui � s.

As an example we can consider the (anisotropic) discrete total variation

J.u/ D
X

1	i<N
1	j	N

juiC1;j � ui;j j C
X

1	i	N
1	j<N

jui;jC1 � ui;j j (52)

In this case u D .ui;j /Ni;jD1 can be written as a vector in R
M with M D N 2.

Then, (51) obviously holds since for any a; b 2 R, we have ja � bj DR C1
�1 j	fa>sg � 	fb>sgj ds:

Observe, on the other hand, that the discretization (36) does not enter this
category (unfortunately). In fact, a discrete total variation will be always very
anisotropic (or “crystalline”).

We assume that J is not identically C1. Then, we can derive from (51) the
following properties [27]:

Proposition 3. Let J be a discrete total variation. Then:

1. J is positively homogeneous: J.�u/ D �J.u/ for any u 2 R
M and � � 0.

2. J is invariant by addition of a constant: J.c1C u/ D J.u/ for any u 2 R
M and

c 2 R, where 1 D .1; : : : ; 1/ 2 R
M is a constant vector. In particular, J.1/ D 0.

3. J is lower semicontinuous.
4. p 2 @J.u/, .8z 2 R; p 2 @J.	fu�zg/.
5. J is submodular: for any u; u0 2 f0; 1gM ,

J.u _ u0/ C J.u ^ u0/ � J.u/ C J.u0/: (53)

More generally, this will hold for any u; u0 2 R
M .

Conversely, if J W f0; 1gM ! Œ0;C1� is a submodular function with J.0/ D
J.1/ D 0, then the co-area formula (51) extends it to R

M into a convex function,
hence a discrete total variation.

If J is a discrete total variation, then the discrete counterpart of Proposition 1
holds:

Proposition 4. Let J be a discrete total variation. Let f 2 R
M and let u 2 R

M be
the (unique) solution of

min
u2RM

�J.u/ C 1

2
ku � f k2 (54)

Then, for all s > 0, the characteristic functions of the super-level sets Es D fu �
sg and E 0

s D fu > sg (which are different only if s 2 fui ; i D 1; : : : ;M g) are
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respectively the largest and smallest minimizer of

min
�2f0;1gM

�J.�/ C
MX
iD1

�i .s � fi / : (55)

The proof is quite clear, since the only properties which were used for showing
Proposition 1 were (a) the co-area formula of Theorem 1 and (b) the submodularity
of the perimeters (10).

As a consequence, Problem (54) can be solved by successive minimizations
of (55), which in turn can be done by computing a maximal flow through a
graph, as will be explained in the next section. It seems that efficiently solving the
successive minimizations has been first proposed in the seminal work of Eisner
and Severance [36] in the context of augmenting-path maximum-flow algorithms. It
was then developed, analyzed, and improved by Gallo, Grigoriadis, and Tarjan [39]
for preflow-based algorithms. Successive improvements were also proposed by
Hochbaum [42], specifically for the minimization of (54). We also refer to [26, 33]
for variants, and to [45] for detailed discussions about this approach.

Graph Representation of Energies for Binary MRF

It was first observed by Picard and Ratliff [51] that binary Ising-like energies, that
is, of the form

X
i;j

˛i;j j�i � �j j �
X
i

ˇi �i ; (56)

˛i;j � 0, ˇi 2 R, �i 2 f0; 1g, could be represented on a graph and minimized by
standard optimization techniques, and more precisely using maximum-flow algo-
rithms. Kolmogorov and Zabih [44] showed that the submodularity of the energy
is a necessary condition, while, up to sums of ternary submodular interactions, it is
also a sufficient condition in order to be representable on a graph. (But other energies
are representable, and it does not seem to be known whether any submodular J can
be represented on a graph, see [27, Appendix B] and the references therein.)

In case J.u/ has only pairwise interactions, as in (52), then Problem (55) has
exactly the form (56), with ˛i;j D � if nodes i and j correspond to neighboring
pixels, 0 else, and ˇi is s � fi .

Let us build a graph as follows: we consider V D f1; : : : ;M g [ fSg [ fT g
where the two special nodes S and T are respectively called the “source” and the
“sink.” We consider then oriented edges .S; i/ and .i; T /, i D 1; : : : ;M , and .i; j /,
1 � i; j �M , and to each edge we associate a capacity defined as follows:

8̂
<̂
ˆ̂:
c.S; i/ D ˇ�

i i D 1; : : : ;M ;

c.i; T / D ˇC
i i D 1; : : : ;M ;

c.i; j / D ˛i;j 1 � i; j �M :

(57)
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Here ˇC
i D maxf0; ˇi g and ˇ�

i D maxf0;�ˇig, so that ˇi D ˇC
i � ˇ�

i . By
convention, we consider there is no edge between two nodes if the capacity is zero.
Let us denote by E the set of edges with nonzero capacity and by G D .V ; E/ the
resulting oriented graph.

We then define a “cut” in the graph as a partition of E into two sets S and T , with
S 2 S and T 2 T . The cost of a cut is then defined as the total sum of the capacities
of the edges that start on the source side of the cut and land on the sink side:

C.S; T / D
X

.�;�/2E
�2S;�2T

c.�; �/ :

Then, if we let � 2 f0; 1gM be the characteristic function of S \ f1; : : : ;M g, we
have

C.S; T / D
MX
iD1

.1 � �i /ˇ�
i C �iˇC

i C
MX

i;jD1

˛i;j .�i � �j /C

D
MX

i;jD1

˛i;j .�i � �j /C C
MX
iD1

�iˇi C
MX
iD1

ˇ�
i

If ˛i;j D ˛j;i (but other situations are also interesting), this is nothing else than
energy (56), up to a constant.

Thus, the problem of finding a minimum of (56) [or (55)] can be reformulated as
the problem of finding a minimal cut in the graph. Very efficient algorithms are
available, based on a duality result of Ford and Fulkerson [1]. It states that the
maximum flow on the graph constrained by the capacities of the edges is equal to
the minimal cost of a cut. The problem reduces then to find the maximum flow in the
graph. This is precisely defined as follows: starting from S , we “push” a quantity
(x�;�) along the oriented edges .�; �/ 2 E of the graph, with the constraint that
along each edge,

0 � x�;� � c.�; �/

and that each “interior” node i must satisfy the flow conservation constraint

X
�

x�;i D
X
�

xi;�

(while the source S only sends flow to the network, and the sink T only receives).
It is clear that the total flow f .x/ D P

i xS;i D
P

i xi;T which can be sent is
bounded from above, and not hard to show that a bound is given by a minimal-
cost cut .S; T /. The duality theorem of Ford and Fulkerson expresses the fact that
this bound is actually reached by the maximal flow .x�;�/.�;�/2E (which maximizes
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f .x/), and the partition .S; T / is obtained by cutting along the saturated edges
.�; �/, where x�;� D c�;� while x�;� D 0.

We can find starting from S the first saturated edge along the graph, and cut there,
or do the same starting from T and scanning the reverse graph: for ˇi D s � fi ,
this will usually give the same solution except for a finite number of levels s, which
correspond exactly to the levels fui W i D 1; : : : ;M g of the solution of (54) and are
called the “breakpoints.”

Several efficient algorithms are available to compute a maximum flow in
polynomial time [1]. Although the time complexity of the algorithm in [16], of
Boykov and Kolmogorov, is not polynomial, this algorithm seems to outperform
others in terms in time computations, as it is particularly designed for the graphs
with low connectivity which arise in image processing.

The idea of a “parametric maximum-flow algorithm” [39] is to reuse the same
graph (and the “residual graph” which remains after a run of a max-flow algorithm)
to solve problems (55) for increasing values s 2 fs0; s1; : : : ; sng. This is easily
shown to solve (54) up to an arbitrary precision (and in polynomial time, see [39]).
It seems this idea was already present in a paper of Eisner and Severance [36].

However, it was shown in [42] by D. Hochbaum that in fact the exact solution
to (54) can be computed, also in polynomial time. Let us now explain the basic idea
of this approach; for details we refer to [27, 42].

Let u D .ui /MiD1 be the (unique) solution of (54). Proposition 4 tells us that as s
varies, problem (55) has the same solution 	fu�sg as long as s does not cross any of
the values fui W i D 1; : : : ;M g, which are precisely the breakpoints.

Assume we have found, for two levels s1 < s2, solutions �1 � �2 of (55) and
assume also that these solutions differ. It means that there is a breakpoint ui0 in
between: there is at least one location i0 (and possibly other) with s1 � ui0 � s2.

Suppose for a while that the value ui0 were the only breakpoint between s1 and
s2 (that is, at no other location i1, we can have both s1 � ui1 � s2 and ui0 ¤ ui1 ).

In this case, for s 2 Œs1; s2�, the optimal energy should be

F.s/ D F1.s/ D
 
�J.�1/ �

MX
iD1

�1
i fi

!
C s

MX
iD1

�1
i

if s � ui0 , and

F.s/ D F2.s/ D
 
�J.�2/ �

MX
iD1

�2
i fi

!
C s

MX
iD1

�2
i

for s � ui0 . And the value ui0 is the necessary (only) solution of the equation
F1.ui0/ D F2.ui0/.

Observe that in any case, as �1 � �2 and they are different, the slope of the affine
function F1.s/ is strictly above the slope of the affine function F2.s/. Since also
F1.s1/ � F2.s1/ (as �1 is optimal for s1) and F2.s2/ � F1.s2/, there is always a
(unique) value s3 2 Œs1; s2� for which F1.s3/ D F2.s3/.
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The idea of the algorithm is now clear: we have to compute a new maximal flow
(which, in fact, reuses the residual flows from the computations of �1 and �2) to
solve (55) for the level s D s3. We find a solution �3, of energy

F3.s3/ D
 
�J.�3/ �

MX
iD1

�3
i fi

!
C s3

MX
iD1

�3
i

Then, there are two cases:

• Either F3.s3/ D F1.s3/ D F2.s3/: in this case we have found a breakpoint, and
there is no other in the interval Œs1; s2�. Hence, the level sets fu � sg have been
found for all values s 2 Œs1; s2�: 	fu�sg D �1 for s 2 Œs1; s3� and �2 for s 2 Œs3; s2�.

• Or F3.s3/ < F1.s3/ D F2.s3/. Then, in particular, it must be that the solution �3

differs from both �1 and �2 (otherwise the energies would be the same). Hence
we can start again to try solving the problem at the levels s4 and s5 which solve
F1.s4/ D F3.s4/ and F3.s5/ D F2.s5/. Now, since there are only a finite number
of possible sets � solving (55) (bounded byM , as the solutions are nonincreasing
with s), this situation can occur at most a finite number of times, bounded byM .

In practice, this can be done in a very efficient way, using “residual graphs” to
start the new maximal-flow algorithms, and to compute efficiently the new levels
where to cut (there is no need, in fact, to compute the values �J.�/CPi �ifi andP

i �i for this). See [27, 42] for details.
For experimental results in the case of total variation denoising we refer to [26,

27, 33, 40].

7 Other Problems: Anisotropic Total Variation Models

Global Solutions of Geometric Problems

The theory of anisotropic perimeters developed in [7] permits to extend model (28)
to general anisotropic perimeters, including as particular cases the geodesic active
contour model with an inflating force [19, 43], and a model for edge linking [22].
This permits to find the global minima of geometric problems that appear in image
processing [22, 24, 27, 32].

The Anisotropic Total Variation and Perimeter Let us define the general notion
of total variation with respect to an anisotropy. Following [7] we say that a function
� W  � R

N ! Œ0;1/ is a metric integrand if � is a Borel function satisfying the
conditions:

for a.e. x 2 , the map � 2 R
N ! �.x; �/ is convex, (58)
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�.x; t�/ D jt j�.x; �/ 8x 2 ; 8� 2 R
N ; 8t 2 R; (59)

and there exists a constant ƒ > 0 such that

0 � �.x; �/ � ƒk�k 8x 2 ; 8� 2 R
N : (60)

We could be more precise and use the term symmetric metric integrand, but for
simplicity we use the term metric integrand. Recall that the polar function �0 W
 � R

N ! R [ fC1g of � is defined by

�0.x; ��/ D supfh��; �i W � 2 R
N �.x; �/ � 1g: (61)

The function �0.x; � / is convex and lower semicontinuous.
Let

K�./ WD f
 2 X1./ W �0.x; 
.x// � 1 for a.e. x 2 , Œ
 � �� D 0g:

Definition 3. Let u 2 L1./. We define the �-total variation of u in  as

Z


jDuj� WD sup

�Z


u div 
 dx W 
 2 K1
� ./


; (62)

We set BV�./ WD fu 2 L1./ W R

jDuj� < 1g which is a Banach space when

endowed with the norm jujBV�./ WD
R

jujdx C R


jDuj� .

We say that E � R
N has finite �-perimeter in  if 	E 2 BV�./. We set

P�.E;/ WD
Z


jD	E j�:

If  D R
N , we denote P�.E/ WD P�.E;RN /. By assumption (60), if E � R

N has
finite perimeter in  it has also finite �-perimeter in .

A Variational Problem and Its Connection with Geometric Problems Let � W
 � R

N ! R be a metric integrand in  and h 2 L1./, h.x/ > 0 a.e., withR


1
h.x/

dx <1. Let us consider the problem

min
u2BV�./

Z


jDuj� C
Z
@

�.x; �/juj dHN�1 C �

2

Z


h .u � f /2 dx; (63)

where � denotes the outer unit normal to @. To shorten the expressions inside
the integrals we shall write h; u instead of h.x/; u.x/, with the only exception of
�.x; �/. The following result was proved in [22].
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Theorem 8. (i) Let f 2 L2.; hdx/, i.e.,
R

f .x/2 h.x/ dx <1. Then there is

a unique solution of the problem (63).
(ii) If u 2 BV�./ \ L2.; h dx/ be the solution of the variational problem (63)

with f D 1. Then 0 � u � 1 and the level sets Es WD fx 2  W u.x/ � sg,
s 2 .0; 1�, are solutions of

min
F�P�.F / � �jF jh: (64)

where jF jh D
R
F
h.x/ dx. As in the Euclidian case, the solution of (64) is

unique for any s 2 .0; 1� up to a countable exceptional set.
(iii) When � is big enough, the level set associated with the maximum of u,
fu D kuk1g, is the maximal .�; h/-Cheeger set of , i.e., is a minimizer of
the problem

inf

�
P�.F /

jF jh W F �  of finite perimeter, jF jh > 0


: (65)

The computation of the maximal .�; h/-Cheeger set [together with the solution
of the family of problems (64)] can be computed by adapting Chambolle’s algorithm
[25] described in section “Chambolle’s Algorithm.”

Example 1. We illustrate this formalism with two examples: (a) the geodesic active
contour model and (b) a model for edge linking.

(a) The geodesic active contour model. Let I W  ! R
C be a given image in

L1./, G be a Gaussian function, and

g.x/ D 1p
1C jr.G � I /j2 ; (66)

(where in G � I we have extended I to R
N by taking the value 0 outside ).

Observe that g 2 C./ and infx2 g.x/ > 0. The geodesic active contour
model [19, 43] with an inflating force corresponds to the case where �.x; �/ D
g.x/j�j and jDuj� D g.x/jDuj and h.x/ D 1, x 2 . The purpose of this
model is to locate the boundary of an object of the image at the points where
the gradient is large. The presence of the inflating term helps to avoid minima
collapsing into a point. The model was initially formulated [19, 43] in a level
set framework In this case we may write Pg.F / instead of P�.F /, and we have
Pg.F / WD

R
@�F

g dHN�1, where @�F is the reduced boundary of F [9].
In this case the Cheeger sets are a particular instance of geodesic active

contour with an inflating force whose constant is � D Cg;1 . An interesting
feature of this formalism is that it permits to define local Cheeger sets as local
(regional) maxima of the function u. They are Cheeger sets in a subdomain of
. They can be identified with boundaries of the image and the above formalism
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Fig. 3 Geodesic active contours and edge linking experiments. The first row shows the images
I to be processed. The first three columns correspond to segmentation experiments, the last three
are edge linking experiments. The second row shows the weights g used for each experiment
(white is 1, black is 0), in the first two cases g D .

p
1 C jr.G � I /j2/�1, for the third

g D 0:37.
p

0:1 C jr.G � I /j2/�1, and for the linking experiments g D dS , the scaled distance
function to the given edges. The third row shows the disjoint minimum g-Cheeger sets extracted
from u (shown in the background); there are 1,7,2,1,1, and 1 sets, respectively. The last linking
experiment illustrates the effect of introducing a barrier in the initial domain (black square)

permits to compute several active contours at the same time (the same holds true
for the edge linking model).

(b) An edge linking model. Another interesting application of the above formalism
is to edge linking. Given a set � �  (which may be curves if  � R

2 or
pieces of surface if  � R

3), we define d�.x/ D dist.x; �/ and the anisotropy
�.x; �/ D d�.x/j�j. In that case, we experimentally see that the Cheeger set
determined by this anisotropy links the set of curves (or surfaces) � . If � is a
set of edges computed with an edge detector we obtain a set or curves (N D 2)
or surfaces (N D 3) linking them.

Notice that, for a given choice of �, we actually find many local �-Cheeger sets,
disjoint from the global minimum, that appear as local minima of the Cheeger ratio
on the tree of connected components of upper level sets of u. The computation of
those sets is partially justified by Proposition 6.11 in [22]. These are the sets which
we show on the following experiments.

Let us mention the formulation of active contour models without edges proposed
by Chan–Vese in [31] can also be related to the general formulation (64).

In Fig. 3, we display some local �-Cheeger sets of 2D images for the choices of
metric � corresponding to geodesic active contour models with an inflating force
(the first three columns) and to edge linking problems (the last three columns).
The first row displays the original images, and the second row displays the metric
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g D .
p

1C jr.G � I /j2/�1 or g D dS . The last row displays the resulting
segmentation or set of linked edges, respectively. Let us remark here a limitation
of this approach that can be observed in the last subfigure. Even if this linking
is produced, the presence of a bottleneck (bottom right subfigure) makes the dS -
Cheeger set to be a set with large volume. This limitation can be circumvented by
adding barriers in the domain : we can enforce hard restrictions on the result by
removing from the domain some points that we do not want to be enclosed by the
output set of curves.

A Convex Formulation of ContinuousMultilabel Problems

Let us consider the variational problem

min
u2BV./;0	u	M

Z


jDuj C
Z


W.x; u.x// dx; (67)

where W W  � R ! R
C is a potential which is Borel measurable in x and

continuous in u, but not necessarily convex. Thus the functional is nonlinear and
non-convex. The functional can be relaxed to a convex one by considering the
subgraph of u as an unknown.

Our purpose is to write the nonlinearities in (67) in a “convex way” by intro-
ducing a new auxiliary variable [52]. This will permit to use standard optimization
algorithms. The treatment here will be heuristic.

Without loss of generality, let us assume thatM D 1. Let �.x; s/ D H.u.x/�s/,
where H D 	Œ0;C1/ is the Heaviside function and s 2 R. Notice that the set of
points where u.x/ > s (the subgraph of u) is identified as �.x; s/ D 1. That is,
�.x; s/ is an embedding function for the subgraphs of u. This permits to consider
the problem as a binary set problem. The graphs of u is a “cut” in �.

Let

A WD f� 2 BV. � Œ0; 1�/ W �.x; s/ 2 f0; 1g;8.x; s/ 2  � Œ0; 1�g:

Using the definition of anisotropic total variation [7] we may write the energy in
(67) in terms of � as

min
�2A

Z


Z 1

0
.jDx�j CW.x; s/j@s�.x; s/j/ dx dtC

Z


.W.x; 0/j�.x; 0/� 1j CW.x; 1/j�.x; 1/j/ dx; (68)

where the boundary conditions �.x; 0/ D 1, �.x; 1/ D 0 are taken in a variational
sense.
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Although the energy (68) is convex in � the problem is non-convex since the
minimization is carried on A which is a non-convex set. The proposal in [52] is to
relax the variational problem by allowing � to take values in Œ0; 1�. This leads to the
following class of admissible functionals:

QA WD f� 2 BV.�Œ0; 1�/ W �.x; s/ 2 Œ0; 1�; 8.x; s/ 2 �Œ0; 1�; �s � 0g: (69)

The associated variational problem is written as

min
�2 QA

Z


Z 1

0
.jDx�j CW.x; s/j@s�.x; s/j/ dx dtC

Z


.W.x; 0/j�.x; 0/� 1j CW.x; 1/j�.x; 1/j/ dx: (70)

This problem is now convex and can be solved using the dual or primal-dual
numerical schemes explained in sections “Chambolle’s Algorithm” and “Primal-
Dual Approaches.” Formally, the level sets of a solution of (70) give solutions of
(67). This can be proved using the developments in [7, 22].

In [30] the authors address the problem of convex formulation of multilabel
problems with finitely many values including (67) and the case of non-convex
neighborhood potentials like the Potts model or the truncated total variation. The
general framework permits to consider the relaxation in BV./ of functionals of
the form

F.u/ WD
Z


f .x; u.x/;ru.x// dx (71)

where u 2 W 1;1./ and f W  � R � R
N ! Œ0;1Œ be a Borel function such

that f .x; z; �/ is a convex function of � for any .x; z/ 2  � R
N satisfying some

coercivity assumption in �. Let f � denote the Legendre–Fenchel conjugate of f
with respect to �. If

K WD f� D .�x; �s/ W  �R! R
2 W � is smooth and

f �.x; s; �x.x; s// � �s.x; s/g:

then the lower semicontinuous relaxation of F is

F.u/ D sup
�2K

Z


Z
R

� �D	f.x;s/Ws<u.x/g:

Based on this formula one can use a dual or a primal-dual numerical scheme to
minimize F.u/ if one knows how to compute the projection onto the convex set K .
We refer to [30, 52] for details.
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8 Other Problems: Image Restoration

To approach the problem of image restoration from a numerical point of view we
shall assume that the image formation model incorporates the sampling process in a
regular grid

fi;j D .h � u/i:j C ni;j ; .i; j / 2 f1; : : : ; N g2; (72)

where u W R2 ! R denotes the ideal undistorted image, h W R2 ! R is a blurring
kernel, f is the observed sampled image which is represented as a function f W
f1; : : : ; N g2 ! R, and ni;j is, as usual, a white Gaussian noise with zero mean and
standard deviation 
 .

Let us denote byN the interval Œ0; N Œ2. As we said in the introduction, in order
to simplify this problem, we assume that h; u are functions defined in N and are
periodic of periodN in each direction. To fix ideas, we assume that h; u 2 L2.N /,
so that h � u is a continuous function in N and the samples .h � u/i;j , .i; j / 2
f1; : : : ; N g2, have sense.

Let us define the discrete functional

J
ˇ

d .u/ D
X

1	i;j	N

q
ˇ2 C j.ru/i;j j2; ˇ � 0:

For any function w 2 L2.N /, its Fourier coefficients are

Ow l
N ;

j
N
D
Z
N

w.x; y/e�2�i .lxCjy/
N for .l; j / 2 Z

2.

Our plan is to compute a band limited approximation to the solution of the
restoration problem for (72). For that we define

B WD
�

u 2 L2.N / W Ou is supported in

�
�1

2
C 1

N
; : : : ;

1

2


:

We notice that B is a finite-dimensional vector space of dimensionN 2 which can be
identified withX . Both J.u/ D R

N
jDuj and J 0

d .u/ are norms on the quotient space
B=R; hence they are equivalent. With a slight abuse of notation we shall indistinctly
write u 2 B or u 2 X .

We shall assume that the convolution kernel h 2 L2.N / is such that Oh is
supported in f� 1

2 C 1
N
; : : : ; 1

2g and Oh.0; 0/ D 1.
In the discrete framework, the ROF model for restoration is

Minimize u2XJ ˇd .u/ (73)
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subject to
NX

i;jD1

j.h � u/i;j � fi;j j2 � 
2N 2: (74)

Notice again that the image acquisition model (1) is only incorporated through
a global constraint. In practice, the above problem is solved via the following
unconstrained formulation:

min
u2X max

˛�0
J
ˇ

d .u/C
˛

2

2
4 1

N 2

NX
i;jD1

j.h � u/i;j � fi;j j2 � 
2

3
5 (75)

where ˛ � 0 is a Lagrange multiplier. The appropriate value of ˛ can be computed
using Uzawa’s algorithm [3] so that the constraint (74) is satisfied. Recall that if
we interpret ˛�1 as a penalization parameter which controls the importance of the
regularization term, and we set this parameter to be small, then homogeneous zones
are well denoised while highly textured regions will lose a great part of its structure.
On the contrary, if ˛�1 is set to be small, texture will be kept but noise will remain
in homogeneous regions. On the other hand, as the authors of [3] observed, if we
use the constrained formulation (73)–(74) or, equivalently (75), then the Lagrange
multiplier does not produce satisfactory results since we do not keep textures and
denoise flat regions simultaneously, and they proposed to incorporate the image
acquisition model as a set of local constraints.

Following [3], we propose to replace the constraint (74) by

G � .h � u � f /i;j � 
2; 8.i; j / 2 f1; : : : ; N g2; (76)

where G is a discrete convolution kernel such that Gi;j > 0 for all .i; j / 2
f1; : : : ; N g2. The effective support ofG must permit the statistical estimation of the
variance of the noise with (76) [3]. Then we shall minimize the functional J ˇd .u/
on X submitted to the family of constraints (76) (plus eventually the constraintPN

i;jD1.h � u/i;j D PN
i;jD1 fi;j ). Thus, we propose to solve the optimization

problem:

min
u2B J

ˇ

d .u/

subject to G � .h � u � f /2i;j � 
2 8.i; j /:
(77)

This problem is well posed, i.e., there exists a solution and is unique if ˇ > 0 and
infc2RG � .f � c/2 > 
2. In case that ˇ D 0 and infc2RG � .f � c/2 > 
2, then
h � u is unique. Moreover, it can be solved with a gradient descent approach and
Uzawa’s method [3].

To guarantee that the assumptions of Uzawa’s method hold we shall use a
gradient descent strategy. For that, let v 2 X and � > 0. At each step we have
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to solve a problem like

min
u2B � ju� vj2X C J ˇd .u/
subject to G � .h � u � f /2i;j � 
2 8.i; j /:

(78)

We solve (78) using the unconstrained formulation

min
u2X max

˛�0
L� .u; f˛gI v/;

where ˛ D .˛i;j /Ni;jD1 and

L� .u; f˛gI v/ D � ju � vj2X C J ˇd .u/C
NX

i;jD1

˛i;j .G � .h � u � f /2i;j � 
2/:

Algorithm: TV-Based Restoration Algorithm with Local Constraints

1. Set u0 D 0 or, better, u0 D f . Set n D 0.
2. Use Uzawa’s algorithm to solve the problem

min
u2X max

˛�0
L� .u; f˛gI un/; (79)

that is:
(a) Choose any set of values ˛0

i;j � 0, .i; j / 2 f1; : : : ; N g2, and un0 D un. Iterate
from p D 0 until convergence of ˛p the following steps:

(b) With the values of ˛p solve DP.�; un/:

min
u

L� .u; f˛pgI un/

starting with the initial condition unp . Let unpC1 be the solution obtained.
(c) Update ˛ in the following way:

˛
pC1
i;j D max.˛pi;j C �.G � .h � unp � f /2i;j � 
2/; 0/ 8.i; j /:

Let unC1 be the solution of (79). Stop when convergence of un.

We notice that, since � > 0, Uzawa’s algorithm converges if f 2 h � B.
Moreover, if u0 satisfies the constraints, then un tends to a solution u of (77) as
n!1 [3].

Finally, to solve problem (79) in Step 2(b) of the Algorithm we use either the
extension of Chambolle’s algorithm [25] to the restoration case if we use ˇ D 0, or
the quasi-Newton method as in [38] adapted to solve (79) when ˇ > 0. For more
details, we refer to [3, 38] and references therein.
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Some Restoration Experiments

To simulate our data we use the modulation transfer function corresponding to SPOT
5 HRG satellite with Hipermode sampling (see [53] for more details):

Oh.�1; �2/ D e�4�ˇ1j�1je�4�˛
p
�2

1C�2
2 sinc.2�1/sinc.2�2/sinc.�1/; (80)

where �1; �2 2 Œ�1=2; 1=2�, sinc.�1/ D sin.��1/=.��2/, ˛ D 0:58, and ˇ1 D 0:14.
Then we filter the reference image given in Fig. 4a with the filter (80) and we add
some Gaussian white noise of zero mean and standard deviation 
 (in our case

 D 1, which is a realistic assumption for the case of satellite images [53]) to
obtain the image displayed in Fig. 4b.

Figure 5a displays the restoration of the image in Fig. 4b obtained using the
Algorithm of last section with ˇ D 0. We have used a Gaussian function G of
radius 6. The mean value of the constraint is mean..G � .Ku�f //2/ D 1:0933 and
RMSE D 7:9862. Figure 5b displays the function ˛i;j obtained.

Figure 6 displays some details of the results that are obtained using a single
global constraint (74) and show its main drawbacks. Figure 6a corresponds to the
result obtained with the Lagrange multiplier ˛ D 10 (thus, the constraint (74) is
satisfied). The result is not satisfactory because it is difficult to denoise smooth
regions and keep the textures at the same time. Figure 6b shows that most textures
are lost when using a small value of ˛ (˛ D 2) and Fig. 6c shows that some noise
is present if we use a larger value of ˛ (˛ D 1; 000). This result is to be compared
with the same detail of Fig. 5a which is displayed in Fig. 6d.

Fig. 4 Reference image and a filtered and noised image. (a) Left: reference image. (b) Right: the
data. This image has been generated applying the MTF given in (80) to the top image and adding
a Gaussian white noise of zero mean and standard deviation 
 D 1
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Fig. 5 Restored image with local Lagrange multipliers. (a) Left: the restored image corresponding
to the data given in Fig. 4b. The restoration has been obtained using the Algorithm of last section
with a Gaussian function G of radius 6. (b) Right: the function ˛i;j obtained

Fig. 6 A detail of the restored images with global and local constraints. Top: (a), (b), and (c)
display a detail of the results that are obtained using a single global constraint (74) and show its
main drawbacks. Figure (a) corresponds to the result obtained with the value of ˛ such that the
constraint (74) is satisfied, in our case ˛ D 10. Figure (b) shows that most textures are lost when
using a small value of ˛ (˛ D 2) and Figure (c) shows that some noise is present if we use a larger
value of ˛ (˛ D 1;000). Bottom: (d) displays the same detail of Fig. 5a which has been obtained
using restoration with local constraints
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The ImageModel

For the purpose of image restoration the process of image formation can be modeled
in a first approximation by the formula [53]

f D Q˚….h � u/C n
; (81)

where u represents the photonic flux, h is the point spread function of the optical-
sensor joint apparatus,… is a sampling operator, i.e., a Dirac comb supported by the
centers of the matrix of digital sensors, n represents a random perturbation due to
photonic or electronic noise, and Q is a uniform quantization operator mapping R

to a discrete interval of values, typically Œ0; 255�.

The Modulation Transfer Function for Satellite Images We describe here a
simple model for the Modulation Transfer Function of a general satellite. More
details can be found in [53] where specific examples of MTF for different
acquisition systems are shown. The MTF used in our experiments (80) corresponds
to a particular case of the general model described below [53].

Recall that the MTF, which we denote by Oh, is the Fourier transform of the point
spread function of the system. Let .�1; �2/ 2 Œ�1=2; 1=2� denote the coordinates
in the frequency domain. There are different parts in the acquisition system that
contribute to the global transfer function: the optical system, the sensor, and the blur
effects due to motion. Since each subsystem is considered as linear and translation
invariant, it is modeled by a convolution operator. The kernel k of the joint system
is thus the convolution of the point spread functions of the separated systems.

– Sensors: InCCD arrays every sensor has a sensitive region where all the photons
that arrive are integrated. This region can be approximated by a unit square
Œ�c=2; c=2�2 where c is the distance between consecutive sensors. Its impulse
response is then the convolution of two pulses, one in each spatial direction.
The corresponding transfer function also includes the effect of the conductivity
(diffusion of information) between neighboring sensors, which is modeled by an
exponential decay factor; thus:

OhS.�1; �2/ D sinc.�1c/sinc.�2c/e
�2�ˇ1cj�1je�2�ˇ2cj�2j;

where sinc.�1/ D sin.��1/=.��1/ and ˇ1; ˇ2 > 0.
– Optical system: The optical system has essentially two effects on the image: it

projects the objects from the object plane to the image plane and degrades it.
The degradation of the image due to the optical system makes that a light point
source loses definition and appears as a blurred (small) region. This effect can be
explained by the wave nature of light and its diffraction theory. Discarding other
degradation effects due to the imperfect optical systems like lens aberrations [11],
the main source of degradation will be the diffraction of the light when passing
through a finite aperture: those systems are called diffraction limited systems.
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Assuming that the optical system is linear and translation invariant we know
that it can be modeled by a convolution operator. Indeed, if the system is linear
and translation invariant, it suffices to know the response of the system to a light
point source located at the origin, which is modeled by a Dirac delta function ı,
since any other light distribution could be approximated (in a weak topology) by
superpositions of Dirac functions. The convolution kernel is, thus, the result of
the system acting on ı.

If we measure the light intensity and we use a circular aperture the MTF is
considered as an isotropic low-pass filter

OhO.�1; �2/ D e�2�˛c
p
�2

1C�2
2 ; ˛ > 0:

– Motion: each sensor counts the number of photons that arrive to its sensitive
region during a certain time of acquisition. During the sampling time the system
moves a distance � and so does the sensor; this produces a motion blur effect in
the motion direction .d1; d2/:

OhM.�1; �2/ D sinc.h.�1; �2/; .d1; d2/i�/:

Finally, the global MTF is the product of each of these intermediate transfer
functions modeling the different aspects of the satellite:

Oh.�1; �2/ D OhS OhO OhM :

Noise We shall describe the typical noise in case of a CCD array. Light is
constituted by photons (quanta of light) and those photons are counted by the
detector. Typically, the sensor registers light intensity by transforming the number
of photons which arrive to it into an electric charge, counting the electrons which the
photons take out of the atoms. This is a process of a quantum nature and therefore
there are random fluctuations in the number of photons and photoelectrons on the
photoactive surface of the detector. To this source of noise we have to add the
thermal fluctuations of the circuits that acquire and process the signal from the
detector’s photoactive surface. This random thermal noise is usually described by a
zero-mean white Gaussian process. The photoelectric fluctuations are more complex
to describe: for low light levels, photoelectric emission is governed by Bose–
Einstein statistics, which can be approximated by a Poisson distribution whose
standard deviation is equal to the square root of the mean; for high light levels,
the number of photoelectrons emitted (which follows a Poisson distribution) can
be approximated by a Gaussian distribution which, being the limit of a Poisson
process, inherits the relation between its standard deviation and its mean [11]. In a
first approximation this noise is considered as spatially uncorrelated with a uniform
power spectrum, thus a white noise. Finally, both sources of noise are assumed to
be independent.
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Taken together, both sources of noise are approximated by a Gaussian white
noise, which is represented in the basic equation (81) by the noise term n. The
average signal to noise ratio, called the SNR, can be estimated by the quotient
between the signals average and the square root of the variance of the signal.

The detailed description of the noise requires knowledge of the precise system of
image acquisition. More details in the case of satellite images can be found in [53]
and references therein.

9 Final Remarks: A Different Total Variation-Based
Approach to Denoising

Let us briefly comment on the interesting work [47] which interprets the total
variation model for image denoising in a Bayesian way leading to a different
algorithm based on stochastic optimization which produces better results.

We work again in the discrete setting and consider the image model

fi;j D ui;j C ni;j .i; j / 2 f1; : : : ; N g2; (82)

where ni;j is a white Gaussian noise with zero mean and standard deviation 
 .
The solution of (36) can be viewed as a Maximum a Posteriori (MAP) estimate of

the original image u. Let ˇ > 0 and let pˇ be the prior probability density function
defined by

pˇ.u/ / e�ˇJd .u/ u 2 X;

where we have omitted the normalization constant. The prior distribution models
the gradient norms of each pixel as independent and identically distributed random
variables following a Laplace distribution. Although the model does not exactly fit
the reality since high gradient norms in real images are concentrated along curves
and are not independent, it has been found to be convenient and efficient for many
tasks in image processing and we follow it here.

Since the probability density of f given u is the density for n D f � u, then

p.f ju/ / e� kf�uk2
X

2
2 :

Using Bayes rule, the posterior density of u given f is

pˇ.ujf / D 1

Z
p.f ju/pˇ.u/ D 1

Z
e

�
�

kf�uk2
X

2
2 CˇJd .u/
�
; (83)

where Z D
Z
RN

2
e

�
�

kf�uk2
X

2
2 CˇJd .u/
�
du is the normalization constant making the

mass of pˇ.ujf / to be 1. Then the maximization of the a posteriori density (83) is
equivalent to the minimization problem (36) provided that ˇ
2 D �.
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Fig. 7 (a) Left: the result obtained by computing E.ujf / and ˇ
2 D � D 20, 
 D 10 (image
courtesy of Cécile Louchet). (b) Right: the result obtained using Chambolle’s algorithm with � D
20

The estimation of u proposed in [47] consists in computing the expected value of
u given f :

E.ujf / D 1

Z

Z
RN

2
upˇ.ujf / du D 1

Z

Z
RN

2
ue

�
�

kf�uk2
X

2
2 CˇJd .u/
�
du: (84)

This estimate requires to compute an integral in a high dimensional space. In [47],
the authors propose to approximate this integral with a Markov Chain Monte-Carlo
algorithm (MCMC). In Fig. 7a we display the result of denoising the image in
Fig. 2b which has a noise of standard deviation 
 D 10 with the parameter ˇ D 20


2 .
In Fig. 7b we display the denoising of the same image using Chambolle’s algorithm
with � D 20. Notice that in both cases the parameter � is the same.

10 Conclusion

We have given in this chapter an overview of recent developments on the total
variation model in imaging. Its strong influence comes from its ability to recover the
image discontinuities and is the basis of numerous applications to denoising, optical
flow, stereo imaging and 3D surface reconstruction, segmentation, or interpolation
to mention some of them. We have reported the recent theoretical progress on the
understanding of its main qualitative features. We have also reviewed the main
numerical approaches to solve different models where total variation appears. We
have described both the main iterative schemes and the global optimization methods
based on the use of max-flow algorithms. Then, we reviewed the use of anisotropic
total variation models to solve different geometric problems and its recent use in
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finding a convex formulation of some nonconvex total variation problems. We have
also studied the total variation formulation of image restoration and displayed some
results. We have also reviewed a very recent point of view which interprets the
total variation model for image denoising in a Bayesian way, leading to a different
algorithm based on stochastic optimization which produces better results.
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the most popular and successful methodologies for image restoration. New
developments continue to expand the capability of the basic method in various
aspects. Many faster numerical algorithms and more sophisticated applications
have been proposed. This chapter reviews some of these recent developments.

1 Introduction

Images acquired through an imaging system are inevitably degraded in various
ways. The types of degradation include noise corruption, blurring, missing values
in the pixel domain or transformed domains, intensity saturation, jittering, etc. Such
degradations can have adverse effects on high-level image processing tasks such as
object detection and recognition. Image restoration aims at recovering the original
image from its degraded version(s) to facilitate subsequent processing tasks. Image
data differ from many other kinds of data due to the presence of edges, which
are important features in human perception. It is therefore essential to preserve
and even reconstruct edges in the processing of images. Variational methods for
image restoration have been extensively studied in the past couple of decades. A
promise of these methods is that the geometric regularity of the resulting images
is explicitly controlled by using well-established descriptors in geometry. For
example, smoothness of object boundaries can be easily manipulated by controlling
their length. There has also been much research in designing variational methods
for preserving other important image features such as textures.

Among the various restoration problems, denoising is perhaps the most funda-
mental one. Indeed, all algorithms for solving ill-posed restoration problems have
to have some denoising capabilities either explicitly or implicitly, for otherwise
they cannot cope with any error (noise) introduced during image acquisition or
numerical computations. Moreover, the noise removal problem boils down to the
fundamental problem of modeling natural images which has great impacts on any
image processing tasks. Therefore, research on image denoising has been very
active.

2 Background

Total variation (TV)-based image restoration models are introduced by Rudin,
Osher, and Fatemi (ROF) in their seminal work [51] on edge-preserving image
denoising. It is one of the earliest and best-known examples of variational partial
differential equation (PDE)-based edge-preserving denoising models. In this model,
the geometric regularity of the resulting image is explicitly imposed by reducing the
amount of oscillation while allowing for discontinuities (edges). The unconstrained
version introduced in [1] reads:

inf
u2L2./

Z


jruj C �
Z


.u � f /2 dx:
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Here, is the image domain, f W ! R is the observed noisy image, u: ! R
is the denoised image, and � � 0 is a parameter depending on the noise level. The
first term is the total variation (TV) which is a measure of the amount of oscillation
in the resulting image u. Its minimization would reduce the amount of oscillation
which presumably reduces noise. The second term is the L2 distance between u and
f , which encourages the denoised image to inherit most features from the observed
data. Thus, the model trades off the closeness to f by gaining the regularity of
u. The noise is assumed to be additive and Gaussian with zero mean. If the noise
variance level 
2 is known, then the parameter � can be treated as the Lagrange
multiplier, restraining the resulting image to be consistent with the known noise
level, i.e., s.u � f /2dx D jj
2 [16].

The ROF model is simple and elegant for edge-preserving denoising. Since its
introduction, this model has ignited a great deal of research in constructing more
sophisticated variants which can give better reconstructed images, designing faster
numerical algorithms for solving the optimization problem numerically, and finding
new applications in various domains. In a previous book chapter [21] published
in 2005, the authors surveyed some recent progresses in the research of total
variation-based models. The present chapter aims at highlighting some exciting
latest developments in numerical methods and applications of total variation-based
methods since the last survey.

3 Mathematical Modeling and Analysis

In this section, the basic definition of total variation and some of its variants
are presented. Then, some recent TV-based mathematical models in imaging are
reviewed.

Variants of Total Variation

Basic Definition
The use of TV as a regularizer has been shown to be very effective for processing
images because of its ability to preserve edges. Being introduced for different
reasons, several variants of TV can be found in the literature. Some variants can
handle more sophisticated data such as vector-valued imagery and matrix-valued
tensors; some are designed to improve restoration quality, and some are modified
versions for the ease of numerical implementation. It is worthwhile to review the
basic definition and its variants.

In Rudin, Osher, and Fatemi’s work [51], the TV of an image f W  ! R is
defined as

Z


jrf j dx;
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where  � R2 is a bounded open set. Since the image f may contain discon-
tinuities, the gradient rf must be interpreted in a generalized sense. It is well
known that elements of the Sobolev space W 1;1./ cannot have discontinuities
[2]. Therefore, the TV cannot be defined through the completion of the space
C 1 of continuously differentiable functions under the Sobolev norm. The rf is
thus interpreted as a distributional derivative, and its integral is interpreted as a
distributional integral [40]. Under this framework, the minimization of TV naturally
leads to a PDE with a distribution as a solution.

Besides defining TV as a distributional integral, other perspectives can offer some
unique advantages. A set theoretical way is to define TV as a Radon measure of the
domain  [50]. This has an advantage of allowing  to be a more general set. But
a more practical and simple alternative is the “dual formulation.” It uses the usual
trick in defining weak derivatives – integration by parts – together with the Fenchel
transform,

Z


jrf j D sup

(Z


f divg dx

ˇ̌
ˇ̌
ˇg 2 C 1

c

�
;R2

	
; jg.x/j � 18x 2 

)
(1)

where f 2 L1./ and div is the divergence operator. Using this definition, one can
bypass the discussion of distributions. It also plays an important role in many recent
works in dual and primal-dual methods for solving TV minimization problems. The
space BV can now be defined as

BV ./ WD
�
f 2 L1 ./

ˇ̌
ˇ̌
Z


jrf j <1

:

Equipped with the norm kf kBV D kf kL1 C R jrf j, this space is complete and is
a proper superset of W 1;1./ [32].

Multichannel TV
Many practical images are acquired in a multichannel way, where each channel
emphasizes a specific kind of signal. For example, color images are often acquired
through the RGB color components, whereas microscopy images consist of mea-
surements of different fluorescent labels. The signals in the different channels
are often correlated (contain redundant information). Therefore, in many practical
situations, regularization of multichannel images should not be done independently
on each channel.

There are several existing ways to generalize TV to vectorial data. A review of
some generalizations can be found in [20]. Many generalizations are very intuitive.
But only some of them have a natural dual formulation. Sapiro and Ringach [52]
proposed to define

Z


jrf j WD
Z


vuut MX
iD1

jrfi j2dx D
Z


jrf jF dx;
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where f D .f1.x/; f2.x/; : : :; fM .x// is the vectorial data withM channels. Thus, it
is the integral of the Frobenius norm j � jF of the Jacobianrf . The dual formulation
given in [10] is

sup

(Z


hf; div gidx

ˇ̌
ˇ̌
ˇg 2 C 1

c

�
;R2�M 	; jg.x/jF � 18x 2 

)
;

where hf; div gi DPM
iD1 fi div gi .

Matrix-Valued TV
In applications such as diffusion tensor imaging (DTI), the measurements at each
spatial location are represented by a diffusion tensor, which is a 3 � 3 symmetric
positive semi-definite matrix. Recent efforts have been devoted to generalize the
TV to matrix-valued images. Some natural generalizations can be obtained by
identifying an M � N matrix with an MN vector, so that a vector-valued total
variation can be applied. This was done by Tschumperlé and Deriche [57], who
generalized the vectorial TV of [7]. The main challenge is to preserve the positive
definiteness of the denoised solution. This will be elaborated in section “Diffusion
Tensors Images.”

Another interesting approach proposed by Setzer et al. [54] is the so-called
operator-based regularization. Given a matrix-valued function f D .fij .x//, define
a matrix functionA W D .aij / where aij D jrfij j2. Let˚.A/ be the matrix obtained
by replacing each eigenvalue � of A with

p
�. Then the total variation is defined to

be s j˚.A/jF dx, where j � jF is the Frobenius norm. While this formulation seems
complicated, its first variation turns out to have a nice simple formula. However,
when combined with the ROF model, the preservation of positive definiteness is an
issue.

Discrete TV
The ROF model is cast as an infinite-dimensional optimization problem over the
BV space. To solve the problem numerically, one must discretize the problem at
some stage. The approach proposed by Rudin et al. in [51] is to “optimize then
discretize.” The gradient flow equation is discretized with a standard finite difference
scheme. This method works very well in the sense that the numerical solution
converges to a steady state which is qualitatively consistent with the expected result
of the (continuous) ROF model. However, to the best of the authors’ knowledge,
a theoretical proof of convergence of the numerical solution to the exact solution
of the gradient flow equation as the grid size tends to zero is not yet available.
A standard convergence result of finite difference schemes for nonlinear PDE is
based on the compactness of TV-bounded sets in L1 [46]. However, proving TV
boundedness in two or more dimensions is often difficult.

An alternative approach is to “discretize then optimize.” In this case, only one has
to solve a finite-dimensional optimization problem, whose numerical solution can
in many cases be shown to converge. But the convergence of the exact solution



1506 R. Chan et al.

of the finite-dimensional problems to the exact solution of the original infinite-
dimensional problem is often hard to obtain too. So, both approaches suffer from
the theoretical convergence problem. But the latter method has a precise discrete
objective to optimize.

To discretize the ROF objective, the fitting term is often straightforward. But the
discretization of the TV term has a strong effect on the numerical schemes. The
most commonly used versions of discrete TV are

kf kT V D
m�1X
iD1

n�1X
jD1

q�
fiC1;j � fi;j

	2 C �fi;jC1 � fi;j
	2
�x; (2)

kf kT V D
m�1X
iD1

n�1X
jD1

�ˇ̌
fiC1;j � fi;j

ˇ̌C ˇ̌fi;jC1 � fi;j
ˇ̌	
�x; (3)

where f D .fi;j / is the discrete image and�x is the grid size. They are sometimes
referred as the isotropic and anisotropic versions, respectively, for they are a

formal discretization of the isotropic TV
R


q
f 2
x C f 2

y dx and the anisotropic TV

s.jfxj C jfy j/d x, respectively. The anisotropic TV is not rotational invariant; an
image and its rotation can have a different TV value. Therefore, the discrete TV (3)
deviates from the original isotropic TV. But being a piecewise linear function, some
numerical techniques for quadratic and linear problems can be applied. Indeed, by
introducing some auxiliary variables, the corresponding discrete ROF objective can
be converted into a canonical quadratic programming problem [30].

Besides using finite difference approximations, a recent popular way is to
represent TV on graphs [27]. To make the problem fully discrete, the range of the
image is quantized to a finite set of K integers only, usually 0–255. The image is
“leveled,” so that f k

i;j D 1 if the intensity of the .i; j /th pixel is at most k, and

f k
i;j D 0 otherwise. Then, the TV is given by

kf kT V D
K�1X
kD0

X
i;j

X
s;t

wi;j;s;t
ˇ̌
ˇf k
i;j � f k

s;t

ˇ̌
ˇ; (4)

where wi;j;s;t is a nonnegative weight. A simple choice is the four-connectivity
model, where wi;j;s;t D 1 if ji � sj C jj � t j � 1 and wi;j;s;t D 0 otherwise.
In this case, it becomes the anisotropic TV (3). Different choices of the weights
penalize edges in different orientations.

A related concept introduced by Shen and Kang is the quantum total variation
[55]. They studied the ROF model when the range of an image is a finite discrete set
(preassigned or determined on the fly), but the image domain is a continuous one.
The model is suitable for problems such as bar code scanning, image quantization,
and image segmentation. An elegant analysis of the model and some stochastic
gradient descent algorithms were presented there.
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Nonlocal TV
First proposed by Buades et al. [11], the nonlocal means algorithm renounces the
use of local smoothness to denoise an image. Patches which are spatially far away
but photometrically similar are also utilized in the estimation process – a paradigm
which has been used in texture synthesis [28]. The denoising results are surprisingly
good. Since then, the use of nonlocal information becomes increasingly popular.
In particular, Bresson and Chan [10] and Gilboa and Osher [31] considered the
nonlocal TV. The nonlocal gradient rNLf for a pair of points x 2  and y 2  is
defined by

rNLf .x; y/ D
p

w .x; y/ .f .x/� f .y// ;

where w.x; y/ is a nonnegative weight function which is presumably a similarity
measure between a patch around x and a patch around y. As an illustration, a simple
choice of the weight function is

w .x; y/ D ˛1e
�jx�yj2=
2

1 C ˛2e
�jF .x/�F .y/j2=
2

2 ;

where ˛i and 
i are positive constants, and F.x/ is a feature vector derived from
a patch around x. The constants ˛i may sometimes be defined to depend on x, so
that the total weight over all y 2  is normalized to 1. In this case, the weight
function is nonsymmetric with respective to its arguments. The first term in w is
a measure of geometric similarity, so that nearby pixels have a higher weight. The
second term is a measure of photometric similarity. The feature vector F can be the
color histogram or any texture descriptor over a window around x. The norm of the
nonlocal gradient at x is defined by

jrNLf .x/j D
sZ



ŒrNLf .x; y/�2 dy;

which adds up all the squared intensity variation relative to f .x/, weighted by
the similarity between the corresponding pair of patches. The nonlocal TV is then
naturally defined by summing up all the norms of the nonlocal gradients over the
image domain:

Z


jrNLf jdx:

Therefore, the nonlocal TV is small if, for each pair of similar patches, the intensity
difference between their centers is small. An advantage of using the nonlocal TV
to regularize images is its tendency to preserve highly repetitive patterns better. In
practice, the weight function is often truncated to reduce the computation costs spent
in handling the many less similar patches.
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Further Applications

Inpainting in Transformed Domains
After the release of the image compression standard JPEG2000, images can be
formatted and stored in terms of wavelet coefficients. For instance, in Acrobat 6.0 or
later, users can opt to use JPEG2000 to compress embedded images in a PDF file.
During the process of storing or transmission, some wavelet coefficients may be
lost or corrupted. This prompts the need of restoring missing information in wavelet
domains. The setup of the problem is as follows. Denote the standard orthogonal
wavelet expansion of the images f and u by

f .˛/ D
X
j;k

˛j;k j;k .x/; j 2 Z; k 2 Z
2;

and

u .ˇ/ D
X
j;k

ˇj;k j;k .x/ ; j 2 Z; k 2 Z
2;

where f‰j;kg is the wavelet basis, and f’j;kg, f“j;kg are the wavelet coefficients of
f and u given by

˛j;k D
˝
f; j;k

˛
and ˇj;k D

˝
u;  j;k

˛
;

respectively, for j 2 Z, k 2 Z
2. For convenience, u.“/ is denoted by u when there

is no ambiguity. Assume that the wavelet coefficients in the index set I are known,
i.e., the available wavelet coefficients are given by

�j;k D
�
˛j;k; .j; k/ 2 I;

0; .j; k/ 2 nI:

The aim of wavelet domain inpainting is to reconstruct the wavelet coefficients
of u from the given coefficients �. It is well known that the inpainting problem
is ill posed, i.e., it admits more than one solution. There are many different ways
to fill in the missing coefficients, and therefore many different reconstructions in
the pixel domain are possible. Regularization methods can be used to incorporate
prior information about the reconstruction. In [23], Chan, Shen, and Zhou used TV
to solve the wavelet inpainting problem, so that the missing coefficients are filled
while preserving sharp edges in the pixel domain faithfully. More precisely, they
considered the minimization of the following objective

F .ˇ/ D 1

2

X
j;k

	j;k
�
�j;k � ˇj;k

	2 C � kukT V ; (5)
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with 	j;k D 1 if .j; k/ 2 I and 	j;k D 0 if .j; k/ 2 nI , and � is the
regularization parameter. The first term in F is the data-fitting term, and the second
is the TV regularization term. The method Chan, Shen, and Zhou used to optimize
the objective is the standard gradient descent. The method is very robust, but it often
slows down significantly before it converges.

In [18], Chan, Wen, and Yip proposed an efficient optimization transfer algo-
rithm to minimize the objective (5). An auxiliary variable — is introduced to yield a
new objective function:

G .�; ˇ/ D 1C �
2�

�
k	 .� � �/k2

2 C � k� � ˇk2
2

�
C � ku .ˇ/kT V ;

where ¦ denotes a diagonal matrix with diagonal entries ¦j;k, and � is an arbitrary
positive parameter. The functionG is a quadratic majorizing function [43] of F . The
method also has a flavor of the splitting methods introduced in section “Splitting
Methods.” But a major difference is that the method here solves the original
problem (5) without any alteration. It can be easily shown that

F .ˇ/ D min
�
G .�; ˇ/

for any positive regularization parameter £. Thus, the minimization of G w.r.t.
.—; “/ is equivalent to the minimization of F w.r.t. “ for any £ > 0. Unlike the
gradient descent method of [23], the optimization transfer algorithm avoids the use
of derivatives of the TV. It also does not require smoothing out the TV to make it
differentiable. The experimental results in [18] showed that the algorithm is very
efficient and outperforms the gradient descent method.

Superresolution
Image superresolution refers to the process of increasing spatial resolution by fusing
information from a sequence of low-resolution images of the same scene. The
images are assumed to contain subpixel information (due to subpixel displacements
or blurring), so that the superresolution is possible.

In [24], Chan et al. proposed a unified TV model for superresolution imaging
problems. They focused on the problem of reconstructing a high-resolution image
from several decimated, blurred, and noisy low-resolution versions of the high-
resolution image. They derived a low-resolution image formation model which
allows multiple-shifted and blurred low-resolution image frames, so that it subsumes
several well-known models. The model also allows an arbitrary pattern of missing
pixels (in particular an arbitrary pattern of missing frames). The superresolution
image reconstruction problem is formulated as an optimization problem which
combines the image formation model and the TV inpainting model. In this method,
TV minimization is used to suppress noise amplification, repair corrupted pixels
in regions without missing pixels, and reconstruct intensity levels in regions with
missing pixels.
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Image Formation Model The observation model, Chan et al. considered, consists
of various degradation processes. Assume that a number of m � n low-resolution
frames are captured by an array of charge-coupled device (CCD) sensors. The goal
is to reconstruct an Lm�Ln high-resolution image. Thus, the resolution is increased
by a factor of L in each dimension. Let u be the ideal Lm�Ln high-resolution clean
image.

1. Formation of low-resolution frames. A low-resolution frame is given by

Dp;qCu;

where C is an averaging filter with window size L-by-L, and Dp;q is the
downsampling matrix which, starting at the (p; q)th pixel, samples every other
L pixels in both dimensions to form an m � n image.

2. Blurring of frames. This is modeled by

Hp;qDp;qCu;

where Hp;q is the blurring matrix for the .p; q/th frame.
3. Concatenation of frames. The full set of L2 frames are interlaced to form an

mL � nL image:

Au;

where

A D
X
p;q

DT
p;qHp;qDp;qC:

4. Additive Noise.

AuC �;

where each pixel in ˜ is a Gaussian white noise.
5. Missing pixels and missing frames.

f D ƒD .AuC �/ ;

where D denotes the set of missing pixels, and ƒD is the downsampling matrix
from the image domain to D.

6. Multiple observations. Finally, multiple observations of the same scene, but with
different noise and blurring, are allowed. This leads to the model

fr D ƒDr .AruC �r/ r D 1; : : : ; R; (6)
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where

Ar D
X
p;q

DT
p;qHp;q;rDp;qC:

TV Superresolution Imaging Model To invert the degradation processes in (6), a
Tikhonov-type regularization model has been used. It requires minimization of the
following energy:

F .u/ D 1

2

RX
rD1

kƒDr Aru � frk2 C � kukT V :

This model simultaneously performs denoising, deblurring, inpainting, and super-
resolution reconstruction. Experimental results show that reasonably good recon-
struction can be obtained even if five-sixth of the pixels are missing and the frames
are blurred.

Image Segmentation
TV minimization problems also arise from image segmentation. When one seeks for
a partition of the image into homogeneous segments, it is often helpful to regularize
the shape of the segments. This can increase the robustness of the algorithm against
noise and avoid spurious segments. It may also allow the selection of features
of different scales. In the classical Mumford-Shah model [47], the regularization
is done by minimizing the total length of the boundary of the segments. In this
case, if one represents a segment by its characteristic function, then the length
of its boundary is exactly the TV of the characteristic function. Therefore, the
minimization of length becomes the minimization of TV of characteristic functions.

Given an observed image f on an image domain , the piecewise constant
Mumford-Shah model seeks a set of curves C and a set of constant c D
.c1; c2; : : : ; cL/ which minimize the energy functional given by

FMS .C; c/ D
LX
lD1

Z
l

Œf .x/� cl �2 dxC ˇ �Length .C / :

The curves in C partition the image into L mutually exclusive segments l for
l D 1; 2; : : : ; L. The idea is to partition the image, so that the intensity of f in each
segment l is well approximated by a constant cl . The goodness of fit is measured
by the L2 difference between f and cl . On the other hand, a minimum description
length principle is employed which requires the curves C to be as short as possible.
This increases the robustness to noise and avoids spurious segments. The parameter
“ > 0 controls the trade-off between the goodness of fit and the length of the
curves C . The Mumford-Shah objective is nontrivial to optimize especially when
the curves need to be split and merged. Chan and Vese [24] proposed a level set-
based method which can handle topological changes effectively. In the two-phase
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version of this method, the curves are represented by the zero level set of a Lipschitz
level set function ˆ defined on the image domain. The objective function then
becomes

F CV .�; c1; c2/ D
Z


H .� .x// Œf .x/� c1�
2 dx

C
Z


Œ1 �H .� .x//� Œf .x/� c2�
2 dxC ˇ

Z


jrH .�/j :

The functionH is the Heaviside function defined byH.x/ D 1 if x � 0,H.x/ D 0
otherwise. In practice, we replaceH by a smooth approximationH©, e.g.,

H" .x/ D 1

2

�
1C 2

�
arctan

�x
"

��
:

Although this method makes splitting and merging of curves a simple matter, the
energy functional is non-convex which possesses many local minima. These local
minima may correspond to undesirable segmentations; see [45].

Interestingly, for fixed c1 and c2, the above non-convex objective can be refor-
mulated as a convex problem, so that a global minimum can be easily computed;
see [22, 56]. The globalized objective is given by

F CEN .u; c1; c2/ D
Z


n
Œf .x/� c1�

2 � Œf .x/� c2�
2
o

u .x/ dxC ˇ
Z


jruj
(7)

which is minimized over all u satisfying the bilateral constraints 0 � u � 1 and
all scalars c1 and c2. After a solution u is obtained, a global solution to the original
two-phase Mumford-Shah objective can be obtained by thresholding u with � for
almost every � 2 [0,1], see [22, 56]. Some other proposals for computing global
solutions can be found in [45].

To optimize the globalized objective function (7), Chan et al. [22] proposed to
use an exact penalty method to convert the bilaterally constrained problem to an
unconstrained problem. Then the gradient descent method is applied. This method
is very robust and easy to implement. Moreover, the exact penalty method treats the
constraints gracefully, as if there is no constraint at all. But of course the gradient
descent is not particular fast.

In [42], Krishnan et al. considered the following discrete two-phase Mumford-
Shah model:

F CEN .u; c1; c2/ D hs; ui C ˇ kukT V C
˛

2

����u � 1

2

����
2

;

where h � ; � i is the l2 inner product, s D .si;j /, and

si;j D
�
fi;j � c1

	2 � �fi;j � c2
	2
:
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The variable u is bounded by the bilateral constraints 0 � u � 1. When ’ D 0,
this problem is convex but not strictly convex. When ’ > 0, this problem is
strictly convex. The additive constant 1

2 is introduced in the third term so that
the minimizer does not bias toward u D 0 or u D 1. This problem is exactly a
TV denoising problem with bound constraints. Krishnan et al. proposed to use the
primal-dual active-set method to solve the problem. Superlinear convergence has
been established.

Diffusion Tensors Images
Recently, diffusion tensor imaging (DTI), a kind of magnetic resonance (MR)
modality, becomes increasingly popular. It enables the study of anatomical struc-
tures such as nerve fibers in human brains noninvasively. Moreover, the use of
direction-sensitive acquisitions results in its lower signal-to-noise ratio compared to
convectional MR. At each voxel in the imaging domain, the anisotropy of diffusion
water molecules is interested. Such an anisotropy can be described by a diffusion
tensorD, which is a 3�3 positive semi-definite matrix. By standard spectral theory
results, D can be factorized into

D D VƒV T ;

where V is an orthogonal matrix whose columns are the eigenvectors ofD, and+ is
a diagonal matrix whose diagonal entries are the corresponding eigenvalues. These
eigenvalues provide the diffusion rate along the three orthogonal directions defined
by the eigenvectors. The goal is to estimate the matrix D (one at each voxel) from
the data. Under the Stejskal-Tanner model, the measurement Sk from the imaging
device and the diffusion tensor are related by

Sk D S0e
�bgTk Dgk ; (8)

where S0 is the baseline measurement, gk is the prescribed direction in which the
measurement is done, and b > 0 is a scalar depending the strength of the magnetic
field applied and the acquisition time. Since D has six degrees of freedom, six
measurements at different orientations are needed to reconstruct D. In practice,
the measurements are very noisy. Thus, matrix D obtained by directly solving (8)
for k D 1; 2; : : : ; 6 may not be positive semi-definite and is error-prone. It is thus
often helpful to take more than six measurements and to use some least squares
methods or regularization to obtain a robust estimate while preserving the positive
semi-definiteness for physical correctness.

In [60] Wang et al. and in [25] Christiansen et al. proposed an extension of the
ROF to denoise tensor-valued data. Two major differences between the two works
are that the former regularizes the Cholesky factor of D and uses a channel-by-
channel TV regularization, whereas the latter regularizes the tensor D directly and
uses a multichannel TV.

The method in [25] is two staged. The first stage is to estimate the diffusion
tensors from the raw data based on the Stejskal-Tanner model (8). The obtained
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tensors are often noisy and may not be positive semi-definite. The next stage is to
use the ROF model to denoise the tensor while restricting the results to be positive
semi-definite. The trick they used to ensure positive semi-definiteness is very simple
and practical. They observed that a symmetric matrix is positive semi-definite if and
only if it has a Cholesky factorization of the form

D D LLT ;

where L is a lower triangular matrix

L D
2
4 l11 0 0
l21 l22 0
l31 l32 l33

3
5 :

Then one can easily express D in terms of lij for 1 � j � i � 3:

D D D .L/ D

2
64

l2
11 l11l21 l11l31

l11l21 l2
21 C l2

22 l21l31 C l22l32

l11l31 l21l31 C l22l32 l
2
31 C l2

32 C l2
33

3
75 :

The ROF problem, written in a continuous domain, is then formulated as

min
L

8<
:

1

2

X
ij

Z


h
dij .L/ � Odij

i2
dxC �

vuutX
ij

�Z


ˇ̌rdij .L/ˇ̌
�2
9=
; ;

where OD D . Odij / is the observed noisy tensor field, and L is the unknown lower
triangular matrix-valued function from  to R3�3. Here, the matrix-valued version
of TV is used. The objective is then differentiated w.r.t. the lower triangular part of
L to obtain a system of six first-order optimality conditions. Once the optimal L
is obtained, the tensor D can be formed by taking D D LLT which is a positive
semi-definite.

The original ROF problem is strictly convex so that one can obtain the globally
optimal solution. However, in this problem, due to the nonlinear change of variables
from D to L, the problem becomes non-convex. But the authors of [25] reported
that in their experiments, different initial data often resulted in the same solution, so
that the non-convexity does not pose any significant difficulty to the optimization of
the objective.

4 Numerical Methods and Case Examples

Fast numerical methods for TV minimization continue to be an active research
area. Researchers from different fields have been bringing many fresh ideas to the
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problem and led to many exciting results. Some categories of particular mention
are dual/primal-dual methods, Bregman iterative methods, and graph cut methods.
Many of these methods have a long history with a great deal of general theories
developed. But when it comes to their application to the ROF model, many
further properties and specialized refinements can be exploited to obtain even faster
methods. Having said so, different algorithms may adopt different versions of TV.
They have different properties and thus may be used for different purposes. Thus,
some caution needs to be taken when one attempts to draw conclusions such as
method A is faster than method B. Moreover, different methods have different
degree of generality. Some methods can be extended directly to deblurring, while
some can only be applied to denoising. (Of course, one can use an outer iteration
to solve a deblurring problem by a sequence of denoising problems, so that any
denoising algorithm can be used. But the convergence of the outer iteration has little,
if not none, to do with the inner denoising algorithm.) This section surveys some
recent methods for TV denoising and/or deblurring. The model considered here is a
generalized ROF model which simultaneously performs denoising and deblurring.
The objective function reads

F .u/ D 1

2

Z


.Ku� f /2 dxC �
Z


jruj; (9)

where K is a blurring operator and � > 0 is the regularization parameter. For
simplicity, we assume that K is invertible. When K is the identity operator, (9)
is the ROF denoising model.

Dual and Primal-Dual Methods

The ROF objective is non-differentiable in flat regions where jruj D 0. This
leads to much difficulty in the optimization process since gradient information
(hence, Taylor’s expansion) becomes unreliable in predicting the function value
even locally. Indeed, the staircase effects of TV minimization can introduce some
flat regions which make the problem worse. Even if the standard procedure of
replacing the TV with a reasonably smoothed version is used so that the objective
becomes differentiable, the Euler-Lagrange equation for (9) is still very stiff to solve.
Higher-order methods such as Newton’s methods often fail to work because higher-
order derivatives are even less reliable.

Due to the difficulty in optimizing the ROF objective directly, much recent
research has been directed toward solving some reformulated versions. In particular,
methods based on dual and primal-dual formulations have been shown to be very
fast in practice. Actually, the dual problem (see (12) below) also has its own
numerical difficulties to face, e.g., the objective is rank deficient and some extra
work is needed to deal with the constraints. But the dual formulation brings many
well-developed ideas and techniques from numerical optimization to bear on this
problem. Primal-dual methods have also been studied to combine information from
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the primal and dual solutions. Several successful dual and primal-dual methods are
reviewed.

Chan-Golub-Mulet’s Primal-Dual Method
Some early work in dual and primal-dual methods for the ROF model can be found
in [13, 20]. In particular, Chan, Golub, and Mulet (CGM) [20] introduced a primal-
dual system involving a primal variable u and a Fenchel dual variable p. It remains
one of the most efficient methods today and is perhaps the most intuitive one. It is
worthwhile to review it and see how it relates to the more recent methods. Their idea
is to start with the Euler-Lagrange equation of (9):

KTKu�KTf � �div

0
B@ ruq
jruj2 C "

1
CA D 0: (10)

Owing to the singularity of the third term, they introduced an auxiliary variable

p D ruq
jruj2 C "

to form the system

p
q
jruj2 C " D ru

KTKu�KTf � �divp D 0:

Thus, the blowup singularity is canceled. They proposed to solve this system by
Newton’s method which is well known to converge quadratically locally if the
Jacobian of the system is Lipschitz. Global convergence is observed when coupled
with a simple Armijo line search [8]. The variable p is indeed the same as the
Fenchel dual variable g in (1) when ru ¤ 0 and © D 0. Thus, p is a smoothed
version of the dual variable g. Without the introduction of the dual variable, a direct
application of the Newton’s method to the Euler-Lagrange equation (10) often fails
to converge because of the small domain of convergence.

Chambolle’s Dual Method
A pure dual method is proposed by Chambolle in [14], where the ROF objective is
written solely in terms of the dual variable. By the definition of TV in (1), it can be
deduced using duality theory that

inf
u

�
1

2

Z


.Ku � f /2 dxC �
Z


jruj


” inf
u

sup
jpj	1

�
1

2

Z


.Ku� f /2 dxC �
Z


udivp dx


(11)
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” sup
jpj	1

inf
u

�
1

2

Z


.Ku� f /2 dxC �
Z


udivpdx


” sup
jpj	1

(
��

2

2

Z


ˇ̌
ˇ̌K�T divp� f

�

ˇ̌
ˇ̌2 dx

)
: (12)

The resulting problem has a quadratic objective with quadratic constraints. In
contrast, the primal objective is only piecewise smooth which is badly behaved
when ru D 0. Thus the dual objective function is very simple, but additional
efforts are needed to handle the constraints. One can write down the Karush-Kuhn-
Tucker (KKT) optimality system [8] of the discretized objective, which amounts
to solving a nonlinear system of equations involving complementarity conditions
and inequality constraints on the Lagrange multipliers. Interestingly, the Lagrange
multipliers have a closed-form solution which greatly simplifies the problem. More
precisely, the KKT system consists of the equations

�p D H .p/ (13)

�
�
jpj2 � 1

�
D 0 (14)

� � 0 (15)

jpj2 � 1; (16)

where � is the nonnegative Lagrange multiplier and

H .p/ WD r
��
KTK

	�1
divp� 1

�
K�1f

�
:

Since
� jpj D jH .p/j ;

if jpj D 1, then � D jH.p/j; if jpj < 1, then the complementarity (14) implies
� D 0 and by (13) H.p/ D 0, so that � is also equal to jH.p/j. This simplifies the
KKT system into a nonlinear system of p only

jH .p/jp D H .p/ :

Chambolle proposes a simple semi-implicit scheme to solve the system:

pnC1 D pn C �H .pn/
pn C � jH .pn/j :

Here, £ is a positive parameter controlling the stepsize. The method is proven to be
convergent for any

� � 1

8

����KTK
	�1
��� ; (17)
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where jj � jj is the spectral norm. This method is also faithful to the original ROF
problem; it does not require approximating the TV by smoothing.

The convergence rate of this method is at most linear, but for denoising problems,
it usually converges fast (measured by the relative residual norm of the optimality
condition) in the beginning but stagnates after some iterations (at a level several
orders of magnitude higher than the machine epsilon). This is very typical for simple
relaxation methods. Fortunately, visually good results (measured by the number of
pixels having a gray level different from the optimal one after they are quantized
to their 8-bit representation) are often achieved before the method stagnates [64].
However, when applied to deblurring, K is usually ill conditioned, so that the
stepsize restriction (17) is too stringent. In this case, another outer iteration is often
used in conjunction with the method; see the splitting methods in section “Splitting
Methods.”

Chambolle’s method has been successfully adapted to solve a variety of related
image processing problems, e.g., the ROF with nonlocal TV [9], multichannel
TV [10], and segmentation problems [4]. We remark that many other approaches
for solving (12) have been proposed. A discussion of some first-order methods
including projected gradient methods and Nesterov methods can be found in
[3, 26, 61].

Primal-Dual Hybrid Gradient Method
As mentioned in the beginning of Sect. 4, the primal and dual problems have
their own advantages and numerical difficulties to face. It is therefore tempting to
combine the best of both. In [64], Zhu and Chan proposed the primal-dual hybrid
gradient (PDHG) algorithm which alternates between primal and dual formulations.

The method is based on the primal-dual formulation

G .u;p/ WD 1

2

Z


.Ku� f /2 dxC �
Z


udivp dx! inf
u

sup
jpj	1
I

cf. formulation (11). By fixing its two variables one at a time, this saddle point
formulation has two subproblems:

sup
jpj	1

G .u;p/ and inf
u
G .u;p/ :

While one may obtain an optimal solution by solving the two subproblems to a
high accuracy alternatively, the PDHG method applies only one step of gradient
descent/ascent to each of the two subproblems alternatively. The rationale is that
when neither of the two variables are optimal, there is little to gain by iterating each
subproblem until convergence. Starting with an initial guess u0, the following two
steps are repeated:

pkC1 D Pjpj	1
�
pk � �kruk

	
ukC1 D uk � �k

�
KT

�
Kuk � f 	C �divpkC1
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Here, Pjpj	1 is the projector onto the feasible set fp W jpj � 1g. The stepsizes
£k and ™k can be chosen to optimize the performance. Some stepping strategies
were presented in [64]. In [65], Zhu, Wright, and Chan studied a variety of stepping
strategies for a related dual method.

Numerical results in [64] show that this simple algorithm is faster than the split
Bregman iteration (see section “Split Bregman Iteration”), which is faster than
Chambolle’s semi-implicit dual method (see section “Chambolle’s Dual Method”).
Some interesting connections between the PDHG algorithm and other algorithms
such as proximal forward-backward splitting, alternating minimization, alternating
direction method of multipliers, Douglas-Rachford splitting, split inexact Uzawa,
and averaged gradient methods applied to different formulations of the ROF model
are studied by Esser et al. in [29]. Such connections reveal some convergence theory
of the PDHG algorithm in several important cases (special choices of the stepsizes)
in a more general setting.

Semi-smooth Newton’s Method
Given the dual problem, it is natural to consider other methods to solve its
optimality conditions (13)–(16). A standard technique in optimization to handle
complementarity and Lagrange multipliers is to combine them into a single equality
constraint. Observe that the constraints a � 0, b � 0 and ab D 0 can be
consolidated into the equality constraint

� .a; b/ WD
p
a2 C b2 � a � b D 0; (18)

where ¥ is known as the Fischer-Burmeister function. Therefore, the KKT sys-
tem (13)–(16) can be written as

�p D H .p/

�
�
�; 1 � jpj2

�
D 0:

Ng et al. [48] observed that this system is semi-smooth and therefore proposed
solving this system using a semi-smooth Newton’s method. In this method, if the
Jacobian of the system is not defined in the classical sense due to the system’s
lack of enough smoothness, then the Jacobian is replaced by a generalized Jacobian
evaluated at a nearby point. It is proven that this method converges superlinearly
if the system to solve is at least semi-smooth and if the generalized Jacobians
at convergence satisfy some invertibility conditions. For the dual problem (12),
the Newton’s equation may be singular. This problem is fixed by regularizing the
Jacobian.

Primal-Dual Active-Set Method
Hintermüller and Kunisch [37] considered the Fenchel dual approach to formulate
a constrained quadratic dual problem and derived a very effective active-set method
to handle the constraints. The method separates the variables into active and inactive
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sets, so that they can be treated differently accordingly to their characteristics. They
considered the case of anisotropic discrete TV norm (3), so that the dual variable
is bilaterally constrained, i.e., �1 � p � 1, whereas the constraints in (12) are
quadratic. In this setting, superlinear convergence can be established.

To deal with the bilateral constraints on p, they proposed to use the primal-dual
active-set (PDAS) algorithm. Consider the general quadratic problem,

min
y;y	 

1

2
hy;Ayi � hf; yi ;

where  is a given vector in Rn. This problem includes (12) as a special instance.
The KKT conditions are given by

Ay C � D f;
� ˇ . � y/ D 0;

� � 0;
 � y � 0;

where � is a vector of Lagrange multipliers and ˇ denotes the entrywise product.
The idea of the PDAS algorithm is to predict the active variables A and inactive
variables I to speed up the determination of the final active and inactive variables.
The prediction is done by comparing the closeness of � and  � y to zero. If  � y
is c times closer to zero than � does, then the variable is predicted as active. The
PDAS algorithm is given by

1. Initialize y0, �0. Set k D 0.
2. Set Ik D ˚i W vki � c. � yk/i � 0



and Ak D ˚i W vki � c. � yk/i > 0



.

3. Solve

AykC1 C �kC1 D f;
ykC1 D  on Ak;

�kC1 D 0 on Ik:

4. Stop or set k D k C 1 and return to Step 2.
Notice that the constraints a � 0, b � 0, and ab D 0 can be combined as a

single equality constraint:

min .a; cb/ D 0

for any positive constant c. Thus, the KKT system can be written as

Ay C � D f;
C .y; �/ D 0;

where C.y; �/ D min.�; c. � y// for an arbitrary positive constant c. The
function C is piecewise linear, whereas the Fisher-Burmeister formulation (18)
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is nonlinear. More importantly, applying Newton’s method (using a generalized
derivative) to such a KKT system yields exactly the PDAS algorithm. This
allows Hintermüller et al. to explain the local superlinear convergence of the
PDAS algorithm for a class of optimization problems that include the dual of
the anisotropic TV deblurring problem [36]. In [37], some conditional global
convergence results based on the properties of the blurring matrix K have also
been derived. Their formulation is based on the anisotropic TV norm, and the
dual problem requires an extra l2 regularization term when a deblurring problem
is solved.

The dual problem (12) is rank deficient and does not have a unique solution in
general. In [37], Hintermüller and Kunisch proposed to add a regularization term,
so that the solution is unique. The regularized objective function is

Z


ˇ̌
K�1divp � ��1f

ˇ̌2
dxC �

Z


jPpj2 dx;

where P is the orthogonal projector onto the null space of the divergence operator
div. Later in [38], Hintermüller and Stadler showed that adding such a regularization
term to the dual objective is equivalent to smoothing out the singularity of the TV in
the primal objective. More precisely, the smoothed TV is given by s ˚.jrf j/ d x,
where

ˆ.s/ D
(

s if jsj � �;
�

2 C 1
2� s

2 if jsj < �:

An advantage of using this smoothed TV is that the staircase artifacts are reduced.
In [41, 42], Krishnan et al. considered the TV deblurring problem with bound

constraints on the image u. An algorithm, called nonnegatively constrained CGM,
combining the CGM and the PDAS algorithms has been proposed. The image u and
its dual p are treated as in the CGM method, whereas the bound constraints on u
are treated as in the PDAS method. The resulting optimality conditions are shown
to be semi-smooth. The scheme can also be interpreted as a semi-smooth quasi-
Newton’s method and is proven to converge superlinearly. The method is formulated
for isotropic TV, but it can also be applied to anisotropic TV after minor changes.

However, Hintermüller and Kunisch’s PDAS method [37] can only be applied to
anisotropic TV because they used PDAS that can only handle linear constraints to
treat the constraints on p.

Bregman Iteration

Original Bregman Iteration
The Bregman iteration is proposed by Osher et al. in [49] for TV denoising. It has
also been generalized to solving many convex inverse problems, e.g., [12]. In each
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step, the signal removed in the previous step is added back. This is shown to alleviate
the loss of contrast problem presented in the ROF model. Starting with the noisy
image f0 D f , the following steps are repeated for j D 0; 1; 2; : : ::

1. Set

ujC1 D arg min
u

�
1

2

Z


�
u � fj

	2
dxC �

Z


jruj

:

2. Set fjC1 D fj C .f � ujC1/.
In the particular case when f consists of a disk over a constant background, it

can be proved that the loss of contrast can be totally recovered. Some theoretical
analysis of the method can be found in [49].

For a general regularization functional J.u/, the Bregman distance is defined as

D
p
J .u; v/ D J .u/� J .v/� hp; u � vi ;

where p is an element of the subgradient of J . In case of TV denoising, J.u/ D
� s jruj. Then, starting with f0 D f , the Bregman iteration is given by

1. Set

ujC1 D arg min
u

�
1

2

Z


.u � f /2 dxCDpj
J

�
u; uj

	
:

2. Set fjC1 D fj C .f � ujC1/.
3. Set pjC1 D fjC1 � f .

In fact, steps 2 and 3 can be combined to pjC1 D pj C f � ujC1 without
the need of keeping track of fj . The above expression is for illustrating how the
residual is added back to fj . In this iteration, it has been shown that the Bregman
distance between uj and the clean image is monotonically decreasing as long as
the L2-distance is larger than the magnitude of the noise component. But if one
iterates until convergence, then uj ! f , i.e., one just gets the noisy image back.
This counterintuitive feature is indeed essential to solving other TV minimization
problems, e.g., the basis pursuit problem presented next.

The Basis Pursuit Problem
An interesting feature of the Bregman iteration is that, in the discrete setting, if one
replaces the term jju � f jj2 in the objective by jjAu � f jj2, where Au D f is
underdetermined, then upon convergence of the Bregman iterations, one obtains the
solution of the following basis pursuit problem [63]:

min
u
fJ .u/ jAu D f g :
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When jjAu�f jj2 is used in the objective instead of jju�f jj2, the Bregman iteration
is given by:

1. Set

ujC1 D arg min
u

�
1

2

Z


.Au � f /2 dxCDpj
J

�
u; uj

	
:

2. Set fjC1 D fj C .f � AujC1/.
3. Set pjC1 D AT .fjC1 � f /.

Split Bregman Iteration
Recently, Goldstein and Osher [35] proposed the split Bregman iteration which can
be applied to solve the ROF problem efficiently. The main idea is to introduce a
new variable so that the TV minimization becomes an L1 minimization problem
which can be solved efficiently by the Bregman iteration. This departs from the
original Bregman iteration which solves a sequence of ROF problems to improve the
quality of the restored image by bringing back the loss signal. The original Bregman
iteration is not iterated until convergence. Moreover, it assumes the availability of
a basic ROF solver. The split Bregman method, on the other hand, is an iterative
method whose iterates converge to the solution of the ROF problem. In this method,
a new variable q D ru is introduced into the objective function:

min
u;q

�
1

2

Z


.u � f /2 dxC �
Z


jqj dx

: (19)

This problem is solved using a penalty method to enforce the constraint q D ru.
The objective with an added penalty is given by

G .u;q/ D ˛

2

Z


jq � ruj2 dxC 1

2

Z


.u� f /2 dxC �
Z


jqjdx: (20)

Notice that if the variables .u; q/ are denoted by y, then the above objective can be
identified as

min
y

�
˛

2

Z


jAyj2 dxC J .y/

;

where

Ay D q� ru;
J .y/ D 1

2

R

.u � f /2 dxC � R

 jqjdx
:

This is exactly the basis pursuit problem when ˛ !1. Actually, even with a fixed
finite ˛, as mentioned in section “The Basis Pursuit Problem,” when the Bregman
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iteration is used, it converges to the solution of the problem

min
y
fJ .y/ jAy D 0g ;

so that the constraint q D ru is satisfied at convergence.
It is interesting to note that the split Bregman iteration can be viewed as a

forward-backward splitting method [53]. Yet another point of view is provided next.

Augmented LagrangianMethod
In [62, 63], it is recognized that the split Bregman iteration is an augmented
Lagrangian method [33]. This explains some good convergence behaviour of the
split Bregman iteration. To motivate the augmented Lagrangian method, consider
a general objective function J.u/ with equality constraint H.u/ D 0. The idea of
penalty methods is to solve a sequence of unconstrained problems

min
u

�
J .u/C 1

ˇ
kH .u/k2



with ˇ ! 0C, so that the constraintH.u/ D 0 is enforced asymptotically. However,
one may run into the embarrassing situation where bothH.u.“// (where u.“/ is the
optimal u for a given “) and “ converge to zero in the limit. This could mean that the
objective function is stiff when ˇ is very small. The idea of augmented Lagrangian
methods is to use a fixed parameter. But the penalty term is added to the Lagrangian
function, so that the resulting problem is equivalent to the original problem even
without letting “! 0C. The augmented Lagrangian function is

L.u; �/ D J .u/C � �H .u/C 1

ˇ
kH .u/k2 ;

where � is a vector of Lagrange multipliers. Solving @L
@u D @L

@v D 0 for a
saddle point yields exactly H.u/ D 0 for any “ > 0. The Bregman iteration
applied to the penalized objective (20) is indeed computing a saddle point of the
augmented Lagrangian function of (19) rather than optimizing (20) itself. Therefore,
the constraint ru D q accompanied with (19) is exact even with a fixed ˛.

Graph Cut Methods

Recently, there is a burst of interest in graph cut methods for solving various
variational problems. The promises of these methods are that they are fast for many
practical problems and they can provide globally optimal solution even for “non-
convex problems.” The discussion below is extracted from [15, 27]. Readers are
referred to [15, 27] and the references therein for a more thorough discussion of the
subject. Since graph cut problems are combinatoric, the objective has to be cast in
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a fully discrete way. That is, not only the image domain has to be discretized to a
finite set but also the range of the intensity values. Therefore, in this framework, the
given m-by-n image f is a function from Zm � Zn to ZK . The ROF problem thus
becomes

F .u/ D 1

2

mX
iD1

nX
jD1

�
ui;j; � fi;j

	2 C � kukT V ! min
uWZm�Zn!ZK

;

where jjujjTV is a discrete TV (4). The next question is how to transform this
problem to a graph cut problem in such a way that it can be solved efficiently.
It turns out that the (fully discretized) ROF problem can be converted to a finite
sequence of graph cut problems. This is due to the co-area formula which is unique
to TV. Details are described next.

Leveling the Objective
Some notations and basic concepts are in place. For simplicity, the following
discrete TV is adopted:

kukT V D
m�1X
iD1

n�1X
jD1

ˇ̌
uiC1;j � ui;j

ˇ̌C ˇ̌ui;jC1 � ui;j
ˇ̌
;

which is the anisotropic TV in (3), but with the range of u restricted to ZK . Recall
that the binary image uk is defined such that each uki;j equals 1 if ui;j � k and equals
0 otherwise. Thus, it is the kth lower level set of u. Then the co-area formula states
that the discrete TV can be written as

kukT V D
K�2X
kD0

��uk
��
T V
:

Thus, it reduces to the TV of each “layer”. Note that the TV of the .K � 1/st level
set must be zero, and therefore the above sum is only up to K � 2.

The fitting term in the objective can also be treated similarly as follows. Notice
that for any function gi;j .s/, it holds that

gi;j .s/ D
s�1P
kD0

�
gi;j .k C 1/� gi;j .k/

�C gi;j .0/
D

K�2P
kD0

�
gi;j .k C 1/� gi;j .k/

�
	k<s C gi;j .0/ ;



1526 R. Chan et al.

where ¦k<s D 1 if k < s and 0 otherwise. Define gi;j .k/ D 1
2 .s � fi;j /2. Then,

1
2

�
ui;j � fi;j

	2 D gi;j
�
ui;j

	
D

K�2P
kD0

�
gi;j .k C 1/ � gi;j .k/

�
	k<ui;j C gi;j .0/

D
K�2P
kD0

�
gi;j .k C 1/ � gi;j .k/

� �
1 � uki;j

�
C gi;j .0/ :

As a result, the ROF objective can be expressed as

K�2X
kD0

8<
:
X
i;j

�
gi;j .k C 1/ � gi;j .k/

� �
1 � uki;j

�
C � ��uk

��
T V

9=
;C C;

where C DPi;j gi;j (0).
By defining the objective function

F k
�
vk
	 DX

i;j

�
gi;j .k C 1/� gi;j .k/

� �
1 � vki;j

�
C � ��vk

��
T V
;

where �k is a binary function, the ROF problem is seen to be equivalent to

min
v1;v2;:::;vK�2

K�2X
kD0

F k
�
vk
	

subject to the inclusion constraints �ki;j � �kC1
i;j for all i , j , k. The constraints make

sure the binary functions f�kgk define the lower level sets of some function �. A
very important result is that the minimization can be done independently for each
�k; amazingly, the solutions f�kg satisfy the inclusion property automatically! See
[27] for further details.

Defining a Graph
To minimize each F k w.r.t. a binary function �k , a graph cut method is used. First
observe that since gi;j .k/ D 1

2 .k � fi;j /2, F k can be simplified to

F k
�
vk
	 DX

i;j

�
1

2
C �k � fi;j 	

� �
1 � vki;j

�
C � ��vk

��
T V
:

By absorbing some constants and dropping the superscript on �k, the objective takes
the following form:

F k .v/ D
X
i;j

�
fi;j � k � 1

2

�
vi;j C � kvk

T V

: (21)
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Then, a graph with mnC 2 nodes is constructed in the following way:

1. Each of the mn pixels is a node, labeled by .i; j / for i D 1; 2; : : : ; m and j D
1; 2; : : : ; n.

2. Add two additional nodes, called the source S and the sink T .
3. For each .i; j /, connect it to .i ˙ 1; j / and .i; j ˙ 1/ with capacity �.
4. For each .i; j /, connect S to it with capacity 1

2 C k � fi;j if 1
2 C k � fi;j > 0

and connect it to T with capacity fi;j � k � 1
2 if fi;j � k � 1

2 > 0.

A cut (a.k.a. an st-cut) in the graph is a partition .S; T / such that S 2 S and
T 2 T . The cost of the cut C.S; T / is defined as the sum of the capacities of all
edges from S to T . For a given cut, let �i;j equals 1 if .i; j / 2 S and equals 0 if
.i; j / 2 T . Then it can be verified that

C.S; T / D
X
i;j

max

�
1

2
C k � fi;j ; 0


vi;j Cmax

�
fi;j � k � 1

2
; 0



.1 � vi;j /C �
��vk

��
T V

which is the same as F k in (21), up to the constant˙i;j max ffi;j �k, 0}. Therefore,
computing the minimum cut is equivalent to minimizing (21). It is also well known
that the minimum cut problem is equivalent to the maximum flow problem.

Recall that there are K � 1 graphs to cut. A simple way is to do them one by
one using any classical maximum flow algorithm. But one can exploit the inclusion
property to reduce the work; for instance, see the divide-and-conquer algorithm
proposed in [27].

In graph cut methods, a fundamental question is what kind of optimization
problems can be transformed to a graph cut problem. A particularly relevant
question is whether a function is levelable, i.e., its minimization can be done by
first solving the simpler problem on each of its level set, followed by assembling the
resulting level sets. Interestingly, the only levelable convex regularization function
(satisfying some very natural and mild conditions) is TV [27]. This indicates that
TV is much more than just an ordinary semi-norm.

Quadratic Programming

The discrete anisotropic TV is a piecewise linear function. Fu et al. [30] showed
that by introducing some auxiliary variables, one can transform the TV to a linear
function but with some additional linear constraints. Together with the fitting term,
the problem to solve has a quadratic objective function with linear constraints.

The objective function considered is by Fu et al.

F .u/ D 1

2
kKu� f k2 C �

X
i;j

ˇ̌
uiC1;j � ui;j

ˇ̌C ˇ̌ui;jC1 � ui;j
ˇ̌
;
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which can also be written as

F .u/ D 1

2
kKu� f k2 C � kRuk1

where R is a 2mn-by-mn matrix. If the original isotropic TV is used, then it cannot
be written in this form.

The trick they used is to let � D Ru and then split it into positive and negative
parts: �C D max.�; 0/ and �� D max.��; 0/. Then, the objective can be written as

G
�
u; vC; v�	 D 1

2
kKu� f k2 C � �1T vC C 1T v�	 ;

which is a quadratic function. But some linear constraints are added:

Ru D vC � v�;
vC; v� � 0:

Now, this problem can be solved by standard primal-dual interior-point methods.
Here, “dual” refers to the Lagrange multipliers for the linear constraints. The major
steps can be summarized as follows:

1. Write down the KKT system of optimality conditions, which has a form of
f .x; �; s/ D 0, where x � 0 is the variable of the original problem .x D
.u; �C; ��/ in the present case); � is the Lagrange multipliers for the equality
constraints; and s � 0 is the Lagrange multipliers for the inequality constraints.

2. Relax the complementarity xs D 0 (part of f .x; �; s/ D 0/ to xs D �, where
� > 0.

3. Solve the relaxed problem f�.x; �; s/ D 0 by Newton’s method.
4. After each Newton’s iteration, reduce the value of � so that the solution of
f .x; �; s/ D 0 is obtained at convergence.

In this method, the relaxed complementarity xs D � forces the variables x, s
to lie in the interior of the feasible region. Once the variables are away from the
boundary, the problem becomes a nice unconstrained quadratic problem locally.
The main challenge here is that the linear system to solve in each Newton’s iteration
becomes increasingly ill conditioned. Under this framework, bound constraints
such as umin � u � umax or any linear equality constraints can be easily
added.

Second-Order Cone Programming

The trick to “linearize” the TV presented in the last section does not work for
isotropic TV. Goldfarb and Yin [34] proposed a second-order cone programming
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(SOCP) formulation which works for the isotropic version (2). Moreover, its
connection to SOCP allows the use of available SOCP solvers to obtain the
solutions. The problem they considered is the constrained ROF problem:

min
u
kukT V

subject to

ku � f k � 
;

where 
 is the standard deviation of the noise which is assumed to be known.
Let wxi;j D uiC1;j � ui;j and wyi;j D ui;jC1 � ui;j . The TV becomes

X
i;j

r�
wxi;j

�2 C
�

wyi;j

�2
:

By introducing the variables � D f � u and t and the constraint

�
wxi;j

�2 C
�

wyi;j

�2 � t2i;j ;

the TV minimization problem becomes

min
P
i;j

ti;j

s:t: uC v D f
wxi;j D uiC1;j � ui;j
wyi;j D ui;jC1 � ui;j
.
; v/ 2 conemnC1�
ti;j ;wxi;j ;w

y
i;j

�
2 cone3:

Here, cone n is the second-order cone in Rn:

fx 2 R
n W k.x2; x3; : : : ; xn/k � x1g :

The optimal solution satisfies

t2i;j D
�

wxi;j
�2 C

�
wyi;j

�2
;

so that

X
i;j

ti;j D
X
i;j

r�
wxi;j

�2 C
�

wyi;j

�2 D kukT V :

A SOCP formulation of the dual ROF problem is also given in [34].
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The SOCP can be solved by interior-point methods. The above formulation can
be slightly simplified by eliminating u. But the number of variables (hence, the size
of the Newton’s equation) is still several times larger than the original problem.
Goldfarb and Yin proposed a domain decomposition method to split the large
programming problem into smaller ones, so that each subproblem can be solved
efficiently. Of course, the convergence rate of the method deteriorates as the domain
is further split.

Majorization-Minimization

Majorization-minimization(MM) (or minorization-maximization) [43] is a well-
studied technique in optimization. The main idea is that at each step of the method,
the objective function is replaced by a simple one, called the surrogate function,
such that its minimization is easy to carry out and the result gives a smaller objective
value of the original problem. For a given objective, usually many surrogate
functions are possible. In many cases, one can even reduce multidimensional
problems into a set of one-dimensional problems. Methods of this class have
been heavily used in statistics communities. Indeed expectation-maximization (EM)
algorithms are special cases of MM.

The use of MM to solving discrete TV problems can be traced back to the study
of emission and transmission tomography reconstruction problems by Lange and
Carson in [44]. Recently, some authors have applied the method to solving TV
deblurring problems [6]. However, the method is actually the same as the classical
lagged diffusivity fixed point iteration proposed by [58] for the particular surrogate
function used in [6]. Nevertheless, it is still worthy to present the framework here
because other surrogate functions can lead to different schemes.

Denote by uk the kth iterate. In this method, the surrogate function (majorizer)
Q.ujuk/ is defined such that

F
�
uk
	 D Q �

ukjuk	
F .u/ � Q �

ujuk	 ; for all u

Then, the next iterate is defined to be the minimizer of the surrogate function

ukC1 WD arg min
u

Q
�
ujuk	 :

In this way, the following monotonic decreasing property holds

F
�
ukC1	 � Q �

ukC1juk	 � Q �
ukjuk	 D F �uk	 :

Presumably, the function Q should be chosen so that its minimum is easy to
compute. In many applications, it may even be chosen to have a separable form

Q
�
ujuk	 D Q1

�
u1juk

	CQ2
�
u2juk

	C � � � CQn

�
unjuk

	
;
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so that its minimization reduces to n’s one-dimensional (1D) problems. A promise
of this method is that each iteration is very easy to carry out, which compensates its
linear-only convergence. To construct a surrogateQTV for TV, first note that

p
a D

�
4
p
b
��pa

4
p
b

�
�
p
b

2
C a

2
p
b

for all a, b � 0. Let Dx and Dy be the forward difference operator in x and in y
directions, respectively. Then,

kukT V D
P
i;j

q�
Dxui;j

	2 C �Dyui;j
	2

� 1
2

P
i;j

r�
Dxuki;j

�2 C
�
Dyuki;j

�2 C 1
2

P
i;j

.Dxui;j /
2C.Dyui;j /

2

r�
Dxuki;j

�2C
�
Dyuki;j

�2

The surrogate is thus defined as

QTV

�
ujuk	 D 1

2

��uk
��
T V
C 1

2

X
i;j

�
Dxui;j

	2 C �Dyui;j
	2

r�
Dxuki;j

�2 C
�
Dyuki;j

�2

which is quadratic in u. Notice that the 2D discrete gradient matrix is given by

r D
�rn ˝ Im
In ˝rm

�
;

where rm is the m-by-m1D forward difference matrix (under Neumann boundary
conditions)

rm D

2
666664

�1 1
�1 1

: : :
: : :

�1 1
0

3
777775

Let �ki;j D 1=

r�
Dxuki;j

�2 C
�
Dyuki;j

�2
and let

ƒk D diag
�
�k1;1; : : : ; �

k
m;n; �

k
1;1; : : : ; �

k
m;n

	
:

The surrogate becomes

QTV

�
ujuk	 D 1

2

��uk
��
T V
C 1

2
uTrTƒkru:
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In this case, the minimization of QTV cannot be reduced to a set of 1D problems.
But it does become quadratic.

Finally, the majorizer for the ROF model is

Q
�
ujuk	 D 1

2
kKu� f k2 C �QTV

�
ujuk	 :

While this method completely bypasses the need to optimize the TV term directly,
each iteration requires solving the linear system

�
KTK C �rTƒkr	 ukC1 D KTf:

This scheme is exactly the lagged diffusivity fixed point iteration. Assume that
K is full rank, then the linear system is positive definite. A standard way is to
use preconditioned conjugate gradient to solve. Many preconditioners have been
proposed for this problem in the 1990s, e.g., cosine transform and multigrid and
multiplicative operator splitting; see [17] and the references therein. However, due
to the highly varying coefficients in ƒk , it can be nontrivial to solve efficiently.

SplittingMethods

Recently, there have been several proposals for solving TV deblurring problems
based on the idea of separating the deblurring process and the TV regularization
process. Many of them are based on the idea that the minimization of an objective
of the form

F .u/ D J1 .u/C J2 .Au/ ;

with Aa linear operator, can be approximated by the minimization of either of the
following two objectives:

G .u; v/ D J1 .u/C ˛
2 ku � vk2 C J2 .Av/ ;

G .u; v/ D J1 .u/C ˛
2 kAu � vk2 C J2 .v/ ;

where ’ is a large scalar. Then G is minimized w.r.t. u and � alternatively. In this
way, at each iteration, the minimization of J1 and J2 is done separately. The same
idea can be generalized to split an objective with n terms to an objective with n
variables.

Consider the discrete ROF model:

F .u/ D 1

2
kKu� f k2 C � kjrujk1 :

Huang et al. [39] and Bresson and Chan [10] considered the splitting
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G .u; v/ D 1

2
kKu� f k2 C ˛

2
ku � vk2 C � kjrvjk1 :

In this case, the minimization w.r.t. u becomes

�
KTK C ˛I 	 u D KT f C ˛v;

which can be solved with the fast Fourier transform (FFT) inO.N logN/ operations
when the blurring matrix K can be diagonalized by a fast transform matrix. The
minimization w.r.t. � is the ROF denoising problem which can be solved using any
of the aforementioned denoising method. Both [39] and [10] employed Chambolle’s
dual algorithm. The point is that solving TV denoising is much easier than solving
TV deblurring (directly). Moreover, some algorithms such as those based on graph
cut cannot be applied to deblurring directly. The reason is that the pixel values in the
fitting are no longer separable, which in turn makes the fitting term not “levelable.”
However, using the splitting technique, one can now apply graph cut methods to
solve each denoising problem.

This method is generally very fast. Moreover, it often works for a large range
of ˛. But when ˛ is too large, the Chambolle’s iteration may slow down. This
splitting method has also been applied to other image processing problems such
as segmentation [10].

An alternative splitting is proposed by Wang et al. [59]. The bivariate function
they used is given by

G .u; v/ D 1

2
kKu� f k2 C ˛

2
kjru � vjk2 C � kjvjk1 :

The minimization w.r.t. u requires solving

�
KTK � ˛�	 u D KT f C ˛v;

where � is the 2D Laplacian. This equation can again be solved with FFT in
O.N logN/ operations. The minimization w.r.t. �gs decoupled into N minimiza-
tion problems (one for each pixel) of two variables. A simple closed-form solution
for the 2D minimization problems is available. Therefore, the computation cost per
iteration is even less than the approach taken in [39] and [10]. Remark that this
objective is indeed the same as the split Bregman method (20). A difference is that
when the split Bregman iteration converges, it holds exactly that ru D �. But the
simple alternating minimization used in most splitting methods does not guarantee
ru D � at convergence.

An alternative splitting is introduced by Bect et al. in [5]. It is based on the
observation that, for any symmetric positive definite matrix B with jjBjj < 1, it
holds that

hBv; vi D min
u2RN

n
ku � vk2 C hCu; ui

o
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for all � 2 RN , where C D B.I � B/�1. Then, the ROF model can be formulated
as the minimization of the following bivariate function:

G .u; v/ D 1

2�

�
ku � vk2 C hCu; ui

�
C 1

2

�
kf k2 � 2 hKv; f i

�
C � kjrvjk1 ;

where � > 0 such that �jjKTKjj < 1 and B D �KTK . The minimization of G
w.r.t. u has a closed-form solution u D .I�B/� D .I��KTK/�. The minimization
of G w.r.t. � is a TV denoising problem. At convergence, the minimizer of F is
exactly recovered. An interesting property of this splitting is that it does not involve
any matrix inversion in the alternating minimization of G.

5 Conclusion

In this chapter, some recent developments of numerical methods for TV minimiza-
tion and their applications are reviewed. The chosen topics only reflect the interest
of the authors and are by no means comprehensive. It is also hoped that this chapter
can serve as a guide to recent literature on some of these recent developments.
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Abstract
This chapter presents an overview of the Mumford and Shah model for image
segmentation. It discusses its various formulations, some of its properties, the
mathematical framework, and several approximations. It also presents numerical
algorithms and segmentation results using the Ambrosio-Tortorelli phase-field
approximations on one hand and level set formulations on the other hand.
Several applications of the Mumford-Shah problem to image restoration are also
presented.

1 Introduction

An important problem in image analysis and computer vision is the segmentation
one, aiming to partition a given image into its constituent objects, or to find
boundaries of such objects. This chapter is devoted to the description, analysis,
approximations, and applications of the classical Mumford and Shah functional
proposed for image segmentation. In [61–63], David Mumford and Jayant Shah
have formulated an energy minimization problem that allows to compute optimal
piecewise-smooth or piecewise-constant approximations u of a given initial image
g. Since then, their model has been analyzed and considered in depth by many
authors by studying properties of minimizers, approximations, and applications to
image segmentation, image partition, image restoration, and more generally image
analysis and computer vision.

Let  � R
d be the image domain (an interval if d D 1; a rectangle in the plane

if d D 2; or a rectangular parallelepiped if d D 3). More generally, it is assumed
that  is open, bounded, and connected. Let g: ! R be a given grayscale image
(a signal in one dimension, a planar image in two dimensions, or a volumetric image
in three dimensions). It is natural and without losing any generality to assume that
g is a bounded function in , thus g 2 L1 ().

As formulated by Mumford and Shah [63], the segmentation problem in image
analysis and computer vision consists in computing a decomposition

 D 1 [2 [ : : : [n [K
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of the domain of the image g such that

1. The image g varies smoothly and/or slowly within each i .
2. The image g varies discontinuously and/or rapidly across most of the boundary
K between differenti .

From the point of view of approximation theory, the segmentation problem may
be restated as seeking ways to define and compute optimal approximations of a
general function g.x/ by piecewise-smooth functions u.x/, i.e., functions u whose
restrictions ui to the pieces i of a decomposition of the domain  are continuous
or differentiable.

In what follows,i will be disjoint connected open subsets of a domain, each
one with a piecewise-smooth boundary, and K will be a closed set, as the union of
boundaries of i inside , thus

 D 1 [2 [ : : : [n [K; K D  \ .@1 [ : : : [ @n/ :

The functionalE to be minimized for image segmentation is defined by [61–63],

E.u; K/ D �2
Z


.u � g/2dx C
Z
=K

jruj2 dx C v jKj ; (1)

where u W  ! R is continuous or even differentiable inside each i (or u 2 H 1

(i// and may be discontinuous across K . Here, jKj stands for the total surface
measure of the hypersurfaceK (the counting measure if d D 1, the length measure
if d D 2, the area measure if d D 3). Later, jKj will be defined by Hd�1.K/, the
d � 1 dimensional Hausdorff measure in R

d .
As explained by Mumford and Shah, dropping any of these three terms in (1), inf

E D 0: without the first, take u D 0, K D 0; without the second, take u D g, K D
0; without the third, take, for example, in the discrete case K to be the boundary of
all pixels of the image g, each i be a pixel and u to be the average (value) of g
over each pixel. The presence of all three terms leads to nontrivial solutions u, and
an optimal pair (u, K/ can be seen as a cartoon of the actual image g, providing a
simplification of g.

An important particular case is obtained when E is restricted to piecewise-
constant functions u, i.e., u = constant ci on each open set i . Multiplying E by
��2 gives

��2E.u; K/ D
X

i

Z
i

.g � ci /2dx C v0 jKj;

where �0 D �/�2. It is easy to verify that this is minimized in the variables ci by
setting

ci D meani .g/ D
R
i
g.x/dx

ji j ;
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where ji j denotes here the Lebesgue measure ofi (e.g., area if d D 2, volume if
d D 3), so it is sufficient to minimize

E0.K/ D
X

i

Z
i

.g �meani g/
2dx C v0 jKj :

It is possible to interpret E0 as the limit functional of E as �! 0 [63].
Finally, the Mumford and Shah model can also be seen as a deterministic

refinement of Geman and Geman’s image restoration model [41].

2 Background: The First Variation

In order to better understand, analyze, and use the minimization problem (1), it is
useful to compute its first variation with respect to each of the unknowns.

The definition of Sobolev functions u 2 W 1;2.U / [1] is now recalled, necessary
to properly define a minimizer u whenK is fixed.

Definition 1. Let U � R
d be an open set. Let W 1;2.U / (or H 1.U // denote the set

of functions u 2 L2(), whose first-order distributional partial derivatives belong
to L2.U /. This means that there are functions u1, . . . , ud 2 L2.U / such that

Z
U

u.x/
@�

@xi
.x/dx D �

Z
U

ui .x/�.x/dx

for 1 � i � d and for all functions � 2 C1
c (U /.

Let @u
@xi

denote the distributional derivative ui of u and ru D
�
@u
@x1
; : : : ; @u

@xd

�
its

distributional gradient. In what follows, jruj.x/ denotes the Euclidean norm of the
gradient vector at x:H 1.U / D W 1;2.U / becomes a Banach space endowed with the
norm

kukW 1;2.U / D
"Z

U

u2dx C
Xd

iD1

Z
U

�
@u

@xi

�2

dx

#1=2

:

Minimizing in uwith K Fixed

K is assumed to be fixed, as a closed subset of the open and bounded set  � R
d ,

and denote by

E.u/ D �2
Z
=K

.u � g/2dxC
Z
=K

jruj2 dx;
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for u 2 W 1;2(nK/, where nK is open and bounded, and g 2 L2(nK/. The
following classical results are obtained as consequences of the standard method of
calculus of variations.

Proposition 1. There is a unique minimizer of the problem

inf
u2W 1;2.=K/

E.u/: (2)

Proof ([38]). First, note that 0 � inf E < C1, since choosing u0 
 0, then
E.u0/ D �2 snK g2.x/dx < C1. Thus, let m = infuE.u/ and {uj}j�1 2
W 1;2(nK/ be a minimizing sequence such that limj!1E.uj / D m.

Recall that for u, � 2 L2,

����uC v

2

����
2

2

C
���u � v

2

���2

2
D 1

2
kuk2

2 C
1

2
kvk2

2 ;

and so

����uC v

2

����
2

2

D 1

2
kuk2

2 C
1

2
kvk2

2 �
���u � v

2

���2

2
: (3)

Let u, � 2 W 1;2(nK/, thus E.u/, E(�) < 1, and apply (3) to u � g and � � g,
and then to ru and r�; then

E
�

uCv
2

	 D 1
2E.u/C 1

2E.v/� �2

4

R
=K ju � vj2 dx � 1

4

R
=K jr.u � v/j2 dx

D 1
2E.u/C 1

2E.v/�

8̂
<
:̂

�2

4 ku � vk2
W 1;2.=K/ C

�
1 � �2

4

�
kr.u � v/k2

2 if 1
4 � �2

4

1
4 ku � vk2

W 1;2.=K/ C
�
�2

4 � 1
�
ku � vk2

2 if 1
4 � �2

4

:

(4)
Choosing u, � 2 W 1;2(nK/, such that E.u/, E(�) � m + ", then

m � E � uCv
2

	 � mC "�8<
:

�2

4 ku � vk2
W 1;2.=K/ C

�
1 � �2

4

�
kr.u � v/k2

2 if 1
4 � �2

4

1
4 ku � vk2

W 1;2.=K/ C
�
�2

4 � 1
�
ku � vk2

2 if 1
4 � �2

4

thus,

ku � vk2
W 1;2.=K/ �

(
4"
�2 if 1

4 � �2

4

4" if 1
4 � �2

4

: (5)
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Let wj D uj � u1. From (5), {wj } is a Cauchy sequence in W 1;2(nK/; let w
denote its limit and set u0 D u1 C w. Then,

E.u0/ D �2 ku0 � gk2
2 C kru0k2

2 D �2 k.u1 � g/C wk2
2 C kru1 Crwk2

2

D limj!C1
h
�2
��.u1 � g/C wj

��2
2 C

��ru1 Crwj
��2

2

i

D limj!C1E.uj / D m;

by the continuity of L2 norms. This shows the existence of minimizers. The
uniqueness follows from (5) by taking " D 0.

Proposition 2. The unique solution u of (2) is solution of the elliptic problem

Z
=K

ru.x/ � rv.x/dx D ��2
Z
=K

Œu.x/� g.x/� v.x/dx; 8v 2 W 1;2.=K/;

(6)
or of

�u D �2.u � g/

in the sense of distributions in nK , with associated boundary condition @u
@ EN D 0

on @(nK/, where EN is the exterior unit normal to the boundary.

Proof. Indeed, let " 7! A."/ D E.u + "�) for s 2 R and arbitrary � 2 W 1;2(nK/.
Then, A is a quadratic function of ", given by

A."/ D �2
R
=K .u � g/2dx C "2�2

R
=K v2dx C 2"�2

R
=K .u � g/vdx

C R
=K jruj2 dx C "2

R
=K jrvj2 dx C 2"

R
=K
ru � rvdx;

with

A0."/ D 2"�2
R
=K

v2dx C 2�2
R
=K

.u � g/vdx C 2"
R
=K jrvj2 dx

C2
R
=K
ru � rvdx;

and

A0.0/ D 2�2
Z
=K

.u � g/vdx C 2
Z
=K

ru � rvdx;

Since E.u/ D A(0) � A."/ D E.uC "�) for all s 2 R and all � 2 W 1;2(nK/, it
implies that A0(0) = 0 for all such �, which yields the weak formulation (6).
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If in addition u would be a strong classical solution of the problem, or if it would
belong to W 2;2(nK/, then integrating by parts in the last relation gives

A0.0/ D 2�2
Z
=K

.u � g/vdx C 2
Z
=K

.ru/vdx C 2
Z
@.=K/

ru � EN vdx D 0

Taking now � 2 C 1
0 (nK/ � W 1;2(nK/ gives

�u D �2.u � g/ in=K:

Using this and taking now � 2 C 1(nK/, the associated implicit boundary
condition ru: EN D @u

@ EN D 0 on the boundary of nK (in other words, on the
boundary of  and of each i/ is obtained.

Assume now that g 2 L1 (nK/, which is not a restrictive assumption when
g represents an image. It can be shown that the unique minimizer u of (2) satisfies
jjujj1 � jjgjj1 (as expected, due to the smoothing properties of the energy). To
prove this, first the following classical lemma is stated (see, e.g., Ref. [38], Chapter
A3).

Lemma 1. If nK is open, and if u 2 W 1;2(nK/, then uC D max.u; 0/ also
lies in W 1;2(nK/ and jruC (x/j � jru (x/j almost everywhere.

Now let u� (x) = max{ �jjgjj1, min.jjgjj1, u.x//} be the obvious truncation
of u. Lemma 1 implies that u� 2 W 1;2(nK/ and that snK jru�.x/j2 dx �
snK jru.x/j2 dx. Obviously, also snK (u� � g/2 dx � snK (u � g/2 dx, thus
E.u�/ � E.u/. But u is the unique minimizer ofE; therefore, u.x/ D u�.x/ almost
everywhere and jjujj1 � jjgjj1.

Remark 1. Several classical regularity results for a weak solution u of (2) can be
stated:

• If g 2 L1 (nK/, then u 2 C 1
loc (nK/ (see e.g., Ref. [38], Chapter A3).

• If g 2 L2(nK/, then u 2 W 2;2
loc (nK/ D H 2

loc(nK/, which implies that u
solves the PDE (see, e.g., Ref. [39], Chapter 6.3).

�u D �2.u � g/ a:e: in=K:

3 Minimizing in K

Here we formally compute the first variation of E.u, K/ with respect to K . Let us
assume that (u,K/ is a minimizer ofE from (1), and we varyK . Let us assume that
locally,K\U is the graph of a regular function �, whereU is a small neighborhood
near a regular, simple point P of K .
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Without loss of generality, it can be assumed that U D D � I where I is an
interval in R andK\U = {(x1, x2, . . . , xd / 2 U D D�I : xd D �.x1, . . . , xd�1/}.
Let uC denote the restriction of u to

UC D f.x1; x2; : : : ; xd / W xd > �.x1; : : : ; xd�1/g \ U;

and u� the restriction of u to

U� D f.x1; x2; : : : ; xd / W xd > �.x1; : : : ; xd�1/g \ U;

and chooseH 1 extensions of uC fromUC to U , and of u� fromU� to U . For small
", define a deformationK" of K inside U as the graph of

xd D �.x1; : : : ; xd�1/C " .x1; : : : ; xd�1/;

such that  is regular and zero outsideD, and K" D K outside U . Define

u".x/ D
8<
:

u.x/ if x … U;
.extension of uC/.x/ if x 2 U; x aboveK" \ U
.extension of u�/.x/ if x 2 U; x aboveK" \ U:

Now, using z = (x1, . . . , xd�1/,

E.u"; K"/ �E.u; K/ D �2
R
U

�
.u" � g/2dx � .u � g/2

�
dx

C R
U=K"
jru"j2 dx �

R
U=K jruj2 dx C v ŒjK" \ U j � jK \ U j�

D �2
R
D

�R �.z/C" .z/
�.z/

�
.u� � g/2 � .uC � g/2� dxd

�
d z

C RD
�R �.z/C" .z/

�.z/

h
jru�j2 � ˇ̌ruC ˇ̌2i dxd

�
d z

C v
R
D

�q
1C jr.� C " /j2 �

q
1C jr�j2

�
d z

Thus,

lim"!0
E.u";K"/�E.u;K/

"
D �2

R
D

�
.u� � g/2 � .uC � g/2� ˇ̌xdD�.z/ .z/d z

C R
D

h
jru�j2 � ˇ̌ruCˇ̌2i ˇ̌ˇ̌

xdD�.z/ .z/d zC v
R
D

r� �r p
1Cjr�j2 d z D

for all such  , since (u, K/ is a minimizer. Integrating by parts, we formally obtain
for all  :

R
D

nh�
�2.u� � g/2 C jru�j2

�
�
�
�2.uC � g/2 C ˇ̌ruCˇ̌2�i ˇ̌

xdD�.z/

�v div

�
r�p

1Cjr�j2

�
 .z/d z D 0;
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and obtain the first variation with respect to K ,

h
�2.u� � g/2 C jru�j2

i
�
h
�2.uC � g/2 C ˇ̌ruCˇ̌2i�v div

0
B@ r�q

1C jr�j2

1
CA D 0

(7)
on K \ U . Noticing that the last term represents the curvature of K \ U , and if we
write the energy density as

e.uI x/ D �2.u.x/� g.x//2 C jru.x/j2 ;

we finally obtain

e.uC/ � e.u�/C v curv .K/ D 0 onK

(at regular points of K , provided that the traces of u and of jruj on each side of K
are taken in the sense of Sobolev traces).

This section is concluded by stating another important result from [63] regarding
the type of singular points of K , when (u, K/ is a minimizer of E from (1), in two
dimensions, d = 2. For the rather technical proof of this result, the reader is referred
to the instructive and inspiring constructions from [63].

Theorem 1. Let d = 2. If (u,K/ is a minimizer ofE.u,K/ such thatK is a union of
simple C 1;1-curves Ki meeting @ and meeting each other only at their endpoints,
then the only vertices of K are:

1. Points P on the boundary @ where one Ki meets @ perpendicularly
2. Triple points P where three Ki meet with angles 2�/3
3. Crack tips where a Ki ends and meets nothing.

The later sections will discuss cases when the minimizer u is restricted to a
specific class of piecewise-constant or piecewise-smooth functions.

4 Mathematical Modeling and Analysis: TheWeak
Formulation of theMumford and Shah Functional

To better study the mathematical properties of the Mumford and Shah functional
(1), it is necessary to define the measure of K as its d� 1-dimensional Hausdorff
measure Hd�1.K/, which is the most natural way to extend the notion of length to
nonsmooth sets. Recall the definition of the Hausdorff measure [4, 38, 40].

Definition 2. For K � R
d and n > 0, set

Hn.K/ D sup
">0

Hn
" .K/;
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called the n-dimensional Hausdorff measure of the set K , where

Hn
" .K/ D cn inf

nX1
iD1

.diam Ai/
n
o
;

where the infimum is taken over all countable families {Ai}1
iD1 of open setsAi such

that

K � [
1
iD1 Ai and diam Ai � " for all i:

Here, the constant cn is chosen so that Hn coincides with the Lebesgue measure on
n planes.

Remark 2. When n is an integer and K is contained in a C 1-surface of dimension
n, Hn.K/ coincides with its n-dimensional surface measure.

Consider a first variant of the functional,

E.u; K/ D �2
Z
=K

.u � g/2dx C
Z
=K

jruj2 dx C vHd�1.K/: (8)

In order to apply the direct method of calculus of variations for proving existence of
minimizers, it is necessary to find a topology for which the functional is lower semi-
continuous, while ensuring compactness of minimizing sequences. Unfortunately,
the last functionalK 7! Hd�1.K/ is not lower semicontinuous with respect to any
compact topology [4, 8, 38]. To overcome this difficulty, the set K is substituted
by the jump set Su of u, thus K is eliminated, and the problem, called the weak
formulation, becomes, in its second variant,

inf
u

�
F.u/ D �2

Z
=Su

.u � g/2dx C
Z
=Su

jruj2 dx C vHd�1.Su/


: (9)

For illustration, also given is the weak formulation in one dimension, for signals.
The problem of reconstructing and segmenting a signal u from a degraded input g
deriving from a distorted transmission can be modeled as finding the minimum

inf
u

(
�2
Z b

a

.u � g/2dt C
Z
.a;b/=Su

ˇ̌
u0ˇ̌2 dt C v#.Su/

)
:

where  = (a, b/, Su denotes the set of discontinuity points of u in the interval (a,
b/, and #(Su/ D H0.Su/ denotes the counting measure of Su or its cardinal.

In order to show that (9) has a solution, the following notion of special functions
of bounded variation and the following important lemma due to Ambrosio [3,4] are
necessary.
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Definition 3. A function u 2 L1() is a special function of bounded variation on
 if its distributional derivative can be written as

Du D rudx C .uC � u�/ ENu Hd�1
ˇ̌
Su

such that ru 2 L1(), Su is of finite Hausdorff measure, .uC � u�/ ENu	Su 2
L1
�
;Hd�1jSu;R

d
	
, where uC and u� are the traces of u on each side of the jump

part Su, and ENu is the unit normal to Su. The space of special functions of bounded
variation is denoted by SBV().

Lemma 2. Let un 2 SBV() be a sequence of functions such that there
exists a constant C > 0 with jun.x/j � C < 1 a.e. x 2  andR
 jrunj2 dxCHd�1.Sun/ � C . Then, there exists a subsequence unk converging

a.e. to a function u 2 SBV(). Moreover, runk converges weakly in L2()d to ru,
and

Hd�1.Su/ � lim infnk!1Hd�1.Sunk
/:

Theorem 2. Let g 2 L1 (), with  � R
d open, bounded, and connected. There

is a minimizer u 2 SBV() \L1 () of

F.u/ D �2
Z
=Su

.u � g/2dx C
Z
=Su

jruj2 dx C vHd�1.Su/:

Proof. Notice that 0 � inf1
SBV./\L./F < 1, because we can take u0 = 0 2

SBV() \L1 () and using the fact that g 2 L1() � L2(), F.u0/ <

1. Thus, there is a minimizing sequence un 2 SBV() \L1 () satisfying
limn!1F.un/ = infF . Also notice that, by the truncation argument from before,
it can be assumed that jjunjj1 � jjgjj1 < 1. Since F.un/ � C < 1 for
all n � 0, and using g 2 L1() � L2(), we deduce that jjunjj2 � C andR
=Sun

jrunj2 dxCHd�1.Sun/ < C for some positive real constant C . Using these
and Ambrosio’s compactness result, it can be deduced that there is a subsequence
unk of un, and u 2 SBV(), such that unk * u in L2(), runk * ru in L2()d .
Therefore, F.u/ �lim infnk!1F.unk/ = inf F , and it can also be deduced that
jjujj1 � jjgjj1.

For additional existence, regularity results and fine properties of minimizers,
and for the connections between problems (8) and (9), the reader is referred to
Dal Maso et al. [55, 56], the important monographs by Morel and Solimini [60],
by Chambolle [26], by Ambrosio et al. [4], by David [38], and by Braides [19].
Existence and regularity of minimizers for the piecewise-constant case can be found
in [63], Congedo and Tamanini [52, 57, 75, 76], and Larsen [51], among other
works.
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5 Numerical Methods: Approximations to the Mumford and
Shah Functional

Since the original Mumford and Shah functional (1) (or its weak formulation
(9)) is nonconvex, it has an unknown set K of lower dimension and is not the
lower-semicontinuous envelope of a more amenable functional, and it is difficult
to find smooth approximations and to solve the minimization in practice. Several
approximations have been proposed, including the weak membrane model and
the graduate non-convexity of Blake and Zisserman [16] (which can be seen
as a discrete version of the Mumford and Shah segmentation problem); discrete
finite differences approximations starting with the work of Chambolle [23–25]
(also proving the �-convergence of Blake-Zisserman approximations to the weak
Mumford-Shah functional in one dimension); finite element approximations by
Chambolle and Dal Maso [27] and by Chambolle and Bourdin [17, 18]; phase-field
elliptic approximations due to Ambrosio and Tortorelli [5, 6] (with generalizations
presented by [19] and extensions by Shah [74], and Alicandro et al. [2]); region
growing and merging methods proposed by Koepfler et al. [48], by Morel and
Solimini [60], and by Dal Maso et al. [55,56] and level set approximations proposed
by Chan and Vese [29–32, 79], by Samson et al. [71], and by Tsai et al. [78];
and approximations by nonlocal functionals by Braides and Dal Maso [20], among
other approximations. Presented in this section in much more detail are the phase-
field elliptic approximations and the level set approximations together with their
applications.

For proving the convergence of some of these approximations to the Mumford
and Shah functional, the notion of �-convergence is used, which is briefly recalled
below. The interested reader is referred to Dal Maso [54] for a comprehensive
introduction to �-convergence.

The reader is referred to the monographs and textbooks by Braides [19], by
Morel and Solimini [60], and by Ambrosio et al. [4] on detailed presentations of
approximations to the Mumford and Shah functional.

Definition 4. Let X = (X , D/ be a metric space. We say that a sequence Fj : X !
[�1, C1] �-converges to F : X ! [�1, C1] (as j !1/ if for all u 2 X we
have

1. (lim inf inequality) for every sequence (uj / � X converging to u,

F.u/ � lim infj Fj .uj / (10)

2. (existence of a recovery sequence) there exists a sequence (uj / � X converging
to u such that

F.u/ � lim supj Fj .uj /;
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or, equivalently by (10),

F.u/ D limj Fj .uj /:

The function F is called the �-limit of (Fj / (with respect to D/, and we write
F = �-limj Fj .

The following fundamental theorem is essential in the convergence of some of
the approximations.

Theorem 3 (Fundamental Theorem of �-convergence). Let us suppose that
F = �-limj Fj , and let a compact set C � X exist such that infXFj = infCFj
for all j . Then, there is minimum of F over X such that

min
X
F D lim

j
inf

X
Fj ;

and if (uj / � X is a converging sequence such that limj Fj (uj / = limj infXFj ,
then its limit is a minimum point of F .

6 Ambrosio and Tortorelli Phase-Field Elliptic
Approximations

A specific strategy, closer to the initial formulation of the Mumford-Shah problem in
terms of pairs (u,K D Su/, is based on the approximation by functionals depending
on two variables (u, v/, the second one related to the set K D Su.

7 Approximations of the Perimeter by Elliptic Functionals

The Modica-Mortola theorem [58, 59] enables the variational approximation of the
perimeter functional E 7! P.E, ) = s jD	E j <1 of an open subset E of  by
the quadratic, elliptic functionals

MM".v/ D
Z


�
" jrvj2 C W.v/

"

�
dx; v 2 W 1;2./;

where W.t/ is a “double-well” potential. For instance, choosingW.t/ = t2.1 � t/2,
assuming that  is bounded with Lipschitz boundary and setting MM"(�) = 1 if
� 2 L2() nW 1;2(), the functionals MM"(�) �-converge in L2() to

F.v/ D
� 1

3P.E;/ if v D 	E for someE 2 B./;
1 otherwise;
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where B./ denotes the 
-algebra of Borel subsets of .
Minimizing the functional MM"(�) with respect to � yields the associated Euler-

Lagrange equation and boundary condition,

W 0.v/ D 2"2�v in;
@v

@ EN
D 0 on @;

which can be easily solved in practice by finite differences.

8 Ambrosio-Tortorelli Approximations

In the Mumford and Shah functional, the setK D Su is not necessarily the boundary
of an open and bounded domain, but a construction similar to MM"(�) can still be
used, with the potentialW.t/ D 1

4 .1�t/2 instead. Ambrosio and Tortorelli proposed
two elliptic approximations [5,6] to the weak formulation of the Mumford and Shah
problem. Presented is the second one [6], being simpler than the first one [5], and
commonly used in practice.

Let X D L2()2 and let us define

AT".u; v/ D
Z


.u � g/2dx C ˇ
Z


v2 jruj2 dx C ˛
Z


�
" jrvj2 C .v � 1/

4"

�
dx

(11)
if (u, �) 2 W 1;2()2, 0 � � � 1, and AT".u, �) = +1 otherwise.

Also defined is the limiting Mumford-Shah functional,

F.u; v/ D
� R


.u � g/2dx C ˇ R

 jruj2 C ˛Hd�1.Su/ if u 2 SBV./; v 
1;
C1 otherwise:

Theorem 4. AT"�-converges to F as " ] 0 in L2(). Moreover, AT" admits a
minimizer (u", �"/ such that up to subsequences, u" converges to some u 2 SBV()
a minimizer of F.u, 1) and inf AT".u", �"/! F.u, 1).

Interesting generalizations of this result are given and proved by Braides in [19].
In practice, the Euler-Lagrange equations associated with the alternating mini-

mization of AT" with respect to u D u" and � = �" are used and discretized by finite
differences. These are

@AT".u;v/
@u D 2.u � g/ � 2ˇ div.v2ru/ D 0

@AT".u;v/
@v D 2ˇv jruj2 � 2˛"�vC ˛

2" .v � 1/:

One of the finite difference approximations to compute u and � in two dimensions
x = (x1, x2/ is as follows. A time-dependent scheme is used in u D u.x1, x2, t/ and
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a stationary semi-implicit fixed-point scheme in � = �(x1, x2/. Let�x1 D �x2 D h
be the step space, �t be the time step, and gi;j , uni;j , �ni;j be the discrete versions of
g, and of u and � at iteration n � 0, for 1 � i � M , 1 � j � N . Initialize u0 D g
and �0 = 0.

For n � 1, compute and repeat to steady state, for i D 2, . . . , M � 1 and j D 2,
. . . , N � 1 (combined with Neumann boundary conditions on @):

jrunj2i;j D
�

uniC1;j�uni;j
h

�2
C
�

uni;jC1�uni;j
h

�2
;

0 D 2ˇvnC1
i;j jrunj2i;j � 2 ˛"

h2

�
vniC1;j C vni�1;j C vni;jC1 C vni;j�1

�4vnC1
i;j

�
C ˛

2"

�
vnC1
i;j � 1

�
;

unC1
i;j �uni;j
�t

D �
�

uni;j � gi;j
�
C ˇ

h2

��
vnC1
i;j

�2 �
uniC1;j � uni;j

�
C
�

vnC1
i;j

�2

�
uni;jC1 � uni;j

�
�
�

vnC1
i�1;j

�2 �
uni;j � uni�1;j

�
�
�

vnC1
i;j�1

�2 �
uni;j � uni;j�1

��

which is equivalent with

jrunj2i;j D
�

un
iC1;j�uni;j

h

�2
C
�

un
i;jC1�uni;j

h

�2
;

vnC1
i;j D

˛
2" C 2˛"

h2

�
vniC1;j C vni�1;j C vni;jC1 C vni;j�1

�
˛
2" C 2ˇ jrunj2i;j C 8˛"

h2

;

unC1
i;j D uni;j C�t

�
�
�

uni;j � gi;j
�
C ˇ

h2

��
vnC1
i;j

�2 �
uniC1;j � uni;j

�

C
�

vnC1
i;j

�2 �
uni;jC1 � uni;j

�
�
�

vnC1
i�1;j

�2 �
uni;j � uni�1;j

�

�
�

vnC1
i;j�1

�2 �
uni;j � uni;j�1

��

Presented are experimental results obtained using the above Ambrosio-Tortorelli
approximations applied to the well-known Barbara image shown in Fig. 1 left.
Segmented images u are shown in Fig. 2, and the corresponding edge sets � are
shown in Fig. 3 for varying coefficients ˛, ˇ 2 {1, 5, 10}. We notice that less
regularization (decreasing both ˛ and ˇ/ gives more edges in �, as expected; thus,
u is closer to g. Fixed ˛ and increasing ˇ give smoother image u and fewer edges
in �. Keeping fixed ˇ but varying ˛ does not produce much variation in the results.
Also shown in Fig. 1 right is the numerical energy versus iterations for the case
˛ D ˇ = 10, " = 0.0001.

Applications of the Ambrosio-Tortorelli approximations to image restoration will
be presented in details in Sect. 5.
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Fig. 1 Left: original image g. Right: numerical energy versus iterations for the Ambrosio-
Tortorelli approximations (˛ D ˇ D 10, " D 0:0001)

9 Level Set Formulations of theMumford and Shah
Functional

In this section are reviewed the level set formulations for minimizing the Mumford
and Shah functional, as proposed initially by Chan and Vese [29–32,79], and by Tsai
et al. [78] (see also the related work by Samson et al. [71] and Cohen et al. [36,37]).
These make the link between curve evolution, active contours, and Mumford-Shah
segmentation. These models have been proposed by restricting the set of minimizers
u to specific classes of functions: piecewise constant, piecewise smooth, and with
the edge set K represented by a union of curves or surfaces that are boundaries of
open subsets of . For example, if K is the boundary of an open-bounded subset
of , then it can be represented implicitly, as the zero-level line of a Lipschitz-
continuous level set function. Thus, the set K as an unknown is substituted by an
unknown function that defines it implicitly, and the Euler-Lagrange equations with
respect to the unknowns can be easily computed and discretized.

Following the level set approach [67, 68, 72, 73], let �: ! R be a Lipschitz-
continuous function. Recalled is the variational level set terminology that will be
useful to rewrite the Mumford and Shah functional in terms of (u, �/, instead of
(u, K/. This is inspired by the work of Zhao et al. [83] on a variational level set
approach for the motion of triple junctions in the plane.

Used here is the one-dimensional (1D) Heaviside functionH , defined by

H.z/ D
�

1 if z � 0
0 if z < 0

;

and its distributional derivative ı D H 0 (in the weak sense). In practice, it may be
necessary to work with smooth approximations of the Heaviside and ı functions.
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(1,5)
SEGMENTED IMAGE u

(5,5)
SEGMENTED IMAGE u

(10,5)
SEGMENTED IMAGE u

(1,10)
SEGMENTED IMAGE u

(5,10)
SEGMENTED IMAGE u

(10,10)
SEGMENTED IMAGE u

(1,1)
SEGMENTED IMAGE u

(5,1)
SEGMENTED IMAGE u

(10,1)
SEGMENTED IMAGE u

Fig. 2 Piecewise-smooth images u as minimizers of the Ambrosio-Tortorelli approximations for
" D 0:0001 and various values of .˛; ˇ/

Used here are the following C1 approximations as "! 0 given by [29, 31],

H".z/ D 1

2

�
1C 2

�
arctan

� z

"

��
; ı" D H 0

":

The area (or the volume) of the region {x 2 : �.x/ > 0} is

Afx 2  W �.x/ > 0g D
Z


H.�.x//dx;
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(1,1)
EDGE MAP v

(1,5)
EDGE MAP v

(1,10)
EDGE MAP v

(5,1)
EDGE MAP v

(5,5)
EDGE MAP v

(5,10)
EDGE MAP v

(10,1)
EDGE MAP v

(10,5)
EDGE MAP v

(10,10)
EDGE MAP v

Fig. 3 Corresponding edge sets v as minimizers of the Ambrosio-Tortorelli approximations for
" D 0:0001 and various values of .˛; ˇ/

and for a level parameter l 2 R, the area (or volume) of the region {x 2 : �.x/ >
l} is

Afx 2  W �.x/ > 0g D
Z


H.�.x/� l/dx:

The perimeter (or more generally the surface area) of the region {x 2 : �.x/ >
0} is given by
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Lfx 2  W �.x/ > 0g D
Z


jDH.�/j ;

which is the total variation of H.�/ in , and the perimeter (or surface area) of
{x 2 : �.x/ > l} is

Lfx 2  W �.x/ > lg D
Z


jDH.� � l/j :

Given the image data g 2 L1 ()� L2() to be segmented, the averages of g over
the (nonempty) regions {x 2 : �.x/ > 0} and {x 2 : �.x/ < 0}, respectively,
are
R

g.x/H.�.x//dxR

H.�.x// dx

and

R

g.x/.1 �H.�.x///dxR

.1 �H.�.x/// dx D

R

g.x/H.��.x// dxR

H.��.x// dx :

More generally, for a given level parameter l 2 R, the averages of g over the
corresponding (nonempty) regions {x 2 : �.x/ > l} and {x 2 : �.x/ < l},
respectively, are

R

g.x/H.�.x/ � l/dxR
 H.�.x/� l/ dx

and

R

g.x/H.l � �.x//dxR
H.l � �.x// dx

:

Proved next is that if H and ı are substituted by the above C1 approximations
H", ı" as " ! 0, approximations of the area and length (perimeter) measures are
obtained. It is obviously found that H".z/ ! H.z/ for all z 2 R, as " ! 0, and
that the approximating area term A".�/ D s H".�.x//dx converges to A.�/ D
sH.�.x//dx.

Generalizing a result of Samson et al. [71], it can be shown [35] that our
approximating functional L".�/ D s jDH".�/jdx = s ı".�/jr�jdx converges to
the length jKj of the zero-level line K = {x 2 : �.x/ = 0}, under the assumption
that �: ! R is Lipschitz. The same result holds for the case of any l-level curve
of � and not only for the 0-level curve.

Theorem 5. Let us define

L".�/ D
Z


jrH".�/j dx D
Z


ı".�/ jr�jdx:

Then, we have

lim
"!0

L".�/ D
Z

f�D0g
ds D jKj ;

where K = {x 2 : �.x/ = 0}.



1558 L. Bar et al.

Proof. Using co-area formula [40], the following is found:

L".�/ D
Z
R

�Z
�D�

ı".�.x//ds

�
d� D

Z
R

�
ı".�/

Z
�D�

ds

�
d�:

By setting h.�/ D s�D� ds, the following is obtained

L".�/ D
Z
R

ı".�/h.�/d� D
Z
R

1

�

"

"2 C �2
h.�/d�:

By the change of variable � D �

"
, the following is obtained

lim"!0L".�/ D lim"!0
R
R

1
�

"
"2C"2�2h.�"/d� D lim"!0

R
R

1
�

1
1C�2h.�"/ d�

D h.0/ R
R

1
�

1
1C�2d� D h.0/ 1

�
arctan � jC1�1 D h.0/ D

R
�D0 ds D jKj ;

which concludes the proof.

In general, this convergence result is valid for any approximationsH", ı", under
the assumptions

lim
"!0

H".z/ D H.z/ inR=f0g;

ı" D H"0, Hs 2 C 1.R/,s C1
�1 ı1.x/dx = 1.

10 Piecewise-Constant Mumford and Shah Segmentation
Using Level Sets

Our first formulation is for the case when the unknown set of edges K can be
represented by K = {x 2 : �.x/ = 0} for some (unknown) Lipschitz function
�:! R. In this case, the unknown minimizers u to functions are restricted taking
two unknown values c1, c2, and the corresponding Mumford-Shah minimization
problem can be expressed as [29, 31]

inf
c1;c2;�

E.c1; c2; �/ D
Z


.g.x/ � c1/
2H.�/dx C

Z


.g.x/ � c2/
2H.��/dx

C v0

Z


jDH.�/j : (12)

The unknown minimizer u is expressed as

u.x/ D c1H.�.x//C c2.1 �H.�.x/// D c1H.�.x//C c2H.��.x//:
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H is substituted by its C1 approximationH" and instead

E".c1; c2; �/ D
R

.g.x/ � c1/

2H".�/dx C
R

.g.x/ � c2/

2H".��/dx
Cv0

R
 jrH".�/j dx:

(13)

is minimized.
The associated Euler-Lagrange equations with respect to c1, c2, and � are

c1.�/ D
R
 g.x/H".�.x//dxR

H".�.x//dx

; c1.�/ D
R
 g.x/H".��.x//dxR

H".��.x//dx ;

and, after simplifications,

ı".�/

�
.g.x/ � c1/

2 � .g.x/ � c2/
2 � div

� r�
jr�j

��
D 0 in; (14)

with boundary conditions r� � EN = 0 on @. Since ı" > 0 as defined, the factor
ı".�/ can be removed from (14) or substituted by jr�j to obtain a more geometric
motion extended to all level lines of �, as in the standard level set approach.

This approach has been generalized by Chung and Vese in [34, 35], where more
than one-level line of the same level set function � can be used to represent the edge
set K . Using m distinct real levels {l1 < l2 < . . . < lm}, the function � partitions
the domain into the followingmC1 disjoint open regions, making up, together
with their boundaries:

0 D fx 2  W �1 < �.x/ < l1g;
j D fx 2  W lj < �.x/ < ljC1g; 1 � j � m � 1
m D fx 2  W lm < �.x/ < C1g

The energy to minimize in this case, depending on c0, c1, . . . , cm, �, will be

E.c0; c1; : : : ; cm; �/ D
Z


jg.x/ � c0j2H.l1 � �.x//dx C
Xm�1

jD1

Z


jg.x/

�cj
ˇ̌2
H.�.x/� lj /H.ljC1 � �.x//dx C

Z


jg.x/

�cmj2H.�.x/� lm/dx C v0

Xm

jD1

Z


ˇ̌
DH.� � lj /

ˇ̌
:

(15)
The segmented image will be given by

u.x/ D c0H.l1 � �.x//C
Xm�1

jD1
cjH.�.x/� lj /H.ljC1 � �.x//

C cmH.�.x/� lm/:
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As before, to minimize the above energy, the Heaviside function H by H", as "!
0, is approximated and substituted. The Euler-Lagrange equations associated with
the corresponding minimization

inf
c0 ;c1;:::;cm;�

E".c0; c1; : : : ; cm; �/; (16)

can be expressed as8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

c0.�/ D
R
 g.x/H".l1��.t;x// dxR
 H".l1��.t;x//dx ;

cj .�/ D
R
 g.x/H".�.t;x/�lj /H".ljC1��.t;x//dxR
 H".�.t;x/�lj /H".ljC1��.t;x//dx ;

cm.�/ D
R
 g.x/H".�.t;x/�lm/ dxR
 H".�.t;x/�lm/dx ;

and

0 D jg � c0j2 ı".l1 � �/CPm�1
jD1

ˇ̌
g � cj

ˇ̌2
Œı".ljC1 � �/H".� � lj /��

ı".� � lj /H".ljC1 � �/ � jg � cmj2 ı".� � lm/C
v0
Pm

jD1

h
ı".� � lj / div

� r�
jr�j

�i
;
@�

@En
ˇ̌
ˇ
@
D 0;

where EN is the exterior unit normal to the boundary @.
Given here are the details of the numerical algorithm for solving (17) in two

dimensions (x, y/, using gradient descent, in the case of one function � with two
levels l1 = 0, l2 D l > 0. Let h D �x = �y be the space steps, �t be the time step,
and " D h. Let (xi , yj / be the discrete points, for 1 � i , j � M , and gi;j 	 g.xi ,
yj /, �ni;j 	 �.n�t , xi , yj /, with n � 0. Recall the usual finite differences formulas

�xC�i;j D �iC1;j � �i;j ; �x��i;j D �i;j � �i�1;j ;

�
y
C�i;j D �i;jC1 � �i;j ; �x��i;j D �i;j � �i;j�1

Set n = 0, and start with �0
i;j given (defining the initial set of curves). Then, for each

n > 0 until steady state:

1. Compute averages c0.�
n/, c1.�

n/, and c2.�
n/.

2. Compute �nC1
i;j , derived from the finite differences scheme:

�
nC1
i;j ��ni;j
�t

D ı"
�
�ni;j

�"
v0
h2

 
�x�

 
�n
iC1;j��nC1

i;jˇ̌
ˇr�ni;j

ˇ̌
ˇ

!
C�y�

 
�n
i;jC1��nC1

i;jˇ̌
ˇr�ni;j

ˇ̌
ˇ

!!

C ˇ̌gi;j � c0

ˇ̌2 � ˇ̌gi;j � c1

ˇ̌2
H"

�
l � �ni;j

�i
C ı"

�
�ni;j � l

�
"

v0
h2

 
�x�

 
�niC1;j��nC1

i;jˇ̌
ˇr�ni;j

ˇ̌
ˇ

!
C�y�

 
�ni;jC1��nC1

i;jˇ̌
ˇr�ni;j

ˇ̌
ˇ

!!

� ˇ̌gi;j � c2

ˇ̌2 C ˇ̌gi;j � c1

ˇ̌2
H"

�
�ni;j

�i
;
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3. Where
ˇ̌
ˇr�ni;j

ˇ̌
ˇ D

r�
�n
iC1;j��ni;j

h

�2
C
�
�n
i;jC1��ni;j

h

�2
: Let

C1 D 1s�
�n
iC1;j��ni;j

h

�2

C
�
�n
i;jC1��ni;j

h

�2
;

C2 D 1s�
�ni;j ��ni�1;j

h

�2

C
�
�n
i�1;jC1��ni�1;j

h

�2
;

C3 D 1s�
�n
iC1;j��ni;j

h

�2

C
�
�n
i;jC1��ni;j

h

�2
;

C4 D 1s�
�n
iC1;j�1��ni;j�1

h

�2

C
�
�ni;j ��ni;j�1

h

�2

4. Let m1 D �t

h2

�
ı"

�
�ni;j

�
C ı"

�
�ni;j � l

��
v0, C = 1 + m1.C1 C C2 C C3 C C4/.

The main update equation for � becomes

�nC1
i;j D 1

C

h
�ni;j Cm1

�
C1�

n
iC1;j C C2�

n
i�1;j C C3�

n
i;jC1 C C4�

n
i;j�1

�

C�tı"
�
�ni;j

�
.�.gi;j � c1/

2
�

1 �H"

�
�ni;j � l

��

C.gi;j � c0/
2/C�tı"

�
�ni;j � l

� �
�.gi;j � c2/

2 C .gi;j � c1/
2H"

�
�ni;j

��i
;

5. And repeat, until steady state is reached.

This section is concluded with several experimental results obtained using the
models presented here that act as denoising, segmentation, and active contours. In
Fig. 4, an experimental result is shown taken from [31] obtained using the binary
piecewise-constant model (12); we notice how interior contours can be automati-
cally detected. In Fig. 5, we show an experimental result using the multilayer model
(15), with m D 2 and two levels l1, l2, applied to the segmentation of a brain
image.

The work in [35, 79] also shows how the previous Mumford-Shah level set
approaches can be extended to piecewise-constant segmentation of images with
triple junctions, several non-nested regions, or with other complex topologies, by
using two or more level set functions that form a perfect partition of the domain.

11 Piecewise-SmoothMumford and Shah Segmentation
Using Level Sets

Considered first is the corresponding two-dimensional case under the assumption
that the edges denoted by K in the image can be represented by one-level set
function �, i.e.,K = {x 2 j�.x/ = 0}, and followed are the approaches developed
in parallel by Chan and Vese [32, 79] and by Tsai et al. [78], in order to minimize
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Fig. 4 Detection of different objects in a noisy image, with various convexities and with an interior
contour which is automatically detected, using only one initial curve. After a short time, an interior
contour appears inside the torus, and then it expands. Top: g and the evolving contours. Bottom:
the piecewise-constant approximations u of g over time, given by u D c1H.�/C c2.1 �H.�//

the general Mumford and Shah model. As in [79], the link between the unknowns
u and � can be expressed by introducing two functions uC and u� (see Fig. 6) such
that

u.x/ D
�

uC.x/ if�.x/ � 0;
u�.x/ if�.x/ � 0:

Assume that uC and u� are H 1 functions on � � 0 and on � � 0, respectively
(with Sobolev traces up to all boundary points, i.e., up to the boundary {� = 0}).
The following minimization problem can be written

inf
uC;u�;�

E.uC; u�; �/;

where

E.uC; u�; �/ D �2
R


ˇ̌
uC � gˇ̌2H.�/dx C �2

R
 ju� � gj2 .1�H.�//dx

C R


ˇ̌ruC ˇ̌2H.�//dx C R
 jru�j2 .1 �H.�//dx C v

R
 jDH.�/j

is the Mumford-Shah functional restricted to u.x/ D uC (x/H.�.x// + u� (x/(1
- H.�.x//. Minimizing E.uC, u�, �/ with respect to uC, u�, and �, we obtain
the following Euler-Lagrange equations (embedded in a time-dependent dynamical
scheme for �/:

�2.uC � g/ D �uCin fx W �.t; x/ > 0g; @uC

@En D 0 on fx W �.t; x/ D 0g [ @;
(17)

�2.u� � g/ D �u�in fx W �.t; x/ < 0g; @u�

@En D 0 on fx W �.t; x/ D 0g [ @;
(18)
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Fig. 5 Segmentation of a brain image using one-level set function with two levels. Parameters:
l1 D 0, l2 D 25, �t D 0:1, �0 D 0:1 � 2552, 1,500 iterations
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Fig. 6 The functions uC, u�

and the zero-level lines of the
level set function � for
piecewise-smooth image
partition

U = U –

U = U –

U = U –

U = U –

U = U +

U = U +

φ < 0

φ < 0

φ < 0φ > 0

φ > 0

U = U +

φ > 0

Fig. 7 Results on a noisy image, using the level set algorithm for the piecewise-smooth Mumford-
Shah model with one-level set function. The algorithm performs as active contours, denoising, and
edge detection

@�

@t
D ı".�/

�
vr
� r�
jr�j

�
� �2

ˇ̌
uC � gˇ̌2 � ˇ̌ruC ˇ̌2 C �2 ju� � gj2 C jru�j2

�
;

(19)

where @/@En denotes the partial derivative in the normal direction En at the corre-
sponding boundary. We also associate the boundary condition @�

@En D 0 on @ to
Eq. (19).

Shown in Figs. 7 and 8 are experimental results taken from [79] obtained with
the piecewise-smooth two-phase model.

There are cases when the boundaries K of regions forming a partition of the
image could not be represented by the boundary of an open domain. To overcome
this, several solutions have been proposed in this framework, and mentioned here
are two of them: (1) in the work by Tsai et al. [78], the minimization ofE.uC, u�, �/
is repeated inside each of the two regions previously computed, and (2) in the work
of Chan and Vese [79], two or more level set functions are used. For example, in
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Fig. 8 Numerical result using the piecewise-smooth Mumford-Shah level set algorithm with one-
level set function, on a piecewise-smooth real galaxy image

two dimensions, the problem can be solved using only two-level set functions, and
we do not have to know a priori how many gray levels the image has (or how many
segments). The idea is based on the four-color theorem. Based on this observation,
we can “color” all the regions in a partition using only four “colors,” such that
any two adjacent regions have different “colors.” Therefore, using two-level set
functions, we can identify the four “colors” by the following (disjoint) sets: {�1 >

0, �2 > 0}, {�1 < 0, �2 < 0}, {�1 < 0, �2 > 0}, {�1 < 0, �2 < 0}. The boundaries
of the regions forming the partition will be given by {�1 = 0} [ {�2 = 0}, and this
will be the set of curves K . Note that, in this particular multiphase formulation of
the problem, we do not have the problems of “overlapping” or “vacuum” (i.e., the
phases are disjoint, and their union is the entire domain, by definition).

As before, the link between the function u and the four regions can be made by
introducing four functions uCC, uC�, u�C, u��, which are in fact the restrictions
of u to each of the four phases, as follows (see Fig. 9):

u.x/ D

8̂
<̂
ˆ̂:

uCC.x/; if �1.x/ > 0 and �2.x/ > 0;
uC�.x/; if �1.x/ > 0 and �2.x/ < 0;
u�C.x/; if �1.x/ < 0 and �2.x/ > 0;
u��.x/; if �1.x/ < 0 and �2.x/ < 0:

Again, using the Heaviside function, the relation between u; the four functions
uCC, uC�, u�C, u��; and the level set functions �1 and �2 can be expressed by

u D uCCH.�1/H.�2/C uC�H.�1/.1 �H.�2//C u�C.1 �H.�1//H.�2/C u��
.1 �H.�1//.1 �H.�2//
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Fig. 9 The functions uCC,
uC�, u�C, u��, and the
zero-level lines of the level
set functions �1, �2 for
piecewise-smooth image
partition

U = U ++

U = U ++

U = U +–

U = U +–

U = U +–

U = –+

U = U +–

> 0f1

> 0f1

> 0f2

< 0f2

< 0f2

< 0f1

> 0f2

> 0f1

> 0f1

> 0f2

Introduced here is an energy in level set formulation based on the Mumford-Shah
functional:

E.u; �1; �2/ D �2
R


ˇ̌
uCC � gˇ̌2H.�1/H.�2/dx

C R


ˇ̌ruCCˇ̌2H.�1/H.�2/ dx

C�2
R


ˇ̌
uC� � gˇ̌2H.�1/.1 �H.�2// dx

C R
ˇ̌ruC�ˇ̌2H.�1/.1 �H.�2// dx

C�2
R


ˇ̌
u�C � gˇ̌2 .1 �H.�1//H.�2/ dx

C R
ˇ̌ru�Cˇ̌2 .1 �H.�1///H.�2/dx

C�2
R
 ju�� � gj2 .1 �H.�1//.1 �H.�2//dx

C R
 jru��j2 .1 �H.�1//.1 �H.�2//dx

Cv
R
 jDH.�1/j C v

R
 jDH.�2/j

Note that the expression s jDH(�1/j C s jDH(�2/j is not exactly the length term
of K = {x 2 : �1.x/ = 0 and �2.x/ = 0}; it is just an approximation and
simplification. In practice, satisfactory results using the above formula are obtained,
and the associated Euler-Lagrange equations are simplified.

The associated Euler-Lagrange equations are obtained as in the previous cases,
embedded in a dynamic scheme, assuming (t , x, y/ 7!! �i (t , x, y/: minimizing
the energy with respect to the functions uCC, uC�, u�C, u��, we have, for each
fixed t :

�2.uCC � g/ D �uCC in f�1 > 0; �2 > 0g; @uCC

@En D 0 on f�1 D 0; �2 � 0g;
f�1 � 0; �2 D 0gI

�2.uC� � g/ D �uC� in f�1 > 0; �2 < 0g; @uC�

@En D 0 on f�1 D 0; �2 � 0g;
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f�1 � 0; �2 D 0gI
�2.u�C � g/ D �u�C in f�1 < 0; �2 > 0g; @u�C

@En D 0 on f�1 D 0; �2 � 0g;
f�1 � 0; �2 D 0gI

�2.u�� � g/ D �u�� in f�1 < 0; �2 < 0g; @u��

@En D 0 on f�1 D 0; �2 � 0g;
f�1 � 0; �2 D 0g

The Euler-Lagrange equations evolving �1 and �2, embedded in a dynamic scheme,
are formally:

@�1
@t
D ı".�1/

h
vr
� r�1

jr�1j
�
� �2

ˇ̌
uCC � gˇ̌2H.�2/ �

ˇ̌ruCCˇ̌2H.�2/

��2
ˇ̌
uC� � gˇ̌2 .1 �H.�2//�

ˇ̌ruC�ˇ̌2 .1 �H.�2//C �2
ˇ̌
u�C

�gj2H.�2/C
ˇ̌ru�C ˇ̌2H.�2/C �2 ju�� � gj2 .1 �H.�2//C

jru��j2 .1 �H.�2//� D 0;
@�2
@t
D ı".�2/

h
vr
� r�2

jr�2j
�
� �2

ˇ̌
uCC � gˇ̌2H.�1/ �

ˇ̌ruCCˇ̌2H.�1/

��2
ˇ̌
uC� � gˇ̌2H.�2/C

ˇ̌ruC�ˇ̌2H.�1/� �2
ˇ̌
u�C � gˇ̌2 .1�H.�1//�ˇ̌ru�C ˇ̌2.1 �H.�1//

��2 ju�� � gj2 .1 �H.�1//C jru��j2 .1 �H.�1//�

It can be shown, by standard techniques of the calculus of variations on the space
SBV() (special functions of bounded variations), and a compactness result due to
Ambrosio [3], that the proposed minimization problems from this section, in the
level set formulation, have a minimizer. Finally, because there is no uniqueness
of minimizers, and because the problems are nonconvex, the numerical results
may depend on the initial choice of the curves and may compute only a local
minimum. We think that, using the seed initialization (see [79]), the algorithms
have the tendency of computing a global minimum, most of the times. Additional
experimental results are shown in [79].

