
www.allitebooks.com

http://www.allitebooks.org

Hibernate Search by Example

Explore the Hibernate Search system and use its
extraordinary search features in your own applications

Steve Perkins

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Hibernate Search by Example

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2013

Production Reference: 1140313

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK..

ISBN 978-1-84951-920-5

www.packtpub.com

Cover Image by J. Blaminsky (milak6@wp.pl)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Steve Perkins

Reviewers
Shaozhuang Liu

Murat Yener

Acquisition Editor
Joanne Fitzpatrick

Commissioning Editor
Meeta Rajani

Technical Editors
Amit Ramadas

Lubna Shaikh

Project Coordinator
Amigya Khurana

Proofreader
Ting Baker

Indexer
Monica Ajmera

Graphics
Sheetal Aute

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Steve Perkins is a Java developer based in Atlanta, GA, USA. Steve has been
working with Java in the web and systems integration contexts for 15 years, for
clients ranging from commerce and finance to media and entertainment. He has
been using Hibernate intensively for over seven years, and is interested in best
practices for data modeling and application design.

Apart from coding, Steve also has a keen interest in the subject of software patents,
which eventually led to a law degree and becoming a licensed attorney. Steve
co-authored In the Aftermath of In re Bilski, published in 2009, and In the Aftermath of
Bilski v. Kappos, published in 2010, for the Practicing Law Institute Handbook Series.

Steve lives in Atlanta with his wife, Amanda, their son, Andrew, and more
musical instruments than he has free time to play. You can visit his website at
steveperkins.net and follow him on Twitter at @stevedperkins.

This book is dedicated to my wife, Amanda, for supporting me
through the experience of a new baby and a new book all in the same
year. We are very grateful for the support and encouragement of all
our family and friends.

Thanks to the reviewers and the editorial staff at Packt Publishing.
Last but not least, I deeply appreciate every hiring manager whoever
took a chance on me. I would have nothing to write about today if it
weren't for a handful of key people throwing me into the deep end
and letting me swim.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Shaozhuang Liu has over seven years of experience in Java EE, and now as a
senior member of the Hibernate development team, his main focus is the Hibernate
ORM open source project. He's also interested in building cool things based on
open source hardware, such as Arduino and Raspberry Pi. When he is not coding,
traveling and snowboarding are the two favorite activities he enjoys.

Murat Yener completed his BS and MS degree at Istanbul Technical University.
He has taken part in several projects still in use at the ITU Informatics Institute. He
has worked for Isbank's Core Banking Exchange project as a J2EE developer. He has
also designed and completed several projects still in the market by Muse Systems.
He has worked for TAV Airports Information Technologies as an Enterprise Java and
Flex developer. He has worked HSBC as the Project Leader responsible for Business
Processes and Rich client user interfaces. He is currently employed at Eteration A.S.
as Principal Mentor, working on several projects including Eclipse Libra Tools, GWT,
and Mobile applications (both on Android and iOS).

He is also leading Google Technology User Group Istanbul since 2009, and is
a regular speaker at conferences, such as JavaOne, EclipseCon, EclipsIst, and
GDG meetings.

I would like to thank Naci Dai for being my mentor and providing
the best work environment, Daniel Kurka for developing mgwt, the
best mobile platform I have ever worked on, and Nilay Coskun for
all her support.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library
of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Your First Application 7

Creating an entity class 8
Preparing the entity for Hibernate Search 10
Loading the test data 11
Writing the search query code 14
Selecting a build system 17
Setting up the project and importing Hibernate Search 19
Running the application 21
Summary 26

Chapter 2: Mapping Entity Classes 27
Choosing an API for Hibernate ORM 27
Field mapping options 30

Multiple mappings for the same field 31
Mapping numeric fields 31

Relationships between entities 32
Associated entities 32

Querying associated entities 35
Embedded objects 36

Partial indexing 39
The programmatic mapping API 40
Summary 42

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 3: Performing Queries 43
Mapping API versus query API 43
Using JPA for queries 44
Setting up a project for Hibernate Search and JPA 45
The Hibernate Search DSL 46

Keyword query 47
Fuzzy search 48
Wildcard search 50

Exact phrase query 50
Range query 52
Boolean (combination) queries 53

Sorting 54
Pagination 56
Summary 57

Chapter 4: Advanced Mapping 59
Bridges 59

One-to-one custom conversion 60
Mapping date fields 60
Handling null values 60
Custom string conversion 61

More complex mappings with FieldBridge 64
Splitting a single variable into multiple fields 65
Combining multiple properties into a single field 66
TwoWayFieldBridge 67

Analysis 68
Character filtering 69
Tokenization 69
Token filtering 70
Defining and selecting analyzers 70

Static analyzer selection 71
Dynamic analyzer selection 72

Boosting search result relevance 74
Static boosting at index-time 74
Dynamic boosting at index-time 75

Conditional indexing 76
Summary 79

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Chapter 5: Advanced Querying 81
Filtering 81

Creating a filter factory 82
Adding a filter key 83

Establishing a filter definition 85
Enabling the filter for a query 85

Projection 86
Making a query projection-based 87
Converting projection results to an object form 87
Making Lucene fields available for projection 88

Faceted search 89
Discrete facets 90
Range facets 93

Query-time boosting 95
Placing time limits on a query 95
Summary 97

Chapter 6: System Configuration and Index Management 99
Automatic versus manual indexing 99

Individual updates 100
Adds and updates 100
Deletes 101

Mass updates 101
Defragmenting an index 103

Manual optimization 103
Automatic optimization 104

Custom optimizer strategy 105
Choosing an index manager 106
Configuring workers 107

Execution mode 107
Thread pool 108
Buffer queue 108

Selecting and configuring a directory provider 109
Filesystem-based 109

Locking strategy 110
RAM-based 111

Using the Luke utility 112
Summary 116

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Chapter 7: Advanced Performance Strategies 117
General tips 117
Running applications in a cluster 118

Simple clusters 118
Master-slave clusters 119

Directory providers 120
Worker backends 120
A working example 121

Sharding Lucene indexes 125
Summary 127

Index 129

Preface
Over the past decade, users have come to expect software to be highly
intelligent when searching data. It is no longer enough to simply make searches
case-insensitive, look for keywords as substrings, or other such basic SQL tricks.

Today, when a user searches the product catalog on an e-commerce site, he or she
expects keywords to be evaluated across all the data points. Whether a term matches
the model number of a computer or the ISBN of a book, the search should still find
all the possibilities. To help the user sort through a large number of results, the
search should be smart enough to somehow rank them by relevance.

A search should be able to parse words and understand how they might be
connected. If you search for the word development, then the search should
somehow understand that this is related to developer, even though neither
of the words is a substring of the other.

Above all else, a search should be nice. When we post something in an online forum
and mistake the words "there", "they're", and "their", people might only criticize
our grammar. By contrast, a search should simply understand our typos and be
cool about it! A search is at its best when it pleasantly surprises us, seeming to
understand the real gist of what we're looking for better than we understood
it ourselves.

The purpose of this book is to introduce and explore Hibernate Search, a software
package for adding modern search functionality to our own custom applications,
without having to invent it from scratch. Because coders usually learn best by
looking at real code, this book revolves around an example application. We will
stick with this application as we progress through the book, fleshing it out as new
concepts are introduced in each chapter.

Preface

[2]

What is Hibernate Search?
The true brain behind this search functionality is Apache Lucene, an open source
software library for indexing and searching data. Lucene is an established Java
project with a rich history of innovation, although it has been ported to other
programming languages as well. It is widely adopted across a variety of industries,
with high-profile users ranging from Disney to Twitter.

Lucene is often discussed interchangeably with Apache Solr, a related project. From
one perspective, Solr is a standalone search server based on Lucene. However, the
dependency relationship can flow both ways. Solr subcomponents are often bundled
along with Lucene to enhance its functionality when embedded in other applications.

Hibernate Search is a thin wrapper around Lucene and optional Solr
components. It extends the core Hibernate ORM, the most widely
adopted object/relational mapping framework for Java persistence.

The following diagram shows the relationship between all of these components:

Custom Application

Hibernate ORM

Lucene index
(on filestystem or in memory)

Lucene and
Solr libraries

Hibernate Search

Database

Ultimately, Hibernate Search serves two roles:

• First, it translates Hibernate data objects into information that Lucene can use
to build search indexes

• Going in the other direction, it translates the results of Lucene searches into a
familiar Hibernate format

Preface

[3]

From a programmer's perspective, he or she is mapping data with Hibernate in the
usual way. Search results come back in the same form as normal Hibernate database
queries. Hibernate Search hides most of the low-level plumbing with Lucene.

What this book covers
Chapter 1, Your First Application, dives straight away into creating a Hibernate Search
application, an online catalog of software apps. We will create one entity class and
prepare it for searching, then write a web application to perform searches, and
display the results. We will walk through the steps for setting up the application
with a server, a database, and a build system, and learn how to go about replacing
any of those components with other options.

Chapter 2, Mapping Entity Classes, adds more entity classes to the example application,
which are annotated to demonstrate the foundational concepts of Hibernate Search
mapping. By the end of this chapter, you will understand how to map the most
common entity classes for use with Hibernate Search.

Chapter 3, Performing Queries, expands the example application's queries, to make
use of the new mappings. By the end of this chapter, you will understand the
most common Hibernate Search query use cases. By this point, the example
application will have enough functionality to resemble many production
uses of Hibernate Search.

Chapter 4, Advanced Mapping, explains the relationship between Lucene and Solr
analyzers, and how to configure an analyzer for more advanced searches. It also
covers adjusting a field's weight in the Lucene index, and determines at runtime
whether to index an entity at all. By the end of this chapter, you will understand
how to fine tune entity indexing. You will have a taste of the Solr analyzer
framework, and a grasp of how to explore its functionality on your own.
The example application will now support searches that ignore HTML tags,
and that find matches for related words.

Chapter 5, Advanced Querying, dives deeper into the querying concepts introduced
in Chapter 3, Performing Queries, explaining how to get faster performance through
projections and results transformation. Faceted searching is explored, as well as an
introduction to the native Lucene API. By the end of this chapter, you will have a
much more robust understanding of the querying functionality offered by Hibernate
Search. The example marketplace application will now use more lightweight,
projection-based searches, and have support for organizing the search results
by category.

Preface

[4]

Chapter 6, System Configuration and Index Management, covers Lucene index
management, and provides a survey of the advanced configuration options. This
chapter dives into some of the more common options in detail, and provides enough
background for us to explore others independently. By the end of this chapter, you
will be able to perform standard management tasks on the Lucene index used by
Hibernate Search, and we will understand the scope of additional functionality
available to Hibernate Search through configuration options.

Chapter 7, Advanced Performance Strategies, focuses on improving the runtime
performance of Hibernate Search applications, through code as well as server
architecture. By the end of this chapter, you will be able to make informed
decisions about how to scale a Hibernate Search application as necessary.

What you need for this book
To use the example code covered in this book, you need a computer with a Java
Development Kit version 1.6 or higher installed. You should also preferably have
Apache Maven installed, or a Java IDE, such as Eclipse, which offers Maven
embedded as a plugin.

Who this book is for
The target audience for this book are Java developers who wish to add the search
functionality to their applications. The discussion and code examples assume a basic
understanding of Java programming. Prior knowledge of Hibernate ORM, the Java
Persistence API (JPA 2.0), or Apache Maven would be helpful, but is not required.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The id field is annotated with both
@Id and @GeneratedValue".

A block of code is set as follows:

public App(String name, String image, String description) {
 this.name = name;
 this.image = image;
 this.description = description;
}

Preface

[5]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

@Column(length=1000)
@Field
private String description;

Any command-line input or output is written as follows:

mvn archetype:generate -DgroupId=com.packpub.hibernatesearch.chapter1
-DartifactId=chapter1 -DarchetypeArtifactId=maven-archetype-webapp

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any
list of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Your First Application
To explore the capabilities of Hibernate Search, we will work with a twist on
the classic "Java Pet Store" sample application. Our version, the "VAPORware
Marketplace", will be an online catalog of software apps. Think of such stores
run by Apple, Google, Microsoft, Facebook, and… well, pretty much every other
company now.

Our app market will give us plenty of opportunities to search data in different ways.
Of course, there are titles and descriptions as in most product catalogs. However,
software apps involve an expanded set of data points, such as genre, version, and
supported devices. These different facets will let us take a look at the many features
that Hibernate Search makes available.

At a high level, incorporating Hibernate Search in an application requires the
following three steps:

1. Adding information to your entity classes, so that Lucene will know how to
index them.

2. Writing one or more search queries in the relevant portions of
your application.

3. Setting up your project, so that the required dependencies and configuration
for Hibernate Search are available in the first place.

In future projects, after we have a decent understanding of the basics, we would
probably start with this third bullet-point. However, for the time being, let us jump
straight into some code!

Your First Application

[8]

Creating an entity class
To keep things simple, this first cut of our application will include only one entity
class. This App class describes a software application and is the central entity with
which all the other entity classes will be associated. For now though, we will give
an "app" three basic data points:

• A name
• An image to display on the marketplace site
• A long description

The Java code is as follows:

package com.packtpub.hibernatesearch.domain;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;

@Entity
public class App {

 @Id
 @GeneratedValue
 private Long id;

 @Column
 private String name;

 @Column(length=1000)
 private String description;

 @Column
 private String image;

 public App() {}

 public App(String name, String image, String description) {
 this.name = name;
 this.image = image;
 this.description = description;
 }

Chapter 1

[9]

 public Long getId() {
 return id;
 }
 public void setId(Long id) {
 this.id = id;
 }
 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
 public String getDescription() {
 return description;
 }
 public void setDescription(String description) {
 this.description = description;
 }
 public String getImage() {
 return image;
 }
 public void setImage(String image) {
 this.image = image;
 }
}

This class is a basic plain old Java object (POJO), just member variables and
getter/setter methods for working with them. However, notice the annotations
that are highlighted.

If you are accustomed to Hibernate 3.x, note that version 4.x
deprecates many of Hibernate's own mapping annotations in
favor of their Java Persistence API (JPA) 2.0 counterparts. We
will discuss JPA further in Chapter 3, Performing Queries. For now,
simply notice that the JPA annotations here are essentially identical
to their native Hibernate counterparts, other than belonging to the
javax.persistence package.

The class itself is annotated with @Entity, which tells Hibernate to map the class to a
database table. Since we did not explicitly specify a table name, by default Hibernate
will create a table named APP for the App class.

www.allitebooks.com

http://www.allitebooks.org

Your First Application

[10]

The id field is annotated with both @Id and @GeneratedValue. The former simply
tells Hibernate that this field maps to the primary key of the database table. The
latter declares that the values should be generated automatically when new rows
are inserted. This is why our constructor method doesn't populate a value for id,
because we're counting on Hibernate to handle it for us.

Finally, we annotate our three data points with @Column, telling Hibernate that these
variables correspond with columns in the database table. Normally, the name of
the column will be the same as the variable name, and Hibernate will assume some
sensible defaults about the column length, whether to allow null values, and so on.
However, these settings may be declared explicitly (as we are doing here), by setting
the column length for description to 1,000 characters.

Preparing the entity for Hibernate Search
Now that Hibernate knows about our domain object, we need to tell the Hibernate
Search add-on how to manage it with Lucene.

We can use some advanced options to leverage the full power of Lucene, and as this
application develops we will do just that. However, using Hibernate Search in a
basic scenario is as simple as adding two annotations.

First, we'll add the @Indexed annotation to the class itself:

...
import org.hibernate.search.annotations.Indexed;
...
@Entity
@Indexed
public class App implements Serializable {
...

This simply declares that Lucene should build and use an index for this entity class.
This annotation is optional. When you write a large-scale application, many of its
entity classes may not be relevant to searching. Hibernate Search only needs to tell
Lucene about those types that will be searchable.

Secondly, we will declare searchable data points with the @Field annotation:

...
import org.hibernate.search.annotations.Field;
...
@Id
@GeneratedValue
private Long id;

Chapter 1

[11]

@Column
@Field
private String name;

@Column(length=1000)
@Field
private String description;

@Column
private String image;
...

Notice that we're only applying this annotation to the name and description
member variables. We did not annotate image, because we don't care about
searching for apps by their image filenames. We likewise did not annotate id,
because you don't exactly need a powerful search engine to find a database
table row by its primary key!

Deciding what to annotate is a judgment call. The more entities you
annotate for indexing, and the more member variables you annotate as
fields, the more rich and powerful your Lucene indexes will be. However,
if we annotate superfluous stuff just because we can, then we make
Lucene do unnecessary work that can hurt performance.
In Chapter 7, Advanced Performance Strategies, we will explore such
performance considerations in greater depth. Right now, we're all set to
search for apps by name or description.

Loading the test data
For test and demo purposes, we will use an embedded database that should
be purged and refreshed each time we start the application. With a Java
web application, an easy way to invoke the code at startup time is by using
ServletContextListener. We simply create a class implementing this interface,
and annotate it with @WebListener:

package com.packtpub.hibernatesearch.util;

import javax.servlet.ServletContextEvent;
import javax.servlet.annotation.WebListener;
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.cfg.Configuration;

Your First Application

[12]

import org.hibernate.service.ServiceRegistry;
import org.hibernate.service.ServiceRegistryBuilder;
import com.packtpub.hibernatesearch.domain.App;

@WebListener
public class StartupDataLoader implements ServletContextListener {
 /** Wrapped by "openSession()" for thread-safety, and not meant to
 be accessed directly. */
 private static SessionFactorysessionFactory;

 /** Thread-safe helper method for creating Hibernate sessions. */
 public static synchronized Session openSession() {
 if(sessionFactory == null) {
 Configuration configuration = new Configuration();
 configuration.configure();
 ServiceRegistryserviceRegistry = new
 ServiceRegistryBuilder().applySettings(
 configuration.getProperties()).buildServiceRegistry();
 sessionFactory =
 configuration.buildSessionFactory(serviceRegistry);
 }
 return sessionFactory.openSession();
 }

 /** Code to run when the server starts up. */
 public void contextInitialized(ServletContextEvent event) {
 // TODO: Load some test data into the database
 }

 /** Code to run when the server shuts down. */
 public void contextDestroyed(ServletContextEvent event) {
 if(!sessionFactory.isClosed()) {
 sessionFactory.close();
 }
 }
}

Chapter 1

[13]

The contextInitialized method will now be invoked automatically when the
server starts up. We will use this method to set up a Hibernate session factory, and
populate the database with some test data. The contextDestroyed method will
likewise be automatically invoked when the server shuts down. We will use this
method to explicitly close our session factory when done.

Multiple places within our application will need a simple and thread-safe means
for opening connections to the database (that is, Hibernate Session objects). So,
we also add a public static synchronized method named openSession().
This method serves as the thread-safe gatekeeper for creating sessions from a
singleton SessionFactory.

In more complex applications, you would probably use a dependency-
injection framework, such as Spring or CDI. This would be a bit
distracting in our small example application, but these frameworks
give you a safe mechanism for injecting SessionFactory or Session
objects without having to code it manually.

In fleshing out the contextInitialized method, we start by obtaining a Hibernate
session and beginning a new transaction:

...
Session session = openSession();
session.beginTransaction();
...
App app1 = new App("Test App One", "image.jpg",
 "Insert description here");
session.save(app1);

// Create and persist as many other App objects as you like…
session.getTransaction().commit();
session.close();
...

Inside the transaction, we can create all the sample data we want, by
instantiating and persisting App objects. In the interest of readability, only
one object is created here. However, the downloadable source code available
at http://www.packtpub.com contains a full assortment of test examples.

Your First Application

[14]

Writing the search query code
Our VAPORware Marketplace web application will be based on a Servlet 3.0
controller/model class, rendering a JSP/JSTL view. The goal is to make things
simple, so that we can focus on the Hibernate Search aspects. After reviewing this
example application, it should be easy to adapt the same logic in JSF or Spring MVC,
or even newer JVM-based frameworks, such as Play or Grails.

To start, we will write a trivial index.html page, containing a text box for users to
enter search keywords:

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>VAPORware Marketplace</title>
</head>
<body>
 <h1>Welcome to the VAPORware Marketplace</h1>
 Please enter keywords to search:
 <form action="search" method="post">
 <div id="search">
 <div>
 <input type="text" name="searchString" />
 <input type="submit" value="Search" />
 </div>
 </div>
 </form>
</body>
</html>

This form collects one or more keywords in the CGI parameter searchString,
and posts it to a URL with the relative /search path. We now need to register a
controller servlet to respond to those posts:

package com.packtpub.hibernatesearch.servlet;

import java.io.IOException;

import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

@WebServlet("search")
public class SearchServletextends HttpServlet {

Chapter 1

[15]

 protected void doPost(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException {

 // TODO: Process the search, and place its results on
 // the "request" object

 // Pass the request object to the JSP/JSTL view
 // for rendering
 getServletContext().getRequestDispatcher(
 "/WEB-INF/pages/search.jsp").forward(request, response);
 }

 protected void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException {
 this.doPost(request, response);
 }

}

The @WebServlet annotation maps this servlet to the relative URL /search, so that
forms posting to this URL will invoke the doPost method. This method will process
a search, and forward the request to a JSP view for rendering.

Now, we get to the real heart of the matter—executing the search query. We create a
FullTextSession object, a Hibernate Search extension that wraps a normal Session
with Lucene search capability.

...
import org.hibernate.Session;
import org.hibernate.search.FullTextSession;
import org.hibernate.search.Search;
...
Session session = StartupDataLoader.openSession();
FullTextSessionfullTextSession =
 Search.getFullTextSession(session);
fullTextSession.beginTransaction();
...

Now that we have a Hibernate Search session at our disposal, we can grab the user's
keyword(s)and perform the Lucene search:

...
import org.hibernate.search.query.dsl.QueryBuilder;
...

Your First Application

[16]

String searchString = request.getParameter("searchString");

QueryBuilderqueryBuilder =
fullTextSession.getSearchFactory()
 .buildQueryBuilder().forEntity(App.class).get();
org.apache.lucene.search.QueryluceneQuery =
 queryBuilder
 .keyword()
 .onFields("name", "description")
 .matching(searchString)
 .createQuery();
...

As its name suggests, QueryBuilder is used to build queries involving a particular
entity class. Here, we instantiate a builder for our App entity.

Notice the long chain of method calls on the third line of the preceding code. From
the perspective Java, we are calling a method, calling another method on the object
returned, and repeating that process. However, from a plain English perspective,
this chain of method calls resembles a sentence:

Build a query of keyword type, on the entity fields "name" and "description",
matching against the keywords in "searchString".

This API style is quite intentional. Since it resembles a language in its own right, it
is referred to as the Hibernate Search DSL (domain-specific language). If you have
ever used criteria queries in Hibernate ORM, then the look-and-feel here should be
quite familiar to you.

