
www.allitebooks.com

http://www.allitebooks.org

Home Automation
with Intel Galileo

Create thrilling and intricate home automation projects
using Intel Galileo

Onur Dundar

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Home Automation with Intel Galileo

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2015

Production reference: 1240315

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-577-6

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Onur Dundar

Reviewers
Arun M Kumar

Mohammed Sharoon

Commissioning Editor
Edward Bowkett

Acquisition Editor
Reshma Raman

Content Development Editor
Vaibhav Pawar

Technical Editors
Abhishek Kotian

Prajakta Mhatre

Faisal Siddiqui

Anushree Arun Tendulkar

Copy Editors
Hiral Bhat

Dipti Kapadia

Deepa Nambiar

Project Coordinator
Nidhi Joshi

Proofreaders
Stephen Copestake

Safis Editing

Maria Gould

Kevin McGowan

Indexer
Tejal Soni

Graphics
Sheetal Aute

Valentina D'silva

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author

Onur Dundar is a software engineer who graduated from the Computer
Engineering Department of Boğaziçi University. He started working on embedded
systems while he was at the university, and in his senior year project, he worked
with wireless sensor networks for security and health monitoring.

Onur started his career at JPMorgan Chase & Co. Then, he worked at Intel
Corporation for 4 years as a software application engineer. He has specialized in
embedded Linux and mostly worked on IPTV platforms, Android, as well as IoT
platforms, such as Intel Galileo and Edison, and has developed applications for
them. He has also helped software developers enhance their applications on these
platforms. He has attended many conferences and developer events to introduce
Intel Galileo and Edison. He developed the first application and wrote the public
collaterals of Intel Edison when he worked at Intel Corporation.

Onur is continuing his career at Invent Analytics, implementing algorithms for
data analytics.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgements

I want to thank each member of my family because without their support, I wouldn't
have been able to follow my dream to study computer engineering at Boğaziçi
University. I had the chance to meet brilliant people and engage in continuous
learning at Boğaziçi University.

I want to thank each member of the Computer Engineering Department, starting with
Prof. Alper Sen, Prof. Cem Ersoy, and Dr. Hande Alemdar for mentoring me with
great projects and courses. I took my tiny steps in engineering with their expertise.

I would like to thank Prof. Arda Yurdakul, who provided me with a great deal of
information about embedded systems and engineering. Without her teachings,
experience, and knowledge of embedded engineering as well as her extensive
support, I wouldn't have been able to make a career in embedded systems and
enjoy my job.

Oktay Ozgun, who is the brightest, is one of the most respectful people I've ever
met and the best person to have as a supervisor. He always created the opportunity
for me to work on great projects and shared his vision, knowledge, and experience.
If I hadn't worked with Oktay Ozgun, I wouldn't have been as passionate about
software, science, and engineering as I am today.

Brendan Le Foll is one of the best people in the world to learn the best practices of
Linux. He always shared his expertise and expanded my knowledge about Linux.
If I hadn't met Brendan, I wouldn't have had this much knowledge about Linux.

Last but not least, I want to thank Steve Cutler, Andrew John, Marcel Wagner, Rami
Radi, Peter Rohr, and Alex Klimovitski for their extensive support and for always
creating the best environment while working on great projects during my time at
Intel Corporation.

I want to thank all of them; if I had not met these great people and worked with them,
I wouldn't have been able to have the knowledge and experience to write this book.

Finally, I want to thank my beloved Canan Soysal for her extensive support while
authoring this book in my busy schedule.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Arun M Kumar is a young tech guy, who borderlines somewhere between a
geek and a nerd. He reads tech articles to relax and is more inclined to call himself a
generalist rather than a specialist. Arun has an unexplained phobia toward orange-
flavored candies and still prefers C as the de facto language of the computing world.
Arun loves to work on microcontrollers and has an unjustified dislike toward the
Arduino environment. Working on open source projects is his first love, and he also
loves to spend time travelling with friends. Having worked in automotive, power,
and cloud computing domains, Arun finds pleasure in having the same random set
of friends and experiences. His aim in life is to travel, explore, and spread smiles
wherever he goes while still figuring out what to try next.

This being the first book I reviewed, I would like to thank
Nidhi Joshi and others from Packt Publishing for providing this
opportunity and for putting up with my busy schedule during the
review process. I would also like to thank CDAC-ACTS, Pune, and
my classmates there for giving me the skills that made me what I am
today. I would also like to thank Prachee Sonchal and the rest of the
HR team in my organization for supporting me in various ways.

Mohammed Sharoon is a final year electronics engineering student at National
Institute of Technology, Calicut, with experience in implementing simple embedded
projects. He hopes to develop this interest further by gaining a better perspective of
the numerous domains of electronics in order to develop breakthroughs that will
make our lives easier.

I would like to thank my best friend for providing me the motivation
to push myself and achieve more, without which nothing would
have been possible.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface v
Chapter 1: Getting Started with Intel Galileo 1

Introducing Intel Galileo 2
Using Intel Galileo for home automation 3
Intel Galileo – hardware specifications 4
Intel Galileo – software specifications 5
Connecting and booting Intel Galileo 7

Connecting to Intel Galileo via Telnet 9
Building a Linux image for Intel Galileo with the Yocto Project 10

Building Linux filesystems for Intel Galileo 11
Preparing the SD card to boot 14

Upgrading firmware on Intel Galileo 16
Building the Intel Galileo SDK 16

Setting up a development environment for Intel Galileo 17
Setting up a development environment for Linux 18

Building applications on the Linux Terminal 19
Setting up an environment to work with the Eclipse IDE 20

Configuring the Eclipse IDE for the Yocto Project 20
Installing the Yocto Project's Eclipse plugin 22
Configuring the Yocto Project's plugin for cross compilation 23
Configuring the Eclipse IDE for remote debugging 24
Creating a sample C project in the Eclipse IDE 26

Summary 27
Chapter 2: Getting Started with Home Automation Applications 29

Introducing home automation 29
An overview of home automation technologies 30

Delving into home automation protocols 30
X10 31
Insteon 31
EnOcean 31

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Z-Wave 31
ZigBee 32

Introducing a home automation software ecosystem 32
LinuxMCE 33
OpenRemote 33
OpenZWave 33
Other software projects 34

Home automation devices, sensors, and controllers 34
Designing a home automation project with Intel Galileo 37
Summary 39

Chapter 3: Energy Management with Environmental
and Electrical Sensors 41

Delving into energy management 41
Developing sensor-based applications with Intel Galileo 42

Understanding the working of a sensor from the datasheet 42
Connecting our sensor to Intel Galileo 44
Starting application development with C 45

Energy management with remote switches 55
Building kernel modules for Intel Galileo 57
Serial communication on Linux 58
Controlling a remote wall plug from Intel Galileo 60

Summary 63
Chapter 4: Energy Management with Light Sensors
and Extending Use Cases 65

Using light sensors 65
Smart light bulbs 67

Using Philips Hue with Intel Galileo 67
Extending a home automation system with lighting control 67

Continuing to home automation application development 70
Understanding Z-Wave commands 72
Handling Z-Wave messages from Intel Galileo 75
Reading the status of remote devices from Intel Galileo 80
Switching the lamp holder on/off with Intel Galileo 81
Handling incoming messages 82

Summary 83
Chapter 5: Home Monitoring with Common Security Sensors 85

Security sensors with Intel Galileo 85
PIR motion sensors 86
Magnetic sensors 86
Gas sensors 87
Using gas sensors with Intel Galileo 87

Table of Contents

[iii]

Security devices for home automation 91
Motion, window, and door lock sensors 91
Smoke and flood detectors 92

Adding security features to the Smart Home application 93
Motion detection 95
Door/window sensor detection 96
Flood detection 97

Wrapping up the message parsing system 98
Summary 103

Chapter 6: Home Surveillance and Extending Security
Use Cases 105

Introducing network cameras 105
Using cameras with Intel Galileo 107

Building OpenCV and V4L2 for Intel Galileo 107
Introducing OpenCV 109

highgui – high-level GUI and media I/O 109
Capturing images from a camera with Intel Galileo 111
Saving a video from a camera with Intel Galileo 113
Streaming a video from Intel Galileo 115

Adding new use cases 115
Adding new rules 117

Summary 123
Chapter 7: Building Applications and Customizing Linux
for Home Automation 125

Customizing Linux with the Yocto Project 125
Adding a new application to Yocto Project 126

Adding new features to the application 129
Using named pipes 130

Using named pipes in the application 131
Network sockets 131

Summary 134
Chapter 8: Extending Use Cases 135

Introducing Node.js 136
Using Node.js with Intel Galileo 136
Developing a home automation server 137
Use cases with Node.js 147

Introducing Android 147
Developing an Android application for home automation 148
There's more in Android 158

Table of Contents

[iv]

Adding voice control to home automation 159
Voice control with Android 159
Voice recognition with Intel Galileo 159

Summary 160
Index 161

[v]

Preface
All of us have heard about the Internet of Things. Every new device is being
developed around this new concept; all of them being connected. Our residences
can't be outside of this world. We can design and create new use cases to connect
every device we own at home to manage them through the Internet.

In this book, we have used the Intel Galileo development board to show the various
methods to make a connected home using open source software and the Linux
operating system to develop applications. We have tried to cover all common devices
and sensors with sample applications developed with the C programming language,
hoping to be an inspiration to help you make greater home automation applications.

We have tried to end the book by merging all the sample applications into one home
automation application to manage devices remotely to make a connected home and
easily automate and manage this with a smartphone, tablet, or a PC.

What this book covers
Chapter 1, Getting Started with Intel Galileo, introduces the Intel Galileo development
board and presents step-by-step instructions for you to set up a development
environment to get started with application development.

Chapter 2, Getting Started with Home Automation Applications, explains home
automation concepts and introduces existing technologies and open source
projects related to home automation.

Chapter 3, Energy Management with Environmental and Electrical Sensors, introduces
sensors and devices for use in a home automation application. This chapter takes
you inside the energy management with temperature sensors and power meters.

Preface

[vi]

Chapter 4, Energy Management with Light Sensors and Extending Use Cases, introduces
new sensors, which you can use to manage the lighting of your home with sample
applications.

Chapter 5, Home Monitoring with Common Security Sensors, introduces new sensors
and devices you can use to add security in your home. This chapter presents
example applications to instruct you on how to use these sensors.

Chapter 6, Home Surveillance and Extending Security Use Cases, gets you inside the
surveillance world with the help of a camera. This chapter tells you how you can
use a camera with Intel Galileo and include it in your home automation application.

Chapter 7, Building Applications and Customizing Linux for Home Automation, introduces
the basics of the Yocto project and how you can customize Linux to make Intel
Galileo run your application and make it ready to serve as a home automation hub.

Chapter 8, Extending Use Cases, introduces other technologies available that can be used
with Intel Galileo. We provide Node.js and Android application samples to extend our
home automation application with a better user experience and user interface.

What you need for this book
For this book, you will need following hardware peripherals and software:

• A computer running Ubuntu 12.04 or other Linux distribution (a virtual
machine with Ubuntu 12.04 can be used as well depending on your
preference).

• An Intel Galileo Generation 2 development board.
• A microSD card.
• An Ethernet cable to connect Intel Galileo to your local network or router

(if you have a PCI-e Wi-Fi card, you can use it to connect your Intel Galileo
to your Wi-Fi router).

• A USB to TTL serial cable (3.5 mm jack to USB serial cable is needed if
you already have Intel Galileo Generation 1); the suggested cable is
TTL-232R-3V3.

• A micro USB to USB 2.0 cable.
• Sensirion SHT11 or SHT15 temperature sensor.

Preface

[vii]

The following Z-Wave devices need to be selected according
to your region. Each region (US, EU, and so on) has a different
Z-Wave frequency. In this book, we have used EU devices.

• A Z-Wave Aeon Labs Z-Stick S2 USB controller.
• A Z-Wave Fibaro Wall plug.
• Z-Wave Philio Multisensor—door / PIR / light / temperature.
• A Z-Wave Everspring screw-in module.
• A Z-Wave Everspring flood sensor.
• MQ-9 gas sensor.
• D-Link DCS-930L IP camera (any other IP cam or USB cam can also be used

with its own configurations).
• An Android smartphone (it is optional; in the last chapter, we develop a

sample Android application. You can also use an Android virtual device.
If you are already able to develop for other mobile devices, iOS, or the
Windows phone, you can develop a similar sample application for them.)

Who this book is for
This book is aimed at developers, hobbyists, and makers who have some experience
with Linux, C, and Arduino programming and want to explore opportunities in the
home automation world. The book also includes some introductory examples and
practices for people who are interested in starting software development for Intel
Galileo, similar devices, and embedded Linux.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text are shown as follows: "The following piece of code shows two
functions setGPIO(int number, int direction) and getGPIO(int number)."