12 Case Examples: Variational Image Restoration with
Segmentation-Based Regularization

This section focuses on the challenging task of edge-preserving variational image
restoration. In this context, restoration is referred to as image deblurring and
denoising, dealing with Gaussian and impulsive noise models. Terms from the
Mumford-Shah segmentation functional are used as regularizers, reflecting the
model of piecewise-constant or piecewise-smooth images.

In the standard model of degradation, the underlying assumptions are the
linearity and shift invariance of the blur process and the additivity and normal



1568 L. Bar et al.

distribution of the noise. Formally, let  be an open-bounded subset of R
n. The

observed image g: ! R
N 2 L1 is given by

g D h � uC n; (20)

where g is normalized to the hypercube [0, 1]N , h is the blur kernel such that h.x/ >
0 and s h.x/dx = 1, u:  ! R

N is the (“ideal”) original image, n � N (0, 
2/

stands for a white Gaussian noise, and * denotes the convolution operator. The
restoration problem is the recovery of the original image u given Eq. (20). Non-
blind image restoration is the problem whenever the blur kernel is known, while
blind restoration refers to the case of unknown kernel [49,50]. The recovery process
in the non-blind case is a typical inverse problem where the image u is the minimizer
of an objective functional of the form

F .u/ D ˆ.g � h � u/C J .ru/ : (21)

The functional consists of fidelity term and a regularizer. The fidelity term � forces
the smoothed image h * u to be close to the observed image g. The commonly used
model of a white Gaussian noise n � N (0, 
2/ leads by the maximum likelihood
estimation to the minimization of the L2 norm of the noise

ˆL2 D kg � h � uk2
L2./ : (22)

However, in the case of impulsive noise, some amount of pixels do not obey the
Gaussian noise model. Minimization of outlier effects can be accomplished by
replacing the quadratic form (22) with a robust �-function [44], e.g.,

ˆL1 D kg � h � ukL1./ : (23)

The minimization of (22) or (23) alone with respect to u is an inverse problem which
is known to be ill-posed: small perturbations in the data g may produce unbounded
variations in the solution. To alleviate this problem, a regularization term can be
added. The Tikhonov L2 stabilizer [77]

JL2 D
Z


jruj2 dx;

leads to over smoothing and loss of important edge information. A better edge
preservation regularizer, the total variation (TV) term, was introduced by Rudin et
al. [69,70], where the L2 norm was replaced by the L1 norm of the image gradients

JL1 D
Z


jrujdx:
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Still, although the total variation regularization outperforms theL2 norm, the image
features – the edges – are not explicitly extracted. The edges are implicitly preserved
only by the image gradients.

An alternative regularizer is the one used in the Mumford-Shah functional [61,
63]. Recall that this is accomplished by searching for a pair (u, K/ where K � 

denotes the set of discontinuities of u, the unknown image, such that u 2 H 1(nK/,
K �  closed in , and

G .u; K/ D ˇ
Z
=K

jruj2 dx C ˛Hn�1 .K/ <1: (24)

In our study, the regularizer to the restoration problem (21) is given by

JMS D G .u; K/ ;

its L1 variant [2, 74], and elliptic or level set approximations of these, as presented
next. This enables the explicit extraction and preservation of the image edges in
the course of the restoration process. We show the advantages of this regularizer in
several applications and noise models (Gaussian and impulsive).

As has been mentioned, Ambrosio and Tortorelli [6] introduced an elliptic
approximationG".u, �) to G.u,K/, as "! 0C, that is recalled here,

G" .u; v/ D ˇ
Z


v2 jruj2 dx C ˛
Z


 
" jrvj2 C .v � 1/2

4"

!
dx: (25)

Replacing the Mumford-Shah regularization term (24) by G".u, �) yields the
proposed restoration model

F" .u; v/ D ˆ.g � h � u/C ˇ
Z


v2 jruj2 dx C ˛
Z


 
" jrvj2 C .v � 1/2

4"

!

(26)
The functional (26) can also be understood from a generalized robust statistics
viewpoint. This is beyond the scope of this chapter, and the interested reader can
find the details in [12].

The rest of the chapter considers the non-blind restoration problem presented in
[13] and its generalizations to several more realistic situations. Consider the problem
of (semi-) blind deconvolution, the case of impulsive noise, the color restoration
problem, and the case of space-variant blur. Also consider the problem of restoration
of piecewise-constant images from noisy-blurry data using the level set form of the
Mumford-Shah regularizer and image restoration using nonlocal Mumford-Shah-
Ambrosio-Tortorelli regularizers.
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13 Non-blind Restoration

Addressed first is the restoration problem with a known blur kernel h and additive
Gaussian noise [10, 13]. In this case, the fidelity term is the L2 norm of the
noise (22), and the regularizer #MS D Gs (u,v/ (25). The objective functional is
therefore

F" .u; v/D 1

2

Z


.g � h � u/2 dxCˇ
Z


v2 jruj2 dxC˛
Z


 
" jrvj2 C .v � 1/2

4"

!

(27)
The functional (27) is strictly convex, bounded from below and coercive with
respect to the functions u and � if the other one is fixed. Following [33], the
alternate minimization (AM) approach is applied: in each step of the iterative
procedure, we minimize with respect to one function and keep the other one fixed.
The minimization is carried out using the Euler-Lagrange (E-L) equations with
Neumann boundary conditions where u is initialized as the blurred image g and
� is initialized to 1.

ıF"

ıv
D 2ˇv jruj2 C ˛ v � 1

2"
� 2"˛ � v D 0 (28)

ıF"

ıu
D .h � u � g/ � h .�x;�y/ � 2ˇr � �v2ru

	 D 0 (29)

Equation (28) is linear with respect to � and can be easily solved after discretization
by the minimal residual algorithm [81]. The integrodifferential equation (29) can
be solved by the conjugate-gradient method [13]. The iterative process is stopped
whenever some convergence criterion is satisfied (e.g., jjunC1 � unjj < "jjunjj/.
Figure 10 demonstrates the outcome of the algorithm. The top-left image is the
blurred image g. The kernel corresponds to horizontal motion blur. The top-right
image is the reconstruction obtained using total variation (TV) regularization [70,
80]. The bottom-left image is the outcome of the MS regularizer, with a known blur
kernel. The bottom-right image shows the associated edge map � determined by the
algorithm. Acceptable restoration is obtained with both methods. Nevertheless, the
MS method yields a sharper result and is almost free of “ghosts” (white replications
of notes) that can be seen in the top-right image (e.g., between the C notes in the
right part of the top stave). The algorithm can be also applied to 3D images as shown
in Fig. 11. In this example, the blur kernel was anisotropic 3D Gaussian kernel.

14 Semi-blind Restoration

Blind restoration refers to the case when the blur kernel h is not known in advance.
In addition to being ill-posed with respect to the image, the blind restoration problem
is ill-posed in the kernel as well. Blind image restoration with joint recovery of the
image and the kernel, and regularization of both, was presented by You and Kaveh
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Fig. 10 The case of a known (nine-pixel horizontal motion) blur kernel. Top left: corrupted image.
Top-right: restoration using the TV method [70,80]. Bottom left: restoration using the MS method.
Bottom right: edge map produced by the MS method

Fig. 11 3D restoration of MR image. Left: blurred (
x = 1.0, 
y D 1:0, 
z D 0:2) image. Middle:
recovered image. Right: edge map
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[82], followed by Chan and Wong [33]. Chan and Wong suggested to minimize a
functional consisting of a fidelity term and total variation (L1 norm) regularization
for both the image and the kernel:

F .u; h/ D 1

2
kh � u � gk2

L2./ C ˛1

Z


jruj dx C ˛2

Z


jrhj dx: (30)

By this approach, the recovered kernel is highly dependent on the image character-
istics. It allows the distribution of edge directions in the image to have an influence
on the shape of the recovered kernel which may lead to inaccurate restoration [13].
Facing the ill-posedness of blind restoration with a general kernel, two approaches
can be taken. One is to add relevant data; the other is to constrain the solution. In
many practical situations, the blurring kernel can be modeled by the physics/optics
of the imaging device and the setup. The blurring kernel can then be constrained
and described as a member in a class of parametric functions. The blind restoration
problem is then reduced to a semi-blind one. Let us consider the case of isotropic
Gaussian blur parameterized by the width 
 ,

h
 .x/ D 1

2�
2
e

� x2

2
2 ; x 2 R
n:

The semi-blind objective functional then takes the form [13]

F" .v; u; 
/ D 1

2

Z


.h
 � u � g/2 dx CG" .u; v/C �
Z


jrh
 j2 dx: (31)

The last term in Eq. (31) stands for the regularization of the kernel, necessary to
resolve the fundamental ambiguity in the division of the apparent blur between
the recovered image and the blur kernel. This means that we prefer to reject
the hypothesis that the blur originates from u, and assume that it is due to the
convolution with the blur kernel. From the range of possible kernels, we thus select
a wide one. This preference is represented by the kernel smoothness term: the
width of the Gaussian corresponds to its smoothness, measured by the L2 norm
of its gradient. The optimization is carried out by using the alternate minimization
approach. The recovered image u is initialized with g, the edge indicator function
� is initialized with 1, and 
 with a small number " which reflects a delta function
kernel. The Euler-Lagrange equations with respect to � and u are given by (28)
and (29), respectively. The parameter 
 is the solution of

@F"

@

D
Z


�
.h
 � u � g/

�
@h


@

� u

�
C � @

@

jrh
 j2

�
dx D 0; (32)

which can be calculated by the bisection method. The functional (31) is not
generally convex. Nevertheless, in practical numerical simulations, the algorithm
converges to visually appealing restoration results as can be seen in the second row
of Fig. 12.
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Fig. 12 Semi-blind restoration. Top row: blurred images. Second row: restoration using the semi-
blind method. Third row: original images. Bottom row: edge maps produced by the semi-blind
method

15 Image Restoration with Impulsive Noise

Consider an image that has been blurred with a known blur kernel h and con-
taminated by impulsive noise. Salt-and-pepper noise, for instance, is a common
model for the effects of bit errors in transmission, malfunctioning pixels, and faulty
memory locations. Image deblurring algorithms that were designed for Gaussian
noise produce inadequate results with impulsive noise.

The left image of Fig. 13 is a blurred image contaminated by salt-and-pepper
noise, and the right image is the outcome of the total variation restoration method
[80]. A straightforward sequential approach is to first denoise the image and then
to deblur it. This two-stage method is however prone to failure, especially at high
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Fig. 13 Current image deblurring algorithms fail in the presence of salt-and-pepper noise. Left:
blurred image with salt-and-pepper noise. Right: restoration using the TV method [80]

Fig. 14 The failure of the two-stage approach to salt-and-pepper noise removal and image
deblurring. Top-left: blurred image. Top-right: blurred image contaminated by salt-and-pepper
noise. Bottom-left: the outcome of 3 � 3 median filtering, followed by deblurring. Bottom-right:
the outcome of 5 � 5 median filtering, followed by deblurring
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noise density. Image denoising using median-type filtering creates distortion that
depends on the neighborhood size; this error can be strongly amplified by the
deblurring process. This is illustrated in Fig. 14. The top-left and top-right images
are the blurred and blurred-noisy images, respectively. The outcome of 3�3 median
filtering followed by total variation deblurring [80] is shown in the bottom left. At
this noise level, the 3 � 3 neighborhood size of the median filter is insufficient,
the noise is not entirely removed, and the residual noise is greatly amplified by the
deblurring process. If the neighborhood size of the median filter increases to 5 � 5,
the noise is fully removed, but the distortion leads to inadequate deblurring (bottom
right).

In a unified variational framework, the “ideal” image u can be approximated as
the minimizer of the objective functional [12, 14]

F" .u; v/ D
Z


q
.h � u � g/2 C � dx CG" .u; v/ : (33)

The quadratic data-fidelity term is now replaced by the modified L1 norm [64]
which is robust to outliers, i.e., to impulse noise. The parameter � D 1 enforces the
differentiability of (33) with respect to u. Optimization of the functional is carried
out using the Euler-Lagrange equations subject to Neumann boundary conditions:

ıF"

ıv
D 2ˇv jruj2 C ˛

�
v � 1

2"

�
� 2"˛ � v D 0; (34)

ıF"

ıu
D .h � u � g/q

.h � u � g/2 C �
� h .�x;�y/ � 2ˇr � �v2ru

	 D 0: (35)

The alternate minimization technique can be applied here as well since the
functional (33) is convex, bounded from below and coercive with respect to either
function u or � if the other one is fixed. Equation (34) is obviously linear with respect
to �. In contrast, (35) is a nonlinear integrodifferential equation. Linearization of this
equation is carried out using the fixed-point iteration scheme as in [33, 80]. In this
method, additional iteration index l serves as intermediate stage calculating unC1.
u D ul is set in the denominator, and u D ulC1 elsewhere, where l is the current
iteration number. Equation (35) can thus be rewritten as

H
�
v; ul

	
ulC1 D G �ul	 ; l D 0; 1; : : : : (36)

where H is the linear integrodifferential operator

H
�
v; ul

	
ulC1 D h � ulC1q�

h � ul � g	2 C �
� h .�x;�y/ � 2ˇr � �v2rulC1
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and

G
�
ul
	 D gq�

h � ul � g	2 C �
� h .�x;�y/ : (37)

Note that (36) is now a linear integrodifferential equation in ulC1.
The discretization of Eqs. (34) and (36) yields two systems of linear algebraic

equations. These systems are solved in alternation, leading to the following iterative
algorithm [12]:

Initialization: u0 D g, �0 = 1.

1. Solve for �nC1 �
2ˇ jrunj2 C ˛

2"
� 2˛"�

�
vnC1 D ˛

2"
: (38)

2. Set unC1;0 D un and solve for unC1 (iterating on l/

H
�
vnC1; unC1;l

	
unC1;lC1 D G �unC1;l

	
: (39)

3. If
���unC1 � un

��
L2
< "1 kunkL2

�
, stop.

The convergence of the algorithm was proved in [14]. Figure 15 demonstrates the
performance of the algorithm. The top row shows the blurred images with increasing
salt-and-pepper noise level. The outcome of the restoration algorithm is shown in
the bottom row.

A variant of the Mumford-Shah functional in its �-convergence approximation
was suggested by Shah [74]. In this version, the L2 norm of jruj in (25) was
replaced by its L1 norm in the first term of G"

JMSTV .u; v/ D ˇ
Z


v2 jruj dx C ˛
Z


 
" jrvj2 C .v � 1/2

4"

!
dx:

Alicandro et al. [2] proved the �-convergence of this functional to

JMSTV .u/ D ˇ
Z
=K

jrujdx C ˛
Z
K

ˇ̌
uC � u�ˇ̌

1C juC � u�jdH
1 C jDcuj ./ ;

where uC and u� denote the image values on two sides of the edge set K , H1 is
the one-dimensional Hausdorff measure, andDcu is the Cantor part of the measure-
valued derivative Du. The Mumford-Shah and Shah regularizers are compared in
Fig. 16. The blurred and noisy images are shown in the left column. The results of
the restoration using the Mumford-Shah stabilizer (MS) are presented in the middle
column, and the images recovered using the Shah regularizer (MSTV) are shown in
the right column.
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Fig. 15 Top row: the Lena image blurred with a pillbox kernel of radius 3 and contaminated
by salt-and-pepper noise. The noise density is (left to right) 0.01, 0.1, and 0.3. Bottom row: the
corresponding recovered images

The recovery using both methods is satisfactory, but it can be clearly seen that
while the Mumford-Shah restoration performs better in the high-frequency image
content (see the shades, for instance), the Shah restoration attracts the image toward
the piecewise constant or cartoon limit which yields images much closer to the
“ideal.” This can be explained by the fact that the Shah regularizer is more robust to
image gradients and hence eliminates high-frequency contributions.

The special case of pure impulse denoising (no blur) is demonstrated in Fig. 17.
The image on the left shows the outcome of the algorithm of [65] with L1 norm for
both the fidelity and regularization, while the recovery using the L1 fidelity and MS
regularizer is shown on the right. It can be observed that the better robustness of the
MS regularizer leads to better performance in the presence of salt-and-pepper noise.

16 Color Image Restoration

The restoration problem is now extended to vector-valued images [9]. In the case
of color images, the image intensity is defined as u:  ! [0, 1]3. Here g� denotes
the observed image at channel � 2 {r , g, b} such that g� D h * u� C n� . The
underlying assumption here is that the blur kernelh is common to all of the channels.
If the noise is randomly located in a random color channel, the fidelity term can be
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Fig. 16 Left column: the window image blurred with a pillbox kernel of radius 3 and contaminated
by salt-and-pepper noise. The noise density is (top to bottom) 0.01 and 0.1. Middle column:
the corresponding recovered images with Mumford-Shah (MS) regularization. Right column: the
corresponding recovered images with Shah (MSTV) regularization

Fig. 17 Pure impulse denoising. Left column: restoration using the L1 regularization [65]. Right
column: restoration using the MS regularizer

modeled as

ˆL2 D
Z


X
�
.h � u� � g�/2dx

in the case of Gaussian noise, and

ˆL1 D
Z


p
.h � u� � g�/2 C � dx; �� 1; (40)
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in the case of impulsive noise. The TV regularization can be generalized to

JT V .u/ D
Z


kruk dx; (41)

where

kruk D
rX

�2fr;g;bg jru� j2 C �; �� 1: (42)

The color MS regularizer thus takes the form

JMS.u; v/ D ˇ
Z


�2 kruk2
dx C ˛

Z


�
" jr�j2 C .� � 1/2

4"

�
dx: (43)

Note that in this regularizer the edge map � is common for the three channels
and provides the necessary coupling between colors. In the same fashion, the color
MSTV regularizer is given by

JMSTV.u; v/ D ˇ
Z


�2 kruk dx C ˛
Z


�
" jr�j2 C .� � 1/2

4"

�
dx: (44)

Once again, the optimization technique is alternate minimization with respect to
u� and � [9]. Figure 18 demonstrates the outcome of the different regularizers for
an image blurred by Gaussian kernel and corrupted by both Gaussian and salt-and-
pepper noise. The fidelity term in all cases was selected as ˆ1

L (40).
The methods based on Mumford-Shah regularizer are superior to the TV

stabilizers, where MSTV provides a result slightly closer to the “ideal” with little
loss of details.

17 Space-Variant Restoration

The assumption of space-invariant blur kernel is sometimes inaccurate in real pho-
tographic images. For example, when multiple objects move at different velocities
and in different directions in a scene, one gets space-variant motion blur. Likewise,
when a camera lens is focused on one specific object, other objects nearer or farther
away from the lens are not as sharp. In such situations, different blur kernels degrade
different areas of the image. In some cases, it can be assumed that the blur kernel is a
piecewise space-variant function. This means that every sub-domain in the image is
blurred by a different kernel. In the full blind restoration, several operations have to
be simultaneously applied: (1) segmentation of the subregions, (2) estimation of the
blur kernels, and (3) recovery of the “ideal” image. Presented here is the simplest
case where it is assumed that the subregions and blur kernels are known in advance.
The segmentation procedure in a semi-blind restoration problem can be found in
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Fig. 18 Recovery of the Lena image blurred by 7�7 out-of-focus kernel contaminated by mixture
of Gaussian and salt-and-pepper noise

[15]. The non-blind space-variant restoration approach relies on the use of a global
regularizer, which eliminates the requirement of dealing with region boundaries. As
a result, the continuity of the gray levels in the recovered image is inherent. This
method does not limit the number of subregions, their geometrical shape, and the
kernel support size.

Let the open nonoverlapping subsets wi �  denote regions that are blurred
by kernels hi , respectively. In addition, =[wi denotes the background region
blurred by the background kernel hb , and wi stands for the closure of wi . The
region boundaries are denoted by @wi . The recovered image u is the minimizer of
the objective functional

F.u; �/ D 1

2

X
i
�i

Z
!i

.hi � u � g/2dx C �b

2

Z
=.[!i /

.hb � u � g/2dxCJM :
(45)

where �i and �b are positive scalars and #MS.u,v/ is the Mumford-Shah regular-
izer (25). Following the formulation of Chan and Vese [31], the domains wi can be
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Fig. 19 Non-blind space-variant restoration. Left column: spatially variant motion blurred images.
Right column: the corresponding recovered images using the suggested method

replaced by the Heaviside functionH.�i /, where

H.�i / D
�

1; �i > 0;
0; �i � 0;

(46)

and �i : ! R is a level set function such that

@!i D fx 2  W �i .x/ D 0g:

The functional then takes the form

F.u; v/ D 1
2

P
i �i

R

.hi � u � g/2H.�i /dxC

�b
2

R

.hb � u � g/2.1 �Pi H.�i //dx C JMS.u; �/:

(47)

Figure 19 demonstrates the performance of the suggested algorithm. The two
images in the left column were synthetically blurred by different blur kernels within
the marked shapes. The corresponding recovered images are shown in the right
column. Special handling of the region boundaries was not necessary because the



1582 L. Bar et al.

MS regularizer was applied globally to the whole image, enforcing the piecewise-
smoothness constraint. This means that the boundaries of the blurred regions were
smoothed within the restoration process while edges were preserved.

18 Level Set Formulations for Joint Restoration and
Segmentation

Presented here are other joint formulations for denoising, deblurring, and piecewise-
constant segmentation introduced in [45] that can be seen as applications and
modifications of the piecewise-constant Mumford-Shah model in level set for-
mulation presented in Sect. 10. For related discussion, the reader is referred to
[11–13, 47, 53]. A minimization approach is used, and the gradient descent method
is considered. Let g D h * u C n be a given blurred-noisy image, where h is a
known blurring kernel (such as the Gaussian kernel) and n represents Gaussian
additive noise of zero mean. We assume that the contours or jumps in the image
u can be represented by the m distinct levels {- 1 D l0 < l1 < l2 <

� � � < lm < lmC1 D 1} of the same implicit (Lipschitz-continuous) function
�: ! R partitioning  into m C 1 disjoint open regions Rj = {x 2 :
lj�1 < �.x/ < lj }, 1 � j � m C 1. Thus, the denoised-deblurred image
u D c1H.� � lm/ C †mjD2cjH.� � lm�jC1/H.lm�jC2 � �/ C cmC1H.l1 � �/
is recovered by minimizing the following energy functional (�0 > 0):

E.c1; c2; : : : ; cmC1; �/ D
R

jg � h � .c1H.� � lm/CPm

jD2 cjH.� � lm�jC
CcmC1H.l1 � �//j2dx C �0

Pm
jD1

R

jrH.� � lj /

In the binary case (one levelm = 1, l1 = 0), we assume the degradation model g D h
* c1H.�/Cc2.1�H.�// C n, and we wish to recover u D c1H.�/Cc2.1�H.�//
in  together with a segmentation of g. The modified binary segmentation model
incorporating the blur becomes

infc1;c2;�fE.c1; c2; �/ D
R

jg � h � .c1H.�/C c2.1 �H.�///j2dx

C�0
R

jrH.�/jdxg:

(48)

The Euler-Lagrange equations are computed minimizing this energy with respect to
c1, c2, and �. Using alternating minimization, keeping first � fixed and minimizing
the energy with respect to the unknown constants c1 and c2, the following linear
system of equations are obtained:

c1
R

h2

1dx C c2
R

h1h2dx D

R
gh1dx;

c1
R

h1h2dx C c2

R

h2

2dx D
R
gh2dx

with the notations h1 D h * H.�/ and h2 D h * .1 � H.�//. Note that the linear
system has a unique solution because the determinant of the coefficient matrix is not
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Fig. 20 Joint segmentation,
denoising, and deblurring
using the binary level set
model. Top row: (from left to
right) degraded image g
(blurred with motion blur
kernel of length 10, oriented
at an angle � D 25ı w.r.t. the
horizon and contaminated by
Gaussian noise with

n D 10), original image.
Rows 2–5: initial curves,
curve evolution using (48) at
iterations 50, 100, and 300
with �0 D 5 � 2552 and the
restored image
u(SNR = 28.1827). (c1, c2/:
original image � (62.7525,
259.8939), restored u,
(61.9194, 262.7795)

zero due to the Cauchy-Schwartz inequality s h1h2 dx2 � s h2
1 dxs h2

2 dx, where
the equality holds if and only if h1 D h2 for a.e. x 2 . But clearly, h1 D h *
H.�// and h2 D h * .1 �H.�// are distinct; thus, we have strict inequality.

Keeping now the constants c1 and c2 fixed and minimizing the energy with
respect to �, the evolution equation is obtained by introducing an artificial time
for the gradient descent in �.t , x/, t > 0, x 2 

@�

@t
.t; x/ D ı.�/

h� Qh � g � c1
Qh � .h �H.�//� c2

Qh � .h � .1 �H.�///
�

.c1 � c2/C v0div
� r�

jr�j
�i
;

where Qh.x/ D h.�x/.
Figure 20 shows a numerical result for joint denoising, deblurring, and segmen-

tation of a synthetic image, in a binary level set approach.
In the case of two distinct levels l1 < l2 of the level set function �.m = 2), we

wish to recover a piecewise-constant image of the form u D c1H.��l2/Cc2H.l2�
�/H.� - l1/Cc3H.l1��/ and a segmentation of g, assuming the degradation model
g D h * c1H.� � l2/C c2H.l2 ��/H.� � l1/C c3H.l1� �/ C n, by minimizing

infc1;c2;c3;� E .c1; c2; c3; �/D
R
 jg � h � .c1H .� � l2/Cc2H .l2 � �/H .� � l1/

Cc3H .l1 � �//j2 dx C �0
P2

jD1

R


ˇ̌rH �
� � lj

	ˇ̌
dx:

(49)
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Fig. 21 Original image (left) and its noisy, blurry version (right) blurred with Gaussian kernel
with 
b D 1 and contaminated by Gaussian noise 
n D 20

Similar to the previous binary model with blur, for fixed �, the unknown constants
are computed by solving the linear system of three equations:

c1
R
h2

1dx C c2
R
h1h2dx C c3

R
h1h3dx D

R
gh1dx

c1
R
h1h2dx C c2

R
h2

2dx C c3
R
h2h3dx D

R
gh2dx

c1
R
h1h3dx C c2

R
h2h3dx C c3

R
h2

3dx D
R
gh3dx

where h1 D h *H.�� l2/, h2 D h *H.l2��/H.�� l1/, and h3 D h *H.l1��/.
For fixed c1, c2, and c3, by minimizing the functional E with respect to �, the

gradient descent is obtained for �.t , x/, t > 0, x 2 :

@�

@t
.t; x/ D Qh � .g � h � .c1H .� � l2/C c2H .l2 � �/H .� � l2/
Cc3H .l1 � �// .c1ı .� � l2/
Cc2H .l2 � �/ ı .� � l1/ � c2H .� � l1/ ı .l2 � �/� c3ı .l1 � �///
C�0 div

� r�
jr�j

�
.ı .� � l1/C ı .� � l2// :

(50)

Figures 21 and 22 show a numerical result for joint denoising, deblurring, and
segmentation of the brain image in a multilayer level set approach.

19 Image Restoration by Nonlocal Mumford-Shah
Regularizers

The traditional regularization terms discussed in the previous sections (depending
on the image gradient) are based on local image operators, which denoise and
preserve edges very well, but may induce loss of fine structures like texture
during the restoration process. Recently, Buades et al. [22] introduced the nonlocal
means filter, which produces excellent denoising results. Gilboa and Osher [42, 43]
formulated the variational framework of NL means by proposing nonlocal regu-
larizing functionals and the nonlocal operators such as the nonlocal gradient and
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Fig. 22 Curve evolution and
restored u using (51),
v0 D 0:02�2552; .c1; c2; c3/:
original image �
.12:7501; 125:3610; 255:6453/,
restored u �
.22:4797; 136:9884; 255:0074/

divergence. Following Jung et al. [46], presented here are nonlocal versions of the
Mumford-Shah-Ambrosio-Tortorelli regularizing functionals, called NL/MSH1 and
NL/MSTV, by applying the nonlocal operators proposed by Gilboa-Osher to MSH1

and MSTV, respectively, for image restoration in the presence of blur and Gaussian
or impulse noise. In addition, for the impulse noise model, use of a preprocessed
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image is proposed to compute the weights w (the weights w defined in the NL means
filter are more appropriate for the additive Gaussian noise case).

First recall the Ambrosio-Tortorelli regularizer,

‰MSH1

" .u; v/ D ˇ
Z


v2 jruj2 dx C ˛
Z


 
" jrvj2 C .v � 1/2

4"

!
dx; (51)

where 0 � �(x/ � 1 represents the edges: �(x/ 	 0 if x 2 K and �(x/ 	 1
otherwise, " is a small positive constant, and ˛, ˇ are positive weights.

Shah [74] suggested a modified version of the approximation (51) to the MS
functional by replacing the norm square of jruj by the norm in the first term:

‰MSTV
" .u; v/ D ˇ

Z


v2 jruj dx C ˛
Z


 
" jrvj2 C .v � 1/2

4"

!
dx:

This functional � converges to the other  MSTV functional [2]:

‰MSTV .u/ D ˇ
Z
=K

jrujdx C ˛
Z
K

ˇ̌
uC � u�ˇ̌

1C juC � u�j dH
1 C jDcuj ./ ;

where uC and u� denote the image values on two sides of the jump set K D Ju of
u and Dcu is the Cantor part of the measure-valued derivative Du.

Nonlocal methods in image processing have been explored in many papers
because they are well adapted to texture denoising, while the standard denoising
models working with local image information seem to consider texture as noise,
which results in losing texture. Nonlocal methods are generalized from the neigh-
borhood filters and patch-based methods. The idea of neighborhood filter is to
restore a pixel by averaging the values of neighboring pixels with a similar gray
level value.

Buades et al. [22] generalized this idea by applying the patch-based methods,
proposing a famous neighborhood filter called nonlocal means (or NL means):

NLu .x/ D 1
C.x/

R
 e

� da.u.x/;u.y//
h2 u .y/ dy

da .u .x/ ; u .y// D
R
R2 Ga .t/ ju .x C t /� u .y C t/j2 dt

where da is the patch distance, Ga is the Gaussian kernel with standard deviation a

determining the patch size, C .x/ D R

e

� da.u.x/;u.y//
h2 dy is the normalization factor,

and h is the filtering parameter which corresponds to the noise level; it is usually set
to be the standard deviation of the noise. The NL means not only compares the gray
level at a single point but the geometrical configuration in a whole neighborhood
(patch). Thus, to denoise a pixel, it is better to average the nearby pixels with similar
structures rather than just with similar intensities.
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In practice, the search window w = {y 2 : jy � xj � r} is used instead of
 (semi-local) and the weight function at (x, y/ 2  � depending on a function
u:! R

w .x; y/ D exp

�
�da .u .x/ ; u .y//

h2

�
:

The weight function w.x, y/ gives the similarity of image features between two
pixels x and y, which is normally computed based on the blurry-noisy image g.

Based on the gradient and divergence definitions on graphs in the context
of machine learning, Gilboa and Osher [43] derived the nonlocal operators. Let
u: ! R be a function, and w: �  ! R is a weight function assumed to be
nonnegative and symmetric. The nonlocal gradient rwu: �  ! R is defined
as the vector .rwu/ .x; y/ WD .u .y/ � u .x//

p
w .x; y/: Hence, the norm of the

nonlocal gradient of u at x 2  is defined as

jrwuj .x/ D
sZ



.u .y/� u .x//2 w .x; y/ dy:

The nonlocal divergence divwEv: ! R of the vector Ev: �  ! R is defined as
the adjoint of the nonlocal gradient

�
divwEv

	
.x/ WD

Z


.v .x; y/ � v .y; x//
p

w .x; y/dy:

Based on these nonlocal operators, they introduced nonlocal regularizing function-
als of the general form

‰ .u/ D
Z


�
�
jrwuj2

�
dx;

where �.s/ is a positive function, convex in
p
s with �(0) = 0. Inspired by these

ideas, nonlocal versions of Ambrosio-Tortorelli and Shah approximations to the MS
regularizer for image denoising-deblurring are presented. This is also continuation
of work by Bar et al. [11–13], as presented in the first part of this section.

Proposed are the following nonlocal approximated Mumford-Shah and
Ambrosio-Tortorelli regularizing functionals (NL/MS) by applying the nonlocal
operators to the approximations of the MS regularizer,

‰NL=MS .u; v/ D ˇ
Z


v2�
�
jrwuj2

�
dx C ˛

Z


 
" jrvj2 C .v � 1/2

4"

!
dx;
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where �.s/ D s and � .s/ D ps correspond to the nonlocal version of MSH1 and
MSTV regularizers, called here NL/MSH1 and NL/MSTV, respectively:

‰NL=MSH1
.u; v/ D ˇ

Z


v2 jrwuj2 dx C ˛
Z


 
" jrvj2 C .v � 1/2

4"

!
dx

‰NL=MSTV .u; v/ D ˇ
Z


v2 jrwuj dx C ˛
Z


 
" jrvj2 C .v � 1/2

4"

!
dx:

In addition, these nonlocal regularizers are used to deblur images in the presence
of Gaussian or impulse noise. Thus, by incorporating the proper fidelity term
depending on the noise model, two types of total energies as
Gaussian noise model:

EG .u; v/ D
Z


.g � h � u/2dx C‰NL=MS .u; v/ ;

Impulse noise model:

E Im .u; v/ D
Z


jg � h � ujdx C‰NL=MS .u; v/ :

Minimizing these functionals in u and �, the Euler-Lagrange equations:
Gaussian noise model:

@EG

@v
D 2ˇv�

�
jrwuj2

�
� 2"˛ �vC ˛ � v�1

2"

	 D 0;

@EG

@u
D h� � .h � u � g/CLNL=MSu D 0

Impulse noise model:

@E Im

@v
D 2ˇv�

�
jrwuj2

�
� 2"˛ � vC ˛ � v�1

2"

	 D 0;

@E Im

@u
D h� � sign .h � u � g/C LNL=MSu D 0;

where h� (x/ D h.�x/ and

LNL=MSu D �2
R

.u .y/ � u .x//w .x; y/h�

v2 .y/ �0
�
jrw .u/j2 .y/

�

Cv2 .x/ �0
�
jrw .u/j2 .x/

�i
dy
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More specifically, the NL/MSH1 and NL/MSTV regularizers give

LNL=MSH1
u D �2rw �

�
v2 .x/rwu .x/

	
D �2

R

.u .y/� u .x//w .x; y/�

v2 .y/C v2 .x/
�
dy;

LNL=MSTVu D �rw �
�

v2 .x/ rwu.x/
jrwu.x/j

�

D � R .u .y/ � u .x//w .x; y/
h

v2.y/

jrwuj.y/ C v2.x/

jrwuj.x/
i
dy

The energy functionals EG (u, �) and E Im (u, �) are convex in each variable and
bounded from below. Therefore, to solve two Euler-Lagrange equations simulta-
neously, the alternate minimization (AM) approach is applied: in each step of the
iterative procedure, we minimize with respect to one function while keeping the
other one fixed. Due to its simplicity, the explicit scheme for u based on the gradient
descent method and the Gauss-Seidel scheme for � is used. Note that since both
energy functionals are not convex in the joint variable, only a local minimizer may
be computed. However, this is not a drawback in practice, since the initial guess for
u in our algorithm is the data g.

Furthermore, to extend the nonlocal methods to the impulse noise case, a
preprocessing step is needed for the weight function w.x, y/ since it is not possible
to directly use the data g to compute w. In other words, in the presence of impulse
noise, the noisy pixels tend to have larger weights than the other neighboring points,
so it is likely to keep the noise value at such pixel. Thus, a simple algorithm is
proposed to obtain first a preprocessed image f , which removes the impulse noise
(outliers) as well as preserves the textures as much as possible. Basically, the median
filter is used, well known for removing impulse noise. However, if one step of the
median filter is applied, then the output may be too smoothed out. In order to pre-
serve the fine structures as well as to remove the noise properly, the idea of Bregman

Fig. 23 Original and noisy-blurry images (noisy-blurry image using the pillbox kernel of radius
2 and Gaussian noise with 
n D 5)
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Fig. 24 Recovery of noisy-blurry image from Figs. 21–23. Top row: recovered image u using
MSTV (SNR = 25.1968), MSH1(SNR = 23.1324). Third row: recovered image u using NL/MSTV
(SNR = 26.4696), NL/MSH1(SNR = 24.7164). Second, bottom rows: corresponding residuals g�h
* u. ˇ = 0.0045 (MSTV), 0.001 (NL/MSTV), 0.06 (MSH1/, 0.006 (NL/MSH1/, ˛ = 0.00000001,
"= 0.00002
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Fig. 25 Recovery of noisy-blurry image with Gaussian kernel with 
 D 1 and salt-and-pepper
noise with d D 0:3. Top row: original image, blurry image, noisy-blurry image. Middle row:
recovered images using MSTV (SNR = 27.8336), MSH1(SNR = 23.2052). Bottom row: recovered
images using NL/MSTV (SNR = 29.3503), NL/MSH1(SNR = 27.1477). Parameters: ˇ = 0.25
(MSTV), 0.1 (NL/MSTV), ˛ D 0:01, " D 0:002. Parameters: ˇ D 2 (MSH1/, 0.55 (NL/MSH1/,
˛ D 0:001, " D 0:0001

iteration is used [21,66], and the following algorithm is proposed to obtain a prepro-
cessed image f that will be used only in the computation of the weight function:

• Initialize: r0 = 0, f0 = 0.
• do (iterate n = 0, 1, 2, . . . )
• fnC1 = median(gC rn, [aa])
• rnC1 D rn C g � h * fnC1

• while jjg � h�fnjj1 > jjg � h�fnC1jj1
• Optional fm = median(fm, [bb])

where g is the given noisy-blurry data and median (u, [aa]) is the median filter of
size a�a with input u; the optional step is needed in the case when the final fm still
has some salt-and-pepper-like noise. This algorithm is simple and requires a few
iterations only, so it takes less than 1 s for a 256�256 size image. The preprocessed
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Fig. 26 Edge map � using the MS regularizers in the recovery of the Lena image blurred with
Gaussian blur kernel with 
b D 1 and contaminated by salt-and-pepper noise with density d D
0:3. Top: (left) MSTV, (right) NL/MSTV. Bottom: (left) MSH1, (right) NL/MSH1

image f will be used only in the computation of the weights w while keeping g in
the data-fidelity term; thus, artifacts are not introduced by the median filter.

Figures 23 and 24 show an experimental result for image restoration of a boat
image degraded by the pillbox kernel blur of radius 2 and additive Gaussian noise.
The nonlocal methods give better reconstruction.

Figures 25 and 26 show an experimental result for image restoration of a woman
image degraded by Gaussian kernel blur and salt-and-pepper noise. Figure 26 shows
the edge set � for the four results. The nonlocal methods give better reconstruction.

Figure 27 shows an experimental result for restoration of the Einstein image
degraded by motion kernel blur and random-valued impulse noise. The nonlocal
methods give better reconstruction.

20 Conclusion

This chapter is concluded by first summarizing its main results. The Mumford-Shah
model for image segmentation has been presented, together with its main properties.
Several approximations to the Mumford and Shah energy have been discussed, with
an emphasis on phase-field approximations and level set approximations. Several
numerical results for image segmentation by these methods have been presented.
In the last section of the chapter, several restoration problems were addressed in
a variational framework. The fidelity term was formulated according to the noise
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Fig. 27 Comparison between MSH1 and NL/MSH1 with the image blurred and contaminated by
high density (d D 0:4) of random-valued impulse noise. Top: noisy-blurry image blurred with
the motion blur in recovered images using MSH1 (left, SNR = 17.9608) and NL/MSH1 (right,
SNR = 20.7563). Bottom: noisy blurry image blurred with the Gaussian blur in recovered images
using MSH1(left, SNR = 16.6960) and NL/MSH1 (right, SNR = 24.2500). Top: ˇ D 1:5 (MSH1/,
0.5 (NL/MSH1/, ˛ D 0:0001, " D 0:002. Bottom: ˇ D 2:5 (MSH1/, 0.65 (NL/MSH1/, ˛ D
0:000001, " D 0:002

model (Gaussian, impulse, multichannel impulse). First, the a priori piecewise-
smooth image model was mathematically integrated into the functional as an
approximation of the Mumford-Shah segmentation elements by the �-convergence
formulation. Comparative experimental results show the superiority of this reg-
ularizer with respect to modern state-of-the-art restoration techniques. Also, the
piecewise-constant level set formulations of the Mumford-Shah energy have been
applied to image restoration (related to relevant work by Kim et al. [47]), joint with
segmentation. Finally, in the last section, the Ambrosio-Tortorelli approximations
and Bar et al. restoration models have been extended to nonlocal regularizers,
inspired by the work of Gilboa et al. These models produce much improved
restoration results for images with texture and fine details.

21 Recommended Reading

Many more topics on the Mumford-Shah model and its applications have been
explored in image processing, computer vision, and more generally inverse prob-
lems. This chapter contains only a small sample of results and methods. As
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mentioned before, detailed monographs on the Mumford-Shah problem and related
theoretical and application topics by Blake and Zisserman [16], by Morel and
Solimini [60], by Chambolle [26], by Ambrosio et al. [4], by David [38], and by
Braides [19] are recommended. Also, the monographs by Aubert and Kornprobst [8]
and by Chan and Shen [28] contain chapters presenting the Mumford and Shah
problem and its main properties.

The authors would like to mention the work by Cohen et al. [36, 37] on
using curve evolution approach and the Mumford-Shah functional for detecting
the boundary of a lake. The work by Aubert et al. [7] also proposes an interesting
approximation of the Mumford-Shah energy by a family of discrete edge-preserving
functionals, with �-convergence result.
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Abstract
Denoising images can be achieved by a spatial averaging of nearby pixels. How-
ever, although this method removes noise, it creates blur. Hence, neighborhood
filters are usually preferred. These filters perform an average of neighboring
pixels, but only under the condition that their gray level is close enough to the one
of the pixel in restoration. This very popular method unfortunately creates shocks
and staircasing effects. It also excessivelly blurs texture and fine structures when
noise dominates the signal.

In this chapter, we perform an asymptotic analysis of neighborhood filters
as the size of the neighborhood shrinks to zero. We prove that these filters are
asymptotically equivalent to the Perona-Malik equation, one of the first nonlinear
PDEs proposed for image restoration. As a solution to the shock effect, we
propose an extremely simple variant of the neighborhood filter using a linear
regression instead of an average. By analyzing its subjacent PDE, we prove that
this variant does not create shocks: it is actually related to the mean curvature
motion.

We also present a generalization of neighborhood filters, the nonlocal means
(NL-means) algorithm, addressing the preservation of structure in a digital
image. The NL-means algorithm tries to take advantage of the high degree of
redundancy of any natural image. By this, we simply mean that every small
window in a natural image has many similar windows in the same image. Now
in a very general sense inspired by the neighborhood filters, one can define as
“neighborhood of a pixel” any set of pixels with a similar window around. All
pixels in that neighborhood can be used for predicting its denoised value.

We finally analyze the recently introduced variational formulations of neigh-
borhood filters and their application to segmentation and seed diffusion.

1 Introduction

The neighborhood filter or sigma filter is attributed to J.S. Lee [48] (in 1983) but
goes back to L. Yaroslavsky and the Sovietic image-processing theory [75]. This
filter is introduced in a denoising framework for the removal of additive white noise:

v.x/ D u.x/C n.x/;

where x indicates a pixel site, v.x/ is the noisy value, u.x/ is the “true” value at
pixel x, and n.x/ is the noise perturbation. When the noise values n.x/ and n.y/ at
different pixels are assumed to be independent random variables and independent
of the image value u.x/, one talks about “white noise.” Generally, n.x/ is supposed
to follow a Gaussian distribution of zero mean and standard deviation 
 .

Lee and Yaroslavsky proposed to smooth the noisy image by averaging only
those neighboring pixels that have a similar intensity. Averaging is the principle of
most denoising methods. The variance law in probability theory ensures that if N
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(219,96,85)

(225,107,124)

(228,101,126) (195,67,63)

(185,71,85)

(194,62,55) (147,174,219)

(135,166,216)

(144,185,226)

Fig. 1 The nine pixels in the baboon image on the right have been enlarged. They present a high
red-blue contrast. In the red pixels, the first (red) component is stronger. In the blue pixels, the third
component, blue, dominates

noise values are averaged, the noise standard deviation is divided by
p
N . Thus, one

should, for example, find for each pixel nine other pixels in the image with the same
color (up to the fluctuations due to noise) in order to reduce the noise by a factor
3. A first idea might be to chose the closest ones. Now, the closest pixels have not
necessarily the same color as illustrated in Fig. 1. Look at the red pixel placed in the
middle of Fig. 1. This pixel has five red neighbors and three blue ones. If the color
of this pixel is replaced by the average of the colors of its neighbors, it turns blue.
The same process would likewise redden the blue pixels of this figure. Thus, the
red and blue border would be blurred. It is clear that in order to denoise the central
red pixel, it is better to average the color of this pixel with the nearby red pixels
and only them, excluding the blue ones. This is exactly the technique proposed by
neighborhood filters.

The original sigma and neighborhood filter were proposed as an average of the
spatially close pixels with a gray level difference lower than a certain threshold h.
Thus, for a certain pixel x, the denoised value is the average of pixels in the spatial
and intensity neighborhood:

fy 2 ˝ jkx � yk < � and ju.x/ � u.y/j < hg:

However, in order to make it coherent with further extensions and facilitate the
mathematical development of this chapter, we will write the filter in a continuous
framework under a weighted average form. We will denote the neighborhood or
sigma filter by NF and define it for a pixel x as

NFh;�u.x/ D 1

C.x/

Z
B�.x/

u.y/e� ju.y/�u.x/j2
h2 dy; (1)
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where B�.x/ is a ball of center x and radius � > 0; h > 0 is the filtering parameter,

and C.x/ D R
B�.x/

e
� ju.y/�u.x/j2

h2 dy is the normalization factor. The parameter h
controls the degree of color similarity needed to be taken into account in the average.
This value depends on the noise standard deviation 
 , and it was set to 2:5
 in [48]
and [75].

The Yaroslavsky and Lee’s filter (1) is less known than more recent versions,
namely, the SUSAN filter [68] and the bilateral filter [70]. Both algorithms, instead
of considering a fixed spatial neighborhood B�.x/, weigh the distance to the
reference pixel x:

SFh;�u.x/ D 1

C.x/

Z
˝

u.y/e
� jy�xj2

�2 e
�

ju.y/�u.x/j2
h2

dy; (2)

where C.x/ D R
˝
e

� jy�xj2
�2 e

� ju.y/�u.x/j2
h2 dy is the normalization factor and � > 0

is now a spatial filtering parameter. Even if the SUSAN algorithm was previously
introduced, the whole literature refers to it as the bilateral filter. Therefore, we shall
call this filter by the latter name in subsequent sections.

The only difference between the neighborhood filter and the bilateral or SUSAN
filter is the way the spatial component is treated. While for the neighborhood filter
all pixels within a certain spatial distance are treated uniformly, for the bilateral or
SUSAN filter, pixels closer to the reference one are considered more important. We
display in Fig. 2 a denoising experience where a Gaussian white noise of standard
deviation 10 has been added to a non-noisy image. We display the denoised image
by both the neighborhood and bilateral filters. We observe that both filters avoid
the excessive blurring caused by a Gaussian convolution and preserve all contrasted
edges in the image.

Fig. 2 From left to right: noise image, Gaussian convolution, neighborhood filter, and bilateral
filter. The neighborhood and bilateral filters avoid the excessive blurring caused by a Gaussian
convolution and preserve all contrasted edges in the image
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The above denoising experience was applied to color images. In order to clarify
how the neighborhood filters are implemented in this case, we remind that each pixel
x is a triplet of values u.x/ D .u1.x/; u2.x/; u3.x//, denoting the red, green, and blue
components. Then, the filter rewrites

NFh;�ui .x/ D 1

C.x/

Z
B�.x/

ui .y/e
� ku.y/�u.x/k2

h2 dy;

jju.y/� u.x/jj2 being the average of the distances of the three channels:

ku.y/� u.x/k2 D 1

3

X3

iD1
jui .y/� ui .x/j:

The same definition applies for the SUSAN or bilateral filter by incorporating
the spatial weighting term. The above definition naturally extends to multispectral
images with an arbitrary number of channels. Bennett et al. [7] applied it to
multispectral data with an infrared channel and Peng et al. [56] for general
multispectral data.

The evaluation of the denoising performance of neighborhood filters and compar-
ison with state-of-the-art algorithms are postponed to Sect. 2. In the same section,
we present a natural extension of the neighborhood filter, the NL-means algorithm,
proposed in [12]. This algorithm evaluates the similarity between two pixels x and
y not only by the intensity or color difference of x and y but by the difference of
intensities in a whole spatial neighborhood.

The bilateral filter was also proposed as a filtering algorithm with a filtering
scale depending on both parameters h and �. Thus, taking several values for these
parameters, we obtain different filtered images and corresponding residuals in a
multi-scale framework. In Fig. 3, we display several applications of the bilateral
filter for different values of the parameters h and �. We also display the differences
between the original and filtered images in Fig. 4. For moderated values of h, this
residual contains details and texture, but it does not contain contrasted edges. This
contrasted information is removed by the bilateral filter only for large values of h.
In that case, all pixels are judged as having a similar intensity level and the weight is
set taking into account only the spatial component. It is well known that the residual
by such an average is proportional to the Laplacian of the image. In Sect. 2, we will
mathematically analyze the asymptotical expansion of the neighborhood residual
image.

This detail removal of the bilateral while conserving very contrasted edges is
the key in many image and video processing algorithms. Durand and Dorsey [28]
use this property in the context of tone mapping whose goal is to compress the
intensity values of a high-dynamic-range image. The authors isolate the details
before compressing the range of the image. Filtered details and texture are added
back at the final stage. Similar approaches for image editing are presented by Bae
et al. [5], which transfer the visual look of an artist picture onto a casual photograph.
Eisemann and Durand [32] and Petschnigg et al. [58] combine the filtered and
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Fig. 3 Several applications of the bilateral filter for increasing values of parameters � and h. The
parameter � increases from top to bottom taking values {2, 5, 10} and h increases from left to right
taking values {5, 10, 25, 100}

residual image of a flash and non-flash image of the same scene. These two last
algorithms, in addition, compute the weight configuration in one image of the
pair and average the intensity values of the other image. As we will see, this is a
common feature with iterative versions of neighborhood filters. However, for these
applications, both images of the pair must be correctly and precisely registered.

The iteration of the neighborhood filter was not originally considered by the
pioneering works of Lee and Yaroslavsky. However, recent applications have shown
its interest. The iteration of the filter as a local smoothing operator tends to piecewise
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Fig. 4 Residual differences between original and filtered images in Fig. 3. For moderated values of
h this residual contains details and texture but it doesn’t contain contrasted edges. These contrasted
information is removed by the bilateral filter only for large values of h

constant images by creating artificial discontinuities in regular zones. Barash et al.
[6] showed that an iteration of the neighborhood filter was equivalent to a step of a
certain numerical scheme of the classical Perona-Malik equation [57]. A complete
proof of the equivalence between the neighborhood filter and the Perona-Malik
equation was presented in [13] including a modification of the filter to avoid the
creation of shocks inside regular parts of the image. Another theoretical explanation
of the shock effect of the neighborhood filters can be found in Van de Weijer and van
den Boomgaard [71] and Comaniciu [20]. Both papers show that the iteration of the
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Fig. 5 Colorization experiment using the linear iteration of the neighborhood filter. Top left: input
image with original luminance and initial data on the chromatic components. Bottom right: result
image by applying the linear neighborhood scheme to the chromatic components using the initial
chromatic data as boundary conditions. Top middle and right: initial data on the two chromatic
components. Bottom middle and bottom right: final interpolated chromatic components

neighborhood filter process makes points tend to the local modes of the histogram
but in a different framework: the first for images and the second for any dimensional
clouds of points. This discontinuity or shock creation in regular zones of the image
is not desirable for filtering or denoising applications. However, it can be used for
image or video editing as proposed by Winnemoller et al. [73] in order to simplify
video content and achieve a cartoon look.

Even if it may seem paradoxical, linear schemes have showed to be more
useful than nonlinear ones for iterating the neighborhood filter; that is, the weight
distribution for each pixel is computed once and is maintained during the whole
iteration process. We will show in Sect. 4 that by computing the weights on an image
and keeping them constant during the iteration process, a histogram concentration
phenomenon makes the filter a powerful segmentation algorithm. The same iteration
is useful to linearly diffuse or filter any initial data or seeds as proposed by Grady
et al. [38] for medical image segmentation or [11] for colorization (see Fig. 5 for
an example). The main hypothesis for this seed diffusion algorithm is that pixels
having a similar gray level value should be related and are likely to belong to the
same object. Thus, pixels of different sites are related as in a graph with a weight
depending on the gray level distance. The iteration of the neighborhood filter on the
graph is equivalent to the solution of the heat equation on the graph by taking the
graph Laplacian. Eigenvalues and eigenvectors of such a graph Laplacian can be
computed allowing the design of Wiener and thresholding filters on the graph (see
[69] and [59, 60] for more details).

Both the neighborhood filter and the NL-means have been adapted and extended
for other types of data and other image-processing tasks: for 3D data set points
[17, 26, 35, 43, 79], and [42]; demosaicking, the operation which transforms the “R
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or G or B” raw image in each camera into an “R and G and B” image [15, 51,
63]; movie colorization, [34] and [49]; image inpainting by proposing a nonlocal
image inpainting variational framework with a unified treatment of geometry and
texture [2] (see also [74]); zooming by a fractal-like technique where examples are
taken from the image itself at different scales [29]; movie flicker stabilization [24],
compensating spurious oscillations in the colors of successive frames; and super-
resolution, an image zooming method by which several frames from a video, or
several low-resolution photographs, can be fused into a larger image [62]. The main
point of this super-resolution technique is that it gives up an explicit estimate of
the motion, allowing actually for a multiple motion, since a block can look like
several other blocks in the same frame. The very same observation is made in [30]
for devising a super-resolution algorithm and in [22, 33].

2 Denoising

Analysis of Neighborhood Filter as a Denoising Algorithm

In this section, we will further investigate the neighborhood filter behavior as a
denoising algorithm. We will consider the simplest neighborhood filter version
which averages spatially close pixels with an intensity difference lower than a
certain threshold h. By classical probability theory, the average of N random and
i.i.d values has a variance N times smaller than the variance of the original values.
However, this theoretical reduction is not observed when applying neighborhood
filters.

In order to evaluate the noise reduction capability of the neighborhood filter, we
apply it to a noise sample and evaluate the variance of the filtered sample. Let us
suppose that we observe the realization of a white noise at a pixel x; n.x/ D a.
The nearby pixels with an intensity difference lower than h will be independent and
identically distributed with the probability distribution function the restriction of the
Gaussian to the interval .a � h; a C h/. If the research zone is large enough, then
the average value will tend to the expectation of such a variable. Thus, the increase
of the research zone and therefore of the number of pixels being averaged does not
increase the noise reduction capability of the filter. Such a noise reduction factor is
computed in the next result.

Theorem 1. Assume that the n.i/ are i.i.d. with zero mean and variance 
2. Then,
the filtered noise by the neighborhood filter NFh satisfies the following:

• The noise reduction depends only on the value of h,

Var NFhn.x/ D f
�
h




�

2;
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1

0.8
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Fig. 6 Noise reduction function f .x/ given by Theorem 1

where

f .x/ D 1

.2�/3=2

Z
R

1

ˇ2.a; x/

�
e2xa � 1

	2
e.aCx/2e

�a2
2 da

is a decreasing function with f .0/ D 1 and limx!1 f .x/ D 0.
• The values NFhn.x/ and NFhn.y/ are uncorrelated for x ¤ y.

The function f .x/ is plotted in Fig. 6. The noise reduction increases as the ratio
h=
 also does. We see that f .x/ is near zero for values of x over 2.5 or 3, that
is, values of h over 2:5
 or 3
 , which justifies the values proposed in the original
papers by Lee and Yaroslavsky. However, for a Gaussian variable, the probability of
observing values at a distance of the average larger than 2.5 or 3 times the standard
deviation is very small. Thus, by taking these values, we excessively increase the
probability of mismatching pixels of different objects. Thus, close objects with an
intensity contrast lower than 3
 will not be correctly denoised. This explains the
decreasing performance of the neighborhood filter as the noise standard deviation
increases.

The previous theorem also tells us that the denoised noise values are still
uncorrelated once the filter has been applied. This is easily justified since we showed
that as the size � of the neighborhood increases, the filtered value tends to the
expectation of the Gauss distribution restricted to the interval (n.x/� h; n.x/C h).
The filtered value is therefore a deterministic function of n.x/ and h. Independent
random variables are mapped by a deterministic function on independent variables.

This property may seem anecdotic since noise is what we wish to get rid of. Now,
it is impossible to totally remove noise. The question is how the remnants of noise
look like. The transformation of a white noise into any correlated signal creates
structure and artifacts. Only white noise is perceptually devoid of structure, as was
pointed out by Attneave [3].
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The only difference between the neighborhood filter and the bilateral or SUSAN
filter is the way the spatial component is treated. While for the classical neighbor-
hood all pixels within a certain distance are treated equally, for the bilateral filter,
pixels closer to the reference pixel are more important. Even if this can seem a
slight difference, this is crucial from a qualitative point of view, that is, the creation
of artifacts.

It is easily shown that introducing the weighting function on the intensity
difference instead of a non-weighted average does not modify the second property of
Theorem 1, and the denoised noise values are still uncorrelated if � is large enough.
However, the introduction of the spatial kernel by the bilateral or SUSAN filter
affects this property. Indeed, the introduction of a spatial decay of the weights makes
denoised values at close positions to be correlated.

There are two ways to show how denoising algorithms behave when they are
applied to a noise sample. One of them is to find a mathematical proof that the pixels
remain independent (or at least uncorrelated) and identically distributed random
variables. The experimental device simply is to observe the effect of denoising
on the simulated realization of a white noise. Figure 7 displays the filtered noises
for the neighborhood filter, the bilateral filter, and other state-of-the-art denoising
algorithms.

Neighborhood Filter Extension: The NL-Means Algorithm

Now in a very general sense inspired by the neighborhood filter, one can define as
“neighborhood of a pixel x” any set of pixels y in the image such that a window
around y looks like a window around x. All pixels in that neighborhood can be used
for predicting the value at x, as was shown in [23,31] for texture synthesis and in [21,
80] for inpainting purposes. The fact that such a self-similarity exists is a regularity
assumption, actually more general and more accurate than all regularity assumptions
we consider when dealing with local smoothing filters, and it also generalizes a
periodicity assumption of the image.

Let v be the noisy image observation defined on a bounded domain˝ � R
2, and

let x 2 ˝ . The NL-means algorithm estimates the value of x as an average of the
values of all the pixels whose Gaussian neighborhood looks like the neighborhood
of x:

NL.v/.x/ D 1

C.x/

Z
˝

e
� .Ga�jv.xC:/�v.yC:/j2/.0/

h2 v.y/ dy; (3)

where Ga is a Gaussian kernel with standard deviation a, h acts as a filtering

parameter, and C.x/ D R
˝
e

� .Ga�jv.xC:/�v.zC:/j2/.0/
h2 d z is the normalizing factor. We

recall that
�
Ga� jv.x C :/ � v.y C :/j2

�
.0/ D

Z
R2
Ga.t/ jv.x C t/ � v.y C t/j2 dt:
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Fig. 7 The noise to noise criterion. From left to right and from top to bottom: original noise image
of standard deviation 20, Gaussian convolution, anisotropic filtering, total variation, TIHWT, DCT
empirical Wiener filter, neighborhood filter, bilateral filter, and the NL-means. Parameters have
been fixed for each method so that the noise standard deviation is reduced by a factor 4. The filtered
noise by the Gaussian filter and the total variation minimization are quite similar, even if the first
one is totally blurred and the second one has created many high frequency details. The filtered
noise by the hard wavelet thresholding looks like a constant image with superposed wavelets. The
filtered noise by the neighborhood filter and the NL-means algorithm looks like a white noise. This
is not the case for the bilateral filter, where low frequencies of noise are enhanced because of the
spatial decay

We will see that the use of an entire window around the compared points makes this
comparison more robust to noise. For the moment, we will compare the weighting
distributions of both filters. Figure 8 illustrates how the NL-means algorithm
chooses in each case a weight configuration adapted to the local geometry of the
image. Then, the NL-means algorithm seems to provide a feasible and rational
method to automatically take the best of all classical denoising algorithms, reducing
for every possible geometric configuration the mismatched averaged pixels. It
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Fig. 8 Weight distribution of NL-means, the bilateral filter, and the anisotropic filter used to
estimate the central pixel in four detail images. On the two right-hand-side images of each triplet,
we display the weight distribution used to estimate the central pixel of the left image by the
neighborhood and the NL-means algorithm. (a) In straight edges, the weights are distributed in the
direction of the level line (as the mean curvature motion). (b) On curved edges, the weights favor
pixels belonging to the same contour or level line, which is a strong improvement with respect
to the mean curvature motion. In the cases of (c) and (d), the weights are distributed across the
more similar configurations, even though they are far away from the observed pixel. This shows a
behavior similar to a nonlocal neighborhood filter or to an ideal Wiener filter

preserves flat zones as the Gaussian convolution and straight edges as the anisotropic
filtering while still restoring corners or curved edges and texture.

Due to the nature of the algorithm, one of the most favorable cases is the textural
case. Texture images have a large redundancy. For each pixel, many similar samples
can be found in the image with a very similar configuration, leading to a noise
reduction and a preservation of the original image. In Fig. 9, one can see an example
with a Brodatz texture. The Fourier transform of the noisy and restored images
shows the ability of the algorithm to preserve the main features even in the case of
high frequencies.

The NL-means seems to naturally extend the Gaussian, anisotropic, and neigh-
borhood filtering. But it is not easily related to other state-of-the-art denoising
methods as the total variation minimization [64], the wavelet thresholding [19, 27],
or the local DCT empirical Wiener filters [76]. For this reason, we compare
these methods visually in artificial denoising experiences (see [12] for a more
comprehensive comparison).

Figure 10 illustrates the fact that a nonlocal algorithm is needed for the
correct reconstruction of periodic images. Local smoothing filters and Wiener and
thresholding methods are not able to reconstruct the wall pattern. Only NL-means
and the global Fourier-Wiener filter reconstruct the original texture. The Fourier-
Wiener filter is based on a global Fourier transform, which is able to capture the
periodic structure of the image in a few coefficients. But this only is an ideal
filter: the Fourier transform of the original image is being used. Figure 8d shows
how NL-means chooses the correct weight configuration and explains the correct
reconstruction of the wall pattern.

The NL-means algorithm is not only able to restore periodic or texture Images;
natural images also have enough redundancy to be restored. For example, in a
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Fig. 9 NL-means denoising experiment with a Brodatz texture image. Left: noisy image with
standard deviation 30. Right: NL-means restored image. The Fourier transforms of the noisy and
restored images show how main features are preserved even at high frequencies

Fig. 10 Denoising experience on a periodic image. From left to right and from top to bottom:
noisy image (standard deviation 35), Gauss filtering, total variation, neighborhood filter, Wiener
filter (ideal filter), TIHWT (translation invariant hard thresholding), DCT empirical Wiener
filtering, and NL-means
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Fig. 11 Denoising experience on a natural image. From left to right and from top to bottom:
noisy image (standard deviation 35), total variation, neighborhood filter, translation invariant hard
thresholding (TIHWT), empirical Wiener, and NL-means

flat zone, one can find many pixels lying in the same region and with similar
configurations. In a straight or curved edge, a complete line of pixels with a similar
configuration is found. In addition, the redundancy of natural images allows us to
find many similar configurations in faraway pixels.

Figure 11 shows that wavelet and DCT thresholding are well adapted to the
recovery of oscillatory patterns. Although some artifacts are noticeable in both
solutions, the stripes are well reconstructed. The DCT transform seems to be more
adapted to this type of texture, and stripes are a little better reconstructed. For a
much more detailed comparison between sliding window transform domain filtering
methods and wavelet threshold methods, we refer the reader to [77]. NL-means also
performs well on this type of texture, due to its high degree of redundancy.

The above description of movie denoising algorithms and its juxtaposition to
the NL-means principle shows how the main problem, motion estimation, can be
circumvented. In denoising, the more samples we have the happier we are. The
aperture problem is just a name for the fact that there are many blocks in the next
frame similar to a given one in the current frame. Thus, singling out one of them in
the next frame to perform the motion compensation is an unnecessary and probably
harmful step. A much simpler strategy that takes advantage of the aperture problem
is to denoise a movie pixel by involving indiscriminately spatial and temporal
similarities (see [14] for more details on this discussion). The algorithm favors
pixels with a similar local configuration, as the similar configurations move, so do
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the weights. Thus, the algorithm is able to follow the similar configurations when
they move without any explicit motion computation (see Fig. 12).

Extension toMovies

Averaging filters are easily extended to the denoising of image sequences and video.
The denoising algorithms involve indiscriminately pixels not belonging only to the
same frame but also the previous and posterior ones.

In many cases, this straightforward extension cannot correctly deal with moving
objects. For that reason, state-of-the-art movie filters are motion compensated
(see [10] for a comprehensive review). The underlying idea is the existence of
a “ground true” physical motion, which motion estimation algorithms should be
able to estimate. Legitimate information should exist only along these physical
trajectories. The motion compensated filters estimate explicitly the motion of the
sequence by a motion estimation algorithm. The motion compensated movie yields
a new stationary data on which an averaging filter can be applied. The motion
compensation movie yields a new stationary data on which an averaging filter can
be applied. The motion compensation neighborhood filter was proposed by Ozkan
et al. [55]. We illustrate in Fig. 13 the improvement obtained with the proposed
compensation.

One of the major difficulties in motion estimation is the ambiguity of trajectories,
the so-called aperture problem. This problem is illustrated in Fig. 14. At most pixels,
there are several options for the displacement vector. All of these options have a
similar gray level value and a similar block around them. Now, motion estimators
have to select one by some additional criterion.

3 Asymptotic

PDEModels and Local Smoothing Filters

According to Shannon’s theory, a signal can be correctly represented by a discrete
set of values, the “samples,” only if it has been previously smoothed. Let us start
with u0 the physical image, a real function defined on a bounded domain ˝ �
R

2. Then a blur optical kernel k is applied, i.e., u0 is convolved with k to obtain
an observable signal k�u0. Gabor remarked in 1960 that the difference between
the original and the blurred images is roughly proportional to its Laplacian, �u D
uxx C uyy . In order to formalize this remark, we have to notice that k is spatially
concentrated and that we may introduce a scale parameter for k, namely, kh.x/ D
h�1k

�
h� 1

2 x
�

. If, for instance, u is C 2 and bounded and if k is a radial function in

the Schwartz class, then
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Fig. 12 Weight distribution of NL-means applied to a movie. In (a), (b), and (c), the first row
shows a five frames image sequence. In the second row, the weight distribution used to estimate
the central pixel (in white) of the middle frame is shown. The weights are equally distributed
over the successive frames, including the current one. They actually involve all the candidates for
the motion estimation instead of picking just one per frame. The aperture problem can be taken
advantage of for a better denoising performance by involving more pixels in the average Fig. 7
displays the application of the denoising methods to a white noise. We display the filtered noise
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Fig. 13 Comparison of static filters, motion compensated filters, and NL-means applied to an
image sequence. Top: three frames of the sequence are displayed. Middle and left to right:
neighborhood filter, motion compensated neighborhood filter, and the NL-means. (AWA). Bottom:
the noise removed by each method (difference between the noisy and filtered frame). Motion
compensation improves the static algorithms by better preserving the details and creating less blur.
We can read the titles of the books in the noise removed by AWA. Therefore, that much information
has been removed from the original. Finally, the NL-means algorithm (bottom row) has almost no
noticeable structure in its removed noise. As a consequence, the filtered sequence has kept more
details and is less blurred

u0�kh.x/ � u0.x/

h
! c�u0.x/:

Hence, when h gets smaller, the blur process looks more and more like the heat
equation

ut D c�u; u.0/� u0:
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Fig. 14 Aperture problem and the ambiguity of trajectories are the most difficult problems in
motion estimation: There can be many good matches. The motion estimation algorithms must pick
one

Thus, Gabor established a first relationship between local smoothing operators and
PDEs. The classical choice for k is the Gaussian kernel.

Remarking that the optical blur is equivalent to one step of the heat equation,
Gabor deduced that we can, to some extent, deblur an image by reversing the time
in the heat equation, ut D ��u. Numerically, this amounts to subtracting the filtered
version from the original image:

u �Gh�u D �h2�uC o.h2/:

This leads to considering the reverse heat equation as an image restoration, ill-posed
though it is. The time-reversed heat equation was stabilized in the Osher-Rudin
shock filter [54] who proposed

ut D �sign.L.u// jDuj ;

where the propagation term jDuj is tuned by the sign of an edge detector+.u/. The
function +.u/ changes sign across the edges where the sharpening effect therefore
occurs. In practice,+.u/ D �u and the equation is related to a reverse heat equation.

The early Perona-Malik “anisotropic diffusion” [57] is directly inspired from the
Gabor remark. It reads

ut D div
�
g
�
jDuj2

�
Du

�
;

where g W Œ0;C1/ ! Œ0;C1/ is a smooth decreasing function satisfying g.0/ D
1; lims!C1 g.s/ D 0. This model is actually related to the preceding ones. Let us
consider the second derivatives of u in the directions of Du and Du?:

u�� D D2u

�
Du

jDuj ;
Du

jDuj
�
; u�� D D2u

�
Du?

jDuj ;
Du?

jDuj
�
:
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Then, Eq. (5) can be rewritten as

ut D g
�
jDuj2

�
u�� C h

�
jDuj2

�
u��;

where h.s/ D g.s/ C 2sg0.s/. Perona and Malik proposed the function g.s/ D
1

1Cs=k . In this case, the coefficient of the first term is always positive and this term
therefore appears as a one-dimensional diffusion term in the orthogonal direction
to the gradient. The sign of the second coefficient, however, depends on the value
of the gradient. When jDuj2 < k, this second term appears as a one-dimensional
diffusion in the gradient direction. It leads to a reverse heat equation term when
jDuj2 > k.

The Perona-Malik model has got many variants and extensions. Tannenbaum
and Zucker [45] proposed, endowed in a more general shape analysis framework,
the simplest equation of the list:

ut D jDuj div

�
Du

jDuj
�
D u�� :

This equation had been proposed some time before in another context by Sethian
[66] as a tool for front propagation algorithms. This equation is a “pure” diffusion
in the direction orthogonal to the gradient and is equivalent to the anisotropic filter
AF [40]:

AFhu.x/ D
Z
Gh.t/u.x C t�/dt;

where � D Du.x/?=jDu.x/j andGh.t/ denotes the one-dimensional Gauss function
with variance h2.

This diffusion is also related to two models proposed in image restoration. The
Rudin-Osher-Fatemi [64] total variation model leads to the minimization of the total
variation of the image TV.u/ D s jDuj, subject to some constraints. The steepest
descent of this energy reads, at least formally,

@u

@t
D div

�
Du

jDuj
�

(4)

which is related to the mean curvature motion and to the Perona-Malik equation

when g
�
jDuj2

�
D 1

jDuj : This particular case, which is not considered in [57], yields

again (4). An existence and uniqueness theory is available for this equation [1].
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Asymptotic Behavior of Neighborhood Filters (Dimension 1)

Let u denote a one-dimensional signal defined on an interval I � R and consider
the neighborhood filter

NFh;�u.x/ D 1

C.x/

Z xC�

x��
u.y/e� ju.y/�u.x/j2

h2 dy;

where C.x/ D R xC�
x�� e

� ju.y/�u.x/j2
h2 dy:

The following theorem describes the asymptotical behavior of the neighborhood
filter in 1D. The proof of this theorem and next ones in this section can be found in
[13].

Theorem 2. Suppose u 2 C 2.I /, and let �; h; ˛ > 0 such that �; h ! 0 and

h D 0.�˛/. Consider the continuous function g.t/ D te�t2

E.t/
, for t ¤ 0; g.0/ D 1

2 ,

where E.t/ D 2
R t

0 e
�s2
ds. Let f be the continuous function

f .t/ D g.t/

t2
C g.t/ � 1

2t2
; f .0/ D 1

6
:

Then, for x 2 R,

1. If ˛ < 1;NFh;�u.x/ � u.x/ ' u00.x/

6 �2.
2. If ˛ D 1;NFh;�u.x/� u.x/ ' f � �

h
ju0.x/j	 u00.x/�2:

3. If 1 < ˛ < 3
2 ;NFh;�u.x/� u.x/ ' g ��1�˛ ju0.x/j	 u00.x/�2:

According to Theorem 2, the neighborhood filter makes the signal evolve propor-
tionally to its second derivative. The equation ut D cu0 acts as a smoothing or
enhancing model depending on the sign of c. Following the previous theorem, we
can distinguish three cases depending on the values of h and �. First, if h is much
larger than �, the second derivative is weighted by a positive constant and the signal
is therefore filtered by a heat equation. Second, if h and � have the same order, the
sign and magnitude of the weight is given by f

�
�

h
ju0.x/j	. As the function f takes

positive and negative values (see Fig. 15), the filter behaves as a filtering/enhancing
algorithm depending on the magnitude of ju0.x/j. If B denotes the zero of f , then
a filtering model is applied wherever ju0j < B h

�
and an enhancing model wherever

ju0j > B h
�

. The intensity of the enhancement tends to zero when the derivative tends
to infinity. Thus, points x where ju0.x/j is large are not altered. The transition of the
filtering to the enhancement model creates a singularity in the filtered signal. In the
last case, � is much larger than h and the sign and magnitude of the weight is given
by g

�
�

h
ju0.x/j	. Function g is positive and decreases to zero. If the derivative of u

is bounded, then �

h
ju0.x/j tends to infinity and the intensity of the filtering to zero.

In this case, the signal is hardly modified.
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Fig. 15 One dimensional neighborhood filter experiment. The neighborhood filter is iterated until
the steady state is attained for different values of the ratio �=h. Top: Original sine signal. Middle
left: filtered signal with �=h D 10�8. Middle right: filtered signal with �=h D 108. Bottom
left: filtered signal with �=h D 2. Bottom right: filtered signal with �=h D 5. The examples
corroborate the results of Theorem 2. If �=h tends to zero the algorithm behaves like a heat
equation and the filtered signal tends to a constant. If, instead, �=h tends to infinity the signal
is hardly modified. If � and h have the same order, the algorithm presents a filtering/enhancing
dynamic. Singularities are created due to the transition of smoothing to enhancement. The number
of enhanced regions strongly depends upon the ratio �

h
as illustrated in the bottom figures

In summary, a neighborhood filter in dimension 1 shows interesting behavior
only if � and h have the same order of magnitude, in which case the neighborhood
filter behaves like a Perona-Malik equation. It enhances edges with a gradient above
a certain threshold and smoothes the rest.

Figure 16 illustrates the behavior of the one-dimensional neighborhood filter. The
algorithm is iterated until the steady state is attained on a sine signal for different
values of the ratio �=h. The results of the experiment corroborate the asymptotical
expansion of Theorem 2. In the first experiment, �=h D 10�8 and the neighborhood
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Fig. 16 One-dimensional neighborhood filter experiment. The neighborhood filter is iterated until
the steady state is attained for different values of the ratio �=h. Top: original sine signal. Middle
left: filtered signal with �=h = 10�8. Middle right: filtered signal with �=h = 108. Bottom left:
filtered signal with �=h = 2. Bottom right: filtered signal with �=h = 5. The examples corroborate
the results of Theorem 2. If �=h tends to zero, the algorithm behaves like a heat equation and the
filtered signal tends to a constant. If, instead, �=h tends to infinity, the signal is hardly modified.
If � and h have the same order, the algorithm presents a filtering/enhancing dynamic. Singularities
are created due to the transition of smoothing to enhancement. The number of enhanced regions
strongly depends upon the ratio �

h
, as illustrated in the bottom figures

filter is equivalent to a heat equation. The filtered signal tends to a constant. In the
second experiment, �=h D 108 and the value g

�
�

h
ju0j	 is nearly zero. As predicted

by the theorem, the filtered signal is nearly identical to the original one. The last
two experiments illustrate the filtering/enhancing behavior of the algorithm when h
and � have similar values. As predicted, an enhancing model is applied where the
derivative is large. Many singularities are being created because of the transition
of the filtering to the enhancing model. Unfortunately, the number of singularities
and their position depend upon the value of �=h. This behavior is explained by
Theorem 2(2). Figure 22 illustrates the same effect in the 2D case.

The filtering/enhancing character of the neighborhood filter is very different
from a pure enhancing algorithm like the Osher-Rudin shock filter. Figures 17
and 18 illustrate these differences. In Fig. 17, the minimum and the maximum of
the signal have been preserved by the shock filter, while these two values have been
significantly reduced by the neighborhood filter. This filtering/enhancing effect is
optimal when the signal is noisy. Figure 18 shows how the shock filter creates
artificial steps due to the fluctuations of noise, while the neighborhood filter reduces
the noise avoiding any spurious shock. Parameter h has been chosen larger than
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Fig. 17 Comparison between the neighborhood filter and the shock filter. Top: original signal.
Bottom left: application of the neighborhood filter. Bottom right: application of the shock filter. The
minimum and the maximum of the signal have been preserved by the shock filter and reduced by
the neighborhood filter. This fact illustrates the filtering/enhancing character of the neighborhood
filter compared with a pure enhancing filter
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Fig. 18 Comparison between the neighborhood filter and the shock filter. Top: original signal.
Bottom left: application of the neighborhood filter. Bottom right: application of the shock filter.
The shock filter is sensitive to noise and creates spurious steps. The filtering/enhancing character
of the neighborhood filter avoids this effect

the amplitude of noise in order to remove it. Choosing an intermediate value of h,
artificial steps could also be generated on points where the noise amplitude is above
this parameter value.
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The Two-Dimensional Case

The following theorem extends the previous result to the two-dimensional case.

Theorem 3. Suppose u 2 C 2.˝/, and let �; h; ˛ > 0 such that �; h ! 0 and

h D O.�˛/. Let us consider the continuous function Qg defined by Qg.t/ D 1
3
te�t2

3E.t/ ,

for t ¤ 0; Qg.0/ D 1
6 , where E.t/ D 2

R t
0 e

�s2
ds. Let Qf be the continuous function

defined by

Qf .t/ D 3 Qg.t/C 3 Qg.t/
t2
� 1

2t2
; Qf .0/ D 1

6
:

Then, for x 2 ˝ ,

1. If ˛ < 1,

NFh;�u.x/� u.x/ ' �u.x/

6
�2:

2. If ˛ D 1,

NFh;�u.x/ � u.x/ '
h
Qg
��
h
jDu.x/j

�
u��.x/C Qf

��
h
jDu.x/j

�
u��.x/

i
�2:

3. If 1 < ˛ < 3
2 ,

NFh;�u.x/ � u.x/ ' Qg ��1�˛ jDu.x/j	 �u��.x/C 3u��.x/
�
�2:

where � D Du.x/?=jDu.x/j and � D Du.x/=jDu.x/j.

According to Theorem 3, the two-dimensional neighborhood filter acts as an
evolution PDE with two terms. The first term is proportional to the second derivative
of u in the direction � D Du.x/?=jDu.x/j, which is tangent to the level line
passing through x. The second term is proportional to the second derivative of u
in the direction � D Du.x/=jDu.x/j, which is orthogonal to the level line passing
through x. Like in the one-dimensional case, the evolution equations ut D c1u�� and
ut D c2u�� act as filtering or enhancing models depending on the signs of c1 and c2.
Following the previous theorem, we can distinguish three cases, depending on the
values of h and �.

First, if h is much larger than �, both second derivatives are weighted by the
same positive constant. Thus, the sum of both terms is equivalent to the Laplacian
of u; �u, and we get back to Gaussian filtering.

Second, if h and � have the same order of magnitude, the neighborhood filter
behaves as a filtering/enhancing algorithm. The coefficient of the diffusion in the
tangential direction, u�� , is given by Qg � �

h
jDuj	. The function Qg is positive and
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decreasing. Thus, there is always diffusion in that direction. The weight of the
normal diffusion, u��, is given by Qf � �

h
jDuj	. As the function Qf takes positive and

negative values (see Fig. 15), the filter behaves as a filtering/enhancing algorithm
in the normal direction and depending on jDuj. If QB denotes the zero of Qf , then a
filtering model is applied wherever jDuj < QB h

�
and an enhancing strategy wherever

jDuj > QB h
�

. The intensity of the filtering in the tangent diffusion and the enhancing
in the normal diffusion tend to zero when the gradient tends to infinity. Thus, points
with a very large gradient are not altered.

Finally, if � is much larger than h, the value �

h
tends to infinity and then the

filtering magnitude Qg � �
h
jDuj	 tends to zero. Thus, the original image is hardly

altered. Let us mention that similar calculations were performed in a particular case
for the neighborhood median filter by Masnou [52].

We observe that when � and h have the same order, the neighborhood filter
asymptotically behaves like a Perona-Malik model. Let us be more specific about

this comparison. Taking g.s/ D Qg
�
s

1
2

�
in the Perona-Malik Eq. (6), we obtain

ut D Qg .jDuj/ u�� C Qh .jDuj/ u��; (5)

where Qh.s/ D Qg.s/C s Qg0.s/. Thus, the Perona-Malik model and the neighborhood
filter can be decomposed in the same way and with exactly the same weight in the
tangent direction. Then the function Qh has the same behavior as Qf (Theorem 3), as
can be observed in Fig. 19. Thus, in this case, a neighborhood filter has the same
qualitative behavior as a Perona-Malik model, even if we cannot rewrite it exactly
as such.

0.2
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–0.1

–0.2

1 2 3 4 5 6

Fig. 19 Weight comparison of the neighborhood filter and the Perona-Malik equation. Magnitude
of the tangent diffusion (continuous line, identical for both models) and normal diffusion (dashed
line- -) of Theorem 3. Magnitude of the tangent diffusion (continuous line) and normal diffusion
(dashed line- - -) of the Perona-Malik model (5). Both models show nearly the same behavior
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Figure 22 displays a comparison of the neighborhood filter and the Perona-Malik
model. We display a natural image and the filtered images by both models. These
solutions have a similar visual quality and tend to display flat zones and artificial
contours inside the smooth regions. Figure 23 corroborates this visual impression.
We display the level lines of both filtered solutions. As expected from the above
consistency theorems, for both models the level lines of the original image tend to
concentrate, thus creating large flat zones separated by edges. The solutions are very
close, up to the obvious very different implementations. The neighborhood filter is
implemented exactly as in its definition and the Perona-Malik model by the explicit
difference scheme proposed in the original paper.

A Regression Correction of the Neighborhood Filter

In the previous sections, we have shown the enhancing character of the neigh-
borhood filter. We have seen that the neighborhood filter, like the Perona-Malik
model, can create large flat zones and spurious contours inside smooth regions.
This effect depends upon a gradient threshold which is hard to fix in such a way
as to always separate the visually smooth regions from edge regions. In order to
avoid this undesirable effect, let us analyze in more detail what happens with the
neighborhood filter in the one-dimensional case.

Figure 20 shows a simple illustration of this effect. For each x in the convex part
of the signal, the filtered value is the average of the points y such that u.x/ � h <
u.y/ < u.x/ C h for a certain threshold h. As it is illustrated in the figure, the
number of points satisfying u.x/ � h < u.y/ � u.x/ is larger than the number
of points satisfying u.x/ � u.y/ < u.x/ C h. Thus, the average value YNF.x/
is smaller than u.x/, enhancing this part of the signal. A similar argument can be
applied in the concave parts of the signal, dealing with the same enhancing effect.
Therefore, shocks will be created inside smooth zones where concave and convex
parts meet. Figure 20 also shows how the mean is not a good estimate of u.x/
in this case. In the same figure, we display the regression line approximating u

Fig. 20 Illustration of the
shock effect of the YNF on
the convex of a signal. The
number of points y satisfying
u.x/� h < u.y/ 	 u.x/ is
larger than the number
satisfying
u.x/ 	 u.y/ < u.x/C h.
Thus, the average value
YNF.x/ is smaller than u.x/,
enhancing that part of the
signal. The regression line of
u inside .x�; xC/ better
approximates the signal at x

u (x)

u (x) – h

u (x) + h

x– x+

YNF (x)

x
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inside .u�1.u.x/ � h/; u�1.u.x/ C h//. We see how the value of the regression
line at x better approximates the signal. In the sequel, we propose to correct the
neighborhood filter with this better estimate.

In the general case, this linear regression strategy amounts to finding for every
point x the plane locally approximating u in the following sense:

min
a0;a1

Z
B�.x/

w.x; y/.u.y/ � a1y1 � a0/
2dy; w.x; y/ D e� ju.y/�j

h2

and then replacing u.x/ by the filtered value a1x1 C a0. The weights used to define
the minimization problem are the same as the ones used by the neighborhood
filter. Thus, the points with a gray level value close to u.x/ will have a larger
influence in the minimization process than those with a further gray level value.
We denote the above linear regression correction by LNFh;�. Taking a1 D 0 and
then approximating u by a constant function, the minimization (5) goes back to the
neighborhood filter.

This minimization was originally proposed by Cleveland [18] with a weight
family not depending on the function u but only on the spatial distance of x and
y. A similar scheme incorporating u in the weight computation has been statistically
studied in [61]. The authors propose an iterative procedure that describes for
every point the largest possible neighborhood in which the initial data can be well
approximated by a parametric function.

Another similar strategy is the interpolation by ENO schemes [41]. The goal of
ENO interpolation is to obtain a better adapted prediction near the singularities of
the data. For each point it selects different stencils of fixed size M and for each
stencil reconstructs the associated interpolation polynomial of degree M . Then the
least oscillatory polynomial is selected by some prescribed numerical criterion. The
selected stencils tend to escape from large gradients and discontinuities.

The regression strategy also tends to select the right points in order to approxi-
mate the function. Instead of choosing a certain interval, all the points are used in
the polynomial reconstruction, but weighted by the gray level differences.

As in the previous sections, let us analyze the asymptotic behavior of the linear
regression correction. We compute the asymptotic expansion of the filter when 0 <
˛ � 1. We showed that when ˛ > 1, the signal is hardly modified.

For the sake of completeness, we first compute the asymptotic expansion in the
one-dimensional case.

Theorem 4. Suppose u 2 C 2.I /, and let �; h; ˛ > 0 such that �; h ! 0 and
h D O.�˛/. Let Qf be the continuous function defined as Qf .0/ D 1

6 ,

Qf .t/ D 1

4t2

 
1 � 2te�t2

E.t/

!
;

for t ¤ 0, where E.t/ D 2
R t

0 e
�s2
ds. Then, for x 2 R,
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Fig. 21 Weighting functions of Theorems 4 and 5. Left: function Qf of Theorem 4. Right: constant
function 1/6 (continuous line) and function Qf (dashed line) of Theorem 5

1. If ˛ < 1;LNFh;�u.x/� u.x/ ' u00.x/

6 �2:

2. If ˛ D 1;NFh;�u.x/� u.x/ ' Qf � �
h
ju0.x/j	 u00.x/�2:

Theorem 4 shows that the LNFh;� filter lets the signal evolve proportionally to its
second derivative, as the neighborhood filter does. When h is larger than �, the
filter is equivalent to the original neighborhood filter and the signal is filtered by a
heat equation. When � and h have the same order, the sign and magnitude of the
filtering process is given by Qf � �

h
ju0.x/j	 (see Fig. 21). This function is positive and

quickly decreases to zero. Thus, the signal is filtered by a heat equation of decreasing
magnitude and is not altered wherever the derivative is very large.

The same asymptotic expansion can be computed in the two-dimensional case.

Theorem 5. Suppose u 2 C 2.˝/, and let �; h; ˛ > 0 such that �; h ! 0 and
h D O.�˛/. Let Qf be the continuous function defined as Qf .0/ D 1

6 ,

Qf .t/ D 1

4t2

 
1 � 2te�t2

E.t/

!
;

for t ¤ 0, where E.t/ D 2
R t

0 e
�s2
ds. Then, for x 2 ˝ ,

1. If ˛ < 1,

LNFh;�u.x/ � u.x/ ' �u.x/

6
�2:

2. If ˛ D 1,

LNFh;�u.x/� u.x/ '
�
Qf
��
h
jDu.x/j

�
u��.x/.x/C 1

6
u��.x/

�
�2:
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According to the previous theorem, the filter can be written as the sum of two
diffusion terms in the direction of � and �. When h is much larger than �, the
linear regression correction is equivalent to the heat equation like the original
neighborhood filter. When � and h have the same order, the behavior of the
linear regression algorithm is very different from the original neighborhood filter.
The function weighting the tangent diffusion is a positive constant. The function
weighting the normal diffusion is positive and decreasing (see Fig. 21), and therefore
there is no enhancing effect. The algorithm combines the tangent and normal
diffusion wherever the gradient is small. Wherever the gradient is larger, the normal
diffusion is canceled and the image is filtered only in its tangent direction. This
subjacent PDE was already proposed as a diffusion equation in [4]. This diffusion
makes the level lines evolve proportionally to their curvature. In the Perona-Malik
model, the diffusion is stopped near the edges. In this case, the edges are filtered by
a mean curvature motion.

It may be asked whether the modified neighborhood filter still preserves signal
discontinuities. The answer is yes. It is easily checked that for small enough h, all
piecewise affine functions with smooth jump curves are steady. Thus, the behavior
is the same as for the classical neighborhood filter. Our asymptotic analysis is of
course not valid for such functions, but only for smooth functions.

As a numerical scheme, the linear regression neighborhood filter allows the
implementation of a mean curvature motion without the computation of gradients
and orientations. When the gradient is small, the linear regression filter naturally
behaves like the heat equation. This effect is introduced on typical schemes
implementing the mean curvature motion. In flat zones, the gradient is not well
defined and some kind of isotropic diffusion must be applied. Therefore, the linear
regression neighborhood filter naturally extends the mean curvature motion and
yields a stable numerical scheme for its computation, independent of gradient
orientations.

Figure 22 displays an experiment comparing the LNFh;� with the neighborhood
filter and the Perona-Malik equation. The linear correction does not create any
contour or flat zone inside the smooth regions. Figure 23 displays the level lines
of the previous experiment. The level lines of the LNFh;� are filtered by a mean
curvature motion, and they do not get grouped creating flat zones. The same effect
is illustrated in Fig. 24.

The Vector-Valued Case

Let u be a vector-valued function defined on a bounded domain ˝ � R
2; u W ˝ !

R
n. The vector neighborhood filter can be written as

NFh;�u.x/ D 1

C.x/

Z
B�.x/

u.y/e� ku.y/�u.x/k2

h2 dy;
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Fig. 22 Comparison experiment. Top left: original image. Top right: Perona-Malik filtered image.
Bottom left: filtered image by the neighborhood filter. Bottom right: filtered image by the linear
regression neighborhood filter. The neighborhood filter experiments are performed by iterating the
discrete version of definitions (1) and (5). Both the neighborhood filter and its linear regression
correction have been applied with the same value of h and �. The displayed images have been
attained within the same number of iterations. The Perona-Malik equation is implemented by
the explicit difference scheme proposed in the original paper. The Perona-Malik model and the
neighborhood filter create artificial contours and flat zones. This effect is almost completely
avoided by the linear regression neighborhood filter

where jju.y/� u.x/jj2 is now the Euclidean vector norm and each component func-
tion ui is filtered with the same weight distribution. The linear regression correction
is defined as in the scalar case, and each component is locally approximated by a
plane with the same weight distribution.

In order to compute the asymptotic expansion of the linear regression filter, we
must fix a coordinate system for R2. In the scalar case, we used the reference system
given by the gradient of the image at x and its orthogonal direction. In addition, this
reference allows us to relate the obtained diffusion to the evolution of the level lines
of the image and the mean curvature motion. Now, we cannot use the same reference
and we need to define a new one. By analogy with the scalar case, we choose the
directions of minimum and maximum variation of the vector function.

Definition 1. We define the normal direction � and the tangent direction � as the
vectors that respectively maximize and minimize the following variation:
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Fig. 23 Level lines of the images in Fig. 22. By the Perona-Malik filter and the neighborhood
filter, the level lines tend to group, creating flat zones. The regression correction filters the level
lines by a curvature motion without creating any flat zone

Xn

iD1

����@ui
@v
.x/

����
2

under the constraint jjvjj D 1.
It is easily seen that this constrained optimization leads to the computation of the

eigenvectors of the matrix

A D
0
@
�� @u
@x

��2
D
@u
@x
; @u
@y

E
D
@u
@x
; @u
@y

E ��� @u
@y

���2

1
A ;

where @u
@x
D
�
@u1
@x
; : : : ; @un

@x

�
and @u

@y
D
�
@u1
@y
; : : : ; @un

@y

�
. The two positive eigenvalues

of A, �C and ��, are the maximum and the minimum of the vector norm associated
to A and the maximum and the minimum variations, as defined in Definition 1. The
corresponding eigenvectors are orthogonal leading to the above-defined normal and
tangent directions. This orthonormal system was first proposed for vector-valued
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Fig. 24 Comparison of the neighborhood filter and the linear regression correction. Top left:
original image. Top middle: filtered image by the neighborhood filter. Top right: filtered image
by the regression neighborhood filter. Bottom: level lines of a part of the images on the above line.
Both neighborhood filters have been performed with the same filtering parameters and the same
number of iterations. The linear regression neighborhood algorithm has filtered the image while
preserving the main boundaries as the original neighborhood filter. No enhancing has been applied
by the linear correction avoiding the shock effect. The level lines of the neighborhood filter tend to
group and create large flat zones. In addition, these level lines oscillate, while those of the linear
regression algorithm have been correctly filtered

image analysis in [25]. Many PDE equations have been proposed for color image
filtering using this system. We note the coherence-enhancing diffusion [72], the
Beltrami flow [46], and an extension of the mean curvature motion [65].

Theorem 6. Suppose u 2 C 2.˝;Rn/, and let �; h; ˛ > 0 such that �; h ! 0 and
h D O.�˛/. Let Qf be the continuous function defined as Qf .0/ D 1

6 ,

Qf .t/ D 1

4t2

 
1 � 2te�t2

E.t/

!
;

for t ¤ 0, where E.t/ D 2
R t

0 e
�s2
ds. Then, for x 2 ˝ ,

1. If ˛ < 1,

LNFh;�u.x/ � u.x/ ' �u.x/

6
�2:
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2. If ˛ D 1,

LNFh;�u.x/� u.x/ '
�
Qf
�
�

h

����@u

@�
.x/

����
�
D2u.�; �/.x/

C Qf
�
�

h

����@u

@�
.x/

����
�
D2u.�; �/

�

where �u.x/ D .�ui .x//1	i	n and D2u.v; v/.x/ D D2ui .v; v/.x/1	i	n for v 2
f�; �g.

Interpretation
When h is much larger than �, the linear regression neighborhood filter is equivalent
to the heat equation applied independently to each component. When h and � have
the same order, the subjacent PDE acts as an evolution equation with two terms.
The first term is proportional to the second derivative of u in the tangent direction
�. The second term is proportional to the second derivative of u in the normal
direction �. The magnitude of each diffusion term depends on the variation in the
respective direction, �� D jj @u

@�
.x/jj and �C D jj @u

@�
.x/jj. The weighting function

Qf is positive and decreases to zero (see Fig. 21). We can distinguish the following
cases depending on the values of �C and ��.

• If �C ' �� ' 0, then there are very few variations of the vector image u
around x. In this case, the linear regression neighborhood filter behaves like a
heat equation with maximum diffusion coefficient Qf .0/.

• If �C � ��, then there are strong variations of u around x and the point may be
located on an edge. In this case, the magnitude Qf � �

h
�C
	

tends to zero and there
is no diffusion in the direction of maximal variation. If �� � 0, then x may be
placed on an edge with different orientations depending on each component and
the magnitude of the filtering in both directions tends to zero, so that the image
is hardly altered. If �� ' 0, then the edges have similar orientations in all the
components and the image is filtered by a directional Laplacian in the direction
of minimal variation.

• If �C ' �� � 0, then we may be located on a saddle point, and in this case the
image is hardly modified. When dealing with multivalued images, one can think
of the complementarity of the different channels leading to the perception of a
corner.

In the scalar case, the theorem gives back the result studied in the previous sections.
The normal and tangent directions are, respectively, the gradient direction and the
level line direction. In this case, @u

@�
.x/ D 0 and @u

@�
.x/ D jDu.x/j, and we get

back to

LNFh;�u.x/ � u.x/ '
�

1

6
D2u.�; �/.x/C Qf

��
h
jDu.x/j

�
D2u.�; �/.x/

�
�2
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4 Variational and Linear Diffusion

The relationship of neighborhood filters with classic local PDEs has been discussed
in the previous section. Yet, the main interest has shifted to defining nonlocal
PDEs. The extension of the neighborhood filter and the NL-means method to define
nonlocal image-adapted differential operators and nonlocal variational methods
starts with [47], which proposes to perform denoising and deblurring by nonlocal
functionals.

The general goal of this development is actually to give a variational to all
neighborhood filters and to give a nonlocal form to the total variation as well. More
precisely, the neighborhood filters derive from the functional

J.u/ D
Z
˝�˝

g

 
ju.x/ � u.y/j2

h2

!
w .jx � yj/ dxdy;

where g and w have a Gaussian decay. In the same line, a functional yields a
(variational) interpretation to NL-means:

JNL.u/ D
Z
˝�˝

�
1 � e� G
�ju.x�:/�u.y�:/j2.0/

h2

�
w .jx � yj/ dxdy:

In a similar variational framework, Gilboa et al. [36] consider the general kind of
quadratic nonlocal functional

J.u/ WD
Z
˝�˝

.u.x/ � u.y//2w .x � y/ dxdy; (6)

where w.x; y/ is any fixed weight distribution, which in most applications writes as
the neighborhood or NL-means weight distribution. The resolution of the graph heat
equation or the variational minimization (6) is given by

unC1.x/ D 1

C.x/

Z
˝

un.y/w.x; y/dy;

whereC.x/ D s˝ w.x; y/dy is a normalizing factor. The freedom of having a totally
decoupled weight distribution makes this formulation a linear and powerful tool
for image processing. In fact, this formulation rewrites as the Dirichlet integral of
the following nonlocal gradient: rw u.x; y/ D .u.x/ � u.y//w.x; y/. The whole
process relates to a graph Laplacian where each pixel is considered as the node
of a weighted graph, and the weights of the edge between two pixels x and y,
respectively, are decreasing functions of the distances of patches around x and
y, w.x; y/. Then a graph Laplacian can be calculated on this graph, seen as the
sampling of a manifold, and the linear diffusion can be interpreted as the heat
equation on the set of blocks endowed with these weights. The eigenvalues and
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eigenvectors of such a Laplacian can be computed and used for designing spectral
algorithms as Wiener and thresholding methods (see [69] and [59]).

The nonlocal term (6) has shown to be very useful as a regularization term for
many image-processing tasks. The nonlocal differential operators permit to define
a total variation or a Dirichlet integral. Several articles on deblurring have followed
this variational line: [36, 44, 53] for image segmentation; [8] for fluorescence
microscopy; [81], again, for nonlocal deconvolution; and [50] for deconvolution
and tomographic reconstruction. In [33], a paper dedicated to another notoriously
ill-posed problem, the super-resolution, the nonlocal variational principle, is viewed
as “an emerging powerful family of regularization techniques,” and the paper
“proposes to use the example-based approach as a new regularising principle in ill-
posed image-processing problems such as image super-resolution from several low
resolution photographs.” For all these methods, the weight distribution is computed
in the first iteration and is maintained during the whole iteration process.

In this section, we will concentrate on the last nonlocal functional as a linear
diffusion process and therefore the associated graph to the image as a heat equation;
that is, no fidelity term will be added to the functional.

Linear Diffusion: Seed Growing

In [37,39], a novel method was proposed for performing multi-label, semiautomated
medical image segmentation. The Grady segmentation method is a linearized sigma
filter applied to propagate seed regions.

Given a small number of pixels with user-defined labels which are called
seeds, this method computes the probability that a random walker starting at each
unlabeled pixel will first reach one of the pre-labeled pixels. By assigning each pixel
to the label for which the greatest probability is calculated, a high-quality image
segmentation can be obtained.

With each unlabeled pixel, a K-tuple vector is assigned that represents the
probability that a random walker starting from this unlabeled pixel first reaches
each of the K seed points. A final segmentation may be derived from these K-
tuples by selecting for each pixel the most probable seed destination for a random
walker. By biasing the random walker to avoid crossing sharp intensity gradients,
a quality segmentation is obtained that respects object boundaries (including weak
boundaries). The image (or volume) is treated as a graph with a fixed number of
vertices and edges. Each edge is assigned real-valued weight corresponding to the
likelihood that a random walker will cross that edge (e.g., a weight of zero means
that the walker may not move along that edge). By a classical result the probability
that a random walker first reaches a seed point exactly equals the solution to the heat
equation [9] with boundary Dirichlet conditions at the locations of the seed points,
the seed point in question being fixed to unity, while the other seeds are set to zero.

This idea was not quite new. Region competition segmentation is an old concept
[82]. One can also refer to an algorithm developed for machine learning by Zhu
et al. [83], which also finds clusters based upon harmonic functions, using boundary
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Fig. 25 (Taken from [38].) The Grady segmentation method is a linearized sigma filter applied to
propagate seed regions. The gray curves are user-defined seed regions. A diffusion with sigma filter
weights computed on the original image u0 is applied until a steady state is attained. A threshold
gives the black curves separating the regions of initial seeds

conditions set by a few seed points. Ref. [67] also involves weights in the image
considered as a graph and takes seed points. The method is also directly related to
the recent image-coloring method of Sapiro et al. by diffusion from seeds [78] (see
also [65]).

Thus, the Grady segmentation method is a linearized sigma filter applied to
propagate seed regions. Figure 25 taken from [38] illustrates the process on a two-
chamber view of a cardiac image. The gray curves are user-defined seed regions
roughly denoting the ventricles in the image. In that case, one of the seed regions
is put to 1 and the other to 0. A diffusion with sigma filter weights computed on
the original image u0 is applied until a steady state is attained. This gives at each
pixel y a value p1.y/ between 0 and 1, which is interpreted as the probability for
y to belong to the region of the first seed. In this binary case, a single threshold
at 0.5 gives the black curves separating the regions of both seeds. Like the active
contour method, this method is highly dependent on the initial seeds. It is, however,
much less sensitive to noise than the snakes method [16] and permits to initialize
fairly far from the desired contours. We will see that by the histogram concentration
phenomenon, one can get similar or better results without any initialization.

The very same process as illustrated allows to diffuse initial chromatic informa-
tion on an initial gray image as we exposed in the introduction. Figure 26 illustrates
this application and compares the obtained solution by using the NL-means and the
neighborhood filter.

Linear Diffusion: HistogramConcentration

The segmentation process can be accomplished by iterating the neighborhood filter
and computing the weight distribution in the initial image, as displayed in Fig. 27.
The top image shows one slice of a 3D CT image with interest area surrounded



1636 J.-M. Morel et al.

Fig. 26 Left and from top to bottom: initial chromatic data on the gray image, linear diffused seeds
by using neighborhood filter weights on the gray image, and the same for the NL-means weights.
Right: details of left-hand images. The neighborhood filter weights are not robust since just a
single point from different objects can be easily confused and iteration may lead to an incorrect
colorization

by a parallelepiped. The next row shows several slices of this area of interest. It
can be appreciated, first, that the background of arteries has a lot of oscillating
clutter and, second, that the gray level value in arteries varies a lot, thus making
an automatic threshold problematic. The best way actually to convince oneself
that even in this small area a direct threshold would not do the job is to refer
to the histograms of Fig. 29. The first histogram that is Gaussian-like and poorly
concentrated corresponds to the background. The background mode decreases
slowly. On the far right part of the histogram, one can see a small pick corresponding
to very white arteries. The fixing of an accurate threshold in the slowly decreasing
background mode is problematic. The top right histogram shows what happens after
the application of a median iterative filtering (the mean curvature motion). The
histogram does not concentrate at all. The bottom left histogram is obtained after
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Fig. 27 Comparative behavior of discussed methods in 3D. Application to a 3D angiography CT
image of the head where blood vessels should be segmented. Top: one slice image of the CT
volume data with marked interested area. Middle: display of interest area for several slices of the
3D image. Second row: filtered slices by using median filter. Third row: sigma filter. Fourth row:
3D nonlocal heat equation. Bottom: filtered slices by using the linear method with 3D NL-means
weights. The whole sequence has been treated as a 3D image with a weight support of (5 � 5 � 3)
and a comparison window of 3�3�3. The background is flattened and blood vessels are enhanced.
Thus, a better segmentation is possible by a simple threshold, as justified by Fig. 29

applying the linearized neighborhood filter. The bottom right histogram is the one
obtained by the linearized NL-means described in the same section. In both cases,
one observes that the background mode of the histogram is strongly concentrated
on a few gray level values. An automatic threshold is easily fixed by taking the first
local minimum after the main histogram peak. This histogram concentration is very
similar to the obtained by the mean-shift approach [20] where the neighborhood
filter is nonlinearly iterated. In that case, the authors show that clusters tend to its
mean, yielding piecewise constant image.
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Fig. 28 From top to bottom and left to right: original iso-surface of the 3D image, same iso-
surface filtered by iterative median filter, by linear sigma filter, and by linear NL-means. The iso-
surface extracted from the original image presents many irregularities due to noise. The median
filter makes them disappear, but makes important parts disappear and some vessels disconnect or
fuse. Linear NL-means keeps most vessels and maintains the topology

The histogram concentration phenomenon is actually visible in the comparative
evolution of some slices under the various considered filters, as shown in Fig. 27.
The first row shows these slices picked in the interest area. The topology killing
effect of the median filter (mean curvature motion)is as follows: small arteries tend
to vanish and larger ones shrink and become circular as shown in the third slice
showing an artery section. The third row is dedicated to the linear sigma filter,
which corresponds to Grady’s method applied directly to the image instead of using
seeds. It is quite apparent that well-contrasted objects are well maintained and the
contrast augmented, in agreement with the consistency of this recursive filter with
the Perona-Malik equation. However, the less contrasted objects tend to vanish
because, on them, the evolution becomes similar to an isotropic heat equation.
The fourth row is the result of applying the 3D nonlocal linear heat equation,
where the Laplacian coefficients are computed from the original image. The whole
sequence has been treated as a 3D image with a weight support of .7 � 7 � 3/ and
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Fig. 29 Gray level histogram of 3D areas of interest. Top left: original 3D image before. Top right:
after median filtering. Bottom left: after proposed method with sigma filter weights. Bottom right:
proposed method with NL-means weights. The background is now represented by a few gray level
values when the volume is filtered by the proposed method. A threshold can therefore be more
easily and automatically applied

a comparison window of 3 � 3 � 3. Clearly the background is flattened and blood
vessels are enhanced on this background. A threshold just above the homogeneously
made background level should give back arteries, and this indeed occurs. Thus, in
that case, the 3D visualization of objects with complex topology like the cerebral
arteries can be achieved by an automatic threshold as illustrated in Fig. 28. The
exact segmentation of the artery is a more difficult problem. Even if the histogram
is concentrated, a different choice of the visualization threshold can produce slightly
different surfaces.

5 Conclusion

This chapter has introduced neighborhood filters and reviewed the impact that they
have had in many image-processing problems during these last years.

The neighborhood filters have been analyzed under three different frameworks;
a denoising filter, a local smoothing filter and in a variational formulation.

As a denoising algorithm, the denoising filter has motivated state of the art
algorithms as its generalization the NL-means algorithm. As a local smoothing filter,
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its asymptotic analysis leads to the well known Perona-Malik equation. And its
variational formulation is effectively used for segmentation and diffusion purposes,
for example, in medical image analysis.

Neighborhood filters remain as one of the main contributions in image processing
of the last years and still influences current and future research.
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Abstract
Following their success in image processing (see Chapter �Local Smoothing
Neighborhood Filters), neighborhood filters have been extended to 3D surface
processing. This adaptation is not straightforward. It has led to several variants
for surfaces depending on whether the surface is defined as a mesh, or as a raw
data point set. The image gray level in the bilateral similarity measure is replaced
by a geometric information such as the normal or the curvature. The first section
of this chapter reviews the variants of 3D mesh bilateral filters and compares
them to the simplest possible isotropic filter, the mean curvature motion.

In a second part, this chapter reviews applications of the bilateral filter to
a data composed of a sparse depth map (or of depth cues) and of the image
on which they have been computed. Such sparse depth cues can be obtained
by stereovision or by psychophysical techniques. The underlying assumption
to these applications is that pixels with similar intensity around a region are
likely to have similar depths. Therefore, when diffusing depth information
with a bilateral filter based on locality and color similarity, the discontinuities
in depth are assured to be consistent with the color discontinuities, which is
generally a desirable property. In the reviewed applications, this ends up with
the reconstruction of a dense perceptual depth map from the joint data of an
image and of depth cues.

1 Introduction

The idea of processing a pixel relatively to its similar looking neighbors proved to be
very powerful and was adapted to solve a huge variety of problems. Since its primary
goal is to denoise data and since the same denoising problem appeared for 3-
dimensional surfaces, the idea of a 3D bilateral filter was only natural. Nevertheless,
we shall see that this extension is far from straightforward. Multiple adaptations
have in fact been introduced; experimental results show that it is far better for
denoising a shape while preserving edges than an isotropic filter (as one could
expect).

The bilateral filter could be used not only to filter images but also to diffuse
information across an image: in numerous applications some information (e.g.,
depth value) is given only at some point positions. The problem is then to extrapolate
the information for all pixels in the image. This can be used to improve the quality
of disparity maps obtained by stereoscopy or to diffuse depth cues in images.

In the present chapter the different applications will be reviewed and tested
experimentally. Section 2 reviews bilateral filters applied to 3D data point sets,
often organized in a triangulation (a mesh). It ends up with comparative simulations

http://dx.doi.org/10.1007/978-1-4939-0790-8_26
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illustrating the advantage of bilateral filters on isotropic filtering. Section 3 considers
the various cases where, in an image, depth values or depth cues are available and
shows that the bilateral filter used as a diffusion tool performs well in restoring a
dense depth map.

A previous review by Paris et al. [33] discusses the bilateral filter and its
implementation. It also provides an overview of numerous applications.

2 Bilateral Filters Processing Meshed 3D Surfaces

This section proceeds by first examining the various adaptations of bilateral filtering
on meshes (triangulated 3D surfaces) and discussing their implementation, which
can depend on the surface triangulation. Finally several comparative experiments
on synthetic and real meshes will be performed. Since a common notation is needed
for all methods, this section starts with a small glossary and notation summary to
which the reader may refer.

Glossary and Notation

• M: the mesh, namely, a set of triangles
• v: current mesh vertex to be denoised
• N .v/: neighborhood of vertex v (this neighborhood excludes v).
• nv, np , etc.: normals at vertex v or point p, etc., to the underlying surface
• w1.jjp � vjj/, w2.< nv; p � v >/, etc.: 1D centered Gaussians with various

variances, used as weighting functions applied to the distance of neighbors to
the current vertex and to the distance along the normal direction at v.

• Hv, Hp , etc.: curvatures of the underlying surface at v, p, etc.
• f : triangle of a mesh
• af : area of triangle f
• cf : barycenter of triangle f
• nf : normal to triangle f
• …f : projection on the plane containing triangle f
• V : voxel containing points of the data set
• s0, v0, p0, n0

v: processed versions of s, v, p, nv, etc.
• kp � qk: Euclidean distance between points p and q

The neighborhood filter or sigma filter is attributed to Lee [26] in 1983 but
goes back to Yaroslavsky and the Sovietic image processing theory (see the book
summarizing these works [44]) in 2D image analysis. A recent variant by Tomasi
and Manduchi names it bilateral filter [37]. The bilateral filter denoises a pixel by
using a weighted mean of its similar neighbors gray levels. In the original article,
the similarity measure was the difference of pixel gray levels, yielding for a pixel v
of an image I with neighborhood N .v/:
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OI .v/ D 1

C.v/

X
p2N .v/

w1.kp � vk/w2.jI.v/� I.p/j/I.p/

where w1 et w2 are decreasing functions on R
C (e.g., Gaussian) and C.v/ is a

normalizing coefficient:C.v/ DPp2N .v/ w1.kp�vk/w2.jI.v/�I.p/j/. Thus OI .v/
is an average of pixel values for pixels that are similar in position but also in value,
hence the “bilaterality.”

Bilateral Filter Definitions

Filtering without losing the sharp features is as critical for surfaces as it is for
images, and a first adaptation of the bilateral filter to surface meshes was proposed
by Fleishman, Drori, and Cohen-Or in [15]. Consider a meshed surface M with
known normals nv at each vertex position v. Let N .v/ be the one-ring neighborhood
of v (i.e., the set of vertices sharing an edge with v). Then the filtered position of v
writes v0 D vC ıv � nv, where

ıv D 1

C.v/

X
p2N .v/

w1.kp � vk/w2.< nv; p � v >/ < nv; p � v > (1)

where the weight normalization factor is C.v/ D P
p2N .v/ w1.kp � vk/w2.<

nv; p � v >/. In a nutshell, this means that the normal component of the vertex
v is moved by a weighted average of the normal components of its neighboring
points which are also close to the plane tangent to the surface at v. The distance
to the tangent plane plays for meshes the role that was played for images by the
distance between gray levels. If v belongs to a sharp edge, then the only points close
to the tangent plane at v are the points on the edge. Thus, the edge sharpness will
not be smoothed away. One of the drawbacks of the above filter is clearly the use of
a mesh-dependent neighborhood. In case of a mesh with fixed length edges, using
the one-ring neighborhood is the same as using a fixed size neighborhood. Yet in
most cases mesh edges do not have the same length. The one-ring neighborhood is
then very dependent on the mesh representation and not on the shape itself. This is
easily fixed by defining an intrinsic Euclidean neighborhood.

Another adaptation of the 2D bilateral filter to surface meshes is introduced by
Jones, Durand, and Desbrun in [20]. This approach considers the bilateral filtering
problem as a robust estimation problem for the vertex position. A set of surface
predictors are linked to the mesh M: for each triangle f the position estimator …f

projects a point to the plane defined by f . Let af be the surface area and cf be the
center of f . Then, for each vertex v, the denoised vertex is

v0 D 1

C.v/

X
f 2M

…f .v/af w1.kcf � vk/w2.k…f .v/� vk/ (2)



Neighborhood Filters and the Recovery of 3D Information 1649

where C.v/ DPf 2M af w1.kcf � vk/w2.k…f .v/� vk/ is the weight normalizing
factor and w1 and w2 are two Gaussians.

Thus, the weight w1.jjcf � vjj/ is small if the triangle f is close to v. This term
is the classic locality-in-space term of the bilateral. Similarly, w2.k…f .v/ � vk/
measures how far point v is from its projection onto the plane of the triangle. This
weight favors the triangles f whose plane is coherent with v.

Since the projection on the tangent planes operator…f depends on the normals to
f , these normals must be robustly estimated. Normals being first-order derivatives,
they are more subject to noise than vertex positions. Hence the method starts by
denoising the normal field. To do so, the mesh is first smoothed using the same
formula as above without the influence weight w2 and with …f .v/ D cf , namely,
an updated position:

v0 D 1

C.v/

X
f 2M

cf af w1.kcf � vk/

where C.v/ D P
f 2M af w1.kcf � vk/. The normal for each face in the denoised

mesh is then computed and assigned to the corresponding face of the original noisy
mesh. It is with this robust normal field that the bilateral filter of Eq. (2) is applied
in a second step.

The idea of filtering normals instead of point positions is crucial in point
rendering applications, as was pointed out by Jones, Durand, and Zwicker in
[21]. Indeed, when rendering a point set, removing noise from normal is more
important than removing noise from point position, since normal variations are in
fact what is perceived by observers. More precisely the eye perceives a dot product
of the illumination and the normal, which makes it very sensitive to noisy normal
orientations. The bilateral filter of [20] is seen as a deformation F of the points:
v0 D F.v/. Then, the update of normal nv can be obtained through the transposed
inverse of the Jacobian J.v/ of F.v/:

n0
v D J�T .v/nv, where Ji .v/ D @F

@vi
.v/

where Ji is the i th column of J and vi is the i th component of v. nv must then be
renormalized. The rendering of the point set with smoothed normal is better than
without any smoothing.

In [38], Wang introduces a related bilateral approach which denoises feature-
insensitive sampled meshes. Feature insensitive means that the mesh sampling
is independent of the features of the underlying surface, e.g., uniform sampling.
The algorithm proceeds as follows: it detects the shape geometry (namely, sharp
regions), denoises the points, and finally optimizes the mesh by removing thin
triangles. The bilateral filter is defined in a manner similar to [20], with the
difference that only triangles inside a given neighborhood are used on this definition.
Let v be a mesh vertex, N .v/ be the set of triangles within a given range of v, and
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nf , af , cf be, respectively, the normal, area, and center of a facet f (a triangle).
Denote by …f .v/ the projection of v onto the plane of f , and then the denoised
vertex is defined by

v0 D 1

C.v/

X
f 2N .v/

…f .v/af w1.kcf � vk/w2.k…f .v/� vk/

where C.v/ D P
f 2N .v/ af w1.kcf � vk/w2.k…f .v/ � vk/ (weight normalizing

factor).
The first step is to detect sharp regions. Several steps of bilateral filtering (as

defined in [20]) are applied, and then a smoothness index is computed by measuring
the infimum of angles between normals of faces adjacent to v. By thresholding this
measurement, the sharp vertices are selected. Triangles whose three vertices are
sharp and whose size does not increase during the bilateral iterations are marked
as sharp. This detection done, points are restored to their original positions. Then
the bilateral filtering formula is applied to sharp vertices only, and the geometry
sharpness is encoded into a data collection containing normals, centers, and areas
of filtered triangles. Points are then restored to their original position. Each sharp
vertex is moved using the bilateral filtering over the neighboring stored data units,
and thin vertices are removed from the mesh (these last two steps are iterated a
certain number of times). Finally, a post-filtering step consists in applying one step
of bilateral filtering on all non-sharp edges.

In [40] (Wang, Yuan, and Chen), a two-step denoising method combines the
fuzzy C-means clustering method (see Dunn’s article on fuzzy means [12]) with
a bilateral filtering approach. Fuzzy C-means is a clustering technique that allows
a piece of data to belong to two different clusters. Each point p gets a parameter
�p;k which measures the degree of membership of p to a cluster k. Let mp be the
number of points in the spherical neighborhood of a point p. If mp < threshold,
the point is deleted. Otherwise, a fuzzy C-means clustering center cp is associated
with p. The normal at point cp is computed as the normal to the regression plane
of the data set in a spherical neighborhood of p. Fleishman’s bilateral filter [15] is
used to filter ci which yields the denoised point. This hybrid and complex method
is doubly bilateral. Indeed, the previous C-means clustering selects an adapted
neighborhood for each point and replaces it by an average which is by itself the
result of a first bilateral filter in the wide sense of neighborhood filter. Indeed, the
used neighborhood for each point depends on the point. The second part of the
method therefore applies a second classical bilateral method to a cloud that has
been filtered by a first bilateral filter.

The bilateral filtering idea was also used as a part of a surface reconstruction
process. In [30], for example, Miropolsky and Fischer introduced a method for
reducing position and sampling noise in point cloud data while reconstructing
the surface. A 3D geometric bilateral filter method for edge-preserving and data
reduction is introduced. Starting from a point cloud, the points are classified
in an octree, whose leaf cells are called voxels. The voxel centers are filtered,
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representative surface points are defined, and the mesh is finally reconstructed. A
key point is that the denoising depends on the voxel decomposition. Indeed, the
filter outputs a result for each voxel. For a voxel V , call v its centroid with normal
nv. Let w1 and u2 be two functions weighting, respectively, kp � vk, the distance
between a point p position and the centroid location, and ı.p; v/ D hnp; nvi, the
scalar product of the normal at p and the normal at the centroid. Then the output of
the filter for voxel V is

v0 D 1

C.v/

X
p2V

w1.kp � vk/u2.ı.p; v//p

where C.v/ D P
p2V w1.kp � vk/u2.ı.p; v//. Here w1 is typically a Gaussian and

u2 is an increasing function on Œ0; 1�. But this filter proves unable to recover sharp
edges, so a modification is introduced: prior to any filtering for each voxel V , points
of V are projected onto a sphere centered at the centroid v. Each mapped point is
given a normal Qnp which has direction p � v and is normalized. The geometric
filtering is reduced to

v0 D 1

C.v/

X
p2V

u2.ı. Qnp; nv//p with C.v/ D
X
p2V

u2.ı. Qnp; nv//:

Although only the similarity of normals is taken into account in the above formula,
the filter is bilateral because the average is localized in the voxel.

In [27], Liu et al. interpreted the bilateral filter as the association to each vertex
v of a weighted average

v0 D 1

C.v/

X
p2N .v/

w1.kp � vk/w2.k…p.v/ � vk/…p.v/

where C.v/ D P
p2N .v/ w1.kp � vk/w2.k…p.v/ � vk/ (normalizing factor) and

…p.v/ is a predictor which defines a “denoised position of v due to p,” namely, the
projection of v on the plane passing by p and having the normal nv. For example,
the bilateral predictor used in [15] is …p.v/ D vC ..p � v/ �nv/nv, and in [20], the
used predictor is …p.v/ D vC ..p � v/ �np/np which is the projection of v on the
tangent plane passing by p. With this last predictor the corners are less smoothed
out, yet there is a tangential drift due to the fact that the motion is not in the normal
direction nv but in an averaged direction of the np for p 2 N .v/. Therefore a new
predictor is introduced:

…p.v/ D vC .p � v/ �np
nv �np nv:

This predictor tends to preserve better the edges than all other bilateral filters.



1652 J. Digne et al.

The question of choosing automatically the parameters for the bilateral filter
was raised by Hou, Bai, and Wang in [19]. It was proposed to choose adaptive
parameters. The adaptive bilateral normal smoothing process starts by searching for
the set of triangles .Ti /i whose barycenters are within a given distance of a center
triangle T . (But this keeps a distance parameter anyway.) Then the influence weight
parameter 
s is computed as the standard deviation of the distance between normals
kn.Ti /�n.T /k. The spatial weight parameter is estimated using a minimum length
descriptor criterion (for various scales). The estimated parameters are then used to
get the smoothed normal. This result is finally used for rebuilding the mesh using
the smoothed normals by Ohtake, Belyaev, and Seidel’s method described in [31].

The bilateral filter has proved to be very efficient to denoise a mesh while
preserving sharp features. The trilateral filter is then a natural extension which takes
into account still more geometric information.

Trilateral Filters

Choudhury and Tumblin [6] propose an extension of the trilateral image filter to
oriented meshes. It is a 2-pass filter: a first pass filters the normals and a second
pass filters the vertex positions. Starting from an oriented mesh, a first pass denoises
bilaterally the vertex normals using the following update:

n0
v D

1

C.nv/

X
p2N .v/

npw1.kp � vk/w2.knp � nvk/

where C.nv/ DP
p2N .v/ w1.kp � vk/w2.knp � nvk/. Then, an adaptive neighbor-

hood N .v/ is found by iteratively adding faces near v until the normals nf of face
f differ too much from n0

v. A function F measuring the similarity between normals
is built using a given threshold R:

F.v; f / D 1 if kn0
v � nf k < R; 0 otherwise:

The trilateral filter for normals filters a difference between normals. Define
n�.f / D nf � n0

v. Then the trilaterally filtered normal nv is

n00
v D n0

v C
1

C.v/

X
f 2N .v/

n�.f /w1.kcf � vk/w2.n�.f //F.v; f /

where C.v/ D P
f 2N .v/ w1.kcf � vk/w2.n�.f //F.v; f /. Finally, the same

trilateral filter can be applied to vertices. Call Pv the plane passing through v and
orthogonal to n0

v. Call Qcf the projection of cf onto Pv and c�.f / D kQcf � cf k.
Then the trilateral filter for vertices, using the trilaterally filtered normal n00

v , writes
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v0 D vC n00
v

1

C.v/

X
p2N .v/

c�.f /w1.k Qcf � vk/w2.n�.f //F.v; f /

where C.v/ DPp2N .v/ w1.k Qcf � vk/w2.c�.f //F.v; f /.
The results are similar to [20] though slightly better. They are comparable to

the results of [15] since both methods use the distance to the tangent plane as a
similarity between points.

Similarity Filters

In [41] Wang et al. proposed a trilateral filter with slightly different principles.
A geometric intensity of each sampled point is first defined as depending on the
neighborhood of the point

ı.p/ D 1

C.p/

X
q2N .p/

wpq < np; q � p >

with

wpq D w1.kq � pk/w2.k < np; q � p > k/wh.kHq �Hpk/

and

C.p/ D
X

q2N .p/

wpq:

This type of filter is a trilateral filter, which means that it depends on three
variables: distance between the point p and its neighbors q, distance along the
normal np between the point p and its neighbors q, and the difference of their mean
curvaturesHp and Hq .

At each point, a local grid is built on the local tangent plane (obtained by local
covariance analysis), and at each point of this grid, the geometry intensity is defined
by interpolation. Thus, neighborhoods of the same geometry are defined for each
pair of distinct points, and the similarity can be computed as a decreasing function
of the L2 distance between these neighborhoods.

Since the goal is to denoise one point with similar points, the algorithm proposes
to cluster the points into various classes by the mean shift algorithm. To denoise
a point, only points of the same class are used. This gives a denoised geometry
intensity ı0.p/ and the final denoised position p0 D p C ı0.p/np .

More recently the NL-means (Buades, Coll, Morel [3]) method which proved
very powerful in image denoising was adapted to meshes and point clouds by
Yoshizawa, Belyaev, and Seidel [47]. Recall that for an image I , the NL-means
filter computes a filtered value J.x/ of pixel x as
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J.x/ D 1

C.x/

Z


w.x; y/I.y/dy;

an adaptive average with weights

w.x; y/ D exp� 1

h2

Z
Ga.jt j/jI.x � t/ � I.y � t/j2dt

and C.x/ D R w.x; y/dy.
Here Ga is a Gaussian or a compactly supported function, so that it defines a

patch. Thus, the denoised point is a mean of pixel values with weights measuring
the local image similarity of patches around other pixels with the patch around the
current pixel.

Consider now the adaptation to a mesh M. Let 
.v/ D fy 2Mj jv � yj �
2
g. The smoothing is done by changing v at each step: vnC1 D vn C k.vn/nnv with
nv the normal to M at v. Let Sy be the surface associated to vertex y. The following
definitions are directly adapted from the image case (a continuous formalism is
adopted here for clarity):

k.v/ D 1

C.v/

Z

2

w.v; y/I.y/dSy

C.v/ D
Z

2

w.v; y/dSy

I.y/ D< nv; y � v >

w.v; y/ D exp�D.v; y/
h2

:

The problem is to define the similarity kernel D. Let 
3 be the half radius
of the neighborhood used to define the geometric similarity between two points,
and 
2 be the half radius of the domain where similar points are looked for, with

3 < 
2. The local tangent plane at y is parameterized by t1 and t2. For all z of

2.y/, the translation t is defined as t D �.< t1; z � y >;< t2; z � y >/ D
�.uz; vz/, where .uz; vz;wz/ are the coordinates of vertex z in the local coordinate
system .y; t1; t2; ny/.

A local approximation Fv.u; v/ by radial basis functions (RBF) is built around
each vertex v, and the similarity kernel finally yields

D.v; y/ D
Z

3 .y/

G
3.jt j/jFv.uz; vz/ � I.y � t/j2dt

with I.y � t/ D< nv; z � v > and G
3 a Gaussian kernel with variance 
3.
Thus each vertex is compared with vertices in a limited domain around it, and

the weighted mean over all these nodes yields the denoised position. This results in
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a better feature preserving mesh denoising method, but at the cost of a considerably
higher computation time.

To improve the computation time when denoising data using neighborhood
filters, bilateral approximations were introduced by Paris and Durand, among others,
in [32], where a signal processing interpretation of the 2D bilateral filter is given,
yielding an efficient approximation. Another efficient method is the Gaussian k-
d trees introduced by Adams et al. in [1]. The proposed method was designed to
compute efficiently a class of n-dimensional filters which replace a pixel value by a
linear combination of other pixel values. The basic idea is to consider those filters as
nearest neighbors search in a higher-dimensional space, for example, .r; g; b; x; y/
in case of a 2D color image and a bilateral filter. To accelerate this neighbor search,
a Gaussian k-d tree is introduced. Consider the nonlocal means filter which has, in
its naive implementation, aO.n2f 2/ complexity for n pixels and f �f patches. To
apply Gaussian k-d tree, the position of a pixel is set to be the patch, and the value
is set to be the color value of the pixel. A simple Principle Component Analysis
(PCA) on patches helps to capture the dimensions that best describe the patches.
The Gaussian k-d tree is also used to perform 3D NL-means on meshes or point
clouds. To produce a meaningful value to describe geometry, the idea of spin images
is used. At each point sample p, a regression plane is estimated, and the coordinates
of the neighboring points in the local coordinate system are used to build a histogram
of cylindrical coordinates around .p; np/ (the spin image). This gives the position
vector. The value of p is then set to be the difference d D p0 � p between p and
the Laplacian filtered position p0 expressed in the local coordinate system. This
gives the input for building the Gaussian k-d tree yielding good results for mesh
denoising.

Summary of 3DMesh Bilateral Filter Definitions

The filters reviewed in this section are almost all defined for meshes. Yet, with very
little effort almost all of them can be adapted to unstructured point clouds by simply
redefining the neighborhoods as the set of points within a given distance from the
center point (spherical neighborhood). Several classic variants of bilateral filters
were examined, but their main principle is to perform an average of neighboring
vertices pondered by the distance of these vertices to an estimated tangent plane of
the current vertex. This distance takes the role played by the gray level in image
bilateral filters. It can be implemented in several ways either by projecting the
current vertex to the neighboring triangles or by projecting the neighboring vertices
on the current triangle or by using an estimate of the normal at the current vertex
which has been itself previously filtered. An interesting and simple possibility is
to directly combine distance of vertices and of their normals or even distances
of vertices, normals, and curvatures (but this requires a previous smoothing to
get denoised normals and curvatures). Notice that position, normal, and curvature
characterize the cloud shape in a larger neighborhood. Thus, at this point, the
obvious generalization of bilateral filters is NL-means, which directly compares
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point-wise the shape of the neighborhood of a vertex with the overall shape of
the neighborhoods of others before performing an average of the most similar
neighborhoods to deliver a filtered neighborhood.

Sticking to the simplicity of comparisons and to the essentials of bilateral filter,
we shall be contented in the comparative section to illustrate the gains of the bilateral
filter with respect to a (good) implementation of its unilateral counterpart, the mean
curvature motion, performed by the projection of each vertex on a local regression
plane. The remainder of this section is divided as follows: section “Comparison of
Bilateral Filter and Mean Curvature Motion Filter on Artificial Shapes” presents
experiments and comparisons on artificial shapes, and section “Comparison of the
Bilateral Filter and the Mean Curvature Motion Filter on Real Shapes” presents
results on some real shapes.

Comparison of Bilateral Filter andMean Curvature Motion Filter on
Artificial Shapes

In the following experiments, the denoising of the bilateral filter as introduced in
[15] will be compared with the mean curvature motion (MCM). Recall that [15]
defined the update of a point as

ıv D 1

C.v/

X
p2N .v/

w1.kp � vk/w2.< nv; p � v >/ < nv; p � v >

with

C.v/ D
X

p2N .v/

w1.kp � vk/w2.< nv; p � v >/

(see first section, Eq. (1) for notations).
The mean curvature motion used here is the projection on the regression plane:

a vertex v with normal nv and spherical neighborhood N .v/ is projected on the
regression plane of N .v/. In [9], Digne et al. showed that this operator was an
approximation of the mean curvature motion:

@v

@t
D Hnv:

The effects of bilateral denoising are first shown on some artificial shapes. A
cube with sidelength 5 is created with added Gaussian noise with standard deviation
0:02 (Fig. 1). Figures 1 and 2 show all points of the 3D cloud seen from one side of
the cube. Obviously, the edges seem to have some width due to the noise.

The experiments of Fig. 2a–c show the denoising power of the bilateral filter
in terms of preserving edges and should be compared with the standard mean
curvature motion filter (Fig. 2d–f). The comparison is particularly interesting in the
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Fig. 1 A noisy cube with
Gaussian noise

Table 1 Noise estimation for the sharp edge denoising

Input Iteration 1 Iteration 2 Iteration 5

RMSE (bilateral) 0:01 0:0031 0:0019 0:0035

RMSE (mcm) 0:01 0:0051 0:0085 0:0164

corner areas. The bilateral filter implies an anisotropic curvature motion leading to
a diffusion only in smooth parts while preserving the sharp areas. Let us now see
how those filters perform in case of a sharp edge. An estimation of the noise for
each of the denoising methods is shown on Table 1. This estimation was obtained as
follows: an edge was created by sampling two intersecting half-planes and adding
Gaussian noise, the obtained edge was then denoised by bilaterally filtering an mean
curvature motion. Finally, the root-mean-square error (RMSE) to the underlying
model is computed. Table 1 tends to prove that mean curvature motion, although it
smoothes well the noisy flat parts and also smoothes away the sharpness, whereas
the bilateral filter tends to preserve the sharp edges better. With few iterations, the
noisy parts are smoothed out decreasing the root-mean-square error. Then, when
iterating the operator, the sharpness tends to be smoothed, increasing the RMSE
again. This phenomenon is of course far quicker with the mean curvature motion
since this filter does not preserve edges at all.

Comparison of the Bilateral Filter and theMean Curvature Motion
Filter on Real Shapes

This section starts with running some experiments on the Michelangelo’s David
point cloud. At each step an interpolating mesh was built for visualization.

On Fig. 3, denoising artifacts created by the bilateral filter can be seen. They
appear as oscillations, for example, on David’s cheek. These artifacts can be
explained by the fact that the bilateral filter enhances structures. Added noise
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Fig. 2 Bilateral and MCM iterations on the cube corner. Notice how the sharpness is much better
preserved by the bilateral filter than by the mean curvature equation. (a) 1 bilateral iteration.
(b) 2 bilateral iterations. (c) 5 bilateral iterations. (d) 1 MCM iteration. (e) 2 MCM iterations.
(f) 5 MCM iterations

structures can thus be randomly enhanced by the bilateral filter. Figure 4 shows
that some noise remains after one iteration of bilateral denoising. The bilateral filter
is therefore iterated with the same parameters. Then, obviously, the remaining noise
disappears at the cost of some sharpness loss (see Fig. 5). Still, the bilateral filter
preserves sharp features much better than the mean curvature motion (Fig. 6). This
can also be seen on a noisy simple scan of a screw nut driver (Fig. 7) and on a
fragment of the Stanford Digital Forma Urbis Romae Project (Fig. 8).

3 Depth-Oriented Applications

This section focuses on the applications of the bilateral filter and its generalized
version to depth-oriented image processing tasks. The common idea to all these
applications is to constrain the diffusion of depth information to the intensity
similarity between pixels. The underlying assumption is that pixels with similar
intensity around a region are likely to have similar depths. Therefore, when
diffusing depth information based on intensity similarity, the discontinuities in
depth are assured to be consistent with the color discontinuities. This is often a
desirable property, as it was noticed by Gamble and Poggio [16] and Kellman and
Shipley [22].
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Fig. 3 Denoising of the David’s face. (a) Original of the David. (b) Noisy David. (c) Bilateral
denoising. (d) MCM

Fig. 4 Denoising of the David (back). (a) Initial noisy David. (b) Bilateral denoising. (c) MCM

The remainder of this section is organized as follows. Section “Bilateral Fil-
ter for Improving the Depth Map Provided by Stereo Matching Algorithms”
reviews the applications of the bilateral filter to stereo matching algorithms, while
section “Bilateral Filter for Enhancing the Resolution of Low-Quality Range
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Fig. 5 Iterating the bilateral filter on the David (back). (a) Iteration 1. (b) Iteration 2

Fig. 6 Detail of the David. (a) Bilateral filtering. (b) MCM

Fig. 7 Denoising of a screw nut driver scan. (a) Initial scan. (b) Bilateral denoising. (c) MCM

Images” describes an application to the resolution enhancement of range images.
Section “Bilateral Filter for the Global Integration of Local Depth Information”
reviews applications to the estimation of depth in single images.

Bilateral Filter for Improving the Depth Map Provided by Stereo
Matching Algorithms

Stereo matching algorithms address the problem of recovering the depth map of a
3D scene from two images captured from different viewpoints. This is achieved by
finding a set of points in one image which can be identified in the other one. In fact,
the point-to-point correspondences allow to compute the relative disparities, which
are directly related to the distance of the scene point to the image plane.
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Fig. 8 Denoising of fragment “31u” of Stanford Digital Forma Urbis Romae; see Koller et al. [23]
for an explanation of the data. (a) Initial fragment with added Gaussian noise. (b) Bilateral
denoising. (c) MCM

The matching process is based on a similarity measure between pixels of both
images. Due to the presence of noise and repetitive texture, these correspondences
are extremely difficult to find without global reasoning. In addition, occluded and
textureless regions are ambiguous. Indeed, local image matching is not enough
to find reliable disparities in the whole image. Because of all these reasons, the
matching process yields either low-accuracy dense disparity maps or high-accuracy
sparse ones.

Improvements can be obtained through filtering or interpolation, by using median
or morphological filters, for instance. However, their ability to do so is limited. Yin
and Cooperstock have proposed [45] a post-processing step to improve dense depth
maps produced by any stereo matching algorithm. The proposed method consists in
applying an iterated bilateral filter, which diffuses the depth values. This diffusion
relies on the original image gradient instead of the one of the depth images. This
allows to incorporate edge information into the depth map, assuring discontinuities
in depth to be consistent with intensity discontinuities.

The color-weighted correlation idea underlying the bilateral filter has been
exploited by Yoon and Kweon [46] to reduce the ambiguity of the correspondence
search problem. Classically, this problem has been addressed by area-based methods
relying on the use of local support windows. In this approach, all pixels in a window
are assumed to have similar depth in the scene and, therefore, similar disparities.
Accordingly, pixels in homogeneous regions get assigned the disparities inferred
from the disparities of neighboring pixels.

However, when the windows are located on depth discontinuities, the same
disparity is assigned to pixels having different depths, resulting in a foreground-
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fattening phenomenon. This phenomenon was studied by Delon and Rougé [8]. To
obtain accurate results, an appropriate window should be selected for each pixel
adaptively. This problem is addressed by Yoon and Kweon [46] by weighting the
pixels in a given window taking into account their color similarity and geometric
proximity to the reference pixel.

The similarity between two pixels is then measured using the support weights
in both windows, taking into account the edge information into the disparity
map. Experimental results show that the use of adaptive support weights produces
accurate piecewise smooth disparity maps while preserving depth discontinuities.

The idea of exploiting the color-weighted correlation to reduce the ambiguity
of the correspondence problem has been implemented in a parallel architecture,
allowing its use in real-time applications and more complex stereo systems. See
Yang et al. [42] and Wang et al. [39] papers which achieved a good rank in the
Middlebury benchmark (Evaluation of the Middlebury stereo website http://vision.
middlebury.edu/stereo/) proposed by Scharstein and Szeliski [36].

The bilateral filter averages the pixel colors, based on both their geometric
closeness and their photometric similarity, preferring near values in space and color
to distant ones. Ansar, Castano, and Matthies [2], Yoon and Kweon [46], and, more
recently, Mattoccia, Giardino, and Gambin [28] have used the bilateral filter to
weight the correlation windows before the stereo correspondence search. On the
other hand, Gehrig and Franke [17] have applied the bilateral filter to obtain an
improved and smoother disparity map.

The interpolation of disparity maps and in particular of digital elevation models
(DEMs) has been considered in several recent works. Facciolo and Caselles [14]
propose to interpolate unknown areas by constraining a diffusion anisotropic process
to the geometry imposed by a reference image and coupling the process with a
data fitting term which tries to adjust the reconstructed surface to the known data.
More recently, Facciolo et al. [13] have proposed a new interpolation method which
defines a geodesic neighborhood and fits an affine model at each point. The geodesic
distance is used to find the set of points that are used to interpolate a piecewise affine
model in the current sample. This interpolation is refined by merging the obtained
affine patches with a Mumford-Shah-like algorithm. The a contrario methodology
has been used in this merging procedure. In the urban context, Lafarge et al. [25]
use a dictionary of complex building models to fit the disparity map. However, the
applicability of such a method is less evident because of the initial delineation of
buildings by a rectangle fitting.

We shall illustrate the bilateral interpolation process with experiments from
Sabater’s Ph.D. thesis [35] where the bilateral filter is used to interpolate a sparse
disparity map. Let q be a point in the image I . Consider Lq � I the subimage
where the weight is learned. For each p 2 Lq the weight due to color similarity and
proximity is computed.

Color similarity: the following color distance is considered

dc.uq; up/ D
�
.Ru.q/ �Ru.p//

2 C .Gu.q/ �Gu.p//
2 C .Bu.q/� Bu.p//

2
	1=2

;

http://vision.middlebury.edu/stereo/
http://vision.middlebury.edu/stereo/
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where Ru, Gu, and Bu are the red, green, and blue channels of u. Then the weight
corresponding to the color similarity between p and q is

wc.p; q/ D exp

 
�dc.uq; up/

2

h2
1

!
:

Proximity: The Euclidean distance between the point positions in the image plane
is used

d.q; p/ D �.q1 � p1/
2 C .q2 � p2/

2
	1=2

;

where p D .p1; p2/ and q D .q1; q2/. Then the weight corresponding to proximity
is

wd .p; q/ D exp

�
�d.q; p/

2

h2
2

�
:

Therefore, the total associated weight between the two points q and p is

W.p; q/ D 1

Zq
wc.p; q/wd .p; q/ D 1

Zq
exp

�
�
�
dc.uq; up/2

h2
1

C d.q; p/2

h2
2

��
;

where Zq is the normalizing factor Zq D
X
p2Lq

wc.p; q/wd .p; q/ : The interpolated

disparity map �I is computed via an iterative scheme

�I .q; k/ D
X
p2Lq

W.p; q/�I .p; k � 1/ ;

where k is the current iteration and the initialization �I . � ; 0/ D �. � / is the sparse
disparity to be interpolated.

Figures 9 and 10 show the interpolated Middlebury results (100 % density). The
experiments demonstrate that, starting from a disparity map which is very sparse
near image boundaries, the bilateral diffusion process can recover a reasonable depth
map.

Bilateral Filter for Enhancing the Resolution of Low-Quality Range
Images

Contrary to intensity images, each pixel of a range image expresses the distance
between a known reference frame and a visible point in the scene. Range images
are acquired by range sensors that, when acquired at video rate, are either very
expensive or very limited in terms of resolution. To increase the resolution of
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Fig. 9 Tsukuba and Venus results. For each couple of images: stereo pair of images, output of
a sparse algorithm retaining only sure points, points (in red) are the rejected correspondences,
interpolated version of these results and ground truth

low-quality range images acquired at video rate, Yang et al. [43] have proposed
a post-processing step relying on an iterated bilateral filter. The filter diffuses the
depth values of the low-quality range image, steering the diffusion by the color
information provided by a registered high-quality camera image.

The input low-resolution range image is up-sampled to the camera image
resolution. Then an iterative refinement process is applied. The up-sampled range
image D0 is used as the initial depth map to build an initial 3D cost volume c0.
The 3D cost volume ci .x; y; d / associated to the current depth map Di at the i th
iteration is given by
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Fig. 10 Teddy and Cones results. For each couple of images: stereo pair of images, output of
a sparse algorithm retaining only sure points, points (in red) are the rejected correspondences,
interpolated version of these results and ground truth

ci .x; y; d / D min
�
�L; .d �Di.x; y//2

	
(3)

where d is the depth candidate, L is the search range controlled by constant �,
and Di.x; y/ is the current depth estimate. To each depth candidate, d in the search
range corresponds a single slice (disparity image) of the current cost volume. At
each iteration, a bilateral filter is applied on each slice of the current cost volume
ci . This allows to smooth each slice image while preserving the edges. A new cost
volume cBFi is therefore generated. Based on this new cost volume, a refined depth
map DiC1 is obtained by selecting for each .x; y/ the lowest cost candidate d .
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Fig. 11 Example of depth diffusion using Eq. (4). (a) Gray-level image, where BSPs and FSPs
are marked in white and black, respectively. (b) Depth image, where points corresponding to FSPs
are initialized with a positive value (marked in white) and the rest of the image with value zero. (c)
and (d) Depth images after an increasing number of iterations of the DDF

Bilateral Filter for the Global Integration of Local Depth Information

Following the phenomenological approach of gestaltists [29], the perception of
depth in single images results from the global integration of a set of monocular depth
cues. However, all methods proposed in the computer vision literature to estimate
depth in single real images rely on the use of prior experience about objects and
their relationships to the environment. As a consequence, these methods generally
rely on strong assumptions on the image structure [7,18], for instance, that the world
is made of ground/horizontal planes and vertical walls, or assumptions on the image
content [34] such as the prior knowledge of the class of objects being involved.

In contrast to the state of the art, Dimiccoli, Morel, and Salembier [11] proposed
a general low-level approach for estimating depth in single real images. In this
approach the global depth interpretation is directly inferred from a set of monocular
depth cues, without relying on any previously learned contextual information nor
on any strong assumption on the image structure. In particular the set of initial
local depth hypothesis derived from different monocular depth cues is used to
initialize and constrain a diffusion process. This diffusion is based on an iterated
neighborhood filter.
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With this strategy, the occlusion boundaries and the relative distances from
the viewpoint of depicted objects are simultaneously recovered from local depth
information, without the need of any explicit segmentation. Possible conflicting
depth relationships are automatically solved by the diffusion process itself.

Once monocular depth cues are detected, each region involved in a depth
relationship is marked by one or few points, called source points (see Fig. 11a).
Source points marking the regions closer to the viewpoint are called Foreground
Source Points (FSPs), whereas source points marking the regions more distant to
the viewpoint are called Background Source Points (BSPs). In case of occlusion,
three source points are marked (see white circle in Fig. 11a). A single FSP marks
the region representing the occluding object, and two corresponding BSPs mark the
partially occluded object and the background. In case of convexity, there is a single
FSP and its corresponding BSP (see black circle in Fig. 11a). The depth image z is
initialized by assigning a positive value � to FSPs and value 0 to BSPs. The rest of
the image is initialized with value 0 (see Fig. 11b). The diffusion process is applied
to the depth image z by using the gradient of the original image u rather than the
one of the depth image. Doing so, the edge information is incorporated into the
depth map, ensuring that depth discontinuities are consistent with gray-level (color)
discontinuities.

The depth diffusion filter (DDF) proposed in [11] by Dimiccoli, Morel, and
Salembier is

DDFh;rz.x/ D 1

C.x/

Z
Sr .x/

z.y/e
�ju.x/�u.y/j2

h2 dy; (4)

where Sr.x/ is a square of center x and side r , h is the filtering parameter which
controls the decay of the exponential function, and

C.x/ D
Z
Sr .x/

e
�ju.x/�u.y/j2

h2 dy (5)

is the normalization factor. In practice, the parameters are r D 3 and h D 10.
Equation (4) is applied iteratively until the stability is attained. In the discrete

case, after each iteration, the values of FSPs and BSPs are updated. More precisely,
if the difference between the values of an FSP and the corresponding BSP becomes
smaller than �, then � is added to the value of the FSP. In the continuous case,
the neighborhood filter can be seen as a partial differential equation (Buades, Coll,
Morel [4]). With this interpretation, the depth difference constraints in the discrete
case can be understood as the Dirichlet boundary conditions. Furthermore they
allow to handle multiple depth layers.

Figure 11 is an example of the diffusion through the DDF. Using Eq. (4) a very
large number of iterations are needed to attain the stability. To make the diffusion
faster, the following equation is used as initialization:
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Fig. 12 Example of depth diffusion using Eq. (6) to speed up the diffusion. (a) Depth image,
where FSPs have been initialized with a positive value (marked in gray) and the rest of the image
with value zero. From (b) to (g) depth images corresponding to an increasing number of iterations.
After each iteration, the depth difference between corresponding FSPs and BSPs is forced to be
at least equal to the initial depth difference �, by adding � to FSPs when the difference between
corresponding FSPs and BSPs becomes less than �. (h) Final depth image obtained using Eq. (4)
on image (g)

DDFh;rz.x/ D sup
y2Sr .x/

z.y/e
�ju.x/�u.y/j2

h2 ; (6)

while Eq. (4) is used only in the last iterations (see Fig. 12).
Experimental results on real images (see [10]) proved that this simple formula-

tion turns out to be very effective for the integration of several monocular depth cues.
In particular, contradictory information given by conflicting depth cues is dealt with
the bilateral diffusion mechanism, which allows two regions to invert harmoniously
their depths, in full agreement with the phenomenology.
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Fig. 13 (a) Original image. (b) Local depth cues are represented through vectors that point to the
region closer to the viewpoint. (c) Depth image

In Fig. 13, some experimental result involving occlusion and convexity is shown.
For each experiment three images are shown.

First, the original image (Fig. 13a) is shown. Then, on the second image, the
initial depth gradient at depth cue points is represented by vectors pointing to the
region closer to the viewpoint (red vectors arise from T-junctions, green vectors
arise from local convexity) (Fig. 13b). Finally, the third image is the final result
of the bilateral diffusion method (Fig. 13c). In this depth map high values indicate
regions that are close to the camera. First and second rows of Fig. 13 show examples
of indoor scenes, for which a proper solution is obtained. On the third row, there
is an example of an outdoor scene involving a conflict. The T-junction detected
on the back of the horse is due to a reflectance discontinuity, and its local depth
interpretation is incorrect. However, on the depth map, the shape of the horse
appears clearly on the foreground since the diffusion process allowed to overcome
the local inconsistency. On the last row there is an example involving self-occlusion:
occluding contours have different depth relationships at different points along its
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Fig. 14 (1st column) Original image. (2nd column) Depth cues computed by Dimiccoli, Morel,
and Salembier [11]: FSPs are initialized with a positive value (marked in white), and BSP and
the rest of the images are initialized with value zero. (3rd column) Depth image computed by
Dimiccoli, Morel, and Salembier [11]. (4th column) Local depth cues computed by Calderero and
Caselles [5]: they are encoded through gray-level values. High values indicate pixels closer to the
viewpoint. (5th column) Depth image computed by Calderero and Caselles [5]

continuum. However, the bilateral diffusion method performs also well in this
ambiguous situation.

More recently, the idea of using a neighborhood filter to globally integrate
local depth information in single images has been re-proposed by Calderero
and Caselles [5]. With the aim of achieving more accurate diffusion results on
real images, they relied on color image information to determine the adaptive
neighborhood by using the bilateral filter of Tomasi and Manduchi [37]. In other
words, they averaged depth information on a pixel neighborhood using color-based
weights in the same spirit as Yang et al. [42] and Kopf et al. [24].

Contrary to Dimiccoli, Morel, and Salembier [11], the local depth information
extracted by Calderero and Caselles [5] is not sparse but behaves in a continuous
manner. More precisely, the depth value at each pixel encodes the likelihood that an
occlusion process is taking place at that pixel (see the fourth column of Fig. 14). This
information is computed in a multi-scale fashion and therefore has the advantage of
being more robust with respect to the depth information extracted by Dimiccoli,
Morel, and Salembier [11]. However, due to its local nature, their method has the
inconvenient of not being able to handle special cases of occlusions that involve
more global processes, such as transparency and amodal completion, as illustrated
in Fig. 14.
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Due to the fact that depth information is initially estimated for each image
pixel, Calderero and Caselles [5] use the neighborhood filter solely for assuring
depth homogeneity of neighbor regions having similar color. Their diffusion filter is
simpler and more robust with respect to errors coming from the estimation of local
depth cues, but contrary to the filter of Dimiccoli, Morel, and Salembier [11], it does
not allow to handle the case of multiple depth layers.

In conclusion, the method of Calderero and Caselles [5] gives better results on
real images, whereas the method of Dimiccoli, Morel, and Salembier [11] gives
results that better accord to phenomenology.

4 Conclusion

This chapter has reviewed the use of neighborhood filters for the recovery of 3D
information. The first part of the chapter has reviewed bilateral filters applied to
3D data point sets, often organized in a triangulation, and has compared them to
the simplest possible isotropic filter, the mean curvature motion, illustrating the
advantage of bilateral filters on isotropic filtering. The second part of the chapter
has reviewed bilateral filter applied to a data composed of a coarse, often sparse,
depth map (or of depth cues) obtained through stereoscopy, or monocular depth
cues estimation techniques. When diffusing depth information with a bilateral filter
based on locality and color similarity, the discontinuities in depth are assured to be
consistent with the color discontinuities, which is generally a desirable property.
Experimental results have shown that the bilateral filter used as a diffusion tool
performs well in restoring a dense depth map.
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Abstract
Splines and multiresolution are two independent concepts, which – considered
together – yield a vast variety of bases for image processing and image analysis.
The idea of a multiresolution analysis is to construct a ladder of nested spaces that
operate as some sort of mathematical looking glass. It allows to separate coarse
parts in a signal or in an image from the details of various sizes. Spline functions
are piecewise or domainwise polynomials in one dimension (1D) resp. nD.
There is a variety of spline functions that generate multiresolution analyses. The
viewpoint in this chapter is the modeling of such spline functions in frequency
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domain via Fourier decay to generate functions with specified smoothness in time
domain resp. space domain. The mathematical foundations are presented and
illustrated at the example of cardinal B-splines as generators of multiresolution
analyses. Other spline models such as complex B-splines, polyharmonic splines,
hexagonal splines, and others are considered. For all these spline families exist
fast and stable multiresolution algorithms which can be elegantly implemented
in frequency domain. The chapter closes with a look on open problems in the
field.

AMS Subject Classification (2010): 41A15 Spline approximation 65D07 Numer-
ical analysis – Splines 68U10 computing methodologies and applications – Image
processing 65T99 numerical methods in Fourier analysis

1 Introduction

This chapter deals with two originally independent concepts, which were recently
combined and since together have a strong impact on signal and image analysis: the
concept of splines, i.e., of piecewise polynomials, and the concept of multiresolution
analysis, i.e., splitting functions – or more general data – into coarse approximations
and details of various sizes. Ever since the combination of the two concepts, they
have led to a load of new applications in, e.g., signal and image analysis, as well as
in signal and image reconstruction, computer vision, numerics of partial differential
equations, and other numerical fields. An impression of the vast area of applications
can be gained in, e.g., [1, 17, 20, 64].

Already, the spline functions alone proved to be very useful for mathematical
analysis as well as for signal and image processing, analysis and representation,
computer graphics, and many more; see, e.g., [3, 15, 22, 24, 35, 50, 58]. An example
for a family of spline functions are I. J. Schoenberg’s polynomial splines with
uniform knots [59, 60]:

ˇm.t/ D 1

mŠ

XmC1

kD0
.�1/k

�
mC 1
k

�
.t � k/mC ; m 2 N: (1)

Here, tmC denotes the one-sided power function, i.e., tmC D 0 for t < 0 and tmC D tm
for t � 0. The B-splines ˇm can be easily generated by an iterative process. Let
ˇ0.t/ D 	Œ0;1/.t/ be the characteristic function of the interval [0, 1). Then the B-
spline of degreem is derived by the convolution product

ˇm D ˇ0 � ˇm�1 D ˇ0 � : : : � ˇ0„ ƒ‚ …
mC1-times

for m 2 N; (2)

where
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Fig. 1 Cardinal B-splines of
degree m D 0; : : : ; 4

1

0.8

0.6
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0.2

1–1 2 3 4 5

ˇ0 � ˇm�1.x/ D
Z
R

ˇ0.y/ˇm�1.x � y/dy D
Z 1

0
ˇm�1.x � y/dy:

For an illustration of the cardinal B-splines, see Fig. 1.
Splines had their second breakthrough as Battle [4] and Lemarié [38] discovered

that B-splines generate multiresolution analyses. The simple form of the B-
splines and their compact support, in particular, were convenient for designing
multiresolution algorithms and fast implementations.

