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Foreword to the Revised
OpenCL 1.2 Edition

I need your help. I need you to read this book and start using OpenCL. Let me
explain.

The fundamental building blocks of computing have changed over the past 10 years.
We have moved from the single-core processors many of us started with long ago to
shared memory multicore processors, to highly scalable “many core” processors, and
finally to heterogeneous platforms (e.g., a combination of a CPU and a GPU). If you
have picked up this book and are thinking of reading it, you are most likely well aware
of this fact. I assume you are also aware that software needs to change to keep up with
the evolution of hardware.

And this is where I need your help. I’ve been working in parallel computing since
1985 and have used just about every class of parallel computer. I’ve used more parallel
programming environments than I could name and have helped create more than a few.
So I know how this game works. Hardware changes and programmers like us are forced
torespond. Our old code breaks and we have to reengineer our software. It’s painful, but
it’s a fact of life.

Money makes the world go around so hardware vendors fight for competitive ad-
vantage. This drives innovation and, over the long run, is a good thing. To build atten-
tion for “their” platforms, however, these vendors “help” the poor programmers by
creating new programming models tied to their hardware. And this breeds confusion.
Well-meaning but misguided people use, or are forced to use, these new programming
models and the software landscape fragments. With different programming models for
each platform, the joy of creating new software is replaced with tedious hours rework-
ing our software for each and every new platform that comes along.

At certain points in the history of parallel computing, as the software landscape
continues to fragment, a subset of people come together and fight back. This requires
a rare combination of a powerful customer that controls a lot of money, a collection
of vendors eager to please that customer, and big ideas to solve the programming
challenges presented by a new class of hardware. This rare set of circumstances
can take years to emerge, so when it happens, you need to jump on the opportunity.
It happened for clusters and massively parallel supercomputers with MPI (1994).
It happened for shared memory computers with OpenMP (1997). And more recently,
this magical combination of factors has come together for heterogeneous computing
to give us OpenCL.

I can’t stress how important this development is. If OpenCL fails to dominate the
heterogeneous computing niche, it could be many years before the right set of cir-
cumstances come together again. If we let this opportunity slip away and we fall back
on our old, proprietary programming model ways, we could be sentencing our soft-
ware developers to years of drudgery.

vi
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So Ineed your help. I need you to join the OpenCL revolution. I need you to insist
on portable software frameworks for heterogeneous platforms. When possible, avoid
programming models tied to a single hardware vendor’s products. Open standards
help everyone. They enable more than a product line. They enable an industry,
and if you are in the software business, that is a very good thing.

OpenCL, however, is an unusually complex parallel programming standard.
It has to be. I am aware of no other parallel programming model that addresses such
a wide array of systems: GPUs, CPUs, FPGAs, embedded processors, and combina-
tions of these systems. OpenCL is also complicated by the goals of its creators. You
see, in creating OpenCL, we decided the best way to impact the industry would be to
create a programming model for the performance-oriented programmer wanting full
access to the details of the system. Our reasoning was that, over time, high-level
models would be created to map onto OpenCL. By creating a common low-level tar-
get for these higher level models, we’d enable a rich marketplace of ideas and pro-
grammers would win. OpenCL, therefore, doesn’t give you many abstractions to
make your programming job easier. You have to do all that work yourself.

OpenCL can be challenging, which is where this book comes in. You can learn
OpenCL by downloading the specification and writing code. That is a difficult way
to go. It is much better to have trailblazers who have gone before you establish the
context and then walk you through the key features of the standard. Programmers
learn by example, and this book uses that fact by providing a progression of exam-
ples from trivial (vector addition) to complex (image analysis). This book will help
you establish a firm foundation that you can build on as you master this exciting
new programming model.

Read this book. Write OpenCL code. Join the revolution. Help us make the world
safe for heterogeneous computing. Please ... I need your help. We all do.

Tim Mattson
Principal Engineer
Intel Corp.
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Foreword to the First Edition

For more than two decades, the computer industry has been inspired and motivated
by the observation made by Gordon Moore (A.K.A “Moore’s law”) that the density
of transistors on die was doubling every 18 months. This observation created the an-
ticipation that the performance a certain application achieves on one generation of
processors will be doubled within two years when the next generation of processors
will be announced. Constant improvement in manufacturing and processor technol-
ogies was the main drive of this trend since it allowed any new processor generation
to shrink all the transistor’s dimensions within the “golden factor”, 0.3 (ideal shrink)
and to reduce the power supply accordingly. Thus, any new processor generation
could double the density of transistors, to gain 50% speed improvement (frequency)
while consuming the same power and keeping the same power density. When better
performance was required, computer architects were focused on using the extra tran-
sistors for pushing the frequency beyond what the shrink provided, and for adding
new architectural features that mainly aim at gaining performance improvement
for existing and new applications.

During the mid 2000s, the transistor size became so small that the “physics of
small devices” started to govern the characterization of the entire chip. Thus fre-
quency improvement and density increase could not be achieved anymore without
a significant increase of power consumption and of power density. A recent report
by the International Technology Roadmap for Semiconductors (ITRS) supports this
observation and indicates that this trend will continue for the foreseeable future and it
will most likely become the most significant factor affecting technology scaling and
the future of computer based system.

To cope with the expectation of doubling the performance every known period of
time (not 2 years anymore), two major changes happened (1) instead of increasing
the frequency, modern processors increase the number of cores on each die. This
trend forces the software to be changed as well. Since we cannot expect the hardware
to achieve significantly better performance for a given application anymore, we need
to develop new implementations for the same application that will take advantage of
the multicore architecture, and (2) thermal and power become first class citizens with
any design of future architecture. These trends encourage the community to start
looking at heterogeneous solutions: systems which are assembled from different sub-
systems, each of them optimized to achieve different optimization points or to ad-
dress different workloads. For example, many systems combine “traditional” CPU
architecture with special purpose FPGAs or Graphics Processors (GPUs). Such an
integration can be done at different levels; e.g., at the system level, at the board level
and recently at the core level.