Preface

[viii]

A block of code is set as follows:

float readTemperature(){
 int register_address = 0x4600;
 return getTemperature(register_address);
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

float readTemperature(){
 int register_address = 0x4600;
return getTemperature(register_address);
}

Any command-line input or output is written as follows:

$ cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

 /etc/asterisk/cdr_mysql.conf

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Now we can click on the Fibaro Wall Plug item on the list to switch it on or
off from our smartphone."

URLs in the text are shown as follows: https://www.packtpub.com

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

https://www.packtpub.com

Preface

[ix]

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from: https://www.packtpub.
com/sites/default/files/downloads/5776OS_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/5776OS_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/5776OS_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[x]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Getting Started with
Intel Galileo

This book is about developing home automation examples using the Intel Galileo
development board along with the existing home automation sensors and devices.
In the book, a good review of Intel Galileo will be provided, which will teach you to
develop native C/C++ applications for Intel Galileo.

After a good introduction to Intel Galileo, we will review home automation's history,
concepts, technology, and current trends. When we have an understanding of home
automation and the supporting technologies, we will develop some examples on two
main concepts of home automation: energy management and security.

We will build some examples under energy management using electrical switches,
light bulbs and switches, as well as temperature sensors. For security, we will
use motion, water leak sensors, and a camera to create some examples. For all the
examples, we will develop simple applications with C and C++.

Finally, when we are done building good and working examples, we will work
on supporting software and technologies to create more user friendly home
automation software.

In this chapter, we will take a look at the Intel Galileo development board, which will
be the device that we will use to build all our applications; also, we will configure
our host PC environment for software development.

The following are the prerequisites for this chapter:

• A Linux PC for development purposes. All our work has been done on an
Ubuntu 12.04 host computer, for this chapter and others as well. (If you use
newer versions of Ubuntu, you might encounter problems with some things
in this chapter.)

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Intel Galileo

[2]

• An Intel Galileo (Gen 2) development board with its power adapter.
• A USB-to-TTL serial UART converter cable; the suggested cable is TTL-

232R-3V3 to connect to the Intel Galileo Gen 2 board and your host system.
You can see an example of a USB-to-TTL serial UART cable at http://
www.amazon.com/GearMo%C2%AE-3-3v-Header-like-TTL-232R-3V3/dp/
B004LBXO2A. If you are going to use Intel Galileo Gen 1, you will need a 3.5
mm jack-to-UART cable. You can see the mentioned cable at http://www.
amazon.com/Intel-Galileo-Gen-Serial-cable/dp/B00O170JKY/.

• An Ethernet cable connected to your modem or switch in order to connect
Intel Galileo to the local network of your workplace.

• A microSD card. Intel Galileo supports microSD cards up to 32 GB storage.

Introducing Intel Galileo
The Intel Galileo board is the first in a line of Arduino-certified development boards
based on Intel x86 architecture. It is designed to be hardware and software
pin-compatible with Arduino shields designed for the UNOR3.

Arduino is an open source physical computing platform based on a
simple microcontroller board, and it is a development environment
for writing software for the board. Arduino can be used to develop
interactive objects, by taking inputs from a variety of switches
or sensors and controlling a variety of lights, motors, and other
physical outputs.

The Intel Galileo board is based on the Intel Quark X1000 SoC, a 32-bit Intel Pentium
processor-class system on a chip (SoC). In addition to Arduino compatible I/O pins,
Intel Galileo inherited mini PCI Express slots, a 10/100 Mbps Ethernet RJ45 port,
USB 2.0 host, and client I/O ports from the PC world.

The Intel Galileo Gen 1 USB host is a micro USB slot. In order to use
a generation 1 USB host with USB 2.0 cables, you will need an OTG
(On-the-go) cable. You can see an example cable at http://www.
amazon.com/Cable-Matters-2-Pack-Micro-USB-Adapter/
dp/B00GM0OZ4O.

http://www.amazon.com/GearMo%C2%AE-3-3v-Header-like-TTL-232R-3V3/dp/B004LBXO2A
http://www.amazon.com/GearMo%C2%AE-3-3v-Header-like-TTL-232R-3V3/dp/B004LBXO2A
http://www.amazon.com/GearMo%C2%AE-3-3v-Header-like-TTL-232R-3V3/dp/B004LBXO2A
http://www.amazon.com/Intel-Galileo-Gen-Serial-cable/dp/B00O170JKY/
http://www.amazon.com/Intel-Galileo-Gen-Serial-cable/dp/B00O170JKY/
http://www.amazon.com/Cable-Matters-2-Pack-Micro-USB-Adapter/dp/B00GM0OZ4O
http://www.amazon.com/Cable-Matters-2-Pack-Micro-USB-Adapter/dp/B00GM0OZ4O
http://www.amazon.com/Cable-Matters-2-Pack-Micro-USB-Adapter/dp/B00GM0OZ4O

Chapter 1

[3]

Another good feature of the Intel Galileo board is that it has open source hardware
designed together with its software. Hardware design schematics and the bill of
materials (BOM) are distributed on the Intel website. Intel Galileo runs on a custom
embedded Linux operating system, and its firmware, bootloader, as well as kernel
source code can be downloaded from https://downloadcenter.intel.com/
Detail_Desc.aspx?DwnldID=23171.

Another helpful URL to identify, locate, and ask questions about the latest
changes in the software and hardware is the open source community at
https://communities.intel.com/community/makers.

Intel delivered two versions of the Intel Galileo development board called Gen 1
and Gen 2. At the moment, only Gen 2 versions are available. There are some
hardware changes in Gen 2, as compared to Gen 1. You can see both versions
in the following image:

The first board (on the left-hand side) is the Intel Galileo Gen 1 version and the
second one (on the right-hand side) is Intel Galileo Gen 2.

Using Intel Galileo for home automation
As mentioned in the previous section, Intel Galileo supports various sets of I/O
peripherals. Arduino sensor shields and USB and mini PCI-E devices can be used to
develop and create applications. Intel Galileo can be expanded with the help of I/O
peripherals, so we can manage the sensors needed to automate our home.

https://downloadcenter.intel.com/Detail_Desc.aspx?DwnldID=23171
https://downloadcenter.intel.com/Detail_Desc.aspx?DwnldID=23171
https://communities.intel.com/community/makers

Getting Started with Intel Galileo

[4]

When we take a look at the existing home automation modules in the market, we
can see that preconfigured hubs or gateways manage these modules to automate
homes. A hub or a gateway is programmed to send and receive data to/from home
automation devices. Similarly, with the help of a Linux operating system running on
Intel Galileo and the support of multiple I/O ports on the board, we will be able to
manage home automation devices.

We will implement new applications or will port existing Linux applications to
connect home automation devices. Connecting to the devices will enable us to collect
data as well as receive and send commands to these devices. Being able to send and
receive commands to and from these devices will make Intel Galileo a gateway or a
hub for home automation.

It is also possible to develop simple home automation devices with the help of the
existing sensors. Pinout helps us to connect sensors on the board and read/write
data to sensors and come up with a device.

Finally, the power of open source and Linux on Intel Galileo will enable you to reuse
the developed libraries for your projects. It can also be used to run existing open
source projects on technologies such as Node.js and Python on the board together
with our C application. This will help you to add more features and extend the
board's capability, for example, serving a web user interface easily from Intel
Galileo with Node.js.

Intel Galileo – hardware specifications
The Intel Galileo board is an open source hardware design. The schematics, Cadence
Allegro board files, and BOM can be downloaded from the Intel Galileo web page.

In this section, we will just take a look at some key hardware features for feature
references to understand the hardware capability of Intel Galileo in order to make
better decisions on software design.

Intel Galileo is an embedded system with the required RAM and flash storages
included on the board to boot it and run without any additional hardware.

Chapter 1

[5]

The following table shows the features of Intel Galileo:

Processor features • 1 Core 32-bit Intel Pentium processor-compatible
ISA Intel Quark SoC X1000

• 400 MHz
• 16 KB L1 Cache
• 512 KB SRAM
• Integrated real-time clock (RTC)

Storage • 8 MB NOR Flash for firmware and bootloader
• 256 MB DDR3; 800 MT/s
• SD card, up to 32 GB
• 8 KB EEPROM

Power • 7 V to 15 V
• Power over Ethernet (PoE) requires you to install

the PoE module
Ports and connectors • USB 2.0 host (standard type A), client (micro USB

type B)
• RJ45 Ethernet
• 10-pin JTAG for debugging
• 6-pin UART
• 6-pin ICSP
• 1 mini-PCI Express slot
• 1 SDIO

Arduino compatible
headers

• 20 digital I/O pins
• 6 analog inputs
• 6 PWMs with 12-bit resolution
• 1 SPI master
• 2 UARTs (one shared with the console UART)
• 1 I2C master

Intel Galileo – software specifications
Intel delivers prebuilt images and binaries along with its board support package
(BSP) to download the source code and build all related software with your
development system.

Getting Started with Intel Galileo

[6]

The running operating system on Intel Galileo is Linux; sometimes, it is called Yocto
Linux because of the Linux filesystem, cross-compiled toolchain, and kernel images
created by the Yocto Project's build mechanism.

The Yocto Project is an open source collaboration project that provides
templates, tools, and methods to help you create custom Linux-based
systems for embedded products, regardless of the hardware architecture.

The following diagram shows the layers of the Intel Galileo development board:

Intel Galileo is an embedded Linux product; this means you need to compile your
software on your development machine with the help of a cross-compiled toolchain
or software development kit (SDK).

A cross-compiled toolchain/SDK can be created using the Yocto project; we will go
over the instructions in the following sections. The toolchain includes the necessary
compiler and linker for Intel Galileo to compile and build C/C++ applications for the
Intel Galileo board. The binary created on your host with the Intel Galileo SDK will
not work on the host machine since it is created for a different architecture.

With the help of the C/C++ APIs and libraries provided with the Intel Galileo SDK,
you can build any C/C++ native application for Intel Galileo as well as port any
existing native application (without a graphical user interface) to run on Intel Galileo.

Chapter 1

[7]

Intel Galileo doesn't have a graphical processor unit. You can still use
OpenCV-like libraries, but the performance of matrix operations is
so poor on CPU compared to systems with GPU that it is not wise to
perform complex image processing on Intel Galileo.

Connecting and booting Intel Galileo
We can now proceed to power up Intel Galileo and connect it to its terminal.

Before going forward with the board connection, you need to install a modem
control program to your host system in order to connect Intel Galileo from its
UART interface with minicom.

Minicom is a text-based modem control and terminal emulation
program for Unix-like operating systems. If you are not comfortable
with text-based applications, you can use graphical serial terminals
such as CuteCom or GtkTerm.

To start with Intel Galileo, perform the following steps:

1. Install minicom:
$ sudo apt-get install minicom

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

2. Attach the USB of your 6-pin TTL cable and start minicom for the first time
with the –s option:
$ sudo minicom –s

3. Before going into the setup details, check the device is connected to your
host. In our case, the serial device is /dev/ttyUSB0 on our host system.
You can check it from your host's device messages (dmesg) to see the
connected USB.

http://www.packtpub.com
http://www.packtpub.com/support

Getting Started with Intel Galileo

[8]

4. When you start minicom with the –s option, it will prompt you. From
minicom's Configuration menu, select Serial port setup to set the values,
as follows:

5. After setting up the serial device, select Exit to go to the terminal. This will
prompt you with the booting sequence and launch the Linux console when
the Intel Galileo serial device is connected and powered up.

6. Next, complete connections on Intel Galileo. Connect the TTL-232R cable
to your Intel Galileo board's UART pins. UART pins are just next to the
Ethernet port.
Make sure that you have connected the cables correctly. The black-colored
cable on TTL is the ground connection. It is written on TTL pins which one
is ground on Intel Galileo.

7. We are ready to power up Intel Galileo. After you plug the power cable
into the board, you will see the Intel Galileo board's boot sequence on the
terminal. When the booting process is completed, it will prompt you to log
in; log in with the root user, where no password is needed.

8. The final prompt will be as follows; we are in the Intel Galileo Linux console,
where you can just use basic Linux commands that already exist on the board
to discover the Intel Galileo filesystem:
Poky 9.0.2 (Yocto Project 1.4 Reference Distro) 1.4.2
 clanton

clanton login: root
root@clanton:~#

Chapter 1

[9]

Your board will now look like the following image:

Connecting to Intel Galileo via Telnet
If you have connected Intel Galileo to a local network with an Ethernet cable, you
can use Telnet to connect it without using a serial connection, after performing some
simple steps:

1. Run the following commands on the Intel Galileo terminal:
root@clanton:~# ifup eth0

root@clanton:~# ifconfig

root@clanton:~# telnetd

2. The ifup command brings the Ethernet interface up, and the second
command starts the Telnet daemon. You can check the assigned IP address
with the ifconfig command.

