HANDCRAFTED 6SS

@© More Bulletproof Web Design

DAN CEDERHOLM
with Ethan Marcotte

New
Riders

VOICES THAT MATTER™

M.al I itebooks.cogi

http://www.allitebooks.org

Handcrafted CSS: More Bulletproof Web Design
Dan Cederholm with Ethan Marcotte

New Riders

1249 Eighth Street

Berkeley, CA 94710

510/524-2178

510/524-2221 (fax)

Find us on the Web at: www.newriders.com

New Riders is an imprint of Peachpit, a division of Pearson Education.
To report errors, please send a note to: errata@peachpit.com
Copyright © 2010 by Dan Cederholm

Editor: Rebecca Gulick

Production Editor: Hilal Sala

Contributing Writer: Ethan Marcotte

Technical Reviewer: Brian Warren

Copy Editor: Liz Welch

Proofreader: Elle Yoko Suzuki

Compositor: David Van Ness

Indexer: Jack Lewis

Cover Designers: Dan Cederholm with Mimi Heft
Cover Production: Michael Tanamachi, shelftown

Notice of Rights

All rights reserved. No part of this book may be reproduced or transmitted in any form by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. For information on getting permission for reprints and excerpts,
contact permissions@peachpit.com.

Notice of Liability

The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of the book, neither the authors nor Peachpit shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to be
caused directly or indirectly by the instructions contained in this book or by the computer software
and hardware products described in it.

Trademarks

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and Peachpit was aware of

a trademark claim, the designations appear as requested by the owner of the trademark. All other
product names and services identified throughout this book are used in editorial fashion only and for
the benefit of such companies with no intention of infringement of the trademark. No such use, or the
use of any trade name, is intended to convey endorsement or other affiliation with this book.

ISBN 13: 978-0-321-64338-4
ISBN 10: 0-321-64338-0

987654321
Printed and bound in the United States of America

M.al | itebooks.cogl

http://www.allitebooks.org

For Tenley,.

M.al | itebooks.cogl

http://www.allitebooks.org

Acknowledgements

To Ethan Marcotte for agreeing to write an absolute gem of a chapter for the
book. It’s worth the cover price for his efforts alone.

To Brian Warren for being an excellent technical editor, all-around great guy,
and fellow beverage aficionado.

To Rebecca Gulick for yet again making the craft of book-writing a pleasant
one. | could write 1000 more books so long as Rebecca is steering the ship.
You probably don’t want me to write 1000 more books, but just so we’re clear
that it’s possible because of her expertise.

To Liz Welch for going above and beyond the task of copyediting. Liz makes
me sound far better than I actually do.

To Mary Sweeney for helping a video newbie and producing a great product.

To Peachpit Press and the team at New Riders for publishing this book
(and DVD).

To Meagan Fisher for help with research, feedback, and owltasticness.

To the folks at An Event Apart, Web Directions, Webstock, Web Design
World, @media, and other events where much of the material for this book
was honed.

To the clients and customers of SimpleBits.

To Front Street Coffeehouse, Jaho Coffee & Tea, Gulu Gulu Cafe, and Fuel for
providing local inspiration and caffeineation.

And lastly but most importantly, to my wife Kerry, son Jack, and daughter
Tenley. | do all of this (minus the cursing) for you guys.

M.al | itebooks.cogl

http://www.allitebooks.org

M.al I itebooks.cor_rl

http://www.allitebooks.org

Any intelligent fool can make things

higger, more complex, and more violent.

It takes a touch of genius—and a lot of
courage—to move in the opposite direction.

—Albert Einstein

M.al I itebooks.cor_rl

http://www.allitebooks.org

| grew up in Vermont. And that’s where my fascination with and
appreciation for craftsmanship comes from. | can remember as
a kid going with my mom to the farmers’ market every Saturday
morning, where all the local artists and craftspeople sold their
wares out of the back of pickup trucks. The quality was tangible.
You could pick it up and examine it, taste it.

Vermont has become a symbol for craftsmanship quality. The

state, in a way, is a brand in and of itself. For example, in his article
“The Brand Called Vermont” (http://boston.com/news/globe/
ideas/articles/2003/10/12/the_brand_called_vermont), Paul
Greenberg of the Boston Globe writes

A product labeled “Made in Vermont” —whether herb-
infused maple syrup, pineapple pepper jam, or chai water
buffalo yogurt—is worth 10 percent more than the same
product made elsewhere.

M.al | itebooks.cogl

Introduction X

http://www.allitebooks.org

Xiv

Coincidentally, Ethan Marcotte
(author of the wonderful
Chapter 6) also grew up in
Vermont. Fist bump for the
Green Mountain State.

Why is that? | know for me, a Vermont-crafted product often conjures up
an image of an old, long-bearded man up on a mountaintop, carving a
dining room table out of maple. It doesn’t evoke products coming off an
assembly line.

So, when | think of craftsmanship, | tend to think that when something is
well crafted, it reflects that a human was behind its design, a pair of hands
carefully choosing the details that go into something well made and of
high quality.

These details are not always obvi-
ous. With a well-made piece of
furniture, you might not notice how
well made it is until you start using
it. Pull out the drawer and notice the
dovetail joints, for instance.

All of this can be related to Web
design. Seemingly nonobvious
details can often separate good
Web design from great Web design. You might not appreciate the quality of
a well-designed website until you start using it, looking under the hood,
putting it through tests.

HandCcrafted CSS is an attempt to share some of the details that matter
most—allin an effort to continue the flexible, bulletproof, highly efficient,
and adaptable interfaces that make up a solid user experience.

What This Book Is About

Each chapter of this book contains practical examples that relate to three
aspects of craftsmanship as they apply to designing with CSS: bulletproof
design, progressive enrichment, and a reevaluation of past methods and
best practices.

BULLETPROOF DESIGN

If you’re familiar with my previous book, Bulletproof Web Design, you already
know the benefits of designing with flexibility in mind —and the importance
of planning for worst-case scenarios.

M.al | itebooks.cogl

http://www.allitebooks.org

You don’t need to own Bulletproof Web Design in order to dive into this
book, but if you have read it, it’ll act very much as a continuation of the core
concepts covered in that book —flexibility and adaptability —using updated
thinking and methods (some of which weren’t available when Bulletproof
Web Design was originally written).

In a sense, implementing designs with these bulletproof concepts is an
aspect of craftsmanship. You determine how flexible a design is, or how it
may adapt to varying amounts of content or text size—the sort of details that
are not always obvious until you start using your design, editing it, or putting
it through the rigors of everyday use.

We’ll continue striving for bulletproofness in this book as well, and kick
things off in Chapter 1 with a refresher on the importance of flexibility.

PROGRESSIVE ENRICHMENT

It’s an exciting time to be designing for the Web! The browser landscape is
changing rapidly, and browsers are implementing new and evolving stan-
dards at an increasingly faster pace. This means we can experiment with, and
sometimes even use, these cutting-edge technologies today, while they’re
being folded into the latest browser base.

BROWSER

unn iR ds dhan £ 8 V0 dedbee odidd @ 210001 Tisid s wvie s gy

_ LANDSCAPE

You're likely already familiar with the term “progressive enhancement” when
referring to behavior and gracefully degrading JavaScript—ensuring there’s a

M.al I itebooks.cogl

Introduction xv

http://www.allitebooks.org

xvI Introduction

fallback when scripts are turned off or unavailable, for instance. I’ll be using
the term “progressive enrichment” when talking specifically about advanced
CSS and CSS3 properties that work in forward-thinking browsers today.

We’ll spend many pages discussing the future of CSS and what we can exper-
iment with and use now. I’ll show you how these advanced styles degrade
beautifully, and you’ll learn that websites don’t have to look exactly the same
in every browser.

REEVALUATION OF PAST METHODS AND BEST PRACTICES

Now, because of this rapid adoption of new standards, it’s a good time to
reevaluate past methods and solutions as well, and that’s another theme
that runs throughout the concepts in the book.

Are there new, easier, or more efficient ways to solve a particular problem
that we may have used a hack or patch to solve in the past? It’s important to
take stock of what were previously considered best practices in order to sim-
plify and streamline code today.

You'll find several examples in the book where we reevaluate things, inves-
tigating whether there’s a better way using the current crop of browsers and
their latest CSS support.

Who Is This Book For?

The pile of CSS books written to date
has become a tall one. Do we really
need yet another book about CSS7 My
hope is that for most, CSS and Web
standards have become familiar and
commonplace. We don’t need more
books covering the basics or explain-
ing why CSS is a good thing. Instead,
we can dive right into practice, solving
problems with the tools we have at our
disposal at the present time. And that,
to me, is what makes writing a CSS
book exciting.

M.al | itebooks.cogl

http://www.allitebooks.org

Handcrafted CSS is for the CSS designer who wants to go the extra mile. It’ll
encourage crafting those details into your interfaces that elevate good design.
It will also help you prepare for the future. For example, by understanding

the CSS3 properties that are already being implemented by browsers, you’ll
have a leg up on the technology that will be helping to make our lives as Web
designers easier going forward.

SOME ASSUMPTIONS

I’m making some assumptions here about you, dear reader. | assume that
you’re at least familiar with CSS and HTML and the concept of semantic
markup and the benefits of Web standards. As | mentioned earlier, we’ll jump
right in, going straight into examples and dissecting our case study.

Do you have to be a CSS expert? By no means. But being familiar with basic
concepts will certainly help.

HANDCRAFTED HTML?