Developing software for homogeneous parallel and distributed systems is consid-
ered to be a non-trivial task, even though such development uses well-known para-
digms and well established programming languages, developing methods,
algorithms, debugging tools, etc. Developing software to support general-purpose

viii
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Foreword to the first edition ix

heterogeneous systems is relatively new and so less mature and much more difficult.
As heterogeneous systems are becoming unavoidable, many of the major software
and hardware manufacturers start creating software environments to support them.
AMD proposed the use of the Brook language developed in Stanford University,
to handle streaming computations, later extending the SW environment to include
the Close to Metal (CTM)and the Compute Abstraction Layer (CAL) for accessing
their low level streaming hardware primitives in order to take advantage of their
highly threaded parallel architecture. NVIDIA took a similar approach, co-designing
their recent generations of GPUs and the CUDA programming environment to take
advantage of the highly threaded GPU environment. Intel proposed to extend the use
of multi-core programming to program their Larrabee architecture. IBM proposed
the use of message-passing-based software in order to take advantage of its hetero-
geneous, non-coherent cell architecture and FPGA based solutions integrate libraries
written in VHDL with C or C4++ based programs to achieve the best of two envi-
ronments. Each of these programming environments offers scope for benefiting do-
main-specific applications, but they all failed to address the requirement for general
purpose software that can serve different hardware architectures in the way that, for
example, Java code can run on very different ISA architectures.

The Open Computing Language (OpenCL) was designed to meet this important
need. It was defined and managed by the nonprofit technology consortium Khronos
The language and its development environment “borrows” many of its basic con-
cepts from very successful, hardware specific environments such as CUDA, CAL,
CTM, and blends them to create a hardware independent software development en-
vironment. It supports different levels of parallelism and efficiently maps to homo-
geneous or heterogeneous, single- or multiple-device systems consisting of CPUs,
GPUs, FPGA and potentially other future devices. In order to support future devices,
OpenCL defines a set of mechanisms that if met, the device could be seamlessly in-
cluded as part of the OpenCL environment. OpenCL also defines a run-time support
that allows to manage the resources, combine different types of hardware under the
same execution environment and hopefully in the future it will allow to dynamically
balance computations, power and other resources such as memory hierarchy, in a
more general manner.

This book is a text book that aims to teach students how to program heteroge-
neous environments. The book starts with a very important discussion on how to pro-
gram parallel systems and defines the concepts the students need to understand
before starting to program any heterogeneous system. It also provides a taxonomy
that can be used for understanding the different models used for parallel and distrib-
uted systems. Chapters 2 — 4 build the students’ step by step understanding of the
basic structures of OpenCL (Chapter 2) including the host and the device architecture
(Chapter 3). Chapter 4 provides an example that puts together these concepts using a
not trivial example.

Chapters 5 and 6 extend the concepts we learned so far with a better understand-
ing of the notions of concurrency and run-time execution in OpenCL (Chapter 5) and
the dissection between the CPU and the GPU (Chapter 6). After building the basics,
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the book dedicates 4 Chapters (7-10) to more sophisticated examples. These sections
are vital for students to understand that OpenCL can be used for a wide range of ap-
plications which are beyond any domain specific mode of operation. The book also
demonstrates how the same program can be run on different platforms, such as Nvi-
dia or AMD. The book ends with three chapters which are dedicated to advanced
topics.

No doubt that this is a very important book that provides students and researchers
with a better understanding of the world of heterogeneous computers in general and
the solutions provided by OpenCL in particular. The book is well written, fits stu-
dents’ different experience levels and so, can be used either as a text book in a course
on OpenCL, or different parts of the book can be used to extend other courses; e.g.,
the first two chapters are well fitted for a course on parallel programming and some
of the examples can be used as a part of advanced courses.

Dr. Avi Mendelson
Microsoft R&D Israel
Adjunct Professor, Technion
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Preface

OUR HETEROGENEOUS WORLD

Our world is heterogeneous in nature. This kind of diversity provides a richness and
detail that is difficult to describe. At the same time, it provides a level of complexity
and interaction in which a wide range of different entities are optimized for specific
tasks and environments.

In computing, heterogeneous computer systems also add richness by allowing the
programmer to select the best architecture to execute the task at hand or to choose the
right task to make optimal use of a given architecture. These two views of the flex-
ibility of a heterogeneous system both become apparent when solving a computa-
tional problem involves a variety of different tasks. Recently, there has been an
upsurge in the computer design community experimenting with building heteroge-
neous systems. We are seeing new systems on the market that combine a number of
different classes of architectures. What has slowed this progression has been a lack of
standardized programming environment that can manage the diverse set of resources
in a common framework.

OPENCL

OpenCL has been developed specifically to ease the programming burden when writ-
ing applications for heterogeneous systems. OpenCL also addresses the current trend
to increase the number of cores on a given architecture. The OpenCL framework sup-
ports execution on multi-core central processing units, digital signal processors, field
programmable gate arrays, graphics processing units, and heterogeneous accelerated
processing units. The architectures already supported cover a wide range of ap-
proaches to extracting parallelism and efficiency from memory systems and instruc-
tion streams. Such diversity in architectures allows the designer to provide an
optimized solution to his or her problem—a solution that, if designed within the
OpenCL specification, can scale with the growth and breadth of available architec-
tures. OpenCL’s standard abstractions and interfaces allow the programmer to seam-
lessly “stitch” together an application within which execution can occur on a rich set
of heterogeneous devices from one or many manufacturers.

THIS TEXT

Until now, there has not been a single definitive text that can help programmers and
software engineers leverage the power and flexibility of the OpenCL programming
standard. This is our attempt to address this void. With this goal in mind, we have not
attempted to create a syntax guide—there are numerous good sources in which
programmers can find a complete and up-to-date description of OpenCL syntax.