3. From your host system, run the following command with your Intel Galileo
board's IP address to start a Telnet session with Intel Galileo:
$ telnet 192.168.2.168

Getting Started with Intel Galileo

[10]

Building a Linux image for Intel Galileo
with the Yocto Project
We went through the software specifications of Intel Galileo in the previous section
and booted Intel Galileo with the Linux image on its SPI flash.

In this section, we are going to cover how to build a customized image for Intel
Galileo with some additional software packages using the Yocto Project, and we
will boot Intel Galileo from the microSD card with our new Linux image.

The Yocto Project is an open source project that helps embedded
Linux developers by providing a set of tools such as Poky to ease the
customization of Linux filesystems, building kernel images. This project
uses a folder structure to store the metadata of the build information of
individual software projects. Each software application or library has a
metadata file called recipes with the .bb and .bbclass files. A quick
start guide for developers is available at http://www.yoctoproject.
org/docs/current/yocto-project-qs/yocto-project-qs.
html, where you can get the basics of the Yocto Project.

You will also learn some basics of the Yocto Project to build and customize Linux
filesystems for Intel Galileo.

There are prebuilt SD card images for Intel Galileo; you can easily get
them from the Intel download page at https://communities.intel.
com/docs/DOC-22226.

Learning about the build process will teach you how to customize Linux for future
needs. Before that, the following prerequisites are needed:

1. We need to first download the Intel Quark board support package from
http://downloadcenter.intel.com/confirm.aspx?httpDown=http://
downloadmirror.intel.com/23197/eng/Board_Support_Package_
Sources_for_Intel_Quark_v1.0.1.7z&Lang=eng&Dwnldid=23197.

2. Then, we should download BSP patches to fix some of the problems with
upstream sources. Download the patches from https://github.com/01org/
Galileo-Runtime/archive/1.0.4.tar.gz. Patching instructions can be
found in the following link: http://downloadmirror.intel.com/24355/
eng/BSP-Patches-and-Build_Instructions.1.0.4.txt.

3. The next step is to extract the files. As the BSP package is distributed in
7-Zip format, make sure that you have 7-Zip installed on your host:
$ sudo apt-get install p7zip

http://www.yoctoproject.org/docs/current/yocto-project-qs/yocto-project-qs.html
http://www.yoctoproject.org/docs/current/yocto-project-qs/yocto-project-qs.html
http://www.yoctoproject.org/docs/current/yocto-project-qs/yocto-project-qs.html
https://communities.intel.com/docs/DOC-22226
https://communities.intel.com/docs/DOC-22226
http://downloadcenter.intel.com/confirm.aspx?httpDown=http://downloadmirror.intel.com/23197/eng/Board_Support_Package_Sources_for_Intel_Quark_v1.0.1.7z&Lang=eng&Dwnldid=23197
http://downloadcenter.intel.com/confirm.aspx?httpDown=http://downloadmirror.intel.com/23197/eng/Board_Support_Package_Sources_for_Intel_Quark_v1.0.1.7z&Lang=eng&Dwnldid=23197
http://downloadcenter.intel.com/confirm.aspx?httpDown=http://downloadmirror.intel.com/23197/eng/Board_Support_Package_Sources_for_Intel_Quark_v1.0.1.7z&Lang=eng&Dwnldid=23197
https://github.com/01org/Galileo-Runtime/archive/1.0.4.tar.gz
https://github.com/01org/Galileo-Runtime/archive/1.0.4.tar.gz
http://downloadmirror.intel.com/24355/eng/BSP-Patches-and-Build_Instructions.1.0.4.txt
http://downloadmirror.intel.com/24355/eng/BSP-Patches-and-Build_Instructions.1.0.4.txt

Chapter 1

[11]

A good way to deal with the build process and all the mess created is to create a
unique folder in our home directory, such as /home/onur/galileo_build, and
do all the build work in that directory. I will refer to our build in the directory as
BUILD_DIR.

Building Linux filesystems for Intel Galileo
You need to follow these steps to build a Linux filesystem:

1. Put your downloaded files in your build directory and extract them, as
follows:
$ cd /home/onur/galileo_build

$ mv
~/Downloads/board_support_package_sources_for_intel_quark_v1.0
 .1.7z .

$ mv ~/Downloads/BSP-Patches-and-
 Build_Instructions.1.0.4.tar.bz2 .

$ 7z x
 board_support_package_sources_for_intel_quark_v1.0.1.7z

BSP includes packages for the layers of software for Intel Galileo. Grub OS
Loader, Linux Filesystem build files for Yocto Project, EDKII (Firmware for Quark),
Linux Kernel for Intel Quark, SPI-Flash tools, and System Image files are the
packages required by developers to rebuild and reuse. Our focus will be on
the meta-clanton_v1.0.1.tar.gz file to create the Linux filesystem to boot
with the SD card.

You will see clanton in many places in the files you downloaded.
It refers to systems with Intel Quark processors.

The board_support_package_sources_for_intel_quark_v1.0.1.7z file
includes the following compressed files:

 ° grub-legacy_5775f32a+v1.0.1.tar.gz

 ° meta-clanton_v1.0.1.tar.gz

 ° Quark_EDKII_v1.0.1.tar.gz

 ° quark_linux_v3.8.7+v1.0.1.tar.gz

 ° spi-flash-tools_v1.0.1.tar.gz

 ° sysimage_v1.0.1.tar.gz

 ° sha1sum.txt

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Intel Galileo

[12]

2. The BSP-Patches-and-Build_Instructions file includes a folder called
patches. It has a number of patches to apply the Yocto Project metadata
(recipe) .bb files:
$ tar xvf BSP-Patches-and-Build_Instructions.1.0.4.tar.bz2

3. Extract metadata for the Intel Galileo development board to build the Linux
filesystem. Metadata files will be extracted into the meta-clanton_v1.0.1
directory:
$ tar xvf meta-clanton_v1.0.1.tar.gz

It is highly recommended that you apply patches inside the
extracted patches folder that comes along with the BSP_
Patches_and_Instructions file. Instructions are stored
in the patches/patches.txt file. If you don't apply the
patches before starting the build process, you are highly likely
to get errors.

4. There are a couple of tools that you need to install on your host system to
start the building process. Make sure you have installed them:
$ sudo apt-get install git diffstat texinfo gawk chrpath file
 build-essential gcc-multilib chrpath

5. Go to the meta-clanton_v1.0.1 folder to start the build process:
$ cd $BUILD_DIR/meta-clanton_v1.0.1

This is where all the metadata is placed for building Linux filesystems. After
applying the patches, we can start executing the scripts to start building:

6. The first step is to run the setup.sh script in the meta-clanton_v1.0.1
folder to get the required external sources. It will also create the folder
yocto_build with the required configuration files to define metadata
layers for the Yocto build tool BitBake:
$./setup.sh

7. Then, we need to initialize the environment variables and specify the build
folder for the output of the build process:
$ source poky/oe-init-build-env yocto_build

If you've closed your current shell session and started on a
new one, for each shell that you open, you need to source
environment variables with oe-init-build-env.

Chapter 1

[13]

After you initialize the environment variables, you will be redirected to the
yocto_build folder. This is the folder where all the downloaded sources and
the output of the build process will be copied.
Now we are ready to start the build process with the Yocto Project command
tool BitBake.

BitBake take cares of the entire build process by parsing
configuration files in all the layers, the metadata (recipes),
classes, and configurations files such as the .bb, .bbclass,
and .conf files, respectively.

There is already a metadata file defined to build a full image, which includes
many open source projects such as Node.js, OpenCV, and additional kernel
modules to support mini PCI-E Wi-Fi cards.

8. Start the build process with the following command:
$ bitbake image-full-galileo

9. An output similar to the following will be seen on your host machine:
Loading cache: 100% |###
##
##
#########################| ETA: 00:00:00
Loaded 1617 entries from dependency cache.

Build Configuration:
BB_VERSION = "1.18.0"
BUILD_SYS = "x86_64-linux"
NATIVELSBSTRING = "Ubuntu-12.04"
TARGET_SYS = "i586-poky-linux-uclibc"
MACHINE = "clanton"
DISTRO = "clanton-tiny"
DISTRO_VERSION = "1.4.2"
TUNE_FEATURES = "m32 i586"
TARGET_FPU = ""
meta
meta-yocto
meta-yocto-bsp =
 "clanton:d734ab491a30078d43dee5440c03acce2d251425"
meta-intel =
 "clanton:048def7bae8e3e1a11c91f5071f99bdcf8e6dd16"
meta-oe =
 "clanton:13ae5105ee30410136beeae66ec41ee4a8a2e2b0"
meta-clanton-distro
meta-clanton-bsp = "<unknown>:<unknown>"

Getting Started with Intel Galileo

[14]

Currently 12 running tasks (179 of 2924):
0: uclibc-initial-
 0.9.33+gitAUTOINC+946799cd0ce0c6c803c9cb173a84f4d607bde350-
 r8.4 do_unpack (pid 32309)
1: binutils-cross-2.23.1-r3 do_unpack (pid 32304)
2: linux-libc-headers-3.8-r0 do_fetch (pid 32307)
3: gcc-cross-initial-4.7.2-r20 do_fetch (pid 32308)
4: libmpc-native-0.8.2-r1 do_compile (pid 32305)
5: python-native-2.7.3-r0.1 do_unpack (pid 32316)
6: uclibc-
 0.9.33+gitAUTOINC+946799cd0ce0c6c803c9cb173a84f4d607bde350-
 r8.4 do_unpack (pid 32310)
7: elfutils-native-0.148-r11 do_compile (pid 32314)
8: file-native-5.13-r0 do_compile (pid 32315)
9: readline-native-6.2-r4 do_configure (pid 32311)
10: openssl-native-1.0.1h-r15.0 do_install (pid 32312)
11: attr-native-2.4.46-r4 do_configure (pid 32313)

The build process can take around 2 hours to finish, depending on the processing
power of your host machine.

The build process will start by parsing recipes in the board's support package
and will fetch the source code, configure, build, and install on the final Linux
filesystem image.

If everything goes well and the build process finishes successfully, all the required
files will be created in the $BUILD_DIR/meta_clanton_v1.0.1/yocto_build/tmp/
deploy/images folder to be used for your SD card.

Preparing the SD card to boot
When the build process is successful, you can go ahead and copy the required files
onto your microSD card to boot with Intel Galileo.

First, you need a microSD card; Intel Galileo supports SD cards up to 32 GB in
capacity. Format your microSD card as FAT32 for first-time use and then copy
the following files to your microSD card:

1. Format the SD card as FAT32, and check the assigned device file for the SD
card on your system; something such as /dev/sdd or /dev/mmcblk0 should
be assigned to it. You can use device messages (the dmesg command) to
check the assigned device file for the SD card. Run the dmesg command
before and after you have attached the SD card on your host PC terminal.
Then, you can see the assigned device file. In this section, we will use /dev/
sdX to indicate the SD card's device file:
$ sudo mkfs.msdos /dev/sdX

Chapter 1

[15]

2. Mount the SD card on your host system:
$ sudo mount /dev/sdX /mnt/sdcard

3. Copy the following files to your SD card:
$ cd $BUILD_DIR/meta-
 clanton_v1.0.1/yocto_build/tmp/deploy/images/

$ cp image-full-galileo-clanton.ext3 core-image-minimal-
 initramfs-clanton.cpio.gz bzImage grub.efi -t /mnt/sdcard

$ cp –r boot/ -t /mnt/sdcard

The image-full-galileo-clanton.ext3 file includes the
Linux root filesystem. The bzImage file is the Linux kernel
image. The core-image-minimal-initramfs-clanton.
cpio.gz file is the initial RAM file system. grub.efi is the
file, and GRUB/UEFI is the firmware for Intel Galileo. The boot
folder includes the GRUB configuration.

4. Unmount the SD card and detach it from your host system:
$ sudo unmount /mnt/sdcard

5. Insert the microSD card into the slot next to the power port on the Intel
Galileo development board.

Connect the serial cable, as shown in the previous section, and power up Intel
Galileo. When Intel Galileo is booting from the SD card, an LED starts to blink.
This is the LED on which the SD card is writing.

When you are prompted to log in, just like when you booted the SPI image in the
previous section, you can log in with the root user and wander around the additional
installed packages with the SD image.

An advantage of using an SD card instead of using an SPI flash image is that you will
have more storage, so you can install more software.

Created files are also not volatile on an SD card; they will not be removed when you
reboot the board. If you are using the Intel Galileo board from the SPI flash image, it
will remove all the created files when you reboot the board.

Getting Started with Intel Galileo

[16]

Upgrading firmware on Intel Galileo
While booting from the SD card, you may encounter problems. If the version of
firmware on the Intel Galileo board and the BSP version that you build on the Linux
filesystem don't match, the board doesn't boot the SD card. You can easily see this as
the SD card's LED doesn't blink.