We have now created an org.apache.lucene.search.Query object, which
Hibernate Search translates under the covers into a Lucene search. This magic
flows in both directions! Lucene search results can be translated into a standard
org.hibernate.Query object, and used the same as any normal database query:

...
org.hibernate.Query hibernateQuery =
 fullTextSession.createFullTextQuery(luceneQuery, App.class);
List<App> apps = hibernateQuery.list();
request.setAttribute("apps", apps);
...

Using the hibernateQuery object, we fetch all of the App entities that were found
in our search, and stick them on the servlet request. If you recall, the last line of our
method forwards this request to a search.jsp view for display.

Chapter 1

[17]

This JSP view will start off very basic, using JSTL tags to grab the App results off the
request and iterate through them:

<%@ page language="java" contentType="text/html;
 charset=UTF-8" pageEncoding="UTF-8"%>
<%@ tagliburi="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<html>
<head>
 <title>VAPORware Marketplace</title>
</head>
<body>
 <h1>Search Results</h1>
 <table>
 <tr>
 <td>Name:</td>
 <td>Description:</td>
 </tr>
 <c:forEachvar="app" items="${apps}">
 <tr>
 <td>${app.name}</td>
 <td>${app.description}</td>
 </tr>
 </c:forEach>
</table>
</body>
</html>

Selecting a build system
So far, we have approached our application in somewhat reverse order. We basically
skipped past the initial project setup and dove straight away into code, so that all the
plumbing would make more sense once we got there.

Well, we have now arrived! We need to pull all of this code together into an
organized project structure, make sure that all of its JAR file dependencies are
available, and establish a process for running the web application or packaging
it up as a WAR file. We need a project build system.

One approach that we won't consider is doing all of this by hand. For a small
application using bare-bones Hibernate ORM, we might depend on just over a
half-dozen JAR files. At that scale, we might consider setting up a standard project
in our preferred IDE (for example, Eclipse, NetBeans, or IntelliJ). We could grab a
binary distribution from the Hibernate website and copy the necessary JAR files
manually, letting the IDE take it from there.

Your First Application

[18]

The problem is that Hibernate Search has a lot going on beneath the covers. By the
time the time you finish adding the dependencies for Lucene and even the minimal
Solr components, the list of dependencies will be multiplied several times over. Even
here in the first chapter, our very basic VAPORware Marketplace application already
requires over three dozen JAR files to compile and run. These libraries are highly
interdependent, and if you upgrade one of them, it can be a real nightmare to
avoid conflicts.

At this level of dependency management, it becomes crucial to use an automated
build system for sorting out these matters. Throughout the code examples in the
book, we will primarily be using Apache Maven for build automation.

The two primary characteristics of Maven are a convention-over-configuration
approach to basic builds, and a powerful system for managing a project's JAR file
dependencies. As long as a project conforms to a standard structure, we don't even
have to tell Maven how to compile it. This is considered boilerplate information.
Also, when we tell Maven which libraries and versions a project depends on, Maven
will figure out the entire dependency hierarchy for us. It determines which libraries
the dependencies themselves depend on, and so forth. A standard repository format
has been created for Maven (see http://search.maven.org for the largest public
example), so that common libraries can all be retrieved automatically without having
to hunt them down.

Maven does have its critics. By default, its configuration is XML-based, which has
fallen out of fashion in recent years. More importantly, there is a learning curve
when a developer needs to do something beyond the boilerplate basics. He or she
must learn about the available plugins, how the lifecycle of a Maven build works,
and how to configure a plugin for the appropriate lifecycle stage. Many developers
have had frustrating experiences with that learning curve.

Several other build systems have been created recently as attempts to harness the
same power as Maven in a simpler form (for example, the Groovy-based Gradle,
the Scala-based SBT, the Ruby-based Buildr, and so on). However, it is important to
note that all of these newer systems are still designed to fetch dependencies from a
standard Maven repository. If you wish to use some other dependency management
and build system, then the concepts seen in this book will carry over directly to these
other tools.

To showcase a more manual non-Maven approach, the sample code available
for download from Packt Publishing's website includes an Ant-based version
of this chapter's example application. Look for the subdirectory chapter1-ant,
corresponding to the Maven-based chapter1 example. A README file in the root of
this subdirectory highlights the differences. However, the main takeaway is that
the concepts shown in the book should translate fairly easily to any modern build
system for Java applications.

Chapter 1

[19]

Setting up the project and importing
Hibernate Search
We can create a Maven project using our IDE of choice. Eclipse works with Maven
through an optional m2e plugin, and NetBeans uses Maven as its native build system
out of the box. If Maven is installed on a system, you could also choose to create the
project from the command line:

mvn archetype:generate -DgroupId=com.packpub.hibernatesearch.chapter1
-DartifactId=chapter1 -DarchetypeArtifactId=maven-archetype-webapp

Time can be saved in either case by using a Maven archetype, which is basically a
template for a given type of project. Here, maven-archetype-webapp gives us an
empty web application, configured for packaging as a WAR file. fieldsgroupId and
artifactId can be anything we wish. They serve to identify our build output if we
stored it in a Maven repository.

The pom.xml Maven configuration file for our newly-created project starts off
looking similar to the following:

<?xml version="1.0"?>
<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd"
 xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packpub.hibernatesearch.chapter1</groupId>
 <artifactId>chapter1</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>war</packaging>
 <name>chapter1</name>
 <url>http://maven.apache.org</url>

 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <!-- This controls the filename of the built WAR file -->
 <finalName>vaporware</finalName>
 </build>
</project>

www.allitebooks.com

http://www.allitebooks.org

Your First Application

[20]

Our first order of business is to declare which dependencies are needed to
compile and run. Inside the <dependencies> element, let's add an entry for
Hibernate Search:

...
<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-search</artifactId>
 <version>4.2.0.Final</version>
</dependency>
...

Wait, didn't we say earlier that this was going to require over three dozen
dependencies? Yes, that is true, but it doesn't mean you have to deal with them all!
When Maven reaches out to a repository and grabs this one dependency, it will also
receive information about all of its dependencies. Maven climbs down the ladder as
deep as it goes, sorting out any conflicts at each step, and calculating a dependency
hierarchy so that you don't have to.

Our application needs a database. To keep things simple, we will use H2
(www.h2database.com), an embeddable database system that fits in a single
1 MB JAR file. We will also use Apache Commons Database Connection Pools
(commons.apache.org/dbcp) to avoid opening and closing database connections
unnecessarily. These require declaring only one dependency each:

...
<dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <version>1.3.168</version>
</dependency>
<dependency>
 <groupId>commons-dbcp</groupId>
 <artifactId>commons-dbcp</artifactId>
 <version>1.4</version>
</dependency>
...

Last but not least, we want to specify that our web application is using version 3.x of
the JEE Servlet API. In the following dependency, we specify the scope as provided,
telling Maven not to bundle this JAR inside our WAR file, because we expect our
server to make it available anyway:

...
<dependency>
 <groupId>javax.servlet</groupId>

Chapter 1

[21]

 <artifactId>javax.servlet-api</artifactId>
 <version>3.0.1</version>
 <scope>provided</scope>
</dependency>
...

With our POM file complete, we can copy into our project those source files that
were created earlier. The three Java classes are listed under the src/main/java
subdirectory. The src/main/webapp subdirectory represents the document root
for our web application. The index.html search page, and its search.jsp results
counterpart go here. Download and examine the structure of the project example.

Running the application
Running a Servlet 3.0 application requires Java 6 or higher, and a compatible servlet
container such as Tomcat 7. However, if you are using an embedded database to
make testing and demonstration easier, then why not use an embedded application
server too?

The Jetty web server (www.eclipse.org/jetty) has a very nice plugin for Maven
and Ant, which let developers launch their applications from a build script without
having a server installed. Jetty 8 or higher supports the Servlet 3.0 specification.

To add the Jetty plugin to your Maven POM, insert a small block of XML just inside
the root element:

<project>
...
<build>
 <finalName>vaporware</finalName>
 <plugins>
 <plugin>
 <groupId>org.mortbay.jetty</groupId>
 <artifactId>jetty-maven-plugin</artifactId>
 <version>8.1.7.v20120910</version>
 <configuration>
 <webAppConfig>
 <defaultsDescriptor>
 ${basedir}/src/main/webapp/WEB-INF/webdefault.xml
 </defaultsDescriptor>
 </webAppConfig>
 </configuration>
 </plugin>

Your First Application

[22]

 </plugins>
</build>
</project>

The highlighted <configuration> element is optional. On most operating systems,
after Maven has launched an embedded Jetty instance, you can make changes and
see them take effect immediately without a restart. However, due to issues with how
Microsoft Windows handles file locking, you can't always save changes while the
Jetty instance is running.

So if you are using Windows and would like the ability to make changes
on-the-fly, make your own custom copy of webdefault.xml and save it to the
location referenced in the preceding snippet. This file can be found by downloading
and opening a jetty-webapp JAR file in an unzip tool, or by simply downloading
this example application from the Packt Publishing website. The trick for Windows
users is to locate the useFileMappedBuffer parameter, and change its value
to false.

Now that you have a web server, let's have it create and manage an H2 database
for us. When the Jetty plugin starts up, it will automatically look for the file
src/main/webapp/WEB-INF/jetty-env.xml. Let's create this file and populate
it with the following:

<?xml version="1.0"?>
<!DOCTYPE Configure PUBLIC "-//Mort Bay Consulting//DTD
 Configure//EN" "http://jetty.mortbay.org/configure.dtd">

<Configure class="org.eclipse.jetty.webapp.WebAppContext">
 <New id="vaporwareDB" class="org.eclipse.jetty.plus.jndi.Resource">
 <Arg></Arg>
 <Arg>jdbc/vaporwareDB</Arg>
 <Arg>
 <New class="org.apache.commons.dbcp.BasicDataSource">
 <Set name="driverClassName">org.h2.Driver</Set>
 <Set name="url">
 jdbc:h2:mem:vaporware;DB_CLOSE_DELAY=-1
 </Set>
 </New>
 </Arg>
 </New>
</Configure>

Chapter 1

[23]

This causes Jetty to spawn a pool of H2 database connections, with the JDBC
URL specifying an in-memory database rather than a persistent database on the
filesystem. We register this data source with the JNDI as jdbc/vaporwareDB, so
our application can access it by that name. We add a corresponding reference to
our application's src/main/webapp/WEB-INF/web.xml file:

<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd" >
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">
 <display-name>VAPORware Marketplace</display-name>
 <resource-ref>
 <res-ref-name>jdbc/vaporwareDB</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
</web-app>

Finally, we need to tie this database resource to Hibernate by way of a standard
hibernate.cfg.xml file, which we will create under src/main/resources:

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
 "http://www.hibernate.org/dtd/hibernate-configuration-
 3.0.dtd">
<hibernate-configuration>
 <session-factory>
 <property name="connection.datasource">
 jdbc/vaporwareDB
 </property>
 <property name="hibernate.dialect">
 org.hibernate.dialect.H2Dialect
 </property>
 <property name="hibernate.hbm2ddl.auto">
 update
 </property>
 <property name="hibernate.show_sql">
 false
 </property>
 <property name=hibernate.search.default.directory_provider">
 filesystem
 </property>

Your First Application

[24]

 <property name="hibernate.search.default.indexBase">
 target/lucenceIndex
 </property>

 <mapping class=
 "com.packtpub.hibernatesearch.domain.App"/>
 </session-factory>
</hibernate-configuration>

The first highlighted line associates the Hibernate session factory with the
Jetty-managed jdbc/vaporwareDBdata source. The very last highlighted line
declares App as an entity class tied to this session factory. Right now we only have
this one entity, but we will add more <class> elements here as more entities are
introduced in later chapters.

In between, most of the <properties> elements relate to core settings that are
probably familiar to experienced Hibernate users. However, the highlighted
properties are directed at the Hibernate Search add-on. hibernate.search.
default.directory_provider declares that we want to store our Lucene
indexes on the filesystem, as opposed to in-memory. hibernate.search.default.
indexBase specifies a location for the indexes, in a subdirectory within our project
that Maven cleans up for us during the build process anyway.

Okay, we have an application, a database, and a server bringing the two
together. Now, we can actually deploy and launch, by running Maven with
the jetty:run goal:

mvn clean jetty:run

The clean goal removes traces of previous builds, and Maven then assembles our
web application because this is implied by jetty:run. Our code is quickly compiled,
and a Jetty server is launched on localhost:8080:

Chapter 1

[25]

We are live! We can now search for apps, using any keywords we like. A quick hint:
in the downloadable sample code, all of the test data records contain the word app in
their descriptions:

The downloadable sample code spruces up the HTML for a more professional look.
It also adds each app's image alongside its name and description:

Your First Application

[26]

The Maven command mvn clean package lets us package the application up as
a WAR file, so we can deploy it to a standalone server outside of the Maven Jetty
plugin. You can use any Java server compatible with the Servlet 3.0 specification (for
example, Tomcat 7+), so long as you know how to set up a data source with the JNDI
name jdbc/vaporwareDB.

For that matter, you can replace H2 with any standalone database that you like.
Just add an appropriate JDBC driver to your Maven dependencies, and update
the settings within persistence.xml.

Summary
In this chapter, we learned about the relationship between Hibernate ORM, the
Hibernate Search add-on, and the underlying Lucene search engine. We saw how to
map entities and fields to make them available for searching. We used the Hibernate
Search DSL to write a full-text search query across multiple fields, and worked with
the results as we would during a normal database query. We used an automated
build process to compile our application, and deployed it to a web server with a
live database.

With these tools alone, we could incorporate Hibernate Search right now into many
real-world applications, using any other server or database. In the next chapter, we
will dive deeper into the options that Hibernate Search makes available for mapping
entity objects to Lucene indexes. We will see how to handle an expanded data model,
associating our VAPORware apps with devices and customer reviews.

Mapping Entity Classes
In Chapter 1, Your First Application, we used core Hibernate ORM to map an entity
class to a database table, and then we used Hibernate Search to map two of its fields
to a Lucene index. By itself, this provides a lot of search functionality that would be
very cumbersome to code from scratch.

However, real-world applications usually involve numerous entities, many of which
should be available for searching. Entities may be associated with each other, and
our queries need to understand those associations so that we can search across
multiple entities at once. We might want to declare that some mappings are more
relevant to a search than others, or we might want to skip indexing data under
certain conditions.

In this chapter, we will start to dive deeper into the options that Hibernate Search
makes available for mapping entities. As a first step, we must take a look at the API
options available in Hibernate ORM. How we map our entity classes to the database
influences how Hibernate Search maps them to Lucene.

Choosing an API for Hibernate ORM
When the Hibernate Search documentation mentions different APIs for Hibernate
ORM, it can be confusing. In some cases, this might refer to whether database
queries are performed using an org.hibernate.Session or a javax.persistence.
EntityManager object (an important part of the next chapter). However, in the
context of entity mapping, this refers to the three different approaches offered by
Hibernate ORM:

• Annotation-based mapping with classic Hibernate-specific annotations
• Annotation-based mapping with the Java Persistence API (JPA 2.0)
• XML-based mapping with hbm.xml files

Mapping Entity Classes

[28]

If you have only used Hibernate ORM with its classic annotations or XML-based
mappings, or if you are new to Hibernate altogether, then this may be your first
exposure to JPA. In a nutshell, JPA is a specification intended to serve as the official
standard for object-relational mapping and similar features.

The idea is to provide for ORM what JDBC provides for low-level database
connectivity. Once a developer has learned JDBC, they can quickly work with any
database driver that implements the API (for example, Oracle, PostgreSQL, MySQL,
and so on). Likewise, if you understand JPA, then you should be able to easily switch
between ORM frameworks, such as Hibernate, EclipseLink, and Apache OpenJPA.

In practice, different implementations often have their own quirks and proprietary
extensions, which can cause transition headaches. However, a common standard
does reduce the pain and learning curve dramatically.

A comparison of using the Hibernate ORM native API versus using JPA for entity
mapping is shown in the following diagram:

The good news for long-time Hibernate developers is that JPA entity mapping
annotations are remarkably similar to Hibernate's own annotations. In fact, the
founder of Hibernate worked on the committee that developed JPA, and these
two APIs have strongly influenced each other.

The less-good news, depending on your perspective, is that Hibernate ORM 4.x
deprecates its own mapping annotations in favor of their JPA counterparts. Those
older annotations are targeted for removal in Hibernate ORM 5.x.

It doesn't make sense to write a new code today using this deprecated
approach, so we will disregard Hibernate-specific mapping annotations.

Chapter 2

[29]

The third option, XML-based mapping, is still commonly found in legacy
applications. It is falling out of favor, and the Hibernate Search documentation
jokes about XML being unfit for the 21st century! Of course, that is somewhat
tongue-in-cheek, considering that basic Hibernate configuration still lives in a
hibernate.cfg.xml or persistence.xml file. Still, the clear trend with most Java
frameworks is to use annotations for configuration that is tied to a particular class,
and to use some form of text file for global configuration.

Even if you are using hbm.xml files to map your entities to the database, you can still
use the Hibernate Search annotations to map those entities to Lucene indexes. The
two are perfectly compatible. This is convenient if you want to add Hibernate Search
to a legacy application with minimal effort, or if you have a philosophical preference
for hbm.xml files even when developing new applications.

The sample code for this book includes three versions of the VAPORware
Marketplace application for this chapter:

• The chapter2 subdirectory continues where Chapter 1, Your First Application
left off, using JPA annotations for mapping entities to both the database
and Lucene.

• The chapter2-xml subdirectory is a variant of the same code, modified to
mix XML-based database mapping with JPA-based Lucene mapping.

• The chapter2-mapping subdirectory uses a special API to avoid annotations
altogether. This is discussed further in the Programmatic Mapping API section
near the end of this chapter.

You should explore all of this example code in detail to understand the available
options. However, unless otherwise noted, the code examples in this book will
focus on JPA annotations for both database and Lucene mapping.

When JPA annotations are used for database mapping, Hibernate Search
automatically creates a Lucene identifier for fields annotated with @Id.
For whatever reason, Hibernate Search cannot do the same with
Hibernate ORM's own mapping API. So when you are not using JPA
to map entities to the database, you must also add the @DocumentId
annotation to fields that should be used as Lucene identifiers (entities are
known as documents in Lucene terminology).

www.allitebooks.com

http://www.allitebooks.org

Mapping Entity Classes

[30]

Field mapping options
In Chapter 1, Your First Application, we saw that member variables on a Hibernate-
managed class are made searchable with the @Field annotation. Hibernate Search
will put information about annotated fields into one or more Lucene indexes, using
some sensible defaults.

However, you can customize indexing behavior in numerous ways, some of which
are optional elements in the @Field annotation itself. Most of these elements will be
explored further throughout this book, but we will briefly introduce them here in
one centralized list:

• analyze: This tells Lucene whether to store the field's data as is, or put it
through analysis, parsing, and processing it in various ways. It can be set to
Analyze.YES (the default) or Analyze.NO. We will see this again in Chapter 3,
Performing Queries.

• index: This controls whether or not the field should be indexed by Lucene.
It can be set to Index.YES (the default) or Index.NO. It may sound
nonsensical to use the @Field annotation and then not index the field,
but this will make more sense after seeing projection-based searches in
Chapter 5, Advanced Querying.

• indexNullAs: This declares how to handle null field values. By default, null
values will simply be ignored and excluded from Lucene indexes. However,
with this element fully covered in Chapter 4, Advanced Mapping, you can force
null fields to be indexed with some default value instead.

• name: This is a custom name, describing this field in the Lucene indexes.
By default, Hibernate Search will use the name of the annotated
member variable.

• norms: This determines whether or not to store index-time information used
for boosting, or adjusting the default relevance of search results. It can be set
to Norms.YES (the default) or Norms.NO. Index-time boosting will appear in
Chapter 4, Advanced Mapping.

• store: Normally, fields are indexed in a manner optimized for searching,
but this might not make it possible to retrieve the data in its original form.
This option causes the raw data to be stored in such a way that you can later
retrieve it directly from Lucene, rather than the database. It can be set to
Store.NO (the default), Store.YES, or Store.COMPRESS. We will use this
with projection-based searches in Chapter 5, Advanced Querying.

Chapter 2

[31]

Multiple mappings for the same field
Sometimes, you need to use one set of options to do certain things with a field, and
other set of options to do other things. We will see this later in Chapter 3, Performing
Queries when we make a field both searchable and sortable.

For the time being, suffice it to say that you can have as many custom mappings
as you wish for the same field. Just include multiple @Field annotations, wrapped
within the plural @Fields:

...
@Column
@Fields({
 @Field,
 @Field(name="sorting_name", analyze=Analyze.NO)
})
private String name;
...

Don't worry too much about this example right now. Just note that when you create
more than one mapping for the same field, you need to give them distinct names
with the name element, so that you can later reference the correct mapping.

Mapping numeric fields
In Chapter 1, Your First Application, our entity mapping examples dealt exclusively
with string properties. It is likewise perfectly fine to use the same @Field annotation
with other basic data types as well.

However, fields mapped this way are indexed by Lucene in string format. That
is very inefficient for techniques that we will explore later, such as sorting and
querying over a range.

To improve the performance of such operations, Hibernate Search offers a
specialized data structure for indexing numeric fields. This option is available
when mapping fields of type Integer, Long, Float, and Double (or their
primitive counterparts).

To use this optimized data structure for a numeric field, you simply add the
@NumericField annotation in addition to the normal @Field. As an example, let's
give the App entity in our VAPORware Marketplace application a field for price:

...
@Column
@Field
@NumericField
private float price;
...

Mapping Entity Classes

[32]

If you are applying this annotation to a property that has been mapped multiple
times with @Fields, you must specify which of those mappings should use the
specialized data structure. This is done by giving the @NumericField annotation
an optional forField element, set to the same name as the desired @Field.

Relationships between entities
Every time an entity class is annotated with @Indexed, by default Hibernate Search
will create a Lucene index just for that class. We can have as many entities, and
as many separate indexes, as we wish. However, searching each index separately
would be a very awkward and cumbersome approach.

Most Hibernate ORM data models already capture the various associations between
entity classes. When we search an entity's Lucene index, shouldn't Hibernate Search
follow those associations? In this section we will see how to make it do just that.

Associated entities
So far, the entity fields in our example application have been simple data types. The
App class represents a table named APP, and its member variables map to columns
in that table. Now let's add a complex type field, for a second database table that is
associated through a foreign key.

Online app stores usually support a range of different hardware devices. So we
will create a new entity called Device, representing devices for which an App
entity is available.