Definition 1. Let A W Rn ! R
n be a linear mapping that leaves Zn invariant, i.e.,

A.Zn/ � Z
n and that has (real or complex) eigenvalues with absolute values greater

than 1.
A multiresolution analysis associated with the dilation matrix A is a sequence of

nested subspaces .Vj /j2Z of L2.Rn/ such that the following conditions hold:

(i) : : : � V�1 � V0 � V1 � : : :,
(ii) \j2ZVj D {0},

(iii) Span [j2ZVj is dense in L2(Rn/,
(iv) f 2 Vj , f .A�j � / 2 V0,
(v) f 2 V0 , f . � � k/ 2 V0 for all k 2 Z

n.
(vi) There exists a so-called scaling function � 2 V0 such that the family f�.� �

k/gk2Zn of translates of � forms a Riesz basis of V0.

Here, L2.Rn/ denotes the vector space of square-integrable functions f : Rn ! C

with norm

kf k2 D
�Z

Rn

jf .x/j2dx

� 1
2

and corresponding inner product
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hf; gi D
Z
Rn

f .x/g.x/ dx;

where Ng denotes the complex conjugate of g. The elements inL2.Rn/ are also called
functions of finite energy.

Riesz bases are a slightly more general concept than orthonormal bases. In fact,
Riesz bases are equivalent to orthonormal bases and therefore can be generated by
applying a topological isomorphism on some orthonormal basis.

Definition 2. A sequence of functions{fn}n2Z in a Hilbert space V is called a Riesz
sequence if there exist positive constants A and B , the Riesz bounds, such that

Akckl2 �
���X

k2Zn ckfk
���
V
� Bkckl2

for all scalar sequences C D .ck/k2Zn � l2.Zn/.
A Riesz sequence is called a Riesz basis if it additionally spans the space V .

A good introduction to Riesz bases, their properties, and their relation to
orthonormal bases is given in the monography by Young [75]. Multiresolution
constructions with splines are treated in numerous sources. As a starting point, there
are, e.g., the books by Christensen [13, 14] and Wojtaszczyk [74].

The mathematical properties in Definition 1 have intuitive interpretations. A
function f 2 L2.Rn/, which is projected orthogonally on Vj , is approximated with
the so-called resolution Aj . In fact, let

Pj W L2.Rn/! Vj

denote the orthogonal projection operator. Then (ii) yields that by going to lower
resolutions, all details are lost:

lim
j!�1

��Pj f �� D 0:

In contrast, when the resolution is increased, j ! 1, more and more details are
added. By (iii), the projection then converges to the original function f :

lim
j!1

��f � Pj f �� D 0:

Hereby, the rate of convergence depends on the regularity of f .
The approximation spaces Vj are nested, which allows for computing coarser

approximations in Vk for k < j for functions f 2 Vj . The scaling Ak enlarges
details. Property (iv) shows that the approximation spaces have a similar structure
over the scales and emanate from one another. The translation invariance (v) ensures
that the analysis of a function in Vj is independent of the starting time or location.
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Fig. 2 Left: The B-spline ˇ0 is a scaling function and operates as mean value. Right: The
corresponding wavelet, the Haar wavelet, operates as a local difference operator

And property (vi) finally ensures the beautiful and mighty property that the whole
sequence of nested approximation spaces can be generated by translates and scalings
of one single function – the scaling function. In fact, (vi) together with (iv) yields
that

f�.Aj � �k/; k 2 Z
ng

is a Riesz basis for Vj .
While moving from the coarser approximation space Vj to the finer, larger space

VjC1, information has to be added. In fact, there is an orthogonal complement Wj ,
j 2 Z, such that

VjC1 D Vj ˚Wj :

These spaces are called detail spaces or wavelet spaces. It is well known that
these spaces also possess a Riesz basis spanned by shifts of jdetAj� 1 generators,
the wavelets  1, . . . ,  jdetAj�1. Here, A is the dilation matrix in Definition 1.
The wavelets can be constructed from the scaling function. As a consequence,
the knowledge of just the single function � allows for the construction of the
approximation spaces Vj and for the wavelet spaces Wj . Detailed information on
the generation of wavelets and their properties can be found in various books, e.g.,
[16, 21, 41, 44, 74].

Example 1. A simple example for a multiresolution analysis on L2.R/ is given by
piecewise constant functions. Consider the characteristic function � D 	Œ0;1/ of
the interval semi-open interval [0, 1). Then � generates a dyadic multiresolution
analysis, i.e., for A D 2. The approximation spaces are

Vj D span f	Œ0;1/.2j � �k/gk2Z
L2.R/

:

They consist of functions constant on intervals of the form Œk2�j , .kC 1/2�j /. The
spaces are obviously nested and separate L2.R/ in the sense of Definition 1 (ii).
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Fig. 3 Multiresolution decomposition of the step function (a) with ˇ0 as scaling function and
with the Haar wavelet. The approximations (left column) are further iterated and decomposed into
a coarser approximation and details (right column), until the coarsest approximation step, here the
mean value, is reached. The sum of the coarsest approximation in the third iteration and of all
details yields the original function (a). No information is lost in a multiresolution decomposition
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Since piecewise constant functions with compact support are dense in L2.R/, (iii)
holds. (iv) – (vi) hold by construction. In fact, this multiresolution analysis is gen-
erated by the B-spline ˇ0 as scaling function. The B-spline basis operates as mean-
value operator over the support interval. The corresponding wavelet extracts the
details, i.e., the deviation from the mean value. To this end, it operates as a difference
operator. Figure 2 shows the scaling function ˇ0 and the corresponding wavelet, the
so-called Haar wavelet. In Fig. 3, an example of a multiresolution is given.

2 Historical Notes

The idea of piecewise polynomial functions and splines goes back to Schoenberg
[59, 60]. In the 1960s, when computer power started to be used for numerical
procedures such as data fitting, interpolation, solving differential equations, and
computer-aided geometric design, splines experienced an extreme upsurge. Schoen-
berg invented and strongly contributed to the concept of cardinal splines, which have
equidistant nodes on the integers; see, e.g., [40, 61, 62] and many more.

As a parallel development, in the 1980s, the adaption of signal resolution to only
process relevant details for a particular task evolved. For example, for computer
vision, a multiresolution pyramid was introduced by Burt and Adelson [8]. It
allowed to process an image first on a low-resolution level and then selectively
increase the resolution and add more detailed information when needed. The
definition of a dyadic multiresolution analysis, i.e., A D 2Id, was contributed by
Mallat [43] and Meyer [46]. An interesting and in some parts historical collection
on the most important articles in multiresolution and wavelet theory was assembled
by Heil and Walnut [33].

The concepts of splines and multiresolution were joined by Lemarié [38]
and Battle [4], when they showed that cardinal B-splines are scaling functions
for multiresolution analyses. This led to many more developments of piecewise
polynomial scaling functions for various settings and also multidimensions [15],
as, e.g., polyharmonic B-splines [53, 54] and other functions inspired from radial
basis functions [7].

In 1989, S. Mallat published his famous algorithm for multiresolution and
wavelet analysis [43]. He had developed an efficient numerical method such that
multiresolution decompositions could be calculated in a fast way. For the splines, M.
Unser et al. proposed a fast implementation [66,68,69] which strongly contributed to
the breakthrough of splines for signal and image analysis. In the last years, periodic,
fractional, and complex versions of splines for multiresolution were developed,
e.g., [11, 27, 28, 51, 65]. Many of them use a Fourier domain filter algorithm which
allows for infinite impulse response filters. The former important feature of compact
support of the cardinal B-splines and other functions is no longer a limiting criterion.
Therefore, it can be expected that many new contributions on splines will still be
made in the future by modeling signal and image features in Fourier domain.
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3 Fourier Transform, Multiresolution, Splines, andWavelets

Mathematical Foundations

Regularity and Decay Under the Fourier Transform
An important idea behind splines and multiresolution is the relation between
regularity in time domain and decay in frequency domain and, respectively, between
decay in time domain and regularity in frequency domain. To illustrate this, the
notion of the Schwartz space is very useful [10, 34, 56, 63].

Definition 3. The subspace of functions f 2 C1.Rn/ with

sup
j˛j	N

sup
x2Rn

.1C kxk2/N jD˛f .x/j < 1 for all N D 0; 1; 2; : : :

is called the space of rapidly decreasing functions or Schwartz space S.Rn/. The
norms induce a Fréchet space topology, i.e., the space S.Rn/ is complete and
metrizable.

Here, D˛ D
�

@
@x1

�˛1 � � �
�

@
@xn

�˛n
for every multi-index ˛ D .˛1; : : : ; ˛n/ 2 N

n
o .

The dual space S 0.Rn/, endowed with the weak-* topology, is called space of
tempered distributions.

The following famous linear transform relates the viewpoints of the space domain
and of the frequency domain:

Definition 4. The Fourier transform, defined by

Ff .!/ WD Of .!/ WD
Z
Rn

f .x/e�ih!;xidx; ! 2 R
n;

is a topological isomorphism on L2.Rn/ and on S.Rn/. Its inverse is given by

f .x/ D 1

.2�/n

Z
Rn

Of .!/eih!;xid! in L2.Rn/ resp: in S.Rn/:

The Fourier transform can be extended to the space of tempered distributions. For
T 2 S 0.Rn/, the Fourier transform is defined in a weak sense as

FT .�/ W D OT .�/ W D T . O�/ for all � 2 S.Rn/:

Also on S
0.Rn/, the Fourier transform is a topological isomorphism.

The Fourier transform has the nice property to relate polynomials and differential
operators.
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Theorem 1.

(i) Let f 2 S.R/. Then for all k 2 N

F
�
f .k/

	
.!/ D .i!/k Of .!/;

and

Of .k/.!/ D F
�
.�i�/kf 	 .!/:

(ii) Let P be an algebraic polynomial in R
n, say P.x/ D P

˛ c˛x
˛1
1 : : : x˛nn , and

let f 2 S.Rn/. Then

F
�
P

�
1

i
D

�
f

�
D P Of and bPf D P.iD/ Of ;

where P.iD/ DP˛ c˛i
j˛jD˛ .

(iii) Part (ii) also holds for f 2 S 0.Rn/.

Example 2. The Fourier transform of the polynomialxk is the tempered distribution
ik dk

dxk
ı, k 2 N0.

For the construction of a multiresolution analysis, the scaling function can be
used as a starting point. The idea is to choose a scaling function of a certain
regularity, such that the generated multiresolution analysis inherits the smoothness
properties. In particular, for the splines, the idea is to model the regularity via decay
in Fourier domain. The following theorem gives a motivation for this. The result
can be deduced from the considerations above, and the fact that S.Rn/ is dense in
L2.Rn/:

Theorem 2. Let f 2 L2.Rn/ and its Fourier-transform decay as

j Of .!/j � C.1C k ! k/�N��

for some " > 0. Then all partial derivatives of order�N � n are continuous and in
L2.Rn/.

These results allow to construct a scaling function with explicit regularity and
decay properties, in space and in frequency domain. However, some criteria are
needed to verify that the constructed function generates a multiresolution analysis.

Criteria for Riesz Sequences andMultiresolution Analyses
The following is an explicit criterion to verify whether some function � is a scaling
function.
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Theorem 3. Let A be a dilation matrix and let � 2 L2.Rn/ be some function
satisfying the following properties:

(i) f�.� � k/gk2Zn is a Riesz sequence in L2.Rn/.
(ii) � satisfies a scaling relation. That is, there is a sequence of coefficients

.ak/k2Zn such that

�.A�1x/ D
X

k2Zn ak�.x C k/ in L2.Rn/: (3)

(iii) j O�j is continuous at 0 and O�.0/ ¤ 0.

Then the spaces

Vj D span f�.Aj � �k/gk2Zn ; j 2 Z;

form a multiresolution analysis of L2.Rn/ with respect to the dilation matrix A.

Proof. See, e.g., [74, Theorem 2.13] for the 1D case.
For particular applications, the Riesz basis property (i) of f�.��k/gk2Zn in V0 is

not enough, but an orthonormal basis is needed. An example for such an application
is the denoising of signals contaminated with Gaussian white noise [44, Chap. X,
Sect. 10.2.1]. However, there is an elegant mathematical method to orthonormalize
Riesz bases generated by shifts of a single function.

Theorem 4. Let � 2 L2.Rn/. Then the following holds:

(i) f�.�� k/gk2Zn is a Riesz sequence in L2.Rn/ if and only if there are constants
c and C , such that

0 < c �
X

k2Zn j O�.! C 2�k/j2 � C <1 almost everywhere:

That is, the autocorrelation filter M.!/ WD P
k2Zn j O�.! C 2�k/j2 is strictly

positive and bounded from above.
(ii) f�.� � k/gk2Zn is an orthonormal sequence if and only if

X
k2Zn j O�.! C 2�k/j2 D 1 almost everywhere:

(iii) If f�.� � k/gk2Zn is a Riesz basis of a subspace X of L2.Rn/, then there exists
a function ˚ 2 L2.Rn/, namely,

O̊ .!/ D
O�.!/qP

k2Zn j O�.! C 2�k/j2
(4)
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such that f˚.� � k/gk2Zn is an orthonormal basis of X .

Proof. See, e.g., [74] and [44, Chap. VII].
Due to this theorem, every scaling function can be orthonormalized. Let � 2

L2.Rn/ be some scaling function that generates a multiresolution analysis {Vj }j2Z
of L2.Rn/. Then the family f˚j;kgk2Zn with

˚j;k.x/ D 2�j=2˚.2�j .x � k//;

and ˚ as defined in (4) is an orthonormal basis of the space Vj ; j 2 Z.

Example 3. A simple possibility to construct a dyadic multiresolution analysis
in L2.Rn/ is the tensor product approach. Let .Vj /j2Z be a dyadic (i.e., A D
2) multiresolution analysis of L2.R/ with scaling function �. Then (Vj /j2Z
with Vj D Vj ˝ � � � ˝ Vj„ ƒ‚ …

n�times

together with the scaling function �.x1; : : :; xn/ D

�.x1/ � � � � ��.xn/ forms a multiresolution analysis of L2.Rn/ and dilation matrix
2Id.

In the same way, the scaling function �.x1; : : :; xn/ D �1.x1/ � : : : ��n.xn/
generates a multiresolution analysis of L2.Rn/, if every �k; k D 1; : : :; n, is a
scaling function of some 1D multiresolution analysis with dilation factor a 2 Nn
{1}.

Regularity of Multiresolution Analysis
In signal and image analysis, the choice of an appropriate analysis basis is crucial.
Here, appropriate means that the features of the basis such as smoothness should
be in accordance with the properties of the functions to analyze. To give a blatant
example: Analyzing a smooth signal or image with a fractal basis in general yields
results that are difficult to interpret and to work with in practice. In this case, the
signal resp. the image model does not match the model of the basis.

The next section will show that the family of spline bases helps to avoid such
difficulties, because the splines allow for a good adjustment due to their regularity
parameter m; cf. (1) and (2). The following definition specifies the term “regular.”
(See [74].)

Definition 5. Denote C r the class of r-times continuously differentiable functions
in R

n; C 0 the class of continuous functions, and C�1 the class of measurable
functions.

(i) Let r D �1; 0; 1; : : :. A function f W Rn ! C is called r-regular, iff 2 C r and

ˇ̌
ˇ̌ @˛
@x˛

f .x/

ˇ̌
ˇ̌ � Ak

.1C kxk/k
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for every k 2 N0, every multi-index ˛ with j˛j � max(r , 0) and constants Ak .
(ii) A multiresolution analysis of L2.Rn/ is called r-regular if it is generated by an

r-regular scaling function.

It is important to note that the orthonormalization procedure (4) does not affect
the regularity of the corresponding basis. For the orthonormalized scaling function
˚ of a multiresolution analysis, the same regularity properties hold.

Proposition 1. Let � 2 L2.Rn/ be an r-regular function, such that f�.�� k/gk2Zn
forms a Riesz sequence. Then the via (4) orthonormalized function ˚ is also r-
regular [74].

Order of Approximation
Having found a scaling function that generates a multiresolution analysis, how good
do the corresponding approximation spaces Vj approximate some function f 2
L2.Rn/ of a certain regularity? Let

Hk.Rn/ D ff 2 L2.Rn/ W kf kHk W D 1

.2�/n
k.1Ck�kRn/k Of kL2 <1g; k 2 N0

denote the Sobolev spaces. The following criterion for the order of approximation
turns out to be easy to verify for splines.

Theorem 5. Let � 2 L2.Rn/ satisfy the following properties [23, Theorem 1.15]:

(i) 1= O� is bounded on some neighborhood of the origin.
(ii) Let B" be some open ball centered at the origin and let E: = B" C .2�Znn

{0}). For some ˛ > k C n=2, all derivatives of O� of order � ˛ are in L2.E/.
(iii) D� O�.!/ D 0 for all j� j < k and all ! 2 2�Zdn {0}.

Then V0 D span f�.� � k/gk2Zn provides an approximation order k:
For f 2 Hk.Rn/,

minfkf � s.�=h/kL2 ; s 2 V0g � const: hk kf kHk for all h > 0:

Wavelets
For the step from a coarser approximation space Vj to a finer one VjC1, information
has to be added. It is contained in the wavelet space or detail spaceWj , which is the
orthonormal complement of Vj in VjC1:

VjC1 D Vj ˚Wj :

It follows that VjCm D Vj ˚Lk�1
lD0 WjCl , and hence
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L2.Rn/ D
M
j2Z

Wj (5)

can be decomposed in a direct sum of mutually orthogonal detail spaces. Moreover,
the detail spaces Wj inherit the scaling property from Definition 1(iv) for the
approximation spaces Vj . For all j 2 Z,

f 2 Wj , f .A�j �/ 2 W0:

The question now is whether there is also a simple basis generated by the shifts
of one or few functions, the wavelets. The following definition is motivated from
Eq. (5).

Definition 6. Let A be a dilation matrix, and let { l}lD1;:::;q ; q 2 N, be a set of
functions in L2.Rn/, such that the family

fjdetAjj=2 l.A
j � �k/j l D 1; : : : ; q; j 2 Z; k 2 Z

ng

forms an orthonormal basis of L2.Rn/. Then { l}lD1;:::;q is called a wavelet set
associated with A.

What qualitative properties do the wavelets have? The approximation spaces Vj
are generated by the scaling function, which operates as a low-pass filter. This can be
seen from Theorem 3(iii) O�.0/ ¤ 0 and resp. from Theorem 5(i): 1= O� is bounded in
some neighborhood of the origin. Therefore, the added details and thus the wavelets
have to carry the high-frequency information. In addition, the wavelets  in W0 are
elements of V1 and therefore have the form

 .A�1x/ D
X

k2Zn
ak�.x � k/ (6)

in L2 norm, where fakgk2Zn are the Fourier coefficients of a certain 2�Zn-periodic
function.

Proposition 2. Let .Vj /j2Z be a multiresolution analysis ofL2.Rn/ with respect to
the dilation matrix A and with scaling function �. Then for a function f 2 L2.Rn/

the following are equivalent: f 2 V1 id and only if

Of .AT !/ D mf .!/ O�.!/ almost everywhere:

Here, mf 2 L2.Œ0; 2��n/ and

��mf

��2
L2.Œ0;2��n/ D

1

j detAj kf k
2
L2.Rn/ :
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For a proof, see, e.g., [21, 74]. Note that for a wavelet  as in Eq. (6), there holds

m .!/ D 1

j detAj
X

k2Zn ake
ih!;ki:

How many wavelets, i.e., generators of W0, are needed to span the space? The
parameter q in Definition 6 is yet unspecified. In fact, q depends on the scaling
matrix. A leaves the lattice Z

n invariant, AZn � Z
n. The number of cosets is

jdetAj D jZn=AZnj (see [74, Proposition 5.5]). It turns out that q D jdetAj � 1
wavelets are needed to generate the space W0. To motivate this, for a start, let
f 2 V1 be an arbitrary function. Denote �0; : : :; �q representatives of the q C 1
cosets of AZn in Z

n. Then each coset can be written as �m C AZn, m D 0; : : :; q.
The function f has the representation

1

j detAj1=2
f .A�1x/ D

X
k2Zn ck.f /�.x � k/; (7)

or in Fourier domain

Of .AT !/ D 1

j detAj1=2
cf .!/ O�.!/; (8)

in L2 sense and with an appropriate 2�Zn-periodic function cf .!/ with Fourier
coefficients .ck.f //k2Zn . Then cf .!/ can be decomposed with respect to the cosets:

cf .!/ D
X

k2Zn ck.f /e
ih!;ki D

Xq

mD0

X
k2�mCAZn ck.f /e

ih!;ki

D
Xq

mD0
eih!;�miX

k2AZn ckC�m.f /eih!;ki D
Xq

mD0
cmf .!/;

where

cmf .!/ D eih!;�miX
k2AZn ckC�m.f /eih!;ki D eih!;�miX

k2Zn cAkC�m.f /eih!;Aki

D eih!;�miX
k2Zn cAkC�m.f /eihA

T !;ki D eih!;�mi�mf .AT !/:

This representation exists for all functions V1, in particular for � and the wavelets.
The following theorem indicates how the wavelets are constructed that generate the
space W0, such that W0 ˚ V0 D V1.

Theorem 6. Let � 2 V0 be a scaling function and let  1; : : :;  q 2 V1. Then the
family f�.� � k/gk2Zn is an orthonormal system if and only if
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Xq

mD0

ˇ̌
ˇ�m� .!/

ˇ̌
ˇ2 D 1 almost everywhere: (9)

The system f�.� � k/gk2Zn [Sq
mD1f m.� � k/gk2Zn is an orthonormal basis in V1

if and only if the so-called polyphase matrix

0
BB@
�0
�.!/ �

0
 1
.!/ � � � �0

 q
.!/

:::
:::

: : :
:::

�
q
�.!/ �

q
 1
.!/ � � � �q q .!/

1
CCA

is unitary for almost all ! 2 R
n.

The proof for a more general version of this theorem is given in [74, Sect. 5.2].
A summary and a condition for r-regular wavelets yields in the following

theorem.

Theorem 7. Consider a multiresolution analysis on R
n associated with a dilation

matrix A.

(i) Then there exists an associated wavelet set consisting of q D jdetAj � 1
functions.

(ii) If the multiresolution analysis is r-regular and in addition 2q C 1 > n, then
there exists an associated wavelet set consisting of q functions, which all are
r-regular.

The idea of the proof is that for an r-regular function � on R
n and a 2�Zn-

periodic C1- function �.!/, the convolution defined by O .!/ D �.!/ O�.!/ is an
r-regular function. For an explicit proof, see again [74].

Example 4. As a continuation of Example 1, the wavelet function corresponding to
� D 	Œ0;1/ is derived. To this end, consider the space L2.R/ and the dilation A D 2.
Then q D detA�1 D 1; thus �0 D 0 and �1 D 1 are representatives of the cosets of
A. That is, there is only a single wavelet needed to generateW0. Equation (7) yields

1p
2
�
�x

2

�
D 1p

2
�.x/C 1p

2
�.x � 1/

for the normalized generator of V1. Thus, c0.�/ D 1p
2

and c1.�/ D 1p
2
ei! . This

implies �0
�

�
!
2

	 D �1
�

�
!
2

	 D 1p
2
. Then by Eq. (9) of Theorem 6, the family {�. � �

k/}k2Z is orthogonal, since �0
�.!/

2 C �1
�.!/

2 D 1. The polyphase matrix
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�0
�.!/ �

0
 .!/

�1
�.!/ �

1
 .!/

!

can be completed to a unitary matrix by choosing �0
 .!/ D 1p

2
D ��1

 .!/. The
corresponding wavelet then has the representation

1p
2
 
�x

2

�
D 1p

2
�.x/� 1p

2
�.x � 1/;

corresponding to (7). This yields the Haar wavelet  as illustrated in Fig. 2.

B-Splines

Several of the criteria for scaling functions and multiresolution analyses given in
the previous section are based on the Fourier representation of the scaling function,
e.g., the Riesz sequence criterion and the orthonormalization trick in Theorem 4, as
well as the criterion for the order of approximation in Theorem 5. For this reason,
the modeling of a scaling function in the Fourier domain to achieve certain specific
properties is promising.

Aiming at constructing a scaling function � 2 L2.R/ of regularity r D
�1; 0; 1; : : :, this property is considered in the Fourier domain: It is a decay property
of the Fourier transform O� (compare with section “Regularity and Decay Under the
Fourier Transform”):

O�.!/ D O
�

1

k!krC2

�
for k!k ! 1:

Taking into account Theorem 2, a first model for the scaling function in the Fourier
domain is

O�.!/ D �.!/

!rC2
; ! 2 R; (10)

where the function � still has to be specified. Since scaling functions satisfy a scaling
relation (3)

�
�x

2

�
D
X

k2Z hk�.x � k/ in L2.R/;

the Fourier transform of this equation yields

2 O�.2!/ D H.!/ O�.!/;



Splines and Multiresolution Analysis 1691

1

0.8

0.6

0.4

0.2

–4π 4π–3π 3π–2π 2π–π π

Fig. 4 The function jˇ0 ^ j is strictly positive in the interval Œ��; ��

where .hk/k2Z is the sequence of Fourier coefficients of the 2�-periodic function
H . For the ansatz (10),

H.!/ D 2
1�.2!/
O�.!/ D 2

�.2!/

.2!/rC2

!rC2

�.!/
D 1

2rC1

�.2!/

�.!/
: (11)

This gives the criteria for the choice of the function �:

(i) � vanishes at the origin and there is a zero of order r C 2. This ensures that
O� 2 L2.R/ and that Theorem 3(iii) is satisfied.

(ii) �.2!/ is a trigonometric function, to ensure that H.!/, the so-called scaling
filter, is 2� periodic.

(iii) � has no other zeros in Œ��; ��, except at the origin. Otherwise, the auto-
correlation filter A.!/ D P

k2Z j O�.! C 2�k/j2 would vanish somewhere,
and the shifts of the function � would fail to generate a Riesz sequence; see
Theorem 4(i).

A simple function ensuring all three requirements (i), (ii), and (iii) is

�.!/ D .sin.!=2/�.!=2//rC2;

where � is a 2�-periodic phase factor such that j� j D 1, i.e., a shift in time domain.
Choosing �.!/ D e�i! yields the cardinal B-splines as given in (1) resp. (2):

b̌0.!/ D
Z 1

0
e�i!tdt D 1 � e�i!

i!
D sin.!=2/

!=2
e�i!=2:

Since ˇ0 has compact support, Ǒ0 2 C1 [56]. Due to the convolution formula (2),
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Ǒm.!/ D
�

1 � e�i!

i!

�mC1

D
�

sin.!=2/

!=2
e�i!=2

�mC1

: (12)

The ˇm are scaling functions of regularity r D m � 1, as the verification of the
criteria in Theorem 3 shows. In fact, the following holds. Let A D 2.

Integrability: Since by (12) the functions Ǒm are L2 integrable, so are the ˇm,
m 2 N0.

Riesz sequence property: The shifted characteristic functions ˇ0.x � k/ D
	Œ0;1/.x � k/, k 2 Z, are clearly orthonormal. Theorem 4(ii) thus yields

X
k2Z j Ǒ

0.! C 2�k/j2 D 1 almost everywhere.

To verify the Riesz sequence property for ˇm, the autocorrelation filter must be
bounded with strictly positive constants from above and from below. It is

X
k2Z j Ǒ

m.! C 2�k/j2 D
X

k2Z j Ǒ
0.! C 2�k/j2mC2:

In Œ��; ��, j Ǒ0j is clearly positive (cf. Fig. 4), which gives j Ǒ0.�/j D 2=� as a
positive bound from below. There is a constant c, such that

0 < c D .2=�/2mC2 < j Ǒ0.!/j2mC2 �
X

k2Z j Ǒ
m.! C 2�k/j2mC2:

Since the sequence .j Ǒ0.! C 2�k/j/k2Z 2 l2.Z/ for all ! 2 R, the same is true
for the sequence j Ǒm.!C 2�k/j D j Ǒ0.!C 2�k/jmC1. This yields the existence of
the requested upper bound c2 < 1. Thus f Ǒm.� � k/gk2Z forms a Riesz sequence
in L2.R/.

Scaling relation: The scaling filter (11)

H.!/ D 2�m .1 � e�i2!/mC1

.1 � e�i!/mC1
D 2�m.1Ce�i!/mC1 D 2�mXmC1

kD0

�
mC 1
k

�
e�i!k

is obviously 2�-periodic and has Fourier coefficients

�
2�m

�
mC 1
k

��
k2Z

2
l2.Z/. Hence, the B-splines satisfy the scaling relation (3)

ˇm.x=2/ D
XmC1

kD0
2�m

�
mC 1
k

�
ˇm.x C k/:

For ˇ0 this equation reads
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Fig. 5 Scaling relation for B-splines ˇm, m D 0; : : : ; 3. The B-spline versions ˇm.x=2/ 2 V�1

are displayed with solid lines; the scaled translates in V0 are depicted with dashed lines. The sum
of the dashed functions gives the B-spline at the lower scale ˇm.x=2/

ˇ0.x=2/ D ˇ0.x/C ˇ0.x C 1/;

which is true since ˇ0.x=2/ D 	Œ0;1/.x=2/ D 	Œ0;2/.x/. This equation and examples
for scaling relations of other B-splines are illustrated in Fig. 5.

Continuity and positivity of O� at the origin: From Eq. (12),

j Ǒm.!/j D
ˇ̌
ˇ̌ sin.!=2/

!=2

ˇ̌
ˇ̌mC1

;

which has a continuous continuation at the origin, and Ǒm.0/ D 1. Thus we have
proved the following conclusion:

Theorem 8. The cardinal B-spline ˇm, m 2 N0, is a scaling function of an m �
1-regular multiresolution analysis with dilation 2. The order of approximation is
mC 1.
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Note that the cardinal B-splines ˇm with Fourier transform of the form (12) are
scaling functions, but they are not yet orthonormalized: The family fˇm. � � k/gk2Z
spans V0 and is a Riesz basis, but it is not an orthonormal basis of V0. Orthonormality
can be achieved with Theorem 8 and Eq. (4):

OBm.!/ WD
Ǒm.!/qP

k2Z j Ǒm.! C 2�k/j2
:

Figure 6 shows some orthonormalized B-spline scaling functions and the corre-
sponding wavelets.

Polyharmonic B-Splines

The same approach to model scaling functions in Fourier domain can be done in
higher dimensions. We aim at constructing a scaling function for a multiresolution
analysis of L2.Rn/ of the form

O�.!/ D �.!/

k ! k2r
; r 2 N; r > n=2; x 2 R

n:

With an appropriate trigonometric polynomial

�.!/ D
�

4
Xn

kD1
sin2.!k=2/

�r
; ! D .!1; : : : ; !n/;

O� is a nonseparable scaling function for a multiresolution analysis of L2.Rn/ with
respect to dilation matrices A that are scaled rotations. The corresponding function
in space domain � is called elementary r-harmonic cardinal B-spline, or short
polyharmonic B-spline P r . This terminology can be justified as follows. The Fourier
transform in the sense of tempered distributions of the function 1= k ! k2r is indeed
a polynomial – up to a logarithmic factor for 2r � n even. In fact, in S 0.Rn/,

F�1.1= k � k2r /.x/ Dk x k2r�n .A.n; r/ ln k x k CB.n; r// DW �.x/;

with constants A.n; r/, B.n; r/ as given in [63, Chap. VII, §7], and A.n; r/ D 0
except for 2r�n even. (Note that for r > n=2 on the right-hand side, the Hadamard
finite parts have to be considered.) The term polyharmonic comes from the fact that
� is the Green function of the r-iterated Laplace operator �r . However, with these
considerations,

�.x/ D P r .x/ D
X

k2Z2
�k�.x C k/ almost everywhere
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Fig. 6 Orthonormalized B-splines Bm (left column) and corresponding wavelets (right column)
for m= 1, 2, 3 in time domain. Note that the orthonormalized B-splines and wavelets do not have
compact support. Due to the orthonormalization procedure (4), the orthonormalized B-spline is an
infinite series of shifted, compactly supported B-splines

becomes an nD spline. Here .�k/k2Z is the sequence of the Fourier coefficients of �.
Due to the decay in Fourier domain, the polyharmonic B-spline P r has continuous
derivativesDˇ for multi-indices jˇj < 2r �n. In the same way as for the B-splines,
it can be shown with the theorems given in section “Mathematical Foundations” that
� forms indeed a scaling function with approximation order 2r [53,54,71]. Figure 7
shows the polyharmonic B-spline scaling function in space domain and in frequency
domain.
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Fig. 7 Polyharmonic B-spline for r D 3 in space domain (left) and frequency domain (right)

4 Survey on Spline Families

There are many function families that consist of piecewise polynomials and that
are called splines, which in addition fulfill a multiresolution condition in the one or
the other sense. These families can be classified by various aspects, e.g., by their
dimensionality, by the lattice which is invariant under the corresponding dilation
matrix, by the geometries they are defined on, or whether they provide phase
information or not, and so on. The following sections list some of these spline
approaches and illustrates their mathematical properties and features.

Schoenberg’s B-Splines for Image Analysis: The Tensor Product
Approach

As mentioned in Example 3, multiresolution analyses for L2.Rn/ and dilation
matrix 2Id can be generated from tensor products of 1D dyadic multiresolution
analyses. To analyze images with B-splines, the tensor product ˇm.x/ˇm.y/ of B-
splines is a scaling function for L2.R2/ and the dilation matrix A D 2Id. Since in
2D the determinant det A D 4, the corresponding detail space W0 is spanned by
three wavelet functions:

 .x/ˇm.y/; ˇm.x/ .y/;  .x/ .y/; x; y 2 R: (13)

A drawback of this approach is the fact that these wavelets prefer horizontal,
vertical, and diagonal directional features and are not sensitive to other directions;
see Fig. 8. For the analysis of images with many isotropic features, the use of
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Fig. 8 The three B-spline tensor wavelets (13) show a preference for horizontal, vertical, and
diagonal directions. Here, m D 2. Minimal resp. maximal function values are given in black resp.
white

isotropic or steerable wavelets is recommended. However, the tensor approach is a
simple and widely used wavelet approach. For an illustration of the respective image
decomposition in coarse approximations and details of various sizes, see Fig. 9.

Fractional and Complex B-Splines

The B-splines as described up to now have a discrete order of smoothness, i.e., they
are Cn functions with n 2 f�1; 0; 1; 2; : : :g. For some applications, e.g., in medical
imaging, where the order of smoothness of certain image classes is fractional, it
would be favorable to have a spline and wavelet basis that is adaptable with respect
to this regularity [1, 37, 73]. A first step in this direction was done by T. Blu and M.
Unser, who proposed B-splines and wavelets of fractional orders [5]. They defined
two variants of fractional B-splines, the causal ones and the symmetrical ones.

The causal fractional B-spline is generated by applying the .˛ C 1/ fractional
difference operator to the one-sided power function tC˛:

ˇ˛C.t/ WD
1

, .˛ C 1/
�˛C1

C t˛C D
1

, .˛ C 1/

X
k�0

.�1/k
�
˛ C 1
k

�
.t � k/˛C:

The Fourier-transform representation is similar to the one of the classical B-splines
(cf. Eq. 12):

Ǒ˛C.!/ D
�

1 � e�i!

i!

�˛C1

:

Here again, the smoothness property ˇ˛C 2 Cm;�.R/ in the time domain is gained
by the fractional polynomial decay of order O.j!j˛C1/ in the frequency domain.
Note that Cm;� .R/ denotes the Hölder space with exponent m D b˛ C 1c and
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Fig. 9 Decomposition of an image [18, Part of IM008.tif] into coarse approximations and details
of various sizes. (a) Original image. (b) Matrix of the absolute values of the multiresolution
coefficients. Large coefficients are white. The wavelet coefficients are depicted in the lower two
and the upper right band of each scale and the approximation coefficients in the upper left band. (c)
Two steps of the multiresolution decomposition. From left to right: finest details and second finest
details, remaining approximation of the original image. (d) Second finest details (c, center) split
into the contribution of the three wavelets. From left to right: the decomposition into horizontal,
vertical, and diagonal details

� D ˛ C 1 �m, i.e., the space of m-times continuously differentiable functions f
that are Hölder regular with exponent 0 < � � 1 such that there is a constant C > 0
with
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jDmf .t/ �Dmf .s/j � C jt � sj� 8s; t 2 R:

Although the fractional B-splines are not compactly supported, they decay in the
order O.jt j�.˛C2// as t ! 1. They are elements of L1.R/ for ˛ > 0, of L2.R/

for ˛ > � 1
2 , and of the Sobolev spaces W r

2 .R/ for r < ˛ C 1
2 . They share many

properties with their classical B-spline relatives, such as the convolution property,
and their relation to difference operators, i.e., they are integral kernels for fractional
difference operators [26] and they are scaling functions for dyadic multiresolution
analyses. This can be verified by the procedure given in the section “B-Splines”.

The causal fractional B-spline is not symmetric. Since for some signal and image
analysis tasks symmetrical bases are preferred, in [5] the symmetrical fractional B-
splines ˇ˛� are proposed. They are defined in Fourier domain as follows:

Ǒ˛�.!/ D
�

1 � e�i!

i!

� ˛C1
2
�

1C ei!
�i!

� ˛C1
2

D
ˇ̌
ˇ̌ sin.!=2/

!=2

ˇ̌
ˇ̌˛C1

; (14)

and therefore obviously are symmetrical in the time domain. The same regularity
and decay properties apply as for the causal fractional B-splines. The symmetrical
fractional B-splines are also piecewise polynomials, as long as ˛ … 2N0. For even
integer degrees, the singularity introduced through the absolute value in Eq. (14)
causes that ˇ2m� is a sum of integer shifts of the logarithmic term jt j2m ln.t/ for
m 2 N0. For the explicit time-domain representation and further details on these
splines, cf. [5].

In [6], Blu and Unser defined another variant, the generalized fractional B-spline
or .˛; �/-fractional spline ˇ˛� with a parameter � 2 R. Also, these splines are defined
via their Fourier domain representation:

Ǒ˛
� .!/ D

�
1 � e�i!

i!

� ˛C1
2 C� �1 � ei!

�i!
� ˛C1

2 ��
:

As above, the parameter ˛ > 0 controls the regularity of the splines. The parameter
� , in contrast, controls the position of the splines with respect to the grid 2Z. This
can be justified by the following fact. All variants of the B-splines considered in this
section converge to the optimally time-frequency-localized functions in the sense of
Heisenberg, i.e., to Gaussians or Gabor functions, if the degree ˛ becomes large.
For a proof for the classical cardinal B-splines, see [67]. In the case of the .˛; �/-
fractional splines [6],

ˇ˛� .t/ D O
�
e� 6

˛C1 .t��/2
�

for ˛ !1:

This explains the notion “shift parameter” for � . Moreover, the parameter � allows to
interpolate the spline family between the two “knots,” the symmetrical ones (� D 0)
and the causal ones

�
� D ˛C1

2

	
; see Fig. 10. Both parameters ˛ and � can be tuned
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Fig. 10 The fractional (˛, � )-splines interpolate the families of the causal and the symmetric
fractional splines. � D ˛C1

2 k for k D 0; 1
4 ;

1
2 ;

3
4 ; 1 from the most right (causal) to the most left

(symmetrical) function in each image. Right: ˛ D 1:8. Left: ˛ D 3

independently and therefore allow for an individual adjustment of the analyzing
basis.

Another generalization are the complex B-splines [27]. There are two variants,
both defined via their Fourier domain representation. Let z D ˛ C i� 2 C; ˛ >

� 1
2 ; � 2 R, and y 2 C. Then

Ǒz.!/ D
�

1�e�i!

i!

�zC1
;

Ǒz
y.!/ D

�
1�e�i!

i!

� zC1
2 �y �

1�ei!
�i!

� zC1
2 Cy

are complex B-splines of complex degree z. The functions are well defined, because
the function ˝.!/ D 1�e�i!

i!
never touches the negative real axis such that ˝.!/z

is uniquely defined. ˇz and ˇz
y are elements of the Sobolev spaces W r

2 .R/ for r <

˛ C 1
2 . ˇz has the time-domain representation

ˇz.t/ D 1

, .zC 1/

X
k�0

.�1/k
�

zC 1
k

�
.t � k/zC;

i.e., ˇz is a piecewise polynomial of complex degree. For more details on the
properties of these families of complex splines, cf. [27].

The idea behind the complex degree is as follows: The real part Re z D ˛

operates as regularity and decay parameter in the same way as for the fractional
B-splines. The imaginary part, however, causes an enhancement resp. damping of
positive or negative frequencies. In fact,

Ǒz.!/ D Ǒ˛C.!/e�i� ln j˝.!/je� arg˝.!/:

The imaginary part � of the complex degree introduces a phase and a scaling factor
in the frequency domain. The frequency components on the negative and positive
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Fig. 11 The frequency spectrum jˇz^j for z D 3 C i� , � D 0; 1; 2 (from left to right). The
spectrum of ˇ3 D ˇC

3 is symmetric (right), whereas the spectra of ˇ3Ci (center) and ˇ3C2i (left)
show an enhancement of the positive frequency axis

real axis are enhanced with different signs, because arg ˝.!/ � 0 for negative !
and arg ˝.!/ � 0 for positive !. Figure 11 illustrates this effect.

With real-valued functions, only symmetric spectra can be analyzed. The com-
plex B-splines, however, allow for an approximate analysis of the positive or the
negative frequencies, because the respective symmetric bands are damped due to
the complex exponent. However, the complex B-splines inherit many properties of
their classical and fractional relatives.

All of the generalized B-spline families mentioned in this section have in
common that they are scaling functions of dyadic multiresolution analyses. They
are one-dimensional functions, but with the tensor approach mentioned in Exam-
ple 3 and the section “Schoenberg’s B-Splines for Image Analysis � the Tensor
Product Approach”, they are also suitable for image processing tasks. Although the
fractional and the complex splines, in general, do not have compact support, they
allow for fast analysis and synthesis algorithms. Due to their closed form in Fourier
domain, they invite for an implementation of these algorithms in Fourier domain.

Polyharmonic B-Splines and Variants

In the section “Polyharmonic B-Splines”, the so-called polyharmonic B-splines in
R
n were introduced. They are defined in the Fourier domain by the representation

OP r .!/ D
 

4
Pn

kD1 sin2.!k=2/Pn
kD1 !

2
k

!r
; r > n=2; ! D .!1; : : : ; !n/:

These polyharmonic B-splines satisfy many properties of the classical Schoenberg
splines; e.g., they are piecewise polynomial functions, they satisfy a convolution
relation P r2Cr2 D P r1 � P r2 , they are positive functions, etc. However, they
do not share the property that they converge to the optimally space-frequency-
localized Gaussians as r increases [71]. This is due to the fact that the trigonometric
polynomial in the numerator regularizes insufficiently at the origin: The second-
order derivative of
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4
Pn

kD1 sin2.!k=2/Pn
kD1 !

2
k

is not continuous. Van De Ville et al. [71] therefore proposed another localizing
trigonometric polynomial:

�.!/ D 4
Xn

kD1
sin2.!k=2/� 8

3

Xn�1

kD1

Xn

lDkC1
sin2.!k=2/ sin2.!l=2/:

(15)
A new function family then is defined in the Fourier domain via

OQr .!/ D
�
�.!/

k!k2

�r
; r >

n

2
: (16)

Qr is called isotropic polyharmonic B-spline. The function is piecewise polynomial
(except for 2r–n even, where a logarithmic factor has to be added; see below)
and shares with the polyharmonic splines their decay properties in Fourier domain
and their regularity properties in space domain. Qr converges to a Gaussian as
r increases, which makes the function family better suitable for image analysis
than P r , because of the better space-frequency localization. This effect is due
to the higher-order rotation invariance or isotropy of the localizing trigonometric
polynomial (15):

�.!/ D 1CO.k!k2/ vs: �.!/ D 1C 1

12
k!k2 C O.k!k4/ as k!k ! 0:

This causes that OQr has a second-order moment, and thus the central limit theorem
can be applied to proof the convergence to the Gaussian function. In addition, OQr

has a higher regularity than OP r ; therefore, Qr decays faster. For a complete proof of
the localization property, see [71]. An example of the isotropic polyharmonic spline
is given in Fig. 12.

The polyharmonic B-splines and the isotropic polyharmonic B-splines both are
real-valued functions. The isotropic B-spline is approximately rotation invariant
and therefore is suited for image analysis of isotropic features. A complex-valued
variant of these B-splines in 2D was introduced in [28]. The idea is to design a
spline scaling function that is approximately rotation covariant, instead of rotation
invariant. Rotation covariant here means that the function intertwines with rotations
up to a phase factor.

Again, the design of the scaling function is done in the Fourier domain, now
using a perfectly rotation-covariant function

O�r;N .!1; !2/ D 1

.!2
1 C !2

2/
r .!1 � i!2/N

;
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Fig. 12 The isotropic
polyharmonic spline Q3.
Compare with Fig. 7 of the
classical polyharmonic
B-spline P3
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where r � 0 and N 2 N. In fact, for some rotation matrix R� 2
GL.2;R/; O�r;N .R�!/ D e�iN� O�r;N .!/. For localizing the function O�r;N , the same
trigonometric polynomials � and � as above can be used. The corresponding
complex polyharmonic B-splines are then defined in the frequency domain as

ORr;N
� .!1; !2/ D .�.!1;!2//

rCN
2

.!2
1 C!2

2/
r
.!1�i!2/N

; or as

ORr;N
� .!1; !2/ D .�.!1;!2//

rCN
2

.!2
1 C!2

2/
r
.!1�i!2/N

:
(17)

The case N D 0 yields the real-valued polyharmonic splines.
There are also other trigonometric polynomials that are suitable as localizing

numerators for the real and the complex polyharmonic B-splines. With an appro-
priate choice, the features of the polyharmonic splines can be tuned [28]. However,
for both the real and the complex variant, the localizing multiplier has to fulfill
moderate conditions to make the respective polyharmonic B-splines become a
scaling function. In 2D, the following result holds (cf. [28]):

Theorem 9. Let r > 0 and N 2 N0. Let �.!1, !2/ be a bounded, 2�Z2-periodic
function, such that

ˇ̌
ˇ̌
ˇ

.�.!1; !2//
rCN

2�
!2

1 C !2
2

	r
.!1 � i!2/N

ˇ̌
ˇ̌
ˇ

is bounded in a neighborhood of the origin and such that �.!1, !2/ ¤ 0 for all
.!1; !2/ 2 Œ��; ��2nf.0; 0/g.
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Then O� D �rCN
2 � O� is the Fourier transform of a scaling function � which

generates a multiresolution analysis : : :V�1 � V0 � V1: : : of L2.R2/ with dilation

matrix A D
�
a b

�b a
�

, a, b 2 Z:

Vj D span fj detAjj=2�.Aj � �k/; k 2 Z2g:

From the Fourier domain representation immediately follows that O� 2 L2.R2/ for
r C N

2 > 1
2 and that O� decays as j O�.!1; !2/j D O.k.!1; !2/k�2r�N / when k .!1,

!2/ k! 1.
As a result, for all three variants of the polyharmonic B-splines, the classical ones

P r , the isotropic onesQr , and the complex onesRr;N , the following properties hold:
They are scaling functions for multiresolution analysis. Their smoothness parameter
r can be chosen fractional and must fulfill r C N

2 > n=2 for integrability reasons.
Then the scaling function in space domain is an element of the Sobolov space � 2
W s

2 .R
2/ for all s < 2r CN � 1. The explicit space domain representation is

�.x/ D
X

k2Z2
�k�r;N .x C k/

for almost all x 2 R
2. Here, .�k/k2Z2 denotes the Fourier coefficients of �rCN

2 . �r;N
is the inverse Fourier transform of the Hadamard finite part Pf . O�r;N / 2 S 0.R2/. In
fact, for r … N0,

�r;N .x1; x2/ D c1
�
x2

1 C x2
2

	r�1
.x1 C ix2/

N

and for r 2 N0,

�r;N .x1; x2/ D c2
�
x2

1 C x2
2

	r�1
.x1 C ix2/

N

�
ln�

q
ln .�x2

1 C x2
2/C c3

�

with appropriate constants c1, c2, c3 2 C. This justifies the notion spline for the
function families. They all have a closed form in the frequency domain. As in the
case of the 1D cardinal B-splines, there is a fast analysis and synthesis algorithm
using the frequency domain representation and the fast Fourier transform; cf. Sect. 5.

Splines on Other Lattices

Splines on the Quincunx Lattice
The tensor product of two 1D dyadic multiresolution analyses yields a 2D multires-
olution analysis with dilation matrixA D 2Id; cf. Example 3. As a consequence, the
scaling factor while moving from one approximation space V0 to the next coarser
space V1 is j detAj D 4. For some image processing applications, especially in
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Fig. 13 Three iterations of the quincunx subsampling scheme. (a) Z2, (b) AqZ2, (c) A2
q Z

2. The
thinning of the Z

2 lattice using the dilation matrix Aq is finer than dilation with the dyadic matrix
A D 2Id, which in one step leads from (a) to (c)

medical imaging, this scaling step size is too large. A step size of 2 as in the 1D case
would be preferred. Moreover, the decomposition of the wavelet space into three
subspaces then would be avoided, and the eventual problematic of the directionality
of the three involved wavelets would not arise. An example of a dilation matrix
satisfying these requirement is the scaled rotation matrix

Aq D
�

1 1
�1 1

�

with det Aq D 2. It leads to the so-called quincunx lattice. This lattice is generated
by applying Aq to the Cartesian lattice. It holds AqZ2 � Z

2; see Fig. 13.
Since Aq falls into the class of scaled rotations, the polyharmonic B-spline

construction including all variants is applicable for this case; cf. Theorem 9.
Note that the tensor product approach in general is not suitable for the quincunx
subsampling scheme.

Splines on the Hexagonal Lattice
Images as 2D objects are normally processed on the Cartesian lattice, i.e., the image
pixels are arranged on a rectangular grid. For image processing, this arrangement
has the drawback that not all neighbors of a pixel have the same relation: The
centers of the diagonal neighbors have a larger distance to the center pixel than the
adjacent ones. A higher degree of symmetry has the hexagonal lattice. It is therefore
ideal for isotropic feature representation. The hexagonal lattice gives an optimal
tessellation of R2 in the sense of the classical honeycomb conjecture, which says
that any partition of the plane into regions of equal area has a perimeter at least
that of regular hexagonal tiling [32]. The better isotropy of the hexagonal lattice is
attractive for image analysis and has led to a series of articles on image processing
methods (e.g., [31, 45, 52]) as well as on applications (e.g., [30, 36, 47, 72]).

The hexagonal lattice is generated by applying the matrix
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Fig. 14 Three iterations of subsampling of the hexagonal grid with A D RhBR
�1
h , where B D� 1 1

�1 1

	
. (a) +h, (b) A+h D RhBR

�1
h +h D RhBZ

2, (c) A2+h

Rh D
s

2p
3

�
1 1=2
0
p

3=2

�

on the Cartesian lattice +h D Rh Z
2. A scaling function of a multiresolution

analysis of L2.R2/ in the hexagonal lattice fulfills all properties of Definition 1,
but the last two. They change to

(iv) f 2 V0 , f . � �Rh k/ 2 V0 for all k 2 Z
2.

(v) There exists a scaling function � 2 V0, such that the family f�.� � Rhk/gk2Z2

of translates of � forms a Riesz basis of V0.

Let A be a dilation matrix which leaves the hexagonal lattice invariant A+h � +h.
Then A is of the form [19]

A D RhBR�1
h

with B 2 GL.2;R/ having only integer entries and with eigenvalues strictly larger
than one. Figure 14 gives an example of two subsampling steps on the hexagonal
lattice.

There are several possible approaches to define spline functions on the hexagonal
lattice. Sablonnière and Sbibih [57] proposed to convolve piecewise linear pyramids
to generate higher-order B-splines. Van De Ville et al. [70] started with the
characteristic function of one hexagon and also used an iterative convolution
procedure to construct B-splines of higher degree. However, both approaches lead
to discrete-order hexagonal B-splines. If A is a scaled rotation, then fractional and
complex B-splines on the hexagonal lattice can be defined in an analog way as in
the section “Polyharmonic B-Splines and Variants” for polyharmonic splines and
their (complex) variants [19]. Consider again the perfectly rotation-covariant (or for
N D 0 rotation-invariant) function
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O�r;N .!1; !2/ D 1�
!2

1 C !2
2

	r
.!1 � i!2/N

;

where r > 0 andN 2 N0. The idea is now to use a hexagonal-periodic trigonometric
polynomial for localizing this function and to eliminate the singularity at the origin.
Condat et al. [19] proposed

�h.!1; !2/ D 1p
3
.6 � 2 .cos .31=4 .�!1=

p
3C !2/=

p
2/

C cos.31=4 .!1=
p

3C !2/=
p

2/C cos .3�1=4
p

2!1///;

and defined the elementary polyharmonic hexagonal rotation-covariant B-spline via
its frequency domain representation as

ORr;N
h .!1; !2/ D .�h.!1; !2//

rCN
2�

!2
1 C !2

2

	r
.!1 � i!2/N

:

The B-spline in space domain then has the representation

Rr;N
h .x/ D

X
k2Z2

�h;k�r;N .x � Rhk/:

Here, .�h;k/k2Z2 denotes the sequence of Fourier coefficients of �
rCN

2
h . Figure 15

shows the localizing trigonometric polynomial � and the Fourier spectra of two
hexagonal splines.

For N D 0, the functions are the elementary polyharmonic hexagonal rotation-
invariant B-splines. They are real-valued functions that converge to a Gaussian,
as r ! 1, and therefore are well localized in the space domain as well as in
the frequency domain. For N 2 N, the splines are complex-valued functions and
approximately rotation covariant in a neighborhood of the origin:

ORr;N
h .!/ D eiN arg.!/

�
1C C k!k2 CO.k!k4/

�
for ! ! 0;

where ! D .!1; !2/ and C 2 R is a constant.
The translates of the complex B-spline Rr;N

h form a Riesz basis of the approxi-
mation spaces

Vj D span
n
Rr;N
h .Aj x �Rhk/ W k 2 Z2

oL2.R2/

; j 2 Z:

The ladder of spaces .Vj /j2Z generates a multiresolution analysis of L2.R2/ for the
hexagonal grid and for scaled rotations A. Also in this case, the implementation of
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Fig. 15 Localization of �^ with (a) the hexagonal-periodic trigonometric polynomial �h yields
the elementary polyharmonic hexagonal rotation-covariant B-spline. Frequency spectrum of
R^
h r; N (or equivalently of R^

h r CN=2; 0), (b) for r C N
2 D 1, and (c) for r C N

2 D 2:5

the analysis and synthesis algorithm can be elegantly performed in the frequency
domain [19, 71].

5 Numerical Implementation

For the illustration of the numerical method, we focus on the quincunx dilation
matrix

A D
�

1 1
�1 1

�
(18)

and consider the polyharmonic spline variants in 2D as defined in the section
“Polyharmonic B-Splines and Variants”. Since det A D 2, the generators of the
multiresolution space and the corresponding wavelet space are two functions: the
scaling function (here the variant of the polyharmonic spline) and the associated
wavelet. We consider the scaling function �.x/ D Qr

�.x/ resp. �.x/ D Rr;N
� .x/. It

spans the ladder of nested approximation spaces fVj gj2Z via
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Vj D span fj detAjj=2�.Aj � �k/; k 2 Z2gL
2.R2/

; j 2 Z:

Denote

M.!/ WD
X

k2Z2
j O�.! C 2�k/j2 (19)

the autocorrelation filter. It is bounded 0 < M.!/ � C for some positive constant
C [28]. The scaling functions can be orthonormalized, applying the procedure given
in Theorem 4(iii):

O�.!/ D O�.!/p
M.!/

:

The scaled shifts of ˚ span the same spaces fVj gj2Z.
The B-splines as scaling functions � satisfy a refinement relation

�.A�1x/ D
X

k2Z2
hk�.x � k/ almost everywhere and in L2.R2/:

This relation in fact is a discrete convolution. The Fourier transform yields a 2�Z2-
periodic functionH 2 L2.T2/ of the form

H.ei!/ D j detAj � O�.AT !/
O�.!/ D j detAj � O�r;N .AT !/�.AT !/

O�r;N .!/�.!/
D �.AT !/

�.!/
� 1
.a2Cb2/r�1.a�ib/N ; ! 2 R

2

Here, �.!/ D .�.!//rCN
2 is the localizing multiplier for the isotropic polyharmonic

B-spline in the case N D 0 and for the rotation-covariant polyharmonic B-splines
in the case N 2 N; cf. (15)–(17).

The wavelet function  spanning a Riesz basis for the orthogonal complement

Wj D span f2j=2 .Aj � �k/; k 2 Z2gL
2.R2/

in VjC1 D Wj ˚ Vj can also be gained in the frequency domain. For the quincunx
dilation matrix A as in (18), a wavelet (or sometimes called a prewavelet, since the
functions are not yet orthonormalized) is given by

O .!/ D G.ei!/ O�.!/ D e�i!1H.! C .�; �/T /M.! C .�; �/T / O�.!/;

compare with the section “Wavelets”. The (pre)wavelet Riesz basis for Wj is then
given by the family f j;k D 2j=2 .Aj � �k/; k 2 Z

2g.
This basis in general is not orthonormal: h j;k;  j;li ¤ ık;l . A function f 2

L2.R2/ can then be represented by the series
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f D
X

j2Z;k2Z2
hf; Q j;ki j;k D

X
j2Z;k2Z2

hf; Q j;ki j;k;

where f Q j;kgk2Z2 denotes the dual basis for each j 2 Z: h Q j;k;  j;li D ık;l . Its
generator in the frequency domain is

bQ .!/ D e�i!1H.! C .�; �/T /M.! C .�; �/
T /

M.AT !/

O�.!/
M.!/

:

In contrast, the formula

O�.!/ D
s
M.! C .�; �/T /

M.AT!/
O .!/

generates an orthonormal wavelet basis. It corresponds to the orthonormal basis
of V0 generated by the integer shifts of the orthonormalized scaling function
˚ . These considerations show that there are three variants of a multiresolution
implementation: an “orthonormal” one with respect to the orthonormalized scaling
functions and corresponding orthonormal wavelets; one with the B-splines on the
analysis side,

f D
X

k2Z2
hf; �j;ki Q�j;k C

X
k2Z2
hf; j;ki Q j;k for f 2 VjC1;

and finally one with the B-splines on the synthesis side:

f D
X

k2Z2
hf; Q�j;ki�j;k C

X
k2Z2
hf; Q j;ki j;k for f 2 VjC1:

Both, the scaling filters H.ei!/ and the wavelet filters

G.ei!/ D e�i!1H.! C .�; �/T /M.! C .�; �/T /

as well as their orthogonal and dual variants in our case are nonseparable and
infinitely supported. Therefore, a spatial implementation of the decomposition
would lead to truncation errors due to the necessary restriction to a finite number
of samples. However, because of the closed form of H and therefore of G, the cor-
responding multiresolution decomposition or wavelet transform can be efficiently
implemented in the frequency domain. The respective image first undergoes an FFT
and then is filtered in the frequency domain by multiplication with the scaling filter
H and the wavelet filter G. This method automatically imposes periodic boundary
conditions.

The coefficients resulting from the high-pass filtering with G are the detail
coefficients. They are stored, whereas the coefficients resulting from the low-pass
filtering H are reconsidered for the next iteration step.
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X
k2Z2
hf; �jC1;ki Q�jC1;k D

X
k2Z2
hf; �j;ki Q�j;k C

X
k2Z2
hf; j;ki Q j;k:

For the details and tricks of the frequency domain implementation, cf. [25, 48, 49,
71].

Figure 16 shows the multiresolution decomposition for the scaling function � D
R2;1
� . There, it was assumed that the image is bandlimited and projected on the

space V0, which has the advantage that the coefficients do not depend on the chosen
flavor of the scaling function, i.e., orthogonal, B-spline, or dual. Qualitatively, the
transform is very similar to a multiscale gradient with the real part corresponding to
the x2 derivative and the imaginary part corresponding to the x1 derivative [28].

6 Open Questions

In this chapter, a method for the construction of spline multiresolution bases
was described. It yields a nice variety of new bases with several parameters for
adaption and tuning. In the last decade, the notion of compressive sampling or
compressed sensing arose, which is footing on the existence of well-adaptable bases.
In fact, the idea behind compressed sensing is that certain functions have a sparse
representation, if the underlying basis is smartly chosen. In this case, the function
can be reconstructed from very few samples because of the prior knowledge of
sparsity in this underlying basis. As a consequence, the knowledge on sparsity
allows to sample such a signal at a rate significantly under the Nyquist rate. (The
Shannon-Nyquist sampling theorem says that a signal must be sampled at least two
times faster than the signal’s bandwidth to avoid loss of information.)

In the last 40 years, and virtually explosively in the last 10 years, many important
theoretical results were proven in this field, in particular by D. Donoho, E. Candès,
J. Romberg, and T. Tao. For an introduction and references on compressed sensing,
see, e.g., [2, 9] and the website [55].

Compressed sensing is based upon two fundamental concepts: that of incoher-
ence and that of sparsity. Let fxi giD1;:::;N be an orthonormal basis of the vector
space V . Let f D PN

iD1 sixi with si D hf; xi i. The signal f is called k-sparse, if
only k of the coefficients are nonzero, k 2 N.

A general linear measurement process for signals consists in computingM < N

inner products yj D hf; yj i for a collection of vectors fyj gj . In matrix form,

g D Yf D YXs;

where Y andX are the matrixes with fyi gi and fxj gj as columns, and YX is anM �
N matrix. If the function families Y and X are incoherent, i.e., if the incoherence
measure

�.Y; X/ D pN max
1	i;j	N jhyi ; xj ij 2

h
1;
p
N
i
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Fig. 16 Decomposition of an image [18, Part of IM115.tif] into approximation and wavelet coef-
ficients. (a) Original image. (b) Matrix of the absolute values of the multiresolution coefficients.
Large coefficients are white. The approximation coefficients are in the upper left band; the other
bands are wavelet coefficients on six scales. (c) Real part of the coefficient matrix and (d) imaginary
part of the decomposition matrix for � D R�

2;1 and the corresponding wavelets. The coefficients
had their intensity rescaled for better contrast

is close to one, then under mild additional conditions, the k-sparse signal f can be
reconstructed fromM > C�2.Y;X/k lnN samples with overwhelming probability.

Wavelet bases have proven to be very suitable for compressed sensing. It is an
open question to classify the signals from certain applications and to estimate in
which appropriate B-spline basis they have a k-sparse representation. Then adequate
bases and function families incoherent with the spline bases have to be identified.
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In the last years, the concept of sparsity entered image processing. It has proven
to help immensely accelerate the solution of inverse problems and reconstruction
algorithms, e.g., in medical imaging, such as in magnetic resonance imaging [42],
computed tomography [12], photo-acoustic tomography [39], tomosynthesis [29],
and others. In this area, as well as in other fields of imaging, it can be expected
that the combination of splines – due to their easy modeling and the fast frequency
domain algorithms – multiresolution and wavelets, and sparsity will lead to novel
impressing fast algorithms for image reconstruction.

7 Conclusion

In the design procedure for scaling functions of multiresolution analyses, regularity
and decay features, as well as symmetry properties, can be tuned by an appropriate
modeling in frequency domain. The idea is to start in the frequency domain with a
polynomial function P that fulfills the required symmetry features and that has a
degree, such that 1/P decays sufficiently fast. This assures that the resulting scaling
function has the desired regularity. However, 1/P in general is not an L2 function
and has to be multiplied with a localizing trigonometric polynomial � that eliminates
the zeros in the denominator such that �

P
becomes square integrable. The choice

of this trigonometric polynomial has to be taken carefully to be compatible with
the required features modeled in 1/P . Then under mild additional conditions, the
fraction

O� D �

P

is the scaling function of a multiresolution analysis. This construction can be
performed for 1D and higher dimensional spaces likewise. In the time domain,
the resulting scaling function is a piecewise polynomial, thus a spline. This design
procedure for scaling functions unites the concepts of splines and of multiresolution.

Interestingly, the polynomial in the denominator can be of a fractional or
a complex degree and therefore allows a fine tuning of the scaling function’s
properties. However, the scaling function then becomes an infinite series of shifted
(truncated) polynomials. The numerical calculation with the approximating basis of
the multiresolution analysis in the time domain would cause truncation errors, which
is unfavorable. But due to the construction of � in the frequency domain and due
to the closed form there, the implementation in the frequency domain with periodic
boundary conditions yields a fast and stable multiresolution algorithm suitable for
image analysis tasks.

Cross-References

�Compressive Sensing
�Gabor Analysis for Imaging

http://dx.doi.org/10.1007/978-1-4939-0790-8_6
http://dx.doi.org/10.1007/978-1-4939-0790-8_54


1714 B. Forster
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1 Introduction

In contrast to classical Fourier analysis, time–frequency analysis is concerned
with localized Fourier transforms. Gabor analysis is an important branch of time–
frequency analysis. Although significantly different, it shares with the wavelet
transform methods the ability to describe the smoothness of a given function in
a location-dependent way.

The main tool is the sliding window Fourier transform or short-time Fourier
transform (STFT) in the context of audio signals. It describes the correlation of a
signal with the time–frequency shifted copies of a fixed function (or window or
atom). Thus, it characterizes a function by its transform over phase space, which
is the time–frequency plane (TF-plane) in a musical context or the location–wave-
number domain in the context of image processing.

Since the transition from the signal domain to the phase space domain introduces
an enormous amount of data redundancy, suitable subsampling of the continuous
transform allows for complete recovery of the signal from the sampled STFT.
The knowledge about appropriate choices of windows and sampling lattices has
increased significantly during the last three decades. Since the suggestion goes back
to the idea of D. Gabor [45], this branch of TF analysis is called Gabor analysis.
Gabor expansions are not only of interest due to their very natural interpretation
but also algorithmically convenient due to a good understanding of algebraic and
analytic properties of Gabor families.

In this chapter, we describe some of the generalities relevant for an understanding
of Gabor analysis of functions on R

d . We pay special attention to the case d D
2, which is the most important case for image processing and image analysis
applications.

The chapter is organized as follows. Section 2 presents central tools from
functional analysis in Hilbert spaces, e.g., the pseudo-inverse of a bounded operator
and the central facts from frame theory. In Sect. 3, we introduce several operators
that play important roles in Gabor analysis. Gabor frames on L2.Rd / are introduced
in Sect. 4, and their discrete counterpart are treated in Sect. 5. Finally, the application
of Gabor expansions to image representation is considered in Sect. 6.

2 Tools from Functional Analysis

In this section, we recall basic facts from functional analysis. Unless another
reference is given, a proof can be found in [17]. In the entire section, H denotes
a separable Hilbert space with inner product h � ; � i.
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The Pseudo-inverse Operator

It is well known that an arbitrary matrix has a pseudo-inverse, which can be used
to find the minimal-norm least squares solution of a linear system. In the case of an
operator on infinite-dimensional Hilbert spaces, one has to restrict the attention to
linear operators with closed range in order to obtain a pseudo-inverse. Observe that
a bounded operator (We will always assume linearity!) U on a Hilbert space H is
invertible if and only if it is injective and surjective, while injectivity combined with
a dense range is not sufficient in the infinite-dimensional case. However, if the range
of U is closed, there exists a “right-inverse operator” U � in the following sense:

Lemma 1. Let H;K be Hilbert spaces, and suppose that U W K! H is a bounded
operator with closed range RU . Then there exists a bounded operator U � W H! K
for which

UU �x D x; 8x 2 RU : (1)

Proof. Consider the operator obtained by taking the restriction of U to the
orthogonal complement of the kernel of U , i.e., let

QU WD UjN?
U
W N?

U ! H:

Obviously, QU is linear and bounded. QU is also injective: if QUx D 0, it follows that
x 2 N?

U \ NU D f0g: We prove next that the range of QU equals the range of U .
Given y 2 RU , there exists x 2 K such that Ux D y. By writing x D x1 C x2,
where x1 2 N?

U ; x2 2 NU , we obtain that

QUx1 D Ux1 D U.x1 C x2/ D Ux D y:

It follows from Banach’s theorem that QU has a bounded inverse

QU�1 W RU ! N?
U :

Extending QU�1 by zero on the orthogonal complement of RU , we obtain a bounded
operator U � W H! K for which UU �x D x for all x 2 RU . �

The operatorU � constructed in the proof of Lemma 1 is called the pseudo-inverse
ofU . In the literature, one will often see the pseudo-inverse of an operatorU defined
as the unique operator U � satisfying that

NU� D R?
U ; RU� D N?

U ; and UU �x D x; x 2 RU I (2)

this definition is equivalent to the above construction. We collect some properties of
U � and its relationship to U .
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Lemma 2. Let U W K ! H be a bounded operator with closed range. Then the
following holds:

(i) The orthogonal projection of H onto RU is given by UU �.
(ii) The orthogonal projection of K onto RU� is given by U �U .

(iii) U � has closed range, and .U �/� D .U �/�.
(iv) On RU , the operator U � is given explicitly by

U � D U �.UU �/�1: (3)

Bessel Sequences in Hilbert Spaces

When we deal with infinite-dimensional vector spaces, we need to consider
expansions in terms of infinite series. The purpose of this section is to introduce
a condition that ensures that the relevant infinite series actually converge. When
speaking about a sequence ffkg1kD1 in H, we mean an ordered set, i.e., ffkg1kD1 Dff1; f2; : : : g: That we have chosen to index the sequence by the natural numbers is
just for convenience.

Definition 1. A sequence ffkg1kD1 in H is called a Bessel sequence if there exists a
constant B > 0 such that

1X
kD1

jhf; fkij2 � B jjf jj2; 8f 2 H: (4)

Any number B satisfying (4) is called a Bessel bound for ffkg1kD1. The optimal
bound for a given Bessel sequence ffkg1kD1 is the smallest possible value of B > 0
satisfying (4). Except for the case fk D 0; 8k 2 N, the optimal bound always
exists.

Theorem 1. Let ffkg1kD1 be a sequence in H and B > 0 be given. Then ffkg1kD1 is
a Bessel sequence with Bessel bound B if and only if

T W fckg1kD1 !
1X
kD1

ckfk

defines a bounded operator from `2.N/ into H and jjT jj � pB.

The operator T is called the synthesis operator. The adjoint T � is called the
analysis operator and is given by

T � W H! `2.N/; T �f D fhf; fkig1kD1:
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These operators play key roles in the theory of frames, to be considered in
section “Frames and Their Properties.”

The Bessel condition (4) remains the same, regardless of how the elements
ffkg1kD1 are numbered. This leads to a very important consequence of Theorem 1:

Corollary 1. If ffkg1kD1 is a Bessel sequence in H, then
P1

kD1 ckfk converges
unconditionally for all fckg1kD1 2 `2.N/, i.e., the series is convergent, irrespective
of how and in which order the summation is realized.

Thus, a reordering of the elements in ffkg1kD1 will not affect the seriesP1
kD1 ckfk when fckg1kD1 is reordered the same way: the series will converge

toward the same element as before. For this reason, we can choose an arbitrary
indexing of the elements in the Bessel sequence; in particular, it is not a restriction
that we present all results with the natural numbers as index set. As we will see in
the sequel, all orthonormal bases and frames are Bessel sequences.

General Bases and Orthonormal Bases

We will now briefly consider bases in Hilbert spaces. In particular, we will discuss
orthonormal bases, which are the infinite-dimensional counterparts of the canonical
bases in C

n. Orthonormal bases are widely used in mathematics as well as physics,
signal processing, and many other areas where one needs to represent functions in
terms of “elementary building blocks.”

Definition 2. Consider a sequence fekg1kD1 of vectors in H.

(i) The sequence fekg1kD1 is a (Schauder) basis for H if for each f 2 H, there
exist unique scalar coefficients fck.f /g1kD1 such that

f D
1X
kD1

ck.f /ek: (5)

(ii) A basis fekg1kD1 is an unconditional basis if the series (5) converges uncondi-
tionally for each f 2 H.

(iii) A basis fekg1kD1 is an orthonormal basis if fekg1kD1 is an orthonormal system,
i.e., if

hek; ej i D ık;j D
�

1 if k D j;
0 if k ¤ j:

An orthonormal basis leads to an expansion of the type (5) with an explicit
expression for the coefficients ck.f /:
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Theorem 2. If fekg1kD1 is an orthonormal basis, then each f 2 H has an
unconditionally convergent expansion

f D
1X
kD1

hf; ekiek: (6)

In practice, orthonormal bases are certainly the most convenient bases to use: for
other types of bases, the representation (6) has to be replaced by a more complicated
expression. Unfortunately, the conditions for fekg1kD1 being an orthonormal basis
are strong, and often it is impossible to construct orthonormal bases satisfying extra
conditions. We discuss this in more detail later. Note also that it is not always a
good idea to use the Gram–Schmidt orthonormalization procedure to construct an
orthonormal basis from a given basis: it might destroy special properties of the basis
at hand. For example, the special structure of a Gabor basis (to be discussed later)
will be lost.

Frames and Their Properties

We are now ready to introduce one of the central subjects:

Definition 3. A sequence ffkg1kD1 of elements in H is a frame for H if there exist
constants A;B > 0 such that

A jjf jj2 �
1X
kD1

jhf; fkij2 � B jjf jj2; 8f 2 H: (7)

The numbers A and B are called frame bounds. A special role is played by frames
for which the optimal frame bounds coincide:

Definition 4. A sequence ffkg1kD1 in H is a tight frame if there exists a number
A > 0 such that

1X
kD1

jhf; fkij2 D A jjf jj2; 8f 2 H:

The number A is called the frame bound.

Since a frame ffkg1kD1 is a Bessel sequence, the operator

T W `2.N/! H; T fckg1kD1 D
1X
kD1

ckfk (8)
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is bounded by Theorem 1. Composing T and T �, we obtain the frame operator

S W H! H; Sf D T T �f D
1X
kD1

hf; fkifk: (9)

The frame decomposition, stated in (10) below, is the most important frame
result. It shows that if ffkg1kD1 is a frame for H, then every element in H has a
representation as an infinite linear combination of the frame elements. Thus, it is
natural to view a frame as a “generalized basis.”

Theorem 3. Let ffkg1kD1 be a frame with frame operator S . Then

f D
1X
kD1

hf; S�1fkifk; 8f 2 H; (10)

and

f D
1X
kD1

hf; fkiS�1fk; 8f 2 H: (11)

Both series converge unconditionally for all f 2 H.

Theorem 3 shows that all information about a given vector f 2 H is contained
in the sequence fhf; S�1fkig1kD1. The numbers hf; S�1fki are called frame coef-
ficients. The sequence fS�1fkg1kD1 is also a frame; it is called the canonical dual
frame of ffkg1kD1.

Theorem 3 also immediately reveals one of the main difficulties in frame theory.
In fact, in order for the expansions (10) and (11) to be applicable in practice, we need
to be able to find the operator S�1 or at least to calculate its action on all fk; k 2 N.
In general, this is a major problem. One way of circumventing the problem is to
consider only tight frames:

Corollary 2. If ffkg1kD1 is a tight frame with frame bound A, then the canonical
dual frame is fA�1fkg1kD1, and

f D 1

A

1X
kD1

hf; fkifk; 8f 2 H: (12)

By a suitable scaling of the vectors ffkg1kD1 in a tight frame, we can always obtain
that A D 1; in that case, (12) has exactly the same form as the representation via an
orthonormal basis; see (6). Thus, such frames can be used without any additional
computational effort compared with the use of orthonormal bases; however, the
family does not have to be linearly independent now.
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Tight frames have other advantages. For the design of frames with prescribed
properties, it is essential to control the behavior of the canonical dual frame, but
the complicated structure of the frame operator and its inverse makes this difficult.
If, e.g., we consider a frame ffkg1kD1 for L2.R/ consisting of functions with
exponential decay, nothing guarantees that the functions in the canonical dual frame
fS�1fkg1kD1 have exponential decay. However, for tight frames, questions of this
type trivially have satisfactory answers, because the dual frame equals the original
one. Also, for a tight frame, the canonical dual frame automatically has the same
structure as the frame itself: if the frame has Gabor structure (to be described in
Sect. 4), the same is the case for the canonical dual frame.

There is another way to avoid the problem of inverting the frame operator S .
A frame that is not a basis is said to be overcomplete; in the literature, the term
redundant frame is also used. For frames ffkg1kD1 that are not bases, one can replace
the canonical dual fS�1fkg1kD1 by other frames:

Theorem 4. Assume that ffkg1kD1 is an overcomplete frame. Then there exist
frames fgkg1kD1 ¤ fS�1fkg1kD1 for which

f D
1X
kD1

hf; gkifk; 8f 2 H: (13)

A frame fgkg1kD1 satisfying (13) is called a dual frame of ffkg1kD1. The hope
is to find dual frames that are easier to calculate or have better properties than the
canonical dual. Examples of this type can be found in [17].

3 Operators

In this section, we introduce several operators that play key roles in Gabor analysis.
In particular, we will need the basic properties of the localized Fourier transform,
which is called the STFT (short-time Fourier transform). It is natural for us to start
with the Fourier transform, which is defined as an integral transform on the space
of all (Lebesgue) integrable functions, denoted by L1.Rd /.

The Fourier Transform

Definition 5. For f 2 L1.Rd /, the Fourier transform is defined as

Of .!/ WD .Ff /.!/ WD
Z
Rd

f .x/ e�2� ix �! dx; (14)

where x �! DPd
kD1 xk!k is the usual scalar product of vectors in R

d .



Gabor Analysis for Imaging 1725

Lemma 3 (Riemann–Lebesgue). If f 2 L1.Rd /, then Of is uniformly continuous
and limj!j!1 j Of .!/j D 0.

The Fourier transform yields a continuous bijection from the Schwartz space
S.Rd / to S.Rd /. This follows from the fact that it turns analytic operations
(differentiation) into multiplication with polynomials and vice versa:

F.D˛f / D .2�i/j˛jX˛.Ff / (15)

and

D˛.Ff / D .�2�i/j˛jF.X˛f /; (16)

with a multi-index ˛ D .˛1; : : : ; ˛d / 2 N
d
0 , j˛j WD Pd

iD1 ˛i , D
˛ as differential

operator

D˛f .x/ WD @˛1 � � � @˛d
@x

˛1
1 � � � @x˛dd

f .x1; : : : ; xd /

and X˛ as multiplication operator .X˛f /.x/ WD x
˛1
1 � � �x˛dd f .x1; : : : ; xd /. It

follows from the definition that S.Rd / is invariant under these operations, i.e.,

X˛f 2 S.Rd / and D˛f 2 S.Rd / 8˛ 2 N
d
0 8f 2 S.Rd /:

Using the reflection operator .If /.x/ WD f .�x/, one can show that F2 D I and
so F4 D IdS.Rd /. This yields

F�1 D IF (17)

and we can give an inversion formula explicitly:

Theorem 5 (Inversion Formula). The Fourier transform is a bijection from S.Rd /
to S.Rd /, and the inverse operator is given by

.F�1f /.x/ D
Z
Rd

f .!/ e2� ix �! d! 8x 2 R
d : (18)

Furthermore,

hFf;FgiL2 D hf; giL2 8f; g 2 S.Rd /:

We can extend the Fourier transform to an isometric operator on all of L2.Rd /.
We will use the same symbol F although the Fourier transform on L2.Rd / is not
defined by a Lebesgue integral (14) anymore if f 2 L2nL1.Rd /, but rather by
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means of summability methods. Moreover, Ff should be viewed as an equivalence
class of functions, rather than a pointwise given function.

Theorem 6 (Plancherel). If f 2 L1 \ L2.Rd /, then

kf kL2 D kFf kL2 : (19)

As a consequence, F extends in a unique way to a unitary operator on L2.Rd / that
satisfies Parseval’s formula

hf; giL2 D hFf;FgiL2 8f; g 2 L2.Rd /: (20)

In signal analysis, the isometry of the Fourier transform has the interpretation
that it preserves the energy of a signal. For more details on the role of the Schwartz
class for the Fourier transform, see [78, V].

Translation andModulation

Definition 6. For x; ! 2 R
d , we define the translation operator Tx by

.Txf /.t/ WD f .t � x/ (21)

and the modulation operator M! by

.M!f /.t/ WD e2� i! � t f .t/: (22)

One has T �1
x D T�x and M�1

! D M�! . The operator Tx is called a time shift
and M! a frequency shift. Operators of the form TxM! or M!Tx are called time–
frequency shifts (TF-shifts). They satisfy the commutation relations

TxM! D e�2� ix �!M!Tx: (23)

Time–frequency shifts are isometries on Lp for all 1 � p � 1, i.e.,

kTxM!f kLp D kf kLp :

The interplay of TF-shifts with the Fourier transform is as follows:

bTxf D M�x Of or FTx D M�xF (24)

and

1M!f D T! Of or FM! D T!F : (25)
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Equation (25) explains why modulations are also called frequency shifts: modula-
tions become translations on the Fourier transform side. Altogether, we have

2TxM!f D M�xT! Of D e�2� ix �!T!M�x Of :

Convolution, Involution, and Reflection

Definition 7. The convolution of two functions f; g 2 L1.Rd / is the function f �g
defined by

.f � g/.x/ WD
Z
Rd

f .y/ g.x � y/ dy: (26)

It satisfies

kf � gkL1 � kf kL1kgkL1 and 1f � g D Of � Og:

One may view f � g as f being “smeared” by g and vice versa. One can thus
smoothen a function by convolving it with a narrow bump function.

Definition 8. The involution of a function is defined by

f �.x/ WD f .�x/: (27)

It follows that

cf � D NOf and bIf D I Of :

Finally, let us mention that convolution corresponds to pointwise multiplication (and
conversely), i.e., the so-called convolution theorem is valid:

1g � f D Of � Og: (28)

The Short-Time Fourier Transform

The Fourier transform as described in section “The Fourier Transform” provides
only global frequency information of a signal f . This is useful for signals that do
not vary during the time, e.g., for analyzing the spectrum of a violin tone. However,
dynamic signals such as a melody have to be split into short time intervals over
which it can be well approximated by a linear combination of few pure frequencies.
Since sharp cutoffs would introduce discontinuities in the localized signal and
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therefore leaking of the frequency spectrum, a smooth window function g is usually
used in the definition of the short-time Fourier transform.

In image processing, one has plane waves instead of pure frequencies; thus, the
global Fourier transform is only well suited to stripe-like patterns. Again, a localized
version of the Fourier transform allows to determine dominant plane waves locally,
and one can reconstruct an image from such a redundant transform. Gabor analysis
deals with the question of how one can reconstruct an image from only somewhat
overlapping local pieces, which are stored only in the form of a sampled (local) 2D
Fourier transform (Fig. 1).

Definition 9. Fix a window function g 2 L2.Rd /nf0g. The short-time Fourier
transform (STFT), also called (continuous) Gabor transform of a function f 2
L2.Rd / with respect to g, is defined as

.Vgf /.x; !/ WD
Z
Rd

f .t/ g.t � x/ e�2� it �! dt for x; ! 2 R
d : (29)

For f; g 2 L2.Rd /, the STFT Vgf is uniformly continuous (by Riemann–
Lebesgue) on R

2d and can be written as

.Vgf /.x; !/ D2f � Tx Ng.!/ (30)

D hf;M!TxgiL2 (31)

D e�2� ix �!.f �M!g
�/.x/: (32)

The STFT as a function in x and ! seems to provide the possibility to obtain
information about the occurrence of arbitrary frequencies ! at arbitrary locations
x as desired. However, the uncertainty principle (cf. [51]) implies that there is a
limitation concerning the joint resolution. In fact, the STFT has limitations in its
time–frequency resolution capability: Low frequencies can hardly be located with
narrow windows, and similarly, short pulses remain invisible for wide windows. The
choice of the analyzing window is therefore crucial.

Just like the Fourier transform, the STFT is a kind of time–frequency represen-
tation of a signal. This again raises the question of how to reconstruct the signal
from its time–frequency representation. To approach this, we need the orthogonality
relations of the STFT, which corresponds to Parseval’s formula (20) for the Fourier
transform:

Theorem 7 (Orthogonality relations for STFT). Let f1; f2; g1; g2 2 L2.Rd /.
Then Vgj fj 2 L2.R2d / for j 2 f1; 2g, and

hVg1f1;Vg2f2iL2.R2d / D hf1; f2iL2hg1; g2iL2 :

Corollary 3. If f; g 2 L2.Rd /, then
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Fig. 1 Two signals and their (short-time) Fourier transforms. (a) Signal 1: Concurrent frequencies.
(b) Signal 2: Consecutive frequencies. (c) Fourier power spectrum 1. (d) Fourier power spectrum
2. (e) STFT 1 with wide window. (f) STFT 2 with wide window. (g) STFT 1 with narrow window.
(h) STFT 2 with narrow window

kVgf kL2.R2d /
D kf kL2kgkL2 :

In the case of kgkL2 D 1, we have

kf kL2 D kVgf kL2.R2d /
8f 2 L2.Rd /; (33)

i.e., the STFT as an isometry from L2.Rd / into L2.R2d /.
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Formula (33) shows that the STFT preserves the energy of a signal; it corresponds
to (19) which shows the same property for the Fourier transform. Therefore, f
is completely determined by Vgf , and the inversion is given by a vector-valued
integral (for good functions valid in the pointwise sense):

Corollary 4 (Inversion formula for the STFT). Let g; � 2 L2.Rd / and hg; �i ¤
0. Then

f .x/ D 1

h�; giL2

“
R2d

Vgf .x; !/ M!Tx�.x/ d! dx 8f 2 L2.Rd /: (34)

Obviously, � D g is a natural choice here. The time–frequency analysis of
signals is usually done by three subsequent steps:

(i) Analysis: Using the STFT, the signal is transformed into a joint time–frequency
representation.

(ii) Processing: The obtained signal representation is then manipulated in a certain
way, e.g., by restriction to a part of the signal yielding the relevant information.

(iii) Synthesis: The inverse STFT is applied to the processed representation, thus
creating a new signal.

A function is completely represented by its STFT but in a highly redundant way.
To minimize the influence of the uncertainty principle, the analyzing window g

should be chosen such that g and its Fourier transform Og both decay rapidly, e.g.,
as Schwartz functions. A computational implementation can only be obtained by a
discretization of both the functions and the STFT. Therefore, only sampled versions
of the STFT are possible, and only certain locations and frequencies are used for
analyzing a given signal. The challenge is to find the appropriate lattice constants in
time and frequency and to obtain good time–frequency resolution.

4 Gabor Frames in L2(Rd )

By formula (31), the STFT analyzes a function f 2L2.Rd / into coefficients
hf;M!TxgiL2 using modulations and translations of a single window function
g 2L2.Rd /nf0g. One problem we noticed was that these TF-shifts are infinitesimal
and overlap largely, making the STFT a highly redundant time–frequency represen-
tation. An idea to overcome this is to restrict to discrete choices of time positions
x and frequencies ! such that this redundancy is decreased while leaving enough
information in the coefficients about the time–frequency behavior of f . This is the
very essence of Gabor analysis: It is sought to expand functions in L2.Rd / into an
absolutely convergent series of modulations and translations of a window function
g. Therefore, it is interesting to find necessary and sufficient conditions on g and a
discrete set ƒ � R

d � R
d such that
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fgx;!g.x;!/2ƒ WD fM!Txgg.x;!/2ƒ

forms a frame for L2.Rd /. The question arises how the sampling set ƒ should
be structured. It turns out to be very convenient to have this set closed under the
addition operation, urging ƒ to be a subgroup of the time–frequency plane, i.e.,
ƒ E R

d � R
d . Dennis Gabor (actually Dénes Gábor) suggested in his Theory of

Communication [45], 1946, to use fixed step sizes ˛; ˇ > 0 for time and frequency
and use the set f˛kgk2Zd for the time positions and fˇngn2Zd for the frequencies,
yielding the functions

gk;n.x/ WD MˇnT˛kg.x/ D e2� iˇn �xg.x � ˛k/

as analyzing elements. This is the approach that is usually presented in the literature,
although there is also a more general group theoretical setting possible whereƒ is an
arbitrary (discrete) subgroup. This subgroup is also called a time–frequency lattice,
although it does not have to be of such a “rectangular” shape in general.

Definition 10. A lattice ƒ � R
d is a (discrete) subgroup of R

d of the form ƒ D
AZd , where A is an invertible d �d -matrix over R. Lattices in R

2d can be described
as

ƒ D ˚.x; y/ 2 R
2d
ˇ̌
.x; y/ D .Ak C B`;Ck CD`/; .k; `/ 2 Z

2d



with A;B;C;D 2 C
d�d and

A D
�
A B

C D

�
:

A lattice ƒ D ˛Zd � ˇZd E R
2d for ˛; ˇ > 0 is called a separable lattice, a

product lattice, or a grid.

In the following, our lattice will be of the separable type for fixed lattice
parameters ˛; ˇ > 0.

Definition 11. For a nonzero window function g 2 L2.Rd / and lattice parameters
˛; ˇ > 0, the set of time–frequency shifts

G.g; ˛; ˇ/ WD fMˇnT˛kggk;n2Zd

is called a Gabor system. If G.g; ˛; ˇ/ is a frame for L2.Rd /, it is called a Gabor
frame or Weyl–Heisenberg frame. The associated frame operator is the Gabor frame
operator and takes the form

Sf D
XX
k;n2Zd

hf;MˇnT˛kgiL2 MˇnT˛kg (35)
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D
XX
k;n2Zd

Vgf .˛k; ˇn/MˇnT˛kg

for all f 2 L2.Rd /. The window g is also called the Gabor atom.

According to the general frame theory, fS�1gk;ngk;n2Zd yields the canonical
dual frame. So we would have to compute S�1 and apply it to all modulated
and translated versions of the Gabor atom g. A direct computation shows that for
arbitrary fixed indices `;m 2 Z

d ,

SMˇmT˛` DMˇmT˛`S: (36)

Consequently, also S�1 commutes with time–frequency shifts, which gives the
following fundamental result for (regular) Gabor analysis:

Theorem 8. If the given Gabor system G.g; ˛; ˇ/ is a frame for L2.Rd /, then all of
the following hold:

(a) There exists a dual window � 2 L2.Rd / such that the dual frame is given by the
Gabor frame G.�; ˛; ˇ/.

(b) Every f 2 L2.Rd / has an expansion of the form

f D
XX
k;n2Zd

hf;MˇnT˛kgiL2 MˇnT˛k� (37)

D
XX
k;n2Zd

hf;MˇnT˛k�iL2 MˇnT˛kg

with unconditional convergence in L2.Rd /.
(c) The canonical dual frame is given by the Gabor frame fMˇnT˛kS

�1ggk;n2Zd
built from the canonical dual window �ı WD S�1g.

(d) The inverse frame operator S�1 is just the frame operator for the Gabor system
G.�ı; ˛; ˇ/ and

S�1f D
XX
k;n2Zd

˝
f;MˇnT˛k�

ı˛
L2 MˇnT˛k�

ı: (38)

We note that if the function g is compactly supported and the modulation param-
eter ˇ is sufficiently small, it is easy to verify whether G.g; ˛; ˇ/ is a frame and to
find the canonical dual window in the affirmative case; see [51, 6.4] or [17, 9.1].

One can show [51, 7.6.1] that all dual windows � of a Gabor frame G.g; ˛; ˇ/ are
within an affine subspace of L2.Rd /, namely, � 2 �ı C K?, where K is the closed

linear span of G
�
g; 1

ˇ
; 1
˛

�
and therefore
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K? D ˚h 2 L2.Rd / W hh;Mn=˛Tk=ˇgiL2 D 0 8k; n 2 Z
d


: (39)

Hence, we have � D �ı C h for a certain h 2 K?, and as �ı 2 K, the canonical
dual window possesses the smallest L2-norm among all dual windows and is most
similar to the original window g. However, there might be reasons not to choose the
canonical dual window, but one of the others in �ıCK?, if, e.g., one wants the dual
window to have a smaller essential support or if the window should be as smooth as
possible. Explicit constructions of alternative dual windows can be found in [17].

A key result in Gabor analysis states a necessary condition for a Gabor system to
form a frame:

Theorem 9. Let g 2 L2.Rd /nf0g and ˛; ˇ > 0. If G.g; ˛; ˇ/ is a frame, then:

(a) ˛ˇ � 1.
(b) G.g; ˛; ˇ/ is a basis if and only if ˛ˇ D 1.

Unfortunately, having ˛ˇ � 1 is not sufficient for a Gabor system to form
a frame. Sufficient conditions are presented, e.g., in [16, 8.4]. A special result is
known for the Gaussian function:

Theorem 10. Consider the normalized Gaussian '.x/ WD 2d=4e��x2
: Then

G.'; ˛; ˇ/ is a frame for L2.Rd / if and only if ˛ˇ < 1.

In signal analysis, it is customary to call the case

˛ˇ < 1 oversampling

˛ˇ D 1 critical sampling

˛ˇ > 1 undersampling

In the case of the Gaussian window, oversampling guarantees an excellent time–
frequency localization. But for Gabor frame theory in L2.Rd /, it is quite delicate
to find appropriate windows for given ˛ˇ � 1. The case ˛ˇ D 1 is problematic
from the point of view of time–frequency analysis, as the Balian–Low theorem
demonstrates:

Theorem 11 (Balian–Low). Let g 2 L2.Rd / be a nonzero window and ˛; ˇ > 0
with ˛ˇ D 1. If g has good TF-concentration in the sense of

kXgkL2kX OgkL2 <1;

then G.g; ˛; ˇ/ cannot constitute a frame.
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Combining Theorems 9 and 10 shows that it is impossible for a Gabor basis to
be well localized in both the time domain and the frequency domain. This motivates
the study of redundant Gabor systems: As demonstrated by Theorem 10, redundant
Gabor frames exist for any ˛ˇ < 1:

5 Discrete Gabor Systems

For practical implementations of Gabor analysis, it is essential to develop discrete
versions of the theory for Gabor frames.

Gabor Frames in `2.Z/

Classically, most signals were considered as “continuous waves.” Indeed, the
technology for signal processing originally was of the continuous-time analog type
before digital computers came into our everyday life. Nowadays, digital signal
processing is used almost exclusively, forcing us to change our function model to a
time-discrete one. It is therefore natural to switch from L2.R/ to `2.Z/.

Gabor frame theory in `2.Z/ is very similar to that in L2.R/ and will therefore
only be discussed briefly in this section. The main differences concern the time
shifts and frequency shifts. Time shifts are given as multiples of integer translates,
i.e.,

Tkf .j / D f .j � k/ (40)

for k 2 Z and f 2 `2.Z/. A shift parameter ˛ > 0 for Gabor frames in `2.Z/ can
only be given as ˛ D N 2 N.

For fixed L 2 N and corresponding to the modulation parameter 1=L; we define
the modulation operatorM` by

M`f .j / D e2� ij `=Lf .j / (41)

for ` 2 Z. Modulations are now periodic with period L, i.e., M`CnL D
M` 8n 2 Z; implying that one needs only the modulationsM0; : : : ;ML�1.

The discrete Gabor system generated by the sequence g 2 `2.Z/, shift
parameters N , and modulation parameter 1=L is now the family of sequences
fgk;`gk2Z;`2hLi where

gk;`.j / WD M`TkNg.j / D e2� ij `=Lg.j � kN/

and hLi WD f0; : : : ; L � 1g � Z:

If a Gabor system satisfies the frame inequalities for f 2 `2.Z/, the dual frame
is again a Gabor frame built from a dual window � 2 `2.Z/. The frame expansion
takes the form
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f D
1X

kD�1

L�1X
`D0

hf;M`TkN�i2M`TkNg for f 2 `2.Z/:

Many results and conditions for Gabor systems in `2.Z/ can mutatis mutandis be
taken over from L2.R/, e.g., a necessary condition for the mentioned Gabor system
to be a frame for `2.Z/ is that ˛ˇ D N=L � 1.

We note that there is a natural way of constructing Gabor frames in `2.Z/ from
Gabor frames in L2.R/ through sampling; see the paper [55] by Janssen.

The step from L2.R/ to `2.Z/ is the first one toward computational realization
of Gabor analysis. However, since in finite time only finitely many elements can be
considered, only vectors of finite length and finite sums can be computed. Therefore,
we turn to signals of finite length next.

Finite Discrete Periodic Signals

In practice, one has to resort to finite, discrete sequences. We will consider signals
f 2 C

L, i.e., signals of length L 2 N, and write f D .f .0/; : : : ; f .L � 1//,
defined (for convenience) over the domain hLi WD f0; : : : ; L� 1g � Z. This way of
indexing suggests in a natural way to view them as functions over the group of unit
roots of order L or equivalently as periodic sequences with

f .j C nL/ WD f .j / 8n 2 Z; j 2 hLi:

The discrete modulation M` defined in (41) can still be applied; the translation Tk
defined in (40) can be taken from the range 0 � k � L � 1.

The discrete Fourier transform (DFT) of f 2 C
L is defined as

Of .j / WD .Ff /.j / WD
L�1X
kD0

f .k/ e�2� ijk=L; j 2 ZL; (42)

which is – up to a constant – a unitary mapping on C
L. Its inverse is

.F�1f /.j / WD 1

L

L�1X
kD0

f .k/ e2� ijk=L; j 2 ZL: (43)

The unitary version C
L ! C

L has the factor 1=
p
L in front. A well-known and

very efficient implementation of the DFT is the fast Fourier transform (FFT).
The discrete STFT of f 2 C

L with respect to the discrete window g 2 C
L is

given as

.Vgf /.k; `/ D hf;M`TkgiCL:
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The actions of time and frequency shifts are in more detail given as

Tkf D Tk
�
f .0/; : : : ; f .L � 1/

	 D �f .�k/; : : : ; f .L � 1 � k/	

and

M`f D M`

�
f .0/; : : : ; f .L � 1/

	
D �

f .0/; e2� i`=Lf .1/; e2� i2`=Lf .2/; : : : ; e2� i.L�1/`=Lf .L � 1/
	
:

The actions of the TF-shifts can be described as matrices that operate on the vector
f D .f .0/; : : : ; f .L � 1//T. The time-shift matrix Tk is given as the permutation
matrix with ones on the (periodized) k-th subdiagonal, whereas the modulation
matrix has its exponential entries positioned at the main diagonal. It is obvious that
the composition of arbitrary TF-shifts need not be commutative, since

TkM` D e2� ik`=LM`Tk; k; ` 2 ZL

To get a more compact notation for TF-shifts, we write

�.�/ WD �.k; `/ WD M`Tk with � D .k; `/ 2 ZL � ZL;

where ZL � ZL is the discrete time–frequency plane. The commutation relations
imply for � D .r;m/ and � D .s; n/

�.�/ �.�/ D �.�C �/ e2� irn=L (44)

D �.�/ �.�/ e2� i.rn�sm/=L: (45)

Frames and Gabor Frames inC
L

The general frame definitions and results can easily be carried over to the case
of finite discrete signals. The conditions for the finite sequence fg0; : : : ; gN�1g of
elements gj 2 C

L to be a frame for the finite-dimensional Hilbert space CL are that
there exist A;B > 0 such that

A

L�1X
kD0

jf .k/j2 �
N�1X
jD0

ˇ̌hf; gj iCL ˇ̌2 � B
L�1X
kD0

jf .k/j2 8f 2 C
L

or

Akf k2
2 � kCf k2

2 � Bkf k2
2 8f 2 C

L;
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where C is the analysis operator. It is obvious that the sequence fgj gN�1
jD1 has to

span all of CL, i.e., spanfgj gN�1
jD0 D C

L; hence, N � L in a Hilbert space with
dimensionL. Also the converse is true: Every spanning set in C

L is a frame for CL.
The action of the linear analysis operatorC on the vector f is given as the vector

Cf D �hf; gj i	N�1
jD1 , indicating that its j -th entry is

.Cf /j D hf; gj i D
L�1X
kD0

f .k/ gj .k/ :

Letting g� D NgT; the matrix form of C 2 C
N�L is

C D

0
B@
g�

0
:::

g�
N�1

1
CA D

0
B@
g0.0/ � � � g0.L � 1/
:::

:::
:::

gN�1.0/ � � � gN�1.L � 1/

1
CA :

A family fgj gj2hN i is a frame for C
L if and only if the corresponding analysis

operator C has full rank, and every matrix with full rank uniquely represents a
frame.

The frame operator S D C �C becomes an L � L matrix that also has full rank,
and it is therefore invertible. Its condition number equals the ratio between its largest
and smallest eigenvalue; letting A denote the largest lower frame bound and B the
smallest upper frame bound, this is equal to the ratio B=A.

If we translate the discrete frame expansion

f D C �c D .g0; : : : ; gN�1/

0
B@

c.0/
:::

c.N � 1/

1
CA D

0
B@

PN�1
jD0 c.j / gj .0/

:::PN�1
jD0 c.j / gj .L� 1/

1
CA

for a given f 2 C
L, we see from a linear algebra point of view that we are looking

for N unknown coordinates of c 2 C
N , using L � N equations. Clearly, the

solution cannot be unique if L < N . Considering that

f D SS�1f D C �C.C �C/�1f;

we see that one solution for c could be given as

c D C.C �C/�1f D .C �/�f

in terms of the pseudo-inverse of the synthesis operator C �. This also provides the
matrix form of the canonical dual frame that is given by

�
S�1g0; : : : ; S

�1gN�1
	� D �S�1C �	� D CS�1 D .C �/�:
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We will now proceed to the special case of Gabor frames. They are given as a
sequence of TF-shifts of a single window function g 2 C

L, i.e., a Gabor frame for
C
L is a sequence fg�g�2ƒ WD f�.�/gg�2ƒ for a certain discrete subset ƒ � ZL �

ZL. We writeCg for the Gabor analysis operator to indicate the dependence on g and
use it synonymously for the Gabor frame itself. It is clear that it is necessary to have
N � L elements to span all of CL, but this is of course not sufficient for validating
a frame. The ratio between N and L is also called the redundancy of the frame,

redC WD N

L
:

For any subgroup ƒ E ZL � ZL, the Gabor frame operator Sg D C �
g Cg

commutes with all TF-shifts �.�/ for � 2 ƒ. This can be shown in a similar way as
in Sect. 4. Therefore, the dual frame is once again a Gabor frame, built by the same
TF-shifts of a single dual window � 2 C

L. The canonical dual frame consists of
elements

S�1
g �.�/g D �.�/S�1

g g D �.�/�ı;

and the computation of the canonical dual window reduces to finding a solution for
the linear equation

Sg�
ı D g: (46)

Therefore, the discrete Gabor expansion of an f 2 C
L is given as

f D
X
�2ƒ

˝
f; �.�/g

˛
CL
�.�/�ı D

X
�2ƒ

˝
f; �.�/�ı˛

CL
�.�/g;

where the Gabor coefficients belong to `2.ƒ/ Š C
N .

A special case for a lattice is a so-called separable lattice ƒ D ˛ZL � ˇZL with
˛; ˇ 2 N being divisors of L. The elements of such a Gabor frame take the form

Mˇ`T˛kg.j / D e2� iˇ j̀=Lg.j � ˛k/

with k 2 ˝
L
˛

˛
and ` 2

D
L
ˇ

E
. The number of elements is N D L

˛
� L
ˇ
D L2

˛ˇ
, and

it is necessary to have L2

˛ˇ
� L elements to have a frame. The oversampled case

is therefore given for ˛ˇ < L, and the undersampled case for ˛ˇ > L. Critical
sampling is given for ˛ˇ D L.
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6 Image Representation by Gabor Expansion

We have seen that Gabor analysis can be considered as a localized Fourier analysis,
where the main design freedom is the choice of (a) the time–frequency lattice and
(b) the window function. The type of sampling lattice can be distinguished into a
separable or non-separable case, where the first one can be described by the choice
of lattice constants ˛; ˇ > 0.

It turns out that in the twofold-separable case, i.e., where the d -dimensional
analysis window is a tensor product of d one-dimensional functions

g D g1 ˝ � � � ˝ gd ; with g1 ˝ � � � ˝ gd .x1; : : : ; xd / D g1.x1/ : : : gd .xd /;

and the sampling lattice ƒ is a product ƒ D Qd
iD1 ˛iZLi �

Qd
iD1 ˇiZLi , the dual

Gabor window � is given as a product � D �1 ˝ � � � ˝ �d as well. Thus, the
computation is reduced to finding the 1D duals �i of the 1D atoms gi with respect
to the corresponding 2D time–frequency lattices ƒi D ˛iZLi � ˇiZLi .

Our aim here is to show how the results can be applied to the case of image
signals. Gabor expansions of finite discrete 2D signals (i.e., digital images) are
similar to those of finite discrete 1D signals, and in a more general notation, there is
no difference at all. We are going to describe it next (Fig. 2).

2D Gabor Expansions

The key point for the development of efficient algorithms is to interpret an image of
size L1 � L2 as a real- or complex-valued function on the additive Abelian group
G D ZL1 � ZL2 . The position–frequency space is

G �bG D ZL1 � ZL2 �4ZL1 � ZL2 :

Fig. 2 Typical 2D Gabor
atoms
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A Gabor system G.g; ƒ/ consists of TF-shifts MlTkg of a window g 2 C
L1�L2 ,

where .k; l/ are elements of a sampling subgroupƒ E ZL1 � ZL2 �4ZL1 � ZL2 . The
Gabor coefficients of the image f 2 C

L1�L2 are defined as

ck;l WD h f ;MlTkgiF; .k; l/ 2 ƒ: (47)

Here, we use the subscript F in order to recall that for matrices (this is how images
are usually stored), one takes the scalar product and the corresponding norm just as
the Euclidian one in C

N , with N D L1L2, usually denoted as Frobenius norm.
The Gabor system is a frame if for 0 < A � B <1 one has

Akfk2
F �

X
.k;l/2ƒ

jh f ;MlTkgiFj2 � Bkfk2
F 8f 2 C

L1�L2 :

For dimensionality reasons, it is clear that the frame condition is only possible if
the number of elements in ƒ has to be at least equal to the dimension of the signal
space, and, therefore, we need L1L2 � jƒj � .L1L2/

2. The redundancy of the
Gabor frame is

redƒ WD jƒj
L1L2

� 1:

As in the one-dimensional case, the Gabor frame operator

Sg f WD
X
.k;l/2ƒ

h f ;MlTkgiFMlTkg

commutes with TF-shifts determined by ƒ, and the minimal resp. maximal eigen-
value are equal to the maximal lower frame bound A and minimal upper frame
bound B , respectively.

Again, the dual Gabor frame has a similar structure as the Gabor frame itself:
using the same TF-shifts, now applied to a dual window � 2 C

L1�L2 , one has the
expansion

f D
X
.k;l/2ƒ

h f ;MlTkgiFMlTk� D
X
.k;l/2ƒ

h f ;MlTk�iFMlTkg

for all f 2 C
L1�L2 . The existence of the dual atom is guaranteed by the theory

of frames, and the calculation of the dual Gabor frame is done by the methods
developed there. Recent results guarantee that good TF-concentration of the atom g

implies a similar quality for the dual Gabor atom. Typically, the condition number
of the frame operator depends on the geometric density (hence, to some extent,
on the redundancy) of the lattice. However it is worth mentioning that even for
low redundancy factors, relatively good condition numbers can be expected for
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suitably chosen atoms and that perfect reconstruction can be achieved in a stable
way in a computationally efficient way even if the discretization of the continuous
representation formula is far from satisfactory. Expressed differently, the frame
operator may be far away from the identity operator but still stably invertible.

The optimal method and effective computational cost for obtaining Gabor
expansions of an image depend on the structure of the 4D sampling lattice. A (fully)
separable position–frequency lattice (PF-lattice) can be described by parameters
˛1; ˛2; ˇ1; ˇ2 > 0 such that the constants ˛i and ˇi describing the position and fre-
quency shift parameters are divisors of Li , respectively. The set ƒ itself is given as

ƒ D
n
.k; l/ D .k1; k2; `1; `2/ D .˛1u1; ˛2u2; ˇ1v1; ˇ2v2/

ˇ̌
ui 2

D
Li
˛i

E
; vi 2

D
Li
ˇi

Eo
;

i.e., it is a product group:ƒ D ƒ1 �ƒ2 with ƒi D ˛iZLi � ˇibZLi .
Full separability may be violated in different ways. Assume that ƒ D ƒ1 �ƒ2

but with non-separable 2D lattices ƒi . There are at least two natural choices, whose
usefulness may depend on the concrete application. The first and probably more
relevant choice is a latticeƒ1 in position space andƒ2, another lattice, in the wave-
number domain. For the case of radial symmetric windows, g, one may choose a
hexagonal packing in both the spatial and the wave-number domain.

Another flavor of separability comes in by choosing lattices within C
L2

1 and C
L2

2 ,
respectively, describing the first and the second pair of phase space variables.

In passing, we note that there are also fully non-separable subgroups. They
will not be discussed here, because it is not clear whether the increased level of
technicality is worth the effort.

Separable Atoms on Fully Separable Lattices

In this section, we will show why the case of a 2D separable window g D g1 ˝ g2

and a fully separable PF-lattice

ƒ D ƒ1 �ƒ2 D ˛1ZL1 � ˇ1bZL1 � ˛2ZL2 � ˇ2bZL2

allows for very efficient Gabor expansions at decent redundancy. It is crucial to
observe that in this case, it is enough to find a dual 1D window �1 for the 1D window
g1 on the TF-lattice ƒ1 E ZL1 �bZL1 and a dual 1D window �2 for the 1D window
g2 on the TF-lattice ƒ2 E ZL2 �bZL2 in order to obtain a dual 2D window � for
g for the lattice ƒ, simply as � WD �1 ˝ �2. In short, the 2D Gabor frame on the
product space C

L1 ˝ C
L2 is obtained by combining via tensorization the Gabor

frames for the signal spaces CL1 and C
L2 . The abstract result in the background can

be summarized as follows:



Gabor Analysis for Imaging 1743

Lemma 4. If femgm2hN1i � C
L1 and ffngn2hN2i � C

L2 are frames for CL1 andCL2 ,
respectively, then the sequence fem ˝ fng.m;n/2hN1i�hN2i is a frame for CL1 ˝ C

L2 ,
where .g ˝ h/.j; k/ WD g.j / h.k/ for g 2 C

L1 and h 2 C
L2 . The joint redundancy

is N1N2
L1L2

� 1.

As our image space is a tensor product, we define 2D Gabor windows g 2 C
L1�L2

by g D g1˝g2 for gi 2 C
Li . As we are looking at the case whereƒ D ƒ1�ƒ2, we

take two Gabor frames
n
g
.i/

ki ;`i

o
.ki ;`i /2ƒi

WD fM`i Tki gi g.ki ;`i /2ƒi � C
Li with frame

operators Si and use the set of products
n
g
.1/
k1;`1
˝ g.2/k2 ;`2

o
.k;l/2ƒ � C

L1 ˝ C
L2 as

frame for the image space with frame operator S1 ˝ S2.
In order to ensure the fact that this is a 2D Gabor family, one just has to verify that

the translation by some element in a product group, applied to a tensor product, can
be split into the action of each component to the corresponding factor. Finally, the
exponential law implies that a similar splitting is valid for the modulation operators;
in fact, plane waves are themselves tensor products of pure frequencies. We thus
have altogether

M`1Tk1g1˝M`2Tk2g2 DM.`1;`2/T.k1;k2/.g1˝g2/ 8.k1; k2/; .`1; `2/ 2 ZL1 � ZL2

as building blocks for our 2D Gabor frame.
The canonical dual of g with respect to that frame is given as

�ı D S�1g D S�1
1 g1 ˝ S�1

2 g2 D �ı
1 ˝ �ı

2 :

The calculation of 1D dual windows for separable TF-lattices has been efficiently
implemented in MATLAB available from the NuHAG webpage (http://www.univie.
ac.at/nuhag-php/mmodule/resp. by Peter Søndergaard LTFAT (linked with the
above page)).

Next, let us check out how we can efficiently obtain the Gabor coefficients of an
image f 2 C

L1�L2 as given by (47). How does the Gabor matrix Cg look like if it
is to be applied to an image f 2 C

L1�L2 stored as an L1 � L2-matrix? For sure, f
must be seen as a vector in C

L1L2 and Cg as an N1N2 � L1L2-matrix if the number
of elements in the 2D frame is N1N2 and the coefficient vector is c 2 C

N1N2 . In
general, f cannot be assumed to be separable; thus, the only thing simplifying our
computation is the structure

ck;l D
˝
f ;M`1Tk1g1 ˝M`2Tk2g2

˛
F:

If we think of the 1D case with some f 2 C
L and a general frame fgj gj2hN i � C

L,
the coefficients are obtained by

c D Cf D �hf; gj i	j2hN i D .cj /j2hN i;

http://www.univie.ac.at/nuhag-php/mmodule/resp
http://www.univie.ac.at/nuhag-php/mmodule/resp
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and for Gabor frames, c D .ck;`/.k;`/2ƒ with ƒ E ZL �cZL is actually a coefficient
matrix in C

L�L with jƒj D N � L2 nonzero entries. But due to simply stacking
the vectors fgk;`g.k;`/2ƒ D fgj gj2hN i � C

L in the coefficient matrix

C D

0
B@
g�

0
:::

g�
N�1

1
CA 2 C

N�L; (48)

one just gets a “flat” c 2 C
N . In our 2D case, the Gabor coefficient even consists of

entries ck;l D ck1;k2;`1;`2 . We also want to take the approach by using general frames
fgmgm2hN1i � C

L1 and fhngn2hN2i � C
L2 and look at the product frame fgm˝hngm;n

for CL1˝C
L2 . We also reduce the coefficient c D .c.m; n//m;n 2 C

N1N2 to a vector
of the form

c D �
c.0; 0/; c.0; 1/; : : : ; c.0; N2 � 1/; c.1; 0/; : : : ; c.1; N2 � 1/; : : :

: : : ; c.N1 � 1; 0/; : : : ; c.N1 � 1; N2 � 1/
	T

such that we can try to find the corresponding coefficient matrix C 2 C
N1N2�L1L2

that can be applied to f 2 C
L1L2 , where

f D �f .0; 0/; : : : ; f .0; L2 � 1/; f .1; 0/; : : : ; f .L1 � 1; L2 � 1/
	T
: (49)

Now, we can look at the .m; n/-th or, rather, .mN2 C n/-th entry of the coefficient:

.Cf /m;n D c.m; n/ D hf; gm ˝ hniCL1L2

D
L1�1X
uD0

L2�1X
vD0

f .u; v/ .gm ˝ hn/.u; v/

D
L1�1X
uD0

L2�1X
vD0

f .u; v/ gm.u/ hn.v/: (50)

Since we are now able to split the indices u and v for the frame elements, we can
consider the order in (49) and get

.Cf /m;n D
�
gm.0/ h�

n gm.1/ h
�
n � � � gm.L1 � 1/ h�

n

	
f D .C /m;nf;

where .C /m;n is the .m; n/-th or .mN2Cn/-th line of C and containsL1L2 entries.
The line vectors fh�

ngn2hN2i form the frame matrix C2 2 C
N2�L2 like in (48). If we

look at the range of N2 lines f.m; 0/; : : : ; .m;N2 � 1/g, we are able to express the
corresponding segment of C as

.C /mIn2hN2i D
�
gm.0/C2 gm.1/ C2 � � � gm.L1 � 1/C2

	
:
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This shows that the frame matrix of the product frame is the Kronecker product of
the partial frame operators Ci 2 C

Ni�Li , i = 1,2:

C D C1 ˝ C2 2 C
N1N2�L1L2 :

Nevertheless, we want to see whether we can compute c D .C1 ˝ C2/f in a
cheaper way by applying the frame matrices Ci without computing their Kronecker
product. As images are not stored as vectors f 2 C

L1L2 but rather as matrices f 2
C
L1�L2 in numerical software like MATLAB or Octave, we could try to get the

coefficient c D .c.m; n//m;n 2 C
N1�N2 more directly.

Proposition 1. Given two frames fgmgm2hN1i � C
L1 and fhngn2hN2i � C

L2 with
frame matrices Ci 2 C

Ni�Li , then the frame coefficient c 2 C
N1�N2 for the

image f 2 C
L1�L2 with respect to the product frame fgm ˝ hng.m;n/is given by

matrix multiplication as follows:

c D C1 � f � C T
2 D0

@
g0.0/ ��� g0.L1�1/

:
:
:

:
:
:

:
:
:

gN1�1.0/ ��� gN1�1.L1�1/

1
A
 

f .0;0/ ��� f .0;L2�1/
:
:
: ���

:
:
:

f .L1�1;0/ ��� f .L1�1;L2�1/

!0
@

h0.0/ ��� hN2�1.0/

:
:
: ���

:
:
:

h0.L2�1/ ��� hN2�1.L2�1/

1
A
(51)

Note that similar thoughts reveal the fact that the 2D DFT of an image f 2
C
L1�L2 can be obtained by the matrix multiplication

F f D FL1 � f � FL2 2 C
L1�L2 ; (52)

where FLi 2 C
Li�Li are the (symmetric) Fourier matrices of order Li .

If the synthesis operation is to be done by f D C �c for given f 2 C
L

and a frame C 2 C
N�L, one solution is obtained by c D .C �/�f with a right

inverse for C � such that IL D SS�1 D C �C.C �C/�1 D C �.C �/�, making the
pseudo-inverse of the synthesis operator the matching analysis operator. C �.C �/�
is the orthogonal projection onto the range of the desired synthesis operator. One
notices that due to .C �/� D .C �/�, we already have IL D .C �C /� D C�C , the
orthogonal projection onto the range of ranC�. Thus, the role of the operators can
be interchanged, meaning that C� is the matching synthesis operator for the analysis
operator C .

If we again interpret signals f 2 C
L1 ˝ C

L2 as f 2 C
L1L2 and take a product

frame fgm ˝ hngm;n with analysis operator C1 ˝ C2, we get IL1L2 D C�.C1 ˝ C2/

and IL1L2 D IL1 ˝ IL2 D
�
C
�
1C1

�
˝
�
C
�
2C2

�
, yielding that the matching synthesis

operator is C� D C
�
1 ˝ C�

2 . Due to Proposition 1, we can thus reconstruct f 2
C
L1�L2 by



1746 O. Christensen et al.

f D
�
C
�
1C1

�
f
�
C
�
2C2

�T D C�
1 c

�
C
�
2

�T
(53)

because c D C1 fC T
2 is in the range of the corresponding analysis operator.

These results were derived for products of general frames and therefore also hold
for products of Gabor frames. Given two Gabor frames fM`iTki gi g on subgroups
ƒi E ZLi �bZLi and with analysis operatorsCgi , we get their synthesis operators by

C
�
gi D C �

�ı
i

with �ı
i WD S�1

gi
gi . The product of those two frames is the Gabor frame

fMlTkgg.k;l/2ƒ1�ƒ2 consisting of PF-shifts of the window g D g1 ˝ g2 2 C
L1�L2

on the lattice ƒ D ƒ1 � ƒ2. The dual window to g is given by �ı WD �ı
1 ˝ �ı

2 .
Due to (51) and (53), the 2D Gabor analysis operation for the image f 2 C

L1�L2 is
obtained by

c D Cg1 fC T
g2

(54)

and a possible reconstructing synthesis operation by

f D C �
�ı

1
c
�
C �
�ı

2

�T D C�ı
1

T
cC�ı

2
; (55)

yielding that it is enough to obtain the two duals �ı
i . Figure 3 shows the construction

and look of the separable dual 2D window of a 2D Gaussian window on a fully
separable PF-lattice.

Efficient Gabor Expansion by Sampled STFT

In the case of a separable 2D atom and a fully separable PF-lattice, we can make
use of any fast 1D STFT implementation (cf. the NuHAG software page or the
LTFAT by Peter Søndergaard) to obtain the Gabor analysis coefficient c D Cg1 fC T

g2

and the Gabor reconstruction f D C �
�ı

1
c
�
C �
�ı

2

�T
for a given image f 2 C

L1�L2 .

These matrix multiplications from the left and right could still be rather expensive,
so one can obtain the set of Gabor coefficients c by calculating a finite number of
sampled 1D STFTs, with the sampling points determined by shift parameters ˛1; ˛2

and modulation parameters ˇ1; ˇ2.
If we remember the 1D case, the Gabor frame Cg for CL by a window g 2 C

L

involves a separable latticeƒ D ˛ZL � ˇZL with jƒj D N D L2

˛ˇ
, and for arbitrary

f 2 C
L, we have

.Cgf /k;` D ck;` D hf;Mˇ`T˛kgiCL D
L�1X
uD0

f .u/Mˇ`T˛kg.u/ D Vgf .˛k; ˇ`/
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for k 2 ˝L
˛

˛
and ` 2

D
L
ˇ

E
, which can be viewed as a vector of length N if the frame

is seen as a matrix Cg 2 C
N�L. In the 2D case, if we consider f D .f0; : : : ; fL2�1/

with fj WD .f .0; j /; : : : ; f .L1 � 1; j //T, then bj D Cg1fj acts as the Gabor
analysis operation for all fj 2 C

L1 with coefficients bj 2 C
N1 for all j 2 hL2i. The

operation b D Cg1 f collects these in a matrix b D .b0; : : : ; bL2�1/. If we express its
k-th line as a line vector qT

k WD .b/k D .b0.k/; : : : ; bL2�1.k//, we get

Cg1 f D b D qT D

0
B@

qT
0
:::

qT
N1�1

1
CA 2 C

N1�L2 :

The complete 2D Gabor analysis operation is thus c D qTC T
g2
D .Cg2 q/T, and this is

just the Gabor analysis operation of the vectors qk 2 C
L2 for k 2 hN1i with respect

to the Gabor frame Cg2 .
All in all, the 2D Gabor analysis operation in the twofold-separable case can be

obtained by first computing L2 1D STFT-operations of output length N1 using the
parameters ˛1; ˇ1 followed by N1 1D STFT-operations of output length N2 using
the parameters ˛2; ˇ2.

As the reconstruction (2D Gabor expansion) is just a multiplication of the dual
Gabor matrices C �

�ı
i

from the left and right of c, this task can be seen as a sequence
of 1D Gabor expansions and can thus be obtained by a sequence of inverse 1D
STFT-operations as well. There are again two ways: The first one is to do N1

inverse operations with output length L2 using the parameters ˛2; ˇ2 followed by
N2 operations with output length L1 using ˛1; ˇ1. The second way exchanges Li
and Ni correspondingly.

Visualizing a Sampled STFT of an Image

So far, we have visualized the full STFT of an image as a large block image, where
either each block fully represents the frequency domain and the position of the
blocks the position domain, or vice versa. As such an image would become rather
huge, we prefer to visualize only a sampled STFT instead. In the case of a separable
atom, this can be realized by obtaining the discrete 2D Gabor transform by (54),
where the two involved matrices Cgi consider a special order of their Gabor frame
elements M`iTki gi .

For a Gabor frame fM`Tkgg.k;`/2ƒ � C
L given by a 1D window g 2 C

L on

a separable lattice ƒ D ˛ZL � ˇZL with N D jƒj D L2

˛ˇ
elements, we say that

the Gabor frame elements are ordered by modulation priority if the frame matrix
Cg 2 C

N�L is of the form
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Fig. 4 Discrete 2D Gabor transform of a zebra, modulation priority. The picture shows the
absolute values of c D Cgf C

T
g , where g is the 1D Gaussian of length 480 and Cg is the Gabor

matrix for the latticeƒ D 10Z480 � 6Z480, whose entries were ordered with modulation priority

Cg D

0
BBBBBBBBBBBBBBBB@

M0T0g
�

MˇT0g
�

:::

ML=ˇ�1T0g
�

M0T1g
�

:::

ML=ˇ�1T1g
�

:::

ML=ˇ�1TL=˛�1g
�

1
CCCCCCCCCCCCCCCCA

We call it ordered by translation priority if it is of the form
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Fig. 5 Discrete 2D Gabor transform of a zebra, translation priority. The picture shows the absolute

values of
�
c D �

Cgf
�

C T
g , where g is the 1D Gaussian of length 480 and

�

Cg is the Gabor matrix for
the latticeƒ D Z480 � 60Z480, whose entries were ordered with translation priority. The Gaussian
blurred image in the middle has been scaled into the colormap individually

QCg D

0
BBBBBBBBBBBBBBBB@

M0T0g
�

M0T˛g
�

:::

M0TL=˛�1g
�

M1T0g
�

:::

M1TL=˛�1g
�

:::

ML=ˇ�1TL=˛�1g
�

1
CCCCCCCCCCCCCCCCA

Obviously, QCg D PCg for a suitable permutation matrix P 2 C
N�N .
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Fig. 6 A non-separable window and some duals on fully separable lattices. The lattices ƒi are
that of Fig. 3. The lattices ƒ0

i exchange ˛i with ˇi . The last lattice has vertical redundancy 1 and
horizontal redundancy 6.4. (a) Non-separable window g. (b) Dual �ı on ƒ1 � ƒ2. (c) Dual on
ƒ0

1 �ƒ0
2 with exchange parameters (d) Dual at vertically critical redundancy

If we take an image f 2 C
L1�L2 and two Gabor frames fM`iTki gi g, .ki ; `i / 2 ƒi ,

on separable lattices ƒi D ˛iZLi � ˇiZLi , we can take their product Gabor frame
for CL1�L2 and obtain the mentioned two possibilities for an STFT block image by
either considering the frame matrices Cgi or QCgi . The matrices Cgi are ordered by
modulation priority, and if c D Cg1 fC T

g2
, then c consists of L1

ˇ1
� L2

ˇ2
-blocks

Xk1;k2 WD
�h f ;M.`1;`2/T.k1;k2/gi

	
`1;`2

such that

c D

0
B@

X0;0 � � � X0;L2=˛2�1
::: � � � :::

XL1=˛1�1;0 � � � XL1=˛1�1;L2=˛2�1

1
CA:

The blocks Xk1;k2 equal the part
�
Vgf .k1; k2; `1; `2/

	
`1;`2

of the sampled STFT and
thus contain the whole (sampled) set of frequency shifts for a certain position shift
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of the window g D g1 ˝ g2. The (sampled) frequency domain is therefore spanned
in each of the blocks Xk1;k2 , and their positions in c span the (sampled) position
domain. Each Xk1;k2 could be seen as a sampled “Fourier image” of the discrete
Fourier transformbf � T.k1;k2/ Ng.

In the other case, where we have Qc D QCg1 f QC T
g2

, the Gabor coefficient consists of
L1
˛1
� L2

˛2
-blocks

Y`1;`2 WD
�h f ;M.`1;`2/T.k1;k2/gi

	
k1;k2

such that

Qc D

0
B@

Y0;0 � � � Y0;L2=ˇ2�1
::: � � � � � �

YL1=ˇ1�1;0 � � � YL1=ˇ1�1;L2=ˇ2�1

1
CA :

Here, the blocks Y`1;`2 equal the part
�
Vgf .k1; k2; `1; `2/

	
k1;k2

of the sampled STFT
and contain the corresponding set of position shifts for a certain frequency shift of
g. The position domain is spanned in each of the blocks Y`1;`2 , and their positions in
Qc span the frequency domain.

Figures 4 and 5 show examples for both cases using the zebra test image. As it is
a square image, we can take g1 D g2 and thus Cg1 D Cg2 . The first figure composes
the Gabor transform coefficient matrix as blocks of Fourier images. Clearly, the
overall image reflects the shape of the zebra. The “pixels” of that image contain
“Fourier jets” that are orthogonal to the edges at the corresponding position in the
original zebra image. Thus, the “jets” are oriented horizontally where, e.g., the body
of the animal shows vertical line patterns. The second figure shows blocks of zebra
images that have been convolved with modulated Gaussians. The absolute values
show the peaks as black spots within the respective image blocks.

Non-separable Atoms on Fully Separable Lattices

Non-separable windows are those that can only be defined considering the com-
plete image domain ZL1 � ZL2 , and not ZL1 and ZL2 separately. These cannot
be described as a tensor product g1 ˝ g2 with gi 2 C

Li anymore, but only
generally as g 2 C

L1�L2 . With this case, we lose the ability to consider two
(1D) frames independently for each dimension, and we cannot apply two frame
matrices independently to an image. It appears that we have to stick to the known
factorizations of Gabor matrices on (fully) separable lattices with parameters ˛i ; ˇi ,
and we thus cannot make use of the equidistantly sampled 1D STFT. However,
under certain conditions, this case can be completely referred to a 1D case, as we
will see below.

Figure 6 indicates an important thing about the redundancy. Sure, a redundancy
of jƒj

L1L2
� 1 is only a necessary condition, but it seems to be important to consider
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the redundancy in each dimension. The involved window is a 2D Gaussian window
g 2 C

120�160, stretched vertically by 4
3 , shrunken horizontally by 3

4 , then rotated
(counter-clockwise) by 3

8� . Figure 6d shows its dual on a fully separable 4D PF-
lattice with overall redundancy 6:4. It was computed in the work of P. Prinz which
makes use of the Gabor matrix factorizations [66]. But although the redundancy
value gives the impression to be safe, it hides the fact that the involved lattice
is actually ƒ D 10Z120 � 12Z120 � 5Z160 � 5Z160, yielding the redundancy as

120
10 � 12 � 160

5 � 5 D 1 � 6:4. This shows that the vertical redundancy is critical, and the dual
has a bad localization in the vertical dimension. It is therefore necessary to make
sure that the redundancy is reasonably distributed among the dimensions. In this
sense, fully separable 4D lattices can always be considered as a product of two 2D
TF-lattices with independent redundancies, no matter what structure the 2D window
possesses.

7 Historical Notes and Hint to the Literature

Nonorthogonal expansions as proposed by D. Gabor in his seminal work [45] of
1946 were ignored for a long time by the mathematical community. The question
to which extent the claims made by D. Gabor could be realized in the context of
generalized functions, was carefully analyzed by A.J.E.M. Janssen in 1981 [53].
Around the same time, M. Bastiaans explored the connections between Gabor
theory and optics [3–7]. In the critically sampled case, he suggested to use the
biorthogonal function � in order to calculate Gabor coefficients. The connection to
the biorthogonality relations for dual Gabor windows was pointed out in two papers
in 1995 [26, 54] and brought to the multidimensional case in [39, 40, 69].

Two early papers in the field, authored by J. Daugman and Y.Y. Zeevi and
his coauthors, established a connection between a 2D version of Gabor analysis
and early vision [27, 46, 64, 83, 84], Various subsequent papers emphasized that
a Gabor family is not an orthogonal system and that, therefore, computation of
coefficients has to be computationally expensive. We know by now that while linear
independence is indeed lost, the rich covariance structure of the Gabor problems
actually leads to efficient algorithms.

The mathematical theory of Gabor expansions was promoted in various direc-
tions in the last two decades. Although a lot of Gabor analysis is naturally valid
in the context of general locally compact Abelian groups, a substantial body of
references only covers the standard case, for 1D signals and separable lattices.

Of course, the theory underlying image processing is formally covered by
the theory of Gabor analysis over finite Abelian groups as described in [40].
Some basic facts in the general LCA context are given in [50], and some further
results generalize to this setting, applying standard facts from abstract harmonic
analysis [44].

Multidimensional, non-separable lattices are discussed in [41], and [38] deals
with situations where the isomorphism of 2D groups with certain 1D groups helps
to use 1D Gabor code to calculate 2D dual Gabor windows.
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Numerical methods for Gabor representations have been discussed since the first
and pioneering papers (see, e.g., [2,46,84]). There are also hints on how to perform
parallel versions of the Gabor transform [30]. A partial comparison of algorithms is
in [67] and in the toolbox of P. Søndergaard. It can be expected to provide further
implementations and more details concerning numerical issues in the near future.

One of the most natural applications (based on the interpretation of Gabor
coefficients) are space-variant filters. Given the Gabor transform, one can multiply
them with a 0=1 function over the coefficient domain, passing through, e.g., higher
frequencies within regions of interest, whereas otherwise, only low frequencies are
stored, thus representing foveated images (with somewhat blurred parts outside the
region of interest).

Since different textures in different regions of an image might also be detected
using Gabor coefficients, natural applications are texture segmentation (see e.g.,
[31,77]), image restoration [19,82], and image fusion [68]. The extraction of direc-
tional features in images has been considered recently in [48]. Other contributions
to texture analysis are found in [49]. Other applications are pattern recognition [76],
face identification as described in [70], and face detection [52].

Some of the material presented in this paper can be found in an extended form in
the master thesis of the last named author [63].

Cross-References
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space of point sets (or landmarks) and then provides an introduction to the more
challenging issue of building spaces of shapes represented as plane curves. A
special attention is devoted to constructions involving quotient spaces, since
they are involved in the definition of shape spaces via the action of groups of
diffeomorphisms and in the process of identifying shapes that can be related
by a Euclidean transformation. The resulting structure is first described via
the geometric concept of a Riemannian submersion and then reinterpreted in
a Hamiltonian and optimal control framework, via momentum maps. These
developments are followed by the description of algorithms and illustrated by
numerical experiments.

1 Introduction

The analysis of shapes as mathematical objects has constituted a significant area of
interest in the past few decades motivated by the development of image acquisition
methods and segmentation algorithms, in which shapes could be extracted as
isolated objects. Shape analysis is a framework, in which a given shape is considered
as a single (typically infinite dimensional) variable, requiring the development of
new techniques for their representation and statistical interpretation. This framework
has found applications in several fields, including object recognition in computer
vision and computational anatomy.

The example in Fig. 1 can help in framing the kind of problems that are being
addressed and serve as a motivation. These shapes are fairly easily recognizable for
the human eye. They do however exhibit large variations, and a description in simple
terms of how they vary and of how they can be compared is a much harder task. It is
clear that a naive representation, like a list of points, cannot be used directly, because
the discretized curves may have different numbers of points, and no correspondence
is available between them. Coming up with quantitative and reliable descriptors that
can be, for example, analyzed in a rigorous statistical study is, however, of main
importance for the many applications, and the goal of this chapter is to provide a
framework in which such a task can be performed in a reliable well-posed way.

2 Background

During the past decades, several essential contributions have been made, using
rigorous mathematical concepts and methods, to address this problem and others of
similar nature. This collection of efforts has progressively defined a new discipline
that can be called mathematical shape theory.

Probably, the first milestone in the development of the theory is Kendall’s
construction of a space of shapes, defined as a quotient of the space of disjoint
points in R

d by the action of translation, rotation, and scaling [40]. Kendall’s theory
has been the starting point of a huge literature [15, 41, 64] and allowed for new
approaches for studying datasets in which the group of similitudes was a nuisance
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Fig. 1 Examples of shapes (Taken from the MPEG-7 shape database)

factor (for such data as human skulls, prehistoric jewelry, etc.). One can argue that,
as a candidate for a shape space, Kendall’s model suffers from two main limitations.
First, it relies on the representation of a shape by a finite number of labeled points, or
landmarks. These landmarks need to have been identified on each shape, and shapes
with different numbers of landmarks belong to different spaces. From a practical
point of view, landmarks are most of the time manually selected, the indexation of
large datasets being time consuming and prone to user-dependent errors. The second
limitation is that the metric on shapes is obtained by quotienting out the standard
Euclidean metric on point sets, using a standard “Riemannian submersion” process
that we will discuss later in this chapter. The Euclidean metric ignores a desirable
property of shape comparison, which states that shapes that are smooth deformations
of one another should be considered more similar than those for which the points in
correspondence are randomly displaced, even if the total point displacement is the
same.

This important issue, related to smoothness, was partially addressed by another
important contribution to the theory, which is Bookstein’s use of the thin plate
splines originally developed by Duchon and Meinguet [10, 16, 51]. Splines interpo-
late between landmark displacements to obtain a smooth, dense, displacement field
(or vector field). It can be addressed with the generic point of view of reproducing
kernel Hilbert spaces [7, 77], which will also be reviewed later in this chapter.

This work had a tremendous influence on shape analysis based on landmarks,
in particular for medical studies. It suffers, however, from two major drawbacks.
The first one is that the interpolated displacement can be ambiguous, with several
points moved to the same position. This is an important limitation, since inferring
unobserved correspondences is one of the objectives of this method. The second
drawback, in relation with the subject of this chapter, is that the linear construction
associated to splines fails to provide a metric structure on the nonlinear space of
shapes. The spline deformation energy provides in fact a first-order approximation
of a nonconstant Riemannian metric on point sets, which provides an interesting
version of a manifold of landmarks, as introduced in [11, 36, 72].

After point sets, plane curves are certainly the shape representation in which
most significant advances have been observed over the last few years. Several
important metrics have been discussed in publications like [37, 42, 43, 52, 79–81].
They have been cataloged, among many other metrics, in a quasiencyclopedic effort
by D. Mumford and P. Michor [55]. We will return to some of these metrics in
section “Spaces of Plane Curves.”
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Grenander’s theory of deformable templates [27] is another seminal work for
shape spaces. In a nutshell, Grenander’s basic idea, which can be traced back to
D’Arcy Thomson’s work on biological shapes in the beginning of last century
[65], is to introduce suitable group actions as generative engines for visual object
models, with the natural use of the group of diffeomorphisms for shapes. While the
first developments in this context use linear approximations of diffeomorphisms
[2, 28, 29], a first computational breakthrough in the nonlinear estimation of
diffeomorphisms was provided in [12] with the introduction of flows associated
to ordinary differential equations. This idea was further developed in a fully metric
approach of diffeomorphisms and shape spaces, in a framework that was introduced
in [17, 66, 67] and further developed in [8, 11, 35, 36, 57, 58]. The approach also led
to important developments in medical imaging, notably via the establishment of a
new discipline, called computational anatomy, dedicated to the study of datasets of
anatomical shapes [30, 60, 61, 78].

3 Mathematical Modeling and Analysis

Some Notation

The following notation will be used in this chapter. The Euclidean norm of vectors
a 2 R

d will be denoted using single bars and the dot product between a and b as
a � b or explicitly as aT b, where aT is the transpose of a. So

jaj2 D a � a D aT a

for a 2 R
d .

Other norms (either Riemannian metrics or norms on infinite-dimensional
spaces) will be denoted with double bars, generally with a subscript indicating the
corresponding space, or relevant point in the manifold. We will use angles for the
corresponding inner product, with the same index, so that, for a Hilbert space V , the
notation for the inner product between V and w in V will be hv ; wiV with

kvk2
V D hv ; viV :

When f is a function that depends on a variable t , its derivative with respect
to t computed at some point t0 will be denoted either @tf .t0/ or Pft .t0/, depending
on which form gives the most readable formula. Primes are never used to denote
derivative, that is, f 0 is not the derivative of f , but just another function. The
differential at x of a function of several variablesF is denotedDF.x/. If F is scalar
valued, its gradient is denotedrF.x/. The divergence of a vector field v W Rd ! R

d

is denoted r � v.
IfM is a differential manifold, the tangent space toM at x 2M will be denoted

TxM and its cotangent space (dual of the former) T �
x M . The tangent bundle (dis-

joint union of the tangent spaces) is denoted TM and the cotangent bundle T �M .
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When � is a linear form on a vector space V (i.e., a scalar-valued linear transfor-
mation), the natural pairing between � and v 2 V will be denoted .�j v/, that is,

.�j v/ D �.v/:

A Riemannian Manifold of Deformable Landmarks

Interpolating Splines and RKHSs
Let us start with some preliminary facts on Hilbert spaces of functions or vector
fields and their relation with interpolating splines. A Hilbert space is a possibly
infinite-dimensional vector space equipped with an inner product which induces
a complete topology. Letting V be such a space, with norm and inner product,
respectively, denoted k � kV and h � ; � iV , a linear form on V is a continuous linear
transformation � W V 7! R. The set of such transformations is called the dual space
of V and denoted V �. An element � in V � being continuous by definition, there
exists a constant C such that

8v 2 V;�.v/ � CkvkV :

The smaller number C for which this assertion is true is called the operator norm of
� and denoted k�kV � .

Instead of �.v/ like above, the notation .�j v/ will be used to represent the result
of � applied to V . The Riesz representation theorem implies that V � is in one-to-
one correspondence with V , so that for any � in V �, there exists a unique element
v D KV � 2 V such that, for any w 2 V ,

.�jw/ D hKV � ; wiV I

KV and its inverse LV D K�1
V are called the duality operators of V . They

provide an isometric identification between V and V �, with, in particular, k�k2
V � D

.�jKV�/ D kKV �k2
V .

Of particular interest is the case when V is a space of vector fields in d

dimensions, that is, of functions v W Rd ! R
d (or from  ! R

d where  is an
open subset of Rd ), and when the norm in V is such that the evaluation functionals
a˝ ıx belong to V � for any a; x 2 R

d , where

.a˝ ıxj v/ D aT v.x/; v 2 V: (1)

In this case, the vector field KV .a ˝ ıx/ is well defined and linear in a. One can
define the matrix-valued function .y; x/ 7! QKV .y; x/ by

QKV .y; x/a D .KV .a˝ ıx//.y/I
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QKV is the kernel of the space V . In the following, we will write KV .x; y/ instead
of QKV .x; y/, with the customary abuse of notation of identifying the kernel and the
operator that it defines.

One can easily deduce from its definition that KV satisfies the reproducing
property

8a; b 2 R
d ; hKV . � ; x/a ; KV . � ; y/biV D aTKV .x; y/b;

which also implies the symmetry property KV .x; y/ D KV .y; x/
T . Unless

otherwise specified, it will always be assumed that V is a space of vector fields
that vanish at infinity, which implies the same property for the kernel (one variable
tending to infinity and the other remaining fixed).

A space V as considered above is called a reproducing kernel Hilbert space
(RKHS) of vector fields. Fixing such a space, one can consider the spline inter-
polation problem, which is to find v 2 V with minimal norm such that v.xi / D ci ,
where x1; : : : ; xN are points in R

d and c1; : : : ; cN are d -dimensional vectors. It is
quite easy to prove that the solution takes the form

v.y/ D
NX
iD1

KV .y; xi /˛i ; (2)

where ˛1; : : : ; ˛N are identified by solving the dN-dimensional system

NX
iD1

KV .xj ; xi /˛i D cj ; for j D 1; : : : ; N: (3)

Let SV .x/ (where x D .x1; : : : ; xN /) denote the dN by dN block matrix

SV .x/ D .KV .xi ; xj //i;jD1;:::;N :

Stacking c1; : : : ; cN and ˛1; : : : ; ˛N in dN-dimensional column vectors c and ˛, one
can show that, for the optimal V ,

kvk2
V D ˛T SV .x/˛ D cT S.x/�1

V c; (4)

each term representing this spline deformation energy for the considered interpola-
tion problem.

How one uses this interpolation method now depends on how one interprets
the vector field V . One possibility is to consider it as a displacement field, in the
sense that a particle at position x in space is moved to position x C v.x/, therefore
involving the space transformation 'v WD id C v. In this view, the interpolation
problem can be rephrased as finding the smoothest (in the V-norm sense) full
space interpolation of given landmark displacements. The deformation energy in
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(4) can then be interpreted as some kind of “elastic” energy that evaluates the
total stress involved in the transformation 'v. This (with some variants, including
allowing for some no-cost affine, or polynomial, transformations) is the framework
of interpolation based on thin plates, or radial basis functions, as introduced in
[3, 4, 9, 10, 18], for example. As discussed in the introduction, this approach does
not lead to a nice mathematical notion of a shape space of landmarks; moreover, in
the presence of large displacements, the interpolated transformation 'v may fail to
be one to one and therefore to provide a well-defined dense correspondence.

The other way to interpret V is as a velocity field, so that v.x/ is the speed of a
particle at x at a given time. The interpolation problem is then to obtain a smooth
velocity field given the speeds c1; : : : ; cN of particles x1; : : : ; xN . This point of
view has the double advantage of providing a diffeomorphic displacement when
the velocity field is integrated over time and allowing for the interpretation of the
deformation energy as a kinetic energy, directly related to a Riemannian metric on
the space of landmarks.

Riemannian Structure
Let LmkN denote the submanifold of R

dN consisting of all ordered collections of
N distinct points in R

d :

LmkN D fx D .x1; : : : ; xN / 2 .Rd /N ; xi ¤ xj if i ¤ j g:

The tangent space to LmkN at x can be identified to the space of all families of d -
dimensional vectors c D .c1; : : : ; cN /, and one defines (with the same notation as in
the previous section) the Riemannian metric on LmkN

kck2
x D cT SV .x/�1c:

As already pointed out, kck2
x is the minimum of kvk2

V among all V in V such that
v.xi / D ci , i D 1; : : : ; N . This minimum is attained at

vc. � / D
NX
iD1

K. � ; xj /˛j

with ˛ D SV .x/�1c.
Now, given any differentiable curve t 7! x.t/ in LmkN , one can build an optimal

time-dependent velocity field

v.t; � / D vc.t/. � /

with c D @tx. One can then define the flow associated to this time-dependent veloc-
ity, namely, the time-dependent diffeomorphism 'v, such that 'v.0; x/ D x and

@t'
v.t; x/ D v.t; 'v.t; x//
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which is, by construction, such that 'v.t; xi .0// D xi .t/ for i D 1; : : : ; N . So, this
construction provides a diffeomorphic extrapolation of any curve in LmkN , which
is optimal in the sense that its velocity has minimal V norms, given the induced
constraints. The metric that has been defined on LmkN is the projection of the V
norm via the infinitesimal action of velocity fields on LmkN , which is defined by

v � .x1; : : : ; xN / D .v.x1/; : : : ; v.xN //:

This concept will be extensively discussed later on in this chapter.

Geodesic Equation
Geodesics on LmkN are curves that locally minimize the energy, that is, they are
curves t 7! x.t/ such that, for any t , there exists h > 0 such that

Z tCh

t�h
kPxu.u/k2

x.u/du

is minimal over all possible curves in LmkN that connect x.t �h/ and x.t Ch/. The
geodesic, or Riemannian, distance between x0 and x1 is defined as the minimizer of
the square root of the geodesic energy

Z 1

0
kPxuk2

x.u/du

over all curves in LmkN that connect x0 and x1.
Geodesics are characterized by a second-order equation, called the geodesic

equation. If one denotes GV .x/ D SV .x/�1, with coefficients g.k;i/;.l;j / for k; l D
1; : : : ; N and i; j D 1; : : : ; d , the classical expression of this equation is

Rxk;i C
NX

l;l 0D10

dX
j;j 0D1

�
.k;i/

.l;j /;.l 0;j 0/ Pxl;j Pxl 0 ;j 0 D 0;

where �.k;i/.l;j /;.l 0;j 0/ are the Christoffel symbols, given by

�
.k;i/

.l;j /;.l 0;j 0/ D
1

2

�
@xl0 ;j 0g.k;i/;.l;j / C @xl;j g.k;i/;.l 0;j 0/ � @xk;i g.l;j /;.l 0;j 0/

�
:

In these formulae, the two indices that describe the coordinates in LmkN , xk;i were
made explicit, representing the i th coordinate of the kth landmark. Solutions of this
equation are unique as soon as x.0/ and Px.0/ are specified.

Equations put in this form become rapidly intractable when the number of
landmarks becomes large. The inversion of the matrix SV .x/ or even simply its
storage can be computationally impossible whenN gets larger than a few thousands.
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It is much more efficient, and analytically simpler as well, to use the Hamiltonian
form of the geodesic equation, which is (see [38])

8<
:
@tx D SV .x/˛
@t˛ D �1

2
@x.˛

T SV .x/˛/
(5)

This equation will be justified in section “General Principles,” in which the
optimality conditions for geodesics will be retrieved as a particular case of general
problems in calculus of variations and optimal control. Its solution is uniquely
defined as soon as x.0/ and ˛.0/ are specified. The time-dependent collection of
vectors t 7! ˛.t/ is called the momentum of the motion. It is related to the velocity
c.t/ D Px.t/ by the identity c D SV .x/˛.

Introducing KV and letting Kij
V .x; y/ denote the i; j entry of KV .x; y/, this

geodesic equation can be rewritten in the following even more explicit form:

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

@txk D
NX
lD1

KV .xk; xl /˛l ; k D 1; : : : ; N;

@t˛k D �
NX
lD1

dX
i;jD1

r1K
ij
V .xk; xl /˛k;i˛l;j ; k D 1; : : : ; N;

(6)

where r1K
ij
V denotes the gradient of the i; j entry of KV with respect to its first

variable.
The geodesic equation defines the Riemannian exponential map as follows. Fix

x0 2 LmkN . The exponential map at x0 is the transformation c 7! expx0
.c/ defined

over all tangent vectors c to LmkN at x0 (which are identified to all families of d -
dimensional vectors, c D .c1; : : : ; cN /), such that expx0

.c/ is the solution at time
t D 1 of the geodesic equation initialized at x.0/ D x0 and Px.0/ D c. Alternatively,
one can define the exponential chart in Hamiltonian form that will also be called the
momentum representation in LmkN by the transformation

˛0 7! exp[x0
.˛0/;

where exp[x0
.˛0/ is the solution at time 1 of system (6) initialized at .x0;˛0/.

For the metric that is considered here, one can prove that the exponential map
at x0 (resp. the momentum representation) is defined for any vector c (resp. ˛0);
this also implies that they both are onto, so that any landmark configuration y can
be written as y D exp[x0

.˛0/ for some ˛0 2 .Rd /N . The representation is not one
to one, because geodesics may intersect, but it is so if restricted to a small-enough
neighborhood of 0. More precisely, there exists an open subset U � Tx0 LmkN over
which expx0

is a diffeomorphism. This provides the so-called exponential chart at x
on the manifold.
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exp(c0 + sc1)

c1

c0 + sc1

0

c0
x0

exp(c0)

Fig. 2 Metric distortion for the exponential chart

Metric Distortion and Curvature
Exponential charts are often used for data analysis on a manifold, because they
provide, in a neighborhood of a reference point x0, a vector-space representation
which has no radial metric distortion, in the sense that, in the chart, the geodesic
distance between x0 and expx0

.c/ is equal to kckx0 . The representation does distort
the metric in the other directions. One way to measure this is by comparing (see
Fig. 2), for given c0 and c1 with kc0kx0 D kc1kx0 D 1, the points expx0

.tc0/ and
expx0

.t.c0 C sc1//. Let F.t; s/ denote the last term (so that the first one is F.t; 0/).
One can write

dist.F.t; s/; F .t; 0// D sk@sF.t; 0/kF.t;0/ C o.s/:

Without metric distortion, this distance would be given by stkc1kx0 D st . However,
it turns out that [14]

k@sF.t; 0/kF.t;0/ D t � �x.c0; c1/
t3

6
C o.t3/;

where �x.c0; c1/ is the sectional curvature of the plane generated by c0 and c1 in
Tx0 LmkN . So, this sectional curvature directly measures (among many other things)
the first order of metric distortion in the manifold and is therefore an important
indication of this distortion of the exponential charts.

The usual explicit formula for the computation of the curvature involves the
second derivatives of the metric tensor matrix GV .x/, which, as we have seen,
is intractable for large values of N . In a recent work, Micheli [53] introduced an
interesting new formula for the computation of the curvature in terms of the inverse
tensor, SV .x0/.

Invariance
The previous landmark space ignored the important facts that two shapes are
usually considered as identical when one can be deduced from the other by a
Euclidean transformation, which is a combination of a rotation and a translation
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Fig. 3 Riemannian submersion (geodesics in the quotient space)

(scale invariance is another important aspect that will not be discussed in this
section). To take this into account, we need to “mod out” these transformations,
that is, to consider the quotient space of LmkN by the Euclidean group.

One can pass from the metric discussed in the previous section to a metric on the
quotient space via the mechanism of Riemannian submersion (Fig. 3). The scheme
is relatively simple, and we describe it and set up notation in a generic framework
before taking the special case of the landmark manifold. So, let Q be a Riemannian
manifold and � W Q ! M be a submersion, that is, a smooth surjection from Q

to another manifold M such that its differential D� has full rank everywhere. This
implies that, for m 2 M , the set ��1.m/ is a submanifold of Q, called the fiber at
m. If q 2 Q and m D �.q/, the tangent space TqQ can be decomposed into the
direct sum of the tangent space to ��1.m/ and the space perpendicular to it. We will
refer to the former as the space of vertical vectors at q, and denote it Vq , and to the
latter as the space of horizontal vectors, denoted Hq . We therefore have

TqQ D Vq ? Hq:

The differential of � at q, D�.q/, vanishes on Vq (since � is constant on ��1.m/)
and is an isomorphism between Hq and TmM . Let us make the abuse of notation
of still denoting D�.q/ the restriction of D�.q/ to Hq . Then, if q; q0 2 ��1.m/,
the map pq0; q WD D�.q/�1 ıD�.q0/ is an isomorphism between Hq0 and Hq . One
says that � is a Riemannian submersion if and only if the maps pq0 ; q are in fact
isometries between Hq0 and Hq whenever q and q0 belong in the same fiber, that is,
if one has, for all v0 2 Hq0 ,
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kpq0 ; qv
0kq D kv0kq0 :

Another way to phrase this property is

�.q/ D �.q0/; v 2 Hq; v
0 2 Hq0 ;D�.q/v D D�.q0/v0 ) kvkq D kv0kq0 :

A Riemannian submersion naturally induces a Riemannian metric on M , simply
defining, for m 2M and h 2 TmM ,

khkm D kD�.q/�1hkq

for any q 2 ��1.m/, the definition being independent of q by assumption. This is
the Riemannian projection of the metric on Q via the Riemannian submersion � .

Let us now return to the landmark case, and consider the action of rotations and
translations, that is of the special Euclidean group of R

d , which is traditionally
denoted SE.Rd /. The action of a transformation g 2 SE.Rd / on a landmark
configuration x D .x1; : : : ; xN / 2 LmkN is

g � x D .g.x1/; : : : ; g.xN //:

We want to use a Riemannian projection to deduce a metric on the quotient space
M D LmkN=SE.Rd / from the metric that has been defined on LmkN , the surjection
� being the projection � W LmkN !M , which assigns to a landmark configuration
x its equivalence class, or orbit under the action of SE.Rd /, defined by

Œx� D fg � x; g 2 SE.Rd /g 2M:

To make sure that M is a manifold, one needs to restrict to affinely independent
landmark configurations, which form an open subset of LmkN and therefore let Q
be this space and restrict � to Q. In this context, one can show that a sufficient
condition for � to be a Riemannian submersion is that the action of SE.Rd / is
isometric, that is, for all g 2 SE.Rd /, the operation ag W x 7! g � x is such that, for
all u; v 2 TxQ,

˝
Dag.x/u ; Dag.x/v

˛
g � x D hu ; vix:

This property can be translated into equivalent properties on the metric. For
translations, for example, it says that, for every x 2 Q and � 2 R

d , one must
have

SV .xC �/ D SV .x/

which is in turn equivalent to the requirement that, for all x; y; � 2 R
d , KV .x C

�; yC �/ D KV .x; y/, so thatKV only depends on x�y. With rotations, one needs
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diag.R/T SV .Rx/diag.R/ D SV .x/;

which again translates into a similar property for the kernel, namely,

RTKV .Rx;Ry/R D KV .x; y/:

Here,R is an arbitrary d dimensional rotation, and diag.R/ is the dN by dN block-
diagonal matrix with R repeated N times.