Check whether you formatted the SD card correctly to FAT32 and the files have been
copied correctly. If the SD card format and files are not corrupted, it is suggested that
you upgrade the firmware on the Intel Galileo board you have, as follows:

1. Download the Arduino IDE for Intel Galileo, for your host computer's
architecture, from https://communities.intel.com/docs/DOC-22226.

2. Connect Intel Galileo to your PC using a micro USB-to-USB cable. When Intel
Galileo is connected to the host device with a micro USB, it defines a new
device, /dev/ttyACM0. You can check the device messages (dmesg) to check
whether Intel Galileo is connected correctly.

3. Extract the downloaded file:
$ tar xvf arduino-linux64-1.0.4.tgz

4. Go to the arduino-linux64-1.0.4.tgz folder and run the Arduino IDE
executable with sudo:
$ cd arduino-linux-1.0.4.tgz

5. In the menu bar of the Arduino IDE, navigate to the following:
 ° Tools | Serial Port | /dev/ttyACM0
 ° Tools | Board | Intel Galileo (Gen 2)

6. Check for the firmware upgrade by navigating to Help | Galileo
Firmware Update.

If the firmware on your device has a lower version, the Arduino IDE will prompt
you to upgrade. Click on OK to upgrade the firmware and follow the instructions.
This should take approximately 5 to 10 minutes. The Arduino IDE will prompt
when the upgrade has been successfully installed.

Building the Intel Galileo SDK
We have gone through the steps to get the board's support packages and to build
the Linux kernel as well as the filesystem. Since we are going to develop and build
applications for Intel Galileo, we need an SDK to compile and build.

https://communities.intel.com/docs/DOC-22226

Chapter 1

[17]

The Yocto Project allows you to easily create the SDK for embedded devices, similar
to creating a filesystem. We need to run one more command right after we build
the filesystem.

All the commands used to build an SDK are similar to the commands used to build a
filesystem, but only the last command changes to create a toolchain, as follows:

$ bitbake image-full-galileo –c populate_sdk

After the successful execution of the populate_sdk command, the SDK installer
will be deployed into the $BUILD_DIR/meta_clanton_v1.0.1/yocto_build/tmp/
deploy/sdk folder:

$ ls tmp/deploy/sdk

clanton-tiny-uclibc-x86_64-i586-toolchain-1.4.2.sh

In this example, BitBake created an image for a 64-bit host; if you build on a 32-bit
host, BitBake will create a toolchain for a 32-bit architecture.

It is also possible to create toolchains for other architectures. Add the
SDKMACHINE ?= i686 line to the yocto_build/conf/local.conf
file and rerun the command. It will create the file clanton-tiny-
uclibc-i686-i586-toolchain-1.4.2.sh.

Setting up a development environment
for Intel Galileo
In this section, we will go through the two ways of setting up a development
environment for Intel Galileo on our host development system. In the previous
section, we created the Intel Galileo SDK, and now we will go through how to use it:

1. Go to the deployment folder of your build directory:
$ cd $BUILD_DIR/meta-clanton/yocto_build/.tmp/deploy/sdk

2. Run the SDK installer to install the Intel Galileo toolchain on your host
filesystem. By default, the installation directory has been set to the /opt/
clanton-tiny/1.4.2 directory; you can install any directory you want. You
will get the following terminal output when you run the SDK installer script:
$ sudo ./clanton-tiny-uclibc-x86_64-i586-toolchain-1.4.2.sh

Enter target directory for SDK (default: /opt/clanton-
tiny/1.4.2):

Getting Started with Intel Galileo

[18]

You are about to install the SDK to "/opt/clanton-tiny/1.4.2".
Proceed[Y/n]?Y

Extracting SDK...

Setting it up...done

SDK has been successfully set up and is ready to be used.

The Intel Galileo SDK is installed on your host filesystem, and your host system is
ready to compile and build C/C++ applications for the Intel Galileo development
board.

To start development, you can either use basic text editors and compile the source
code on your host machine's console, or you can configure an IDE to use the Intel
Galileo SDK to develop applications.

Setting up a development environment for
Linux
If you don't want to use any IDE for software development, you can just use any
text editor and compile your code from the Linux terminal after you set up the SDK
environment variables.

After you install the SDK, it copies a Bash script to the SDK directory, and running it
is enough to set up environment variables for the GCC compiler and linkers.

You can source the environment variables for the current session on your host
machine as follows:

$ source /opt/clanton-tiny/1.4.2/environment-setup-i586-poky-linux-
uclibc

You can check whether the setup is completed correctly for C, C++ cross compilers,
and linker variables, respectively, as shown in the following code. $CC is a variable
for the C compiler, $CXX is a variable for the C++ compiler, and $LD is for the Intel
Galileo toolchain linker:

$ echo $CC

i586-poky-linux-uclibc-gcc -m32 -march=i586 --sysroot=/opt/clanton-
tiny/1.4.2/sysroots/i586-poky-linux-uclibc

$ echo $CXX

i586-poky-linux-uclibc-g++ -m32 -march=i586 --sysroot=/opt/clanton-
tiny/1.4.2/sysroots/i586-poky-linux-uclibc

$ echo $LD

i586-poky-linux-uclibc-ld --sysroot=/opt/clanton-
tiny/1.4.2/sysroots/i586-poky-linux-uclibc

Chapter 1

[19]

Building applications on the Linux Terminal
Let's write a simple Hello World C code with a text editor, compile it on the host
console, and run it on Intel Galileo using the following steps:

1. Create an empty .c file with your favorite text editor or any console text
editor. Write a printf function, as follows, and compile it:
$ nano hello_world.c
#include <stdio.h>
int main (void){
 printf("Hello World\n");
 return 0;
}
$ $CC hello_world.c –o helloworld

2. You can copy the binary file on to the Intel Galileo development board with
the scp command. SSH and SCP tools are installed with the full image we
built to boot with the SD card.

3. If the board is connected to your local network, you can easily transfer files
with the scp command to the board from your host machine. Secure Copy
Protocol (SCP) securely transfers computer files between a local host and
a remote host. Therefore you can transfer files from Intel Galileo to your
development PC or from your PC to the Intel Galileo board.
$ scp helloworld root@192.168.2.88:/home/root/apps

Together with the Telnet protocol and the installation of the ssh
daemon (sshd) on Intel Galileo, you can connect to the board's
terminal from the ssh client of your host system:
$ ssh root@192.168.2.88

4. Open the Intel Galileo board's terminal and run the application from the
folder you copied in the binary file:
$ cd /home/root/apps

$./helloworld

Hello World

This method can be used to develop any application and deploy it to Intel Galileo. If
you don't have a local network connection, it may be difficult for you to transfer files
to the Intel Galileo board with a USB stick or with the SD card.

Getting Started with Intel Galileo

[20]

Setting up an environment to work with the
Eclipse IDE
Another and more efficient way of working with embedded devices is to use the
Eclipse IDE. Eclipse provides a good C/C++ development environment and remote
debugging utilities for developers. Another reason to select the Eclipse IDE is that
the Yocto Project has a plugin for Eclipse, and this makes it very easy to set up the
SDK's location and cross-compile.

In this section, we will go through the setup process for the Eclipse IDE for
development and for remote debugging.

The Eclipse IDE requires Java to run. Make sure you have
installed Java runtime on your host system.

Download the latest Eclipse IDE from its official download site at https://www.
eclipse.org/downloads/ or install it from the Ubuntu repository, as follows:

$ sudo apt-get install eclipse

If Java is installed on your host system, you can start the Eclipse IDE from the
command line:

$ eclipse

Configuring the Eclipse IDE for the Yocto Project
We need to install some necessary plugins for Eclipse before installing the Yocto
Project plugin on it:

1. To install new software on the Eclipse IDE, from the menu bar, go to Help |
Install New Software.
This will prompt you with a window to start the installation.

2. First, you need to select the download site for the plugins. On the host I use,
Eclipse Kepler (the previous version is Juno) is installed so, from the Work
With drop-down list, select the correct site.

3. Click on http://download.eclipse.org/releases/kepler.
This action will load the available plugins to the following list.
Select the required plugins to be installed. Perform the following steps to
select plugins from the available software:

https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
http://download.eclipse.org/releases/kepler

Chapter 1

[21]

4. Expand Linux Tools and select LTTng – Linux Tracing Toolkit.
5. Expand Mobile and Device Development and select the following items

from the list:
 ° C/C++ Remote Launch (Requires Remote System Explorer)
 ° Remote System Explorer End-user Runtime
 ° Remote System Explorer User Actions
 ° Target Management Terminal
 ° TCF Remote System Explorer add-in
 ° TCF Target Explorer

6. Expand Programming Languages and select C/C++ Autotools support and
C/C++ Development Tools.

Then, click on the Next > button and read and accept the licenses agreement. This
will install the plugins and restart the Eclipse IDE. The following screenshot shows
you what to select from the list:

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Intel Galileo

[22]

Installing the Yocto Project's Eclipse plugin
When C/C++ development and support tools for the Eclipse IDE have been
installed, as described in the previous section, we are good to go with the Yocto
Project's plugin installation.

You can perform the following steps to set up the Yocto Project plugin onto Eclipse:

1. Open the Install New Software Window again.
2. This time you should add the link for the Yocto Project plugin. Click on

the Add button, which will open a smaller window. Enter a meaningful
name (for example, Yocto ADT Plugin), enter http://downloads.
yoctoproject.org/releases/eclipse-plugin/1.6/kepler, and
click on Add.

3. When you add and select the new link from the Work with: menu, it will
refresh the list of available packages to be installed.

4. Check the Yocto Project ADT Plug-in, Yocto Project Bitbake Commander
Plug-in, and Yocto Project Documentation plug-in boxes.

5. Click on the Next > button, read and accept the license agreements, and
finish the installation as shown in the following screenshot:

http://downloads.yoctoproject.org/releases/eclipse-plugin/1.6/kepler
http://downloads.yoctoproject.org/releases/eclipse-plugin/1.6/kepler

Chapter 1

[23]

Configuring the Yocto Project's plugin for cross
compilation
The Yocto plugin requires some parameters, such as the location or path of the
toolchain on your host machine filesystem, to be pointed by the user.

To configure the Yocto plugin, follow these steps:

1. Click on Window from the Eclipse IDE menu and select Preferences from
the list.

2. A new window will appear; from the list that appears on the left-hand side of
the window, select Yocto Project ADT.

3. You need to enter the paths where you installed the toolchain, as shown in
the following screenshot:

4. Click on Apply; if the Yocto Project plugin doesn't complain about anything,
the configuration should work.

Getting Started with Intel Galileo

[24]

Configuring the Eclipse IDE for remote debugging
One last step in the Eclipse configuration is to configure the remote device. The
Eclipse IDE makes it easy for developers to deploy and debug applications on
remote devices. If we don't use a helpful tool such as Eclipse to deploy applications,
we need to copy the binary to a remote device from the console or copy files to a USB
stick in order to transfer the compiled binary to Intel Galileo.

The Eclipse IDE also makes it easy to debug applications on remote devices with
the help of a user friendly Graphical User Interface (GUI): the Debug perspective.
There are a couple of steps that need to be performed to complete the remote device
configuration:

1. First, we will open Remote System Explorer in the Eclipse IDE.
2. Click on Window in the Eclipse IDE menu, hover over Open Perspective if

Remote System Explorer is on the list. Click on it if it is not; then, click on
Other and select Remote System Explorer in the opened window.

3. In the new perspective, define a new connection by clicking on the button
where Remote Systems are listed or right-click to add a new connection.

4. This will open a new window called Select Remote System Type; select
Linux and click on Next.
This will show you a window, as shown in following screenshot, where
you need to type in the Intel Galileo development board's IP address and
a description for the connection:

5. Select SSH Types in the following window when processing .ssh files,
processes.shell.linux, ssh.shells, and ssh.terminals.

Chapter 1

[25]

The default user for the remote system is inherited from the
host system, so change it to root.

This process defines a remote connection. Now we need to configure Eclipse
in order to run applications on a remote device, as follows:

6. In the Eclipse menu, click on Run and select Run Configurations. When
the new window appears, click on the icon with a plus sign on it in order
to create a new configuration.

7. You need to fill the spaces according to your host system's configuration.
Select the remote connection and remote path to deploy the application.

8. If you save this instance, you can use it later for any other project you create
on Eclipse to run on Intel Galileo.

The fully configured remote device is shown in the following screenshot:

Getting Started with Intel Galileo

[26]

Creating a sample C project in the Eclipse IDE
We completed all the necessary configurations for Eclipse, so we can easily create an
application now without reconfiguring the Eclipse IDE for the Intel Galileo toolchain.
Eclipse will create C/C++ projects with toolchain configurations, and you will be
able to develop C/C++ applications easily with the Eclipse IDE.