@Entity
public class Device {

 @Id
 @GeneratedValue
 private Long id;

 @Column
 @Field
 private String manufacturer;

 @Column
 @Field
 private String name;

 @ManyToMany(mappedBy="supportedDevices",

Chapter 2

[33]

 fetch=FetchType.EAGER,
 cascade = { CascadeType.ALL }
)
 @ContainedIn
 private Set<App> supportedApps;

 public Device() {
 }

 public Device(String manufacturer, String name,
 Set<App>supportedApps) {
 this.manufacturer = manufacturer;
 this.name = name;
 this.supportedApps = supportedApps;
 }

 //
 // Getters and setters for all fields...
 //

}

Most details of this class should be familiar from Chapter 1, Your First Application.
Device is annotated with @Entity, so Hibernate Search will create a Lucene
index just for it. The entity class contains searchable fields for device name, and
manufacturer name.

However, the supportedApps member variable introduces a new annotation, for
making the association between these two entities bidirectional. An App entity will
contain a list of all its supported devices, and a Device entity will contain a list of all
its supported apps.

If for no other reason, using bidirectional associations improves the
reliability of Hibernate Search.
A Lucene index contains denormalized data from associated entities,
but those entities are still primarily tied to their own Lucene indexes.
To cut a long story short, when the association between two entities is
bidirectional, and changes are set to cascade, then you can count on both
indexes being updated when either entity changes.

Mapping Entity Classes

[34]

The Hibernate ORM reference manual describes several bidirectional mapping
types and options. Here we are using @ManyToMany, to declare a many-to-many
relationship between the App and Device entities. The cascade element is set to
ensure that changes on this end of the association properly update the other side.

Normally, Hibernate is "lazy". It doesn't actually fetch associated entities
from the database until they are needed.
However, here we are writing a multi-tiered application, and the
controller servlet has already closed the Hibernate session by the time
our search results JSP receives these entities. If a view tries to fetch
associations after the session has closed, errors will occur.
There are several ways around this problem. For simplicity, we are also
adding a fetch element to the @ManyToMany annotation, changing the
fetch type from "lazy" to "eager". Now when we retrieve a Device entity,
Hibernate will immediately fetch all the associated App entities while the
session is still open.
Eager fetching is very inefficient with large amounts of data, however, so
in Chapter 5, Advanced Querying, we will explore a more advanced strategy
for handling this.

Everything about supportedApps discussed so far has been in the realm of Hibernate
ORM. So last but not least, we will add the Hibernate Search @ContainedIn
annotation, declaring that App's Lucene index should contain data from Device.
Hibernate ORM already saw these two entities as being associated. The Hibernate
Search @ContainedIn annotation sets up a bidirectional association from Lucene's
perspective too.

The other half of the bidirectional association involves giving the App entity class a
list of supported Device entity classes.

...
@ManyToMany(fetch=FetchType.EAGER, cascade = { CascadeType.ALL })
@IndexedEmbedded(depth=1)
private Set<Device>supportedDevices;
...
// Getter and setter methods
...

This is very similar to the Device side of the association, except that the
@IndexedEmbedded annotation here serves as the counterpoint to @ContainedIn.

Chapter 2

[35]

If your associated objects contain other associated objects themselves,
then you might end up indexing a lot more data than you wanted. Even
worse, you could run into problems with circular dependencies.
To safeguard against this, set the @IndexEmbedded annotation's optional
depth element to a max limit. When indexing objects, Hibernate Search
will go no further than the specified number of levels.
The previous code specifies a depth of one level. This means that an app
will be indexed with information about its supported devices, but not
information about a device's other supported apps.

Querying associated entities
Once associated entities have been mapped for Hibernate Search, it is easy to include
them in search queries. The following code snippet updates SearchServlet to add
supportedDevices to the list of fields searched:

...
QueryBuilderqueryBuilder =
fullTextSession.getSearchFactory().buildQueryBuilder()
 .forEntity(App.class).get();
org.apache.lucene.search.QueryluceneQuery = queryBuilder
 .keyword()
 .onFields("name", "description", "supportedDevices.name")
 .matching(searchString)
 .createQuery();
org.hibernate.QueryhibernateQuery =
 fullTextSession.createFullTextQuery(luceneQuery, App.class);
...

Complex types are a bit different from the simple data types we have worked with
so far. With complex types, we are not really interested in the field itself, because the
field is actually just an object reference (or a collection of object references).

What we really want our searches to match are the simple data type fields within
the complex type. In other words, we want to search the Device entity's name field.
So, as long as an associated class field has been indexed (that is, with the @Field
annotation), it can be queried with a [entity field].[nested field] format, such as
supportedDevices.name in the previous code.

Mapping Entity Classes

[36]

In the sample code for this chapter, StartupDataLoader has been expanded to save
some Device entities in the database, and associate them with the App entities. One
of these test devices is named xPhone. When we run the VAPORware Marketplace
application and search for this keyword, the search results will include apps that
are compatible with the xPhone, even if that keyword doesn't appear in the name
or description of the app itself.

Embedded objects
Associated entities are full-blown entities in their own right. They typically
correspond to a database table and Lucene index of their own, and may stand apart
from their associations. For example, if we delete an app entity that is supported on
the xPhone, that doesn't mean we want to delete the xPhone Device too.

There is a different type of association, in which the lifecycle of associated objects
depends on the entity that contains them. If the VAPORware Marketplace apps had
customer reviews, and an app was permanently deleted from the database, then we
would probably expect all its customer reviews to be removed along with it.

Classic Hibernate ORM terminology refers to such objects as components
(or sometimes elements). In the newer JPA jargon, they are known as
embedded objects.
Embedded objects are not entities themselves. Hibernate Search does not
create separate Lucene indexes for them, and they cannot be searched
outside the context of the entity containing them. Otherwise, they look
and feel quite similar to associated entities.

Let's give the example application an embedded object type for customer reviews. A
CustomerReview instance will consist of the username of the person submitting the
review, the rating they gave (for example, five stars), and any additional comments
they wrote.

@Embeddable
public class CustomerReview {

 @Field
 private String username;

 private int stars;

 @Field
 private String comments;

 publicCustomerReview() {

Chapter 2

[37]

 }

 public CustomerReview(String username,
 int stars, String comments) {
 this.username = username;
 this.stars = stars;
 this.comments = comments;
 }

 // Getter and setter methods...

}

This class is annotated with @Embeddable rather than the usual @Entity annotation,
telling Hibernate ORM that the lifecycle of a CustomerReview instance is dependent
on whichever entity object contains it.

The @Field annotation is applied to searchable fields as before. However, Hibernate
Search will not create a standalone Lucene index just for CustomerReview. This
annotation only adds information to the indexes of other entities that contain this
embeddable class.

In our case, the containing class will be App. Let's give it a set of customer reviews as
a member variable:

...
@ElementCollection(fetch=FetchType.EAGER)
@Fetch(FetchMode.SELECT)
@IndexedEmbedded(depth=1)
private Set<CustomerReview>customerReviews;
...

Rather than one of the usual JPA relationship annotations (for example, @OneToOne,
@ManyToMany, and so on), this field is annotated as a JPA @ElementCollection. If
this field were a single object, no annotation would be necessary. JPA would simply
figure it out based on that object class having the @Embeddable annotation. However,
the @ElementCollection annotation is necessary when dealing with collections of
embeddable elements.

When using classic XML-based Hibernate mapping, the hbm.xml file
equivalents are <component> for single instances, and <composite-
element> for collections. See the chapter2-xml variant of the
downloadable sample application source.

Mapping Entity Classes

[38]

The @ElementCollection annotation has a fetch element set to use eager fetching,
for the same reasons discussed earlier in this chapter.

On the next line we use the Hibernate-specific @Fetch annotation, to ensure that
the CustomerReview instances are fetched through multiple SELECT statements
rather than a single OUTER JOIN. This avoids duplication of customer reviews,
due to Hibernate ORM quirks that are discussed further in comments within the
downloadable source code. Unfortunately, this mode is inefficient when dealing with
very large collections, so you may wish to consider another approach in such cases.

Querying embedded objects is the same as with associated entities. Here is the query
code snippet from SearchServlet, modified to also search against the comments
fields of the embedded CustomerReview instances:

...
QueryBuilderqueryBuilder =
fullTextSession.getSearchFactory().buildQueryBuilder()
 .forEntity(App.class).get();
org.apache.lucene.search.QueryluceneQuery = queryBuilder
 .keyword()
 .onFields("name", "description", "supportedDevices.name",
 "customerReviews.comments")
 .matching(searchString)
 .createQuery();
org.hibernate.QueryhibernateQuery = fullTextSession.
createFullTextQuery(
 luceneQuery, App.class);
...

Now we have a query that is really doing some searching! The chapter2 version of
StartupDataLoader has been extended to load some customer reviews for all of the
test apps. Searches will now produce results when a match is found in a customer
review, even though the keyword doesn't otherwise appear in the App itself.

The HTML in the VAPORware Marketplace application has also been updated.
Now each search result has a Full Details button, which pops-up a modal box
with supported devices and customer reviews for that app. Notice that the search
keyword in this screenshot is matched against a customer review rather the actual
app description:

Chapter 2

[39]

Partial indexing
Associated entities each have their own Lucene index, and also store some data in
each other's indexes. With embedded objects, search information is stored exclusively
in the containing entity's index.

However, bear in mind that these classes may be associated or embedded in more
than one place. For example, if you had the Customer and Publisher entities in your
data model, both of them might have an embedded object of type Address.

Normally, we use the @Field annotation to tell Hibernate Search which fields should
be indexed and searchable. However, what if we want this to vary with associated or
embedded objects? What if we want a field to be indexed, or not indexed, depending
on which other entity contains it? Hibernate Search provides this ability through an
optional element in the @IndexedEmbedded annotation. This includePaths element
indicates that within the Lucene index for this containing entity, only certain fields of
the associated entity or embedded object should be included.

www.allitebooks.com

http://www.allitebooks.org

Mapping Entity Classes

[40]

In our example application, the CustomerReview class has both its username
and comments variable annotated as searchable fields. However, let's say that for
the customerReviews embedded within App, we only care about searching on
comments. The change to App looks like this:

...
@ElementCollection(fetch=FetchType.EAGER)
@Fetch(FetchMode.SELECT)
@IndexedEmbedded(depth=1, includePaths = { "comments" })
private Set<CustomerReview>customerReviews;
...

Even though CustomerReview.username is annotated with @Field, that field
will not be added to the Lucene index for App. This saves space, and improves
performance by not making Lucene work hard on unnecessary indexing. The
only trade-off is that to prevent errors, we must remember to avoid using any
non-included fields in our query code.

The programmatic mapping API
In the beginning of this chapter we said that even when you map entities to the
database with hbm.xml files, you can still use Hibernate Search annotations mapping
to Lucene. However, if you really want to avoid putting annotations in your entity
classes altogether, there is an API available for declaring your Lucene mappings
programmatically at runtime.

This might come in handy if your search configuration needs to change at runtime
based on some circumstances. It is also the only approach available if you cannot
alter your entity classes for some reason, or if you are a hard-line believer in
separating your configuration from your POJO's.

The heart of the programmatic mapping API is the SearchMapping class, which
stores the Hibernate Search configuration that is normally pulled from annotations.
Typical usage looks like the query DSL code that we saw in the previous chapter.
You call a method on a SearchMapping object, call a method on the object returned,
and so on in a long nested series.

The methods available at each step of the way intuitively resemble the search
annotations that you have already seen. The entity() method replaces the @Entity
annotation, indexed() replaces @Indexed, field() replaces @Field, and so on.

Chapter 2

[41]

If you need to use the programmatic mapping API in an application, then
you can find more details in Reference Manual and Javadocs, both available
at http://www.hibernate.org/subprojects/search/docs.
The starting point in Javadocs is the org.hibernate.search.cfg.
SearchMapping class, and the other relevant classes are all in the org.
hibernate.search.cfg package as well.

In the downloadable source code available from the Packt Publishing website, the
chapter2-mapping subdirectory contains a version of the VAPORware Marketplace
application that uses the programmatic mapping API.

This version of the example application includes a factory class, with a method that
configures and returns a SearchMapping object upon demand. It doesn't matter what
you name the class or the method, so long as the method is annotated with @org.
hibernate.search.annotations.Factory:

public class SearchMappingFactory {

 @Factory
 public SearchMapping getSearchMapping() {

 SearchMapping searchMapping = new SearchMapping();

 searchMapping
 .entity(App.class)
 .indexed()
 .interceptor(IndexWhenActiveInterceptor.class)
 .property("id", ElementType.METHOD).documentId()
 .property("name", ElementType.METHOD).field()
 .property("description", ElementType.METHOD).field()
 .property("supportedDevices",
 ElementType.METHOD).indexEmbedded().depth(1)
 .property("customerReviews",
 ElementType.METHOD).indexEmbedded().depth(1)

 .entity(Device.class)
 .property("manufacturer", ElementType.METHOD).field()
 .property("name", ElementType.METHOD).field()
 .property("supportedApps",
 ElementType.METHOD).containedIn()

Mapping Entity Classes

[42]

 .entity(CustomerReview.class)
 .property("stars", ElementType.METHOD).field()
 .property("comments", ElementType.METHOD).field();

 return searchMapping;
 }

}

Notice that this factory method is only three lines long, strictly speaking. The
bulk of it is one continuous line of chained method calls, originating from the
SearchMapping object, that map our three persistent classes.

To integrate the mapping factory into Hibernate Search, we add a property to the
main hibernate.cfg.xml configuration file:

...
<property name="hibernate.search.model_mapping">
 com.packtpub.hibernatesearch.util.SearchMappingFactory
</property>
...

Now, whenever Hibernate ORM opens a Session, Hibernate Search and all of the
Lucene mappings come along for the ride!

Summary
In this chapter, we expanded our knowledge of how to map classes for searching. We
can now use Hibernate Search to map entities and other classes to Lucene, regardless
of how Hibernate ORM maps them to the database. If we ever need to map classes
to Lucene without adding annotations, we can use a programmatic mapping API to
handle this at runtime.

We have now seen how to manage Hibernate Search across associated entities, as
well as embedded objects whose lifecycle depend on their containing entity. In both
cases, we covered some obscure quirks that can trip up developers. Finally, we
learned how to control which fields of an associated or embedded class are indexed,
depending on which entity contains them.

In the next chapter, we will use these mappings in a variety of search query types,
and explore some important features common to all of them.

Performing Queries
In the previous chapter, we created various types of persistent objects and mapped
them to Lucene search indexes in various ways. However, we have basically used the
same keyword query in all the versions of the example application so far.

In this chapter, we will explore other search query types offered by the Hibernate
Search DSL, as well as important features such as sorting and pagination that are
common to all of them.

Mapping API versus query API
So far, we discussed API alternatives for mapping classes to the database with
Hibernate ORM. You can map your classes with XML or annotations, using JPA or
the traditional API, and Hibernate Search will work fine so long as you are aware of
some minor differences.

However, when we talk about which API a Hibernate application uses, there are two
parts to the answer. Not only is there more than one approach for mapping classes
to the database, there are also options for how to query the database at runtime.
Hibernate ORM has its traditional API, based on the SessionFactory and Session
classes. It also offers an implementation of the corresponding JPA standards, built
around EntityManagerFactory and EntityManager.

You might have noticed that in the sample code so far, we've been mapping classes
to the database with JPA annotations and using the traditional Hibernate Session
class to query them. This may seem confusing at first, but the mapping and the
query APIs are essentially interchangeable. You can mix and match!

So which approach should you use in the Hibernate Search projects? There are
advantages to sticking with common standards as much as possible. Once you are
experienced with JPA, those skills transfer when you work on other projects that use
different JPA implementations.

Performing Queries

[44]

On the other hand, Hibernate ORM's traditional API is more powerful than the
generic JPA standards. Also, Hibernate Search is an extension of Hibernate ORM.
You can't migrate a project to a different JPA implementation without first finding
some other search strategy altogether.

So in a nutshell, there is a strong argument for using JPA standards
whenever they are adequate. However, Hibernate Search requires
Hibernate ORM anyway, so there's no sense in being too dogmatic.
Throughout this book, most of the example code will use JPA
annotations for mapping classes, and use the traditional Hibernate
Session class for queries.

Using JPA for queries
Although we will focus on the traditional query API, the downloadable
source code also contains a different version of the example application in a
chapter3-entitymanager folder. This VAPORware Marketplace variation
demonstrates the use of JPA across the board, for both mapping and queries.

In the search controller servlet, rather than using a Hibernate SessionFactory object
to create a Session object, it uses a JPA EntityManagerFactory instance to create an
EntityManager object:

...
// The "com.packtpub.hibernatesearch.jpa" identifier is declared
// in "META-INF/persistence.xml"
EntityManagerFactory entityManagerFactory =
 Persistence.createEntityManagerFactory(
 "com.packtpub.hibernatesearch.jpa");
EntityManager entityManager =
 entityManagerFactory.createEntityManager();
...

We have already seen code samples that use the traditional query API.
In those previous examples, the Hibernate ORM Session objects were
wrapped within Hibernate Search FullTextSession objects. These then
produced Hibernate SearchFullTextQuery objects, which implement the
core org.hibernate.Query interface:

...
FullTextSession fullTextSession = Search.getFullTextSession(session);
...
org.hibernate.search.FullTextQuery hibernateQuery =
 fullTextSession.createFullTextQuery(luceneQuery, App.class);
...

Chapter 3

[45]

Constrast that with JPA, where regular EntityManager objects are likewise
wrapped by FullTextEntityManager objects. These create FullTextQuery
objects, implementing the standard javax.persistence.Query interface:

...
FullTextEntityManager fullTextEntityManager =
 org.hibernate.search.jpa.Search.getFullTextEntityManager(
 entityManager);
...
org.hibernate.search.jpa.FullTextQuery jpaQuery =
 fullTextEntityManager.createFullTextQuery(luceneQuery, App.
class);
...

The traditional FullTextQuery class and its JPA counterpart are very similar, but
they are separate classes imported from different Java packages. Both offer hooks
to much of the Hibernate Search functionality that we've seen so far, and will
further explore.

Either version of FullTextQuery can be cast to its respective
query type, although doing so costs you direct access to the
Hibernate Search methods. So, be sure to call any extension
methods prior to casting.
If you need to access the non-standard methods after casting to a
JPA query, then you can use that interface's unwrap() method
to get back to the underlying FullTextQuery implementation.

Setting up a project for Hibernate Search
and JPA
When your Maven-based project includes the hibernate-search dependency, it
automatically pulls over three dozen related dependencies for you. Unfortunately,
JPA query support is not one of them. To use JPA-style queries, we must declare an
extra hibernate-entitymanager dependency ourselves.

Its version needs to match the version of hibernate-core that is already
in the dependency hierarchy. This will not always be in sync with the
hibernate-search version.

Performing Queries

[46]

Your IDE may offer a way to present the dependency hierarchy visually. Either way,
you can always use Maven from the command line to get the same information with
this command:

mvn dependency:tree

As shown in this output, Hibernate Search version 4.2.0.Final uses core Hibernate
ORM version 4.1.9.Final. So a hibernate-entitymanager dependency should be
added to the POM, using the same version as core:

...
<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-entitymanager</artifactId>
 <version>4.1.9.Final</version>
</dependency>
...

The Hibernate Search DSL
Chapter 1, Your First Application, introduced the Hibernate Search DSL, which is
the most straightforward approach for writing search queries. When using the
DSL, method calls are chained together in such a way that the series resembles a
programming language in its own right. If you have worked with criteria queries
in Hibernate ORM, then this style will appear very familiar.

Chapter 3

[47]

Whether you are using the traditional FullTextSession object or the JPA-style
FullTextEntityManager object, each passes a Lucene query that was generated by
the QueryBuilder class. This class is the starting point for the Hibernate Search DSL,
and it offers several Lucene query types.

Keyword query
The most basic form of search, which we have glimpsed at already, is the
keyword query. As the name suggests, this query type searches for one or
more particular words.

The first step is to obtain a QueryBuilder object, configured for searching on a
given entity:

...
QueryBuilderqueryBuilder =
 fullTextSession.getSearchFactory().buildQueryBuilder()
 .forEntity(App.class).get();
...

From there, the following diagram describes the possible flows. Dotted gray arrows
represent optional side paths:

Keyword query flow (dotted gray arrows represent optional paths)

In the actual Java code, the DSL for a keyword query would look similar to
the following:

...
org.apache.lucene.search.Query luceneQuery =
 queryBuilder
 .keyword()
 .onFields("name", "description", "supportedDevices.name",

Performing Queries

[48]

 "customerReviews.comments")
 .matching(searchString)
 .createQuery();
...

The onField method takes the name of a field that is indexed for the relevant
entity. If the field is not included in that Lucene index, then the query will
break. Associated or embedded object fields may also be searched, using the
format "[container-field-name].[field-name]" format (for example,
supportedDevices.name).

Optionally, one or more andField methods may be used to search multiple fields.
Its parameter works in the exact same way as onField. Alternatively, you can
declare multiple fields all in one step with onFields, as shown in the preceding
code snippet.

The matching method takes the keyword(s) for which the query is to be searched.
This value will generally be a string, although technically the parameter type
is a generic object in case you use a field bridge (discussed in the next chapter).
Assuming that you pass a string, it may be single keyword or a series of keywords
separated by whitespace. By default, Hibernate Search will tokenize the string and
search for each keyword individually.

Finally, the createQuery method terminates the DSL and returns a
Lucene query object. That object may then be used by FullTextSession
(or FullTextEntityManager) to create the final Hibernate Search
FullTextQuery object:

...
FullTextQuery hibernateQuery =
 fullTextSession.createFullTextQuery(luceneQuery, App.class);
...

Fuzzy search
When we use a search engine today, we take for granted that it will be smart enough
to fix our typos when we are "close enough" to the correct spelling. One way to add
this intelligence to Hibernate Search is by making plain keyword queries fuzzy.

With a fuzzy search, keywords match against fields even when they are off by one or
more characters. The query runs with a threshold value ranging from 0 to 1, where 0
means that everything matches, and 1 means that only exact matches are acceptable.
The fuzziness of the query depends on how close to zero you set the threshold.

Chapter 3

[49]

The DSL starts with the same keyword method and eventually resumes the keyword
query flow with onField or onFields. However, in between are some new flow
possibilities, shown as follows:

Fuzzy search flow (dotted gray arrows represent optional paths)

The fuzzy method simply makes a normal keyword query "fuzzy", with a default
threshold value of 0.5 (for example, balanced between the two extremes). You
can proceed from there with the regular keyword query flow, and that would be
perfectly fine.