Xi
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Instead, this text is an attempt to show a developer or student how to leverage
the OpenCL framework to build interesting and useful applications. We provide a
number of examples of real applications to demonstrate the power of this program-
ming standard.

Our hope is that the reader will embrace this new programming framework and
explore the full benefits of heterogeneous computing that it provides. We welcome
comments on how to improve upon this text, and we hope that this text will help you
build your next heterogeneous application.
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CHAPTER

Introduction to Parallel
Programming

INTRODUCTION

Today’s computing environments are becoming more multifaceted, exploiting the
capabilities of a range of multi-core microprocessors, central processing units
(CPUs), digital signal processors, reconfigurable hardware (FPGAs), and graphics
processing units (GPUs). Presented with so much heterogeneity, the process of de-
veloping efficient software for such a wide array of architectures poses a number of
challenges to the programming community.

Applications possess a number of workload behaviors, ranging from control
intensive (e.g., searching, sorting, and parsing) to data intensive (e.g., image
processing, simulation and modeling, and data mining). Applications can also
be characterized as compute intensive (e.g., iterative methods, numerical methods,
and financial modeling), where the overall throughput of the application is heavily
dependent on the computational efficiency of the underlying hardware. Each of
these workload classes typically executes most efficiently on a specific style of
hardware architecture. No single architecture is best for running all classes of
workloads, and most applications possess a mix of the workload characteristics.
For instance, control-intensive applications tend to run faster on superscalar CPUs,
where significant die real estate has been devoted to branch prediction mecha-
nisms, whereas data-intensive applications tend to run fast on vector architectures,
where the same operation is applied to multiple data items concurrently.

OPENCL

The Open Computing Language (OpenCL) is a heterogeneous programming
framework that is managed by the nonprofit technology consortium Khronos
Group. OpenCL is a framework for developing applications that execute across
a range of device types made by different vendors. It supports a wide range of
levels of parallelism and efficiently maps to homogeneous or heterogeneous,
single- or multiple-device systems consisting of CPUs, GPUs, and other types of de-
vices limited only by the imagination of vendors. The OpenCL definition offers both
a device-side language and a host management layer for the devices in a system.

Heterogeneous Computing with OpenCL
© 2013 Advanced Micro Devices, Inc. Published by Elsevier Inc. All rights reserved.
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The device-side language is designed to efficiently map to a wide range of memory
systems. The host language aims to support efficient plumbing of complicated concur-
rent programs with low overhead. Together, these provide the developer with a path to
efficiently move from algorithm design to implementation.

OpenCL provides parallel computing using task-based and data-based parallel-
ism. It currently supports CPUs that include x86, ARM, and PowerPC, and it has
been adopted into graphics card drivers by AMD, Apple, Intel, and NVIDIA. Support
for OpenCL is rapidly expanding as a wide range of platform vendors have adopted
OpenCL and support or plan to support it for their hardware platforms. These vendors
fall within a wide range of market segments, from the embedded vendors (ARM and
Imagination Technologies) to the HPC vendors (AMD, Intel, NVIDIA, and IBM).
The architectures supported include multi-core CPUs, throughput and vector proces-
sors such as GPUs, and fine-grained parallel devices such as FPGAs.

Most important, OpenCL’s cross-platform, industrywide support makes it an
excellent programming model for developers to learn and use, with the confidence
that it will continue to be widely available for years to come with ever-increasing
scope and applicability.

THE GOALS OF THIS BOOK

The first edition of this book was the first of its kind to present OpenCL programming
in a fashion appropriate for the classroom. In this second edition we update the con-
tent for the latest version of the OpenCL standard. The book is organized to address
the need for teaching parallel programming on current system architectures using
OpenCL as the target language, and it includes examples for CPUs, GPUs, and their
integration in the accelerated processing unit (APU). Another major goal of this text
is to provide a guide to programmers to develop well-designed programs in OpenCL
targeting parallel systems. The book leads the programmer through the various ab-
stractions and features provided by the OpenCL programming environment. The ex-
amples offer the reader a simple introduction and more complicated optimizations,
and they suggest further development and goals at which to aim. It also discusses
tools for improving the development process in terms of profiling and debugging
such that the reader need not feel lost in the development process.

The book is accompanied by a set of instructor slides and programming exam-
ples, which support the use of this text by an OpenCL instructor. Please visit
http://heterogeneouscomputingwithopencl.org/ for additional information.

THINKING PARALLEL

Most applications are first programmed to run on a single processor. In the field
of high-performance computing, classical approaches have been used to accelerate
computation when provided with multiple computing resources. Standard approaches
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include “divide-and-conquer” and “scatter—gather” problem decomposition methods,
providing the programmer with a set of strategies to effectively exploit the parallel
resources available in high-performance systems. Divide-and-conquer methods iter-
atively break a problem into subproblems until the subproblems fit well on the com-
putational resources provided. Scatter—gather methods send a subset of the input data
set to each parallel resource and then collect the results of the computation and com-
bine them into a result data set. As before, the partitioning takes account of the size of
the subsets based on the capabilities of the parallel resources. Figure 1.1 shows how
popular applications such as sorting and a vector—scalar multiply can be effectively
mapped to parallel resources to accelerate processing.

The programming task becomes increasingly challenging when faced with the
growing parallelism and heterogeneity present in contemporary parallel processors.
Given the power and thermal limits of complementary metal-oxide semiconductor
(CMOS) technology, microprocessor vendors find it difficult to scale the frequency
of these devices to derive more performance and have instead decided to place mul-
tiple processors, sometimes specialized, on a single chip. In doing so, the problem of
extracting parallelism from an application is left to the programmer, who must de-
compose the underlying algorithms in the applications and map them efficiently to a
diverse variety of target hardware platforms.