After performing a couple of easy steps, you will be able to create a C project for Intel
Galileo with all the toolchain configurations, as shown here:

1. Click on File from the Eclipse IDE menu, select New, and then click on C
Project. This will open a new window, as shown in the following screenshot.

2. Expand Yocto Project ADT Autotools Project and select Hello World ANSI
C Autotools Project:

3. After you finish this, all the related files will be created. You can just build
the Hello World sample by clicking on Build and running with the selection
Run As, Remote Application on Intel Galileo.

Chapter 1

[27]

Summary
In this chapter, we learned how to use the Intel Galileo development board, its
software, and system development environment. It takes some time to get used to all
the tools if you are not used to them. A little practice with Eclipse is very helpful to
build applications and make remote connections or to write simple applications on
the host console with a terminal and build them.

Let's go through all the points we have covered in this chapter. First, we read some
general information about Intel Galileo and why we chose Intel Galileo, with some
good reasons being Linux and the existing I/O ports on the board.

Then, we saw some more details about Intel Galileo's hardware and software
specifications and understood how to work with them.

I believe understanding the internal working of Intel Galileo in building a Linux
image and a kernel is a good practice, leading us to customize and run more tools
on Intel Galileo.

Finally, we learned how to develop applications for Intel Galileo. First, we built an
SDK and set up the development environment. There were more instructions about
how to deploy the applications on Intel Galileo over a local network as well.

Then, we finished up by configuring the Eclipse IDE to quicken the development
process for future development. In the next chapter, we will learn about home
automation concepts and technologies.

[29]

Getting Started with Home
Automation Applications

This chapter aims at introducing home automation concepts and existing
technologies in the market along with designing our own home automation
project. We will also introduce the commercially available devices for use in order
to automate our home. As we learn more about home automation and existing
technologies, we will also design a system with these devices and Intel Galileo.

Introducing home automation
Home automation means building a residential area, a house or a building,
controlled by a centralized mechanism. Home automation can also be phrased as
Smart Home, because while building a home with a centralized mechanism, we
make the appliances communicate with the central hub or each other and present
their current status.

In modern houses, there are many mechanical and electronic devices that need to
be controlled by users. For example, if a resident needs light in their place, they
will have to switch on/switch off a light bulb with the help of a switch. Another
example is that you need to find out the current temperature of your house using
a thermometer in order to decide whether to turn off the heater or increase the
temperature. Building a system to switch it on/off remotely from a centralized
control panel or switching with a condition will be the first aim of home automation.

Home automation is not limited to automating households; it is also about building
a security system for your house. It is about getting alarm notifications from devices
such as the door alarm if someone breaks into your home through the door, or a
smoke sensor if there is a fire at your home.

Getting Started with Home Automation Applications

[30]

Controlling appliances, such as light switches, as well as securing and surveilling
your home from a controller, PC, or a similar central hub creates an automated
house. We can also call it a Smart Home.

Controlling a device at home can be categorized as home automation, but the real
development of home automation emerged after specific technological research
and advancements. One of the first technologies was X10. It has been available
to consumers since 1978. X10 is a protocol for communication between electronic
devices. It primarily uses power line wiring for signaling and control, where the
signals involve brief radio frequency bursts representing digital information.

More protocols have evolved after X10, mostly wireless protocols. Bluetooth low
energy (BLE), Wi-Fi, ZigBee, Z-Wave, Insteon, universal powerline bus (UPB),
KNX, and EnOcean are some of the most popular home automation protocols.

Nowadays, there are more devices that use these protocols on the market; recent
technological advancements have also made these devices cheaper and allowed
people to automate their homes with various of devices. Large manufacturers such
as Philips, GE, Honeywell, and Schneider Electric are embracing home automation
with thousands of new devices.

Together with new cool devices, the rise of cloud and mobile connection technologies
(3G, LTE), and mobile devices also created user-friendly interfaces to connect and
control home appliances from anywhere with an Internet connection. It is getting
more and more tempting to have these cool home automation devices in your home
and work with them.

An overview of home automation
technologies
We just spoke about some technologies used in home automation. In this section, we
will go through the details of some popular technologies used in home automation,
software ecosystems, and open source projects.

Delving into home automation protocols
Numerous technologies exist for home automation, but covering all of them is not
possible in this book, so we will only talk about some of the popular ones. These
are the ones you will see in many retail stores or on the Internet.

Chapter 2

[31]

There are devices for home automation that use BLE and Wi-Fi
technology as well. Since they are well known and widely used
technologies, we will not mention them here.

X10
X10 is a machine-to-machine communication system which was developed in 1975
by Pico Electronics Ltd. in Glenrothes, Scotland, and was the first communication
protocol used for home appliances. Since wireless technologies were not as advanced
as they are today, it was designed to use power line wiring in order to send signals to
devices at home.

X10 uses a power line wiring system to send radio frequency signals in order to send
basic digital information to devices. Digital data is encoded onto a 120 kHz carrier,
which is transmitted in bursts. The X10 wireless protocol has also been developed
and is used nowadays. More information about X10 can be found on its official
website, http://www.x10.com.

Insteon
Insteon is a home automation technology used to define another protocol for
machine-to-machine communication between home appliances. Insteon uses both
wired and wireless power lines in order to carry messages to other devices in a
home, just like X10 but with different encoding and frequencies. Insteon messages
can carry up to 14 bytes of data at a time. More information can be found on its
official website at http://www.insteon.com.

EnOcean
The EnOcean technology is mainly used in home automation but is also being used
in other areas. It only transmits wireless messages to control devices.

EnOcean's wireless data packets are 14 bytes long, like Insteon, and are transmitted
at 125 Kbps. The transmission frequencies used for the devices are 902 MHz, 928.35
MHz, 868.3 MHz, and 315 MHz. More information can be found on its official
website at http://www.enocean.com.

Z-Wave
Z-Wave is one of the technologies we will try in order to build the examples in the
following sections using Intel Galileo. The Z-Wave protocol is an interoperable
wireless RF-based communication technology designed specifically for controlling,
monitoring, and reading the status of devices designed for home use.

www.allitebooks.com

http://www.x10.com
http://www.insteon.com
http://www.enocean.com
http://www.allitebooks.org

Getting Started with Home Automation Applications

[32]

Z-Wave is a low-powered RF wireless technology that operates in the sub-1 GHz
band. The lower layers, MAC and physical are described by the ITU-T G.9959
specification. It is fully backwards compatible. The Z-Wave radio uses 868.40 MHz,
869.85 MHz (Europe, South Africa, UAE, Singapore, China), 869.00 MHz (Russia),
868.10 MHz (Malaysia), 908.42 MHz (the United States), 910 MHz (Israel), 919.82
MHz (Hong Kong), 921.42 MHz (Australian/New Zealand) and 865.2 MHz (India).

There are over 1,000 interoperable products available, that is, 12 million Z-Wave
products worldwide, which is one of the reasons why we have picked Z-Wave to
create examples. For more information, you can visit http://www.z-wavealliance.
org and http://www.z-wave.com.

ZigBee
ZigBee is also our focus. More products are being launched with ZigBee technology,
such as the popular Philips Hue bulbs and many other devices by large manufacturers.

ZigBee is a wireless communication protocol used to create personal area networks
built from small, low-power digital radios. ZigBee uses 2.4 GHz radio frequencies
and is based on an IEEE 802.15 standard. It consumes little power, has a relatively
nice line of sight, and transmits data over 10–100 meters depending on the power
output and environmental characteristics. ZigBee has a defined rate of 250 Kbps.
More information can be found at http://www.zigbee.org.

Introducing a home automation software
ecosystem
There are numerous home automation devices, utilizing different technologies, in
the market. In order to connect to a home automation device, you need a compatible
controller that uses the same protocol. Some of the manufacturers only provide
private APIs to connect to the hub in order to access devices.

Open source communities support some of the technologies. They develop software
libraries to use USBs and serial controllers to connect and manage existing devices.
You can automate your home using your personal computer with the help of open
source projects. Some of the software projects that we will use in our projects
are listed in the next section. You can navigate to the project's home page to get
more information.

http://www.z-wavealliance.org
http://www.z-wavealliance.org
http://www.z-wave.com
http://www.zigbee.org

Chapter 2

[33]

LinuxMCE
Linux Media Center Edition (LinuxMCE) is a free and open source media centered
Linux distribution. LinuxMCE's main focus is to design a distribution that enables
a personal video recorder, home theater PC, home automation, lighting, climate
control system, surveillance and security system, and VoIP phone system with
support for video conferencing systems on Linux.

LinuxMCE supports many of the home automation technologies mentioned in the
previous section; you can manage the lighting and remote sockets of your home
with the help of LinuxMCE.

Check out the LinuxMCE project's home page at http://
www.linuxmce.com.

OpenRemote
OpenRemote is a cross-platform software framework that allows you to work with
many home automation protocols, as well as other commercial building automation
technologies. OpenRemote supports Z-Wave, Insteon, X10, and many other protocols
to help developers to automate with scripts. It is a cross-platform software that has
support for Linux, Windows, Mac, and some other systems.

You can find out more from the OpenRemote project's home
page at http://www.openremote.org.

OpenZWave
OpenZWave is an open source software library that can be used with selected
Z-Wave PC controllers to develop home automation with Z-Wave devices. It
provides a useful abstraction layer for developers; you don't need to have a
in-depth knowledge of the Z-Wave protocol or buy the Z-Wave development kit.

Check out the OpenZWave project's home page at http://
www.openzwave.com.

http://www.linuxmce.com
http://www.linuxmce.com
http://www.openremote.org
http://www.openzwave.com
http://www.openzwave.com

Getting Started with Home Automation Applications

[34]

Other software projects
The following are some other software projects:

• OpenHab: This has been developed in Java and is hardware and vendor
agnostic. Its aim is to provide a high-level API for developers in order to
easily work with any vendor's technology on any platform. You can visit
the project's home page at http://www.openhab.org.

• Open Source Automation: This project is open source software that runs on
Windows. Developers can extend the project with a plugin to add support
for any devices they want to work with. Check out the project's home page
at http://www.opensourceautomation.com.

• ago control: This is an open source home automation solution. It provides a
framework to control devices in your home. It supports many devices and
protocols such as Z-Wave, X10, and some others. You can find out more from
the project's home page at http://www.agocontrol.com.

• HomeGenie: This is an open source home automation solution. It has been
designed as a home server. It can be customized according to your needs.
HomeGenie can interface with X10, Insteon, Z-Wave, Philips Hue, UPnP,
and RFXCom devices, as well as communicate with external web services
and integrate all of this into a common automation environment. Check out
the project's home page at http://www.homegenie.it.

Home automation devices, sensors, and
controllers
Before designing our home automation project, let's take a closer look at some
existing devices that we use for the projects in the following chapters.

There are many devices enabled with the technologies already mentioned. In order
to use these devices, they have to be remotely controllable, and some data needs
to be sent to the central controller with some kind of protocol. If a wall plug is not
enabled with any of the home automation technologies, you can't reach the device to
switch it on or off. If a wall plug has an energy meter to measure how much energy
is consumed, the controller should be able to poll data.

If we are building our own hobby project to build a device for home automation, this
new device should be controllable and should be able to send and receive data with a
particular protocol.

http://www.openhab.org
http://www.opensourceautomation.com
http://www.agocontrol.com
http://www.homegenie.it

Chapter 2

[35]

Some sample devices with their descriptions and use for home automation are listed
in the following table. Some are used for energy management, while some are used
for security.

A Z-Wave USB controller
A home automation system requires a controller
device, a PC, or Intel Galileo to send/receive
information from the devices. This is one of the
sample controllers, easily used with any device
that has a USB host on board.
Other technologies such as Insteon, X10, and
so on also have similar devices. Host devices
use serial communications through the USB
connection, and with the help of this controller,
you can connect compatible devices from your PC
or similar board.
This device, Aeon Labs Z-Stick, is also supported
by the open source projects already mentioned.

Wall plug
The image shows a plug manufactured by a
company called Fibaro. It uses the wireless
Z-Wave protocol to send and receive commands.
Energy usage can also be monitored and fetched
from the plug.
Similar devices are also available with other
protocols such as, ZigBee, X10, and so on.
Using a switch such as this helps you manage any
home appliance plugged into this plug.

Getting Started with Home Automation Applications

[36]

Motion and door sensor
A company called Philio produces the device
shown opposite. The device includes a door/
window sensor and a motion sensor. It is also
a Z-Wave device used to get information from
sensors.
This kind of device can be used for multiple
purposes. It can be used for energy management,
such as implementing an application to switch on
lights when motion is detected. Another use case
is when a window or door is open for too long, it
can switch off the heater to save energy. Besides
energy management, they are also useful for
security. If someone breaks into your home, you
can detect it.
Similar devices are also available for ZigBee,
Insteon, and other protocols.