However, you have the option of calling withThreshold to specify a different
fuzziness value. In this chapter, versions of the VAPORware Marketplace application
add fuzziness to the keyword query, with a threshold value of 0.7. This is strict
enough to avoid too many false positives, but fuzzy enough that a misspelled
search for "rodio" will now match against the "Athena Internet Radio" app.

...
luceneQuery = queryBuilder
 .keyword()
 .fuzzy()
 .withThreshold(0.7f)
 .onFields("name", "description", "supportedDevices.name",
 "customerReviews.comments")
 .matching(searchString)
 .createQuery();
...

www.allitebooks.com

http://www.allitebooks.org

Performing Queries

[50]

In addition to (or instead of) withThreshold, you may also use withPrefixLength
to adjust the query fuzziness. This integer value is a number of characters at the
beginning of each word that you want to exclude from the fuzziness calculation.

Wildcard search
The second variation on a keyword query doesn't involve any higher math
algorithms. If you have ever used a pattern like *.java to list all files in a
directory, then you already have the basic idea.

Adding the wildcard method causes a normal keyword query to treat a question
mark (?) as a valid substitute for any single character. For example, the keyword
201? would match the field values 2010, 2011, 2012, and so on.

The asterisk (*) becomes a substitute for any sequence of zero or more characters.
The keyword down* matches download, downtown, and so on.

The Hibernate Search DSL for a wildcard search is the same as that for a regular
keyword query, only with the zero-parameter wildcard method added at
the beginning.

Wildcard search flow (dotted gray arrows represent optional paths)

Exact phrase query
When you type a string of keywords into a search engine, you expect to see results
matching one or more of those keywords. Not all of the keywords might be present
in each result, and they might not appear in the same order that you typed them.

However, it has become customary that when you place double quotes around a
string, you expect the search results to contain that exact phrase.

Chapter 3

[51]

The Hibernate Search DSL offers a phrase query flow for searches of this type.

Exact phrase query flow (dotted gray arrows represent optional paths)

The onField and andField methods behave in the same way as they do with
keyword queries. The sentence method differs from matching only in that its
input must be a String.

A primitive form of fuzziness is available to phrase queries, by using the optional
withSlop clause. This method takes an integer parameter, representing the number
of "extra" words that can be found within a phrase before it is no longer considered
a match.

This chapter's version of the VAPORware Marketplace application now checks
for double quotes around the user's search string. When the input is quoted, the
application replaces the keyword query with a phrase query instead:

...
luceneQuery = queryBuilder
 .phrase()
 .onField("name")
 .andField("description")
 .andField("supportedDevices.name")
 .andField("customerReviews.comments")
 .sentence(searchStringWithQuotesRemoved)
 .createQuery();
...

Performing Queries

[52]

Range query
Phrase queries and the various keyword search types, are all about matching fields
to a search term. A range query is bit different, in that it looks for fields that are
bounded by one or more search terms. In other words, is a field greater than or
less than a given value, or in between two values?

Range query flow (dotted gray arrows represent optional paths)

When the preceding method is used, the queried field(s) must have values greater
than or equal to the input parameter. That parameter is of the generic Object type
for flexibility. Dates and numeric values are typically used, although strings are
perfectly fine and will be compared based on an alphabetical order.

As you might guess, the next method is a counterpart in which values must be less
than or equal to the input parameter. To declare that matches must fall in between
two parameters, inclusively, you would use the from and to methods (they must be
used together).

An excludeLimit clause may be applied to any of these clauses. It has the effect of
making the range exclusive rather than inclusive. In other words, from(5).to(10).
excludeLimit() matches a range of 5 <= x < 10. The modifier could have been
placed on the from clause rather than the to, or on both of them.

Chapter 3

[53]

In our VAPORware Marketplace application, we previously declined to annotate
CustomerReview.stars for indexing. However, if we had annotated it with
@Field, then we could search for all 4- and 5-star reviews with a query similar
to the following:

...
luceneQuery = queryBuilder
 .range()
 .onField("customerReviews.stars")
 .above(3).excludeLimit()
 .createQuery();
...

Boolean (combination) queries
What if you have an advanced use case where a keyword, phrase, or range query is
not enough by itself, but two or more of them together could meet your requirements?
Hibernate Search allows you to mix queries in any combination with boolean logic:

Boolean query flow (dotted gray arrows represent optional paths)

The bool method declares that this will be a combination query. It is followed by at
least onemust or should clause, each of which takes a Lucene query object of one of
the previously discussed varieties.

When a must clause is used, a field must match the nested query in order to match
the overall query as a whole. Multiple must clauses may be applied, which operate
in a logical-AND fashion. All of them must succeed or else there is no match.

The optional not method serves to logically negate a must clause. The effect is that
the overall query will only match if that nested query doesn't.

Performing Queries

[54]

The should clause roughly approximates a logical-OR operation. When a
combination consists only of should clauses, a field need not match all of them.
However, at least one must match in order for the query as a whole to match.

You can combine must and should clauses. However, if you do so,
then the should nested queries become completely optional. If the
must clause succeeds, the overall query succeeds no matter what. If
the must clause fails, the overall query fails no matter what. When
the two clause types are used together, should clauses serve only to
help rank the search results by relevance.

This example combines a keyword query and a range query to look for "xPhone"
apps with 5-star customer reviews:

...
luceneQuery = queryBuilder
 .bool()
 .must(
 queryBuilder.keyword().onField("supportedDevices.name")
 .matching("xphone").createQuery()
)
 .must(
 queryBuilder.range().onField("customerReviews.stars")
 .above(5).createQuery()
)
 .createQuery();
...

Sorting
By default, search results come back in the order of their "relevance". In other
words, they are ranked by the degree to which they match the query. We will
discuss this further over the next two chapters, and learn how to adjust these
relevance calculations.

However, we have the option to change the sorting to some other criteria altogether.
In typical situations, you might sort by a date or numeric field, or by a string field
in an alphabetical order. In all versions of the VAPORware Marketplace application
going forward, users may now sort their search results by the app name.

Chapter 3

[55]

To sort on a field, special consideration is required when that field is mapped
for Lucene indexing. Normally when a string field is indexed, a default analyzer
(explored in the next chapter) tokenizes the string. For example, if an App entity's
name field is "Frustrated Flamingos", then separate entries are created in the Lucene
index for "frustrated" and "flamingos". This allows for more powerful querying, but
we want to sort based on the original untokenized value.

An easy way to support this is by mapping the field twice, which is perfectly fine! As
we saw in Chapter 2, Mapping Entity Classes, Hibernate Search offers a plural @Fields
annotation. It wraps a comma-separated list of @Field annotations, with different
analyzer settings.

In the following code snippet, one @Field is declared with the (tokenizing) defaults.
The second one has its analyze element sent to Analyze.NO, to disable tokenization,
and is given its own distinct field name in the Lucene index:

...
@Column
@Fields({
 @Field,
 @Field(name="sorting_name", analyze=Analyze.NO)
})
private String name;
...

This new field name can be used as follows to build a Lucene SortField object,
and attach it to a Hibernate Search FullTextQuery object:

import org.apache.lucene.search.Sort;
import org.apache.lucene.search.SortField;
...
Sort sort = new Sort(
 new SortField("sorting_name", SortField.STRING));
hibernateQuery.setSort(sort); // a FullTextQuery object

When a list of search results is later returned by hibernateQuery, this list will be
sorted by the app name, starting from A to Z.

Reverse sorting is possible as well. The SortField class also offers a constructor with
a third Boolean parameter. If that parameter is set to true, the sort will work in the
exact opposite manner (for example, Z to A).

Performing Queries

[56]

Pagination
When a search query returns a huge number of search results, it is usually not
desirable (or perhaps even possible) to present them to the user all at once. A
common solution is pagination, or displaying search results one "page" at a time.

A Hibernate Search FullTextQuery object has methods for making pagination easy:

…
hibernateQuery.setFirstResult(10);
hibernateQuery.setMaxResults(5);
List<App> apps = hibernateQuery.list();
…

The setMaxResults method declares the maximum size of the page. On the last
line of the preceding code snippet, the apps list will contain no more than five App
objects, even if the query has thousands of matches.

Of course, pagination wouldn't be very useful if the code always grabbed the first
five results. We also need the ability to grab the next page, and then the next page,
and so on. So the setFirstResult method tells Hibernate Search where to start.

For example, the preceding code snippet starts with the eleventh result item (the
parameter is 10, but results are a zero-indexed). The query is then set to grab the
next five results. The next incoming request might therefore use hibernateQuery.
setFirstResult(15).

The last piece of the puzzle is knowing how many results there are, so you can plan
for the correct number of pages:

…
intresultSize = hibernateQuery.getResultSize();
…

The getResultSize method is more powerful than it appears at first glance, because
it calculates the number using only Lucene indexes. A regular database query across
all matching rows could be a very resource-intensive operation, but it is a relatively
lightweight matter for Lucene.

This chapter's version of the example applications now use pagination
for search results, with a maximum of five results per page. Explore the
SearchServlet and search.jsp results page to see how they use
the result size and the current starting point to build the "previous" and
"next" links as needed.

Chapter 3

[57]

A look at the VAPORware Markeplace updates in action is as follows:

Summary
In this chapter, we examined the most common use cases in Hibernate Search
querying. We can now work with Hibernate Search regardless of whether JPA is
used in whole, in part, or not at all. We learned the core query types offered by the
Hibernate Search DSL, and have an easy visual access to all of their possible flows
rather than having to crawl through the Javadocs to piece them together.

We now know how to sort search results by a particular field, in ascending or
descending order. With large result sets, we can now paginate the results for
better performance on the backend, and a better user experience on the frontend.
The search functionality in our VAPORware Marketplace example is now greater
than or equal to many production Hibernate Search applications.

In the next chapter, we will look at more advanced mapping techniques, such as
handling custom data types and controlling details of the Lucene indexing process.

Advanced Mapping
So far, we have learned the basics of mapping objects to Lucene indexes. We have
seen how to handle relationships with associated entities and embedded objects.
However, the searchable fields have mostly been simple string data.

In this chapter, we will look at how to effectively map other data types. We will
explore the process by which Lucene analyzes entities for indexing, and the
Solr components that can customize that process. We will see how to adjust the
importance of each field, to make sorting by relevance more meaningful. Finally,
we will conditionally determine whether or not to index an entity at all, based
on its state at runtime.

Bridges
The member variables in a Java class may be of an infinite number of custom
types. It is usually possible to create custom types in your database as well.
With Hibernate ORM, there are dozens of basic types from which more
complex types can be constructed.

However, in a Lucene index, everything ultimately boils down to a string.
When you map fields of any other data type for searching, the field is converted
to a string representation. In Hibernate Search terminology, the code behind this
conversion is called a bridge. Default bridges handle most common situations for
you transparently, although you have the ability to write your own bridges for
custom scenarios.

www.allitebooks.com

http://www.allitebooks.org

Advanced Mapping

[60]

One-to-one custom conversion
The most common mapping scenario is where a single Java property is tied to
a single Lucene index field. The String variables obviously don't require any
conversion. With most other common data types, how they would be expressed
as strings is fairly intuitive.

Mapping date fields
The Date values are adjusted to GMT time, and then stored as a string with the
format yyyyMMddHHmmssSSS.

Although this all happens automatically, you do have the option to explicitly
annotate the field with @DateBridge. You would do so when you don't want to
index down to the exact millisecond. This annotation has one required element,
resolution, which lets you choose a level of granularity from YEAR, MONTH, DAY,
HOUR, MINUTE, SECOND, or MILLISECOND (the normal default).

The downloadable chapter4 version of the VAPORware Marketplace application
now adds a releaseDate field to the App entity. It is configured such that Lucene
will only store the day, and not any particular time of day.

...
@Column
@Field
@DateBridge(resolution=Resolution.DAY)
private Date releaseDate;
...

Handling null values
By default, fields with null values are not indexed regardless of their type.
However, you can also customize this behavior. The @Field annotation has
an optional element, indexNullAs, which controls the handling of null values
for that mapped field.

...
@Column
@Field(indexNullAs=Field.DEFAULT_NULL_TOKEN)
private String description;
...

Chapter 4

[61]

The default setting for this element is Field.DO_NOT_INDEX_NULL, which causes null
values to be omitted from Lucene indexing. However, when Field.DEFAULT_NULL_
TOKEN is used, Hibernate Search will index the field with a globally configured value.

The name for this value is hibernate.search.default_null_token, and it is set
within hibernate.cfg.xml (for traditional Hibernate ORM) or persistence.xml
(for Hibernate configured as a JPA provider). If this value is not configured, then null
fields will be indexed with the string "_null_".

You may use this mechanism to apply null-substitution on some
fields, and keep the default behavior on other fields. However, the
indexNullAs element only works with that one substitute value,
configured at the global level. If you want to use different null substitutes
for different fields or in different scenarios, you must implement that
logic through a custom bridge (discussed in the following subsection).

Custom string conversion
Sometimes you need more flexibility in converting a field to a string value. Rather
than relying on the built-in bridge to handle it automatically, you can create your
own custom bridge.

StringBridge
To map a single Java property to a single index field, your bridge can implement one
of two interfaces offered by Hibernate Search. The first of these, StringBridge, is for
a one-way translation between a property and a string value.

Let's say that our App entity has a currentDiscountPercentage member variable,
representing any promotional discount being offered for that app (for example,
25 percent off!). For easier math operations, this field is stored as a float (0.25f).
However, if we ever wanted to make discounts searchable, we would want
them indexed in a more human-readable percentage format (25).

To provide that mapping, we would start by creating a bridge class, implementing
the StringBridge interface. The bridge class must implement an objectToString
method, which expects to take our currentDiscountPercentage property as an
input parameter:

import org.hibernate.search.bridge.StringBridge;

/** Converts values from 0-1 into percentages (e.g. 0.25 -> 25) */
public class PercentageBridge implements StringBridge {

Advanced Mapping

[62]

 public String objectToString(Object object) {
 try {
 floatfieldValue = ((Float) object).floatValue();
 if(fieldValue< 0f || fieldValue> 1f) return "0";
 int percentageValue = (int) (fieldValue * 100);
 return Integer.toString(percentageValue);
 } catch(Exception e) {
 // default to zero for null values or other problems
 return "0";
 }
 }

}

The objectToString method converts the input as desired, and returns its String
representation. This will be the value indexed by Lucene.

Notice that this method returns a hardcoded "0" when given
a null value, or when it encounters any other sort of problem.
Custom null-handling is another possible reason for creating a
field bridge.

To invoke this bridge class at index-time, add a @FieldBridge annotation to the
currentDiscountPercentage property:

...
@Column
@Field
@FieldBridge(impl=PercentageBridge.class)
private float currentDiscountPercentage;
...

This entity field is a primitive float, yet the bridge class is working with
a Float wrapper object. For flexibility, objectToString takes a generic
Object parameter that must be cast to the appropriate type. However,
thanks to autoboxing, primitives are converted into their object wrappers
for us seamlessly.

TwoWayStringBridge
The second interface for mapping single variables to single fields,
TwoWayStringBridge, provides bidirectional translation between a
value and its string representation.

Chapter 4

[63]

You implement TwoWayStringBridge in a manner similar to what we just saw with
the regular StringBridge interface. The only difference is that this bidirectional
version also requires a stringToObject method, for conversions going the
other way:

...
public Object stringToObject(String stringValue) {
 return Float.parseFloat(stringValue) / 100;
}
...

A bidirectional bridge is only necessary when the field will be an ID field
within a Lucene index (that is, annotated with @Id or @DocumentId).

ParameterizedBridge
For even greater flexibility, it is possible to pass configuration parameters to a
bridge class. To do so, your bridge should implement the ParameterizedBridge
interface, in addition to StringBridge or TwoWayStringBridge. The class must then
implement a setParameterValues method for receiving the extra parameters.

For the sake of argument, let's say that we wanted our example bridge to be able
to write percentages with a greater level of precision, rather than rounding to a
whole number. We could pass it a parameter specifying the number of decimal
places to use:

public class PercentageBridge implements StringBridge,
 ParameterizedBridge {

 public static final String DECIMAL_PLACES_PROPERTY =
 "decimal_places";
 private int decimalPlaces = 2; // default

 public String objectToString(Object object) {
 String format = "%." + decimalPlaces + "g%n";
 try {
 float fieldValue = ((Float) object).floatValue();
 if(fieldValue< 0f || fieldValue> 1f) return "0";
 return String.format(format, (fieldValue * 100f));
 } catch(Exception e) {
 return String.format(format, "0");
 }
 }

Advanced Mapping

[64]

 public void setParameterValues(Map<String, String> parameters) {
 try {
 this.decimalPlaces = Integer.parseInt(
 parameters.get(DECIMAL_PLACES_PROPERTY));
 } catch(Exception e) {}
 }

}

This version of our bridge class expects to receive a parameter named
decimal_places. Its value is stored in the decimalPlaces member variable,
and then used inside the objectToString method. If no such parameter is passed,
then a default of two decimal places will be used to build percentage strings.

The mechanism for actually passing one or more parameters is the params element
of the @FieldBridge annotation:

...
@Column
@Field
@FieldBridge(
 impl=PercentageBridge.class,
 params=@Parameter(
 name=PercentageBridge.DECIMAL_PLACES_PROPERTY, value="4")
)
private float currentDiscountPercentage;
...

Be aware that all implementations of StringBridge or
TwoWayStringBridge must be thread-safe. Generally, you should
avoid any shared resources, and only take additional information
through the ParameterizedBridge parameters.

More complex mappings with FieldBridge
The bridge types covered so far are the easiest and most straightforward way
to map a Java property to a string index value. However, sometimes you need
even greater flexibility, so there are a few field bridge variations supporting a
free-form approach.

Chapter 4

[65]

Splitting a single variable into multiple fields
Occasionally, the desired relationship between a class property and Lucene index
fields may not be one-to-one. For example, let's say that one property represents a
filename. However, we would like the ability to search not only by filename, but also
by file type (that is, the file extension). One approach is to parse the file extension
from the filename property, and thereby use that one variable to create both fields.

The FieldBridge interface allows us to do this. Implementations must provide a
set method, which in this example parses the file type from the file name field, and
stores them separately:

import org.apache.lucene.document.Document;
import org.hibernate.search.bridge.FieldBridge;
import org.hibernate.search.bridge.LuceneOptions;

public class FileBridge implements FieldBridge {

 public void set(String name, Object value,
 Document document, LuceneOptionsluceneOptions) {
 String file = ((String) value).toLowerCase();
 String type = file.substring(
 file.indexOf(".") + 1).toLowerCase();
 luceneOptions.addFieldToDocument(name+".file", file, document);
 luceneOptions.addFieldToDocument(name+".file_type", type,
 document);
 }

}

The luceneOptions parameter is a helper object for interacting with Lucene, and
document represents the Lucene data structure to which we are adding fields. We
use luceneOptions.addFieldToDocument() to add fields to the index, without
having to fully understand the Lucene API details.

The name parameter passed to set represents the name of the entity being indexed.
Notice that we use this as a base when declaring the names of the two entities being
added (that is, name+".file" for the filename, and name+".file_type" for the
file type).

Finally, the value parameter is the current field being mapped. Just as with the
StringBridge interface seen in the Bridges section, the method signature here
uses a generic Object for flexibility. The value must be cast to its appropriate type.

Advanced Mapping

[66]

To apply a FieldBridge implementation, use the @FieldBridge annotation just as
we've already seen with the other custom bridge types:

...
@Column
@Field
@FieldBridge(impl=FileBridge.class)
private String file;
...

Combining multiple properties into a single field
A custom bridge implementing the FieldBridge interface may also be used for the
reverse purpose, to combine more than one property into a single index field. To
gain this degree of flexibility, the bridge must be applied to the class level rather than
the field level. When the FieldBridge interface is used in this manner, it is known as
a class bridge, and replaces the usual mapping mechanism for the entire entity class.

For example, consider an alternate approach we could have taken with the
Device entity in our VAPORware Marketplace application. Instead of indexing
manufacturer and name as separate fields, we could have combined them into one
fullName field. The class bridge for this would still implement the FieldBridge
interface, but it would concatenate the two properties into one index field as follows:

public class DeviceClassBridge implements FieldBridge {

 public void set(String name, Object value,
 Document document, LuceneOptionsluceneOptions) {
 Device device = (Device) value;
 String fullName = device.getManufacturer()
 + " " + device.getName();
 luceneOptions.addFieldToDocument(name + ".name",
 fullName, document);
 }

}

Chapter 4

[67]

Rather than applying an annotation to any particular fields within the Device class,
we would instead apply a @ClassBridge annotation at the class level. Notice that the
field-level Hibernate Search annotations have been completely removed, as the class
bridge will be responsible for mapping all index fields in this class.

@Entity
@Indexed
@ClassBridge(impl=DeviceClassBridge.class)
public class Device {

 @Id
 @GeneratedValue
 private Long id;

 @Column
 private String manufacturer;

 @Column
 private String name;

 // constructors, getters and setters...
}

TwoWayFieldBridge
Earlier we saw that the simple StringBridge interface has a TwoWayStringBridge
counterpart, providing bidirectional mapping capability for document ID fields.
Likewise, the FieldBridge interface has a TwoWayFieldBridge counterpart for
the same reason. When you apply a field bridge interface to a property used by
Lucene as an ID (that is, annotated with @Id or @DocumentId), then you must use
the two-way variant.

The TwoWayStringBridge interface requires the same objectToString method as
StringBridge, and the same set method as FieldBridge. However, this two-way
version also requires a get counterpart, for retrieving the string representation from
Lucene and converting if the true type is different:

...
public Object get(String name, Object value, Document document) {
 // return the full file name field... the file type field
 // is not needed when going back in the reverse direction
 return = document.get(name + ".file");
}

Advanced Mapping

[68]

public String objectToString(Object object) {
 // "file" is already a String, otherwise it would need conversion
 return object;
}
...

Analysis
When a field is indexed by Lucene, it undergoes a parsing and conversion process
called analysis. In Chapter 3, Performing Queries, we mentioned that the default
analyzer tokenizes string fields, and that this behavior should be disabled if you
plan to sort on that field.

However, much more is possible during analysis. Apache Solr components may be
assembled in hundreds of combinations. They can manipulate text in various ways
during indexing, and open the door to some really powerful search functionally.

In order to discuss the Solr components that are available, or how to assemble
them into a custom analyzer definition, we must first understand the three
phases of Lucene analysis:

• Character filtering
• Tokenization
• Token filtering

Analysis begins by applying zero or more character filters, which strip or replace
characters prior to any other processing. The filtered string then undergoes
tokenization, splitting it into smaller tokens to make keyword searches more
efficient. Finally, zero or more token filters remove or replace tokens before
they are saved to the index.