In the past 5 years, parallel computing devices have been increasing in number and
processing capabilities. GPUs have also appeared on the computing scene and are

vector A
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_z b e
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FIGURE 1.1

(A) Simple sorting and (B) dot product examples.
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providing new levels of processing capability at very low cost. Driven by the demand
for real-time three-dimensional graphics rendering, a highly data-parallel problem,
GPUs have evolved rapidly as very powerful, fully programmable, task and data-
parallel architectures. Hardware manufacturers are now combining CPU cores and
GPU cores on a single die, ushering in a new generation of heterogeneous computing.
Compute-intensive and data-intensive portions of a given application, called kernels,
may be offloaded to the GPU, providing significant performance per watt and raw
performance gains, while the host CPU continues to execute nonkernel tasks.

Many systems and phenomena in both the natural world and the man-made world
present us with different classes of parallelism and concurrency:

* Molecular dynamics

» Weather and ocean patterns

» Multimedia systems

» Tectonic plate drift

+ Cell growth

» Automobile assembly lines

* Sound and light wave propagation

Parallel computing, as defined by Almasi and Gottlieb (1989), is “a form of compu-
tation in which many calculations are carried out simultaneously, operating on the
principle that large problems can often be divided into smaller ones, which are then
solved concurrently (i.e., in parallel).” The degree of parallelism that can be achieved
is dependent on the inherent nature of the problem at hand (remember that there ex-
ists significant parallelism in the world), and the skill of the algorithm or software
designer is to identify the different forms of parallelism present in the underlying
problem. We begin with a discussion of two simple examples to demonstrate inher-
ent parallel computation: vector multiplication and text searching.

Our first example carries out multiplication of the elements of two arrays A and B,
each with N elements, storing the result of each multiply in a corresponding array C.
Figure 1.2 shows the computation we would like to carry out. The serial C++
program for code would look as follows:

for (i=0; i<N; i++)
CLil=A[i]1*B[i];

This code possesses significant parallelism but very little arithmetic intensity. The
computation of every element in C is independent of every other element. If we were
to parallelize this code, we could choose to generate a separate execution instance to
perform the computation of each element of C. This code possesses significant data-
level parallelism because the same operation is applied across all of A and B to pro-
duce C. We could also view this breakdown as a simple form of task parallelism
where each task operates on a subset of the same data; however, task parallelism gen-
eralizes further to execution on pipelines of data or even more sophisticated parallel
interactions. Figure 1.3 shows an example of task parallelism in a pipeline to support
filtering of images in frequency space using an FFT.
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Multiplying two arrays: This example provides for parallel computation without any need for
communication.
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Filtering a series of images using an FFT shows clear task parallelism as a series of tasks
operate together in a pipeline to compute the overall result.

Let us consider a second example. The computation we are trying to carry out is
to find the number of occurrences of a string of characters in a body of text
(Figure 1.4). Assume that the body of text has already been parsed into a set of N
words. We could choose to divide the task of comparing the string against the N po-
tential matches into N comparisons (i.e., tasks), where each string of characters is
matched against the text string. This approach, although rather naive in terms of
search efficiency, is highly parallel. The process of the text string being compared
against the set of potential words presents N parallel tasks, each carrying out the same
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Document words
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compare

Valence

. N parallel comparison tasks

.
s,
.
.

Finer-grained character-by-character parallelism
FIGURE 1.4

An example of both task-level and data-level parallelism. We can have parallel tasks that
count the occurrence of string in a body of text. The lower portion of the figure shows that the
string comparison can be broken down to finer-grained parallel processing.

set of operations. There is even further parallelism within a single comparison task,
where the matching on a character-by-character basis presents a finer-grained degree
of parallelism. This example exhibits both data-level parallelism (we are going to be
performing the same operation on multiple data items) and task-level parallelism (we
can compare the string to all words concurrently).

Once the number of matches is determined, we need to accumulate them to provide
the total number of occurrences. Again, this summing can exploit parallelism. In this
step, we introduce the concept of “reduction,” where we can utilize the availability of
parallel resources to combine partials sumsina very efficient manner. Figure 1.5 shows
the reduction tree, which illustrates this summation process in log N steps.

CONCURRENCY AND PARALLEL PROGRAMMING MODELS

Here, we discuss concurrency and parallel processing models so that when attempt-
ing to map an application developed in OpenCL to a parallel platform, we can select
the right model to pursue. Although all of the following models can be supported in
OpenCL, the underlying hardware may restrict which model will be practical to use.
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After all string comparisons are completed, we can sum up the number of matches in a
combining network.

Concurrency is concerned with two or more activities happening at the same
time. We find concurrency in the real world all the time—for example, carrying a
child in one arm while crossing a road or, more generally, thinking about something
while doing something else with one’s hands.

When talking about concurrency in terms of computer programming, we mean a
single system performing multiple tasks independently. Although it is possible that
concurrent tasks may be executed at the same time (i.e., in parallel), this is not a re-
quirement. For example, consider a simple drawing application, which is either re-
ceiving input from the user via the mouse and keyboard or updating the display with
the current image. Conceptually, receiving and processing input are different oper-
ations (i.e., tasks) from updating the display. These tasks can be expressed in terms of
concurrency, but they do not need to be performed in parallel. In fact, in the case in
which they are executing on a single core of a CPU, they cannot be performed in
parallel. In this case, the application or the operating system should switch between
the tasks, allowing both some time to run on the core.

Parallelism is concerned with running two or more activities in parallel with the
explicit goal of increasing overall performance. For example, consider the following
assignments:
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step 1) A=B+C
step 2) D=E+G
step 3) R=A+D

The assignments of A and D in steps 1 and 2 (respectively) are said to be independent
of each other because there is no data flow between these two steps (i.e., the variables
E and G on the right side of step 2 do not appear on the left side step 1, and vice versa,
the variables B and C on the right sides of step 1 do not appear on the left side of
step 2.). Also the variable on the left side of step 1 (A) is not the same as the variable
on the left side of step 2 (D). This means that steps 1 and 2 can be executed in parallel
(i.e., at the same time). Step 3 is dependent on both steps 1 and 2, so cannot be
executed in parallel with either step 1 or 2.