Just as there’s much happening in the CSS world regarding CSS3 and the
rapid adoption of those evolving standards, there’s a lot brewing in the HTML
world as well. HTML5 is gaining steam as the next version of the language

of the Web. And although the spec won’t be finished for quite some time,
browsers are already implementing portions of HTML5 right now.

There is surely still a lot to be worked out, and much of HTML5 isn’t quite
ready for prime time at the time of this writing. That said, for the examples
in this book, we’re still using the XHTML 1.0 Transitional doctype. Which is
to say, the example code mentioned throughout sits inside a template that
looks something like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtml1/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en"
=lang="en">
<head>
<meta http-equiv="content-type" content="text/html;
-charset=utf-8" />
<title>Tugboat Coffee Company</title>

</head> (continued on next page)

Introduction xvii

 NOTE

The announcement that the
W3C would halt the XHTML2
Working Group at the end of
2009 further clarifies HTML5
as the future of markup:
http://www.w3.0rg/
News/2009#item119

XVIl Introduction

For more interesting thoughts
on the merits of XHTML in an
HTMLS future, see http://
adactio.com/journal/1595
and http://zeldman.com/
2009/07/07/in-defense-
of-web-developers.

<body>

. example code goes here ...
</body>
</html>

For now, I'm most comfortable with the syntax rules that go along with
authoring XHTML: writing tags and attributes in lowercase, closing all ele-
ments, quotes around attribute values, etc. Regardless of the doctype I'm
using in the future, I’ll likely continue with that convention, as it keeps my
documents clean, clear and well formed.

I’'m also confident that when HTML5 reaches the tipping point in terms of
browser implementation, it won’t be a huge leap to convert our existing
markup to the new version.

Oh, and that leaves room for a sequel to this book. :)

RESETTING STYLES

| should also mention that the examples in this book also assume that

a reset stylesheet is used. A reset. css file is imported before all other
stylesheets, zeroing out the default styles that are applied by most browsers.
It avoids having to repeat often-used rules like margin: @; padding: 0;,
forinstance, in multiple declarations. It also gives you a consistent base in
which to apply your own styles.

I’ll go into far more detail regarding reset.css in Chapter 5, but I just
want you to be aware that resetting is in place for the examples that follow
throughout the book.

Our Case Study

Throughout the book, we’ll be using a template | designed for the (fic-
tional) Tugboat Coffee Company. It’s not meant to be the best interface ever
designed —but rather, it has many examples baked right into it, in order to
maintain a consistent example through each chapter.

You can download the template files and example code from the book’s web-
site: http://handcraftedcss.com.

L aaks : Tugbest Coffer Compar 1 -~y ﬂ

Lo lm BlalA &1 & rie ks Maco bobse 0L e ury Shintrbarms (Do wme i (e Loy omgiebits fugboat | s Siml i’n- r

TUGBOAT

HOWME OUR COFFEE

Find a Locatipn ‘j AT MR
Lann
dvamsed hpbang B P e
This Week's Specials Cafe demriczno
Ligfesis

Carame| Magchiano 104%

PRESS
“Tegboer Coffer just may be
rhe snost g oo flee e
wver fasted,” ol
Coffees News & Gaings On
New Coffee Varieties “A rare recsure, amongs
enffee-related web sifes. {f six
MAY L), 2009 Lote= ipsum delar wit Y, conerThriuer adipiating wle. Aemean SLOPS ey fﬂﬁm"ﬂ. rd ml‘flr
Fogred an 174 AM fommody Lguly e GoWe, APIn MEtE, Tum Ml AROGeE ., sEnen™
grrilibud ol mignn di parkedion] Mosted. nastelur ddiculus mad
Doner guam felis, wWiericies mer, pelenhesque #u. prediam quis, sm,
Mot EL OO bl S R N BT DM i kit [Fisgiia vl L

slegsad nex, wulptete aget, arte by emim justo, foncus ul, mpendiel
4, vernens s vinee e Nulsm Goren feln ru pede molin prejivm
integer tineigam. T dapiben. Wramui slimentam wesgee nil
Apnean vaigatals seifesd bikel henean bo Sguls, Doty s,
visisgail viler, sl & oS, Alguim loes iAte, didiBus 8,
wraRTTE ek, b st &

Grand Opening in Salem, Massachusetts

APRIL 8, 2009 LM QLT AT B ST, CON TR0 A RPN 1, Rankan

So pour a cup of dark roast (or your favorite beverage) and let’s start hand-
crafting pixels and text.

Introduction xix

~ Always Ask, “What
Happens If...?" -

You can tear a poem apart to see what
makes it tick.... You're back with the mystery
of having been moved by words. The best
craftsmanship always leaves holes and
gaps...so that something that is not in the
poem can creep, crawl, flash or thunder in.

—Dylan Thomas, Poetic Manifesto, 1961

Always Ask, “What Happens If...?” 3

Dylan Thomas was a poet writing in the context of mid-twentieth-
century Welsh society, but his thoughts on craftsmanship could

be applied to just about anything, including our wonderful and
complex profession of designing for the Web. Leaving room for
unanticipated use is a thread that runs throughout the concept of
being “bulletproof,” and in this chapter, we’ll reintroduce the topic
by deconstructing a simple list of links found in the sidebar of our
case study.

Often the decisions we make as designers and design implement-
ers directly reflect the integrity of the interface. What happens if
there is more (or less) content on the page than planned? What
happens if the text size of the page increases or decreases? What
happens if there are two paragraphs instead of one? And what if
one of those paragraphs is translated into, say, German?

Flexibility in Web design is the mark of a true craftsman. Designing
something statically in an image editor is one achievement, but
allowing for give and take within the boundaries of a page layout
is what sets good Web design apart from great Web design. It’s
taking the Web as a medium into account as part of the design
process, and letting go of pixel precision.

Let’s take a look at one quick example that illustrates bulletproof
design in the Tugboat template, where we’ll channel our “inner
Dylan,” letting the possibility for future things to creep, crawl,
flash, or thunder in.

4 Chapter1

A Simple List of Links

If we take a look at the Tugboat template (Figure 1.1), we’re going to zero in
on the little “Drink Menu” module in the top right of the sidebar (Figure 1.2).
It’s a common design pattern: a vertical list of clickable items, each with
some meta-information aligned to the right (in this case the price of each
drink). A subtle horizontal rule separates each row of data.

Tugbsa! Colfes Campary

= Pl ¥ chamen AMacm o6 GHD Libeany Wivbarver [OScuments adtve himaiebits Mugbot Ninde St ml

ﬁa- a

TUGBOAT

HOME

Find a Lecation

This Week's Specials

Coffer News &F Goings On

New Coffee Vaneties

MAY 13, 2009
o 14

AFRIL B, J00%

Grand Opening in Salem, Massachusetts

OUR COFFEE

DRINE MENU
Lanx
i B
Cafw Assericuna
Lagsenid

Car gl blaccisns

PRESE

“Thapboct Coffise fust may be DRINK MENU
Hhie ol camaeing eaiffee foe
ener rated.®

Latte 2.79
A raTe (PRSI, QFOngE Cappucting 2.99
eoffee-related 1web sires. [f siv
Lesriems ipsim igfor i e eitinds pipriag ol Ad stars wene possible, Fd rate it Cafe Americano 1.80
commeds bguly ege dof . FOUEN"
proatibuy e magni do, partaie o
Dongc quam felig, wrricie . Bam Espresso 2.00
Mui L O Badiadl i L duld . DoAdd e jul Ml rymmom..." K
vuiptate egel, arée. bn weim jusin, r Caramel Macchiato 10.49

algerd nes

Figure 1.2

Lo iDL GO 1 W, (ARSI BOWECHSD Bin. Asasan

Figure 1.1 Tugboat Coffee Company: The fictional case study we’ll be using
throughout the book.

Ten bucks for a Caramel Macchiato! | know, | know, but by the time this book
hits the shelves, it’s entirely possible.

Block-Level Links

Now the first thing we want to ensure is that the entire row (link title and
price) is clickable, not just the drink name itself. This increases usability and
makes for a nicer user experience, with a nice, fat clickable area. It enables

Always Ask, “What Happens If...?” 5

us to add a hover effect to the row, while

allowing the reader to select the link without BRINS MENY

. R Latte 2.79
obscuring the text (Figure 1.3).
“ Cappuccino 2.99 ‘I
By increasing the clickable area, we’re apply- Cafe Americano 1.80
ing Fitts’ Law. Paul Fitts was an American Espresso 2.00
Caramel Macchiato 10.49

psychologist who is famous for this principle:

“The time to acquire a target is a function
of the distance to and size of the target.”
In other words, the larger the target, the
quicker and easier it is to get there. Pretty
sensible, especially when applied to inter-
face design. Now let’s dive into the code that’ll make this happen.

Figure 1.3 The entire row
is clickable, not just the
blue link text.

THE MARKUP

Since it’s a list of items, let’s use a simple unordered list to mark up each
row, wrapping the price in its own element so that we can position it over to
the right.

<ul class="1st">
Latte 2.79</11>
Cappucino 2.99</11>
Cafe Americano 1.80
w</11>
Espresso 2.00</11i>
Carmel Macchiato 10.49
w</11>

You’ll notice I’'m using an element to wrap around the price, but any
inline element (, , etc.) would work fine here as well.