Water leak sensor
Water leak sensors can be categorized into the
security and surveillance part. If there is a flood,
or water in a place where there isn't supposed
to be any, the sensor alerts the user or the home
automation system and all electricity switches can
be closed.
Everspring produces the device shown opposite.
Similar devices are available from other
manufacturers and with other protocols as well.
Smoke and carbon monoxide (CO) detectors also
work on similar principles. If there is a change
in the level of smoke or CO, an alarm will be
raised and the resident can take the necessary
precautions.

Chapter 2

[37]

Designing a home automation project
with Intel Galileo
It's time for us to combine our knowledge of Intel Galileo and of the previous
sections of this chapter to design a Smart Home project.

We know that a Linux operating system is running on Intel Galileo and Intel Galileo
has a USB host port, together with Arduino-compatible pins. We can use the USB
controller on Intel Galileo and connect to home devices remotely. After establishing
a communication link with these devices, we can send and receive data.

We will use a USB Z-Wave controller to connect to Z-Wave devices wirelessly. This
will teach us how to communicate with Smart Home appliances and convert Intel
Galileo into a Smart Home hub.

The Intel Galileo pinout support includes digital and analog input pins as well as
I2C, SPI protocols. We can use widely available temperature sensors such as LM35
and LM74 with Intel Galileo. You can find some temperature sensors from Texas
Instruments from http://www.ti.com/lsds/ti/analog/sensors/overview.page.

Temperature sensors will help you gather temperature data from the environment.
We can use these values to control other appliances that we have already connected.
For example, if the temperature is high and we have connected our wall plug to the
heater, our application can switch off the wall plug and the heater will stop working.

Another utility of Intel Galileo is that it has an Ethernet plug and we can connect
mini PCI-E Wi-Fi cards to add a wireless connection capability to it. Connecting
Intel Galileo to the local network will enable you to monitor your house using other
devices that are connected to the same network. Node.js and Python can be run on
Intel Galileo. Adding Node.js and Python to Intel Galileo will require more space,
so we can use an SD card image, which we described in the Chapter 1, Getting Started
with Intel Galileo. Then, we can implement and run a simple web server to control
and host data on Intel Galileo and create a user-friendly web interface to access it.

http://www.ti.com/lsds/ti/analog/sensors/overview.page

Getting Started with Home Automation Applications

[38]

The following figure shows our design of a smart home with Intel Galileo. The
Z-Wave controller, remote Z-Wave devices, temperature and humidity sensors, and
IP camera are the devices we will use for our project. The entire system is connected
to the home network and can be monitored from any device that is connected to the
local network.

In the preceding figure, we can see the basic setup of our home automation system.
Implementing it may take some time. In the following chapters, you will be shown
the critical information and development steps necessary to complete our project.

We will start by using temperature and humidity sensors with Intel Galileo. We will
implement a C project to read data from the sensors. This will be a very informative
section to understand Intel Galileo's connection to sensors via the Arduino pins.

Then, we will set up a Z-Wave USB to Intel Galileo and create a serial communication
within the application. When we have successfully set up the Z-Wave USB controller,
we will try to reach out to the remote devices and send and receive data with the
Z-Wave protocol.

Chapter 2

[39]

We will also have a Wi-Fi-and Ethernet connection-enabled RGB camera, which
will be able to stream images and video to the network. We will also try to set up a
connection with a camera in our application, and we will learn how to connect as
well as capture images and videos from the device.

Network-enabled (Wi-Fi) IP cameras are widely used for security.
They are also called CCTV cameras. A common use case is for
parents who monitor their infants when they are sleeping.

There are hundreds of devices in the market, some of which are available for use
with our controller and some of which are not enabled for use with our controller.
With the correct selection of devices and controller, you can build any home
automation project with the chosen technology. In this book, we will only be able to
cover the commonly used devices, in order to understand the concepts behind home
automation and gain the knowledge to extend our projects.

Now, it is time to create a new C application project in the Eclipse IDE, as we did in
the previous chapter.

Summary
In this chapter, we covered home automation and some details of existing
technologies.

First, we defined the home automation concept. Then, we followed up by looking
at existing technologies used to build Smart Homes. We introduced X10, Insteon,
EnOcean, Z-Wave, and ZigBee, along with links to their official web pages.

We also spoke about open source software projects for home automation. We went
through some of them and found out useful information about these projects. Then,
we proceeded to discuss a couple of existing devices used for home automation.

Finally, using this knowledge of the relevant technologies and devices, we designed
our home automation project.

Now, it is time to play with some home automation gadgets in order to learn more
about Intel Galileo. In the following chapter, we will make some small projects with
Intel Galileo to measure the temperature and humidity of our home with a sensor
connected to Intel Galileo. Then, we will communicate with a wall plug using the
Z-Wave protocol to improve the energy management of our home.

[41]

Energy Management with
Environmental and Electrical

Sensors
Energy management is one of the major purposes of home automation together with
home security and surveillance. Energy management means saving and using energy
efficiently in residential areas so that you can reduce electricity consumption and
create a green, energy saving house.

In this chapter, we will learn how to connect sensors to Intel Galileo and develop C
applications that will give us the ability to develop specific devices only with
Intel Galileo.

After you learn how to develop applications for Intel Galileo with a sample
application, we will follow up with controlling electrical switches remotely to
control the energy consumption of our home.

Delving into energy management
Energy management is about managing devices that consume energy in order to save
energy and control their consumption. Saving energy will lead to the more efficient
usage of resources and will reduce consumption. For energy management in Smart
Homes, there are sensors that help you control devices to power them on or off.

Many sensors and devices are being produced for energy management purposes.
Temperature sensors and energy meters are key sensors; relay switches and dimmers
are essential actuators of energy management systems. You can either get a sensor
and develop your own device to embed into your home, or you can directly buy
devices to embed into your home and control them.

www.allitebooks.com

http://www.allitebooks.org

Energy Management with Environmental and Electrical Sensors

[42]

There are wall plugs with both energy meters and on/off switches, and lamp
holders with switches and dimmers. Other sensors can be integrated with the
energy management system to make them work more efficiently and automatically.
Temperature, motion, or light sensors can be used to decide whether to switch on or
switch off a remote switch on the system.

In the chapter, we will start with a simple sensor to see how we can connect it to
Intel Galileo and get readings from it. With what you have learned from this section,
you can proceed to work with more complex sensors. Then we will proceed with the
Z-Wave controller, which is connected to a remote wall plug to switch it off.

Developing sensor-based applications
with Intel Galileo
Let's start with learning how to use sensors with Intel Galileo. In this section, we will
develop an application with Intel Galileo. We pick the temperature and humidity
sensors for application development because knowing the temperature of your
house is the key to energy management. With temperature data, you can decide
whether to switch on or switch off the heater or air conditioner in your home
to save energy.

In order to get temperature data, we will use a new device: the Sensirion SHT11
Temperature and Humidity Sensor. We will connect this sensor to Intel Galileo's pinout
to read temperature and relative humidity values. All the development will be done
with the C programming language and Linux operating system, as mentioned earlier.

When we are finished with this section, you will have the knowledge to use pins on
Intel Galileo and GPIO device files in the Linux filesystem. These methods can be
reused for other sensors and devices in your future applications with them.

Understanding the working of a sensor from
the datasheet
We have picked a sensor, that uses a data and clock line to enable measurement
on sensors. There are many temperature sensors in the market that are compatible
with Intel Galileo. LM35 is a widely used temperature sensor, and it provides a
voltage output proportional to Centigrade temperatures. Our SHT11 sensor provides
us with digital data as raw temperatures and provides the coefficients to convert the
raw data to human- readable Centigrade temperatures.

Chapter 3

[43]

The image shown here is a SHT11 sensor:

While working with sensors on Intel Galileo or any other platform, we need to first
read the datasheet provided by the manufacturer to understand the working of the
sensor and its operational limits.

The datasheet for the SHT11 is accessible from the following link:
http://www.sensirion.com/fileadmin/user_upload/
customers/sensirion/Dokumente/Humidity/Sensirion_
Humidity_SHT1x_Datasheet_V5.pdf

Understanding the critical information provided on datasheets is essential. As we
have read in the sensor datasheet, SHT11 works with simple clock and data lines to
read and write bits. It doesn't use any specific bus or protocol such as I2C, SPI, or
UART, and so we will pick two GPIO pins from Intel Galileo to send and get bits
to/from the SHT11 sensor.

To start reading from the sensor, we need to send a byte as a command to SHT11.
Our application will send 0x03 bytes to SHT11 in order to measure temperature
and 0x05 bytes to measure relative humidity; you can find the commands in the
datasheet. Since the sensor is not using any communication bus, we will use GPIO
pins to send and get data bit by bit. The figure given here shows how we send bits
from a DAT pin.

http://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/Humidity/Sensirion_Humidity_SHT1x_Datasheet_V5.pdf
http://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/Humidity/Sensirion_Humidity_SHT1x_Datasheet_V5.pdf
http://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/Humidity/Sensirion_Humidity_SHT1x_Datasheet_V5.pdf

Energy Management with Environmental and Electrical Sensors

[44]

The same method can be used to read from a DAT pin.

Before sending the command, there are a few steps that need to be carried out
with clock data to tell the sensor about the incoming command. After sending the
command, it is also required to complete some bit transfers and readings from the
sensor to acknowledge that the command was received. The following figure shows
the steps to read temperature data from the SHT11 sensor:

The last step is to wait for the sensor to make data pin low (0) to start reading bits
from that. In order to complete the temperature measurement from the sensor, we
need to complete all the steps described. For more details, you can follow up with
the sensor datasheet.

Connecting our sensor to Intel Galileo
Let's connect our sensor to Intel Galileo before coding. The SHT11 sensor has four
pins to be connected: the VCC, GND, clock (SCK), and data (DAT) pins.

We will use 5V for VCC since it is operational with 5V and produces more accurate
data. The GND Pin can easily be seen on the Intel Galileo pinout. For the clock and
data, we picked two GPIO pins IO7 and IO8 to send 0 and 1 to the sensor. IO7 on the
board will be the data line and IO8 will be the clock line of the SHT11 sensor.

Chapter 3

[45]

The following figure basically represents the pin connections of SHT11 to the
corresponding pinout on Intel Galileo.

Starting application development with C
We have connected SHT11 to Intel Galileo. Now we can start the development of our
application to read environmental temperature and humidity values. As described
in Chapter 1, Getting Started with Intel Galileo, let's create a new C project and name it
as thermostat.c or thermometer.c. It will create a C file named after your project
with a main function.

First, we need to include the following headers and define the constants as needed:

#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <stdint.h>
#define LSBFIRST 0
#define MSBFIRST 1
// Global Definitions for High/Low and Input/Output values for
//GPIO Operations
#define HIGH 1
#define LOW 0
#define INPUT "in"
#define OUTPUT "out"
//Buffers needed for I/O Operations
#define BUF 8
#define MAX_BUF 256
// IO7 and IO8 pins Linux GPIO numbers to access from Linux
#define DATA_PIN 38 //IO 7
#define CLOCK_PIN 40 //IO 8
//SHT11 Commands Defined in Datasheed

Energy Management with Environmental and Electrical Sensors

[46]

const uint8_t measure_temperature = 0b00000011;
const uint8_t measure_humidity = 0b00000101;
const uint8_t read_status = 0b00000111;
const uint8_t write_status = 0b00000110;

//Temperature Measurement Constants as in Datasheet
// T = d1 + d2 * SOt
const float D1_5V = -40.1;
const float D2_14bit = 0.01;
const float D2_12bit = 0.04;
//Relative Humidity Measurement Constants as in Datasheet
// RH = c1 + c2 * SOrh + c3 * SOrh * SOrh
const float C1 = -2.0468;
const float C2 = 0.0367;
const float C3 = -0.00395484;

//Global Variables to Store Temperature and Relative Humidity
float temperature = 0.0; //Celcius
float humidity = 0.0; //Relative Humidity

We will send bits by toggling GPIO pins and read bits from GPIO by setting the
GPIO direction as the input. GPIO pins direction in the way it is working; if GPIO is
defined as the output, it can send 0 or 1 to pinout; if it is defined as input, a low, or
high signal coming to the pin can be read. In the Linux operating system, everything
is a file, virtual or real, and so you can access virtual files to read and write data. Each
pin on Intel Galileo has a corresponding device file on the Linux filesystem. Here you
can find all corresponding numbers from the Intel Galileo I/O Mapping document.
IO7 and IO8 are GPIO 38 and 40 respectively on the Linux filesystem.