Parallel programs must be concurrent, but concurrent programs need not be parallel.
Although many concurrent programs can be executed in parallel, interdependencies be-
tween concurrent tasks may preclude this. For example, an interleaved execution would
still satisfy the definition of concurrency while not executing in parallel. As aresult, only
a subset of concurrent programs are parallel, and the set of all concurrent programs is
itself a subset of all programs. Figure 1.6 shows this relationship.

In the remainder of this section, some well-known approaches to programming con-
current and parallel systems are introduced with the aim of providing a foundation
before introducing OpenCL in Chapter 2.

All programs

Concurrent
programs

FIGURE 1.6
Parallel and concurrent programs are subsets of programs.
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Threads and Shared Memory

A running program may consist of multiple subprograms that maintain their own in-
dependent control flow and that are allowed to run concurrently. These subprograms
are defined as threads. Communication between threads is via updates and access to
memory appearing in the same address space. Each thread has its own pool of local
memory—that is, variables—but all threads see the same set of global variables. A
simple analogy that can be used to describe the use of threads is the concept of a main
program that includes a number of subroutines. The main program is scheduled to
run by the operating system and performs necessary loading and acquisition of sys-
tem and user resources to run. Execution of the main program begins by performing
some serial work and then continues by creating a number of tasks that can be sched-
uled and run by the operating system concurrently using threads.

Each thread benefits from a global view of memory because it shares the same
memory address space of the main program. Threads communicate with each other
through global memory. This can require synchronization constructs to ensure that
more than one thread is not updating the same global address.

A memory consistency model is defined to manage load and store ordering. All
processors see the same address space and have direct access to these addresses with
the help of other processors. Mechanisms such as locks/semaphores are commonly
used to control access to shared memory that is accessed by multiple tasks. A key
feature of the shared memory model is the fact that the programmer is not responsible
for managing data movement, although depending on the consistency model imple-
mented in the hardware or runtime system, some level of memory consistency may
have to be enforced manually. This relaxes the requirement to specify explicitly the
communication of data between tasks, and as a result, parallel code development can
often be simplified.

There is a significant cost to supporting a fully consistent shared memory model in
hardware. For multiprocessor systems, the hardware structures required to support
this model become a limiting factor. Shared buses become bottlenecks in the design.
The extra hardware required typically grows exponentially in terms of its complexity
as we attempt to add additional processors. This has slowed the introduction of multi-
core and multiprocessor systems at the low end, and it has limited the number of cores
working together in a consistent shared memory system to relatively low numbers
because shared buses and coherence protocol overheads become bottlenecks. More
relaxed shared memory systems scale further, although in all cases scaling shared
memory systems comes at the cost of complicated and expensive interconnects.

Most multi-core CPU platforms support shared memory in one form or another.
OpenCL supports execution on shared memory devices.

Message-Passing Communication

The message-passing communication model enables explicit intercommunication of
a set of concurrent tasks that may use memory during computation. Multiple tasks
can reside on the same physical device and/or across an arbitrary number of devices.
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Tasks exchange data through communications by sending and receiving explicit
messages. Data transfer usually requires cooperative operations to be performed
by each process. For example, a send operation must have a matching receive
operation.

From a programming perspective, message-passing implementations commonly
comprise a library of hardware-independent routines for sending and receiving mes-
sages. The programmer is responsible for explicitly managing communication be-
tween tasks. Historically, a variety of message-passing libraries have been
available since the 1980s. MPI is currently the most popular message-passing mid-
dleware. These implementations differ substantially from each other, making it dif-
ficult for programmers to develop portable applications.

Different Grains of Parallelism

In parallel computing, granularity is a measure of the ratio of computation to com-
munication. Periods of computation are typically separated from periods of commu-
nication by synchronization events. The grain of parallelism is constrained by the
inherent characteristics of the algorithms constituting the application. It is important
that the parallel programmer selects the right granularity in order to reap the full
benefits of the underlying platform because choosing the right grain size can help
to expose additional degrees of parallelism. Sometimes this selection is referred
to as “chunking,” determining the amount of data to assign to each task. Selecting
the right chunk size can help provide for further acceleration on parallel hardware.
Next, we consider some of the trade-offs associated with identifying the right
grain size.

» Fine-grained parallelism
Low arithmetic intensity.
May not have enough work to hide long-duration asynchronous communication.
Facilitates load balancing by providing a larger number of more manageable
(i.e., smaller) work units.
If the granularity is too fine, it is possible that the overhead required for com-
munication and synchronization between tasks can actually produce a slower
parallel implementation than the original serial execution.

» Coarse-grained parallelism
High arithmetic intensity.
Complete applications can serve as the grain of parallelism.
More difficult to load balance efficiently.

Given these trade-offs, which granularity will lead to the best implementation? The
most efficient granularity is dependent on the algorithm and the hardware environ-
ment in which it is run. In most cases, if the overhead associated with communication
and synchronization is high relative to the time of the computation task at hand, it
will generally be advantageous to work at a coarser granularity. Fine-grained paral-
lelism can help reduce overheads due to load imbalance or memory delays (this is
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particularly true on a GPU, which depends on near-zero-overhead fine-grained
thread switching to hide memory latencies). Fine-grained parallelism can even occur
at an instruction level (this approach is used in very long instruction word (VLIW)
and superscalar architectures).

Data Sharing and Synchronization

Consider the case in which two applications run that do not share any data. As long as
the runtime system or operating system has access to adequate execution resources,
they can be run concurrently and even in parallel. If halfway through the execution of
one application it generated a result that was subsequently required by the second
application, then we would have to introduce some form of synchronization
into the system, and parallel execution—at least across the synchronization
point—becomes impossible.

When writing concurrent software, data sharing and synchronization play a crit-
ical role. Examples of data sharing in concurrent programs include

+ the input of a task is dependent on the result of another task—for example, in a
producer/consumer or pipeline execution model; and

« when intermediate results are combined together (e.g., as part of a reduction, as in
our word search example shown in Figure 1.4).