These components are provided by the Apache Solr project, and
they number over three-dozen in total. This book cannot dive
deeply into every single one, but we can take a look at a few key
examples of the three types and see how to apply them generally.
The full documentation for all of these Solr analyzer components
may be found at http://wiki.apache.org/solr/
AnalyzersTokenizersTokenFilters, with Javadocs at
http://lucene.apache.org/solr/api-3_6_1.

Chapter 4

[69]

Character filtering
When defining a custom analyzer, character filtering is an optional step. Should this
step be desired, there are only three character filter types available:

• MappingCharFilterFactory: This filter replaces characters (or sequences
of characters) with specifically defined replacement text, for example, you
might replace occurrences of 1 with one, 2 with two, and so on.
The mappings between character(s) and replacement value(s) are stored in
a resource file, using the standard java.util.Properties format, located
somewhere in the application's classpath. For each property, the key is the
sequence to look for, and the value is the mapped replacement.
The classpath-relative location of this mappings file is passed to the
MappingCharFilterFactory definition, as a parameter named mapping.
The exact mechanism for passing this parameter will be illustrated shortly
in the Defining and Selecting Analyzers section.

• PatternReplaceCharFilter: This filter applies a regular expression, passed
via a parameter named pattern. Any matches will be replaced with a string
of static text passed via a replacement parameter.

• HTMLStripCharFilterFactory: This extremely useful filter removes HTML
tags, and replaces escape sequences with their usual text forms (for example,
> becomes >).

Tokenization
Character and token filters are both optional when defining a custom analyzer, and
you may combine multiple filters of both types. However, the tokenizer component
is unique. An analyzer definition must contain one, and no more than one.

There are 10 tokenizer components available in total. Some illustrative
examples include:

• WhitespaceTokenizerFactory: This simply splits text on whitespace.
For instance, hello world is tokenized into hello and world.

• LetterTokenizerFactory: This is similar to WhitespaceTokenizrFactory
in functionality, but this tokenizer also splits text on non-letter characters.
The non-letter characters are discarded altogether, for example, please don't
go is tokenized into please, don, t, and go.

• StandardTokenizerFactory: This is the default tokenizer that is
automatically applied when you don't define a custom analyzer. It generally
splits on whitespace, discarding extraneous characters. For instance, it's 25.5
degrees outside!!! becomes it's, 25.5, degrees, and outside.

Advanced Mapping

[70]

When in doubt, StandardTokenizerFactory is almost always
the sensible choice.

Token filtering
By far the greatest variety in analyzer functionality comes through token filters, with
Solr offering two dozen options for use alone or in combination. These are only a few
of the more useful examples:

• StopFilterFactory: This filter simply throws away "stop words", or
extremely common words for which no one would ever want to perform
a keyword query anyway. The list includes a, the, if, for, and, or, and so on
(the Solr documentation presents the full list).

• PhoneticFilterFactory: When you use a major search engine, you would
probably notice that it can be very intelligent in dealing with your typos.
One technique for doing this is to look for words that sound similar to the
searched keyword, in case it was misspelled. For example, if you meant
to search for morning, but misspelled it as mourning, the search would
still match the intended term! This token filter provides that functionality
by indexing phonetically similar strings along with the actual token. The
filter requires a parameter named encoder, set to the name of a supported
encoding algorithm ("DoubleMetaphone" is a sensible option).

• SnowballPorterFilterFactory: Stemming is a process in which tokens are
broken down into their root form, to make it easier to match related words.
Snowball and Porter refer to stemming algorithms. For instance, the words
developer and development can both be broken down to the root stem develop.
Therefore, Lucene can recognize a relationship between the two longer
words (even though neither one is a substring of the other!) and can return
matches on both. This filter takes one parameter, named language
(for example, "English").

Defining and selecting analyzers
An analyzer definition assembles some combination of these components into a
logical whole, which can then be referenced when indexing an entity or individual
field. Custom analyzers may be defined in a static manner, or may be assembled
dynamically based on some conditions at runtime.

Chapter 4

[71]

Static analyzer selection
Either approach for defining a custom analyzer begins with an @AnalyzerDef
annotation on the relevant persistent class. In the chapter4 version of our
VAPORware Marketplace application, let's define a custom analyzer to be used with
the App entity's description field. It should strip out any HTML tags, and apply
various token filters to reduce clutter and account for typos:

...
@AnalyzerDef(
 name="appAnalyzer",
 charFilters={
 @CharFilterDef(factory=HTMLStripCharFilterFactory.class)
 },
 tokenizer=@TokenizerDef(factory=StandardTokenizerFactory.class),
 filters={
 @TokenFilterDef(factory=StandardFilterFactory.class),
 @TokenFilterDef(factory=StopFilterFactory.class),
 @TokenFilterDef(factory=PhoneticFilterFactory.class,
 params = {
 @Parameter(name="encoder", value="DoubleMetaphone")
 }),
 @TokenFilterDef(factory=SnowballPorterFilterFactory.class,
 params = {
 @Parameter(name="language", value="English")
 })
 }
)
...

The @AnalyzerDef annotation must have a name element set, and as previously
discussed, an analyzer must always include one and only one tokenizer.

The charFilters and filters elements are optional. If set, they receive lists of one
or more factory classes, for character filters and token filters respectively.

Be aware that character filters and token filters are applied in the order they
are listed. In some cases, changes to the ordering can affect the final result.

Advanced Mapping

[72]

The @Analyzer annotation is used to select and apply a custom analyzer. This
annotation may be placed on an individual field, or on the overall class where it will
affect every field. In this case, we are only selecting our analyzer definition for the
desciption field:

...
@Column(length = 1000)
@Field
@Analyzer(definition="appAnalyzer")
private String description;
...

It is possible to define multiple analyzers in a single class, by wrapping their @
AnalyzerDef annotations within a plural @AnalyzerDefs:

...
@AnalyzerDefs({
 @AnalyzerDef(name="stripHTMLAnalyzer", ...),
 @AnalyzerDef(name="applyRegexAnalyzer", ...)
})
...

Obviously, where the @Analyzer annotation is later applied, its definition element
has to match the appropriate @AnalyzerDef annotation's name element.

The chapter4 version of the VAPORware Marketplace application
now strips HTML from the customer reviews. If a search includes
the keyword span, there will not be a false positive match on
reviews containing the tag, for instance.
Snowball and phonetic filters are being applied to the app
descriptions. The keyword mourning finds a match containing the
word morning, and a search for development returns an app with
developers in its description.

Dynamic analyzer selection
It is possible to wait until runtime to select a particular analyzer for a field. The most
obvious scenario is an application supporting different languages, with analyzer
definitions configured for each language. You would want to select the appropriate
analyzer based on a language attribute for each object.

Chapter 4

[73]

To support such a dynamic selection, an @AnalyzerDiscriminator annotation
is added to a particular field or to the class as a whole. This code snippet uses the
latter approach:

@AnalyzerDefs({
 @AnalyzerDef(name="englishAnalyzer", ...),
 @AnalyzerDef(name="frenchAnalyzer", ...)
})
@AnalyzerDiscriminator(impl=CustomerReviewDiscriminator.class)
public class CustomerReview {
 ...
 @Field
 private String language;
 ...
}

There are two analyzer definitions, one for English and the other for French, and
the class CustomerReviewDiscriminator is declared responsible for deciding
which to use. This class must implement the Discriminator interface, and its
getAnalyzerDefinitionName method:

public class LanguageDiscriminator implements Discriminator {

 public String getAnalyzerDefinitionName(Object value,
 Object entity, String field) {
 if(entity == null || !(entity instanceofCustomerReview)) {
 return null;
 }
 CustomerReview review = (CustomerReview) entity;
 if(review.getLanguage() == null) {
 return null;
 } else if(review.getLanguage().equals("en")) {
 return "englishAnalyzer";
 } else if(review.getLanguage().equals("fr")) {
 return "frenchAnalyzer";
 } else {
 return null;
 }
 }

}

Advanced Mapping

[74]

If the @AnalyzerDiscriminator annotation is placed on a field, then its
value for the current object is automatically passed as the first parameter to
getAnalyzerDefinitionName. If the annotation is placed on the class itself,
then a null value is passed instead. The second parameter is the current entity
object either way.

In this case, the discriminator is applied at the class level. So we cast that second
parameter to type CustomerReview, and return the name of the appropriate analyzer
based on the object's language field. If the language is unknown or if there are other
issues, then the method simply returns null, telling Hibernate Search to fall back to
the default analyzer.

Boosting search result relevance
We have already seen that the default sort order for search results is by relevance,
meaning the degree to which they match the query. If one entity matches on two
fields, while another has only one field match, then that first entity is the more
relevant result.

Hibernate Search allows us to adjust how relevance is calculated, by boosting the
relative importance of entities or fields when they are indexed. These adjustments
can be static and fixed, or they can be dynamic and driven by the state of the data
at runtime.

Static boosting at index-time
Fixed boosting, regardless of the actual data, is as simple as annotating a class or
field with @Boost. This annotation takes a floating-point parameter for its relative
weight, with the default weight being 1.0. So for example, @Boost(2.0f) would
double the weight of a class or field relative to non-annotated classes and fields.

Our VAPORware Marketplace application searches on several fields and
associations, such as the names of supported devices, and comments posted in
customer reviews. However, doesn't it make sense that the text under our control
(each app's name and full description) should carry more weight than text coming
from outside parties?

To make this adjustment, the chapter4 version starts by annotating the App
class itself:

...
@Boost(2.0f)
public class App implements Serializable {
...

Chapter 4

[75]

This essentially makes App twice as relevant as Device or CustomerReview. Next,
we apply field-level boosting to the name and full description fields:

...
@Boost(1.5f)
private String name;
...
@Boost(1.2f)
private String description;
...

We are declaring here that name carries slightly more weight than description,
and they each carry more weight relative to normal fields.

Be aware that class-level and field-level boosting cascade and combine!
When more than one boost factor applies to a given field, they are
multiplied to form the total factor.
Here, because a weight of 2.0 was already applied to the App class itself,
name has a total effective weight of 3.0 and description is at 2.4.

Dynamic boosting at index-time
For an example of boosting an entity dynamically based on its data at index-time,
let's say that we wanted to give the CustomerReview objects a bit more weight
when the reviewer gives a five-star rating. To do this, we apply a @DynamicBoost
annotation to the class:

...
@DynamicBoost(impl=FiveStarBoostStrategy.class)
public class CustomerReview {
...

This annotation must be passed a class that implements the BoostStrategy
interface, and its defineBoost method:

public class FiveStarBoostStrategy implements BoostStrategy {

 public float defineBoost(Object value) {
 if(value == null || !(value instanceofCustomerReview)) {
 return 1;
 }
 CustomerReviewcustomerReview = (CustomerReview) value;
 if(customerReview.getStars() == 5) {

Advanced Mapping

[76]

 return 1.5f;
 } else {
 return 1;
 }
 }

}

When the @DynamicBoost annotation was applied to a class, the parameter
automatically passed to defineBoost is an instance of that class (a CustomerReview
object in this case). If the annotation had been applied to a particular field, then the
automatically-passed parameter would be that field's value.

The float value returned by defineBoost becomes the weight of the class or field
that was annotated. In this case, we increase a CustomerReview object's weight to 1.5
when it represents a five-star review. Otherwise, we keep the 1.0 default.

Conditional indexing
There are specialized ways to go about indexing fields, such as using a class bridge
or the programmatic mapping API. Generally speaking, though, a property is
indexed when it is annotated with @Field. Therefore, one obvious way to avoid
indexing a field is to simply not apply the annotation.

However, what if we want an entity class to be searchable in general, but we need to
exclude certain instances of that class, based on the state of their data at runtime?

The @Indexed annotation has an experimental second element, interceptor, that
gives us the ability to index conditionally. When this element is set, the normal
indexing process will be intercepted by custom code, which can prevent an entity
from being indexed based on its current state.

Let's give our VAPORware Marketplace the ability to make apps inactive. Inactive
apps will still exist in the database, but should not be shown to customers or indexed
for searching. To start, we will add a new property to the App entity class:

...
@Column
private boolean active;
...
public App(String name, String image, String description) {
 this.name = name;
 this.image = image;
 this.description = description;
 this.active = true;

Chapter 4

[77]

}
...
public booleanisActive() {
 return active;
}
public void setActive(boolean active) {
 this.active = active;
}
...

This new active variable has the standard getter and setter methods, and is
being defaulted to true in our normal constructor. We want individual apps to
be excluded from the Lucene index when this variable is false, so we add an
interceptor element to the @Indexed annotation:

...
import com.packtpub.hibernatesearch.util.IndexWhenActiveInterceptor;
...
@Entity
@Indexed(interceptor=IndexWhenActiveInterceptor.class)
public class App {
...

This element must be tied to a class that implements the
EntityIndexingInterceptor interface. Since we just specified a class named
IndexWhenActiveInterceptor, we need to now create this class.

package com.packtpub.hibernatesearch.util;

import org.hibernate.search.indexes.interceptor.
 EntityIndexingInterceptor;
import org.hibernate.search.indexes.interceptor.IndexingOverride;
import com.packtpub.hibernatesearch.domain.App;

public class IndexWhenActiveInterceptor
 implementsEntityIndexingInterceptor<App> {

 /** Only index newly-created App's when they are active */
 public IndexingOverrideonAdd(App entity) {
 if(entity.isActive()) {
 return IndexingOverride.APPLY_DEFAULT;
 }
 return IndexingOverride.SKIP;
 }

Advanced Mapping

[78]

 public IndexingOverrideonDelete(App entity) {
 return IndexingOverride.APPLY_DEFAULT;
 }

 /** Index active App's, and remove inactive ones */
 public IndexingOverrideonUpdate(App entity) {
 if(entity.isActive()) {
 return IndexingOverride.UPDATE;
 } else {
 return IndexingOverride.REMOVE;
 }
 }

 public IndexingOverrideonCollectionUpdate(App entity) {
 retur nonUpdate(entity);
 }

}

The EntityIndexingInterceptor interface declares four methods, which Hibernate
Search will call at various points during an entity object's life cycle:

• onAdd(): This is called when the entity instance is first created.
• onDelete(): This is called when the entity instance is removed from

the database.
• onUpdate(): This is called when an existing instance is updated.
• onCollectionUpdate(): This version is used when an entity is modified as

part of a bulk update with other entities. Typically, implementations of this
method simply invoke onUpdate().

Each of these methods should return one of the four possible IndexingOverride
enum values. The possible return values tell Hibernate Search what to do:

• IndexingOverride.SKIP: This tells Hibernate Search to not modify the
Lucene index for this entity instance at this time.

• IndexingOverride.REMOVE: Hibernate Search will remove the entity if it
already exists in an index, or else will do nothing if the entity is not indexed.

• IndexingOverride.UPDATE: The entity will be updated in the index,
or added if it is not already indexed.

Chapter 4

[79]

• IndexingOverride.APPLY_DEFAULT: This is equivalent to the custom
interceptor not being used in the first place. Hibernate Search will index
the entity if this is an onAdd() operation, remove it from the index if
this is an onDelete(), or update the index if this is onUpdate() or
onCollectionUpdate().

Although the four methods logically imply certain return values, it is actually
possible to mix them in any combination if you are dealing with unusual conditions.

In our example application, our interceptor examines the entity in onAdd()
and onDelete(). When a new App is created, indexing is skipped if its active
variable is false. When an App is updated, it will be removed from the index if
has become inactive.

Summary
In this chapter, we toured the full range of functionality available in mapping
persistent objects for search. We can now adjust settings for Hibernate Search's
built-in type bridges, and can create highly advanced custom bridges of our own.

We now have a deeper understanding of Lucene analysis. We have worked
with some of the most useful custom analyzer components, and know how to
independently obtain information on dozens of other Solr components.

We are now able to adjust the relative weight of classes and fields through boosting,
to improve the quality of our search results when there are sorted by relevance. Last
but not least, we learned how to use conditional indexing to dynamically prevent
certain data from being searchable based on its state.

In the next chapter, we will turn to more advanced query concepts. We will learn
how to filter and categorize search results, and pull data from Lucene alone without
needing a database call.

Advanced Querying
In this chapter, we will elaborate on the basic search query concepts that we
covered earlier, in light of the new mapping knowledge that we just picked up.
We will now look at a number of techniques for making search queries more
flexible and powerful.

We will see how to dynamically filter results at the Lucene level, before
the database is even touched. We will also avoid database calls by using
projection-based queries, to retrieve properties directly from Lucene. We will
use faceted search, to recognize and isolate subsets of data within search results.
Finally, we will cover some miscellaneous query tools, such as query-time boosting
and placing time limits on a query.

Filtering
The process of building a query revolves around finding matches. However,
sometimes you want to narrow the search results on the basis of a criteria that
explicitly did not match. For example, let's say we want to limit our VAPORware
Marketplace search to only those apps that are supported on a particular device:

• Adding a keyword or phrase to an existing query doesn't help, because that
would just make the query more inclusive.

• We could turn the existing query into a boolean query, with an extra must
clause, but then the DSL starts to become harder to maintain. Also, if you
need to use complex logic to narrow your results, then the DSL may not offer
enough flexibility.

• A Hibernate Search FullTextQuery object inherits from the Hibernate ORM
Query (or its JPA counterpart) class. So, we can narrow results using core
Hibernate tools like ResultTransformer. However, this requires making
additional database calls, which can impact performance.

Advanced Querying

[82]

Hibernate Search offers a more elegant and efficient filter approach. Through this
mechanism, filter logic for various scenarios is encapsulated in separate classes.
Those filter classes may be dynamically enabled or disabled at runtime, alone or in
any combination. When a query is filtered, unwanted results are never fetched from
Lucene in the first place. This reduces the weight of any follow-up database access.

Creating a filter factory
To filter our search results by supported devices, the first step is creating a class to
store the filtering logic. This should be an instance of org.apache.lucene.search.
Filter. For simple hardcoded logic, you might just create your own subclass.

However, if we instead generate filters dynamically with a filter factory, then we can
accept parameters (for example, device name) and customize the filter at runtime:

public class DeviceFilterFactory {

 private String deviceName;

 @Factory
 public Filter getFilter() {
 PhraseQuery query = new PhraseQuery();
 StringTokenizertokenzier = new StringTokenizer(deviceName);
 while(tokenzier.hasMoreTokens()) {
 Term term = new Term(
 "supportedDevices.name", tokenzier.nextToken());
 query.add(term);
 }
 Filter filter = new QueryWrapperFilter(query);
 return new CachingWrapperFilter(filter);
 }

 public void setDeviceName(String deviceName) {
 this.deviceName = deviceName.toLowerCase();
 }

}

The @Factory annotation is applied to the method responsible for producing the
Lucene filter object. In this case, we annotate the aptly named getFilter method.

Chapter 5

[83]

Unfortunately, building a Lucene Filter object requires us to work
more closely with the raw Lucene API, rather the convenient DSL
wrapper provided by Hibernate Search. The full Lucene API is very
involved, and covering it completely would require an entirely separate
book. However, even this shallow dive is deep enough to give us the tools
for writing really useful filters.

This example builds a filter by wrapping a Lucene query, and then applying a
second wrapper to facilitate filter caching. A specific type of query used is org.
apache.lucene.search.PhraseQuery, which is equivalent to the DSL phrase
query that we explored in Chapter 3, Performing Queries.

We are examining the phrase query in this example, because it is one of
the most useful types for a building a filter. However, there are 15 Lucene
query types in total. You can explore the JavaDocs at http://lucene.
apache.org/core/old_versioned_docs/versions/3_0_3/api/
all/org/apache/lucene/search/Query.html.

Let's review some of the things we know about how data is stored in a Lucene index.
By default, an analyzer tokenizes strings, and indexes them as individual terms. The
default analyzer also converts the string data into lowercase. The Hibernate Search
DSL normally hides all of this detail, so developers don't have to think about it.

However, you do need to account for these things when using the Lucene API
directly. Therefore, our setDeviceName setter method manually converts the
deviceName property to lower case, to avoid a mismatch with Lucene. The
getFilter method then manually tokenizes this property into separate terms,
likewise to match what Lucene has indexed.

Each tokenized term is used to construct a Lucene Term object, which consists of
the data and the relevant field name (that is, supportedDevices.name in this case).
These terms are added to the PhraseQuery object one by one, in the exact order
that they appear in the phrase. The query object is then wrapped up as a filter
and returned.

Adding a filter key
By default, Hibernate Search caches filter instances for better performance.
Therefore, each instance requires that a unique key be referenced by in the cache.
In this example, the most logical key would be the device name for which each
instance is filtering.

Advanced Querying

[84]

First, we add a new method to our filter factory, annotated with @Key to indicate
that it is responsible for generating the unique key. This method returns a subclass
of FilterKey:

...
@Key
Public FilterKey getKey() {
 DeviceFilterKey key = new DeviceFilterKey();
 key.setDeviceName(this.deviceName);
 return key;
}
...

Custom FilterKey subclasses must implement the methods equals and hashCode.
Typically, when the actual wrapped data may be expressed as a string, you can
delegate to the corresponding methods on the String class:

public class DeviceFilterKey extends FilterKey {

 private String deviceName;

 @Override
 public boolean equals(Object otherKey) {
 if(this.deviceName == null
 || !(otherKey instanceof DeviceFilterKey)) {
 return false;
 }
 DeviceFilterKeyotherDeviceFilterKey =
 (DeviceFilterKey) otherKey;
 return otherDeviceFilterKey.deviceName != null
 && this.deviceName.equals(otherDeviceFilterKey.
deviceName);
 }

 @Override
 public int hashCode() {
 if(this.deviceName == null) {
 return 0;
 }
 return this.deviceName.hashCode();
 }

 // GETTER AND SETTER FOR deviceName...
}

Chapter 5

[85]

Establishing a filter definition
To make this filter available for our app searches, we will create a filter definition in
the App entity class:

...
@FullTextFilterDefs({
 @FullTextFilterDef(
 name="deviceName", impl=DeviceFilterFactory.class
)
})
public class App {
...

The @FullTextFilterDef annotation links the entity class with a given filter or
filter-factory class, specified by the impl element. The name element is a string
by which Hibernate Search queries can reference the filter, as we'll see in the
next subsection.

An entity class may have any number of defined filters. The plural
@FullTextFilterDefs annotation supports this, by wrapping a
comma-separated list of one or more singular @FullTextFilterDef annotations.

Enabling the filter for a query
Last but not least, we enable the filter definition for a Hibernate Search query, using
the FullTextQuery object's enableFullTextFilter method:

...
if(selectedDevice != null && !selectedDevice.equals("all")) {
 hibernateQuery.enableFullTextFilter("deviceName")
 .setParameter("deviceName", selectedDevice);
}
...