SETTING THE LINK STYLE

Let’s start by declaring a global style for links across the template, making
them blue and bold with no underline by default.

a:link {
font-weight: bold;
text-decoration: none;
color: #3792b3;

}

For more on Fitts’ Law as

it relates to hyperlinks,

see http://www.uie.com/
brainsparks/2008/02/28/
usability-tools-podcast-
applying-fittss-law/, http://
www.1976design.com/blog/
archive/2004/09/07/link-
presentation-fitts-law/, and
http://www.mezzoblue.com/
archives/2004/08/19/fitts_law/.

We need to choose an inline
element (, ,
etc.) rather than a block-level
element (<div>, <h2>, etc.)
here because we're inside an
<a> element, which itself is an
inline element. In other words,
block-level elements can't live
inside inline elements.

6 Chapter1

DRINK MENU
Latte 2.79
Cappuccino 2.99
Cafe Americano 1.80
Espresso 2.00

Caramel Macchiato 10.49

Figure 1.4

DRINK MENU
Latte 2.79
Cappuccino 2.99
Cafe Americano 1.80
Espresso 2.00

Caramel Macchiato 10.49

Figure 1.5

Next, in order to enable Fitts’ Law, we’ll want to make the links inside each
list item block-level with CSS so that they’ll span the entire width of the list.
We’ll also add some padding and a bottom border (Figure 1.4).

ul.lst 11 a {
display: block;
padding: 7px;
border-bottom: 1px solid #f3fZ2e8;
}

STYLING THE PRICE

We’ll now want to add a declaration that styles the price. Since most brows-
ers italicize text within elements, we’ll want to set that back to normal,
set the font-weight to normal, and change the color (since our default
style for links is blue and bold).

ul.lst 11 em {
font-style: normal;

font-weight: normal;
color: #9c836e;

}

Figure 1.5 shows the styled price that’s now sitting just to the right of each
drink text. And now we’re getting closer.

POSITIONING THE PRICE

Now we can position the price over to the right. Let’s try using absolute
positioning here, specifying coordinates in relation to whatever row the
price is in. To do that, we’ll need to first declare each link as position:
relative;. Then we can position each price within that link 7 pixels from
the top right (equal to the amount of padding we have around each link).

ul.lst 11 a {
position: relative;
display: block;
padding: 7px;
border-bottom: 1px solid #f3fZ2e8§;
}

M.al | itebooks.cogl

http://www.allitebooks.org

Always Ask, “What Happens If...?” 7

ul.lst 11 em {
position: absolute;

top: 7px;
right: 7px;
font-style: normal; PEIND WENN
font-weight: normal; e e
color: #9c836e; s -
Cafe Americano 1.80
} Espresso 2.00
Figure 1.6 shows the finished list, with the price positioned over to the right Caramel Macchiato
in a different font treatment than the drink title, all the while keeping the
entire row a clickable hyperlink. Cheers to us. But now let’s talk about what Figure 1.6

can go wrong with the way we’ve implemented things.

Unintentional Overlap

Remember when our friend Dylan Thomas wrote about good craftsmanship

leaving holes and gaps so that something unforeseen could slide in? Taking

our current list treatment to task, we can quickly see how things can break DRINK MENU

down when combining absolute positioning with varying lengths of content. - st
Cappuccino 2.99

Our list with the current titles and prices in place looks perfectly fine, but P 1.80

what happens when a drink name goes beyond a few words? Espresso 2.00

You'll notice in Figure 1.7 that with a longer drink title, in this case my favor- sl g o oy g

ite “Half-caf, non-fat, triple-shot latte (with a twist of lemon),” we get an

awful overlap of the title and its positioned price. Figure 1.7

When we use absolute positioning, we take that element out of the normal
flow of the document, and if we’re not careful, collisions can happen, where
overlapping content becomes unreadable. In some cases, the overlap is what
you want to have happen; therefore, absolute positioning is your friend. But
here, we're dealing with two varying bits of hypertext, and collisions are not
what we’re after (cue sad trombone).

But we’re craftspeople of the Web! Great craftspeople know to look ahead,
asking questions along the way, such as, “What happens if the drink title is
longer and wraps to two lines?” By asking that question, we’re improving the
flexibility and integrity of the design. This is great Web design.

8 Chapter1

DRINK MENU
Latte 2.79

Cappuccino 2.99
Cafe Americano 1.80
Espresso 2.00
Caramel Macchia®o19

Figure 1.8 Showing the
list with the text size
increased two notches
above the browser’s
default medium setting.

DRINK MENU

Latte 2.79
Cappuccino 2.99
Cafe Americano 1.B0
Espresso 2.00

Half - caf, non-fat, 10.49
triple-shot latte (with al)
twist of lemon) |

Figure 1.9 50pX

What Happens if Text
Size Is Adjusted?

Another question we need to ask is, what happens when readers adjust the
text size in their browsers? Even with the initial shorter drink titles, we could
still runinto trouble if the text is increased two notches above a normal,
default size.

Figure 1.8 shows another overlapping scenario, with the previously short-
enough “Caramel Macchiato” now overlapping its price at a larger text size.

Great Web design accounts for these scenarios. When we’re implement-

ing design, it’s important to consider that content may shift during flight.
Amounts, sizes, and placement of hypertext may change, flow differently,
and render slightly smaller or larger than originally intended. That’s okay. By
anticipating these adjustments, we can make sure the design doesn’t break
down. This is what we refer to as “bulletproof design,” and it’s a characteris-
tic of good craftsmanship on the Web.

It’s the kind of detail that isn’t obvious. It’s not flashy or pretty—but it’s a
crucial aspect of designing for the Web. Let’s apply some bulletproofness to
this list example, paving the way for varying lengths of content.

Guessing at GContent Length

One improvement we could make here to prevent overlap is to increase the
right padding of the link enough until the overlap is gone.

ul.lst 11 a {
position: relative;
display: block;
padding: 7px 50px 7px 7px;
border-bottom: 1px solid #f3fZ2e8;
}

Increasing the right padding to 50px from 7px yields the result in Figure 1.9,
which shows the title wrapping before overlapping the price. | chose 50px
after several attempts, until there was enough space on the right to clear the
price. In other words, currently the price’s width never exceeds 50 pixels.

Always Ask, “What Happens If...?” 9

The problem with this approach is that we’re guessing at what the content m

length might be. For instance, 50px might be enough space on the right '

today, but as soon as coffee prices jump to over $100 (oh, and they will) we’ll Using em units for padding
get overlap once again. Also, if the text size increases, 50px quickly becomes would be a better choice

an irrelevant number to measure against, since the price could easily expand here, as that calculated width
beyond that. would scale along with the

text size (e.g., padding: 7px

4em 7px 7px;)
A SITUATION WHERE ABSOLUTE

POSITIONING MAKES GOOD SENSE

There is a scenario in which using absolute positioning is a perfectly fine
option. Let’s say that instead of text-based price, we were positioning a
graphic of some kind. An image has finite dimensions, and we could plugin
whatever maximum width it had as right padding to the drink title.

Figure 1.10 shows our drink list with star rating GIFs (from 1 to 4 stars)
instead of price. We’ll still wrap each starimage in the element for posi- SRTNE BENY
tioning, just as we did for the price. i e
Cappuccino * %
<ul class="1st"> Cafe Americano i o
Latte <img src="/img/ F— *
wstars-3.gif" alt="3/4 stars" /></11i> salt-cal, man—fa. Fricse
Cappuccino <img src="/img/ i riipuns
wstars-2.gif" alt="2/4 stars" /></11> M
Cafe Americano <img src=
-"/1mg/stars-4.gif" alt="4/4 stars" /></11> Figure 1.10

Espresso <img src=
-"/1mg/stars-1.gif" alt="1/4 stars" /></11>
Half-caf, non-fat, triple-shot
=latte (with a twist of lemon) <img src="/img/stars-3.
»gif" alt="3/4 stars" /></11i>

The width of each image is 57 pixels. With that known amount, we can safely
apply the right amount of padding to the link that will never change (57px +
a little more for spacing):

ul.lst 11 a {
position: relative;
display: block;
padding: 7px 60px 7px 7px;
border-bottom: 1px solid #f3fZ2e8;
}

10 Chapter1

[NOTE__

You could argue that this is
nonoptimal ordering, and that
the price should come after

the drink title. Or you could
argue that the price should
come before the drink title, even
though we're displaying the
opposite. Regardless, it’s one

of the reasons I like using
or in these cases. If
screen-reading software reads
this aloud, there will be a dif-
ferential in the way each is
read (faster, louder), thus giving
some separation to the content.
If the order presented here
isn't sitting well with you, fear
not. We'll talk about a way of
reversing that in just a bit.

So, for elements that are of fixed-width dimensions (images, for example)
or in situations where you’re certain of content size, absolute positioning
makes for an easy-to-implement solution. However, for elements that may
vary in length or amount, floating continues to be our best option, which is
what we’ll tackle next.

Improving Flexibility with Float

Instead of using absolute positioning to place the drink price over to the
right, let’s instead use float, which will enable a bit of flexibility and avoid
the overlapping posed by using absolute positioning.

A NEW MARKUP ORDER

We’ll need to make a small tweak to the markup in order for a simple float
to work. Let’s put the element that’s wrapped around price before the
drink title.