Ideally, we would only attempt to parallelize portions of an application that are void
of data dependencies, but this is not always possible. Explicit synchronization prim-
itives such as barriers or locks may be used to support synchronization when neces-
sary. Although we only raise this issue here, later chapters revisit this question when
support for communication between host and device programs or when synchroni-
zation between tasks is required.

STRUCTURE

The remainder of the book is organized as follows:

Chapter 1 (this chapter) introduces many concepts related to the development of
parallel algorithms and software. The chapter covers concurrency, threads, and
different grains of parallelism: many of the fundamentals of parallel software
development.

Chapter 2 presents an introduction to OpenCL, including key concepts such as
kernels, platforms, and devices, the four different abstraction models, and devel-
oping your first OpenCL kernel. Understanding these different models is critical
to fully appreciate the richness of OpenCL’s programming model.

Chapter 3 presents some of the architectures OpenCL does or might target, in-
cluding x86 CPUs, GPUs, and APUs. The text includes discussion of different
styles of architectures including SIMD and VLIW. This chapter also covers
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the concepts of multi-core and throughput-oriented systems, as well as the new
advances in heterogeneous architectures.

Chapter 4 introduces basic matrix multiplication, image rotation and convolution
implementations to help the reader learn OpenCL by example.

Chapter 5 discusses concurrency and execution in the OpenCL programming
model. In this chapter we discuss kernels, work items and the OpenCL execution
and memory hierarchies. We also show how queuing and synchronization work
in OpenCL such that the reader gains an understanding of how to write OpenCL
programs that interact with memory correctly.

Chapter 6 shows how OpenCL maps to an example architecture. For this study we
choose a system comprising an AMD Bulldozer CPU and an AMD Radeon
HD7970 GPU. This chapter allows us to show how the mappings of the OpenCL
programming model for largely serial architectures such as CPUs and vector/
throughput architectures such as GPUs differ, giving some idea how to optimize
for specific architectural styles.

Chapter 7 discusses data management on heterogeneous systems, with particular
focus on developing guidelines on how to optimize data transfers on different
platforms using OpenCL. The chapter concludes with a case study where the per-
formance of a reduction kernel is considered when different data management
strategies are used.

Chapter 8 presents a case study that accelerates a convolution algorithm. Issues
related to memory space utilization and efficiency are considered as well as work
item scheduling, wavefront occupancy, and overall efficiency. These techniques
are the foundations necessary for developing high performance code using
OpenCL.

Chapter 9 presents another case study, looking at how to optimize the perfor-
mance of a Histogramming application. In particular, it highlights how careful
design of work-group size and memory access patterns can make a vast difference
to performance in memory bound applications such as Histogram.

Chapter 10 discusses how to leverage a heterogeneous CPU-GPU environment.
The target application is a mixed particle simulation (as illustrated on the cover)
where work is distributed across both the CPU and GPU depending on the grain
size of particles in the system.

Chapter 11 shows how to use OpenCL extensions using the device fission and
double precision extensions as examples.

Chapter 12 shows that non C and C++ application developers can access the ben-
efits of OpenCL via a selection of API wrapper frameworks and Embedded Do-
main Specific Languages. This main component of the chapter is an in depth look
at accessing OpenCL from the functional programming language Haskell.
Chapter 13 introduces the reader to debugging and analyzing OpenCL programs.
The right debugging tool can save a developer 100s of wasted programs, allow-
ing her instead to learn the specific computer language and solve the problem at
hand.
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Chapter 14 looks at the profiling techniques briefly mentioned in chapter 13 in
more depth, applying them to a real application. A medical image analysis pipe-
line is ported from a traditional CPU multithreaded execution and optimized for
execution using OpenCL on a GPU. In this chapter we see both static analysis and
profiling and the tradeoffs involved in optimizing a real application for data-
parallel execution.
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CHAPTER

Introduction to OpenCL

INTRODUCTION

This chapter introduces OpenCL, the programming fabric that will allow us to weave
our application to execute concurrently. Programmers familiar with C and C++
should have little trouble understanding the OpenCL syntax. We begin by reviewing
the OpenCL standard.

The OpenCL Standard

Open programming standards designers are tasked with a very challenging objective:
arrive at a common set of programming standards that are acceptable to a range of
competing needs and requirements. The Khronos consortium that manages the
OpenCL standard has done a good job addressing these requirements. The consor-
tium has developed an applications programming interface (API) that is general
enough to run on significantly different architectures while being adaptable enough
that each hardware platform can still obtain high performance. Using the core lan-
guage and correctly following the specification, any program designed for one ven-
dor can execute on another’s hardware. The model set forth by OpenCL creates
portable, vendor- and device-independent programs that are capable of being accel-
erated on many different hardware platforms.

The OpenCL APl is a C with a C+4- Wrapper API that is defined in terms of the C
API. There are third-party bindings for many languages, including Java, Python, and
.NET. The code that executes on an OpenCL device, which in general is not the same
device as the host CPU, is written in the OpenCL C language. OpenCL C is a
restricted version of the C99 language with extensions appropriate for executing
data-parallel code on a variety of heterogeneous devices.

The OpenCL Specification

The OpenCL specification is defined in four parts, called models, that can be sum-
marized as follows:

Heterogeneous Computing with OpenCL 1 5
© 2013 Advanced Micro Devices, Inc. Published by Elsevier Inc. All rights reserved.
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1. Platform model: Specifies that there is one processor coordinating execution (the
host) and one or more processors capable of executing OpenCL C code (the de-
vices). It defines an abstract hardware model that is used by programmers when
writing OpenCL C functions (called kernels) that execute on the devices.

2. Execution model: Defines how the OpenCL environment is configured on the
host and how kernels are executed on the device. This includes setting up an
OpenCL context on the host, providing mechanisms for host—device interaction,
and defining a concurrency model used for kernel execution on devices.