This method's string parameter is matched to a filter definition on one of the
entity classes involved in the query. In this case, it's the deviceName filter defined
on App. When Hibernate Search finds this match, it will automatically invoke the
corresponding filter factory to get a Filter object.

Our filter factory uses a parameter, also called deviceName for consistency (although
it's a different variable). Before Hibernate Search can invoke the factory method, this
parameter must be set, by passing the parameter name and value to setParameter.

Advanced Querying

[86]

The filter is enabled within an if block, so that we can skip this when no device was
selected (that is, the All Devices option). If you examine the downloadable code
bundle for this chapter's version of the VAPORware Marketplace application,
you will see that the HTML file has been modified to add a drop-down menu for
device selection:

Projection
In the first couple of chapters, our example application fetched all the matching
entities in one big database call. We introduced pagination in Chapter 3, Performing
Queries, to at least limit the database calls to a fixed number of rows. However, since
we're already searching data in a Lucene index to begin with, is it really necessary to
go to the database at all?

Hibernate Search offers projections as a technique for eliminating, or at least
reducing, database access. A projection-based search returns only specific fields
pulled from Lucene, rather than returning a full entity object from the database. You
can then go to the database and fetch full objects if necessary, but the fields available
in Lucene may be sufficient by themselves.

This chapter's version of the VAPORware Marketplace application modifies the
search results page so that it now uses a projection-based query. The previous
versions of the page received App entities all at once, and hid each app's pop-up
window until its Full Detail button was clicked. Now, the page receives only enough
fields to build the summary view. Each Full Detail button triggers an AJAX call for
that app. Only then is the database called, and only to fetch data for that one app.

Chapter 5

[87]

Exhaustive descriptions of how to make AJAX calls from JavaScript and
how to write RESTful web services to respond to those calls, ventures
pretty far beyond the scope of this Hibernate Search book.
That being said, all of the JavaScript is contained on the search results JSP,
within the showAppDetails function. All of the corresponding server-
side Java code resides in the com.packtpub.hibernatesearch.rest
package, and is heavily commented. There are endless online primers
and tutorials for writing RESTful services, and the documentation for
the particular framework used here is at http://jersey.java.net/
nonav/documentation/latest.

Making a query projection-based
To change FullTextQuery to be projection-based, invoke the setProjection
method on that object. Our search servlet class now contains the following line:

...
hibernateQuery.setProjection("id", "name", "description", "image");
...

The method accepts the names of one or more fields to pull from the Lucene indexes
associated with this query.

Converting projection results to an object
form
If we stopped right here, then the query object's list() method would no longer
return a list of App objects! By default, projection-based queries return a list of object
arrays (that is, Object[]) instead of entity objects. These arrays are often referred to
as tuples.

The elements in each tuple contain values for the projected fields, in the order they
were declared. For example, here listItem[0] would contain the value of a result's
ID, field.listItem[1] would contain the name, value.listItem[2] would
contain the description, and so on.

Advanced Querying

[88]

In some cases, it's easy enough to work with the tuple as-is. However, you can
automatically convert tuples into an object form by attaching a Hibernate ORM
result transformer to the query. Doing so changes the query's return type yet again,
from List<Object[]> to a list of the desired object type:

...
hibernateQuery.setResultTransformer(
 newAliasToBeanResultTransformer(App.class));
...

You can create your own custom transformer class inheriting from
ResultTransformer, implementing whatever complex logic you need.
However, in most cases, the subclasses provided by Hibernate ORM out
of the box are more than enough.

Here, we are using the AliasToBeanResultTransformer subclass, and initializing
it with our App entity class. This matches up the projected fields with the entity class
properties having the same names, and sets each property with the corresponding
field value.

Only a subset of properties of App are available. It is okay to leave the other
properties uninitialized, since the search results JSP doesn't need them when
building its summary list. Also, the resulting App objects won't actually be attached
to a Hibernate session. However, we've been detaching our results before sending
them to the JSP anyway.

Making Lucene fields available for projection
By default, Lucene indexes are optimized with the assumption that they will not be
used for projection-based queries. Therefore, projection requires that you make some
small mapping changes and bear a couple of caveats in mind.

First and foremost, the field data must be stored by Lucene in a manner that can be
easily retrieved. The normal indexing process optimizes data for complex queries,
not for retrieval in its original form. To store a field's value in a form that can be
restored by a projection, you add a store element to the @Field annotation:

...
@Field(store=Store.COMPRESS)
private String description;
...

Chapter 5

[89]

This element takes an enum with three possible values:

• Store.NO is the default. It causes the field to be indexed for searching,
but not retrievable in its original form through projection.

• Store.YES causes the field to be included as-is in the Lucene index.
This increases the size of the index, but makes projections possible.

• Store.COMPRESS is an attempt at compromise. It also stores the field as-is,
but applies compression to reduce the overall index size. Be aware that this
is more processor-intensive, and is not available for a field that also uses the
@NumericField annotation.

Secondly, a field must use a bi-directional field bridge. All of the default bridges
built-in to Hibernate Search already support this. However, if you create your
own custom bridge type (see Chapter 4, Advanced Mapping), it must be based on
TwoWayStringBridge or TwoWayFieldBridge.

Last but not least, projection is only effective for basic properties on the entity class
itself. It is not meant for fetching associated entities or embedded objects. If you do
try to reference an association, then you will only get one instance rather than the full
collection that you were probably expecting.

If you need to work with the associated or embedded objects, then
you might take the approach used by our example application. Lucene
projection fetches the basic properties for all search results, including
the entity object's primary key. When we later need to work with an
entity object's associations, we use that primary key to retrieve only the
necessary rows through a database call.

Faceted search
Lucene filters are a powerful tool for narrowing the scope of a query to some
particular subset. However, filters work on predefined subsets. You must already
know what it is that you are seeking.

Sometimes you need to dynamically identify subsets. For example, let's give our App
entity a category property representing its genre:

...
@Column
@Field
private String category;
...

Advanced Querying

[90]

When we perform a keyword search for apps, we might want to know which
categories are represented in the results and how many results fall under each
category. We might also want to know which price ranges were found. All of this
information can help guide users in narrowing their queries more effectively.

Discrete facets
The process of dynamically identifying dimensions and then filtering by them is
called faceted search. The Hibernate Search query DSL has a flow for this, starting
with a QueryBuilder object's facet method:

Discrete faceting request flow (dotted gray arrows represent optional paths)

The name method takes some descriptive identifier for this facet (for example,
categoryFacet), so that it can be referenced by queries later. The familiar onField
clause declares the field by which to group results (for example, category).

The discrete clause indicates that we are grouping by single values, as opposed to
ranges of values. We'll explore range facets in the next section.

Chapter 5

[91]

The createFacetingRequest method completes this process and returns a
FacetingRequest object. However, there are three optional methods that you
can call first, in any combination:

• includeZeroCounts: It causes Hibernate Search to return all possible facets,
even those which do not have any hits in the current search results. By
default, facets with no hits are quietly ignored.

• maxFacetCount: It limits the number of facets to be returned.
• orderedBy: It specifies the sort order of the facets found. The three options

relevant to discrete facets are:

 ° COUNT_ASC: Facets are sorted in an ascending order by the number of
associated search results. The facets with the lowest number of hits
are listed first.

 ° COUNT_DESC: This is the exact opposite of COUNT_ASC. Facets are listed
from the highest hit count to the lowest.

 ° FIELD_VALUE: Facets are sorted in an alphabetical order by the value
of the relevant field. For example, the "business" category would
come before the "games" category.

This chapter's version of the VAPORware Marketplace now includes the following
code for setting up a faceted search on the app category:

...
// Create a faceting request
FacetingRequestcategoryFacetingRequest =
 queryBuilder
 .facet()
 .name("categoryFacet")
 .onField("category")
 .discrete()
 .orderedBy(FacetSortOrder.FIELD_VALUE)
 .includeZeroCounts(false)
 .createFacetingRequest();

// Enable it for the FullTextQuery object
hibernateQuery.getFacetManager().enableFaceting(
 categoryFacetingRequest);
...

Advanced Querying

[92]

Now that the faceting request is enabled, we can run the search query and retrieve
the facet information using the categoryFacet name that we just declared:

...
List<App> apps = hibernateQuery.list();

List<Facet> categoryFacets =
 hibernateQuery.getFacetManager().getFacets("categoryFacet");
...

The Facet class includes a getValue method, which returns the value of the field for
a particular group. For example, if some of the matching apps are in the "business"
category, then one of the facets will have the string "business" as its value. The
getCount method reports how many search results are associated with that facet.

Using these two methods, our search servlet can iterate through all of the category
facets, and build a collection to be used for display in the search results JSP:

...
Map<String, Integer> categories = new TreeMap<String, Integer>();
for(Facet categoryFacet : categoryFacets) {

 // Build a collection of categories, and the hit count for each
 categories.put(
 categoryFacet.getValue(),categoryFacet.getCount());

 // If this one is the *selected* category, then re-run the query
 // with this facet to narrow the results
 if(categoryFacet.getValue().equalsIgnoreCase(selectedCategory)) {
 hibernateQuery.getFacetManager()
 .getFacetGroup("categoryFacet").selectFacets(categoryFacet);
 apps = hibernateQuery.list();
 }
}
...

If the search servlet receives a request with a selectedCategory CGI parameter,
then the user chooses to narrow results to a specific category. So if this string matches
the value of a facet being iterated, then that facet is "selected" for the FullTextQuery
object. The query can then be re-run, and it will then return only apps belonging to
that category.

Chapter 5

[93]

Range facets
Facets are not limited to single discrete values. A facet may also be created from a
range of values. For example, we might want to group apps by a price range—search
results priced below one dollar, between one and five dollars, or above five dollars.

The Hibernate Search DSL for range faceting takes the elements of the discrete
faceting flow and combines them with elements from the range query that we
saw in Chapter 3, Performing Queries:

Range faceting request flow (dotted gray arrows represent optional paths)

You can define a range as being above, below, or between two values (that is, from
– to). These options may be used in combination to define as many range subsets as
you wish.

As with regular range queries, the optional excludeLimit method exclude its
boundary value from the range. In other words, above(5) means "greater than or
equal to 5", whereas above(5).excludeLimit() means "greater than 5, period".

Advanced Querying

[94]

The optional includeZeroCounts, maxFacetCount, and orderBy methods operate
in the same manner as with discrete faceting. However, range faceting offers an extra
choice for sorting order. FacetSortOrder.RANGE_DEFINITION_ODER causes facets to
be returned in the order they were defined (note that the "r" is missing in "oder").

Along the discrete faceting request for category, the example code for this chapter
also includes the following code snippet to enable range faceting for price:

...
FacetingRequestpriceRangeFacetingRequest =
 queryBuilder
 .facet()
 .name("priceRangeFacet")
 .onField("price")
 .range()
 .below(1f).excludeLimit()
 .from(1f).to(5f)
 .above(5f).excludeLimit()
 .createFacetingRequest();
hibernateQuery.getFacetManager().enableFaceting(
 priceRangeFacetingRequest);
...

If you take a look at the source code for search.jsp, it now includes both the
category and price range facets found during each search. These two faceting types
may be used in combination to narrow the search results, with the currently-selected
facets highlighted in bold. When all is selected for either type, that particular facet is
removed and the search results widen again.

Chapter 5

[95]

Query-time boosting
In Chapter 3, Performing Queries, we saw how to boost a field's relevance at index
time, on either a fixed or a dynamic basis. It is also possible to dynamically change
the weight at query time.

All query types in the Hibernate Search DSL include the onField and andField
methods. For each query type, these two clauses also support a boostedTo method,
taking a weight factor as a float parameter. Whatever the index-time weight of that
field might be, adding a boostedTo clause multiplies it by the indicated number:

...
luceneQuery = queryBuilder
 .phrase()
 .onField("name").boostedTo(2)
 .andField("description").boostedTo(2)
 .andField("supportedDevices.name")
 .andField("customerReviews.comments")
 .sentence(unquotedSearchString)
 .createQuery();
...

In this chapter's version of the VAPORware Marketplace application, query-time
boosting is now added to the "exact phrase" use case. When users wraps their search
string in double quotes to search by phrase rather than by keywords, we want to
give the App entity's name and description field even more weight than normal. The
highlighted changes double the index-time weight of those two fields, but only for
the exact phrase query rather than for all query types.

Placing time limits on a query
The example application we have been working with has a limited set of test data,
only a dozen apps, and a handful of devices. So, as long as your computer has a
reasonable amount of processor and memory resources, the search queries should
run almost instantaneously.

However, an application with real data might involve searching across millions of
entities, and there may be a risk of your queries taking too long. As a matter of user
experience if nothing else, you will probably want to limit the execution of your
queries to some reasonable period of time.

Advanced Querying

[96]

Hibernate Search offers two approaches for time boxing a query. One is through the
FullTextQuery object's limitExecutionTime method:

...
hibernateQuery.limitExecutionTimeTo(2, TimeUnit.SECONDS);
...

This method causes the query to gracefully halt after a specified period of time,
and return all of the results that it had found up until that point. The first parameter
is the number of time units, and the second parameter is the type of time unit
(for example, microsecond, millisecond, second, and so on). The preceding code
snippet will try to stop the query after two seconds of searching.

After this query runs, you can determine whether or not it was
interrupted by calling the object's hasPartialResults() method.
This Boolean method returns true if the query timed out before
reaching its natural conclusion.

The second approach, using the setTimeout() method, is similar in concept and in
the parameters taken:

...
hibernateQuery.setTimeout(2, TimeUnit.SECONDS);
...

However, this method is for situations where the search should fail completely upon
timeout, rather than proceeding as if it didn't happen. The preceding query object
will throw a QueryTimeoutException exception after running for two full seconds,
and will not return any results that were found during that time.

Be aware that with both of these approaches, Hibernate Search does the
best it can to respect the specified period of time. It may actually take a bit
more time for the query to halt.
Also, these timeout settings only affect Lucene access. Once your query
has finished searching Lucene and starts pulling actual entities from the
database, timeout control is in the hands of Hibernate ORM rather than
Hibernate Search.

Chapter 5

[97]

Summary
In this chapter, we explored more advanced techniques for narrowing search results,
improving the quality of match relevance, and increasing performance.

We can now use Lucene filters to hone in on a fixed subset of matches. We have
also seen how to use faceted search to dynamically identify subsets within results.
Through projection-based queries, we can reduce or even eliminate the need for
actual database calls. We now know how to adjust the relevance of fields at query
time rather than at index time only. Last but not least, we are now able to set time
limits on our queries and gracefully handle situations where a search runs too long.

In the next chapter, we will turn toward administration and maintenance, learning
how to configure Hibernate Search and Lucene for optimal performance.

System Configuration and
Index Management

In this chapter, we will look at configuration options for Lucene indexes, and
learn how to perform basic maintenance tasks. We will see how to toggle between
automatic and manual updates to Lucene indexes. We will examine low-latency
write operations, synchronous versus asynchronous updates, and other performance
tuning alternatives.

We will cover how to defragment and clean up a Lucene index for better
performance, and how to use Lucene without touching hard drive storage
at all. Last but not least, we will get exposure to the highly powerful Luke
utility for working with Lucene indexes outside of application code.

Automatic versus manual indexing
So far, we really haven't had to think much about the timing of when entities are
indexed. After all, Hibernate Search is tightly integrated with Hibernate ORM.
By default, the add-on updates Lucene whenever the core updates the database.

However, you have the option of decoupling these operations, and indexing
manually if you like. Some common situations where you might consider a
manual approach are as follows:

• If you can easily live with Lucene being out of sync for limited periods,
you might want to defer indexing operations until off-peak hours,
to reduce system load during times of peak usage.

• If you want to use conditional indexing, but are not comfortable with
the experimental nature of EntityIndexingInterceptor (refer to
Chapter 4, Advanced Mapping), you might use manual indexing as an
alternative approach.

System Configuration and Index Management

[100]

• If your database may be updated directly, by processes that do not go
through Hibernate ORM, you must manually update your Lucene indexes
regularly to keep them in sync with the database.

To disable automatic indexing, set the hibernate.search.indexing_strategy
property to manual in hibernate.cfg.xml (or persistence.xml if using JPA)
as follows:

...
<property name="hibernate.search.indexing_strategy">manual</property>
...

Individual updates
When automatic indexing is disabled, manual indexing operations are driven by
methods on a FullTextSession object (either the traditional Hibernate or the
JPA version).

Adds and updates
The most important of these methods is index, which works with both add and
update operations on the database side. This method takes one parameter, an
instance of any entity class that is configured for Hibernate Search indexing.

This chapter's version of the VAPORware Marketplace application uses manual
indexing. StartupDataLoader calls index for each app, immediately after persisting
it in the database:

...
fullTextSession.save(theCloud);
fullTextSession.index(theCloud);
...

On the Lucene side, the index method works within the same transactional context
as the save method on the database side. The indexing only occurs when the
transaction commits. In the event of a rollback, the Lucene index is untouched.

Using index manually overrides any conditional indexing rules. In other
words, the index method ignores any EntityIndexingInterceptor
that is registered with that entity class.
This is not the case for mass updates (see the Mass updates section), but
is something to bear in mind when considering a manual indexing of
individual objects. The code that calls index would be responsible for
checking any conditions first.

Chapter 6

[101]

Deletes
The basic method for removing an entity from a Lucene index is purge. This
method is somewhat different from index, in that you do not pass it an object
instance to remove. Instead, you pass it the class reference for the entity, and the ID
of a particular instance to remove (that is, corresponding to @Id or @DocumentId):

...
fullTextSession.purge(App.class, theCloud.getId());
fullTextSession.delete(theCloud);
...

Hibernate Search also offers purgeAll, a convenient method for removing all the
instances of a particular entity type. This method also takes the entity class reference,
although obviously there is no need to pass a specific ID:

...
fullTextSession.purgeAll(App.class);
...

As with index, both purge and purgeAll operate within a transaction. Deletes do
not actually occur until the transaction commits. Nothing happens in the event of
a rollback.

If you really want to write to a Lucene index before the transaction commits, then the
zero-parameter flushToIndexes method allows you to do so. This might be useful
if you are processing a large number of entities, and want to free up memory along
the way (with the clear method) to avoid OutOfMemoryException:

...
fullTextSession.index(theCloud);
fullTextSession.flushToIndexes();
fullTextSession.clear();
...

Mass updates
Adding, updating, and deleting entities individually can be rather tedious, and
potentially error-prone if you miss things. Another option is to use MassIndexer,
which can be thought of as a compromise of sorts between automatic and
manual indexing.

This utility class is still instantiated and used manually. However, when it is called,
it automatically rebuilds the Lucene indexes for all mapped entity classes in one
step. There's no need to distinguish between adds, updates, and deletes, because
the operation wipes out the entire index and recreates it from scratch.

System Configuration and Index Management

[102]

A MassIndexer is instantiated with a FullTextSession object's createIndexer
method. Once you have an instance, there are two ways to kick off the mass indexing:

• The start method indexes asynchronously, meaning that indexing occurs in
a background thread while the flow of code in the main thread continues.

• The startAndWait method runs the indexing in synchronous mode, meaning
that execution of the main thread is blocked until the indexing completes.

When running in synchronous mode, you need to wrap the operation with a
try-catch block in case the main thread is interrupted while waiting:

...
try {
 fullTextSession.createIndexer().startAndWait();
} catch (InterruptedException e) {
 logger.error("Interrupted while wating on MassIndexer: "
 + e.getClass().getName() + ", " + e.getMessage());
}
...

If practical, it is best to use mass indexing when the application
is offline and not responding to queries. Indexing will place the
system under heavy load, and Lucene will obviously be in a
very inconsistent state relative to the database.

Mass indexing also differs from individual updates in two respects:

• A MassIndexer operation is not transactional. There is no need to wrap the
operation within a Hibernate transaction, and likewise you cannot rely on a
rollback if something goes wrong.

• MassIndexer does respect conditional indexing (refer to Chapter 4, Advanced
Mapping). If you have an EntityIndexingInterceptor registered for that
entity class, it will be invoked to determine whether or not to actually index
particular instances.

MassIndexer support for conditional indexing was
added in the 4.2 generation of Hibernate Search. If you
are working with an application that uses an older
version, you will need to migrate to 4.2 or higher in
order to use EntityIndexingInterceptor and
MassIndexer together.

Chapter 6

[103]

Defragmenting an index
Changes to a Lucene index slowly make it less efficient over time, in the same way
that a hard drive can become fragmented. When new entities are indexed, they go
into a file (called a segment) that is separate from the main index file. When an entity
is deleted, it actually remains in the index file and is simply marked as inaccessible.

These techniques help Lucene to keep its indexes as accessible for queries as possible,
but it leads to slower performance over time. Having to open multiple segment files
is slow, and can run up against operating system limits on the number of open files.
Keeping deleted entities in the index makes the files more bloated than they need
to be.

The process of merging all of these segments, and really purging deleted entities,
is called optimization. It is analogous to defragmenting a hard drive. Hibernate
Search provides mechanisms for optimizing your indexes on either on a manual
or automatic basis.

Manual optimization
The SearchFactory class offers two methods for optimizing Lucene indexes
manually. You can call these methods within your application, upon whatever event
you like. Alternatively, you might expose them, and trigger your optimizations from
outside the application (for example, with a web service called by a nightly cron job).

You can obtain a SearchFactory reference through a FullTextSession object's
getSearchFactory method. Once you have an instance, its optimize method will
defragment all available Lucene indexes:

...
fullTextSession.getSearchFactory().optimize();
...

Alternatively, you can use an overloaded version of optimize, taking an entity class
as a parameter. This method limits the optimization to only that entity's Lucene
index, as follows:

...
fullTextSession.getSearchFactory().optimize(App.class);
...

System Configuration and Index Management

[104]

Another option is use a MassIndexer to rebuild your Lucene
indexes (refer to the Mass updates section). Rebuilding an index
from scratch leaves it in an optimized state anyway, so further
optimization would be redundant if you are already performing
that kind of maintenance regularly.
A very manual approach is to use the Luke utility, outside your
application code altogether. See the section on Luke at the very
end of this chapter.

Automatic optimization
An easier, if less flexible approach, is to have Hibernate Search trigger optimization
for you automatically. This can be done on a global or a per-index basis. The
trigger event can be a threshold number of Lucene changes, or a threshold
number of transactions.

The chapter6 version of the VAPORware Marketplace application now contains the
following four lines in its hibernate.cfg.xml file:

<property name="hibernate.search.default.optimizer.operation_limit.
max">
 1000
</property>
<property name="hibernate.search.default.optimizer.transaction_limit.
max">
 1000
</property>
<property name="hibernate.search.App.optimizer.operation_limit.max">
 100
</property>
<property name="hibernate.search.App.optimizer.transaction_limit.max">
 100
</property>

The top two lines, referencing default in the property name, establish global
defaults for all Lucene indexes. The last two lines, referencing App, are override
values specific to the App entity.