The Intel Galileo I/O Mapping document is available at http://
www.intel.com/support/galileo/sb/CS-035205.htm

Let's continue with our main function. We will simply read the temperature
at first like this:

int main(void) {
 read_temperature();
 printf("Temperature is %f Centigrade\n", temperature);
 return 0;
}
void read_temperature(){
// Conversion coefficients from SHT11 datasheet
 const float D1 = -40.0; // for 14 Bit @ 5V
 const float D2 = 0.01; // for 14 Bit DEGF

http://www.intel.com/support/galileo/sb/CS-035205.htm
http://www.intel.com/support/galileo/sb/CS-035205.htm

Chapter 3

[47]

 send_command_SHT11(measure_temperature);
 wait_for_result();
 int raw = retreive_data_SHT11();
 skip_crc();
 temperature = 0.0;
 temperature = ((float) raw * D2) - D1;
}

The read_temperature function first sends a command to the SHT11 sensor bit
by bit, waits for the sensor to take the data line to low and then retrieves the raw
temperature value from the sensor. The first data read from the sensor is the raw
value (in the datasheet, Celsius and Fahrenheit degree calculation equations and
coefficients are given); finally we apply the equation and get the result.

Let's proceed to the send_command_SHT11 function:

int send_command_SHT11(int command) {
 int ack;
 //Start Transmission
 gpio_set_mode(DATA_PIN, OUTPUT);
 gpio_set_mode(CLOCK_PIN, OUTPUT);
 gpio_set_value(DATA_PIN, HIGH);
 gpio_set_value(CLOCK_PIN, HIGH);
 gpio_set_value(DATA_PIN, LOW);
 gpio_set_value(CLOCK_PIN, LOW);
 gpio_set_value(CLOCK_PIN, HIGH);
 gpio_set_value(DATA_PIN, HIGH);
 gpio_set_value(CLOCK_PIN, LOW);
 //Shift Out
 shiftOut(MSBFIRST, command);
 gpio_set_value(CLOCK_PIN, HIGH);
 gpio_set_mode(DATA_PIN, INPUT);
 delay(20);
 ack = gpio_get_value(DATA_PIN);
 if (ack != LOW) {
 perror("ACK Error 0");
 }
 gpio_set_value(CLOCK_PIN, LOW);
 delay(320);
 ack = gpio_get_value(DATA_PIN);
 if (ack != HIGH) {
 perror("ACK Error 1");
 gpio_set_mode(DATA_PIN, OUTPUT);
 gpio_set_value(DATA_PIN, HIGH);
 gpio_set_mode(DATA_PIN, INPUT);
 }
 return 0;
}

Energy Management with Environmental and Electrical Sensors

[48]

The send_command_SHT11 function has been implemented according to the
datasheet. In the function code, before sending the given command, we need to
first make the sensor ready by sending 0s and 1s from CLK and DATA GPIO pins.
The order of this data is given in the datasheet. After we make the initialization,
we will send the command starting from the leftmost bit (MSB). For the temperature
measurement command (0x00000011), we will send first six 0s then two 1s. The
Shift Out command toggles the GPIO pins according to the given direction
(MSBFIRST or LSBFIRST).

Let's now proceed with the way we handled GPIO pins on the Intel Galileo.
We have the following four functions to handle GPIO operations:

int gpio_export(int gpio_num);

int gpio_set_mode(int gpio_num, const char* mode);

int gpio_set_value(int gpio_num, int value);

int gpio_get_value(int gpio_num);

The GPIO device files are in directory /sys/class/gpio. Most of the GPIO device
files do not exist by default; in order to create the device files, we will use the
gpio_export function. When the device exists, we will set the mode of the GPIO
according to our need for input or output with, gpio_set_mode function. Then, with
gpio_set_value and gpio_get_value, we will set and read the value of GPIO pins
as shown here:

int gpio_export(int gpio_num) {
 //Device File Path Declarations
 const char* gpio_export = "/sys/class/gpio/export";
 //Device File Declarations
 int fd_x = 0, g_err = -1;
 //Buffer
 char g_buf[BUF];
 fd_x = open(gpio_export, O_WRONLY);
 if (fd_x < 0) {
 printf("Couldn't get export FD\n");
 return g_err;
 }
 //Export GPIO Pin
 sprintf(g_buf, "%d", gpio_num);
 if (write(fd_x, g_buf, sizeof(g_buf)) == g_err) {
 printf("Couldn't export GPIO %d\n", gpio_num);
 close(fd_x);
 return g_err;
 }

Chapter 3

[49]

 close(fd_x);
 return 0;
}

The export function opens the /sys/class/gpio/export device file to create
requested GPIO pin device files as shown here:

int gpio_set_mode(int gpio_num, const char* mode) {
 //Device Direction File Path Declarations
 const char* gpio_direction_path =
"/sys/class/gpio/gpio%d/direction";
 //Device File Declarations
 int fd_d = 0, g_err = -1;
 //Buffers
 char pindirection_buf[MAX_BUF];
 char d_buf[BUF];
 //Set pin number and set gpio path
 if (sprintf(pindirection_buf, gpio_direction_path, gpio_num) <
0) {
 printf("Can't create pin direction file path\n");
 return g_err;
 }
 //Open GPIO Direction File
 fd_d = open(pindirection_buf, O_WRONLY);
 //If GPIO doesn't exist then export gpio pins
 if (fd_d < 0) {
 if (gpio_export(gpio_num) < 0) {
 return g_err;
 }
 fd_d = open(pindirection_buf, O_WRONLY);
 if (fd_d <= 0) {
 printf("Couldn't get direction File for pin %d\n",
gpio_num);
 return g_err;
 }
 }
 sprintf(d_buf, mode);
 if (write(fd_d, d_buf, sizeof(d_buf)) == g_err) {
 printf("Couldn't set direction for pin %d\n", gpio_num);
 return g_err;
 }
 close(fd_d);
 return 0;
}

Energy Management with Environmental and Electrical Sensors

[50]

The gpio_set_mode function sets the GPIO pin as input or output as requested.
For example, in order to set GPIO pin 38 as output, the function opens the /sys/
class/gpio/gpio38/direction file and writes out to file and then GPIO 38 will
start working to provide the following output:

int gpio_set_value(int gpio_num, int value) {
 //Device Direction File Path Declarations
 const char* gpio_value_path = "/sys/class/gpio/gpio%d/value";
 //Device File Declarations
 int fd_v = 0, g_err = -1;
 //Buffers
 char pinvalue_buf[MAX_BUF];
 char v_buf[BUF];
 //Set pin number and set gpio path
 if (sprintf(pinvalue_buf, gpio_value_path, gpio_num) < 0) {
 printf("Can't create pin direction file path\n");
 return g_err;
 }
 //Open GPIO Value File
 fd_v = open(pinvalue_buf, O_WRONLY);
 //If GPIO doesn't exist then export gpio pins
 if (fd_v < 0) {
 if (gpio_export(gpio_num) < 0) {
 return g_err;
 }
 fd_v = open(pinvalue_buf, O_WRONLY);
 if (fd_v <= 0) {
 printf("Couldn't get value File for pin %d\n", gpio_num);
 return g_err;
 }
 }
 sprintf(v_buf, "%d", value);
 if (write(fd_v, v_buf, sizeof(v_buf)) == g_err) {
 printf("Couldn't set value for pin %d\n", gpio_num);
 return g_err;
 }
 close(fd_v);
 return 0;
}

Chapter 3

[51]

The gpio_set_value function sets the value of GPIO as shown in the preceding
code. The function gets the GPIO value file and writes the given value to the device
file. As an example, for GPIO 38, the value file is stored at /sys/class/gpio/
gpio38/value, as shown here:

int gpio_get_value(int gpio_num) {
 //Device Direction File Path Declarations
 const char* gpio_value_path = "/sys/class/gpio/gpio%d/value";
 //Device File Declarations
 int fd_v = 0, g_err = -1;
 //Buffers
 char pinvalue_buf[MAX_BUF];
 char v_buf[BUF];
 //Set pin number and set gpio path
 if (sprintf(pinvalue_buf, gpio_value_path, gpio_num) < 0) {
 printf("Can't create pin direction file path\n");
 return g_err;
 }
 //Open GPIO Value File
 fd_v = open(pinvalue_buf, O_RDONLY);
 //If GPIO doesn't exist then export gpio pins
 if (fd_v < 0) {
 if (gpio_export(gpio_num) < 0) {
 return g_err;
 }
 fd_v = open(pinvalue_buf, O_RDONLY);
 if (fd_v <= 0) {
 printf("Couldn't get value File for pin %d\n", gpio_num);
 return g_err;
 }
 }
 if (read(fd_v, v_buf, 1) == g_err) {
 printf("Couldn't get value for pin %d\n", gpio_num);
 return g_err;
 }
 close(fd_v);
 return atoi(v_buf);
}

www.allitebooks.com

http://www.allitebooks.org

Energy Management with Environmental and Electrical Sensors

[52]

The gpio_get_value function is used to get the value of input mode GPIO.
When a GPIO is used as input and a high signal is given to the corresponding GPIO,
it will return as 1. This function simply gets the GPIO number and returns the value
for the user.

GPIO functions simply teach you how to work with device files in the Linux
operating system. When the protocol gets more complex, you will need to make
more configurations, but you will also be able to use open source Linux libraries
to read and write devices.

We also have two other functions to send or read bytes from GPIOs. The shiftOut
function helps us to write multiple bits at one time with the given directions and
the shiftIn function will help to read multiple bits as a byte, as shown here:

void shiftOut(uint8_t bitOrder, uint8_t val) {
 uint8_t i;
 for (i = 0; i < 8; i++) {
 if (bitOrder == LSBFIRST) {
 gpio_set_value(DATA_PIN, !!(val & (1 << i)));
 } else {
 gpio_set_value(DATA_PIN, !!(val & (1 << ((8 - 1 - i)))));
 gpio_set_value(CLOCK_PIN, HIGH);
 delayMicroseconds(80);
 gpio_set_value(CLOCK_PIN, LOW);
 }
 }
}
int shiftIn(int bit_order, int n_bits) {
 int ret = 0;
 int i;
 gpio_set_value(CLOCK_PIN, LOW);
 for (i = 0; i < n_bits; ++i) {
 gpio_set_value(CLOCK_PIN, HIGH);
 if (bit_order == LSBFIRST) {
 ret |= gpio_get_value(DATA_PIN) << i;
 } else {
 ret |= gpio_get_value(DATA_PIN) << n_bits - i;
 }
 delayMicroseconds(20);
 gpio_set_value(CLOCK_PIN, LOW);
 }
 return (ret);
}

Chapter 3

[53]

You may notice that there are functions to delay clock bit setting to get the sensor
ready. These functions are implemented with usleep function from the standard
C library.

As we have seen in the read_temperature function, first we send our command
and then wait until the data is ready for checking. If the data bit is set to 0, the
wait_for_result function does the checking. Then we retrieve the data as
shown in the following retrieve_data_SHT11 function:

void wait_for_result() {
 int ack;
 gpio_set_mode(DATA_PIN, INPUT);
 int i;
 for (i = 0; i < 100; i++) {
 delay(20);
 ack = gpio_get_value(DATA_PIN);
 if (ack == LOW) {
 printf("Sensor Data Ready\n");
 break;
 }
 }
 if (ack == HIGH) {
 perror("ACK error 2");
 }
}
int retreive_data_SHT11() {
 int16_t value;
 gpio_set_mode(DATA_PIN, INPUT);
 gpio_set_mode(CLOCK_PIN, OUTPUT);
//Read first 8 bits
 value = shiftIn(MSBFIRST, 8);
 //Shift 8 bit to right
 value *= 256;
 //Send Acknowledgment
 gpio_set_mode(DATA_PIN, OUTPUT);
 gpio_set_value(DATA_PIN, HIGH);
 gpio_set_value(DATA_PIN, LOW);
 gpio_set_value(CLOCK_PIN, HIGH);
 gpio_set_value(CLOCK_PIN, LOW);
 //Get MSB
 gpio_set_mode(DATA_PIN, INPUT);
 value |= shiftIn(MSBFIRST, 8);
 return value;
}

Energy Management with Environmental and Electrical Sensors

[54]

To read data from the sensor, we need to read the first 8 bits, send an
acknowledgment bit, and then read the last 8 bits to get 16-bit raw data. Since we
are reading bits in left-to-right order, we need to shift the first 8 bits to the left by 8.
You can do this either by multiplying by 256 or using the bitwise operator <<. After
reading the first 8 bits, we will read 1 bit and shift them to the left when the new bit
has been read. And finally, we will have 16-bit raw data to get the temperature or
relative humidity.

The skip_crc function sends three bits to skip the checksum.
We just want to get raw data quickly; if you install a real system,
you may want to use the sensor's checksum utility. Please refer
to the datasheet for this.