3. Memory model: Defines the abstract memory hierarchy that kernels use, regard-
less of the actual underlying memory architecture. The memory model closely
resembles current GPU memory hierarchies, although this has not limited adopt-
ability by other accelerators.

4. Programming model: Defines how the concurrency model is mapped to physical
hardware.

In a typical scenario, we might observe an OpenCL implementation executing on a
host x86 CPU, which is using a GPU device as an accelerator. The platform model
defines this relationship between the host and device. The host sets up a kernel for the
GPU to run and instantiates it with some specified degree of parallelism. This is the
execution model. The data within the kernel is allocated by the programmer to spe-
cific parts of an abstract memory hierarchy. The runtime and driver will map these
abstract memory spaces to the physical hierarchy. Finally, hardware thread contexts
that execute the kernel must be created and mapped to actual GPU hardware units.
This is done using the programming model. Throughout this chapter, these ideas are
discussed in further detail.

This chapter begins by introducing how OpenCL kernels are written and the par-
allel execution model that they use. The OpenCL host API is then described and
demonstrated using a running example—vector addition. The full listing of the vector
addition example is given at the end of the chapter.

Kernels and the OpenCL Execution Model

Kernels are the parts of an OpenCL program that actually execute on a device. The
OpenCL API enables an application to create a context for management of the ex-
ecution of OpenCL commands, including those describing the movement of data be-
tween host and OpenCL memory structures and the execution of kernel code that
processes this data to perform some meaningful task.

Like many CPU concurrency models, an OpenCL kernel is syntactically similar
to a standard C function; the key differences are a set of additional keywords and the
execution model that OpenCL kernels implement. When developing concurrent pro-
grams for a CPU using OS threading APIs or OpenMP, for example, the programmer
considers the physical resources available (e.g., CPU cores) and the overhead of
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creating and switching between threads when their number substantially exceeds the
resource availability. With OpenCL, the goal is often to represent parallelism pro-
grammatically at the finest granularity possible. The generalization of the OpenCL
interface and the low-level kernel language allows efficient mapping to a wide range
of hardware. The following discussion presents three versions of a function that per-
forms an element-wise vector addition: a serial C implementation, a threaded C
implementation, and an OpenCL implementation.

The code for a serial C implementation of the vector addition executes a loop with
as many iterations as there are elements to compute. Each loop iteration adds the
corresponding locations in the input arrays together and stores the result into the out-
put array:

// Performan element-wise addition of Aand B and storeinC.
// There are N elements per array.
void vecadd(int *C, int* A, int *B, int N) {
for(int i=0; 1 <N; i++) {
CLil=A[11+B[i];

}

For a simple multi-core device, we could either use a low-level coarse-grained
threading API, such as Win32 or POSIX threads, or use a data-parallel model such
as OpenMP. Writing a coarse-grained multithreaded version of the same function
would require dividing the work (i.e., loop iterations) between the threads. Because
there may be a large number of loop iterations and the work per iteration is small, we
would need to chunk the loop iterations into a larger granularity (a technique called
strip mining, (Cooper and Torczon, 2011)). The code for the multithreaded version
may look as follows:

// Performand element-wise addition of Aand B and store inC.
// There are N elements per array and NP CPU cores.
voidvecadd(int *C, int* A, int *B, int N, int NP, int tid) {
int ept =N/NP; // elements per thread
for(int i =tid*ept; i < (tid+1)*ept; i++) {
Clil=A[i]+B[i];
}
}

OpenCL is closer to OpenMP than the threading APIs of Win32 and POSIX,
supporting data-parallel execution but retaining a low level of control. The unit of
concurrent execution in OpenCL C is a work-item. As with the two previous exam-
ples, each work-item executes the kernel function body. Instead of manually strip
mining the loop, we will often map a single iteration of the loop to a work-item.
We tell the OpenCL runtime to generate as many work-items as elements in the input
and output arrays and allow the runtime to map those work-items to the underlying
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hardware, and hence CPU or GPU cores, in whatever way it deems appropriate. Con-
ceptually, this is very similar to the parallelism inherent in a functional “map” op-
eration (c.f., mapReduce) or a data-parallel for loop in a model such as OpenMP.
When an OpenCL device begins executing a kernel, it provides intrinsic functions
that allow a work-item to identify itself. In the following code, the call to get_glo-
bal_id(0) allows the programmer to make use of the position of the current work-
item in the simple case to regain the loop counter:

// Performan element-wise addition of Aand B and store inC

// Nwork-items will be created to execute this kernel.

__kernel

void vecadd(__global int *C, __global int* A, _ global int *B) {
int tid=get_global_id(0); // OpenCL intrinsic function
Cltid]l =A[tid] +B[tid];

}

Given that OpenCL describes execution in fine-grained work-items and can dispatch
vast numbers of work-items on architectures with hardware support for fine-grained
threading, it is easy to have concerns about scalability. The hierarchical concurrency
model implemented by OpenCL ensures that scalable execution can be achieved
even while supporting a large number of work-items. When a kernel is executed,
the programmer specifies the number of work-items that should be created as an
n-dimensional range (NDRange). An NDRange is a one-, two-, or three-dimensional
index space of work-items that will often map to the dimensions of either the input or
the output data. The dimensions of the NDRange are specified as an N-element array
of type size_t, where N represents the number of dimensions used to describe the
work-items being created.

Inthe vector addition example, our data will be one-dimensional and, assuming that
there are 1024 elements, the size can be specified as a one-, two-, or three-dimensional
vector. The host code to specify an ND Range for 1024 elements is as follows:

size_t indexSpaceSize[3]=1{1024,1, 1};

Achieving scalability comes from dividing the work-items of an NDRange into smal-
ler, equally sized workgroups (Figure 2.1). An index space with N dimensions re-
quires workgroups to be specified using the same N dimensions; thus, a three-
dimensional index space requires three-dimensional workgroups.