Most of the configuration properties in this chapter may be made
index-specific, by replacing the default substring with the name of
the relevant index.
Normally this is the class name of the entity (for example, App), but it
could be a custom name if you set the index element in that entity's
@Indexed annotation.

Chapter 6

[105]

Whether you deal at the global or index-specific level, operation_limit.max
refers to a threshold number of Lucene changes (that is, adds or deletes).
transaction_limit.max refers to a threshold number of transactions.

Overall, this snippet configures the App index for optimization after 100 transactions
or Lucene changes. All other indexes will be optimized after 1,000 transactions
or changes.

Custom optimizer strategy
You might enjoy the best of both worlds by using the automatic approach with a
custom optimizer strategy. This chapter's version of the VAPORware Marketplace
application uses a custom strategy to only allow optimization during off-peak hours.
This custom class extends the default optimizer strategy, but only allows the base
class to proceed with optimization when the current time is between midnight and
6:00 a.m.:

public class NightlyOptimizerStrategy
 extendsIncrementalOptimizerStrategy {

 @Override
 public void optimize(Workspace workspace) {
 Calendar calendar = Calendar.getInstance();
 inthourOfDay = calendar.get(Calendar.HOUR_OF_DAY);
 if(hourOfDay>= 0 &&hourOfDay<= 6) {
 super.optimize(workspace);
 }
 }

}

The easiest approach is to extend IncrementalOptimizerStrategy,
and override the optimize method with your intercepting logic.
However, if your strategy is fundamentally different from the default,
then you can start with your own base class. Just have it implement the
OptimizerStrategy interface.

System Configuration and Index Management

[106]

To declare your own custom strategy, at either the global or per-index level, add a
hibernate.search.X.optimizer.implementation property to hibernate.cfg.
xml (where X is either default, or the name of a particular entity index):

...
<property name="hibernate.search.default.optimizer.implementation">
com.packtpub.hibernatesearch.util.NightlyOptimizerStrategy
</property>
...

Choosing an index manager
An index manager is a component responsible for how and when changes are
applied to a Lucene index. It coordinates the optimization strategy, the directory
provider, and worker back ends (seen later in this chapter), and various other
low-level components.

Hibernate Search includes two index manager implementations out of the box.
The default is directory-based, and is a very sensible choice in most situations.

The other built-in alternative is near-real-time. It is a subclass inheriting from the
directory-based index manager, but is designed for low-latency index writes. Rather
than performing adds or deletes on the disk right away, this implementation queues
them in the memory so they may be written more efficiently in batches.

The near-real-time implementation offers greater performance
than the directory-based default, but there are two trade-offs.
First, the near-real-time implementation is not available when
using Lucene in a clustered environment (refer to Chapter 7, Advanced
Performance Strategies). Secondly, because Lucene operations are not
written to disk right away, they may be permanently lost in the event
of an application crash.

As with most of the configuration properties covered in this chapter, an index
manager may be selected on a global default or on a per-index basis. The difference
is including default, or an entity index name (for example, App) in the property:

...
<property name="hibernate.search.default.indexmanager">
 directory-based
</property>
<property name="hibernate.search.App.indexmanager">
 near-real-time
</property>
...

Chapter 6

[107]

It is possible to write your own index manager implementation. To get a
deeper sense of how index managers function, review the source code of the
two implementations provided out of the box. The directory-based manager is
implemented by DirectoryBasedIndexManager, and the near-real-time manager
by NRTIndexManager.

An easy approach to writing a custom implementation is to subclass one
of the two built-in options, and override methods only as needed. If you
want to create a custom index manager completely from scratch, then it
would need to implement the org.hibernate.search.indexes.
spi.IndexManager interface.

Applying a custom index manager, at the global or the per-index level, works
the same as the built-in options. Just set the appropriate property to your
implementation's fully qualified class name (for example, com.packtpub.
hibernatesearch.util.MyIndexManager) rather than the directory-based
or near-real-time strings.

Configuring workers
One of the component types that index managers coordinate are workers, which are
responsible for the actual updates made to a Lucene index.

If you are using Lucene and Hibernate Search in a clustered environment, many of
the configuration options are set at the worker level. We will explore those more
fully in Chapter 7, Advanced Performance Strategies. However, three key configuration
options are available in any environment.

Execution mode
By default, workers perform Lucene updates synchronously. That is, once an update
begins, execution of the main thread is blocked until that update completes.

Workers may instead be configured to update asynchronously, a "fire and forget"
mode that spawns a separate thread to perform the work. The advantages are that
the main thread will be more responsive, and the workload handled more efficiently.
The downside is that the database and the index may be out of sync for very
brief periods.

System Configuration and Index Management

[108]

Execution mode is declared in hibernate.cfg.xml (or persistence.xml for JPA).
A global default may be established with the default substring, and per-entity
configurations may be set with the entity index name (for example, App):

...
<property name="hibernate.search.default.worker.execution">
 sync
</property>
<property name="hibernate.search.App.worker.execution">
 async
</property>
...

Thread pool
By default workers perform updates in only one thread, either the main thread
in the synchronous mode, or a single spawned thread in the asynchronous
mode. However, you have the option of creating a larger pool of threads to
handle the work. The pool may apply at the global default level, or be specific
to a particular index:

...
<property name="hibernate.search.default.worker.thread_pool.size">
 2
</property>
<property name="hibernate.search.App.worker.thread_pool.size">
 5
</property>
...

Because of the way that Lucene indexes are locked during update
operations, using a lot of threads in parallel often does not provide
the performance boost that you might expect. However, it is worth
experimenting when tuning and load-testing an application.

Buffer queue
Pending work gets backed up in a queue, waiting for a thread to free up and deal
with it. By default, the size of this buffer is infinite, at least in theory. In reality, it is
bound by the amount of system memory available, and an OutOfMemoryExeception
may be thrown if the buffer grows too large.

Chapter 6

[109]

Therefore, it is a good idea to place some limit, globally or on a per-index basis,
for the size to which these buffer can grow.

...
<property name="hibernate.search.default.worker.buffer_queue.max">
 50
</property>
<property name="hibernate.search.App.worker.buffer_queue.max">
 250
</property>
...

When a buffer reaches the maximum allowable size for its index, additional
operations will be performed by the thread which creates them. This blocks
execution and slows down performance, but ensures that the application will not
run out of memory. Experiment to find a balanced threshold for an application.

Selecting and configuring a directory
provider
Both of the built-in index managers use a subclass DirectoryBasedIndexManager.
As the name implies, both of them make use of Lucene's abstract class Directory,
to manage the form in which indexes are stored.

In the Chapter 7, we will look at some special directory implementations geared for
clustered environments. However, in single-server environments the two built-in
choices are filesystem storage, and storage in memory.

Filesystem-based
By default, Lucene indexes are stored on the filesystem, in the current working
directory of the Java application. No configuration is necessary for this arrangement,
but it has been explicitly set in all versions of the VAPORware Marketplace
application so far with this property in hibernate.cfg.xml (or persistence.xml):

...
<property name="hibernate.search.default.directory_provider">
 filesystem
</property>
...

As with the other configuration properties that we've seen in this chapter, you could
replace default with a particular index name (for example, App).

System Configuration and Index Management

[110]

When using filesystem-based indexes, you probably want to use a known fixed
location rather than the current working directory. You can specify either a relative
or absolute path with the indexBase property. In all of the VAPORware Marketplace
versions that we've seen so far, the Lucene indexes have been stored under each
Maven project's target directory, so that Maven removes them up before each
fresh build:

...
<property name="hibernate.search.default.indexBase">
 target/lucenceIndex
</property>
...

Locking strategy
All Lucene directory implementations lock their indexes when writing to them,
to prevent corruption from multiple processes or threads writing to them
simultaneously. There are four locking strategies available, and you can specify one
by setting the hibernate.search.default.locking_strategy property to one of
these strings:

• native: This is the default strategy for filesystem-based directories, when
no locking strategy property is specified. It relies on file locking at the native
operating system level, so that if your application crashes the index locks will
still be released. However, the downside is that this strategy should not be
used when your indexes are stored remotely on a network shared drive.

• simple: This strategy relies on the JVM to handle file locking. It is safer to use
when your Lucene index is on a remote shared drive, but locks will not be
cleanly released if the application crashes or has to be killed.

• single: This strategy does not create a lock file on the filesystem, but
rather uses a Java object in memory (similar to a synchronized block in
multithreaded Java code). For a single-JVM application, this works well
no matter where the index files are, and there is no issue with locks being
released after a crash. However, this strategy is only viable if you are sure
that no other process outside the JVM might write to your index files.

• none: It does not use locking at all. This is not a recommended option.

To remove locks that were not cleanly released, use the Luke
utility explored in the Using the Luke utility section of this chapter.

Chapter 6

[111]

RAM-based
For testing and demo purposes, our VAPORware Marketplace application has used
an in-memory H2 database throughout this book. It is recreated every time the
application starts, and is destroyed when the application stops, with nothing being
persisted to permanent storage along the way.

Lucene indexes are able to work in the exact same manner. In this chapter's version
of the example application, the hibernate.cfg.xml file has been modified to store
its index in RAM rather than on the filesystem:

...
<property name="hibernate.search.default.directory_provider">
 ram
</property>
...

The RAM-based directory provider initializes its Lucene indexes when
the Hibernate SessionFactory (or JPA EntityManagerFactory)
is created. Be aware that when you close this factory, it destroys all
your indexes!
This shouldn't be a problem when using a modern dependency-
injection framework, because the framework will keep your factory
in memory and available when needed. Even in our vanilla example
application, we have stored a singleton SessionFactory in the
StartupDataLoader class for this reason.

An in-memory index would seem to offer greater performance, and it may be
worth experimenting with in your application tuning. However, it is not generally
recommended to use the RAM-based directory provider in production settings.

First and foremost, it is easy to run out of memory and crash the application with
a large data set. Also, your application has to rebuild its indexes from scratch upon
each and every restart. Clustering is not an option, because only the JVM which
created the in-memory index has access to that memory. Last but not least, the
filesystem-based directory provider already makes intelligent use of caching,
and its performance is surprisingly comparable to the RAM-based provider.

All that being said, the RAM-based provider is a common approach for testing
applications. Unit tests are likely to involve fairly small sets of data, so running
out of memory is not a concern. Also, having the indexes completely and cleanly
destroyed in between each unit test might be more of a feature than a drawback.

System Configuration and Index Management

[112]

The RAM-based directory provider defaults to the single locking
strategy, and it really makes no sense to change this.

Using the Luke utility
Hibernate ORM gives your application code pretty much everything it needs to
interact with the database. However, you probably still use some sort of SQL client
to manually work with your database outside the context of your application code.

Likewise, it can be useful to explore a Lucene index manually without having to write
code for the task. Luke (http://code.google.com/p/luke) is a very useful utility
that fills this role for Lucene. You can use Luke to browse your indexes, test queries,
and perform helpful tasks such as removing index locks that did not cleanly release.

The Luke download is a monolithic executable JAR file. Double-clicking the JAR, or
otherwise executing it from a console prompt, brings up a graphical interface and a
prompt for your index location, as shown in the following screenshot:

Chapter 6

[113]

The previous screenshot shows Luke at startup. Unfortunately, Luke can only
access filesystem-based indexes, not the RAM-based index used in this chapter. So
in these examples, Luke points to the chapter5 code file directory's Maven project
workspace. The App entity index is located under target/luceneIndex/com.
packtpub.hibernatesearch.domain.App.

Notice the Force unlock, if locked checkbox near the top of the open-index dialog
box. If you have an index for which a file lock did not cleanly release (refer to the
Locking strategy section), then you can fix the problem by checking this box and
opening the index.

Once you have opened a Lucene index, Luke displays an assortment of
information about the number of indexed documents (that is, entities), the
current state of optimization (that is, fragmentation), and other details,
as shown in the following screenshot:

System Configuration and Index Management

[114]

From the Tools menu at the top of the utility, you have options for performing basic
maintenance tasks such as checking the index for corruption, or manual optimization
(that is, defragmenting). These operations are best performed during off-peak hours,
or during a full outage window.

The Documents tab allows you to browse through entities one by one, which
may have some limited use. Much more interesting is the Search tab, which
allows you to explore your index using free-form Lucene queries, as shown
in the following screenshot:

Chapter 6

[115]

The full-blown Lucene API is beyond the scope of this book, but here are some basics
to get you started:

• Search expressions are in the form of a field name and a desired value,
separated by a colon. For example, to search for apps in the business
category, use the search expression category:business.

• Associated items may be specified with the entity field name, followed by a
period, followed by the field name within the associated item. In the above
screenshot, we are searching for all apps supported on the xPhone device, by
using the search expression supportedDevices.name:xphone.

• Remember that the default analyzer converts terms into lower case during
the indexing process. So if you wanted to search on xPhone for example, be
sure to type it as xphone.

If you double-click on one of the search results found, then Luke flips over to the
Documents tab with the relevant document loaded. Click on the Reconstruct & Edit
button to examine that entity's fields, as shown in the following screenshot:

System Configuration and Index Management

[116]

Browsing this data will give you a feel for how the analyzer parses your entities.
Words will be filtered out, and text will be tokenized unless you configured the
@Field annotation to the contrary (as we did with sorting_name). If a Hibernate
Search query doesn't return the results that you expect, browsing field data in Luke
can help you spot the issue.

Summary
In this chapter we saw how to update Lucene indexes manually, one entity
object at a time or in bulk, as an alternative to letting Hibernate Search manage
updates automatically. We learned about the fragmentation that accumulates
from Lucene update operations, and how to approach optimization on a manual
or automatic basis.

We explored various performance tuning options for Lucene, from low-latency
writes to multi-threaded asynchronous updates. We now know how to configure
Hibernate Search for creating Lucene indexes on either the filesystem or RAM, and
why you might choose one over the other. Finally, we worked with the Luke utility
to inspect and perform maintenance tasks on a Lucene index without having to go
through an application's Hibernate Search code.

In the next chapter, we will look at some advanced strategies for improving the
performance of your applications. This will include recapping the performance
tips covered so far, before diving into server clusters and Lucene index sharding.

Advanced Performance
Strategies

In this chapter, we will look at some advanced strategies for improving the
performance and scalability of production applications, through code as well as
server architecture. We will explore options for running applications in multi-node
server clusters, to spread out and handle user requests in a distributed fashion.
We will also learn how to use sharding to help make our Lucene indexes faster
and more manageable.

General tips
Before diving into some advanced strategies for improving performance and
scalability, let's briefly recap some of the general performance tips already
spread across the book:

• When mapping your entity classes for Hibernate Search, use the optional
elements of the @Field annotation to strip the unnecessary bloat from your
Lucene indexes (see Chapter 2, Mapping Entity Classes):

 ° If you are definitely not using index-time boosting (see Chapter 4,
Advanced Mapping), then there is no reason to store the information
needed to make this possible. Set the norms element to Norms.NO.

 ° By default, the information needed for a projection-based query is
not stored unless you set the store element to Store.YES or Store.
COMPRESS (see Chapter 5, Advanced Querying). If you had projection-
based queries that are no longer being used, then remove this
element as part of the cleanup.

Advanced Performance Strategies

[118]

• Use conditional indexing (see Chapter 4, Advanced Mapping) and partial
indexing (Chapter 2, Mapping Entity Classes) to reduce the size of
Lucene indexes.

• Rely on filters to narrow your results at the Lucene level, rather than using a
WHERE clause at the database query level (see Chapter 5, Advanced Querying).

• Experiment with projection-based queries wherever possible (see Chapter
5, Advanced Querying), to reduce or eliminate the need for database calls. Be
aware that with advanced database caching, the benefits might not always
justify the added complexity.

• Test various index manager options (see Chapter 6, System Configuration and
Index Management), such as trying the near-real-time index manager or the
async worker execution mode.

Running applications in a cluster
Making modern Java applications scale in a production environment usually
involves running them in a cluster of server instances. Hibernate Search is perfectly
at home in a clustered environment, and offers multiple approaches for configuring
a solution.

Simple clusters
The most straightforward approach requires very little Hibernate Search configuration.
Just set up a file server for hosting your Lucene indexes and make it available to every
server instance in your cluster (for example, NFS, Samba, and so on):

A simple cluster with multiple server nodes using a common Lucene index on a shared drive

Chapter 7

[119]

Each application instance in the cluster uses the default index manager, and the
usual filesystem directory provider (see Chapter 6, System Configuration and
Index Management).

In this arrangement, all of the server nodes are true peers. They each read from
the same Lucene index, and no matter which node performs an update, that node
is responsible for the write. To prevent corruption, Hibernate Search depends on
simultaneous writes being blocked, by the locking strategy (that is, either "simple"
or "native", see Chapter 6, System Configuration and Index Management).

Recall that the "near-real-time" index manager is explicitly incompatible
with a clustered environment.

The advantage of this approach is two-fold. First and foremost is simplicity. The
only steps involved are setting up a filesystem share, and pointing each application
instance's directory provider to the same location. Secondly, this approach ensures
that Lucene updates are instantly visible to all the nodes in the cluster.

However, a serious downside is that this approach can only scale so far. Very small
clusters may work fine, but larger numbers of nodes trying to simultaneously access
the same shared files will eventually lead to lock contention.

Also, the file server on which the Lucene indexes are hosted is a single point
of failure. If the file share goes down, then your search functionality breaks
catastrophically and instantly across the entire cluster.

Master-slave clusters
When your scalability needs outgrow the limitations of a simple cluster, Hibernate
Search offers more advanced models to consider. The common element among them
is the idea of a master node being responsible for all Lucene write operations.

Clusters may also include any number of slave nodes. Slave nodes may still initiate
Lucene updates, and the application code can't really tell the difference. However,
under the covers, slave nodes delegate that work to be actually performed by the
master node.

Advanced Performance Strategies

[120]

Directory providers
In a master-slave cluster, there is still an "overall master" Lucene index, which
logically stands apart from all of the nodes. This may be filesystem-based, just as
it is with a simple cluster. However, it may instead be based on JBoss Infinispan
(http://www.jboss.org/infinispan), an open source in-memory NoSQL
datastore sponsored by the same company that principally sponsors
Hibernate development:

• In a filesystem-based approach, all nodes keep their own local copies of the
Lucene indexes. The master node actually performs updates on the overall
master indexes, and all of the nodes periodically read from that overall
master to refresh their local copies.

• In an Infinispan-based approach, the nodes all read from the Infinispan
index (although it is still recommended to delegate writes to a master node).
Therefore, the nodes do not need to maintain their own local index copies.
In reality, because Infinispan is a distributed datastore, portions of the index
will reside on each node anyway. However, it is still best to visualize the
overall index as a separate entity.

Worker backends
There are two available mechanisms by which slave nodes delegate write operations
to the master node:

• A JMS message queue provider creates a queue, and slave nodes send
messages to this queue with details about Lucene update requests. The
master node monitors this queue, retrieves the messages, and actually
performs the update operations.

• You may instead replace JMS with JGroups (http://www.jgroups.org), an
open source multicast communication system for Java applications. This has
the advantage of being faster and more immediate. Messages are received in
real-time, synchronously rather than asynchronously.
However, JMS messages are generally persisted to a disk while awaiting
retrieval, and therefore can be recovered and processed later, in the event
of an application crash. If you are using JGroups and the master node goes
offline, then all the update requests sent by slave nodes during that outage
period will be lost. To fully recover, you would likely need to reindex your
Lucene indexes manually.

Chapter 7

[121]

A master-slave cluster using a directory provider based on filesystem or Infinispan, and worker based on JMS or
JGroups. Note that when using Infinispan, nodes do not need their own separate index copies.

A working example
Experimenting with all of the possible clustering strategies requires consulting the
Hibernate Search Reference Guide, as well as the documentation for Infinispan and
JGroups. However, we will get started by implementing a cluster with the filesystem
and JMS approach, since everything else is just a variation on this standard theme.

This chapter's version of the VAPORware Marketplace application discards the
Maven Jetty plugin that we've been using all along. This plugin is great for testing
and demo purposes, but it is meant for running a single server instance, and we now
need to run at least two Jetty instances simultaneously.

Advanced Performance Strategies

[122]

To accomplish this, we will configure and launch Jetty instances programmatically.
If you look under src/test/java/ in the chapter7 project, there is now a
ClusterTest class. It is structured for JUnit 4, so that Maven can automatically
invoke its testCluster() method after a build. Let's take a look at the relevant
portions of that test case method:

...
String projectBaseDirectory = System.getProperty("user.dir");
...
Server masterServer = new Server(8080);
WebAppContextmasterContext = new WebAppContext();
masterContext.setDescriptor(projectBaseDirectory +
 "/target/vaporware/WEB-INF/web.xml");
...
masterServer.setHandler(masterContext);
masterServer.start();
...
Server slaveServer = new Server(8181);
WebAppContextslaveContext = new WebAppContext();
slaveContext.setDescriptor(projectBaseDirectory +
 "/target/vaporware/WEB-INF/web-slave.xml");
...
slaveServer.setHandler(slaveContext);
slaveServer.start();
...

Although this is all running on one physical machine, we are simulating a cluster
for test and demo purposes. One Jetty server instance launches on port 8080 as the
master node, and another Jetty server launches on port 8181 as a slave node. The
difference between the two nodes is that they use separate web.xml files, which in
turn load different listeners upon startup.

In the previous versions of this application, a StartupDataLoader class
handled all of the database and Lucene initialization. Now, the two nodes use
MasterNodeInitializer and SlaveNodeInitializer, respectively. These in
turn load Hibernate ORM and Hibernate Search settings from separate files,
named hibernate.cfg.xml and hibernate-slave.cfg.xml.

There are many ways in which you might configure an application
for running as the master node or as a slave node instance. Rather
than building separate WARs, with separate versions of web.xml or
hibernate.cfg.xml, you might use a dependency injection framework
to load the correct settings based on something in the environment.

Chapter 7

[123]

Both versions of the Hibernate the config file set the following Hibernate
Search properties:

• hibernate.search.default.directory_provider: In previous chapters
we have seen this populated with either filesystem or ram. The other option
discussed earlier is infinispan.
Here, we use filesystem-master and filesystem-slave on the master
and slave node, respectively. Both of these directory providers are similar to
regular filesystem, and work with all of the related properties that we've
seen so far (e.g. location, locking strategy, etc).
However, the "master" variant includes functionality for periodically
refreshing the overall master Lucene indexes. The "slave" variant does
the reverse, periodically refreshing its local copy with the overall
master contents.