<ul class="1st">

2.79 Latte</11>

2.99 Cappuccino
-w</11>

1.80 Cafe Americano
w</11>

2.00 Espresso</11i>

10.49 Half-caf,
=non-fat, triple-shot

latte (with a twist of lemon)</11i>

FLOATING THE PRICE

Now that we’ve swapped the order, putting the price before the drink, we can
float the price to the right, rather that absolutely positioning it. I've removed
the previous rules that handled the absolute positioning.

ul.lst 11 a {
bionretative:
display: block;
padding: 7px;

Always Ask, “What Happens If...?” 11

border-bottom: 1px solid #f3fZ2e8;
} DRINK MENU
. Latte 2.79
ul.lst 11 em {
L. Cappuccino 2.99
. ’ Cafe Americano 1.80
. | ’ | g Espresso 2.00
g : | ’ Half-caf, non-fat, 10.49
-F'|_ oat: r--i_ ght . triple=short latte (with a
:) twist of lemon)
font-style: normal;

font-weight: normal;

Fi .
color: #9c836e; igure 1.11

}
Pretty simple, right? Just applying the float property to the price positions it
over to the right where we want it. But it also means that the price and title DRINK MENU
will be aware of each other, never overlapping (Figure 1.11). Latte 2.79

. C i 2. 99
We can sleep well at night, knowing that this little list of drinks will now be 1

able to accommodate any length title the crafty baristas can come up with. Cafe: Amencane: 1.50

Espresso 2.00
Half-caf, non- 10.49
PASSING THE TEXT SIZE TEST fat, triple-shot
latte (with a twist of
We can also give it a quick integrity test by bumping up the text size a few lemon)
notches. Figure 1.12 shows that when using a float for the price, a text size
increase will not affect the readability of the list. Figure 1.12

A More Optimal Markup Order

Don’t like the price coming before the drink title in the markup? There’s a

solution, and it involves using opposing floats. By floating the drink title left
and the price right, we can order the markup more optimally. We’ll just need
to wrap the title itself in an element so that we can apply a float to it as well.

I’m going to choose the wonderfully generic element in this case, but
you could use any inline element you'd like here (e.g.,).

<ul class="1st">

Latte 2.79
w</11>

Cappuccino
=2.99</1i> (continued on next page)

12 Chapter1

DRINK MENU

Latte 2.79
Cappuccino 2.99
Cafe Americano 1.80
Espresso 2.00

Half -caf, non~-fat, triple-shot
latte (with a twist of lemon)
10.49

Figure 1.13

Cafe Americano
-1.80</11>

Espresso 2.00
-</11>

Half-caf, non-fat,
=triple-shot

latte (with a twist of lemon) 10.49

-</11>

With both the title and price wrapped in their own elements, we can now
apply the opposing floats that will align things the way we’d like:

ul.lst 11 a {
display: block;
padding: 7px;
border-bottom: 1px solid #f3fZ2e8§;
overflow: hidden;

}

ul.lst 11 span {
float: left;
}

ul.lst 11 em {
float: right;
font-style: normal;

font-weight: normal;
color: #9c836e;

}

Figure 1.13 shows the results. You’ll notice that we’ve added overflow:
hidden; to the <a> element that encloses the floating and
element. This is one method of self-clearing any floats that occur within the
containing element. Each row will remain independent, with the floats from
one row not affecting the others around it. There’s more on modular float
containment in Chapter 6.

You’ll also notice while there is no overlapping, the price is dropping below
the drink title on the last item. When a floated element doesn’t have a specific
width specified, it’ll expand as wide as it can. Since this title is longer than the
others, it’s expanding the full width, pushing the price down below it.

Always Ask, “What Happens If...?” 13

SPECIFYING AWIDTH FOR FLOATED ELEMENTS

To fix this, we’ll need to specify a width to the drink titles. And we’ll have to
do so by taking a guess at content length, just as we did in the absolute posi-
tioning method. The difference here, though, is that while our guess might
be off in future scenarios, we’ll never get an unreadable overlap; we’ll just
get the price falling down below the title. Visually, it’s not what we want, but
ensuring readability is an advantage here.

One simple way to add a width to the title is by using a percentage. Let’s add
width: 75%; tothe element that’s floating left. By using a percent-
age, we’ll have a better chance of avoiding collision with the price should
the width of the surrounding box or general layout of the page change in the
future (and by collision, again we’re talking about the price bumping down
below the title and not overlapping, which would happen if using absolute
positioning).

ul.lst 11 a {
display: block;
padding: 7px;
border-bottom: 1px solid #f3fZ2e8;
overflow: hidden;
}
ul.lst 11 span {
float: left;
width: 75%;

}

ul.lst 11 em {
float: right; DRINK MENU
font-style: normal; Latte 2.79
font-weight: normal; E— i
color: #9c836e; RO M L

Espresso 2.00

} Half-caf, non-fat, 10.49

Figure 1.14 shows the longer drink title wrapping because it now has a width koo oo

of 75% applied. And with that, we have a flexible system for showing drink

titles and prices. Figure 1.14

14 Chapter1

How About a Table?

You might be saying something like, “But, Dan, what about using a <table>
to mark this list up?” And you’d have a good argument there. While the
<table> has been rightly banished for layout purposes, there’s no reason it
couldn’t be used for what it was originally intended: tabular data. You could
also argue that, as simple as it is, this list of drink titles and their associated
prices is in fact tabular data and could be marked up as such.

| always say that there are approximately 3,296 ways to achieve the same
result in Web design. And this little module we’ve been dealing with through-
out the chapter is no exception.

Here’s how we might mark this example up as a table, with each of the drink
titles as table headers, and the price as table cells:

<table>
<tr>
<th>Latte</th>
<td>2.79</td>
</tr>
<tr>
<th>Cappuccino</th>
<td>2.99</td>
</tr>
<tr>
<th>Cafe Americano</th>
<td>1.80</td>
</tr>
<tr>
<th>Espresso</th>
<td>2.00</td>
</tr>
<tr>
<th>Half-caf, non-fat,
triple-shot latte (with a twist of lemon)</th>
<td>10.49</td>
</tr>
</table>

Always Ask, “What Happens If...?” 15

LINKS AROUND BLOCK-LEVEL ELEMENTS

I've chosen to link only the drink title, but therein lies the problem: a hyper-
link can’t wrap a block-level element, so we’d have no easy way of making
the entire row clickable like we had using a list. In other words, if it was
kosher to wrap each <th> and <td> with an <a> element, we could achieve
the same results. But currently, it’s not possible.

As a theoretical illustration, here’s what | mean by wrapping the hyper-
link around the block-level <th> and <td> elements, which is currently
unsupported/invalid:

<table>
<tr>

<th>Latte</th>
<td>2.79</td>

</tr>
<tr>
 |
<th>Cappuccino</th> m
<td>2.99</td> Allowing the <a> element to
 surround multiple elements
</tr> and block-level elements is
<tr> something that might be com-
 ing in HTML 5 (http://www.
<th>Cafe Americano</th> brucelawson.co.uk/2008/any-
<td>1.80</td> element-linking-in-html-5/).
 And boy, wouldn't that be nice?
</tr>
<tr>

<th>Espresso</th>
<td>2.00</td>

</tr>
<tr>

<th>Half-caf, non-fat, triple-shot latte (with a twist
-0f lemon)</th>
<td>10.49</td> (continued on next page)

16 Chapter1

DRINK MENU

Latte
Cappuccino
Cafe Americano
Espresso

Caramel Macchiato

Figure 1.15

</tr>
</table>

So, for the sake of user experience, and the fact that this is a very simple
list with two pieces of data, we’ll opt to stick to an unordered list with click-
able rows.

Adding Data Visualization

For extra fun, why not add some data visualization to the list of drink titles
and prices? Since we’re already dealing with vertical, clickable rows of data,
it wouldn’t be too difficult to add some underlying bar graphs to the list, fur-
ther accenting the difference between the items in the list.

In our case, we’'d be visualizing the difference in price, but you could see how
bar graphs could be applied to other vertical lists as well—for example, a
vertical list of article categories, with the number of articles in each category
floated right. A bar graph background behind the category and number could
visualize the difference in those amounts. It’s a nice way of scanning the list
to instantly grasp the comparison.

Figure 1.15 shows how bar graph backgrounds could be added to Tugboat’s
drink list, with the width of the bar relating to its associated price. This tech-
nique is explained by Wilson Miner in an article published at A List Apart
(“Accessible Data Visualization with Web Standards,” http://www.alistapart.
com/articles/accessibledatavisualization). Wilson explains how to add rich
data visualization by using best practices in CSS, and the bar graph example
is one of many excellent examples.

Let’s quickly walk through the steps required to add in this extra bit of scan-
nable usefulness to the drink list example we’ve been working with through-
out the chapter.

ADDING DATATO THE MARKUP

Our markup will change slightly in order to add the bar graph information.
Essentially, we’ll want to add a percentage value that corresponds to the
width of each bar. We’ll be setting that percentage against the largest price.
In other words, the largest price in the list will equal 100%, and all the others
will be a percentage lower based off that.

M.al | itebooks.cogl

http://www.allitebooks.org

Always Ask, “What Happens If...?” 17

<ul class="1st">

2.79 Latte
-60%</11>

2.99 Cappuccino
-<sSpan>68%</11>

1.80 Cafe Americano
w 35%</11i>

2.00 Espresso
- 50%</11>

10.49 Carmel Macchiato
w 100%</11>

We now have the extra data in the markup: a percentage based on the larg-
est price equaling 100%. I’'ve chosen to use a generic element here,
and place it outside the <a>.

APPLYING BASE STYLES

With the markup set, let’s now reapply those base styles to get the block-
level links working, with the price floated over to the right again.

ul.lst 11 {
margin: @ @ 2px 0;
}

ul.lst 11 a {
display: block;
padding: 7px;
}

ul.lst 11 em {
float: right;
font-style: normal;
font-weight: normal;
color: #9c836e;

}

Figure 1.16 shows the results, where as you can see, the percentage is now
hanging out down below the title and price.