Kernels that satisfy these properties can be characterized in explicit forms. These
kernels include all positive radial kernels, that is, all kernels taking the form

KV .x; y/ D �.jx � yj2/IdRd ;

where � W Œ0;C1/! R is the Laplace transform of some positive measure �, that
is,

�.t/ D
Z 1

0
e�tyd�.y/:

Such functions include Gaussians,

�.t2/ D exp.�t2=2
2/; (7)

Cauchy,

�.t2/ D 1

1C t2=
2
; (8)

or Laplacian kernels, defined for any integer c � 0 by

�c.t
2/ D

 
cX
lD1

�.c; l/
t l


l

!
exp.�t=
/ (9)

with �.c; l/ D 2l�c.2c � l/ � � � .c C 1 � l/= lŠ.
One can also use non-diagonal kernels. One simple construction of such kernels

is to start with a scalar kernel, for example, associated to a radial function � as
above, and, for some parameter � � 0, to implicitly defineKV via the identity, valid
for all pairs of smooth compactly supported vector fields V and w,

Z
Rd

Z
Rd

v.x/TKV .x; y/w.y/dxdy D
Z
Rd

Z
Rd

�
�jx � yj2	.v.x/T w.y//dxdy

C �

2

Z
Rd

Z
Rd

�
�jx � yj2	.r � v.x//.r �w.y//dxdy;



1772 A. Trouvé and L. Younes

where .r � / denotes the divergence operator. The explicit form of the kernel can be
deduced after a double application of the divergence theorem yielding

KV .x; y/ D .�.r2/� � P�.r2//IdRd � 2� R�.r2/.x � y/.x � y/T

with r D jx � yj.
Assume that one of these choices has been made for KV , so that one can use a

Riemannian submersion to define a metric on the quotient space Q=SE.Rd/. One
of the appealing properties of this construction is that geodesics in the quotient
space are given by (equivalent classes of) geodesics in the original space, provided
that they are initialized with horizontal velocities. Another interesting feature is
that the horizontality condition is very simply expressed in terms of the momenta,
which provides another advantage of the momentum representation in Eq. (6). Take
translations, for example. A vertical tangent vector for their action at any point
x 2 M is a vector of the form .�; : : : ; �/, where � is a d -dimensional vector repeated
N times. A momentum, or covector, ˛ is horizontal if and only if it vanishes when
applied to any such vertical vector, which yields

NX
kD1

˛k D 0: (10)

A similar analysis for rotations yields the horizontality condition

NX
kD1

�
˛kx

T
k � xk˛Tk

	 D 0: (11)

These two conditions provide the d.d C 1/=2 constraints that must be imposed
to the momentum representation on M to obtain a momentum representation on
M=SE.Rd /.

Hamiltonian Point of View

General Principles
This section presents an alternate formulation in which the accent is made on
variational principles rather than on geometric concepts. Although the results
obtained using the Hamiltonian approach that is presented here will be partially
redundant with the ones that were obtained using the Riemannian point of view,
there is a genuine benefit in understanding and being able to connect the two of
them. As will be seen below, working with the Hamiltonian formulation brings new,
relatively simple concepts, especially when dealing with invariance and symmetries.
It is also often the best way to handle numerical implementations.

To lighten the conceptual burden, the presentation will remain within the
elementary formulation that uses a state variable q and a momentum p, rather
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than the more general symplectic formulation. On a manifold, this implies that the
presentation is made with variables restricted to a local chart.

An optimal control problem in Lagrangian form is associated to a real-valued
cost function (or Lagrangian) .q; u/ 7! L.q; u/ defined on Q � U , where Q is a
manifold and U is the space of controls, and to a function .q; u/ 7! f .q; u/ 2 TqQ.
The resulting variational problem consists in the minimization of

Z tf

ti

L.q; u/dt (12)

subject to the constraint Pqt D f .q; u/ and some boundary conditions for q.ti / and
q.tf /. The simplest situation is the classical problem in the calculus of variations for
which f .q; u/ D u, and the problem is to minimize

R tf
ti
L.q; Pqt /dt . Here, Œti ; tf � is a

fixed finite interval. The values ti D 0 and tf D 1 will be assumed in the following.
The general situation in (12) can be formally addressed by introducing Lagrange

multipliers, denoted p.t/, associated to the constraint @tq D f .q; u/ at time t ; p is
called the costate in the optimal control setting. One then looks for critical paths of

J0.q; p; u/
:D
Z 1

0
.L.q; u/C .pj Pqt � f .q; u/// dt;

where the paths p, u, and q vary now freely as far as q.0/ and q.1/ remain fixed.
The costate is here a linear form on Q, that is, an element of T �

q Q.
Introduce the Hamiltonian

H.q; p; u/
:D .pj f .q; u//� L.q; u/

for which

J0 D
Z 1

0
..pj Pqt /�H.q; p; u// dt:

Writing the conditions for criticality, ıJ0=ıu D ıJ0=ıq D ıJ0=ıp D 0, directly
leads to the Hamiltonian equation:

@tq D @pH; @tp D �@qH; @uH D 0: (13)

The above derivation is only formal. A rigorous derivation in various finite-
dimensional as well as infinite-dimensional situations is the central object of
Pontryagin Maximum Principle (PMP) theorems which state that along a solution
.q�; p�; u�/, one has

H.q�.t/; p�.t/; u�.t// D max
u
H.q�.t/; p�.t/; u/:
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Introducing QH.q; p/ :D maxuH.q; p; u/, one gets the usual Hamiltonian equation:

@tp D �@q QH; @tq D @p QH: (14)

One can notice that, in the classical case f .q; u/ D u, QH.q; p/ coincides with the
Hamiltonian obtained via the Legendre transformation in which a function u.p; q/
is defined via the equation p D @uL and

QH.p; q/ D .pj u.q; p// �L.q; u.q; p//:

Application to Geodesics in a RiemannianManifold
LetQ be a Riemannian manifold with metric at q denoted h � ; � iq . The computation
of geodesics in Q can be seen as a particular case of the previous framework in at
least two (equivalent) ways. The first one is to take

L.x; u/ D kuk2
q=2 and f .x; u/ D u;

which gives a variational problem in standard form. For the other choice, introduce
the duality operatorKq W T �

q Q! TqQ defined by

.˛j �/ D ˝Kq˛ ; �
˛
q
;

˛ 2 T �
q Q, � 2 TqQ, and let, denoting the control by ˛,

L.q; ˛/ D �˛jKq˛
	
=2 and f .q; ˛/ D Kq˛:

The Hamiltonian equation in this case yields p D ˛ and

8<
:
@tq D Kq˛;

@t˛ D �1

2
@q
��
˛jKq˛

		
:

(15)

This equation obviously reduces to (5) with q D x, Kq˛ D SV .x/˛.

MomentumMap and Conserved Quantities
A central aspect of the Hamiltonian formulation is its ability to turn symmetries into
conserved quantities. This directly relates to the Riemannian submersion discussed
in section “Invariance.”

Consider a Lie group G acting on the state variable q 2 Q, assuming, for the
rest of this section and the next one, an action on the right denoted .g; q/ ! q �g.
Notice that results obtained with a right action immediately translate to left actions,
by transforming a left action .g; q/ 7! g � q into the right action .g; q/ 7! g�1 � q. In
fact, both right and left actions are encountered in this chapter. The standard notation
TidG D G will be used in the following to represent the Lie algebra of G.



Shape Spaces 1775

By differentiation in the q variable, the action can be extended to the tangent
bundle, with notation .g; v/ ! v �g for v 2 TQ. By duality, this induces an action
on the costate variable through the equality .p �gj v/ :D �pj v �g�1

	
. Differentiating

again in g at g D idG gives the infinitesimal actions on the tangent and cotangent
bundles, defined for any � 2 G

:D TidGG by .�; v/! v � � and for any .�; p/! p � �
such that .p � �j v/C .pj v � �/ D 0, for all v 2 TQ and p 2 T �Q.

Now, assume that H is G-invariant, that is, H.q �g; p �g/ D H.q; p/ for any
g 2 G, and define the momentum map .q; p/! m.q; p/ 2 G� by

.m.q; p/j �/ D .pj q � �/: (16)

Then, one has, along a Hamiltonian trajectory,

@tm.p; q/ D 0; (17)

that is, the momentum map is a conserved (vectorial) quantity along the Hamiltonian
flow. This result is proved as follows. First notice that if g.t/ is a curve in G with
g.0/ D idG and Pgt .0/ D �, then, if H is G-invariant,

0 D @tH.q � g; p � g/ D
�
@qH j q � �

	C �p � �j @pH 	:
On the other hand, from the definitions of the actions, one has

.@tm.q; p/j �/ D @t .pj q � �/ D .@tpj q � �/� .p � �j @tq/;

so that if .q; p/ is a Hamiltonian trajectory,

.@tm.q; p/j �/ D �
�
@qH j q � �

	 � �p � �j @pH 	 D 0

which gives (17).
Notice that the momentum map has an interesting equivariance property:

.m.q � g; p �g/j �/ D .p �gj .q �g/ � �/
D .p �gj q � .g�//
D �

pj .q � .g�// � g�1
	

D �
pj q � ..g�/g�1/

	

where g� denotes the derivative of h 7! gh in h at h D idG along the direction �
and .g�/g�1 the derivative of h 7! hg�1 in h at h D g along the direction g�. The
map � 7! .g�/g�1 defined on G is called the adjoint representation and usually
denoted v 7! Adg�. One therefore gets

.m.q � g; p � g/j �/ D �pj q �Adg.�/
	 D �m.q; p/jAdg.�/

	 D �Ad�
g.m.q; p//j �

�
;
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where Ad�
g is the conjugate of Adg. Hence

m.q �g; p �g/ D Ad�
g.m.q; p//; (18)

that is, m is Ad�-equivariant.

Euler–Poincaré Equation
Consider the particular case in which Q D G and G acts on itself. In this case,

.m.idG; p/j v/ D .pj v/;

so that m.idG; p/ D p and one gets from Eq. (18)

pg�1 D m.idG; pg�1/ D Ad�
g�1.m.g; p//:

Hence, along a trajectory starting from g.0/ D idG of a G-invariant Hamiltonian
H , one has (denoting � D pg�1 2 G� and using the fact that the momentum map
is conserved over time)

�.t/
:D p.t/g.t/�1 D Ad�

g�1.t/
.m.g.t/; p.t///

D Ad�
g�1.t/

.m.idG; p.0/// D Ad�
g�1.t/

.�.0//: (19)

This is the integrated version of the so-called Euler–Poincaré equation onG� [6,50],

@t�C ad�
v.�/.�/ D 0; (20)

where v.�/ D Pgg�1 D @pH.idG; pg�1/ D @pH.idG; �/ and ad is the differential
at location g D idG of Adg .

A special case of this, which will be important later, is when the Hamiltonian
corresponds to a right-invariant Riemannian metric on G. There is a large literature
on invariant metrics on Lie groups, which can be shown to be related to important
finite and infinite-dimensional mechanical models, including the Euler equation for
perfect fluids. The interested reader can refer to [5, 6, 33, 34, 49, 50].

Such a metric is characterized by an inner product h � ; � iV on G and defined by

hv ; wig D
˝
vg�1 ; wg�1

˛
G
: (21)

If one lets KG be the duality operator on G so that

.�j v/ D hKG� ; viG;

the issue of finding minimizing geodesics can be rephrased as an optimal control
problem like in the case of landmarks, with Lagrangian L.g;�/ D �

�jKg�
	
=2,

f .g; �/ D Kg�, and
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Kg� D .KG.�g
�1//g: (22)

The Hamiltonian equations are then directly given by (15), namely,

8<
:
@tg D Kg�;

@t� D �1

2
@g
��
�jKg�

		
:

(23)

This equation is equivalent to the one obtained from the conservation of the
momentum map, which is (with � D �g�1)

8<
:
@tg D vg;
v D KG�;

@t� D �ad�
v �:

(24)

A Note on Left Actions
Invariance with respect to left actions is handled in a symmetrical way to right
actions. If G is acting on the left on G, define the momentum map by

.m.p; q/j v/ D .pj v � q/

which is conserved along Hamiltonian trajectories. Working out the equivariance
property gives

m.g �p; g � q/ D Ad�
g�1m.p; q/ :

When G acts on itself on the left, the Euler–Poincaré equation reads

�.t/ D Ad�
g.�.0//

or

@t� � ad�
v.�/� D 0

with � D g�1p and v.�/ D g�1 Pgt .

Application to the Group of Diffeomorphisms
Let G � Diff.Rd / be a group of smooth diffeomorphisms of R

d (which, say,
smoothly converge to the identity at infinity). Elements of the tangent space to G,
which are derivatives of curves t 7! '.t; � / where '.t; � / 2 G for all t , can be
identified to vector fields x 7! v.x/ 2 R

d , x 2 R
d .

To define a right-invariant metric on G, introduce a Hilbert space V of vector
fields on R

d with inner product h � ; � iV . Like in section “A Riemannian Manifold
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of Deformable Landmarks,” let LV and KV D L�1
V denote the duality operators

on V , with hv ; wiV D .LV vjw/ and h� ; �iV � D .�jKV �/; KV is furthermore
identified with a matrix-valued kernelKV .x; y/ acting on vector fields.

The application of the formulae derived for Hamiltonian systems and of the
Euler–Poincaré equation will remain in the following of this section at a highly
formal level, just computing the expression assumed in the case of diffeomorphisms
by the general quantities introduced in the previous section. There will be no attempt
at proving that these formulae are indeed valid in this infinite-dimensional context,
which is out of the scope of this chapter. As an example of the difficulties that can be
encountered, let us mention the dilemma that is involved in the mere choice of the
group G. On the first hand, G can be chosen as a group of infinitely differentiable
diffeomorphisms that coincide with the identity outside a compact set. This would
provide a rather nicely behaved manifold with a Lie group structure in the sense
of [44, 45]. The problem with such a choice is that the structure would be much
stronger than what Riemannian metrics of interest would induce and that geodesics
would typically spring out of the group. One can, on the other hand, try to place
the emphasis on the Riemannian and variational aspects so that the computation
of geodesics in G, for example, remains well posed. This leads to a solution,
introduced in Trouvé (Infinite dimensional group action and pattern recognition.
Technical report. DMI, Ecole Normale Supérieure, unpublished, 1995) (see also
[70]), in which G is completed in a way which depends on the metric h � ; � iV ,
so that the resulting group (denote it GV ) is complete for the geodesic distance.
This extension, however, comes with the cost of losing the nice features of infinitely
differentiable transformations, resulting in GV not being a Lie group, for example.

This being acknowledged, first consider the transcription of (23) to the case
of diffeomorphisms. This equation will involve a time-evolving diffeomorphism
'.t; � /, and a time-evolving covector, denoted �.t/, which is a linear form over
vector fields (it takes a vector field x 7! v.x/ and returns a number that has so far
been denoted .�.t/j v/). It will be useful to apply �.t/ to vector-valued functions of
several variables, say v.x; y/ defined for x; y 2 R

2, by letting one of the variables
fixed and considering V as a function of the other. This will be denoted by adding a
subscript representing the effective variable, so that

.�.t/j v.x; y//x

is the number, dependent of y, obtained by applying �.t/ to the vector field x 7!
v.x; y/.

One first needs to identify the operatorK' in Eq. (22), defined by

K'� D .KV .�'
�1//' D .KV .�'

�1// ı '

since right translation here coincides with composition. Now, for any vector a 2 R
d

and y 2 R
d , one has
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aT .K'�/.y/ D aT .KV .�'
�1//.'.y//

D �
a˝ ı'.y/jKV .�'

�1/
	

D �
�'�1jKV .a˝ ı'.y//

	
D �

�jKV .a˝ ı'.y// ı '
	

D .�jKV .'.x/; '.y//a/x:

So, letting e1; : : : ; ed denote the canonical basis of Rd , one has

.K'�/.y/ D
dX
iD1

eTi .K'�/.y/ ei D
dX
iD1

�
�jKi

V .'.x/; '.y//
	
x
ei ;

whereKi
V is the i th column of KV . Therefore

�
�jK'�

	 D
dX
iD1

�
�j ��jKi

V .'.x/; '.y//
	
x
ei
	
y

and (using the symmetry of KV )

�
@'
�
�jK'�

	jw	 D 2
dX
iD1

�
�j ��jD2K

i
V .'.x/; '.y//w.y/

	
x
ei
	
y
;

where D2K
i
V is the derivative of KV with respect to its second variable. These

computations directly give the transcription of (23) for diffeomorphisms, namely,

8̂
ˆ̂̂<
ˆ̂̂̂
:

@t'.t; y/ D
dX
iD1

�
�.t/jKi

V .'.t; x/; '.t; y//
	
x
ei

8w W .@t�.t/jw/ D �
dX
iD1

�
�.t/j ��.t/jD2K

i
V .'.t; x/; '.t; y//w.y/

	
x
ei
	
y
:

(25)
To transcribe Eq. (24) to diffeomorphisms, one only needs to work out the

expressions of Ad' and adv in this context. Recall that Ad'w was defined by
.'w/'�1; 'w being the differential of the left translation (i.e., @t .' ı  .t//.0/ with
 .0/ D id and @t .0/ D w), one finds 'w D D' w, and since right translation is
just composition,

Ad'w D .D' w/ ı '�1:

Now, since advw is the differential of Ad'w in ' (at ' D id), a quick computation
shows that
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advw D Dv w �Dw v:

So, Eq. (24) provides

8<
:
@t'.t; y/ D v.t; '.t; y//
v.t; x/ D KV �.t/.x/

8w 2 V; .@t�jw/ D �.�.t/jDv w �Dw v/
(26)

with the last equation being equivalent to

.�.t/jw/ D ��.0/jD'�1.w ı '/	:
Note that � and � in (25) and (26) are related via � D �' or

.�jw/ D ��jw ı '�1
	
:

Solving Eq. (25) (or (26)) between times 0 and 1 provides the momentum
representation in G, denoted

'.1; � / D exp['.0; � /.�.0//:

Equivalently, the initial velocity beingKV �.0/, this is, in the exponential chart,

'.1; � / D exp'.0; � /.KV �.0//:

Reduction via a Submersion
This section, which can be put in parallel with the discussion on Riemannian
submersions in section “Invariance,” discusses how submersions from a manifold
Q onto another manifold M allow for the transfer of a Hamiltonian system on Q
to a Hamiltonian system on M , given some invariance properties satisfied by the
Hamiltonian.

Let � be a submersion from a manifold Q onto a manifold M so that for any
q 2 Q, D�q W TqQ ! T�.q/M is a surjective mapping. For any q 2 Q, Vq

:D
D�.q/�1.0/ is the previously mentioned vertical space so that V :D [q2QVq will
be called the vertical bundle. In the previous Riemannian setting, a metric on TQ
induces the definition of a horizontal space Hq at any location q 2 Q such that
TqQ D Vq C Hq . In the Hamiltonian approach, the horizontal space is defined in
the cotangent space T �

q Q without any reference to a particular metric as the set of
conormal covectors to the vertical space, that is,

H�
q

:D
n
p 2 T �

q Q j .pj v/ D 0 8v 2 Vq
o
: (27)

An elementary argument in linear algebra (which is left to the reader) shows that if
one introduces the one-to-one adjoint mappingD��.q/ W T �

�.q/M ! T �
q Q, one has
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H�
q D D�.�.q//�

�
T �
�.q/M

	
. In other terms, a covector p is horizontal at q if and

only if there exists a covector ˛ 2 T �
�.q/M such that D�.�.q//�˛ D p. Therefore,

H� :D [q2QH�
q can be seen as a sub-bundle of the cotangent bundle T �Q for which

there exists a surjective mapping

Q� W H� ! T �M

defined by Q�.q; p/ D .�.q/; .D��.q//�1.p//.
The main idea of this Hamiltonian (one should say symplectic or better Poisson)

point of view is that H� is the natural image in T �Q of the dynamic space (phase
space) T �M on M . Now, assume that a Hamiltonian HQ is given on Q. One says
that HQ is �-reducible if there exists a HamiltonianHM on T �M such that

HQ jH� D HM ı Q� (28)

or equivalently

HM.m; ˛/ D HQ.q;D�.q/
�˛/ (29)

for q 2 ��1.m/.
Hamiltonian trajectories in both spaces are related as follows. Assume that .q; p/

is HQ-Hamiltonian (i.e., @t q D @pHQ and @tp D � @qHQ) with .q.0/; p.0// 2
H�, and consider in a similar way a HM -Hamiltonian trajectory .m; ˛/ such that
.m.0/; ˛.0// D Q�.q.0/; p.0//; then for any t � 0, one has .q.t/; p.t// 2 H� and
.m.t/; ˛.t// D Q�.q.t/; p.t//. Equivalently, one has the commutative diagram

H� ˆQ.:;:;t /�����! H�
??yQ�

??y Q�

T �M
ˆM.:;:;t /�����! T �M;

(30)

where ˆH and ˆQ are the associated Hamiltonian flows (in particular H� is ˆQ
invariant). To prove this fact, first, notice that from the definition ofHM , which can
be rewritten as

HM.�.q/; ˛/ D HQ.q;D�.q/
�˛/;

one gets

.�j @˛HM/ D
�
D�.q/��j @pHQ

	
(31)

and .@mHM jD�.q/�/ D
�
@qHQj �

	C �˛jD2�.q/.�; @pHQ/
	

(32)
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(as usual, computations are assumed to be done within a chart, and the second
derivative of � is defined according to this chart).

Define x.t/
:D .m.t/; ˛.t//, y.t/

:D .q.t/; p.t///, z D .x; y/ and the
transformation

 .z/ D . M .z/;  Q.z// D .m � �.q/; p �D��.q/˛/:

One needs to prove that  .z.t// 
 0.
If Z.z/

:D .@˛HM ;�@mHM ; @pHQ;�@qHQ/ is the vector field governing the
joint Hamiltonian flows (by construction @t z D Z.z/), one has

D .z/Z D 0 if  .z/ D 0: (33)

Notice that this fact implies that Z is everywhere tangent to the set  D 0, which
is locally a submanifold because D .z/ has full rank, as can easily be seen. This
implies that  D 0 is invariant by the flow associated to Z.

To prove (33), assume  .z/ D 0 and notice that the statement is equivalent to
.�M jD M.z/Z.z//C .D Q.z/Z.z/j�Q/ D 0 for any � D .�M ; �Q/. One has

.�M jD M.z/Z.z// D .�M j@˛HM �D�.q/@pHQ/

and

�
D Q.z/Z.z/j �Q/

	 D ��@qHQ CD��.q/@mHM j �Q
	 � �˛jD2�.q/.�Q; @pH/

	
D �

@mHM jD�.q/�Q
	 � �@qHQj �Q

	 � �˛jD2�.q/.@pH; �Q/
	
;

and the result is a direct consequence of (31) and (32).
Let us review how this concept of reduction via a submersion property gener-

alizes the Riemannian submersion idea. When Q and M are Riemannian with M
equipped with the projected metric, one has by construction

h� ; �iq D hD�.q/�; D�.q/�i�.q0/ (34)

for any q 2 M and � 2 Hq horizontal at q. Let Kq W T �
q Q ! TqQ be the duality

operator for the metric at q (such that .pj �/ D ˝
Kqp ; �

˛
q
) and Km be the same

operator for the metric on M . From (27), one gets

Hq D KqH�
q :

If one expresses (34) for � D KqD�.q/
�˛ and � D KqD�.q/

�ˇ and identifies
the terms, one gets an equivalent version of (34) in terms of the duality operators,
namely,

Km D D�.q/KqD�.q/
�; (35)
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the invariance assumption being that the right-hand term does not depend on
q 2 ��1.m/. Now, the Hamiltonians associated to the metrics, respectively,
are HQ.q; p/ D

�
pjKqp

	
=2 and HM.m; ˛/ D .˛jKm˛/=2, and it is now

straightforward to see that the conditionHM.m; ˛/ D HQ.q;D�.q/
�˛/ if �.q/ D

m, that is, condition (28), is also equivalent to (35).

Reduction: Quotient Spaces
A fundamental special case of the previous situation is when � is the projection onto
a quotient space M D Q=Gs where Gs is a group of symmetries, acting on Q. A
left action is assumed in the following, a right action being handled in a symmetrical
way. Introduce the canonical projection � W Q ! M which associates the orbit
Gs � q to an element q of Q. Let us first work out conditions that ensure that a
HamiltonianHQ is �-reducible. One needs

HQ.q; p/ D HQ.q
0; p0/

whenever �.q/ D �.q0/, and there exists ˛ 2 T �
�.q/M such that p D D�.q/�˛ and

p0 D D�.q0/�˛. Notice that �.q/ D �.q0/ implies that there exists a g 2 G such
that q0 D g � q. From the relation D�.q0/.g � �/ D D�.q/� which derives from
�.g � q/ D �.q/, one gets

.pj �/ D .˛jD�.q/�/ D �˛jD�.q0/.g � �/	 D �p0j g � �	

which implies that p0 D g �p (this condition obviously implying that they
correspond to the same ˛ if they both are horizontal). So HQ is �-reducible if and
only if HQ is G-invariant, namely,

HQ.g � q; g �p/ D HQ.q; p/ (36)

For the construction made in the previous section to be useful in practice, one
needs to provide a simple description of the cotangent bundle to M , T �M . This
will be done using the momentum map ms for the action of Gs , and in particular the
set

m�1
s .0/ D f.q; p/ 2 T �Q W 8� 2 Gs; .pj � � q/ D 0g D H�:

Given this notation, one has the identification

m�1
s .0/=Gs Š T �M: (37)

First, notice that the right-hand term is meaningful, since, by the equivariance of the
momentum map, m�1

s .0/ is invariant byGs . To prove (37), recall the transformation
Q� W H� D m�1

s .0/ ! T �M by Q�.q; p/ D .m; ˛/ with m D �.˛/ and p D
D�.q/�˛. The last identity means that
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.˛jD�.q/v/ D .pj v/;

and the condition ms.q; p/ D 0 implies that this definition is not ambiguous, since
D�.q/v D 0 implies that v D � � q for some �, and therefore that .pj v/ D
.ms.q; p/j �/ D 0. (The definition does define .˛j �/ for all � because D�.q/ has
full rank, since � is a submersion.)

The next remark is that Q� induces a map Œ Q�� on the quotient space m�1
s .0/=Gs ,

defined by

Œ Q� �.Gs � .q; p// D Q�.q; p/:

Again, one must make sure that the definition makes sense by proving that
Q�.g � q; g �p/ D Q�.p; q/, but this is an immediate consequence of the definition
of the extended action of Gs on T �Q. Finally, Œ Q�� is one to one, since as shown
above if �.q/ D �.q0/ D m and p D D��.q/˛ and p0 D D��.q0/˛, then there
exists g 2 Gs such that .q0; p0/ D .g � q; g �p/. This proves the identification (37).

As an example, consider the reduction of the Hamiltonian

H.x;˛/ D 1

2
˛T SV .x/˛

in the landmark case (Q D LmkN ) and the invariance by the group Gs D SE.Rd /.
With .˛j �/ DPN

kD1 ˛
T
k �k , the momentum map for this action is

.ms.x; ˛/j .A; �// D
NX
kD1

˛Tk .Axk C �/

defined for all skew-symmetric matrix A and vector � 2 R
d , and the conditions for

ms.x;˛/ D 0 are exactly those given in (10) and (11).
Note that condition (35) on the duality operator directly corresponds to the

invariance conditions associated to the kernel KV in section “Invariance.”

Reduction: Transitive Group Action
Consider the situation of a left group actionG�M !M of a groupG on a manifold
M . The important example in this chapter is whenG is a group of diffeomorphisms
and M is a set of “shapes” (for instance, M D LmkN ). Assume that the action is
transitive, that is, G �m0 D M so that � W G ! M defined by �.g/ D g �m0 is a
smooth surjection, that will be assumed to be a submersion. The situation here is on
how to project a Hamiltonian system on G onto a reduced one on M .

Let

G0 D fg 2 G j g �m0 D m0g D ��1.m0/
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be the isotropy group of m0. Then condition (29) for a Hamiltonian HG on G
is equivalent to the invariance of HG to the right action of G0 on G, namely,
HG.gh; �h/ D HG.g; �/ for h 2 G0.

Although it is often more convenient to apply the reduction directly to � as
defined above, since the structure of T �M is generally easily defined in this context,
it is interesting to notice that this reduction also comes as an application of the
previous construction on quotient spaces via the well-known identification [32]
M Š G=G0. This identity extends to cotangent spaces as above, with

m�1
G .0/=G0 Š T �M; (38)

where mG is the momentum map associated with G0.
One can interpret the construction of the Riemannian metric for landmarks within

this framework. Take M D LmkN , G a group of diffeomorphisms, and m0 D x0. If
˛ D .˛1; : : : ; ˛N / 2 TxM

�, one can identify p D D��.'/˛ as

p D
NX
iD1

˛i ˝ ıx0;i ;

since for any v 2 T'G,

.pj v/ D
NX
iD1

.˛i jv.x0;i //

and D�.'/v D .v.x0;1/; : : : ; v.x0;N //. Assume that a Riemannian metric is defined
onG such that hv ; wi' is associated with a duality operatorK' that can be identified
with a reproducing kernel also denotedK' (without assuming right invariance yet).
With this assumption, one has

HG.x;˛/ D H.'; p/ D 1

2
.pjK'p/ D 1

2

NX
iD1

˛Ti K'.x0;i ; x0;j /˛j

The invariance assumption is now clear: one needs thatK'.x0;i ; x0;j / only depends
on x D ' � x0. This is in particular implied by the full right-invariance assumption
discussed in section “Application to the Group of Diffeomorphisms” for which
K'.x0;i ; x0;j / D KV .xi ; xj /, yielding in this case

HM.x;˛/ D 1

2

NX
iD1

˛Ti KV .xi ; xj /˛j

in the G-invariant case. As an alternative, one could, for example, also use the less
restrictive assumption K'.x0;i ; x0;j / D Kx.xi ; xj / where Kx is still a kernel, like
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in (7), (8), or (9), in which the scale parameter 
 is chosen dependent of x (e.g.,
increasing as a function of jx� x0j2).

The situation of a fullyG-invariant HamiltonianHG can be studied in the general
setting. Indeed, sinceG acts onM , one can consider the associated momentum map
mM on T �M defined by

.mM.m; ˛/j �/ D .˛j � �m/:

If p D D��.g/.˛/, then pg�1 D mM.m; ˛/. Indeed,

.pg�1j�/ D .pj�g/ D .˛jD�.g/�g/ D .˛j� �m/:

Hence,

HM.m; ˛/ D HG.g; p/ D HG.idG; pg�1/ D HG.idG;mM.m; ˛//:

In the case of an invariant Riemannian metric H.idG; p/ D 1
2 .pjKV p/ D 1

2kpk2
G�

where k kG� denotes the dual norm, this gives

HM.m; ˛/ D 1

2
kmM.m; ˛/k2

G� : (39)

Spaces of Plane Curves

Introduction and Notation
We now consider two-dimensional shapes represented by their contours and address
the case of spaces of plane curves. Compared to the space of landmarks, two new
issues significantly complicate the theory. The first one is that curves are infinite-
dimensional objects, which will place us in the framework of infinite-dimensional
Riemannian manifolds. The second one is that curves are rarely labeled, which will
require the analysis to be invariant by a change of parameterization.

Let us first start with a few definitions regarding plane curves. Parameterized
plane curves can be seen as functions x W S1 ! R

2, where S1 is the unit circle in R
2.

For simplicity, they will be assumed to be smooth (infinitely differentiable), unless
specified otherwise. Smooth curves over the unit circle can equivalently be seen as
infinitely differentiable 2�-periodic functions with periodic derivatives defined on
the real line. It will be convenient to use both representations in the following.

One says that x W S1 ! R
2 is an immersion (or an immersed curve) if its

first differential never vanishes (one often also says that x is a regular curve). We
let I denote the space of immersed curves. Immersed curves, which are easily
characterized by their non-vanishing first derivative, are a convenient but a relatively
imperfect representation of two-dimensional shapes, since they may include curves
that self-intersect. A more restrictive class is the space of embedded curves, that
contains immersed curves that coincide, in the neighborhood of any point, and
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after a suitable rotation, with the graph of a smooth function. But because being
embedded is a global statement about the curve, and therefore harder to handle
than being immersed which is just local, this discussion will primarily focus on the
space I.

We let �.u/ D Px.u/=jPx.u/j be the unit tangent at u .or x.u// to x; .u/ be the unit
normal, obtained by rotating �.u/ of �=2; and �.u/ be the curvature, given by

� D .@s�/T  D P�Tu =jPxuj

where, following [55], we let @s denote the operator @u=jPxuj.
A change of parameter (or reparameterization) for a curve is a smooth diffeomor-

phism u 7!  .u/ of S1 or, alternatively, a smooth increasing diffeomorphism of the
real line such that for all u 2 R,

 .uC 2�/ D  .u/C 2�:

Changes of parameter act on parameterized curves on the right via

. ; x/ 7! x ı  :

A normalized arc-length parameterization of x is a change of parameter taking the
form

s.u/ D s0 C 2�

L

Z u

0
jPxu.Qu/jd Qu (40)

and L is the length of x with

length.x/ D
Z 2�

0
jPxu.Qu/jd Qu:

The scalar number s0 intervening in the arc-length parameterization can be assumed
to be between 0 and 2� without loss of generality and will be referred to as the
offset of the parameterization.

The quotient space of immersed curves by reparameterization is the space of
geometric curves, denoted B. This space can in turn be quotiented out by the actions
of rotations, translations, and scaling, which act on the left and commute with
changes of parameter, in the sense that the result of applying a similitude and a
change of parameters does not depend on the order with which these operations are
performed.

The goal in this section is to discuss shape spaces of curves obtained by putting
a Riemannian structure on B, possibly quotiented by Euclidean transformations
and/or scaling. But before this discussion, it will be interesting to list a few of
the basic distances that can be defined on this set without using a Riemannian
construction.
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Some Simple Distances
We here consider some simple parameterization-free distances between curves
based on the images of the curves .the set x.R//.

A very simple example is to use standard norms (like Lp or Sobolev norms)
computed on the difference between two curves parameterized with their normalized
arc length. Take, for example, the L2 norm, and define for two curves x and Qx
parameterized with normalized arc length

dL2.x; Qx/ D inf
s0

�Z 2�

0
jx.s C s0/ � Qx.s/j2ds

�
(41)

the infimum being taken over all possible offsets as defined in Eq. (40).
One must apply some care when defining distances like (41) which involves some

optimization over some parameters that affect the curves. The following statement
(the proof of which is left to the reader) is a key for this to be a valid way of building
distances on quotient spaces.

Lemma 1. LetM be a metric space, with distance d W .x; x0/ 7! d.x; x0/. Let G be
a group acting on M (with, say, a left action). Assume that d is G-invariant, which
means that, for all x; x0 2M and all g 2 G,

d.g � x; g � x0/ D d.x; x0/:

Then the distance Nd defined on the quotient space M=G by

Nd.Œx�; Œx0�/ D inf
g;g02G d.g � x; g

0 � x0/ (42)

is symmetric and satisfies the triangle inequality.

Notice that, because of the G-invariance, Nd is also given by

Nd.Œx�; Œx0�/ D inf
g2G d.g � x; x

0/: (43)

A sufficient condition ensuring that Nd is a distance (the missing property being
d.Œx�; Œx0�/ D 0 ) Œx� D Œx0�) is that the orbits Œx� D G � x are closed subsets
of M for all x 2 M . The invariance condition can be placed in parallel with the
invariance condition that arose in our discussion of the Riemannian submersion, the
latter being an infinitesimal version of the former in the case of Riemannian metrics.

Returning to (41), it is easy to see that a change of offset provides a group action
on the left on curves and that the L2 distance is invariant to this action. It is not
too hard to prove that the action has closed orbits so that (41) does provide a valid
distance in B. Since the L2 distance is also invariant by the left action of rotations
and translations, one can also define
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NdL2.x; Qx/ D inf
s0;�;b

�Z 2�

0
jg�x.s C s0/C b � Qx.s/j2ds

�
; (44)

where g� is the rotation of angle � and b 2 R
2.

A variant of this distance directly compares the derivative of the curves, which
provides a translation-invariant representation, defining

NdH 1.x; Qx/ D inf
s0;�

�Z 2�

0
jg�@sx.s C s0/� @s Qx.s/j2ds

�
: (45)

This distance has been introduced for curve comparison in [48], with a very efficient
computation algorithm based on Fourier transforms.

When a curve x is simple (i.e., without self-intersection), it can be considered
as the boundary of a bounded set (its interior) that will be denoted x. A simple
distance comparing two such curves, say x and x0, is the area of the symmetric
difference betweenx and x0 , that is,

dsym.x; x0/ D area.x [x0/� area.x \x0/:

A more advanced notion, the Hausdorff distance, is defined by

dH .x; x0/ D inff" > 0; x � B".x0/ and x0 � B".x/g;

where B".x/ is the set of points at distance less than " from x .and similarly for
B".x0//. The same distance can be used with x and x0 instead of x and x0 for
simple closed curves, the Hausdorff distance being in fact a distance between closed
subsets of R2.

Instead of comparing curves that are already parameterized with arc length, one
can start with distances that are invariant by reparameterization and quotient out this
action as described in Lemma 1. It is not easy to come up with explicit formulae for
such invariant distances, but here is an important example.

Start with the supremum norm between the curves, namely,

d1.x; x0/ D sup
u
jx.u/� x0.u/j;

which is obviously invariant by changes of parameter. The distance obtained after
reduction is called the Fréchet distance and is therefore defined by

dF .x; x0/ D inf
 
d1.x ı  ; x0/:

Note that, if, for some reparameterization  , one has d1.x ı  ; x0/ � ", then x �
B".x0/ and x0 � B".x/. This implies the relation

" > dF .x; x0/) " > dH.x; x0/
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which implies dH � dF . As a consequence, dF .x; x0/ D 0 is only possible when
x D x0 up to reparameterization, which completes Lemma 1 in ensuring that dF is
a distance.

Another interesting point of view that leads to parameterization-invariant dis-
tances is to include plane curves in a suitable Hilbert space. We have already seen
an example of this with the L2 distance based on the arc-length parameterization,
although this one required an extra one-dimensional optimization to get rid of the
offset. An interesting alternate option (two of them, in fact) can be obtained by
considering curves as linear forms instead of functions.

One can first identify a curve to a measure, which is a linear form on continuous
functions, defined by, for a curve, x and for a function f W R2 ! R:

.�xj f / D
Z 2�

0
f .x.u//jPxu.u/jdu:

This is clearly parameterization independent, and more precisely, �x D �y if and
only if x D y up to reparameterization or change of orientation.

Another point of view is to identify a curve to a current [19] or, equivalently in
this case, to a vector measure which is a linear form on vector fields. For this, simply
define, for f W R2 ! R

2,

.�xj f / D
Z 2�

0
Pxu.u/

T f .x.u//du:

This is also parameterization independent, with �x D �y if and only if x D y up to
reparameterization.

Both (signed) measures and vector measures form linear spaces, even if not all of
them correspond to curves. Nonetheless any norm on these spaces directly induces
a parameterization-invariant distance between curves. Hilbert norms are specially
attracting for this purpose because of the numerical convenience of being associated
to a dot product. One way to build such norms is to start with a Hilbert space of
functions on R

2 (resp. vector fields) for which �x (resp. �x) is continuous and then
use the corresponding norm on the dual space [22–25, 73].

Start with the case of scalar functions and consider a Hilbert space W of
functions f W R

2 ! R such that the evaluation functionals x 7! f .x/ are
continuous (so that W is a reproducing kernel Hilbert space of scalar functions).
Denote by LW W W ! W � and KW W W � ! W the duality operators on
W , similarly to what has been introduced in section “A Riemannian Manifold of
Deformable Landmarks” with LV andKV , so that for f 2 W and � 2 W �,

kf k2
W D .LW f j f / and k�k2

W � D .�jKW�/:

Like in section “A Riemannian Manifold of Deformable Landmarks,”KW is a kernel
operator, and there exists a scalar-valued function .x; y/ 7! KW .x; y/ such that for
a measure �,
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.KW �/.x/ D
Z
R2
KW .x; y/d�.y/:

This implies

k�k2
W � D

Z
R2�R2

KW .x; y/d�.x/d�.y/

and directly leads to a distance between curves, namely,

d.x; x0/2 D k�x � �x0k2
W � (46)

D
Z 2�

0

Z 2�

0
KW .x.u/; x.u0//jPx.u/j jPx.u0/jdudu0

�2
Z 2�

0

Z 2�

0
KW .x.u/; x0.u0//jPx.u/j jPx0.u0/jdudu0

C
Z 2�

0

Z 2�

0
KW .x0.u/; x0.u0//jPx0.u/j jPx0.u0/jdudu0:

The construction associated to vector measures is similar. The space W being
this time a space of vector fields, the discussion is identical to the one holding for
V in section “A Riemannian Manifold of Deformable Landmarks,” with a kernel
KW which is matrix valued. Other than this, the resulting norm in the dual space is
formally the same, yielding

d.x; x0/2 D k�x � �x0k2
W � (47)

D
Z 2�

0

Z 2�

0
PxTu KW .x.u/; x.u0//Pxu.u

0/dudu0

�2
Z 2�

0

Z 2�

0
PxTu KW .x.u/; x0.u0//Px0

u.u
0/dudu0

C
Z 2�

0

Z 2�

0
Px0T

u KW .x0.u/; x0.u0//Px0
u.u

0/dudu0:

RiemannianMetrics on Curves
We now pass to the specific problem of designing Riemannian metrics on spaces
of curves. The first issue we have to deal with is that we are now handling
infinite-dimensional manifolds, which is significantly more complex than the
finite-dimensional space of landmarks. Since there is more than one type of infinite-
dimensional vector spaces, there is more than one type of infinite-dimensional
manifolds, and the one which is appropriate when dealing with spaces of infinitely
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differentiable curves is the class of Fréchet manifolds [31]. It is not our intent,
here, to handle the related issues with the appropriate scrutiny, the reader being
invited to refer to [54, 55] for a more rigorous presentation. We will here simply
state intuitively plausible facts on the structures that are defined.

The space I of immersed curves is open in the Fréchet space C1.S1;R2/ of
infinitely differentiable functions from S1 to R

2 (in which a sequence of curves xn
converges to x if all its derivatives converge for the supremum norm). If x 2 I, a
tangent vector � 2 TmI is an element of C1.S1;R2/ that can also be considered as
a smooth vector field along x. A Riemannian metric on I will therefore be a norm
on this space, namely,

� 7! k�kx

associated to an inner product h � ; � ix that depends on x 2 I.
We will consider norms that allow for Riemannian projections when quotienting

out the action of changes of parameters, as well as the action of the usual
transformation groups, SE.R2/ possibly combined with scaling. Starting with
changes of parameters, the differential of the map x 7! x ı simply is � 7! � ı  ,
which yields the first requirement

k� ı  kxı D k�kx (48)

for all x 2 I, � 2 C1.S1;R2/ and smooth reparameterization  . A simple
way to ensure parameterization invariance is to define the norm for curves that are
parameterized with normalized arc length, simply ensuring that the norm is invariant
by a change of offset.

Invariance with respect to translations, rotations, and scaling, respectively,
requires

k�kxCb D k�kx; b 2 R
2 (49)

kg�kgx D k�kx; g 2 SO.R2/ (50)

�k�k�x D k�kx; � 2 .0;C1/: (51)

A very simple norm, which satisfies (48)–(50), is the L2 norm of � relative to the
curve arc length, which is

k�k2
x D

Z 2�

0
j�.u/j2jPxujdu: (52)

This norm has been studied in [54,55] and shown to provide degenerate Riemannian
metrics in the sense that the projected Riemannian distance between any two curves
is zero.

Before elaborating on this fact, consider vertical vectors for the projection of
I onto the space B of curves modulo reparameterization. They are described as
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follows. Tangent vectors at x to the orbit of x under the action of changes of
parameters are obtained as � D .@".x ı  //.0; u/, where " 7!  ."; u/ is a
reparameterization in u which smoothly depends on ". This yields � D @" .0; u/Pxuı
 .0; u/, which implies that vertical vectors � 2 Vm are such that all �.u/ are tangent
to x.

Horizontal vectors at x for the metric in (52) are therefore given by vector-valued
functions � 7! �.u/ that are everywhere normal to x. It follows that if Œx� and
Œx0� are two equivalent classes of curves modulo reparameterization, their geodesic
“distance” is given by

d.x; x0/2 D inf

�Z 1

0

Z 2�

0
jPyt j2jPyujdudt; y.0; :/ D x; Œy.1; :/� D x0; PyTu Pyt D 0


:

(53)
As written above, one has the following theorem.

Theorem 1 (Mumford–Michor). The distance defined in (53) vanishes between
any pair of smooth curves x and x0.

A proof of this result can be found in [54, 55]. It relies on the remark that one can
grow thin protrusions (“teeth”) on a curve at a cost which is negligible compared to
the size of the tooth. To get the basic idea underlying this result, one can understand
how open segments can be translated at arbitrary small geodesic cost. First, consider
a path that starts with a horizontal segment; progressively grow an isosceles triangle
of width " and height t (at time t) somewhere on the segment until t D 1. A quick
computation shows that the associated geodesic length is o."/ (in fact, O."2 ln "/).
This implies that one can cover the horizontal segment with O.1="/ thin non-
overlapping teeth at cost O." ln "/. With a similar construction and the same cost,
one can pull up the triangles pointing downward to obtain a translated segment. The
total cost of the operation being arbitrarily small when "! 0, the geodesic distance
between parallel segments is zero. This can in fact be extended to any pair of close
or open curves, yielding the result stated in Theorem 1.

Quite interestingly, small variations in the definition of the metric are sufficient
to address this issue. Take, for example, the distance associated with

k�k2
x D length.x/

Z 2�

0
j�.u/j2jPxujdu; (54)

introduced in [52, 62]. Looking back at the previous “tooth example,” the length of
a teeth being approximately 2, we see that the length term penalizes the geodesic
energy when growing O.1="/ teeth by an extra .1="/ factor, and the total energy is
not negligible anymore. In fact, the associated distance is not degenerate, as shown
in [62], in which the geodesic length is proved to correspond to the total area swept
by the time-dependent curve.

Another way to control degeneracy is to penalize high curvature points, using,
for example,
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k�k2
x D

Z 2�

0
.1C a�x.u/

2/j�.u/j2jPxujdu: (55)

This metric has been studied in [55], where it is shown (among other results) that
the distance between distinct curves is positive.

All the previous metrics could be put in the form

k�k2
x D

Z 2�

0
�x.u/j�.u/j2jPxujdu; (56)

where �x > 0 is invariant by reparameterization, in the sense that

�xı ı  D �x:

More generally, one can consider metrics associated to positive symmetric linear
operators � 7! Ax� which associate to a smooth vector u 7! �.u/ along x another
smooth vector, u 7! .Ax�/.u/, with the properties that

Z 2�

0
.�/T .Ax�/jPxujdu D

Z 2�

0
.Ax�/

T �jPxujdu

and

Axı .� ı  / D .Ax�/ ı  :

The geodesic equation associated to such a metric can be derived by computing
the first variation of the geodesic energy. The computation is straightforward if one
makes the following assumption on the variations of the operator Ax. Assume that
there exists a bilinear operator D0Ax that takes as input two vector fields along x,
say �. � / and �. � /, and return a new vectorD0Ax.�;�/. � / such that

@"

Z 2�

0
.AxC"��/T �jPxujdu D

Z 2�

0
.D0Ax.�;�//

T �jPxujdu;

where the derivative in the left-hand side is evaluated at " D 0. With this notation,
the geodesic equation is

@t .Ax Pxt /C .@s Pxt /T � Ax Pxt C 1

2
@s

�
.Ax Pxt /T Pxt �

�
D 1

2
D0Ax.Pxt ; Pxt / (57)

with @s D @u=jPxuj as above.
This class of metrics includes the so-called Sobolev metrics [52, 56] for which
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Z 2�

0
.Ax�/

T �du D
pX
kD0

ak.x/
Z 2�

0

ˇ̌
@ks �

ˇ̌2
du

with positive coefficients ak.x/, typically depending on the length of x. Let us take
one simple example that has interesting developments: define

Z 2�

0
.Ax�/

T �du D length.x/�1
Z 2�

0
j@s�j2du (58)

or Ax� D �length.x/�1@2
s�. The metric associated to Ax is degenerate, since it

vanishes over constants. But it provides a metric on curves modulo translations. It
satisfies the invariance properties described above, characterized in (48), (50), and
(51). This metric was first introduced in [79] and further studied in [68, 69, 81]. A
direct computation shows that, in this case,

D0Ax.�;�/ D 2length.x/�1@s..@s�/
T @s��/ � length.x/�1h� ; �ix�:

The study of this metric is, however, much simpler than replacing the expression
ofD0Ax into (57) would make believe. The simplification comes after the following
transformation of the curve representation. Consider the transformation, defined
over pairs of real-valued functions u 7! .a.u/;b.u// by

x.u/ D
�

1

2

Z u

0
.a2 � b2/d Qu ;

Z u

0
abd Qu

�
; u 2 Œ0; 2��; (59)

so that

Pxu D ..a2 � b2/=2 ; ab/:

With the notation above, we have j Pxuj D .a2 C b2/=2. This generate a curve in R
2,

with length

length.x/ D 1

2

Z 2�

0
.a2 C b2/du D 1

2

�kak2
2 C kbk2

2

	
:

Denoting by x D T .a;b/ the transformation in Eq. (59), one can write the
differential of T as

DT.a;b/.˛;ˇ/ W u 7!
�Z u

0
.a˛� bˇ/d Qu ;

Z u

0
.b˛C aˇ/d Qu

�

and a direct computation yields
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Fig. 4 An example of a
geodesic connecting a circle
to a star-shaped curve for the
metric defined in (58). The
evolving curves are
superimposed with
progressively reduced size to
facilitate visualization (the
compared curves having both
length 1 originally)

kDT.a;b/.˛;ˇ/kT .a;b/ D 2

q
k˛k2

2 C kˇk2
2q

kak2
2 C kbk2

2

:

Restricting to closed curves with unit length implies the conditions

kak2 D kbk2 D 1 and ha ; bi2 D 0

which means that .a;b/ forms an orthonormal two-frame in the space L2.S1/, that
is, an element of the Stiefel manifold St.L2; 2/. Up to the factor two, the mapping
T is then an isometry between St.L2; 2/, equipped with its standard metric, and the
subset of I consisting of unit-length curves. If one furthermore makes the reduction
of quotienting out rotations for curves, one finds that the isometry becomes with
the Grassmannian manifold Gr.L2; 2/ of two-dimensional subspaces of L2. This
identification can be exploited to obtain explicit geodesics in the considered shape
space (see [81]). It is important to notice that the restriction to curves with unit
length is equivalent to making the Riemannian projection on the quotient space
modulo scalings. This is because horizontal vectors for the scale action can easily be
shown to satisfy

R
.@s�/

T � D 0, which, if � D Pxt , directly implies that @t .
R jPxuj2/ D

0. Therefore, length is conserved along horizontal geodesics, which justifies the
choice of unit-length curves. Some numerical issues associated to this metric are
studied in [68] and [69] in the simpler case in which it is applied to open curves. An
example of geodesic obtained using this metric is provided in Fig. 4.

A parameterized variant of this metric, applied to closed curves with unit length,
has been proposed in [43], in the form
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k�k2
x D

Z 2�

0
..@s/�

T �/2jPxujduC c
Z 2�

0
..@s/�

T �/2jPxujdu;

the previous metric corresponding to c D 1. When c ¤ 1, the unit length constraint
is not induced by a Riemannian projection, but the metric can be studied on this
space anyway.

One can analyze this metric in the following way. Let x.t; u/ be a time-dependent
curve. Define � D jPxuj so that

@s Pxt D ��1@t .��/ D @t .log�/� C @t �:

Since the two terms in the sum are perpendicular, this gives

kPxtk2
x D

Z 2�

0

�
.@t log�/2 C cj@t � j2

	jPxujdu: (60)

The first term measures the logarithmic variation of the arc length, and the second is
the instantaneous rotation of the tangents. Interestingly, another change of variable
akin to the one discussed for c D 1 can also simplify this metric in the case c D 4.
Take, in this case,

x D T .a; b/ WD u 7!
�Z u

0
a
p
a2 C b2du0 ;

Z u

0
b
p
a2 C b2du0

�
I

one has this time

kDT.a; b/.˛; ˇ/k2
T .a;b/ D 4

Z 2�

0
.˛2 C ˇ2/du

which provides an identification of the space of open curves with unit length with an
infinite-dimensional sphere. This identification has the important property to carry
over to higher-dimensional curves [37]. There is, however, no “nice” representation
for closed curves in this case.

Notice that the two identifications that were just discussed apply to parameterized
curves. In both cases, the geodesic distance must be optimized with respect to
reparameterization to obtain a metric between geometric curves.

Another important contribution to the theory of spaces of plane curves was
made in [63], in which simple closed domains in R

2 are represented via the
correspondence maps between the conformal mapping of their interior and of their
exterior to the unit disc. This induces an almost one-to-one representation of simple
curves by diffeomorphisms of the unit circle. In fact, this representation has to come
modulo Möbius transformations on the circle, which are very simply accommodated
by an invariant metric, called the Weil–Peterson metric, on such diffeomorphisms.
The reader is referred to the cited work for more details.
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Projecting the Action of 2D Diffeomorphisms
At the exception of the one just mentioned, the previously discussed metrics were
all defined based on the parameterizations of the curves. This provided reasonably
simple definitions, exploiting in particular the invariance property of the arc length.
Because they relied on local properties of the curves, these metrics were not able to
penalize singularities that occur globally, like the intersection of two remote parts.

One way to handle global constraints is to use an approach similar to the
one that has been used to define the landmark manifold, based on the action of
two-dimensional diffeomorphisms on curves. This will therefore be based on the
projection paradigm discussed in section “Reduction: Transitive Group Action.”

So, let G � Diff.R2/ be a group of smooth diffeomorphisms of R2 (which, say,
smoothly converge to the identity at infinity), and let x0 be a reference curve or
template. Consider the set M D G � x0, the orbit of x0 under the action of G, the
latter being simply defined by

.' � x/.u/ D '.x.u//:

This implies that D�.'/v D v ı x0 and a horizontal covector at ' 2 G for the
projection takes the form

.pj v/ D .�j v ı x0/

for some � 2 T'.x0/M
�.

Let’s make this explicit for � belonging to an important class of linear forms on
TxM , associated to vector measures, that is,

.�j �/ D
Z 2�

0
�T ad�

where � is a measure on the unit circle and a is a vector-valued function. The
associated horizontal covector is then

.pj v/ D
Z 2�

0
v.x0.u//

T a.u/d�.u/ (61)

and the reduced Hamiltonian computed on this covector is (denoting as in sec-
tion “Reduction: Transitive Group Action” K' the duality operator on T'G, still
assumed to be associated to a reproducing kernel)

HM.x; �/ D 1

2

Z 2�

0

Z 2�

0
a.u/TK'.x0.u/; x0.u

0//a.u0/d�.u0/d�.u/ (62)

with x D ' � x0. As in section “Reduction: Transitive Group Action,” the invariance
requirement boils down to K'.x0.u/; x0.u0// only depending on ' � x0, with the
simplest choice associated to a right-invariant metric on G, yielding
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HM.x; �/ D 1

2

Z 2�

0

Z 2�

0
a.u/TKV .x.u/; x.u0//a.u0/d�.u0/d�.u/ (63)

for a fixed kernelKV . An important fact is that measure covectors remain so during
the evolution, the Hamiltonian (or geodesic) equations are simply written as

8̂
ˆ̂<
ˆ̂̂:

@tx.t; u/ D
Z 2�

0
KV .x.t; u/; x.t; Qu//a.t; Qu/d�.Qu/

@ta.t; u/ D �
2X

i;jD1

Z 2�

0
ai .t; u/aj .t; Qu/r1K

ij .x.t; u/; x.t; Qu//d�.Qu/
(64)

Another interesting fact is that (64) exactly provides (6) in the case when � is a
weighted sum of Dirac measures. This is because these equations are, as proved
in section “Reduction via a Submersion,” all particular instances of the Hamiltonian
system (or geodesic equation) obtained on the acting group of diffeomorphisms,
namely, (25).

This was the first step downward, from diffeomorphisms to parameterized plane
curves. It remains to discuss the additional steps, which are the reduction for the
required invariance, by reparameterization and Euclidean transformation.

Consider the action of reparameterization, which is a right action. The action of
change of parameters on vector measures like in (61) is

.p � j �/ D
Z 2�

0
aT � ı  �1d�.u/ D

Z 2�

0
.a ı  /T �d. �1�/.u/;

where  �� is the image of � by  . Using this, the invariance requirement applied
to a Hamiltonian taking the form

HM.x; �/ D 1

2

Z 2�

0

Z 2�

0
a.u/TKx.u; u

0/a.u0/d�.u0/d�.u/ (65)

can be seen to reduce to the constraint that

Kxı . �1.u/;  �1.u// D Kx.u; u
0/

and this property is satisfied for Kx.u; u/ D KV .x.u/; x.u0//.
The momentum map associated to changes of parameters is

.m.x; p/j v/ D
Z 2�

0
a.u/T Pxuv.u/d�.u/;

so that horizontal vector measures simply are those for which a is normal to the
curve, that is, a.u/ D ˛.u/.u/, where ˛ is scalar valued and  is the normal to x.
The evolution equations then become
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8̂
ˆ̂<
ˆ̂̂:

@tx.t; u/ D
Z 2�

0
KV .x.t; u/; x.t; Qu//˛.t; Qu/.t; Qu/d Qu

@t˛.t; u/ D �˛.t; u/
2X

i;jD1

Z 2�

0
˛.t; Qu/i .t; u/j .t; Qu/r1K

ij .x.t; u/; x.t; Qu//d Qu:
(66)

If KV is furthermore invariant by rotation and translation, quotienting out these
operations results in additional conditions on ˛. Invariance by translation requires

Z 2�

0
˛.u/.u/du D 0;

and the constraint associated to rotations is

Z 2�

0
˛.u/..u/x.u/T � x.u/.u/T /du D 0:

Extension toMore General Shape Spaces

The construction based on the Riemannian submersion from groups of diffeomor-
phisms can be reproduced in a large variety of contexts, essentially for any class of
objects that can be deformed by diffeomorphisms. This can be applied to provide
metrics on space of surfaces and spaces of images, of vector fields, of measures, etc.

Let us consider, for example, the case of images that we will take as differentiable
functions I W Rd ! R. Define the left action of a diffeomorphism ' on an image I
to be

' � I D I ı '�1:

From this, one sees that the infinitesimal action of a vector field V on I is

v � I D �vTrI:

(This is why we assumed that the images are differentiable. For non-differentiable
images, v � I is not a function, but a distribution, with, if � is a smooth function,

.v � I j �/ D
Z
Rd

Ir � .�v/dx;

where r � is the divergence operator. The reader is referred to [75, 76] for the
analysis of the inexact matching approach in the more general case of images with
bounded variations.)

Fix a reference image I0 and consider the space

M D f' � I0; ' 2 Gg;
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the surjection being as usual �.'/ D ' � I0. Consider covectors on M that are
associated to measures, namely,

.�j �/ D
Z
Rd

�.x/d�.x/;

where � is a real-valued function (which represents a tangent vector to M ). The
differential of �.'/ D I0 ı '�1 is (letting  D '�1)

D�.'/v D �.rI0 ı '�1/D.'�1/v ı '�1 D �rI T v ı '�1

with I D ' � I0, so that the horizontal covector at ' 2 G associated to a measure �
is p D D�.'/�� defined by

.pj v/ D �
Z
Rd

v.'�1.x//TrI.x/d�.x/;

where I D ' � I0. Starting from a Hamiltonian associated to a right-invariant metric
on G yields the reduced Hamiltonian

HM.I; �/ D 1

2

Z
Rd

Z
Rd

rI.x/T K'.'
�1.x/; '�1.y//rI.y/d�.y/d�.x/

D 1

2

Z
Rd

Z
Rd

rI.x/T KV .x; y/rI.y/d�.y/d�.x/

with K'.x; y/ D KV .'.x/; '.y//. The associated Hamiltonian equations are

�
@tI.x/ D

R
Rd
rI.x/TKV .x; y/rI.y/d�.y/dy

@t˛ D r � .˛KV .rI�//

A limitation in the image case is that two given images are very rarely connected
by diffeomorphisms, so that working with images that are deformations of a
reference image is a strong restriction. This issue can be addressed by extending
the projection to a larger set than the sole group of diffeomorphisms. One can use
a simple construction for this: call M the space of all smooth images (instead of
just an orbit, as it was defined before), and still let G denote a group of smooth
diffeomorphisms. Consider the surjection � W G �M !M defined by

�.'; I / D ' � I:

(This is obviously a surjection since I D �.idRd ; I /.)
Letting J D I ı '�1, one has

D�.'; I /.v; �/ D �rJ T v ı '�1 C � ı '�1;
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so that the horizontal covector at .'; I / associated to a measure � on M is Np D
D�.'; I /�� such that

. Npj .v; �// D
Z
Rd

.�rJ T v ı '�1 C � ı '�1/d�

with J D I ı'�1. Thinking of a covector Np 2 T.';I /.G �M/� as a pair .p; �/ with
p 2 T'G� and � 2 TIM �, one can identify .p; �/ D D�.'; I /�� as

.pj v/ D �
Z
Rd

rJ T v ı '�1d� and .�j �/ D
Z
Rd

� ı '�1d�:

If d� D �dx is absolutely continuous with respect to Lebesgue’s measure, the
second term gives � D � ı ' detD' dx.

If one starts with a Hamiltonian on G �M for which

H..'; I /; .p; �dx// D 1

2

�
pjK'p

	C �

2

Z
Rd

�.x/2.detD'.x//�1dx

with K' as above, the resulting reduced Hamiltonian on M is

HM.J; �dx/ D 1

2

Z
Rd

Z
Rd

�.x/rJ.x/T KV .x; y/rJ.y/�.y/dxdy

C �

2

Z
Rd

�.x/2dx:

The corresponding evolution equations then are

�
@tJ D rJ TKV .�rJ /C ��
@t � D r � .�KV .�rJ //:

This is a particular instance of the theory of metamorphosis applied to images (the
interested reader can refer to [35, 71] for further developments).

Applications to Statistics on Shape Spaces

An important situation in which the previously discussed concepts are relevant is
for the analysis of shape samples, that is, families x1; : : : ; xn, in which each xj
is a shape, possibly represented as a collection of landmarks or a plane curve (or
another representation, like surfaces, images, etc.), and interpreted as a point in a
manifold M . A simple and commonly used approach to analyze such samples is
to “normalize” them using the exponential or momentum representation relative to
a fixed template Nx. Each shape xk is then transformed into a tangent or cotangent
vector, say �k 2 TNxM so that xk D expNx.�k/.
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The problem is then reduced to the well-explored context of data analysis in
a linear space, and how it is analyzed afterward depends on the specific problem
at hand and is out of the scope of the present discussion. An important thing that
one should remember is that this reduction can be accompanied with significant
metric distortion, related to curvature as described in section “Metric Distortion and
Curvature” (in spaces with positive curvature, the representation may even fail to
be one to one). The approach has however proved to be a powerful analysis tool in
several applications [20, 42], including the analysis of medical data [74].

This distortion being larger when the distances between the represented shapes
and the template are large, it is natural to select the template in a way that minimizes
these distances, the most widespread approach being to define it as a Karcher (or
geometric) mean, that is, as a minimizer of

U.x/ D
nX

kD1

dM.x; xk/2: (67)

This well-posedness of this definition is also related to the curvature. The function
U is convex and the minimum is unique if M has negative curvature [39]. Negative
curvature is unfortunately difficult to obtain in shape spaces because the reduction
process always increases the sectional curvature [59] (notice however that the
representation in [63] has negative curvature, but it seems to be the only such
example). The sectional curvature on the landmark manifold, as shown in [53], can
be both positive and negative. As proved in [39], a sufficient condition ensuring
the convexity of U (67) is that the diameter of the sample set (the largest geodesic
distance between two of the points) is smaller than �=

�
2
p
smax

	
, where smax is a

positive upper bound of the sectional curvature (U is always convex with negative
curvature). Interestingly, in that case, the optimality condition of the Karcher mean
is that it constitutes a sample average in the exponential representation, that is,
xk D expNx.�k/ with

Pn
kD1 �k D 0. This leads to an algorithm for the computation

of the mean, which can be proved to converge under similar curvature conditions
[46,47]: start with an initial guess for Nx and compute the exponential representation
�k over the sample set. Compute N� D Pn

kD1 �k=n, replace Nx by expNx.�N�/, and
iterate until stabilization. A variation of this algorithm has been proposed in [21].
One can also mention the interesting algorithm proposed in [13] in which kernel
regression is generalized to shape manifolds.

4 Numerical Methods and Case Examples

The most important numerical method on the previously discussed shape spaces
is related to the computation of geodesics (i.e., solving the geodesic equation)
and, most importantly in practice, to the computation of the representation in the
exponential chart or of the momentum representation.
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This section will focus on the latter problem (which anyway includes the first
one as a subproblem) that will first be addressed in the simpler case of the landmark
manifold.

To compute exponential coordinates around some object x0, one needs to solve,
for some target object y, the equation

expx0
.�/ D y (68)

or, if the momentum representation is more convenient,

exp[x0
.˛/ D y: (69)

Since these representations are defined by nonlinear evolution equations, this is a
highly nonlinear problem, in which the function to be inverted cannot be written
in closed form. Also, in the case of curves, the problem is infinite dimensional and
must therefore be properly discretized. Another non-negligible issue is that, even if
the equation has a solution (which is often the case in the discussed framework), this
solution is not necessarily unique unless y is close enough to x0. For this reason, it
may be impossible to represent a generic shape dataset using only one of these
charts, but this may be achievable for a more focused one (like shapes of fish, or
leaves, of fixed anatomical organs).

There are mainly two options to address the computation. The first one is to
directly solve the equation (using zero-finding methods, like Newton’s algorithm).
The second one is to return to the definition of geodesics as curves with minimal
energy and to solve the variational problem of finding minimal energy paths between
x0 and y.

LandmarkMatching via Shooting

Let us start with the first approach. Recall that given some differentiable function
F W Rn ! R

n, Newton’s method to solve the equation F.z/ D 0 iterates (starting
with a good guess of the solution, z0)

zkC1 D zk �DF.zk/�1F.zk/:

This scheme can be directly applied to the solution of (69) in the landmark case, with
F.˛0/ D exp[x0

.˛0/�y, since it is finite dimensional; one needs this to compute the
differential of the momentum representation, which is only described in (6) via the
solution of a differential equation. As a result, the differential of F , which is also
the differential of exp[x0

, must also be computed by solving a differential equation.
Noting that (6) takes the form
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�
@tx D Q.x;˛/
@t˛ D R.x;˛;˛/ (70)

with Q linear and R quadratic in ˛, and that x.t/ D exp[x0
.t˛0/, we have denoting

J.t/ D Dexp[x0
.t˛0/ (71)

�
@tJˇ D @1Q.x;˛/Jˇ CQ.x;Hˇ/
@tHˇ D @1R.x;˛;˛/Jˇ C 2R.x;˛;Hˇ/

(72)

in which H is an auxiliary operator that represents the variation in ˛ (and @1 is the
differential with respect to the first variable). Solving (70) and (72) up to time t D 1
provides x.1/ and J.1/, and the Newton step is given by

˛kC1
0 D ˛k0 � J.1/�1.x.1/� y/:

Making explicit the expressions of @1Q and @1R is not difficult, but rather lengthy,
and these expressions will not be provided here (the interested reader can refer
to [1] for more details). An important limitation for the feasibility of this kind
of approach is the cost involved in the computation of the full matrix J.t/. With
N landmarks in d dimensions, the size of x and ˛ is n D Nd and the size of
J is n2. The computation of the right-hand size of (72) requires an order of n3

operations if one takes advantages of the special structure of the operator Q.x; � /
(it would be n4 otherwise). Even with this reduction, a computation cost which is
cubic in the number of landmarks rapidly becomes unfeasible, and it is difficult to
run this algorithm with, say, more than a few hundred landmarks. On the other hand,
convergence (when it happens) can require a very small number of steps.

Another limitation of Newton’s method is the fact that it is not guaranteed to
converge, unless the starting point (˛0

0 with our notation) is close enough to the
solution, in a way which is generally impossible to quantify a priori. For this reason,
the method is often usefully complemented (and possibly replaced if the number
of landmarks is too large) by simple gradient descent in which the minimized
function is

F.˛0/ D
�
exp[x0

.˛0/ � y
	T �

exp[x0
.˛0/ � y

	
:

The first variation of F is, with the previous notation,

@"F.˛0 C "ˇ/jŒ"D0� D 2
�
exp[x0

.˛0/� y
	T
J.1/ˇ:

It is natural to define gradients relative to the Riemannian metric at x0, as defined in
Eq. (4). When working with momenta as done here, the gradient should be identified
using
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Fig. 5 Example of geodesics between two landmark configurations: left, trajectories (diamonds
move onto circles), and right, resulting diffeomorphism

ˇT SV .x0/rF.˛0/ D 2
�
exp[x0

.˛0/� y
	T
J.1/ˇ

yielding

rF.˛0/ D 2SV .x0/
�1 �J.1/T �exp[x0

.˛0/ � y
		
: (73)

The computation, for a given vector z, of J.t/T z can be done by solving backward
in time the system

�
@t� D �.@1Q.x; ˛//T � � .@1R.x; ˛; ˛//T a
@ta D �Q.x/T � � 2R.x; ˛/T a

(74)

initialized with .�.1/; a.1// D .z; 0/, with the notation Q.x/ˇ D Q.x;ˇ/ and
R.x;˛/ˇ D R.x;˛;ˇ/. One then has J.1/T z D a.0/. The proof of this statement
derives from elementary computations on linear dynamical systems.

This implies that the term J.1/T
�
exp[x0

.˛0
	� y/ can be computed by solving an

ODE which has the same dimension as the geodesic Eq. (70). Notice, however, that
(74) requires using the solution of (70) with a backward time evolution (from t D 1
to t D 0). This implies that the solution of (70) must be first computed and stored
with a fine enough time discretization to allow for an accurate solution of (74). This
may cause memory issues for high-dimensional models. An example of trajectories
and deformations estimated using this algorithm is provided in Fig. 5.

The above discussion only addressed the computation of geodesics in landmark
shape space without quotienting out rotations and translations. Recall that this
operation, when done starting from a metric for which the projection on the quotient
space is a Riemannian submersion, only requires to constrain the momentum
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representation with a finite number of linear relations. The associated reduction
in the number of degrees of freedom is balanced by the reduced requirement of
connecting the reference shape to some element of the orbit of the target under
the quotiented out group action, instead of the target itself. More explicitly, the
equations that need to be solved to compute the momentum representation of y
relative to x0 are

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

exp[x0
.˛0/� g � y D 0

NX
kD1

˛0;k D 0

NX
kD1

�
˛0;kx

T
0;k � x0;k˛

T
0;k

	 D 0;

(75)

where g 2 SE.Rd /. A transformation g in this space is represented by a rotation
part, R, and a translation part, b, and classically parameterized in the form

 
R b

0 � � � 0 1

!
D exp

 
A !

0 � � � 0 0

!

with A skew symmetric and ! 2 R
d . System (75) therefore has Nd C d.d C 1/=2

equations and variables and can be solved as above using Newton iterations when
feasible or gradient descent. Since the exponential is the solution of a differential
equation

�
@t exp.tU / D U exp.tU /

	
, optimization in A and ! above can be treated

exactly like the optimization in ˛0. Another option is to directly use the formula

@" exp.U C "h/j"D0 D
Z 1

0
exp.tU /h exp.�tU /dt:

LandmarkMatching via Path Optimization

The other option, in order to compute the momentum representation, is to solve the
shortest path problem between x0 and y, that is, to minimize

E.x. � // D
Z 1

0
kPxtk2

x.t/dt;

with the constraints x.0/ D x0 and x.1/ D y, using gradient descent on the space of
all trajectories t 7! x.t/. Letting P.x; �/ D k�k2

x, one has

@"E.x. � /C "�. � //j"D0 D
Z 1

0

�
2
D
Pxt ; P�t

E
x.t/
C @1P.x; Pxt /T �

�
dt:
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Using gradient descent requires selecting an appropriate metric on the space of
all time-dependent objects, and interesting developments arise when selecting a
metric for which the constraints are continuous functionals [26, 37]. Consider, as
an example, the inner product

h�. � / ; �. � /i D
Z 1

0

P�Tt P�t dt

that we restrict to the space of time-dependent � and � that vanish at t D 0 and
t D 1. One can check that, defining

�x.t/ D
Z t

0
SV .x.u//Pxt .u/du�

Z t

0

Z u

0
@1P.x.Qu/; Pxt .Qu//d Qudu

C.1C t/
Z t

0
@1P.x.u/; Pxt .u//du;

one has

@"E.x. � /C "�. � //j"D0 D h� ; rE.x/i

with

rE.x/.t/ D �x.t/ � t�x.1/:

One can therefore use gradient descent to minimize the geodesic energy, in the form

x.nC1/.t/ D x.n/.t/ � ".�x.n/ .t/ � t�x.n/ .1//:

Computing Geodesics Between Curves

We now discuss whether, and how, the previous methods extend to the computation
of minimizing geodesics in Riemannian spaces of curves. We start with the metric
associated with the projection from 2D diffeomorphisms, since it belongs to the
same family as the one discussed with landmarks. In fact, there is a simple way to
discretize a curve matching problem so that it boils down to a landmark matching
problem. Assume that a reference curve x0 and a target curve y are given but
that they are only observable in discrete versions, as sequences of points xdisc

0 D
.x0;1; : : : ; x0;N / and ydisc D .y1; : : : ; yN /. Then, as we have remarked, Eq. (25)
when restricted to discrete momenta of the form

� D
NX
kD1

ak ˝ ıxk ;
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boils down to Eq. (6), and one can now solve the problem of finding a solution of
this equation that transports x0;k to yk exactly as in the previous sections.

Unfortunately, such an approach has little practical use, given that it is very
unlikely that two discrete curves are observed such that the points that constitute
them are exactly homologous. This means that one should not require a given x0;k

to transform exactly into yk , but maybe to another yl or in between two of them.
Most of the time, anyway, the curves are given with different numbers of points.

This issue is obviously the discrete form of the parameterization invariance
that has been discussed in section “Spaces of Plane Curves.” We know that the
horizontality condition for parameterization invariance induces the constraint that
ak is perpendicular to the reference curve. In this context, the problem in the
continuum is formulated as: given x0 and y, find an initial momentum �0 which
is horizontal at x0 and such that the solution of (25) transforms the curve x0 into a
deformed curve '.1; x0/ which coincides with y up to a change of parameterization.

A change of parameter being a diffeomorphism of S1, it can be generated with
an equation like (25). Roughly speaking, this change of parameter can be generated
by momenta that are scalar functions on the unit circle. Horizontal geodesics in
spaces of curves (still roughly speaking) are generated by momenta that are normal
to the reference curve, which can also be represented as scalar functions on the
unit disc. So, one needs to find two scalar functions (one for the reparameterization
and one for the deformation) that bring the reference curve x0 to the target y; the
target being also characterized by two scalar functions (its coordinates), one sees
that the dimensions match and that an approach based on zero finding is possible,
at least in principle (there has been no attempt so far in the literature to solve
the curve comparison problem in this way). The problem needs to be properly
discretized, using, for example, the same number of points to represent x0, y, the
reparameterization momentum, and the deformation momentum.

One can also use a variational approach in the initial momentum, using an
objective function like

E.a0/ D d
�
exp[x0

.a0/; y
	2

(76)

where d is a reparameterization-invariant distance, like the ones in Eqs. (46) and
(47), which are, since they derive from Hilbert norms, well amenable to variational
computations. The initial momentum a0 can be discretized as

a0 D
NX
kD1

a0;k ˝ ıuk ;

where u1; : : : ; uN is a discretization of the unit disc, which, as already noticed, lead
to geodesic equations identical to the ones considered with landmarks in (6), the
initial “landmark positions” being x0;k D x0.uk/. This implies that the variational
methods discussed in section “Landmark Matching via Shooting” directly apply,
simply changing the objective function.
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In fact, the same point of view can also be used with other metrics on
curves, with the correct version of the exponential chart or of the momentum
representation (whichever is more convenient). Notice that enforcing the fact that
the initial momentum is horizontal for reparameterization is optional for these
methods, as long as the objective function (the distance d ) is parameterization
invariant. Disregarding discretization issues, the optimal solution will always be
horizontal, so one does not need to make an exact count of the minimal number
of degrees of freedom, as was required by zero-finding methods. In practice, the
computational efficiency resulting from the reduction of the number of variables can
be counterbalanced by the additional flexibility in moving in the space of solutions
which is offered by over-parameterized formulations, the choice between the two
options being problem dependent.

Finally, notice that path-minimizing methods are also available for curve match-
ing (an approach similar to the one discussed for landmarks in the previous section
has been proposed in [37]).

Inexact Matching and Optimal Control Formulation

Inexact Matching
In many cases, requiring an exact representation of the target y in the exponential
chart is not needed and even undesirable. In most instances, indeed, there is an
inherent inaccuracy in the way objects are acquired. Landmarks, whether manually
or automatically selected, are rarely well defined, and the process can lead to
significant variability. The same holds for curves, or surfaces, which are generally
extracted using segmentation algorithms, sometimes applied to noisy data, with
results that cannot be assumed to be perfect.

Formulations in which geodesics are only required to provide a good approxi-
mation of the target then make sense and have a large range of applications. They
are akin to the variational methods that were discussed for exact representation, in
that they minimize an appropriate distance between the end point of a geodesic and
the target, but they also include a penalty term on the length or the energy of the
geodesic. In other terms, instead of minimizing d

�
exp[x0

.a0/; y
	2

like in (76), for
example, one would minimize

E.a0/ D d
�
exp[x0

.a0/; y
	2 C 
2ka0k2

x0

(in the momentum representation, the norm is for the dual metric in the cotangent
space at x0). If it is more convenient to use an exponential chart instead of the
momentum representation, just minimize, over all tangent vectors �0 at x0,

E.�0/ D d
�
expx0

.�0/; y
	2 C 
2k�0k2

x0
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Fig. 6 Two results of inexact matching with the vector-measure distance between curves as error
term. The lower right curve (light gray) is the target. The first 11 curves provide the geodesic
evolution

Since this formulation only adds the term 2
2a0 (or 2
2�0) to the gradient of
the objective function that was used for exact representation (i.e., with 
2 D 0), the
methods that were described in the previous paragraphs can be adapted with minor
changes and yield, for example, results like those provided in Fig. 6. Interestingly,
in this context, additional methods, deriving from optimal control theory, become
available too.

Optimal Control Formulation
Let us first return to the general principles discussed in section “General Principles”
and consider an optimal control problem with an additional end-point cost E:

minimize
Z 1

0
L.q; u/dt C E.q.1// subject to Pq D f .q; u/ and q.0/ fixed:

Notice that here q.1/ is free, but this situation is handled quite similarly to the
one with fixed q.1/. Introduce

JE.q; p; u/ D J0.q; p; u/C E.q.1//

D
Z 1

0
.L.q; u/C .pj Pqt � f .q; u/// dt C E.q.1//:

The only change in the analysis arises when working out the variation in q which
now gives the extra end-point condition

p.1/CDE.q.1// D 0 ; (77)

which come in addition to the previously obtained (13).
The conservation of the momentum map can be extended to this case when a

group G acts on Q and the Hamiltonian H is G-invariant. If, in addition, E is also
G-invariant, one deduces fromE.qg/ D E.q/ for all g the fact that .DE.q/j �g/ D
0 for all � 2 G which is exactly m.q;DE.q// D 0 where the momentum map m is
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defined in (16). Therefore, (77) implies that m.q.1/; p.1// D 0 ; which, combined
with the conservation of momentum, implies that

m.q.t/; p.t// D 0 :

for any t 2 Œ0; 1�. Thus, the momentum map is not only invariant but vanishes along
solutions of the optimal control problem. In the context of the reduction discussed
in section “Reduction: Transitive Group Action,” this says that the momentum
associated to a solution is horizontal.

Gradient w.r.t. the Control
One can compute the variations with respect to u of

C
:D
Z 1

0
L.q; u/dt C E.q.1//

subject to the constraint Pq D f .q; u/ and q.0/ fixed.
Taking the variation with respect to this constraint yields

@t ıq D @qf ıq C @uf ıu:

Introduce the semigroup Ps;t solution of @tPs;t D @qfPs;t with Ps;s D id, so that

ıqt D
Z t

0
Ps;t .@uf /sıusds:

One can write

ıC D
Z 1

0

��
.@qL/t j

Z t

0
Ps;t .@uf /sıusds

�
C .@uLj ıu.t//

�
dt

C
�
DE.q.1//j

Z 1

0
Ps;1.@uf /sıusds

�
:

Interverting integrals in s and t yields

ıC D
Z 1

0

�
@uL � .@uf /

�
s p.s/j ıu.s/

	
ds D

Z 1

0
.�@uH j ıu.s//ds (78)

with

p.s/
:D �

�Z 1

s

P �
s;t .@qL/tdt C P �

s;1DE
�
q.1/

	�
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which is characterized by p.1/ C DE.q.1// D 0 and @tp D @qL � @qf �p D
�@qH.q; p; u/. The last two conditions are precisely ıJE=ıq D 0 for

JE D
Z 1

0
..pj Pq/�H.q; p; u//dt C E.q.1//

as above. Since Pqt D f .q; u/ is ıJE=ıp D 0, one gets from (78) that ıC=ıu D
ıJE=ıu for ıJE=ıp D ıJE=ıq D 0.

Application to the Landmark Case
In the landmark case u D ˛, q D x, L.x;˛/ D ˛T SV .x/˛=2, and Px D f .x;˛/ D
SV .x/˛, so that @uH.x; p;˛/ D SV .x/.p � ˛/ and

ıC D
Z 1

0
h˛ � p ; ı˛.s/ixds

The gradient of C is therefore particularly simple to compute if one chooses along
the path the natural metric given on the ˛’s by the matrix SV .x/ (cf. section “A
Riemannian Manifold of Deformable Landmarks”). This gives the updating rule
(see [22]): ˛nC1 D ˛n��t.˛�pn/, PqnC1

t D f .qnC1;˛nC1/, where pn is computed
by the backward integration of the ode Ppnt D �@qH.qn; pn;˛n/ with end-point
condition pn.1/C E.qn.1// D 0.

5 Conclusion

Even if it would be impossible to provide a comprehensive description of every
method that has been devised in this domain, this chapter provides an introduction
to many of the mathematical constructions of spaces of shapes. The combined
description of the Riemannian and of the Hamiltonian point of views, which are
complementary, should help the reader to a more thorough understanding of the
range of available methods, whether they were described in this chapter or elsewhere
in the literature. The described numerical methods are basic components that can
also be found in most of the contributions that were not directly addressed here.

Mathematical shape analysis remains a domain of intensive research, with
open problems arising both for fundamental aspects (e.g., with building spaces
of three-dimensional shapes) and for numerical issues and their connections with
applications. It is however likely that the concepts introduced here will remain
relevant and serve as foundations for future work.
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Abstract
The concept of a shape space is linked both to concepts from geometry and from
physics. On one hand, a path-based viscous flow approach leads to Riemannian
distances between shapes, where shapes are boundaries of objects that mainly
behave like fluids. On the other hand, a state-based elasticity approach induces a
(by construction) non-Riemannian dissimilarity measure between shapes, which
is given by the stored elastic energy of deformations matching the corresponding
objects. The two approaches are both based on variational principles. They are
analyzed with regard to different applications, and a detailed comparison is given.
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1 Introduction

The analysis of shapes as elements in a frequently infinite-dimensional space of
shapes has attracted increasing attention over the last decade. There are pioneering
contributions in the theoretical foundation of shape space as a Riemannian manifold
as well as path-breaking applications to quantitative shape comparison, shape
recognition, and shape statistics. The aim of this chapter is to adopt a primarily
physical perspective on the space of shapes and to relate this to the prevailing
geometric perspective. Indeed, we here consider shapes given as boundary contours
of volumetric objects, which consist either of a viscous fluid or an elastic solid.

In the first case, shapes are transformed into each other via viscous transport of
fluid material, and the flow naturally generates a connecting path in the space of
shapes. The viscous dissipation rate – the rate at which energy is converted into heat
due to friction – can be defined as a metric on an associated Riemannian manifold.
Hence, via the computation of the shortest transport paths, one defines a distance
measure between shapes.

In the second case, shapes are transformed via elastic deformations, where the
associated elastic energy only depends on the final state of the deformation and not
on the path along which the deformation is generated. The minimal elastic energy
required to deform an object into another one can be considered as a dissimilarity
measure between the corresponding shapes.

In what follows, we discuss and extensively compare the path-based and the
state-based approach. As applications of the elastic shape model, we consider shape
averages and a principal component analysis of shapes. The viscous flow model is
used to exemplarily cluster 2D and 3D shapes and to construct a flow-type nonlinear
interpolation scheme. Furthermore, we show how to approximate the viscous, path-
based approach with a time-discrete sequence of state-based variational problems.

2 Background

The structure of shape spaces and statistical analyses of shapes have been examined
in various settings, and applications range from the computation of priors for
segmentation [16,17,43] and shape classification [25,44,48,50] to the construction
of standardized anatomical atlases [14, 37, 66]. Among all existing approaches, a
number of different concepts of a shape are employed, including landmark vectors
[16, 39], planar curves [41, 52, 84], surfaces in R3 [24, 25, 40], boundary contours
of objects [31, 44, 67], multiphase objects [83], as well as the morphologies of
images [22].

The analysis of a shape space is typically based on a notion of a distance
or dissimilarity measure d. � ; � / between shapes [10, 31, 50, 51, 54, 67], whose
definition frequently takes a variational form. This distance can be used to define
an average [26, 67] or a median [4, 28] S of given shapes S1; : : : ;Sn according
to S D argmin QS

Pn
iD1 d.

QS;Si /p for p D 1 and p D 2, respectively (cf.
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section “Elastic Shape Averaging”). Likewise, shape variations can be obtained
by a principal component analysis (PCA, cf. section “Elasticity-Based PCA”) or a
more general covariance analysis in a way which is consistent with the dissimilarity
measure between shapes [11, 16, 26, 68]. From the conceptional point of view, one
can distinguish two types of these dissimilarities or distance measures which may
be characterized as rather state based or path based, respectively. While the first
approach is independent of the notion of paths of shapes, the latter distance defini-
tion requires the computation of an optimal, connecting path in shape space. In some
cases, both concepts coincide: The Euclidean distance between two points, e.g., can
equivalently be interpreted in a state-based manner as the norm of the difference
vector or as the length of the shortest connecting path (we shall provide a physical
interpretation for each case in section “Recalling the Finite-Dimensional Case”).

The notion of a shape space was already introduced by Kendall in 1984 [39], who
considers shapes as k-tuples of points in Rd , endowed with the quotient metric of
Rkd with respect to similarity transforms. Often, however, a shape space is just
modeled as a linear vector space which is not invariant with respect to shift or
rotation a priori. In the simplest case, such a shape space is made up of vectors of
landmark positions, and distances between shapes can be evaluated in a state-based
manner as the Euclidean norm of their difference. Chen and Parent [12] investigated
averages of 2D contours already in 1989. Cootes et al. perform a PCA on training
shapes with consistently placed landmarks to obtain priors for edge-based image
segmentation [16]. Hafner et al. use a PCA of position vectors covering the proximal
tibia to reconstruct the tibia surface just from six dominant modes [35]. Perperidis
et al. automatically assign consistent landmarks to training shapes by a nonrigid
registration as a preprocessing step for a PCA of the cardiac anatomy [63]. Söhn
et al. compute dominant eigenmodes of landmark displacement on human organs,
also using registration for preprocessing [73].

As an infinite-dimensional vector space, the Lebesgue-space L2 has served
as shape space, where again shape alignment is a necessary preprocessing step.
Leventon et al. identify shapes with their signed distance functions and impose the
Hilbert space structure of L2 on them to compute an average and dominant modes
of variation [43]. Tsai et al. apply the same technique to 3D prostate images [79].
Dambreville et al. also compute shape priors, but using characteristic instead of
signed distance functions [19].

A more sophisticated state-based shape space is obtained by considering shapes
as subsets of an ambient space with a metric d. � ; � / and endowing them with the
Hausdorff distance

dH.S1;S2/ D maxf sup
x2S1

inf
y2S2

d.x; y/; sup
y2S1

inf
x2S2

d.x; y/g

between any two shapes S1;S2. Charpiat et al. employ smooth approximations of
the Hausdorff distance based on a comparison of the signed distance functions of
shapes [10]. For a given set of shapes, the gradient of the shape distance functional
at the average shape is regarded as shape variation of the average and used to
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analyze its dominant modes of variation [11]. Frame indifference is mimicked by an
inner product that weights rotations, shifts, scalings, and the orthogonal complement
to these transformations differently. Charpiat et al. also consider gradient flow
morphing from one shape onto another one which can be regarded as a means to
obtain meaningful paths even in shape spaces with state-based distance measures.

An isometrically invariant distance measure between shapes (or more general
metric spaces) that is also not based on connecting paths is provided by the Gromov–
Hausdorff distance, which can be defined variationally as

dGH.S1;S2/ D 1

2
inf

�WS1!S2

 WS2!S1

sup
yiD�.xi /
 .yi /Dxi

jdS1.x1; x2/ � dS2.y1; y2/j ;

where dSi . � ; � / is a distance measure between points in Si . The Gromov–Hausdorff
distance represents a global, supremum-type measure of the lack of isometry
between two shapes. Memoli and Sapiro use this distance for clustering shapes
described by point clouds, and they discuss efficient numerical algorithms to com-
pute Gromov–Hausdorff distances based on a robust notion of intrinsic distances
dS. � ; � / on the shapes [50]. Bronstein et al. incorporate the Gromov–Hausdorff
distance concept in various classification and modeling approaches in geometry
processing [6]. Memoli investigates the relation between the Gromov–Hausdorff
distance and the Hausdorff distance under the action of Euclidean isometries as
well as Lp-type variants of the Gromov–Hausdorff distance [49].

In [46], Manay et al. define shape distances via integral invariants of shapes and
demonstrate the robustness of this approach with respect to noise.

Another distance or dissimilarity measure which also measures the lack of
isometry between shapes can be obtained by interpreting shapes as boundaries of
physical objects and measuring the (possibly nonlinear) deformation energy of an
elastic matching deformation � between two objects [36, 67]. Since, by the axiom
of elasticity, this energy solely depends on the original and the final configuration
of the deformed object but not on the deformation path, the elastic dissimilarity
measure can clearly be classified as state based (as will be detailed in section “State-
Based, Path-Independent Elastic Setup”). This physical approach comes along with
a natural linearization of shapes via boundary stresses to perform a covariance
analysis [68] and will be presented in section “Elasticity-Based Shape Space.”
Pennec et al. define a nonlinear elastic energy as the integral over the ambient space
of an energy density that depends on the logarithm of the Cauchy–Green strain
tensor D�TD� [61, 62], which induces a symmetric state-based distance.

Typical path-based shape spaces have the structure of a Riemannian manifold.
Here, the strength of a shape variation is measured by a Riemannian metric, and the
square root of the Riemannian metric evaluated on the temporal shape variation is
integrated along a path of shapes to yield the path length. The length of the shortest
path between two shapes represents their geodesic distance d. � ; � /. Averages are
obtained via the Fréchet mean [30], which was further analyzed by Karcher [38].
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There is also a natural linear representation of shapes in the tangent space at the
Fréchet mean via the logarithmic map, which enables a PCA.

A Riemannian shape space which might still be regarded as rather state than
path oriented is given by the space of polygonal medial axis representations, where
each shape is described by a polygonal lattice and spheres around each vertex [87]:
Here, the Lie group structure of the medial representation space can be exploited to
approximate the Fréchet mean as exponential map of the average of the logarithmic
maps of the input. Fletcher et al. perform a PCA on these log-maps to obtain the
dominant geometric variations of kidney shapes [26] and brain ventricles [27].
Fuchs and Scherzer use the PCA on log-maps to obtain the covariance of medial
representations, and they use a covariance-based Mahalanobis distance to impose
a new metric on the shape manifold. This metric is employed to obtain priors for
edge-based image segmentation [32, 33].

Kilian et al. compute and extrapolate geodesics between triangulated surfaces of
fixed mesh topology, using isometry invariant Riemannian metrics that measure the
local distortion of the grid [40]. Eckstein et al. employ different metrics in combi-
nation with a smooth approximation to the Hausdorff distance to perform gradient
flows for shape matching [24]. Liu et al. use a discrete exterior calculus approach
on simplicial complexes to compute geodesics and geodesic distances in the space
of triangulated shapes, in particular taking care of higher genus surfaces [45].

An infinite-dimensional Riemannian shape space has been developed for planar
curves. Klassen et al. propose to use as a Riemannian metric the L2-metric on
variations of the direction or curvature functions of arc length-parameterized curves.
They implement a shooting method to find geodesics [41], while Schmidt and
Cremers present an alternative variational approach [70]. Srivastava et al. assign
different weights to the L2-metric on stretching and on bending variations and
obtain an elastic model of curves [75]. Michor and Mumford examine Riemannian
metrics on the manifold of smooth regular curves [51]. They show the standard L2-
metric in tangent space, leading to arbitrarily short geodesics and hence employ a
curvature-weighted L2-metric instead. Yezzi and Mennucci resolved the problem
taking into account the conformal factor in the metric [84]. Sundaramoorthi et al.
use Sobolev metrics in the tangent space of planar curves to perform gradient
flows for image segmentation via active contours [76]. Michor et al. discuss a
specific metric on planar curves, for which geodesics can be described explicitly
[52]. In particular, they demonstrate that the sectional curvature on the underlying
shape space is bounded from below by zero, which points out a close relation to
conjugate points in shape space and thus to only locally the shortest geodesics.
Finally, Younes considers a left-invariant Riemannian distance between planar
curves by identifying shapes with elements of a Lie group acting on one reference
shape [85].

When warping objects bounded by shapes in Rd , a shape tube in RdC1 is formed.
Delfour and Zolésio [20] rigorously develop the notion of a Courant metric in this
context. A further generalization to classes of non-smooth shapes and the derivation
of the Euler–Lagrange equations for a geodesic in terms of a shortest shape tube is
investigated by Zolésio in [88].
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Dupuis et al. [23] and Miller et al. [53, 54] define the distance between shapes
based on a flow formulation in the embedding space. They exploit the fact that in
case of sufficient Sobolev regularity for the motion field v on the whole surrounding
domain˝ , the induced flow consists of a family of diffeomorphisms. This regularity
is ensured by a functional

R 1
0

R
˝
Lv � v dx dt , where L is a higher-order elliptic

operator [76, 85]. Geometrically,
R
˝
Lv � v dx is the underlying Riemannian metric,

and we will discuss related, path-based concepts in section “Path-Based, Viscous
Riemannian Setup.” Under sufficient smoothness assumptions, Beg et al. derive
the Euler–Lagrange equations for the diffeomorphic flow field [3]. To compute
geodesics between hypersurfaces in the flow of diffeomorphism framework, a
penalty functional measures the distance between the transported initial shape and
the given end shape. Vaillant and Glaunès [80] identify hypersurfaces with naturally
associated two forms and used the Hilbert space structures on the space of these
forms to define a mismatch functional. The case of planar curves is investigated
under the same perspective by Glaunès et al. in [34]. To enable the statistical analysis
of shape structures, parallel transport along geodesics is proposed by Younes et al.
[86] as the suitable tool to transfer structural information from subject-dependent
shape representations to a single-template shape.

In most applications, shapes represent boundary contours of physical objects.
Fletcher and Whitaker adopt this viewpoint to develop a model for geodesics in
shape space which avoids overfolding [29]. Fuchs et al. [31] propose a Riemannian
metric on a space of shape contours, motivated by linearized elasticity. This metric
can be interpreted as the rate of physical dissipation during the deformation of a
viscous liquid object [82,83] and will be elaborated in section “Viscous Fluid-Based
Shape Space.”

Finally, a shape space is sometimes understood as a manifold, learned from
training shapes, and embedded in a higher-dimensional (often linear) space. Many
related approaches are based on kernel density estimation in feature space. Here, the
manifold is described by a probability distribution in the embedding space, which is
computed by mapping points of the embedding space into a higher-dimensional fea-
ture space and assuming a Gaussian distribution there. In general, points in feature
space have no exact preimage in shape space, so that approximate preimages have
to be obtained via a variational formulation [64]. Cremers et al. use this technique
to obtain 2D silhouettes of 3D objects as priors for image segmentation [17]. Rathi
et al. provide a comparison between kernel PCA, local linear embedding (LLE),
and kernel LLE (kernel PCA only on the nearest neighbors) [65]. Thorstensen
et al. approximate the shape manifold using weighted Karcher means of the nearest
neighbor shapes obtained by diffusion maps [77].

3 Mathematical Modeling and Analysis

Recalling the Finite-Dimensional Case

At first, let us investigate distances and their relation to concepts from physics
in the simple case of Euclidian space. In Euclidean space, the shortest paths are
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F = C(x2 − x1)

F = 2mv 
= 2m (x2 − x1)

x1

x2

x1

x2

Fig. 1 The force F of an elastic spring between x1 and x2 is proportional to .x2 � x1/, as well
as the force F of a dashpot which is extended from x1 to x2 within time 1 at constant velocity
v. The spring energy reads W D R

F dx D 1
2 C kx2 � x1k2

2 and the dashpot dissipation Diss DR
F � v dt D 2� kx2 � x1k2

2

straight lines, and they are unique, so that the distance computation involves only
the states of the two end points: The geodesic distance between any two points
x1; x2 2 Rd is given by the norm of the difference, kx2 � x1k2, which implies
the equivalence of the state-based and the path-based perspective. A corresponding
physical view might be the following. Considering that – by Hooke’s law – the
stored elastic energy of an elastic spring extended from x1 to x2 is given by
W D 1

2 C kx2 � x1k2
2 for the spring constant C, the distance can be interpreted in a

state-based manner as the square root of the elastic spring energy (Fig. 1). Likewise,
from a path-based point of view, the minimum dissipated energy of a dashpot which
is extended from x1 to x2 at constant speed within the fixed time interval Œ0; 1� reads
Diss D R 1

0 2� kvk2
2 dt D 2� kx2 � x1k2

2, where 2� is the dashpot parameter and the
velocity is given by v D x2 � x1. Using this physical interpretation, we can express,
for instance, the arithmetic mean x D 1

n

Pn
iD1 xi D argminQx

Pn
iD1 kxi � Qxk2

2 of
a given set of points x1; : : : ; xn 2 Rd either as the minimizer of the total elastic
deformation energy in a system, where the average x is connected to each xi by
elastic springs or as the minimizer of the total viscous dissipation when extending
dashpots from xi to x.

Before we investigate the same concepts on more general Riemannian manifolds,
let us briefly recall some basic notation. A Riemannian manifold is a set M that
is locally diffeomorphic to Euclidean space. Given a smooth path x.t/ 2 M,
t 2 Œ0; 1�, we can define its derivative Px.t/ at time t as a tangent vector to M
at x.t/. The vector space of all such tangent vectors makes up the tangent space
Tx.t/M, and it is equipped with the metric gx.t/. � ; � / as the inner product. The

length of a path x.t/ 2 M, t 2 Œ0; 1�, is defined as
R 1

0

p
gx.t/. Px.t/; Px.t// dt , and

locally the shortest paths are denoted geodesics. They can be shown to minimizeR 1
0 gx.t/. Px.t/; Px.t// dt [21, Lemma 2.3]. Let us emphasize that a general geodesic

is only locally the shortest curve. In particular, there might be multiple geodesics
of different lengths connecting the same end points. The geodesic distance between
two points is the length of the shortest connecting path. Finally, for a given x 2M,
there is a bijection expx W TxM ! M of a neighborhood of 0 2 TxM into a
neighborhood of x 2M that assigns to each tangent vector v 2 TxM the end point
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Fig. 2 The logarithmic map
assigns each point xi on the
manifold M a vector in the
tangent space TxM, which
may be seen as a linear
representative

x2
x3

x3

x1
x1

logx

logx

logx

x2

of the geodesic emanating from x with initial velocity v and running over the time
interval Œ0; 1� [42, Theorem 1.6.12] or [74, Chap. 9, Theorem 14].

We can now define the (possibly nonunique, cf. Sect. 5) mean x of a num-
ber of n points x1; : : : ; xn 2 M in analogy to the Euclidian case as x D
argminQx

Pn
iD1 d.xi ; Qx/2, where d. � ; � / is the Riemannian distance on M. This

average is uniquely defined as long as the geodesics involved in the distance
computation are unique, and it has been investigated in differential geometry by
Karcher [38]. Furthermore, on a Riemannian manifold M, the inverse exponential
map logx D exp�1

x provides a method to obtain representatives logx.xi / 2 TxM of
given input points xi 2M in the (linear) vector space TxM (Fig. 2). On these, we
can perform a PCA, which is by definition a linear statistical tool.

In a Riemannian space M, the path-based approach can immediately be applied
by exploiting the Riemannian structure, and

R 1
0 gx.t/. Px.t/; Px.t// dt can be consid-

ered as the energy dissipation spent to move a point from x.0/ to x.1/ along a
geodesic. The logarithms logx.xi / in this model correspond to the initial velocities
of the transport process leading from x to xi . When applying the state-based elastic
model in M, however, there is no mechanically motivated notion of paths and thus
also no logarithmic map. Only if we suppose that the Riemannian structure of the
space M is not induced by changes in the inner structure of our objects, the physical
model based on elastic springs still coincides with the viscous model: We consider
elastic springs stretched on the surface M and connecting the points x and xi with
a stored energy 1

2 Cd.x; xi /2. Then, as before in the Euclidian case, a state-based
average x of input points x1; : : : ; xn can be defined. Furthermore, interpreting spring
forces acting on x and pointing toward xi as linear representatives of the input
points xi , one can run a PCA on these forces as well. However, for any reasonable
(even finite-dimensional) model of shape space, objects are not rigid, and the inner
relation between points as subunits (such as the vertex points of polygonal shapes)
essentially defines the Riemannian (and thus the path-based) structure of the space
M: The rate of dissipation along a path in shape space depends on the interaction
of object points. Physically, the corresponding point interaction energy is converted
into thermal energy via friction. This dissipation depends significantly on the path
in shape space traversed from one shape to the other. In contrast, when applying
the state-based approach to the same shape space, we directly compare the inner
relations between the subunits, i.e., we have no history of these relations. This
comparison can be quantified based on a stored (elastic) interaction energy which is
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then a quantitative measure of the dissimilarity of the two objects but in general no
metric distance.

Path-Based Viscous Dissipation Versus State-Based Elastic
Deformation for Nonrigid Objects

In the following, we will especially consider two different physically motivated
perspectives on a shape space of nonrigid volumetric objects in more detail. In the
first case, we will adopt a path-based view, motivated by the theory of viscous fluids,
while the second, state-based approach will be motivated by elasticity.

We will regard shapes S as boundaries S D @O of domains O � Rd which
will be interpreted as physical objects. The resulting shape space structure depends
on the particular type of physical objects O: An interpretation of O as a blob of a
viscous fluid will yield an actually Riemannian, path-based shape space, while the
interpretation as an elastic solid results in a state-based perspective, which will turn
out to be non-Riemannian by construction.

Path-Based, Viscous Riemannian Setup
Shapes will be modeled as the boundary contour of a physical object that is made of
a viscous fluid. The object might be surrounded by a different fluid (e.g., with much
lower viscosity and compression modulus), nevertheless, without any restriction
we will assume void outside the object in the derivation of our model. Here,
viscosity describes the internal resistance in a fluid and is a macroscopic measure
of the friction between fluid particles, e.g., the viscosity of honey is significantly
larger than that of water. The friction is described in terms of the stress tensor

 D .
ij /ijD1;:::d , whose entries describe a force per area element. By definition,

ij is the force component along the i th coordinate direction acting on the area
element with a normal pointing in the j th coordinate direction. Hence, the diagonal
entries of the stress tensor 
 refer to normal stresses, e.g., due to compression,
and the off-diagonal entries represent tangential (shear) stresses. The Cauchy stress
law states that due to the preservation of angular momentum, the stress tensor 
 is
symmetric [13].

In a Newtonian fluid, the stress tensor is assumed to depend linearly on the

gradient Dv WD
�
@vi
@xj

�
ijD1;:::d

of the velocity v. In case of a rigid body motion,

the stress vanishes. A rotational component of the local motion is generated by the
antisymmetric part 1

2

�
Dv � .Dv/T

	
of the velocity gradient, and it has the local

rotation axis r � v and local angular velocity jr � vj [78]. Thus, as rotations
are rigid body motions, the stress only depends on the symmetric part �Œv� WD
1
2

�
DvC .Dv/T

	
of the velocity gradient. For an isotropic Newtonian fluid, we get


ij D �ıij Pk.�Œv�/kkC2� .�Œv�/ij , or in matrix notation 
 D �tr .�Œv�/ 1C2��Œv�,
where 1 is the identity matrix. The parameter � is denoted Lamé’s first coefficient.
The local rate of viscous dissipation – the rate at which mechanical energy is locally
converted into heat due to friction – can now be computed as
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dissŒv� D �

2
.tr�Œv�/2 C �tr

�
�Œv�2

	
: (1)

This is in direct correspondence to the mechanical definition of the stress tensor

 as the first variation of the local dissipation rate with respect to the velocity
gradient, i.e., 
 D ıDvdiss. Indeed, by a straightforward computation, we obtain
ı.Dv/ij diss D � tr�Œv� ıij C2� .�Œv�/ij D 
ij : Here, tr

�
�Œv�2

	
measures the averaged

local change of length and .tr�Œv�/2 the local change of volume induced by the
transport. Obviously, divv D tr.�Œv�/D 0 characterizes an incompressible fluid.

Now, let us consider a path .O.t//t2Œ0;1� of objects connecting O.0/ with O.1/
and generated by a time-continuous deformation. If each point x 2 O.t/ of the
object O.t/ at time t 2 Œ0; 1�moves in an Eulerian framework at the velocity v.t; x/
( Px D v.t; x/), so that the total deformation of O.0/ into O.t/ can be obtained by
integrating the velocity field v in time, then the accumulated global dissipation of
the motion field v in the time interval Œ0; 1� takes the form

Diss
�
.v.t/;O.t//t2Œ0;1�

� D
Z 1

0

Z
O.t/

dissŒv� dx dt : (2)

This is the same concept as employed by Dupuis et al. [23] and Miller et al. [53] in
their pioneering diffeomorphism approach. They minimize a dissipation functional
under the simplifying assumption that the material behaves equally viscous inside
and outside the object. Also, dissŒv� D �

2 .tr�Œv�/
2 C �tr.�Œv�2/ is replaced by

a higher-order quadratic form Lv � v which plays the role of the local rate of
dissipation in a multipolar fluid model [57]. Multipolar fluids are characterized by
the fact that the stresses depend on higher spatial derivatives of the velocity. If the
quadratic form associated withL acts only on �Œv� and is symmetric, then rigid body
motion invariance is incorporated in the multipolar fluid model (cf. section “Viscous
Fluid-Based Shape Space”). In contrast to this approach, we here measure the
rate of dissipation differently inside and outside the object and rely on classical
(monopolar) material laws from fluid mechanics.

On this physical background, we will now derive a Riemannian structure on the
space of shapes S in an admissible class of shapes S. The associated metric GS
on the (infinite-dimensional) manifold S is in abstract terms a bilinear mapping
that assigns each element S 2 S an inner product on variations ıS of S (cf.
section “Recalling the Finite-Dimensional Case” above). The associated length of
a tangent vector ıS is given by kıSk D p

GS.ıS; ıS/. Furthermore, as we have
already seen above, the length of a differentiable curve S W Œ0; 1� ! S is then

defined by LŒS� D R 1
0 k PS.t/k dt D R 1

0

q
GS.t/

� PS.t/; PS.t/	 dt , where PS.t/ is the
temporal variation of S at time t . The Riemannian distance between two shapes SA
and SB on S is given as the minimal length taken over all curves with S.0/ D SA
and S.1/ D SB or equivalently (cf. section “Recalling the Finite-Dimensional Case”
above) as the length of a minimizer of the functional

R 1
0 GS.t/

� PS.t/; PS.t/	 dt . For
shapes S 2 S, an infinitesimal variation ıS of a shape S D @O is associated with
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a transport field v W O ! Rd . This transport field is obviously not unique. Indeed,
given any vector field w on O with w.x/ 2 TxS for all x 2 S D @O (where
TxS denotes the .d � 1/-dimensional tangent space to S at x), the transport field
v C w is another possible representation of the shape variation ıS. Let us denote
by V.ıS/ the affine space of all these representations. As a geometric condition
for v 2 V.ıS/, we obtain v.x/ � nŒS�.x/ D ıS.x/ � nŒS�.x/ for all x 2 S, where
nŒS�.x/ 2 Rd denotes the outer normal to S � Rd in x 2 S. Given all possible
representations, we are interested in the optimal transport, i.e., the transport leading
to the least dissipation. Thus, using definition (1) of the local dissipation rate, we
finally define the metric GS.ıS; ıS/ as the minimal dissipation rate on motion fields
v which are consistent with the variation of the shape ıS ,

GS.ıS; ıS/ WD min
v2V.ıS/

Z
O

dissŒv� dx D min
v2V.ıS/

Z
O

�

2
.tr�Œv�/2 C � tr

�
�Œv�2

	
dx :

(3)
Let us remark that we distinguish explicitly between the metric g.v; v/ WDR
O dissŒv� dx on motion fields and the metric GS.ıS; ıS/ on shape variations.

Finally, integration in time leads to the total dissipation (2) to be invested in the
transport along a path .S.t//t2Œ0;1� in the shape space S. This implies the following
definition of a time-continuous geodesic path in shape:

Definition 1 (Geodesic path). Given two shapes SA and SB in a shape space S, a
geodesic path between SA and SB is a curve .S.t//t2Œ0;1� � S with S.0/ D SA and
S.1/ D SB which is a local solution of

min
v.t/2V. PS.t//

Diss
�
.v.t/;O.t//t2Œ0;1�

�

among all differentiable paths in S.

The Riemannian distance between two shapes SA and SB induced by this definition
is given by the length of the shortest (geodesic) path S.t/ between the two shapes,
i.e.,

dviscous.SA;SB/ D L
�
.S.t//t2Œ0;1�

�
:

Figure 3 shows two different paths between the same pair of shapes, one of them
being a (numerically approximated) geodesic. Note that the chosen dissipation
model combines the control of infinitesimal length changes via tr

�
�Œv�2

	
, and the

control of compression via tr .�Œv�/2. Figure 4 evaluates the impact of these two
terms on the shapes along a geodesic path.

State-Based, Path-Independent Elastic Setup
Now, objects bounded by a shape contour S are no longer composed of a viscous
fluid but are considered to be elastic solids. To describe object deformations, we
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Fig. 3 A geodesic (top, path length L D 0:2225 and total dissipation Diss D 0:0497) and a
non-geodesic path (bottom, L D 0:2886, Diss D 0:0880) between an A and a B. The intermediate
shapes of the bottom row are obtained via linear interpolation between the signed distance functions
of the end shapes. The local dissipation rate is color coded as

Fig. 4 Two geodesic paths between dumbbell shapes varying in the size of the ends. In the top
example, the ratio �=� between the dissipation parameters is 0:01 (leading to rather independent
compression and expansion of the ends since the associated change of volume implies relatively
low dissipation), and 100 in the bottom row (now mass is actually transported from one end to the
other). The underlying texture on the objects is aligned to the transport direction, and the absolute
value of the velocity v is color coded as

aim for an elastic energy which is not restricted to small displacements and which
is consistent with the first principles. Alongside the shape space modeling, we will
recall some background from elasticity. For details, we refer to the comprehensive
introductions in the books by Ciarlet [15] and Marsden and Hughes [47].

For two objects OA andOB with shapes SA D @OA and SB D @OB , we assume a
deformation � to be defined on OA and constrained by the assumption �.SA/ D SB .
For practical reasons, one might consider OA to be embedded in a very soft elastic
material occupying ˝ nOA for some computational domain ˝ . There is an elastic
energy WdeformŒ�;OA� associated with the deformation � W ˝ ! Rd . By definition,
elastic means that this energy solely depends on the state and not on the path along
which the deformation proceeds in time. More precisely, for so-called hyper-elastic
materials, WdeformŒ�;OA� is the integral of an energy densityW depending solely on
the Jacobian D� of the deformation �, i.e.,
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WdeformŒ�;OA� D
Z
OA

W.D�/ dx : (4)

This elastic energy is considered as a dissimilarity measure between the shapes
SA and SB . As a fundamental requirement, one postulates the invariance of the
deformation energy with respect to rigid body motions, WdeformŒQ ı � C b;SA� D
WdeformŒ�;SA� for any orthogonal matrix Q 2 SO.d/ and translation vector
b 2 Rd (the axiom of frame indifference in continuum mechanics). From this,
one deduces that the energy density only depends on the right Cauchy–Green
deformation tensor D�TD�. Hence, there is a function QW W Rd;d �! R such
that the energy density W satisfies W.F / D QW .F TF / for all F 2 Rd;d . The
Cauchy–Green deformation tensor geometrically represents the metric measuring
the deformed length in the undeformed reference configuration. For an isotropic
material and for d D 3, the energy densityW can be further rewritten as a function
OW .I1; I2; I3/ solely depending on the principal invariants of the Cauchy–Green

tensor, namely, I1 D tr.D�TD�/, controlling the local average change of length;
I2 D tr

�
cof.D�TD�/

	
(cofF WD detF F�T ), reflecting the local average change

of area; and I3 D det.D�TD�/, which controls the local change of volume. For a
detailed discussion, we refer to [15,78]. We shall furthermore assume that the energy
density is polyconvex [18], i.e., a convex function of D�, cofD�, and detD�, and
that isometries, i.e., deformations with D�T.x/D�.x/ D 1, are local minimizers
with W.D�/ D QW .1/ D 0 [15]. Typical energy densities in this class are of the
form

OW .I1; I2; I3/ D a1I
p
2

1 C a2I
q
2

2 C , .I3/ (5)

for a1; a2 > 0 and a convex function , W Œ0;1/ ! R with , .I3/ ! 1 for
I3! 0 and I3 !1. In nonlinear elasticity, such material laws have been proposed
by Ogden [58], and for p D q D 2 (the case considered in our computations),
we obtain the Mooney–Rivlin model [15]. The built-in penalization of volume

shrinkage, i.e., OW .I1; I2; I3/
I3!0�! 1, enables us to control local injectivity

(cf. [2]).
Incorporation of such a nonlinear elastic energy allows to describe large defor-

mations with strong material and geometric nonlinearities, which cannot be treated
by a linear elastic approach (cf. Hong et al. [36]). Furthermore, it balances in an
intrinsic way expansion and collapse of the elastic objects and hence frees us from
imposing artificial boundary conditions or constraints.

As in the previous section, the local force per area, induced by the deformation,
is described at a point �.x/ 2 �.O/ by the Cauchy stress tensor 
 . It is related
to the first Piola–Kirchhoff stress tensor 
 ref D W;F .D�/ WD @W.F /

@F
jFDD� , which

measures the force density in the undeformed reference configuration, by 
 ref D

 ı � cofD�.

Based on these concepts from nonlinear elasticity, we can now define a dissimi-
larity measure on shapes
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deform = 0.19945

= 0.19696

= 0.23346

= 0.34599

= 0.16861

= 0. 20534

deform

deform

deform

deform

deform

Fig. 5 Example of elastic dissimilarities between different shapes. The arrows indicate the
direction of the deformation, the color coding represents the local deformation energy density
(in the reference as well as the deformed state)

delast.SA;SB/ WD min
�;�.SA/DSB

p
WdeformŒ�;OA� : (6)

Figure 5 shows some applications of this measure. Obviously, the elastic energy
is in general not symmetric so that delast.SA;SB/ ¤ delast.SB;SA/. Indeed, by
construction, delast. � ; � / does not impose a metric structure on the space of shapes
(we refer to section “Conceptual Differences Between the Path- and State-Based
Dissimilarity Measures” for a detailed discussion). Nevertheless, it can be applied
to develop physically sound statistical tools for shapes such as shape averaging and
a PCA on shapes, as outlined below in section “Elasticity-Based Shape Space.”

Let us make a brief remark on the mathematical relation between the two
different concepts of elasticity and viscous fluids. If we assume the Hessian of
the energy density W at the identity to be given by W;FF .1/.G;G/ D �.trG/2 C
�

2 tr
�
.G CGT /2

	
(which can be realized in (5) for a particular choice of a1, a2, and

, , depending on the exponents p and q), then by the ansatz �.x/ D xC �v.x/ and
a second-order Taylor expansion, we obtain

W.D�/ D W.1/C �W;F .1/.Dv/C �2

2
W;FF .1/.Dv;Dv/CO.�3/

D 0C 0C �2

�
�

2
.trDv/2 C �

4
tr
��
DvC .Dv/T

	2
��
CO.�3/ : (7)

In effect, the Hessian of the nonlinear elastic energy leads to the energy density in
linearized, isotropic elasticity

W lin.Du/ D �

2
.tr�Œu�/2 C � tr

�
�Œu�2

	
(8)

for displacements u with �.x/ D x C u.x/. This energy density, acting on
displacements u, formally coincides with the local dissipation rate dissŒv�, acting
on velocity fields v, in the viscous flow approach.
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Finally, let us deal with the hard constraint �.SA/ D SB , which is often
inadequate in applications. Due to local shape fluctuations or noise in the shape
acquisition, the shape SA frequently contains details that are not present in SB
and vice versa. These defects would imply high energies in a strict 1–1 matching
approach. Hence, we have to relax the constraint and introduce some penalty
functional. Here, we either measure the symmetric difference of the input shapes
SA and the pullback ��1.SB/ of the shape SB given by

F ŒSA; �;SB� D Hd�1 �SA4��1.SB/
	
; (9)

where A4B D A nB [ B nA, or alternatively the volume mismatch

F ŒSA; �;SB� D vol
�
OA4��1.OB/

	
: (10)

Conceptual Differences Between the Path- and State-Based
DissimilarityMeasures
The concept of the state-based, elastic approach to dissimilarity measurement
between shapes differs significantly from the path-based viscous flow approach. In
the elastic setup, the axiom of elasticity implies that the energy at the deformed
configuration SB D �.SA/ is independent of the path from shape SA to shape
SB along which the deformation is generated in time. Hence, there is no notion
of the shortest paths if we consider a purely elastic shape model, and different from
a path-based approach, there might not even exist an intermediate shape SC with
delast.SA;SB/ D delast.SA;SC /C delast.SC ;SB/.

Unlike in the elasticity model, in the Newtonian model of viscous fluids, the rate
of dissipation and the induced stresses solely depend on the gradient of the motion
field v. Even though the dissipation functional (2) looks like the deformation energy
from linearized elasticity as outlined above, the underlying physics is only related
in the sense that an infinitesimal displacement in the fluid leads to stresses caused
by viscous friction, and these stresses are immediately absorbed via dissipation.

Surely, every (path-based) Riemannian space is metrizable (and in that sense
state-based), and for many sufficiently regular (state-based) metric spaces, we
can devise a corresponding (path-based) Riemannian metric. However, from our
mechanical perspective, the conceptual difference between the path-based, viscous
and the state-based elastic approach is striking. In the path-based approach, the
structure of the space is too complicated for a closed formula of the geodesic
distance, so that the actual computation of a path is required. In the state-based
approach, there is either no underlying path (i.e., no S.t/t2Œ0;1� such that for any
0� t1� t2� t3� 1, we have d.S.t1/;S.t3// D d .S.t1/;S.t2//C d .S.t2/;S.t3//),
or the shape space structure is simple enough to allow for a closed formula of the
geodesic distance as in Euclidean space.

Mathematically, the path-based nature of the viscous flow approach and the fact
that an inversion of the motion field v! �v leads to a path from shape SB to SA in
shape space with the same dissipation and length, i.e.,
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L = 0.18527

L = 0.09894

L = 0.08700

= 0.19016

 = 0.09976

= 0.08737

Fig. 6 Left: viscosity-based (time-discrete) geodesics between the shapes at the corners (the
shapes are taken from [31]). The triangle inequality holds. Right: elastic dissimilarities
delast. � ; � / D p

W � p
Wdeform between the same shapes, where the arrows point from the

reference to the deformed configuration. The triangle inequality does not hold

Fig. 7 The state-based elastic dissimilarity measure delast is not symmetric (as opposed to the
path-based, viscous distance dviscous): In this example, it costs much more energy to drag out the
protrusion than to push it in. The color coding represents the local deformation energy density in
the reference and the deformed configuration

Diss
�
.v.t/;O.t//t2Œ0;1�

� D Diss
�
.�v.1 � t/;O.1 � t//t2Œ0;1�

�

ensure that the associated distance dviscous is actually a metric. In particular, the
symmetry condition dviscous.SA;SB/ D dviscous.SB;SA/ and the triangle inequality
dviscous.SA;SC / � dviscous.SA;SB/ C dviscous.SB;SC / hold. As we have already seen,
the symmetry condition does not hold for the elastic dissimilarity measure. Also, the
triangle inequality cannot be expected to hold. Indeed, if a deformation �A;B maps
OA onto OB and a deformation �B;C maps OB onto OC , then �A;C WD �B;C ı �A;B
deforms OA onto OC . However, based on our elastic model, OB is considered to
be stress free when applying the deformation �B;C (although it is actually obtained
as the image of object OA under the deformation �A;B ). Hence, the “history” of
the deformation �A;B is lost when measuring the energy of �B;C . In addition, the
energy density is highly nonlinear. As a consequence, in general, we cannot expect
delast.SA;SC / � delast.SA;SB/Cdelast.SB;SC /. Indeed, Fig. 6 gives an example where
the triangle inequality holds in the viscous, path-based and fails in the elastic,
state-based approach. Furthermore, Fig. 7 depicts another example for the lack of
symmetry already apparent in Fig. 5 with a particularly pronounced mechanical
difference of the two dissimilarity measures.
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4 Numerical Methods and Case Examples

Elasticity-Based Shape Space

In this section, we will perform a statistical analysis on shapes up to the second
moment, i.e., we will consider shape averaging and a principal component analysis
on shapes as two exemplary applications of the state-based elastic shape space.

Elastic Shape Averaging
As usual, we consider objects O as open sets in Rd with the object shape given
as S WD @O. Given n sufficiently regular shapes Si D @Oi , i D 1; : : : ; n, we are
interested in an average shape which reflects the geometric characteristics of the
input shapes in a physically intuitive manner. Suppose S D @O � Rd denotes a
candidate for this unknown shape. As it is characteristic for the elastic approach,
the similarity of the input shapes Si to S is measured by taking into account
optimal elastic deformations �i W Oi ! Rd with �i .Si / D S. The elastic energy
WdeformŒ�i ;Oi � of these deformations has the interpretation of a dissimilarity measure
(cf. section “State-Based, Path-Independent Elastic Setup”), so that we obtain a
natural definition of an average shape as the minimizer of the sum of these terms
(cf. Sect. 2).

Definition 2 (Elastic shape average). Given shapes S1; : : : ;Sn in some shape
space S, the elastic shape average S is the minimizer of

nX
iD1

delast.Si ;S/2 D
nX
iD1

inf
�i WOi!Rd ;�i .Si /DS

WdeformŒ�i ;Oi �:

If the input objects Oi have Lipschitz boundary and the integrand of the deformation
energy WdeformŒ�i ;Oi � D

R
Oi
W.D�i / dx is polyconvex and bounded below by

C1kD�ikp�C2 for p > d , C1; C2 > 0, the existence of a Hölder-continuous elastic
shape average and deformations �i 2 W 1;p.Oi / which realize the above infimum is
guaranteed [81].

An example of a shape average is provided in Fig. 8. Obviously, the process of
shape averaging is a constrained variational problem in which we simultaneously
have to minimize over n deformations �i and the unknown shape S under the n
constraints �i .Si / D S.

The necessary conditions for a set of minimizing deformations are the cor-
responding Euler–Lagrange equations. As usual, inner variations of one of the
deformations lead to the classical system of PDEs divW;F .D�i / D 0 for every
deformation �i on Oi nSi , meaning a divergence-free, equilibrized stress field (cf.
section “State-Based, Path-Independent Elastic Setup”). Furthermore, the coupling
between the deformations via the constraints .�i .Si / D S/iD1;:::;n allows to derive
a stress balance relation on S: Consistent variation of all deformations �i and the
average S by some displacement u W O ! Rd via .1C ıu/ ı �i and .1C ıu/.S/
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Fig. 8 Elastic shape average (bottom right) of five human silhouettes. For the computation, all
shapes have actually been described as phase fields, and the elastic deformations are extended
outside the input objects Oi (cf. section “Shapes Described via Phase Fields”). The objects Oi

are depicted along with their deformations �i (acting on a checkerboard) and the distribution of
local length change 1p

2
kD�ik and volume change det.D�i / (range Œ0:97; 1:03� color coded as

)

results in the optimality condition d
dı

Pn
iD1 Wdeform Œ.1C ıu/ ı �i ;Oi �

ˇ̌
ıD0 D 0,

which after integration by parts leads to
Pn

iD1

R
Si W;F .D�i /.uı�i/ � �ŒSi � daŒSi � D

0 for the outer normal �ŒSi � to Si . We have here exploited divW;F .D�i / D 0 on
Oi nSi . Now, we consider displacements u with local support and let this support
collapse at some point x on S. This yields the pointwise condition

0 D
nX
iD1

�

 ref
i �ŒSi � daŒSi �

	 �
��1
i .x/

	
and thus 0 D

nX
iD1

.
i �ŒS�/.x/ (11)

for x 2 S, where we have used the relation

�

 ref
i �ŒSi � daŒSi �

	 �
��1
i .x/

	 D .
i �ŒS� daŒS�/.x/
between the first Piola–Kirchhoff stress 
 ref

i DW;F .D�i / and Cauchy stress

iD

�

 ref
i .cofD�i /�1

	 ı ��1
i . Hence, the shape average can be interpreted as that

stable shape at which the boundary stresses of all deformed input shapes balance
each other (Fig. 9). Obviously, there is a straightforward generalization involving
jumps of normal stresses on interior interfaces in case of multicomponent objects.

In order to ensure a certain regularity of the average shape S, in addition to
the sum of deformation energies in Definition 2, one can consider a further energy
contribution which acts as a prior on S in the variational approach. In the exemplary
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Fig. 9 Sketch of the pointwise stress balance relation on the averaged shape

Fig. 10 Average of 18 hand silhouettes (Taken from [16])

Fig. 11 Five segmented kidneys and their average (right). For the first two input kidneys, the
distribution of 1p

3
kD�ik, 1p

3
kcof.D�i /k, and det.D�i / is shown on sagittal cross sections (the

range Œ0:85; 1:15� is color coded as ). While the first kidney is dilated toward the
average, the second is compressed

Fig. 12 Twenty-four given foot shapes (Courtesy of Adidas), textured with the distance to the
surface of the average foot (bottom right). Values range from 6 mm inside the average foot to 6 mm
outside, color coded as

computations shown (Figs. 10–12), the .d � 1/-dimensional Hausdorff measure
LŒS� D Hd�1.S/ has been employed as regularization.

Elasticity-Based PCA
As already explained in section “Recalling the Finite-Dimensional Case,” a principal
component analysis (PCA) is a linear statistical tool which decomposes a vector
space into the direct sum of orthogonal subspaces. These subspaces are ordered
according to the strength of variation which occurs along each subspace within a
random set of sample vectors. We would like to interpret a given set of input shapes
S1; : : : ;Sn as such a random sample and perform a corresponding PCA; however,
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due to the linearity of a PCA, we first have to identify linear representatives for each
shape on which a PCA can then be performed. For a Riemannian shape space, we
have outlined in section “Recalling the Finite-Dimensional Case” that such linear
representatives are given by the logarithmic map of the input shapes, but we have
also learned in section “Conceptual Differences Between the Path- and State-Based
Dissimilarity Measures” that a state-based elastic shape space is incompatible with
a Riemannian structure.

To prepare the definition of appropriate linear representatives of shapes in an
elastic shape space, let us briefly review the physical concept of boundary stresses.
By the Cauchy stress principle, each deformation �k W Ok ! O is characterized by
pointwise boundary stresses on S D @O in the deformed configuration. The stress
at some point x on S is given by the application of the Cauchy stress tensor 
k to
the outer normal � on S. The resulting stress 
k� is a force density acting on a local
surface element of S. The shape S is in an equilibrium configuration if the opposite
force is applied as an external surface load (cf. Fig. 9). Otherwise, by the axiom
of elasticity, releasing the object O, the elastic body will snap back to the original
reference configuration Ok . Let us assume the relation between the energetically
favorable deformation and its induced stresses to be one to one, so that the average
shape S can be described in terms of the input shape Sk and the boundary stress

k�, and we write S D SkŒ
k��. Upon scaling the stress with a weight t 2 Œ0; 1�, we
obtain a one-parameter family of shapes S.t/ D SkŒt
k��, connecting Sk D S.0/
with S D S.1/. Thus, we can regard 
k� as a representative of shape Sk in the
linear space of vector fields on S.

Physically, it is more intuitive to identify a displacement uk instead of the
normal stress 
k� as the representative of an input shape Sk . Hence, let us study
how the average shape S varies if we increase the impact of a particular input
shape Sk for some k 2 f1; : : : ; ng. For this purpose, we apply the Cauchy
stress 
k� to the average shape S, scaled with a small constant ı. This additional
boundary stress ı
k� may be seen as a first Piola–Kirchhoff stress acting on the
(reference) configuration S. The elastic response is given by a correspondingly
scaled displacement uk W O ! Rd . Here, to properly incorporate the nonlinear
nature of the second moment analysis, O should be interpreted as the compound
object which is composed of all deformed and thus prestressed input objects �i .Oi /.
This interpretation is reflected by the elastic material law employed to compute the
displacements uk. In detail, uk is obtained as the minimizer of the free mechanical
energy

EkŒı; u� D 1

n

nX
iD1

Wdeform

�
.1C ıu/ ı �i ;Oi

� � ı2
Z
S

k� � u da (12)

under the constraints
R
O uk dx D 0 and

R
O x � uk dx D 0 of zero average

translation and rotation. These displacements uk are considered as representatives
of the variation of the average shape S with respect to the input shape Sk , on which
a PCA will be performed.
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As long as F 7! W.F / is not quadratic in F , uk still solves a nonlinear elastic
problem. The advantage of this nonlinear variational formulation is that it is of
the same type as the one for shape averaging, and it encodes in a natural way
the compound elasticity configuration of the averaged shape domain O. However,
for the linearization of shape variations, we are actually only interested in the
displacements ıuk for small ı. Therefore, we consider the limit of the Euler–
Lagrange equations for ı ! 0 and, after a little algebra, obtain uk as the solution of
the linearized elasticity problem

div
�
C �Œu�

	 D 0 in O ; C �Œu� � D 
k� on S (13)

for the symmetrized displacement gradient �Œu� D 1
2 .Du C DuT / under the

constraints
R
O u dx D 0 and

R
O x � u dx D 0, where the in general inhomogeneous

and anisotropic elasticity tensor C reads

C D 1

n

nX
iD1

�
1

detD�i
D�iW;FF .D�i /D�T

i

�
ı ��1

i :

Next, for a PCA on the linearized shape variations uk , we select a suitable
inner product (metric) g.u; Qu/ on displacements u; Qu W O ! Rd . Note that g
induces a metric Qg.
�; Q
�/ WD g.u; Qu/ on the associated boundary stresses so that
instead of analyzing the uk , the covariance analysis can equivalently be performed
directly on the boundary stresses 
1�; : : : ; 
n�, which we originally derived as
linear shape representatives. Indeed, the solvability condition

R
O div.Cru/ dx DR

S Cru� daŒS� is fulfilled, and thus the solution uk for given boundary stress

k� D Cru� is uniquely determined up to a linearized rigid body motion (i.e.,
an affine displacement with skew-symmetric matrix representation), which is fixed
by the conditions of zero mean displacement and angular momentum for u. Then,
due to the linearity of the operator 
� 7! u, the metric Qg is bilinear and symmetric
as well, and its positive definiteness follows from the positive definiteness of g and
the injectivity of the map 
� 7! u.

We consider two different inner products on displacements u W O! Rd :

• The L2-product. Given two square integrable displacements u; Qu, we define

g.u; Qu/ WD
Z
O

u � Qu dx:

This product weights local displacements equally on the whole object O.
• The Hessian of the energy as inner product. Different from the L2-metric, we

now measure displacement gradients in a nonhomogeneous way. We define

g.u; Qu/ WD
Z
O

C�Œu� W �ŒQu� dx
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for displacements u; Qu with square integrable gradients. Hence, the contribution
to the inner product is larger in areas of the compound object which are in a
significantly stressed configuration.

Given an inner product, we can define the covariance operator Cov by

Cov u WD 1

n

nX
kD1

g.u; uk/uk

(note that the stresses 
k� and thus also the displacements uk have zero mean due
to (11)). Obviously, Cov is symmetric positive definite on span.u1; : : : ; un/. Hence,
we can diagonalize Cov on this finite-dimensional space and obtain a set of g-
orthonormal eigenfunctions wk W O! Rd and eigenvalues �k > 0 with Cov wk D
�kwk . These eigenfunctions can be considered as the principal modes of variation of
the average object O and hence of the average shape S, given the n sample shapes
S1; : : : ;Sn. Their eigenvalues encode the variation strength. The diagonalization of
Cov can be performed by diagonalizing the symmetric matrix 1

n

�
g.ui ; uj /

	
ij
D

O+OT, where + D diag.�1; �2; : : :/ and O is orthogonal. The eigenfunctions are
then obtained as wk D 1p

�k

Pn
jD1Ojkuj .

Being displacements on O, the modes of variation wk can easily be visualized
via a scalar modulation ıwk for varying ı (cf. the vizualization in Figs. 16–18 or the
red lines in Figs. 13 and 15). If an amplified visualization of the modes is required,
it is preferable to depict displacements wkı which are defined as minimizers of the
nonlinear variational energy 1

n

Pn
iD1 Wdeform

�
.1Cw/ı�i ;Oi

�� ı2
R
S Crwk� �w da

(cf. (12)).
Let us underline that this covariance analysis properly takes into account the

usually strong geometric nonlinearity in shape analysis via the transfer of geometric
shape variation to elastic stresses on the average shape, based on paradigms
from nonlinear elasticity. Displacements or stresses are interpreted as the proper
linearization of shapes. In abstract terms, either the space of displacements or
stresses can be considered as the tangent space of shape space at the average shape,
where the identification of displacements and stresses via (13) provides a suitable
physical interpretation of stresses as shape variations.

The impact of the chosen metric. Naturally, the modes of variation depend on the
chosen inner product. We have already mentioned that in order to be physically
meaningful, the inner product should act on displacements uk of the compound
object (which is composed of all deformed input shapes). If instead the uk were
obtained by applying the boundary stresses 
k� to an object which just looks like the
average shape but does not contain the information how strongly the input shapes
had to be deformed to arrive at the average, we obtain a different result (Fig. 13,
left): If the prestressed state of some object regions is neglected, it becomes easier
to deform them which causes the prediction of stronger variations. Figure 13 also
hints at the differences between the employed metrics: The L2-metric pronounces
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Fig. 13 First three dominant modes of variation for six input shapes (left), based on different
metrics. Left: L2-metric on displacements of a non-prestressed object (modes wk with ratios �k

�1
of

1, 0.23, 0.07). Middle: L2-metric on displacements of the compound object
�
�k
�1

D 1, 0.28, 0.03
	
.

Right: energy Hessian-based metric on displacements of the compound object
�
�k
�1

D 1, 0.61, 0.24
	

shape variations with large displacements even though they are energetically cheap
(e.g., a rotation of some structure around a joint), while the Hessian of the elastic
energy measures distances between displacements solely based on the associated
change of elastic energy. Thus, displacements are weighted strongly in regions and
directions which are significantly loaded.

The impact of the nonlinear elasticity model. Likewise, the particular choice of
the nonlinear elastic energy density has a considerable effect on the average shape
and its modes of variation. Figure 14 has been obtained usingW.D�/ D �

2 kD�k2C
�
4 detD�2 � ��C �

2

	
log detD� � � � �

4 , where � and � are the coefficients of
length and volume change penalization, respectively. A low penalization of volume
changes apparently leads to independent compression and inflation at the dumbbell
ends (left), while for deformations with a strong volume change penalization (right),
material is squeezed from one end to the other. Here, the underlying metric is the
based on the Hessian of the energy.

Figures 15–17 show the dominant modes of variation for the examples from the
previous section. A statistical analysis of the hand shapes in Fig. 15 has also been
performed in [16] and [28], where the shapes are represented as vectors of landmark
positions. The average and the modes of variation are quite similar, representing
different kinds of spreading the fingers. The dominant modes of variation for a set
of 48 three-dimensional kidney shapes is depicted in Fig. 16, where for all modes
wk , we show the average (middle) and its variation according to ıwk for varying
ı. Local structures seem to be quite well represented and preserved during the
averaging process and the subsequent covariance analysis compared to, e.g., the
PCA on kidney shapes in [26] where a medial representation is used.
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Fig. 14 First three modes of variation for eight dumbbell shapes, left for a 100 times stronger
penalization of length than of volume changes (with ratios �i

�1
of 1, 0.22, 0.05), right for the reverse�

�i
�1

D 1, 0.41, 0.07
	
. Each row represents the variation of the average (middle shape) by ıwk for

the mode wk and varying ı

Fig. 15 First four modes of variation with ratios �i
�1

of 1, 0.88, 0.42, and 0.25 for the 18 hand
silhouettes from Fig. 10

Fig. 16 Forty-eight input kidneys (Courtesy of Werner Bautz, radiology department at the
University Hospital Erlangen, Germany) and their first four modes of variation with ratios �i

�1
of 1,

0.72, 0.37, and 0.31

The PCA of the 24 ft shapes from Fig. 12 is shown in Fig. 17 and is much more
intuitive than the color coding in Fig. 12. The first mode apparently represents
changing foot lengths, the second and third mode belong to different variants of
combined width and length variation, and the fourth to sixth mode correspond
to variations in relative heel position, ankle thickness, and instep height. Finally,
Fig. 18 shows that the approach also works for image morphologies instead of
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λ1/ λ1 = 1 λ2 / λ1 = 0.010 λ3 / λ1 = 0.010

λ4/λ1 = 0.003 λ5 /λ1 = 0.001 λ6 /λ1 = 0.0008

Fig. 17 The first six dominant modes of variation for the feet from Fig. 12

Fig. 18 Eight thorax CT scans from different patients (Courtesy of Bruno Wirth, urology
department at the Hospital zum hl. Geist, Kempen, Germany) and their first three modes of
variation with ratios �i

�1
of 1, 0.12, and 0.07. Note that the thin lines which can be seen left of

the heart correspond to contours of the liver, which are only visible in the first and last input image

shapes, using thorax CT scans as input. Here, the image edge set is considered as the
corresponding shape, which is typically quite complex and characterized by nested
contours. The first mode of variation represents a variation in chest size, the next
mode corresponds to a change of heart and scapula shape, while the third mode
mostly concerns the rib position.

Viscous Fluid-Based Shape Space

As explained in section “Path-Based, Viscous Riemannian Setup,” the viscous fluid
shape space is by construction a (infinite-dimensional) Riemannian manifold and
as such is based on the computation of shape paths as opposed to state-based
approaches like the elastic shape space from the previous section. In the elastic,
state-based approach, we have to find for each pair of shapes SA D @OA and
SB D @OB one single optimal matching deformation � W OA ! Rd via which
the similarity between SA and SB is determined. In contrast, here we require more
information to measure the distance between the two shapes, namely, an optimal
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velocity field v.t/ W O.t/! Rd at each time t within the given time interval Œ0; 1�.
In effect, this implies an increase of the dimension of the variational problem by the
time component.

The two qualitatively different types of coordinates, the space coordinates (that
span the space in which the shapes lie) and the time coordinate, are intuitively
treated in different ways. One possibility is to regard the variational problem of
computing a geodesic as a classical elliptic boundary value problem in time, in
which each shape on a path seeks to be in equilibrium with its local neighborhood
on the path. The equilibrizing force can be interpreted as an acceleration acting on
the velocity field v. In this setting, it seems most natural to discretize first the time
variable and approximate geodesics in shape space as discrete sequences S0; : : : ;SK
of shapes, where each shape is connected to and equilibrates with its neighbors
and the path length along the discrete path S0; : : : ;SK is approximated as a sumPK

kD1
Qd.Sk�1;Sk/ of approximations Qd.Sk�1;Sk/ of the geodesic distance between

neighboring shapes. The distance Qd can be based on a matching deformation energy
which will be elaborated on further down.

An alternative view starts from the underlying velocity field which generates the
geodesic. Dupuis et al. [23] and Beg et al. [3] consider shapes (or rather images)
embedded in a domain ˝ � Rd . These shapes deform according to smooth,

compactly supported velocity fields v 2 L2
�
Œ0; 1�IW n;2

0 .˝IRd /
�

with n> 2C 2
d

.

The regularity of the velocity fields is ensured by defining the path dissipation

as
R 1

0

R
˝
Lv � v dx dt and the path length as

R 1
0

qR
˝
Lv � v dx dt for a differential

operator L of sufficiently high order (cf. section “Path-Based, Viscous Riemannian
Setup”). The corresponding shape deformation � which is induced by the velocity
field is obtained as the solution � D �1 of the pointwise, Lagrangian ordinary
differential equation d

dt �t .x/ D v.�t .x/; t/.
In the first approach, the computation of a geodesic was seen as the concatenation

of a number of local subproblems, each of which represents the approximation of a
geodesic segment between two intermediate shapes and each of which thus inherits
the constraint that one shape is transferred exactly into the other. In contrast, in the
second approach, we have one single constraint, acting at the end of the geodesic
and expressing that the accumulated flow � deforms the starting shape SA into the
final shape SB , �.SA/ D SB .

Let us now focus on the first approach in which a geodesic path will be approx-
imated via a finite sequence of shapes S0; : : : ;SK , connected by deformations
�k W Ok�1 ! Rd which are optimal in a variational sense and fulfil the constraint
�k.Sk�1/ D Sk .

Given two shapes SA, SB in some given space of shapes S, we define a
discrete path of shapes as a sequence of shapes S0; : : : ;SK 2 S with S0 D SA
and SK D SB . For the time step � D 1

K
, the shape Sk is supposed to be

an approximation of S.tk/ with tkDk� , where .S.t//t2Œ0;1� is a continuous path
connecting SA D S.0/ and SB D S.1/. For each pair of consecutive shapes
Sk�1 and Sk , we now consider a matching deformation �k W Ok�1 ! Rd which
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satisfies �k.Sk�1/ D Sk . With each deformation �k, we associate a deformation
energy WdeformŒ�k;Ok�1� D

R
Ok�1

W.D�k/ dx of the same type as described in
section “State-Based, Path-Independent Elastic Setup.” If appropriately chosen,
this energy will ensure sufficient regularity and a 1–1 matching property for
deformations �k with finite energy. As in elasticity, the energy is assumed to depend
only on the local deformation, reflected by the Jacobian D�. Yet, different from
elasticity, we suppose the material to relax instantaneously so that object Ok is again
in a stress-free configuration when applying �kC1 at the next time step. Let us also
emphasize that the stored energy does not depend on the deformation history as
in most plasticity models in engineering. This energy is now employed to define
time-discrete counterparts to the dissipation and length of continuous paths from
section “Path-Based, Viscous Riemannian Setup.”

Definition 3 (Discrete dissipation and discrete path length). Given a discrete
path S0; : : : ;SK 2 S, its dissipation is defined as

Diss� .S0; : : : ;SK/ WD
KX
kD1

1

�
WdeformŒ�k;Ok�1�;

where �k W Ok�1 ! Rd is a minimizer of the deformation energy WdeformŒ�k; � �
under the constraint �k.Sk�1/ D Sk . Furthermore, the discrete path length is defined
as

L� .S0; : : : ;SK/ WD
KX
kD1

p
WdeformŒ�k;Ok�1� :

Let us make a brief remark on the proper scaling factors. The deformation energy
WdeformŒ�k;Ok�1� is expected to scale like �2 (cf. (7)). Hence, the factor 1

�
ensures the

discrete dissipation measure to be conceptually independent of the time step size.
The same holds for the discrete length measure L� .S0; : : : ;SK/.

To ensure that the above-defined dissipation and length of discrete paths in
shape space are well defined, a minimizing deformation �k of the elastic energy
WdeformŒ � ;Ok�1� with �k.Sk�1/ D Sk has to exist. In fact, this holds for objects
Ok�1 and Ok with Lipschitz boundaries Sk�1 and Sk for which there exists at least
one bi-Lipschitz deformation O�k of Ok�1 into Ok for k D 1; : : : ; K [83].

With the notion of dissipation at hand, we can define a discrete geodesic path
following the standard paradigms in differential geometry.

Definition 4 (Discrete geodesic path). A discrete path S0;S1 : : : ;SK in a set of
admissible shapes S connecting two shapes SA D S0 and SB D SK is a discrete
geodesic if there exists an associated family of deformations .�k/kD1; :::;K such
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Fig. 19 Discrete geodesics between a straight and a rolled up bar, from first row to fourth row
based on one, two, four, and eight time steps. The light gray shapes in the first, second, and third
row show a linear interpolation of the deformations connecting the dark gray shapes. The shapes
from the finest time discretization are overlayed over the others as thin black lines. In the last row,
the rate of viscous dissipation is rendered on the shape domains O1; : : : ;O7 from the previous row,
color coded as

that .�k;Sk/kD1; :::;K minimize the total energy
PK

kD1
1
�
WdeformŒ Q�k; QOk�1� over all

intermediate shapes QS1 D @ QO1; : : : ; QSK�1 D @ QOK�1 2 S and all possible matching
deformations Q�1; : : : ; Q�K with Q�k. QSk�1/ D QSk for k D 1; : : : ; K .

Examples of discrete geodesics are provided in Figs. 19 and 20. Apparently, the
frame indifference and the (local) injectivity property of the matching deformations,
which are ensured by the nonlinear deformation energy Wdeform, allow the compu-
tation of reasonable discrete geodesics with only few intermediate shapes. Under
sufficient growth conditions on the integrand of the deformation energy Wdeform, the
existence of discrete geodesics is guaranteed at least for certain compact sets S of
admissible shapes, e.g., shapes S which can be described by spline curves with a
finite set of control points from some compact domain and which satisfy a uniform
cone condition in the sense that each x 2 S is the tip of two cones with fixed height
and opening angle which lie completely on either side of S [83]. Such requirements
on S are necessary since the known regularity theory for deformation energies of the
employed type does not allow to prove Lipschitz regularity of optimal deformations
so that the intermediate shapes might degenerate.

The discrete dissipation as the sum of matching deformation energies indeed
represents an approximation to the time-continuous dissipation of a velocity field
from section “Path-Based, Viscous Riemannian Setup.” If a smooth path in shape
space is considered which is interpolated at discrete times tk D k� , k D 0; : : : ; K
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Fig. 20 Discrete geodesic between a cat and a lion and between the hand shapes m336 and m324
from the Princeton Shape Benchmark [72]. For both examples, the local dissipation is color coded
on slices through the shapes as

and if for t 2 Œtk�1; tk/, v� .t/ D .�k�1/

�
ı � tk�t

�
1C t�tk�1

�
�k
	�1

denotes the velocity
field which generates the associated matching deformations �k , then as the time
step size � D 1

K
decreases and v� converges against a smooth velocity field v, the

discrete dissipation converges against the time-continuous dissipation (2) induced
by v (cf. [83] for details).

Within this framework of geodesics in shape space, the strict constraints that one
shape is deformed exactly into another one are often inadequate in applications as
has already been discussed in section “State-Based, Path-Independent Elastic Setup”
for the state-based, elastic setup. For the computation of an elastic dissimilarity mea-
sure, the single matching constraint could be relaxed as a mismatch penalty. In the
Riemannian, viscous setting, we pursue the same concept; however, the particular
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Fig. 21 Discrete geodesic between the straight and the folded bar from Fig. 19, where the black
region of the initial shape is constrained to be matched to the black region of the final shape.
The bottom row shows a color coding of the corresponding viscous dissipation. Due to the strong
change in relative position of the black region, the intermediate shapes exhibit a strong asymmetry
and high dissipation near the bar ends

form of the employed constraints depends on the chosen view on shape geodesics.
In the framework of geodesics as paths of diffeomorphisms, which we introduced
at the beginning of this section, there is the single constraint �.SA/ D SB , meaning
that the induced diffeomorphism � maps the initial shape SA onto the final shape
SB . This constraint can be relaxed in the same manner as in section “State-Based,
Path-Independent Elastic Setup” via a penalty measuring the mismatch of the shapes
or of the corresponding objects. For the time-discrete geodesic setting, we have
a sequence of matching constraints �k.Sk�1/ D Sk , k D 1; : : : ; K , each of
which can again be relaxed by the same means. In fact, we add to the discrete
dissipation of a set .�k/kD1; :::; K of deformations a sum of mismatch penaltiesPK

kD1 vol
�
Ok�14��1

k .Ok/
	
. In the limit for vanishing time step size � D 1

K
and

under the same conditions as above, this sum can be shown to converge against
the optical flow-type functional

R
T j .1; v.t// �n Œt;S.t/� j da for the unit outward

normal nŒt;S.t/� to the space time shape tube T DSt2Œ0;1�ftg�S.t/. Furthermore,PK
kD1 �LŒSk� with LŒSk� D Hd�1.Sk/ has been employed as regularization, which

in the limit for � ! 0 converges against the integral
R 1

0 Hd�1.S.t// dt .
Real-world objects are most often not only characterized by their outer contour

but also contain internal structures that have to be matched properly when comput-
ing the similarity between two objects. As an example, consider the straight and the
folded rod in Fig. 21. The rods consist of three distinct components, which imposes
a constraint on reasonable connecting paths: Each component is to be mapped
onto its correct counterpart. A shortest path under this constraint obviously differs
significantly from the geodesic which just matches the outer contours (cf. Fig. 19).

This observation calls for a generalization of shapes, an example of which we
have already seen in the context of an elastic shape space in Fig. 18, where the edge
set of an image was considered as a shape. Here, let us adopt a slightly different
approach and regard shapes as being composed of a number of subcomponents.
In detail, instead of a geodesic between just two shapes SA D @OA and SB D
@OB , we now seek a geodesic path

�
S i .t/

	
iD1; :::; m with S i .t/ D @Oi .t/ for t 2

Œ0; 1�, between two collections of m separate shapes,
�
S iA
	
iD1; :::; m with S iA.t/ D

@Oi
A.t/ and

�
S iB
	
iD1; :::; m with S iB.t/ D @Oi

B.t/. The geodesic path is supposed to
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Fig. 22 Top: frames from a real video sequence of a white blood cell among a number of red ones
(Courtesy of Robert A. Freitas, Institute for Molecular Manufacturing, California, USA). Middle:
computed discrete geodesic between the segmented shapes in the first and the last frame. Bottom:
pushforward of the initial (first four shapes) and pullback of the final frame (last five shapes)
according to the geodesic flow

be generated by a joint motion field v.t/ W Sm
iD1 Oi .t/ ! Rd . The single objects

Oi .t/ can then be regarded as the subcomponents of an overall object
Sm
iD1 Oi .t/.

The total dissipation along the path is measured exactly as before by

Diss
h�

v.t/; .Oi .t//iD1; :::; m
	
t2Œ0;1�

i
D
Z 1

0

Z
Sm
iD1 Oi .t /

�

2
.tr�Œv�/2C� tr

�
�Œv�2

	
dx dt :

This naturally translates to the discrete dissipation of a path withKC1 intermediate
shape collections

�
S ik
	
iD1; :::; m, k D 0; : : : ; K ,

KX
kD1

Wdeform

h
�k;

�
Oi
k�1

	
iD1; :::; m

i
WD

KX
kD1

Z
Sm
iD1 Oi

k�1

W.D�k/ dx;

where the deformations �k satisfy the constraints �k
�
S ik�1

	 D S ik for k D
1; : : : ; K , i D 1; : : : ; m, and S i0 D S iA, S iK D S iB , i D 1; : : : ; m.

The different object components can of course be assigned different material
properties. Figure 22 shows frames from a real video sequence of moving white
and red blood cells (top) as well as a discrete geodesic between the first and last
frame (middle) for which the material parameters of the white blood cell were
chosen twenty times weaker than for the red blood cells. The result is a nonlinear
interpolation between distant frames which is in good agreement with the actually
observed motion. Once geodesic distances between shapes are defined, one can
statistically analyze ensembles of shapes and cluster them in groups based on the
geodesic distance as a reliable measure for the similarity of shapes. Two exemplary
examples are provided by the evaluation of geodesic distances between different 2D
letters (Fig. 23, left) and between six different 3D foot shapes (Fig. 23, right). In the
2D example, we clearly identify three distinct clusters (Bs, Xs, and M).
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Fig. 23 Left: pairwise geodesic distances between (also topologically) different letter shapes.
Right: pairwise geodesic distances between different scanned 3D feet. The feet have volumes
499.5, 500.6, 497.6, 434.7, 432, and 381 cm3, respectively

A Collection of Computational Tools

So far, we have investigated some of the many aspects on mathematical models
in shape space without any discussion of the corresponding computational tools
and numerical algorithms. Hence, let us at least briefly mention some fundamental
computational aspects to effectively deal with general classes of shapes as boundary
contours of volumetric objects.

At first, we replace the strict separation between material inside the object and
void outside by substituting the void with a material which is several orders of
magnitude softer than inside the object. This relaxation is important with respect
to the existence analysis and the stabilization of the computational method. In fact,
we replace the deformation energy WdeformŒ�;O� D

R
OW.D�/ dx by the energy

W�
deformŒ�;O� D

R
˝

�
.1 � �/	O C �

	
W.D�/ dx for a small constant �. In the

implementation which underlies the above applications, for � D 10�4 one observes
no significant qualitative impact of this regularization on the solution. Furthermore,
as mentioned above, to ensure regularity of the shape contour S, we take into
account the area functional LŒS� D RS da as a prior, weighted with a small factor.

Compared to a parametric description of shapes, e.g., as a polygonal line or a
triangulated surface, an implicit description has several advantages. In particular,
it does not require a remeshing even in case of large deformations, it allows for
topological transitions without any extra handling of the associated singularities, and
it can be combined with multi-scale relaxation schemes for an efficient minimization
of the involved functionals.

In what follows, we consider a level set and a phase field description of shapes
and outline the general framework of a multi-scale method based on finite element
calculus. In fact, the phase field model has been used in the examples for the
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elastic shape averaging and the PCA, whereas the level set method has served as
a numerical building block for the computation of time-discrete shape geodesics.

Shapes Described by Level Set Functions
The level set method first presented by Osher and Sethian [60] has been used
for a wide range of applications [59, 71]. Burger and Osher gave an overview in
the context of shape optimization [7]. To numerically solve variational problems
in shape space, we assume a shape S to be represented by the zero level set
fx 2 ˝ W u.x/ D 0g of a scalar function u W ˝ ! R on a computational domain
˝ � Rd . Furthermore, the zero super level set fx 2 ˝ W u.x/ > 0g defines the
corresponding object domain O. This shape description can be incorporated in
a variational approach following the approximation proposed by Chan and Vese
[9]. In fact, the partition of the domain ˝ into object and background is encoded
via a regularized Heaviside function H" ı u. As in [9], we consider the function
H".x/ WD 1

2 C 1
�

arctan
�
x
"

	
, where " is a scale parameter representing the width

of the smeared-out shape contour. Then, a deformation energy W�
deformŒ�;O� DR

˝

�
.1 � �/	O C �

	
W.D�/ dx is approximated by

W";�
deformŒ�; u� D

Z
˝

..1 � �/H".u/C �/W.D�/ dx:

Furthermore, the energy F ŒSA; �;SB� D vol
�
OA4��1.OB/

	
measuring the

volumetric mismatch between an object OA and the pullback of an object OB under
a deformation � can be approximated by

F "ŒuA; �; uB� D
Z
˝

.H".uB ı �/�H".uA//
2 dx;

where uA; uB are level set representations of the shapes SA and SB , respectively.
Finally, the surface area of a shape S, which appears as a prior, is replaced by the
total variation of H" ı u, and we obtain

L"Œu� D
Z
˝

jrH".u/j dx:

Let us emphasize that in the actual energy minimization algorithm, the guidance of
an initial zero level set toward the final shape relies on the nonlocal support of the
derivative of the regularized Heaviside function (cf. [8]).