Work items within a workgroup have a special relationship with one another: They
can perform barrier operations to synchronize and they have access to a shared mem-
ory address space. Because workgroup sizes are fixed, this communication does not
have aneed to scale and hence does not affect scalability of alarge concurrent dispatch.

For the vector addition example, the workgroup size might be specified as

size_t workGroupSize[3]={64,1, 1};

If the total number of work-items per array is 1024, this results in creating 16 work-
groups (1024 work-items/(64 work-items per workgroup) = 16 workgroups). Note
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Work-items are created as an NDRange and grouped in workgroups.

that OpenCL requires that the index space sizes are evenly divisible by the work-
group sizes in each dimension. For hardware efficiency, the workgroup size is usu-
ally fixed to a favorable size, and we round up the index space size in each dimension
to satisfy this divisibility requirement. In the kernel code, we can specify that
extra work-items in each dimension simply return immediately without outputting
any data.

For programs such as vector addition in which work-items behave independently
(even within a workgroup), OpenCL allows the local workgroup size to be ignored by
the programmer and generated automatically by the implementation; in this case, the
developer will pass NULL instead.

PLATFORM AND DEVICES

The OpenCL platform model defines the roles of the host and devices and provides
an abstract hardware model for devices.

Host-Device Interaction

In the platform model, there is a single host that coordinates execution on one or
more devices. Platforms can be thought of as vendor-specific implementations of
the OpenCL API. The devices that a platform can target are thus limited to those with
which a vendor knows how to interact. For example, if Company A’s platform is
chosen, it cannot communicate with Company B’s GPU.

The platform model also presents an abstract device architecture that program-
mers target when writing OpenCL C code. Vendors map this abstract architecture
to the physical hardware. With scalability in mind, the platform model defines a
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The platform model defines an abstract architecture for devices.

device as an array of compute units, with each compute unit functionally independent
from the rest. Compute units are further divided into processing elements. Figure 2.2
illustrates this hierarchical model.

The platform device model closely corresponds to the hardware model of some
GPUs. For example, the AMD Radeon 7970 graphics card (device) comprises 32
vector processors (compute units). Each compute unit has 4 16-lane SIMD engines
for a total of 64 lane (processing elements). Each SIMD lane on the 7970 executes a
scalar instruction. This allows the device to execute a total of 2048 instructions at
a time on the processing elements.

The API function c1GetPlatformIDs () is used to discover the set of available
platforms for a given system:

cl_int

clGetPlatformIDs(cl_uint num_entries,
cl_platform_id *platforms,
cl_uint *num_platforms)

clGetPlatformIDs() will often be called twice by an application. The first call
passes an unsigned int pointer as the num_platforms argument and NULL is passed
as the platforms argument. The pointer is populated with the available number of
platforms. The programmer can then allocate space to hold the platform information.
For the second call, a c1_platform_id pointer is passed to the implementation with
enough space allocated for num_entries platforms. After platforms have been dis-
covered, the c1GetPlatformInfo() call can be used to determine which implemen-
tation (vendor) the platform was defined by. The full source code listing at the end of
the chapter demonstrates this process.

The c1GetDevicelDs () call works very similar to c1GetPlatformIDs (). It takes
the additional arguments of a platform and a device type but otherwise the same
three-step process occurs. The device_type argument can be used to limit the de-
vices to GPUs only (CL_DEVICE_TYPE_GPU), CPUs only (CL_DEVICE_TYPE_CPU),
all devices (CL_DEVICE_TYPE_ALL), as well as other options. As with platforms,
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clGetDeviceInfo() is called to retrieve information such as name, type, and vendor
from each device. Discovering devices is illustrated in the full source code listing at
the end of the chapter:

cl_int

clGetDevicelDs(cl_platform_id platform,
cl_device_type device_type,
cl_uint num_entries,
cl_device_id *devices,
cl_uint *num_devices)

The CLInfo program in the AMD APP SDK uses the c1GetPlatformInfo() and
clGetDeviceInfo() commands to print detailed information about the OpenCL sup-
ported platforms and devices in a system. Hardware details such as memory sizes and
bus widths are available using these commands. A snippet of the output from the

CLInfo program is shown here:

$ ./CLInfo
Number of platforms:

PlatformProfile:
PlatformVersion:
Platform Name:
PlatformVendor:

Number of devices:

Device Type:

Board name:

Device Topology:

Max compute units:

Max work items dimensions:
Max work group size:

Preferred vector width char:

Local memory type:

Local memory size:

Name:

Vendor:

Device OpenCL C version:
Driver version:

Device Type:

Device ID:

Max compute units:

Max work group size:
Name:

Vendor:

Device OpenCL C version:

1

FULL_PROFILE

OpenCL 1.2 AMD-APP (938.1)

AMD Accelerated Parallel Processing
Advanced Micro Devices, Inc.

2

CL_DEVICE_TYPE_GPU

AMD Radeon HD 7900 Series
PCI[ B4#1, D#0, F#0 ]

32

3

512

16

Scratchpad

32768

Tahiti

Advanced Micro Devices, Inc.
OpenCLC 1.2
CAL1.4.1741 (VM)
CL_DEVICE_TYPE_CPU

4098

2

1024

Intel(R) Core(TM)2 CPU6300@1.86 GHz
Genuinelntel

OpenCLC1.2
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CHAPTER 2 Introduction to OpenCL

THE EXECUTION ENVIRONMENT

Before a host can request that a kernel be executed on a device, a context
must be configured on the host that enables it to pass commands and data to the device.

Contexts

In OpenCL, a context is an abstract container that exists on the host. A context
coordinates the mechanisms for host—device interaction, manages the memory ob-
jects that are available to the devices, and keeps track of the programs and kernels
that are created for each device.

The API function to create a contextis c1CreateContext (). The properties ar-
gument is used to restrict the scope of the context. It may provide a specific platform,
enable graphics interoperability, or enable other parameters in the future. Limiting
the context to a given platform all