What we actually want is a bar graph representing that percentage displayed
behind the clickable row, and not the percentage text itself. So, on to some-
thing crafty.

NOTE

I've taken guesses at the actual
percentages for demonstration
purposes. A backend system
would likely do the heavy lifting
here in terms of working out
the math.

DRINK MENU

Latte 2.79
60%

Cappuccino 2.99
68%

Cafe Americano 1.80
35%

Espresso 2.00
509

Caramel Macchiato 10.49
100%

Figure 1.16

18 Chapter1

HIDING THE PERCENTAGE TEXT AND CREATING THE BAR

Next we’ll hide the percentage text that’s currently showing, giving the
 a height, width, and background, and then position it behind its
clickable row. While the data is correct in the markup, we’ll use CSS to hide it
and turn it into a bar graph.

Our first step is to add a width to each . We could create class names
for each width we need, but the easiest approach is to add the width to the
markup as an inline style. Adding style attributes to the markup is not some-
thing I'd normally encourage; however, typically it’s going to be a backend
process that calculates the width, and having that split out in the markup is
the easiest way to handle it. In this case, having that tiny bit of inline style is
rather harmless. In fact, you could argue that it’s actually more in the spirit
of keeping content and style separate when specifying the width inline. It’s
almost as if the backend process is creating an “image” with this code.

<ul class="1st">

2.79 Latte 60%</11>

2.99 Cappuccino
=68%</11>

1.80 Cafe Americano
=35%</11>

2.00 Espresso
=50%</11>

10.49 Carmel Macchiato
= 100%</11>

Now let’s add the styles that do the real magic here. In this case, we actually
want overlap to happen—that is, the link text overlapping the bar graph as
a background. So, we’ll use absolute positioning to make that happen (yet
another scenario where it makes good sense). Our first step is to add pos1i -
tion: relative; to both the <1i> and the <a> elements so that the coor-
dinates of each bar graph will be placed inside their respective rows.

ul.lst 11 {
position: relative;
margin: @ @ 2px 0;
}

ul.lst 11 a {
position: relative;

Always Ask, “What Happens If...?” 19

display: block;
padding: 7px;
}

ul.lst 11 em {
float: right;
font-style: normal;
font-weight: normal;
color: #9c836e;

}

Next, we’ll add the declaration to style and position the that will
create the bar graph:

ul.lst 11 span {
position: absolute;
top: 0;
left: 0;
display: block;
height: 100%;
text-indent: -9999px;
background: #f3fZ2e8;
}

There are several important things taking place in this little declaration.
Along with positioning the bar graph top and left, since is aninline
element, we’ll switch thattodisplay: block; and add height: 100%;

to have it fill the entire height of the row. We’re also using text-indent:
-9999px; to shove the percentage text way, way off to the left to completely
hide it. It’s still there for screen-reading software and other devices, but it’s
not visible on the page. We added a light tan background color as well so
that the text will still be legible on top of it.

Stacking order problem

Figure 1.17 shows where we are currently, and as you can see, things look DRINK MENU

pretty good, except for the bar graph sitting on top and obscuring the title 2.79
and price. To fix this stacking order issue, we’ll add a bit of z-index magic to 2.99
pull the title and price over the graph. icano 1.80

z-1index is a CSS property that allows you to adjust the stacking order of
positioned elements, and by adding z-index: 2; to the link, we’re giving it
higher priority than the bar graph, which will now sit behind it.

Figure 1.17

20 Chapter1

DRINK MENU

Latte 2.79
Cappuccino 2.99
Cafe Americano 1.80
Espresso 2.00
Caramel Macchiato 10.49

Figure 1.18

One way of enabling :hover

on elements other than <a> in
IE6 is to use JavaScript. See the
“Suckerfish Dropdowns” exam-
ple for the snippet of scripting
that makes this possible: http://
www.htmldog.com/articles/
suckerfish/dropdowns/.

DRINK MENU

Latte 2.78
Cappuccino 2,98
Cafe Americano 1.80
Espresso 2100
Caramel| Macchiato R

Figure 1.20 There are a
few problems with our list,
as displayed here in IE6.

ul.lst 11 a {
position: relative;
display: block;
padding: 7px;
z-index: 2;

}

With the z-index fix in place, we have a finished list, with the bar graphs
displaying correctly behind the title and price (Figure 1.18).

Adding a hover treatment

We could also add a hover treatment, changing the background color of the
bar graph when the user hovers over the row with the mouse. Since the bar
graph is outside the link in the markup, we can still achieve a background
color swap by attaching the hover state to the <11> instead.

ul.lst 1i:hover span {
background: #ecebel;

}
Figure 1.19 shows how the bar graph will
change color when hovered over, as a result RIRR WENY
. . . 2.79
of the declaration we’ve just added. This i .
. . i 2.99
won’t work in Microsoft Internet Explorer 6, SOOI, ¢
. . . Cafe A I 1.80
but that’s okay. In this case, I'm fine with o
. . Espresso 2.00
there being no hover change in IE6. There
. . Caramel Macchiato 10.49
are, however, other more important issues

in IE6 that we’ll need to tackle in order for
the bar graphs to render properly. Let’s do
that now.

Figure 1.19

FIXING THINGS IN INTERNET EXPLORER 6

Figure 1.20 shows how our current markup and style for the drink list with
the bar graph renders in IE6. Not perfect by any means, as you can see.
Typically, like a lot of you, I'll code in Safari or Firefox; get things looking
right with clean, standards-based code; then open up in IE6, weep, and fix.
Repeat. Fortunately for this particular example, things aren’t too bad, and
with a few little fixes we’ll have it working just like all the other browsers in
no time.

There are a few problems to note here:

Always Ask, “What Happens If...?” 21

m Thereis too much vertical space between each row.

m The bar graph isn’t filling the entire height of the row.

m The bar graph is overlapping the price (but not the drink title).

We can fix two of the three problems quickly by adding the magical and mys-
tical height: 1%; trick to both the <11> and the <a>. This hack will tighten
the list back up as well as fix the bar graph-overlapping-price problem.

While we want IE6 to apply the hack, we don’t want other browsers to see

it. So, we’ll preface the rules with * html, which is a handy way of targeting

CSSto IE6 and IE6 only.

* html ul.lst 11,

* html ul.lst 11 a {
height: 1%;
}

Figure 1.21 shows the progress, where we’ve
added the height: 1%; trick to the list
items and links to tighten up the list and fix
the price overlap issue in IE6.

Finally, we need to stretch the height of the
background bar graph to fill the entire height
of the row. We’re already specifying a height
of 100% on the , yet IE6 is not play-
ing nice. Wouldn’t be the first time. So, as an
extra measure, we’ll use Tine-height to get
things looking the way we want:

ul.lst 11 span {
position: absolute;
top: 0;
left: 0;
display: block;
height: 100%;
line-height: 2.55em;
text-indent: -9999px;
background: #f3fZ2e8;
}

DRINK MENU

Latte
Cappuccino
Cafe Americano
Espresso

Caramel Macchiato

2.79

2,85

2.00

10,45

Figure 1.21 Vertical

spacing is better but still

not perfect here in IE6.

Why does height: 1%; work?
It triggers something in IE6
called hasLayout (I'll spare you
the confusing explanation).
For the daring and curious, it's
well explained here: http://
www.satzansatz.de/cssd/
onhavinglayout.html.

Alternatively, you could use
conditional comments to target
IE6 specifically and write these
rules without the * html pref-
ace. Learn more on conditional
comments here: http://www.
quirksmode.org/css/condcom.
html. Or you could quarantine
your hacks that are specific

to IE in their own style sheet
(e.g., le.css), keeping your main
styles standards compliant,
clean, and hack-free.

22 Chapter1

DRINK MENU

Latte 2.78
Cappuccino 2.99
Cafe Americano 1.80
Espresso 2.00
Caramel Macchiato 10.49

Figure 1.22

You might also notice that
the screenshots for IE6
show the white box with

square corners. More about
that in the next chapter!

| landed on 2.55em by trial and error, until the background was full height.
This rule is for the benefit of IE6, but it’s harmless for other browsers, so this
time, instead of targeting IE6 with a hack (or conditional comment), we just
added the rule to the main declaration for all browsers.

Figure 1.22 shows the finished example, now working in both IE6 and IE7.

Choosing the Right Solution

We’ve just explored several solutions to the same problem, noting the
potential problems and pitfalls that might occur. If the markup order doesn’t
bother you, then simply floating the price to the right (while it comes before
the title in the markup) is the easiest, most flexible solution. If dealing with
images, then absolute positioning might be the best option, as having a
known width makes it simple to avoid overlap. And we can also look toward
the future, when hyperlinking multiple block-level elements can make situ-
ations like these not only easier, but potentially more semantically sound

as well.

What’s important to take away here, is that by asking questions along the
way, we can strengthen the integrity of our designs. The flexibility that’s
gained is not only bulletproof but also a characteristic of craftsmanship: that
we care enough to let unanticipated scenarios affect what we’ve created,
even when the steps we take to get there aren’t inherently obvious.

We’ll continue to dissect other parts of the Tugboat template with the same
curiosity and critical thinking. We’ll also explore when it’s okay to push the
envelope a bit, and start using advanced CSS3 properties now. Let’s get to it.
But first, another triple-shot latte is in order, no?

Rounded Corners with
border-radius

You have to roll up your sleeves and he

a stonecutter before you can become a
sculptor—command of craft always precedes
art: apprentice, journeyman, master.