Shapes Described via Phase Fields
An alternative to a level set description of shapes is a phase field representation.
Physically, the phase field approach is inspired by the observation that interfaces are
usually not sharp but characterized by a diffusive transition. Mathematically, there
are two basic types of such phase field representations, a single phase approach
as the one presented by Ambrosio and Tortorelli [1] for the approximation of the
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Mumford–Shah model [56] and the double phase approach by Modica and Mortola
[55] used to approximate surface integrals. In the shape context studied here, let
us focus on the single phase model. Thus, a shape S is encoded by a continuous,
piecewise smooth phase field function u W ˝ ! R which is zero on S, but close to
one everywhere else. The specific profile of the phase field function u for a shape S
is determined via the phase field approximation

L"Œu� D 1

2

Z
˝

"jruj2 C 1

"
.u � 1/2 dx

of the involved surface area
R
S da. As in the above level set model, the phase

field parameter " determines the width of the diffusive interface. Different from
the level set model by Chan and Vese, the interface profile is not explicitly
prescribed but implicitly encoded in the variational approach as the profile attained
by minimizers of the functional. Based on this phase field model the penalty
functional F ŒSA; �;SB� D Hd�1.SA4��1.SB// measuring the area mismatch
between a shape SA and the pullback of a shape SB under a deformation � can
be approximated by

F "ŒuA; �; uB� D 1

"

Z
˝

.uB ı �/2.1 � uA/
2 C u2

A.1 � uB ı �/2 dx;

where uA; uB are phase fields representing the shapes SA and SB , respectively. In
this type of models, the deformation energyW�

deformŒ�;O� cannot be realized based on
a phase field function u due to the fact that a single phase model allows to identify
the shape itself but does not distinguish its inside and outside. Therefore, in the
presented applications of elastic shape averaging and the elastic PCA, the input
objects and thus their characteristic functions 	O were given a priori.

Multi-scale Finite Element Approximation
For the spatial discretization of the functionals in the above variational approaches,
the finite element method can be applied. Hence, the level set function or the phase
field u, representing a (unknown) shape S, and the different components of the
deformations� are represented by continuous, piecewise multilinear (trilinear in 3D
and bilinear in 2D) finite element functionsU and˚ on a regular grid superimposed
on the domain˝ D Œ0; 1�d . For the ease of implementation, a dyadic grid resolution
with 2L C 1 vertices in each direction and a grid size h D 2�L is chosen.

Descent algorithm. The functionals depend nonlinearly both on the discrete
deformations˚ (due to the concatenation U ı ˚ and the nonlinear integrandW. � /
of the deformation energy) as well as on the discrete level set or phase field functions
U (e.g., due to the concatenation of the level set function with the regularized
Heaviside functionH". � /). In our energy relaxation algorithm for fixed grid size, we
employ a gradient descent approach. We constantly alternate between performing a
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single gradient descent step for all deformations and the level set or phase field
functions.

Numerical quadrature. Integral evaluations in the descent algorithm are per-
formed by Gaussian quadrature of third order on each grid cell. For various terms,
we have to evaluate pullbacks U ı ˚ of a discretized level set function U or a
test function under a discretized deformation ˚ . Let us emphasize that quadrature
based on nodal interpolation of U ı ˚ would lead to artificial displacements near
the shape edges accompanied by strong artificial tension. Hence, in our algorithm,
if ˚.x/ lies inside˝ for a quadrature point x, then the pullback is evaluated exactly
at x. Otherwise, we project ˚.x/ back onto the boundary of ˝ and evaluate U at
that projection point.

Cascadic multi-scale algorithm. The variational problem considered here is
highly nonlinear, and for fixed time step size, the proposed scheme is expected to
have very slow convergence; also it might end up in some nearby local minimum.
Here, a multilevel approach (initial optimization on a coarse scale and successive
refinement) turns out to be indispensable in order to accelerate convergence and
not to be trapped in undesirable local minima. Due to our assumption of a dyadic
resolution 2LC1 in each grid direction, we are able to build a hierarchy of grids with
2l C 1 nodes in each direction for l D L; : : : ; 0. Via a simple restriction operation,
we project every finite element function to any of these coarse grid spaces. Starting
the optimization on a coarse grid, the results from coarse scales are successively
prolongated onto the next grid level for a refinement of the solution [5]. Hence,
the construction of a grid hierarchy allows to solve coarse scale problems in our
multi-scale approach on coarse grids. Since the width " of the diffusive shape
representation should naturally scale with the grid width h, we choose " D h.

5 Conclusion

Let us close with a comparison of path- and state-based shape space. Already in
section “Conceptual Differences Between the Path- and State-Based Dissimilarity
Measures,” we have studied the difference between the state-based dissimilarity
measure delast and the path-based distance dviscous. Based on the applications consid-
ered in the previous sections, let us compare the underlying concepts now more on
a conceptual level of the geometry of shape space:

• Non-uniqueness of shape averages. Due to the nonlinearity of the elastic varia-
tional problem, local minimizers of the elastic energy might be nonunique. There
might even exist different minimizing deformations with the same elastic energy.
Mechanically, this nonuniqueness is frequently associated with different buckling
modes, which occur in case of large, geometrically nonlinear deformations.
Hence, the shape average need not be uniquely defined, except in the small
displacement case, where a linear elastic model (8) applies. In case of the path-
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based approach, geodesics (shortest) do not have to be unique either. Indeed, a
geodesic is the unique shortest path only until the first conjugate point. Hence, the
shape average is in a strict sense not well defined if the distances are sufficiently
large.

• Different physical interpretation of the PCA. In the Riemannian setup with the
metric being the rate of viscous dissipation, the logS Sk corresponds to the initial
velocity vk W S ! Rd in the (optimal transport) flow of O associated with
shape S into Ok associated with the kth input shape Sk . In the elastic model, the
boundary stress 
k� W @O ! Rd results from the deformation �k of Ok onto
the average object O and effectively is the restoring force acting on the average
shape S. Via the linearized elasticity problem in the prestressed compound
configuration of the average object O, these restoring forces are identified with
displacements uk . Depending on the model, either the flow velocities vk or
the linear elastic displacements uk form the basis of a covariance analysis in
the linear vector space of mappings O ! Rd . The outcome are principal
shape variations of the average shape, either generated by motion fields or
displacements, respectively.

• Quantitative shape analysis. The Riemannian metric given by the rate of viscous
dissipation in the path-based viscous fluid approach allows direct comparison of
multiple ensembles of shapes via pairwise distance computations. Due to the lack
of a triangle inequality, this is possible only in a restricted sense in the state-based
elastic approach, where dissimilarity measures for one fixed shape and a set of
varying shapes can be computed.

• The method of choice depends on the specific application. If shapes are
considered as boundaries of objects with a viscous fluid inside, then the path-
based approach would be more appropriate. The state-based elastic approach is
favorable for objects which behave more like deformable solids.
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Abstract
Nonrigid shapes are ubiquitous in nature and are encountered at all levels of life,
from macro to nano. The need to model such shapes and understand their
behavior arises in many applications in imaging sciences, pattern recognition,
computer vision, and computer graphics. Of particular importance is understand-
ing which properties of the shape are attributed to deformations and which are
invariant, i.e., remain unchanged. This chapter presents an approach to nonrigid
shapes from the point of view of metric geometry. Modeling shapes as metric
spaces, one can pose the problem of shape similarity as the similarity of metric
spaces and harness tools from theoretical metric geometry for the computation
of such a similarity.

1 Introduction

Those who played the game Rock, Paper, and Scissors in their childhood certainly
remember the three gestures used in the game: Rock, represented by a clenched fist;
Paper, represented by an open hand; and Scissors, represented by the extended index
and middle fingers. These gestures are a toy example of the nonrigid shape similar-
ity problem, which is the central topic of this chapter. No matter how one bends the
fingers, he will immediately recognize the underlying object: the human hand.

More generally, the problem of determining the similarity of shapes undergoing
certain class of transformations is termed invariant shape similarity. A similarity
criterion is said to be invariant if it is not influenced by the transformation (Fig. 1).
Different classes of transformations prescribe different similarity criteria based
on geometric shape properties that are invariant under such transformations. The
wider is the class, the less properties are preserved, and as a thumb rule, the
more difficult is the problem. Specifically, in this chapter, we will consider rigid,
inelastic, topology-changing, and scaling transformations. In many cases, such
transformations are a good approximation of real transformations that natural
objects may undergo.
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Fig. 1 Invariant shape
similarity

Problems

Since nonrigid shapes are ubiquitous in the world and are encountered at all scales
from macro to nano, nonrigid shape similarity plays a key role in many applications
in imaging sciences, pattern recognition, computer vision, and computer graphics.
Two archetype problems in shape analysis considered in this chapter are invariant
similarity and correspondence. As will be discussed in the following, these two
problems are interrelated: finding the best correspondence between two shapes also
allows quantifying their similarity.

A good example of shape similarity is the problem of face recognition [19,21,24].
As the crudest approximation, one can think of faces as rigid surfaces and compare
them using similarity criteria invariant under rigid transformations. However, such
an approach does not account for surface deformations due to facial expressions,
which can be approximated by inelastic deformations. Accounting for such defor-
mations requires different similarity criteria. Yet, even elastic deformations are
not enough to model the behavior of human faces: many facial expresses involve
elastic deformations that change the facial shape topology (think of open and closed
mouth). This extension of the model will require revisiting the similarity criterion
once again.

The problem of correspondence is often encountered in shape synthesis appli-
cations such as morphing. In order to morph one shape into the other, one
needs to know which point on the first shape will be transformed into a point
on the second shape, in other words, establishing a correspondence between the
shapes.
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Methods

Many different approaches to shape similarity and correspondence can be consid-
ered as instances of the minimum-distortion correspondence problem, in which two
shapes are endowed with certain structure, and one attempts to find the best (least
distorting) matching between these structures. Such structures can be local (e.g.,
multiscale heat kernel signatures [106], local photometric properties [107, 119], or
conformal factor [12]) or global (e.g., geodesic [24, 47, 78], diffusion [28], and
commute time [31]) distances. The distortion of the best possible correspondence
can be used as a criterion of shape similarity. By defining a structure invariant under
certain class of transformations, it is possible to obtain invariant correspondence or
similarity.

Local structures can be regarded as feature descriptors. As a model for global
structures, metric spaces are used.

Chapter Outline

This chapter tries to present a unifying view on the archetypical problems in
shape analysis. The first part presents a metric view on the problem of nonrigid
shape similarity and correspondence, a common denominator allowing to deal with
different types of invariance. According to this model, shapes are represented as
metric spaces. The mathematical foundations of this model are provided in Sect. 2.
Sections 3 and 4 deal with discrete representation of shapes, which is of essence
in practical numerical computations. Section 5 provides a rigorous formulation
of the invariant shape similarity problem and reviews different algorithms for its
computation. Section 6 deals with an extension of invariant similarity to shapes
which are partially similar, and Sect. 7 deals with a particular case of self-similarity
and symmetry. Local feature-based methods and their use to create global shape
descriptors are presented in Sect. 8. Finally, concluding remarks in Sect. 9 end the
chapter. This chapter is based in part on the book [26], to which the reader is referred
for further discussion and details.

2 Shapes as Metric Spaces

Elad and Kimmel [47, 48], Mémoli and Sapiro [78], and Bronstein et al. [23, 24]
suggested to model shapes as metric spaces. The key idea of this model is that it
allows to compare shapes as metric spaces. Since the model allows arbitrarity in the
definition of the metric, desired invariance considerations guide the choice of the
metric.

This section introduces the mathematical formalism and notation of this model
and shows the construction of three different types of metric geometries: Euclidean,
Riemannian, and diffusion.
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Basic Notions

Topological Spaces
Given a set X , a topology T on X is a collection of subsets of X satisfying (Ti)
X; 0 2 T ; (Tii)

S
˛ U˛ 2 T for U˛ 2 T ; and (Tiii)

TN
iD1 Ui 2 T for Ui 2 T . X

together with T is called a topological space. By convention, sets in T are referred
to as open sets and their complements as closed sets.

A neighborhood N.x/ of x is a set containing an open set U 2 T such that
x 2 U . Points with neighborhood are called interior.

A topological space is called Hausdorff if distinct points in it have disjoint
neighborhoods.

Two topological spaces X and Y are homeomorphic if there exists bijection
˛ W X ! Y which is continuous and has continuous inverse ˛�1. Since homeo-
morphisms copy topologies, homeomorphic spaces are topologically equivalent [1].

Metric Spaces
A function d W X � X ! R which is (Mi) positive-definite (d.x; y/ > 0 for all
x ¤ y and d.x; y/ D 0 for x D y) and (Mii) subadditive (d.x; z/ � d.x; y/ C
d.y; z/ for all x; y; z) is called a metric on X . The metric is an abstraction of the
notion of distance between pairs of points on X . Property (Mii) is called triangle
inequality and generalizes the known fact: the sum of the lengths of two edges of a
triangle is greater or equal to the length of the third edge. The pair .X; d/ is called
a metric space.

A metric induces topology through the definition of open metric ball Br.x/ D
fx0 2 X W d.x; x0/ < rg. A neighborhood of x in a metric space is a set containing
a metric ball Br.x/ [34].

Isometries
Given two metric spaces .X; d/ and .Y; ı/, the set C � X �Y of pairs such that for
every x 2 X there exists at least one y 2 Y such that .x; y/ 2 C , and similarly, for
every y 2 Y , there exists an x 2 X such that .x; y/ 2 C is called a correspondence
between X and Y . Note that a correspondenceC is not necessarily a function. The
correspondence is called bijective if every point in X has a unique corresponding
point in Y and vice versa.

The discrepancy of the metrics d and ı between the corresponding points is
called the distortion of the correspondence,

dis.C / D sup
.x;y/;.x0;y0/2C

ˇ̌
d.x; x0/� ı.y; y0/

ˇ̌
:

Metric spaces .X; d/ and .Y; ı/ are said to be �-isometric if there exists a
correspondence C with dis.C / � �. Such a C is called an �-isometry.

A particular case of a 0-isometry is called an isometry. In this case, the
correspondence is a bijection and X and Y are called isometric.
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Euclidean Geometry

Euclidean space R
m (hereinafter also denoted as E) with the Euclidean metric

dE.x; x
0/ D kx � x0k2 is the simplest example of a metric space. Given as a subset

X of E, we can measure the distances between points x and x0 on X using the
restricted Euclidean metric,

dEjX�X.x; x0/ D dE.x; x
0/

for all x; x0 in X .
The restricted Euclidean metric dEjX�X is invariant under Euclidean transforma-

tions of X , which include translation, rotation, and reflection in E. In other words,
X and its Euclidean transformation i.X/ are isometric in the sense of the Euclidean
metric. Euclidean isometries are called congruences, and two subsets of E differing
up to a Euclidean isometry are said to be congruent.

Riemannian Geometry

Manifolds
A Hausdorff space X which is locally homeomorphic to R

n (i.e., for every x in
X , there exists a neighborhood U and a homeomorphism ˛ W U ! R

n) is called
an n-manifold or an n-dimensional manifold. The function ˛ is called a chart. A
collection of neighborhoods that cover X together with their charts is called an
atlas on X . Given two charts ˛ and ˇ with overlapping domains U and V , the map
ˇ˛�1 W ˛.U \ V / ! ˇ.U \ V / is called a transition function. A manifold whose
transition functions are all differentiable is called a differentiable manifold. More
generally a Ck-manifold has all transition maps k-times continuously differentiable.
A C1-manifold is called smooth.

A manifold with boundary is not a manifold in the strict sense of the above
definition. Its interior points are locally homeomorphic to R

n, and every point on
the boundary @X is homeomorphic to Œ0;1/ � R

n�1.
Of particular interest for the discussion in this chapter are two-dimensional

(n D 2) manifolds, which model boundaries of physical objects in the world
surrounding us. Such manifolds are also called surfaces. In the following, when
referring to shapes and objects, the terms manifold, surface, and shape will be used
synonymously.

Differential Structures
Locally, a manifold can be represented as a linear space, in the following way. Let
˛ W U ! R

n be a chart on a neighborhood of x and � W .�1; 1/ W! X be a differen-
tiable curve passing through x D �.0/. The derivative of the curve d

dt
.˛ ı �/.0/ is

called a tangent vector at x. The set of all equivalence classes of tangent vectors at
x forming an n-dimensional real vector space is called the tangent space TxX at x.
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A family of inner products h � ; � ix W TxX � TxX ! R depending smoothly on x
is called Riemannian metric tensor. A manifoldX with a Riemannian metric tensor
is called a Riemannian manifold.

The Riemannian metric allows to define local length structures and differential
calculus on the manifold. Given a differentiable scalar-valued function f W X ! R,
the exterior derivative (differential) is a form df D hrf; � i on the tangent space
TX . For a tangent vector v 2 TxX , df .x/v D hrf .x/; vix. rf is called the
gradient of f at x and is a natural generalization of the notion of the gradient in
vector spaces to manifolds. Similarly to the definition of Laplacian satisfying

Z
X

hrf;rhixd�.x/ D
Z
X

h�Xfd�.x/

for differentiable scalar-valued functions f and h, the operator �X is called the
Laplace–Beltrami operator, a generalization of the Laplacian. Here, � denotes
the measure associated with the n-dimensional volume element (area element for
n D 2). The Laplace–Beltrami operator is (Li) symmetric (

R
X
h�Xfd�.x/ DR

X
f�Xxd�.x/), (Lii) of local action (�Xf .x/ is independent of the value of

f .x0/ for x0 ¤ x), and (Liii) positive semi-definite (
R
X
f�Xfd�.x/ � 0) (in many

references, the Laplace–Beltrami is defined as a negative semi-definite operator) and
(Liv) coincides with the Laplacian on Euclidean domains, such that �Xf D 0 if f
is a linear function and X is Euclidean.

Geodesics
Another important use of the Riemannian metric tensor is to measure the length of
paths on the manifold. Given a continuously differentiable curve � W Œa; b�! X , its
length is given by

`.�/ D
Z b

a

h� 0.t/; � 0.t/i1=2
�.t/dt:

For the set of all continuously differentiable curves �.x; x0/ between the points
x; x0,

dX.x; x
0/ D inf

�2�.x;x0/
`.�/ (1)

defines a metric on X referred to as length or geodesic metric. If the manifold is
compact, for any pair of points x and x0, there exists a curve � 2 �.x; x0/ called a
minimum geodesic such that `.�/ D dX.x; x0/.

EmbeddedManifolds
A particular realization of a Riemannian manifold called embedded manifold (or
embedded surface for n D 2) is a smooth submanifold of Rm (m > n). In this case,
the tangent space is an n-dimensional hyperplane in R

m, and the Riemannian metric
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is defined as the restriction of the Euclidean inner product to the tangent space,
h � ; � iRm jTX .

The length of a curve � W Œa; b� ! X � R
m on an embedded manifold is

expressed through the Euclidean metric,

`.�/ D
Z b

a

�h� 0.t/; � 0.t/iRm jT�.t/X
	1=2

dt;D
Z b

a

k� 0.t/kRmdt (2)

and the geodesic metric dX defined according to (1) is said to be induced by dRm .
(Repeating the process, one obtains that the metric induced by dX is equal to dX .
For this reason, dX is referred to as intrinsic metric [34].)

Though apparently embedded manifolds are a particular case of a more general
notion of Riemannian manifolds, it appears that any Riemannian manifold can be
realized as an embedded manifold. This is a consequence of the Nash embedding
theorem [84], showing that a Ck.k � 3/ Riemannian manifold can be isometrically
embedded in a Euclidean space of dimensionm D n2C5nC3. In other words, any
smooth Riemannian manifold can be defined as a metric space which is isometric to
a smooth submanifold of a Euclidean space with the induced metric.

Rigidity
Riemannian manifolds do not have a unique realization as embedded manifolds.
One obvious degree of freedom is the set of all Euclidean isometries: two congruent
embedded manifolds are isometric and thus are realizations of the same Riemannian
manifold. However, a Riemannian manifold may have two realizations which are
isometric but incongruent. Such manifolds are called nonrigid. If, on the other hand,
a manifold’s only isometries are congruences, it is called rigid.

Diffusion Geometry

Another type of metric geometry arises from the analysis of heat propagation
on manifolds. This geometry is called diffusion and is also intrinsic. We start by
reviewing properties of diffusion operators.

Diffusion Operators
A function k W X � X ! R is called a diffusion kernel if it satisfies the following
properties: (Ki) nonnegativity: k.x; x/ � 0; (Kii) symmetry: k.x; y/ D k.y; x/;
(Kiii) positive-semidefiniteness: for every bounded f ,

Z Z
k.x; y/f .x/f .y/d�.x/d�.y/ � 0I

(Kiv) square integrability:
Z Z

k2.x; y/d�.x/d�.y/ <1; and (Kv) conserva-

tion:
Z
k.x; y/d� .y/ D 1. The value of k.x; y/ can be interpreted as a transition

probability from x to y by one step of a random walk on X .
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Diffusion kernel defines a linear operator

Kf D
Z
k.x; y/f .y/d�.y/; (3)

which is known to be self-adjoint. Because of (Kiv), K has a finite Hilbert norm
and therefore is compact. As the result, it admits a discrete eigendecomposition
K i D ˛i i with some eigenfunctions f i g1iD0 and eigenvalues f˛i g1iD0. ˛i � 0
by virtue of property (Kiii), and ˛i � 1 by virtue of (Kv) and consequence of the
Perron–Frobenis theorem.

By the spectral theorem, the diffusion kernel can be presented as k.x; y/ D
1X
iD0

˛i i .x/ i .y/. Since f i g1iD1 form an orthonormal basis of L2.X/,

Z Z
k2.x; y/d�.x/d�.y/ D

1X
iD0

˛2
i ; (4)

a fact sometimes referred to as Parseval’s theorem. Using these results, properties

(Kiii–Kv) can be rewritten in the spectral form as 0 � ˛i � 1 and
1X
iD0

˛2
i <1.

An important property of diffusion operators is the fact that for every t � 0, the
operator Kt is also a diffusion operator with the eigenbasis of K and corresponding
eigenvalues

˚
˛ti

1
iD0. The kernel of Kt expresses the transition probability by

random walk of t steps. This allows to define a scale space of kernels, fkt .x; y/gt2T ,
with the scale parameter t .

There exist a large variety of possibilities to define a diffusion kernel and the
related diffusion operator. Here, we restrict our attention to operators describing
heat diffusion. Heat diffusion on surfaces is governed by the heat equation

�
�X C @

@t

�
u.x; t/ D 0I u.x; 0/ D u0.x/; (5)

where u.x; t/ is the distribution of heat on the surface at point x in time t , u0 is
the initial heat distribution, and �X is the positive-semidefinite Laplace–Beltrami
operator, a generalization of the second-order Laplacian differential operator �
to non-Euclidean domains. (If X has a boundary, boundary conditions should be
added.)

On Euclidean domains (X D R
m), the classical approach to the solution of the

heat equation is by representing the solution as a product of temporal and spatial
components. The spatial component is expressed in the Fourier domain, based on
the observation that the Fourier basis is the eigenbasis of the Laplacian �, and the
corresponding eigenvalues are the frequencies of the Fourier harmonics. A particular
solution for a point initial heat distribution u0.x/ D ı.x � y/ is called the heat
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kernel ht .x � y/ D 1
.4�t/m=2 e

�kx�yk2=4t , which is shift invariant in the Euclidean

case. A general solution for any initial condition u0 is given by convolution Htu0 DR
Rm
ht .x � y/u0.y/dy, where Ht is referred to as heat operator.

In the non-Euclidean case, the eigenfunctions of the Laplace–Beltrami operator
�X�i D �i�i can be regarded as a “Fourier basis” and the eigenvalues given the
“frequency” interpretation. The heat kernel is not shift invariant but can be expressed
as ht .x; y/ DP1

iD0 e
�t�i �i .x/�i .y/.

It can be shown that the heat operator is related to the Laplace–Beltrami operator
as Ht D e�t�, and as a result, it has the same eigenfunctions �i and corresponding
eigenvalues e�t�i . It can be thus seen as a particular instance of a more general
family of diffusion operators K diagonalized by the eigenbasis of the Laplace–
Beltrami operator, namely, K’s as defined in the previous section but restricted
to have the eigenfunctions  i D �i . The corresponding diffusion kernels can be
expressed as

k.x; y/ D
1X
iD0

K.�i/�i .x/�i .y/; (6)

where K.�/ is some function such that ˛i D K.�i/ (in the case of Ht , K.�/ D
e�t�). Since the Laplace–Beltrami eigenvalues can be interpreted as frequency,
K.�/ can be thought of as the transfer function of a low-pass filter. Using this
signal processing analogy, the kernel k.x; y/ can be interpreted as the point spread
function at a point y, and the action of the diffusion operator Kf on a function f
on X can be thought of as the application of the point spread function by means of
a non shift-invariant version of convolution. The transfer function of the diffusion
operator Kt is Kt.�/, which can be interpreted as multiple applications of the filter
K.�/. Such multiple applications decrease the effective bandwidth of the filter and,
consequently, increase its effective support in space. Because of this duality, both
k.x; y/ and K.�/ are often referred to as diffusion kernels.

Diffusion Distances

Since a diffusion kernel k.x; y/ measures the degree of proximity between x and y,
it can be used to define a metric

d 2.x; y/ D kk.x; � / � k.y; � /k2
L2.X/

; (7)

onX , which was first constructed by Berard et al. in [*] and dubbed as the diffusion
distance by Coifman and Lafon [40]. Another way to interpret the latter distance
is by considering the embedding ‰ W x 7! L2.X/ by which each point x on
X is mapped to the function ‰.x/ D k.x; � /. The embedding ‰ is an isometry
betweenX equipped with diffusion distance and L2.X/ equipped with the standard
L2 metric, since d.x; y/ D k‰.x/ � ‰.y/kL2.X/. Because of spectral duality, the
diffusion distance can also be written as
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d 2.x; y/ D
1X
iD0

K2.�i /.�i .x/ � �i .y//2: (8)

Here as well we can define an isometric embedding ˆ W x 7! `2 with ˆ.x/ D
fK.�i/�i .x/g1iD0, termed as the diffusion map by Lafon. The diffusion distance can
be cast as d.x; y/ D kˆ.x/ �ˆ.y/k`2 .

The same way a diffusion operator Kt defines a scale space, a family of diffusion
metrics can be defined for t � 0 as

d 2
t .x; y/ D kˆt.x/ �ˆt.y/k2

`2 (9)

D
1X
iD0

K2t .�i /.�i .x/ � �i .y//2;

where ˆt .x/ D fKt.�i /�i .x/g1iD0. Interpreting diffusion processes as random
walks, dt can be related to the “connectivity” of points x and y by walks of length
t (the more such walks exist, the smaller is the distance).

The described framework is very generic, leading to numerous potentially useful
diffusion geometries parametrized by the selection of the transfer function K.�/.
Two particular choices are frequent in shape analysis, the first one being the heat
kernel, Kt.�/ D e�t�, and the second one being the commute time kernel, K.�/ D

1p
�

, resulting in the heat diffusion and commute time metrics, respectively. While
the former kernel involves a scale parameter, typically tuned by hand, the latter one
is scale invariant, meaning that neither the kernel nor the diffusion metric it induces
changes under uniform scaling of the embedding coordinates of the shape.

3 Shape Discretization

In order to allow storage and processing of a shape by a digital computer, it has to
be discretized. This section reviews different notions in the discrete representation
of shapes.

Sampling

Sampling is the reduction of the continuous surface X representing a shape into a
finite discrete set of representative points OX D fx1; : : : ; xN g. The number of points
j OX j D N is called the size of the sampling. The radius of the sampling refers to the
smallest positive scalar r for which OX is an r-covering of X , i.e.,

r. OX/ D max
x2X min

xi2 OX
dX.x; xi /: (10)
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The sampling is called s-separated if dX.xi ; xj / � s for every distinct xi ; xj 2 OX .
Sampling partitions the continuous surface into a set of disjoint regions,

Vi D fx 2 X W dX.x; xi / < dX.x; xj /; xj¤i 2 OXg; (11)

called the Voronoi regions [7] (Fig. 2). A Voronoi region Vi contains all the points
on X that are closer to xi than to any other xj . That the sampling is said to induce a
Voronoi tessellation (Unlike in the Euclidean case where every sampling induces a
valid tessellation (cell complex), samplings of curved surfaces may result in Voronoi
regions that are not valid cells, i.e., are not homeomorphic to a disk. In [66], Leibon
and Letscher showed that an r-separated sampling of radius r with r smaller than
1
5 of the convexity radius of the shape is guaranteed to induce a valid tessellation.)

which we denote by V. OX/ D fVi ; : : : ; Vng.
Sampling can be regarded as a quantization process in which a point x on the

continuous surface is represented by the closest xi in the sampling [51]. Such
a process can be expressed as a function mapping each Vi to the corresponding
(Points on the boundary of the Voronoi regions are equidistant from at least two
sample points and therefore can be mapped arbitrarily to any of them.) sample xi .
Intuitively, the smaller are the Voronoi regions, the better is the sampling. Sampling
quality is quantified using an error function. For example,

�1. OX/ D max
x2X dX.x;

OX/ D max
x2X min

xi2 OX
dX.x; xi / (12)

determines the maximum size of the Voronoi regions. If the shape is further
equipped with a measure (e.g., the standard area measure), other error functions
can be defined, e.g.,

�p. OX/ D
X
i

Z
Vi

d
p
X.x; xi /d�.x/: (13)

In what follows, we will show sampling procedures optimal or nearly optimal in
terms of these criteria.

Farthest Point Sampling
Farthest point sampling (FPS) is a greedy procedure constructing a sequence of
samplings OX1; OX2; : : : . A sampling OXNC1 is constructed from OXN by adding the
farthest point

xNC1 D arg max
x2X dX.x;

OXN/ D arg max
x2X min

xi2 OXN
dX.x; xi /: (14)

The sequence frN g of the sampling radii associated with f OXN g is nonincreasing,
and, furthermore, each OXN is also rN -separated. The starting point x1 is usually
picked up at random, and the stopping condition can be either the sampling size or
radius.
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Fig. 2 Voronoi
decomposition of a surface
with a non-Euclidean metric

Though FPS does not strictly minimize any of the error criteria defined in the
previous section, in terms of �1, it is no more than twice inferior to the optimal
sampling of the same size [59]. In other words, for OX produced using FPS,

�1. OX/ � 2 min
j OX 0jDj OX j

�1. OX 0/: (15)

This result is remarkable, as finding the optimal sampling is known to be an NP-hard
problem.

Centroidal Voronoi Sampling
In order for a sampling to be �2-optimal, each sample xi has to minimize

Z
Vi

d 2
X.x; xi /d�.x/: (16)

A point minimizing the latter quantity is referred to as the centroid of Vi . Therefore,
an �2-optimal sampling induces a so-called centroidal Voronoi tessellation (CVT), in
which the centroid of each Voronoi region coincides with the sample point inducing
it [45, 90]. Such a tessellation and the corresponding centroidal Voronoi sampling
are generally not unique.

A numerical procedure for the computation of a CVT of a shape is known as the
Lloyd–Max algorithm [68,73]. Given some initial sampling OX1 of sizeN (produced,
e.g., using FPS), the Voronoi tessellation induced by it is computed. The centroids
of each Voronoi region are computed, yielding a new sampling OX2 of size N .
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The process is repeated iteratively until the change of OXk becomes insignificant.
While producing high-quality samplings in practice, the Lloyd–Max procedure is
guaranteed to converge only to a local minimum of �2. For computational aspects of
CVTs on meshes, the reader is referred to [90].

Shape Representation

Once the shape is sampled, it has to be represented in a way allowing computation
of discrete geometric quantities associate with it.

Simplicial Complexes
The simplest representation of a shape is obtained by considering the points of the
sampling as points in the ambient Euclidean space. Such a representation is usually
referred to as a point cloud. Points in the cloud are called vertices and denoted
by X D fx1; : : : ; xN g. The notion of a point cloud can be generalized using the
formalism of simplical complexes. For our purpose, an abstract k-simplex is a set
of cardinality k C 1. A subset of a simplex is called a face. A set K of simplices
is said to be an abstract simplical complex if any face of 
 2 K is also in K , and
the intersection of any two simplices 
1; 
2 2 K is a face of both 
1 and 
2. A
simplicial k-complex is a simplicial complex in which the largest dimension of any
simplex is k. A simplicial k-complex is said to be homogeneous if every simplex of
dimension less than k is the face of some k-simplex. A topological realization NK of
a simplicial complexK mapsK to a simplicial complex in R

n, in which vertices are
identified with the canonical basis of Rn, and each simplex in K is represented as
the convex hull of the corresponding points fei g. A geometric realization �X. NK/ is
a map of the simplicial complex NK to R

3 defined by associating the standard basis
vectors ei 2 R

n with the vertex positions xi .
In this terminology, a point cloud is a simplicial 0-complex having a discrete

topology. Introducing the notion of neighborhood, we can define a subsetE � X�X
of pairs of vertices that are adjacent. Pairs of adjacent vertices are called edges, and
the simplicial 1-complex X[E has a graph topology, i.e., the set of vertices X forms
an undirected graph with the set of edges E . A simplicial 2-complex consisting of
vertices, edges, and triangular faces built upon triples of vertices and edges is called
a triangular mesh. The mesh is called topologically valid if it is homeomorphic to
the underlying continuous surface X . This usually implies that the mesh has to be
a two manifold. A mesh is called geometrically valid if it does not contain self-
intersecting triangles, which happens if and only if the geometric realization �X. NK/
of the mesh is bijective. Consequently, any point x on a geometrically valid mesh
can be uniquely represented as x D 'X.u/. The vector u is called the barycentric
coordinates of x and has at most three nonzero elements. If the point coincides
with a vertex, u is a canonical basis vector; if the point lies on an edge, u has two
nonzero elements; otherwise, u has three nonzero elements and x lies on a triangular
face.
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A particular way of constructing a triangular mesh stems from the Voronoi
tessellation induced by the sampling. We define the simplicial 3-complex as

X [ f.xi ; xj / W @Vi \ @Vj ¤ ;g [ f.xi ; xj ; xk/ W @Vi \ @Vj \ @Vk ¤ ;g; (17)

in which a pair of vertices spans an edge and a triple of vertices spans a face if the
corresponding Voronoi regions are adjacent. A mesh defined in this way is called a
Delaunay mesh. (Unlike in the Euclidean case where every sampling induces a valid
Delaunay triangulation, an invalid Voronoi tessellation results in a topologically
invalid Delaunay mesh. In [66], Leibon and Letscher showed that under the same
conditions sufficient for the existence of a valid Voronoi tessellation, the Delaunay
mesh is also topologically valid.)

Parametric Surfaces
Shapes homeomorphic to a disk can be parametrized using a single global chart,
e.g., on the unit square, x W Œ0; 1�2 ! R

3. (Manifolds with more complex topology
can still be parametrized in this way by introducing cuts that open the shape into a
topological disk.) Such surfaces are called parametric and can be sampled directly in
the parametrization domain. For example, if the parametrization domain is sampled
on a regular Cartesian grid, the shape can be represented as three N � N arrays of
x, y, and z values. Such a completely regular structure is called a geometry image
[56, 69, 99] and can be thought indeed as a three-channel image that can undergo
standard image processing such as compression. Geometry images are ideally
suitable for processing by vector and parallel hardware.

Implicit Surfaces
Another way of representing a shape is by considering the isosurfaces fx W ˆ.x/ D
0g of some function ˆ defined on a region of R3. Such a representation is called
implicit, and it often arises in medical imaging applications, where shapes are
two-dimensional boundaries created by discontinuities in volumetric data. Implicit
representation can be naturally processed using level-set-based algorithms, and it
easily handles arbitrary topology. A disadvantage is the bigger amount of storage
commonly required for such representations.

4 Metric Discretization

Next step in the discrete representation of shapes is the discretization of the metric.

Shortest Paths on Graphs

The most straightforward approach to metric discretization arises from considering
the shape as a graph in which neighbor vertices are connected. A path in the graph
between vertices xi ; xj is an ordered set of connected edges
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�.xi ; xj / D f.xi1 ; xi2/; .xi2 ; xi3/; : : : ; .xik ; xikC1 /g � E; (18)

where xi1 D xi and xikC1 D xj . The length of path � is the sum of its constituent
edge lengths,

L.�.xi ; xj // D
kX
nD1

kxik � xikC1k: (19)

A minimum geodesic in a graph is the shortest path between the vertices,

��.xi ; xj / D arg min
�.xi ;xj /

L.�.xi ; xj //: (20)

We can use dL.xi ; xj / D L.��.xi ; xj // as a discrete approximation to the geodesic
metric dX.xi ; xj /.

According to the Bellman optimality principle [10], given ��.xi ; xj / a shortest
path between xi and xj and xk a point on the path, the sub-paths ��.xi ; xk/ and
��.xk; xj / are the shortest paths between xi ; xk and xk; xj , respectively. The length
of the shortest path in the graph can be thus expressed by the following recursive
equation:

dL.xi ; xj / D min
xk W.xk;xj /2E

˚
dL.xi ; xk/C kxk � xj k



: (21)

Dijkstra’s Algorithm
A famous algorithm for the solution of the recursion (21) was proposed by Dijkstra.
Dijkstra’s algorithm measures the distance map d.xk/ D dL.xi ; xk/ from the source
vertex xi to all the vertices in the graph.

Initialize d.xi / D 0, d.xk/ D 1 for all k ¤ i ; queue of unprocessed vertices
Q D fx1; : : : ; xN g.
while Q is non-empty do

Find vertex with smallest value of d in the queue

x D arg min
x2Q d.x/

for all unprocessed adjacent vertices x0 2 Q W .x; x0/ 2 E do

d.x0/ D min
˚
d.x0/; d.x/C kx � x0k


end for
Remove x fromQ.

end while
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Every vertex in Dijkstra’s algorithm is processed exactly once; hence, Nn outer
iterations are performed. Extraction of vertex with smallest d is straightforward with
O.N / complexity and can be reduced to O.logN/ using efficient data structures
such as Fibonacci heap. In the inner loop, updating adjacent vertices in our case,
since the graph is sparsely connected, is O.1/. The resulting overall complexity is
O.N logN/.

Metrication Errors and Sampling Theorem
Unfortunately, the graph distance dL is an inconsistent approximation of dX , in the
sense that dL usually does not converge to dX when the sampling becomes infinitely
dense. This phenomenon is called metrication error, and the reason is that the graph
induces a metric inconsistent with dX (Fig. 3). While metrication errors make in
general the use of dL an approximation of dX disadvantageous, the Bernstein–de
Silva–Langford–Tenenbaum theorem [14] states that under certain conditions, the
graph metric dL can be made as close as desired to the geodesic metric dX . The
theorem is formulated as a bound of the form

1 � �1 � dL

dX
� 1C �2; (22)

where �1; �2 depend on shape properties, sampling quality, and graph connectivity.
In order for dL to represent dX accurately, the sampling must be sufficiently dense,
length of edges in the graph bounded, and sufficiently close vertices must be
connected, usually in a non-regular manner.

Fast Marching

Eikonal Equation
An alternative to computation of a discrete metric on a discretized surface is the
discretization of the metric itself. The distance map d.x/ D dX.x0; x/ (Fig. 4)
on the manifold can be associated with the time of arrival of a propagating front
traveling with unit speed (illustratively, imagine a fire starting at point x0 at time
t D 0 and propagating from the source). Such a propagation obeys the Fermat
principle of least action (the propagating front chooses the quickest path to travel,
which coincides with the definition of the geodesic distance) and is governed by the
eikonal equation

krXdk2 D 1; (23)

where rX is the intrinsic gradient on the surface X . Eikonal equation is a
hyperbolic PDE with boundary conditions d.x0/ D 0; minimum geodesics are its
characteristics. Propagation direction is the direction of the steepest increase of d
and is perpendicular to geodesics.
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Fig. 3 Shortest paths measured by Dijkstra’s algorithm (solid bold lines) do not converge to
the true shortest path (dashed diagonal), no matter how much the grid is refined (Reproduced
from [25])

Since the distance map is not everywhere differentiable (in particular, at the
source point), no solution to the eikonal equation exists in the classical sense,
while there exist many non C1 functions satisfying the equation and the boundary
conditions. Among such functions, the largest d satisfying the boundary conditions
and the inequality

krXdk2 � 1 (24)

at every point where rXd exists is called the viscosity solution [42]. The viscosity
solution of the eikonal equation always exists and is unique, and its value at a point
x coincides with dX.x; x0/. It is known to be monotonous, i.e., not having local
maxima.

Triangular Meshes
A family of algorithms for finding the viscosity solution of the discretized eikonal
equation by simulated wavefront propagation is called fast marching methods
[63,100,112]. Fast marching algorithms can be thought of as continuous variants of
Dijkstra’s algorithm, with the notable difference that they consistently approximate
the geodesic metric dX on the surface.
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Fig. 4 Distance map
measured on a curved
surface. Equidistant contours
from the source located at the
right hand are shown
(Reproduced from [25])

Initialize d.x0/ D 0 and mark x0 as processed; for all k ¤ 0 set d.xk/ D 1 and
mark xk as unprocessed.
while there exist unprocessed vertices do

Mark unprocessed neighbors of processed vertices as interface.
for all interface vertices x and all incident triangles .x; x1; x2/ with x1; x2 ¤
unprocessed do

Update d.x/ from d.x1/ and d.x2/.
end for
Mark interface vertex with the smallest value of d as processed.

end while

The general structure of fast marching closely resembles that of Dijkstra’s
algorithm with the main difference lying in the update step. Unlike the graph case
where shortest paths are restricted to pass through the graph edges, the continuous
approximation allows paths passing anywhere in the simplicial complex. For that
reason, the value of d.x/ has to be computed from the values of the distance map
at two other vertices forming a triangle with x. In order to guarantee consistency of
the solution, all such triangles must have an acute angle at x. Obtuse triangles are
split at a preprocessing stage by adding virtual connections to nonadjacent vertices.

Given a triangle .x; x1; x2/ with known values of d.x1/ and d.x2/, the goal of
the update step is to compute d.x/. The majority of fast marching algorithms do so
by simulating the propagation of a planar wavefront in the triangle. The wavefront
arrival time to x1 and x2 is set to d.x1/ and d.x2/, from which the parameters of the
wave source are estimated. Generally, there exist two solutions for d.x/ consistent
with the input, the smallest corresponding to the wavefront first arriving to x and
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d1

n
x1

d3x3

d2

x2

x1
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x2
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Fig. 5 Fast marching updates the triangle (x1; x2; x3) by estimating the planar wavefront direction
n and origin p based on d1 at x1 and d2 at x2 and propagating it further to x3. d3 has two possible
solutions: the one shown on the left is inconsistent, since d3 < d1; d2. The solution on the right is
consistent, since d3 > d1; d2. Geometrically, in order to be consistent, the update direction n has
to form obtuse angles with the triangle edges (x3; x1) and (x3; x2) (Reproduced from [25])

then to x1 and x2 and the largest corresponding to the inverse situation. In order
to guarantee monotonicity of the solution, the largest solution is always chosen
(Fig. 5).

Computationally, fast marching has the O.N logN/ complexity of Dijkstra,
perhaps with a slightly larger constant.

Parametric Surfaces
For surfaces admitting a global parametrization x W U ! R

3, the eikonal equation
can be expressed entirely in the parametrization domain as [104]

rTdG�1rd D 1; (25)

where d.u/ is the distance map in the parametrization domain, rd is its gradient
with respect to the standard basis in R

2, and G are the coefficients of the first
fundamental form in parametrization coordinates. The fast marching update step can
be therefore performed onU . Moreover, since onlyG is involved in the equation, the
knowledge of the actual vertex coordinates is not required. This property is useful
when the surface is reconstructed from some indirect measurements, e.g., normals
or gradients, as it allows to avoid surface reconstruction for metric computation.

Parallel Marching
The main disadvantage of all Dijkstra-type algorithms based on a heap structure
in general and fast marching in particular is the fact that they are inherently
sequential. Moreover, as the order in which the vertices are visited is unknown in
advance, they typically suffer from inefficient access to memory. Working with well-
structured parametric surfaces such as geometry images allows to circumvent these
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Fig. 6 Raster scan grid traversals rotated by 45ı (Reproduced from [116])

disadvantages by replacing the heap-based update by the regular raster scan update.
Such family of algorithms is usually called parallel marching [117] or fast sweeping
[111, 121].

In parallel marching, vertices of the geometry image are visited in a raster scan
order, and for each vertex, the standard fast marching update is applied using already
updated (causal) vertices as the supporting vertices for the following update. Four
raster scans in alternating left-to-right top-to-bottom, right-to-left top-to-bottom,
left-to-right bottom-to-top, and right-to-left bottom-to-top directions are applied (in
practice, it is advantageous to rotate the scan directions by 45ı, as shown in Fig. 6).
For a Euclidean domain, such four scans are sufficient to consistently approximate
the metric; for non-Euclidean shapes, several repetitions of the four scans are
required. The algorithm stops when the distance map stops changing significantly
from one repetition to another. The exact number of repetitions required depends on
the metric and the parametrization, but is practically very small.
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Parallel marching algorithms map well on modern vector and parallel architec-
tures and in particular on graphics hardware [117].

Implicit Surfaces and Point Clouds
Two-dimensional manifolds represented in the implicit form X D fˆ.x/ D 0g �
R

3 can be approximated with arbitrary precision as the union of Euclidean balls of
radius h > 0 aroundX ,

Bh.X/ D
[
x2X

BR
3

h .x/: (26)

Bh.X/ is a three-dimensional Euclidean submanifold, which for h < 1=max �2 has
a smooth boundary. For every x; x0 2 X , the shortest path in Bh.X/ is no longer
than the corresponding shortest path on X . Mémoli and Sapiro [77] showed that as
h ! 0, shortest paths in Bh.X/ converge to those on X and the corresponding
geodesic distances dBh.X/jX�X converge uniformly to dX . This result allows to
cast the computation of a distance map on a curved two-dimensional space as the
computation of a distance map on a three-dimensional Euclidean submanifold. The
latter can be done using fast marching or parallel marching on orthogonal grid
restricted to a narrow band aroundX [76].

A similar methodology can be used for the computation of distance maps on point
clouds [76]. The union of Euclidean balls centered at each vertex of the cloud creates
a three-dimensional Euclidean manifold, on which the distance map is computed
using fast marching or parallel marching.

Diffusion Distance

The diffusion distance is expressed through the spectral decomposition of the
Laplace–Beltrami operator, and its discretization involves the discretization of the
Laplace–Beltrami operator and the computation of its eigenfunctions.

Discretized Laplace–Beltrami Operator
A discrete approximation of the Laplace–Beltrami on the mesh OX has the following
generic form

.� OXf /i D
1

ai

X
j

wij .fi � fj /; (27)

where f D .f1; : : : ; fN / is a scalar function defined on the mesh OX , wij are
weights, and ai are normalization coefficients. In matrix notation, Eq. (27) can be
written as

� OXf D A�1Lf; (28)
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where A D diag.ai / and L D diag
�P

l¤i wi l
�
� .wij /.

Different discretizations of the Laplace–Beltrami operator lead to different
choice ofA andW . In general, it is common to distinguish between discrete and dis-
cretized Laplace–Beltrami operator, the former being a combinatorial construction
and the latter a discretization trying to preserve some of the properties (Li)–(Liv) of
the continuous counterpart. In addition to these properties, it is important that the
discrete Laplace–Beltrami operator converges to the continuous one, in the sense
that the solution of the continuous heat equation with �X converges to the discrete
solution of the discrete heat equation with � OX as the number of samples grows to
infinity.

Purely combinatorial approximations such as the umbrella operator (wij D 1
if xi and xj are connected by an edge and zero otherwise) [120] and the Tutte
Laplacian (wij D d�1

i , where di is the valence of vertex xi ) [113] are not geometric,
violate property (Liv), and do not converge to the continuous Laplace–Beltrami
operator. One of the most widely used discretizations is the cotangent weight
scheme [91] and its variants [79] (wij D cot˛ij Ccotˇij if xi and xj are connected,
where ˛ij and ˇij are the two angles opposite to the edge between vertices xi and xj
in the two triangles sharing the edge and ai is proportional to the sum of the areas
of the triangles sharing xi ). It preserves properties (Li)–(Liv) as well as satisfies the
convergence property under certain mild conditions [116].

Computation of Eigenfunctions and Eigenvalues
By solving the generalized eigendecomposition problem [67],

Aˆ D ƒLˆ;

where ˆ is an N � .k C 1/ matrix whose columns are discretized eigenfunctions
�0; : : : ; �k andƒ is the diagonal matrix of the corresponding eigenvalues�0; : : : ; �k
of the discretized Laplace–Beltrami operator are computed. �il approximates the
value of the l th eigenfunction at the point xi .

A different approach to the computation of eigenfunction is based on the finite
element method (FEM). Using the Green formula, the Laplace–Beltrami eigenvalue
problem�X� D �� can be expressed in the weak form as

h�X�; ˛iL2.X/ D �h�; ˛iL2.X/ (29)

for any smooth ˛. Given a finite basis f˛1; : : : ; ˛Kg spanning a subspace of L2.X/,
the solution � can be expanded as �.x/ 	 u1˛1.x/C � � � C uK˛K.x/. Substituting
this expansion into (29) results in a system of equations

KX
jD1

uj h�X˛j ; ˛kiL2.X/ D �
KX
jD1

uj h˛j ; ˛kiL2.X/; k D 1; : : : ; K;
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which, in turn, is posed as a generalized eigenvalue problem

Au D �Bu: (30)

(here A and B are K � K matrices with elements akj D h�X˛j ; ˛kiL2.X/ and
bkj D h˛j ; ˛kiL2.X/). Solution of (30) gives eigenvalues � and eigenfunctions
� D u1˛1 C � � � C uK˛K of �X .

As the basis, linear, quadratic, or cubic polynomials defined on the mesh can
be used. Since the inner products are computed on the surface, the method is less
sensitive to shape discretization compared to the direct approach based on the
discretization of the Laplace–Beltrami operator. This is confirmed by numerical
studies performed by Reuter et al. [94].

Discretization of Diffusion Distances
Using the discretized eigenfunctions, a discrete diffusion kernel is approximated as

K.xi ; xj / 	
kX
lD0

K.�l /�il�jl ;

and can be represented as an N � N matrix. The corresponding diffusion distance
is approximated as

dX;t .xi ; xj / 	
 

kX
lD1

K2.�i /.�il � �jl /2
!1=2

:

5 Invariant Shape Similarity

Let us denote by X the space of all shapes equipped with some metric, i.e., a
point in X is a metric space .X; dX/. Let T be a group of shape transformations,
i.e., a collection of operators � W X ! X with the function composition. Two
shapes differing by a transformation � 2 T are said to be equivalent up to T .
The equivalence relation induces the quotient space X=T in which each point is
an equivalence class of shapes that differ by a transformation in T . A particular
instance of T is the group of isometries, i.e., such transformations that acting on
X leave dX unchanged. The exact structure of such the isometry group depends
on the choice of the metric with which the shapes are equipped. For example, if
the Euclidean metric dX D dEjX�X is used, the isometry group coincides with the
group of Euclidean congruences (rotations, translations, and reflections).

A function d W X � X ! R that associates a pair of shapes with a nonnegative
scalar is called a distance or dissimilarity function. We will say that the dissimilarity
d is T -invariant if it defines a metric on the quotient space X=T . In particular,
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this means that d.X; �.X// D 0 and d.�.X/ � 
.Y // D d.X; Y / for every
�; 
 2 T and X; Y 2 X. In particular, for T being the isometry group, a T -
invariant dissimilarity is an isometry-invariant metric between shapes. The exact
type of invariance depends on the structure of the isometry group and, hence, again
on the choice of the metric with which the shapes are equipped.

As a consequence from the metric axioms, an isometry-invariant dissimilarity
d.X; Y / between two shapes X and Y equals to zeros if and only if X and Y are
isometric. However, since exact isometry is an ideal rather than practical notion, it
is desirable to extend this property to similar (almost isometric) rather than strictly
equivalent (isometric) shapes. We will therefore require that (Ii) two �-isometric
shapes X and Y satisfy d.X; Y / � c1� C b1, and vice versa (Iii) if d.X; Y / � �,
thenX and Y are .c2�Cb2/-isometric, where c1, c2, b1, and b2 are some nonnegative
constants. In what follows, we will focus on the construction of such dissimilarities
and their approximation and show how different choices of the metric yield different
classes of invariance.

Rigid Similarity

Equipping shapes with the restriction of the Euclidean metric in E allows to consider
them as subsets of a bigger common metric space, E equipped with the standard
Euclidean metric. We will therefore examine dissimilarity functions allowing to
compare between two subsets of the same metric space.

Hausdorff Distance
For two sets X and Y , a subset R � X � Y is said to be a correspondence between
X and Y if (1) for every x 2 X there exists at least one y 2 Y such that .x; y/ 2 R
and (2) for every y 2 Y there exists at least one x 2 X such that .x; y/ 2 R. We
will denote by R.X; Y / the set of all possible correspondences between X and Y .

Using the notion of correspondence, we can define the Hausdorff distance [58]
between the two subsets of some metric space .Z; dZ/ as

dZ

H .X; Y / D min
R2R.X;Y / max

.x;y/2R dZ.x; y/: (31)

In other words, Hausdorff distance is the smallest nonnegative radius r for which
Br.X/ DSx2X Br.x/ � Y and Br.Y / � X , i.e.,

dZ

H .X; Y / D max

�
max
x2X min

y2Y dZ.x; y/;max
y2Y min

x2X dZ.x; y/

: (32)

Hausdorff distance is a metric on the set of all compact nonempty sets in Z.
However, it is not isometry invariant, i.e., for a nontrivial � 2 Iso.Z/, generally
dZ

H .X; �.X// ¤ 0. The isometry-invariant Hausdorff metric is constructed as the
minimum of dZ

H over all isometries in Z,
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d
Z=Iso.Z/
H .X; Y / D min

�2Iso.Z/
dZ

H .X; �.Y //: (33)

In the particular case of .Z; dZ/ being .E; dE/, the isometry-invariant Hausdorff
metric can be used to quantify similarity between rigid shapes measuring to which
extent they are congruent (isometric in the Euclidean sense) to each other. The
metric assumes the form

d
E=Iso.E/
H .X; Y / D min

R;t
dE

H .X;RY C t/; (34)

where an orthogonal (rotation or, sometimes, rotation and reflection) matrix R and
a translation vector t 2 E are used to parametrize the Euclidean isometry group.

Iterative Closest Point Algorithms
Denoting by

cpY .x/ D min
y2Y dE.x; y/ (35)

the closest point to x in Y , the Euclidean isometry-invariant Hausdorff metric can
be expressed as

d
E=Iso.E/
H .X; Y / D max

�
min
R;t

max
x2X dE.x;RY C t/;min

R;t
max
y2Y dE.y;RX C t/



D min
R;t

max

�
max
x2X kx � cpRYCt .x/k2;max

y2Y ky � cpR�1.X�t /.y/k2


:

(36)

Such a formulation lends itself to numerical computation. A family of algorithms
referred to as iterative closest point (ICP) [15, 36] first established the closest
point correspondences between X and Y ; once the correspondence is available, the
Euclidean isometry .R; t/minimizing maxx2X kx�cpRYCt .x/k2 and maxy2Y ky�
cpR�1.X�t /.y/k2 is found and applied to Y . This, however, is likely to change the
correspondence, so the process is repeated until convergence. For practical reasons,
more robust variants of the Hausdorff distance are used [81].

Shape Distributions
A disadvantage of the ICP algorithms is that the underlying optimization prob-
lem becomes computationally intractable in high-dimensional spaces. A different
approach for isometry-invariant comparison of rigid shapes, proposed by Osada et
al. [85] and referred to as shape distribution, compares the distributions (histograms)
of distances defined on the shape. Two isometric shapes obviously have identical
shape distributions, which makes the approach isometry invariant. Shape distribu-
tions can be computed in a space of any dimension, are computationally efficient,
and are not limited to a specific metric. A notable disadvantage of shape distribution
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distance is that it does not satisfy our axioms (Ii)–(Iii), as there may be two non-
isometric shapes with equal shape distributions; therefore, it is not a metric.

Wasserstein Distances
Let the sets X and Y be further equipped with measures �X and �Y , respectively.
(It is required that supp.�X/ D X and supp.�Y / D Y .) We will say that a measure
� on X � Y is a coupling of �X and �Y if (i) �.X 0 � Y / D �X.X

0/ and (ii)
�.X � Y 0/ D �Y .Y

0/ for all Borel sets X 0 � X and Y 0 � Y . We will denote by
M.�X ; �Y / the set of all possible couplings of �X and�Y . The support supp.�/ of
the measure � is the minimum closed subset R � X � Y such that �.Rc/ D 0. The
support of each � 2M.�X ; �Y / defines a correspondence; measure coupling can
be therefore interpreted as a “soft” or “fuzzy” correspondence between two sets.

The family of distances

dZ

W;p.�X ; �Y / D min
�2M.�X ;�Y /

�Z
X�Y

d
p

Z
.x; y/d�.x; y/

� 1
p

(37)

for 1 � p <1, and

dZ

W;1.�X ; �Y / D min
�2M.�X ;�Y /

max
.x;y/2supp.�/

dZ.x; y/ (38)

for p D 1 is called the Wasserstein or Earth mover’s distances [97]. Wasserstein
distances are metrics on the space of distributions (finite measures) on Z. For
convenience, we will sometimes write dZ

W;p.X; Y / implying dZ

W;p.�X ; �Y /.
Exactly like in the case of the Hausdorff distance, Wasserstein distances can be

transformed into isometry-invariant metrics by considering the quotient with all
isometries of Z,

d
Z=Iso.Z/
W;p .X; Y / D min

�2Iso.Z/
dZ

W;p.X; �.Y //: (39)

Wasserstein distances are intimately related to Monge–Kantorovich optimal
transportation problems. Informally, if the measures �X and �Y are interpreted
as two ways of piling up a certain amount of dirt over the regions X and Y ,
respectively, and the cost of transporting dirt from point x to point y is quantified by
d
p

Z
.x; y/, then the Wasserstein distance dZ

W;p expresses the minimum cost of turning
one pile into the other. On discrete domains, the Wasserstein distance can be cast as
an optimal assignment problem and solved using the Hungarian algorithm or linear
programming [97]. Several approximations have also been proposed in [60, 102].

Canonical Forms

The Hausdorff distance allows comparing shapes equipped with the restricted
Euclidean metric, i.e., considered as subsets of the Euclidean space. If other metrics
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Fig. 7 Nearly isometric deformations of a shape (top row) and their canonical forms in R
3 (bottom

row)

are used, we have a more difficult problem of comparison of two different metric
spaces. Elad and Kimmel [47,48] proposed an approximate solution to this problem,
reducing it to the comparison of Euclidean subspaces by means of minimum-
distortion embedding. Given a shape X with some metric d (e.g., geodesic or
diffusion), it can be represented as a subset of the Euclidean space by means of an
embedding ' W X ! R

m. If the embedding is isometric (dEj'.X/�'.X/ ı ' D d ), the
Euclidean representation .'.X/; dEj'.X/�'.X// called the canonical form of X can
be used equivalently instead of .X; d/ (Fig. 7). Given a Euclidean isometry i 2 E,
if ' is isometric, then ' ı i is also isometric. In other words, the canonical form
is defined up to an isometry. In a more general setting, an arbitrary metric space
.Z; dZ/ is used instead of E for the computation of the canonical form.

The advantage of using canonical forms is that it brings the problem of shape
comparison to the comparison of subsets of the Euclidean space, using, e.g., the
Hausdorff distance. Given two shapes .X; d/ and .Y; ı/, their canonical forms '.X/
and  .Y / in Z are computed. In order to compensate for ambiguity in the definition
of the canonical forms, an isometry-invariance distance between subsets of Z must
be used, e.g., dZ=Iso.Z/

H .'.X/;  .Y //. In the particular case of Euclidean canonical

forms, dE=Iso.E/
H .'.X/;  .Y // can be computed using ICP.

Multidimensional Scaling
Unfortunately, in most cases, there exists no isometric embedding of X into
some predefined metric space. The right choice of Z can decrease the embedding
distortion, but cannot make it zero [21, 114]. Instead, one can find an embedding
with minimal distortion,

min
'W.X;d/!.Z;dZ/

dis.'/:
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In this case, dZj'.X/�'.X/ ı ' 	 d , and thus the canonical form is only an
approximate representation of the shape X in the space Z.

In the discrete setting andZ D R
m, given the discretized shape fx1; : : : ; xN gwith

the discretized metric dij D d.xi ; xj /, the minimum-distortion embedding can be
computed by solving the multidimensional scaling (MDS) problem [17, 41],

min
fz1;:::;zN g�Rm

max
i;jD1;:::;N

jdij � kzi � zj kj; (40)

where zi D '.xi /.
In practical applications, other norms (e.g., L2) are used in the MDS prob-

lem (40). The MDS objective function is usually referred to as stress in MDS
literature. For the L2 MDS problem (also known as least squares or LS-MDS), an
efficient algorithm based on iterative majorization (commonly referred to as scaling
by majorizing a complicated function or SMACOF) exists [44]. Denoting by Z the
N �m matrix of the embedding coordinates of fx1; : : : ; xN g in R

m, the SMACOF
algorithm can be summarized as follows:

Initialize embedding coordinateZ.0/.
for k D 1; 2; � � � do

Perform multiplicative update

Z.k/ D 1

N
B.Z.k�1//Z.k�1/;

where B.Z/ is an N �N matrix-valued function with elements

bij .Z/ D

8̂
<
:̂

dX .xi ;xj /

kzi�zj k i ¤ j and kzi � zj k ¤ 0;

0 i ¤ j and kzi � zj k D 0;
�Pk¤i bik i D j:

end for

SMACOF iteration is equivalent to a weighted steepest descent with constant step
size [32], but due to a special structure of the problem, it guarantees monotonous
decrease of the stress function [17]. Other Lp formulations can be solved using
iteratively reweighted least-squares (IRLS) techniques [16]. Acceleration of con-
vergence is possible using multiscale and multigrid methods [32] as well as vector
extrapolation techniques [96].

Eigenmaps
In the specific case when the shape is equipped with the diffusion distance (d D
dX;t ), the canonical form can be computed by observing the fact that the map
ˆX;t .x/ D .e��0t �0.x/; e

��1 t �1.x/; : : : / defined by the eigenvalues and eigenvec-
tors of Laplace–Beltrami operator �X satisfies dX;t .x; x0/ D kˆt .x/ � ˆt.x0/k2.
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In other words, ˆX;t is an isometric embedding of .X; dX;t / into an infinite-
dimensional Euclidean space and can be thought of as an infinite-dimensional
canonical form [13, 72]. ˆX;t is termed Laplacian eigenmap [9] or diffusion

map [40]. Another eigenmap given by ‰X.x/ D
�
�

�1=2
1 �1.x/; �

�1=2
2 �2.x/; : : :

�
,

referred to as the global point signature (GPS) [98], is an isometric embedding of
the commute time metric cX .

Unlike Elad–Kimmel canonical forms computed by MDS, the eigenmap is
uniquely defined (i.e., there are no degrees of freedom related to the isometry
in the embedding space) if the Laplace–Beltrami operator has no eigenvalues
of multiplicity greater than one. Otherwise, the ambiguity in the definition of
the eigenmap is up to switching between the eigenfunction corresponding to the
eigenvalues with multiplicity and changes in their signs. More ambiguities arise
in cases of symmetric shapes [86]. In general, two eigenmaps may differ by a
permutation of coordinates corresponding to simple eigenvalues or by a roto-
reflection in the eigensubspaces corresponding to eigenvalues with multiplicities.

For practical comparison of eigenmaps, a finite number k of eigenvectors is used,
Q̂
X;t D .e��0t �0; : : : ; e

��kt�k/. The Euclidean distance on the eigenmap Q̂ X;t is
thus a numerical approximation to the diffusion metric dX;t using k eigenfunctions
of the Laplace–Beltrami operator (similarly, Q‰X approximates the commute time).
For small k, eigenmaps can be compared using ICP. The problem of coordinate
permutations must be addressed if eigenvalues of multiplicity greater than one are
present. Such an approach is impractical for k >> 1.

As an alternative, Rustamov [98] proposed using shape distributions to compare
eigenmaps. This method overcomes the aforementioned problem, but lacks the
metric properties of a true isometry-invariant metric.

Gromov–Hausdorff Distance

The source of inaccuracy of Elad–Kimmel canonical forms is that it is generally
impossible to select a common metric space .Z; dZ/ in which the geometry of
any shape can be accurately represented. However, for given two shapes X and
Y , the space .Z; dZ/ can be selected in such a way that .X; d/ and .Y; ı/ can
be isometrically embedded into it, the simplest example being the disjoint union
Z D X t Y of X and Y , with the metric dZjX�X D d and dZjY�Y D ı. dZjX�Y is
defined to minimize the Hausdorff distance between X and Y in .Z; dZ/, resulting
in a distance,

dGH.X; Y / D inf
dZ
dZ

H .X; Y /; (41)

called the Gromov–Hausdorff distance. The Gromov–Hausdorff distance was first
proposed by Gromov [55] as a distance between metric spaces and a generalization
of the Hausdorff distance and brought into shape recognition by Mémoli and
Sapiro [78].
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The Gromov–Hausdorff distance satisfies axioms (Ii)–(Iii) with c1 D c2 D 2 and
b1 D b2 D 0, such that dGH.X; Y / D 0 if and only if X and Y are isometric. More
generally, if dGH.X; Y / � �, then X and Y are 2�-isometric, and, conversely, if X
and Y are �-isometric, then dGH.X; Y / � 2� [34].

The Gromov–Hausdorff distance is a generic distance between metric spaces
and, in particular, can be used to measure similarity between subsets of the
Euclidean metric space, .X; dEjX�X/ and .Y; dEjY�Y /. In [75], Mémoli showed that
the Gromov–Hausdorff distance in the Euclidean space is equivalent to the ICP
distance,

c �dE=Iso.E/
H .X; Y / � dGH..X; dEjX�X/; .Y; dEjY�Y // � dE=Iso.E/

H .X; Y /;

in the sense of equivalence of metrics (c > 0 is a constant). (Metric equivalence
should not be confused with equality: for example,L1 andL2 metrics are equivalent
but not equal.) Consequently, (1) if dE=Iso.E/

H .X; Y / � �, then .X; dEjX�X/ and
.Y; dEjY�Y / are 2�-isometric; and (2) if .X; dEjX�X/ and .Y; dEjY�Y / are �-
isometric, then dE=Iso.E/

H .X; Y / � cp�.
Using the Gromov–Hausdorff distance to compare shapes equipped with dif-

fusion metric allows to benefit from the advantage of the diffusion metric over
geodesic one, such as lesser sensitivity to topological noise [28].

Generalized Multidimensional Scaling
For compact metric spaces, the Gromov–Hausdorff distance can also be expressed
as

dGH.X; Y / D 1

2
inf
C

dis .C /; (42)

where the infimum is taken over all correspondence C and dis .C /. The two
expressions (41) and (42) are equivalent [34].

The advantage of this formulation is that it allows to reduce the computation
of the Gromov–Hausdorff distance to finding a minimum-distortion embedding,
similarly to the computation of canonical forms by means of MDS. In the discrete
setting, given two triangular meshes OX and OY representing the shapesX; Y , let us fix
two sufficiently dense finite samplings P D fp1; : : : ; pmg and Q D fq1; : : : ; qng of
OX and OY , respectively. A discrete correspondence between the shapes is defined as
C D .P � Q0/ [ .Q � P 0/, where P 0 D ˚

p0
1; : : : ; p

0
n



and Q0 D ˚

q0
1; : : : ; q

0
m



are some (different) sets of samples on OX and OY corresponding to Q and P ,
respectively. One can represent C as the union of the graphs of two discrete
functions ' W P ! OY and  W Q ! OX , parametrizing the class of all discrete
correspondences.

Given two sets P and P 0 on OX , we can construct an m � n distance matrix

D.P;P 0/, whose elements are the distances Od OX
�
pi ; p

0
j

�
(e.g., geodesic or diffu-

sion). In these terms, the distortion of the correspondence C can be written as
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dis .C / D
����
�
D.P;P / D.P;P 0/
D.P;P 0/T D.P 0; P 0/

�
�
�
D.Q0;Q0/ D.Q0;Q/
D.Q0;Q/T D.Q;Q/

����� ;

where k � k is some norm on the space of .m C n/ � .m C n/ matrices. The
selection of the infinity norm kDk1 D maxi;j jdij j is consistent with the Gromov–
Hausdorff distance; however, in practice more robust norms like the Frobenius norm
kDk2

F D trace.DDT/ are often preferable (see [23, 74, 78] for discussions on the
regularization of the infinity norm in the Gromov–Hausdorff framework by other lp
norms).

The discretization of dis .C / leads directly to a discretized approximation of the
Gromov–Hausdorff distance between shapes, which can be expressed as

OdGH. OX; OY / WD 1

2
min
P 0 ;Q0

dis .C /:

Note that only P 0 and Q0 participate as continuous minimization variables, while
P and Q are constants (given samples on the respective shapes). The above
minimization problem is solved using a numerical procedure resembling MDS, first
introduced in [23, 24] under the name generalized MDS (GMDS).

We use barycentric coordinates to represent points on OX and OY . In these
coordinates, a point pi lying in a triangle ti on OX is represented as a convex
combination of the triangle vertices (corresponding to the indices t1i , t2i , and t3i )

with the weights ui D
�
u1
i ; u

2
i ; u

3
i

	T
. We will denote by T D .t1; : : : ; tm/

T the
vector of triangle indices and by U D .u1; : : : ; um/ the 3 �m matrix of coordinates
corresponding to the sampling P . Similarly, the samplings P 0, Q, and Q0 are
represented as .T 0; U 0/, .S; V /, and .S 0; V 0/. For the sake of notation simplicity,
we are going to use these interchangeably.

It was shown in [26] that a first-order approximation of a geodesic distance
between p0

i and p0
j on OX can be expressed as the quadratic form

Dij .P
0; P 0/ 	 u0T

i

0
BB@
Dt1i ;t

1
j
.P; P / Dt1i ;t

2
j
.P; P / Dt1i ;t

3
j
.P; P /

Dt2i ;t
1
j
.P; P / Dt2i ;t

2
j
.P; P / Dt2i ;t

3
j
.P; P /

Dt3i ;t
1
j
.P; P / Dt3i ;t

2
j
.P; P / Dt3i ;t

3
j
.P; P /

1
CCA u0

j :

Other distance terms are expressed similarly. Using tensor notation, we can write

dis .C / 	 ��.U; U 0/D OX.T; T
0/.U; U 0/ � .V; V 0/D OY .S; S

0/.V; V 0/
��2

F ;

where D OX.T; T 0/ is a rank four tensor whose ij -th elements are defined as the 3� 3
distance matrices above, and D OY .S; S 0/ is defined in a similar way.

The resulting objective function dis .C / is a fourth-order polynomial
with respect to the continuous coordinates U 0; V 0, also depending on the
discrete index variables T 0 and S 0. However, when all indices and all



Manifold Intrinsic Similarity 1891

coordinate vectors except one, say, u0
i , are fixed, the function becomes convex

and quadratic with respect to u0
i . A closed-form minimizer of dis

�
u0
i

	
is

found under the constraints u0
i � 0 and u01

i C u02
i C u03

i D 1, guaran-
teeing that the point p0

i remains within the triangle t 0i . The GMDS min-
imization algorithm proceeds iteratively by selecting u0

i or v0
i correspond-

ing to the largest gradient of the objective function, updating it accord-
ing to the closed-form minimizer, and updating the corresponding triangle
index to a neighboring one in case the solution is found on the boundary
of the triangle. The reader is referred to [26] for further implementation
details.

Graph-BasedMethods

The minimum-distortion correspondence problem can be formulated as a binary
labeling problem with uniqueness constraints [110] in a graph with vertices defined
as pairs of points and edges defined as quadruplets. Let V D f.x; y/ W x 2
X; y 2 Y g D X � Y be the set of pairs of points from X and Y , and let
E D f..x; y/; .x0; y0// 2 V � V and .x; y/ ¤ .x0; y0/g. A correspondence C �
X � Y can be represented as binary labeling u 2 f0; 1gV of the graph .V ; E/, as
follows: ux;y D 1 iff .x; y/ 2 C and 0 otherwise. When using L2 distortions, the
correspondence problem can be reformulated as

min
u2f0;1gV

X
..x;y/;.x0;y0//2E

ux;yux0;y0 jdX.x; x0/ � dY .y; y0/j2

s:t:
X
y

ux;y � 1 8x 2 X I
X
x

ux;y � 1 8y 2 Y: (43)

In general, optimization of this energy is NP-hard [53]. One possible
approximation of (43) is by relaxing the labels to be in Œ0; 1�. This for-
mulation leads to a non-convex quadratic program with linear constraints
[46, 74]. Alternatively, instead of minimizing directly the energy (43), it is
possible to maximize a lower bound on it by solving the dual to the linear
programming (LP) relaxation of (43), a technique known as dual decompo-
sition [110]. This approaches demonstrate good global convergence behavior
[65].

Probabilistic Gromov–Hausdorff Distance
The Gromov–Hausdorff framework can be extended to a setting in which pairwise
distances are replaced by distributions of distances, modeling the intra-class
variability shapes (e.g., the fact that different humans have legs of different length)
[115]. The pairwise metric difference terms in the correspondence distortion are
replaced by probabilities, and the problem is posed as likelihood maximization.
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Gromov–Wasserstein Distances

The same way as the Gromov–Hausdorff extends the Hausdorff distance by taking
a minimum over all possible metric spaces, dGH D mindZ d

Z

H , an extension for the
Wasserstein distance of the form

dGW;p.X; Y / D min
dZ
dZ

W;p.X; Y / (44)

D min
dZ

min
�2M.�X ;�Y /

�Z
X�Y

d
p

Z
.x; y/d�.x; y/

� 1
p

;

referred to as Gromov–Wasserstein distance, was proposed by Mémoli [74]. Here,
it is assumed that X and Y are metric measure spaces with metrics dX; dY and
measures �X;�Y . The analogy between the Gromov–Hausdorff and the Gromov–
Wasserstein distances is very close: the Hausdorff distance is a distance between
subsets of a metric measure space, and the Gromov–Hausdorff distance is a distance
between metric spaces. The Wasserstein distance is a distance between subsets of
a metric space, and the Gromov–Wasserstein distance is a distance between metric
measure spaces.

Numerical Computation
In [74], Mémoli showed that (44) can be alternatively formulated as

dGW;p.X; Y / D (45)

min
�2M.�X ;�Y /

�Z
X�Y

Z
X�Y
jdX.x; x0/ � dY .y; y0/jpd�.x; y/d�.x0; y0/

� 1
p

:

This formulation has an advantage in numerical implementation. Given discrete
surfaces fx1; : : : ; xN g and fy1; : : : ; yM g with discretized metrics dX.xi ; xi 0/;

dY .yj ; yj 0/ and measures �X.xi /; �Y .yj / (for i; i 0 D 1; : : : ; N and j D
1; : : : ;M ), problem (45) can be posed as an optimization problem with NM

variables and N CM linear constraints:

min�

NX
i;i 0D1

MX
j;j 0D1

�ij�i 0j 0 jdX.xi ; xi 0/� dY .yj ; yj 0/jp

s:t: �ij 2 Œ0; 1�
NX
iD1

�ij D �Y .yj /

MX
jD1

�ij D �X.xi /:
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Shape DNA

Reuter et al. [95] proposed using the Laplace–Beltrami spectrum (i.e., eigenvalues
�0; �1; : : : of �X ) as shape descriptors, referred to as shape DNA. Laplace–
Beltrami spectrum is isometry invariant; however, there may exist shapes which
are isospectral (have equal eigenvalues) but non-isometric. This fact was first
conjectured by Kac [62] and shown by example in [54]. Thus, the equivalence class
of isospectral shapes to which the shape DNA approach is invariant is wider than the
class of isometries. The exact relations between these classes are currently unknown.

6 Partial Similarity

In many situations, it happens that while two objects are not similar, some of
their parts are. Such a situation is common, for example, in the face recognition
application, where the quality of facial images (or surfaces in the case of 3D face
recognition) can be degraded by acquisition imperfections, occlusions, and the
presence of facial hair. Semantically, we can say that two objects are partially similar
if they have significant similar parts. If one is able to detect such parts, the degree
of partial similarity can be evaluated.

We define a part of a shape .X; dX/ simply as its subset X 0 � X equipped with
the restricted metric dX jX 0�X 0 . According to this definition, every part of a shape is
also a shape. We will denote by†.X/ � 2X the set of all admissible parts, satisfying
(1) †.X/ is nonempty; (2) †.X/ is closed under complement, i.e., if X 0 2 †.X/,
then X n X 0 2 †.X/; and (3) †.X/ is closed under countable unions, i.e., any
countable union of parts from †.X/ is also an admissible part in †.X/. Formally,
the set of all parts of X is a 
-algebra. An equivalent representation of a part is by
means of a binary indicator function, p W X ! f0; 1g, assuming the value of one for
each x 2 X 0 and zero otherwise. We will see the utility of such a definition in the
sequel.

Significance

The significance of a part is a function on †.X/ assigning each part a number
quantifying its “importance.” We denote significance by 
 and demand that (1) 

is nonnegative; (2) 
.;/ D 0; and (3) 
 is countably additive, i.e., 


�S
i X

0
i

	 DP
i 

�
X 0
i

	
for every countable union of parts in †.X/. Formally, significance is

a finite measure on X . As in the case of similarity, the notion of significance is
application dependent. The most straightforward way to define significance is by
identifying it with the area


.X 0/ D
Z
X 0

da
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or the normalized area


.X 0/ D

Z
X 0

da

Z
X

da

:

of the part. However, such a definition might deem equally important a large flat
region and a region rich in features if they have the same area, while it is clear that
the latter one would usually be more informative. A better approach is to interpret
significance as the amount of information about the entire shape contained in its part,
quantified, e.g., as the ability to discriminate the shape from a given corpus of other
shapes given only its part. Such a definition leads to a weighted area measure, where
the weighting reflects the discriminativity density of each point and is constructed
similarly to the term frequency-inverse document frequency (TF-IDF) weighting
commonly used in text retrieval [2].

Regularity

Another quantity characterizing the importance of a part is its regularity, which
we model as a scalar function � W †.X/ ! R [18, 19]. In general, we would like
the part to be simple, i.e., if two parts contain the same amount of information
(are equally significant), we would prefer the simpler one, following Ockham’s
pluralitas non est ponenda sine necessitate principle. What is exactly meant by
“regular” and “simple” is again application dependent. In many applications, an
acceptable definition of regularity is the deviation of a shape from some perfectly
regular one. For example, in image processing and computer vision, regularity is
commonly expressed using the shape factor

�.X 0/ D
4�
Z
X 0

da

�Z
@X 0

ds

�2 ;

or the ratio between the area of X 0 and the squared length of its boundary. Because
of the isoperimetric inequality in the plane, this ratio is always less or equal to one,
with the equality achieved by a circle, which is arguably a very regular shape. Shape
factor can be readily extended to non-Euclidean shapes, where, however, there is no
straightforward analogy of the isoperimetric inequality. Consequently, two equally
regular shapes might have completely different topology, e.g., one might have
numerous disconnected components, while the other having only one (Fig. 8).

A remedy can be in regarding regularity as a purely topological property, count-
ing, for example, the number of disconnected components of a part. Topological
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Fig. 8 Large shape factor
does not necessarily imply
regularity in non-Euclidean
shapes. Here, the upper body
of the dog and the four legs
have the same area and the
same boundary length (red
contours) and, hence, the
same shape factor. However,
the upper body is arguably
more regular than the four
disconnected legs
(Reproduced from [26])

regularity can be expressed in terms of the Euler characteristic, which using the
Gauss–Bonnet identity becomes

�.X 0/ D 2�	.X 0/ D
Z
X 0

KdaC
Z
@X 0

kgds;

whereK is the Gaussian curvature of X and kg is the geodesic curvature of @X 0.

Partial Similarity Criterion

In this terminology, the problem of partial similarity of two shapes X and Y can be
thought finding two parts X 0 2 †.X/ and Y 0 2 †.Y / simultaneously maximizing
regularity, significance, and similarity. Since a part of a shape is also a shape, the
latter can be quantified using any shape similarity (Since we use dissimilarity,
we will maximize �d.X 0; Y 0/.) criterion appropriate for the application, e.g., the
Gromov–Hausdorff distance. This can be written as the following multi-criterion
optimization problem [18, 19, 27]

max
X 02†.X/
Y 02†.Y /

.�.X 0/; �.Y 0/; 
.X 0/; 
.Y 0/;�d.X 0; Y 0//;

where maximum is understood as a point in the criterion space, such that no other
point has all the criteria larger simultaneously. Such a maximum is said to be
Pareto efficient and is not unique. The solution of this multi-criterion maximization
problem can be interpreted as a set-valued partial similarity criterion. Since such
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criteria are not mutually comparable, the problem should be converted into a scalar
maximization problem

max
X 02†.X/
Y 02†.Y /

�r .�.X
0/C �.Y 0//C �s.
.X 0/C 
.Y 0//� d.X 0; Y 0/; (46)

where �r and �s are positive scalars reflecting the tradeoff between regularity,
significance, and dissimilarity.

Computational Considerations

Direct solution of problem (46) involves searching over the space of all parts of X
and Y , which has combinatorial complexity. However, the problem can be relaxed
to maximization in continuous variables if binary parts are allowed to be fuzzy.
Formally, a fuzzy part is obtained by letting the binary indicator functions assume
values on the interval Œ0; 1�. Such functions are called membership functions in the
fuzzy set theory terminology. The optimization problem becomes [28]

max
pWX!Œ0;1�
qWY!Œ0;1�

�r .�.p/C �.q//C �s.
.p/C 
.q// � d.p; q/;

where �.p/; 
.p/ and d.p; q/ are the fuzzy counterparts of the regularity, signifi-
cance, and dissimilarity terms. The significance of a fuzzy part p is simply


.p/ D
Z
X

p d
:

The regularity term is somewhat more involved as it involves integration along the
part boundary, which does not exist in case of a fuzzy part. However, the following
relaxation is available [35]

�.p/ D
4�
Z
X

p da

�Z
X

krpkı �p � 1
2

	
da

�2 ;

with ı being the Dirac delta function. This fuzzy version of the shape factor
converges to the original definition when p approaches a binary indicator function.
The dissimilarity term needs to be modified to involve the membership function. The
most straightforward way to do so is by defining a weighted dissimilarity between
the entire shapes X and Y with p and q serving as the weights. For example, using
p.x/da.x/ and q.y/da.y/ as the respective measures onX and Y , the Wasserstein
distance incorporates the weights in a natural way.
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7 Self-Similarity and Symmetry

An important particular case of shape similarity is the similarity of shape with itself,
which is commonly referred to as symmetry. The latter notion is intimately related
with that of invariance.

Rigid Symmetry

Computation of exact and approximate symmetries has been extensively studied in
the Euclidean sense [3,6,83,118]. A shapeX is said to be symmetric if there exists a
nontrivial Euclidean isometry f 2 Iso.R3/ to which it is invariant, i.e., f .X/ D X .
Such an isometry is called a symmetry of X . True symmetries, like true isometries,
are a mere idealization not existing in practice. In real applications, we might still
find approximate symmetries. The degree of asymmetry of a Euclidean isometry f
can be quantified as a distance between X and f .X/ in R

3, e.g.,

asym.f / D dR
3

H .X; f .X//:

Intrinsic Symmetry

A symmetry f restricted to X defines a self-isometry of X , i.e., f jX 2 Iso.X/.
Therefore, an alternative definition of an approximate symmetry could be an �-
isometry, with the distortion quantifying the degree of asymmetry. Such a definition
requires approximate symmetries to be automorphisms ofX , yet its main advantage
is the fact that it can be extended beyond the Euclidean case (Fig. 9). In fact,
identifying the symmetry group with the isometry group Iso.X; dX/ of the shape
X with some intrinsic (e.g., geodesic or diffusion) metric dX , a nonrigid equivalent
of symmetries is defined, while setting dX D dEjX�X the standard Euclidean
symmetries are obtained [92]. Approximate symmetries with respect to any metric
can be computed as local minima of the distortion function in embedding X into
itself. Computationally, the process can be carried out using GMDS.

Spectral Symmetry

An alternative to this potentially heavy computation is due to Ovsjanikov et al. [87]
and is based on the elegant observation that for any simple (A simple eigenfunction
is one corresponding an eigenvalues with multiplicity one.) eigenfunction �i of the
Laplace–Beltrami operator, a reflection symmetry f satisfies �i ı f D ˙�i . This
allows parametrize reflection symmetries by sign sequences s D fs1; s2; : : : g, si 2
f˙1g, such that �i ı f D si�i .
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Extrinsic symmetry
dE = dE o (g × g)

Intrinsic symmetry
dX = dX o (g × g)

g

g

Fig. 9 Symmetry defined as a metric-preserving automorphism (self-isometry) of X allows
extending the standard notion of Euclidean symmetry to nonrigid shapes (Reproduced from [92])

Given a sign sequence, the eigenmapˆs.x/ D
n
s1�

�1=2
1 �1.x/; s2�

�1=2
2 �2.x/; : : :

o
is defined. Symmetries are detected by evaluating the asymmetry

asym.s/ D max
x2X min

x02X kˆs.x
0/ �ˆ.x/k

of different sign sequences and keeping those having asym � �. The symmetry
itself corresponding to a sequence s is recovered as

f .x/ D arg min
x02X kˆs.x

0/�ˆ.x/k;

and is an � self-isometry of X in the sense of the commute time metric. While
it can be made relatively computationally simple, this method is limited to global
reflection symmetries only.

Partial Symmetry

In many cases, a shape does not have symmetries as a whole, yet possesses parts
that are symmetric. Adopting the notion of partial similarity defined in Sect. 6,
one can think of a part X 0 � X and a partial symmetry f W X 0 � X 0 as of
a Pareto-efficient tradeoff between asymmetry asym.f /, part significance 
.X 0/,
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and regularity �.X 0/. Partial symmetries are found similarly to the computation of
partial similarity of two distinct shapes.

Repeating Structure

Another important particular case of self-similarity is repeating regular struc-
ture. Shapes possessing regular structure can be divided into self-similar patches
(structural elements) forming some regular patterns, e.g., a grid. State-of-the-art
methods [89, 108? ] can detect structured repetitions in extrinsic geometry if the
Euclidean transformations between repeated patches exhibit group-like behavior.
In case of nonrigid and deformable shapes, however, the problem is challenging
since no apparent structure is visible to simple Euclidean probes in the absence of
repetitive Euclidean transformations to describe the shape. A general solution for
the detection of intrinsic regular structure is still missing, though particular cases
have been recently addressed in [29].

8 Feature-BasedMethods

Another class of methods, referred to as feature based, uses local information to
describe the shape, perform matching, or compute similarity. The popularity of these
methods has increased following the success of the scale-invariant feature transform
(SIFT) [70] and similar algorithms [8, 71] in image analysis and computer vision
application.

Feature Descriptors

In essence, feature-based methods try to represent the shape as a collection
of local feature descriptors. This is typically done in two steps first, selecting
robust and representative points ( feature detection) and computing the local shape
representation at these points ( feature description).

Feature Detection
One of the main requirements on a feature detector is that the points it selects are (1)
repeatable, i.e., in two instances of a shape, ideally the same set of corresponding
points is detected, and (2) informative, i.e., the information contained in these points
is sufficient to, e.g., distinguish the shape from others.

In the most trivial case, no feature detection is performed and the feature
descriptor is computed at all the points of the shape or at some regularly sampled
subset thereof. The descriptor in this case is usually termed dense. Dense descriptors
bypass the problem of repeatability at the price of increased computational
cost and potentially introducing many unimportant points that clutter the shape
representation.
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Many geometric feature detection paradigms come from the image analysis
community, such as finding points with high derivatives (e.g., the Harris operator
[30, 52, 57]) or local maxima in a scale space (e.g., difference of Gaussians (DOG)
[119] or local maxima of the heat kernel [49]).

Feature Description
Given a set of feature points (or, in the case of a dense descriptor, all the points on the
shape), a local descriptor is then computed. An ideal feature descriptor should be (1)
invariant under the class of transformations a shape can undergo and (2) informative.
One of the most known feature descriptors is spin image [4, 5, 61], describing
the neighborhood of a point by fitting an oriented coordinate system at the point.
Belongie and Malik introduced the shape context descriptor [11], describing the
structure of the shape as relations between a point to the rest of the point. Given the
coordinates of a point x on the shape, the shape context descriptor is constructed
as a histogram of the direction vectors from x to the rest of the point, y � x.
Typically, a log-polar histogram is used. Because of dependence on the embedding
coordinates, such a descriptor is not deformation invariant. Other descriptors exist
based on local patches [82], local moments [38] and volume descriptors [50],
spherical harmonics [101], and contour and edge structures [64,88]. Zaharescu et al.
[119] proposed using as a local descriptor the histogram of gradients of a function
(e.g., Gaussian curvature) defined in a neighborhood of a point, similarly to the
histogram of gradients (HOG) [43] and SIFT [70] techniques used in computer
vision.

Because considering local geometry, feature descriptors are usually not very
susceptible to nonrigid deformations of the shape. Nevertheless, there exist several
geometric descriptors which are invariant to isometric deformations by construction.
Examples include descriptors based on histograms of local geodesic distances [27],
conformal factors [12], and heat kernels [106], described in the following in more
details.

Heat Kernel Signatures
Sun et al. [106] proposed the heat kernel signature (HKS), defined as the diagonal
of the heat kernel. Given some fixed time values t1; : : : ; tn, for each point x on the
shape, the HKS is an n-dimensional descriptor vector

p.x/ D .Kt1.x; x/; : : : ; Ktn.x; x//: (47)

The HKS descriptor is deformation invariant, captures local geometric information
at multiple scales, is insensitive to topological noise, is informative (if the Laplace–
Beltrami operator of a shape is non-degenerate, then any continuous map that
preserves the HKS at every point must be an isometry), and is easily computed
across different shape representations solving the eigenproblem described in sec-
tion “Diffusion Distance.”
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Scale-Invariant Heat Kernel Signatures
A disadvantage of the HKS is its dependence on the global scale of the shape. If X
is globally scaled by ˇ, the corresponding HKS is ˇ�2Kˇ�2t .x; x/. In some cases,
it is possible to remove this dependence by global normalization of the shape. A
scale-invariant HKS (SI-HKS) based on local normalization was proposed in [33].
By using a logarithmic scale-space t D ˛� , the scaling of X by ˇ results in HKS
amplitude scaling and shift by 2 log˛ ˇ. This effect is undone by the following
sequence of transformations,

pdif .x/ D .logK˛�2 .x; x/ � logK˛�1 .x; x/; : : : ; logK˛�m .x; x/

� logK˛�m�1 .x; x//; Op.x/ D j.Fpdif .x//.!1; : : : ; !n/j; (48)

where F is the discrete Fourier transform and !1; : : : ; !n denotes a set of frequen-
cies at which the transformed vector is sampled. Taking differences of logarithms
removes the scaling constant, and the Fourier transform converts the scale-space
shift into a complex phase, which is removed by taking the absolute value.

Bags of Features

One of the notable advantages of feature-based approaches is the possibility of
representing a shape as a collection of primitive elements (“geometric words”)
and using the well-developed methods from text search such as the bag of features
(BOF) (or bag of words) paradigm [37, 103]. Such approaches are widely used in
image retrieval and have been introduced more recently to shape analysis [29, 109].
The bag of features representation is usually compact and easy to store and compare,
which makes such approaches suitable for large-scale shape retrieval.

The construction of a bag of features is usually performed in a few steps, depicted
in Fig. 10. First, the shape is represented as a collection of local feature descriptors
(either dense or computed at a set of stable points following an optional stage of
feature detection). Second, the descriptors are represented by geometric words from
a geometric vocabulary using vector quantization. The geometric vocabulary is a set
of representative descriptors, precomputed in advance. This way, each descriptor is
replaced by the index of the closest geometric word in the vocabulary. Computing
the histogram of the frequency of occurrence of geometric words gives the bag
of features. Alternatively, a two-dimensional histogram of co-occurrences of pairs
of geometric words (geometric expressions) can be used [29]. Shape similarity is
computed as a distance between the corresponding bags of features.

Combining Global and Local Information

Another use of local descriptors is in combination with global (metric) information,
in an extension of the Gromov–Hausdorff framework. Given two shapes X; Y with
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Feature
detection

Feature
description

Vector
quantization

Bag of
words

Bag of
expressions

Fig. 10 Feature-based shape analysis algorithm (Reproduced from [29])

metrics dX; dY and descriptors pX; pY , the quality of correspondenceC � X�Y is
measured using global geometric distortion as well as local matching of descriptors,

dis .C / D sup
.x;y/;.x0;y0/2C

jdX.x; x0/� dY .y; y0/j C ˇ sup
.x;y/2C

kpX.x/ � pY .y/k;

where ˇ > 0 is some parameter. This L1 formulation can be replaced by a more
robust L2 version. As the descriptors, texture [105, 107] or geometric information
[46, 115] can be used.

The minimum-distortion correspondence can be found by an extension of the
GMDS algorithm described in section “Generalized Multidimensional Scaling”
[107] or graph labeling [105,110,115] described in section “Graph-Based Methods.”
The probabilistic extension of the Gromov–Hausdorff distance can be applied to this
formulation as well [115].

9 Conclusion

In this chapter, the problem of invariant shape similarity was presented through
the prism of metric geometry. It was shown that by representing shapes as metric
spaces allows to reduce the similarity problem to isometry-invariant comparison
of metric spaces. The particular choice of the metric results in different isometry
groups and, hence, different invariance classes. The construction of Euclidean,
geodesic, and diffusion metrics was presented, and their theoretical properties were
highlighted in Sect. 2. Based on these notions, different shape similarity criteria
and distances were presented in Sect. 5, fitting well under the metric umbrella.
Computational aspects related to shape and metric discretization were discussed
in Sects. 3 and 4, and computation of full and partial similarity was discussed
in Sects. 5 and 6. In Sect. 8, feature-based methods were discussed. For further
detailed discussion of these and related subjects, the reader is referred to the book
[25].
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� Shape Spaces
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1 Introduction

Image Analysis and Prior Knowledge

Image segmentation is among the most studied problems in image understanding
and computer vision. The goal of image segmentation is to partition the image plane
into a set of meaningful regions. Here meaningful typically refers to a semantic
partitioning where the computed regions correspond to individual objects in the
observed scene. Unfortunately, generic purely low-level segmentation algorithms
often do not provide the desired segmentation results, because the traditional low-
level assumptions like intensity or texture homogeneity and strong edge contrast are
not sufficient to separate objects in a scene.

To overcome these limitations, researchers have proposed to impose prior
knowledge into low-level segmentation methods. In the following, we will review
methods which allow to impose knowledge about the shape of objects of interest
into segmentation processes.

In the literature there exist various definitions of the term shape, from the
very broad notion of shape of Kendall [54] and Bookstein [5] where shape is
whatever remains of an object when similarity transformations are factored out (i.e.,
a geometrically normalized version of a gray value image) to more specific notions
of shape referring to the geometric outline of an object in 2D or 3D. In this work, we
will adopt the latter view and refer to an object’s silhouette or boundary as its shape.
Intentionally we will leave the exact mathematical definition until later, as different
representations of geometry actually imply different definitions of the term shape.

One can distinguish various kinds of shape knowledge:

• Low-level shape priors which typically simply favor shorter boundary length, i.e.,
curves with shorter boundary have lower shape energy, where boundary length
can be measured in various ways [4, 6, 49, 53, 69].

• Mid-level shape priors which favor, for example, thin and elongated structures,
thereby facilitating the segmentation of roads in satellite imagery or of blood
vessels in medical imagery [44, 70, 78].

• High-level shape priors which favor similarity to previously observed shapes,
such as hand shapes [22,36,50], silhouettes of humans [26,29], or medical organs
like the heart, the prostate, the lungs, or the cerebellum [58, 82, 84, 99].

There exists a wealth of works on shape priors for image segmentation. It is
beyond the scope of this article to provide a complete overview of existing work.
Instead, we will present a range of representative works – with many of the examples
taken from the author’s own work – and discuss their advantages and shortcomings.
Some of these works are formulated in a probabilistic setting where the challenge is
to infer the most likely shape given an image and a set of training shapes. Typically
the segmentation is formulated as an optimization problem.

One can distinguish two important challenges:
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1. The modeling challenge: How do we formalize distances between shapes? What
probability distributions do we impose? What energies should we minimize?

2. The algorithmic challenge: How do we minimize the arising cost function? Are
the computed solutions globally optimal? If they are not globally optimal, how
sensitive are solutions with respect to the initialization?

Explicit Versus Implicit Shape Representation

A central question in the modeling of shape similarity is that of how to represent a
shape. Typically one can distinguish between explicit and implicit representations.
In the former case, the boundary of the shape is represented explicitly – in a
spatially continuous setting, this could be a polygon or a spline curve. In a spatially
discrete setting this could be a set of edgles (edge elements) forming a regular grid.
Alternatively, shapes can be represented implicitly in the sense that one labels all
points in space as being part of the interior or the exterior of the object. In the
spatially continuous setting, the optimization of such implicit shape representations
is solved by means of partial differential equations. Among the most popular
representatives are the level set method [39, 72] or alternative convex relaxation
techniques [11]. In the spatially discrete setting, implicit representations have
become popular through the graph cut methods [7, 49]. More recently, researchers
have also advocated hybrid representations where objects are represented both
explicitly and implicitly [90]. Table 1 provides an overview of a few representative
works on image segmentation based on explicit and implicit representations of
shape.

Figure 1 shows examples of shape representations using an explicit parametric
representation by spline curves (spline control points are marked as black boxes),
implicit representations by a signed distance function or a binary indicator function,
and an explicit discrete representation (4th image).

As we shall see in the following, the choice of shape representation has important
consequences on the class of objects that can be modeled, the type of energy that
can be minimized, and the optimality guarantees that can be obtained. Among the
goals of this article is to put in contrast various shape representations and discuss
their advantages and limitations. In general one observes that:

Table 1 Shapes can be represented explicitly or implicitly, in a spatially continuous or a spatially
discrete setting. More recently, researchers have adopted hybrid representations [90], where objects
are represented both in terms of their interior (implicitly) and in terms of their boundary (explicitly)

Spatially continuous Spatially discrete

Explicit Polygons [22, 102], splines
[3, 36, 53]

Edgel labeling and dyn. progr.
[1, 74, 80, 87, 89]

Hybrid repres. and LP
relaxation [90]

Implicit Level set methods [39, 72],
convex relaxation [11, 31]

Graph cut methods [6, 49]
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Fig. 1 Examples of shape representations by means of a parametric spline curve (1st image),
a signed distance function (2nd image), a binary indicator function (3rd image), and an explicit
discrete representation (4th image)

• Implicit representations are easily generalized to shapes in arbitrary dimen-
sion. Respective algorithms (level set methods, graph cuts, convex relaxation
techniques) straightforwardly extend to three or more dimensions. Instead,
the extension of explicit shape representations to higher dimensions is by no
means straightforward: The notion of arc-length parameterization of curves does
not extend to surfaces. Moreover, the discrete polynomial-time shortest-path
algorithms [1,85,89] which allow to optimally identify pairwise correspondence
of points on either shape do not directly extend to minimal-surface algorithms.

• Implicit representations are easily generalized to arbitrary shape topology. Since
the implicit representation merely relies on a labeling of space (as being inside
or outside the object), the topology of the shape is not constrained. Both level
set and graph cut algorithms can therefore easily handle objects of arbitrary
topology. Instead, for spatially continuous parametric curves, modeling the
transition from a single closed curve to a multiply connected object boundary
requires sophisticated splitting and merging techniques [38,60,61,65]. Similarly,
discrete polynomial-time algorithms are typically constrained to finding open
[1, 20, 23] or closed curves [86, 89].

• Explicit boundary representations allow to capture the notion of point correspon-
dence [47, 85, 89]. The correspondence between points on either of two shapes
and the underlying correspondence of semantic parts is of central importance
to human notions of shape similarity. The determination of optimal point
correspondences, however, is an important combinatorial challenge, especially
in higher dimensions.

• For explicit representations, the modeling of shape similarity is often more
straightforward and intuitive. For example, for two shapes parameterized as
spline curves, the linear interpolation of these shapes also gives rise to a
spline curve and often captures the human intuition of an intermediate shape.
Instead, the linear interpolation of implicit representations is generally not
straightforward: Convex combinations of binary-valued functions are no longer
binary-valued. And convex combinations of signed distance functions are gener-
ally no longer a signed distance function. Figure 2 shows examples of a linear
interpolations of spline curves and a linear interpolations of signed distance
functions. Note that the linear interpolation of signed distance functions may
give rise to intermediate silhouettes of varying topology.
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Fig. 2 The linear interpolation of spline-based curves (shown here along the first three eigen-
modes of a shape distribution) gives rise to a families of intermediate shapes

Fig. 3 This figure shows the linear interpolation of the signed distance functions associated with
two human silhouettes. The interpolation gives rise to intermediate shapes and allows changes of
the shape topology. Yet, the linear combination of two signed distance functions is generally no
longer a signed distance function

In the following, we will give an overview over some of the developments in the
domain of shape priors for image segmentation. In Sect. 2, we will review a formula-
tion of image segmentation by means of Bayesian inference which allows the fusion
of input data and shape knowledge in a single energy minimization framework
(Fig. 3). In Sect. 3, we will discuss a framework to impose statistical shape priors in
a spatially continuous parametric representation. In Sect. 4, we discuss methods to
impose statistical shape priors in level set based image segmentation. In Sect. 5, we
discuss statistical models which allow to represent the temporal evolution of shapes
and can serve as dynamical priors for image sequence segmentation. And lastly,
in Sect. 6, we will present recent developments to impose elastic shape priors in a
manner which allows to compute globally optimal shape-consistent segmentations
in polynomial time.

2 Image Segmentation via Bayesian Inference

Over the last decades Bayesian inference has become an established paradigm to
tackle data analysis problems – see [30, 105] for example. Given an input image
I W  ! R on a domain  � R

2, a segmentation C of the image plane  can be
computed by maximizing the posterior probability:
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P.C j I / D P.I j C/ P.C/
P.I / ; (1)

where P.I j C/ denotes the data likelihood for a given segmentation C and P.C/
denotes the prior probability which allows to impose knowledge about which
segmentations are a priori more or less likely.

Maximizing the posterior distribution can be performed equivalently by mini-
mizing the negative logarithm of (1) which gives rise to an energy or cost function
of the form

E.C/ D Edata.C/ C Eshape.C/; (2)

where Edata.C/ D � logP.I j C/ and Eshape.C/ D � logP.C/ are typically referred
to as data fidelity term and regularizer or shape prior. By maximizing the posterior,
one aims at computing the most likely solution given data and prior. Of course there
exist alternative strategies of either computing solutions corresponding to the mean
of the distribution rather than its mode or of retaining the entire posterior distribution
in order to propagate multiple hypotheses over time, as done, for example, in the
context of particle filtering [3].

Over the years various data terms have been proposed. In the following, we will
simply use a piecewise-constant approximation of the input intensity I [69]:

Edata.C/ D
kX
iD1

Z
i

�
I.x/ � �i

	2
dx; (3)

where the regions 1; : : : ; k are pairwise disjoint regions separated by the
boundary C and �i denotes the average of I over the regioni :

�i D 1

ji j
Z
i

I.x/ dx: (4)

More sophisticated data terms based on color likelihoods [8, 57, 103] or texture
likelihoods [2, 30] are conceivable.

A glance into the literature indicates that the most prominent image segmentation
methods rely on a rather simple geometric shape prior Eshape which energetically
favors shapes with shorter boundary length [4, 53, 69], a penalizer which –
in a spatially discrete setting – dates back at least as far as the Ising model
for ferromagnetism [52]. There are several reasons for the popularity of length
constraints in image segmentation. Firstly, solid objects in our world indeed tend
to be spatially compact. Secondly, such length constraints are mathematically well
studied. They give rise to well-behaved models and algorithms – mean curvature
motion in a continuous setting and low-order Markov random fields and submodular
cost functions in the discrete setting.
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Nevertheless, the preference for a shorter boundary is clearly a very simplistic
shape prior. In many applications the user may have a more specific knowledge
about what kinds of shapes are likely to arise in a given segmentation task. For
example, in biology one may want to segment cells that all have a rather specific
size and shape. In medical imaging one may want to segment organs that all have a
rather unique shape – up to a certain variability – and preserve a specific spatial
relationship with respect to other organs. In satellite imagery one may be most
interested in segmenting thin and elongated roads, or in the analysis of traffic scenes
from a driving vehicle, the predominant objects may be cars and pedestrians. In
the following sections, we will discuss ways to impose such higher-level shape
knowledge into image segmentation methods.

3 Statistical Shape Priors for Parametric Shape
Representations

Among the most straightforward ways to represent a shape is to model its outline
as a parametric curve. An example is a simple closed spline curve C 2 Ck.S1; / of
the form

C.s/ D
nX
iD1

pi Bi .s/; (5)

where pi 2 R
2 denote a set of spline control points and Bi a set of spline basis

functions of degree k [19, 36, 43, 66]. In the special case of linear basis functions,
we simply have a polygonal shape, used, for example, in [102]. With increasing
number of control points, we obtain a more and more detailed shape representation
– see Fig. 4. It shows one of the nice properties of parametric shape representations:
The representation is quite compact in the sense that very detailed silhouettes can
be represented by a few real-valued variables.

Given a family ofm shapes, each represented by a spline curve of a fixed number
of n control points, we can think of these training shapes as a set fz1; : : : ; zmg of
control point vectors:

Input image 20 points 40 points 70 points 100 points

Fig. 4 Spline representation of a hand shape (left) with increasing resolution
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zi D .pi1; : : : ; pin/ 2 R
2n; (6)

where we assume that all control point vectors are normalized with respect to
translation, rotation, and scaling [41].

With this contour representation, the image segmentation problem boils down to
computing an optimal spline control point vector z 2 R

2n for a given image. The
segmentation process can be constrained to familiar shapes by imposing a statistical
shape prior computed from the set of training shapes.

Linear Gaussian Shape Priors

Among the most popular shape prior is based on the assumption that the training
shapes are Gaussian distributed – see for example [22, 36, 55]. There are several
reasons for the popularity of Gaussian distributions. Firstly, according to the
central limit theorem, the average of a large number of i.i.d. random variables is
approximately Gaussian distributed – so if the observed variations of shape were
created by independent processes, then one could expect the overall distribution
to be approximately Gaussian. Secondly, the Gaussian distribution can be seen as
a second-order approximation of the true distribution. And thirdly, the Gaussian
distribution gives rise to a convex quadratic cost function that allows for easy
minimization.

In practice, the number of training shapes m is often much smaller than
the number of dimensions 2n. Therefore, the estimated covariance matrix † is
degenerate with many zero eigenvalues and thus not invertible. As introduced in
[36], a regularized covariance matrix is given by

†? D † C �?
�
I � V V t

	
; (7)

where V is the matrix of eigenvectors of †. In this way, we replace all zero
eigenvalues of the sample covariance matrix † by a constant �? 2 Œ0; �r �, where
�r denotes the smallest nonzero eigenvalue of †. (Note that the inverse †�1

? of
the regularized covariance matrix defined in (7) fundamentally differs from the
pseudoinverse, the former scaling components in degenerate directions by ��1

?
while the latter scaling them by 0.) In [68] it was shown that �? can be computed
from the true covariance matrix by minimizing the Kullback–Leibler divergence
between the exact and the approximated distribution. Yet, since we do not have the
exact covariance matrix but merely a sample covariance matrix, the reasoning for
determining �? suggested in [68] is not justified.

The Gaussian shape prior is then given by

P.z/ D 1

j2�†?j1=2
exp

�
�1

2
.z � Nz/t †�1

? .z � Nz/
�
; (8)

where Nz denotes the mean control point vector.
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Based on the Gaussian shape prior, we can define a shape energy that is invariant
to similarity transformations (translation, rotation, and scaling) by

Eshape.z/ D � logP .Oz/ ; (9)

where Oz is the shape vector upon similarity alignment with respect to the training
shapes:

Oz D R .z � z0/

jR .z � z0/j ; (10)

where the optimal translation z0 and rotationR can be written as functions of z [36].
As a consequence, we can minimize the overall energy

E.z/ D Edata.C.z// C Eshape.z/ (11)

using gradient descent in z. For details on the numerical minimization, we refer to
[25, 36].

Figure 5 shows several intermediate steps in a gradient descent evolution on the
energy (2) combining the piecewise constant intensity model (3) with a Gaussian
shape prior constructed from a set of sample hand shapes. Note how the similarity-

Initial curve Step 1 Step 2 Step 3

Step 4 Step 5 Final Training shapes

Fig. 5 Evolution of a parametric spline curve during gradient descent on the energy (2) combining
the piecewise constant intensity model (3) with a Gaussian shape prior constructed from a set of
sample hand shapes (lower right). Note that the shape prior is by construction invariant to similarity
transformations. As a consequence, the contour easily undergoes translation, rotation, and scaling
as these do not affect the energy
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Fig. 6 Gradient descent evolution of a parametric curve from initial to final with similarity-
invariant shape prior. The statistical shape prior permits a reconstruction of the hand silhouette
in places where it is occluded

invariant shape prior (9) constrains the evolving contour to hand-like shapes without
constraining its translation, rotation, or scaling.

Figure 6 shows the gradient descent evolution with the same shape prior for an
input image of a partially occluded hand. Here the missing part of the silhouette is
recovered through the statistical shape prior. These evolutions demonstrate that the
curve converges to the correct segmentation over rather large spatial distance, an
aspect which is characteristic for region-based cost functions like (3).

Nonlinear Statistical Shape Priors

The shape prior (9) was based on the assumption that the training shapes are
Gaussian distributed. For collections of real-world shapes, this is generally not the
case. For example, the various silhouettes of a rigid 3D object obviously form a
three-dimensional manifold (given that there are only three degrees of freedom
in the observation process). Similarly, the various silhouettes of a walking person
essentially correspond to a one-dimensional manifold (up to small fluctuations).
Furthermore, the manifold of shapes representing deformable objects like human
persons are typically very low-dimensional, given that the observed 3D structure
only has a small number of joints.

Rather than learning the underlying low-dimensional representation (using
principal surfaces or other manifold learning techniques), we can simply estimate
arbitrary shape distributions by reverting to nonlinear density estimators – nonlinear
in the sense that the permissible shapes are not simply given by a weighted sum
of eigenmodes. Classical approaches for estimating nonlinear distributions are the
Gaussian mixture model or the Parzen–Rosenblatt kernel density estimator – see
Sect. 4.

An alternative technique is to adapt recent kernel learning methods to the
problem of density estimation [28]. To this end, we approximate the training shapes
by a Gaussian distribution, not in the input space but rather upon transformation
 W R2n ! Y to some generally higher-dimensional feature space Y :

P .z/ / exp

�
�1

2
. .z/ �  0/

t †�1
 . .z/ �  0/

�
: (12)
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As before, we can define the corresponding shape energy as
E.z/ D � logP .Oz/ ; (13)

with Oz being the similarity-normalized shape given in (10). Here  0 and † denote
the mean and covariance matrix computed for the transformed shapes:

 0 D 1

m

mX
iD1

 .zi /; † D 1

m

mX
iD1

. .zi /�  0/ . .zi /�  0/
> ; (14)

where† is again regularized as in (7).
As shown in [28], the energy E.z/ in (13) can be evaluated without explicitly

specifying the nonlinear transformation  . It suffices to define the corresponding
Mercer kernel [24, 67]:

k.x; y/ WD h .x/;  .y/i ; 8x; y 2 R
2n; (15)

representing the scalar product of pairs of transformed points .x/ and .y/. In the
following, we simply chose a Gaussian kernel function of width 
 :

k.x; y/ D 1

.2�
2/
n
2

exp

�
�jjx � yjj

2

2
2

�
: (16)

It was shown in [28] that the resulting energy can be seen as a generalization of the
classical Parzen–Rosenblatt estimators. In particular, the Gaussian distribution in
feature space Y is fundamentally different from the previously presented Gaussian
distribution in the input space R

2n. Figure 7 shows the level lines of constant
shape energy computed from a set of left- and right-hand silhouettes, displayed

Aligned contours Simple gaussian Mixture model Feature space
gaussian

Fig. 7 Model comparison. Density estimates for a set of left (�) and right (C) hands, projected
onto the first two principal components. From left to right: aligned contours, simple Gaussian,
mixture of Gaussians, and Gaussian in feature space (13). In contrast to the mixture model, the
Gaussian in feature space does not require an iterative (sometimes suboptimal) fitting procedure
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Initial contour No prior With prior

Sample segmentations of subsequent frames

Fig. 8 Tracking a familiar object over a long image sequence with a nonlinear statistical shape
prior. A single shape prior constructed from a set of sample silhouettes allows the emergence of a
multitude of familiar shapes, permitting the segmentation process to cope with background clutter
and partial occlusions

in a projection onto the first two eigenmodes of the distribution. While the linear
Gaussian model gives rise to elliptical level lines, the Gaussian mixture and the
nonlinear Gaussian allow for more general non-elliptical level lines. In contrast to
the mixture model, however, the nonlinear Gaussian does not require an iterative
parameter estimation process, nor does it require or assume a specific number of
Gaussians.

Figure 8 shows screenshots of contours computed for an image sequence
by gradient descent on the energy (11) with the nonlinear shape energy (13)
computed from a set of 100 training silhouettes. Throughout the entire
sequence, the object of interest was occluded by an artificially introduced
rectangle. Again, the shape prior allows to cope with spurious background
clutter and to restore the missing parts of the object’s silhouette. Two-
dimensional projections of the training data and evolving contour onto the
first principal components, shown in Fig. 9, demonstrate how the nonlinear
shape energy constrains the evolving shape to remain close to the training
shapes.



Image Segmentation with Shape Priors: Explicit Versus Implicit Representations 1921

Fig. 9 Tracking sequence
from Fig. 8 visualized.
Training data (�), estimated
energy density (shaded), and
the contour evolution (white
curve) in appropriate 2D
projections. The evolving
contour – see Fig. 8 – is
constrained to the domains of
low energy induced by the
training data

Projection onto1st and 2nd
principal component

Projection onto 2nd and 4th
principal component

4 Statistical Priors for Level Set Representations

Parametric representations of shape as those presented above have numerous
favorable properties; in particular, they allow to represent rather complex shapes
with a few parameters, resulting in low memory requirements and low computation
time. Nevertheless, the explicit representation of shape has several drawbacks:

• The representation of explicit shapes typically depends on a specific choice
of representation. To factor out this dependency in the representation and
in respective algorithms gives rise to computationally challenging problems.
Determining point correspondences, for example, becomes particularly difficult
for shapes in higher dimensions (e.g., surfaces in 3D).

• In particular, the evolution of explicit shape representations requires sophisti-
cated numerical regridding procedures to assure an equidistant spacing of control
points and prevent control point overlap.

• Parametric representations are difficult to adapt to varying topology of the
represented shape. Numerically, topology changes require sophisticated splitting
and remerging procedures.

• A number of recent publications [11, 49, 59] indicate that in contrast to explicit
shape representations, the implicit representation of shape allows to compute
globally optimal solutions to shape inference for large classes of commonly used
energy functionals.

A mathematical representation of shape which is independent of parameteriza-
tion was pioneered in the analysis of random shapes by Fréchet [45] and in the
school of mathematical morphology founded by Matheron and Serra [64, 94]. The
level set method [39, 72] provides a means of propagating contours C (independent
of parameterization) by evolving associated embedding functions � via partial
differential equations – see Fig. 10 for a visualization of the level set function
associated with a human silhouette. It has been adapted to segment images based
on numerous low-level criteria such as edge consistency [10, 56, 63], intensity
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Fig. 10 The level set method
is based on representing
shapes implicitly as the zero
level set of a
higher-dimensional
embedding function

homogeneity [12, 101], texture information [9, 51, 73, 81], and motion information
[33].

In this section, we will give a brief insight into shape modeling and shape priors
for implicit level set representations. Parts of the following text were adopted from
[34, 35, 82].

Shape Distances for Level Sets

The first step in deriving a shape prior is to define a distance or dissimilarity measure
for two shapes encoded by the level set functions �1 and �2. We shall briefly discuss
three solutions to this problem. In order to guarantee a unique correspondence
between a given shape and its embedding function �, we will in the following
assume that � is a signed distance function, i.e., � > 0 inside the shape, � < 0
outside, and jr�j D 1 almost everywhere. A method to project a given embedding
function onto the space of signed distance functions was introduced in [98].

Given two shapes encoded by their signed distance functions �1 and �2, a simple
measure of their dissimilarity is given by their L2-distance in  [62]:

Z



.�1 � �2/
2 dx: (17)

This measure has the drawback that it depends on the domain of integration. The
shape dissimilarity will generally grow if the image domain is increased – even if
the relative position of the two shapes remains the same. Various remedies to this
problem have been proposed. We refer to [32] for a detailed discussion.

An alternative dissimilarity measure between two implicitly represented shapes
represented by the embedding functions �1 and �2 is given by the area of the



Image Segmentation with Shape Priors: Explicit Versus Implicit Representations 1923

symmetric difference [14, 15, 77]:

d 2.�1; �2/ D
Z



.H�1.x/ �H�2.x//
2 dx: (18)

In the present work, we will define the distance between two shapes based on this
measure, because it has several favorable properties. Beyond being independent
of the image size , measure (18) defines a distance on the set of shapes: it is
nonnegative, symmetric, and fulfills the triangle inequality. Moreover, it is more
consistent with the philosophy of the level set method in that it only depends on
the sign of the embedding function. In practice, this means that one does not need
to constrain the two level set functions to the space of signed distance functions. It
can be shown [15] that L1 andW 1;2 norms on the signed distance functions induce
equivalent topologies as the metric (18).

Since the distance (18) is not differentiable, we will in practice consider an
approximation of the Heaviside functionH by a smooth (differentiable) versionH� .
Moreover, we will only consider gradients of energies with respect to the L2 norm
on the level set function, because they are easy to compute and because variations
in the signed distance function correspond to respective variations of the implicitly
represented curve. In general, however, these do not coincide with the so-called
shape gradients – see [46] for a recent work on this topic.

Invariance by Intrinsic Alignment

One can make use of the shape distance (18) in a segmentation process by adding it
as a shape prior Eshape.�/ D d 2.�; �0/ in a weighted sum to the data term, which
we will assume to be the two-phase version of (3) introduced in [13]:

Edata.�/ D
Z



.I � uC/2H�.x/dx C
Z



.I � u�/2 .1�H�.x// dx C �

Z



jrH�jdx;

(19)
Minimizing the total energy

Etotal.�/ D Edata.�/ C ˛ Eshape.�/ D Edata.�/ C ˛ d 2.�; �0/; (20)

with a weight ˛ > 0, induces an additional driving term which aims at maximizing
the similarity of the evolving shape with a given template shape encoded by the
function �0.

By construction this shape prior is not invariant with respect to certain transfor-
mations such as translation, rotation, and scaling of the shape represented by �.

A common approach to introduce invariance (cf. [17, 35, 83]) is to enhance the
prior by a set of explicit parameters to account for translation by �, rotation by an
angle � , and scaling by 
 of the shape:
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d 2.�; �0; �; �; 
/ D
Z



.H .� .
R�.x � �/// �H�0.x//
2 dx: (21)

This approach to estimate the appropriate transformation parameters has several
drawbacks:

• Optimization of the shape energy (21) is done by local gradient descent. In
particular, this implies that one needs to determine an appropriate time step
for each parameter, chosen so as to guarantee stability of resulting evolution.
In numerical experiments, we found that balancing these parameters requires a
careful tuning process.

• The optimization of �, � , 
 , and � is done simultaneously. In practice, however,
it is unclear how to alternate between the updates of the respective parameters.
How often should one iterate one or the other gradient descent equation? In
experiments, we found that the final solution depends on the selected scheme
of optimization.

• The optimal values for the transformation parameters will depend on the
embedding function �. An accurate shape gradient should therefore take into
account this dependency. In other words, the gradient of (21) with respect to �
should take into account how the optimal transformation parameters�.�/, 
.�/,
and �.�/ vary with �.

Inspired by the normalization for explicit representations introducing in (10),
we can eliminate these difficulties associated with the local optimization of explicit
transformation parameters by introducing an intrinsic registration process. We will
detail this for the cases of translation and scaling. Extensions to rotation and other
transformations are conceivable but will not be pursued here.

Translation Invariance by Intrinsic Alignment
Assume that the template shape represented by �0 is aligned with respect to the
shape’s centroid. Then we define a shape energy by

Eshape.�/ D d 2.�; �0/ D
Z



�
H�.x C ��/�H�0.x/

	2
dx; (22)

where the function � is evaluated in coordinates relative to its center of gravity ��
given by

�� D
Z
x h� dx; with h� 
 H�R


H� dx

: (23)

This intrinsic alignment guarantees that the distance (22) is invariant to the location
of the shape �. In contrast to the shape energy (21), we no longer need to iteratively
update an estimate of the location of the object of interest.
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Translation and Scale Invariance via Alignment
Given a template shape (represented by �0) which is normalized with respect to
translation and scaling, one can extend the above approach to a shape energy which
is invariant to translation and scaling:

Eshape.�/ D d 2.�; �0/ D
Z



�
H�.
� x C ��/ �H�0.x/

	2
dx; (24)

where the level set function � is evaluated in coordinates relative to its center of
gravity �� and in units given by its intrinsic scale 
� defined as


� D
�Z

.x � �/2 h� dx
� 1

2

; where h� D H�R

H� dx

: (25)

In the following, we will show that functional (24) is invariant with respect to
translation and scaling of the shape represented by �. Let � be a level set function
representing a shape which is centered and normalized such that �� D 0 and 
� D
1. Let Q� be an (arbitrary) level set function encoding the same shape after scaling
by 
 2 R and shifting by � 2 R

2:

H Q�.x/ D H�
�x � �




�
:

Indeed, center and intrinsic scale of the transformed shape are given by
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The shape energy (21) evaluated for Q� is given by

Eshape. Q�/ D
Z



�
H Q�.
 Q� x C � Q�/�H�0.x/

�2
dx

D
Z



�
H Q�.
 x C �/�H�0.x/

	2
dx

D
Z



.H�.x/ �H�0.x//
2 dx D Eshape.�/:
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Therefore, the above shape dissimilarity measure is invariant with respect to
translation and scaling.

Note, however, that while this analytical solution guarantees an invariant shape
distance, the transformation parameters �� and 
� are not necessarily the ones
which minimize the shape distance (21). Extensions of this approach to a larger
class of invariance are conceivable. For example, one could generate invariance with
respect to rotation by rotational alignment with respect to the (oriented) principal
axis of the shape encoded by �. We will not pursue this here.

Kernel Density Estimation in the Level Set Domain

In the previous sections, we have introduced a translation and scale invariant shape
energy and demonstrated its effect on the reconstruction of a corrupted version
of a single familiar silhouette the pose of which was unknown. In many practical
problems, however, we do not have the exact silhouette of the object of interest.
There may be several reasons for this:

• The object of interest may be three-dimensional. Rather than trying to reconstruct
the three-dimensional object (which generally requires multiple images and the
estimation of correspondence), one may learn the two-dimensional appearance
from a set of sample views. A meaningful shape dissimilarity measure should
then measure the dissimilarity with respect to this set of projections – see the
example in Fig. 8.

• The object of interest may be one object out of a class of similar objects (the
class of cars or the class of tree leafs). Given a limited number of training shapes
sampled from the class, a useful shape energy should provide the dissimilarity of
a particular silhouette with respect to this class.

• Even a single object, observed from a single viewpoint, may exhibit strong shape
deformation – the deformation of a gesticulating hand or the deformation which
a human silhouette undergoes while walking. In the following, we will assume
that one can merely generate a set of stills corresponding to various (randomly
sampled) views of the object of interest for different deformations – see Fig. 11.
In the following, we will demonstrate that – without constructing a dynamical
model of the walking process – one can exploit this set of sample views in order
to improve the segmentation of a walking person.

In the above cases, the construction of appropriate shape dissimilarity measures
amounts to a problem of density estimation. In the case of explicitly represented
boundaries, this has been addressed by modeling the space of familiar shapes
by linear subspaces (PCA) [22] and the related Gaussian distribution [36], by
mixture models [21] or nonlinear (multimodal) representations via simple models
in appropriate feature spaces [27, 28].
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Selected sample shapes from a set of a walking silhouettes

Fig. 11 Density estimated using a kernel density estimator for a projection of 100 silhouettes of
a walking person (see above) onto the first three principal components

For level set-based shape representations, it was suggested [62, 84, 100] to fit
a linear subspace to the sampled signed distance functions. Alternatively, it was
suggested to represent familiar shapes by the level set function encoding the mean
shape and a (spatially independent) Gaussian fluctuation at each image location [83].
These approaches were shown to capture some shape variability. Yet, they exhibit
two limitations: Firstly, they rely on the assumption of a Gaussian distribution which
is not well suited to approximate shape distributions encoding more complex shape
variation. Secondly, they work under the assumption that shapes are represented by
signed distance functions. Yet, the space of signed distance functions is not a linear
space. Therefore, in general, neither the mean nor the linear combination of a set of
signed distance functions will correspond to a signed distance function.

In the following, we will propose an alternative approach to generate a statistical
shape dissimilarity measure for level set based shape representations. It is based
on classical methods of (so-called nonparametric) kernel density estimation and
overcomes the above limitations.

Given a set of training shapes f�igiD1:::N – such as those shown in Fig. 11 – we
define a probability density on the space of signed distance functions by integrating
the shape distances (22) or (24) in a Parzen–Rosenblatt kernel density estimator
[75, 79]:

P.�/ / 1

N

NX
iD1

exp

�
� 1

2
2
d 2.H�;H�i /

�
: (26)
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The kernel density estimator is among the theoretically most studied density
estimation methods. It was shown (under fairly mild assumptions) to converge to
the true distribution in the limit of infinite samples (and 
 ! 0); the asymptotic
convergence rate was studied for different choices of kernel functions.

It should be pointed out that the theory of classical nonparametric density
estimation was developed for the case of finite-dimensional data. It is beyond the
scope of this work to develop a general theory of probability distributions and
density estimation on infinite-dimensional spaces (including issues of integrability
and measurable sets). For a general formalism to model probability densities on
infinite-dimensional spaces, we refer the reader to the theory of Gaussian processes
[76]. In our case, an extension to infinite-dimensional objects such as level set
surfaces � W ! R could be tackled by considering discrete (finite-dimensional)
approximations f�ij 2 RgiD1;:::;N;jD1;:::;M of these surfaces at increasing levels of
spatial resolution and studying the limit of infinitesimal grid size (i.e.,N;M !1).
Alternatively, given a finite number of samples, one can apply classical density
estimation techniques efficiently in the finite-dimensional subspace spanned by the
training data [82].

Similarly respective metrics on the space of curves give rise to different kinds
of gradient descent flows. Recently researchers have developed rather sophisticated
metrics to favor smooth transformations or rigid body motions. We refer the reader
to [16,97] for promising advances in this direction. In the following we will typically
limit ourselves to L2 gradients.

There exist extensive studies on how to optimally choose the kernel width 

based on asymptotic expansions such as the parametric method [37], heuristic esti-
mates [95, 104], or maximum likelihood optimization by cross validation [18, 42].
We refer to [40, 96] for a detailed discussion. For this work, we simply fix 
2 to be
the mean squared nearest-neighbor distance:


2 D 1

N

NX
iD1

min
j¤i

d 2.H�i ;H�j /: (27)

The intuition behind this choice is that the width of the Gaussians is chosen such
that on the average the next training shape is within one standard deviation.

Reverting to kernel density estimation resolves the drawbacks of existing
approaches to shape models for level set segmentation discussed above. In
particular:

• The silhouettes of a rigid 3D object or a deformable object with few degrees
of freedom can be expected to form fairly low-dimensional manifolds. The
kernel density estimator can capture these without imposing the restrictive
assumption of a Gaussian distribution. Figure 11 shows a 3D approximation of
our method: We simply projected the embedding functions of 100 silhouettes
of a walking person onto the first three eigenmodes of the distribution. The
projected silhouette data and the kernel density estimate computed in the 3D
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subspace indicate that the underlying distribution is not Gaussian. The estimated
distribution (indicated by an isosurface) shows a closed loop which stems from
the fact that the silhouettes were drawn from an essentially periodic process.

• Kernel density estimators were shown to converge to the true distribution in
the limit of infinite (independent and identically distributed) training samples
[40, 96]. In the context of shape representations, this implies that our approach is
capable of accurately representing arbitrarily complex shape deformations.

• By not imposing a linear subspace, we circumvent the problem that the space
of shapes (and signed distance functions) is not a linear space. In other words,
Kernel density estimation allows to estimate distributions on nonlinear (curved)
manifolds. In the limit of infinite samples and kernel width 
 going to zero, the
estimated distribution is more and more constrained to the manifold defined by
the shapes.

Gradient Descent Evolution for the Kernel Density Estimator

In the following, we will detail how the statistical distribution (26) can be used to
enhance level set based segmentation process. As for the case of parametric curves,
we formulate level set segmentation as a problem of Bayesian inference, where the
segmentation is obtained by maximizing the conditional probability:

P.� j I / D P.I j�/ P.�/
P.I / ; (28)

with respect to the level set function �, given the input image I . For a given image,
this is equivalent to minimizing the negative log-likelihood which is given by a sum
of two energies:

E.�/ D Edata.�/ C Eshape.�/; (29)

with

Eshape.�/ D � logP.�/: (30)

Minimizing the energy (29) generates a segmentation process which simulta-
neously aims at maximizing intensity homogeneity in the separated phases and
a similarity of the evolving shape with respect to all the training shapes encoded
through the statistical estimator (26).

Gradient descent with respect to the embedding function amounts to the evolu-
tion:

@�

@t
D � 1

˛

@Edata

@�
� @Eshape

@�
; (31)
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Fig. 12 Purely intensity-based segmentation. Various frames show the segmentation of a partially
occluded walking person generated by minimizing the Chan–Vese energy (19). The walking person
cannot be separated from the occlusion and darker areas of the background such as the person’s
shadow

where the knowledge-driven component is given by

@Eshape

@�
D
P
˛i

@
@�
d 2.H�;H�i /

2
2
P
˛i

; (32)

which simply induces a force in direction of each training shape �i weighted by the
factor:

˛i D exp

�
� 1

2
2
d 2.H�;H�i /

�
; (33)

which decays exponentially with the distance from the training shape �i .

Nonlinear Shape Priors for Tracking aWalking Person

In the following, we apply the above shape prior to the segmentation of a partially
occluded walking person. To this end, a sequence of a walking figure was partially
occluded by an artificial bar. Subsequently we minimized energy (19), segmenting
each frame of the sequence using the previous segmentation as initialization.
Figure 12 shows that this purely image-driven segmentation scheme is not capable
of separating the object of interest from the occluding bar and similarly shaded
background regions such as the object’s shadow on the floor.

In a second experiment, we manually binarized the images corresponding to the
first half of the original sequence (frames 1 through 42) and aligned them to their
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Fig. 13 Segmentation with nonparametric invariant shape prior. Segmentation generated by
minimizing energy (29) combining intensity information with the shape prior (26). For every
frame in the sequence, the gradient descent equation was iterated (with fixed parameters), using
the previous segmentation as initialization. The shape prior permits to separate the walking person
from the occlusion and darker areas of the background such as the shadow. The shapes in the
second half of the sequence were not part of the training set

respective center of gravity to obtain a set of training shape – see Fig. 11. Then we
ran the segmentation process (31) with the shape prior (26). Apart from adding the
shape prior, we kept the other parameters constant for comparability.

Figure 13 shows several frames from this knowledge-driven segmentation. A
comparison to the corresponding frames in Fig. 12 demonstrates several properties:

• The shape prior permits to accurately reconstruct an entire set of fairly different
shapes. Since the shape prior is defined on the level set function � – rather than
on the boundary C (cf. [17]) – it can easily handle changing topology.

• The shape prior is invariant to translation such that the object silhouette can be
reconstructed in arbitrary locations of the image.

• The statistical nature of the prior allows to also reconstruct silhouettes which
were not part of the training set – corresponding to the second half of the images
shown (beyond frame 42).

5 Dynamical Shape Priors for Implicit Shapes

Capturing the Temporal Evolution of Shape

In the above works, statistically learned shape information was shown to cope for
missing or misleading information in the input images due to noise, clutter, and
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occlusion. The shape priors were developed to segment objects of familiar shape in
a given image. Although they can be applied to tracking objects in image sequences,
they are not well-suited for this task, because they neglect the temporal coherence
of silhouettes which characterizes many deforming shapes.

When tracking a deformable object over time, clearly not all shapes are equally
likely at a given time instance. Regularly sampled images of a walking person,
for example, exhibit a typical pattern of consecutive silhouettes. Similarly, the
projections of a rigid 3D object rotating at constant speed are generally not
independent samples from a statistical shape distribution. Instead, the resulting set
of silhouettes can be expected to contain strong temporal correlations.

In the following, we will present temporal statistical shape models for implicitly
represented shapes that were first introduced in [26]. In particular, the shape
probability at a given time depends on the shapes observed at previous time
steps. The integration of such dynamical shape models into the segmentation
process can be elegantly formulated within a Bayesian framework for level set
based image sequence segmentation. The resulting optimization by gradient descent
induces an evolution of the level set function which is driven both by the intensity
information of the current image as well as by a dynamical shape prior which relies
on the segmentations obtained on the preceding frames. Experimental evaluation
demonstrates that the resulting segmentations are not only similar to previously
learned shapes, but they are also consistent with the temporal correlations estimated
from sample sequences. The resulting segmentation process can cope with large
amounts of noise and occlusion because it exploits prior knowledge about temporal
shape consistency and because it aggregates information from the input images over
time (rather than treating each image independently).

Level Set-Based Tracking via Bayesian Inference

Statistical models can be estimated more reliably if the dimensionality of the
model and the data are low. We will therefore cast the Bayesian inference in a
low-dimensional formulation within the subspace spanned by the largest principal
eigenmodes of a set of sample shapes. We exploit the training sequence in a twofold
way: Firstly, it serves to define a low-dimensional subspace in which to perform
estimation. And secondly, within this subspace we use it to learn dynamical models
for implicit shapes. For static shape priors this concept was already used in [82].

Let f�1; : : : ; �N g be a temporal sequence of training shapes. (We assume that all
training shapes �i are signed distance functions. Yet an arbitrary linear combination
of eigenmodes will in general not generate a signed distance function. While the
discussed statistical shape models favor shapes which are close to the training shapes
(and therefore close to the set of signed distance functions), not all shapes sampled
in the considered subspace will correspond to signed distance functions.) Let �0

denote the mean shape and  1; : : : ;  n the n largest eigenmodes with n � N . We
will then approximate each training shape as
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�i .x/ D �0.x/ C
nX

jD1

˛ij  j .x/; (34)

where

˛ij D h�i � �0;  j i 

Z
.�i � �0/  j dx: (35)

Such PCA-based representations of level set functions have been successfully
applied for the construction of statistical shape priors in [62, 82, 84, 100]. In the
following, we will denote the vector of the first n eigenmodes as D . 1; : : : ;  n/.
Each sample shape �i is therefore approximated by the n-dimensional shape vector
˛i D .˛i1; : : : ; ˛in/. Similarly, an arbitrary shape � can be approximated by a shape
vector of the form

˛� D h� � �0; i: (36)

In addition to the deformation parameters ˛, we introduce transformation
parameters � , and we introduce the notation:

�˛;� .x/ D �0.T�x/C ˛> .T�x/; (37)

to denote the embedding function of a shape generated with deformation parameters
˛ and transformed with parameters � . The transformations T� can be translation,
rotation, and scaling (depending on the application).

With this notation, the goal of image sequence segmentation within this subspace
can be stated as follows: Given consecutive images It W  ! R from an
image sequence and given the segmentations Ǫ 1Wt�1 and transformations O�1Wt�1

obtained on the previous images I1Wt�1, compute the most likely deformation Ǫ tand
transformation O�t by maximizing the conditional probability:

P.˛t ; �t j It ; Ǫ 1Wt�1; O�1Wt�1/ D P.It j˛t ; �t / P.˛t ; �t j Ǫ 1Wt�1; O�1Wt�1/

P.It j Ǫ 1Wt�1; O�1Wt�1/
: (38)

The key challenge, addressed in the following, is to model the conditional probabil-
ity:

P.˛t ; �t j Ǫ 1Wt�1; O�1Wt�1/; (39)

which constitutes the probability for observing a particular shape ˛t and a particular
transformation �t at time t , conditioned on the parameter estimates for shape and
transformation obtained on previous images.
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Linear Dynamical Models for Implicit Shapes

For realistic deformable objects, one can expect the deformation parameters ˛t
and the transformation parameters �t to be tightly coupled. Yet, we want to learn
dynamical shape models which are invariant to the absolute translation, rotation,
etc. To this end, we can make use of the fact that the transformations form a
group which implies that the transformation �t at time t can be obtained from
the previous transformation �t�1 by applying an incremental transformation 4�t :
T�t x D T4�t T�t�1x. Instead of learning models of the absolute transformation �t ,
we can simply learn models of the update transformations4�t (e.g., the changes in
translation and rotation). By construction, such models are invariant with respect to
the global pose or location of the modeled shape.

To jointly model transformation and deformation, we simply obtain for each
training shape in the learning sequence the deformation parameters ˛i and the
transformation changes4�i and define the extended shape vector:

ˇt WD
 
˛t

4�t

!
: (40)

We will then impose a linear dynamical model of order k to approximate the
temporal evolution of the extended shape vector:

P.ˇt j Ǒ 1Wt�1/ / exp

�
�1

2
v>†�1 v

�
; (41)

where

v 
 ˇt �� �A1 Ǒ t�1 �A2 Ǒ t�2 : : : � Ak Ǒ t�k : (42)

Various methods have been proposed in the literature to estimate the model param-
eters given by the mean � and the transition and noise matrices A1; : : : ; Ak;†.
We applied a stepwise least squares algorithm proposed in [71]. Using dynamical
models up to an order of 8, we found that according to Schwarz’s Bayesian criterion
[92], our training sequences were best approximated by an autoregressive model of
second order (k D 2).

Figure 14 shows a sequence of statistically synthesized embedding functions
and the induced contours given by the zero level line of the respective surfaces –
for easier visualization, the transformational degrees are neglected. In particular,
the implicit representation allows to synthesize shapes of varying topology. The
silhouette on the bottom left of Fig. 14, for example, consists of two contours.
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Fig. 14 Synthesis of implicit dynamical shapes. Statistically generated embedding surfaces
obtained by sampling from a second-order autoregressive model and the contours given by the zero
level lines of the synthesized surfaces. The implicit representation allows the embedded contour to
change topology (bottom left image)

Variational Segmentation with Dynamical Shape Priors

Given an image It from an image sequence and given a set of previously segmented
shapes with shape parameters Ǫ 1Wt�1 and transformation parameters O�1Wt�1, the goal
of tracking is to maximize the conditional probability (38) with respect to shape ˛t
and transformation �t . This can be performed by minimizing its negative logarithm,
which is – up to a constant – given by an energy of the form

E.˛t ; �t / D Edata.˛t ; �t /C Eshape.˛t ; �t /: (43)

For the data term we use the model in (3) with independent intensity variances:

Edata.˛t ; �t / D
Z �

.It��1/
2

2
2
1

Clog 
1

�
H�˛t ;�t C

�
.It��2/

2

2
2
2

Clog
2

�

.1�H�˛t ;�t / dx: (44)

Using the autoregressive model (41), the shape energy is given by

Eshape.˛t ; �t / D 1

2
v>†�1 v; (45)

with v defined in (42).
The total energy (43) is easily minimized by gradient descent. For details we

refer to [26].
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25% noise 50% noise 75% noise 90% noise

Fig. 15 Images from a sequence with increasing amount of noise

Segmentation results for 75% noise

Segmentation results for 90% noise

Fig. 16 Variational image sequence segmentation with a dynamical shape prior for various
amounts of noise. Ninety percent noise means that nine out of ten intensity values were replaced by
a random intensity from a uniform distribution. The statistically learned dynamical model allows
for reliable segmentation results despite prominent amounts of noise

Fig. 17 Tracking in the presence of occlusion. The dynamical shape prior allows to reliably
segment the walking person despite noise and occlusion

Figure 15 shows images from a sequence that was degraded by increasing
amounts of noise.

Figure 16 shows segmentation results obtained by minimizing (43) as presented
above. Despite prominent amounts of noise, the segmentation process provides
reliable segmentations where human observers fail.

Figure 17 shows the segmentation of an image sequence showing a walking
person that was corrupted by noise and an occlusion which completely covers
the walking person for several frames. The dynamical shape prior allows for
reliable segmentations despite noise and occlusion. For more details and quantitative
evaluations, we refer to [26].
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6 Parametric Representations Revisited: Combinatorial
Solutions for Segmentation with Shape Priors

In previous sections we saw that shape priors allow to improve the segmentation and
tracking of familiar deformable objects, biasing the segmentation process to favor
familiar shapes or even familiar shape evolution. Unfortunately, these approaches
are based on locally minimizing respective energies via gradient descent. Since
these energies are generally non-convex, respective solutions are bound to be locally
optimal only. As a consequence, they depend on an initialization and are likely to
be suboptimal in practice. One exception based on implicit shape representations as
binary indicator functions and convex relaxation techniques was proposed in [31].
Yet, the linear interpolation of shapes represented by binary indicator functions does
not give rise to plausible intermediate shapes such that respective algorithms require
a large number of training shapes.

Moreover, while implicit representations like the level set method circumvent the
problem of computing correspondences between points on either of two shapes, it
is well-known that the aspect of point correspondences plays a vital role in human
notions of shape similarity. For matching planar shapes there is abundant literature
on how to solve the arising correspondence problem in polynomial time using
dynamic programming techniques [48, 85, 93].

Similar concepts of dynamic programming can be employed to localize deformed
template curves in images. Coughlan et al. [23] detected open boundaries by
shortest-path algorithms in higher-dimensional graphs. And Felzenszwalb et al. used
dynamic programming in chordal graphs to localize shapes, albeit not on a pixel
level.

Polynomial-time solutions for localizing deformable closed template curves in
images using minimum ratio cycles or shortest circular paths were proposed in [89],
with a further generalization presented in [88]. There the problem of determining
a segmentation of an image I W  ! R that is elastically similar to an observed
template cc W S1 ! R

2 by computing minimum ratio cycles

� W S1 !  � S
1 (46)

in the product space spanned by the image domain  and template domain S
1. See

Fig. 18 for a schematic visualization. All points along this circular path provide a
pair of corresponding template point and image pixel. In this manner, the matching
of template points to image pixels is equivalent to the estimation of orientation-
preserving cyclic paths, which can be solved in polynomial time using dynamic
programming techniques such as ratio cycles [86] or shortest circular paths [91].

Figure 19 shows an example result obtained with this approach: The algorithm
determines a deformed version (right) of a template curve (left) in an image (center)
in globally optimal manner. An initialization is no longer required and the best
conceivable solution is determined in polynomial time.
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Fig. 18 A polynomial-time solution for matching shapes to images: matching a template curve
C W S1 ! R

2 (left) to the image plane � R
2 is equivalent to computing an orientation-preserving

cyclic path � W S1 ! � S
1 (blue curve) in the product space spanned by the image domain and

the template domain. The latter problem can be solved in polynomial time – see [89] for details

Optimal segmentationClose-up of input imageTemplate curve

Fig. 19 Segmentation with a single template: despite significant deformation and translation, the
initial template curve (red) is accurately matched to the low-contrast input image. The globally
optimal correspondence between template points and image pixels is computed in polynomial time
by dynamic programming techniques [89]

Figure 20 shows further examples of tracking objects: over long sequences of
hundreds of frames, the objects of interest are tracked reliably – despite low contrast,
camera shake, bad visibility, and illumination changes. For further details we refer
to [89].

7 Conclusion

In the previous sections, we have discussed various ways to impose statistical shape
priors into image segmentation methods. We have made several observations:
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Frame 1 Frame 10 Frame 80 Frame 110

Frame 1 Frame 100 Frame 125 Frame 200

Fig. 20 Tracking of various objects in challenging real-world sequences [89]. Despite bad
visibility, camera shake, and substantial lighting changes, the polynomial-time algorithm allows
to reliably track objects over hundreds of frames (Image data taken from [89])

• By imposing statistically learned shape information, one can generate segmenta-
tion processes which favor the emergence of familiar shapes – where familiarity
is based on one or several training shapes.

• Statistical shape information can be elegantly combined with the input image
data in the framework of Bayesian maximum a posteriori estimation. Maximizing
the posterior distribution is equivalent to minimizing a sum of two energies
representing the data term and the shape prior. A further generalization allows
to impose dynamical shape priors so as to favor familiar deformations of shape
in image sequence segmentation.

• While linear Gaussian shape priors are quite popular, the silhouettes of typical
objects in our environment are generally not Gaussian distributed. In contrast
to linear Gaussian priors, nonlinear statistical shape priors based on Parzen–
Rosenblatt kernel density estimators or based on Gaussian distributions in
appropriate feature spaces [28] allow to encode a large variety of rather distinct
shapes in a single shape energy.

• Shapes can be represented explicitly (as points on the object’s boundary or
surface) or implicitly (as the indicator function of the interior of the object). They
can be represented in a spatially discrete or a spatially continuous setting.

• The choice of shape representation has important consequences regarding the
question which optimization algorithms are employed and whether respec-
tive energies can be minimized locally or globally. Moreover, different shape
representations give rise to different notions of shape similarity and shape inter-
polation. As a result, there is no single ideal representation of shape. Ultimately
one may favor hybrid representations such as the one proposed in [90]. It
combines explicit and implicit representations allowing cost functions which
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represent properties of both the object’s interior and its boundary. Subsequent
LP relaxation provides minimizers of bounded optimality.

Cross-References

�Level Set Methods for Structural Inversion and Image Reconstruction
�Manifold Intrinsic Similarity
� Shape Spaces
�Variational Methods in Shape Analysis
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Abstract
Motions of physical objects relative to a camera as observer naturally occur in
everyday lives and in many scientific applications. Optical flow represents the
corresponding motion induced on the image plane. This paper describes the basic
problems and concepts related to optical flow estimation together with mathe-
matical models and computational approaches to solve them. Emphasis is placed
on common and different modeling aspects and to relevant research directions
from a broader perspective. The state of the art and corresponding deficiencies
are reported along with directions of future research. The presentation aims at
providing an accessible guide for practitioners as well as stimulating research
work in relevant fields of mathematics and computer vision.

1 Introduction

Motivation, Overview

Motion of image data belongs to the crucial features that enable low-level image
analysis in natural vision systems and in machine vision systems and the analysis
of a major part of stored image data in the format of videos, as documented,
for instance, by the fast increasing download rate of YouTube. Accordingly,
image motion analysis has played a key role from the beginning of research in
mathematical and computational approaches to image analysis.

Figure 1 illustrates few application areas of image processing, among many
others, where image motion analysis is deeply involved. Mathematical models for
analyzing such image sequences boil down to models of a specific instance of the
general data analysis task, that is, to fuse prior knowledge with information given
by observed image data. While adequate prior knowledge essentially depends on the
application area as Fig. 1 indicates, the processing of observed data mainly involves
basic principles that apply to any image sequence. Correspondingly, the notion of
optical flow, informally defined as determining the apparent instantaneous velocity
of image structure, emphasizes the application-independent aspects of this basic
image analysis task.

Due to this independency, optical flow algorithms provide a key component for
numerous approaches to applications across different fields. Major examples include
motion compensation for video compression, structure from motion to estimate 3-D
scene layouts from image sequences, visual odometry, and incremental construction
of mappings of the environment by autonomous systems, estimating vascular wall
shear stress from blood flow image sequences for biomedical diagnosis, to name
just a few.

This chapter aims at providing a concise and up-to-date account of mathematical
models of optical flow estimation. Basic principles are presented along with various
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Fig. 1 Some application areas of image processing that essentially rely on image motion analysis.
Left: scene analysis (depth, independently moving objects) with a camera mounted in a car. Center:
flow analysis in remote sensing. Right: measuring turbulent flows by particle image velocimetry

prior models. Application-specific aspects are only taken into account at a general
level of mathematical modeling (e.g., geometric or physical prior knowledge).
Model properties favoring a particular direction of modeling are highlighted, while
keeping an eye on common aspects and open problems. Conforming to the editor’s
guidelines, references to the literature are confined to a – subjectively defined –
essential minimum.

Organization

Section 2 introduces a dichotomy of models used to present both essential dif-
ferences and common aspects. These classes of models are presented in Sects. 3
and 4. The former class comprises those algorithms that perform best on current
benchmark datasets. The latter class becomes increasingly more important in
connection with motion analysis of novel, challenging classes of image sequences
and videos. While both classes merely provide different viewpoints on the same
subject – optical flow estimation and image motion analysis – distinguishing them
facilitates the presentation of various facets of relevant mathematical models in
current research. Further relationships, unifying aspects together with some major
open problems and research directions, are addressed in Sect. 5.

2 Basic Aspects

Invariance, Correspondence Problem

Image motion computation amounts to define some notion of invariance and the
recognition in subsequent time frames of corresponding objects, defined by local
prominent image structure in terms of a feature mapping g.x/ whose values are
assumed to be conserved during motion. As Fig. 2, left panel, illustrates, invariance
only holds approximately due to the imaging process and changes of viewpoint and
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Fig. 2 Left: image motion can only be computed by recognizing objects as the same in
subsequent time frames, based on some notion of equivalence (invariance) and some distance
function. In low-level vision, “object” means some prominent local image structure in terms a
feature mapping g.x; t/ 2 Rp; p � 1. The correspondence problem amounts to compute a
corresponding assignment fg.xi ; t /gi2Œm� ! fg.xj ; t C ıt/gj2Œn� . The corresponding objective
defines the data term of a variational approach. Right: differential approaches to image motion
computation are based on smooth feature mappings g.x; t/ and aim at solving the assignment
problem g

�
x.t/; t

	 ! g
�
x.t C ıt/; t C ıt

	
. The figure illustrates the basic case of a scalar-

valued signal g.x; t/ translating with constant speed u and the estimate (14) based on the
differential motion approach, as discussed in section “Assignment Approach, Differential Motion
Approach”

illumination. Consequently, some distance function

�
�
g.xj ; t C ıt/� g.xi ; t/	 (1)

has to be used in order to compute an optimal assignment

fg.xi ; t/gi2Œm� ! fg.xj ; t C ıt/gj2Œn�: (2)

A vast literature exists on definitions of feature mappingsg.x; t/, distance functions,
and their empirical evaluation in connection with image motion. Possible definitions
include

• Image gray value or color,
• Gray value or color gradient,
• Output of analytic band-pass filters (e.g., [1, 2]),
• More complex feature descriptors including SIFT [3] and SURF [4],
• Censor voting, [5], local patches or feature groupings,

together with a corresponding invariance assumption, i.e., that g.x; t/ is conserved
during motion (cf. Fig. 2, left panel). Figure 3 illustrates the most basic approaches
used in the literature. Recent examples adopting a more geometric viewpoint on
feature descriptors and studying statistical principles of patch similarity include
[6, 7].

For further reference, some basic distance functions �WRp ! RC are introduced
below that are commonly applied in connection with feature mappings g.x/ and
partly parametrized by � > 0 and 0 < "� 1. For closely related functions and the
nomenclature in computer vision, see, e.g., [8].
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Fig. 3 (a) Lab scene ( c�CMU image database) and (b) gradient magnitude that provides the basis for a
range of feature mappings g.x; t/. The image section indicated in (a) is shown in (c), and (d) shows
the same section extracted from (b). Panels (e) and (f) illustrate these sections as surface plots.
Panel (g) shows a feature map responding to crossing gray-value edges. (c), (d), and (g) correspond
to the most basic examples of feature mappings g.x; t/ used in the literature to compute image
motion, based on a corresponding invariance assumption (cf. Fig. 2, left panel) that is plausible for
video frame rates

�2
2.z/ WD kzk2 squared `2 distance; (3a)

�2.z/ WD kzk `2 distance; (3b)

�2;".z/ WD
p
kzk2 C "2 � " smoothed `2 distance; (3c)

�1.z/ WD kzk1 `1 distance; (3d)

�1;".z/ WD
X
i2Œp�

�2;".zi / smoothed `1 distance; (3e)

�2;�.z/ WD minfkzk2; �2g truncated squared `2 distance; (3f)

�2;�;".z/ WD �" log
�

e�kzk2=" C e��2="
�

smoothed tr. sq. `2 distance: (3g)

Figure 4 illustrates these convex and non-convex distance functions. Functions
�1;" and �2;" constitute specific instances of the general smoothing principle to
replace a lower semicontinuous, positively homogeneous, and sublinear function
�.z/ by a smooth proper convex function �".z/, with lim

"&0
"�".z="/ D �.z/ (cf.,

e.g., [9]). Function �2;�;".z/ utilizes the log-exponential function [10, Ex. 1.30] to
uniformly approximate �2;� as "& 0.
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Fig. 4 Left: convex distance functions (3a)–(3c). Center: level lines of the distance function
�1;" (3e). Right: non-convex distance functions (3f) and (3g)

Assignment Approach, Differential Motion Approach

Definitions
Two basic approaches to image motion computation can be distinguished.

Assignment Approach, Assignment Field This approach aims to determine an
assignment of finite sets of spatially discrete features in subsequent frames of a
given image sequence (Fig. 2, left panel). The vector field

u.x; t/; xj D xi C u.xi ; t/; (4)

representing the assignment in Eq. (2), is called assignment field. This approach
conforms to the basic fact that image sequences f .x; t/; .x; t/ 2 ˝ � Œ0; T � are
recorded by sampling frames

ff .x; k � ıt/gk2N (5)

along the time axis.
Assignment approaches to image motion will be considered in Sect. 4.

Differential Motion Approach, Optical Flow Starting point of this approach is
the invariance assumption (section “Invariance, Correspondence Problem”) that
observed values of some feature map g.x; t/ are conserved during motion,

d

dt
g
�
x.t/; t

	 D 0: (6)

Evaluating this condition yields information about the trajectory x.t/ that rep-
resents the motion path of a particular feature value g

�
x.t/

	
. The corresponding

vector field

Px.t/ D d

dt
x.t/; x 2 ˝ (7)
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is called motion field whose geometric origin will be described in section “Two-
View Geometry, Assignment and Motion Fields.” Estimates

u.x; t/ 	 Px.t/; x 2 ˝ (8)

of the motion field based on some observed time-dependent feature map g.x; t/
are called optical flow fields.
Differential motion approaches will be considered in Sect. 3.

Common Aspects and Differences
The assignment approach and the differential approach to image motion are closely
related. In fact, for small temporal sampling intervals,

0 < ıt � 1; (9)

one may expect that the optical flow field multiplied by ıt , u.x; t/ � ıt , closely
approximates the corresponding assignment field. The same symbol u is therefore
used in (4) and (8) to denote the respective vector fields.