• hibernate.search.default.indexBase: Just as we've seen with
single-node versions in the earlier chapters, this property contains the
base directory for the local Lucene indexes. Since our example cluster here
is running on the same physical machine, the master and slave nodes use
different values for this property.

• hibernate.search.default.sourceBase: This property contains the base
directory for the overall master Lucene indexes. In a production setting, this
would be on some sort of shared filesystem, mounted and accessible to all
nodes. Here, the nodes are running on the same physical machine, so the
master and slave nodes use the same value for this property.

• hibernate.search.default.refresh: This is the interval (in seconds)
between index refreshes. The master node will refresh the overall master
indexes after each interval, and slave nodes will use the overall master to
refresh their own local copies. This chapter's version of the VAPORware
Marketplace application uses a 10-second setting for demo purposes,
but that would be far too short for production. The default setting is
3600 seconds (one hour).

To establish a JMS worker backend, there are three additional settings required for
the slave node only:

• hibernate.search.default.worker.backend: Set this value to jms. The
default value, lucene, has been applied in earlier chapters because no setting
was specified. If you use JGroups, then it would be set to jgroupsMaster or
jgroupsSlave depending upon the node type.

Advanced Performance Strategies

[124]

• hibernate.search.default.worker.jms.connection_factory: This is
the name by which Hibernate Search looks up your JMS connection factory
in JNDI. This is similar to how Hibernate ORM uses the connection.
datasource property to retrieve a JDBC connection from the database.
In both the cases, the JNDI configuration is specific to the app server in which
your application runs. To see how the JMS connection factory is set up, see
the src/main/webapp/WEB-INF/jetty-env.xml Jetty configuration file. We
are using Apache ActiveMQ in this demo, but any JMS-compatible provider
would work just as well.

• hibernate.search.default.worker.jms.queue: The JNDI name of the
JMS queue to which slave nodes send write requests to Lucene. This too is
configured at the app server level, right alongside the connection factory.

With these worker backend settings, a slave node will automatically send a message
to the JMS queue that a Lucene update is needed. To see that this is happening, the
new MasterNodeInitializer and SlaveNodeInitializer classes each load half of
the usual test data set. We will know that our cluster works if all of the test entities
are eventually indexed together, and are being returned by search queries that are
run from either nodes.

Although Hibernate Search sends messages from the slave nodes to the JMS queue
automatically, it is your responsibility to have the master node retrieve those
messages and process them.

In a JEE environment, you might use a message-driven bean, as is suggested by
the Hibernate Search documentation. Spring also has a task execution framework
that can be leveraged. However, in any framework, the basic idea is that the master
node should spawn a background thread to monitor the JMS queue and process
its messages.

This chapter's version of the VAPORware Marketplace application contains a
QueueMonitor class for this purpose, which is wrapped into a Thread object and
spawned by the MasterNodeInitializer class.

To perform the actual Lucene updates, the easiest approach is to create your own
custom subclass of AbstractJMSHibernateSearchController. Our implementation
is called QueueController, and does little more than wrapping this abstract
base class.

When the queue monitor receives a javax.jms.Message object from the JMS queue,
it is simply passed as-is to the controller's base class method onMessage. That built-in
method handles the Lucene update for us.

Chapter 7

[125]

As you can see, there is a lot more involved to a master-slave
clustering approach than there is to a simple cluster. However,
the master-slave approach offers a dramatically greater upside
in scalability.
It also reduces the single-point-of-failure risk. It is true that this
architecture involves a single "master" node, through which all
Lucene write operations must flow. However, if the master node
goes down, the slave nodes continue to function, because their
search queries run against their own local index copies. Also,
update requests should be persisted by the JMS provider, so that
those updates can still be performed once the master node is
brought back online.

Because we are spinning up Jetty instances programmatically, rather than through
the Maven plugin, we pass a different set of goals to each Maven build. For the
chapter7 project, you should run Maven as follows:

mvn clean compile war:exploded test

You will be able to access the "master" node at http://localhost:8080, and the
"slave" node at http://localhost:8181. If you are very quick about firing off a
search query on the master node the moment it starts, then you will see it returning
only half of the expected results! However, within a few seconds, the slave node
updates arrive through JMS. Both the halves of the data set will merge and be
available across the cluster.

Sharding Lucene indexes
Just as you can balance your application load across multiple nodes in a cluster, you
may also split up your Lucene indexes through a process called sharding. You might
consider sharding for performance reasons if your indexes grow to a very large size,
as larger index files take longer to index and optimize than smaller shards.

Sharding may offer additional benefits if your entities lend themselves to
partitioning (for example, by language, geography, and so on). Performance may be
improved if you can predictably steer queries toward the specific appropriate shard.
Also, it sometimes makes lawyers happy when you can store "sensitive" data at a
physically different location.

Advanced Performance Strategies

[126]

Even though its dataset is very small, this chapter's version of the VAPORware
Marketplace application now splits its App index into two shards. The relevant
line in hibernate.cfg.xml looks similar to the following:

...
<property
 name="hibernate.search.default.sharding_strategy.nbr_of_shards">
 2
</property>
...

As with all of the other Hibernate Search properties that include the substring
default, this is a global setting. It can be made index-specific by replacing
default with an index name (for example, App).

This exact line appears in both hibernate.cfg.xml (used by our
"master" node), and hibernate-slave.cfg.xml (used by our
"slave" node). When running in a clustered environment, your sharding
configuration should match all the nodes.

When an index is split into multiple shards, each shard includes the normal index
name followed by a number (starting with zero). For example, com.packtpub.
hibernatesearch.domain.App.0 instead of just com.packtpub.hibernatesearch.
domain.App. This screenshot shows the Lucene directory structure of our two-node
cluster, while it is up and running with both nodes configured for two shards:

An example of sharded Lucene indexes running in a cluster (note the numbering of each App entity directory)

Chapter 7

[127]

Just as the shards are numbered on the filesystem, they can be separately configured
by number in hibernate.cfg.xml. For example, if you want to store the shards at
different locations, you might set properties as follows:

...
<property name="hibernate.search.App.0.indexBase">
 target/lucenceIndexMasterCopy/EnglishApps
</property>
<property name="hibernate.search.App.1.indexBase">
 target/lucenceIndexMasterCopy/FrenchApps
</property>
...

When a Lucene write operation is performed for an entity, or when a search query
needs to read from an entity's index, a sharding strategy determines which shard
to use.

If you are sharding simply to reduce the file size, then the default strategy
(implemented by org.hibernate.search.store.impl.IdHashShardingStrategy)
is perfectly fine. It uses each entity's ID to calculate a unique hash code, and
distributes the entities among the shards in a roughly even manner. Because the
hashing calculation is reproducible, the strategy is able to direct future updates for
an entity towards the appropriate shard.

To create your own custom sharding strategy with more exotic logic, you can create
a new subclass inheriting from IdHashShardingStrategy, and tweak it as needed.
Alternatively, you can completely start from scratch with a new class implementing
the org.hibernate.search.store.IndexShardingStrategy interface, perhaps
referring to the source code of IdHashShardingStrategy for guidance.

Summary
In this chapter, we learned how to work with applications in a modern distributed
server architecture, to allow for scalability and better performance. We have seen
a working cluster implemented with a filesystem-based directory provider and
JMS-based backend, and now have enough knowledge to explore other approaches
involving Inifinispan and JGroups. We used sharding to split a Lucene index into
smaller chunks, and know how to go about implementing our own custom sharding
strategy, if necessary.

Advanced Performance Strategies

[128]

This brings us to the end of our little adventure with Hibernate Search! We have
covered a lot of critical concepts about Hibernate, Lucene and Solr, and searches in
general. We have learned how to map our data to search indexes, query and update
those indexes at runtime, and arrange it all in the best architecture for a given project.
We did all of this through an example application, that grew with our knowledge
from simple to advanced along the way.

There's always more to learn. Hibernate Search can work with dozens of Solr
components for more advanced functionality, and integrating with a new generation
of "NoSQL" data stores is possible as well. However, you are now equipped with
enough core knowledge to explore these horizons independently, if you wish. Until
next time, thank you for reading! You can find me online at steveperkins.net, and
I would love to hear from you.

Index
Symbols
@Analyzer annotation 72
@AnalyzerDef annotation 71, 72
@AnalyzerDiscriminator annotation 74
@ClassBridge annotation 67
@ContainedIn annotation 34
@DynamicBoost annotation 75, 76
@ElementCollection annotation 37, 38
@Factory annotation 82
@Field annotation 30, 35, 37, 60
@FieldBridge annotation 62
@FullTextFilterDefs annotation 85
@GeneratedValue field 10
@Indexed annotation 10, 32, 76
@IndexedEmbedded annotation 34
@ManyToMany annotation 34, 37
@NumericField annotation 31
@WebListener annotation 11
@WebServlet annotation maps 15

A
active variable 77
add and update operation, individual

updates 100
AliasToBeanResultTransformer subclass 88
All Devices option 86
analysis 68
analyze 30
analyzer definition

about 70
dynamic analyzer, selecting 72-74
static analyzer, selecting 71, 72

andField method 48, 51

Apache Commons Database Connection
Pools

URL 20
API

selecting, for Hibernate ORM 27, 28
App class 8, 32
application

Hibernate Search, incorporating 7
running 21-26

asterisk (*) 50
automatic indexing

disabling 100
versus manual indexing 99, 100

automatic optimization 104

B
bidirectional bridge 63
Boolean (combination) queries 53
bool method 53
boostedTo method 95
boosting

dynamic boosting, at index time 75, 76
static boosting, at index time 74, 75

buffer queue, workers 108
build system

selecting 17, 18

C
cascade element 34
character filtering

about 69
HTMLStripCharFilterFactory, type 69
MappingCharFilterFactory, type 69
PatternReplaceCharFilter, type 69

[130]

ClassBridge interface 66, 76
clean goal 24
clear method 101
cluster

applications, running in 118
master-slave clusters 119
simple cluster 118, 119

components 36
conditional indexing

about 76-78
EntityIndexingInterceptor interface,

methods 78
contextDestroyed method 13
contextInitialized method 13
COUNT_ASC option 91
COUNT_DESC option 91
createFacetingRequest method 91
createQuery method 48
currentDiscountPercentage member

variable 61
currentDiscountPercentage property 61

D
date fields

mapping 60
default substring 104
deletes, individual updates 101
deviceName property 83
directory-based manager 107
DirectoryProvider

about 109
Filesystem-based 109, 110
RAM-based 111

discrete clause 90
documents 29
domain-specific language. See DSL
DSL 16
dynamic analyzer

selecting 72-74
dynamic boosting

at index-time 75, 76

E
elements 36
embedded objects 36
enableFullTextFilter method 85

entities
associated entities 32-34
associated, querying 35, 36
preparing, for Hibernate Search 10, 11
relationship 32

entity class
creating 8-10

EntityIndexingInterceptor interface,
methods

onAdd() method 78
onCollectionUpdate() method 78
onDelete() method 78
onUpdate() method 78

EntityManager object 45
entity() method 40
execution mode, workers 107

F
Faceted search

about 89-92
range facets 93, 94

field
multiple mapping, for same field 31
numeric fields, mapping 31, 32

FieldBridge
about 64
interface 66
multiple properties,combining into single

field 66, 67
single variable, splitting into multiple fields

65
TwoWayFieldBridge 67

Field.DEFAULT_NULL_TOKEN 61
field mapping

options 30
FIELD_VALUE option 91
Filesystem-based, DirectoryProvider

109, 110
filter definition

creating 85
creating, for query 85

filter factory
creating 82, 83

filtering
about 81, 82
enabling, for query 85

[131]

filter definition, creating 85
filter factory, creating 82, 83
filter key, adding 83, 84

filter key
adding 83, 84

fire and forget mode 107
flushToIndexes method 101
forField element 32
Full Details button 38, 86
FullTextQuery class 45
FullTextQuery implementation 45
FullTextQuery object 45, 48, 56, 81
FullTextSession object 15, 44, 47, 100, 102
Fuzzy search 48, 49

G
getAnalyzerDefinitionName method 73
getFilter method 82, 83
getResultSize method 56
getSearchFactory method 103
getValue method 92
Groovy-based Gradle 18

H
H2

URL 20
hibernate-entitymanager dependency 45
Hibernate ORM

about 88
API, selecting for 27, 28

Hibernate ORM native API
versus JPA entity mapping 28, 29

HibernateQuery object 16
Hibernate Search

application, running 21-24
build system, selecting 17, 18
entity class, creating 8-10
entity, preparing for 10, 11
filtering 81
importing 19, 20
incorporating, in application 7
projection 86
project, setting up for 19, 20 45, 46
search query code, writing 14-16
test data, loading 11, 13

hibernate.search.default.directory_provider
123

hibernate.search.default.indexBase 123
hibernate.search.default.refresh 123
hibernate.search.default.sourceBase 123
hibernate.search.default.worker.backend

123
hibernate.search.default.worker.jms.connec-

tion_factory 124
hibernate.search.default.worker.jms.queue

124
Hibernate Search Domain-Specific

Language. See Hibernate Search DSL
Hibernate Search DSL

about 46
Boolean (combination) queries 53
Fuzzy search 48, 49
keyword query 47, 48
phrase query 50, 51
range query 52
Wildcard search 50

HibernateSession class 43
HTMLStripCharFilterFactory, type 69

I
id field 10
if block 86
includeZeroCounts method 91
index 30
indexBase property 110
index.html page 14
IndexingOverride.APPLY_DEFAULT, enum

values 79
IndexingOverride enum value 78
IndexingOverride.REMOVE, enum values

78
IndexingOverride.SKIP, enum values 78
IndexingOverride.UPDATE, enum values

78
index manager 106, 107
index method 100
indexNullAs 30, 60
individual updates

about 100
add and update operation 100
and mass updates, differences 102

[132]

deletes 101
Infinispan index 120
interceptor 76

J
JavaDocs

URL 83
Java Persistence API. See JPA 2.0
javax.jms.Message object 124
JBoss Infinispan

URL 120
Jetty plugin

adding, to Maven POM 21
Jetty web server

URL 21
JGroups

URL 120
JMS message queue provider 120
JMS worker backend

creating 123, 124
JPA

about 9
project, setting up for 45, 46
setting up, for Hibernate Search 45, 46
using, for queries 44, 45

JPA 2.0 9
JPA entity mapping

versus Hibernate ORM native API 28, 29

K
keyword query 47, 48

L
LetterTokenizerFactory 69
locking strategy, DirectoryProvider 110
logical-AND operation 53
logical-OR operation 54
Lucene 10, 11
Lucene API 83, 115
luceneOptions.addFieldToDocument() 65
luceneOptions parameter 65
Luke

Force unlock 113
URL 112

Luke utility 112-114

M
manual indexing

versus automatic indexing 99, 100
manual optimization 103
mapping

about 69
date fields 60
multiple mapping, for same field 31
numeric fields 31, 32

mapping API
versus query API 43, 44

MappingCharFilterFactory, type 69
MassIndexer option 101, 102
mass updates

about 101, 102
and individual updates, differences 102

master node 120
MasterNodeInitializer class 124
master-slave clusters

about 119
directory providers 120
example 121, 123
worker backends 120

Maven
characteristics 18
URL 18

maven-archetype-webapp 19
maxFacetCount method 91
morning 70
multiple properties

combining, into single field 66, 67
must clause 53
mvn clean package 26

N
name 30
near-real-time 106
norms 30
null values

handling 60

O
object form

projection results, converting to 87, 88
objectToString method 62, 67

[133]

onAdd() method 78
onCollectionUpdate() method 78
onDelete() method 78
One-to-One custom conversion

about 60
date fields, mapping 60
null values, handling 60, 61

onField method 51
onUpdate() method 78
openSession(), public static synchronized

method 13
optimization 103
optimizer strategy 105, 106
OptimizerStrategy interface 105
orderedBy method 91
org.apache.lucene.search.Query object 16
org.hibernate.Query interface 44
org.hibernate.Query object 16

P
pagination 56
ParameterizedBridge 63, 64
partial indexing 39, 40
PatternReplaceCharFilter, type 69
PhoneticFilterFactory filter 70
phrase query 50, 51, 83
plain old Java object. See POJO
POJO 9, 40
production application

performance improving, tips for 117, 118
programmatic mapping API 40- 42
project

setting up, for Hibernate Search 45, 46
projection

about 86
based, query creating 87
Lucene fields, making available 88, 89
results, converting to object form 87, 88

purgeAll operate 101
purge operate 101

Q
queries

JPA, using 44, 45
query

time limits, placing 95, 96

query API
versus mapping API 43

QueryBuilder class 16, 47
QueryBuilder object 47
query-time boosting 95
QueryTimeoutException exception 96

R
RAM-based 111
range query 52
README file 18
releaseDate field 60
Ruby-based Buildr 18

S
Scala-based SBT 18
SearchFactory class 103
SearchFullTextQuery object 44
search query

code, writing 14-16
searchString 14
segment 103
ServletContextListener 11
Session class 44
SessionFactory object 13
Session objects 13
setDeviceName setter method 83
setFirstResult method 56
setMaxResults method 56
setParameterValues method 63
setProjection method 87
sharding 125-127
single variable

splitting, into multiple fields 65
slave nodes 120
SnowballPorterFilterFactory filter 70
sorting 54, 55
StandardTokenizerFactory 69
startAndWait method 102
start method 102
StartupDataLoader class 111, 122
static analyzer

selecting 71, 72
static boosting

at index-time 74, 75
StopFilterFactory filter 70

[134]

store 30
Store.COMPRESS 89
Store.NO 89
Store.YES 89
StringBridge interface 61, 62
string conversion

FieldBridge 64
ParameterizedBridge 63, 64
StringBridge 61, 62
TwoWayStringBridge 62

stringToObject method 63
supportedApps member variable 33

T
testCluster() method 122
test data

loading 11, 13
thread pool, workers 108
token filters

about 68, 69
PhoneticFilterFactory filter 70
SnowballPorterFilterFactory filter 70
StopFilterFactory filter 70

tokenization 68
tokenizer components

example 69
transaction_limit.max 105
tuples 87
TwoWayFieldBridge 67
TwoWayStringBridge 62

U
useFileMappedBuffer parameter 22

V
VAPORware Marketplace application 18
VAPORware Marketplace web application

14
very manual approach 104

W
WhitespaceTokenizerFactory 69
wildcard method 50
wildcard search 50
withSlop clause 51
workers

about 107
buffer queue 108
execution mode 107
thread pool 108

Thank you for buying
Hibernate Search by Example

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Apache Solr 3.1 Cookbook
ISBN: 978-1-84951-218-3 Paperback: 300 pages

Over 100 recipes to discover new ways to work with
Apache's Enterprise Search Server

1. Improve the way in which you work with
Apache Solr to make your search engine
quicker and more effective

2. Deal with performance, setup, and
configuration problems in no time

3. Discover little-known Solr functionalities and
create your own modules to customize Solr to
your company's needs

Apache Solr 3 Enterprise Search
Server
ISBN: 978-1-84951-606-8 Paperback: 418 pages

Enhance your search with faceted navigation, result
highlighting, relevancy ranked sorting, and more

1. Comprehensive information on Apache Solr 3
with examples and tips so you can focus on the
important parts

2. Integration examples with databases, web-
crawlers, XSLT, Java & embedded-Solr, PHP &
Drupal, JavaScript, Ruby frameworks

3. Advice on data modeling, deployment
considerations to include security, logging,
and monitoring, and advice on scaling Solr
and measuring performance

Please check www.PacktPub.com for information on our titles

ElasticSearch Server
ISBN: 978-1-84951-844-4 Paperback: 318 pages

Create a fast, scalable, and flexible search solution
with the emerging open source search server,
ElasticSearch

1. Learn the basics of ElasticSearch like data
indexing, analysis, and dynamic mapping

2. Query and filter ElasticSearch for more accurate
and precise search results

3. Learn how to monitor and manage
ElasticSearch clusters and troubleshoot
any problems that arise

Joomla! Search Engine
Optimization
ISBN: 978-1-84951-876-5 Paperback: 116 pages

Drive people to your site with this supercharged
guide to Joomla! and Search Engine Optimization

1. Learn how to create a search engine-optimized
Joomla! website

2. Packed full of tips to help you develop an
appropriate SEO strategy

4. Discover the right configurations and
extensions for SEO purposes

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Your First Application
	Creating an entity class
	Preparing the entity for Hibernate Search
	Loading the test data
	Writing the search query code
	Selecting a build system
	Setting up the project and importing Hibernate Search
	Running the application
	Summary

	Chapter 2: Mapping Entity Classes
	Choosing an API for Hibernate ORM
	Field mapping options
	Multiple mappings for the same field
	Mapping numeric fields

	Relationships between entities
	Associated entities
	Querying associated entities

	Embedded objects

	Partial indexing
	The programmatic mapping API
	Summary

	Chapter 3: Performing Queries
	Mapping API versus query API
	Using JPA for queries
	Setting up a project for Hibernate Search and JPA
	The Hibernate Search DSL
	Keyword query
	Fuzzy search
	Wildcard search

	Exact phrase query
	Range query
	Boolean (combination) queries

	Sorting
	Pagination
	Summary

	Chapter 4: Advanced Mapping
	Bridges
	One-to-one custom conversion
	Mapping date fields
	Handling null values
	Custom string conversion

	More complex mappings with FieldBridge
	Splitting a single variable into multiple fields
	Combining multiple properties into a single field
	TwoWayFieldBridge

	Analysis
	Character filtering
	Tokenization
	Token filtering
	Defining and selecting analyzers
	Static analyzer selection
	Dynamic analyzer selection

	Boosting search result relevance
	Static boosting at index-time
	Dynamic boosting at index-time

	Conditional indexing
	Summary

	Chapter 5: Advanced Querying
	Filtering
	Creating a filter factory
	Adding a filter key

	Establishing a filter definition
	Enabling the filter for a query

	Projection
	Making a query projection-based
	Converting projection results to an object form
	Making Lucene fields available for projection

	Faceted search
	Discrete facets
	Range facets

	Query-time boosting
	Placing time limits on a query
	Summary

	Chapter 6: System Configuration and Index Management
	Automatic versus manual indexing
	Individual updates
	Adds and updates
	Deletes

	Mass updates

	Defragmenting an index
	Manual optimization
	Automatic optimization
	Custom optimizer strategy

	Choosing an index manager
	Configuring workers
	Execution mode
	Thread pool
	Buffer queue

	Selecting and configuring a directory provider
	Filesystem-based
	Locking strategy

	RAM-based

	Using the Luke utility
	Summary

	Chapter 7: Advanced Performance Strategies
	General tips
	Running applications in a cluster
	Simple clusters
	Master-slave clusters
	Directory providers
	Worker backends
	A working example

	Sharding Lucene indexes
	Summary

	Index