— Philip Gerard, author

Rounded Corners with border-radius 25

| have a bold prediction to make here, folks: Rounded corners are
destined to become the hottest new design trend on the Web!

Rimshot

| kid, of course. But no one can deny the popularity (and more
importantly the utility) of rounded corners, and that they have
their place among other tools of design. And remember, it’s not
rounded corners that are the problem—it’s the abuse of rounded
corners that’s the problem. That said, a corner that is rounded off
is simply a method of manipulating a square box. It’s a tooland a
treatment that will always be a part of certain designs.

But implementing rounded corners has always been a bit of

a chore. We have historically been stonecutters, haven’t we?
We’ve been manually inserting extra markup and carving out
color palette—specific images to achieve what should be a simple
code instruction—and one that would be better created entirely
with CSS.

In this chapter, we’re going to attack the concept of rounding cor-
ners by looking to CSS3 properties that we can begin using today.
It’s exciting and incredibly freeing to experiment with advanced CSS
that previously felt decades away from real-world use. Fortunately,
we have stonecutting experience under our belt. We fully under-
stand the hard way. And as Philip Gerard said in the opening quote,
you have to roll up your sleeves before becoming a sculptor.

Well, my fellow crafters, it’s time to start sculpting.

26 Chapter 2

We’ve exercised command of craft by achieving rounded corners the hard
way—but now it’s time to start embracing the future, reevaluating past
methods, and making things a little easier on ourselves. Good craftsmanship
is about understanding the various ways to solve a particular problem, then
choosing the right task for the job. Let’s talk about pushing the envelope just
a bit, using some advanced CSS that will be yet another tool for the design-
er’'s workbench.

But first, let’s go over current methods to gain some perspective on how
much easier life can be.

Past and Present Rounding

You’ll notice rounded corners are used in several places on the Tugboat tem-
plate (Figure 2.1): the box surrounding the Find a Location form, the Drink
Menu module, as well as the frames around each of This Week’s Specials.

TUGB"AT FULLING ¥OU ALONG SINCE 2009

HOME OUR COFFEE ABOUT | ==

ey

HK ME
Find a Location . y sl
E Latte
U ASVERCED CHENE Cappuceing
» ¥ 5
This Week's Specials Cafe Americano
Espresso

Caramal Macchiars

FRESS

Fishermum's Brew
§0.08 | Ih

Tugboat Coffee fust mey be
the most amoring caffee M've
euer tasted.”

Coffee News (& Goings On

Moo Movffon Vereboo R vk e s S

Figure 2.1

Now historically, you might’ve tackled this by creating a few images to overlay
as background images on top of a square box. If the box’s width is fixed, then

you might be able to get by with creating two images (one for the top-left and
top-right corners and one for the bottom-left and bottom-right corners).

Let’s quickly walk through a refresher on how you can create fixed and fluid-
width rounded boxes using current methods. Then we’ll get into the fun stuff.

M.al I itebooks.cogl

http://www.allitebooks.org

Rounded Corners with border-radius 27

SLICING UP A FIXED-WIDTH ROUNDED BOX

Figure 2.2 shows how you can carve up a fixed-width box that’s 226 pixels
wide. A round-top.gif is used as a background image to round off the top
half of the box, while a round-bottom.gif is used to round off the bottom
half. The non-rounded portion of the box can be filled in with a background
color.

——— round-top.gif

Fisherman's Brew
$9.08 [/ Ib.

— 1 round-bottom.gif

226px

Figure 2.2

This method also requires wrapping the boat image with at least two ele-
ments. Since the CSS2.1 spec allows only a single background image
attached to any one element, let’s add extra markup around the photo to act
as hooks for those styles:

<div class="box">
<div class="box-1inner">

</div>
</div>

Then, the CSS that positions each background image looks something like
this:

.box {

width: 226px;

background: #eZ2eld4 url(round-bottom.gif) no-repeat bottom
left;

1 (continued on next page)

 NOTE

I'm going to be intentionally
general with the following code,
as my goal is to re-familiarize
you with the techniques and
how they work but not spend
too much time walking through
older solutions.

28 Chapter 2

.box-inner {
padding: 15px;
background: url(round-top.gif) no-repeat top left;
}

The background color needs to be set on the outermost <div class="box">.
If set on the inner <div class="box-inner">, it would overlap and
obscure the bottom image. And the padding inside the box needs to be set
on the inner <div class="box-inner">, so that the top image can span
the entire width and meet the edges of the box (see Figure 2.3).

round-top.gif

.box-inner

Fisherman's Breyy - .box
$9.98 /b,

round-bottom.gif

Figure 2.3

If you’ve implemented rounded-corner boxes in the past, this should all seem
familiar. It’s certainly not terrible to have to add an extra <div> to accom-
modate the second background image, and this technique works well cross-
browser. But it does require the box being of a fixed width.

SLICING UP A FLUID-WIDTH ROUNDED BOX

If the box is fluid —or if you don’t want to lock yourself down to a specific
width—then you have to create fourimages (one for each corner). At the
same time, you need four containing elements in order to reference each cor-
ner background image.

Figure 2.4 shows how you can carve up the four separate images:
round-tl.gif, round-tr.gif, round-bl.gif, and round-br.gif
—one for each corner.

Rounded Corners with border-radius 29

Fisherman’s Brew
$9.98 / Ib.

Figure 2.4 Showing four separate corner images that might be
laid on top of a square box.

The markup can be structured in a variety of ways, with at least four ele-
ments surrounding the image so that each of the four corners can be refer-
enced as a background image. Let’s use <div>s for the following example:

<div class="box">
<div class="box-1inner">
<div class="box-1inner2">
<div class="box-1inner3">

</div>
</div>
</div>
</div>

The CSS required to turn those four elements into a fluid rounded box looks
like this:

.box {
background: #eZeld4 url(round-br.gif) no-repeat bottom
right;
}
.box-inner {
background: url(round-bl.gif) no-repeat bottom left;
}
.box-inner2 {
background: url(round-tl.gif) no-repeat top left;
1 (continued on next page)

30 Chapter 2

See Simon Willison’s article,
“Rounded Corners with CSS
and JavaScript,” for an example
of how to get fluid rounded
boxes working with JavaScript
and DOM (http://www.sitepoint.
com/article/rounded-
corners-css-javascript/).

Page background

Box color

Figure 2.5 A zoomed view
of arounded corner image
on top of a pre-determined
page background color
that will mask a square
corner behind it.

.box-inner3 {
padding: 15px;
background: url(round-tr.gif) no-repeat top right;
}

Just as with the fixed-width version, the background color needs to be
attached to the outermost <div>, while the padding must be specified on
the innermost <div>.

Seems kind of an absurd way of achieving a rounded box, doesn’t it?

Now, there are certainly other methods for achieving fluid-width rounded
boxes. For example, you can use JavaScript to dynamically create the extra
markup required as well as handle the placement of the four images. That
keeps the markup minimal but requires JavaScript to be turned on in order
for the rounded treatment to appear.

TIED TO A PALETTE AND A RADIUS

There are a few additional downsides to all of the aforementioned solutions.
For example, if images are required, then the color of the rounded box or
background that it sits on becomes a permanent decision. That is, if the col-
ors are changed, new images must be created to match.

The rounded images often obscure the square corners by overlaying the
page background color on top of the box (Figure 2.5). This creates a mainte-
nance annoyance should the colors be changed after the images are created.

The amount of roundness is also something that must be decided along with
a color palette. The radius of the rounded corner is part of the image, and
changing that curve involves carving out new images each time you or your
client or boss changes their mind.

In short, rounded corners are labor-intensive, inflexible beasts. | probably
don’t need to remind you of this. But there’s a better way... a new way.

The horder-radius Property

CSS3 offers us the promise of applying rounded corners to any element by
way of the border-radius property. Creating rounded corners couldn’t be
simpler, eliminating the need for any images or extra markup. Also, color and
amount of roundness can be changed on the fly just by updating a few lines
of CSS.

Rounded Corners with border-radius 31

Here’s a brief demonstration of how the border-radius property works.
Using our previous example, the markup could be as simple as this:

<div class="box">

</div>

And here’s the CSS to make this box round on all four corners:

.box {
padding: 15px;
background: #eleld4;
border-radius: 8px;

}

That declaration adds a 8px radius to each corner, clipping the background
color that we’ve specified for the box—all through the magic of CSS. Done.

We can adjust the background color or radius amount in seconds, changing
the box’s appearance with a few simple rules.

Now, because this is part of the C553 Working Draft (Figure 2.6) (http://
www.w3.0rg/TR/css3-background/#the-border-radius), perhaps we’ll be
able to use this newfangled property in say, 10 years?