A conceptual difference between both approaches is that the ansatz (6) entails
the assumption of a spatially differentiable feature mapping g.x; t/, whereas the
assignment approach requires prior decisions done at a preprocessing stage that
localize the feature sets (2) to be assigned. The need for additional processing in the
latter case contrasts with the limited applicability of the differential approach: The
highest spatial frequency limits the speed of image motion kuk that can be estimated
reliably:

max
˚k!xk1; ku.x/kk!xkW!x 2 supp Og.!/; x 2 ˝
 � �

6
: (10)

The subsequent section details this bound in the most simple setting for a specific
but common filter choice for estimating partial derivatives @ig.

Differential Motion Estimation: Case Study (1D)
Consider a scalar signal g.x; t/ D f .x; t/moving at constant speed (cf. Fig. 2, right
panel),

Px.t/ D Px D u; g
�
x.t/; t

	 D g�x.0/C ut; t
	
: (11)

Note that the two-dimensional function g.x; t/ is a very special one generated by
motion. Using the shorthands

x WD x.0/; g0.x/ WD g.x; 0/; (12)

g.x; t/ corresponds to the translated one-dimensional signal
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g.x; t/ D g0.x � ut/ (13)

due to the assumption g
�
x.t/; t

	 D g�x.0/; 0	 D g0.x/.
Evaluating (6) at t D 0; x D x.0/ yields

u D � @tg0.x/

@xg0.x/
if @xg0.x/ ¤ 0: (14)

Application and validity of this equation in practice depends on two further aspects:
Only sampled values of g.x; t/ are given, and the right-hand side has to be computed
numerically. Both aspects are discussed next in turn.

1. In practice, samples are observed

fg.k � ıx; tıt/gk;t2N D fg.k; t/gk;t2N; ıx D ıt D 1; (15)

with the sampling interval scaled to 1 without loss of generality. The Nyquist-
Shannon sampling theorem imposes the constraint

suppj Og.!/j � Œ0; �/2; ! D .!x; !t /> (16)

where

Og.!/ D Fg.!/ D
Z
R2
g.x; t/e�ih!;. xt /idxdt (17)

denotes the Fourier transform of g.x; t/. Trusting in the sensor, it may be savely
assumed that suppj Og0.!x/j � Œ0; �/. But what about the second coordinate t
generated by motion? Does it obey (16) such that the observed samples (15)
truly represent the one-dimensional video signal g.x; t/?

To answer this question, consider the specific case g0.x/ D sin.!xx/; !x 2
Œ0; �� – see Fig. 5. Equation (13) yields g.x; t/ D sin

�
!x.x � ut/

	
. Condi-

tion (15) then requires that, for every location x, the one-dimensional time signal
gx.t/ WD g.x; t/ satisfies suppj Ogx.!t /j � Œ0; �/. Applying this to the example
yields

gx.t/ D sin.!t t C '0/; !t WD �!xu; '0 WD !xx; (18)

and hence the condition

j!t j 2 Œ0; �/ , juj < �

!x
: (19)

It implies that Eq. (14) is only valid if, depending on the spatial frequency !x ,
the velocity u is sufficiently small.
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Fig. 5 A sinusoid g0.x/ with angular frequency !x D �=12, translating with velocity u D 2,
generates the function g.x; t/. The angular frequency of the signal gx.t/ observed at a fixed
position x equals j!t j D u �!x D �=6 due to (18). It meets the upper bound further discussed
in connection with Fig. 6 that enables accurate numerical computation of the partial derivatives of
g.x; t/

This reasoning and the conclusion apply to general functions g.x; t/; x 2 Rd

in the form of (10), which additionally takes into account the effect of derivative
estimation, discussed next.

2. Condition (19) has to be further restricted in practice, depending on how the
partial derivatives of the r.h.s. of Eq. (14) are numerically computed using the
observed samples (15). The Fourier transform

F
�
@˛g

	
.!/ D i j˛j!˛ Og.!/; ! 2 RdC1 (20)

generally shows that taking partial derivatives of order j˛j of g.x; t/; x 2 Rd ,
corresponds to high-pass filtering that amplifies noise. If g.x; t/ is vector valued,
then the present discussion applies to the computation of partial derivatives @˛gi
of any component gi .x; t/; i 2 Œp�.

To limit the influence of noise, partial derivatives of the low-pass filtered
feature mapping g are computed. This removes noise and smoothes the signal,
and subsequent computation of partial derivatives becomes more accurate.
Writing g.x/; x 2 RdC1, instead of g.x; t/; x 2 Rd , to simplify the following
formulas, low-pass filtering of g with the impulse response h.x/ means the
convolution

gh.x/ WD .h � g/.x/ D
Z
RdC1

h.x � y/g.y/dy; Ogh.!/ D Oh.!/ Og.!/
(21)
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whose Fourier transform corresponds to the multiplication of the respective
Fourier transforms. Applying (20) yields

F
�
@˛gh

	
.!/ D i j˛j!˛

� Oh.!/ Og.!/	 D �i j˛j!˛ Oh.!/	 Og.!/: (22)

Thus, computing the partial derivative of the filtered function gh can be computed
by convolving g with the partial derivative of the impulse response @˛h. As a
result, the approximation of the partial derivative of g reads

@˛g.x/ 	 @˛gh.x/ D
�
.@˛h/ � g	.x/: (23)

The most common choice of h is the isotropic Gaussian low-pass filter

h
.x/ WD 1

.2�
2/d=2
exp

�
� kxk

2

2
2

�
D
Y
i2Œd �

h
 .xi /; 
 > 0 (24)

that factorizes (called separable filter) and therefore can be implemented effi-
ciently. The corresponding filters @˛h
.x/; j˛j � 1 are called Derivative-of-
Gaussian (DoG) filters.

To examine its effect, it suffices to consider any coordinate due to factoriza-
tion, that is, the one-dimensional case. Figure 6 illustrates that values 
 � 1
lead to filters that are sufficiently band limited so as to conform to the sampling
theorem. The price to pay for effective noise suppression however is a more
restricted range suppjF�g.x; t/	j D Œ0; !x;max�; !x;max � � that observed
image sequence functions have to satisfy, so as to enable accurate computation of
partial derivatives and in turn accurate motion estimates based on the differential
approach. Figure 5 further details and illustrates this crucial fact.

Assignment or Differential Approach?
For image sequence functions g.x; t/ satisfying the assumptions necessary to
evaluate the key equation (6), the differential motion approach is more conve-
nient. Accordingly, much work has been devoted to this line of research up to
now. In particular, sophisticated multiscale representations of g.x; t/ enable to
estimate larger velocities of image motion using smoothed feature mapping g

(cf. section “Multiscale”). As a consequence, differential approaches rank top at
corresponding benchmark evaluations conforming to the underlying assumptions
[11], and efficient implementations are feasible [12, 13].

On the other hand, the inherent limitations of the differential approach discussed
above become increasingly more important in current applications, like optical flow
computation for traffic scenes taken from a moving car at high speed. Figure 1, right
panel, shows another challenging scenario where the spectral properties Og.!x; !t /
of the image sequence function and the velocity fields to be estimated render
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Fig. 6 (a) Fourier transform Oh
 .!/ of the Gaussian low pass (24), 
 D 1. For values 
 � 1,
it satisfies the sampling condition suppj Oh
 .!/j � Œ0; �/ sufficiently accurate. (b) The Fourier
transform of the Derivative-of-Gaussian (DoG) filter d

dx h
 .x/ illustrates that for j!j 	 �=6 (par-
tial) derivatives are accurately computed, while noise is suppressed at higher angular frequencies.
(c), (d) The impulse responses h
.x; t/ and @t h
 .x; t/ up to size jxj; jt j 	 2. Application of the
latter filter together with @xh
 .x; t/ to the function g.x; t/ discussed in connection with Fig. 5 and
evaluation of Eq. (14) yield the estimate u D 2:02469 at all locations .x; t / where @xg.x; t/ ¤ 0

application of the differential approach difficult, if not impossible. In such cases,
the assignment approach is the method of choice.

Combining both approaches in a complementary way seems most promising:
Robust assignments enable to cope with fast image motions and a differential
approach turns these estimates into spatially dense vector fields. This point is taken
up in section “Unifying Aspects: Assignment by Optimal Transport.”

Basic Difficulties of Motion Estimation
This section concludes with a list of some basic aspects to be addressed by any
approach to image motion computation:

(i) Definition of a feature mapping g assumed to be conserved during motion
(section “Invariance, Correspondence Problem”).

(ii) Coping with lack of invariance of g, change of appearance due to varying
viewpoint and illumination (sections “Handling Violation of the Constancy
Assumption” and “Patch Features”).

(iii) Spatial sparsity of distinctive features (section “Regularization”).
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Fig. 7 The basic pinhole
model of the mathematically
ideal camera. Scene points X
are mapped to image points x
by perspective projection

x

X

Ω

(iv) Coping with ambiguity of locally optimal feature matches (section “Assign-
ment by Displacement Labeling”).

(v) Occlusion and disocclusion of features.
(vi) Consistent integration of available prior knowledge, regularization of motion

field estimation (sections “Geometrical Prior Knowledge” and “Physical Prior
Knowledge”).

(vii) Runtime requirements (section “Algorithms”).

Two-View Geometry, Assignment andMotion Fields

This section collects few basic relationships related to the Euclidean motion of a
perspective camera relative to a 3-D scene that induces both the assignment field
and the motion field on the image plane, as defined in section “Definitions” by (4)
and (7). Figures 7 and 12 illustrate these relationships. References [14, 15] provide
comprehensive expositions.

It is pointed out once more that assignment and motion fields are purely geomet-
rical concepts. The explicit expressions (43) and (53b) illustrate how discontinuities
of these fields correspond to discontinuities of depth or to motion boundaries that
separate regions in the image plane of scene objects (or the background) with
different motions relative to the observing camera. Estimates of either field will
be called optical flow, to be discussed in subsequent sections.

Two-View Geometry
Scene and corresponding image points are denoted by X 2 R3 and x 2 R2,
respectively. Both are incident with the line �x; � 2 R, through the origin. Such
lines are points of the projective plane denoted by y 2 P2. The components of y
are called homogeneous coordinates of the image point x, whereas x and X are
the inhomogeneous coordinates of image and scene points, respectively. Note that y
stands for any representative point on the ray connecting x and X . In other words,
when using homogeneous coordinates, scale factors do not matter. This equivalence
is denoted by
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y ' y0 , y D �y0; � ¤ 0: (25)

Figure 7 depicts the mathematical model of a pinhole camera with the image plane
located at X3 D 1. Perspective projection corresponding to this model connects
homogeneous and inhomogeneous coordinates by

x D
�
x1

x2

�
D 1

y3

�
y1

y2

�
: (26)

A particular representative y with unknown depth y3 D X3 equals the scene point
X . This reflects the fact that scale cannot be inferred from a single image. The 3-D
space R3 n f0g corresponds to the affine chart fy 2 P2Wy3 ¤ 0g of the manifold P2.

Similar to representing an image point x by homogeneous coordinates y, it is
common to represent scene points X 2 R3 by homogeneous coordinates Y D
.Y1; Y2; Y3; Y4/

> 2 P3, in order to linearize transformations of 3-D space. The
connection analogous to (26) is

X D 1

Y4

0
@Y1

Y2

Y3

1
A : (27)

Rigid (Euclidean) transformations are denoted by fh;Rg 2 SE.3/ with translation
vector h and proper rotation matrix R 2 SO.3/ characterized by R>R D
I; detR D C1. Application of the transformation to a scene point X and some
representative Y reads

RX C h and QY; Q WD
�
R h

0> 1

�
; (28)

whereas the inverse transformation f�R>h;R>g yields

R>.X � h/ and Q�1Y; Q�1 D
�
R> �R>h
0> 1

�
: (29)

The nonlinear operation (26), entirely rewritten with homogeneous coordinates,
takes the linear form

y D PY; P D
0
@1 0 0 0

0 1 0 0
0 0 1 0

1
A D .I3�3; 0/; (30)

with the projection matrix P and external or motion parameters fh;Rg. In practice,
additional internal parameters characterizing real cameras to the first order of
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approximation are taken into account in terms of a camera matrix K and the
corresponding modification of (30),

y D PY; P D K.I3�3; 0/: (31)

As a consequence, the transition to normalized (calibrated) coordinates

Qy WD K�1y (32)

corresponds to an affine transformation of the image plane.
Given an image point x, taken with a camera in the canonical position (30), the

corresponding ray meets the scene point X ; see Figure 12b. This ray projects in a
second image, taken with a second camera positioned by fh;Rg relative to the first
camera and with projection matrix

P 0 D K 0R>.I;�h/; (33)

to the line l 0, on which the projection x0 ofX corresponding to x must lie. Turning to
homogeneous coordinates, an elementary computation shows that the fundamental
matrix

F WD K 0�>R>Œh��K�1 (34)

maps y to the epipolar line l 0,

l 0 D Fy: (35)

This relation is symmetrical in that F> maps y0 to the corresponding epipolar line
l in the first image,

l D F>y0: (36)

The epipoles e; e0 are the image points corresponding to the projection centers.
Because they lie on l and l 0 for any x0 and x, respectively, it follows that

Fe D 0; F>e0 D 0: (37)

The incidence relation x0 2 l 0 algebraically reads hl 0; y0i D 0. Hence by (35),

hy0; Fyi D 0 (38)

This key relation constrains the correspondence problem x $ x0 for arbitrary two
views of the same unknown scene point X . Rewriting (38) in terms of normalized
coordinates by means of (32) yields
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hy0; Fyi D hK 0�1y0; K 0>FK.K�1y/i D hK 0�1y0; E.K�1y/i (39)

with the essential matrixE that, due to (34) and the relation ŒKh�� 'K�>Œh��K�1,
is given by

E D K 0>FK D R>Œh��: (40)

Thus, essential matrices are parametrized by transformations fh;Rg 2 SE.3/ and
therefore form a smooth manifold embedded in R3�3.

Assignment Fields
Throughout this section, the internal camera parametersK are assumed to be known,
and hence normalized coordinates (32) are used. As a consequence,

K D I (41)

is set in what follows.
Suppose some motion h;R of a camera relative to a 3-D scene causes the image

point x of a fixed scene pointX to move to x0 in the image plane. The corresponding
assignment vector u.x/ represents the displacement of x in the image plane,

x0 D x C u.x/; (42)

which due to (29) and (26) is given by

u.x/ D 1

hr3; X � hi
�hr1; X � hi
hr2; X � hi

�
� 1

X3

�
X1

X2

�
: (43)

Consider the special case of pure translation, i.e.,R D I; ri D ei ; i D 1; 2; 3. Then

u.x/ D 1

X3 � h3

�
X1 � h1

X2 � h2

�
� 1

X3

�
X1

X2

�
(44a)

D 1
Qh3 � 1

�� Qh1Qh2

�
� Qh3

�
x1

x2

��
; Qh WD 1

X3
h: (44b)

The image point xe where the vector field u vanishes, u.xe/ D 0, is called focus of
expansion (FOE)

xe D 1
Qh3

� Qh1Qh2

�
: (45)

xe corresponds to the epipole y D e since Fe ' R>Œh��h D 0.
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Next the transformation is computed of the image plane induced by the motion
of the camera in terms of projection matrices P D .I; 0/ and P 0 D R>.I;�h/
relative to a plane in 3-D space

hn;Xi � d D n1X1 C n2X2 C n3X3 � d D 0; (46)

with unit normal n; knk D 1 and with signed distance d of the plane from the origin
0. Setting p D . n�d /, Eq. (46) reads

hp; Y i D 0: (47)

In order to compute the point X on the plane satisfying (46) that projects to the
image point y, the ray Y.�/ D � �y1

	
; � 2 R, is intersected with the plane.

hp; Y.�/i D �hn; yi � d D 0 ) � D d

hn; yi ; Y D
 

d
hn;yiy

1

!
'
�

y
1
d
hn; yi

�
:

(48)
Projecting this point onto the second image plane yields

y0 D P 0Y.�/ D R>
�
y � 1

d
hn; yih

�
D R>.I � 1

d
hn>/y

DW Hy
(49)

Thus, moving a camera relative to a 3-D plane induces a homography (projective
transformation) H of P2 which by virtue of (26) yields an assignment field u.x/
with rational components.

Motion Fields
Motion fields (7) are the instantaneous (differential) version of assignment fields.
Consider a smooth path fh.t/; R.t/g � SE.3/ through the identity f0; I g and the
corresponding path of a scene pointX 2 R3

X.t/ D h.t/CR.t/X; X D X.0/: (50)

Let R.t/ be given by a rotational axis q 2 R3 and a rotation angle '.t/. Using
Rodrigues’ formula and the skew-symmetric matrix Œq�� 2 so.3/ with P' D P'.0/ WD
kqk, matrix R.t/ takes the form

R.t/ D exp.t Œq��/ D I C sin. P't/
P't tŒq�� C 1 � cos. P't/

. P't/2 t2Œq�2�: (51)

Equation (50) then yields

PX.0/ D vC Œq��X; v WD Ph.0/; (52)
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where v is the translational velocity at t D 0. Differentiating (26) with y D X

(recall assumption (41)) and inserting (52) give

d

dt
x D 1

X2
3

�
X3 PX1 �X1 PX3

X3 PX2 �X2 PX3

�
D 1

X3

� PX1 � x1 PX3
PX2 � x2 PX3

�
(53a)

D 1

X3

��
v1

v2

�
� v3

�
x1

x2

��
C
�
q2 � q3x2 � q1x1x2 C q2x

2
1

�q1 C q3x1 C q2x1x2 � q1x
2
2

�
: (53b)

Comparing (53b) to (43) and (44b) shows a similar structure of the translational part
with FOE

xv WD 1

v3

�
v1

v2

�
; (54)

whereas the rotational part merely contributes an incomplete second-order degree
polynomial to each component of the motion field that does not depend on the scene
structure in terms of the depth X3.

Consider the special case of a motion field induced by the relative motion of a
camera to a 3-D plane given by (46) and write

1

X3
D 1

d

�
n3 C

�
n1

n2

�> �
x1

x2

��
: (55)

Insertion into (53b) shows that the overall expression for the motion fields takes a
simple polynomial form.

Early PioneeringWork

It deems proper to the authors to refer at least briefly to early pioneering work
related to optical flow estimation, as part of a survey paper. The following references
constitute just a small sample of the rich literature.

The information of motion fields, induced by the movement of an observer
relative to a 3-D scene, was picked out as a central theme more than three
decades ago [16, 17]. Kanatani [18] studied the representation of SO.3/ and
invariants in connection with the space of motion fields induced by the movement
relative to a 3-D plane. Approaches to estimating motion fields followed soon,
by determining optical flow from local image structure [19–24]. Poggio and
Verri [25] pointed out both the inexpedient, restrictive assumptions making the
invariance assumption (6) hold in the simple case g.x/ D f .x/ (e.g., Lam-
bertian surfaces in the 3-D scene) and the stability of structural (topological)
properties of motion fields (like, e.g., the FOE (45)). The local detection of
image translation as orientation in spatiotemporal frequency space, based on the
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energy and the phase of collections of orientation-selective complex-valued band-
pass filters (low-pass filters shifted in Fourier space, like, e.g., Gabor filters), was
addressed by [26–28], partially motivated by related research on natural vision
systems.

The variational approach to optical flow was pioneered by Horn and Schunck
[29], followed by various extensions [30–32] including more mathematically
oriented accounts [33–35]. The work [36] classified various convex variational
approaches that have unique minimizers.

The computation of discontinuous optical flow fields, in terms of piecewise
parametric representations, was considered by [8, 37], whereas the work [38]
studied the information contained in correspondences induced by motion
fields over a longer time period. Shape-based optimal control of flows
determined on discontinuous domains as control variable was introduced
in [39], including the application of shape derivative calculus that became
popular later on in connection with level sets. Markov random fields and the
Bayesian viewpoint on the nonlocal inference of discontinuous optical flow
fields were introduced in [40]. The challenging aspects of estimating both
motion fields and their segmentation in a spatiotemporal framework, together
with inferring the 3-D structure, have remained a topic of research until
today.

This brief account shows that most of the important ideas appeared early
in the literature. On the other hand, it took many years until first algorithms
made their way into industrial applications. A lot of work remains to be done
by addressing various basic and applied research aspects. In comparison to the
fields of computer vision, computer science, and engineering, not much work
has been done by the mathematical community on motion-based image sequence
analysis.

Benchmarks

Starting with the first systematic evaluation in 1994 by Baron et al. [41], benchmarks
for optical flow methods have stimulated and steered the development of new
algorithms in this field. The Middlebury database [42] further accelerated this trend
by introducing an online ranking system and defining challenging data sets, which
specifically address different aspects of flow estimation such as large displacements
or occlusion.

The recently introduced KITTI Vision Benchmark Suite [43] concentrates on
outdoor automotive sequences that are affected by disturbances such as illumination
changes and reflections, which optical flow approaches are expected to be robust
against.

While real imagery requires sophisticated measurement equipment to capture
reliable reference information, synthetic sequences such as the novel MPI Sintel
Flow Dataset [44] come with free ground truth. However, enormous efforts are
necessary to realistically model the scene complexity and effects found in reality.
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3 The Variational Approach to Optical Flow Estimation

In contrast to assignment methods, variational approaches to estimating the optical
flow employ a continuous and dense representation of the variables u W ˝ 7! R2.
The model describing the agreement of u with the image data defines the data
term ED.u/. It is complemented by a regularization term ER.u/ encoding prior
knowledge about the spatial smoothness of the flow. Together these terms define
the energy function E.u/, and estimating the optical flow amounts to finding a
global minimum u, possibly constrained by a set U of admissible flow fields, and
using an appropriate numerical method:

inf
u2U E.u/ ; E.u/ WD ED.u/C ER.u/ (56)

E.u/ is non-convex in general, and hence only suboptimal solutions can be
determined in practice.

Based on the variational approach published in 1981 by Horn and Schunck [29],
a vast number of refinements and extensions were proposed in literature. Recent
comprehensive empirical evaluations [42, 43] reveal that algorithms of this family
yield best performance. Section “The Approach of Horn and Schunck” introduces
the approach of Horn and Schunck as reference for the following discussion,
after deriving the required linearized invariance assumption in section “Differential
Constraint Equations, Aperture Problem.”

Data and regularization terms designed to cope with various difficulties in
real applications are presented in sections “Data Terms” and “Regularization,”
respectively. Section “Algorithms” gives a short overview over numerical algorithms
for solving problem (56). Section “Further Extensions” addresses some important
extensions of the discussed framework.

Differential Constraint Equations, Aperture Problem

All variational optical flow approaches impose an invariance assumption on some
feature vector g.x; t/ 2 Rp , derived from an image sequence f .x; t/ as discussed in
section “Invariance, Correspondence Problem.” Under perfect conditions, any point
moving along the trajectory x.t/ over time t with speed u.x; t/ WD d

dt x.t/ does not
change its appearance, i.e.,

d

dt
g.x.t/; t/ D 0 : (57)

Without loss of generality, motion at t D 0 is considered only in what follows.
Applying the chain rule and dropping the argument t D 0 for clarity leads to the
linearized invariance constraint:
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Jg.x/u.x/C @tg.x/ D 0 : (58)

Validity of this approximation is limited to displacements of about 1 pixel for real
data as elaborated in section “Common Aspects and Differences,” which seriously
limits its applicability. However, section “Multiscale” describes an approach to
alleviating this restriction, and thus for now it is safe to assume that the assumption
is fulfilled.

A least squares solution to (58) is given by .S.x//�1.J>
g .x/.@t g.x/// where

S.x/ WD J>
g .x/Jg.x/: (59)

However, in order to understand the actual information content of equation sys-
tem (58), the locally varying properties of the Jacobian matrix Jg.x/ have to be
examined:

rank.Jg/ D 0: void constraints on u.x/ (for g.x; 0/ D const.);

rank.Jg/ D 1: ill-conditioned constraints, a single component of u.x/ is determined only;

p D rank.Jg/ D 2: unique solution u.x/ D �J�1
g .x/.@tg.x//;

p > rank.Jg/ D 2: over-determined and possibly conflicting constraints on u.x/, cf. Fig. 8.

In the case of gray-valued features, g.x/ D f .x/ 2 R, (58) is referred to as the
linearized brightness constancy constraint and imposes only one scalar constraint
on u.x/ 2 R2, in the direction of the image gradient Jg.x/ D .rg.x//> ¤ 0, i.e.,

� rg.x/
krg.x/k ; u.x/

�
D � @tg.x/

krg.x/k : (60)

This limitation which only allows to determine the normal flow component is
referred to as the aperture problem in the literature.

Furthermore, for real data, invariance assumptions do not hold exactly, and
compliance is measured by the data term as discussed in section “Data Terms.”
Section “Regularization” addresses regularization terms which further incorporate
regularity priors on the flow so as to correct for data inaccuracies and local
ambiguities not resolved by (58).

The Approach of Horn and Schunck

The approach by Horn and Schunck [29] is described in the following due to its
importance in the literature, its simple formulation, and the availability of well-
understood numerical methods for efficiently computing a solution.
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Fig. 8 Ellipse representation of S D J>
g Jg as in (57) for a patch feature vector with p � 2 (see

section “Patch Features”). (a) Three synthetic examples with Jg having (top to bottom) rank 0, 1,
and 2, respectively. (b) Real image data with homogeneous (left) and textured (right) region, image
edges, and corner (middle). (c) Locally varying information content (see section “Differential
Constraint Equations, Aperture Problem”) of the path features extracted from (b)

Model
Here the original approach [29], expressed using the variational formulation (56),
is slightly generalized from gray-valued features g.x/ D f .x/ 2 R to arbitrary
feature vectors g.x/ 2 Rp . Deviations from the constancy assumption in (58) are
measured using a quadratic function �D D �2

2, leading to

ED.u/ D 1

2

Z
˝

�D
���Jg.x/u.x/C @tg.x/

��
F

	
dx : (61)

As for regularization, the quadratic length of the flow gradients is penalized
using �R D �2

2, to enforce smoothness of the vector field and to overcome
ambiguities of the data term (e.g., aperture problem; see section “Differential
Constraint Equations, Aperture Problem”):

ER.u/ D 1

2
2

Z
˝

�R.kJu.x/kF /dx : (62)

The only parameter 
 > 0 weights the influence of regularization against the data
term.

Discretization
Finding a minimum of E.u/ D ED.u/C ER.u/ using numerical methods requires
discretization of variables and data in time and space. To this end, let fxi gi2Œn� define
a regular two-dimensional grid in ˝ , and let g1.xi / and g2.xi / be the discretized
versions of g.x; 0/ and g.x; 1/ of the input image sequence, respectively. Motion
variables u.xi / are defined on the same grid and stacked into a vector u:

u.xi / D
�

u1.x
i /

u2.x
i /

�
; u D

�
.u1.x

i //i2Œn�

.u2.x
i //i2Œn�

�
2 R2n: (63)
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The appropriate filter for the discretization of the spatial image gradients @ig
strongly depends on the signal and noise properties as discussed in section “Differ-
ential Motion Estimation: Case Study (1D).” A recent comparison [11] reports that
a 5-point derivative filter . 1

12 f�1; 8; 0;�8; 1g/ applied to 1
2 .g

1 C g2/ performs best.
Temporal gradients are approximated as @tg.xi / 	 g2.xi /� g1.xi /.

As a result, the discretized objective function can be rewritten as

E.u/ D 1

2
kDuC ck2 C 1

2
2
kLuk2 ; (64)

using the linear operators

D WD
 
D1;1 D1;2

:::
:::

Dp;1 Dp;2

!
; c WD

 c1

:::
cp

!
; L WD

 
L1;1
L1;2
L2;1
L2;2

!
; (65)

with data derivatives cj WD .@tgj .xi //i2Œn� andDj;k WD diag
�
.@kgj .x

i //i2Œn�
	
. The

matrix operator Ll;k applied to variable u approximates the spatial derivative @k of
the flow component ul using the 2-tap linear filter f�1;C1g and Neumann boundary
conditions.

Solving
Objective function (64) is strictly convex in u under mild conditions [33], and
thus a global minimum of this problem can be determined by finding a solution
to ruE.u/ D 0. This condition explicitly reads

.D>D C 
�2L>L/u D �D>c (66)

which is a linear equation system of size 2n in u 2 R2n with a positive definite and
sparse matrix. A number of well-understood iterative methods exist to efficiently
solve this class of problems even for large n [45].

Examples
Figure 9 illustrates the method by Horn and Schunck for a small synthetic example.
The choice of parameter 
 is a trade-off between smoothing out motion boundaries
(see Fig. 9b) in the true flow field (Fig. 9a) and sensitivity to noise (Fig. 9d).

Probabilistic Interpretation
Considering E.u/ as a the log-likelihood function of a probability density function
gives rise to the maximum a posteriori interpretation of the optimization prob-
lem (56), i.e.,

sup
u2U

p.u jg; 
 / ; p.u jg; 
 / / exp.�E.u// : (67)
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a b c d

Fig. 9 (a) Synthetic flow field used to deform an image. (b)–(d) Flow field estimated by the
approach by Horn and Schunck with decreasing strength of the smoothness prior

As E.u/ is quadratic and positive definite due to the assumptions made in
section “Solving,” this posterior is a Gaussian multivariate distribution

p.u jg; 
 / D N .uI�;˙/ (68)

with precision (inverse covariance) matrix ˙�1 D D>D C 
�2L>L and mean
vector � D �˙�1D>c that solves (66).

Examining the conditional distribution of ui 2 R2 allows to quantify the

sensitivity of u. To this end a permutation matrixQ D
�
Qi

Qi

�
2 R2n�2n,Q>Q D I ,

is defined such that ui D Qiu. Then, fixingQiu D Qi� leads to

p
�
ui
ˇ̌
Qiu

	 D N
�
O�i ; Ȯ i

�
(69)

with O�i D Qi� and

Ȯ i D Qi˙Q
>
i �

�
Qi˙Q

>
i

	 �
Qi˙Q

>
i

	�1 �
Qi˙Q

>
i

	
: (70)

Using the matrix inversion theorem to invert ˙ block wise according to Q and
restricting the result to ui reveals

Qi˙
�1Qi D

�
Qi˙Q

>
i �

�
Qi˙Q

>
i

	 �
Qi˙Q

>
i

	�1 �
Qi˙Q

>
i

	��1
: (71)

Comparison of (70) to (71) and further analysis yield (for non-boundary pixels)

Ȯ i D �Qi˙
�1Qi

	�1 D �Si C 4
�2I
	�1

(72)

with Si D S.xi / as defined by (59). Consequently, smaller values of 
 reduce the
sensitivity of ui , but some choice 
 > 0 is inevitable for singular Si .
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Data Terms

Handling Violation of the Constancy Assumption
The data term as proposed by Horn and Schunck was refined and extended in
literature in several ways with the aim to cope with the challenging properties
of image data of real applications; see section “Basic Difficulties of Motion
Estimation.”

Changes of the camera viewpoint as well as moving or transforming objects may
cause previously visible image features to disappear due to occlusion, or vice versa
to emerge (disocclusion), leading to discontinuous changes of the observed image
features g.x.t/; t/ over time and thus to a violation of the invariance constraint (57).

Surface reflection properties like specular reflections that vary as the viewpoint
changes, and varying emission or illumination (including shadows), also cause
appearance to change, in particular in natural and outdoor scenes.

With some exceptions, most approaches do not explicitly model these cases and
instead replace the quadratic distance function �2

2 by the convex `2-distance or
its differentiable approximation �2;� , to reduce the impact of outliers in regions
with strong deviation from the invariance assumption. A number of non-convex
alternatives have been proposed in the literature, including the truncated square
distance �2;�, which further extend this concept and are often referred to as “robust”
approaches.

Another common method is to replace the constancy assumption on the image
brightness by one of the more complex feature mappings g.x; t/ introduced in
section “Invariance, Correspondence Problem,” or combinations of them. The aim
is to gain more descriptive features that overcome the ambiguities described in
section “Differential Constraint Equations, Aperture Problem,” e.g., by including
color or image structure information from a local neighborhood. Furthermore,
robustness of the data term can be increased by choosing features invariant to
specific image transformations. For example, g.x/ D rf .x/ is immune to additive
illumination changes.

Patch Features
Contrary to the strongly localized brightness feature g.x/ D f .x/, local image
patches sampled from a neighborhood N .x/ of x,

g.xi ; t/ D �f .xj ; t/	
xj2N .xi /

2 Rp; p D jN .xi /j (73)

provide much more reliable information on u in textured image regions. In fact,
local approaches set ER.u/ D 0 and rely only the information contained in the data
term.

The most prominent instance introduced by Lucas and Kanade [19] chooses a
Gaussian-weighted quadratic distance function,

�2
wi .z/ WD

���diag.wi /
1
2 z
���2
; wi WD .w.xi � xj //xj2N .xi / (74)
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and w.x/ WD exp
��kxk2=.2
2/

	
. Solving the variational problem (56) decomposes

into n linear systems of dimension 2 each. Furthermore, the sensitivity in terms of
(72) reduces to Ȯ i D .Si /�1 and

Si D
X

xj2N .xi /

w.xi � xj /
�

J>
g .x

j /Jg.xj /
�

(75)

equals the so-called structure tensor. At locations with numerically ill-
conditioned Jg , cf. Fig. 8 and the discussion in section “Differential Constraint
Equations, Aperture Problem,” no flow can be determined reliably which leads
to possibly sparse results. The works [46, 47] overcome this drawback by
complementing this data term by a regularization term.

Multiscale
As discussed in section “Differential Motion Estimation: Case Study (1D),” the
range of displacements u.x/ that can be accurately estimated is limited to about
1 pixel which does not conform to the larger magnitude of motion fields typically
encountered in practical applications. Multiscale methods allow to remove this
restriction to some extent. They implement a coarse-to-fine strategy for approxi-
mately determining large displacements on spatially band-limited image data and
complementing flow details on finer scales.

The underlying idea is introduced by means of a multiscale representa-
tion fgŒl�gl2Œnl � of image data, where l D 0 and l D nl � 1 refer to the finest
and coarsest scale, respectively. More precisely, gŒl� is a spatially band-limited
version of g with !x;max < sl� with 1 D s0 > s1 : : : snl�1 > 0. The computation is
described by the following recursive scheme with uŒnl �.x/ D 0:

• gŒl�.x; t/ WD hl � g.x C t � uŒlC1�; t/

• ıuŒl� WD arg minuE.u/ on data gŒl�.x; t/
• uŒl�.x/ WD uŒlC1�.x/C ıuŒl�.x/

with a suitable approximation of the ideal low-pass filter hl with frequency response

Ohl.!x; !t / 	
(

1 k!xk1 < sl�

0 otherwise
: (76)

Figure 10 demonstrates the method for two simple examples.
Actual implementations further make use of the band-limited spectrum of the

filtered data and subsample the data according to the Nyquist-Shannon sampling
theorem, leading to a data representation referred to as resolution pyramid. The
recursive structure allows in turn to approximate hl by chaining filters with small
support for computational efficiency.
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Fig. 10 Multiscale flow estimation: (a) an image (white noise) gŒl�.x; 0/ represented at multiscale
levels l D 0 (black), l D 3 (blue), and l D 6 (red) with sl D 2�l , i.e., band limited to sl� . (b)
Estimate uŒl� (same color encoding as in (a)) of correct constant flow u.x/ D 23:3 on multiscale
level l . (c)–(d) Same as (a)–(b) for a single line of a real image ( c�LaVision GmbH) as found in particle
image velocimetry, an optical fluid flow estimation method

Regularization

Ill-posed data terms, sensor noise, and other distortions lead to sparse and locally
inaccurate flow estimates. Variational approaches allow to incorporate priors on the
motion regularity by means of additional terms ER.u/. For suitable models ED.u/
andER.u/, accuracy profits from this concept as the global solution to minimization
problem (56) represents the best flow field according to both observations and
priors. Furthermore, in contrast to local methods, missing flow information is
approximately inferred according to the smoothness prior. This is in particular
essential in connection with ill-posed data terms (cf. section “Differential Constraint
Equations, Aperture Problem”).

Regularity Priors
A number of a priori constraints u 2 U for flow estimation have been proposed
in the literature, based on prior knowledge specific to the application domain.
Examples include

• Inherent geometrical constraints induced by multi-camera setups (section “Geo-
metrical Prior Knowledge”),

• Physical properties of flows in experimental fluid mechanics (section “Physical
Prior Knowledge”).
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a b c d

Fig. 11 (a) Synthetic flow field used to deform an image. (b)–(d) Flow field estimated by the
approach by Horn and Schunck, however with `1 � T V -regularization, with decreasing strength
of the smoothness prior

Formally, strict compliance with a constraint u 2 U can be incorporated into the
variational formulation (56) by means of the corresponding indicator function

ER.u/ D ıU .u/ : (77)

In many applications, however, the set U cannot be specified precisely. Then a
common approach is to replace ıU by a smoother function measuring the distance
of u to U in some sense,

ER.u/ D �.u �˘U u/: (78)

For example, the regularization term of the Horn and Schunck approach presented
in section “The Approach of Horn and Schunck” may be written as

ER.u/ D kLuk2 D ku �˘ker.L/.u/k2
L (79)

with semi-norm kxkL WD kLxk and set U D ker.L/. Generalizations of the
approach of Horn and Schunck are based on the same L and modify the distance
function (section “Distance Functions”) or refine them to become locally adaptive
and anisotropic (section “Adaptive, Anisotropic, and Nonlocal Regularization”).

Further extensions replace the gradient operator in (62) and its discretization
L by other operators having a larger space U D ker.L/. For example, operators
involving second-order derivatives rdiv and rcurl have been used for flow
estimation in experimental fluid dynamics [48–50] (cf. section “Physical Prior
Knowledge”).

Distance Functions
Occlusion of objects does not only lead to sudden changes of the projected
appearance (cf. section “Data Terms”) but also to motion discontinuities whose
preservation during flow estimation is crucial in many applications and for the
interpretation of videos. The penalization of large motion gradients Ju can be
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reduced by replacing the quadratic distance function �2
2 in (62) by convex or non-

convex alternatives; see (3) for some examples.
Figure 11 demonstrates the effect of replacing the quadratic distance measure of

the approach by Horn and Schunck (section “The Approach of Horn and Schunck”)
by �R D �2. It becomes apparent that motion discontinuities can be better resolved
than with �R D �2

2 (see Fig. 9).

Adaptive, Anisotropic, and Nonlocal Regularization
A further option is to include a priori information on the location and alignment
of motion discontinuities by using a spatially varying, adaptive, and possibly
anisotropic norm in (62)

ER.u/ D 
�2
Z
˝

�R.kJu.x/kW.x//dx; (80)

with kAkW WD kAW kF and (omitting the dependency on x)

W D �w1e
1 w2e

2
	
: (81)

The normalized orthogonal directions e1; e2 2 R2 point across and along the
assumed motion boundary, respectively. The positive eigenvalues w1 and w2 control
relative penalization of flow changes in the according direction.

A common assumption made in literature, e.g., [36, 51], is that image edges
and flow discontinuities coincide and facilitate changes of u.x/ across the assumed
boundary e1. For general features g.x/, the notion of image edge is here defined
by choosing e1 and e2 as the normalized direction e of the largest and smallest
change of kJgek, respectively, given by the eigenvectors of S D J>

g Jg . The
associated eigenvalues �1 � �2 � 0 of S control the strength of smoothness by
setting wi D 1��.�i/, i D 1; 2 and suitable increasing �.x/ 2 Œ0; 1�with �.0/ D 0.
This defines an anisotropic and image-driven regularization. Note that for the gray-
valued case g.x/ D f .x/ 2 R, the formulation simplifies to e1 D krgk�1rg,
�1 D krgk2, and �2 D 0. The class of flow-driven approaches replace the
dependency on g.x/ of the terms above by the flow u.x/ to be estimated. This
nonlinear dependency can be taken into account without compromising convexity
of the overall variational approach [36].

While the approaches so far measure locally the regularity of flows u, approaches
such as [52] adopt nonlocal functionals for regularization developed in other
contexts [53–55] for optical flow estimation. Regularization is then more generally
based on the similarity between all pairs .u.x/; u.x0// with x; x0 2 ˝ , weighted by
mutual position and feature distances.
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Further Extensions

Three extensions of the basic variational approach are sketched: a natural extension
of spatial regularizers to the spatiotemporal domain (section “Spatiotemporal
Approach”), regularization based on the two-view geometry (cf. section “Two-View
Geometry, Assignment and Motion Fields”) and relative rigid motions for computer
vision applications (section “Geometrical Prior Knowledge”), and a case study of
PDE-constrained variational optical flow estimation in connection with imaging
problems in experimental fluid dynamics (section “Physical Prior Knowledge”).

Spatiotemporal Approach
The preceding discussion reduced the motion estimation problem to determining
displacements between two image frames only and thus ignored consistencies of
the flow over time. Although in many applications recording rates are fast compared
to dynamical changes due to modern sensors, only few approaches exploit this fact
by introducing temporal smoothness priors.

The work [35] proposed to process a batch of image frames simultaneously and
to extend the flow field domain along the time axis u W ˝� Œ0; T � 7! R2. While data
terms are independently imposed for each time t , the smoothness prior is extended
by a temporal component to

ER.u/ WD
Z
˝�Œ0;T �

�R.kJu;t .x; t/kW /dxdt : (82)

Here, Ju;t represents the spatiotemporal derivatives, and �Rk � kW is a three-
dimensional extension of the anisotropic, flow-driven distance function discussed in
section “Adaptive, Anisotropic, and Nonlocal Regularization.” It allows to account
for small position changes of moving objects between consecutive frames within
the support of the regularization term (�1 px) by supporting smoothness along an
assumed trajectory.

Larger displacements, however, require matching of temporally associated
regions, e.g., using a multiscale framework (section “Multiscale”), but then enable
to regularize smoothness of trajectories over multiple frames as proposed in [56].

Online methods are an appealing alternative whenever processing a batch of
image frames is not feasible due to resource limitations. This approach is addressed
in section “Probabilistic Modeling and Online Estimation.”

Geometrical Prior Knowledge
In applications with a perspective camera as image sensor, the geometrical scene
structure strongly determines the observed optical flow (section “Two-View Geom-
etry, Assignment and Motion Fields”). This section briefly addresses the most
common assumptions made and the constraints that follow.

Often, a static scene assumption is made, meaning that all visible scene points
have zero velocity with respect to a world coordinate system. Then the observed
motion is only induced by the camera moving in the scene. Using the notation
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x
x′ = x + u

camera at t = 1

camera at t = 0

Q

X

optical flow induced by camera motion

x

e e′

x′

epipolar plane

l′

camera at t = 0 camera at t = 1

X

epipolar constraint

a

b

Fig. 12 (a) Relative motionQ 2 SE.3/ of the camera w.r.t. a world coordinate system causes the
projection x of a static scene point X D z.x/y to move from x to x0 D x C u.x/ in the image
plane. (b) Any two projections x, x0 of a scene point X are related by the essential matrix E as
in (84), defining an epipolar plane and their projection, the epipolar lines defined by fx; eg and
fx0; e0g in the image plane at t D 0 and t D 1, respectively

introduced in section “Two-View Geometry, Assignment and Motion Fields,”
the camera motion is denoted by Q 2 SE.3/ (cf. Fig. 12a), parametrized by
rotation R 2 SO.3/ and translation h 2 R3, so that any scene point Y 2 is
transported to Y 0 ' Q�1Y .

The following discussion of common setups and their implications on the
observed motion implicitly assumes that the scene point is visible in both frames.
Using assumption (41) for the internal camera parameters allows to work with
normalized coordinates (32). The point corresponding to x is denoted by x0, due
to (42).

Static scene, general motion Let the depth map z.x/ W ˝ 7! R parametrize the
scene point X WD z.x/ . x1 / visible at x in the camera plane in the first frame.
Then the projected correspondences are given in homogeneous coordinates by

y0 ' PQ�1Y D R> .z.x/ . x1 / � h/ ; (83)

see Fig. 12a for an illustration. Figure 13 shows the optical flow field u.x/
conforming to constraint (83) for a real application.
It is possible to eliminate the dependency on z.x/ that typically is unknown by
means of the essential matrix E WD R>Œh��, leading to the epipolar constraint

.y0/>Ey D 0 ; (84)

as illustrated by Fig. 12b. This gives rise to an orthogonal decomposition [58]
of an observed correspondence Ox0 into
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Fig. 13 (a) A single frame from an image sequence recorded by a camera moving forward
through an approximately static scene. (b) Optical flow estimated using the parametrization
u.x/ D u.xIQ; z.x// according to (83) and global optimization for Q 2 SE.3/, z 2 Rn; see [57]
for details. Displacement length and direction are encoded by saturation and hue, respectively; see
color code on the right. (c) Estimated depth parameter z.x/ using the color code on the right. Scene
structure is more evident in this representation, and therefore the spatial smoothness prior on the
flow was formulated as regularization term on the depth z.x/ instead of displacements u.x/

Ox0 D Ox0
e C Ox0? (85)

with Ox0
e fulfilling (84) and orthogonal deviations Ox0?.

Even without knowing a priori .R; h/, Eq. (84) provides a valuable prior:
Valgaerts et al. [59] propose joint computation of the fundamental matrix F
related to E by (40) and optical flow constrained via (84). They show that
estimation of F is more stable and that flow accuracy is significantly increased.

Static scene, coplanar camera motion If the camera translates parallel to the image
plane only, i.e., R D I and h D �

b
0

	
with b 2 R2, the observed flow is

constrained to a locally varying one-dimensional subspace parametrized by the
inverse depth:

u.x/ D z�1.x/b : (86)

Stereoscopic camera setups fulfill the static scene assumption as they can be
interpreted as an instantaneous camera motion with baseline kbk. For details
see, e.g., [5].

Planar and static scene, general camera motion In applications where the scene can
be (locally) approximated by a plane such that hn;Xi � d D 0 for all space
points X with plane parameters d , n as in (46), all correspondences fulfill

y0 ' Hy; H D R>
�
I � 1

d
hn>

�
; (87)

where H 2 R3�3 defines a homography – cf. Eq. (49).

Physical Prior Knowledge
Imaging of dynamic phenomena in natural sciences encounters often scenarios
where physical prior knowledge applies. Examples include particle image velocime-
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try [60] or Schlieren velocimetry [61], where the motion of fluids is observed,
that is, governed by physical laws. While local methods such as cross-correlation
methods are commonly used to evaluate the obtained image sequences [60, 62],
variational approaches [63–65] provide a more appropriate mathematical framework
for exploiting such prior knowledge and the estimation of physically consistent
optical flows.

For instance, the Helmholtz decomposition of vector fields enables to define reg-
ularizers in terms of higher-order partial flow derivatives in a natural way [48–50].
Constraints like incompressibility can be enforced as hard or soft constraints using
advanced methods of convex programming, to cope with imaging imperfections.
Conversely, flow field estimates obtained by other image processing methods can
be denoised so as to restore physically relevant structure [66].

A particularly appealing approach exploits directly some equation from fluid
dynamics that governs the flow as state of the physical system which is observed
through an imaging sensor [67, 68]. The state is regarded as hidden and only
observable through the data of an image sequence that depicts the velocity of some
tracer suspended in the fluid. The variational approach of fitting the time varying
state to given image sequence data results in a PDE-constrained optimization or
distributed parameter control problem, respectively.

As example the approach [67] is sketched based on the Stokes system

���uCrp D f˝ in ˝; (88a)

div u D 0 in ˝; (88b)

u D f@˝ on @˝; (88c)

that for given f˝; f@˝ with
R
@˝
hn; f@˝ids D 0 (n denotes the outer unit normal

of the Lipschitz domain ˝) has a unique solution u; p under classical assumptions
[69, Ch. I]. Here f˝; f@˝ are not regarded as given data but as control variables,
to be determined so that the flow u not only satisfies (88) but fits also given image
sequence data. To achieve the latter, both the state variables u; p and the control
variables f˝; f@˝ are determined by minimizing in the two-dimensional case d D 2
the objective

E.u; p; f˝; f@˝/DED.u/C˛
Z
˝

�2
2.f˝/dxC�

Z
@˝

�2
2

�hn?;rf@˝i
	
ds; ˛; � > 0:

(89)
The first term ED.u/ denotes a data term of the form (61), and the remaining two
terms regularize the control variables so as to make the problem well posed.

For related mathematical issues (e.g., constraint qualification and existence of
Lagrange multipliers), see [70, Ch. 6] and [71, Ch. 1] and furthermore [70, 72] for
related work outside the field of mathematical imaging based on the general Navier-
Stokes system.
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Algorithms

The choice of an optimization method for numerically minimizing the func-
tional (56) depends on the specific formulation of the terms ED and ER involved.
Suitable methods can be broadly classified into

– Algorithms for minimizing smooth convex functionals,
– Algorithms for minimizing non-smooth convex functionals,
– Algorithms for locally minimizing non-convex functionals.

In view of the typical multiscale implementation of the data term (section “Mul-
tiscale”) that enables a quadratic approximation at each resolution level, this
classification is applied to the regularizer ER only, and each class is discussed
in turn in the sections to follow. The reader should note that convex non-
quadratic data terms, as discussed in section “Handling Violation of the
Constancy Assumption,” can be handled in a similar way as the convex non-
smooth regularizer below, and a number of closely related alternatives exist
(e.g., [73]). Since convex programming has been extensively studied in the
literature, the following presentation is confined to representative case studies
that illustrate in each case the underlying idea and application of a general
principle.

Smooth Convex Functionals
It is useful to distinguish quadratic and non-quadratic functionals. The approach
of Horn and Schunck (section “The Approach of Horn and Schunck”) is a
basic representative of the former class. Solving the corresponding linear positive
definite sparse system can be efficiently done by established methods [45]. More
sophisticated implementations are based on numerical multigrid methods [74].
These are optimal in the sense that runtime complexity O.n/ linearly depends on
the problem size n. Dedicated implementations run nearly at video frame rate on
current PCs.

For more general data-dependent quadratic regularizers and especially so for
non-quadratic convex regularizers (cf. section “Adaptive, Anisotropic, and Nonlocal
Regularization” and [36]), multigrid implementation that achieves such runtimes
requires some care. See [12, 13, 75] for details and [76] for a general exposi-
tion.

Non-smooth Convex Functionals
This class of optimization problems has received considerable attention in connec-
tion with mathematical imaging, inverse problems, and machine learning and in
other fields during the recent years, due to the importance of non-smooth convex
sparsity enforcing regularization. See [77] for a recent overview.
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The total variation regularizer

ER.u/ D TV.u/ WD sup
v2D
�
Z
˝

hu;Div vidx;

D WD fv 2 C1
0 .˝IRd /d W kv.x/kF � 1; 8x 2 ˝g;

Div v D .div v1; : : : ; div vd />

(90)

is a basic representative of the class of non-smooth convex functionals and
appropriate to expose a general strategy of convex programming that is commonly
applied: problem splitting into subproblems for which the proximal mapping can be
efficiently evaluated.

The simplest anisotropic discretization of (90) that is particularly convenient
from the viewpoint of convex programming reads

X
ij2E.G/

X
k2Œd �
juk.xi / � uk.x

j /j; (91)

where fxi gi2Œn� are the locations indexed vertices V D Œn� of a grid graph G D
.V;E/ in ˝ , and E D E.G/ are the corresponding edges connecting adjacent
vertices resp. locations along the coordinate axes. Defining the vector

z 2 Rd�jE.G/j; zk;ij D uk.x
i /� uk.x

j / (92)

leads to the reformulation of (91)

kzk1; Lu D z (93)

where the linear system collects all equations of (92). As a consequence, the overall
discretized problem reads

min
u;z
ED.u/C ˛kzk1 subject to Lu � z D 0; ˛ > 0 (94)

to which the ADMM approach [78] can be applied that entails a sequence of partial
minimizations of the augmented Lagrangian corresponding to (94),

L�.u; z;w/ D ED.u/C ˛kzk1 C hw; Lu � zi C �

2
kLu � zk2: (95)

Specifically, with some parameter value � > 0 and multiplier vector w, the three-
step iteration

ukC1 D arg min
u

ED.u/C hwk; Lui C �

2
kLu � zkk2; (96a)
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zkC1 D arg min
z

˛kzk1 � hwk; zi C �

2
kLukC1 � zk2; (96b)

wkC1 D wk C �.LukC1 � zkC1/; (96c)

is iteratively applied for k D 0; 1; 2; : : : , with arbitrary initializations z0; q0, until a
suitable termination criterion is met [78, Section 3.3.1].

Assuming a quadratic form or approximation of ED.u/ at some resolution level
(section “Multiscale”), subproblem (96a) amounts to solve a sparse positive definite
linear system similar to the basic approach of Horn and Schunck, to which a
multigrid solver can be applied as discussed above. Subproblem (96b) amounts to
computing the proximal mapping for the `1-norm and hence to perform a simple
shrinkage operation. See [79, 80] for corresponding surveys.

Non-convex Functionals
Similar to the preceding non-smooth convex case, approaches are of interest that
can be conducted by solving a sequence of simple subproblems efficiently. Clearly,
convergence to a local minimum can be only expected. In contrast to the simpler
convex cases above, the absence of parameters is preferable that would have to be set
properly, to ensure convergence to some local minimum for any initialization. For
example, Lipschitz constants of gradients are rarely known in practice, and setting
corresponding parameters savely enough will unduly slow down convergence even
for smooth problems.

A general strategy will be outlined next and its application to the non-convex
extension of the regularizer (91), using the distance function (3f),

X
ij2E.G/

�2;�
�
u.xi / � u.xj /

	
: (97)

In order to illustrate graphically the non-convexity of this regularizer from the
viewpoint of optimization, consider three summands of the “fully” anisotropic
version of (97),

X
ij2E.G/

X
k2Œd �

�2;�
�
uk.x

i /� uk.x
j /
	
: (98)

defined on edges that meet pairwise in a common vertex,

�2;�
�
uk.x

i1/�uk.x
i2/
	C�2;�

�
uk.x

i2/�uk.x
i3/
	C�2;�

�
uk.x

i3/�uk.x
i4/
	
: (99)

Setting for simplicity and w.l.o.g. uk.xi1/ D uk.xi4/ D 0 to obtain a function of two
variables uk.xi2/, uk.xi3/ results in the corresponding graph depicted by Fig. 14. It
illustrates the presence of many non-strict local minima and that the design of a
convergent minimization algorithm is not immediate.
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Fig. 14 Top row, left: two different illustrations of the non-convex, non-smooth objective (99).
Bottom row, left: the objective (99) smoothed by replacing the distance function �2;� by �2;�;"

with " D 0:2, as defined by (3g). Right panel: sequences of iterates generated by (103) for 30
random points .z2; z3/

> (initial and final iterates are marked with red and yellow, respectively).
The regularizer enforces fitting of the components z2; z3 to the data z1 D z4 D 0 as well as
z2 D z3. It is robust in the sense that components that are too distant to either of these criteria are
not affected accordingly

Next consider a single summand �2;�.zi � zj / of (98) with two scalar variables
denoted by zi and zj for simplicity. This function can be decomposed into the
difference of two proper, lower semicontinuous (lsc), convex functions g and h:

�2;�.zi � zj / D �.zi � zj /
2 �

�
�.zi � zj /

2 � �2;�.zi � zj /
�

DW g.zi ; zj / � h.zi ; zj /; � > 1:
(100)

Applying this decomposition to each term of (98) yields

g.u/� h.u/ (101)

with g.u/ D �kLuk2 as in (64), and with h.u/ equal to the sum of all edge terms of
the form h.uk.xi /; uk.xj //; ij 2 E; k 2 Œd �, given by (100).

DC-programming (DC stands for Difference-of-Convex functions [81]) amounts
to locally minimize (101) by solving a sequence of convex problems, defined by the
closed affine majorization of the concave part �h,

ukC1 D arg min
u

g.u/� �h.uk/C hvk; u � uki	; vk 2 @h.uk/; (102)
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where @h.uk/ denotes the subdifferential of h at uk . This two-step iteration in terms
of .uk; vk/ converges under mild conditions [82]. Smoothing the problem slightly
by replacing the distance function �2;� by �2;�;" defined by (3g), and replacing
accordingly h by h", yields vk D rh".uk/ and hence turns (102) into the sequence
of problems

ukC1 D arg min
u

g.u/� hrh".uk/; u � uki: (103)

Taking additionally into account the data term ED.u/ and assuming it (or its
approximation) has quadratic form at some resolution level (section “Multiscale”),
solving (103) amounts to a sequence of Horn and Schunck type problems to which
numerical multigrid can be applied, due to the simple form g.u/ D �kLuk2. Not
any single parameter, e.g., for selecting the stepsize, has to be set in order to ensure
convergence, and available code for a variational method can be directly applied.
The price to pay for this convenience is a moderate convergence rate.

Figure 14 illustrates the beneficial effect of smoothing and robustness of the non-
convex regularizer: Only the components of points . z2

z3 / that are close enough to the
data z1 D uk.xi1/ D z4 D uk.xi4/ D 0, as specified by �, are fitted to these data.
For distant points with z2 	 z3, regularization enforces z2 D z3 or does not affect
them at all if jz2 � z3j is large.

Applying the scheme (103) to (97) instead of (98) is straightforward. This does
not affect g.u/ but merelyrh" in (103), due to replacing the scalar variables in (100)
by the corresponding vectors.

4 The Assignment Approach to Optical Flow Estimation

In this section approaches to determining the assignment field u.x; t/ (4) are
considered that establish the correspondence (2) of a given feature mapping g.x; t/
in two given images.

The following sections conform to a classification of these approaches. Both the
scope and the application areas associated with each class of approaches overlap
with the variational approach of Sect. 3 but otherwise differ. The presentation
focuses on the former aspects and the essential differences, whereas an in-depth
discussion of the latter aspects is beyond the scope of this survey.

Section “Local Approaches” discusses local approaches to the assignment
problem, whereas the remaining three sections are devoted to global approaches.
In section “Assignment by Displacement Labeling” the correspondence problem
is reformulated as a labeling problem so that methods for solving the Maximum
A Posteriori (MAP) problem with the corresponding Markov random field (MRF)
model can be applied. Assignment by variational image registration is briefly
considered in section “Variational Image Registration.”
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Local Approaches

Key feature of the class of assignment approaches is the restriction of the set of
feasible assignment fields u.x/ to a finite set. This set is defined by restricting at
each location fxi gi2Œn� 2 ˝ the range of u.xi / 2 U.xi / to a finite set U.xi /.

Local approaches determine the optimal u.xi / independently, i.e., they solve for
each i 2 Œn�

u.xi / 2 arg min
u2U.xi /

�
�
g.xi ; t/; g.xi C u; t C ıt/	: (104)

The usually small sets jU.xi /j allow exhaustive search to find an optimal solution.
Thus, the general distance function �. � ; � / is not required to be convex or
differentiable and allows for more involved formulations.

Since local methods do not make use of (nonlocal) spatial smoothness priors
w.r.t. u, they require – and, in fact, solely rely on – discriminative features, typically
derived from local images patches also used by local variational methods; see (73):

g.xi ; t/ D �f .xj ; t/	
xj2N .xi /

2 Rp; p D jN .xi /j (105)

with some neighborhood N .xi /, e.g., a square region.
In the following some common choices for � are addressed. For brevity, the

discussion omits references to xi and some fixed u D u.xi / and puts g1 WD
g.xi ; t1/, g2 WD g.xi C u; t2/ with t2 D t1 C ıt .

Template-based matching methods compare a template g1 pixel wise to a
potential match g2 and derive some similarity measure from it. Direct comparison
of gray values,

�.g1; g2/ D �.g1 � g2/ (106)

is usually avoided in favor of distance functions which are invariant to brightness or
geometric changes. Two popular choices are:

• The normalized cross-correlation [83] derives patch features which are invariant
to global additive and multiplicative changes of g by defining

gk D gk � �.gk/

.gk/

; k D 1; 2 (107)

with mean �.gk/ and standard deviation 
.gk/ of samples fgkj gj2Œp�. Then the
distance function is defined as

�NCC.g
1; g2/ D 1 � 1

p
hg1; g2i D 1

2p
�2

2.g
1 � g2/ (108)
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where the last equation follows from hgk; gki D p
2.gk/ D p.
• The Census transform creates binary descriptors

gk D
�
 RC

.gkj �mk/
�
j2Œp� 2 f0; 1g

p; k D 1; 2 (109)

with mk WD g.xi ; tk/, which approximate directional derivatives [84] and
measures the Hamming distance

�CT.g
1; g2/ D �1

�
g1 � g2	 D kg1 � g2k1 : (110)

This transformation is in particular invariant to any strictly monotonically
increasing transformation � WR 7! R uniformly applied to all components of g1

and g2.

Histogram-based methods relax the pixel-by-pixel comparison in (106) to
achieve additional invariance to geometric transformations.

Exemplarily, a method frequently used in medical images registration [85]
and stereo disparity estimation [86] is detailed. It uses the concept of mutual
information [87] to measure distances between gray-value probability distributions
Opk.f Igk/; k D 1; 2, determined as kernel density estimates [88] from the samples
fgkj gj2Œp�. Their entropies are given by

H. OpkIgk/ D �
Z
Opk.f Igk/ log Opk.f Igk/ df; k D 1; 2: (111)

The joint distribution Op1;2.f
1; f 2Ig1; g2/ is defined accordingly with joint entropy

H.Op1;2Ig1; g2/ D �
Z
Op1;2.f

1; f 2Ig1; g2/ log Op1;2.f
1; f 2Ig1; g2/ df 1df 2:

(112)
Then the mutual information defines the distance function

�MI.g
1; g2/ D H. Op1Ig1/CH. Op2Ig2/� H.Op1;2Ig1; g2/ (113)

which shows some robustness against rotation, scaling, and illumination changes.
Complex approaches such as scale-invariant feature transform (SIFT) [3] and

speeded-up robust features (SURF) [4] combine several techniques including
histogram of orientations and multiple resolution to optimize robustness, reliability,
and speed.
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Assignment by Displacement Labeling

Consider again sets U.xi / of assignment vectors as discussed in section “Local
Approaches.” In contrast to local approaches presented in the previous section, this
section is devoted to methods that simultaneously select vectors u.xi / 2 U.xi /
for all locations xi ; i 2 Œn�, based on optimization criteria that evaluate desired
properties of assignment fields u. The feasible set of u is denoted by U WD
[i2V U.xi /. It will be convenient to index locations fxi gi2V 2 ˝ by vertices
i 2 V D Œn� of a graph G D .V;E/.

As a consequence of the twofold discretization of both the underlying domain
˝ � Rd and the range of u.x/, it makes sense to associate with each location xi an
integer-valued variable

`i WD `.xi / 2 Œmi �; mi WD jU.xi /j; (114)

whose value determines the assignment vector u.xi / 2 U.xi /. This separates the
problem formulation in terms of the labeling field ` WD f`i gi2V from the set of
assignment vectors U that may vary, as is further discussed below.

Analogous to objectives (56) of variational approaches, a functional as criterion
for labelings ` defines an approach,

J.`IU/ D JD.`/C JR.`/

D
X
i2V

'i .`i IU/C
X
ij2E

'ij .`i ; `j IU/; (115)

together with an algorithm for determining an assignment field u in terms of a
minimizing labeling field `. For instance, in view of a data term like (61), a
reasonable definition of the function 'i . � IU/ of (115) is

'i .`i IU/ D �D
���Jg.xi /u`i C @tg.xi /

��
F

	
; u`i 2 U.xi /; `i 2 Œmi � (116)

where `i enumerates all possible assignment vectors u`i at xi . However, getting
back to the differences to the differential approach addressed in section “Common
Aspects and Differences,” a major motivation of formulation (115) is to disregard
partial derivatives of the feature map involved in differential variational approaches
(section “Differential Constraint Equations, Aperture Problem”) and hence to avoid
the corresponding limitations discussed in sections “Differential Motion Estimation:
Case Study (1D)” and “Multiscale.” Rather, data terms JD are directly defined by
setting up and evaluating locally possible assignments u`i 2 U.xi / that establish a
correspondence between local features (2), extracted from the given image pair,
and by defining costs 'i .`i IU/ accordingly. Notice that no smoothness of 'i is
required – any distance discussed in section “Local Approaches” may be employed
as in (116). For a discussion of the distance (113) in this connection, see [89].
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The same remarks apply to the definition of JR in (115). A common choice in
the literature however is the discrete version of the non-convex regularizer (97)

'ij .`i ; `j IU/ D �2;�.u`i � u`j IU/: (117)

The reader should notice that the non-convex regularizer (97) has been replaced
by the combinatorial version (117). Likewise, the non-convex data term (61) has
been replaced by the discrete-valued term (116). More generally, the problem
related to the variational approach to cope with the non-convexity of the data term
(section “Multiscale”) by means of a multiscale implementation (section “Multi-
scale”), and with the non-convexity of the overall functional by computing a “good”
local minimum (section “Non-convex Functionals”), has been replaced by the
combinatorial problem to determine an optimal assignment by minimizing (115).
This problem is known in the literature as maximum a posteriori (MAP) problem
w.r.t. the discrete probabilistic graphical model

pG.`IU/ D 1

Z
exp

� � J.`IU/	; Z D
X
`

exp
� � J.`IU/	; (118)

that is the problem to compute the mode arg maxpG.`IU/ of the Markov random
field pG defined on the undirected graph G. See [90,91] for background and further
details.

Many past and current research activities are devoted to this problem, across
various fields of computer science and applied mathematics. Approaches range from
integer programming techniques to various convex relaxations and combinations
thereof. To get a glimpse of the viewpoint of polyhedral combinatorics on the
problem to minimize (115), consider a single summand 'i .`i IU/ and define the
vector

�i 2 Rmi ; � i`i WD 'i .`i IU/; `i 2 Œmi �; (119)

whose components specify the finite range of the function 'i . Then the problem of
determining `i corresponding to the minimal value of 'i.`i IU/ can be rewritten as

min
�i2�mi

h�i ; �i i; (120)

which is a linear program (LP). Clearly, for general data defining �i by (119), the
vector �i minimizing (120) is a vertex of the simplex �mi corresponding to the
indicator vector �i D .0; : : : ; 0; 1; 0; : : : ; 0/> of the value `i . This reformulation
can be applied in a straightforward way to the overall problem of minimizing (115),
resulting in the LP

min
�2MG

h�; �i; (121)
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Fig. 15 Top Frame of a sequence, taken with a fast moving camera from the KITTI benchmark
(section “Benchmarks”). Bottom Optical flow estimate based on MAP inference. The disk on the
right displays the color code of flow vectors. Each image patch localized at xi where a sufficiently
discriminative feature could be extracted is associated with a set U.xi / of possible assignment
vectors u`i 2 U.xi /. The displayed assignment field u WD fu`i gi2V is determined by a labeling

field ` minimizing the functional (115). The latter combinatorial task has been solved to global
optimality by an approach combining convex relaxation and integer programming [93]. Global
optimality enables model validation: any deficiencies of the assignment field estimate are solely
due to the model components, feature extraction, and constraints, as encoded by the MRF (118)
through J.`IU/

defined over the so-called marginal polytope MG . This polytope is the convex hull
of feasible vectors �, as is the simplex�mi in (120) for the feasible vectors �i . The
combinatorial complexity of determining the integer-valued minimizer of (115) is
reflected by the complexity of the marginal polytopeMG . This complexity is due to
the interaction of variables `i ; `j as defined by the edges ij 2 E of the underlying
graph, besides the integer constraints `i 2 Œmi �; 8i 2 Œn�.

Formulation (121) is the starting point for convex relaxations by optimizing over
simpler polytopes, defined by a subset of inequalities that specify facets of MG . The
recent paper [92] reports a comprehensive evaluation of a broad range of approaches
to problem (121). Figure 15 illustrates an application to optical flow estimation.

While research on inference methods for graphical models is supporting the
design of new approaches to optical flow estimation, the need to restrict the range
of u to a finite set U is a significant restriction. As a consequence, approaches either
exploit prior knowledge about u, so as to enable a covering of the relevant range of
u with high resolution through the set U with bounded size jU j, or solve problem
(117) once more after refining U , based on a first estimate of u.

For instance, the work [94] exploits the probabilistic model (118) in order
to estimate locally the uncertainty of a first estimate u, which in turn is
used to refine the set U so as to accommodate the discretization to the local
variability of u.x/. The approach [95] first determines a coarse estimate of
u in a preprocessing stage by global phase-based correlation, followed by
defining possible refinements of u.x/ in terms of U . The authors of [96]
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rely on a prior estimate of the fundamental matrix F (34) using standard
methods, which enables to properly define U based on the epipolar constraint
(38).

In a way, while the former two approaches mimic range refinement of variational
methods through representing u at multiple scales (section “Multiscale”), the latter
approach exploits geometrical prior knowledge in a similar way to variational
methods as discussed in section “Geometrical Prior Knowledge.” Future research
during the next decade will have to reveal more clearly the pros and cons of these
related methods.

Variational Image Registration

The objective of image registration is to assign two images in terms of a diffeomor-
phism uW˝ ! ˝ of the underlying domain. A major motivation for this inherent
smoothness of u has been applications to computational anatomy [97], based on
fundamental work of Grenander, Dupuis, Trouvé, Miller, Younes, and others –
cf. [97–100] and references therein.

Another basic motivation for the methodology of image registration is the
use of point features, so-called landmarks, for establishing sparse assignments,
which need to be interpolated in a subsequent step to obtain a transform of the
entire underlying domain. This is usually accomplished by kernel functions that
span a corresponding Hilbert space of smooth functions with bounded point-
evaluation functional [101, 102]. Interpolation with thin-plate splines is a well-
known example, and extensions to approximating deformations are straightfor-
ward. See [103, 104] for corresponding overviews in connection with medical
imaging.

The large deformation diffeomorphic metric matching (LDDMM) approach [99,
100, 105] that emerged from the works cited above has evolved over the years into
a theoretical and computational framework for diffeomorphic image registration. In
particular, the application to the assignment of point sets, in connection with kernel
functions, leads to a canonical system of ODEs whose numerical solution generates
a diffeomorphic assignment along a geodesic path on the diffeomorphism group.
See [106] for recent references and an extension for better handling deformations at
multiple scales.

The importance of this framework is due to the well-developed mathematical
basis and due to its broad applicability in the fields of computational anatomy
and medical imaging. The mathematical relations to continuum and fluid mechan-
ics and the corresponding relevancy to imaging problems with physical prior
knowledge (cf. section “Physical Prior Knowledge”) are intriguing as well. In the
field of computer vision, deformable shape matching constitutes a natural class
of applications, unlike the more common optical flow fields in natural videos
that typically exhibit discontinuities, caused by depth changes and independently
moving objects.
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5 Open Problems and Perspectives

Unifying Aspects: Assignment by Optimal Transport

The mathematical theory of optimal transport [107, 108] provides a general
formulation of the assignment problem that bears many relations to the approaches
discussed so far.

Consider again the setup discussed in section “Assignment by Displacement
Labeling”: At each location xi indexed by vertices i 2 V D Œn�, a vector u.xi / 2
U.xi / from a set of candidates U.xi / has to be selected. Put U D [i2Œn�U.xi /.
Denote by V 0 the index set of all locations fxi C u.xi /gu.xi /2U.xi /; 8i 2 V , that
u may assign to the locations indexed by V . Then this setup is represented by the
bipartite graphG D .V; V 0IE/ with edge set E D fij 2 V �V 0W 9u 2 U ; xi Cu D
xj g. The first term of the objective (115) specifies edge weights 'i .`i IU/ for each
edge corresponding to the assignment xi C u`i D xj , and minimizing only the first
term

P
i2V 'i .`i IU/ would independently select a unique vector u.xi / from each

set U.xi /; i 2 V , as solution to (120).
A classical way to remove this independency is to require the selection of non-

incident assignments, that is, besides uniquely assigning a vector u 2 U.xi / to
xi ; 8i 2 V , it is required that there is at most one correspondence xi C u D xj

for all j 2 V 0. This amounts to determining an optimal weighted matching in the
bipartite graph G D .V; V 0IE/. Formally, collecting the edge weights 'i .`i IU/ by
a vector � 2 Rm; m DPi2V mi , with subvectors given by (119), the LP

min
�2RjE.G/j

h�; �i subject to � � 0; BG� � 1jV [V 0j; BG 2 f0; 1gjV[V 0j�jEj;

(122)
has to be solved where BG is the incidence matrix of graph G. It is well known
that the polyhedron R

jEj
C \ f�WBG� � 1jV[V 0jg is integral [109], which implies a

binary solution � 2 f0; 1gjEj to (122) satisfying the required uniqueness condition.
Note that this condition may be regarded as a weak regularity condition enforcing a
minimal degree of “smoothness” of the assignment field u.

The connection to optimal transport can be seen by reformulating problem (122).
Put n0 D jV 0j and let the matrix c 2 Rn�n0

encode the costs of assigning
(transporting) location xi to xj D xi C u; u 2 U.xi /. Then consider the problem

min
�2Rn�n0

hc; �i subject to � � 0; �1n0 D 1n; �
>1n � 1n0 ; n � n0; (123)

where the unknowns are deliberately denoted again by �. The second constraint
says that each node i 2 V (location xi ) is uniquely assigned to some node j 2 V 0
(location xj ). The third constraint says that at most one vertex i 2 V is assigned to
each j 2 V 0. The last condition n0 � n naturally holds in practical applications. It
is straightforward to show [110, Prop. 4.3] that the solution � 2 f0; 1gn�n0

to (123)
is again integral.
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In the case n D n0, problem (123) equals the linear assignment problem, which
is a discrete version of Monge-Kantorovich formulation of the optimal transport
problem. The constraints of (123) then define the Birkhoff polytope, and the
minimizer � at some vertex of this feasible set is a permutation matrix that uniquely
maps V and V 0 onto each other. Matrices � that are not vertices (extreme points)
of the polytope are doubly stochastic; hence rows �i;� 2 �n; i 2 Œn� and columns
��;j ; j 2 Œn� represent nondeterministic assignments of vertices i 2 V and j 2 V 0,
respectively.

The general formulation [107] considers Polish probability spaces .X ; �X /,
.Y; �Y / with Borel probability measures �X 2 P.X /; �Y 2 P.Y/, and the set of
coupling measures, again deliberately denoted by�, that have�X ; �Y as marginals,

M.�X ; �Y / D
˚
� 2 P.X � Y/W�.A � Y/ D �X .A/; �.X �B/ D �Y .B/;

8A � B.X /; 8B � B.Y/


:

(124)
Given a Borel cost function cWX �Y ! R[fC1g, the problem analogous to (123)
in the case n D n0 reads

inf
�2M.�X ;�Y /

Z
X�Y

c.x; y/d�.x; y/: (125)

A central question concerns conditions on c that imply existence of deterministic
minimizers � of (125), that is, existence of a measurable function T WX ! Y
such that for random variables .X; Y / with law �, the relation Y D T .X/ holds.
The assignment T is called transportation map that “pushes forward” the “mass”
represented by �X onto �Y , commonly denoted T#:

T#�X D �Y with �Y .B/ D �X .T
�1.B//; 8B 2 B.Y/: (126)

Likewise, � is concentrated on the graph of T , akin to the concentration of
minimizers of (123) on a set of binary matrices.

Due to its generality formulation, (125) provides a single framework for address-
ing a range of problems, related to optical flow estimation by assignment. This
particularly includes:

• The representation of both discrete and continuous settings, as sketched above,
and the applicability to the assignment of arbitrary objects, as defined by the
spaces X ;Y .

• The focus on the combinatorial nature of the assignment problem, on convex
duality and tightness or lack of tightness of the convex relaxation (125), together
with a probabilistic interpretation in the latter case.

• Conservation of mass reflects the invariance assumption underlying (2) and (6),
respectively.

• The differential, dynamic viewpoint: Let X D Rd and define the cost function
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c.x; y/ D kx � yk2 (127)

and the Wasserstein space
�
P2.X /;W2

	
of Borel probability measures

P2.X / WD
˚
�X 2 P.X /W

Z
X
kx � yk2d�X .x/ <1; 8y 2 X



; (128)

equipped with the Wasserstein distance

W2.�X ; �
0
X / WD

�Z
X�X
kx � yk2d�.x; y/

�
; 8� solving (125);

(129)
with �Y replaced by �0

X in (125). Then the path .�X ;t / defined by

�X ;t D
�
.1 � t/I C tT 	#�X (130)

and some optimal map T via (126) satisfies the continuity equation

d

dt
�t C div.vt�t / D 0 (131)

with velocity field vt WRd ! Rd given by vt D .T � I / ı ..1 � t/I C tT /�1,
8t in the sense of distributions. Equation (131) provides a natural connection
to continuum and fluid mechanics (cf., e.g., [111]) and also to flows generating
diffeomorphic assignments under additional assumptions [100, Ch. 11]. Com-
paring (131) and (58) shows that, if g is regarded as a density for the scalar case
p D 1, condition (57) is a strong assumption implying divu D 0.

The generality of this framework explains too, however, why the regularity of
solutions to the Monge-Kantorovich problem is a subtle issue, even when given
as deterministic assignment T . This is also apparent through Euler’s equation (131),
which lacks any viscous term that would induce some regularity.

From this viewpoint, much of the research related to variational optical flow
estimation, and to the related problems discussed in Sect. 4, can be understood as:

(i) Interplay between modeling additional terms that induce a desired degree of
spatial regularity

(ii) Investigation of how this affects relaxation of the assignment problem from the
optimization point of view and the accuracy of its solution.

As a consequence, no sharp boundaries can (and should) be defined that separate
these subfields of research. For instance,
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– The paper [112] suggested an early heuristic attempt to combine bipartite graph
matching and thin-plate spline-based registration.

– The work [113] combines smoothing with radial basis functions and MRF-based
labeling (section “Assignment by Displacement Labeling”) for medical image
registration.

– More generally, concerning image labeling, modeling spatial context by the edge-
indexed terms 'ij of the objective (115) entails the need to relax combinatorially
complex polyhedral feasible sets like the marginal polytope in (121), whose
vertices may not correspond to deterministic assignments, unlike assignments
as solutions in the simpler case (122).

– The authors of [114] introduce a smoothing operator to solve numerically the
Monge-Kantorovich problem.

– In [115] a related objective from continuum mechanics is proposed that, for a
limiting value of some parameter, models a viscous fluid, hence ensures spatial
regularity in a physically plausible way, as opposed to the pure continuity
equation (131) that is lacking any such term. Assignments are computed by
numerically tracing corresponding geodesic paths.

– Much more general objectives for assignments are addressed in [116] that take
explicitly into account the metric structure of the underlying space X . The
problem to “linearize” this combinatorially complex objective in terms of the
Monge-Kantorovich problem is studied in [110], along with the problem to
define a cost function c so as to preserve the discriminative power of the original
objective as much as possible.

– The recent work [117] exploits the Wasserstein distance (129) so as to solve
simultaneously template-based assignment and image segmentation, by globally
minimizing a corresponding joint variational objective.

This sample of the literature suggests to conclude that in the field of variational
image registration (e.g., [100, 115]), sophisticated variational approaches exist
that are satisfying in both respects (i),(ii) discussed above: these approaches
clearly exhibit their properties mathematically, and they induce regularity without
compromising accuracy of assignments, due to a good agreement with the physical
properties of the objects being matched.

Outside these fields, a similar quality only holds for variational approaches to
optical flow estimation that are constrained by – again: physically motivated – state
equations (section “Physical Prior Knowledge”). A similar level of rigor has not
been reached yet in a major application area of optical flow estimation: motion-
based analysis of videos of unrestricted scenes with uncontrolled viewpoint changes
and with independently moving rigid and articulated objects. This deficiency of
related models is aggravated by the need for natural extensions of frame-to-
frame assignments to the permanent analysis of dynamic scenarios over time
(cf. section “Probabilistic Modeling and Online Estimation”).
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Motion Segmentation, Compressive Sensing

Research on compressive sensing [118, 119] and corresponding applications has
been pervading all fields of empirical data analysis, including image reconstruction
and more recently video analysis. A central theme is provable guarantees of signal
recovery in polynomial runtime using sub-Nyquist sampling rates and convex
relaxations of combinatorial objective functions for signal reconstruction. For
instance, the most common scenario concerns the recovery of u 2 Rn fromm� n

linear measurements Au D b 2 Rm, by minimizing

min
u
kuk1 subject to Au D b; (132)

under the assumption that u is k-sparse, i.e.,

kuk0 WD jsupp.u/j D ˇ̌fi 2 Œn�W ui ¤ 0gˇ̌ � k: (133)

The objective in (132) constitutes a convex relaxation of the combinatorial objective
kuk0, and suitable conditions on A, e.g., A is close to an isometry on the subset of
2k-sparse vectors, guarantee unique recovery of u with high probability.

This section presents next an extension of this basic reconstruction principle to
video analysis by sketching the recent work reported by [120]. Let

ft 2 Rn; t 2 ŒT �; (134)

denote the raw image sequence data in terms of vectorized image frames ft ; t D
1; 2; : : : ; T . Assuming a stationary camera as in surveillance applications, the
objective is to separate the static background from objects moving in the foreground.
The ansatz is based on the following modeling assumptions:

• At each point of time t 2 T , image data are only sampled on a subset ˝t � ˝
of the discretized domain˝ , resulting in subvectors

f˝t ; t 2 ŒT �: (135)

The sample set ˝t may vary with t .
• The variation of components of f˝t corresponding to the static background is

caused by global smooth illumination changes. Hence, this part of f˝t can be
represented by a low-dimensional subspace

U˝t vt ; U˝t 2 Rj˝t j�nU ; t 2 ŒT �; (136)

generated by nU orthonormal columns of a matrix Ut that are subsampled on˝t

and some coefficient vector vt . Research in computer vision [121, 122] supports
this subspace assumption.
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• Objects moving in the foreground cover only small regions within˝ . Hence they
can be represented by vectors

s˝t with jsupp.s/j � n: (137)

Putting all together the model reads

f˝t D U˝t vt C s˝t ; t 2 ŒT �; (138)

and convex relaxation of minimizing jsupp.s/j due to (137) leads to the recovery
approach

min
U;vt ;s˝t

ks˝t k1 subject to U˝t vt C s˝t D f˝t : (139)

Comparison to (132) shows similar usage of the sparsity-inducing `1 norm and
subsampled measurements (135) as input data. On the other hand, the low-
dimensional representation (136) of the static part of the video is estimated as
well, and the entire video is recovered in terms of Ut (hence U rather than U˝t
is optimized in (139)). In fact, this joint optimization problem is non-convex and
handled in [120] by alternating optimization:

– For fixed Ut , problem (139) is solved by applying ADMM (cf. section “Non-
smooth Convex Functionals”) to the augmented Lagrangian L�.U; vt ; s˝t ;w˝t /
with multiplier vector w˝t and parameter � as in (95).

– Having determined vt ; s˝t ;w˝t , the subspace Ut is tracked by performing gra-
dient descent with respect to L. � ; vt ; s˝t ;w˝t / on the Grassmannian G.nU ;Rn/

(cf., e.g., [123]), resulting in UtC1.

The closely related static viewpoint on the same problem reveals its relevancy to
several important research directions. Let

F D Œf1; : : : ; fT � D LC S (140)

denote the whole video data that, due to the reasoning above, are supposed to be
decomposable into a low-rank matrix L and a sparse matrix S . The corresponding
convex relaxation approach [124] reads

min
L;S
kLk� C ˛kSk1 subject to LC S D F; (141)

where kLk� D P
i 
i .L/ denotes the nuclear norm in terms of the singular

values of L and kSk1 D P
i;j jSij j. Here, the nuclear norm k � k� constitutes a

convex relaxation of the combinatorial task to minimize the rank of L, analogous
to replacing the combinatorial objective kuk0 in (133) by kuk1 in (132). Clearly, the
online ansatz (138) along with the corresponding incremental estimation approach
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is more natural for processing long videos. The price to pay is the need to cope with
a non-convex (albeit smooth) problem, whereas the batch approach (141) is convex.

Future research will tackle the challenging, more general case of non-static
backgrounds and moving cameras, respectively. For scenarios with small displace-
ments u.x/, work that represents the state of the art is reported in [125]. Results
in computer vision that support subspace models and low-rank assumptions have
been established [126], and the problem of clustering data lying in unknown low-
dimensional subspaces has received considerable attention [127–129].

From a broader perspective, video analysis and motion-based segmentation
provide attractive connections to research devoted to union-of-subspaces models
of empirical data and relevant compressive sensing principles [130–132] and
to advanced probabilistic models and methods for nonparametric inference
[133, 134].

Probabilistic Modeling and Online Estimation

There is a need for advanced probabilistic models, and three related aspects of
increasing difficulty are briefly addressed:

• A persistent issue of most variational models of mathematical imaging, including
those for optical flow estimation, concerns the selection of appropriate hyper-
parameter values, like the parameter 
 of (62) weighting the combination of
data term and regularizer (56). In principle, Bayesian hierarchical modeling
[135] provides the proper framework for calibrating variational models in this
respect. The paper [136] illustrates an application in connection with optical
flow estimation, based on the marginal data likelihood [137] interpreted as
hyperparameter (model) evidence.

Estimating hyperparameter values from the given data in this way entails
the evaluation of high-dimensional integrals for marginalization, commonly
done using Laplace’s method and a corresponding approximation by Gaussian
(quadratic) integrals [138, 139]. A validation for complex high-dimensional
posterior distributions encountered in variational imaging is involved, however,
and is also stimulating more recent research in the field of statistics [140].

Using discrete variational models (section “Assignment by Displacement
Labeling”) aggravates this problem, due to considerable computational costs
and since no widely accepted methods have been established analogous to the
abovementioned approximations.

• Computational costs in connection with runtime requirements become a serious
problem when dynamic scenarios are considered. While extensions of the
domain to ˝ � Œ0; T � like in (82) are straightforward mathematically and have
proven to significantly increase accuracy of optical flow estimation, employing
a static model in terms of elliptic Euler-Lagrange systems to a dynamic system
appears somewhat odd, not to mention the need to shift the time interval Œ0; T �
along the time axis in order to analyze long image sequences.
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Such extensions appear more natural in connection with dynamic physical
models constraining optical flow estimation, as opposed to stationary formula-
tions like (88). See [141] for a corresponding approach to data assimilation [142].
A nice feature of this method is the ability to estimate initial conditions that are
generally unknown, too. On the other hand, the computational costs necessitate to
propagate a low-dimensional POD-projection of the state variables (POD: proper
orthogonal decomposition) since the control of dynamical systems [70] entails
looping forward and backward through the entire time interval.

• The last remark points to the need for online estimation methods that are causal
and optimal, in connection with the analysis of dynamical system through image
analysis. Again the proper framework is known since decades: Given stochastic
state and observation processes

S D fStgt�0; G D fGt gt�0; (142)

stochastic filtering[143] amounts to determine the conditional distribution of St
given the observation history and to evaluate it in terms of expectations of the
form EŒ'.St /jgs; 0 � s � t �, for some statistic '. � / of interest (e.g., simply
'.St / D St ) and conditioned on realizations gs of Gs; s 2 Œ0; t �. Most research
during the last decade considered the design of particle filters [143, 144] to the
estimation of low-dimensional states based on image measurements. This does
not scale-up however to high-dimensional states like optical flows St D ut .

An attempt to mimic online estimation in connection with instationary optical
flows related to experimental fluid dynamics is presented in [68], with states
and their evolution given by vorticity transport. For low signal-to-noise ratios
and sufficiently high frame rates, the approach performs remarkably well.
Another dynamical computer vision scenario is discussed in the recent work
[57]. Here the states St D .zt ; fht ; Rt g/ 2 Rn � SE.3/ are dense depth-maps
zt (cf. (83)) together with varying motion parameters fht ; Rt g describing the
observer’s motion relative to the scene, to be estimated from image sequence
features gt as measurements via optical flow estimates ut – see Fig. 13. The
approach involves prediction and fusion steps based on Gaussian approximation
and joint optimization, yet cannot be considered as direct application of the
stochastic filtering framework, in a strict sense. This assessment applies also to
labeling approaches (section “Assignment by Displacement Labeling”) and their
application to dynamic scenarios.

6 Conclusion

Optical flow estimates form an essential basis for low-level and high-level image
sequence analysis and thus are relevant to a wide range of applications. Corre-
sponding key problems, concepts, and their relationships were presented, along with
numerous references to the literature for further study. Despite three decades of
research, however, an overall coherent framework that enables to mathematically
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model, predict, and estimate the performance of corresponding computational
systems in general scenarios is still lacking. This short survey will hopefully
stimulate corresponding methodological research.

7 Basic Notation

List of major symbols used in the text
Symbol Brief description Reference
r.h.s. abbr.: right-hand side (of

some equation)
w.r.t. abbr.: with respect to
w.l.o.g. without loss of generality
LP linear program
1n 2 Rn .1; 1; : : : ; 1/>
Œn�; n 2 N integer range f1; 2; : : : ; ng
Œn�0; n 2 N integer range

f0; 1; : : : ; n � 1g
˝ � Rd image domain; typically

d 2 f2; 3g
x D �x1; : : : ; xd

	> 2 ˝ image point
u.x; t/ 2 Rd assignment, motion or

optical flow field
(4), (7), (8)

Sections “Assignment
Fields”
and “Motion Fields”

X D .X1; X2; X3/
> 2

R3
scene point

y 2 P2; Y 2 P3 homogeneous
representation of

Section “Two-View
Geometry”

image and scene points x
and X , resp.

SO.3/; so.3/ special orthog. group and
its Lie algebra

SE.3/ group of Euclidean (rigid)
transf. of R3

fh;Rg 2 SE.3/ Euclidean transformation
of R3

(28)

Œq�� 2 so.3/; q 2 R3 skew-symm. matrix
defined by

(continued)
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Symbol Brief description Reference
Œq��X D q �X; 8X 2
R3

K 2 R3�3 camera matrix (internal
parameters)

Section “Two-View
Geometry”

F;E 2 R3�3 fundamental and essential
matrix

Section “Two-View
Geometry”

f .x; t/; x 2 ˝; t 2 R image sequence
@i D @

@xi
; i 2 Œd � spatial partial derivative

@t D @
@t

temporal partial derivative

@˛ D @j˛j

@
˛1
1 ���@˛dd

multi-index notation

˛ 2 Nd ,
j˛j DPi2Œd � ˛i
!˛ D !˛1

1 � � �!˛dd monomial from ! 2 Rd

rf .x; t/ D
�
@1f .x;t/

:::

@d f .x;t/

�
spatial gradient

rt f .x; t/ D
� rf .x;t/
@t f .x;t/

�
spatio-temporal gradient

divu divergence
P

i2Œd � @iui of
a vector field u

� Laplace operatorP
i2Œd � @2

i

g.x; t/ 2 Rp; p � 1 feature mapping (specific
meaning
and p depend on the
context)

Jg.x/ D��rgi .x/	j
�
i2Œp�;j2Œd �

Jacobian matrix of
g.x/ 2 Rp at x 2 Rd

Jg;t .x; t/ D��rt gi .x; t/	j
�

i2Œp�
j2Œd �[ftg

Jacobian of g.x; t/ 2 Rp

at .x; t/ 2 RdC1

Og.!/ D Fg.!/ D�
Fg/

�
!/

Fourier transform of g page 1952, (17)

hx; x0i DPi xix
0
i Euclidean inner product

kxk D hx; xi1=2 Euclidean `2 norm
kxk1 DPi jxi j `1 norm
diag.x/ diagonal matrix with

vector x as diagonal
kerA nullspace of the linear

mapping A
trA DPi Ai;i trace of matrix A

(continued)
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Symbol Brief description Reference
hA;Bi D tr.A>B/ matrix inner product
kAkF D hA;Ai1=2 Frobenius norm
�WR! RC distance function page 1948, (3)
ıC .x/ D(

0; x 2 C
C1; x 62 C

indicator function of a

closed convex set
C � Rd

˘C orthogonal projection
onto
a closed convex set C

�n � Rn probability simplex page 1985, (119)
fx 2 RnWPi2Œn� xi D
1I x � 0g

Cross-References

�Compressive Sensing
�Duality and Convex Programming
�Energy Minimization Methods
� Iterative Solution Methods
�Large-Scale Inverse Problems in Imaging
�Linear Inverse Problems
�Non-Linear Image Registration
�Regularization Methods for Ill-Posed Problems
� Splines and Multiresolution Analysis
� Statistical Methods in Imaging
�Total Variation in Imaging

References

1. Margarey, J., Kingsbury, N.: Motion estimation using a complex-valued wavelet transform.
IEEE Trans. Signal Process. 46(4), 1069–1084 (1998)

2. Bernard, C.: Discrete wavelet analysis for fast optic flow computation. Appl. Comput.
Harmon. Anal. 11, 32–63 (2001)

3. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis.
60(2), 91–110 (2004)

4. Bay, H., Ess, A., Tuytelaars, T., Ban Gool, L.: Speeded-up robust features (SURF). Com-
put. Vis. Image Underst. 110(3), 346–359 (2008)

5. Brown, M., Burschka, D., Hager, G.: Advances in computational stereo. IEEE Trans. Pat-
tern Anal. Mach. Intell. 25(8), 993–1008 (2003)

6. Morel, J.M., Yu, G.: ASIFT: a new framework for fully affine invariant image comparison.
SIAM J. Imaging Sci. 2(2), 438–469 (2009)

http://dx.doi.org/10.1007/978-1-4939-0790-8_6
http://dx.doi.org/10.1007/978-1-4939-0790-8_7
http://dx.doi.org/10.1007/978-1-4939-0790-8_5
http://dx.doi.org/10.1007/978-1-4939-0790-8_9
http://dx.doi.org/10.1007/978-1-4939-0790-8_2
http://dx.doi.org/10.1007/978-1-4939-0790-8_1
http://dx.doi.org/10.1007/978-1-4939-0790-8_39
http://dx.doi.org/10.1007/978-1-4939-0790-8_3
http://dx.doi.org/10.1007/978-1-4939-0790-8_28
http://dx.doi.org/10.1007/978-1-4939-0790-8_53
http://dx.doi.org/10.1007/978-1-4939-0790-8_23


Optical Flow 1999

7. Sabater, S., Almansa, A., Morel, J.: Meaningful matches in stereovision. IEEE Trans. Pat-
tern Anal. Mach. Intell. 34(5), 930–942 (2012)

8. Black, M., Anandan, P.: The robust estimation of multiple motions: parametric and piecewise-
smooth flow fields. Comput. Vis. Image Underst. 63(1), 75–104 (1996)

9. Auslender, A., Teboulle, M.: Asymptotic Cones and Functions in Optimization and Varia-
tional Inequalities. Springer, New York (2003)

10. Rockafellar, R., Wets, R.J.B.: Variational Analysis, 2nd edn. Springer, Berlin/New York
(2009)

11. Sun, D., Roth, S., Black, M.: A quantitative analysis of current practices in optical flow
estimation and the principles behind them. Int. J. Comput. Vis. 106(2), 115–137 (2013)

12. Bruhn, A., Weickert, J., Kohlberger, T., Schnörr, C.: A multigrid platform for real-time motion
computation with discontinuity-preserving variational methods. Int. J. Comput. Vis. 70(3),
257–277 (2006)

13. Gwosdek, P., Bruhn, A., Weickert, J.: Variational optic flow on the Sony Playstation
3 – accurate dense flow fields for real-time applications. J. Real-Time Image Process.
5(3),163–177 (2010)

14. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge
University Press, Cambridge (2000)

15. Faugeras, O., Luong, Q.T.: The Geometry of Multiple Images. MIT, Cambridge/London
(2001)

16. Longuet-Higgins, H., Prazdny, K.: The interpretation of a moving retinal image. Proc. R.
Soc. Lond. B 208, 385–397 (1980)

17. Prazdny, K.: Egomotion and relative depth map from optical flow. Biol. Cybern. 36, 87–102
(1980)

18. Kanatani, K.: Transformation of optical flow by camera rotation. IEEE Trans. Pat-
tern Anal. Mach. Intell. 10(2), 131–143 (1988)

19. Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo
vision. In: Proceedings of the IJCAI, Vancouver, vol. 2, pp. 674–679 (1981)

20. Nagel, H.H.: Constraints for the estimation of displacement vector fields from image
sequences. In: Proceedings of the International Joint Conference on Artificial Intelligence,
Karlsruhe, pp. 945–951 (1983)

21. Hildreth, E.: The computation of the velocity field. Proc. R. Soc. B 221, 189–220 (1984)
22. Werkhoven, P., Toet, A., Koenderink, J.: Displacement estimates through adaptive affinities.

IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 658–663 (1990)
23. Werkhoven, P., Koenderink, J.: Extraction of motion parallax structure in the visual system I.

Biol. Cybern. 83, 185–191 (1990)
24. Werkhoven, P., Koenderink, J.: Extraction of motion parallax structure in the visual system

II. Biol. Cybern. 63, 193–199 (1990)
25. Verri, A., Poggio, T.: Motion field and optical flow: qualitative properties. IEEE Trans. Pat-

tern Anal. Mach. Intell. 11(5), 490–498 (1989)
26. Adelson, E., Bergen, J.: Spatiotemporal energy models for the perception of motion.

J. Opt. Soc. Am. A 2(2), 284–299 (1985)
27. Heeger, D.: Optical flow using spatiotemporal filters. Int. J. Comput. Vis. 1(4), 279–302

(1988)
28. Fleet, D., Jepson, A.: Computation of component image velocity from local phase informa-

tion. Int. J. Comput. Vis. 5(1), 77–104 (1990)
29. Horn, B., Schunck, B.: Determining optical flow. Artif. Intell. 17(1–3), 185–203 (1981)
30. Nagel, H.H., Enkelmann, W.: An investigation of smoothness constraints for the estimation

of displacement vector fields from image sequences. IEEE Trans. Pattern Anal. Mach. Intell.
8(5), 565–593 (1986)

31. Anandan, P.: A computational framework and an algorithm for the measurement of visual
motion. Int. J. Comput. Vis. 2, 283–310 (1989)

32. Yuille, A., Grzywacz, N.: A mathematical analysis of the motion coherence theory.
Int. J. Comput. Vis. 3, 155–175 (1989)



2000 F. Becker et al.

33. Schnörr, C.: Determining optical flow for irregular domains by minimizing quadratic
functionals of a certain class. Int. J. Comput. Vis. 6(1), 25–38 (1991)

34. Hinterberger, W., Scherzer, O., Schnörr, C., Weickert, J.: Analysis of optical flow models in
the framework of calculus of variations. Numer. Funct. Anal. Optim. 23(1/2), 69–89 (2002)

35. Weickert, J., Schnörr, C.: Variational optic flow computation with a spatio-temporal smooth-
ness constraint. J. Math. Imaging Vis. 14(3), 245–255 (2001)

36. Weickert, J., Schnörr, C.: A theoretical framework for convex regularizers in PDE–based
computation of image motion. Int. J. Comput. Vis. 45(3), 245–264 (2001)

37. Wang, J., Adelson, E.: Representing moving images with layers. IEEE Trans. Image Process.
3(5), 625–638 (1994)

38. Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: a
factorization method. Int. J. Comput. Vis. 9(2), 137–154 (1992)

39. Schnörr, C.: Computation of discontinuous optical flow by domain decomposition and shape
optimization. Int. J. Comput. Vis. 8(2), 153–165 (1992)

40. Heitz, F., Bouthemy, P.: Multimodal estimation of discontinuous optical flow using Markov
random fields. IEEE Trans. Pattern Anal. Mach. Intell. 15(12), 1217–1231 (1993)

41. Barron, J.L., Fleet, D., Beauchemin, S.S.: Performance of optical flow techniques.
Int. J. Comput. Vis. 12(1), 43–77 (1994)

42. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and
evaluation methodology for optical flow. Int. J. Comput. Vis. 92(1), 1–31 (2011)

43. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J.
Robot. Res. (IJRR) 32(11), 1231–1237 (2013)

44. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie for optical
flow evaluation. In: Fitzgibbon, A., et al. (eds.) Proceedings of the ECCV, Part IV, Florence.
LNCS vol. 7577, pp. 611–625. Springer (2012)

45. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)
46. Schnörr, C.: On functionals with greyvalue-controlled smoothness terms for determining

optical flow. IEEE Trans. Pattern Anal. Mach. Intell. 15(10), 1074–1079 (1993)
47. Bruhn, A., Weickert, J., Schnörr, C.: Lucas/Kanade meets Horn/Schunck: combining local

and global optic flow methods. Int. J. Comput. Vis. 61(3), 211–231 (2005)
48. Yuan, J., Schnörr, C., Mémin, E.: Discrete orthogonal decomposition and variational fluid

flow estimation. J. Math. Image Vis. 28, 67–80 (2007)
49. Yuan, J., Schnörr, C., Steidl, G.: Simultaneous optical flow estimation and decomposition.

SIAM J. Sci. Comput. 29(6), 2283–2304 (2007)
50. Yuan, J., Schnörr, C., Steidl, G.: Convex Hodge decomposition and regularization of image

flows. J. Math. Imaging Vis. 33(2), 169–177 (2009)
51. Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cremers, D., Bischof, H.: Anisotropic Huber-

L1 optical flow. In: Proceedings of the BMVC, London (2009)
52. Krähenbühl, P., Koltun, V.: Efficient nonlocal regularization for optical flow. In: Fitzgibbon,

A.W., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) Proceedings of the ECCV, Florence,
LNCS, vol. 7572, pp. 356–369. Springer (2012)

53. Kindermann, S., Osher, S., Jones, P.: Deblurring and denoising of images by nonlocal
functionals. Multiscale Model. Simul. 4(4), 1091–1115 (2005)

54. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale
Model. Simul. 7(3), 1005–1028 (2008)

55. Elmoataz, A., Lezoray, O., Bougleux, S.: Nonlocal discrete regularization on weighted
graphs: a framework for image and manifold processing. IEEE Trans. Image Process. 17(7),
1047–1059 (2008)

56. Volz, S., Bruhn, A., Valgaerts, L., Zimmer, H.: Modeling temporal coherence for optical
flow. In: Metaxas, D.N., Quan, L., Sanfeliu, A., Gool, L.J.V. (eds.) Proceedings of the ICCV,
Barcelona, pp. 1116–1123. IEEE (2011)

57. Becker, F., Lenzen, F., Kappes, J.H., Schnörr, C.: Variational recursive joint estimation of
dense scene structure and camera motion from monocular high speed traffic sequences.
Int. J. Comput. Vis. 105, 269–297 (2013)



Optical Flow 2001

58. Slesareva, N., Bruhn, A., Weickert, J.: Optic flow goes stereo: a variational method for
estimating discontinuity preserving dense disparity maps. In: Proceedings of the 27th DAGM
Symposium, Vienna, pp. 33–40 (2005)

59. Valgaerts, L., Bruhn, A., Mainberger, M., Weickert, J.: Dense versus sparse approaches for
estimating the fundamental matrix. Int. J. Comput. Vis. 96(2), 212–234 (2012)

60. Adrian, R.J., Westerweel, J.: Particle Image Velocimetry. Cambridge University Press,
Cambridge/New York (2011)

61. Arnaud, E., Mémin, E., Sosa, R., Artana, G.: A fluid motion estimator for Schlieren image
velocimetry. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) Proceedings of the ECCV, Graz.
LNCS, vol. 3951, pp. 198–210. Springer (2006)

62. Westerweel, J.: Fundamentals of digital particle image velocimetry. Meas. Sci. Technol. 8,
1379–1392 (1998)

63. Ruhnau, P., Gütter, C., Putze, T., Schnörr, C.: A variational approach for particle tracking
velocimetry. Meas. Sci. Technol. 16, 1449–1458 (2005)

64. Ruhnau, P., Kohlberger, T., Nobach, H., Schnörr, C.: Variational optical flow estimation for
particle image velocimetry. Exp. Fluids 38, 21–32 (2005)

65. Heitz, D., Mémin, E., Schnörr, C.: Variational fluid flow measurements from image
Sequences: synopsis and perspectives. Exp. Fluids 48(3), 369–393 (2010)

66. Vlasenko, A., Schnörr, C.: Physically consistent and efficient variational denoising of image
fluid flow estimates. IEEE Trans. Image Process. 19(3), 586–595 (2010)

67. Ruhnau, P., Schnörr, C.: Optical Stokes flow estimation: an imaging-based control approach.
Exp. Fluids 42, 61–78 (2007)

68. Ruhnau, P., Stahl, A., Schnörr, C.: Variational estimation of experimental fluid flows with
physics-based spatio-temporal regularization. Meas. Sci. Technol. 18, 755–763 (2007)

69. Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations. Springer,
Berlin/New York (1986)

70. Gunzburger, M.: Perspectives in Flow Control and Optimization. SIAM, Philadelphia (2003)
71. Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems and Applications.

Advances in Design and Control, vol. 15. SIAM, Philadelphia (2008)
72. Gunzburger, M., Manservisi, S.: Analysis and approximation of the velocity tracking problem

for Navier-Stokes flows with distributed control. SIAM J. Numer. Anal. 37(5), 1481–1512
(2000)

73. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with
applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

74. Briggs, W., Henson, V., McCormick, S.: A Multigrid Tutorial, 2nd edn. SIAM, Philadelphia
(2000)

75. Bruhn, A., Weickert, J., Feddern, C., Kohlberger, T., Schnörr, C.: Variational optic flow
computation in real-time. IEEE Trans. Image Process. 14(5), 608–615 (2005)

76. Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic, San Diego (2001)
77. Bach, F., Jenatton, R., Mairal, J., Obozinski, G.: Optimization with sparsity-inducing

penalties. Found. Trends Mach. Learn. 4(1), 1–106 (2012)
78. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical

learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1),
1–122 (2010)

79. Combettes, P., Pesquet, J.C.: Proximal splitting methods in signal Processing. In: Bauschke,
H., Burachik, R., Combettes, P., Elser, V., Luke, D., Wolkowicz, H. (eds.) Fixed-
Point Algorithms for Inverse Problems in Science and Engineering. Springer, New York
(2010)

80. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 1–108 (2013)
81. Horst, R., Thoai, N.: DC programming: overview. J. Optim. Theory Appl. 103(1), 1–43 (1999)
82. Hoai An, L., Pham Dinh, T.: The DC (difference of convex functions) programming and DCA

revisited with DC models of real world Nonconvex optimization Problems. Ann. Oper. Res.
133, 23–46 (2005)



2002 F. Becker et al.

83. Steinbrücker, F., Pock, T., Cremers, D.: Advanced data terms for variational optic flow esti-
mation. In: Magnor, M.A., Rosenhahn, B., Theisel, H. (eds.) Proceedings Vision, Modeling
and Visualization (VMV), Braunschweig, pp. 155–164. DNB (2009)

84. Hafner, D., Demetz, O., Weickert, J.: Why is the census transform good for robust optic flow
computation? In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds.) Proceedings of the
SSVM, Leibnitz. LNCS, vol. 7893, pp. 210–221. Springer (2013)

85. Viola, P., Wells, W.M. III: Alignment by maximization of mutual information. Int. J. Com-
put. Vis. 24(2), 137–154 (1997)

86. Hirschmuller, H.: Stereo processing by semiglobal matching and mutual information. IEEE
Trans. Pattern Anal. Mach. Intell. 30(2), 328–341 (2008)

87. Cover, T., Thomas, J.: Elements of Information Theory. Wiley, New York (1991)
88. Parzen, E.: On the estimation of a probability density function and the mode. Ann. Math. Stat.

33, 1065–1076 (1962)
89. Kim, J., Kolmogorov, V., Zabih, R.: Visual correspondence using energy minimization and

mutual information. In: Proceedings of the ICCV, Nice (2003)
90. Wainwright, M., Jordan, M.: Graphical models, exponential families, and variational infer-

ence. Found. Trends Mach. Learn. 1(1–2), 1–305 (2008)
91. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT,

Cambridge (2009)
92. Kappes, J., Andres, B., Hamprecht, F., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler,

B., Lellmann, J., Komodakis, N., Rother, C.: A comparative study of modern inference
techniques for discrete energy minimization problem. In: Proceedings of the CVPR, Portland
(2013)

93. Savchynskyy, B., Kappes, J., Swoboda, P., Schnörr, C.: Global MAP-optimality by shrinking
the combinatorial search area with convex relaxation. In: Proceedings of the NIPS, Lake
Tahoe (2013)

94. Glocker, B., Paragios, N., Komodakis, N., Tziritas, G., Navab, N.: Optical flow estimation
with uncertainties through dynamic MRFs. In: Proceedings of the CVPR, Anchorage (2008)

95. Mozerov, M.: Constrained optical flow estimation as a matching problem. IEEE Trans. Image
Process. 22(5), 2044–2055 (2013)

96. Yamaguchi, K., McAllester, D., Urtasun, R.: Robust monocular epipolar flow estimation. In:
Proceedings of the CVPR, Portland (2013)

97. Younes, L., Arrate, F., Miller, M.: Evolution equations in computational anatomy. NeuoImage
45(1, Suppl. 1), S40–S50 (2009)

98. Dupuis, P., Grenander, U., Miller, M.: Variational problems on flows of diffeomorphisms for
image matching. Q. Appl. Math. 56(3), 587–600 (1998)

99. Beg, M., Miller, M., Trouv’e, A., Younes, L.: Computing large deformation metric mappings
via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61(2), 139–157 (2005)

100. Younes, L.: Shapes and Diffeomorphisms. Applied Mathematical Sciences, vol. 171.
Springer, Heidelberg/New York (2010)

101. Whaba, G.: Spline Models for Observational Data. SIAM, Philadelphia (1990)
102. Buhmann, M.: Radial Basis Functions. Cambridge University Press, Cambridge/New York

(2003)
103. Rohr, K.: Landmark-Based Image Analysis. Kluwer Academic, Dordrecht/Boston (2001)
104. Modersitzki, J.: Numerical Methods for Image Registration. Oxford University Press,

Oxford/New York (2004)
105. Glaunès, J., Qiu, A., Miller, M., Younes, L.: Large deformation diffeomorphic metric curve

mapping. Int. J. Comput. Vis. 80(3), 317–336 (2008)
106. Sommer, S., Lauze, F., Nielsen, M., Pennec, X.: Sparse multi-scale diffeomorphic registration:

the kernel bundle framework. J. Math. Imaging Vis. 46(3), 292–308 (2013)
107. Villani, C.: Optimal Transport: Old and New. Springer, Berlin (2009)
108. Ambrosio, L., Gigli, N.: A user’s guide to optimal transport. In: Modeling and Optimisation

of Flows on Networks, Cetraro Lecture Notes in Mathematics, vol. 2062, pp. 1–155. Springer
(2013)



Optical Flow 2003

109. Korte, B., Vygen, J.: Combinatorial Optimization, 4th edn. Springer, Berlin (2008)
110. Schmitzer, B., Schnörr, C.: Modelling convex shape priors and matching based on the

Gromov-Wasserstein distance. J. Math. Imaging Vis. 46(1), 143–159 (2013)
111. Benamou, J.D., Brenier, Y.: A computational fluid mechanics solution to the Monge-

Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)
112. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape

contexts. IEEE Trans. Pattern Analysis Mach. Intell. 24(24), 509–522 (2002)
113. Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense image registration

through MRFs and efficient linear programming. Med. Image Anal. 12, 731–741 (2008)
114. Angenent, S., Haker, S., Tannenbaum, A.: Minimizing flows for the Monge–Kantorovich

problem. SIAM J. Math. Anal. 35(1), 61–97 (2003)
115. Wirth, B., Bar, L., Rumpf, M., Sapiro, G.: A continuum mechanical approach to geodesics in

shape space. Int. J. Comput. Vis. 93(3), 293–318 (2011)
116. Mémoli, F.: Gromov-Wasserstein distances and the metric approach to object matching.

Found. Comput. Math. 11, 417–487 (2011)
117. Schmitzer, B., Schnörr, C.: Object segmentation by shape matching with Wasserstein Modes.

In: Proceedings of the EMMCVPR, Lund. Springer (2013)
118. Candès, E., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction

from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006)
119. Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)
120. He, J., Balzano, L., Szlam, A.: Incremental gradient on the Grassmannian for online

foreground and background separation in subsampled video. In: Proceedings of the CVPR,
Providence (2012)

121. Belhumeur, P., Kriegman, D.: What is the set of images of an object under all possible
illumination conditions? Int. J. Comput. Vis. 28(3), 245–260 (1998)

122. Basri, R., Jacobs, D.: Lambertian reflectance and linear subspaces. IEEE Trans. Pat-
tern Anal. Mach. Intell. 25(2), 218–233 (2003)

123. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds.
Princeton University Press, Princeton/Woodstock (2008)

124. Candés, E., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58(3),
Article no. 11 (2011)

125. Ayvaci, A., Raptis, M., Soatto, S.: Sparse occlusion detection with optical flows. Int. J. Com-
put. Vis. 97(3), 322–338 (2012)

126. Irani, M.: Multi-frame correspondence estimation using subspace constraints. Int. J. Com-
put. Vis. 48(3), 173–194 (2002)

127. Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace struc-
tures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184
(2013)

128. Aldroubi, A.: The subspace segmentation problem, nonlinear approximations and applica-
tions. ISRN Signal Proc. Art.(417492), 13p (2013)

129. Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm, theory, and applications. IEEE
Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013)

130. Lu, Y., Do, M.: A theory for samping signals from a union of subspaces. IEEE Trans. Signal
Process. 56(6), 2334–2345 (2008)

131. Carin, L., Baraniuk, R., Cevher, V., Dunson, V., Jordan, M., Sapiro, G., Wakin, M.: Learning
low-dimensional signal models. IEEE Signal Process. Mag. 28(2), 39–51 (2011)

132. Blumensath, T.: Sampling and reconstructing signals from a union of linear subspaces. IEEE
Trans. Inf. Theory 57(7), 4660–4671 (2011)

133. Turaga, P., Veeraraghavan, A., Srivastava, A., Chellappa, R.: Statistical computations on
Grassmann and Stiefel manifolds for image and video-based recognition. IEEE Trans. Pat-
tern Anal. Mach. Intell. 33(11), 2273–2286 (2011)

134. Hjort, N., Holmes, C., Müller, P., Walker, S. (eds.): Bayesian Nonparametrics. Cambridge
University Press, Cambridge/New York (2010)

135. Cressie, N., Wikle, C.: Statistics for Spatio-Temporal Data. Wiley, Hoboken (2011)



2004 F. Becker et al.

136. Héas, P., Herzet, C., Mémin, E.: Bayesian inference of models and hyperparameters for robust
optical-flow estimation. IEEE Trans. Image Process. 21(4), 1437–1451 (2012)

137. MacKay, D.: Bayesian interpolation. Neural Comput. 4(3), 415–447 (1992)
138. Tierney, L., Kadane, J.: Accurate approximations for posterior moments and marginal

densities. J. Am. Math. Soc. 81(393), 82–86 (1986)
139. Kass, R., Tierney, L., Kadane, J.: The validity of posterior expansions based on Laplace’s

method. In: Barnard, G.A., Geisser, S. (eds.) Bayesian and Likelihood Methods in Statistics
and Econometrics, pp. 473–488. Elsevier Science, New York (1990)

140. Rue, H., Martino, S., Chopin, N.: Approximate Bayesian inference for latent Gaussian models
by using integrated nested Laplace approximations. J. R. Stat. Soc. B 71(2), 319–392 (2009)

141. Artana, G., Cammilleri, A., Carlier, J., Mémin, E.: Strong and weak constraint variational
assimilations for reduced order fluid flow modeling. J. Comput. Phys. 231(8), 3264–3288
(2012)

142. Talagrand, O., Courtier, P.: Variational assimilation of meteorological observations with the
adjoint vorticity equation. I: theory. Q. J. R. Meteorol. Soc. 113(478), 1311–1328 (1987)

143. Bain, A., Crisan, D.: Fundamentals of Stochastic Filtering. Springer, New York/London
(2009)

144. Doucet, A., Godsil, S., Andrieu, C.: On sequential Monte Carlo sampling methods for
Bayesian filtering. Stat. Comput. 10, 197–208 (2000)



Non-linear Image Registration

Lars Ruthotto and Jan Modersitzki

Contents

1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2006
2 The Mathematical Setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2007

Variational Formulation of Image Registration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2008
Images and Transformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2008
Length, Area, and Volume Under Transformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2009
Distance Functionals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2010
Ill-Posedness and Regularization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2012
Elastic Regularization Functionals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2012
Hyperelastic Regularization Functionals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2014
Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2016
Related Literature and Further Reading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2016

3 Existence Theory of Hyperelastic Registration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2018
Sketch of an Existence Proof. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2019
Set of Admissible Transformations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2021
Existence Result for Unconstrained Image Registration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2023

4 Numerical Methods for Hyperelastic Image Registration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2032
Discretizing the Determinant of the Jacobian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2032
Galerkin Finite Element Discretization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2036
Multi-level Optimization Strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2039

5 Applications of Hyperelastic Image Registration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2042
Motion Correction of Cardiac PET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2042
Susceptibility Artefact Correction of Echo-Planar MRI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2044

6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2047
Cross-References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2048
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2048

L. Ruthotto (�)
Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia, GA,
USA
e-mail: lruthott@eos.ubc.ca

J. Modersitzki
Institute of Mathematics and Image Computing, University of Lübeck, Luebeck, Germany

© Springer Science+Business Media New York 2015
O. Scherzer (ed.), Handbook of Mathematical Methods in Imaging,
DOI 10.1007/978-1-4939-0790-8_39

2005

mailto:lruthott@eos.ubc.ca


2006 L. Ruthotto and J. Modersitzki

Abstract
Image registration is to automatically establish geometrical correspondences
between two images. It is an essential task in almost all areas involving imaging.
This chapter reviews mathematical techniques for nonlinear image registration
and presents a general, unified, and flexible approach. Taking into account that
image registration is an ill-posed problem, the presented approach is based
on a variational formulation and particular emphasis is given to regularization
functionals motivated by mathematical elasticity. Starting out from one of the
most commonly used linear elastic models, its limitations and extensions to
nonlinear regularization functionals based on the theory of hyperelastic materials
are considered. A detailed existence proof for hyperelastic image registration
problems illustrates key concepts of polyconvex variational calculus. Numerical
challenges in solving hyperelastic registration problems are discussed and a
stable discretization that guarantees meaningful solutions is derived. Finally, two
case studies highlight the potential of hyperelastic image registration for medical
imaging applications.

1 Introduction

Image registration is an essential task in a variety of areas involving imaging
techniques such as astronomy, geophysics, and medical imaging; see, e.g., [11,
27, 31, 45, 52, 55, 73] and references therein. The goal of image registration is
to automatically find geometrical correspondences between two or more images
acquired; see also Fig. 1 for a simplified example. Measurements may result from
different times, from different devices, or perspectives. More specifically, one
aims to find a reasonable transformation, such that a transformed version of
the first image is similar to the second one. Mathematically, image registration
is an ill-posed problem and is thus typically phrased as a variational problem
involving data fit and regularization. The data fit or distance functional measures the
similarity of the images. The regularization functional quantifies the reasonability
of the transformation and can also be used to guarantee a mathematically sound
formulation and to favor solutions that are realistic for the application in mind.

This chapter presents a comprehensive overview of mathematical techniques
used for nonlinear image registration. A particular focus is on regularization
techniques that ensure a mathematically sound formulation of the problem and allow
stable and fast numerical solution.

Starting out from one of the most commonly used linear elastic models [10, 55],
its limitations and extensions to nonlinear regularization functionals based on the
theory of hyperelastic materials are discussed. A detailed overview of the available
theoretical results is given and state-of-the-art numerical schemes as well as results
for real-life medical imaging applications are presented.
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Fig. 1 Transforming a square into a disc: template image T is a white square on black background
(left), reference image R is a white disk on black background (not displayed), the transformation
y is visualized by showing a regular grid X as overlay on the deformed image T Œy� (right) and as
y.X/ on the template image (center); note that T Œy�.x/ D T .y.x//

2 TheMathematical Setting

The purpose of this section is to provide a brief, conceptual introduction to a
variational formulation of image registration, see section “Variational Formulation
of Image Registration”. For brevity, the presentation is restricted to a small subset
of the various configurations of the variational problem and is limited to 3D
problems which today is most relevant in medical imaging applications. Section
“Images and Transformation” defines a continuous model for images and formalizes
the concept of transformations y and transformed images T Œy�. Section “Length,
Area, and Volume Under Transformation” discusses the transformation of length,
area, and volume. These geometrical quantities play an important role for the
computation of locally invertible transformations, which are important for many
clinical applications.

After having discussed the general concepts on a rather broad level, specific
building blocks of the variational framework are examined in more detail. Section
“Distance Functionals” introduces two common choices of distance functionals D,
which measures the alignment of the images. After motivating the demand for
regularization by illustrating the ill-posedness of the variational problem in section
“Ill-Posedness and Regularization”, an overview of elastic regularization functionals
and a discussion of their limitations is given in section “Elastic Regularization
Functionals”.

Motivated by the limitations of elastic regularization functionals extensions
to hyperelastic functionals, designed to ensure invertible and reversible trans-
formations, are presented in section “Hyperelastic Regularization Functionals”.
Subsequently, section “Constraints” presents two examples that demonstrate how
constraints C can be used to restrict set of admissible transformations A, to favor
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practically relevant solutions, and most importantly, to exclude practically infeasible
solutions.

Finally, a comprehensive overview of related literature and suggestions for
further readings are provided in section “Related Literature and Further Reading”.

Variational Formulation of Image Registration

Given the so-called template image T and the so-called reference image R, the
image registration problem can be phrased as a variational problem. Following [55],
an energy functional J is defined as a sum of the data fit D depending on the input
images and the transformation and a regularization S,

J Œy� WD DŒT ;RIy�C SŒy�: (1)

The objective is then to find a minimizer y of J in a feasible set A to be described,

minJ Œy� for y 2 A: (2)

Advantages of this formulation are its great modelling potential and its modular
setting that allows to obtain realistic models tailored to essentially any particular
application.

Images and Transformation

This section introduces a continuous image model, transformations, and discusses
geometrical transformations of images. Although the image dimension is conceptu-
ally arbitrary, the description is restricted to 3D images for ease of presentation.

Definition 1 (Image). Let ˝ � R
3 be a domain, i.e., bounded, connected, and

open. An image is a one-time continuously differentiable function T W R3 ! R

compactly supported in ˝ . The set of all images is denoted by Img.˝/.

Note that already a simple transformation of an image such as a rotation requires
a continuous image model. Therefore, a continuous model presents no limitation,
even if only discrete data is given in almost all applications. Interpolation techniques
are used to lift the discrete data to the continuous space; see, e.g., [55] for an
overview. As registration is tackled as an optimization problem, continuously
differentiable models can provide numerical advantages.

Definition 2 (Transformation). Let ˝ � R
3 be a domain. A transformation is a

function y W ˝ ! R
3. For a differentiable transformations, the Jacobian matrix is

denoted by
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ry WD
�
@1y

ˇ̌
@2y

ˇ̌
@3y

�
WD
0
@@1y1 @2y1 @3y1

@1y2 @2y2 @3y2

@1y3 @2y3 @3y3

1
A :

The function u W ˝ ! R
3 satisfying y.x/ D x C u.x/ is called displacement,

ry D IC ry, where I denotes a diagonal matrix of appropriate size with all ones
on its diagonal.

Example 1. An important class of transformations are rigid transformations. Let
b 2 R

3 describes a translation and Q 2 R
3�3 a rotation matrix,

Arigid.˙/ WD fy W y.x/ D Qx C b a.e. on ˙;

b 2 R
3; Q 2 R

3�3; Q>Q D I; detQ D 1g:

A transformation y is rigid on ˙ , if y 2 Arigid.˙/.

Given an image T and an invertible transformation y, there are basically the
Eulerian or Lagrangian way to define the transformed version T Œy�; see [38,55] for
more details. In the Eulerian approach the transformed image is defined by

T Œy� W R3 ! R; T Œy�.x/ WD T .y.x//: (3)

In other words, assigning position x in T Œy� the intensity of T at position y.x/; see
illustration in Fig. 1. The Lagrangian approach transports the information .x; T .x//
to .y.x/; T .x//, where the first entry denotes location and the second intensity.
In image registration, typically, the Eulerian framework is used. However, the
Lagrangian framework can provide advantages in a constrained setting; see [38]
for a local rigidity constrained and the discussion in section “Constraints”.

Length, Area, and Volume Under Transformation

This section relates changes of length, area, and volume in the deformed coordinate
system to the gradient of the transformation y. To simplify the presentation, it is
assumed that y is invertible and at least twice continuously differentiable.

Using Taylor’s formula [18], a local approximation of the transformation at an
arbitrary point x in direction v 2 R

3 is given by

y.x C v/ D y.x/Cry.x/ vCO.jvj2/: (4)

Choosing v D hei , it can be seen that the columns of the gradient matrix ry.x/
approximate the edges of the transformed reference element; see also Fig. 2. Thus,
changes of length, area, and volume of a line segment L connecting x and x C hei ,
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Fig. 2 Visualization of a deformation of a tetrahedron and the Taylor approximation of the
transformation y. At an arbitrary point x a tetrahedron is spanned by the scaled Euclidean unit
vectors (left). The edges of the deformed tetrahedron are approximated by the columns of the
gradient ry.x/ (right). Due to this approximation property, geometric quantities such as volume,
area, and length can be related to the gradient matrix, its cofactor, and its determinant

a triangle T spanned by x, x C hej , and x C hek , and a tetrahedron P spanned by
x and the three scaled Euclidean vectors are approximately

length.y.L// D jy.x C hei /� y.x/j D j@iyj CO.h2/;

area.y.T // D h2

2

ˇ̌
@j y � @ky

ˇ̌CO.h2/;

vol.y.P // D h3 det
�
@1y

ˇ̌
@2y

ˇ̌
@3y

�
CO.h2/ D h3 detry CO.h2/;

where � denotes the outer product in R
3.

The cofactor matrix cofry summarizes, column wise, the area changes of the
three triangles spanned by x with two scaled Euclidean vectors each,

cofry D
�
@2y � @3y

ˇ̌
@3y � @1y

ˇ̌
@1y � @2y

�
2 R

3�3:

At this point, the importance of limiting the range of detry for many clinical
applications should be stressed. Due to the inverse function theorem [25, Sect. 5], a
transformation y 2 C1.˝;R3/ is locally one-to-one if detry ¤ 0. From the above
considerations, it can be seen that detry D 0 indicates annihilation of volume and
detry < 0 indicates a change of orientation. Thus, controlling the range of detry,
or analogously the range of compression and expansion of volume, ensures local
invertibility and thus is of utmost importance in practical applications.

Distance Functionals

The variational formulation of the image registration problem (2) characterizes an
optimal transformation as a minimizer of the sum of a distance and a regularization
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functional subject to optional constraints. These three building blocks will be
introduced and discussed in the following sections.

Distance functionals mimic the observer’s perception to quantify the similarity of
images. In the following, two examples of distance measures will be presented and
the reader is referred to [55] for further options. Emphasis is on a mass-preserving
distance measure, which is an attractive option for the registration of density images
such as Positron Emission Tomography (PET) images; see also section “Motion
Correction of Cardiac PET”.

A robust and widely use distance measure is the L2-norm of the intensity
differences commonly referred to as the sum-of-squared-difference (SSD),

DSSDŒy� D DSSDŒT ;RIy� D 1

2

Z
˝

.T .y.x// �R.x//2dx: (5)

For this distance measure to be effective, intensity values at corresponding points
in the reference and template image are assumed to be equal. This assumption is
often satisfied when comparing images of the same modality, commonly referred
to as mono-modal registration. Hence, DSSD is a prototype of mono-modal distance
functionals.

In some applications intensities at corresponding points differ conceptually.
Typical examples of multimodal image registration include the fusion of different
modalities like anatomy (such as CT or MRI) and functionality (such as SPECT or
PET); see, e.g., [55] for further options and discussions.

Mass densities are another example for conceptional different image intensities.
The necessity of mass-preserving transformations was first discussed in [29].
Recently, mass-preserving distance functionals were used to register images from
Positron Emission Tomography (PET); see section “Motion Correction of Cardiac
PET” and [14, 30, 60]. Another application is the correction of image distortions
arising from field inhomogeneities in Echo-Planar Magnetic Resonance Imaging;
see section “Susceptibility Artefact Correction of Echo-Planar MRI” and [15, 62].

Due to mass-preservation, change of volume causes change of intensities. Note
that the simple model for transformed images (3) does not alter image intensities.
Let V � ˝ denotes a small reference volume. Ideally, the mass of R contained in
V has to be equal to the mass of T contained in y.V /. Formally,

Z
V

R.x/dx D
Z
y.V /

T .x/dx D
Z
V

T .y.x// � detry.x/ dx; (6)

where the second equality holds by the transformation theorem [18, p. 31f], assum-
ing that the transformation is injective, continuously differentiable, orientation
preserving, and that its inverse is continuous. A natural mass-preserving extension
of the SSD distance functional thus reads

DMPŒy� WD 1

2

Z
˝

.T .y.x// � detry.x/ �R.x//2 dx: (7)
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Ill-Posedness and Regularization

A naive approach to image registration is to simply minimize the distance functional
D with respect to y. However, this is an ill-posed problem [23,27,46,55]. According
to Hadamard [41], a problem is well-posed, if there exists a solution, the solution is
unique, and the solution depends continuously on the data. If one of these criteria is
not fulfilled, the problem is called ill-posed.

In general, existence of a minimizer of the distance functional cannot be
expected. Even the rather simple SSD distance functional (5) depends in a non-
convex way on the transformation; for a discussion of more general distance
functionals, see [55, p. 112]. If the space of plausible transformations is infinite
dimensional, existence of solutions is thus critical.

A commonly used approach to bypass these difficulties and to ensure existence
is to add a regularization functional that depends convexly on derivatives of the
transformation [10, 67, 68]. This strategy is effective for distance functionals are
independent of or depend convexly on the gradient of the transformation. This is
the case in most applications of image registration, for instance, for the SSD in (5).
However, further arguments are required for the mass-preserving distance functional
in (7) due to the non-convex of the determinant; see Sect. 1.

It is also important to note that distance functionals may be affected considerably
by noise; see also [55]. This problem is often (partially) alleviated by using regu-
larization functionals based on derivatives of the transformation. This introduces
a coupling between adjacent points, which can stabilize the problem against such
local phenomena.

Note, even though regularization ensures existence of solutions, the objective
functional depends in a non-convex way on the transformation and thus a solution
is generally not unique as the following example illustrates.

Example 2. Consider an image of a plain white disc on a plain black background as
a reference image and a template image showing the same disc after a translation.
After shifting the template image to fit the reference image, both images are identical
regardless of rotations around the center of the disc. Hence, there are infinitely many
rigid transformations yielding images with optimal similarity. Regularization can be
used to differentiate the various global optimizers.

Elastic Regularization Functionals

The major task of the regularization functional S is to ensure existence of solutions
to the variational problem (2) and to ensure that these solutions are plausible for the
application in mind. Therefore, regularization functionals that relate to a physical
model are commonly used. In this section it is assumed that the transformation y is
at least one time continuously differentiable and sufficiently measurable. A formal
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definition of an elastic regularization functional and its associated function spaces
is postponed to section “Hyperelastic Regularization Functionals”.

The idea of elastic regularization can be traced back to the work of Fischler
and Elschlager [28] and particularly the landmarking thesis of Broit [10]. The
assumption is that the objects being imaged deform elastically. By applying an
external force, one object is deformed in order to minimize the distance to the second
object. This external force is counteracted by an internal force given by an elastic
model. The registration process is stopped in an equilibrium state, that is, when
external and internal forces balance.

In linear elastic registration schemes, the internal force is based on the displace-
ment u and the Cauchy strain tensor

V D V.u/ D .ruCru>/=2;

which depends linearly on u. The linear elastic regularization functional is then
defined as

SelasŒu� D
Z
˝

�.traceV /2 C � trace.V 2/ dx;

where � and � are the so-called Lamé constants [18, 53].
Benefits and drawbacks of the model Selas relate to the linearity of V in ru. Its

simplicity has been exploited for the design of computationally efficient numerical
schemes such as in [37]. A drawback is the limitation to small strains, that is,
transformations with kruk � 1; see [10,18,55]. For large geometrical differences,
the internal forces are modelled inadequately and thus solutions may become
meaningless.

While the motivation in [10] is to stabilize registration against low image quality,
elastic regularization also ensures existence of solutions in combination with many
commonly used distance functionals. Another desired feature of this regularizer is
that smooth transformations are favored, which is desirable in many applications.

In order to overcome the limitation to small strains, Yanovsky et al. [72] proposed
an extension to nonlinear elasticity. They used the Green-St.-Venant strain tensor

E D E.u/ D .ruCru> Cru>ru/=2; (8)

which is a quadratic in ru. Revisiting the computations of changes in length in
section “Length, Area, and Volume Under Transformation”, it can be shown that E
penalized changes of lengths. The quadratic elastic regularization functional of [72]
reads

SquadŒu� D
Z
˝

�.traceE/2 C � trace.E2/ dx: (9)

While relaxing the small strain assumption, the functional is not convex as the fol-
lowing example shows. Thus, additional arguments are required to prove existence
of a solution to the variational problem based on Squad.
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Fig. 3 Non-convexity of
Squad in (9) also used in
Yanovsky et al. [72]. The
value of Squad is plotted for
transformations
yc WD x C diag.c; c; 0/x,
c 2 Œ�2:5; 0:5� assuming
parameters � D � D 1

Example 3 (Non-convexity of Squad). For c 2 R a transformation yc is defined
as yc.x/ WD x C diag.c; c; 0/x such that uc.x/ D diag.c; c; 0/x: Thus, E.uc/ D
diag.c C c2=2; c C c2=2; 0/. Assuming � D � D 1 in (9), it holds that SquadŒuc � D
6.c C c2=2/2.

Picking c D 0 and c D �2, it holds Squad.u�2/ D Squad.u0/ D 0; see also Fig. 3
for the landscape of Squad.uc/. The non-convexity of Squad with respect to yc can
then be seen by considering convex combinations of y�2 and y0. Since Squad.u�1/ D
3=2 > 0, Squad is not convex in y. Also note that y�1 is non-invertible and still has
finite energy.

Another serious drawback of both the energies Selas and Squad is that both yield
finite energy for transformations that are not one-to-one; see Example 4. In addition,
even for invertible transformations, the above regularization functionals do not
explicitly control tissue compression and expansion; see Example 5. Thus, unlimited
compression is performed, if sufficient reduction of the distance functional can be
gained.

Example 4. Consider the non-invertible trivial map y.x/ 
 0, with u.x/ D �x and
ru D �I. Clearly, V D 4E D �2I and SelasŒu� D 4SquadŒu� D .9� C 3�/vol.˝/.
These regularizers give thus finite values that depend only on the Lamé constants
and the volume of the domain˝ .

Example 5. For the sequence of transformations y.n/.x/ WD 2�nx, it follows
u.x/ D .2�n � 1/x and detry D 2�3n. For large n, this transformation heavily
compresses volume. However, the components of ru are bounded below by �1,
showing that arbitrary compressions are not detected properly.

Hyperelastic Regularization Functionals

Motivated by these observations, a desirable property of regularization functionals
is rapid growth to infinity for detry ! 0C. In the Example 5, the Jacobian
determinant is detry D 2�3n indicating that the volume of a reference domain
goes rapidly to zero with growing n. Controlling compression and expansion to
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physically meaningful ranges has been a central theme in image registration; see,
e.g., [34–36, 40, 58, 59].

Models for the so-called Ogden materials [4, 18] use an energy function that
satisfies this important requirement,

SOgdenŒy� D
Z
˝

1

2
˛`jruj2 C ˛akcofryk2

F C ˛v  O.detry/dx; (10)

with regularization a parameters ˛`; ˛a; ˛v > 0, the Frobenius norm kAk2
F DP3

i;jD1 a
2
ij , and the convex penalty O.v/ D v2�log v. Note that this penalty ensures

limv!0C  O.v/ D limv!1  O.v/ D 1 and thus gives infinite energy for non-
invertible transformations. For small strains, linear elasticity is an approximation
to this regularization functional; see [18]. For image registration, this energy was
introduced first by Droske and Rumpf [23].

While ensuring invertible transformations, the hyperelastic regularization func-
tional (10) has drawbacks in the context of image registration: On the one hand,
setting ˛a > 0 puts a bias towards transformations that reduce surface areas.
On the other hand, setting ˛a D 0 prohibits the standard existence theory as
presented in the next section. In addition,  O is not symmetric with respect
to inversion, that is,  O.v/ ¤  O.1=v/. Since detry�1 D .detry/�1 the
value of the volume regularization term changes, when interchanging the role of
template and reference image; see [17] for a discussion of the inverse consistency
property.

To overcome these two drawbacks, the following hyperelastic regularizer as a
slight modification of the Ogden regularizer (10) was introduced in [14],

ShyperŒy� D
Z
˝

1

2
˛`.x/jruj2 C ˛a.x/�c.cofry/C ˛v.x/  .detry/dx:

Making the regularization parameter spatially dependent is a small conceptual
contribution with potentially big impact for many applications. The main idea is
to replace  O by a convex penalty  , fulfilling the growth condition, and satisfying
 .v/ D  .1=v/. More precisely, the convex functions

�c.C / DP3
iD1 max

nP3
jD1C

2
j i � 1; 0

o2
and  .v/ D .v�1/4

v2

were suggested in [14]. The penalty �c is a convexification of the distance to
orthogonal matrices and the penalty  .v/ is essentially a polynomial of degree two,
thus guaranteeing detry 2 L2, which is important in mass-preserving registration.
If detry 2 L1 suffices,  can be replaced by its square root. Note that �c is
designed to avoid the preference for area shrinkage in (10). A convexification is
needed for the existence theory, which makes �c blind against shrinkage, allowing
only penalization of area expansion.
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Constraints

It is often beneficial to include additional prior knowledge or expectations on the
wanted transformation into the model. Two case studies will show exemplarily how
to restrict the set of admissible transformations. The first one is related to volume
constraints [35, 36, 59] and the second one to local rigidity constraints [38, 65].

Volume-preserving constraints are particularly important in a setting such as
monitoring tumor growth, where a change of volume due to the mathematical
model can be critical. In addition, registration problems requiring highly nonlinear
deformations, e.g., arising in abdominal or heart imaging, can be stabilized by
restricting volume change to a certain class.

Constraining compression and expansion of volume has been a central topic in
image registration over many years. Following [36], a formal description reads

�m.x/ � CVCŒy�.x/ WD detry.x/ � �M .x/ for x 2 ˝;

where �m and �M are given bounds. Volume preservation was enforced by using
penalties, equality constraints such as �m D �M 
 1, or box constraints; see, e.g.,
[34–36, 40, 58, 59].

Another example for image-based constraints is local rigidity. Local rigidity
constraints can improve the model in applications in which images show bones or
other objects that behave approximately rigidly, such as head-neck images, motion
of prostate in the pelvis cage, or the modelling of joints. Rigidity on a subdomain
˙ � ˝ can be enforced by setting

CLRŒy;˙� WD dist.y;Arigid.˙/g/ D 0I

see also Example 1. This formulation can be extended to multiple regions;
see [38, 65].

Based on the discussion in [38], the Lagrangian framework has the advantage
that the set ˙ does not depend on y and thus does not need to be tracked;
see [54] for a tracked Eulerian variant. Tracking the constrained regions may add
discontinuities to the registration problem. In the case of local rigidity constraints,
constraint elimination is an efficient option and results linear constraints. However,
the Lagrangian framework involves detry in the computations of D and S; see [38]
for details.

Related Literature and Further Reading

Due to its many applications and influences from different scientific disciplines,
it is impossible to give a complete overview of the field of image registration.
Therefore this overview is restricted to some of the works, which were formative
for the field or are relevant in the scope of this chapter. For general introductions to
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image registration, the reader is referred to the textbooks [33, 53, 55]. In addition,
the development of the field has been documented in a series of review articles that
appeared in the last two decades; see [11, 27, 31, 45, 52, 73].

A milestone for registration of images from different imaging techniques, or
modalities, was the independent discovery of the mutual information distance
functional by Viola and Wells [71] and Collignon et al. [19]. In this informa-
tion theoretic approach, the reference and template images are discretized and
interpreted as a sequence of grey values. The goal is to minimize the entropy of
the joint distribution of both sequences. Due to its generality, mutual information
distance measures can be used for a variety of image modalities. However, it is
tailored to discrete sequences and thus the mutual information of two continuous
images is not always well defined; see [42]. Furthermore, a local interpretation
of the distance is impossible. To overcome these limitations, a morphological
distance functional [23] and an approach based on normalized gradient fields [56]
were derived for multimodal registration. Both approaches essentially use image
gradients to align corresponding edges or level sets.

In addition to the already mentioned elastic and hyperelastic regularization
functionals, another example is the fluid registration by Christensen [16]. The
difference between fluids and elastic materials lies in the model for the inner force.
In contrast to elastic materials, fluids have no memory about their reference state.
Thus, the fluid registration scheme allows for large, nonlinear transformations while
preserving continuity and smoothness. However, similar limitations arise from the
fact that volume changes are not monitored directly.

It is well known that nonlinear registration schemes may fail if the geometrical
difference between the images is too large. To overcome this, a preregistration
with a rigid transformation model is usually employed. The above regularizers are,
however, not invariant to rigid transformations. To overcome this limitation, the cur-
vature regularization functional, based on second derivatives, was proposed [26,43].

Similar to the linearized elastic regularization functional, fluidal or curvature
regularized schemes fail to detect non-invertible transformations. As an alternative
to hyperelastic schemes, the invertibility of the solution is to restrict the search
for a plausible transformation to the set of diffeomorphisms as has been originally
suggested by Trouvé in 1995 [69] and resulted in important works [3, 5, 70]. A
transformation y is diffeomorphic, if y and y�1 exist and are continuously differ-
entiable. The existence of an inverse transformation implies that diffeomorphisms
are one-to-one. While invertibility is necessary in most problems, it is not always
sufficient as the Example 5 indicates: for large n the size of the transformed domain
has no physical meaning; see [55] for further discussions.

Image registration is closely related to the problem of determining optical flow,
which is a velocity field associated with the motion of brightness pattern in an image
sequence. First numerical schemes have been proposed by Horn and Schunck [48]
and Lucas and Kanade [51] in 1981. In their original formulations, both approaches
assume that a moving particle does not change its intensity. This gives one scalar
constraint for each point. Hence, as image registration, determining the flow field
is an under-determined problem. The under-determinedness is addressed differently
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by both approaches. The method by Horn and Schunck generates dense and globally
smooth flow fields by adding a regularization energy. Lucas and Kanade, in contrast,
suggest to smooth the image sequence and compute the flow locally without
additional regularization. A detailed comparison and a combination of the benefits
of both approaches is presented in [12].

There are many variants of optical flow techniques. For example, Brune replaced
the brightness constancy by a mass-conservation constraint; see [13]. This gives the
optical flow pendant to mass-preserving image registration schemes; see [30, 60,
61] and sections “Distance Functionals” and “Motion Correction of Cardiac PET”.
Further, rigidity constraints have been enforced in optical flow settings in [50].

One difference between image registration and optical flow lies in the available
data. In optical flow problems, motion is typically computed based on an image
sequence. Thus, the problem is space and time dependent. If the time resolution of
the image sequence is sufficiently fine, geometrical differences between successive
frames can be assumed to be small and displacements can be linearized. In contrast
to that, in image registration the goal is typically to compute one transformation that
relates two images with typically substantial geometrical differences.

The problem of mass-preserving image registration is closely related to the
famous Monge–Kantorovich problem of Optimal Mass Transport (OMT) [1, 6, 24,
49]. It consists of determining a transport plan to transform one density distribution
into another. To this end, a functional measuring transport cost is minimized over
all transformations that satisfy DMPŒy� D 0 in (7). A key ingredient is the definition
of the cost functional which defines optimality. Clearly there is an analogy the
cost functional in OMT and the regularization functional in mass-preserving image
registration.

3 Existence Theory of Hyperelastic Registration

The variational image registration problem (2) is ill-posed problem in the sense
of Hadamard; see section “Ill-Posedness and Regularization” and [27, 55]. As
Example 2 of a rotating disc suggests, uniqueness can in general not be expected.
However, hyperelastic image registration has a sound existence theory which will
be revisited in this section.

The main result of this section is the existence theorem for unconstrained
hyperelastic image registration that includes all commonly used distance measures.
It is further shown that solutions satisfy detry > 0, which is necessary in many
applications. The theory is complicated due to the non-convexity of the determinant
mapping as has been pointed out by Ciarlet [18, p.138f]. Using his notation F D
ru: “The lack of convexity of the stored energy function with respect to the variable
F is the root of a major difficulty in the mathematical analysis of the associated
minimization problem.”

This section organizes as follows: A sketch of the existence proof is given in
section “Sketch of an Existence Proof”. Formal definitions of involved function
spaces, the set of admissible transformations, and the hyperelastic regularization



Non-linear Image Registration 2019

functional Shyper are given in section “Set of Admissible Transformations”. Finally,
an existence result is shown in section “Existence Result for Unconstrained Image
Registration”.

Sketch of an Existence Proof

This section gives an overview of the existence theory of hyperelastic image
registration problems. The goal is to outline the major steps, give intuition about
their difficulties, and introduce the notation. The presentation is kept as informal as
possible. The mentioned definitions, proofs, and theorems from variational calculus
can be found, for instance, in [25, Ch. 8] or [18, 20].

The objective functional in (1) can also be written as an integral over a function
f W ˝ � R

3 � R
3�3 ! R:

J Œy� D
Z
˝

f
�
x; y.x/;ry.x/	 dx; (11)

where the dependence on the template and reference images is hidden for brevity.
In the following it is assumed that f is continuously differentiable and mea-

surable in x. This is granted for the part related to the hyperelastic regularization
functional. For the part related to the distance functional, this can be achieved by
using a continuous image model T and R and careful design of D.

Typically, J is bounded below by a constantm WD infy J Œy�. The goal is to find
a minimizer in a certain set of admissible transformations A, which is a subset of
a suitable Banach space X . Since X must be complete under Lebesgue norms, our
generic choice is a Sobolev spaceW 1;p.˝;R3/, with p � 1, rather than C 1.˝;R3/.

Existence of minimizers is shown in three steps. Firstly, a minimizing sequence
fykgk2N � A is constructed, that is, a sequence with limk!1 J .yk/ D m

containing a convergent subsequence. Secondly, it is shown that its limit y� is a
minimizer of J , in other words, J Œy�� D m. Finally, it is verified that y� actually
belongs to the admissible set A.

Key ingredients of the existence proof are coercivity and lower semicontinuity.
In a finite dimensional setting, the coercivity inequality

J Œy� � C kykX CK for all y 2 A and constants C > 0 and K 2 R; (12)

guaranties that fykgk lies in a bounded and closed set. From the lower semicontinu-
ity it follows

yk ! y� ) m D lim
k!1J Œyk� � J Œy�� � m;

and thus y� is a minimizer. However, W 1;p.˝;R3/ is infinite dimensional. Hence,
bounded and closed sets are in general not compact and the existence of a
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norm-convergent subsequence cannot be assumed. Thus, less strict definitions of
convergence have to be used.

Note that W 1;p.˝;R3/ is reflexive for p > 1. For these cases, it can be shown
that there exists a subsequence that converges in the weak topology, i.e., with respect
to all continuous, linear functionals on W 1;p.˝;R3/. Consequently, if J fulfills a
coercivity condition (12), a bounded minimizing sequence can be constructed which
yields weakly converging subsequence.

The second part, namely showing that the weakly convergent sequence actually
converges to a minimizer, is in general more involved. Lower continuity of J
with respect to weak convergence typically requires convexity arguments. In many
examples of variational calculus, the integrand f of J is convex in ry. Thus, the
integrand f can be bounded below by a linearization in the last argument around
ry. Using the weak convergence ofryk * ry� and noting that yk ! y� strongly
in L2 by a compact embedding, the linear term vanishes and lower semicontinuity
follows; see Theorem 2.

When using hyperelastic regularization or mass-preserving distance functionals,
J also depends on the Jacobian determinant detry. Thus, the dependence of f
on ry is non-convex and further arguments are required to obtain lower semi-
continuity. To overcome this complication, one can follow the strategy suggested
by Ball [4]. The idea is to introduce a splitting in .y; cofry; detry/ and show
convergence of the sequence

f.yk; cofryk; detryk/gk � W 1;p.˝;R3/ �Lq.˝;R3�3/ �Lr.˝;R/ DW X

where the exponents q > 0 and r > 0 are appropriately chosen. A coercivity
inequality in the k � kX -norm yields a weakly converging subsequence as outlined
above. Extending f by additional arguments, it follows

g W ˝ � R
3 � R

3�3 � R
3�3 � Œ0;1/! R

with g.x; y;ry; cofry; detry/ WD f .x; y;ry/

is measurable in x and continuously differentiable. Most importantly, g is convex in
the last three arguments. Consequently, weak lower semicontinuity of J in X can
be shown, i.e., .yk; cofryk; detryk/ * .y�;H�; v�/ implies

lim
k!1

Z
˝

g.x; yk;ryk; cofryk; detryk/ dx �
Z
˝

g.x; y�;ry�;H�; v�/ dx D m:

To undo the splitting, the identifications H� D cofry� and v� D detry� must
be shown. This is uncritical if y is sufficiently measurable, i.e., p is greater than
the space dimension d . Note that p is also the degree of the polynomial detry.
For hyperelastic regularization, it is possible to show existence under even weaker
assumptions, i.e., for d D 3 and p D 2. Key is the identity
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detry � I D ry>cofry:

It will be shown that H� D cofry� and v� D detry� for exponents q D 4 and
r D 2; see Theorem 4.

A final note is related to the positivity of the determinant. To assure that the
Jacobian determinant of a solution is strictly positive almost everywhere, sufficient
growth of J is required, i.e., J Œy�!1 for detry ! 0C. Note, that detry� > 0
is not obvious. For example, k�1 ! 0 although k�1 > 0 for all k.

Set of Admissible Transformations

As pointed out, regularization functionals involving detry considerably complicate
existence theory due to the non-convexity of the determinant mapping. Thus, a
careful choice of function spaces and the set of admissible transformations is
important for the existence theory to be investigated in the next section. The goal of
this section is to define the function spaces and the set of admissible transformations
underlying the hyperelastic regularization functional (10).

To begin with, the problems arising from the non-convexity of the determinant
are addressed. One technique to bypass this issue is a splitting into the transforma-
tion, cofactor and determinant and study existence of minimizing sequences in a
product space. Here the product space

X WD W 1;2.˝;R3/ �L4.˝;R3�3/ �L2.˝;R/ (13)

with the norm

k.y; cofry; detry/kX WD kykW 1;2.˝;R3/ C kcofrykL4.˝;R3�3/ C k detrykL2.˝;R/

(14)
is considered. The space X is reflexive and the norms are motivated by the fact that
the penalty functions �c and  presented in section “Hyperelastic Regularization
Functionals” are essentially polynomials of degree four and two, respectively. The
splitting is well defined for transformations in the set

A0 WD fy W .y; cofry; detry/ 2 X; detry > 0 a.e.g : (15)

To satisfy a coercivity inequality, boundedness of the overall transformation is
required. In the standard theory of elasticity, this is typically achieved by imposing
boundary conditions; see [4, 18]. In the image registration literature, a number of
conditions, for instance, Dirichlet, Neumann, or sliding boundary conditions were
used; see [53].

Since finding boundary conditions that are meaningful for the application in mind
often is difficult, the existence proof in section “Existence Result for Unconstrained
Image Registration” is based on the following arguments. Recall that images are
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compactly supported in a domain ˝ , which can be bounded by a constant M 2 R.
Since images vanish outside ˝ , reasonable displacements are also bounded by a
constant only depending on ˝; see also discussions in [14, 58],

kyk1 �M C diam.˝/:

For larger displacements, the distance functional is constant in y as the
template image vanishes and thus no further reduction of the distance func-
tional can be achieved. In this case, the regularization functional drives the
optimization to a local minimum. Working with the supremum of y, however,
complicates our analysis as the transformations in the non-reflexive space
L1. Therefore, an averaged version of a boundedness condition can be
used:

1
vol.˝/

ˇ̌ R
˝
y.x/dx

ˇ̌ �M C diam.˝/:

This leads to the following characterization of admissible transformations and
definition of the hyperelastic regularization energy.

Definition 3 (Hyperelastic Regularization Functional). Let ˝ � R
3 be a

domain bounded by a constant M > 0, ˛i 2 C1.˝;RC/ be regularization
parameters with ˛i .x/ � ai > 0 for all x and i D l; a; v, and A0 as in (15).
The set of admissible transformations is

A D fy 2 A0 W
ˇ̌ R
˝ y.x/dx

ˇ̌ � vol.˝/.M C diam.˝//g:

Then the hyperelastic regularization functional is defined as

Shyper W A! R
C; ShyperŒy� D S lengthŒy�C SareaŒy�C SvolŒy�; (16)

with

S lengthŒy� D R
˝
˛`.x/ jru.x/j2dx; (17)

SareaŒy� D R
˝
˛a.x/ �c.cofry.x//dx; (18)

SvolŒy� D R
˝ ˛v.x/  .detry.x//dx; (19)

and the convex functions �c W R3�3 ! R
C and  W R! R

C,

�c.C / DP3
iD1 max

nP3
jD1C

2
j i � 1; 0

o2
and  .v/ D .v�1/4

v2 :
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Existence Result for Unconstrained Image Registration

This section shows that hyperelastic regularization is sufficient to guarantee the
existence of optimal transformations for unconstrained image registration problems
and that the Jacobian determinants of minimizers of J in (2) are positive almost
everywhere.

There are of numerous ways of showing existence. One option is to follow John
Ball’s proof for hyperelastic materials [4, 18, 20]. In [14], existence is obtained by
verifying that the modified hyperelastic regularization functional still satisfies the
assumptions of Ball’s theorem which yields a very brief and concise result.

In this section, a new and different approach to the existence theory is given. Its
main purpose is to give insight into the machinery behind Ball’s proof and to prove
existence in a simplified setting using only moderate theoretical tools. For the sake
of clarity, some technical difficulties are avoided by making additional assumptions
that are no limitation for most applications and also discussed below:

A1: The distance functional is of the form

DŒy� D R
˝
gD.x; y.x/; cofry.x/; detry.x// dx;

where gD W ˝ � R
3 � R

3�3 � R ! R
C is continuously differentiable, convex

in its last argument, and measurable in x.
A2: The regularization parameters satisfy ˛` D ˛a D ˛v D 1.
A3: With Id.x/ D x for all x, it holds J .Id/ <1.
A4: The boundary @˝ of the domain˝ is in C1.

(A1) holds for a large class of distance functionals, including the ones in [55], the
mass-preserving distance functional (7), and distance functionals in the Lagrangian
frame. Differentiability of gD requires a differentiable image model and is assumed
for simplicity. It can be weakened to the concept of Carathéodory functions;
see [14,20]. (A2) is made for ease of presentation. In general, there exists a constant
a > 0 such that for all three penalty functions ai .x/ � a. Hence, (A2) present
no loss of generality. For practical applications, (A3) is satisfied as the distance
functional is finite for the initial images. (A4) allows to use a generalized Poincaré
inequality [25, Sect. 5.8] and an integration by parts formula [25, Sect. C.1].

The main goal of this section is to prove the following theorem.

Theorem 1 (Existence of Optimal Transformations). Given are images T ;R 2
Img.˝/, a distance functional D, Shyper and A as in Definition 3. Let the
assumptions (A1)–(A4) be satisfied. There exists at least one minimizer y� 2 A
of J D D C Shyper.

The proof is divided into a number of Lemmata following the sketch presented
in section “Sketch of an Existence Proof”. To begin with, coercivity of the objective
functional in the space X as in (13) is shown. This means that J grows sufficiently
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fast with respect to the k � kX norm; see (14). This will be essential to bound the
norm of the minimizing sequence.