Well, luckily, for some browsers we don’t have to wait that long. In fact, there
are ways of using border-radius right now. Let’s take a look.

bardas
Eﬂw‘—"}lfﬂwiﬁ}ﬁ
& olarmecs, dxtept nble element when Dorder-chilapes’ |8 ‘collapsa’

Thae e lergm values of B Sorder- "M’ propetes cefine the radi of a guaner elipss has cefines e shape of T comen of e oulor Beslor scpe
i thes chaggrarn balow). The firs! value (s e harzonial cadiua. ¥ the second length is omitied i s equal io e Srsl (and e comer is thes a quars:
circia). ¥ eithar length is rem, o cormar is squam, notmunded

The ‘o -mdiy’ shorthand sets all lour ‘tordor-"-mdius’ propertes. § values ane given bafore and afior the siash, then the vatuas beforn tho siash
sata honzontal ok and 1 values afer the sinsh 281 the vomoal redius. i Mo b5 no siash, Men the valees set both maoil squally. Tha four values
107 SRCh MR R g i T DT IDp-el Dp-right. bosom-nght, Doncen-lai. If Donom- i3 O it IS M 30T A8 Ep-nght. i Boncem-nghs s conimnd it ﬁ
i Tl BTl B IO I -GN AR CIEnedt 1 i T ST S D0

| Exaempis 1o |

IS T

WU b2 egaealent i

perme op el rediune
s g o | g o !
i | o

E

L]

i
'
TN

Dordescradisn lus lem dem /0, Gem e

wollt ba sqpemient i

Figure 2.6 The border-radius Working Draft at the W3C.

32 Chapter 2

Vendor-Specific Extensions

CSS provides vendor-specific extensions; in this way, a browser vendor can
create their own, proprietary properties by prefixing a property name with an
extension of their organization.

Often, this is a way for the browser vendor to experiment with future CSS
properties that aren’t yet full-fledged standards. It allows the browser to test
and debug these new properties while the specification is being worked out.

Table 2.1 shows the current existing prefixes at the time of this writing (see
http://reference.sitepoint.com/css/vendorspecific).

Table 2.1 Vendor-Specific Extensions

Prefix Organization

-ms- Microsoft

mso- Microsoft Office

-moz- Mozilla Foundation (Gecko-based browsers)
-0- Opera Software

-atsc- Advanced Television Standards Committee
-wap- The WAP Forum

-webkit- Safari (and other WebKit-based browsers)
-khtml - Konqueror Browser

So the exciting thing here is that border-radius is one of the properties
that browser vendors have been experimenting with for some time.

Currently, the Mozilla and WebKit family of browsers (e.g., Firefox and Safari)
have implemented decent support for border-radius using vendor-specific
prefixes. Huzzah! And we can use these properties right now. Today. Let’s
take a look at how they work.

Rounded Corners with border-radius 33

Progressive Enrichment
with -webkit-border-radius
and -moz-border-radius

If we treat rounded corners as a visual reward to browsers that can handle
them with CSS, rather than a design requirement in every possible viewing
environment, we can progressively enrich our Web pages by using vendor-
specific versions of border-radius without waiting for the CSS3 spec to
reach Candidate Recommendation status.

Here’s how you apply rounded corners today, using the vendor-specific
extensions for Safari and Firefox (and other Mozilla- and WebKit-based
browsers). The markup remains clean as a whistle, with simply a container to
apply the styles to:

<div class="box">

</div>

And here’s the CSS to make this box round on all four corners in Firefox and
Safari:

.box {
padding: 15px;
background: #eleld4;
-webkit-border-radius: 8px;
-moz-border-radius: 8px;

}

With these two rules in place, you’ll be good to go in Mozilla- and WebKit-
based browsers, in this case giving each corner an 8-pixel rounded radius—
regardless of the width of the box. In other words, by using CSS to round the
corners, you ensure the box will be truly flexible in all directions, without
ever having to worry about images or color lock-in.

34 Chapter 2

NOTE __

There’s a caveat here. CSS vali-
dators (that validate against the
CSS2.1 spec) will choke on the
border-radius property since
it's a part of spec that’s not
finished yet. Style sheets that
contain these future proper-
ties will flag the file as invalid.
Now that’s okay (if you're fine
with an intentionally invalid
style sheet), or you may want
to quarantine these forward-
thinking properties to their own
style sheet, which we'll talk
about in just a bit.

Figure 2.7

Figure 2.8

FUTURE-PROOFING

You can go a step further and add the actual CSS3 property for browsers that
might recognize it in the future:

.box {
padding: 15px;
background: #eleld4;
border-radius: 8px;
-webkit-border-radius: 8px;
-moz-border-radius: 8px;

}

Out of the three rules added to the declaration, the browser will pick up the
property that it recognizes and harmlessly ignore the others.

ROUNDING SPECIFIC CORNERS

So far, we’ve been rounding all four corners of the box with one rule, but we
can also round specific corners individually by using the syntax that follows.

To round just the top-left corner (Figure 2.7):

.box {
padding: 15px;
background: #eleld4;
border-top-left-radius: 8px;
-webkit-border-top-left-radius: 8px;
-moz-border-radius-topleft: 8px;

}

Notice that the -moz- version differs slightly from the CSS3 and -webkit-
property, in that topleft is one word and comes last in the chain.

Similarly, you can specify the other three corners individually using the same
syntax.

To round just the top-right corner (Figure 2.8):

border-top-right-radius: 8px;
-webkit-border-top-right-radius: 8px;
-moz-border-radius-topright: 8px;

Rounded Corners with border-radius 35

To round just the bottom-left corner (Figure 2.9):

border-bottom-left-radius: 8px;
-webkit-border-bottom-left-radius: 8px;
-moz-border-radius-bottomleft: 8px;

To round just the bottom-right corner (Figure 2.10):

border-bottom-right-radius: 8px;
-webkit-border-bottom-right-radius: 8px;
-moz-border-radius-bottomright: 8px;

Figure 2.9
Combinations of any or all of these work as well —for example, rounding
both the top-left and bottom-right corners (Figure 2.11):

.box {
padding: 15px;
background: #eleld4;
border-top-left-radius: 8px;
border-bottom-right-radius: 8px;
-webkit-border-top-left-radius: 8px;
-webkit-border-bottom-right-radius: 8px;
-moz-border-radius-topleft: 8px; Figure 2.10
-moz-border-radius-bottomright: 8px;

}

Allin all, it’s a very simple set of rules that takes the headache and mainte-
nance out of rounding corners, keeping the markup lean and mean and lever-
aging the power of CSS to handle the heavy lifting.

A Little Choppy in Firefox 2

It’s important to point out that Firefox 2’s implementation of
-moz-border-radius was a little choppy. The corners are badly aliased. We
have to cut the browser some slack, however, as it was an early implementa-
tion and experimentation. And thankfully, Firefox 3 cleaned everything up
and renders things on a par with Safari.

Figure 2.11

Figure 2.12 shows a comparison of Firefox 2, Firefox 3 and Safari, all render-
ing the same element with rounded corners. I’'ve darkened up the back-
ground color to #333 to heighten the contrast, so you can really see the
difference between renderings.

36 Chapter 2

Notice how aliased and blocky the corner looks in Firefox 27 When there’s a
large enough contrast between the rounded element and the background
color it’s sitting on, this becomes especially apparent and disappointing.
Something to keep in mind.

Firefox 2 Firefox 3

Figure 2.12 Comparison of border-radius being rendered in Safari and
Firefox 2 and 3.

Luckily in Firefox 3, things are fixed completely, smoothing out the way it ren-
ders the radius (Figure 2.13).

Firefox 2 Firefox 3

Figure 2.13 A zoomed view, comparing
border-radius rendering in Firefox 2 and 3.

PERFECTLY FINE IF CONTRAST IS LOW

You can easily get by in Firefox 2, however, provided the contrast is low
enough. Our rounded boxes on the Tugboat template, for example, are rather
low contrast, and if we do the same zoomed-in comparison, you’ll notice that
even Firefox 2 looks good (see Figure 2.14). That’s excellent news! While Fire-
fox 2 was released about 3 years ago (as of the time of this writing), it still
has decent support for low-contrast rounded corners.

M.al | itebooks.cogl

http://www.allitebooks.org

Rounded Corners with border-radius 37

Safari Firefox 2 Firefox 3

Figure 2.14 Showing how Firefox 2’s choppy rendering is OK if contrast is
low enough.

Background Clipping

You can also combine background images with background colors and
border-radius. Layered background images will be properly clipped and
rounded as well, enabling you to create some neat effects.

For example, at the end of the “Coffee News” portion of the Tugboat tem-
plate is a button to access the news archives (Figure 2.15). While we could
pretty easily create an image to handle things, why not take advantage of
border-radius plus a background image to create a flexible, editable
hyperlink instead?

New Study Says Coffee “Good”

JANUARY 10, 2009 Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean
Posted at 10:14 AM commodo ligula eget dolor. Aenean massa. Cum sociis natogue
by Dunder Shellfish penatibus et magnis dis parturient montes, nascetur ridiculus mus.

Donec quam felis, ultricies nec, pellentesque eu, pretium quis sem.
Nulla consequat massa quis enim. Donec pede justo, fringilla vel,
aliguet nec, vulputate eget, arcu.

In enim justo, rhoncus ut, imperdiet a, venenatis vitae, justo. Mullam
dictum felis eu pede mollis pretium. Integer tincidunt. Cras dapibus.
Vivamus elementum semper nisi.

Aenean vulputate eleifend tellus. Aenean leo ligula, porttitor eu,
consequat vitae, eleifend ac, enim. Aliquam lorem ante, dapibus in,
viverra quis, feugiat a, tellus. Phasellus viverra nulla ut metus varius
laoreet. Quisgue rutrum. Aenean imperdiet. Etiam ultricies nisi vel
augue. Curabitur ullamcorper ultricies

+ News Archives

Figure 2.15

38 Chapter 2

The <div> isn't necessary, but
is an appropriate block-level

wrapper for a hyperlink on
its own line.