Lemma 1 (Coercivity of J ). Under the assumptions of Theorem 1, the functional
J satisfies a coercivity inequality: 9 C > 0; K 2 R 8 y 2 A W

J Œy� � K C C.kyk2
W 1;2 C kcofryk4

L4 C k detryk2
L2/:

Proof. Let y 2 A be an admissible transformation. Since D � 0 by assumption,
coercivity of J follows from the coercivity of the regularization term

J Œy� � ShyperŒy� D R
˝
kry � Ik2

Fro C �c.cofry/C  .detry/ dx:

The penalties �c and  are designed such that there exist constants C1 > 0 and
K1 2 R such that

J Œy� � K1 C C1
�R
˝
kry � Ik2

Fro C kcofryk4
Fro C .detry/2	 dx:

Using that .a � b/2 � 1
2a

2 � b2 for all a; b 2 R, it follows that

J Œy� � K1 C C1
�R
˝

1
2kryk2

Fro � kIk2
Fro C kcofryk4

Fro C .detry/2	 dx:
With constants C2 > 0 and K2 2 R, one obtains the inequality

J Œy� � K2 C C2
�kryk2

L2 C kcofryk4
L4 C k detryk2

L2

	
: (20)

It remains to be shown that the norm of ry in L2 bounds the norm of the
transformation y. To this end, assumption (A4) is used and a generalized Poincaré
inequality [25, Sect. 5.8] is applied. In addition, the boundedness of the mean of
transformations in A is used:

kryk2
L2 � C3

���y � 1
j˝j
R
˝ y.x/dx

���2

L2
D C3kyk2

L2 � j˝j
�

1
j˝j j

R
˝ y.x/dxj

�p

� C3kyk2
L2 � j˝j

�
1

j˝j
R
˝
jy.x/jdx

�2
:

Due to the assumption on A, there exists a constant K3 2 R independent on y such
that

kryk2
L2 � K3 C C3kyk2

L2 : (21)

Combining (20) and (21) and introducing cosmetics constants C > 0 and K 2 R

one obtains the desired growth condition

J Œy� � K C C.kyk2
W 1;2 C kcofryk4

L4 C k detryk2
L2/:
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Since y was chosen arbitrarily, the assertion follows.

The following theorem establishes lower semicontinuity of the objective func-
tional J . It is a modified version of Theorem 1 of Evans [25, Sec. 8.2]. In contrast to
the version of Evans, the next theorem does not necessarily assume that � is replaced
byry. However, it is assumed that f � 0, yk ! y� strongly, and �k ! �� weakly.

Theorem 2 (A General Lower Semicontinuity Result). Let ˝ � R
3 be a

domain. Let f W ˝ � R
3 � R

N ! Œ0;1� be continuously differentiable and
f . � ; y; �/ be measurable for every fixed y and �. Let f .x; y; � / be convex. For
two sequences yk ! y� in Lp.˝;R3/ with p � 1 and �k * �� in Lq.˝;RN /
with q � 1, it holds

lim inf
k!1

R
˝
f .x; yk.x/; �k.x//dx � R

˝
f .x; y�.x/; ��.x//dx:

Proof. The proof basically follows the one of Theorem 1 [25, Sec. 8.2]. Simplifica-
tions arise from the fact that the sequences fykgk and f�kgk converge by assumption
and f � 0. Another difference is that the second argument of f is used for a
general sequence �k and its limit �� instead of ryk and ry�, respectively. The
proof is organized in three steps.

Step 1: Since 0 � f , it follows

0 � m WD lim inf
k!1

R
˝
f .x; yk.x/; �k.x//dx;

thus there exists a (sub)-sequence fyk; �kgk with

0 � m D lim
k!1

R
˝
f .x; yk.x/; �k.x//dx:

Step 2: The strong convergence yk ! y� in L2 implies convergence almost
everywhere. Thus, Egoroff’s Theorem [25, Sect. E.2] can be used, which
implies that for each � > 0 there exists a set ˝1

� � ˝ with vol.˝ n ˝1
� / � �

such that

yk ! y� uniformly on ˝1
� : (22)

Next, ˝1
� is reduced by regions where y� or �� are too large. Consider ˝� WD

˝1
� \ fx 2 ˝ W jy�.x/j C j��.x/j � ��1g. It holds that

vol.˝ n˝�/! 0 for �! 0: (23)

Step 3: From f � 0 and the convexity of f in the last argument (see also [25,
Sect. B.1]), it follows for each fixed k that
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R
˝ f .x; y

k ; �k/dx � R˝� f .x; yk; �k/dx
� R

˝�
f .x; yk; ��/dx C R

˝�
d�f .x; y

k; ��/ .�k � ��/dx:
(24)

Due to the uniform convergence of fykgk, see (22) and (23), it follows

limk!1
R
˝�
f .x; yk; �k/ D R

˝�
f .x; y�; �k/: (25)

Since also d�f .x; yk; ��/ ! d�f .x; y
�; ��/ uniformly on ˝� and �k * �� it

holds that

lim
k!1

R
˝�
d�f .x; y

k; ��/.�k � ��/dx D 0: (26)

Combining (25), (26), and (24), it follows

m D limk!1
R
˝
f .x; yk ; �k/dx � R

˝�
f .x; y�; ��/dx:

This inequality holds for all � > 0. Using f � 0, the measurability of f , the
Monotone Convergence Theorem [25, Sect. E.3] and letting � ! 0, it follows
that

m � R˝ f .x; y�; ��/dx;

which concludes the proof.

Having shown the above general lower semicontinuity result, it is now verified
that the objective functional J satisfies the assumptions that have been made.

Lemma 2 (Weak Lower Semicontinuity of J ). Given are images T ;R 2
Img.˝/, a distance functional D, Shyper, and A as in Definition 3. Let the
assumptions (A1)–(A4) be satisfied.

• There exists a function g W ˝ � R
3 � R

3�3 �R
3�3 � .0;1�! R with

J Œy� D
Z
˝

g.x; y;ry; cofry; detry/ dx

that is continuously differentiable, convex in its last three arguments, and
measurable in its first argument.

• The objective functional J is weakly lower semicontinuous, i.e.,

lim inf
k!1

Z
˝

g.x; yk ;ryk; cofryk; detryk/ dx �
Z
˝

g.x; y;ry;H; v/ dx
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whenever yk * y in W 1;2; cofryk * H in L4; detryk * v in L2:

Proof. Both results are proved separately.
First, J is rewritten as

J Œy� D
Z
˝

gD.x; y;ry; cofry; detry// dx

C
Z
˝

˛`.x/ jryj2 C ˛a.x/ �.cofry/C ˛v.x/  .detry/ dx

and combine the integrands to g W ˝ � R
3 � R

3�3 � R
3�3 � .0;1� ! R:

By assumption on D and design of Shyper, the mapping g.x; y; � ; � ; � / is convex
for fixed x and y. Furthermore, since the images and the functions � and  are
continuously differentiable, the integrand g is continuously differentiable. Since the
images are measurable, g is measurable in x for fixed .y;D;H; v/ 2 R

3 � R
3�3 �

R
3�3 � .0;1�.
For the second part, one notes that the weak convergence of yk to y in W 1;2

implies strong convergence of yk in L2 due to the compact embedding ofW 1;2 ��
L2; see [25, Sect. 5.7]. Hence using the first part yields weak lower semicontinuity
of J on X by applying Theorem 2.

Due to the coercivity of J shown in Lemma 1, there exists a bounded minimizing
sequence fyk; cofryk; detrykgk � X; where X is the product space as in (13).
Lemma 2 shows lower semicontinuity of J , thus, the sequence converges to a
minimizer .y;H; v/ in X . In the next step, the relation between the components
y,H and v is established. More specifically, a continuity results for the cofactor and
determinant mappings for function in W 1;p.˝;R3/ is given.

Theorem 3 (Weak Continuity of Determinants). Assume d < q <1 and yk *
y in W 1;q.˝;Rd /. Then detryk * detry in Lq=d .˝;R/:

Proof. See Evans [25, p. 454] for a complete proof.

This result is expected as the minimizing sequences fykgk are bounded in the
spaces W 1;q.˝;Rd / and fdetrykgk as a polynomial of degree d can be bounded
in Ld .˝;R/. Combining these two bounds yields the weak convergence of the
sequence fdetrykgk in Lq=d .˝;R/. This result is used in [58] to show existence of
solutions to volume constrained image registration inW 1;p and actually extended to
p � d .

Using Theorem 3, one option to obtain the identification v D detry in L2 is to
tighten the measurability demands on y by, e.g., resorting toW 1;6.˝;R3/ similar to
[60].
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In hyperelastic image registration also the cofactor matrix is regularized by the
area regularization functional. This can be used to improve the above result; see
also [4, 18]. This allows to achieve an improved continuity result based on [18].

Theorem 4 (Weak Continuity of Cofactors and Determinants). Let ˝ � R
3

fulfill (A4). Then it holds

yk * y in W 1;2.˝;R3/;

cofryk * H in L4.˝;R3�3/;

detryk * v in L2.˝;R/

9=
;)

�
H D cofry;
v D detry:

Proof. This proof combines the proofs of Theorems 7.5-1 and 7.6-1 in [18] and is
structured into two steps.

For ease of presentation, define , WD cofry.

Step 1: Weak continuity of the cofactor mapping. Without loss of generality,
presentation is focussed on the top-left entry of the cofactor matrix, i.e., to
show that ,11.x/ D H11.x/ for almost every x 2 ˝ . The result extends
straightforwardly to the remaining entries.
To begin with, it is assumed that y 2 C2.˝;R3/. Then it holds

,11 D @2y2@3y3 � @2y3@3y2 D @3.y3@2y2/� @2.y3@3y2/:

Since y is continuously differentiable and @˝ is smooth one can integrate by
parts, see [25, Sect. C.2]. Thus for test functions � 2 C1

0 .˝;R/ it holds

R
˝
�11 � dx D �

R
˝
y3@2y2@3� dx C

R
˝
y3@3y2@2� dx: (27)

This equality is now extended to functions y 2 W 1;2.˝;R3/ by the following
approximation argument. Since C1.˝;R3/ is dense in W 1;2.˝;R3/ [25,
Sect. 5.2], one can approximate y by a sequence of functions in C2 for
which (27) holds. Note that for � being fixed both sides of (27) are continuous
in the space C2 with the norm k � kW 1;2 , since

ˇ̌R
˝
,11� dx

ˇ̌ � k,11kL1 k�kL1 � C1.�/ kyk2
W 1;2 (28)

and for i; j; l D 1; 2; 3,

ˇ̌R
˝
yi@j yl@l � dx

ˇ̌ � kyikL1k@j ylkL1k@l �kL1 � C2.�/ kyk2
W 1;2 : (29)

Hence, (27) holds also for y 2 W 1;2.˝;R3/ and thus its right hand side can
be used to prove the desired equality , D H . To this end, consider a fixed
test function �. By Hölder’s inequality [25, Sect. B.2], it holds that the bilinear
mapping
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B. � ; � / W L2.˝;R/ �W 1;2.˝;R/! R with .f; g/ 7! R
˝
f @ig @m� dx

is continuous. Due to the compact embedding W 1;2 �� L2 [25, Sect. 5.1], it
holds

yk * y in W 1;2.˝;R3/) yk ! y in L2.˝;R3/:

Because of the continuity of the bilinear form B , the strong convergence of
fykgk, and the weak convergence of f@j ykl gk, Theorem 7.1-5 in [18, p.348f]
can be used to obtain that for all i; j; l; m 2 f1; 2; 3g

yk * y in W 1;2.˝;R3/) R
˝
yki @j y

k
l @m� dx !

R
˝
yi @j yl @m� dx;

which due to (27) implies
R
˝.cofryk/11�dx !

R
˝.cofry/11�dx. Note that

H11 is by assumption the weak limit of f.cofryk/11gk in L4.˝;R/. Therefore,
.cofry/11.x/ D H11.x/ for almost every x and thus both functions are equal
in L4.˝;R/. Repeating these arguments for the remaining matrix entries yields
cofry D H in L4.˝;R3�3/.

Step 2: Weak continuity of the determinant mapping. It is now shown that under the
above assumptions detry.x/ D v.x/ for almost every x 2 ˝ .
Recall that .detA/ � I D A.cofA/> and hence detA D P3

jD1 a1j .cofA/1j .
Starting with y 2 C2.˝;R3/,

detry D
nX

jD1

.@j y1/ �,1j D
nX

jD1

@j Œy1,1j �; (30)

where the last equality holds, since the cofactor is divergence free [25,
Sect. 8.1]:

P3
jD1 @j ,ij D 0 for all i D 1; 2; 3: Since y is continuously

differentiable and @˝ is smooth, one can integrate by parts [25, Sect. C.2] and
see from (30) that for all test functions � 2 C1

0 .˝;R/

Z
˝

3X
jD1

.@j y1/ �,1j � dx D
Z
˝

3X
jD1

@j Œy1,1j � � dx D �
Z
˝

nX
jD1

y1 ,1j @j � dx:

(31)
For fixed �, the mapping y 7! R

˝

Pn
jD1 ,1j @j � dx is continuous with respect

to the W 1;2.˝;R3/ norm. By applying the same approximation argument as
above, one sees that functions y 2 W 1;2.˝;R3/ are divergence free in the
following sense:

Z
˝

nX
jD1

.cofry/1j @j � dx D 0 for all � 2 C1
0 .˝;R/: (32)
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Now (31) is extended to functions y 2 fy 2 W 1;2.˝;R3/ W cofry 2
L4.˝;R3�3/g by showing that for all test functions � 2 C1

0 .˝;R/,

Z
˝

3X
jD1

.@j y1/,1j � dx D �
Z
˝

3X
jD1

y1 ,1j @j �dx: (33)

To this end, note that for fixed �, both sides of this equation are bounded bilinear
forms in y1 and , and thus continuous. Therefore, it can be assumed that y1 2
C1.˝;R3/. But then it follows that .y1�/ 2 C1

0 .˝;R/ and thus

0 D
Z
˝

3X
jD1

,1j @j .y1�/ dx D
Z
˝

3X
jD1

y1 ,1j @j � dxC
Z
˝

3X
jD1

.@j y1/ ,1j � dx;

which yields the desired extension of (31).
Given that yk * y in W 1;2.˝;R3/ and cofryk * cofry in L4.˝;R3�3/,

one obtains the continuity result

Z
˝

detryk � dx D �
Z
˝

3X
jD1

yk1 .cofryk/1j @j �dx

! �
Z
˝

nX
jD1

y1.cofry/1j @j �dx D
Z
˝

detry � dx

as in the first part of the proof from the compact embedding of W 1;2.˝;R3/

into L2.˝;R3/. Note that for fixed � both sides of (33) are bounded bilinear
functions.

From detryk * v and detryk * detry in L2.˝;R/, it follows that
v D detry almost everywhere, which concludes the proof.

This completes the ingredients for the proof of the main result in Theorem 1.

Proof (Proof of Theorem 1). By assumption, J is bounded from below. Thus, there
exists a minimizing sequence fykgk such that

lim
k!1J Œyk� D inf

y2AJ Œyk� DW m:

Note that J is finite for Id.x/ D x. Therefore, it can be assumed that fJ Œyk� W k 2
Ng is also bounded from above by a constant M > 0.

By Lemma 1, the sequence f.yk; cofryk; detryk/gk can be bounded in the
Banach space X defined in (13) in terms of M . More precisely, there are constants
C > 0 and K 2 R such that for all k it holds
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M � J Œyk� � K C C.kykk2
W 1;2 C kcofrykk4

L4 C k detrykk2
L2/:

Since X is a reflexive space, there exists a subsequence – again denoted by
f.yk; cofryk , detryk/gk – that converges weakly to a .y;H; v/ 2 X .

Lemma 2 proofs J to be weak lower continuous. Thus

lim inf
k!1

Z
˝

g.x; yk ;ryk; cofryk; detryk/ dx �
Z
˝

g.x; y;ry;H; v/ dx:

Theorem 4 yields the identificationsH D cofry and v D detry.
The last step is to show that y is admissible. It remains to show that detry > 0

almost everywhere. To this end, consider a fixed � 2 Œ0; 1/ and the set

S� WD fx 2 ˝ W detry.x/ < �g:

It then holds that

 .�/ vol.S�/ �
Z
S�

 .�/ dx �
Z
S�

 .detry/ dx

�
Z
S�

g.x; y;ry; cofry; detry/ dx

� lim inf
k!1

Z
S�

g.x; yk;ryk; cofryk; detryk/ dx �M:

Due to the growth condition  .v/ ! 1 for v ! 0C, it follows that S0 has zero
volume. Thus, detry > 0 almost everywhere in ˝ and y 2 A, which completes
the proof.

To summarize, the hyperelastic regularization functional Shyper guarantees the
existence of optimal transformations for the unconstrained variational image reg-
istration problem. The proof of Theorem 1 illustrates difficulties due to the
non-convexity of the objective functional and shows remedies. The main idea
is to split y into Jacobian, cofactor, and determinant components and to show
convergence of a minimizing sequence in a product space by proving coercivity and
lower semicontinuity; see Lemmas 1 and 2. Subsequently, weak continuity of the
cofactor and determinant mapping is used to undo this splitting; see Theorem 4. The
provided proof is a special case of the existence theory of polyconvex functionals;
see [4,18,20,25]. In addition to providing existence of optimal transformations, the
theory shows that a solution y satisfies detry > 0 almost everywhere.

Instead of striving for the most generalized result, this section intends to provide
insight into machinery of [4]. Therefore, four simplifying assumptions were made
that are, however, uncritical in most practical applications.
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4 Numerical Methods for Hyperelastic Image Registration

Generally, image registration problems cannot be solved analytically. Thus,
numerical methods are used to approximate an optimal transformation. This
section presents numerical methods for hyperelastic image registration based on
a discretize-then-optimize approach. The first step is to properly discretize the
variational problem (2). Typically, a coarse-to-fine sequence of finite dimensional
optimization problems is generated, where all problems are linked by the
underlying variational problem (2). Each problem can then be solved using
standard optimization methods. Note that the coarse-to-fine strategy adds further
regularization and additionally speeds up the computations.

In the hyperelastic setting, discretization is not straightforward. A challenge
is to ensure one-to-one numerical solutions to the optimization problems, which
are mandatory in most practical applications and guaranteed in the continuous
function space setting. It is well known that a discrete object does not necessarily
mimic all the properties of its continuous counterpart. For example, a function that
is non-negative on a discrete set may not be non-negative everywhere. Thus, an
approximated solution may not satisfy detry > 0 almost everywhere, although the
above existence theory guarantees this for the solutions of the continuous problem.

This section organizes as follows. Section “Discretizing the Determinant of
the Jacobian” illustrates difficulties arising in the discretization of Jacobian deter-
minants using finite difference schemes. As one way to avoid these difficulties,
Galerkin finite element methods are presented in section “Galerkin Finite Element
Discretization”. The main idea is to compute a solution to the variational problem
in the space of globally continuous and piecewise linear transformations. A key
benefit is that for these transformations geometric quantities like area and volume
can be computed exactly; see section “Galerkin Finite Element Discretization”.
Consequently, solutions of the discrete problem are guaranteed to be one-to-one.
Finally, section “Multi-level Optimization Strategy” presents multi-level numerical
optimization approaches that solve the finite dimensional optimization problems;
see also [55].

Discretizing the Determinant of the Jacobian

The variational image registration problem (2) can be discretized using finite
difference schemes. The underlying idea is to approximate the solution to the
variational problem on a grid, which is essentially a collection of points. Many
commonly used algorithms for image registration are based on these principles; see,
e.g., [55] for an overview.

However, deriving finite difference discretization of operators such as the
determinant of the Jacobian is not straightforward as illustrated by a simplified 2D
example. For a transformation y 2 C2.˝;R2/, the determinant of the Jacobian is
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detry.x/ D @1y1.x/ @2y2.x/ � @2y1.x/ @1y2.x/: (34)

Note that all entries of ry.x/ are coupled, which causes difficulties for finite
difference discretizations. This section analyzes this problem in detail and presents
a finite volume technique that can be used to obtain a proper discretization.

Finite Differences in 1D
To start with the analysis, consider in a 1D setting discretization of the energy

SŒy� D 1

2

Z
˝

.@y.x//2dx; (35)

where ˝ D Œ0; 1� is divided into m cells of width h D 1=m. The cell-centered
grid xc 2 R

m and the nodal grid xn 2 R
mC1 are defined by xci D .i � 0:5/h and

xni D .i � 1/h, respectively; see [55] for details. Assuming that y 2 C2.˝;R/ and
a short central finite difference yields

@y.xci / D
y.xniC1/ � y.xni /

h
CO.h2/: (36)

Note that the discretization is of second order for a price of a grid change. The
function y is approximated on the nodal grid, whereas its derivative is approximated
on the cell-centered grid. With the discrete partial differential operator @hm W
R
mC1 ! R

n,

@hm WD
1

h

0
B@
�1 1

: : :
: : :

�1 1

1
CA 2 R

m�mC1; (37)

Equation (36) reads @y.xc/ D @hm y.x
n/ C O.h2/. To avoid the grid change, one

could also use the long stencil @y.xci / 	 .y.xciC1/�y.xci�1//=.2h/. The price to be
paid is the non-trivial null-space with high frequency components which are unseen
by this discrete regularizer. While this might be tolerable on a fixed discretization
level, it is a crucial drawback for multigrid schemes. Therefore, this discretization is
not recommended. Finally, one could also think about a one-sided stencil, @y.xci / 	
.y.xciC1/ � y.xci //=h. Here, the price to be paid is that this approximation is only
first order and this discretization is also not recommended. Thus, @hm is preferable for
approximating derivatives of nodal quantities. Derivatives of cell-centered quantities
can be approximated analogously on a subset of the nodal grid xn using @hm�1.

Using a nodal discretization yn 	 y with yni 	 y.xni / and the above
discretization of the differential operator, a second-order approximation of (35) is
obtained by using a midpoint quadrature rule:
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Fig. 4 Overview of grids and indexing convention in 2D as also used in [55]. A cell-centered grid
xc a nodal grid xnand staggered grids xs;1 and xs;2 are depicted in (a). The indexing convention
for the .i; j /th cell is illustrated in (b)

SŒyn� WD h

2
.yn/>.@hm/>@hm yn:

Note that both the finite difference operator and the quadrature rule are of second
order which is essential for a consistent approximation.

Finite Differences in 2D
Already in 2D, the situation gets far more interesting. Let the rectangular domain
˝ D Œ0; 1�2 be divided into .m;m/ cells of uniform edge length h D 1=m. Similar
as above, cell-centered and nodal grids are defined as

xc D ..i � 0:5/h; .j � 0:5/h/i;jD1;:::;m

xn D ..i � 1/h; .j � 1/h/i;jD1;:::;mC1 :

See Fig. 4 for an overview of grids and indexing conventions. For ease of presen-
tation of finite difference operators to higher dimensions, the concept of Kronecker
products is convenient; see also [9].

Definition 4 (Kronecker Product). Given two matrices A 2 R
p1�p2 and B 2

R
q1�q2 , the Kronecker product is defined by

A˝ B D

0
B@
a1;1B : : : a1;p2B
:::

: : :
:::

ap1 ;1B : : : ap1 ;p2B

1
CA 2 R

p1q1�p2q2 :
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As the following discussion illustrates, it is impossible to give a second order
approximation to all components of the Jacobian matrix of y D Œy1; y2� 2
C2.˝;R2/ on a cell-centered grid by using short differences. To illustrate this,
consider the first component y1 of the transformation. Second order approximations
to the partial derivatives of a nodal discretization yn1 2 R

.mC1/2 can be obtained
using the finite difference operators

@hm;1 D ImC1 ˝ @hm and @hm;2 D @hm ˝ ImC1 2 R
m.mC1/�.mC1/2:

In contrast to the 1D case, partial derivatives are not approximated on a cell-centered
grid, but on staggered grids. Here, the first partial derivatives @hm;1y

n
1 and @hm;2f

n are
approximated at different locations

xs;1 D ..i � 1/h; .j C :5/h/iD1;:::;mC1;jD1;:::;m;

xs;2 D ..i C :5/h; .j � 1/h/iD1;:::;m;jD1;:::;mC1;

see also Fig. 4. As in the 1D case, grid changes are inevitable when using
short differences. Furthermore, different partial derivatives are approximated at
different positions. This also holds for other choices of discretization. For example,
discretizing y1 on the staggered grid xs;1 and using the operators

@hm;1 D Im ˝ @hm and @hm;2 D @hm�1 ˝ ImC1;

approximates @1y1 on a cell-centered grid and @2y1 on a subset of a nodal grid.
Note that for all combinations of the above grids and finite difference operators the
components of the gradient of y1 are approximated at different locations. This is
a major source of difficulty when discretizing regularization functionals based on
coupled partial differential operators such as the determinant of the Jacobian (34).

Finite Volume Discretization
The above presentation indicates that second order approximations of the partial
derivatives at the cell-centered grid with short differences are impossible. Averaging
derivatives to the cell-centers is not a remedy as it annihilates oscillatory functions.
One way to overcome this limitation is to approximate detry in a finite volume
approach by measuring volume changes as it has been proposed [36]. In [36], the
volume of a deformed cell V is approximated by the sum over of the volume of two
triangles spanned by its vertices Vi , see also Fig. 5:

Z
V

detry.x/dx D
Z
y.V /

dx

D.V3 � V2/ � .V2 � V1/=2C .V4 � V1/ � .V3 � V4/=2CO.h2/:

(38)
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Fig. 5 Measuring the volume of a transformed cell as in [36]. The volume of the transformed
cell is approximated by the sum of the volumes of the two triangles spanned by its vertices; see
(a). In (b), a non-invertible transformation is applied to the cell. Note that although the volume of
the triangle spanned by V4, V2 and QV 1 is negative, the volume of V is positive. This motivates to
individually control volume changes of the triangles in order to detect twists

Assuming y 2 C2.˝;R3/, this approximation is second order; see also section
“Images and Transformation”. The first equality requires that y is invertible due to
the transformation theorem, which is to be ensured by hyperelastic regularization.
An advantage of this approach is that transformations that are not one-to-one can be
detected. Note that for a non-invertible transformation and a sufficiently fine spacing
of control points there is a sign change of the volume of a triangle; see Fig. 5. This
approach was also used for hyperelastic image registration in [14].

Note that using this discretization, the constraint detry > 0 is controlled only
approximately and on a tetrahedral partition rather than point-wise. In order to
ensure detry > 0 almost everywhere, additional assumptions on the behavior of
y between the control points are required. In [14] it is shown that based on the
above discretization the volume constraint can be ensured almost everywhere for
continuous and piecewise linear transformations. Motivated by this observation, the
next section presents a Galerkin Finite Element approach that operates on this finite
dimensional space.

Galerkin Finite Element Discretization

This section presents a Galerkin finite element method based on the general
framework presented in [32]. The idea is to discretize the variational problem (2)
with regularization functional Shyper using globally continuous and piecewise linear
transformations on a tetrahedral mesh. For these functions, the constraint detry >
0 is fulfilled everywhere if it holds on each element. In accordance with the theory,
our discrete solutions will share this important quality.
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Let V1; : : : ; VnV 2 R
3 denote vertices and T1; : : : ; TnT tetrahedra, where it is

assumed that vol.Ti / > 0 for all i D 1; : : : ; nT . This builds a finite dimensional
subspace

Ah WD fy 2 C.˝;R3/ W y ˇ̌
Ti
2 ˘ 1.T;R3/ for i D 1; : : : ; nT g � A; (39)

where h is related to nV and denotes order of the approximation, ˘1 denotes
the space of first order vector-valued polynomials. Standard nodal Lagrange that
functions b1; : : : ; bnV W ˝ ! R are used as a basis of Ah. The coefficients y of
yh 2 Ahwith respect to that basis are stored component-wise in a column vector of
size 3nV , yj D .y1

j ; y
2
j ; y

3
j /

>, j D 1; : : : ; nV :

yh.x/ D
nVX
jD1

yj bj .x/; (40)

where yj D yh.Vj / and analogously a discretization of a reference transformation
yref is obtained as .yref/j D yref.Vj /. The discretized hyperelastic registration
problem then reads

J W R3nV ! R
C; J.y/ D D.y/C ˛Shyper.y � yref/: (41)

The discretization of the distance and hyperelastic regularization functional are
derived as follows.

Let Ik 2 R
k�k denote the identity matrix, 1k 2 R

k the vector of all ones,
˝ the Kronecker product, andˇ the Hadamard product. The entries of the Jacobian
matrix ryh are piecewise constant on each triangle. The nine components of the
Jacobi matrix are stored in a column vector .By/ 2 R

9nT , where B is the discrete
vector gradient operator formed essentially from the discrete partial derivatives
@hk 2 R

nT �nV with .@hk/i;j D @kbi .Vj /:

B D I3 ˝rh; with .rh/> D
�
.@h1/

>; .@h2/>; .@h3/>
�
: (42)

Interpolation from nodes to barycenters of the tetrahedra is accomplished by
applying the averaging matrix

A D I3 ˝A 2 R
nT�nV with Ai;j D

(
1=4 if Vj is node of Ti

0 otherwise
: (43)

Assembling the volumes of the tetrahedra in

v 2 R
nT ; with vi WD vol.Ti / and setting V WD diag.v/; (44)

the SSD distance functional (5) is approximated by using a midpoint quadrature rule
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D.y/ 	 1
2 res.y/>Vres.y/; where res.y/ D T .Ay/�R.x/: (45)

Since the Jacobian matrix of yh 2 Ah is piecewise constant, the hyperelastic
regularization functional is evaluated exactly by

Shyper.y/ D˛`
2 .y � yref/

> B>.I9 ˝V/B .y � yref/

C ˛av>�.cofBy/C ˛vv> .detBy/:
(46)

In line with the organization of the gradient, the entries of the cofactor matrix are
stored in a column-vector of length 9nT . The first derivatives of the discretized
objective function is

dJ.y/ D dD.y/C dS length.y/C dSarea.y/C dSvol.y/: (47)

Using the chain rule yields

dD.y/ Dres.y/>V.rT .Ay//A; (48)

dS length.y/ D˛` .y � yref/
>B>.I9 ˝ V/B; (49)

dSarea.y/ D˛a ..19 ˝ v/ˇ �0.cofBy//> d cofBy; (50)

dSvol.y/ D˛v v>  0.detBy/ d detBy: (51)

Setting Dj
i D diag.@iyj / 2 R

nT �nT , one gets

dcofBy D

0
BBBBBBBBBBBBB@

D3
3 �D3

2 �D2
3 D

2
2

D3
3 �D3

2 �D1
3 D

2
1

D3
2 �D3

1 �D2
2 D2

1

D3
3 �D3

2 �D1
3 D

1
2

D3
3 �D3

1 �D1
3 D1

1

D3
2 �D3

1 �D2
1 D1

1

D2
3 �D2

2 �D1
3 D1

2

D2
3 �D2

1 �D1
3 D1

1

D2
2 �D2

1 D1
2 D1

1

1
CCCCCCCCCCCCCA

B 2 R
9nT�3nV :

(52)
With the abbreviationCj

i D diag..cofBy/i;j / 2 R
nT�nT , the derivative of the Jacobi

determinant can be compactly written as

d detBy D �C 1
1 ; C

2
1 ; C

3
1 ; C

1
2 ; C

2
2 ; C

3
2 ; C

1
3 ; C

2
3 ; C

3
3

	
B 2 R

nT�3nV : (53)

Following the guidelines of [55], the Hessian of the objective functional is approx-
imated to ensure positive semi-definiteness and avoid computations of second
derivatives of the (generally noisy) template image as follows
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H.y/ 	 d2D.y/C d2S length C d2Sarea.y/C d2Svol.y/ (54)

with the summands

d2D.y/ D A>.rT .Ay//>VrT .Ay/A; (55)

d2S length D ˛`B>.I9 ˝ V/B; (56)

d2Sarea.y/ D ˛a.dcofBy/> .diag.19 ˝ v/ �00.cofBy// dcofBy; (57)

d2Svol.y/ D ˛v.d detBy/> diag.vˇ  00.detBy// d detBy: (58)

Note that for this distance functional the dependency of the first summand on y is
only low order and the second summand is constant with respect to y. In contrast,
the Hessian of the area and volume regularization functionals strongly depend on y.

Multi-level Optimization Strategy

Using the above presented Galerkin method translates the variational image regis-
tration problem into a finite dimensional optimization problem. Solving the discrete
problem is not straightforward as it is typically large, nonlinear and non-convex.
However, state-of-the-art tools from numerical optimization can be used to obtain
accurate and efficient schemes. This section describes a multi-level strategy using
Gauss–Newton optimization.

Multi-level Idea
In image registration, challenges arise from the non-convex dependence of the
objective functional on the transformation to be determined. Thus, many local
minima have to be expected; for an example, see [55, p. 112]. A typical solution
strategy is to approximately solve the variational problem (2) on a coarse-to-fine
hierarchy of discretizations often referred to as multi-level strategy [55] or cascadic
multigrid [7]. The key motivation is to reduce the risk of being trapped in a local
minimum and to obtain good starting guesses for the correction steps on finer
discretization levels. A positive side effect is a reduction of computational costs.

Generically, a nested series of finite dimensional spaces Ahi with

Ah1 � Ah2 � � � � � A

is constructed, where hi refers to the approximation order. The idea then is to
compute a minimizer y1 of J in Ah1 first. This is relatively simple, as it is assumed
that the space Ah1 is smooth and the problem is of small size. Note that y1 is in
Sh2 and can thus be used as starting guess. In practice, only the coefficients of the
basis functions in Sh2 at the new vertices need to be computed. For Lagrange basis
functions, weights are easily obtained by evaluating y1 at the nodes of the mesh
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Fig. 6 Subdivision used for generating nested families of structured meshes as in [14]. Left:
triangulation of an m D Œ2; 2� grid. Right: tetrahedral subdivision of a voxel

of Sh2 . With this excellent starting guess, computing a solution in Ah2 is relatively
simple, particularly with a second order schemes. This procedure is repeated until
the finest level is reached.

There are many ways to construct a nested sequence of triangular meshes. A
simple but powerful method is to use nested rectangular meshes and decompose
each cell into tetrahedra as depicted in Fig. 6. However, more efficient strategies
using local refinements based on error estimates exist; see, e.g., [39].

Commonly, the representation of the images are simplified on a coarse level by
reducing the data; see [55]. Thereby, only essential image features are considered
and consequently the danger of being trapped in a local minima is reduced further.

Gauss Newton Optimization
On each level, a Gauss–Newton scheme [57] can be used to compute a minimizer
of the discretized objective function J in (41). Until convergence, the objective
function J.y/, its gradient dJ.y/, and an approximation H.y/ to its Hessian are
computed. The search direction v is then obtained by solving the linear system

H.y/ v D �dJ.y/: (59)

As outlined in section “Galerkin Finite Element Discretization”, a symmetric and
positive definite approximation of the Hessian is computed. Solving the above linear
system is one of the most computationally expensive parts of the scheme. Recall (54)
that the Hessian consists of four summands

H.y/ 	 d2D.y/C d2S length C d2Sarea.y/C d2Svol.y/:

The Hessian of the length regularizer S length is simply a discrete Laplacian for
each component of the transformation and does not depend on y unlike the other



Non-linear Image Registration 2041

0

100

200

300

400

500

0

100

200

300

400

500

0

100

200

300

400

500

0 100 200 300
nz = 5904

400 500 0 100 200 300
nz = 18963

400 500 0 100 200 300
nz = 18963

400 500

Fig. 7 Nonzero patterns of the Hessians of length (left), area (middle), and volume regularization
functionals (right) for a tetrahedra mesh based on (3,3,3) cells. The mesh has 199 nodes and a
number of nonzero elements in the Hessians are 5,904, 18,963, and 18,963, respectively

summands, which need to be updated in each iteration. Recall that a tight coupling
between the components of the transformation is introduced by the area and
volume regularizer and that the effective weight of d 2Svol depends on the current
iterate. A visualization of the nonzero patterns of the four blocks is presented in
Fig. 7.

Since H is symmetric and positive semi-definite by design, a conjugate gradient
(CG) method [44] can be used to approximate v. Conjugate gradient methods
become even more efficient when being combined with preconditioning; see,
e.g., [8]. Suppose there is an approximationC 2 R

N�N toH that is positive definite
and easily invertible. Given a starting guess v0 2 R

N consider the iteration

v1 D v0 � ˛C�1.HŒy�v0 C dJ Œy�/

with some step length ˛. Using C D H and ˛ D 1, this would yield the result in
one iteration. However, it is equivalent to directly solving (59). Thus, the idea is to
use a “sufficient” approximation of C toH that is considerably easier to invert than
H itself.

There are many preconditioning techniques for conjugate gradient methods. A
computational attractive option is Jacobi preconditioning, i.e., C D D, where
D D diag.H/. More expensive but also more effective preconditioning is offered
by Gauss–Seidel preconditioning, i.e., C D .D C L/D�1.D C L>/, where L is
the lower triangular matrix of H and D the diagonal of H ; see [8, Ch.4] for more
details.

The step length is determined by a standard Armijo line search in combination
with a backtracking that ensures detry > 0; see [57]. Standard stopping rules based
on the value of the objective functional, the norm of the gradient, and the norm of
the update can be used as discussed in detail in [55].
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Fig. 8 3D Registration result for diastolic and systolic PET data of a human heart. The first row
shows volume renderings of reference, template, and transformed template image. The second row
shows slice projections of the image data and the estimated transformation. Image data provided
by Fabian Gigengack, European Institute of Molecular Imaging, University of Münster, Germany

5 Applications of Hyperelastic Image Registration

This section outlines the potential of hyperelastic image registration for real-world
applications. Exemplarily, two registration problems from medical imaging are
considered. In both applications mass-preserving distance functionals are required
and hyperelastic regularization is used to yield mathematically sound formulations.

Motion Correction of Cardiac PET

Positron Emission Tomography (PET) can provide useful information about the
metabolism of the human heart, which is useful for the diagnosis of coronary artery
diseases. To this end, a radioactive glucose tracer is administered and emission
events are recorded by a detector ring during its decay. Finally, a tomographic image
representing the spatial distribution of the tracer is reconstructed. Typically, a large
fraction of the tracer is metabolized by the left ventricular muscle of the heart, which
is thus visible in the images; see Fig. 8.

A key problem in PET reconstruction is the severe degradation of the images
due to respiratory and cardiac motion during image acquisition. In principle, the
more emission events are recorded, the better the expected image quality. Thus,
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acquisition times are typically in the order of minutes and motion is inevitable.
The so-called gating techniques are typically used to compensate for these motion
artifacts [21]. The idea is that recorded emission events are grouped into a number of
gates, which relate to particular phases in the respiratory and cardiac cycle. For each
gate, a reconstruction is computed which shows less motion blur, but is also based
on fewer counts and consequently of degraded quality as signal to noise has been
reduced. To take full advantage of all measurements, the individual reconstructions
are aligned using image registration and finally fused [30, 61].

Mass-Preservation
PET images represent the distribution of the density of the radioactive tracer, in this
case, the distribution of a glucose tracer measured 1 h after injection. Therefore, it
can be assumed the amount of tracer per given tissue unit to be constant. Thus the
mass-preserving distance measure, as defined in section “Distance Functionals”, is
used

DMPŒy� D DMPŒT ;RIy� D 1

2

Z
˝

.T Œy� � detry �R/2dx:

As mentioned in section “Distance Functionals”, the mass-preserving distance func-
tional DMP is not convex in ry and mass-preservation requires that transformations
satisfy detry > 0. Also, large strains for cardiac motion correction are expected
and images will be of relatively poor quality when using fine gating schemes.
Thus, hyperelastic regularization is used since Theorem 1 guarantees existence of
minimizers with positive Jacobian determinants.

The mass-preserving distance functional is discretized following the guidelines
of section “Galerkin Finite Element Discretization”. As for the SSD distance, a
midpoint quadrature rule is employed and computation of the Jacobian determinant
and its derivatives are reused.

Registration Results and Impact on Image Quality
Registration results for a 3D PET data set of a human heart are visualized in
Fig. 8. More precisely, Fig. 8 only presents results for the registration of diastolic
and systolic phases which is the most difficult scenario. Data courtesy by Fabian
Gigengack, European Institute for Molecular Imaging, University of Münster,
Germany. It turns out that the mass-preserving hyperelastic registration approach
accurately deforms the contracted systolic gate such that is very similar to the
diastolic gate. The smooth and invertible transformation is visualized using a slice
projection.

The image quality that can dramatically improved by registration and subsequent
averaging of the transformed images as shown in Fig. 9. Here, a dual gating into five
respiratory gates each being divided into five cardiac gates is performed, yielding
25 image volumes. Each single gate contains only a small fraction of the signal,
however, is less affected by motion; cf. Fig. 9a. Reconstruction without registration
yields a smoother image degraded by motion blurr; cf. Fig. 9b. A smooth and
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Fig. 9 Motion Correction result for PET data of a human heart. Slice projections of a single
gate (left) a blurred reconstruction without motion correction (center) and motion-corrected
reconstruction (right) are shown. Image data provided by Fabian Gigengack, European Institute
of Molecular Imaging, University of Münster, Germany

motion-corrected reconstruction is obtained by following the pipeline suggested
in [61] and averaging the aligned images. Here a much sharper and clearer image
can be reconstructed; cf. Fig. 9c.

Summary and Further Literature
Mass-preserving hyperelastic image registration reduces motion artifacts in cardiac
PET. The transformation model respects the density property of PET. Hyperelastic
regularization is used to ensure existence of solutions that satisfy the mass-
preserving constraint. The mass-preserving transformation model was validated
in [30] and a pipeline for practical motion correction is suggested in [61].

Susceptibility Artefact Correction of Echo-Planar MRI

Echo Planar Imaging (EPI) is a commonly available ultrafast MRI acquisition
technique; see [66]. It is routinely used for key investigation techniques in modern
neuroscience such as diffusion tensor imaging (DTI) or functional MRI (fMRI).

While offering considerable reduction of acquisition time, a drawback of EPI
is its high sensitivity against small perturbations of the magnetic field. Field
inhomogeneities are inevitably caused by different magnetic susceptibilities of soft
tissue, bone, and air and thus present in any practical setting. Inhomogeneities
result in geometrical distortions and intensity modulations that complicate the
interpretation of EPI data and their fusion with anatomical T1- or T2-weighted
MR images obtained using conventional acquisition techniques with negligible
distortions.

This section summarized the tailored variational image registration method for
the correction of distortions presented in [62]. The method can be seen as a special
case of mass-preservation hyperelastic registration for transformations that are
restricted along one a priori known spatial direction.
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Fig. 10 Illustration of the Reversed Gradient Approach [15]. The initial measurements (first
column) are distorted in opposite directions, depicted as white arrows. The estimated field
inhomogeneity B (second column) gives rise to two geometric transformations (third column) that
can be used to approximately correct the data (right column). Data courtesy by Harald Kugel,
Department for Radiology, University of Münster, Germany

Reversed Gradient Method
The Reversed Gradient Method was firstly described by Chang and Fitzpatrick in
1992 [15] to correct for distortions due to field inhomogeneities. They derived a
physical model for the distortions, which shows that measurements are distorted
along one a priori known spatial direction. Interestingly, the direction of distortion v
is not only known, but can also be controlled by parameters settings on the scanner.
It is thus possible to acquire a pair of images, denoted by I1 and I2, that are
oppositely affected by distortions; see also Fig. 10.

The Variational Problem
The measurements I1 and I2 represent density distributions of protons. Therefore,
there is a mass-preserving property [15] is assumed. Due to field inhomogeneities,
the signal is wrongly localized along the distortion direction v and the image
intensities are modulated depending on the determinant of the Jacobian of the
transformation (Fig. 11). Chang and Fitzpatrick describe the relation of the distorted
measurements to the undistorted image I by

I.x/ D I1.x C vB.x//.1C @vB/ D I2.x � vB.x//.1C @vB/; (60)
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Fig. 11 Improved correspondence of corrected EPI measurements to anatomical MRI. Data
courtesy by Harald Kugel, Department for Radiology, University of Münster, Germany

where B W ˝ ! R denotes the field inhomogeneity that needs to be measured
or estimated numerically. Note that for distortion directions ˙v, there are two
transformations y˙ D x ˙ vB.x/ and hence detry D 1˙ @vB .

Considerable progress has been made in the numerical treatment of the reversed
gradient method in the last decade; see, for instance [2,47,62,64]. These numerical
schemes are based on a tailored mass-preserving distance functional

DEPIŒB� D 1

2

Z
˝

.I1.x C vB.x//.1C @vB/ � I2.x � vB.x//.1 � @vB//
2 dx:

A notable difference to image registration problems is that there is no template and
reference image relationship. The displacement is applied to images, but in opposite
directions. Further, intensity modulations are applied to ensure mass-preservation.

Regularization Because of the mass-preservation component invertibility of the
geometrical transformations in (60) is required as has been already stressed in [15].
However, simplifications of the hyperelastic regularization functional Shyper arise,
since displacements are restricted in one direction. Thus the field inhomogeneity B
needs to satisfy
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0 < .1C @vB/ and 0 < .1 � @vB/, �1 < @vB < 1: (61)

This motivates using the following regularizer

SEPIŒB� D ˛

2

Z
˝

krBk2dx C ˇ
Z
˝

 .@vB/dx:

The first summand is a diffusion term that ensures smoothness as commonly used
and suggested by the forward model; see [22]. The convex penalty function

 .v/ D v4

.v � 1/.vC 1/

has singularities at˙1 and ensures @vB 2 L2. This is essential to ensure positivity of
the intensity modulations. It is shown in [62] that this regularizer ensures existence
of solutions and that solutions satisfy (61).

Numerical Implementation Numerical discretization of the reversed gradient can
be done using a nodal grid for the field inhomogeneity and a finite volume approach.
Intensity modulations are thus approximated by monitoring volume changes. Note
that no coupling between the components of the Jacobian matrix is present since
displacements are restricted along ˙v. A Matlab implementation is available as
an extension to the FAIR toolbox [55] and integrated into the toolbox Statistical
Parametric Mapping (SPM) [63].

Correction Results
Figure 10 illustrates the correction method for EPI data of the brain of a healthy
volunteer; see [62] for more results. Data courtesy by Harald Kugel, Department for
Radiology, University of Münster, Germany. The distance between the images I1

and I2 with respect to DEPI is reduced considerably by the estimated transformation.
Figure 10 shows the improvement of spatial correspondence between the dis-

torted EPI data and an anatomical T1-weighted MRI which can be assumed to be
free of distortions. An axial slice zoomed into the frontal brain region is shown.
Superimposed contour lines representing a white matter segmentation obtained from
the anatomical image data are depicted in all subplots. Geometrical mismatch of
the uncorrected EPI measurements and the anatomical data is most pronounced in
frontal regions and around the Corpus Callosum. After correction, the geometrical
correspondence improves considerably.

6 Conclusion

Image registration is an essential task in a variety of areas involving imaging
techniques. This chapter presented a comprehensive overview of mathematical
techniques used for nonlinear image registration. Emphasis was on regularization
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techniques that ensure a mathematically sound formulation of the problem, allow
stable and fast numerical solution, and favor solutions that are realistic for the
application in mind.

Starting out from one of the most commonly used linear elastic model [10, 55],
its limitations and extensions to nonlinear regularization functionals based on the
theory of hyperelastic materials were discussed. A detailed overview of the available
theoretical results was given. Insight into the existence theory of hyperelastic
image registration problems was given and a state-of-the-art numerical scheme
is presented. Finally, the potential of hyperelastic image registration for real-life
medical imaging applications was outlined in two case studies.

Cross-References

�Large-scale Inverse Problems in Imaging
�Mathematical Methods in PET and SPECT Imaging
�Optical Flow
�Regularization Methods for Ill-Posed Problems

References

1. Ambrosio, L.: Lecture notes on optimal transport problems. In: Mathematical Aspects
of Evolving Interfaces. Lecture Notes in Mathematics, vol. 1812, pp. 1–52. Springer,
Berlin/Heidelberg (2003)

2. Andersson, J.L.R., Skare, S., Ashburner, J.: How to correct susceptibility distortions in spin-
echo echo-planar images: application to diffusion tensor imaging. NeuroImage 20(2), 870–888
(2003)

3. Ashburner, J.: A fast diffeomorphic image registration algorithm. NeuroImage 38(1), 95–113
(2007)

4. Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration.
Mech. Anal. 63(4), 337–403 (1976)

5. Beg, M., Miller, M.I., Trouvé, A.: Computing large deformation metric mappings via geodesic
flows of diffeomorphisms. Int. J. Comput. Vis. 61(2), 139–157 (2005)

6. Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge–
Kantorovich mass transfer problem. Numer. Math. 84, 375–393 (2000)

7. Bornemann, F.A., Deuflhard, P.: The cascadic multigrid method for elliptic problems. Numer.
Math. 75, 125–152 (1996)

8. Braess, D.: Finite Elements. Theory, Fast Solvers, and Applications in Elasticity Theory, 2nd
edn. Cambridge University Press, New York (2001)

9. Brewer, J.W.: Kronecker products and matrix calculus in system theory. IEEE Trans. Circuits
Syst. 25(9), 772–781 (1978)

10. Broit, C.: Optimal Registration of Deformed Images. Ph.D. thesis, University of Pennsylvania
(1981)

11. Brown, L.G.: A survey of image registration techniques. ACM Comput. Surv. (CSUR) 24(4),
325–376 (1992)

12. Bruhn, A., Weickert, J., Schnörr, C.: Lucas/Kanade meets Horn/Schunck: combining local and
global optic flow methods. Int. J. Comput. Vis. 61(3), 211–231 (2005)

http://dx.doi.org/10.1007/978-1-4939-0790-8_2
http://dx.doi.org/10.1007/978-1-4939-0790-8_45
http://dx.doi.org/10.1007/978-1-4939-0790-8_38
http://dx.doi.org/10.1007/978-1-4939-0790-8_3


Non-linear Image Registration 2049

13. Brune, C.: 4D Imaging in Tomography and Optical Nanoscopy. Ph.D. thesis, University of
Münster (2010)

14. Burger, M., Modersitzki, J., Ruthotto, L.: A hyperelastic regularization energy for image
registration. SIAM J. Sci. Comput. 35, B132–B148 (2013)

15. Chang, H., Fitzpatrick, J.M.: A technique for accurate magnetic resonance imaging in the
presence of field inhomogeneities. IEEE Trans. Med. Imaging 11(3), 319–329 (1992)

16. Christensen, G.E.: Deformable Shape Models for Anatomy. Ph.D. thesis, Washington Univer-
sity (1994)

17. Christensen, G.E., Johnson, H.: Consistent image registration. IEEE Trans. Med. Imaging
20(7), 568–582 (2001)

18. Ciarlet, P.G.: Mathematical Elasticity: Three Dimensional Elasticity. North Holland,
Amsterdam (1988)

19. Collignon, A., Maes, F., Delaere, D., Vandermeulen, D., Suetens, P., Marchal, G.: Automated
multi-modality image registration based on information theory. Inform. Process. Med. Imaging
14(6), 263–274 (1995)

20. Dacorogna, B.: Direct Methods in the Calculus of Variations, 2nd edn. Springer, New York
(2008)

21. Dawood, M., Stegger, L., Wübbeling, F., Schäfers, M., Schober, O., Schäfers, K.P.: List mode-
driven cardiac and respiratory gating in PET. J. Nucl. Med. 50(5), 674–681 (2009)

22. De Munck, J.C., Bhagwandien, R., Muller, S.H., Verster, F.C., Van Herk, M.B.: The compu-
tation of MR image distortions caused by tissue susceptibility using the boundary element
method. IEEE Trans. Med. Imaging 15(5), 620–627 (1996)

23. Droske, M., Rumpf, M.: A variational approach to nonrigid morphological image registration.
SIAM J. Appl. Math. 64(2), 668–687 (2004)

24. Evans, L.C.: Partial differential equations and Monge Kantorovich transfer. Curr. Dev. Math.
1999, 65–126 (1997)

25. Evans, L.C.: Partial Differential Equations, vol. 19. American Mathematical Society, Provi-
dence (2002)

26. Fischer, B., Modersitzki, J.: Curvature based image registration. J. Math. Imaging Vis. 18(1),
81–85 (2003)

27. Fischer, B., Modersitzki, J.: Ill-posed medicine – an introduction to image registration. Inverse
Probl. 24(3), 034008 (2008)

28. Fischler, M.A., Elschlager, R.A.: The representation and matching of pictorial structures. IEEE
Trans. Comput. 22, 67–92 (1973)

29. Fitzpatrick, J.M.: The existence of geometrical density-image transformations corresponding
to object motion. Comput. Vis. Graph. Image Process. 44(2), 155–174 (1988)

30. Gigengack, F., Ruthotto, L., Burger, M., Wolters, C.H., Jiang, X., Schäfers, K.P.: Motion
correction in dual gated cardiac PET using mass-preserving image registration. IEEE Trans.
Med. Imaging 31(3), 698–712 (2012)

31. Glasbey, C.A., Mardia, K.V.: A review of image-warping methods. J. Appl. Stat. 25(2),
155–171 (1998)

32. Gockenbach, M.S.: Understanding and Implementing the Finite Element Method. Society for
Industrial Mathematics (SIAM), New York (2006)

33. Goshtasby, A.: 2D and 3D Image Registration. Wiley, New York (2005)
34. Haber, E., Modersitzki, J.: Numerical methods for volume preserving image registration.

Inverse Probl. 20(5), 1621–1638 (2004)
35. Haber, E., Modersitzki, J.: A scale space method for volume preserving image registration. In:

Scale Space and PDE Methods in Computer Vision, pp. 561–572 (2005)
36. Haber, E., Modersitzki, J.: Image registration with guaranteed displacement regularity. Int. J.

Comput. Vis. 71(3), 361–372 (2006)
37. Haber, E., Modersitzki, J.: A multilevel method for image registration. SIAM J. Sci. Comput.

27(5), 1594–1607 (2006)
38. Haber, E., Heldmann, S., Modersitzki, J.: A framework for image-based constrained registra-

tion with an application to local rigidity. Numer. Linear Alg. Appl. 431(2–3), 459–470 (2007)



2050 L. Ruthotto and J. Modersitzki

39. Haber, E., Heldmann, S., Modersitzki, J.: Adaptive mesh refinement for nonparametric image
registration. SIAM J. Sci. Comput. 30(6), 3012–3027 (2008)

40. Haber, E., Horesh, R., Modersitzki, J.: Numerical optimization for constrained image registra-
tion. Numer. Linear Alg. Appl. 17(2–3), 343–359 (2010)

41. Hadamard, J.: Sur les problémes aux dérivées partielles et leur signification physique. Princeton
Univ. Bull. 13, 1–20 (1902)

42. Heldmann, S.: Non-Linear Registration Based on Mutual Information. Ph.D. thesis, Institute
of Mathematics, University of Lübeck (2006)

43. Henn, S.: A multigrid method for a fourth-order diffusion equation with application to image
processing. SIAM J. Sci. Comput. 27(3), 831 (2005)

44. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res.
Natl. Bureau Stand. 49(6), 409–439 (1952)

45. Hill, D.L.G., Batchelor, P., Holden, M., Hawkes, D.J.: Medical image registration. Phys. Med.
Biol. 46, R1–R45 (2001)

46. Hinterberger, W., Scherzer, O., Schnörr, C., Weickert, J.: Analysis of optical flow models in
the framework of the calculus of variations. Numer. Funct. Anal. Optim. 23(1), 69–90 (2002)

47. Holland, D., Kuperman, J.M., Dale, A.M.: Efficient correction of inhomogeneous static
magnetic field-induced distortion in echo planar imaging. NeuroImage 50(1), 175–183 (2010)

48. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artif. Intell. 17(1–3), 185–203 (1981)
49. Kantorovich, L.V.: On a problem of monge. Uspekhi Mat. Nauk. 3, 225–226 (1948)
50. Keeling, S.L., Ring, W.: Medical image registration and interpolation by optical flow with

maximal rigidity. J. Math. Imaging Vis. 23(1), 47–65 (2005)
51. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo

vision. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence
(1981)

52. Maintz, J., Viergever, M.A.: A survey of medical image registration. Med. Image Anal. 2(1),
1–36 (1998)

53. Modersitzki, J.: Numerical Methods for Image Registration. Oxford University Press, Oxford
(2004)

54. Modersitzki, J.: Flirt with rigidity-image registration with a local non-rigidity penalty. Int. J.
Comput. Vis. 76(2), 153–163 (2008)

55. Modersitzki, J.: FAIR: Flexible Algorithms for Image Registration. Society for Industrial and
Applied Mathematics, Philadelphia (2009)

56. Modersitzki, J., Haber, E.: Intensity gradient based registration and fusion of multi-modal
images. Methods Inform. Med. 46(3), 292–299 (2007)

57. Nocedal, J., Wright, S.: Numerical Optimization. Springer Series in Operations Research, 2nd
edn. Springer, Berlin (2006)

58. Pöschl, C., Modersitzki, J., Scherzer, O.: A variational setting for volume constrained image
registration. Inverse Probl. Imaging 4(3), 505–522 (2010)

59. Rohlfing, T., Maurer, C.R., Bluemke, D.A., Jacobs, M.A.: Volume-preserving nonrigid regis-
tration of MR breast images using free-form deformation with an incompressibility constraint.
IEEE Trans. Med. Imaging 22(6), 730–741 (2003)

60. Ruthotto, L.: Mass-preserving registration of medical images. German diploma thesis (mathe-
matics), University of Münster (2010)

61. Ruthotto, L., Gigengack, F., Burger, M., Wolters, C.H., Jiang, X., Schäfers, K.P., Modersitzki,
J.: A simplified pipeline for motion correction in dual gated cardiac PET. In: Tolxdorff, T.,
Deserno, T.M., Handels, H., Meinzer, H.-P. (eds.) Bildverarbeitung für die Medizin 2012, pp.
51–56. Springer, Berlin (2012)

62. Ruthotto, L., Kugel, H., Olesch, J., Fischer, B., Modersitzki, J., Burger, M., Wolters, C.H.:
Diffeomorphic susceptibility artefact correction of diffusion-weighted magnetic resonance
images. Phys. Med. Biol. 57(18), 5715–5731 (2012)

63. Ruthotto, L., Mohammadi, S., Heck, C., Modersitzki, J., Weiskopf, N.: HySCO – Hyperelastic
Susceptibility Artifact Correction of DTI in SPM. In: Bildverarbeitung für die Medizin 2013
(2013)



Non-linear Image Registration 2051

64. Skare, S., Andersson, J.L.R.: Correction of MR image distortions induced by metallic objects
using a 3D cubic B-spline basis set: application to stereotactic surgical planning. Magn. Reson.
Med. 54(1), 169–181 (2005)

65. Staring, M., Klein, S., Pluim, J.P.W.: A rigidity penalty term for nonrigid registration. Med.
Phys. 34(11), 4098–4108 (2007)

66. Stehling, M., Turner, R., Mansfield, P.: Echo-planar imaging: magnetic resonance imaging in
a fraction of a second. Science 254(5028), 43–50 (1991)

67. Tikhonov, A.: Solution of incorrectly formulated problems and the regularization method.
Soviet Math. Dokl. 4, 1035–1038 (1963)

68. Tikhonov, A., Arsenin, V.: Solution of Ill-Posed Problems. Winston & Sons, Washington
(1977)

69. Trouvé, A.: Diffeomorphisms groups and pattern matching in image analysis. Int. J. Comput.
Vis. 28(3), 213–221 (1998)

70. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: efficient non-
parametric image registration. NeuroImage 45(1), 61–72 (2009)

71. Viola, P., Wells, W.M.: Alignment by maximization of mutual information. Int. J. Comput. Vis.
24(2), 137–154 (1997)

72. Yanovsky, I., Le Guyader, C., Leow, A., Toga, A., Thompson, P.M., Vese, L.: Unbiased
volumetric registration via nonlinear elastic regularization. In: Mathematical Foundations of
Computational Anatomy (2008)

73. Zitova, B., Flusser, J.: Image registration methods: a survey. Image Vis. Comput. 21(11),
977–1000 (2003)



Starlet Transform in Astronomical Data
Processing

Jean-Luc Starck, Fionn Murtagh, and Mario Bertero

Contents

1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2054
Source Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2055

2 Standard Approaches to Source Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2056
The Traditional Data Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2057
PSF Estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2057
Background Estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2058
Convolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2058
Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2058
Deblending/Merging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2059
Photometry and Classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2059

3 Mathematical Modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2061
Sparsity Data Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2061
The Starlet Transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2062
The Starlet Reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2064
Starlet Transform: Second Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2066
Sparse Modeling of Astronomical Images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2069
Sparse Positive Decomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2071

4 Source Detection Using a Sparsity Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2073
Detection Through Wavelet Denoising. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2073
The Multiscale Vision Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2075
Source Reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2079
Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2080

J.-L. Starck (�)
CEA, Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, CEA, IRFU, Service
d’Astrophysique, Centre de Saclay, Gif-Sur-Yvette Cedex, France
e-mail: jstarck@cea.fr

F. Murtagh
School of Computer Science and Informatics, De Montfort University, Leicester, UK
e-mail: fmurtagh@acm.org

M. Bertero
DIBRIS, Università di Genova, Genova, Italy
e-mail: bertero@disi.unige.it
© Springer Science+Business Media New York 2015
O. Scherzer (ed.), Handbook of Mathematical Methods in Imaging,
DOI 10.1007/978-1-4939-0790-8_34

2053

mailto:jstarck@cea.fr
mailto:fmurtagh@acm.org
mailto:bertero@disi.unige.it


2054 J.-L. Starck et al.

5 Deconvolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2081
Statistical Approach to Deconvolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2083
The Richardson–Lucy Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2087
Blind Deconvolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2089
Deconvolution with a Sparsity Prior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2090
Detection and Deconvolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2092
Object Reconstruction Using the PSF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2092
The Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2093
Space-Variant PSF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2094
Undersampled Point Spread Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2094
Example: Application to Abell 1689 ISOCAM Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2094

6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2095
Cross-References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2095
Recommended Readings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2096
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2096

Abstract
We begin with traditional source detection algorithms in astronomy. We then
introduce the sparsity data model. The starlet wavelet transform serves as our
main focus in this article. Sparse modeling and noise modeling are described.
Applications to object detection and characterization, and to image filtering
and deconvolution, are discussed. The multiscale vision model is a further
development of this work, which can allow for image reconstruction when the
point spread function is not known or not known well. Bayesian and other
algorithms are described for image restoration. A range of examples is used to
illustrate the algorithms.

1 Introduction

Data analysis is becoming more and more important in astronomy. This can be
explained by detector evolution, which concerns all wavelengths. In the 1980s,
CCD (charge-coupled device) images had a typical size of 512 � 512 pixels, while
astronomers now have CCD mosaics with 16;000 � 16;000 pixels or even more.
At the same time, methods of analysis have become much more complex, and the
human and financial efforts to create and process the data can sometimes be of the
same order as for the construction of the instrument itself. As an example, for the
ISOCAM camera of the Infrared Space Observatory (ISO), the command software
of the instrument, and the online and offline data processing, required altogether
70 person years of development, while 200 person years were necessary for the
construction of the camera. The data analysis effort for the PLANCK project is
even larger. Furthermore, the quantity of outputs requires the use of databases, and in
parallel sophisticated tools are needed to extract ancillary astrophysical information,
generally now through the web. From the current knowledge, new questions emerge,
and it is necessary to proceed to new observations of a given object or a part of
the sky. The acquired data need to be calibrated prior to useful information for the
scientific project being extracted.
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Data analysis acts during the calibration, the scientific information extraction
process, and the database manipulation. The calibration phase consists of correcting
various instrumental effects, such as the dark current (i.e., in the absence of any light,
the camera does not return zero values, and the measured image is called the dark
image and needs to be subtracted from any observation) or the flat-field correction
(i.e., for uniform light, the detector does not return the same value for each pixel, and
a normalization needs to be performed by dividing the observed image by the “flat”
image). Hence, it is very important to know well the parameters of the detector (flat-
field image, dark image, etc.), because any error on these parameters will propagate
to the measurements. Other effects can also be corrected during this phase, such as
the removal of the cosmic ray impacts or the field distortion (the pixel surface for
each pixel does not correspond to the same surface on the sky). Depending on the
knowledge of the instrument, each of these tasks may be more or less difficult.

Once the data are calibrated, the analysis phase can start. Following the scientific
objectives, several kinds of information can be extracted from the data, such as
the detection of stars and galaxies, the measurement of their position, intensity,
and various morphological parameters. The results can be compared to existing
catalogs, obtained from previous observations. It is obviously impossible to cite
all operations we may want to carry through on an astronomical image, and we
have just mentioned the most common. In order to extract the information, it is
necessary to take into account noise and point spread function. Noise is the random
fluctuation which is added to the CCD data and comes partially from the detector
and partially from the data. In addition to the errors induced by the noise on
the different measurements, noise also limits the detection of objects and can be
responsible for false detections. The point spread function is manifested in how the
image of a star, for example, is generally spread out on several pixels, caused by
the atmosphere’s effect on the light path. The main effect is a loss of resolution,
because two sufficiently close objects cannot be separated. Once information has
been extracted, such details can be compared to our existing knowledge. This
comparison allows us to validate or reject our understanding of the universe.

In this chapter, we will discuss in detail how to detect objects in astronomical
images and how to take into account the point spread function through the
deconvolution processing.

Source Detection

As explained above, source (i.e., object) extraction from images is a fundamental
step for astronomers. For example, to build catalogs, stars and galaxies must be
identified and their position and photometry must be estimated with good accuracy.
Catalogs comprise a key result of astronomical research. Various methods have
been proposed to support the construction of catalogs. One of the now most widely
used software packages is SExtractor [6], which is capable of handling very large
images. A standard source detection approach, such as in SExtractor, consists of the
following steps:
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Fig. 1 Example of
astronomical data: a point
source and an extended
source are shown, with noise
and background. The
extended object, which can be
detected by eye, is undetected
by a standard detection
approach

3 sigma

point source

extended source

background level

detection

Flux

1. Background estimation.
2. Convolution with a mask.
3. Detection.
4. Deblending/merging.
5. Photometry.
6. Classification.

These different steps are described in the next section. Astronomical images
contain typically a large set of point-like sources (the stars), some quasi point-
like objects (faint galaxies, double stars), and some complex and diffuse structures
(galaxies, nebulae, planetary stars, clusters, etc.). These objects are often hierarchi-
cally organized: a star in a small nebula, itself embedded in a galaxy arm, itself
included in a galaxy, and so on.

The standard approach, which is presented in detail in Sect. 2, presents some
limits, when we are looking for faint extended objects embedded in noise. Figure 1
shows a typical example where a faint extended object is under the detection limit.
In order to detect such objects, more complex data modeling needs to be defined.
Section 3 presents another approach to model and represent astronomical data,
by using a sparse model in a wavelet dictionary. A specific wavelet transform,
called the starlet transform or the isotropic undecimated wavelet transform, is
presented. Based on this new modeling, several approaches are proposed in Sects. 4
and 5.

2 Standard Approaches to Source Detection

We describe here the most popular way to create a catalog of galaxies from
astronomical images.
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The Traditional Data Model

The observed data Y can be decomposed into two parts, the signal X and the
noise N :

Y Œk; l� D XŒk; l�CNŒk; l� (1)

The imaging system can also be considered. If it is linear, the relation between the
data and the image in the same coordinate frame is a convolution:

Y Œk; l� D .HX/Œk; l�CNŒk; l� (2)

where H is the matrix related to the point spread function (PSF) of the imaging
system.

In most cases, objects of interest are superimposed on a relatively flat signal B ,
called background signal. The model becomes

Y Œk; l� D .HX/Œk; l�C BŒk; l�CNŒk; l� (3)

PSF Estimation

The PSF H can be estimated from the data or from an optical model of the
imaging telescope. In astronomical images, the data may contain stars, or one can
point towards a reference star in order to reconstruct a PSF. The drawback is the
“degradation” of this PSF because of unavoidable noise or spurious instrument
signatures in the data. So, when reconstructing a PSF from experimental data, one
has to reduce very carefully the images used (background removal for instance).
Another problem arises when the PSF is highly variable with time, as is the case
for adaptive optics (AO) images. This means usually that the PSF estimated when
observing a reference star, after or before the observation of the scientific target, has
small differences from the perfectly correct PSF.

Another approach consists of constructing a synthetic PSF. Various studies [11,
21, 38, 39] have suggested a radially symmetric approximation to the PSF:

P.r/ /
�

1C r2

R2

��ˇ
(4)

The parameters ˇ and R are obtained by fitting the model with stars contained in
the data.

In the case of AO systems, this model can be used for the tail of the PSF (the
so-called seeing contribution), while in the central region, the system provides an
approximation of the diffraction-limited PSF. The quality of the approximation is
measured by the Strehl ratio (SR), which is defined as the ratio of the observed peak
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intensity in the image of a point source to the theoretical peak intensity of a perfect
imaging system.

Background Estimation

The background must be accurately estimated; otherwise it will introduce bias in
flux estimation. In [7,28], the image is partitioned into blocks, and the local sky level
in each block is estimated from its histogram. The pixel intensity histogram p.Y / is
modeled using three parameters, the true sky level B , the RMS (root mean square)
noise 
 , and a parameter describing the asymmetry in p.Y / due to the presence of
objects, and is defined by [7]:

p.Y / D 1

a
exp

�

2=2a2	 exp Œ�.Y � B/=a� erfc

�



a
� .Y � B/




�
(5)

Median filtering can be applied to the 2D array of background measurements
in order to correct for spurious background values. Finally the background map
is obtained by a bilinear or a cubic interpolation of the 2D array. The block size
is a crucial parameter. If it is too small, the background estimation map will be
affected by the presence of objects, and if too large it will not take into account real
background variations.

In [6,15], the local sky level is calculated differently. A 3-sigma clipping around
the median is performed in each block. If the standard deviation is changed by less
than 20 % in the clipping iterations, the block is uncrowded, and the background
level is considered to be equal to the mean of the clipped histogram. Otherwise,
it is calculated by c1 � median � c2 � mean, where c1 D 3; c2 D 2 in [15] and
c1 D 2:5; c2 D 1:5 in [6]. This approach has been preferred to histogram fitting for
two reasons: it is more efficient from the computation point of view and more robust
with small sample size.

Convolution

In order to optimize the detection, the image must be convolved with a filter. The
shape of this filter optimizes the detection of objects with the same shape. Therefore,
for star detection, the optimal filter is the PSF. For extended objects, a larger filter
size is recommended. In order to have optimal detection for any object size, the
detection must be repeated several times with different filter sizes, leading to a kind
of multiscale approach.

Detection

Once the image is convolved, all pixels Y Œk; l� at location .k; l/ with a value larger
than T Œk; l� are considered as significant, i.e., belonging to an object. T Œk; l� is
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generally chosen as BŒk; l� CK
 , where BŒk; l� is the background estimate at the
same position, 
 is the noise standard deviation, andK is a given constant (typically
chosen between 3 and 5). The thresholded image is then segmented, i.e., a label is
assigned to each group of connected pixels. The next step is to separate the blended
objects which are connected and have the same label.

An alternative to the thresholding/segmentation procedure is to find peaks. This
is only well suited to star detection and not to extended objects. In this case, the next
step is to merge the pixels belonging to the same object.

Deblending/Merging

This is the most delicate step. Extended objects must be considered as single
objects, while multiple objects must be well separated. In SExtractor, each group of
connected pixels is analyzed at different intensity levels, starting from the highest
down to the lowest level. The pixel group can be seen as a surface, with mountains
and valleys. At the beginning (highest level), only the highest peak is visible. When
the level decreases, several other peaks may become visible, defining therefore
several structures. At a given level, two structures may become connected, and
the decision whether they form only one (i.e., merging) or several objects (i.e.,
deblending) must be taken. This is done by comparing the integrated intensities
inside the peaks. If the ratio between them is too low, then the two structures must
be merged.

Photometry and Classification

Photometry
Several methods can be used to derive the photometry of a detected object
[7, 29]. Adaptive aperture photometry uses the first image moment to determine
the elliptical aperture from which the object flux is integrated. Kron [29] proposed
an aperture size of twice the radius of the first image moment radius r1, which leads
to recovery of most of the flux .>90 %/. In [6], the value of 2:5r1 is discussed,
leading to loss of less than 6 % of the total flux. Assuming that the intensity profiles
of the faint objects are Gaussian, flux estimates can be refined [6, 35]. When the
image contains only stars, specific methods can be developed which take the PSF
into account [18, 42].

Star–Galaxy Separation
In the case of star–galaxy classification, following the scanning of digitized images,
Kurtz [30] lists the following parameters which have been used:

1. Mean surface brightness;
2. Maximum intensity and area;
3. Maximum intensity and intensity gradient;
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4. Normalized density gradient;
5. Areal profile;
6. Radial profile;
7. Maximum intensity, 2nd and 4th order moments, and ellipticity;
8. The fit of galaxy and star models;
9. Contrast versus smoothness ratio;

10. The fit of a Gaussian model;
11. Moment invariants;
12. Standard deviation of brightness;
13. 2nd order moment;
14. Inverse effective squared radius;
15. Maximum intensity and intensity-weighted radius;
16. 2nd and 3rd order moments, number of local maxima, and maximum intensity.

References for all of these may be found in the cited work. Clearly there is
room for differing views on parameters to be chosen for what is essentially the
same problem. It is of course the case also that aspects such as the following will
help to orientate us towards a particular set of parameters in a particular case: the
quality of the data; the computational ease of measuring certain parameters; the
relevance and importance of the parameters measured relative to the data analysis
output (e.g., the classification, or the planar graphics); and, similarly, the importance
of the parameters relative to theoretical models under investigation.

GalaxyMorphology Classification
The inherent difficulty of characterizing spiral galaxies especially when not face-on
has meant that most work focuses on ellipticity in the galaxies under study. This
points to an inherent bias in the potential multivariate statistical procedures. In the
following, it will not be attempted to address problems of galaxy photometry per se
[17,44], but rather to draw some conclusions on what types of parameters or features
have been used in practice.

From the point of view of multivariate statistical algorithms, a reasonably
homogeneous set of parameters is required. Given this fact, and the available
literature on quantitative galaxy morphological classification, two approaches to
parameter selection appear to be strongly represented:

1. The luminosity profile along the major axis of the object is determined at
discrete intervals. This may be done by the fitting of elliptical contours, followed
by the integrating of light in elliptical annuli [33]. A similar approach was
used in the ESO–Uppsala survey. Noisiness and faintness require attention to
robustness in measurement: the radial profile may be determined taking into
account the assumption of a face-on optically thin axisymmetric galaxy and may
be further adjusted to yield values for circles of given radius [64]. Alternatively,
isophotal contours may determine the discrete radial values for which the profile
is determined [62].
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2. Specific morphology-related parameters may be derived instead of the profile.
The integrated magnitude within the limiting surface brightness of 25 or 26 mag.
arcsec�2 in the visual is popular [33, 61]. The logarithmic diameter .D26/ is
also supported by Okamura [43]. It may be interesting to fit to galaxies under
consideration model bulges and disks using, respectively, r

1
4 or exponential laws

[62], in order to define further parameters. Some catering for the asymmetry of
spirals may be carried out by decomposing the object into octants; furthermore,
the taking of a Fourier transform of the intensity may indicate aspects of the
spiral structure [61].

The following remarks can be made relating to image data and reduced data:

• The range of parameters to be used should be linked to the subsequent use to
which they might be put, such as to underlying physical aspects.

• Parameters can be derived from a carefully constructed luminosity profile, rather
than it being possible to derive a profile from any given set of parameters.

• The presence of both partially reduced data such as luminosity profiles, and more
fully reduced features such as integrated flux in a range of octants, is of course
not a hindrance to analysis. However, it is more useful if the analysis is carried
out on both types of data separately.

Parameter data can be analyzed by clustering algorithms, by principal component
analysis, or by methods for discriminant analysis. Profile data can be sampled at
suitable intervals and thus analyzed also by the foregoing procedures. It may be
more convenient in practice to create dissimilarities between profiles and analyze
these dissimilarities: this can be done using clustering algorithms with dissimilarity
input.

3 Mathematical Modeling

Different models may be considered to represent the data. One of the most effective
is certainly the sparsity model, especially when a specific wavelet dictionary is
chosen to represent the data. We introduce here the sparsity concept as well as the
wavelet transform decomposition, which is the most used in astronomy.

Sparsity Data Model

A signalX; X D Œx1; : : : ; xN �
T , is sparse if most of its entries are equal to zero. For

instance, a k-sparse signal is a signal where only k samples have a nonzero value. A
less strict definition is to consider a signal as weakly sparse or compressible when
only a few of its entries have a large magnitude, while most of them are close to
zero.
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If a signal is not sparse, it may be sparsified using a given data representation.
For instance, if X is a sine, it is clearly not sparse but its Fourier transform is
extremely sparse (i.e., 1-sparse). Hence, we say that a signal X is sparse in the
Fourier domain if its Fourier coefficients OXŒu�, OXŒu� D 1

N

PC1
kD�1XŒk�e2i� uk

N ;

are sparse. More generally, we can model a vector signal X 2 R
N as the

linear combination of T elementary waveforms, also called signal atoms: X D
ˆ˛ D PT

iD1 ˛Œi ��i , where ˛Œi � D ˝
X; �i

˛
are called the decomposition coef-

ficients of X in the dictionary ˆ D Œ�1; : : : ; �T � (the N � T matrix whose
columns are the atoms normalized to a unit `2-norm, i.e., 8i 2 Œ1; T �; k�ik`2 D
1).

Therefore, to get a sparse representation of our data, we need first to define the
dictionary ˆ and then to compute the coefficients ˛. x is sparse in ˆ if the sorted
coefficients in decreasing magnitude have fast decay, i.e., most coefficients ˛ vanish
except for a few.

The best dictionary is the one which leads to the sparsest representation. Hence,
we could imagine having a huge overcomplete dictionary (i.e., T � N ), but
we would be faced with prohibitive computation time cost for calculating the
˛ coefficients. Therefore, there is a trade-off between the complexity of our
analysis step (i.e., the size of the dictionary) and the computation time. Some
specific dictionaries have the advantage of having fast operators and are very good
candidates for analyzing the data.

The Isotropic Undecimated Wavelet Transform (IUWT), also called starlet
wavelet transform, is well known in the astronomical domain because it is well
adapted to astronomical data where objects are more or less isotropic in most cases
[54, 57]. For most astronomical images, the starlet dictionary is very well adapted.

The Starlet Transform

The starlet wavelet transform [53] decomposes an n � n image c0 into a coefficient
set W D fw1; : : : ;wJ ; cJ g, as a superposition of the form

c0Œk; l� D cJ Œk; l�C
JX
jD1

wj Œk; l�;

where cJ is a coarse or smooth version of the original image c0 and wj represents
the details of c0 at scale 2�j (see Starck et al. [56, 58] for more information). Thus,
the algorithm outputs J C 1 sub-band arrays of size N �N . (The present indexing
is such that j D 1 corresponds to the finest scale or high frequencies.)

The decomposition is achieved using the filter bank .h2D; g2D D ı � h2D; Qh2D D
ı; Qg2D D ı/, where h2D is the tensor product of two 1D filters h1D and ı is the Dirac
function. The passage from one resolution to the next one is obtained using the “à
trous” (“with holes”) algorithm [58]:
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h1DŒm� h1DŒn� cj Œk C 2jm; l C 2j n�;

wjC1Œk; l� D cj Œk; l� � cjC1Œk; l� ;

(6)

If we choose a B3-spline for the scaling function,

�.x/ D B3.x/ D
1

12
.j x � 2 j3 �4 j x � 1 j3 C6 j x j3 �4 j x C 1 j3 C j x C 2 j3/ (7)

the coefficients of the convolution mask in one dimension are h1D D˚
1
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1
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Figure 2 shows the scaling function and the wavelet function when a cubic spline
function is chosen as the scaling function �.

The most general way to handle the boundaries is to consider that cŒk C N� D
cŒN �k� (“mirror”). But other methods can be used such as periodicity .cŒkCN� D
cŒN �/ or continuity .cŒk CN� D cŒk�/.

The starlet transform algorithm is:

1. We initialize j to 0 and we start with the data cj Œk; l�.
2. We carry out a discrete convolution of the data cj Œk; l� using the filter .h2D/,

using the separability in the two-dimensional case. In the case of the B3-
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Fig. 3 Wavelet transform of NGC 2997 by the IUWT. The co-addition of these six images
reproduces exactly the original image

spline, this leads to a row-by-row convolution with
�

1
16 ;

1
4 ;

3
8 ;

1
4 ;

1
16

	
, followed

by column-by-column convolution. The distance between the central pixel and
the adjacent ones is 2j .

3. After this smoothing, we obtain the discrete wavelet transform from the differ-
ence cj Œk; l� � cjC1Œk; l�.

4. If j is less than the number J of resolutions we want to compute, we increment
j and then go to step 2.

5. The set ˛ D fw1; : : : ;wJ ; cJ g represents the wavelet transform of the data.

This starlet transform is very well adapted to the detection of isotropic features,
and this explains its success for astronomical image processing, where the data
contain mostly isotropic or quasi-isotropic objects, such as stars, galaxies, or galaxy
clusters.

Figure 3 shows the starlet transform of the galaxy NGC 2997 displayed in Fig. 4.
Five wavelet scales and the final smoothed plane (lower right) are shown. The
original image is given exactly by the sum of these six images.

The Starlet Reconstruction

The reconstruction is straightforward. A simple co-addition of all wavelet scales
reproduces the original map: c0Œk; l� D cJ Œk; l� CPJ

jD1 wj Œk; l�. But because the
transform is non-subsampled, there are many ways to reconstruct the original image
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Fig. 4 Galaxy NGC 2997

from its wavelet transform [53]. For a given wavelet filter bank .h; g/, associated
with a scaling function � and a wavelet function , any synthesis filter bank . Qh; Qg/,
which satisfies the following reconstruction condition

Oh�.�/ OQh.�/C Og�.�/ OQg.�/ D 1 ; (8)

leads to exact reconstruction. For instance, for isotropic h, if we choose Qh D h (the
synthesis scaling function Q� D �), we obtain a filter Qg defined by [53]

Qg D ı C h :

If h is a positive filter, then g is also positive. For instance, if h1D D Œ1; 4; 6; 4; 1�=16,
then Qg1D D Œ1; 4; 22; 4; 1�=16. That is, Qg1D is positive. This means that Qg is no longer
related to a wavelet function. The 1D detail synthesis function related to Qg1D is
defined by

1

2
Q 1D

�
t

2

�
D �1D.t/C 1

2
�1D

�
t

2

�
: (9)

Note that by choosing Q�1D D �1D, any synthesis function Q 1D which satisfies

OQ 1D.2�/ O 1D.2�/ D O�2
1D.�/ � O�2

1D.2�/ (10)
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Fig. 5 Left, Q�1D the 1D synthesis scaling function and right, Q 1D the 1D detail synthesis function

leads to an exact reconstruction [36] and OQ 1D.0/ can take any value. The synthesis
function Q 1D does not need to verify the admissibility condition (i.e., to have a zero
mean).

Figure 5 shows the two functions Q�1D.D �1D/ and Q 1D used in the reconstruction
in 1D, corresponding to the synthesis filters Qh1D D h1D and Qg1D D ı C h1D. More
details can be found in [53].

Starlet Transform: Second Generation

A particular case is obtained when OQ�1D D O�1D and O 1D.2�/ D O�2
1D.�/� O�2

1D.2�/
O�1D.�/

, which

leads to a filter g1D equal to ı � h1D ? h1D. In this case, the synthesis function Q 1D

is defined by 1
2
Q 1D.

t
2 / D �1D.t/, and the filter Qg1D D ı is the solution to (8).

We end up with a synthesis scheme where only the smooth part is convolved
during the reconstruction.

Deriving h from a spline scaling function, for instance B1.h1 D Œ1; 2; 1�=4/ or
B3 .h3 D Œ1; 4; 6; 4; 1�=16/ (note that h3 D h1 ? h1), since h1D is even-symmetric
(i.e.,H.z/ D H.z�1/), the z-transform of g1D is then

G.z/ D 1 �H 2.z/ D 1 � z4

�
1C z�1

2

�8

D 1

256

��z4 � 8z3 � 28z2 � 56zC 186� 56z�1 � 28z�2 � 8z�3 � z�4	 ;
(11)

which is the z-transform of the filter

g1D D Œ�1;�8;�28;�56; 186;�56;�28;�8;�1�=256:
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We get the following filter bank:

h1D D h3 D Qh D Œ1; 4; 6; 4; 1�=16

g1D D ı � h ? h D Œ�1;�8;�28;�56; 186;�56;�28;�8;�1�=256

Qg1D D ı :
(12)

The second-generation starlet transform algorithm is:

1. We initialize j to 0 and we start with the data cj Œk�.
2. We carry out a discrete convolution of the data cj Œk� using the filter h1D. The

distance between the central pixel and the adjacent ones is 2j . We obtain cjC1Œk�.
3. We do exactly the same convolution on cjC1Œk� and we obtain c0

jC1Œk�.
4. After this two-step smoothing, we obtain the discrete starlet wavelet transform

from the difference wjC1Œk� D cj Œk� � c0
jC1Œk�.

5. If j is less than the number J of resolutions we want to compute, we increment
j and then go to step 2.

6. The set ˛ D fw1; : : : ;wJ ; cJ g represents the starlet wavelet transform of the data.

As in the standard starlet transform, extension to 2D is trivial. We just replace
the convolution with h1D by a convolution with the filter h2D, which is performed
efficiently by using the separability.

With this specific filter bank, there is a no convolution with the filter Qg1D during
the reconstruction. Only the low-pass synthesis filter Qh1D is used.

The reconstruction formula is

cj Œl� D .h.j /1D ? cjC1/Œl�C wjC1Œl � ; (13)

and denoting Lj D h.0/ ? � � � ? h.j�1/ and L0 D ı, we have

c0Œl � D
�
LJ ? cJ

	
Œl �C

JX
jD1

�
Lj�1 ? wj

	
Œl � : (14)

Each wavelet scale is convolved with a low-pass filter.
The second-generation starlet reconstruction algorithm is:

1. The set ˛ D fw1; : : : ;wJ ; cJ g represents the input starlet wavelet transform of
the data.

2. We initialize j to J � 1 and we start with the coefficients cj Œk�.
3. We carry out a discrete convolution of the data cjC1Œk� using the filter .h1D/. The

distance between the central pixel and the adjacent ones is 2j . We obtain c0
jC1Œk�.

4. Compute cj Œk� D c0
jC1Œk�C wjC1Œk�.
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Fig. 6 Left, the �1D analysis scaling function and right, the  1D analysis wavelet function. The
synthesis functions Q�1D and Q 1D are the same as those in Fig. 5

5. If j is larger than 0, j D j � 1 and then go to step 3.
6. c0 contains the reconstructed data.

As for the transformation, the 2D extension consists just in replacing the convolution
by h1D with a convolution by h2D.

Figure 6 shows the analysis scaling and wavelet functions. The synthesis
functions Q�1D and Q 1D are the same as those in Fig. 5. As both are positive, we
have a decomposition of an imageX on positive scaling functions Q�1D and Q 1D, but
the coefficients ˛ are obtained with the starlet wavelet transform and have a zero
mean (except for cJ ), as a regular wavelet transform.

In 2D, similarly, the second-generation starlet transform leads to the representa-
tion of an image XŒk; l�:

XŒk; l� D
X
m;n

�
.1/
j;k;l .m; n/cJ Œm; n�C

JX
jD1

X
m;n

�
.2/
j;k;l .m; n/wj Œm; n� ; (15)

where �.1/j;k;l .m; n/ D 2�2j Q�1D.2�j .k � m// Q�1D.2�j .l � n// and �.2/j;k;l .m; n/ D
2�2j Q 1D.2�j .k �m// Q 1D.2�j .l � n//.
�.1/ and �.2/ are positive, and wj are zero mean 2D wavelet coefficients.
The advantage of the second-generation starlet transform will be seen in sec-

tion “Sparse Positive Decomposition” below.
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Sparse Modeling of Astronomical Images

Using the sparse modeling, we now consider that the observed signal X can be
considered as a linear combination of a few atoms of the wavelet dictionary ˆ D
Œ�1; : : : ; �T �. The model of Eq. 3 is then replaced by the following:

Y D Hˆ˛ CN C B (16)

and X D ˆ˛, and ˛ D fw1; : : : ;wJ ; cJ g. Furthermore, most of the coefficients
˛ will be equal to zero. Positions and scales of active coefficients are unknown,
but they can be estimated directly from the data Y . We define the multiresolution
supportM of an image Y by

Mj Œk; l� D
�

1 if wj Œk; l� is significant
0 if wj Œk; l� is not significant

(17)

where wj Œk; l� is the wavelet coefficient of Y at scale j and at position .k; l/. Hence,
M describes the set of active atoms in Y . IfH is compact and not too extended, then
M describes also well the active set of X . This is true because the backgroundB is
generally very smooth, and therefore, a wavelet coefficient wj Œk; l� of Y , which does
not belong to the coarsest scale, is only dependent on X andN (the term < �i ; B >

being equal to zero).

Selection of Significant Coefficients Through NoiseModeling
We need now to determine when a wavelet coefficient is significant. Wavelet
coefficients of Y are corrupted by noise, which follows in many cases a Gaussian
distribution, a Poisson distribution, or a combination of both. It is important to detect
the wavelet coefficients which are “significant,” i.e., the wavelet coefficients which
have an absolute value too large to be due to noise.

For Gaussian noise, it is easy to derive an estimation of the noise standard
deviation 
j at scale j from the noise standard deviation, which can be evaluated
with good accuracy in an automated way [55]. To detect the significant wavelet
coefficients, it suffices to compare the wavelet coefficients wj Œk; l� to a threshold
level tj . tj is generally taken equal to K
j , and K , as noted in Sect. 2, is chosen
between 3 and 5. The value of 3 corresponds to a probability of false detection of
0:27 %. If wj Œk; l� is small, then it is not significant and could be due to noise. If
wj Œk; l� is large, it is significant:

if j wj Œk; l� j � tj then wj Œk; l� is significant
if j wj Œk; l� j < tj then wj Œk; l� is not significant

(18)

When the noise is not Gaussian, other strategies may be used:
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• Poisson noise: if the noise in the data Y is Poisson, the transformation [1]

A.Y / D 2
q
Y C 3

8 acts as if the data arose from a Gaussian white noise model,
with 
 D 1, under the assumption that the mean value of Y is sufficiently large.
However, this transform has some limits, and it has been shown that it cannot be
applied for data with less than 20 counts (due to photons) per pixel. So for X-ray
or gamma ray data, other solutions have to be chosen, which manage the case of
a reduced number of events or photons under assumptions of Poisson statistics.

• Gaussian + Poisson noise: the generalization of variance stabilization [40] is

G.Y Œk; l�/ D 2

˛

r
˛Y Œk; l�C 3

8
˛2 C 
2 � ˛g

where ˛ is the gain of the detector and g and 
 are the mean and the standard
deviation of the readout noise.

• Poisson noise with few events using the MS-VST: for images with very few
photons, one solution consists in using the Multi-Scale Variance Stabilization
Transform (MS-VST) [66]. The MS-VST combines both the Anscombe trans-
form and the starlet transform in order to produce stabilized wavelet coefficients,
i.e., coefficients corrupted by a Gaussian noise with a standard deviation equal to
1. In this framework, wavelet coefficients are now calculated by

Starlet
C

MS-VST

8<
:
cj DP

m

P
n h1DŒm�h1DŒn�

cj�1Œk C 2j�1m; l C 2j�1n�

wj D Aj�1.cj�1/�Aj .cj /

(19)

where Aj is the VST operator at scale j defined by

Aj .cj / D b.j /
q
jcj C e.j /j (20)

where the variance stabilization constants b.j / and e.j / only depend on the
filter h1D and the scale level j . They can all be precomputed once for any
given h1D [66]. The multiresolution support is computed from the MS-VST
coefficients, considering a Gaussian noise with a standard deviation equal to 1.
This stabilization procedure is also invertible as we have

c0 D A�1
0

2
4AJ .aJ /C

JX
jD1

wj

3
5 (21)

For other kinds of noise (correlated noise, nonstationary noise, etc.), other solutions
have been proposed to derive the multiresolution support [57].
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Sparse Positive Decomposition

Many astronomical images can be modeled as a sum of positive features, like stars
and galaxies, which are more or less isotropic. The previous representation, based
on the starlet transform, is well adapted to the representation of isotropic objects,
but does not introduce any prior relative to the positivity of the features contained
in our image. A positive and sparse modeling of astronomical images is similar to
Eq. 16:

Y D Hˆ˛ CN C B (22)

or

Y D ˆ˛ CN C B (23)

if we do not take into account the point spread function. All coefficients in ˛
are now positive, and all atoms in the dictionary ˆ are positive functions. Such
a decomposition normally requires computationally intensive algorithms such as
matching pursuit [37]. The second-generation starlet transform offers us a new
way to perform such a decomposition. Indeed, we have seen in section “Starlet
Transform: Second Generation” that, using a specific filter bank, we can decompose
an image Y on a positive dictionary ˆ (see Fig. 5) and obtain a set of coefficients
˛.Y /, where ˛.Y / D WY D fw1; : : : ;wJ ; cJ g, W being the starlet wavelet
transform operator. ˛ coefficients are positive and negative and are obtained
using the standard starlet wavelet transform algorithm. Hence, by thresholding all
negative (respectively, positive) coefficients, the reconstruction is always positive
(respectively, negative), since ˆ contains only positive atoms.

Hence, we would like to have a sparse set of positive coefficients Q̨ which verify
ˆ Q̨ D Y . But in order to take into account the background and the noise, we need
to define the constraint in the wavelet space (i.e., Wˆ Q̨ D WY D ˛.Y /), and this
constraint must be applied only to the subset of coefficients in ˛.Y / which are larger
than the detection level. Therefore, to get a sparse positive decomposition onˆ, we
need to minimize

Q̨ D min
˛
k ˛ k1 s.t. MW˚˛ DM˛.Y / ; (24)

where M is the multiresolution support defined in the previous section (i.e.,
Mj Œk; l� D 1 if a significant coefficient is detected at scale j and at position .k; l/,
and zero otherwise). To remove the background, we have to set MJC1Œk; l� D 0 for
all .k; l/.

It was shown that such optimization problems can be efficiently solved through
an iterative soft thresholding (IST) algorithm [14, 24, 52]. The following algorithm,
based on the IST, allows to take into account the noise modeling through the
multiresolution support and force the coefficients to be all positive:
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1. Taking the second-generation starlet wavelet transform of the data Y , we obtain
˛.Y /.

2. From a given noise model, determine the multiresolution supportM .
3. Set the number of iterationsNiter, the first threshold, �.0/ DMAX.˛.Y //, and the

solution Q̨ .0/ D 0.
4. For 0 D 1; Niter do:

• Reconstruct the image QY .i/ from Q̨ .i/ W QY .i/ D ˆ Q̨ .i/.
• Taking the second-generation starlet wavelet transform of the data QY .i/, we

obtain ˛ QY .i/ DWˆ Q̨ .i/.
• Compute the significant residual r.i/:

r.i/ DM
�
˛.Y / � ˛ QY .i/� DM �

˛.Y / �Wˆ Q̨ .i/	 (25)

• Calculate the value �.i/ D �.0/.1 � i=Niter/

• Update the solution, by adding the residual, applying a soft thresholding on
positive coefficients using the threshold level �.i/, and setting all negative
coefficients to zero.

Q̨ .iC1/ D � Q̨ .i/ C r.i/ � �.i/	C
D � Q̨ .i/ CM �

˛.Y / �Wˆ Q̨ .i/	 � �.i/	C
(26)

• i D i C 1.

5. The set Q̨ D Q̨ .Niter/ represents the sparse positive decomposition of the data.

The threshold parameter �.i/ decreases with the iteration number, and it plays a role
similar to the cooling parameter of the simulated annealing techniques, i.e., it allows
the solution to escape from local minima.

Example 1: Sparse Positive Decomposition of NGC 2997
Figure 7 shows the positive starlet decomposition, using 100 iterations, and can be
compared to Fig. 3.

Example 2: Sparse Positive Starlet Decomposition of a Simulated Image
The next example compares the standard starlet transform to the positive starlet
decomposition (PSD) on a simulated image.

Figure 8 shows respectively from top to bottom and left to right (a) the original
simulated image, (b) the noisy data, (c) the reconstruction from the PSD coefficients,
and (d) the residual between the noisy data and the PSD reconstructed image
(i.e., image b–image c). Hence, the PSD reconstructed image gives a very good
approximation of the original image. No structures can be seen in the residual, and
all sources are well detected.
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Fig. 7 Positive starlet decomposition of the galaxy NGC 2997 with six scales

The first PSD scale does not contain any nonzero coefficient. Figure 9, top, shows
the first four scales of the wavelet transform, and Fig. 9, bottom, the first four scales
of the PSD.

4 Source Detection Using a Sparsity Model

As described is the previous section, the wavelet coefficients of Y which do not
belong to the coarsest scale cJ are not dependent on the background. This is
a serious disadvantage, since the background estimation can be sometimes very
problematic.

Two approaches have been proposed to detect sources, assuming the signal is
sparse in the wavelet domain. The first consists in first removing the noise and the
background and then applying the standard approach described in Sect. 2. It has been
used for many years for X-ray source detection [45,59]. The second approach, called
Multiscale Vision Model [8], attempts to define directly an astronomical object in
the wavelet space.

Detection ThroughWavelet Denoising

The most commonly used filtering method is hard thresholding, which consists of
setting to 0 all wavelet coefficients of Y which have an absolute value lower than a
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Fig. 8 (a and b) Original simulated image and the same image contaminated by a Gaussian noise.
(c and d) Reconstructed image for the positive starlet coefficients of the noisy image using 50
iterations, and residual (i.e., noisy image – reconstructed image)

threshold tj :

Qwj Œk; l� D
�

wj Œk; l� if j wj Œk; l� j> tj
0 otherwise

(27)

More generally, for a given sparse representation (i.e., wavelet) with its associated
fast transform W and fast reconstruction R, we can derive a hard threshold denoising
solutionX from the data Y , by first estimating the multiresolution supportM using
a given noise model, and then calculating

X D RMWY: (28)

We transform the data, multiply the coefficients by the support, and reconstruct the
solution.

The solution can however be improved by considering the following optimization
problem, minX k M.WY �WX/ k2

2, whereM is the multiresolution support of Y .
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Fig. 9 Top, starlet transform, and bottom, positive starlet decomposition of a simulated astronom-
ical image

A solution can be obtained using the Landweber iterative scheme [51, 58]:

XnC1 D Xn C RM ŒWY �WXn� (29)

If the solution is known to be positive, the positivity constraint can be introduced
using the following equation:

XnC1 D PC .Xn C RM ŒWY �WXn�/ (30)

where PC is the projection on the cone of nonnegative images.
This algorithm allows us to constrain the residual to have a zero value within the

multiresolution support [58]. For astronomical image filtering, iterating improves
significantly the results, especially for the photometry (i.e., the integrated number
of photons in a given object).

Removing the background in the solution is straightforward. The algorithm does
not need to be modified. We only need to set to zero the coefficients related to the
coarsest scale in the multiresolution support: 8k MJ Œk; l� D 0.

TheMultiscale Vision Model

Introduction
The wavelet transform of an image Y by the starlet transform produces at each scale
j a set fwj g. This has the same number of pixels as the image. The original image
I can be expressed as the sum of all the wavelet scales and the smoothed array cJ
by the expression
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Y Œk; l� D cJ Œk; l�C
JX
jD1

wj Œk; l�: (31)

Hence, we have a multiscale pixel representation, i.e., each pixel of the input image
is associated with a set of pixels of the multiscale transform. A further step is to
consider a multiscale object representation, which would associate with an object
contained in the data a volume in the multiscale transform. Such a representation
obviously depends on the kind of image we need to analyze, and we present here a
model which has been developed for astronomical data. It may however be used for
other kinds of data, to the extent that such data are similar to astronomical data. We
assume that an image Y can be decomposed into a set of components:

Y Œk; l� D
NoX
iD1

XiŒk; l�C BŒk; l�CNŒk; l� (32)

where No is the number of components, Xi are the components contained in the
data (stars, galaxies, etc.), B is the background image, and N is the noise.

To perform such a decomposition, we have to detect, to extract, to measure,
and to recognize the significant structures. This is done by first computing the
multiresolution support of the image (i.e., the set of significant active coeffi-
cients) and by applying a segmentation scale by scale. The wavelet space of
a 2D direct space is a 3D volume. An object, associated with a component,
has to be defined in this space. A general idea for object definition lies in the
connectivity property. An object occupies a physical region, and in this region
we can join any pixel to other pixels based on significant adjacency. Connectivity
in direct space has to be transported into wavelet transform space. In order to
define the objects, we have to identify the wavelet transform space pixels we
can attribute to the objects. We describe in this section the different steps of this
method.

Multiscale VisionModel Definition
The multiscale vision model, MVM [8], described an object as a hierarchical set of
structures. It uses the following definitions:

• Significant wavelet coefficient: a wavelet coefficient is significant when its
absolute value is above a given detection limit. The detection limit depends on
the noise model (Gaussian noise, Poisson noise, and so on). See section “Sparse
Modeling of Astronomical Images” for more details.

• Structure: a structure Sj;k is a set of significant connected wavelet coefficients at
the same scale j :

Sj;k D fwj Œk1; l1�;wj Œk2; l2�; : : : ;wj Œkp; lp�g (33)
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where p is the number of significant coefficients included in the structure Sj;k
and wj Œxi ; yi � is a wavelet coefficient at scale j and at position .xi ; yi /.

• Object: an object is a set of structures:

Ol D fSj1;k1 ; : : : ; Sjn;kng (34)

We define also the operator L which indicates to which object a given structure
belongs: L.Sj;k/ D l is Sj;k 2 Ol , and L.Sj;k/ D 0 otherwise.

• Object scale: the scale of an object is given by the scale of the maximum of its
wavelet coefficients.

• Interscale relation: the criterion allowing us to connect two structures into a
single object is called the “interscale relation.”

• Sub-object: a sub-object is a part of an object. It appears when an object has
a local wavelet maximum. Hence, an object can be composed of several sub-
objects. Each sub-object can also be analyzed.

FromWavelet Coefficients to Object Identification
Multiresolution Support Segmentation
Once the multiresolution support has been calculated, we have at each scale a
Boolean image (i.e., pixel intensity equals 1 when a significant coefficient has
been detected, and 0 otherwise). The segmentation consists of labeling the Boolean
scales. Each group of connected pixels having a “1” value gets a label value between
1 and Lmax, Lmax being the number of groups. This process is repeated at each scale
of the multiresolution support. We define a “structure” Sj;i as the group of connected
significant pixels which has the label i at a given scale j .

Interscale Connectivity Graph
An object is described as a hierarchical set of structures. The rule which
allows us to connect two structures into a single object is called “interscale
relation.” Figure 10 shows how several structures at different scales are linked
together and form objects. We have now to define the interscale relation. Let
us consider two structures at two successive scales, Sj;k and SjC1;l . Each
structure is located in one of the individual images of the decomposition
and corresponds to a region in this image where the signal is significant.
Denoting .xm; ym/ the pixel position of the maximum wavelet coefficient value
of Sj;k, Sj;k is said to be connected to SjC1;l if SjC1;l contains the pixel
position .xm; ym/ (i.e., the pixel position of the maximum wavelet coefficient
of the structure Sj;k must also be contained in the structure SjC1;l). Several
structures appearing in successive wavelet coefficient images can be connected
in such a way, which we call an object in the interscale connectivity graph.
Hence, we identify no objects in the wavelet space, each object Oi being
defined by a set of structures, and we can assign to each structure a label
i , with i 2 Œ1; no�: L.Sj;k/ D i if the structure Sj;k belongs to the
i th object.
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Fig. 10 Example of connectivity in wavelet space: contiguous significant wavelet coefficients
form a structure, and following an interscale relation, a set of structures forms an object. Two
structures Sj ; SjC1 at two successive scales belong to the same object if the position pixel of the
maximum wavelet coefficient value of Sj is included in SjC1

Filtering
Statistically, some significant structures can be due to the noise. They contain very
few pixels and are generally isolated, i.e., connected to no field at upper and lower
scales. So, to avoid false detection, the isolated fields can be removed from the initial
interscale connection graph. Structures at the border of the images may also have
been detected because of the border problem and can be removed.

Merging/Deblending
As in the standard approach, true objects which are too close may generate a set of
connected structures, initially associated with the same object, and a decision must
be taken whether to consider such a case as one or two objects. Several cases may
be distinguished:

• Two (or more) close objects, approximately of the same size, generate a set of
structures. At a given scale j , two separate structures Sj;1 and Sj;2 are detected,
while at the scale jC1, only one structure is detected SjC1;1, which is connected
to the Sj;1 and Sj;2.

• Two (or more) close objects of different sizes generate a set of structures, from
scale j to scale k (k > j ).
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In the wavelet space, the merging/deblending decision will be based on the local
maxima values of the different structures belonging to this object. A new object
(i.e., deblending) is derived from the structure Sj;k if there exists at least one other
structure at the same scale belonging to the same object (i.e., there exists one
structure SjC1;a and at least one structure Sj;b such that L.SjC1;a/ D L.Sj;b/ D
L.Sj;k/) and if the following relationship is verified: wmj > wmj�1 and wmj > wmjC1,
where:

• wmj is the maximum wavelet coefficient of the structure Sj;k: wmj D Max.Sj;k/:
– wmj�1 D 0 if Sj;k is not connected to any structure at scale j � 1.
– wmj�1 is the maximum wavelet coefficient of the structure Sj�1;l , where Sj�1;l

is such that L.Sj�1;l / D L.Sj;k/ and the position of its highest wavelet
coefficient is the closest to the position of the maximum of Sj;k.

• wmjC1 D MaxfwjC1;x1;y1 ; : : : ;wjC1;xn;yng, where all wavelet coefficients wjC1;x;y

are at a position which belongs also to Sj;k (i.e., wj;x;y 2 Sj;k).

When these conditions are verified, Sj;k and all structures at smaller scales which
are directly or indirectly connected to Sj;k will define a new object.

Object Identification
We can now summarize this method allowing us to identify all the objects in a given
image Y :

1. We compute the wavelet transform with the starlet algorithm, which leads to a
set ˛ D WY D fw1; : : : ;wJ ; cJ g. Each scale wj has the same size as the input
image.

2. We determine the noise standard deviation in w1.
3. We deduce the thresholds at each scale from the noise modeling.
4. We threshold scale by scale and we do an image labeling.
5. We determine the interscale relations.
6. We identify all the wavelet coefficient maxima of the wavelet transform space.
7. We extract all the connected trees resulting from each wavelet transform space

maximum.

Source Reconstruction

Partial Reconstruction as an Inverse Problem
A set of structures Si (Si D fSj;k; : : : ; Sj 0;k0g) defines an object Oi which can be
reconstructed separately from other objects, in order to provide the componentsXi .
The co-addition of all reconstructed objects is a filtered version of the input data. We
will denote ˛i the set of wavelet coefficients belonging to the object Oi . Therefore,
˛i is a subset of the wavelet transform of Xi , Q̨ i D WXi . Indeed, the last scale of
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Q̨ i is unknown, as well as many wavelet coefficients which have not been detected.
Then the reconstruction problem consists of searching for an image Xi such that
its wavelet transform reproduces the coefficients ˛i (i.e., they are the same as those
of Si , the detected structures). If W describes the wavelet transform operator and
Pw the projection operator in the subspace of the detected coefficients (i.e., having
set to zero all coefficients at scales and positions where nothing was detected), the
solution is found by minimization of

min
Xi
k ˛i � Pw .WXi/ k2 (35)

The size of the restored image Xi is arbitrary, and it can be easily set greater than
the number of known coefficients. It is certain that there exists at least one imageXi
which gives exactly ˛i , i.e., the original one. But generally we have an infinity of
solutions, and we have to choose among them the one which is considered as correct.
An image is always a positive function, which leads us to constrain the solution, but
this is not sufficient to get a unique solution. More details on the reconstruction
algorithm can be found in [8, 57].

Examples

Band Extraction
We simulated a spectrum which contains an emission band at 3:50�m and a
nonstationary noise superimposed on a smooth continuum. The band is a Gaussian
of width FWHM D 0:01�m (FWHM = full width at half-maximum) and
normalized such that its maximum value equals ten times the local noise standard
deviation.

Figure 11 (top) contains the simulated spectrum. The wavelet analysis results
in the detection of an emission band at 3:50�m above 3
 . Figure 11 (middle)
shows the reconstruction of the detected band in the simulated spectrum. The real
feature is overplotted as a dashed line. Figure 11 (bottom) contains the original
simulation with the reconstructed band subtracted. It can be seen that there are no
strong residuals near the location of the band, which indicates that the band is well
reconstructed. The center position of the band, its FWHM, and its maximum can
then be estimated via a Gaussian fit. More details about the use of MVM for spectral
analysis can be found in [60].

Star Extraction in NGC 2997
We applied MVM to the galaxy NGC 2997 (Fig. 12, top left). Two images were
created by co-adding objects detected from scales 1 and 2 and from scales 3 to 6.
They are displayed, respectively, in Fig. 12, top right and bottom left. Figure 12,
bottom right, shows the difference between the input data and the image which
contained the objects from scales 1 and 2. As we can see, all small objects have
been removed, and the galaxy can be better analyzed.



Starlet Transform in Astronomical Data Processing 2081

30

20

10

4

15

30

20

10

0

10

5

0

2

−2

0

F
lu

x 
[1

0−1
3  W

 m
−2

 m
m

−1
]

F
lu

x 
[1

0−1
3  W

 m
−2

 m
m

−1
]

F
lu

x 
[1

0−1
3  W

 m
−2

 m
m

−1
]

0
3.30 3.40 3.50 3.60 3.70

3.30 3.40 3.50 3.60 3.70

3.30 3.40 3.50 3.60 3.70

3.30 3.40 3.50 3.60 3.70

Wavelength [mm]

Fig. 11 Top: simulated spectrum. Middle: reconstructed simulated band (full line) and original
band (dashed line). Bottom: simulated spectrum minus the reconstructed band

Galaxy Nucleus Extraction
Figure 13 shows the extracted nucleus of NGC 2997 using the MVM method and
the difference between the galaxy image and the nucleus image.

5 Deconvolution

Up to now, the PSF H has not been considered in the source detection. This means
that all morphological parameters (size, ellipticity, etc.) derived from the detected
objects need to be corrected from the PSF. Very close objects may also be seen
as a single object because H acts as a blurring operator on the data. A solution
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Fig. 12 (a) Galaxy NGC 2997, (b) objects detected from scales 1 and 2, (c) objects detected from
scales 3 to 6, and (d) difference between (a) and (b)

may consist in deconvolving first the data and carrying out the source detection
afterwards.

The problem of image deconvolution is ill-posed [3], and as a consequence,
the matrix H modeling the imaging system is ill-conditioned. If Y is the
observed image and X the unknown object, the equation HX D Y has
not a unique and stable solution. Therefore, one must look for approximate
solutions of this equation that are also physically meaningful. One approach
is Tikhonov regularization theory [23]; however, a more general approach
is provided by the so-called Bayes paradigm [25], even if it is applicable
only to discrete problems. In this framework one can both take into account
statistical properties of the data (Tikhonov regularization is obtained by assuming
additive Gaussian noise) and also introduce a priori information on the unknown
object.
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Fig. 13 Upper left, galaxy NGC 2997; upper right, extracted nucleus; bottom, difference between
the two previous images

Statistical Approach to Deconvolution

We assume that the detected image Y is the realization of a multivalued random
variable I corresponding to the (unknown) value X of another multivalued random
variable, the object O . Moreover, we assume that the conditional probability
distribution pI .Y jX/ is known. Since the unknown object appears as a set of
unknown parameters, the problem of image deconvolution can be considered as a
classical problem of parameter estimation. The standard approach is the maximum
likelihood (ML) method. In our specific application, for a given detected image Y ,
this consists of introducing the likelihood function defined by

LY .X/ D pI .Y IX/ : (36)
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Then the ML estimate of the unknown object is any maximizerX� of the likelihood
function

X� D argmax
X2Rn LY .X/ ; (37)

if it exists.
In our applications the likelihood function is the product of a very large number

of terms (the data components are assumed to be statistically independent), so that
it is convenient to take the logarithm of this function; moreover, if we consider its
negative logarithm, the maximization problem is transformed into a minimization
one. Let us consider the function

J0.X IY / D �A ln LY .X/CB ; (38)

where A;B are suitable constants. They are introduced in order to obtain a function
which has a simple expression and is also nonnegative since, in our applications,
the negative logarithm of the likelihood is bounded from below. Then, it is easy to
verify that the problem of Eq. 37 is equivalent to the following one:

X� D arg min
X2Rn J0.X IY / : (39)

We consider now the model of Eq. 2 with three different examples of noise.

Example 1. In the case of additive white Gaussian noise, by a suitable choice of the
constants A;B , we obtain (we assume here that the backgroundB is not subtracted
even if it must be estimated)

J0.X IY / D jjHX C B � Y jj2 ; (40)

and therefore, the ML approach coincides with the well-known least-squares (LS)
approach. It is also well known that the function of Eq. 40 is convex and strictly
convex if and only if the equationHX D 0 has only the solutionX D 0. Moreover,
it has always absolute minimizers, i.e., the LS problem has always a solution; but
the problem is ill-conditioned because it is equivalent to the solution of the Euler
equation:

HTH X D HT .Y � B/ : (41)

We remark that the ill-posedness of the LS problem is the starting point of Tikhonov
regularization theory (see, for instance, [23,63]), and therefore, this theory is based
on the tacit assumption that the noise affecting the data is additive and Gaussian.

We remark that, in the case of object reconstruction, since objects are non-
negative, we should consider the minimization of the function of Eq. 40 on the
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nonnegative orthant. With such a constraint the problem is not treatable in the
standard framework of regularization theory.

Example 2. In the case of Poisson noise, if we introduce the so-called generalized
Kullback–Leibler (KL) divergence of a vectorZ from a vector Y , defined by

DKL.Y;Z/ D
mX
iD1

�
yi ln

Yi

Zi
CZi � Yi


; (42)

then, with a suitable choice of the constantsA;B , the function J0.X IY / is given by

J0.X IY / D DKL.Y IHX C B/

D
mX
iD1

�
Yi ln

yi

.HX C B/i C .HX C B/i � yi

:

(43)

It is quite natural to take the nonnegative orthant as the domain of this function.
Moreover, it is well known that it is convex (strictly convex if the equationHX D 0
has only the solution X D 0), nonnegative, and coercive. Therefore, it has absolute
minimizers. However, these minimizers are strongly affected by noise, and the
specific effect of the noise in this problem is known as checkerboard effect [41],
since many components of the minimizers are zero.

Example 3. In the case of Gauss+Poisson noise, the function J0.X IY / is given by
a much more complex form. This function is also convex (strictly convex if the
equation Hx D 0 has the unique solution x D 0), nonnegative, and coercive [2].
Therefore, it also has absolute minimizer on the nonnegative orthant.

The previous examples demonstrate that, in the case of image reconstruction, ML
problems are ill-posed or ill-conditioned. That means that one is not interested in
computing the minimum points X� of the functions corresponding to the different
noise models because they do not provide sensible estimates NX of the unknown
object.

The previous remark is not surprising in the framework of inverse problem
theory. Indeed it is generally accepted that, if the formulation of the problem does
not use some additional information on the object, then the resulting problem is
ill-posed. This is what happens in the maximum likelihood approach because we
only use information about the noise with, possibly, the addition of the constraint of
non-negativity.

The additional information may consist, for instance, of prescribed bounds on the
solution and/or its derivatives up to a certain order (in general not greater than two).
These prescribed bounds can be introduced in the problem as additional constraints
in the variational formulation provided by ML. However, in a quite natural
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probabilistic approach, called the Bayesian approach, the additional information
is given in the form of statistical properties of the object [25].

In other words, one assumes that the unknown object X is a realization of a
vector-valued random variable O and that the probability distribution of O , the
so-called prior denoted by pO.X/, is also known or can be deduced from known
properties of the object. The most frequently used priors are Markov random fields
or, equivalently, Gibbs random fields, i.e., they have the following form:

pO.X/ D 1

Z
e��˝.X/ ; (44)

where Z is a normalization constant, � is a positive parameter (a hyperparameter
in statistical language, a regularization parameter in the language of regularization
theory), while ˝.X/ is a function, possibly convex.

The previous assumptions imply that the joint probability density of the random
variablesO; I is given by

pOI .X; Y / D pI .Y jX/pO.X/ : (45)

If we introduce the marginal probability density of the image I

pI .Y / D
Z
pOI .X; Y / dX ; (46)

from Bayes’ formula we obtain the conditional probability density of O for a given
value Y of I :

pO.X jY / D pOI .X; Y /

pI .Y /
D pI .Y jX/pO.X/

pI .Y /
: (47)

If in this equation we insert the detected value Y of the image, we obtain the a
posteriori probability density of X :

PY .X/ D pO.X jY / D LY .X/pO.X/
pI .Y /

: (48)

Then, a maximum a posteriori (MAP) estimate of the unknown object is defined as
any object X� that maximizes the a posteriori probability density:

X� D argmax
X2Rn PY .X/ : (49)

As in the case of the likelihood, it is convenient to consider the negative
logarithm of PY .X/. If we assume a Gibbs prior as that given in Eq. 44 and
we take into account the definition of Eq. 38, we can introduce the following
function:
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J.X IY / D �A lnPY .X/C B � A ln Z

� A ln pI .Y / D J0.X IY /C �JR.X/ ;
(50)

where JR.X/ D A.X/. Therefore, the MAP estimates are also given
by

X� D arg min
X2Rn J.X IY / (51)

and again one must look for the minimizers satisfying the non-negativity con-
straint.

The Richardson–Lucy Algorithm

One of the most frequently used methods for image deconvolution in astronomy is
an iterative algorithm known as the Richardson–Lucy (RL) algorithm [34, 48]. In
emission tomography it is also denoted as expectation maximization (EM) because,
as shown in [49], it can be obtained by applying to the ML problem with Poisson
noise a general EM method introduced in [19] for obtaining ML estimates.

In [49] it is shown that, if the iteration converges, then the limit is just an ML
estimate in the case of Poisson data. Subsequently the convergence of the algorithm
was proved by several authors in the case B D 0. An account can be found in [41].

The iteration is as follows: it is initialized with a positive image X.0/ (a constant
array, in general); then, given X.n/, X.nC1/ is computed by

X.nC1/ D X.n/HT Y

HX.n/ C B : (52)

This algorithm has some nice features. First, the result of each iteration is auto-
matically a positive array; second, in the case B D 0, the result of each iteration
has the same flux of the detected image Y , and this property is interesting from the
photometric point of view.

The limit of the RL iteration is, in general, very noisy and sparse in
pixel space (see the remark at the end of Example 2 in the previous section)
and can provide satisfactory results in the case of star systems (see [4],
section 3.1); in the case of complex systems, a reasonable solution can be
obtained by a suitable stopping of the algorithm before convergence. This
can be seen as a kind of regularization, and this property is called semi-
convergence [3], i.e., the iteration first approaches the correct solution and then
goes away. An example of RL reconstruction is shown in Fig. 14 (lower left
panel).

The main drawback of RL is that, in general, it is very slow and may require
hundreds or thousands of iterations. The proposed acceleration approaches are based
on the remark that RL is a scaled gradient method since it can be written in the
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following form:

X.nC1/ D X.n/ �X.n/rXJ0.X
.n/IY / ; (53)

where rX denotes the gradient with respect to X and J0.X IY / is the data-fidelity
function defined in Eq. 43. Therefore, a reduction of the number of iterations can be
obtained by means of a suitable line search along the descent direction. This is the
approach proposed by several authors. However, this structure of RL has inspired a
recently proposed optimization method, known as scaled gradient projection (SGP)
[10], which can be viewed as a general method for the constrained minimization of
differentiable functions.

If J.X/ is the function to be minimized on the nonnegative orthant, then the
method is based on the descent direction:

D.n/ D PC
�
X.n/ � 
nS.n/rXJ.X.n//

	 � X.n/ (54)

where PC is the projection on the nonnegative orthant, S.n/ is the (diagonal) scaling
matrix, and 
n is a suitably chosen step length [10]. Then iteration X.nC1/ is
obtained by a line search along the descent direction based on the Armijo rule. We
can add that the method can be easily extended to the case where the convex set of
the admissible solutions is defined by box and equality constraints.

In the case of the minimization of the KL divergence, the diagonal scaling matrix
is that suggested by RL, i.e., S.n/ D X.n/ (with the addition of suitable upper and
lower bounds), and the method shows the semi-convergence property as RL, but
requires a much smaller number of iterations for obtaining a sensible reconstruction.
In an application to the deconvolution of astronomical images [46], it has been
shown that, even if the computational cost per iteration is about 30 % greater than
that of RL, thanks to the reduction of the number of iterations it is possible to obtain
a speedup, with respect to RL, ranging from 4 to more than 30, depending on the
astronomical source and the noise level. Moreover, implementation on graphics
processing units (GPU) allows to deconvolve a 2;048 � 2;048 image in a few
seconds.

Several iterative methods, modeled on RL, have been introduced for
computing MAP estimates corresponding to different kinds of priors. A recent
account can be found in [4]. A nice feature of SGP, whose convergence
is proved in [10], is that it can be easily applied to this problem, i.e., to
the minimization of the function of Eq. 50 (again, with the addition of box
and equality constraints). The scaling is taken from the split-gradient method
(SGM), proposed in [31], since this scaling is always nonnegative, while the
scaling proposed in [26] may take negative values. In general the choice of
the scaling is as follows. If the gradient of JR.X/ is split in the following
way:

� rXJR.X/ D UR.X/ � VR.X/; (55)
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where UR; VR are nonnegative arrays, then the scaling is given by the
array

S D X

1C �VR.X/ : (56)

Of course SGP can be applied if JR.X/ is differentiable, and therefore, it can
cover both smoothing regularization as given by Tikhonov and also edge-preserving
regularization as given by smoothed TV (total variation) [12,65]. Finally, a difficult
problem in the case of regularized problems is the choice of the value of the regu-
larization parameter. An attempt in the direction of solving this problem is provided
by a recently proposed discrepancy principle for Poisson data deconvolution [5].

Blind Deconvolution

Blind deconvolution is the problem of image deblurring when the blur is unknown.
In the case of a space-invariant model, the naive problem formulation is to solve
the problem Y D H � X where only Y is known, where � denotes convolution.
It is obvious that this problem is extremely undetermined and that there is an
infinite set of pairs solving the equation. Among them also is the trivial solution
X D Y; H D ı, where ı denotes the usual delta function. Therefore, the problem
must be formulated by introducing as far as possible all available constraints on both
the object X and the PSF H .

In the case of Poisson noise, several iterative methods have been proposed, which
consist of alternating updates of the object and PSF by means of RL iterations or
accelerated RL iterations. For instance, in [27] one RL iteration is used both on the
object and the PSF. This algorithm was investigated, in the context of nonnegative
matrix factorization (NMF), by Lee and Seung [32], but their convergence proof
is incomplete, since only the monotonic decrease of the objective function is
shown while, for a general descent method to be convergent, strongest Armijo-like
decreasing conditions have to be verified. In general, the proposed approaches to
blind deconvolution with Poisson data could be classified as methods of inexact
alternating minimization applied to the KL divergence, as a function of both object
and PSF.

In a recent paper [9], in the context of NMF, convergence of inexact alternating
minimization is proved if the iterative algorithm used for the inner iterations satisfies
suitable conditions, which are satisfied by SGP. Therefore, this approach looks very
suitable for the problem of blind deconvolution with Poisson data. The approach is
applied in [47] using constraints both on the object and the PSF. The method applies
to the imaging by ground-based telescopes since, as suggested in [20], one of the
constraints on the PSF is provided by the Strehl ratio (SR; see Sect. 2), a parameter
measuring the quality of the AO correction. Indeed we recall that the advantage of
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SGP is not only fast convergence, if a suitable scaling of the gradient is used, but also
the possibility of introducing suitable box and equality constraints on the solution.
In particular the SR constraint excludes the trivial solution mentioned above. The
method works well in the case of star systems.

Deconvolution with a Sparsity Prior

Another approach is to use the sparsity to model the data. A sparse model can
be interpreted from a Bayesian standpoint, by assuming the coefficients ˛ of the
solution in the dictionary ˚ follow a leptokurtic PDF with heavy tails such as the
generalized Gaussian distribution form:

pdf˛.˛1; : : : ; ˛K/ /
KY
kD1

exp
�
�� k˛ikpp

�
0 � p < 2 : (57)

Between all possible solutions, we want the one which has the sparsest represen-
tation in the dictionary ˚ . Putting together the log-likelihood function in the case
of Gaussian noise 
 and the priors on ˛, the MAP estimator leads to the following
optimization problem:

min
˛1;:::;˛K

1

2

kY � ˚˛k2 C �

KX
kD1

k˛kkpp ; 0 � p < 2 : (58)

The sparsity can be measured through the k˛k0 norm (i.e., p D 0). This counts
in fact the number of nonzero elements in the sequence. It was also proposed to
convexify the constraint by substituting the convex k˛k1 norm for the k˛k0 norm
[13]. Depending on the H operator, there are several ways to obtain the solution of
this equation.

A first iterative thresholding deconvolution method was proposed in [51] which
consists of the following iterative scheme:

X.nC1/ D PC
�
X.n/ CHT

�
WDenM.n/

�
Y �HX.n/

			
(59)

where PC is the projection on the cone of nonnegative images and WDen is an
operator which performs a wavelet thresholding, i.e., applies the wavelet transform
of the residualR.n/ (i.e., R.n/ D Y �HX.n/), thresholds some wavelet coefficients,
and applies the inverse wavelet transform. Only coefficients that belong to the
multiresolution supportM.n/ [51] are kept, while the others are set to zero. At each
iteration, the multiresolution supportM.n/ is updated by selecting new coefficients
in the wavelet transform of the residual which have an absolute value larger than
a given threshold. The threshold is automatically derived assuming a given noise
distribution such as Gaussian or Poisson noise.
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More recently, it was shown [14, 16, 24] that a solution of Eq. 58 for p D 1 can
be obtained through a thresholded Landweber iteration:

X.nC1/ D PC
�
WDen�

�
X.n/ CHT

�
Y �HX.n/

			
; (60)

with kHk D 1. In the framework of monotone operator splitting theory, it was
shown that for frame dictionaries, a slight modification of this algorithm converges
to the solution [14]. Extension to constrained nonlinear deconvolution is proposed
in [22].

Constraints in the Object or Image Domains
Let us define the object domain O as the space in which the solution belongs and
the image domain I as the space in which the observed data belongs (i.e., if X 2 O
then HX 2 I). The constraint in (59) was applied in the image domain, while in
(60) we have considered constraints on the solution. Hence, two different wavelet-
based strategies can be chosen in order to regularize the deconvolution problem.
The constraint in the image domain through the multiresolution support leads to a
very robust way to control the noise. Indeed, whatever the nature of the noise, we
can always derive robust detection levels in the wavelet space and determine scales
and positions of the important coefficients. A drawback of the image constraints is
that there is no guarantee that the solution is free of artifacts such as ringing around
point sources. A second drawback is that image constraints can be used only if the
point spread function is relatively compact, i.e., does not smear the information over
the whole image.

The property of introducing robust noise modeling is lost when applying the
constraint in the object domain. For example, in the case of Poisson noise, there is no
way (except using time-consuming Monte Carlo techniques) to estimate the level of
the noise in the solution and to adjust properly the thresholds. The second problem
with this approach is that, in fact, we try to solve two problems simultaneously
(noise amplification and artifact control in the solution) with one parameter (i.e.,
�). The choice of this parameter is crucial, while such a parameter is implicit when
using the multiresolution support.

Ideally, constraints should be added in both the object and image domains in
order to better control the noise by using the multiresolution support and avoid such
a ringing artifact.

Example
A simulated Hubble Space Telescope Wide Field Camera image of a distant cluster
of galaxies is shown in Fig. 14, upper left. The simulated data are shown in
Fig. 14, upper right. The Richardson–Lucy and the wavelet solutions are shown,
respectively, in Fig. 14, lower left and right. The Richardson–Lucy method amplifies
the noise, which implies that the faintest objects disappear in the deconvolved
image, while the wavelet starlet solution is stable for any kind of PSF, and any
kind of noise modeling can be considered.
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Fig. 14 Simulated Hubble Space Telescope Wide Field Camera image of a distant cluster of
galaxies. Upper left: original, unaberrated, and noise-free. Upper right: input, aberrated, noise
added. Lower left: restoration, Richardson–Lucy. Lower right, restoration starlet deconvolution

Detection and Deconvolution

The PSF is not needed with MVM. This is an advantage when the PSF is unknown
or difficult to estimate, which happens relatively often when it is space variant.
However, when the PSF is well determined, it becomes a drawback because known
information is not used for the object reconstruction. This can lead to systematic
errors in the photometry, which depends on the PSF and on the source signal-to-
noise ratio. In order to preempt such a bias, a kind of calibration must be performed
using simulations [50]. This section shows how the PSF can be used in the MVM,
leading to a deconvolution.

Object Reconstruction Using the PSF

A reconstructed and deconvolved object Xi can be obtained by searching for a
signal Xi such that the wavelet coefficients of HXi are the same as those of the
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detected structures ˛i . If W describes the wavelet transform operator and Pw the
projection operator in the subspace of the detected coefficients, the solution is found
by minimization of

min
Xi
k ˛i � Pw .WHXi/ k2 (61)

where ˛i represents the detected wavelet coefficients of the object Oi and H is the
PSF. In this approach, each object is deconvolved separately. The flux related to the
extent of the PSF will be taken into account. For point sources, the solution will
be close to that obtained by PSF fitting. This problem is also different from global
deconvolution in the sense that it is well constrained. Except for the positivity of the
solution which is always true and must be used, no other constraint is needed. This
is due to the fact that the reconstruction is performed from a small set of wavelet
coefficients (those above a detection limit). The number of objects is the same as
those obtained by the MVM, but the photometry and the morphology are different.
The astrometry may also be affected.

The Algorithm

Any minimizing method can be used to obtain the solution Xi . Since there is
no problem of convergence, noise amplification, or ringing effect, the Van Cittert
method was proposed on the grounds of its simplicity [57]. It leads to the following
iterative scheme:

X
.nC1/
i D X.n/

i C R
�
˛i � Pw

�
WHX

.n/
i

��
(62)

where R is the inverse wavelet transform, and the algorithm is:

1. Set n to 0.
2. Find the initial estimation X.n/

i by applying an inverse wavelet transform to the
set ˛i corresponding to the detected wavelet coefficients in the data.

3. ConvolveX.n/
i with the PSF H : Y .n/i D HX.n/

i .

4. Determine the wavelet transform ˛.Y
.n/
i / of Y .n/i .

5. Threshold all wavelet coefficients in ˛.Y
.n/
i / at position and scales where nothing

has been detected (i.e., Pw operator). We get ˛
.Y

.n/
i /

t .

6. Determine the residual ˛r D ˛i � ˛.Y
.n/
i /

t .
7. Reconstruct the residual image R.n/ by applying an inverse wavelet transform.
8. Add the residual to the solution:X.nC1/

i D X.n/
i CR.n/.

9. Threshold negative values in X.nC1/
i .

10. If 
.R.n//=
.X.0/
i / < �, then n D nC 1 and go to step 3.

11. X.nC1/
i contains the deconvolved reconstructed object.
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In practice, convergence is very fast (less than 20 iterations). The reconstructed
image (not deconvolved) can also be obtained just by reconvolving the solution with
the PSF.

Space-Variant PSF

Deconvolution methods generally do not take into account the case of a space-
variant PSF. The standard approach when the PSF varies is to decompose the image
into blocks and to consider the PSF constant inside a given block. Blocks which
are too small lead to a problem of computation time (the FFT cannot be used),
while blocks which are too large introduce errors due to the use of an incorrect PSF.
Blocking artifacts may also appear. Combining source detection and deconvolution
opens up an elegant way for deconvolution with a space-variant PSF. Indeed, a
straightforward method is derived by just replacing the constant PSF at step 3 of
the algorithm with the PSF at the center of the object. This means that it is not the
image which is deconvolved, but its constituent objects.

Undersampled Point Spread Function

If the PSF is undersampled, it can be used in the same way, but results may not be
optimal due to the fact that the sampled PSF varies depending on the position of the
source. If an oversampled PSF is available, resulting from theoretical calculation or
from a set of observations, it should be used to improve the solution. In this case,
each reconstructed object will be oversampled. Equation 61 must be replaced by

min
Xi
k ˛i � Pw .WDlHXi / k2 (63)

where Dl is the averaging-decimation operator, consisting of averaging the data in
the window of size l � l and keeping only one average pixel for each l � l block.

Example: Application to Abell 1689 ISOCAMData

Figure 15 (left) shows the detections (isophotes) obtained using the MVM method
without deconvolution on ISOCAM data. The data were collected using the 6 arcsec
lens at 6:75�m. This was a raster observation with 10 s integration time, 16 raster
positions, and 25 frames per raster position. The noise is nonstationary, and the
detection of the significant wavelet coefficients was carried out using the root mean
square error map R
.x; y/ by the method described in [50]. The isophotes are
overplotted on an optical image (NTT, band V) in order to identify the infrared
source. Figure 15 (right) shows the same treatment but using the MVM method
with deconvolution. The objects are the same, but the photometry is improved, and
it is clearly easier to identify the optical counterpart of the infrared sources.
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Fig. 15 Abell 1689: left, ISOCAM source detection (isophotes) overplotted on an optical image
(NTT, band V). The ISOCAM image is a raster observation at 7�m. Right, ISOCAM source
detection using the PSF (isophotes) overplotted on the optical image. Compared to the left panel,
it is clearly easier to identify the detected infrared sources in the optical image

6 Conclusion

In this chapter we have used the sparsity principle that now occupies a very central
role in signal processing. We have discussed the vision models within which the
sparsity principle is applied. Finally, we have reviewed the use of the starlet wavelet
transform as a prime technique in order to apply the sparsity principle in the
context of vision models in various application domains. Among the latter are object
detection coupled with denoising, deconvolution and ltering generally. Issues of
algorithmic optimization and of statistical modeling entered into our discussion
on various occasions. Many examples and case studies were used to demonstrate
the powerfulness of the approaches described for astronomical data analysis and
processing.
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Abstract
Images in scientific visualization are the end product of data processing. Starting
from higher-dimensional data sets such as scalar, vector, and tensor fields given
on 2D, 3D, and 4D domains, the objective is to reduce this complexity to
two-dimensional images comprehensible to the human visual system. Various
mathematical fields such as in particular differential geometry, topology (theory
of discretized manifolds), differential topology, linear algebra, Geometric Alge-
bra, vector field and tensor analysis, and partial differential equations contribute
to the data filtering and transformation algorithms used in scientific visualization.
The application of differential methods is core to all these fields. The following
chapter will provide examples from current research on the application of these
mathematical domains to scientific visualization. Ultimately the use of these
methods allows for a systematic approach for image generation resulting from
the analysis of multidimensional datasets.

1 Introduction

Scientists need an alternative to numbers. The use of images is a technical reality nowadays
and tomorrow it will be an essential requisite for knowledge. The ability of scientists to
visualize calculations and complex simulations is absolutely essential to ensure the integrity
of analyses, to promote scrutiny in depth and to communicate the result of such scrutiny to
others. . . The purpose of scientific calculation is looking, not enumerating. It is estimated
that 50 % of the brain’s neurons are associated with vision. Visualization in a scientific
calculation is aimed at putting this neurological machinery to work [56].

Since this visionary quote from an article in 1987, scientific visualization, benefiting
from the affordable graphics hardware driven by the computer gaming industry, has
grown rapidly. Beyond academic research interests it has become also a consumer
market with practical applicability in industry and medicine. Still there are yet many
gaps that are left open due to the unequal evolution velocities in different fields.
Once, there is the human mind that is not able to keep up with the deluge of visual
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information which can be produced with modern technology. Many scientists still
prefer looking at numbers instead of utilizing modern display technology. At the
same time, data can be produced by modern supercomputers that is far beyond the
ability of even high-end graphics engines to be processed. Data sets originating
from numerical simulations of physical processes will usually be three-dimensional
or four-dimensional, with images just the final result of the process of scientific
visualization. In this context images are the means to analyze data set of higher
dimensions.

Reducing numerical data sets to images is known as the concept of the visual-
ization pipeline. In its simplest form it consists of a data source (n-dimensional),
a data filter (an algorithmic operation), and a data sink (an image). Data filters
need to understand the structure and meaning of the multidimensional input data
and to operate efficiently on them. This involves various mathematical fields such
as in particular differential geometry, topology (theory of discretized manifolds),
differential topology, linear algebra, Geometric Algebra, vector field and tensor
analysis, and partial differential equations. Within a scientific visualization process,
all these mathematical fields will work together, with more or less weighting.
We subsume this set of mathematical domains as “differential methods” in this
chapter as the concept of differentiation is fundamental to their approach of data
analysis. The following sections will demonstrate the application of the respective
mathematical fields to visual analysis by virtue of examples of ongoing research.

In Sect. 2 we discuss the general issue of how to lay out data to model the
structure of space and time, as we know it from mathematics as foundation for
further operations. Frequently visualization algorithms are implemented ad hoc,
given the problem, inventing the solution with highest performance. This allegedly
reasonable approach comes with an unfortunate downside: incompatibility among
independently developed solutions, which impacts data exchange and interfacing
complementary implementations. However, when keeping a common data model in
mind right from the earliest steps of conceiving some algorithm, interoperability can
be achieved at no cost with same performance as solitary solutions.

Given a solid foundation for data structures, Sect. 3 demonstrates how to
formulate differential operators using the concepts of chains, cochains, homology,
and cohomology. Since in computer graphics and visualization we have to deal with
discretized spaces, we arrive in the mathematical field of topology, as an essential
descriptive tool for meshes and all nontrivial grid structures.

When considering mathematics as a language unifying computer science, we
need to even more think about a common denominator within mathematics itself.
Geometric Algebra is a relatively new – or, rather, rediscovered – branch of
mathematics that is very promising. It is extraordinarily visually intuitive while
covering the abstractions of Clifford algebra as used in quantum mechanics equally
well as the formulations of curved space in general relativity. However, even
independent of such physics-oriented applications, Geometric Algebra has found its
merits within computer graphics itself. Section 4 will talk about the elegant usage
of five-dimensional projective conformal Geometric Algebra to handle primitives in
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computer graphics and eventually implement the ray-tracing algorithm with a few,
well-defined algebraic operations.

The general goal of visualization is to give insight into large and complex data
sets. Due to the sheer size of the data sets alone, it is favorable if not necessary
to automate at least parts of the analysis. A way to achieve this is by extracting
features. Features can either be certain quantities derived from a data set or a
mathematically well-defined, geometric object (point, line, surface, . . . ) with its
definition and interpretation depending on the underlying application, but usually
it represents important structures (e.g., vortex, stagnation point) or changes to such
structures (events, bifurcations). A feature-based visualization aims at the reduction
of information to guide a user to the most interesting parts of a data set. In Sect. 5 we
describe some important approaches to feature-based visualization of vector fields.
These include investigation of derived quantities such as vortices (section “Derived
Measures of Vector Fields”) and the topology of vector fields (section “Topology of
Vector Fields”). These approaches have become a standard tool for the analysis of
vector fields.

Finally, in Sect. 6 we explore the capabilities of partial differential equations for
the filtering and regularization of image data sets. Applications are enhancing image
quality by reducing noise or similar artifacts, as well as the visualization of vector
and tensor fields.

2 Modeling Data via Fiber Bundles

Purely numerical algorithms in CCC can be abstracted from concrete data struc-
tures using programming techniques such as generic programming [79]. However,
generic algorithms still need to make certain assumptions about the data they
operate on. The question remains what these concepts are that describe “data”: what
properties should be expected by some algorithm from any kind of data provided for
scientific visualization? Moreover, consistency among concepts shared by indepen-
dent algorithms is also required to achieve interoperability among algorithms and
eventually (independently developed) applications. While any particular problem
can be addressed by some particular solution, a common concept allows to build a
framework instead of just a collection of tools. Tools are what an end user needs
to solve a particular problem with a known solution. However, when a problem is
not yet clearly defined and a solution unknown, then a framework is required that
allows exploration of various approaches and eventually adaption toward a specific
direction that does not exist a priori.

The concept of how to lay out data to perform visualization operations in a
common framework constitutes a data model for visualization. Many visualization
applications are to a greater or lesser extent a collection of tools, even when bundled
together within the same software library or binary. Consequently, interoperability
between different applications and their corresponding file formats is hard or
impossible. Only very few implementations adhere to the vision of a common data
model across the various data types for visualization. The idea of a common data
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model is frequently undervalued or even disregarded as being impossible. However,
as D. Butler said, “The proper abstractions for scientific data are known. We just
have to use them” [16].

D. Butler was following the mathematical concepts of fiber bundles [16], or
more specific, vector bundles [15], to model data. The IBM Data Explorer, one
of the earliest visualization applications, now open source and known as “OpenDX
(http://www.opendx.org),” implemented this concept successfully [76]. These ideas
have been revived and expanded by [7] leading to a hierarchical data structure
consisting of a noncyclic graph in seven levels. It can be seen as largely keyword-
free, hierarchical version of the OpenDX model, seeking to cast the information
and relationships provided in original model into a grouping structure. This data
model will be reviewed in the following, together with its mathematical background.
Section “Differential Geometry: Manifolds, Tangential Spaces, and Vector Spaces”
will review the basic mathematical structures that are used to describe space and
time. Section “Topology: Discretized Manifolds” will introduce the mathematical
formulation of discretized space. Based on this background, section “Ontological
Scheme and Seven-Level Hierarchy” will present a scheme that is able to cover the
described mathematical structures.

Differential Geometry: Manifolds, Tangential Spaces, and Vector
Spaces

Space and time in physics is modeled via the concept of a differentiable manifold.
As scientific visualization deals with data given in space and time, following these
concepts is reasonable. In short, a manifold is a topological space that is locally
homeomorphic to R

n. However, not all data occurring in scientific visualization
are manifolds. The more general case of topological spaces will be discussed in
sections “Topology: Discretized Manifolds” and “Topology.”

A vector space over a field F (such as R) is a set V together with two binary
operations vector additionC: V �V ! V and scalar multiplication ı W F�V ! V .
The mathematical concept of a vector is defined as an element v 2 V . A vector
space is closed under the operationsC and ı, i.e., for all elements u; v 2 V and all
elements � 2 F there is uC v 2 V and �ı u 2 V (vector space axioms). The vector
space axioms allow computing the differences of vectors and therefore defining the
derivative of a vector-valued function v.s/ W R! V as

d

ds
v.s/ WD limds!0

v.s C ds/ � v.s/

ds
(1)

A manifold in general is not a vector space. However, a differentiable manifold M
allows to define a tangential space TP .M/ at each point P which has vector space
properties.

http://www.opendx.org


2104 W. Benger et al.

Tangential Vectors
In differential geometry, a tangential vector on a manifoldM is the operator d

ds
that

computes the derivative along a curve q.s/ W R! M for an arbitrary scalar-valued
function f WM ! R:

d

ds
f
ˇ̌
ˇ
q.s/
WD df .q.s//

ds
(2)

Tangential vectors fulfill the vector space axioms and can therefore be expressed as
linear combinations of derivatives along the n coordinate functions x� W M ! R

with � D 0: : :n � 1, which define a basis of the tangential space Tq.s/.M/ on the
n-dimensional manifoldM at each point q.s/ 2 M :

d

ds
f D

Xn�1

�D1

dx�.q.s//

ds

@

@x�
f DW

Xn�1

�D1
Pq�@�f (3)

where {q}� are the components of the tangential vector d
ds

in the chart {x�} and
{@�} are the basis vectors of the tangential space in this chart. In the following
text the Einstein sum convention is used, which assumes implicit summation over
indices occurring on the same side of an equation. Often tangential vectors are used
synonymous with the term “vectors” in computer graphics when a direction vector
from pointA to pointB is meant. A tangential vector on an n-dimensional manifold
is represented by n numbers in a chart.

Covectors
The set of operations df : T .M/ ! R that map tangential vectors v 2 T .M/ to a
scalar value v.f / for any function f W M ! R defines another vector space which
is dual to the tangential vectors. Its elements are called covectors:

< df; v >D df .v/ WD v.f / D v�@�f D v�
@f

@x�
(4)

Covectors fulfill the vector space axioms and can be written as linear combination
of covector basis functions dx�:

df DW @f
@x�

dx� (5)

whereby the dual basis vectors fulfill the duality relation

< dx�; @� >D
�
� D � W 1
� ¤ � W 0

(6)

The space of covectors is called the cotangential space TP �.M/. A covector on an
n-dimensional manifold is represented by n numbers in a chart, same as a tangential
vector. However, covectors transform inverse to tangential vectors when changing
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a b c

Fig. 1 The (trivial) constant vector field along the z-axis viewed as vector field @z and as covector
field dz. (a) Vector field @z. (b) Duality relationship among @z and dz. (c) Co-vector field dz

coordinate systems, as is directly obvious from Eq. (6) in the one-dimensional case:
as < dx0; @0 >D 1 must be sustained under coordinate transformation, dx0 must
shrink by the same amount as @0 grows when another coordinate scale is used
to represent these vectors. In higher dimensions this is expressed by an inverse
transformation matrix.

In Euclidean three-dimensional space, a plane is equivalently described by a
“normal vector,” which is orthogonal to the plane. While “normal vectors” are
frequently symbolized by an arrow, similar to tangential vectors, they are not the
same, rather they are dual to tangential vectors. It is more appropriate to visually
symbolize them as a plane. This visual is also supported by (5), which can be
interpreted as the total differential of a function f : a covector describes the change
of a function f along a direction as specified by a tangential vector Ev. A covector
V can thus be visually imagined as a sequence of coplanar (locally flat) planes
at distances given by the magnitude of the covector that count the number of
planes which are crossed by a vector Ew. This number is V.w/. For instance, for
the Cartesian coordinate function x, the covector dx “measures” the “crossing rate”
of a vector w in the direction along the coordinate line x; see Figs. 1 and 2. On
an n-dimensional manifold a covector is correspondingly symbolized by a (n � 1)-
dimensional subspace.

Tensors
A tensor T mn of rank n �m is a multi-linear map of n vectors and m covectors to a
scalar

T mn W T .M/� : : : T .M/n � T �.M/ � : : : T �.M/m ! R (7)

Tensors are elements of a vector space themselves and form the tensor algebra.
They are represented relative to a coordinate system by a set of knCm numbers
for a k-dimensional manifold. Tensors of rank 2 may be represented using matrix
notation. Tensors of type T1

0 are equivalent to covectors and called co-variant; in
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a b c

Fig. 2 The basis vector and covector fields induced by the polar coordinates {r; #; �}. (a) Radial
field dr @r . (b) Azimuthal field d� @� view of the equatorial plane (z-axis towards eye). (c) Altitudal
field d� @� slice along the z-axis

matrix notation (relative to a chart) they correspond to rows. Tensors of type T0
1

are equivalent to a tangential vector and are called contra-variant, corresponding to
columns in matrix notation. The duality relationship between vectors and covectors
then corresponds to the matrix multiplication of a 1 � n row with a n � 1 column,
yielding a single number

< a; b >D< a�@�; b�dx� > 
 .a0a1 : : : an/

0
BB@
b0

b1

: : :

bn

1
CCA (8)

By virtue of the duality relationship (6), the contraction of lower and upper indices
is defined as the interior product # of tensors, which reduces the dimensionality of
the tensor:

# W T mn � T lk ! T m�k
n�1 W u; v 7! #uv (9)

The interior product can be understood (visually) as a generalization of some
“projection” of a tensor onto another one.

Of special importance are symmetric tensors of rank two g 2 T 0
2 with g W

T .M/ � T .M/ ! R W u; v 7! g.u; v/; g.u; v/ D g.v; u/, as they can be used
to define a metric or inner product on the tangential vectors. Its inverse, defined by
operating on the covectors, is called the co-metric. A metric, same as the co-metric,
is represented as a symmetric n�n matrix in a chart for an n-dimensional manifold.

Given a metric tensor, one can define equivalence relationships between tangen-
tial vectors and covectors, which allow to map one into each other. These maps are
called the “musical isomorphisms,” [ and ], as they raise or lower an index in the
coordinate representation:
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[ W T .M/! T �.M/ W v�@� 7! v�g��dx
� (10)

] W T �.M/! T .M/ W V�dx
� 7! V�g

��@� (11)

As an example application, the “gradient” of a scalar function is given by rf D
]df using this notation. In Euclidean space, the metric is represented by the identity
matrix and the components of vectors are identical to the components of covectors.
As computer graphics usually is considered in Euclidean space, this justifies the
usual negligence of distinction among vectors and covectors; consequently graphics
software only knows about one type of vectors which is uniquely identified by its
number of components. However, when dealing with coordinate transformations or
curvilinear mesh types, distinguishing between tangential vectors and covectors is
unavoidable. Treating them both as the same type within a computer program leads
to confusions and is not safe.

Exterior Product
The exterior product ^ W V � V ! +.V / is an algebraic construction generating
vector space elements of higher dimensions from elements of a vector space V .
The new vector space is denoted +.V /. It is alternating, fulfilling the property
v ^ u D �u ^ v 8u; v 2 V (which results in v ^ v D 0 8v 2 V ).
The exterior product defines an algebra on its elements, the exterior algebra
(or Grassmann algebra). It is a sub-algebra of the tensor algebra consisting of
the antisymmetric tensors. The exterior algebra is defined intrinsically by the
vector space and does not require a metric. For a given n – dimensional vector
space V , there can at most be nth power of an exterior product, consisting of
n different basis vectors. The (n C 1)th power must vanish, because at least
one basis vector would occur twice, and there is exactly one basis vector in
+n.V /.

Elements v 2 +k.V / are called k-vectors, whereby two-vectors are also called
bi-vectors and three-vectors tri-vectors. The number of components of a k-vector
of an n-dimensional vector space is given by the binomial coefficient {n}{k}. For
n D 2 there are two one-vectors and one bi-vector, for n D 3 there are three one-
vectors, three bi-vectors, and one tri-vector. These relationships are depicted by the
Pascal’s triangle, with the row representing the dimensionality of the underlying
base space and the column the vector type:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

(12)

As can be easily read off, for a four-dimensional vector space, there will be four
one-vectors, six bi-vectors, four tri-vectors, and one four-vector. The n-vector of
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an n-dimensional vector space is also called a pseudoscalar, the (n � 1) vector a
pseudo-vector.

Visualizing Exterior Products
An exterior algebra is defined on both the tangential vectors and covectors on a
manifold. A bi-vector v formed from tangential vectors is written in chart as

v D v��@� ^ @� (13)

and a bi-covectorU formed from covectors is written in chart as

U D U��dx� ^ dx� (14)

They both have {n}{2} independent components, due to v�� D �v�� and U�� D
�U�� (three components in 3D, six components in 4D). A bi-tangential vector (13)
can be understood visually as an (oriented, i.e., signed) plane that is spun by the two
defining tangential vectors, independently of the dimensionality of the underlying
base space. A bi-covector (14) corresponds to the subspace of an n-dimensional
hyperspace where a plane is “cut out.” In three dimensions these visualizations
overlap: both a bi-tangential vector and a covector correspond to a plane, and
both a tangential vector and a bi-covector correspond to one-dimensional direction
(“arrow”). In four dimensions, these visuals are more distinct but still overlap: a
covector corresponds to a three-dimensional volume, but a bi-tangential vector is
represented by a plane same as a bi-covector, since cutting out a 2D plane from
four-dimensional space yields a 2D plane again. Only in higher dimensions these
symbolic representations become unique. However, both a co-vector and a pseudo-
vector will always correspond to (i.e., appear as) an (n�1)-dimensional hyperspace.

V�dx
�” v˛0˛1:::˛n�1@˛0 ^ @˛1 ^ : : : @˛n�1 (15)

v�@�” V˛0˛1:::˛n�1dx
˛0 ^ dx˛1 ^ : : : dx˛n�1 (16)

A tangential vector – lhs of (16) – can be understood as one specific direction.
Equivalently, it can be seen as “cutting off” all but one (n � 1)-dimensional
hyperspaces from the full n-dimensional space. This equivalence is expressed via
the interior product of a tangential vector v with a pseudo-co-scalar ˝ yielding a
pseudo-covector V (17). Similarly, the interior product of a pseudo-vector with a
pseudo-co-scalar yields a tangential vector (17):

#˝ W T .M/! .T �/.n�1/.M/ W V 7! #˝v (17)

#˝ W T .n�1/.M/! T �.M/ W V 7! #˝v (18)
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Pseudoscalars and pseudo-co-scalars will always be scalar multiples of the basis
vectors @˛0 ^ @˛1 ^ : : :@˛n and dx˛0 ^ dx˛1 ^ : : : dx˛n . However, when inversing a
coordinate x� ! �x�, they flip sign, whereas a “true” scalar does not. An example
known from Euclidean vector algebra is the allegedly scalar value constructed from
the dot and cross product of three vectors V.u; v;w/ D u � .v � w/ which is the
negative of when its arguments are flipped:

V.u; v;w/ D �V.�u;�v;�w/ D �u � .�v � �w/ (19)

which is actually more obvious when (19) is written as exterior product:

V.u; v;w/ D u ^ v ^ w D V @0 ^ @1 ^ @2 (20)

The result (20) actually describes the multiple of a volume element span by the basis
tangential vectors @� – any volume must be a scalar multiple of this basis volume
element but can flip sign if another convention on the basis vectors is used. This
convention depends on the choice of a right-handed versus left-handed coordinate
system and is expressed by the orientation tensor˝ D ˙@0 ^ @1 ^ @2. In computer
graphics, both left-handed and right-handed coordinate systems occur, which may
lead to lots of confusions.

By combining (18) and (11) – requiring a metric – we get a map from pseudo-
vectors to vectors and reverse. This map is known as the Hodge star operator “*”:

� W T .n�1/.M/! T .M/ W V 7� ! ]#V (21)

The same operation can be applied to the covectors accordingly and generalized
to all vector elements of the exterior algebra on a vector space, establishing a
correspondence between k – vectors and n – k-vectors. The Hodge star operator
allows to identify vectors and pseudo-vectors, similar to how a metric allows to
identify vectors and covectors. The Hodge star operator requires a metric and an
orientation˝ .

A prominent application in physics using the hodge star operator are the Maxwell
equations, which, when written based on the four-dimensional potential A D
V 0dx

0 C Akdxk (V 0 the electrostatic, Ak the magnetic vector potential), take the
form

d�dA D J (22)

with J the electric current and magnetic flow, which is zero in vacuum. The
combination d * d is equivalent to the Laplace operator “�,” which indicates
that (22) describes electromagnetic waves in vacuum.

Geometric Algebra
Geometric Algebra is motivated by the intention to find a closed algebra on a
vector space with respect to multiplication, which includes existence of an inverse
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operation. There is no concept of dividing vectors in “standard” vector algebra.
Neither the inner or outer product has provided vectors of the same dimensionality
as their arguments, so they do not provide a closed algebra on the vector space.

Geometric Algebra postulates a product on elements of a vector space u, v, w 2 V
that is associative .uv/w D u.vw/, left distributive u.vC w/ D uvC uw, and right
distributive (uC v/w D uwC vw and reduces to the inner product as defined by the
metric v2 D g.v; v/. It can be shown that the sum of the outer product and the inner
product fulfill these requirements; this defines the geometric product as the sum of
both:

uv WD u ^ vC u � v (23)

Since u^v and u � v are of different dimensionalities ({n} {{2} and {n} {{0}, respec-
tively), the result must be in a higher-dimensional vector space of dimensionality
{n} {{2}C {n} {{0}. This space is formed by the linear combination of k-vectors;

its elements are called multivectors. Its dimensionality is
Pn�1

kD0

�
n

k

�

 2n.

For instance, in two dimensions, the dimension of the space of multivectors is
22 D 4. A multivector V , constructed from tangential vectors on a two-dimensional
manifold, is written as

V D V 0 C V 1@0 C V 2@1 C V 3@0 ^ @1 (24)

with V � the four components of the multivector in a chart. For a three-dimensional
manifold, a multivector on its tangential space has 23 D 8 components and is written
as

V D V 0C
V 1@0 C V 2@1 C V 2@2C
V 4@0 ^ @1 C V 5@1 ^ @2 C V 6@2 ^ @0C
V 7@0 ^ @1 ^ @2

(25)

with V � the eight components of the multivector in a chart. The components of
a multivector have a direct visual interpretation, which is one of the key features
of Geometric Algebra. In 3D, a multivector is the sum of a scalar value, three
directions, three planes, and one volume. These basis elements span the entire
space of multivectors. Geometric Algebra provides intrinsic graphical insight to
the algebraic operations. Its application for computer graphics will be discussed
in Sect. 4.

Vector and Fiber Bundles
The concept of a fiber bundle data model is inspired by its mathematical correspon-
dence. In short, a fiber bundle is a topological space that looks locally like a product
space B � F of a base space B and a fiber space F .
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The fibers of a function f : X ! Y are the pre-images or inverse images of the
points y 2 Y , i.e., the sets of all elements x 2 X with f .x/ D y:

f �1.y/ D fx 2 X jf .x/ D yg

is a fiber of f (at the point y). A fiber can also be the empty set. The union set of all
fibers of a function is called the total space. The definition of a fiber bundle makes
use of a projection mappr1, which is a function that maps each element of a product
space to the element of the first space:

pr1 W X � Y ! X

.x; y/ 7�! x

Let E , B be topological spaces and f : E ! B a continuous map. (E , B , f ) is
called a (fiber) bundle if there exists a space F such that the union of fibers of a
neighborhood Ub � B of each point b 2 B is homeomorphic to Ub � F such that
the projection pr1 of Ub � F is Ub again:

.E;B; f W E ! B/ bundle”9F W 8b 2 B W 9Ub W f �1.Ub/
hom' Ub � F

and pr1.Ub � F / D Ub

E is called the total space E, B is called the base space, and f W E ! B the
projection map. The space F is called the fiber type of the bundle or simply the
fiber of the bundle. In other words, the total space can be written locally as a product
space of the base space with some space F . The notation F.B/ D .E;B; f / will
be used to denote a fiber bundle over the base space B . It is also said that the space
F fibers over the base space B.

An important case is the tangent bundle, which is the union of all tangent spaces
Tp .M/ on a manifold M together with the manifold T .M/ WD f.p; v/ W p 2
M; v 2 Tp.M/g. Every differentiable manifold possesses a tangent bundle T .M/.
The dimension of T .M/ is twice the dimension of the underlying manifold M , its
elements are points plus tangential vectors. Tp (M ) is the fiber of the tangent bundle
over the point p.

If a fiber bundle over a space B with fiber F can be written as B � F globally,
then it is called a trivial bundle (B � F;B; pr1). In scientific visualization, usually
only trivial bundles occur. A well-known example for a nontrivial fiber bundle is the
Möbius strip.

Topology: Discretized Manifolds

For computational purposes, a topological space is modeled by a finite set of points.
Such a set of points intrinsically carries a discrete topology by itself, but one usually
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considers embeddings in a space that is homeomorphic to Euclidean space to define
various structures describing their spatial relationships.

A subset c � X of a Hausdorff space X is a k-cell if it is homeomorphic to
an open k-dimensional ball in R

n. The dimension of the cell is k. Zero-cells are
called vertices, one-cells are edges, two-cells are faces or polygons, and three-cells
are polyhedra – see also section “Chains.” An n-cell within an n-dimensional space
is just called a “cell.” (n � 1)-cells are sometimes called “facets” and (n � 2)-cells
are known as “ridges.” For k-cells of arbitrary dimension, incidence and adjacency
relationships are defined as follows: two cells c1, c2 are incident if c1 � @c2, where
@c2 denotes the border of the cell c2. Two cells of the same dimension can never
be incident because dim.c1/ ¤ dim.c2/ for two incident cells c1, c2. c1 is a side
of c2 if dim.c1/ < dim.c2), which may be written as c1 < c2. The special case
dim.c1/ D dim.c2/ � 1 may be denoted by c1 � c2. Two k -cells c1, c2 with k > 0
are called adjacent if they have a common side, i.e.,

cell c1; c2 adjacent”9 cell f W f < c1; f < c2

For k D 0, two zero-cells (i.e., vertices) v1, v2 are said to be adjacent if there
exists a one-cell (edge) e which contains both, i.e., v1 < e and v2 < e. Incidence
relationships form an incidence graph. A path within an incidence graph is a cell
tuple: a cell-tuple C within an n-dimensional Hausdorff space is an ordered sequence
of k-cells .cn; cn�1; : : :; c1; c0/ of decreasing dimensions such that 80 < i �
n W ci�1 � ci . These relationships allow to determine topological neighborhoods:
adjacent cells are called neighbors. The set of all k C 1 cells which are incident
to a k-cell forms a neighborhood of the k-cell. The cells of a Hausdorff space
X constitute a topological base, leading to the following definition: a (“closure-
finite, weak-topology”) CW-complex C, also called a decomposition of a Hausdorff
space X , is a hierarchical system of spaces X.�1/ � X.0/ � X.1/ � : : : � X.n/,
constructed by pairwise disjoint open cells c � X with the Hausdorff topology
[c2CC

, such that X.n/ is obtained from X.n�1/ by attaching adjacent n-cells to each
(n�1)-cell andX.�1/ D ;. The respective subspacesX.n/ are called the n-skeletons
of X . A CW complex can be understood as a set of cells which are glued together
at their subcells. It generalizes the concept of a graph by adding cells of dimension
greater than 1.

Up to now, the definition of a cell was just based on a homeomorphism of the
underlying spaceX and R

n. Note that a cell does not need to be “straight,” such that,
e.g., a two-cell may be constructed from a single vertex and an edge connecting the
vertex to itself, as, e.g., illustrated by J. Hart [34]. Alternative approaches toward
the definition of cells are more restrictively based on isometry to Euclidean space,
defining the notion of “convexity” first. However, it is recommendable to avoid the
assumption of Euclidean space and treating the topological properties of a mesh
purely based on its combinatorial relationships.
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Ontological Scheme and Seven-Level Hierarchy

The concept of the fiber bundle data model builds on the paradigm that numerical
data sets occurring for scientific visualization can be formulated as trivial fiber
bundles (see section “Vector and Fiber Bundles”). Hence, data sets may be
distinguished by their properties in the base space and the fiber space. At each point
of the – discretized – base space, there are some data in the fiber space attached.
Basically a fiber bundle is a set of points with neighborhood information attached
to each of them. An n-dimensional array is a very simple case of a fiber bundle with
neighborhood information given implicitly.

The structure of the base space is described as a CW complex, which categorizes
the topological structure of an n-dimensional base space by a sequence of k-
dimensional skeletons, with 0 < k < n. These skeletons carry certain properties of
the data set: the zero-skeleton describes vertices, the one-skeleton refers to edges,
two-skeleton to the faces, etc., of some mesh (a triangulation of the base space).
Structured grids are triangulations with implicitly given topological properties. For
instance, a regular n-dimensional grid is one where each point has 2n neighbors.

The structure of the fiber space is (usually) not discrete and given by the
properties of the geometrical object residing there, such as a scalar, vector, covector,
and tensor. Same as the base space, the fiber space has a specific dimensionality,
though the dimensionality of the base space and fiber space is independent. Figure 3
demonstrates example images from scientific visualization classified via their fiber
bundle structure. If the fiber space has vector space properties, then the fiber bundle
is a vector bundle and vector operations can be performed on the fiber space, such
as addition, multiplication, and derivation.

The distinction between base space and fiber space is not common use in
computer graphics, where topological properties (base space) are frequently inter-
mixed with geometrical properties (coordinate representations). Operations in the
fiber space can, however, be formulated independently from the base space, which
leads to a more reusable design of software components. Coordinate information,
formally part of the base space, can as well be considered as fiber, leading to further
generalization. The data sets describing a fiber are ideally stored as contiguous
arrays in memory or disk, which allows for optimized array and vector operations.
Such a storage layout turns out to be particularly useful for communicating data
with the GPU using vertex buffer objects: the base space is given by vertex
arrays (e.g., OpenGL glVertexPointer), and fibers are attribute arrays (e.g., OpenGL
glVertexAttribPointer), in the notation of computer graphics. While the process of
hardware rendering in its early times had been based on procedural descriptions
(cached in display lists), vertex buffer objects are much faster in state-of-the-art
technology. Efficient rendering routines are thus implemented as maps from fiber
bundles in RAM to fiber bundles in GPU memory (eventually equipped with a GPU
shader program).

A complex data structure (such as some color-coded time-dependent geometry)
will be built from many data arrays. The main question that needs to be answered by
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Fig. 3 Fiber bundle classification scheme for visualization methods:dimensionality of the base
space (involving the k-skeleton of the discretized manifold) and dimensionality of the fiber space
(involving the number of field quantities per element, zero referring to display of the mere
topological structure). (a) Zero-cells, 0D. (b) Zero-cells, 1D. (c) Zero-cells, 3D. (d) Zero-cells,
6D. (e) One-cells, 0D. (f) One-cells, 1D. (g) One-cells, 3D. (h) One-cells, 6D. (i) Two-cells, 0D.
(j) Two-cells, 1D. (k) Two-cells, 3D. (l) Two-cells, 6D. (m) Three-cells, 0D. (n) Three-cells, 1D.
(o) Three-cells, 3D. (p) Three-cells, 6D

a data model is how to assign a semantic meaning to each of these data arrays – what
do the numerical values actually mean? It is always possible to introduce a set of
keywords with semantics attached to them. In addition, the introduction of keywords
also reduces the number of possible identifiers available for user-specific purpose.
This problem is also known as “name space pollution”. The approach followed in the
data model presented in [7] is to avoid use of keywords as much as possible. Instead,
it assigns the semantics of an element of the data structure into the placement of



Differential Methods for Multi-dimensional Visual Data Analysis 2115

this element. The objective is to describe all data types that occur in an algorithm
(including file reader and rendering routines) within this model. It is formulated as
a graph of up to seven levels (two of them optional). Each level represents a certain
property of the entire data set, the Bundle. These levels are called:

1. Slice
2. Grid
3. Skeleton
4. Representation
5. Field
6. (Fragment)
7. (Compound Elements)

Actual data arrays are stored only below the “Field” level. Given one hierarchy level,
the next one is accessed via some identifier. The type of this identifier differs for
each level: numerical values within a Skeleton level are grouped into Representation
objects, which hold all information that is relative to a certain “representer.” Such
a representer may be a coordinate object that, for instance, refers to some Cartesian
or polar chart, or it may well be another Skeleton object, either within the same
Grid object or even within another one. An actual data set is described through the
existence of entries in each level. Only two of these hierarchy levels are exposed
to the end user; these are the Grid and Field levels. Their corresponding textual
identifiers are arbitrary names specified by the user.

Hierarchy object Identifier type Identifier semantic

Bundle Floating point number Time value

Slice String Grid name

Grid Integer set Topological properties

Skeleton Reference Relationship map

Representation String Field name

Field Multidimensional index Array index

A Grid is subset of data within the Bundle that refers to a specific geometrical
entity. A Grid might be a mesh carrying data such as a triangular surface, a
data cube, a set of data blocks from a parallel computation, or many other data
types. A Field is the collection of data sets given as numbers on a specific
topological component of a Grid, for instance, floating point values describing
pressure or temperature on a Grid’s vertices. All other levels of the data model
describe the properties of the Bundle as construction blocks. The usage of these
construction blocks constitutes a certain language to describe data sets. A Slice
is identified by a single floating point number representing time (generalization to
arbitrary-dimensional parameter spaces is possible). A Skeleton is identified by its
dimensionality, index depth (relationship to the vertices of a Grid), and refinement
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Patch 1

Patch 0

Patch 2

Refinement level 0
Refinement level 1

Refinement level 2
Refinement level 2

Fragment 0

Fragment 1

Fragment 2

Scalar-, vector-, Tensorfield

Fig. 4 Hierarchical structure of the data layout of the concept of a field in computer memory: (1)
organization by multiple resolutions for same spatial domain; (2) multiple coordinate systems cov-
ering different spatial domains (arbitrary overlap possible); (3) fragmentation of fields into blocks
(recombination from parallel data sources); and (4) layout of compound fields as components for
performance reasons, indicated as S (scalar field), {x, y, z} for vector fields, and {xx, xy, yy, yz,
zz, zx} for tensor fields

level. This will be explained in more detail in section “Topological Skeletons.”
The scheme also extends to cases beyond the purely mathematical basis to also
cover data sets that occur in praxis, which is described in section “Non-topological
representations.” A representation is identified via some reference object, which
may be some coordinate system or another Skeleton. The lowest levels of fragments
and compounds describe the internal memory layout of a Field data set and are
optional; some examples are described in [8, 9].

Field Properties
A specific Field identifier may occur in multiple locations. All these locations
together define the properties of a field. The following four properties are express-
ible in the data model:

1. Hierarchical ordering: For a certain point in space, there exist multiple data
values, one for each refinement level. This property describes the topological
structure of the base space.

2. Multiple coordinate systems: One spatial point may have multiple data repre-
sentations relating to different coordinate systems. This property describes the
geometrical structure of the base space.

3. Fragmentation: Data may stem from multiple sources, such as a distributed
multiprocess simulation. The field then consists of multiple data blocks, each
of them covering a subdomain of the field’s base space. Such field fragments
may also overlap, known as “ghost zones.”

4. Separated Compounds: A compound data type, such as a vector or tensor, may be
stored in different data layouts since applications have their own preferences. An
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array of tensors may also be stored as a tensor of arrays, e.g., XYZXYZXYZXYZ
as XXXXYYYYZZZZ. This property describes the internal structure of the fiber
space.

All of these properties are optional. In the most simple case, a field is just
represented by an array of native data types; however, in the most general case
(which the visualization algorithm must always support), the data are distributed
over several such property elements and built from many arrays. With respect to
quick transfer to the GPU, only the ability to handle multiple arrays per data set is
of relevance.

Figure 4 illustrates the organization of the last four levels of the data model.
These consist of Skeleton and Representation objects with optional fragmentation
and compound levels. The ordering of these levels is done merely based on their
semantic importance, with the uppermost level (1) embracing multiple resolutions
of the spatial domain being the most visible one to the end user. Each of these
resolution levels may come with different topological properties, but all arrays
within the same resolution are required to be topologically compatible (i.e., share
the same number of points). There might still be multiple coordinate representations
required for each resolution, which constitutes the second hierarchy level (2) of
multiple coordinate patches. Data per patch may well be distributed over various
fragments (3), which is considered an internal structure of each patch, due to
parallelization or numerical issues, but not fundamental to the physical setup. Last
but not least, fields of multiple components such as vector or tensor fields may be
separated into distinct arrays themselves [7]. This property, merely a performance
issue of in-memory data representation, is not what the end user usually does not
want to be bothered with and is thus set as the lowest level in among these four
entries.

Topological Skeletons
The Skeleton level of the fiber bundle hierarchy describes a certain topological
property. This can be the vertices, the cells, the edges, etc. Its primary purpose
is to describe the skeletons of a CW complex, but they may also be used
to specify mesh refinement levels and agglomerations of certain elements. All
data fields that are stored within a Skeleton level provide the same number of
elements. In other words they share their index space (a data space in HDF5
terminology). Each Topology object within a Grid object is uniquely identified
via a set of integers, which are the dimension (e.g., the dimension of a k-cell),
index depth (how many dereferences are required to access coordinate information
in the underlying manifold), and refinement level (a multidimensional index,
in general). Vertices – index depth 0 – of a topological space of dimension
n define a Skeleton of type (n, 0). Edges are one-dimensional sets of vertex
indices; therefore, their index depth is 1 and their Skeleton type is (1,1). Faces
are two-dimensional sets of vertex indices, hence Skeleton type (2, 1). Cells –
such as a tetrahedron or hexahedra – are described by a Skeleton type (3, 1).
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Fig. 5 The five-level organization scheme used for atmospheric data (MM5 model data) and
surge data (ADCIRC simulation model), built upon common topological property descriptions
with additional fields (From Venkataraman et al. [81])

All the Skeleton objects of index depth 1 build the k-skeletons of a manifold’s
triangulation.

Higher index depths describe sets of k-cells. For instance, a set of edges describes
a line – a path along vertices in a Grid. Such a collection of edges will fit into a
Skeleton of dimension 1 and depth 2, i.e., type (1, 2). It is a one-dimensional object
of indices that refer to edges that refer to vertices.

Non-topological Representations
Polynomial coordinates, information on field fragments, histograms, and color maps
can be formulated in the fiber bundle model as well. These quantities are no longer
direct correspondences of the mathematical background, but they may still be cast
into the given context.

Coordinates may be given procedurally, such as via some polynomial expression.
The data for such expressions may be stored in a Skeleton of negative index depth –
as these data are required to compute the vertex coordinates and more fundamental
than these in this case.
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A fragment of a Field given on vertices – the (n, 0)-Skeleton of a Grid – defines an
n-dimensional subset of the Grid, defined by the hull of the vertices corresponding to
the fragments. These may be expressed as a (n, 2)-Skeleton, where the Field object
named “Positions” (represented relative to the vertices) refers to the (global) vertex
indices of the respective fragments. The representation in coordinates corresponds
to its range, known as the bounding box. Similarly, a field given on the vertices will
correspond to the field’s numerical minimum/maximum range within this fragment.

A histogram is the representation of a field’s vertex complex in a “chart”
describing the required discretization, depending on the min/max range and a
number count. A color map (transfer function) can be interpreted as a chart object
itself. It has no intrinsically geometrical meaning, but provides means to transform
some data. For instance, some scalar value will be transformed to some RGB triple
using some color map. A scalar field represented in a certain color map is therefore
of type RGB values and could be stored as an array of RGB values for each vertex.
In practice, this will not be done since such transformation is performed in real time
by modern graphics hardware. However, this interpretation of a color map as a chart
object tells how color maps may be stored in the fiber bundle data model.

3 Differential Forms and Topology

This section not only introduces the concepts of differential forms and their discrete
counterparts but also illustrates that similar concepts are applied in several separate
areas of scientific visualization. Since the available resources are discrete and finite,
concepts mirroring these characteristics have to be applied to visualize complex data
sets. The most distinguished algebraic structure is described by exterior algebra (or
Grassmann algebra, see also section “Exterior Product”), which comes with two
operations, the exterior product (or wedge product) and the exterior derivative.

Differential Forms

Manifolds can be seen as a precursor to model physical quantities of space. Charts
on a manifold provide coordinates, which allows using concepts which are already
well established. Furthermore, they are crucial for the field of visualization, as they
are key components to obtain depictable expressions of abstract entities. Tangential
vectors were already introduced in section “Tangential Vectors” as derivatives along
a curve. Then a one-form ˛ is defined as a linear mapping which assigns a value
to each tangential vector v from the tangent space TP .M/, i.e., ˛ W TP .M/ ! R.
They are commonly called co-variant vectors, covectors (see section “Tangential
Vectors”), or Pfaff-forms. The set of one-forms generates the dual vector space
or cotangential space T �

p .M/. It is important to highlight that the tangent vectors
v 2 TP .M/ are not contained in the manifold itself, so the differential forms also
generate an additional space over P 2 M . In the following, these one-forms are
generalized to (alternating) differential forms.
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An alternative point of view treats a tangential vector v as a linear mapping
which assigns a scalar to each one-form ˛ by < ˛; v >2 R. By omitting one of
the arguments of the obtained mappings, < ˛; : > or ˛.v/ and <., v > or v.˛/,
linear objects are defined. Multi-linear mappings depending on multiple vectors or
covectors appear as an extension of this concept and are commonly called tensors

� W T �m � T n ! R (26)

where n andm are natural numbers and T n and T �m represent the n andm powered
Cartesian product of the tangential space or the dual vector space (cotangential
space). A tensor � is called an (n, m)-tensor which assigns a scalar value to a set of
m covectors and n vectors. All tensors of a fixed type (n,m) generate a tensor space
attached at the point P 2 M . The union of all tensor spaces at the points P 2 M
is called a tensor bundle. The tangential and cotangential bundles are specialized
cases for (1, 0) and (0, 1) tensor bundles, respectively. Fully antisymmetric tensors
of type (0, m) may be identified with differential forms of degree m. For m >

dim(M ), where dim(M ) represents the dimension of the manifold, differential
forms vanish.

The exterior derivative or Cartan derivative of differential forms generates a pC
1-form df from a p-form f and conforms to the following requirements:

1. Compatibility with the wedge product (product rule): d.˛ ^ ˇ/ D d˛ ^ ˇ C
.�1/m˛ ^ dˇ

2. Nilpotency of the operation d , d ı d D 0, depicted in Fig. 11
3. Linearity

A subset of one-forms is obtained as a differential df of zero-forms (functions)
f at P and are called exact differential forms. For an n-dimensional manifoldM ,
a one-form can be depicted by drawing (n�1)-dimensional surfaces, e.g., for the
three-dimensional space, Fig. 6 depicts a possible graphical representation of a
one-form attached to M . This depiction also enables a graphical representation
on how to integrate differential forms, where only the number of surfaces which
are intersected by the integration domain has to be counted:

< df; v >D df .v/ D ˛.v/ (27)

A consequence of being exact includes the closeness property d˛ D 0.
Furthermore, the integral

R
Cp
df with Cp representing an integration domain, e.g.,

an interval x1 and x2, results in the same value f .x2/ � f .x1/. In the general
case, a p-form is not always the exterior derivative of a p-one-form; therefore, the
integration of p-forms is not independent of the integration domain. An example is
given by the exterior derivative of a p-form ˇ resulting in a p C 1-form � D dˇ.
The structure of such a generated differential form can be depicted by a tube-like
structure such as in Fig. 7. While the wedge product of an r-form and an s-form
results in an r C s-form, this resulting form is not necessarily representable as a
derivative. Figure 7 depicts a two-form which is not constructed by the exterior
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Fig. 6 Possible graphical
representation of the
topological structure of
one-forms in three
dimensions. Note that the
graphical display of
differential forms varies in
different dimension and does
not depend on the selected
basis elements

Fig. 7 Possible graphical
representation of a general
two-form generated by ˛ ^ ˇ,
where ˛ and ˇ are one-forms.
The topologically tube-like
structure of the two-forms is
enclosed by the depicted
planes

derivative but instead by ˛ ^ˇ, where ˛ and ˇ are one-forms. In the general case, a
p-form attached on an n-dimensional manifoldM is represented by using .n� p/-
dimensional surfaces.

By sequentially applying the operation d to (0, m) for 0 � m � dim(M ),
the de Rham complex is obtained, which enables the investigation of the relation
of closed and exact forms. The de Rham complex enables the transition from
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the continuous differential forms to the discrete counterpart, so-called cochains.
The already briefly mentioned topic of integration of differential forms is now
mapped onto the integration of these cochains. To complete the description, the
notion of chains, also modeled by multivectors (as used in Geometric Algebra, see
section “Geometric Algebra” and Sect. 4) or fully antisymmetric (n, 0)-tensors, as
description of integration domains is presented, where a chain is a collection of
n-cells.

The connection between chains and cochains is investigated in algebraic topol-
ogy under the name of homology theory, where chains and cochains are collected in
additive Abelian groups Cp (M ).

Chains
The de Rham complex collects cochains similar to a cell complex aggregating cells
as elements of chains. To use these elements, e.g., all edges, in a computational
manner, a mapping of the n-cells onto an algebraic structure is needed. An algebraic
representation of the assembly of cells, an n-chain, over a cell complex K and a
vector space V can be written by

cn D
Xj

iD1
wi �

i
n � in 2 K; wi 2 V

which is closed under reversal of the orientation:

8�in 2 cn there is � �in 2 cn

The different topological elements are called cells, and the dimensionality is
expressed by adding the dimension such as a three-cell for a volume, a two-cell for
surface elements, a one-cell for lines, and a zero-cell for vertices. If the coefficients
are restricted to {�1; 0; 1} 2 Z, the following classification for elements of a cell
complex is obtained:

• 0: if the cell is not in the complex
• 1: if the unchanged cell is in the complex
• �1 W if the orientation is changed

The so-called boundary operator is a map between sets of chains Cp on a
cell complex K . Let us denote the i th p-cell as �ip D k0; : : : kp , whereby
�ip 2 K . The boundary operator @p defines a (p � 1)-chain computed
from a p-chain: @p W Cp.K/ Ü Cp�1.K/. The boundary of a cell
�
j
p can be written as alternating sum over elements of dimension p �

1:

@p�
i
p D

X
i
.�1/i Œk0; k1; : : : ; Qki ; : : : kn� (28)
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Fig. 8 Representation of a one-chain � i1 with zero-chain boundary �j0 (left) and a two-chain �2

with one-chain boundary �k1 (right)

where Qki indicates that ki is deleted from the sequence. This map is compatible with
the additive and the external multiplicative structure of chains and builds a linear
transformation:

Cp ! Cp�1 (29)

Therefore, the boundary operator is linear

@
�X

i
wi �

i
p

�
D
X

i
wi
�
@�ip

�
(30)

which means that the boundary operator can be applied separately to each cell
of a chain. Using the boundary operator on a sequence of chains of different
dimensions results in a chain complex C� D fCp; @pg such that the complex
property

@p�1@p D 0 (31)

is given. Homological concepts are visible here for the first time, as homology
examines the connectivity between two immediately neighboring dimensions.
Figure 8 depicts two examples of one-chains and two-chains and an example of
the boundary operator.

Applying the appropriate boundary operator to the two-chain example reads

@2�2 D �1
1 C �2

1 C �3
1 C �4

1

@1.�
1
1 C �2

1 C �3
1 C �4

1 / D �1
0 C �2

0 � �2
0 C �3

0 � �3
0 C �4

0 � �4
0 � �1

0 D 0
(33)
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Fig. 9 Examples of violations of correct cell attachment. Left: missing zero-cell. Middle: cells do
not intersect at vertices. Right: intersection of cells

A different view on chain complexes presents itself when the main focus is placed
on the cells within a chain. To cover even the most abstract cases, a cell is defined
as a subset c � X of a Hausdorff space X if it is homeomorphic to the interior of
the open n-dimensional ball Dn D fx 2 R

n W jxj < 1g. The number n is unique
due to the invariance of domain theorem [13] and is called the dimension of c,
whereas homeomorphic means that two or more spaces share the same topological
characteristics. The following list assigns terms corresponding to other areas of
scientific computing:

• 0-cell: point
• 1-cell: edge
• 2-cell: facet
• n-cell: cell

A cell complex K (see also section “Topology: Discretized Manifolds”) can be
described by a set of cells that satisfy the following properties:

• The boundary of each p-cell �ip is a finite union of (p � 1)-cells in K W @p�ip D
[m�mp�1.

• The intersection of any two cells �ip; �
j
p in K is either empty or is a unique cell in

K.

The result of these operations are subspaces X.n/ which are called the n-skeletons
of the cell complex. Incidence and adjacence relations are then available. Examples
for incidence can be given by vertex on edge relation and for adjacency by vertex to
vertex relations. This cell complex with the underlying topological space guarantees
that all interdimensional objects are connected in an appropriate manner. Although
there are various possible attachments of cells, only one process results in a cell
complex, see Fig. 9.

Cochains
In addition to chain and cell complices, scientific visualization requires the notation
and access mechanisms to global quantities related to macroscopic n-dimensional
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space-time domains. The differential forms which are necessary concepts to handle
physical properties can also be projected onto discrete counterparts, which are
called cochains. This collection of possible quantities, which can be measured,
can then be called a section of a fiber bundle, which permits the modeling of
these measurements as a function that can be integrated on arbitrary n-dimensional
(sub)domains or multivectors. This function can then be seen as the abstracted
process of measurement of this quantity [55, 75]. The concept of cochains allows
the association of numbers not only to single cells, as chains do, but also to
assemblies of cells. Briefly, the necessary requirements are that this mapping is not
only orientation dependent but also linear with respect to the assembly of cells. A
cochain representation is now the global quantity association with subdomains of a
cell complex, which can be arbitrarily built to discretize a domain.

A linear transformation 
 of the n-chains into the field R of real numbers forms a
vector space cn �!^f
gR and is called a vector-valuedm-dimensional cochain or

short m-cochain. The coboundary ı of an m-cochain is an (m + 1)-cochain defined
as

ıcm D
X

i
vi �i ; where vi D

X
b 2 faces.�i /


.b; �i /cm.b/ (34)

Thus, the coboundary operator assigns nonzero coefficients only to those (m C 1)
cells that have cm as a face. As can be seen, ıcm depends not only on cm but on
how cm lies in the complex K. This is a fundamental difference between the two
operators @ and ı. An example is given in Fig. 10 where the coboundary operator is
used on a one-cell. The right part ıııK of Fig. 10 is also depicted for the continuous
differential forms in Fig. 7. The coboundary of anm-cochain is an .mC 1/-cochain
which assigns to each (mC1) cell the sum of the values that themC1-cochain assign
to them-cells which form the boundary of the (mC1) cell. Each quantity appears in
the sum multiplied by the corresponding incidence number. Cochain complices [33,
35] are similar to chain complices except that the arrows are reversed, so a cochain
complex C � D fCm; ım} is a sequence of modules Cm and homomorphisms:

ım W Cm ! CmC1 (35)

such that

ımC1ım D 0 (36)

K1 ı� ! ıK1 ı� ! ı ı ıK1 D 0. Proceeding from left to right, a one-cochain
represented by a line segment, a two-cochain generated by the product of two one-
forms, and a three-cochain depicted by volume objects are illustrated.
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+ / − + / −

Fig. 10 Cochain complex with the corresponding coboundary operator

Then, the following sequence with ı ı ı D 0 is generated:

0
ı� !C 0 ı� !C 1 ı� !C 2 ı� !C 3 ı� ! 0 (37)

Cochains are the algebraic equivalent of alternating differential forms, while the
coboundary process is the algebraic equivalent of the external derivative and can
therefore be considered as the discrete counterpart of the differential operators:

• grad.
• curl.
• div.

It indeed satisfies the property ı ı ı 
 0 corresponding to

• curlgrad.
 0
• divcurl.
 0

Duality Between Chains and Cochains
Furthermore, a definition of the adjoint nature of @; ı W Cp ! CpC1 can be given:

hcp; @cpC1i D hıcp; cpC1i (38)

The concepts of chains and cochains coincide on finite complices [45]. Geometri-
cally, however, Cp and Cp are distinct [12] despite an isomorphism. An element
of Cp is a formal sum of p-cells, where an element of Cp is a linear function
that maps elements of Cp into a field. Chains are dimensionless multiplicities of
aggregated cells, whereas those associated with cochains may be interpreted as
physical quantities [65]. The extension of cochains from single cell weights to
quantities associated with assemblies of cells is not trivial and makes cochains
very different from chains, even on finite cell complices. Nevertheless, there is an
important duality between p-chains and p-cochains. The first part of the de Rham
(cohomology group) complex, depicted in Fig. 11 on the left, is the set of closed
one-forms modulo the set of exact one-forms denoted by

H 1 D Z1=B1 (39)
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Fig. 11 A graphical
representation of closed and
exact forms. The forms Z1,
B1, Z0, and B0 are closed
forms, while only the forms
B0 and B1 are exact forms.
The nilpotency of the
operation d forces the exact
forms to vanish

0

C1
C0 = Z0

Z1

B0

0 0 0

This group is therefore trivial (only the zero element) if all closed one-forms are
exact. If the corresponding space is multiply connected, then there are closed one-
chains that are not themselves boundaries, and there are closed one-forms that are
not themselves exact.

For a chain cp 2 Cp.K;R/ and a cochain cp 2 Cp.K;R/, the integral of cp

over cp is denoted by
R
cp
cp , and integration can be regarded as a mapping, where

D represents the corresponding dimension:

Z
W Cp.K/ � Cp.K/! R; for 0 � p � D (40)

Integration in the context of cochains is a linear operation: given a1; a2 2 R,
cp;1cp;2 2 Cp.K/ and cp 2 Cp.K/, reads

Z
cp

a1c
p;1 C a2c

p;2 D a1

Z
cp

cp;1 C a2

Z
cp

cp;2 (41)

Reversing the orientation of a chain means that integrals over that chain acquire the
opposite sign

Z
�cp

cp D �
Z
cp

cp (42)

using the set of p-chains with vector space properties Cp.K;R/, e.g., linear
combinations of p-chains with coefficients in the field R. For coefficients in R,
the operation of integration can be regarded as a bilinear pairing between p-chains
and p-cochains. Furthermore, for reasonable p-chains and p-cochains, this bilinear
pairing for integration is nondegenerate,

if
Z
cp

cp D 0 8cp 2 Cp.K/; then cp D 0 (43)
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and

if
Z
cp

cp D 0 8cp 2 Cp.K/; then cp D 0 (44)

The integration domain can be described by, using Geometric Algebra notation,
the exterior product applied to multivectors. An example is then given by the
generalized Stokes theorem:

Z
cp

df D
Z
@cp

f (45)

or

< df; cp > D < f; @cp > (46)

The generalized Stokes theorem combines two important concepts, the integration
domain and the form to be integrated.

Homology and Cohomology

The concepts of chains can also be used to characterize properties of spaces,
the homology and cohomology, where it is only necessary to use Cp.K;Z/. The
algebraic structure of chains is an important concept, e.g., to detect a p-dimensional
hole that is not the boundary of a p C 1-chain, which is called a p-cycle. For short,
a cycle is a chain whose boundary is @pcp D 0, a closed chain. The introduced
boundary operator can also be related to homological terms. A boundary is a chain
bp for which there is a chain cp such that @pcp D bp . Since @ ı @ D 0; Bn � Zn
is obtained. The homology is then defined by Hn D Zn=Bn. The homology of a
space is a sequence of vector spaces. The topological classification of homology is
defined by

Bp D im @pC1 and
Zp D ker @p

so that Bp � Zp and

Hp D Zp=Bp

where ˇp D {Rank} Hp . Here {im} is the image and {ker} is the kernel of the
mapping. For cohomology

Bp D im dpC1 and
Zp D ker dp
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Fig. 12 Topologically a
torus is the product of two
circles. The partially shaded
circle is spun around the fully
drawn circle which can be
interpreted as the closure of a
cylinder onto itself

so that Bp � Zp and

Hp D Zp=Bp

where ˇp D {Rank} Hp . An important property of these vector spaces is given
by ˇ, which corresponds to the dimension of the vector spaces H and is called the
Betti number [35,86]. Betti numbers identify the number of nonhomologous cycles
which are not boundaries:

• ˇ0 counts the number of connected components.
• ˇ1 counts the number of tunnels (topological holes).
• ˇ2 counts the number of enclosed cavities.

The number of connected components gives the number of distinct entities of a
given object, whereas tunnels describe the number of separated parts of space. In
contrast to a tunnel, the enclosed cavities are completely bounded by the object.

Examples for the Betti numbers of various geometrical objects are stated by:

• Cylinder: ˇ0 D 1; ˇ1 D 1; ˇn D 08n � 2. The cylinder consists of one
connected component, which forms a single separation of space. Therefore no
enclosed cavitiy is present.

• Sphere: ˇ0 D 1; ˇ1 D 0; ˇ2 D 1; ˇn D 08n � 3. If ˇ1 and ˇ2 are switched, a
sphere is obtained by contracting the separation by generating an enclosed cavity
from the tunnel.

• Torus: ˇ0 D 1; ˇ1 D 2; ˇ2 D 1; ˇn D 08n � 3. Closing a cylinder onto
itself results in a torus which not only generates an enclosed cavity but also
maintains the cylinder’s tunnel. An additional tunnel is introduced due to the
closing procedure which is depicted in Fig. 12 as the central hole.

The Euler characteristics, which is an invariant, can be derived from the Betti
numbers by: � D ˇ0 � ˇ1 C ˇ2.
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C0=Z0

Z3 Z2

C3

B2

C1C2

Z1

B1 B0

000000

B2

Fig. 13 A graphical representation of (co)homology for a three-dimensional cell complex

Fig. 14 Illustration of cycles
A, B , C and a boundary C .
A, B are not boundaries

A

B

C

Figure 13 depicts the homology of a three-dimensional chain complex with the
respective images and kernels, where the chain complex of K is defined by {im}
@pC1 � {ker} @p . As can be seen, the boundary operator expression yields @p ı
@pC1 D 0.

To give an example, the first homology group is the set of closed one-chains
(curves) modulo the closed one-chains which are also boundaries. This group is
denoted by H1 D Z1=B1, where Z1 are cycles or closed one-chains and B1 are
one-boundaries. Another example is given in Fig. 14, where A, B , C are cycles and
a boundary C , but A, B are not boundaries.

Topology

Conceptual consistency in scientific visualization is provided by topology. Cell
complices convey topology in a computationally treatable manner and can therefore
be introduced by much simpler definitions. A topological space .X; T / is the
collection of sets T that include:
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Fig. 15 Topologically a torus and a coffee mug are equivalent and so have the same Betti numbers

• The space itself X and the empty set ;
• The union of any of these sets
• The finite intersection of any of the sets

The family T is called a topology on X , and the members of T are called open
sets. As an example a basic set X D fa; b; cg and a topology is given:

.X; T / D f ;;
fag; fbg; fcg;
fa; bg; fa; cg; fb; cg;
fa; b; cgg

The general definition for a topological space is very abstract and allows several
topological spaces which are not useful in scientific visualization, e.g., a topological
space .X; T / with a trivial topology T D fØ; Xg. So basic mechanisms of
separation within a topological space are required, e.g., the Hausdorff property. A
topological space .X; T / is said to be Hausdorff if, given x; y 2 X with x ¤ y,
there exist open sets U1; U2 such that x 2 U1; y 2 U2 and U1 \ U2 D ;. But the
question remains on what “topology” actually is. A brief explanation is given by the
study of properties of an object that do not change under deformation. To describe
this deformation process, abstract rules can be stated and if they are true, then an
objectA can be transformed into an object B without change. The two objectsA, B
are then called homeomorphic:

• All points of A$ all points of B
• 1 � 1 correspondence (no overlap)
• Bicontinous (continuous both ways)
• Cannot tear, join, poke/seal holes
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The deformation is 1 � 1 if each point of A maps to a single point on B and
there is no overlap. If this deformation is continuous, A cannot be teared, joined,
disrupted, or sealed up. If two objects are homeomorphic, then they are topologically
equivalent. Figure 15 illustrates an example of a torus and coffee mug which are
a prominent example for topological equivalence. The torus can be continuously
deformed, without tearing, joining, disrupting, or sealing up, into a cup. The
hole in the torus becomes the handle of the cup. But why should anybody in
visualization be concerned about how objects can be deformed? Topology is much
more than the illustrated properties, it can be much better described by the study of
connectedness:

• Understanding of space properties: how connectivity happens.
• Analysis of space properties: how connectivity can be determined.
• Articulation of space properties: how connectivity can be described.
• Control about space properties: how connectivity can be enforced.

Topology studies properties of sets that do not change under well-behaved
transformations (homeomorphisms). These properties include completeness and
compactness. In visualization, one property is of significance: connectedness.
Especially, how many disjoint components can be distinguished and how many
holes (or tunnels) are in these components. Geometric configuration is another
interesting aspect in visualization because it is important to know which of these
components have how many holes, and where the holes are relative to each other.
Several operations in scientific visualization can be summarized:

• Simplification: reduction of data complexity. If objects are described with
fewer properties, important properties such as components or holes should be
retained or removed, if these properties become insignificant, unnecessary, or
imperceptible.

• Compression: reduction of data storage. It is important that each operation does
not alter important features (interaction of geometrical and topological features).

• Texturing: visualization context elements. How can a texture kept consistent if
an object, e.g., a torus, is transformed into another object, e.g., a coffee cup.

• Morphing: transforming one object into another. If an object is morphed into
another, topological features have to remain, e.g., the torus hole has to become
the coffee cup handle hole.

4 Geometric Algebra Computing

Geometric Algebra as a general mathematical system unites many mathematical
concepts such as vector algebra, quaternions, Plücker coordinates, and projective
geometry, and it easily deals with geometric objects, operations, and transfor-
mations. A lot of applications in computer graphics, computer vision, and other
engineering areas can benefit from these properties. In a ray-tracing application, for
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ray R

bounding sphere S

Inter section = R ^ S

Fig. 16 Spheres and lines are basic entities of Geometric Algebra to compute with. Operations
like the intersection of them are easily expressed with the help of their outer product. The result
of the intersection of a ray and a (bounding) sphere is another geometric entity, the point pair of
the two points of the line intersecting the sphere. The sign of the square of the point pair easily
indicates whether there is a real intersection or not

instance, the intersection of a ray and a bounding sphere is needed. According to
Fig. 16, this can be easily expressed with the help of the outer product of these two
geometric entities.

Geometric Algebra is based on the work of Hermann Grassmann (see the
conference [62] celebrating his 200th birthday in 2009) and William Clifford
[20, 21]. Pioneering work has been done by David Hestenes, who first applied
Geometric Algebra to problems in mechanics and physics [39, 40].

The first time Geometric Algebra was introduced to a wider computer graphics
audience was through a couple of courses at the SIGGRAPH conferences in
2000 and 2001 (see [57]) and later at the Eurographics [41]. Researchers at the
University of Cambridge, UK, have applied Geometric Algebra to a number of
graphics-related projects. Geomerics [71] is a start-up company in Cambridge
specializing in simulation software for physics and lighting, which presented
its new technology allowing real-time radiosity in videogames utilizing com-
modity graphics-processing hardware. The technology is based on Geometric
Algebra wavelet technology. Researchers at the University of Amsterdam, the
Netherlands, are applying their fundamental research on Geometric Algebra to
3D computer vision and to ray tracing and on the efficient software imple-
mentation of Geometric Algebra. Researchers from Guadalajara, Mexico, are
primarily dealing with the application of Geometric Algebra in the field of
computer vision, robot vision, and kinematics. They are using Geometric Algebra,
for instance, for tasks like visual-guided grasping, camera self-localization, and
reconstruction of shape and motion. Their methods for geometric neural com-
puting are used for tasks like pattern recognition [5]. Registration, the task of
finding correspondences between two point sets, is solved based on Geometric
Algebra methods in [65]. Some of their kinematics algorithms are dealing with
inverse kinematics, fixation, and grasping as well as with kinematics and differ-
ential kinematics of binocular robot heads. At the University of Kiel, Germany,
researchers are applying Geometric Algebra to robot vision and pose estimation
[66]. They also do some interesting research dealing, for instance, with neu-
ral networks based on Geometric Algebra [14]. In addition to these examples,
there are many other applications like Geometric Algebra Fourier transforms for
the visualization and analysis of vector fields [24] or classification and clus-
tering of spatial patterns with Geometric Algebra [63] showing the wide area
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Table 1 Multiplication table of the 2D Geometric Algebra. This algebra consists of basic
algebraic objects of grade (dimension) 0, the scalar; of grade 1, the two basis vectors e1 and e2;
and of grade 2, the bi-vector e1 ^e2, which can be identified with the imaginary number i squaring
to �1

1 e1 e2 e1 ^ e2

1 1 e1 e2 e1 ^ e2

e1 e1 1 e1 ^ e2 e2

e2 e2 �e1 ^ e2 1 �e1

e1 ^ e2 e1 ^ e2 �e2 e1 �1

Table 2 List of the basic geometric primitives provided by the 5D conformal Geometric Algebra.
The bold characters represent 3D entities (x is a 3D point, n is a 3D normal vector, and x2 is
the scalar product of the 3D vector x). The two additional basis vectors e0 and e1 represent the
origin and infinity. Based on the outer product, circles and lines can be described as intersections
of two spheres, respectively two planes. The parameter r represents the radius of the sphere and
the parameter d the distance of the plane to the origin

Entity Representation

Point P D x C 1
2 x2e1 C e0

Sphere S D P � 1
2 r

2e1

Plane � D n C de1

Circle Z D S1 ^ S2

Line L D �1 ^ �2

of possibilities of advantageously using this mathematical system in engineering
applications.

Benefits of Geometric Algebra

As follows, we highlight some of the properties of Geometric Algebra that make it
advantageous for a lot of engineering applications.

Unification of Mathematical Systems
In the wide range of engineering applications, many different mathematical systems
are currently used. One notable advantage of Geometric Algebra is that it subsumes
mathematical systems like vector algebra, complex analysis, quaternions, or Plücker
coordinates. Table 1, for instance, describes how complex numbers can be identified
within the 2D Geometric Algebra. This algebra does not only contain the two basis
vectors e1 and e2 but also basis elements of grade (dimension) 0 and 2 representing
the scalar and imaginary part of complex numbers.

Other examples are Plücker coordinates based on the description of lines in
conformal geometric algebra (see section “Conformal Geometric Algebra”) or
quaternions as to be identified in Fig. 19 with their imaginary units.
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Fig. 17 Spheres and circles
are basic entities of
Geometric Algebra.
Operations like the
intersection of two spheres
are easily expressed

Sphere S1

Sphere S2

Circle = S1 ^ S2

Uniform Handling of Different Geometric Primitives
Conformal Geometric Algebra, the Geometric Algebra of conformal space we
focus on, is able to easily treat different geometric objects. Table 2 presents the
representation of points, lines, circles, spheres, and planes as the same entities
algebraically. Consider the spheres of Fig. 17, for instance. These spheres are simply
represented by

S D P � 1

2
r2e1 (47)

based on their center point P , their radius r , and the basis vector e1 which
represents the point at infinity. The circle of intersection of the spheres is then easily
computed using the outer product to operate on the spheres as simply as if they were
vectors:

Z D S1 ^ S2 (48)

This way of computing with Geometric Algebra clearly benefits computer
graphics applications.

Simplified Geometric Operations
Geometric operations like rotations, translations (see [41]), and reflections can
be easily treated within the algebra. There is no need to change the way of
describing them with other approaches (vector algebra, for instance, additionally
needs matrices in order to describe transformations).

Figure 18 visualizes the reflection of the ray R from one plane

� D nC de1 (49)

(see Table 2). The reflected line, drawn in magenta,

Rreflected D ��R
�

(50)
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Fig. 18 The ray R is
reflected from the plane �
computing � �R

�

R p

p R
p

—

is computed with the help of the reflection operation including the reflection object
as well as the object to be reflected.

More Efficient Implementations
Geometric Algebra as a mathematical language suggests a clearer structure and
greater elegance in understanding methods and formulae. But, what about the
runtime performance for derived algorithms? Geometric Algebra inherently has a
large potential for creating optimizations leading to more highly efficient implemen-
tations especially for parallel platforms. Gaalop [44], as presented in section “Com-
putational Efficiency of Geometric Algebra Using Gaalop,” is an approach offering
dramatically improved optimizations.

Conformal Geometric Algebra

Conformal Geometric Algebra is a 5D Geometric Algebra based on the 3D basis
vectors e1, e2, and e3 as well as on the two additional base vectors e0 representing
the origin and e1 representing infinity.

Blades are the basic computational elements and the basic geometric entities of
geometric algebras. The 5D conformal Geometric Algebra consists of blades with
grades (dimension) 0, 1, 2, 3, 4, and 5, whereby a scalar is a 0-blade (blade of
grade 0). The element of grade five is called the pseudoscalar. A linear combination
of blades is called a k-vector. So a bi-vector is a linear combination of blades with
grade 2. Other k-vectors are vectors (grade 1), tri-vectors (grade 3), and quadvectors
(grade 4). Furthermore, a linear combination of blades of different grades is called a
multivector. Multivectors are the general elements of a Geometric Algebra. Table 3
lists all the 32 blades of conformal Geometric Algebra. The indices indicate 1,
scalar; 2–6, vector; 7–16, bi-vector; 17–26, tri-vector; 27–31, quadvector; and 32,
pseudoscalar.

A point P D x1e1Cx2e2Cx3e3C 1
2 x2e1Ce0 (see Table 2), for instance, can be

written in terms of a multivector as the following linear combination of blades bŒi �:
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Table 3 The 32 blades of
the 5D conformal Geometric
Algebra

Index Blade Grade

1 1 0

2 e1 1

3 e2 1

4 e3 1

5 e1 1

6 e0 1

7 e1 ^ e2 2

8 e1 ^ e3 2

9 e1 ^ e1 2

10 e1 ^ e0 2

11 e2 ^ e3 2

12 e2 ^ e1 2

13 e2 ^ e0 2

14 e3 ^ e1 2

15 e3 ^ e0 2

16 e1 ^ e0 2

17 e1 ^ e2 ^ e3 3

18 e1 ^ e2 ^ e1 3

19 e1 ^ e2 ^ e0 3

20 e1 ^ e3 ^ e1 3

21 e1 ^ e3 ^ e0 3

22 e1 ^ e1 ^ e0 3

23 e2 ^ e3 ^ e1 3

24 e2 ^ e3 ^ e0 3

25 e2 ^ e1 ^ e0 3

26 e3 ^ e1 ^ e0 3

27 e1 ^ e2 ^ e3 ^ e1 4

28 e1 ^ e2 ^ e3 ^ e0 4

29 e1 ^ e2 ^ e1 ^ e0 4

30 e1 ^ e3 ^ e1 ^ e0 4

31 e2 ^ e3 ^ e1 ^ e0 4

32 e1 ^ e2 ^ e3 ^ e1 ^ e0 5

P D x1�bŒ2�C x2�bŒ3�C x3�bŒ4�C 1

2
x2�bŒ5�C bŒ6� (51)

with multivector indices according to Table 3.
Figure 19 describes some interpretations of the 32 basis blades of conformal

Geometric Algebra. Scalars like the number � are grade 0 entities. They can be
combined with the blade representing the imaginary unit i to complex numbers
or with the blades representing the imaginary units i , j , k to quaternions. Since
quaternions describe rotations, this kind of transformation can be handled within the
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Fig. 19 The blades of conformal Geometric Algebra. Spheres and planes, for instance, are vectors.
Lines and circles can be represented as bi-vectors. Other mathematical systems like complex
numbers or quaternions can be identified based on their imaginary units i , j , k. This is why also
transformations like rotations can be handled within the algebra

Table 4 The extended list of the two representations of the conformal geometric entities. The
IPNS representations as described in Table 1 have also an OPNS representation, which are dual to
each other (indicated by the star symbol). In the OPNS representation, the geometric objects are
described with the help of the outer product of conformal points that are part of the objects, for
instance, lines as the outer product of two points and the point at infinity

Entity IPNS representation OPNS representation

Point P D x C 1
2 x2e1 C e0

Sphere S D P � 1
2 r

2e1 S� D P1 ^ P2 ^ P3 ^ P4

Plane � D n C de1 �� D P1 ^ P2 ^ P3 ^ e1

Circle Z D S1 ^ S2 Z� D P1 ^ P2 ^ P3

Line L D �1 ^ �2 L� D P1 ^ P2 ^ e1

Point pair Pp D S1 ^ S2 ^ S3 Pp� D P1 ^ P2

algebra. Geometric objects like spheres, planes, circles, and lines can be represented
as vectors and bi-vectors.

Table 4 lists the two representations of the conformal geometric entities. The
inner product null space (IPNS) and the outer product null space (OPNS) [61]
are dual to each other. While Table 2 already presented the IPNS representation
of spheres and planes, they can be described also with the outer product of four
points being part of them. In the case of a plane one of these four points is
the point at infinity e1. Circles can be described with the help of the outer
product of three conformal points lying on the circle or as the intersection of two
spheres.

Lines can be described with the help of the outer product of two points and
the point at infinity e1 or with the help of the outer product of two planes (i.e.,
intersection in IPNS representation). An alternative expression is
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Fig. 20 The line L through
the 3D points a, b and the
visualization of its 6D
Plücker parameters based on
the two 3D vectors u and m
of Eq. (53) m

Ly

Lx

Lz

b u a

L D ue123 Cm ^ e1 (52)

with the 3D pseudoscalar e123 D e1 ^ e2 ^ e1, the two 3D points a, b on the line,
u D b� a as 3D direction vector, and m D a�b as the 3D moment vector (relative
to origin). The corresponding six Plücker coordinates (components of u and m) are
(see Fig. 20)

.u W m/ D .u1 W u2 W u3 W m1 W m2 W m3/ (53)

Computational Efficiency of Geometric Algebra Using Gaalop

Because of its generality, Geometric Algebra needs some optimizations for efficient
implementations.

Gaigen [27] is a Geometric Algebra code generator developed at the University of
Amsterdam (see [23, 26]). The philosophy behind Gaigen 2 is based on two ideas:
generative programming and specializing for the structure of Geometric Algebra.
Please find some benchmarks comparing Gaigen 2 with other pure software
solutions as well as comparing five models of 3D Euclidean geometry for a ray-
tracing application in [26, 28].

Gaalop [44] combines the advantages of software optimizations and the adapt-
ability on different parallel platforms. As an example, an inverse kinematics
algorithm of a computer animation application was investigated [42]. With the
optimization approach of Gaalop, the software implementation became three times
faster and with a hardware implementation about 300 times faster [43] (three
times by software optimization and 100 times by additional hardware optimization)
than the conventional software implementation. Figure 21 shows an overview over
the architecture of Gaalop. Its input is a Geometric Algebra algorithm written
in CLUCalc [60], a system for the visual development of Geometric Algebra
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Geometric Algebra algorithm

Symbolic simplification

IR (intermediate representation)

Sequential platforms

C Java ... ...CUDA FPGA

Parallel platforms

Fig. 21 Architecture of Gaalop

algorithms. Via symbolic simplification it is transformed into an intermediate
representation (IR) that can be used for the generation of different output formats.
Gaalop supports sequential platforms with the automatic generation of C and JAVA
code while its main focus is on supporting parallel platforms like reconfigurable
hardware as well as modern accelerating GPUs.

Gaalop uses the symbolic computation functionality of Maple (using the Open
Maple interface and a library for Geometric Algebras [1]) in order to optimize a
Geometric Algebra algorithm. It computes the coefficients of the desired multivector
symbolically, returning an efficient implementation depending just on the input
variables.

As an example, the following CLUCalc code computes the intersection circle C
of two spheres S1 and S2 according to Fig. 17:

P1 = x1*e1 + x2*e2 + x3*e3 + 1/2*(x1*x1+x2*x2+x3*x3)*einf
+ e0; P2 = y1*e1 +

y2*e2 +y3*e3 + 1/2*(y1*y1+y2*y2+y3*y3)*einf + e0;
S1 =P1 - 1/2 * r1*r1 *

einf; S2 = P2 - 1/2 * r2*r2 * einf; ?C = S1 $\wedge$ S2;

See Table 2 for the computation of the conformal points P 1 and P 2, the spheres
S1 and S2, as well as the resulting circle based on the outer product of the two
spheres.

The resulting C code generated by Gaalop for the intersection circle C is as
follows and depends only on the variables x1, x2, x3, y1, y2, y3, r1, and r2 for
the 3D center points and radii:

float C [32] = {\{}0.0{\}}; C[7] = x1*y2-x2*y1;
C[8] = x1*y3-x3*y1; C[9]

= -0.5*y1*x1*x1-0.5*y1*x2*x2 -0.5*y1*x3*x3+0.5*y1*r1*r1 +
0.5*x1*y1*y1+0.5*x1*y2*y2 + 0.5*x1*y3*y3 - 0.5*x1*r2*r2;

C[10] = -y1 +
x1; C[11] = -x3*y2+x2*y3; C[12] = -0.5*y2*x1*x1-0.5*y2*x2*x2-
0.5*y2*x3*x3 + 0.5*y2*r1*r1 + 0.5*x2*y1*y1 + 0.5*x2*y2*y2 +

0.5*x2*y3*y3 -
0.5*x2*r2*r2; C[13] = -y2 + x2; C[14] = -0.5*y3*x1*x1 -

0.5*y3*x2*x2
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-0.5*y3*x3*x3 + 0.5*y3*r1*r1 + 0.5*x3*y1*y1 + 0.5*x3*y2*y2 +
0.5*x3*y3*y3

- 0.5*x3*r2*r2; C[15] = -y3 + x3; C[16] = -0.5*y3*y3 +
0.5*x3*x3 +

0.5*x2*x2 + 0.5*r2*r2 -0.5*y1*y1 - 0.5*y2*y2 + 0.5*x1*x1 -
0.5*r1*r1;

In a nutshell, Gaalop always computes optimized 32-dimensional multivectors.
Since a circle is described with the help of a bi-vector, only the blades 7–16
(see Table 3) are used. As you can see, all the corresponding coefficients of this
multivector are very simple expressions with basic arithmetic operations.

5 Feature-BasedVector Field Visualization

We will identify derived quantities that describe flow features such as vortices
(section “Derived Measures of Vector Fields”) and we discuss the topology of
vector fields (section “Topology of Vector Fields”). However, not all feature-based
visualization approaches can be covered here. The reader is referred to [84] for
further information on this topic. We start with a description of integral curves in
vector fields, which are the basis for most feature-based visualization approaches.

Characteristic Curves of Vector Fields

A curve q W R ! M (see section “Tangential Vectors”) is called a tangent curve of
a vector field v(x), if for all points x 2 q the tangent vector Pq of q coincides with
v.x/. Tangent curves are the solutions of the autonomous ODE system

d

d�
x.�/ D v.x.�// with x.0/ D x0 (54)

For all points x 2 M with v.x/ ¤ 0, there is one and only one tangent curve
through it. Tangent curves do not intersect or join each other. Hence, tangent curves
uniquely describe the directional information and are therefore an important tool for
visualizing vector fields.

The tangent curves of a parameter-independent vector field v(x) are called
streamlines. A streamline describes the path of a massless particle in v.

In a one-parameter-dependent vector field v(x, t), there are four types of
characteristic curves: streamlines, path lines, streak lines, and time lines. To ease the
explanation, we consider v(x, t) as a time-dependent vector field in the following:
in a space-time point (x0, t0) we can start a streamline (staying in time slice t D t0)
by integrating

d

d�
x.�/ D v.x.�/; t0/ with x.0/ D x0 (55)
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or a path line by integrating

d

dt
x.t/ D v.x.t/; t/ with x.t0/ D x0 (56)

Path lines describe the trajectories of massless particles in time-dependent vector
fields. The ODE system (56) can be rewritten as an autonomous system at the
expense of an increase in dimension by one, if time is included as an explicit state
variable:

d

dt

�
x
t

�
D
�

v.x.t/; t/
1

�
with

�
x
t

�
.0/ D

�
x0

t0

�
(57)

In this formulation space and time are dealt with on equal footing – facilitating
the analysis of spatiotemporal features. Path lines of the original vector field v in
ordinary space now appear as tangent curves of the vector field

p.x; t/ D
�

v.x; t/
1

�
(58)

in space-time. To treat streamlines of v, one may simply use

s.x; t/ D
�

v.x; t/
0

�
(59)

Figure 22 illustrates s and p for a simple example vector field v. It is obtained by
a linear interpolation over time of two bilinear vector fields. Figure 22a depicts
streamlines, Fig. 22b depicts pathlines.

A streak line is the connection of all particles set out at different times but
the same point location. In an experiment, one can observe these structures by
constantly releasing dye into the flow from a fixed position. The resulting streak
line consists of all particles which have been at this fixed position sometime in the
past. Considering the vector field p introduced above, streak lines can be obtained in
the following way: apply a stream surface integration in p where the seeding curve
is a straight line segment parallel to the t-axis; a streak line is the intersection of this
stream surface with a hyperplane perpendicular to the t-axis (Fig. 22c).

A time line is the connection of all particles set out at the same time but different
locations, i.e., a line which gets advected by the flow. An analogon in the real world
is a yarn or wire thrown into a river, which gets transported and deformed by the
flow. However, in contrast to the yarn, a time line can get shorter and longer. It can
be obtained by applying a stream surface integration in p starting at a line with t D
{const.} and intersecting it with a hyperplane perpendicular to the t-axis (Fig. 22d).

Streak lines and time lines cannot be described as tangent curves in the
spatiotemporal domain. Both types of lines fail to have a property of stream and
path lines: they are not locally unique, i.e., for a particular location and time there
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v (x, y, t) = (1 – t ) + t

a b c d

Fig. 22 Characteristic curves of a simple 2D time-dependent vector field. Streamlines and path
lines are shown as illuminated field lines. Streak and time lines are shown as thick cylindrical lines,
while their seeding curves and resulting stream surfaces are colored red. The red/green coordinate
axes denote the (x, y)-domain; the blue axis shows time

is more than one streak and time line passing through. However, stream, path, and
streak lines coincide for steady vector fields v(x, t) D v(x, t0) and are described
by (54) in this setting. Time lines do not fit into this.

Derived Measures of Vector Fields

A number of measures can be derived from a vector field v and its derivatives. These
measures indicate certain properties or features and can be helpful when visualizing
flows. The following text assumes the underlying manifoldM where the vector field
is given to be Euclidean space, i.e., the manifold is three-dimensional and Cartesian
coordinates are used where the metric (see section “Tensors”) is representable as the
unit matrix.

The magnitude of v is then given as

jvj D
p

u2 C v2 C w2 (60)

The divergence of a flow field is given as

div.v/ D r � v D trace.J/ D ux C vy C wz (61)

and denotes the gain or loss of mass density at a certain point of the vector field:
given a volume element in a flow, a certain amount of mass is entering and exiting
it. Divergence is the net flux of this at the limit of a point. A flow field with {div}(v)
= 0 is called divergence-free, which is a common case in fluid dynamics since a
number of fluids are incompressible.
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The vorticity or curl of a flow field is given as

! D
0
@!1

!2

!3

1
A D r � v D

0
@wy � vz

uz � wx
vx � uy

1
A (62)

This vector is the axis of locally strongest rotation, i.e., it is perpendicular to the
plane in which the locally highest amount of circulation takes place. The vorticity
magnitude j!j gives the strength of rotation and is often used to identify regions of
high vortical activity. A vector field with ! D 0 is called irrotational or curl-free,
with the important subclass of conservative vector fields, i.e., vector fields which are
the gradient of a scalar field. Note that Geometric Algebra (see section “Geometric
Algebra” and Sect. 4) treats Eqs. (61) and (62) as an entity, called the geometric
derivative. The identification of vortices is a major subject in fluid dynamics. The
most widely used quantities for detecting vortices are based on a decomposition of
the Jacobian matrix J D SC˝ into its symmetric part, the strain tensor

S D 1

2
.JC JT / (63)

and its antisymmetric part, the vorticity tensor

 D 1

2
.J � JT / D

0
@ 0 �!3 !2

!3 0 �!1

�!2 !1 0

1
A (64)

with !i being the components of vorticity (62). While ˝ assesses vortical activity,
the strain tensor S measures the amount of stretching and folding which drives
mixing to occur.

Inherent to the decomposition of the flow field gradient J into S and ˝ is the
following duality: vortical activity is high in regions where˝ dominates S, whereas
strain is characterized by S dominating˝ .

In order to identify vortical activity, Jeong et al. used this decomposition in
[47] to derive the vortex region quantity �2 as the second largest eigenvalue of
the symmetric tensor S2 C ˝2. Vortex regions are identified by �2 < 0, whereas
�2 > 0 lacks physical interpretation. �2 does not capture stretching and folding of
fluid particles and hence does not capture the vorticity-strain duality.

The Q-criterion of Hunt [46], also known as the Okubo-Weiss criterion, is
defined by

Q D 1

2
.k ˝ k2 � k S k2/ D k ! k2 �1

2
k S k2 (65)

whereQ is positive and the vorticity magnitude dominates the rate of strain. Hence
it is natural to define vortex regions as regions where Q > 0. Unlike �2, Q has a
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physical meaning also where Q < 0. Here the rate of strain dominates the vorticity
magnitude.

Topology of Vector Fields

In this section we collect the first-order topological properties of steady 2D and 3D
vector fields. The extraction of these topological structures has become a standard
tool in visualization for the feature-based analysis of vector fields.

Critical Points
Considering a steady vector field v(x), an isolated critical point x0 is given by

v.x0/ D 0 with v.x0 ˙ �/ ¤ 0 (66)

This means that v is zero at the critical point but nonzero in a certain neighborhood.
Every critical point can be assigned an index. For a 2D vector field it denotes

the number of counterclockwise revolutions of the vectors of v while traveling
counterclockwise on a closed curve around the critical point (for 2D vector fields,
it is therefore often called the winding number). Similarly, the index of a 3D
critical point measures the number of times the vectors of v cover the area of
an enclosing sphere. The index is always an integer and it may be positive or
negative. For a curve/sphere enclosing an arbitrary part of a vector field, the
index of the enclosed area/volume is the sum of the indices of the enclosed
critical points. Mann et al. show in [54] how to compute the index of a region
using Geometric Algebra. A detailed discussion of index theory can be found in
[25, 31, 32].

Critical points are characterized and classified by the behavior of the tangent
curves around it. Here we concentrate on first-order critical points, i.e., critical
points with det.J.x0// ¤ 0. As shown in [37, 38], a first-order Taylor expansion
of the flow around x0 suffices to completely classify it. This is done by an
eigenvalue/eigenvector analysis of J.x0/. Let �i be the eigenvalues of J.x0/ ordered
according to their real parts, i.e., Re.�i�1/ � Re.�i /. Furthermore, let ei be the
corresponding eigenvectors, and let fi be the corresponding eigenvectors of the
transposed Jacobian .J.x0//

T (note that J and JT have the same eigenvalues but
not necessarily the same eigenvectors). The sign of the real part of an eigenvalue
�i denotes – together with the corresponding eigenvector ei – the flow direction:
positive values represent an outflow and negative values an inflow behavior. Based
on this we give the classification of 2D and 3D first-order critical points in the
following.

2D Vector Fields Based on the flow direction, first-order critical points in 2D
vector fields are classified into:
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Saddle point
R1 <0, R2 > 0 R1 , R2 > 0 R1 = R2 > 0 R1 = R2 = 0 R1 = R2 < 0 R1, R2 < 0 

I1 = I2 = 0 I1 = I2 = 0 I1 = –I2 ≠ 0 I1 = –I2 ≠ 0 I1 = –I2 ≠ 0 I1 = I2 = 0 

Repelling node Repelling focus Center Attracting focus Attracting node

Fig. 23 Classification of first-order critical points. R1, R2 denote the real parts of the eigenvalues
of the Jacobian matrix, while I1, I2 denote their imaginary parts (From [37])

Sources W 0 < Re.�1/ � Re.�2/

Saddles W Re.�1/ < 0 < Re.�2/

Sinks W Re.�1/ � Re.�2/ < 0

Thus, sources and sinks consist of complete outflow/inflow, while saddles have a
mixture of both.

Sources and sinks can be further divided into two stable subclasses by deciding
whether or not imaginary parts are present, i.e., whether or not �1, �2 is a pair of
conjugate complex eigenvalues:

Foci W Im.�1/ D �Im.�2/ ¤ 0
Nodes W Im.�1/ D Im.�2/ D 0

There is another important class of critical points in 2D: a center. Here, we have
a pair of conjugate complex eigenvalues with Re.�1/ D Re.�2/ D 0. This type is
common in incompressible (divergence-free) flows but unstable in general vector
fields since a small perturbation of v changes the center to either a sink or a source.
Figure 23 shows the phase portraits of the different types of first-order critical points
following [37].

The index of a saddle point is �1, while the index of a source, sink, or center
is C1. It turns out that this coincides with the sign of det.J.x0//: a negative
determinant denotes a saddle, a positive determinant a source, sink, or center. This
already shows that the index of a critical point cannot be used to distinguish or
classify them completely, since different types like sources and sinks have assigned
the same index.

An iconic representation is an appropriate visualization for critical points, since
vector fields usually contain a finite number of them. We will display them as
spheres colored according to their classification: sources will be colored in red, sinks
in blue, saddles in yellow, and centers in green.

3D Vector Fields Depending on the sign of Re.�i / we get the following classifica-
tion of first-order critical points in 3D vector fields:
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Fig. 24 Flow behavior around critical points of 3D vector fields and corresponding iconic
representation

Sources W 0 <

Repelling saddles W Re.�1/ < 0 < Re.�2/ � Re.�3/

Attracting saddles W Re.�1/ � Re.�2/ < 0 < Re.�3/

Sinks W Re.�1/ � Re.�2/ �

Again, sources and sinks consist of complete outflow/inflow, while saddles have
a mixture of both. A repelling saddle has one direction of inflow behavior (called
inflow direction) and a plane in which a 2D outflow behavior occurs (called outflow
plane). Similar to this, an attracting saddle consists of an outflow direction and an
inflow plane.

Each of the four classes above can be further divided into two stable subclasses
by deciding whether or not imaginary parts in two of the eigenvalues are present
(�1; �2; �3 are not ordered):

Foci W Im.�1/ D 0 and Im.�2/ D �Im.�3/ ¤ 0
Nodes W Im.�1/ D Im.�2/ D Im.�3/ D 0

As argued in [29], the index of a first-order critical point is given as the sign of
the product of the eigenvalues of J.x0/. This yields an index of C1 for sources and
attracting saddles and an index of �1 for sinks and repelling saddles.

In order to depict 3D critical points, several icons have been proposed in the
literature; see [30, 36, 37, 53]. Basically, we follow the design approach of [72, 85]
and color the icons depending on the flow behavior: attracting parts (inflow) are
colored blue, while repelling parts (outflow) are colored red (Fig. 24).

Separatrices
Separatrices are streamlines or stream surfaces which separate regions of different
flow behavior. Here we concentrate on separatrices that emanate from critical points.
Due to the homogeneous flow behavior around sources and sinks (either a complete
outflow or inflow), they do not contribute to separatrices. Each saddle point creates
two separatrices: one in forward and one in backward integration into the directions
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Fig. 25 Separatrices are streamlines or surfaces starting from saddle points into the direction of
the eigenvectors

of the eigenvectors. For a 2D saddle point, this gives two separation lines (Fig. 25a).
Considering a repelling saddle xR of a 3D vector field, it creates one separation
curve (which is a streamline starting in xR in the inflow direction by backward
integration) and a separation surface (which is a stream surface starting in the
outflow plane by forward integration). Figure 25b gives an illustration. A similar
statement holds for attracting saddles.

Other kinds of separatrices are possible as well: they can emanate from boundary
switch curves [85] and attachment and detachment lines [48], or they are closed
separatrices without a specific emanating structure [73].

Application
In the following, we exemplify the topological concepts described above by
applying them to a 3D vector field. First, we extract the critical points by searching
for zeros in the vector field. Based on an eigenvalue/eigenvector analysis, we
identify the different types of the critical points. Starting from the saddles, we
integrate the separatrices into the directions of the eigenvectors.

Figure 26 visualizes the electrostatic field around a benzene molecule. This
data set was calculated on a 1013 regular grid using the fractional charges method
described in [70]. It consists of 184 first-order critical points depicted in Fig. 26a.
The separation surfaces shown in Fig. 26b emanate from 78 attracting and 43
repelling saddles. Note how they hide each other as well as the critical points. Even
rendering the surfaces in a semitransparent style does not reduce the visual clutter
to an acceptable degree. This is one of the major challenges for the topological
visualization of 3D vector fields.

Figure 26c shows a possible solution to this problem by showing the 129 saddle
connectors that we found in this data set. Saddle connectors are the intersection
curves of repelling and attracting separation surfaces and have been introduced
to the visualization community in [72]. Despite the fact that saddle connectors
can only indicate the approximate run of the separation surfaces, the resulting
visualization gives more insight into the symmetry and three-dimensionality of the
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Fig. 26 Topological representations of the benzene data set with 184 critical points. (a) Iconic
representation. (b) Due to the shown separation surfaces, the topological skeleton of the vector
field looks visually cluttered. (c) Visualization of the topological skeleton using saddle connectors

data set. Saddle connectors are a useful compromise between the amount of coded
information and the expressiveness of the visualization for complex topological
skeletons.

6 Anisotropic Diffusion PDEs for Image Regularization and
Visualization

Regularization PDEs: A Review

We consider a 2D multivalued image I: ˝ ! R
n.n D 3 for color images) defined

on a domain � R
2 and denote by Ii W ! R the scalar channel i of I:

8X D .x; y/ 2 ; I.X/ D .I1.X/ I2.X/ : : : In.X//
T :

Local Multivalued Geometry and Diffusion Tensors
PDE-based regularization can be often seen as the local smoothing of an image
I along defined directions depending themselves on the local configuration of the
pixel intensities, i.e., one wants basically to smooth I in parallel to the image
discontinuities. Naturally, this means that one has first to retrieve the local geometry
of the image I. It consists in the definition of these important features at each image
point X = .x; y/ 2 ˝:

• Two orthogonal directions �.X/C; �.X/� 2 S1 along the local maximum and
minimum variations of image intensities at X. �� is then considered to be parallel
to the local edge, when there is one.

• Two corresponding positive values �.x/C; �.x/� measuring the effective varia-
tions of the image intensities along �.x/C and �.x/�, respectively. ��, �C are
related to the local contrast of an edge.

For scalar images I W  ! R, this local geometry {�C=�; �C=�jX 2 ˝} is
usually retrieved by the computation of the smoothed gradient field r I
 D



2150 W. Benger et al.

rI � G
 where G
 is a 2D Gaussian kernel with standard deviation 
 . Then,
�C Dk rI
 k2 is a possible measure of the local contrast of the contours,
while �� D rI
?= krI
k gives the contours direction. Such a local geometry
{�C=�; �C=�jX 2 ˝} can be represented in a more convenient form by a field
G: ˝ ! P.2/ of second-order tensors (2 � 2 symmetric and semi-positive
matrices):

8X 2 ; G.X/ D �� ����T C �C �C�CT

:

Eigenvalues of G are indeed �� and �C and corresponding eigenvectors are ��
and �C. The local geometry of scalar-valued images I can be then modeled by the
tensor field G.x/ D rI
.x/rI T
.x/.

For multivalued images I W  ! R
n, the local geometry can be retrieved in a

similar way, by the computation of the field G of the smoothed structure tensors. As
explained in [22,82], this is a nice extension of the gradient for multivalued images:

8X 2 ; G
.X/ D
�Xn

iD1
rIi˛.X/rI Ti˛.X/

�
�G
 where rIi˛ D

 
@Ii
@x

@Ii
@y

!
�G˛
(67)

G
.x/ is a very good estimator of the local multivalued geometry of I at X: its spectral
elements give at the same time the vector-valued variations (by the eigenvalues
��; �C of G
 ) and the orientations (edges) of the local image structures (by the
eigenvectors ��?�C of G
/; 
 being proportional to the so-called noise scale.

Once the local geometry G
 of I has been determined, the way the regularization
process is achieved is defined by another field T: ˝ ! P.2/ of diffusion tensors,
which specifies the local smoothing geometry that should drive the PDE flow. Of
course, T depends on the targeted application, and most of the time it is constructed
from the local geometry G
 of I. It is thus defined from the spectral elements
��; �C and ��; �C of G
 . In [19, 78], the following expression is proposed for
image regularization:

8X 2 ; T.X/ D f �
.�C;��/

���� C f C
.�C;��/

�C�CT

(68)

where

f �
.�C;��/

D 1

.1C �C C ��/p1
and f C

.�C;��/
D 1

.1C �C C ��/p2
with p1 < p2

are the two functions which set the strengths of the desired smoothing along the
respective directions ��; �C. This latest choice basically says that if a pixel X is
located on an image contour (�C

.x/ is high), the smoothing on X would be performed

mostly along the contour direction ��
.x/ (since f C

.:;:/ � f �
.:;:/). Conversely, if a pixel

X is located on a homogeneous region (�C
.x/ is low), the smoothing on X would be
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performed in all possible directions (isotropic smoothing), since f C
.:;:/ ' f �

.:;:/ (and
then T' Id ). Predefining the smoothing geometry T of each applied PDE iteration
is the first stage of most of the PDE-based regularization algorithms. Most of the
differences between existing regularization methods (as in [2,3,10,18,19,49,52,58,
59, 67–69]) lie first on the definition of T, but also on the kind of the diffusion PDE
that will be used indeed to perform the desired smoothing.

Divergence-Based PDEs
One of the common choices to smooth a corrupted multivalued image I: ! R

n

following a local smoothing geometry T: ˝ ! P.2/ is to use the divergence PDE:

8i D 1; : : : ; n;
@Ii

@t
D div.TrIi / (69)

The general form of this now classical PDE for image regularization has been intro-
duced by Weickert in [82] and adapted for color/multivalued images in [83]. In this
latter case, the tensor field T is chosen the same for all image channels Ii , ensuring
that channels are smoothed with a coherent multivalued geometry which takes the
correlation between channels into account (since T depends on G). Equation (69)
unifies a lot of existing scalar or multivalued regularization approaches and proposes
at the same time two interpretation levels of the regularization process:

• Local interpretation: Equation (69) may be seen as the physical law describing
local diffusion processes of the pixels individually regarded as temperatures or
chemical concentrations in an anisotropic environment which is locally described
by T.

• Global interpretation: The problem of image regularization can be regarded as
the minimization of the energy functional E(I) by a gradient descent (i.e., a
PDE), coming from the Euler-Lagrange equations of E(I) [3, 19, 49, 51, 78]:

E.I/ D
Z


 .�C; ��/ d where  W R2 ! R (70)

• It results in a particular case of the PDE (69), with T D @‰
@�� �

���TC @‰

@�C �
C�CT

,
where �C; �� are the two positive eigenvalues of the non-smoothed structure
tensor field G DPi rIi rI Ti and �C; �� are the corresponding eigenvectors.

Unfortunately, there are local configurations where the PDE (69) does not fully
respect the geometry T and where the smoothing is performed in unexpected direc-

tions. For instance, considering (69) with tensor fields T1.X/ D
�

rI
krIk

� �
rI

krIk
�T

(purely anisotropic) and T2.x/ D Id (purely isotropic) lead both to the heat
equation @I

@t
D �I which has obviously an isotropic smoothing behavior. Different

tensors fields T with different shapes (isotropic or anisotropic) may define the
same regularization behavior. This is due to the fact that the divergence implicitly
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introduces a dependance on the spatial variations of the tensor field T, so it hampers
the design of a pointwise smoothing behavior.

Trace-Based PDEs
Alternative PDE-based regularization approaches have been proposed in [3, 51,
68, 69, 78] in order to smooth an image directed by a local smoothing geometry.
They are inspirit very similar to the divergence equation (69), but based on a trace
operator:

8i D 1; : : : ; n;
@Ii

@t
D trace .THi / with Hi D

0
@

@2Ii
@x2

@2Ii
@x@y

@2Ii
@x@y

@2Ii
@y2

1
A (71)

Hi stands for the Hessian of Ii . Equation (71) is in fact nothing more than a
tensor-based expression of the PDE @I

@t
D f �

.��;�C/
I���� C f C

.��;�C/
I�C�C where

I���� D @2I
@��2 . This PDE can be viewed as a simultaneous combination of two

orthogonally oriented and weighted 1D Laplacians. In case of multivalued images,
each channel Ii of I is here also coherently smoothed with the same tensor field
T. As demonstrated in [78], the evolution of Eq. (71) has a geometric meaning in
terms of local linear filtering: it may be seen locally as the application of very small
convolutions around each point X with a Gaussian mask GT

t oriented by the tensor
T.x/:

GT
t .X/ D

1

4�t
exp

�
�XT T�1 X

4t

�

This ensures that the smoothing performed by (71) is indeed oriented along the
predefined smoothing geometry T. As the trace is not a differential operator,
the spatial variation of T does not trouble the diffusion directions here and two
different tensor fields will necessarily lead to different smoothing behaviors. Under
certain conditions, the divergence PDE (69) may be also developed as a trace
formulation (71). But in this case, the tensors inside the trace and the divergence are
not the same [78]. Note that trace-based equations (71) are rather directly connected
to functional minimizations, especially when considering the multivalued case. For
scalar-valued images (n D 1), some correspondences are known anyway [3,19,51].

Curvature-Preserving PDEs
Basically, the divergence and trace Eqs. (69) and (71) locally behave as oriented
Gaussian smoothing whose strengths and orientations are directly related to the
tensors T.x/. But on curved structures (like corners), this behavior is not desirable:
in case of high variations of the edge orientation ��, such a smoothing will tend
to round corners, even by conducting it only along �� (an oriented Gaussian is not
curved by itself). To avoid this over-smoothing effect, regularization PDEs may try
to stop their action on corners (by vanishing tensors T.x/ there, i.e., f � D f C D 0),
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but this implies the detection of curved structures on images that are themselves
noisy or corrupted. This is generally a hard task.

To overcome this problem, curvature-preserving regularization PDEs have been
introduced in [77]. We illustrate the general idea of these equations by considering
the simplest case of image smoothing along a single direction, i.e., a vector field
w W ˝ ! R

2 instead of a tensor-valued one T. The two spatial components of w are
denoted w.x/ D .u.x/v.x//T .

The curvature-preserving regularization PDE that smoothes I along w is defined
as

8i D 1; : : : ; n;
@Ii

@t
D trace

�
wwTHi

	CrI Ti Jww with Jw D
 

@u
@x

@u
@y

@v
@x

@v
@y

!

(72)
where Jw stands for the Jacobian of w. Equation (72) simply adds a term rI Ti Jww
to the corresponding trace-based PDE (71) that would smooth I along w. This
term naturally depends on the variation of the vector field w. Actually, it has been
demonstrated in [77] that Eq. (72) is equivalent to the application of this one-
dimensional PDE flow:

@Ii .C.a//
@t

D @2Ii .C.a//
@a2

with

8<
:

CX
.0/ D X

@CX
.a/

@a
D w

�
CX
.a/

� (73)

where CX
.a/ is the streamline curve of w, starting from X and parameterized by a 2 R.

Thus, Eq. (73) is nothing more than the one-dimensional heat flow constrained on
the streamline curve C. This is indeed very different from a heat flow oriented by
w, as in the formulation @Ii

@t
D @2Ii

@w2 since the curvatures of the streamline of w are
now implicitly taken into account. In particular, Eq. (73) has the interesting property
to vanish when the image intensities are constant on the streamline CX, whatever
the curvature of CX is. So, defining a field w that is tangent everywhere to the
image structures allows the preservation of these structures during the regularization
process, even if they are curved (such as corners).

Moreover, as Eq. (73) is a 1D heat flow on a streamline CX, its solution at time
dt can be estimated by convolving the image signal lying on the streamline CX by a
1D Gaussian kernel [50]:

8X 2 ˝; IŒdt �.X/ D
Z C1

�1
IŒtD0�

�
CX
.p/

�
Gdt .p/ dp (74)

This formulation is very close to the line integral convolution (LIC) framework [17],
which has been introduced as a visualization technique to render a textured image
representing a 2D vector field w. As we are considering diffusion equations here, the
weighting function in Eq. (74) is naturally Gaussian. This geometric interpretation
particularly allows to implement curvature-preserving PDEs (74) using Runge-
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a>0

a=0x

a<0

a b

Fig. 27 Streamline CX of various vector fields w:˝ ! R
2. (a) Streamline of a general field w.

(b) Example of streamlines when w is the lowest eigenvector of the smoothed structure tensor G


(one block is one color pixel)

Kutta estimations of the streamline geometries, leading to sub-pixel precision of
the smoothing process.

This single-direction smoothing PDE (72) can be easily extended to deal with
a tensor-valued geometry T: ˝ ! P.2/, in order to be able to represent both
anisotropic or isotropic regularization behaviors. This is done by decomposing
the tensor field T as the sum of several single-directional tensors, i.e., T D
2
�

R �
˛D0

�p
Ta˛

� �p
Ta˛

�T
d˛, where a˛ D cos˛ sin˛T . This naturally suggests

to decompose a tensor-driven regularization process into a sum of single-direction
smoothing processes, each of them being expressed as a curvature-preserving PDE.
As a result, the corresponding curvature-preserving PDE directed by a tensor field
T is

8i D 1; : : : ; n;
@Ii

@t
D trace.THi /C 2

�
rI Ti

Z �

˛D0
Jp

Taa

p
Taa d˛ (75)

When T is locally isotropic (on homogeneous region), Eq. (75) is similar to a 2D
heat flow, while when T is locally anistropic (on an image contour), it behaves as a
1D heat flow on the streamline curve following the contour path, thus taking care of
its curvature (Fig. 27).

Applications

Some application results are presented here, mainly based on the use of the
curvature-preserving PDEs (75). A specific diffusion tensor field T has been used to
adapt the smoothing behavior to each targeted application.
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Noisy color image (left), denoised image (right) by
curvature-preserving PDE (50.75)

Image of a fingerprint After several iterations
of trace-based PDE (50.71)

After several iterations of
curvature-preserving PDE
(50.75) (with same tensor
field T)

Fig. 28 Using PDE-based smoothing to regularize color and grayscale images
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Original color image (left), reconstructed using PDE (50.75) (right)
(the in painting mask covers the cage)

Original color image (left), image with 50% pixel removed (middle), reconstructed
using PDE (50.75) (right)

Fig. 29 Image inpainting using PDE-based regularization techniques

Color Image Denoising
Image denoising is a direct application of regularization methods. Sensor inaccura-
cies, digital quantifications, or compression artifacts are indeed some of the various
noise sources that can affect a digital image, and suppressing them is a desirable
goal. Figure 28 illustrates how curvature-preserving PDEs (75) can be successfully
applied to remove such noise artifacts while preserving the thin structures of the
processed images. The tensor field T is chosen as in Eq. (68).

Color Image Inpainting
Image inpainting consists in filling in missing (user-defined) image regions by
guessing pixel values such that the reconstructed image still looks natural. Basically,
the user provides one color image I W ˝ ! R

3 and one mask imageM :˝ ! f0; 1g.
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The inpainting algorithm must fill in the regions where M.X/ D 1, by means of
some intelligent interpolations. Image inpainting using diffusion PDEs has been
proposed, for instance, in [10, 18, 78]. Inpainting is a direct application of our
proposed curvature-preserving PDE (75), where the diffusion equation is applied
only on the regions to inpaint, allowing the neighbor pixels to diffuse inside these
regions in an anisotropic way (Fig. 29).

Visualization of Vector and Tensor Fields
Regularization PDEs such as (69), (71), and (75) can be also used to visualize
a vector field w W ˝ ! R

2 or a tensor field G: ˝ ! P.2/; see also Sect. 5.
The idea is to smooth an originally pure noisy image using a diffusion tensor
field T which is chosen to be T D wwT or T D G or other variations as long
as the smoothing geometry is indeed directed by the field we want to visualize.
Whereas the PDE evolution time t goes by, more global structures of the considered
fields appear, i.e., a visualization scale-space is constructed. The same PDE-based
visualization technique allows to display interesting global rendering of DT-MRI
volumes (medical imaging) displaying “stuffed” views of the fiber map (Fig. 30).

7 Conclusion

This chapter presented a selection of possible approaches for systematic treatment of
multidimensional data sets and algorithms based on differential methods. Such data
sets may be the result of some image processing, for instance, a three-dimensional
stack of CT slices in medical imaging used to extract a triangular surface represent-
ing bones. Visual data analysis is particularly important for big data. Many such
data sources originate in computational sciences, produced by algorithms based
on differential methods. Utilizing the same concepts for image processing and
multidimensional data in general allows generalization of methods and increased
software reusability and applicability. Section 2 reviews a mathematically founded
model to structure multidimensional data covering a wide category of data types.
Since there is no commonly agreed standard in the scientific community on how to
lay out multidimensional data for computational purposes, a multitude of alternative
models exist. For a specific application, it is subject of investigation whether some
specific model would fit all the respective requirements. Section 3 delves deeper
into the modeling of mathematical operators using computational data structures. A
mathematical algorithm must be cast into a discretized form in order to be applicable
in a numerical code. Differential forms are a mathematical abstraction allowing
coordinate-free formulations of partial differential equations, which are the basis
of many physical and engineering methods, as well as image processing. Geometric
Algebra, reviewed in Sect. 4, extends the notions of the commonly known vector
algebra to form a full system of algebraic operations to include (among others)
the notion of “dividing vectors.” While unfamiliar at first, the result is a visually
intuitive way to phrase complex algebraic operations, enabling better insight and
more efficient implementation as compared to “ad hoc” approaches. An important
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Vector field visualization
with arrows

Visualization using PDE
(50.75) (after 5 iter)

Visualization using PDE
(50.75) (after 15 iter)

Tensor field rendered using a PDE approach
(50.75)

Tensor field displayed with ellipsoids
(left ) and tracked fibers (right )

Fig. 30 Visualization of vector and tensor fields using PDEs

application of differential methods for multidimensional data is the investigation of
features in vector fields. While primarily of interest to computational sciences such
as computational fluid dynamics, identifying topological features in vector fields
may well apply to color images with RGB channels and gradients of grayscale
images or even more to stacks of images such as three-dimensional data and
animation sequences. Section 5 presents some basics for feature detections in such
data sets. While the application to animation sequences is beyond the scope of
this chapter, utilizing the topological skeleton of some data set may well have
potential for data compression or automatizing algorithms for motion pictures.
Partial differential equations (PDEs) furthermore allow for direct improvement of
image quality and feature reconstruction, as explained in the algorithms presented
in Sect. 6. PDEs describing diffusion are particularly suitable for reducing noise in
images, recovering lost features, as well as the direct visualization of vector and
tensor fields. The set of presented algorithms in this chapter is still subject of active
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research and neither a comprehensive nor the only reasonable approach; rather, the
various aspects covered provide inspirations covering many scientific disciplines
under one hood.

Cross-References

�Tomography
�Mathematical Methods in PET and SPECT Imaging
�Mathematics of Electron Tomography

References

1. Abłamowicz, R., Fauser, B.: Clifford/bigebra, a maple package for Clifford (co)algebra
computations. Available at http://www.math.tntech.edu/rafal/. c� 1996–2009, RA&BF (2009)

2. Alvarez, L., Guichard, F., Lions, P.L., Morel, J.M.: Axioms and fundamental equations of
image processing. Arch. Ration. Mech. Anal. 123(3), 199–257 (1993)

3. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential
Equations and the Calculus of Variations. Applied Mathematical Sciences, vol. 147. Springer,
New York (2002)

4. Barash, D.: A fundamental relationship between bilateral filtering, adaptive smoothing and the
nonlinear diffusion equation. IEEE Trans. Pattern Anal. Mach. Intell. 24(6), 844 (2002)

5. Bayro-Corrochano, E., Vallejo, R., Arana-Daniel, N.: Geometric preprocessing, geometric
feedforward neural networks and Clifford support vector machines for visual learning. Spec.
Issue J. Neurocomput. 67, 54–105 (2005)

6. Becker, J., Preusser, T., Rumpf, M.: PDE methods in flow simulation post processing. Comput.
Vis. Sci. 3(3), 159–167 (2000)

7. Benger, W.: Visualization of general relativistic tensor fields via a fiber bundle data model. PhD
thesis, FU Berlin (2004)

8. Benger, W.: Colliding galaxies, rotating neutron stars and merging black holes – visualising
high dimensional data sets on arbitrary meshes. N. J. Phys. 10 (2008). http://stacks.iop.org/
1367-2630/10/125004

9. Benger, W., Ritter, M, Acharya, S., Roy, S., Jijao, F.: Fiberbundle-based visualization of a stir
tank fluid. In: WSCG 2009, Plzen (2009)

10. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: ACM SIGGRAPH,
International Conference on Graphics and Interactive Techniques, New Orleans, pp. 417–424
(2000)

11. Black, M.J., Sapiro, G., Marimont, D.H., Heeger, D.: Robust anisotropic diffusion. IEEE Trans.
Image Process. 7(3), 421–432 (1998)

12. Bochev, P., Hyman, M.: Principles of compatible discretizations. In: The IMA Hot Topics
Workshop on Compatible Discretizations, University of Minnesota, 11–15 May 2004. IMA,
vol. 142, pp. 89–120. Springer (2006)

13. Brouwer, L.: Zur Invarianz des n-dimensionalen Gebiets. Math. Ann. 71, 305–313 (1912)
14. Buchholz, S., Hitzer, E.M.S., Tachibana, K.: Optimal learning rates for Clifford neurons. In:

International Conference on Artificial Neural Networks, Porto, vol. 1, pp. 864–873, 9–13
(2007)

15. Butler, D.M., Bryson, S.: Vector bundle classes form a powerful tool for scientific visualization.
Comput. Phys. 6, 576–584 (1992)

16. Butler, D.M., Pendley, M.H.: A visualization model based on the mathematics of fiber bundles.
Comput. Phys. 3(5), 45–51 (1989)

http://dx.doi.org/10.1007/978-1-4939-0790-8_16
http://dx.doi.org/10.1007/978-1-4939-0790-8_45
http://dx.doi.org/10.1007/978-1-4939-0790-8_43
http://www.math.tntech.edu/rafal/
http://stacks.iop.org/1367-2630/10/125004
http://stacks.iop.org/1367-2630/10/125004


2160 W. Benger et al.

17. Cabral, B., Leedom, L.C.: Imaging vector fields using line integral convolution. In: SIG-
GRAPH’93, in Computer Graphics, Anaheim, vol. 27, pp. 263–272 (1993)

18. Chan, T., Shen, J.: Non-texture inpaintings by curvature-driven diffusions. J. Vis. Commun.
Image Represent. 12(4), 436–449 (2001)

19. Charbonnier, P., Blanc-Féraud, L., Aubert, G., Barlaud, M.: Deterministic edge-preserving
regularization in computed imaging. IEEE Trans. Image Process. 6(2), 298–311 (1997)

20. Clifford, W.K.: Applications of Grassmann’s extensive algebra. In: Tucker, R. (ed.) Mathemat-
ical Papers, pp. 266–276. Macmillian, London (1882)

21. Clifford, W.K.: On the classification of geometric algebras. In: Tucker, R. (ed) Mathematical
Papers, pp. 397–401. Macmillian, London (1882)

22. Di Zenzo, S.: A note on the gradient of a multi-image. Comput. Vis. Graph. Image Process. 33,
116–125 (1986)

23. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science, an Object-
Oriented Approach to Geometry. Morgan Kaufman, San Mateo (2007)

24. Ebling, J.: Clifford Fourier transform on vector fields. IEEE Trans. Vis. Comput. Graph. 11(4),
469–479. IEEE member Scheuermann, Gerik (2005)

25. Firby, P., Gardiner, C.: Surface Topology, chap. 7, pp. 115–135. Ellis Horwood, Chichester
(1982). Vector Fields on Surfaces

26. Fontijne, D.: Efficient implementation of geometric algebra. PhD thesis, University of Amster-
dam (2007)

27. Fontijne, D., Bouma, T., Dorst, L.: Gaigen: a geometric algebra implementation generator.
http://www.science.uva.nl/ga/gaigen (2005)

28. Fontijne, D., Dorst, L.: Modeling 3D Euclidean geometry. IEEE Comput. Graph. Appl. 23(2),
68–78 (2003)

29. Garth, C., Tricoche, X., Scheuermann, G.: Tracking of vector field singularities in unstructured
3D time-dependent datasets. In: Proceedings of the IEEE Visualization, Austin, pp. 329–336
(2004)

30. Globus, A., Levit, C., Lasinski, T.: A tool for visualizing the topology of threedimensional
vector fields. In: Proceedings of the IEEE Visualization ’91, San Diego, pp. 33–40 (1991)

31. Gottlieb, D.H.: Vector fields and classical theorems of topology. Rend. Semin. Mat. Fisico,
Milano 60, 193–203 (1990)

32. Gottlieb, D.H.: All the way with Gauss-Bonnet and the sociology of mathematics. Am. Math.
Mon. 103(6), 457–469 (1996)

33. Gross, P., Kotiuga, P.R.: Electromagnetic Theory and Computation: A Topological Approach.
Cambridge University Press, Cambridge (2004)

34. Hart, J.: Using the CW-complex to represent the topological structure of implicit surfaces
and solids. In: Implicit Surfaces ’99, Eurographics/SIGGRAPH, Bordeaux, 13–15 Sept 1999,
pp. 107–112

35. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
36. Hauser, H., Gröller, E.: Thorough insights by enhanced visualization of flow topology. In: 9th

International Symposium on Flow Visualization, Edinburgh (2000). http://www.cg.tuwien.ac.
at/research/publications/2000/Hauser-2000-Tho/

37. Helman, J., Hesselink, L.: Representation and display of vector field topology in fluid flow data
sets. IEEE Comput. 22(8), 27–36 (1989)

38. Helman, J., Hesselink, L.: Visualizing vector field topology in fluid flows. IEEE Comput.
Graph. Appl. 11, 36–46 (1991)

39. Hestenes, D.: New Foundations for Classical Mechanics. Reidel, Dordrecht (1986)
40. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus: A Unified Language for

Mathematics and Physics. Reidel, Dordrecht (1984)
41. Hildenbrand, D., Fontijne, D., Perwass, C., Dorst, L.: Tutorial geometric algebra and its

application to computer graphics. In: Eurographics Conference, Grenoble (2004)
42. Hildenbrand, D., Fontijne, D., Wang, Y., Alexa, M., Dorst, L.: Competitive runtime perfor-

mance for inverse kinematics algorithms using conformal geometric algebra. In: Eurographics
Conference, Vienna (2006)

http://www.science.uva.nl/ga/gaigen
http://www.cg.tuwien.ac.at/research/publications/2000/Hauser-2000-Tho/
http://www.cg.tuwien.ac.at/research/publications/2000/Hauser-2000-Tho/


Differential Methods for Multi-dimensional Visual Data Analysis 2161

43. Hildenbrand, D., Lange, H., Stock, F., Koch, A.: Efficient inverse kinematics algorithm based
on conformal geometric algebra using reconfigurable hardware. In: GRAPP Conference,
Madeira (2008)

44. Hildenbrand, D., Pitt, J.: The Gaalop home page. http://www.gaalop.de (2008)
45. Hocking, J., Young, G.: Topology. Addison-Wesley/Dover, New York (1961)
46. Hunt, J.: Vorticity and vortex dynamics in complex turbulent flows. Proc. CANCAM Trans.

Can. Soc. Mech. Eng. 11, 21 (1987)
47. Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)
48. Kenwright, D., Henze, C., Levit, C.: Feature extraction of separation and attachment lines.

IEEE Trans. Vis. Comput. Graph. 5(2), 135–144 (1999)
49. Kimmel, R., Malladi, R., Sochen, N.: Images as embedded maps and minimal surfaces: movies,

color, texture, and volumetric medical images. Int. J. Comput. Vis. 39(2), 111–129 (2000).
doi:10.1023/A:1008171026419

50. Koenderink, J.J.: The structure of images. Biol. Cybern. 50, 363–370 (1984)
51. Kornprobst, P., Deriche, R., Aubert, G.: Non-linear operators in image restoration. In:

Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition (CVPR
’97), San Juan, 17–19 June 1997, p. 325. IEEE Computer Society, Washington, DC (1997)

52. Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer Academic, Dordrecht (1994)
53. Löffelmann, H., Doleisch, H., Gröller, E.: Visualizing dynamical systems near critical points.

In: Spring Conference on Computer Graphics and Its Applications, Budmerice, pp. 175–184
(1998)

54. Mann, S., Rockwood, A.: Computing singularities of 3D vector fields with geometric algebra.
In: Proceedings of the IEEE Visualization, Boston, pp. 283–289 (2002)

55. Mattiussi, C.: The geometry of time-stepping. In: Teixeira, F.L. (ed.) Geometric Methods in
Computational Electromagnetics. PIER, vol. 32, pp. 123–149. EMW, Cambridge (2001)

56. McCormick, B., DeFanti, T., Brown, M.: Visualization in scientific computing-a synopsis.
IEEE Comput. Graph. Appl. 7(7), 61–70 (1987). doi:10.1109/MCG.1987.277014

57. Naeve, A., Rockwood, A.: Course 53 geometric algebra. In: SIGGRAPH Conference, Los
Angeles (2001)

58. Nielsen, M., Florack, L., Deriche, R.: Regularization, scale-space and edge detection filters. J.
Math. Imaging Vis. 7(4), 291–308 (1997)

59. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans.
Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

60. Perwass, C.: The CLU home page. http://www.clucalc.info (2005)
61. Perwass, C.: Geometric Algebra with Applications in Engineering. Springer, Berlin (2009)
62. Petsche, H.-J.: The Grassmann bicentennial conference home page. /http://www.uni-potsdam.

de/,u/philosophie/grassmann/Papers.htm (2009)
63. Pham, M.T., Tachibana, K., Hitzer, E.M.S., Yoshikawa, T., Furuhashi, T.: Classification and

clustering of spatial patterns with geometric algebra. In: AGACSE Conference, Leipzig (2008)
64. Preußer, T., Rumpf, M.: Anisotropic nonlinear diffusion in flow visualization. In: Proceedings

of the Conference on Visualization ’99: Celebrating Ten Years. IEEE Visualization, San
Francisco, pp. 325–332. IEEE Computer Society, Los Alamitos (1999)

65. Reyes-Lozano, L., Medioni, G., Bayro-Corrochano, E.: Registration of 3d points using
geometric algebra and tensor voting. J. Comput. Vis. 75(3), 351–369 (2007)

66. Rosenhahn, B., Sommer, G.: Pose estimation in conformal geometric algebra. J. Math. Imaging
Vis. 22, 27–70 (2005)

67. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms.
Physica D 60, 259–268 (1992)

68. Sapiro, G.: Geometric Partial Differential Equations and Image Analysis. Cambridge Univer-
sity Press, Cambridge (2001)

69. Sapiro, G., Ringach, D.L.: Anisotropic diffusion of multi-valued images with applications to
color filtering. IEEE Trans. Image Process. 5(11), 1582–1585 (1996)

70. Stalling, D., Steinke, T.: Visualization of vector fields in quantum chemistry. Technical report,
ZIB m-96–01 (1996)

http://www.gaalop.de
http://www.clucalc.info
/http://www.uni-potsdam.de/,u/ philosophie/ grassmann/ Papers.htm
/http://www.uni-potsdam.de/,u/ philosophie/ grassmann/ Papers.htm


2162 W. Benger et al.

71. The homepage of geomerics ltd. http://www.geomerics.com. Last visited 2015
72. Theisel, H., Weinkauf, T., Hege, H.-C., Seidel, H.-P.: Saddle connectors – an approach to

visualizing the topological skeleton of complex 3D vector fields. In: Proceedings of the IEEE
Visualization, Seattle, pp. 225–232 (2003)

73. Theisel, H., Weinkauf, T., Hege, H.-C., Seidel, H.-P.: Grid-independent detection of closed
stream lines in 2D vector fields. In: Proceedings of the Vision, Modeling and Visualization
2004, Standford, 16–18 Nov 2004, pp. 421–428. http://www.courant.nyu.edu/~weinkauf/
publications/bibtex/theise104b.bib

74. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of the
Sixth International Conference on Computer Vision (ICCV), Bombay, 04–07 Jan 1998, p. 839.
IEEE Computer Society, Washington, DC (1998)

75. Tonti, E.: The reason for analogies between physical theories. Appl. Math. Model. 1(1), 37–50
(1976/1977)

76. Treinish, L.A.: Data explorer data model. http://www.research.ibm.com/people/1/lloydt/dm/
dx/dx_dm.htm (1997)

77. Tschumperlé, D.: Fast anisotropic smoothing of multi-valued images using curvature- reserv-
ing PDE’s. Int. J. Comput. Vis. 68(1), 65–82 (2006). ISSN:0920–5691

78. Tschumperlé, D., Deriche, R.: Vector-valued image regularization with PDE’s: a common
framework for different applications. IEEE Trans. Pattern Anal. Mach. Intell. 27(4), 506–517
(2005)

79. Veldhuizen, T.: Using CCC template metaprograms. CCC Rep. 7(4), 36–43 (1995).
Reprinted in CCC Gems, ed. Stanley Lippman

80. Vemuri, B.C., Chen, Y., Rao, M., McGraw, T., Wang, Z., Mareci, T.: Fiber tract mapping from
diffusion tensor MRI. In: Proceedings of the IEEE Workshop on Variational and Level Set
Methods (VLSM’01), Vancouver, 13 July 2001, p. 81. IEEE Computer Society, Washington,
DC (2001)

81. Venkataraman, S., Benger, W., Long, A., Byungil Jeong, L.R.: Visualizing Hurricane Katrina
– large data management, rendering and display challenges. In: GRAPHITE 2006, Kuala
Lumpur, 29 Nov–2 Dec 2006

82. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner-Verlag, Stuttgart (1998)
83. Weickert, J.: Coherence-enhancing diffusion of colour images. Image Vis. Comput. 17, 199–

210 (1999)
84. Weinkauf, T.: Extraction of topological structures in 2D and 3D vector fields. PhD thesis,

University Magdeburg. http://tinoweinkauf.net/ (2008)
85. Weinkauf, T., Theisel, H., Hege, H.-C., Seidel, H.-P.: Boundary switch connectors for

topological visualization of complex 3D vector fields. In: Data Visualization 2004. Proceedings
of the VisSym 2004, Konstanz, 19–21 May 2004, pp. 183–192. http://www.courant.nyu.edu/~
weinkauf/publications/bibtex/weinkauf04a.bib

86. Zomorodian, A.J.: Topology for Computing. Cambridge Monographs on Applied and Com-
putational Mathematics. Cambridge University Press, Cambridge/New York (2005). First
published 2005, reprinted 2009

http://www.geomerics.com
http://www.courant.nyu.edu/~weinkauf/publications/bibtex/theise104b.bib
http://www.courant.nyu.edu/~weinkauf/publications/bibtex/theise104b.bib
http://www.research.ibm.com/people/1/lloydt/dm/dx/dx{_}dm.htm
http://www.research.ibm.com/people/1/lloydt/dm/dx/dx{_}dm.htm
http://tinoweinkauf.net/
http://www.courant.nyu.edu/~weinkauf/publications/bibtex/weinkauf04a.bib
http://www.courant.nyu.edu/~weinkauf/publications/bibtex/weinkauf04a.bib


Index

Symbols
2D-Fourier transform, 18
3D Mesh Bilateral Filter Definitions,

1655–1656

A
Abell 1689 ISOCAM data, 2094
ABEMML algorithm, 422–423
ABMART algorithm, 421–422
Absorbing energy estimation, 582–583
Absorption coefficient reconstruction, 583–584
Absorption potential, 949–950
Acoustic stress-confiment condition,

1085–1086
Acoustically homogeneous media, 1121–1122
Active arrays, 1298–1299
Adams, John Couch, 9
Additive noise model, 1354–1357
Adjoint, 781, 788
Affine low-rank minimization, 227–229
Algebraic reconstruction technique (ART),

374–377, 818–822, 1003
Ambiguity function, 784
Ambrosio and Tortorelli phase-field elliptic

approximations, 1551
Amplitude contrast model, 945, 979
Analysis operator, 1720
Anisotropic diffusion, 1617
Anisotropic diffusion PDE’s, 2149–2157
Anisotropic total variation models, 1482–1487
Anomaly detection

electrical impedance tomography, 537–545
numerical methods, 541–544
ultrasound imaging, 545–555

Aperture problem, 1614, 1963–1964
Approximate inverse method, 999–1001
Approximation

error approach, 1060, 1065–1067
Mumford and Shah functional, 1550–1551

Arc-length parameterization, 1787
Aristotle, 6
Assignment approach, 1950–1956
Asymptotic behavior, neighborhood filters,

1619–1622
Atkinson–Wilcox expansion, 656
Augmented Lagrangian method, 1524
Autoconvolution equations, 116–118
Autocorrelation, 772
Autocovariance function (ACF), 1378, 1379
Automated image registration (AIR), 152

B
Backprojection, 782
Bacon, Francis, 8
Bag of features (BOF), 1901
Balls phantom, 1016–1020
Banach spaces, 98–104, 274
Banach’s theorem, 1719
Band extraction, 2080
Band-limited signals, 19–20
Bandwidth, 776
Basis, 1721–1722
Basis functions, 813
Bayes estimation, 329–330
Bayes’ formula, 1369
Bayes risk, 1441
Bayes’ rule, 314
Bayesian approach, 2086
Bayesian estimate, 818
Bayesian framework

approximation error approach, 1065–1067
for inverse problem, 1061–1062
inference, 1062
likelihood and prior models, 1062–1063
nonstationary problems, 1063–1065

Bayesian inference, level set based tracking,
1932–1933

Beer–Lambert law, 1035, 1036
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Bellman optimality principle, 1874
Beltrami equation, 728
Bernoulli matrices, 221–222
Besov norms, 1010
Bessel bound, 1720
Bessel function, 1146
Bessel sequence, 1720–1721
Best k-term approximation, 213–214
Bilateral filter, 1602, 1603, 1647–1658
Blagovestchenskii identity, 1226, 1227
Blind deconvolution, 52, 1360–1361,

2089–2090
Blob, 814
Block iterative ART, 1004
Bojarski identity, 686
Boltzmann–Shannon entropy, 270, 282
Born approximation, 661, 685–686, 769,

793–794, 1048–1049, 1179–1181
error estimate, 1258–1261
explicit formula for slab, 1255–1258
modified, 1194

Bouguer’s law, 14
Boundary control method, 1207–1208,

1211–1234, 1273–1275
Boundary derivative operator, 1045
Boundary distance function, 1209
Boundary rigidity problem, 1209
Bregman iteration, 1521–1524
Burg’s entropy, 365

C
Calderón’s technique, 717
Canonical dual frame, 1723
Cardinal B-splines, 1677, 1681
Cartesian products, 1346
Cauchy data, 720–721
Cauchy–Green deformation tensor, 1831
Cauchy strain tensor, 2013
Cauchy stress law, 1827
Caustics and trapped rays, 1270–1271
C-band, 765
Census transform, 1983
Centroidal Voronoi sampling, 1871
Centroidal Voronoi tessellation (CVT),

1871
Chains, 2122–2124
Chambolle’s algorithm, 1473–1474
Chambolle’s dual method, 1516–1518
Chan-Golub-Mulet’s primal-dual method,

1516
Chan–Vese model, 483
Charged Coupled Device (CCD), 963
¦s-Divergences, 138–140

Chunking, 1446
Cimmino–Landweber methods, 374–377
Circular integrating detectors, 1125
Closed-form inversion formulas, 1149–1151
Coarea formula, 1461
Coarse-to-fine strategy, 1969
Cochains, 2124–2128
Coherence, 220–221, 782
Coherent interferometric (CINT) imaging

active arrays, 1331–1335
cross-correlations, 1321
mean point spread function, 1324–1326
SNR, 1322–1324, 1326–1327
Wigner transform, 1327–1331

Coherent multi-valued geometry, 2151
Cohomology, 2128–2130
Collimated source model, 1042–1043
Color image recognition, 1427–1428
Color image restoration, 1577–1579
Color level set technique

binary level set model, 484
of multiple shapes, 484
for reservoir characterization, 486–487
for tumor detection, 485–489

Combined phase and amplitude contrast
model, 945

Complete electrode model (CEM), 711, 746
Complete orthonormal system, 23
Complex geometrical optics (CGO), 717–720,

724
Complimentary slackness conditions, 288
Compressive sensing (CS), 206–248,

1992–1994
Computational anatomy, 1762
Computational efficiency, Geometric Algebra

using Gaalop, 2139–2141
Computerized tomography (CT), 232, 802,

804, 805
Conditional covariance, 1062
Conditional density, 1347
Conditionally Gaussian hypermodels,

1361–1362
Conditional mean (CM), 1062, 1366–1368
Conditional probability, 1061
Conductivity distribution, 489
Cone beam CT, 867–868
Conformal Geometric Algebra, 2136–2139
Congruences, 1864
Conical tilt electron microscope tomography,

microlocal analysis, 889–891
Conical tilt ET, 868–871
Conjugate gradients, 837
Continuity results, X-ray transform,

863–864
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Continuous case
acceptable preferred data, 400–401
missing data, 401–402
preferred data selection, 401

Continuous case with Y D h.X/
censored exponential data, 403–405
example, 402–403
general approach, 405

Continuous-to-discrete (C-D) imaging models,
1105–1106

Contrast transfer function (CTF), 961
Convergence properties, 238–240
Convex analysis, 281–293
Convex Mean Value Theorem, 278
Convolution operator, 346
Convolution theorem, 18, 1727
Correlation, 772
Correlation coefficient, 131
Correspondence problem, 1947–1949
Cost function, 490, 1440
Co-tangential space, 2104
Covariance operator, 1840
Co-vectors, 2104–2105
Covering number, 1443
Cowpea mosaic virus (CPMV), 1020
Crack detection, 479
Cramér–Rao lower bound, 1364
Cross-entropy (CE) problems, 363–366
Cross-range resolution, 785–786
Cryo-fixation method, 942
Csiszár Divergences, 137–141
Curvature-preserving PDE’s, 2152–2156
Curvelet decomposition, 1210–1214, 1239
Cut locus distance function, 1216

D
Data, NGC 2997, 2065
Data access ordering, 818, 832
Data acquisition geometry, 971–973
Data-collection manifold, 776
Data compatibility, 101
Data discrepancy, 976–977
Data model, 2102
Dr. David E. Kuhl, 907
DC-programming, 1980
Deblending, 2059, 2078
Deblurring, 1349–1350
Decoder, 224
Decomposition methods, 675–677
Deconvolution, 50–52, 266–268, 2081–2094
Delaunay mesh, 1872
Denoising, 1349, 1607–1614, 1656
Density estimation, 133–137

Derivative-of-Gaussian (DoG) filters, 1954
Detector model, 982
Deterministic pixel measure, 127
Dichotomy class divergences, 139
Dielectric medium, 1172
Diffeomorphism, 736, 1777–1780, 1798–1800
Difference imaging, 747
Differentiable manifold, 1864
Differential forms, 2119–2122
Differential motion approach, 1950–1956
Differential motion estimation, 1951–1954
Differential path length factor (DPF), 1036
Diffuse source model, 1043
Diffusion approximation (DA)

Boltzmann hierarchy approach, 1040
boundary conditions, 1041–1042
collimated source model, 1042
Monte Carlo diffusion approach, 1044
numerical solution methods, 1043
photon density and photon current, 1040
validity, 1043

Diffusion-based optical tomography (DOT),
1047

Diffusion geometry, 1866–1868
Diffusion kernel, 1866–1868
Diffusion tensors images, 1513–1514
Digital difference analyzer (DDA), 821
Dijkstra’s algorithm, 1874–1875
Dirac delta distribution, 502
Direct regularization methods, 93–107
Direct scattering problems, 652–653

Helmholtz equation, 654–657
Maxwell equations, 661–666
obstacle scattering, 657–660

Dirichlet boundary value problems, 1222
Dirichlet-to-Neumann map, 114, 703,

720–728, 732–734, 739–741
Discrepancy principle, 435
Discrete Fourier transform (DFT), 1735
Discrete geodesics, 1846–1848
Discrete histogram, 131
Discrete modulation, 1735
Discrete path length, 1845
Discrete Picard condition, 57
Discrete reconstruction problem, 816
Discrete-to-discrete (D-D) imaging models,

1108–1109
Discrete total variation, 1477–1479,

1505–1507
Discretized Laplace–Beltrami operator, 1880
Distance functions, 1949
Distorted wave Born approximation, 957
Domain inpainting, 1508
Dose problem, 977–978
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Down-range resolution, 785
Dual and primal-dual methods, 1515–1516
Dual decomposition, 1891
Duality gap, 289
Duality operator, 1774
Dual problem, 1439
Dyadic decomposition, 1240
Dynamic imaging, 1053
Dynamical shape priors, variational

segmentation, 1935–1936
Dyson equation, 1049

E
Edge linking model, 1485
Effective dipole method, 543
Efficient ordering, 832
Eikonal equation, 1235–1236, 1875–1876
Einstein ring, 11
Ekeland’s variational principle, 291
Elasticity-based PCA, 1837–1843
Elastic registration, 149
Elastic regularization functionals, 2012–2014
Elastic scattering, 947
Elastic shape average, 1835–1837
Electrical impedance tomography

bibliography and open questions, 544–545
mathematical model, 538–539
numerical methods, anomaly detection,

541–544
physical principles, 537–538
voltage perturbations, asymptotic analysis,

539–541
Electromagnetic waves scattering, 766
Electron +-tomography (ELT), 994–998
Electron micrograph, 805
Electron microscope tomography (ET),

853–856
Electron microscopy, 805

EM algorithm, 339–341
macromolecular assemblies, 337
maximum likelihood problem, 337–339
weighted least-squares problem, 342

Electron–specimen interaction, 946–947
Electron wave, 947
Electrosensing, 702
Electrostatic potential models, 950
Elliptic equation, 114–116
Embedded manifolds, 1865
Emission computed tomography (ECT), 185
Emission tomography, 330–337

Gibbs smoothing, 347–348
Good’s roughness penalization, 345–347
Poisson random variable, 331–332

regularization, need for, 342–343
Shepp–Vardi EM algorithm, 332–337
smoothed EM algorithms, 343–344

Empirical risk minimization (ERM), 1442
Encoder, 224
Energy function, 1963
Entropy regularization, 1006–1008
Epipolar constraint, 1974
Euclidean geometry, 1864
Euler equations, 345
Euler-Lagrange equations, 1552, 1559, 1566
Euler–Poincaré equation, 1776–1777
Evolution equations, 1802
Exact penalization veto, 101
Expectation–maximization (EM) algorithms,

460–464, 1371–1374
ART and Cimmino–Landweber methods,

374–377
continuous case, 399–405
convergence, 426
Csiszar and Tusnady approach, 409–412
data binning, 323–327
deconvolution problem, 319–327
discrete case, 397–398
empirical Bayes estimation, 329–330
finite mixture problems, 423–426
finite mixtures, 407
Gibbs smoothing, 347–348
Good’s roughness penalization, 345–347
and Kullback-Leibler distance, 407–409
MART and SMART methods, 377–380
maximum-likelihood problem, 311, 317
minimum cross-entropy problems,

363–366
missing data, 398
monotonicity properties, see Monotonicity

properties
multinomial distribution, 414
multinomial example, 406
multiplicative iterative algorithms,

369–370
multiplicative smoothing, 344
non-negative solutions, for linear equations,

417–423
nonnegative least squares, 366–369
NSEM, 391–393
ordered subset EM algorithm, 371–374
Poisson sums, 412
Poisson sums ECT reconstruction problem,

415–416
Poisson sums using KL distance, 417
Radon-Nikodym derivatives, 312
row-action and block-iterative EM

algorithms, 380–384
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Shepp–Vardi EM algorithm, 332–337
smoothing operator, 343
stochastic EM algorithm, 393–396

Explicit vs. implicit shape representation,
1911–1913

Exponential charts, 1768
Extended Kalman filtering (EKF), 1064
Extension, movies, 1614
Exterior algebra, 2108
Exterior product, 2107
Extrapolation of band-limited signal, 19–20

F
Factorization method, 594–595, 654, 692–693

conducting obstacles, 603–610
crack problem, 614–615
half space problem, 612–614
impedance tomography, insulating

inclusions, 595–603
inverse acoustic scattering, sound-soft

obstacle, 616–622
inverse electromagnetic scattering,

inhomogeneous medium, 622–627
local data, 611–612

Fan beam parameterization, 868
Far field approximation, 1179–1181
Far field operator, 269, 682, 686–688
Far field pattern, 653
Farthest point sampling (FPS), 1870–1871
Fast marching methods, 1876
f -Divergences, 137–141
Feature-based methods, 1899–1902
Feature extraction, 1394
Fenchel conjugate, 260, 281–284, 1439
Féjèr monotonicity, 349
Fenchel duality, 284–285
Fermat’s rule, 277
Fermi–Dirac entropy, 282
Fiber-bundle classification scheme, 2114
Fick’s law, 1040–1042
Field properties, 2116–2117
Figure of merit (FOM), 827
Filter, 787
Filtered backprojection (FBP), 782, 787, 811,

864–865, 906, 990–994, 1149
Filtering, 2078
f -Information, 141–146
Finite element method (FEM), 744, 1043
Finite mixture problems

acceptable data, 424
convergence of Mix-EM algorithm, 426
likelihood function, 423
Mix-EM algorithm, 425–426

motivating illustration, 424
probability density functions, 423

Finite time response operator, 1213
First order Born approximation, 956
First order pseudo-differential operator, 709
Fisher information matrix, 1358–1359
Fixed point theory, 292–293
Fleishman’s bilateral filter, 1650
FLIRT, 151
Fluence rate perturbations, 584
Focus of expansion (FOE), 1959–1960
Footprint, 779, 780
FORBILD thorax phantom, 839
Formal adjoint, 781
Forward mapping, 1134–1135
Forward model, 944–971
Forward operator, 474, 491, 966–970
Fourier integral operators, 880–882
Fourier transform, 346, 1092, 1093, 1724–1726
Fréchet derivative, 500
Fréchet distance, 1789
Fragment, 2119
Frame, 1722–1724
Frame bounds, 1722–1724
Frame coefficients, 1723
Frame decomposition, 1723
Frame operator, 1723
Fredholm integral equations, 269–271,

297–298
Free surface boundary condition, 1039
Frequency

bands, 765
domain, nonlinear problem in, 1265–1266
shifts, 1727

Functional photoacoustic tomography,
1088–1089

Function spaces, 859–860
Fundamental solution, 766
Fuzzy C-means, 1650

G
Gabor analysis, 1718

Bessel sequences, Hilbert spaces,
1720–1721

convolution, involution and reflection, 1727
discrete gabor systems, 1734–1738
Fourier transform, 1724–1726
frame bounds, 1722
frame decomposition, 1723
non-separable atoms, 1751–1752
orthonormal basis, 1721–1722
pseudo-inverse operator, 1719–1720
sampled STFT, 1746–1747
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Gabor analysis (cont.)
STFT, 1727–1730
tight frames, 1724
time-frequency shifts, 1731, 1733
translation and modulation, 1726–1727

Gabor atom, 1732
Gabor frame theory

finite discrete periodic signals, 1735–1736
in `2.Z/, 1734–1735
in C

L, 1736–1738
in L2.Rd /, 1730–1734

Galilei, Galileo, 7–8
Gaussian beams, 1230–1234
Gaussian low-pass filter, 1954
Gaussian matrices, 221
Gaussian noise, 1356
Gaussian point spread function, 17, 19
Gauss map, 128
Gauss-Newton method, 68, 69
Gelfand widths, 210–211, 224–227
Generalized cross validation (GCV), 66
Generalized Kaiser-Bessel window function,

814
Generalized Kullback–Leibler (KL)

divergence, 2085
Generalized multidimensional (GMDS)

scaling, 1889–1891
Generalized portrait algorithm, 1398
Geodesic active contour model, 1484–1486
Geodesic equation, 1766–1767
Geodesic path, 1829
Geodesics, 1865
Geometric Algebra, 2109–2110, 2132
Geometrical optics, 954–955, 1237–1238
Geometric realization, 1872
Global minimizers, 170
Global point signature (GPS), 1888
Global stability, 730–731
Golub-Kahan bidiagonalization (GKB), 62
Gradient descent evolution, kernel density

estimator, 1929–1930
Gradient direction, 501
Gradient methods, 435
Grady segmentation method, 1635
Graph cut methods, 1524
Green’s function, 767, 1045–1046, 1048, 1049,

1152
Green’s operator, 1055
Green-St.-Venant strain tensor, 2013
Grenander’s theory of deformable templates,

1762
Gromov–Hausdorff distance, 1822, 1888–1891
Gromov–Wasserstein distance, 1892
Group testing, 211

H
Hahn–Banach/Fenchel duality circle, 275
Hahn–Banach theorem, 275–276
Half-time reconstruction problem, 1102–1104
Hamilton flow, 1244
Hamiltonian approach, 1772–1773
Hamilton–Jacobi-type equation, 497
Hammersley–Clifford theorem, 1353
Hand-written digit recognition, 1425–1427
Hankel transform, 1146
Hard margin classifier

linear learning, 1400–1402
nonlinear learning, 1413–1414

Hard margin regression nonlinear learning,
1414–1415

Hausdorff distance, 1789, 1883–1884
Hausdorff measure, 1548
Hausdorff topology, 2112
Heating function, 1084
Heat kernel, 1867
Heat kernel signature (HKS), 1900
Heat operator, 1868
Heaviside function, 499
Helical CT, 805
Helmholtz equation, 654–657, 1147
Henyey–Greenstein scattering function, 1038,

1040
Herglotz wave function, 677
Hessian matrix, 81
High-range-resolution (HRR) pulse, 773
Hilbert spaces, 96–98, 104–106, 1763
Hinge loss function, 1403
Histogram, 2119

concentration, 1635–1639
Hoffman phantom, 924
Hölder regularity, 1467–1468
Holder stability, 1133–1135
Homeomorphism, 1217–1221
Homogeneous coordinates, 1956
Homology, 2128–2130
Horizontality condition, 1772
Horn and Schunck approach, 1964–1967
Huygens’ principle, 659, 677–682
Hybrid method, 678
Hyperelastic regularization functionals,

2014–2015
Hyperelastic regularizer, 2015

I
Illumination, 945–946
Image, 50

deblurring, 50–52
denoising, 266–268
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dose, 983
formation, 1349
kernel, 784
mode, TEM, 941–942
motion analysis, 1946
processing, 1676, 1701, 1704, 1705
reconstruction, 472–585, 811, 904
registration, 126, 148–149
restoration, 1488–1495
restoration with impulsive noise,

1573–1577
segmentation, 1511–1513, 1910
segmentation via Bayesian inference,

1913–1915
Image quality (IQ) phantom, 923
Impediography

bibliography and open questions, 565
mathematical model, 563–564
physical principles, 561–562
substitution algorithm, 564–565

Implicit shapes
dynamical shape priors, 1931–1936
linear dynamical models, 1934

Impulse response, 784
Incident field, 767
Inelastic electron scattering, 949–952
Inexact matching, 1810–1811
Inexact Newton methods, 73
Infimal convolution, 283
Infrared thermal imaging

asymptotic analysis, temperature
perturbations, 555–557

bibliography and open questions, 560
numerical methods, 549–554
physical principles, 555

Inhomogeneous coordinates, 1956
Inhomogeneous medium, scattering, 660–661,

669–671
Initial-boundary value (IBV) problem, 1126
Initial convex sequence estimator (ICSE), 1381
Initial monotone sequence estimator (IMSE),

1381
Initial positive sequence estimator (IPSE),

1380
Inpainting, 1349
Integrated autocorrelation time (IACT), 1380
Integrated data function, 1092
Intensity-based image registration technique,

150
Intensity operator, 962
Interpolation by radial basis function,

1417–1418
Interscale relation, 2077
Intrinsic alignment

invariance, 1923–1924
translation invariance, 1924–1925

Intrinsic symmetry, 1897–1898
Invariance, 1947–1949
Invariant shape similarity, 1861, 1882–1883

canonical forms, 1885–1888
graph-based methods, 1891
Gromov–Hausdorff distance, 1888–1891
Gromov–Wasserstein distances, 1892–1893
rigid similarity, 1883–1885
shape DNA, 1893

Inverse, 811
Inverse attenuated Radon transform (IART),

906, 910–911, 917–918
Inverse crime, 1383
Inverse gamma distribution, 1361
Inverse kinematic problem, 1209
Inverse medium problem, Newton iterations,

682–683
Inverse problems, 977–985
Inverse Radon transform, 906, 913–917
Inverse scattering, 268–269, 296–297, 1275

iterative and decomposition methods,
672–686

problem, 652
qualitative methods, 686–696
uniqueness, 667–671

Inverse synthetic-aperture radar (ISAR),
774–775

resolution, 784–785
Involution, 1727
Isometric embedding, 1869
Isometry, 1863
Isotropic undecimated wavelet transform

(IUWT), 2062
Iteration operator, 313, 353
Iterative algebraic techniques, 1153
Iterative closest point (ICP) algorithms, 1884
Iterative image reconstruction, 1110–1113
Iteratively regularized Gauss–Newton method,

451–455
Iteratively reweighted least squares (IRLS),

236–243
Iterative methods, 1001–1005, 1471–1477
Iterative regularization, 37–39, 61, 435
Iterative step, 818
ITK, 151

J
Jacobian matrix, 747
Jensen-Shannon divergence, 138
Joint restoration and segmentation,

1582–1584
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K
Ka-band, 765
Kaczmarz method

in frequency domain, 1266
time domain, 1261–1263

Kaczmarz method time domain, 1261–1263
Kaczmarz’s algorithm, 32
Kaczmarz-type methods, 458–460
Kalman filtering, 1064
Karcher mean, 1803
Kendall’s theory, 1760
Kernel density estimation, 134–135

level set domain, 1926–1929
Kernel-trick, 1412–1413
Kirchhoff imaging, 554
Kirchhoff/physical optics approximation,

659
Kirchhoff–Poisson formulas, 1143
Kirchhoff-type imaging, broad range of

frequencies, 551–552
Kriging, 1415–1419
Ku-band, 765
Kuhn-Tucker conditions, 1438
Kullback–Leibler divergence, 138,

309–310, 315

L
Lagrange multipliers, 289–291, 1437
Lagrangian duality, 287–289
Landweber iteration, 39
Landweber method, 61
Laplace–Beltrami operator, 734, 1865
Laplacian field, 110
Laplacian kernels, 1771
Laplacian operator, 1083
Large deformation diffeomorphic metric

mapping (LDDM), 1013
Large deformation diffeomorphic metric

matching (LDDMM) approach, 1987
Laser-based photoacoustic tomography,

1086–1087
Layered medium, 1193–1194
L-band, 765
L-curve, 67
Least squares cost functionals, 500–501
Least squares methods, inverse medium

problem, 683–685
Lebesgue-space, 1821
Lens-less imaging, 960
Lens rigidity problem, 1210
Level set methods, 1851

binary media, 479–481
color level set, see Color level set technique

cost functionals, 490
cracks/thin shapes, 487–489
Eulerian derivatives, 492–493
geometric quantities, 495–497
material derivative method, 493–494
piecewise constant level set function,

482–483
single smooth level set function, 482
transformations and velocity flows,

491–492
vector level set, 483

Levenberg–Marquardt method, 447–451
Likelihood density, 1348
Likelihood distribution, 1061
Limited angle Lambda CT, 867
Limited data X-ray CT, 887–888
Linear approximations, 1052–1053
Linear detectors, 1124–1125
Linear diffusion, 1634–1639
Linear discriminants, 1398
Linear Gaussian shape priors, 1916–1920
Linear hard margin support vector classifier,

1398
Linear inverse problems, 262–263,

293–295
alternating projection theorem, 31–32
band-limited signals, 19–20
compact operators and SVD, 27–30
Cormack’s inverse problem, 14–16
deblurring problem, 17–19
discretization, 39–43
forward and reverse diffusion, 16–17
iterative regularization, 37–39
linear operators, 25–27
Moore–Penrose inverse, 30–31
PET, 20–21
Platonic inverse problem, 11–14
renaissance, 7
Tikhonov regularization, 32–37
weak convergence, 23–25

Linear learning, 1398–1410
Linear least squares approach,

1396
Linear sampling method, 593, 628–631, 653,

688–691
Lippmann–Schwinger equation, 660, 1178

frequency domain, 768
integral equation, 654, 768

Lipschitz properties, 272–273
Lipschitz stability, 1133–1135
Lloyd–Max algorithm, 1871
Local energy decay estimates, 1132
Local minimizers, 168–170
Logistic loss functions, 1407
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M
Magnetic induction tomography (MIT), 706
Magnetic resonance elastography

asymptotic analysis, displacement fields,
575–577

bibliography and open questions, 579–580
mathematical model, 573–575
numerical methods, 578–579
physical principles, 573

Magneto-acoustic imaging
magnetic resonance elastography, 573–580
magneto-acousto-electrical tomography,

567–570
photo-acoustic imaging of small absorbers,

580–584
with magnetic induction, 570–572

Magneto-acousto-electrical tomography
mathematical model, 567–568
physical principles, 567–570
substitution algorithm, 568–570

Majorization-minimization (MM), 1530–1532
Marginal densities, 1346
Marginal polytope, 1986
Markov chain, 1376
Markov Chain Monte Carlo (MCMC)

sampling, 1374–1382
Markov model, 1351
Markov random field (MRF), 1353
Matched filter, 770–772
Material derivative method, 493–494
Mathematical shape theory, 1760
MATLAB code, 75, 77
Matrix-valued total variation, 1505
Matsushita’s Divergences, 140–142
Max formula, 278
Maximal flow methods, 1477–1482
Maximal violating pair strategy, 1448
Maximum a posteriori (MAP) estimate, 751,

2086
Maximum a posteriori (MAP) estimation,

1062, 1366
Maximum entropy method, 1006
Maximum likelihood (ML) method, 2083
Maximum likelihood and Fisher information,

1358–1359
Maximum likelihood estimation, 306–309
Maxwell’s equations, 661–666, 1172

in Fourier domain, 1173–1174
initial conditions of, 1174–1175

Mean curvature motion (MCM), 1656–1657
Measurement matrix, 214
Measurement vector, 810
Membership functions, 1896
Mercer kernels, 1412

Mercer’s theorem, 1430–1431
Merit function, 490
Metric discretization

diffusion distance, 1880–1882
Dijkstra’s algorithm, 1874–1875
eikonal equation, 1875–1876
implicit surfaces and point clouds, 1880
metrication errors and sampling theorem,

1875
parallel marching, 1878–1880
parametric surfaces, 1878
triangular meshes, 1876–1878

Metric distortion, 1768
Metric spaces, 1863

diffusion distances, 1868
diffusion geometry, 1866–1868
Euclidean geometry, 1864
isometries, 1863
Riemannian geometry, 1864–1866
topological spaces, 1863

Metrication error, 1875
Microlocal analysis, 871–883
Microlocal analysis, X-ray CT, 884–887
Microlocal regularity principle, 995
Microwave breast screening, 475–477,

523–525
Middlebury database, 1962
Migration imaging expectation,

1316–1317
Migration imaging SNR, 1318–1319
Modeling error, 1383
Modica-Mortola theorem, 1551
Modulation operator, 1734
Modulation transfer function, 1493–1494
Moment conditions, 1142
Moment generating function (MGF), 1058
Momentum map, 1775
Momentum representation, 1767
Monge-Kantorovich formulation, 1989
Monotone operator, 292
Monotonicity method, 743
Monotonicity properties

Féjèr monotonicity, 349
function inequality, 353
Gibbs smoothing, 359–362
Shepp–Vardi EM algorithm, 350–352
smoothed EM algorithm, 354–359

Monte Carlo diffusion approach, 1044
Morozov principle, 1007
Morozov’s discrepancy principle, 34
Morphological measures, 128–129
Motion compensated filter, 1614
Motion field, 1951
MR image reconstruction, 199
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Multi-frame blind deconvolution (MFBD), 52,
78–81

Multi-scale finite element approximation,
1852–1853

Multi-slice method, 956
Multi-task-learning, 1423
Multichannel total variation, 1504
Multidimensional scaling (MDS), 1887
Multiple anomalies detection, 543–544,

559–560
Multiplicative art algorithm (MART), 377–380
Multiplicative noise removal, 195–196
Multipolar fluids, 1828
Multiresolution analysis, 1676, 1677, 1679,

1681, 1685–1690
Multiresolution support, 2077
Multiscale vision model, 2075, 2076
Multivariate Gaussian random variable, 817
Mumford-Shah functionals, 498
MUSIC, 631–635
MUSIC-type algorithm, 543–544
MUSIC-type imaging, single frequency,

549–550

N
Nachman’s method, 754
Nash embedding theorem, 1866
Near-infrared (NIR) frequency, 1089
Neighborhood filter/sigma filter, 1600, 1647
NEMA NU 4-2008 phantom, 928
Neumann function, 539
Newton iterations, inverse obstacle scattering,

672–675
Newtonian fluid, 1827
Newton’s method, 1805–1806
Newton type methods, 447–458
NL-means algorithm, 1609–1616
Noise, 771
Nonasymptotic bounds, 170–172
Non-blind restoration, 1570
Non-convex functionals, 1979–1981
Non-convexity of Squad, 2014
Non-convex model, 1420
Nonconvex regularization, 172–178
Nonlinear elasticity model, 1841
Non-linear image registration

distance functionals, 2010–2012
ill-posedness and regularization, 2012
image, 2008–2009
mathematical setting, 2007–2008
transformation, 2008–2010
variational formulation, 2008

Nonlinear Landweber regularization, 435–442

Nonlinear learning, 1410–1428
Nonlinear maximization, 1370–1371
Nonlinear problem frequency domain, 1265
Nonlinear smoothing operator, 344
Nonlinear statistical shape priors, 1918–1920
Nonlocal Mumford-Shah regularizers,

1584–1592
Nonlocal total variation, 1507
Non-negative solutions, for linear equations

acceleration, 418–422
general case, 418
regularization, 418
using prior bounds on, 420–423

Non-physical scattering transform, 756
Non-rigid volumetric objects, 1827–1834
Non-smooth convex functionals, 1977–1979
Nonsmooth regularization, 178–185
Nonstationary inverse problems, 1063–1065
Nonstationary Neumann-to-Dirichlet map,

1207
Non-stochastic EM algorithm (NSEM)

continuous case, 391–393
discrete case, 393

Non-topological representations, 2118–2119
Non-trapping condition, 1131
Non-uniqueness set, 1127–1130
Nonlinear problem frequency domain, 1265
Normal cone mapping, 267
Normal velocity, 496
Notions of resolution, 1015
Nuclear magnetic resonance (NMR) imaging,

207
Nuclear norm minimization, 227
Nuisance parameters, 981
Null hypothesis, 829
Null space property, 216–217
Nyquist-Shannon sampling theorem, 1952

O
Object classification, 2059
Object reconstruction, 2092
Obstacle scattering, 657–660, 667–671
Ogden materials, 2015
One-step late (OSL), 1374
Online estimation methods, 1995
Ontological scheme and seven-level hierarchy,

2113–2116
Optical coherence tomography (OCT), 1171

forward operator of, 1181–1185
frequency domain, 1171–1172
full field, 1171
measurements of, 1175–1177
polarization-sensitive, 1172
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standard, 1171
time domain, 1171–1172

Optical imaging
adjoint field method, 1054–1055
diffusion approximation, see Diffusion

approximation (DA)
error models, construction of, 1071–1072
experiment and measurement parameters,

1067–1070
FEM meshes and discretization accuracy,

1070–1072
forward mapping, 1046–1047
light propagation and probabilistic

interpretation, 1056–1059
linearization, 1052–1053
MAP estimates, 1072–1074
perturbation analysis, 1048–1049
prior model, 1069–1071
radiative transfer equation, 1037–1039
Robin to Neumann map, 1046
Schrödinger form, 1047–1048
spectroscopic measurements, 1035–1036

Optical tomography
Bayesian framework, see Bayesian

framework
image reconstruction, 1059

Optics, 957–962
Optimal control formulation, 1811–1812
Optimal current patterns, 713
Optimal transport, 1988–1991
Ordered subset EM algorithm (OSEM),

371–374
Order of approximation, 1686
Orthogonality condition, 1142
Orthonormal set, 23
Overcomplete frame, 1724

P
Parabolic scaling, 1240
Parallel beam geometry, 972
Parallel beam transform, 869
Parallel marching, 1878
Parameter distribution, 482
Parametric maximum flow algorithm, 1481
Parametric shape representations, 1915–1920
Parametrix approach, 1153–1155
Parametrix-type reconstructions, 1158
Parseval’s identity, 23
Parseval’s theorem, 1867–1868
Partial similarity, 1893–1896
Partial symmetry, 1898
Path-based shape spaces, 1822
Path-based viscous dissipation, 1827–1831

Path optimization, 1807
PDE models and local smoothing filters,

1614–1618
Perona-Malik model, 1618, 1625
Persistent radar, 795
Perturbation analysis

Born approximation, 1048–1049
Rytov approximation, 1049–1051

Petroleum engineering, 477–479, 525–527
Phase field approach, 1851–1852
PhaseLift algorithm, 230
Phase retrieval problem, 227, 229–230,

987–988
Photo-acoustic imaging, small absorbers

bibliography and open questions, 585
mathematical model, 580–581
physical principles, 580
reconstruction algorithms, 581–584

Photoacoustic tomography (PAT), 1118–1163
acoustic heterogeneities, 1103–1104
data redundancies, 1102
discrete imaging models, 1104–1106
finite-dimensional object representations,

1107–1108
finite transducer bandwidth, 1096
Fourier-Shell identity, 1093–1094
frequency-dependent acoustic attenuation,

1099–1100
functional PAT, 1088–1089
laser-based PAT, 1086–1088
non-point-like transducers, 1097–1099
RF-based PAT, 1087–1088
speed-of-sound distribution, 1100–1102
thermoacoustic effect and signal generation,

1083–1086
thermoacoustic tomography, see

Photoacoustic tomography (PAT)
universal backprojection algorithm,

1092–1093
Photometry, 2059
Photon measurement density function (PMDF),

1053
Picard’s criterion, 29
Picture distance measure, 826
Picture function, 810
Piecewise-constant mumford and Shah

segmentation, 1558–1561
Piecewise-smooth Mumford and Shah

segmentation, 1561–1567
Pixel, 813
Pixelization, 965
Planar detectors, 1123–1125
Point detectors, 1120
Point source method, 676
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Point-spread function (PSF), 51, 784, 2094
Pointwise perturbations, 548
Poisson–Kirchhoff formula, 1121
Poisson likelihood, 1374
Poisson noise, 2070
Poisson process, 1372
Polar Cone Calculus, 286
Polar format algorithm (PFA), 787
Polarization tensor, 543
Polarization tensor properties, 541
Polyharmonic B-splines, 1694–1695,

1701–1705
Polynomial kernel, 1433
Pontryagin maximum principle (PMP)

theorem, 1773
Positron emission tomography (PET), 20–21,

51, 909, 2011
maximum likelihood problem, 349
Shepp–Vardi EM algorithm, 332–337

Potential function (PF), 159, 172–173
Potential method, 675
Precision, 1362
Pressure perturbations, 546
Primal-dual active-set method,

1519–1521
Primal dual algorithm, 233–236
Primal-dual approaches, 1475–1477
Primal-dual hybrid gradient method,

1518–1519
Principal component analysis, 1821
Prior, 817
Prior density, 1348
Probabilistic models, 1994–1995
Probability density, 1375
Probability density function (PDF), 309,

817, 1058
Probability distribution, 1346–1348
Probe method, 637–639
Projection approximation, 956
Projection matrix, 816
Projection method, 822
Proximal mapping, 284
Pseudodifferential operators, 875–880
Pseudo-inverse operator, 1719
Pshenichnyi–Rockafellar Conditions,

287
Puri-Vincze divergences, 140
Pythagorean theorem, 7, 30

Q
Quadratic programming, 1527–1528
Quantum mechanical models, 951
Quantum mechanics, 970

Quasiphotons, 1231
Quotient spaces, 1783–1784

R
Radar imaging, 232
Rademacher’s theorem, 164
Radial basis functions (RBF), 1654
Radiative transfer equation (RTE), 1037–1039
RAdio Detection And Ranging (Radar), 764

SAR, see Synthetic aperture radar (SAR)
imaging

Radon line transform, 860–863
Radon, Johann, 9
Radon transform, 777, 810
Radon’s inversion formula, 803
Random media, imaging

in cluttered media, 1303
in forward model, 1283–1288
in least squares inversion, 1292
in long range scaling and Gaussian

statistics, 1308–1309
in normal operator, 1294–1295
in passive arrays, 1295–1298
in random model, 1303–1305
in robustness to additive noise, 1299–1301
in setup for imaging, 1313–1314
in statistical moments, 1309–1313
in time reversal process, 1292–1294
in wave propagation, 1306–1307

Random partial Fourier matrices, 222–223
Range

alignment, 788–791
resolution, 785

Range alignment, ISAR, 788–791
Ray optics, 958–959
Ray transform, 944
Read-out noise, 965
Reciprocity, 710
Reciprocity gap function, 691
Reconstruction algorithm, 810
Reconstruction formula for OCT, 1185–1202

for a dispersive layered medium with
focused illumination, 1193–1196

for a dispersive medium, 1189–1193
for a non-dispersive medium, 1188
for a non-dispersive medium with focused

illumination, 1188–1189
for an anisotropic medium, 1196–1202

Reconstruction methods, 988–1014
Reconstruction problem, 742–757
Reconstruction problem, electron tomography,

974–977
Reconstruction procedure, 756
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Redundant frame, 1724
Reflectors, 1271–1273
Region competition segmentation, 1634
Region of interest (ROI) data, 888
Regression, 1395
Regression correction, neighborhood filter,

1625–1628
Regularization Concave on RC, 197–199
Regularization parameters, 66–67
Regularization scheme, 751
Regularization theory, 32–34
Regularized iterative non-linear methods,

749–753
Reinforcement learning, 1395
Relative entropy, 142
Relativistic corrections, 949
Relaxation parameter, 819, 836
Rellich’s lemma, 656, 663
Reproducing kernel Hilbert spaces (RKHSs),

1415–1419, 1428–1436, 1764–1765
Resolution

cross-range, 785–786
range, 785

Restoration of noisy signal, 183
Restricted isometry property (RIP), 217–220
Richardson-Lucy (RL) algorithm,

2087–2089
Ridge regression, 1397, 1408
Riemannian geometry

embedded manifolds, 1865
geodesics, 1865
n-dimensional manifold, 1864
Riemannian metric tensor, 1865
rigidity, 1866

Riemannian manifolds, 1206, 1211–1214,
1774, 1826–1827, 1865

Riemannian metric, 1209, 1765
Riemannian metric tensor, 1865
Riemannian shape space, 1823
Riemannian submersion, 1769–1770
Riesz basis, 1678
Riesz–Fredholm theory, 658
Riesz potential, 787
Riesz representation theorem, 24, 1763
Right-inverse operator, 1719
Rigid similarity, 1883–1885
Rigid symmetry, 1897
Robin boundary condition, 1043
Robin to Dirichlet map, 1046
Robust linear programming (RLP), 1420
ROI tomography, 866–867
Rollnick condition, 952
Root-mean-square error (RMSE), 1657
Rotating targets, 775

Row-action method, 821
Rytov approximation, 1049–1051

S
Sampling and probe methods, 742
Sampling theory, 1011
Sandwich theorem, 278
SAR imaging, 891–895
Scalar curvature equation, 1221
Scale-invariant heat kernel signatures

(SI-HKS), 1901
Scaled gradient projection (SGP), 2088
Scaling function, 1677, 1679, 1683
Scattered field model, 770
Scattering operator, 948
Scattering phase function, 1038
Scattering relation, 1238–1240
Schrödinger equation, 718–720
Schrödinger form, 1047–1048
Second dyadic decomposition,

1240–1242
Second generation starlet transform algorithm,

2066–2068
Second-order cone programming (SOCP),

1529–1530
Segmentation problem, 1540
Selection rules, 1007
Self-similarity and symmetry

intrinsic symmetry, 1897
partial symmetry, 1898
repeating regular structure, 1899
rigid symmetry, 1897
spectral symmetry, 1897–1898

Semi-blind restoration, 1570–1572
Semi-smooth newton’s method, 1519
Sensitivity functions, 1053–1054
Separatrices, 2147–2148
Sequential discrepancy principle, 100
Series expansion method, 813
Shannon entropy, 142
Shape derivative, 495
Shape discretization

implicit surfaces, 1873
parametric surfaces, 1873
sampling, 1869–1870
simplicial complexes, 1872–1873

Shape distances, level sets, 1922–1923
Shape distribution, 1884
Shape DNA, 1893
Shape evolution

calculus of variations, 500–505
Eulerian derivatives, 492–493
geometric constraints, 497–499
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Shape evolution (cont.)
gradient direction, 501
Heaviside function, 507–512
least squares cost functionals, 500–501
material derivative method, 493–494
rough level set functions, 514
and shape optimization, 516–518
simple shapes and parameterized velocities,

516
smooth velocity fields, 515
smoothed level set updates, 512–514
of thin shapes, 504–505
TM-waves, 503–504
transformations and velocity flows,

491–492
velocity field, 502–503

Shape identification problems, 592
Shape sensitivity analysis, 492–493

min-max principle, 506–507
TM-waves, 506

Short-time Fourier transform (STFT),
1727–1730

efficient Gabor expansion, 1746–1747
modulation priority, 1747–1751
translation priority, 1748, 1751
visualization, 1747–1751

Shot noise, 964–965
Shrinkage estimators, 192
Shrinking, 1448
Shunt model, 704
Signal-to-noise ratio (SNR), 771, 1071
Silver–Muller finiteness conditions, 663
Silver–Muller radiation conditions, 662
Similarity filters, 1653–1655
Simultaneous algebraic reconstruction

technique (SART), 1004
Simultaneous iterative reconstruction

technique, 1004
Simultaneous multiplicative algebraic

reconstruction technique (SMART),
377–380

Single anomaly detection, 542–543, 557–558
Single frequency

backpropagation-type imaging, 550–551
MUSIC-type imaging, 549–550

Single photon emission computed tomography
(SPECT), 909, 1372

Singular sources method, 635–637
Singular support and wavefront set, 871–874
Singular value decomposition (SVD), 28,

57–59
Skeleton level, 2117
Skin depth, 707
Slater condition, 291

Small angle approximation, 955
Small-angle case

cross-range resolution, 785–786
down-range resolution, 785

Small-scene approximation, 772–773
Smooth approximations, 1245
Smoothness and support conditions, 1142
SNARK09, 822
Sobolev functions, 1542
Sobolev metrics, 1794
Sobolev spaces, 1212
Soft field imaging, 710
Soft margin classifier nonlinear learning,

1402–1404, 1414
Soft margin regression linear learning,

1404–1407
Soft margin regression nonlinear learning,

1415
Sommerfeld’s finiteness condition, 655
Sonography, see Ultrasound imaging
Source conditions, 434, 456
Space-variant restoration, 1579–1582
Sparse approximation, 210
Sparse modeling, 2069
Sparsity, 213–214
Sparsity data model, 2061
Sparsity promoting regularization, 1011–1013
Spatio-temporal approach, 1973
Spearman’s rank correlation coefficient, 151
Spectral analysis, 912
Spectral factorization, 59
Spectral symmetry, 1897–1898
Spectral theorem, 1429–1430
Spherical Bessel function, 1142
Spherical mean operator, 1121–1122
Spiral CT, 805, 839
Spline interpolation problem, 1764
Spline reconstruction technique (SRT)

PET, 918–922
SPECT, 930–933

Split Bregman iteration, 1523–1524
Splitting methods, 1532–1534
Spotlight SAR, 780
Standard phase contrast model, 967–968, 979
Star-galaxy separation, 2059
Staring radar, 795
Starlet reconstruction, 2064–2066
Starlet transform, 2056
Starlet wavelet transform, 2062
State-based approach, 1826
State-based elastic deformation, 1829–1833

vs. path-based dissimilarity measure,
1833–1834

State estimation framework, 1064
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State space representation, 1064
Static relative permittivity, 475–477
Statistical distance measures, 130–146
Statistical hypothesis testing, 826
Statistical methods

additive noise model, 1354–1357
counting noise, 1357
hierarchical models, 1359–1362
informative/noninformative priors, 1359
maximum likelihood and Fisher

information, 1358–1359
maximum likelihood and maximum a

posteriori estimation, 1363–1366
Statistical significance, 827
Steepest descent and minimal error method,

446
Stochastic EM algorithms, 313

acceptable data, 396
conventional formulation, 394
E-step and M-step, 393–394
incorrect proof, 395–396

Stochastic filtering, 1995
Stopping rules, 434–435
Stratton–Chu formula, 662
Streak line, 2142
Structure determination problem, 939
Structure tensor, 1969
Subdifferential, 275–276

subdifferential sum rule, 279
Sublinear function, 274
Sum-of-squared-difference (SSD), 2011
Superiorization methodology, 822
Superresolution, 1509–1511
Surface impedance, lower bounds, 693–695
SUSAN filter, 1602
Synthesis operator, 1720
Synthetic aperture radar (SAR)

spotlight, 780
Synthetic aperture radar (SAR) imaging,

779–782, 856–858
applications, radar imaging, 792–796
historical background, 764–766
mathematical analysis of methods survey,

774–786
mathematical modeling, 766–773
numerical methods, 787–791
radar frequency bands, 765
spotlight SAR, 780–782
stripmap SAR, 781–782
unmodeled motion, problems related to,

792–793
unmodeled scattering physics, problems

related to, 792–796
System matrix, 1108

T
Tangent space, 1864
Tangent vector, 1864
Tangential divergence, 494–495
Tangential vectors, 2104
Tartaglia, Niccolò, 7
Temporal coherence of silhouettes, 1932
Tensors, 2105–2107
TE-waves, 507
Thermoacoustic tomography (TAT),

1118–1163
Tight frame, 1722
Tikhonov regularization, 32–38, 96–98
Tikhonov regularized solution, 1363
Time-correlation single photon counting

(TCSPC) systems, 1036
Time-frequency lattice, 1731
Time-frequency shifts (TFshifts), 1726
Time line, 2142
Time-reversal imaging, 552–554
Time shift, 1726
Tobacco mosaic virus (TMV), 1020
Tomographic transforms properties, 859–871
Tomography, 801–842
Tomosynthesis, 53–55, 81–85
Topological derivatives, 520–522
Topological realization, 1872
Topological skeletons, 2117–2118
Topological space, 1863
Topology, 2130–2132
Total variation (TV), 1503–1507

denoising problem, 266
functionals, 498
regularization, 161, 172, 1008–1011

Trace-based PDE’s, 2152
Traditional data model, 2057
Transfer admittance, 710
Transform method, 811
Transform pairs construction, 911–912
Transition function, 1864
Transitive group action, 1784–1786
Translation and scale invariance via alignment,

1925–1926
Translation operator, 1726
Transmission eigenvalues, 695–696
Transmission electron microscope (TEM), 807,

940–943
Transport equation, 1237–1238
Transport theory, 1037
Transportation map, 1989
Trapping condition, 1131
Triangle inequality, 1863
Triangular meshes, 1872, 1876–1878
Trilateral filters, 1652–1653
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Turntable geometry, 775
TV denoising problem, 1463–1468
Two-dimensional case, 1623–1625

U
Ultrasound imaging, anomaly detection

bibliography and open questions, 554–555
frequency domain, asymptotic formulas,

545–546
numerical methods, 549–554
physical principles, 545
time domain, asymptotic formulas,

547–548
Ultrasound imaging, by wave equation,

1253–1275
Unbounded linear operators, 26
Unconditional basis, 1721
Unification, mathematical systems, 2134
Uniform handling, different geometric

primitives, 2135–2136
Uniform uncertainty principle, 211
Unique continuation principle, 660
Uniqueness of reconstruction,

1135–1136
Uniqueness set, 1127
Universal backprojection algorithm,

1092–1093
Universal backprojection formula, 1149

V
Vanderbilt database, 151
Variable projection method, 70
Variational image registration, 1987
Variational image restoration, 1567–1569
Variational inequalities, 106–107
Variational methods, 1005–1013
Variational principles, 291–292
Variational regularization, 59–60, 98–104
Vector and fiber bundles, 2110–2111
Vector field visualization, 2141–2149
Vector level set, 483
Vector-valued case, 1628–1632
Vertical bundle, 1780

Viscosity solution, 1876
Viscous fluid shape space, 1843–1849
Viscous moment tensor, 577
Visibility condition, 1139–1140
Visible (audible) singularities, 1136–1137
Visualization, 805
Voltage perturbations, asymptotic analysis,

539–541
Volterra iteration scheme, 1247
Voronoi regions, 1870

W
Walking person, 1930–1931
Wasserstein distances, 1885
Wave equation, 766–767
Wave equation model, 1119–1120
Wavelet denoising, 2073
Wave packets, 1210–1214
Weak-scattering/single scattering

approximation, 769
Weighted back-projection (WBP), 813,

990–994
Weighted boundary measurements

perturbations, 547
Weil–Peterson metric, 1797
Well-posed problem, 4
Wentzel–Kramers–Brillouin (WKB)

approximation, 954–955
Weyl–Heisenberg frame, 1731
White Gaussian noise Removal, 178, 192–194

X
X-band, 765
X-ray tomography (CT), 849–853

Y
Yosida approximation, 284

Z
Zero-boundary condition, 1041
Zero level set, 480
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