A SIMPLE HYPERLINK

The button has a “glass” effect (Figure 2.16), which we can achieve with a
horizontally repeating semitransparent PNG that is craftily positioned. Using
border-radius to round the ends of the button and clipping the repeating
image will complete the treatment on what is essentially just a hyperlink. The
markup is as simple as this:

<div class="more-btn">← News
Archives</div>

We’ve wrapped an <a> element in a <div> with a class of more-btn. You'll
also notice that we’re using the HTML entity for a left arrow, by inserting
← before the link text.

+— News Archives

Figure 2.16 A zoomed view of the button, where you can see the
glass effect created by an overlayed, semitransparent PNG.

CREATING THE PNG background IMAGE

Our next step is to create the repeating PNG image that’ll create the glossy
effect on top of the blue background color. Follow these steps:

Create a new file in Photoshop that’s 5o pixels wide by 100 pixels tall.
Fill a new layer with white.

Double the size of the canvas by adding 100 pixels to the bottom.
Reduce the opacity of the white layer to around 10%.

Save the image as a PNG-24 (you may see an option for PNG-8, but this
doesn’t support alpha transparency).

You're left with Figure 2.17, a 200-pixel-tall image with the top half white at
10 percent opacity and the bottom half completely transparent.

800

wox | @] Daoc: 293K/9.77K [¥]

Figure 2.17

APPLYING THE STYLES THAT CREATE THE BUTTON

Now we’re ready to apply the CSS that turns these ingredients into a glossy,

rounded, pill-shaped button.

First, let’s add some padding and the blue background and change the link

color to white (Figure 2.18).

div.more-btn a {
padding: S5px 14px;
color: #fff;
background: #3792b3;

}

+ News Archives

Figure 2.18

Rounded Corners with border-radius 39

The dimensions are arbitrary
here, as long as the image is
much larger than you antici-
pate needing. That'll allow for
breathing room should the text
or padding around the link
shrink or grow. It also means
we could reuse this image on
other varying-sized buttons
throughout the site. Typically,
I'll make tiling background
images at least 2px wide (or
tall) to account for smooth tiling
across browsers, which at times
don't like to tile images that are
1px wide (or tall).

40 Chapter 2

+— MNews Archives

Figure 2.19

+— News Archives

Figure 2.20

ol

Figure 2.21

Next, let’s add the semitransparent PNG that we created earlier, tiling it hori-
zontally (repeat-x) and positioning it vertically centered (0 50%).

div.more-btn a {
padding: S5px 14px;
color: #fff;
background: #3792b3 url(img/glass-btn.png) repeat-x 0 50%;
}

Figure 2.19 shows the glass-btn.pngimage tiling over the blue back-
ground. Because the bottom half of the image is completely transparent, and
we’re centering it vertically, we get the semitransparent portion of the PNG
showing on the top half of the button only, thereby creating that neat reflec-
tive look that’s the rage with all the kids these days.

Now we’ll add the border-radius properties that will round the button in
Mozilla- and WebKit-based browsers, as well as any future supporters of the
border-radius property, just as we have previously discussed in this chap-
ter (Figure 2.20).

div.more-btn a {
padding: S5px 14px;
color: #fff;
background: #3792b3 url(img/glass-btn.png) repeat-x 0 50%;
border-radius: 14px;
-webkit-border-radius: 14px;
-moz-border-radius: 14px;

}

EASY HOVER STATES

Adding a hover treatment to the button is as easy as adding a little declara-
tion that simply swaps out the background-color with a new value. We’ll
keep the link’s text color and the glass-btn.pngin place, but switch to a
red when moused over (Figure 2.21).

div.more-btn a:hover {
background-color: #al14141;

}

You can start to see the real power and flexibility of building buttons and
other interactive, rounded elements this way. We can swap color, size, type
treatment, and hover states, all with a few lines of code—in seconds.

Rounded Corners with border-radius 41

ADDING A border DETAIL

For an extra bit of detail, we could also add a subtle border around the but-
ton, using the same color as the background. That will set the glass PNG off
the edges a bit, adding a little depth to the entire button.

div.more-btn a {
padding: S5px 14px;
color: #fff;
border: 1px solid #3792b3;
background: #3792b3 url(img/glass-btn.png) repeat-x 0 50%;
border-radius: 14px;
-webkit-border-radius: 14px;
-moz-border-radius: 14px;

}

Figure 2.22 shows a zoomed-in detail of that single-pixel border. It’s
extremely subtle, but a worthy effect to mention. Try experimenting with

thicker border widths as well. 1px b“order

And that reminds me: While border-radius will round
off any element’s background (including color and

images), it’ll also round an element’s border as well, +— News Archives
just like it’s happening here.

For example, let’s take the same button we’ve been

working with, but take away the background color and Figure 2.22 A zoomed view of the button,
PNG image (replacing it with white). We’ll thicken a Spx where the 1px border to offset the glassy PNG is
border and round that off a bit. more visible.

div.more-btn a {
padding: S5px 14px;
border: 5px solid #eZeld4;
background: #fff;
border-radius: 5px;
-webkit-border-radius: 5px;
-moz-border-radius: 5px;

}

Figure 2.23 shows the results, which demonstrates border-radius
rounding the border we’ve set with CSS instead of the background we’d +~ News Archives
previously used.

Figure 2.23

42 Chapter 2

+— News Archives

Figure 2.24 Azoomed
view of the button in
Firefox 2, which doesn’t
properly support
background image
clipping.

NO BACKGROUND CLIPPING IN FIREFOX 2

It’s important to note that unfortunately background images aren’t properly
clipped in Firefox 2. This isn’t a problem with our button currently, as the
semitransparent PNG we’re using will blend in on top of the tan background.
If we darken the page background, however, you’ll notice the background
image isn’t clipped by -moz-border-radius in Firefox 2 (Figure 2.24).

You also can’t help but notice the horribly aliased corners, which may have
looked hip back in say, 1983. That’s something to keep in mind: Again,
Firefox 2’s implementation of border-radius works best at low contrast,
while Firefox 3’s implementation is correct.

Rounding Form Elements

While we’ve applied border-radius to a <div> and <a> elements so far,
you can apply the property to just about anything—including form elements.
With a combination of background color, borders, a small tiled background
image, and border-radius, you can easily create some elegantly styled
form inputs that are flexible and easy to maintain.

Let’s walk though a quick example of a simple comment form that we’ll add
to the Tugboat template.

SIMPLE FORM MARKUP

First we’ll start with a basic form, including inputs for Name and Email and a
<textarea> box for comments.

<form 1d="comment-form" action="/">
<fieldset>
<label for="name">Name</label>
<input id="name" type="text" />
</fieldset>
<fieldset>
<label for="email">Email</label>
<input id="email" type="text" />
</fieldset>
<fieldset>
<label for="comment">Comment</label>
<textarea id="comment"></textarea>
</fieldset>
</form>

Rounded Corners with border-radius 43

We’ll use the <fieldset> element to wrap each section of the form that
includes the label and inputs.

Figure 2.25 shows the form (unstyled at this point) added to the Tugboat
template.

MName

Email

Comment

Figure 2.25

Now we can apply a little CSS to start styling things.

APPLYING BASIC STYLES

First, let’s give a bottom margin to each <fieldset> to space each row out
a bit. Let’s also apply display: block; tothe <label>s, as they are inline
elements by default. That’ll put each label and form element on its own line.
While we’re at it, let’s also add a small margin to the bottom of each <label>
and make them bold as well (Figure 2.26).

Name

Email

Comment

|

Figure 2.26

#comment-form fieldset {
margin: @ @ 15px 0;
}

#comment-form fieldset label {
display: block;
margin: @ @ 3px 0;
font-weight: bold;
}

44 Chapter 2

ADDING BACKGROUNDS AND REMOVING BORDERS

Next, let’s create a combined declaration to style the <input>s and the
<textarea> in one shot. Let’s give them a width (I’'ve arbitrarily chosen
4Q0px in this case), add some padding, increase the font size, remove
default borders, and give them a slightly darker tan background than the
page (Figure 2.27).

MName

Email

Comment

Figure 2.27

#comment-form fieldset input,
#comment-form fieldset textarea {

width: 400px;

padding: 5px;

font-size: 1.4em;

border: none;

background: #eZeld7;

}

CREATING DEPTH

Let’s now add back in some depth by creating a small shadow GIF that we
can tile horizontally along the top of the form elements.

Figure 2.28 shows the GIF image, just a few pixels tall, that fades from a
darker tan color to the background color of the form element.

Rounded Corners with border-radius 45

®0O0 " linput-bg.gif @ 2230% (Index)

2226.32% | (] Doc: 88 bytes/88 bytes I3

Figure 2.28

We’ll add this image to the declaration that’s setting styles for the <input>s
and <textarea>, tiling it horizontally along the top.

#comment-form fieldset input,
#comment-form fieldset textarea {

width: 400px;

padding: 5px;

font-size: 1.4em;

border: none;

background: #e2eld7 url(../img/input-bg.gif) repeat-x top
left;

}

Figure 2.29 shows the form, now with added depth thanks to our tiled gradi-
ent. The form is starting to look good, and we can make it even better with
borders and border-radius.

Name

Email

Comment

Figure 2.29

46 Chapter 2

ADDING FURTHER DETAIL WITH
borders AND border-radius

For an extra level of added detail, we can add a 1-pixel white border on
the bottom and right edges of the form elements, enhancing the idea that

light is coming from the top left and creating the shadow on the inset fields
(Figure 2.30).

Mame

Email

Comment

Figure 2.30

#comment-form fieldset input,
#comment-form fieldset textarea {
width: 400px;
padding: 5px;
font-size: 1.4em;
border: none;
border-bottom: 1px soli