We have defined all the functions in the C file we created in the Eclipse project. It is
time to build and deploy it to Intel Galileo. After we deploy and run the application
from the command line or through Eclipse IDE, it will prompt the following output
with respect to the measured temperature:

root@clanton:~# ./thermometer

Temperature is 20.3 Centigrade

So, we have completed our first sample application, and we get the temperature of
the environment where the sensor is placed. By using the functions defined in this
section, we can implement the function to measure relative humidity as well.

We need to send the humidity measure command instead of the temperature
command using send_command_SHT11. Then, we need to calculate relative humidity
with the provided coefficient and equation from the sensor datasheet. The following
function can be used to read humidity values from the SHT11 sensor:

void read_humidity() {
 send_command_SHT11(measure_temperature);
 wait_for_result();
 int hum = retreive_data_SHT11();
 skip_crc();
 humidity = 0.0;
 humidity = -4.0 + (0.0405 * (float) hum)
 + (-0.0000028 * (float) hum * (float) hum);
}

Chapter 3

[55]

Within this section, we have worked with a sensor to produce our own thermometer.
Having temperature data is critical for decision-making while saving energy. Let's
say you have a remote plug connected to your heater; if the temperature value has
reached the degree you want, you can close the heater by turning off the wall plug
remotely. In the following section, we will look into remote switches and try to
control one remotely with Z-Wave controller.

Energy management with remote
switches
Remote switches are another key component required to automate your home.
A remote switch gives the ability to remotely switch on and switch off if the plugged
device is required to be open or closed. Some remote switches also have energy
meters on them that provide the amount of consumed energy to the user.

We have a remote wall plug from Fibaro that uses the Z-Wave protocol to
communicate. The Fibaro wall plug has a relay switch to turn it on/off and an
energy meter to provide a power consumption value. You can see the device in
the following image:

Energy Management with Environmental and Electrical Sensors

[56]

We will try to switch it on and off by sending basic commands through a Z-Wave
controller. We will use the Aeon Labs Z-Stick S2 USB adapter for our controller.
As Intel Galileo has a USB host port, we will connect the Z-Wave controller from
Intel Galileo's USB host. The Z-Wave USB adapter uses serial communication when
it's on a host device, and so we will implement a couple of C functions to create
communication with the device. You can see the USB adapter in the following image:

While we are trying to work with Z-Wave USB adapter, we will learn some new
features to work with Intel Galileo.

Z-Wave adapters need to include the device before you program it.
The inclusion steps for devices are covered in the device manuals.
Either you can read them from the paper provided in the product
box or you can access them from their official web sites.
The Aeon Labs Z-Stick S2 manual is available from here:
http://aeotec.com/z-wave-usb-stick/913-z-stick-
manual-instructions.html

The Fibaro wall plug manual is available from here: http://www.
fibaro.com/manuals/en/FGWPE_F-101-Wall-Plug/FGWPE_F-
101-Wall-Plug-en.pdf

The Aeon Labs Z-Stick requires the cp210x kernel module to be loaded to create
serial communication device: /dev/ttyUSB0.

http://aeotec.com/z-wave-usb-stick/913-z-stick-manual-instructions.html
http://aeotec.com/z-wave-usb-stick/913-z-stick-manual-instructions.html
http://www.fibaro.com/manuals/en/FGWPE_F-101-Wall-Plug/FGWPE_F-101-Wall-Plug-en.pdf
http://www.fibaro.com/manuals/en/FGWPE_F-101-Wall-Plug/FGWPE_F-101-Wall-Plug-en.pdf
http://www.fibaro.com/manuals/en/FGWPE_F-101-Wall-Plug/FGWPE_F-101-Wall-Plug-en.pdf

Chapter 3

[57]

Building kernel modules for Intel Galileo
We require the cp210x kernel module for our Intel Galileo image. In order to do
that, we will go to our build system with Yocto Project and build the cp210x kernel
module; we'll then install it into Intel Galileo using the following steps:

1. Go to the directory that you created for building the SD card image for Intel
Galileo. This is shown here:
$ cd /home/onur/galileo_build/meta-clanton_v1.0.1

2. We need to set up the environment variables again. If your terminal session
is still open from the first chapter, you don't need to rerun this command.
This is shown here:
$ source poky/oe-init-build-env yocto_build

3. Let's reconfigure kernel and pick the cp210x module to build. This is
shown here:
$ bitbake linux-yocto-clanton –c menuconfig

The last command will open the kernel configuration menu window for you.
In order to select cp210x module, select Device Drivers, USB Support, USB
Serial Converter Support and finally USB CP210x Family of UART from the
menu; save the configuration and exit.

4. Build the kernel module with the following command:
$ bitbake linux-yocto-clanton

The final command will build the module and create the installable package
in yocto_build/tmp/deploy/ipk/clanton directory named kernel-
module-cp210x_3.8-r0_clanton.ipk.

5. Copy the file to Intel Galileo; install and load the kernel module as
shown here:
$ scp kernel-module-cp210x_3.8-r0_clanton.ipk
root@192.168.2.88:/home/root

$ opkg install kernel-module-cp210x_3.8-r0_clanton.ipk

6. The final command will install the module to the /lib/modules/kernel/
drivers/usb/serial directory. Load module to Intel Galileo with
this command:

$ modprobe /lib/modules/kernel/drivers/usb/serial/cp210x

Energy Management with Environmental and Electrical Sensors

[58]

When you reboot, it won't load the module; if you want to
automatically load the module, edit the /etc/modules-load.
quark/galileo_gen2.conf file and add cp210x to the file.

Serial communication on Linux
Serial communication is a widely used protocol to receive and transfer bytes
from/to devices. For example, the 6-pin FTDI cable you've connected to your
Intel Galileo and your PC's USB host communicate using the RS232 serial protocol, to
send the keyboard data you entered on minicom and get the terminal output to your
device.

Most of the PC interfaces of home automation controllers use serial communication.
We will use the Aeon Labs Z-Stick, but there are other USB adapters that can be
found for use with Z-Wave devices.

The Insteon and EnOcean USB adapters are also available,
and can use serial communication as well. Refer to the Insteon
USB Interface here: http://www.insteon.com/2413U-
PowerLinc-USB.html.

First we need to set up the serial communication interface from our application.
We will continue with a new project only with this purpose in mind. First, we will
open the device file /dev/ttyUSB0 and then we will set the serial interface with a
1,15,200 baud rate, 8 data bits, 1 stop bit, and no parity bits. If this setting isn't done
right, the sent or received data will be corrupted.

We defined the function open_serial_device to get the device file and set the
device communication options as shown here:

int open_serial_device(const char* serial_device_path) {
 //Open Device File /dev/ttyUSB0
 int device_file = open(serial_device_path, O_RDWR | O_NOCTTY, 0);
 if (device_file < 0) {
 printf("Can't Open Serial Controller\n");
 return -1;
 }
struct termios options;
 int bits;
 bits = 0;
 ioctl(device_file, TIOCMSET, &bits);
 /**

http://www.insteon.com/2413U-PowerLinc-USB.html
http://www.insteon.com/2413U-PowerLinc-USB.html

Chapter 3

[59]

 * Get Current Options
 */
 tcgetattr(device_file, &options);
 //No Parity
 options.c_iflag = IGNPAR;
 options.c_iflag |= IGNBRK;
 //Set 8 Data bits
 options.c_cflag |= CS8 | CREAD | CLOCAL;
 options.c_oflag = 0;
 options.c_lflag = 0;
 int i;
 for (i = 0; i < NCCS; i++) {
 options.c_cc[i] = 0;
 }
 options.c_cc[VMIN] = 0;
 options.c_cc[VTIME] = 1;
 //Set Baudrate for Serial Communication
 cfsetspeed(&options, B115200);
 if (tcsetattr(device_file, TCSANOW, &options) < 0) {
 printf("Can't Set The Serial Device Parameters\n");
 } else {
 printf("Successfully Set the Serial Device Parameters\n");
 }
 //Flush the waiting bits/bytes
 tcflush(device_file, TCIOFLUSH);
 return device_file;
}

In the function, we first open the serial device file, then we request the current
options from system function tcgetattr and complete the settings to make the
device ready for communication.

Now, we will proceed to implement the methods to read and write bytes from/to
the serial device using the read_from_serial_device and write_to_serial_
device functions.

The following function writes bytes to the serial device and then checks whether
the bytes are written correctly:

int write_to_serial_device(int device_file, uint8_t buffer[], int
length) {
 int i = 0;
 int count = 0;
 printf("Writing: ");
 while (count < length) {
 if (write(device_file, &buffer[count], 1) == 1) {

Energy Management with Environmental and Electrical Sensors

[60]

 printf("0x%x ", buffer[count]);
 count++;
 } else {
 printf("\n Can't Write Byte\n");
 break;
 }
 }
 if (count == length) {
 printf("\nWrite Successful\n");
 return count;
 } else {
 printf("\nCan't Write All Frame to Serial Device\n");
 return -1;
 }
}

The following function read bytes from the serial device:

int read_from_serial_device(int device_file, uint8_t *data) {
 int bytesRead;
 uint8_t buffer[256];
 //Read Data From Serial Device to Buffer
 bytesRead = read(device_file, buffer, sizeof(buffer));
 //Print Bytes
 data = malloc(sizeof(uint8_t) * bytesRead);
 if (bytesRead > 0) {
 int i = 0;
 printf("Received: ");
 for (; i < bytesRead; i++) {
 data[i] = buffer[i];
 printf("0x%x, ", data[i]);
 }
 printf("\n");
 }
 return bytesRead;
}

Controlling a remote wall plug from
Intel Galileo
So we have implemented the required functions for serial communication. In order
to communicate correctly with the Z-Wave controller, we need to learn basic Z-Wave
commands to get and set values from/to the remote wall plug. We will obtain help
from open source projects to get information about Z-Wave communication.

Chapter 3

[61]

In the following sample, we will only use basic commands to switch on/off and
read energy meter value from the Fibaro wall plug. We will not parse the raw data
received from the Z-Wave controller. In the following chapter, we will parse the
received values and create a more automated application by bringing together
the blocks.

Basically, the Z-Wave controller creates a home network and generates a number
(or a home ID) for that. In this way, it isolates your devices from any other controller
to reach out and give a number for each of the devices or nodes added, starting from
2. The first node is the controller itself.

The following function is the main function that is used to simply get power
information from the wall plug. We create a thread to read the received data
while we send data to the controller.

void* reader_thread(void *arg) {
 while (1) {
 read_from_serial_device();
}
 return NULL;
}
int main(int argc, char* argv[]){
//Open Aeon Stick Z-Wave
 device_file = open_serial_device(SERIAL_DEVICE);
 if (device_file < 0) {
 return EXIT_FAILURE;
 }
 //Create Thread
 pthread_t reader;
 int err = pthread_create(&reader, NULL, &reader_thread, NULL);
 if (err != 0) {
 close_serial_device();
 printf("Can't create Thread\n");
 return -1;
 }
uint8_t get_energy_meter[] = { 0x01, 0x0a, 0x00, 0x13, 0x03, 0x03,
0x32, 0x01, 0x00, 0x25, 0x16, 0xe6 };
 //Send Energy Meter Value
 write_to_serial_device(get_energy_meter, 12);
if (pthread_join(reader, NULL)) {
 fprintf(stderr, "Error joining thread\n");
 return 2;
 }
 close_serial_device(device_file);
 return EXIT_SUCCESS;
}

Energy Management with Environmental and Electrical Sensors

[62]

In this sample, we have a Z-Wave command to send to the corresponding node and
Fibaro wall plug to receive energy readings as raw values. In this command, the first
four bytes form the home ID, the fifth byte forms the node ID or device ID assigned
by the controller, then we have the command code and address, and finally the
checksum of the bytes.

When we build and run the application, we will have the following outputs. The first
received byte is an acknowledgment and then the next 18 bytes are for data.

root@clanton:~# ./zwave-galileo

Writing: 0x1 0xa 0x0 0x13 0x3 0x3 0x32 0x1 0x0 0x25 0x16 0xe6

Write Successful

Received 1 Bytes: 0x6

Received 18 Bytes: 0x1 0x10 0x0 0x4 0x0 0x3 0xa 0x32 0x2 0x21 0x44
0x0 0x0 0x0 0x33 0x0 0x0 0x84

Communication with remote Z-Wave devices is being handled with similar
messages sent to the controller. For example, in order to query the controller for
the home ID and device ID, you can send "0x1 0x3 0x0 0x20 0xdc" bytes to get 10
bytes of data, four bytes (the fifth to eighth bytes), the home ID, and the ninth byte
to represent the node ID of the controller. Some common messages used to get data
from the serial controller are listed in the following table:

Message sent Message task
0x1 0x3 0x0 0x20 0xdc Requests the home ID and node ID from Z-Wave

controller.
0x01, 0x03, 0x00, 0x15, 0xe9 Requests the Z-Wave version of the serial controller.
0x01, 0x03, 0x00, 0x07, 0xfb Requests the capabilities of the serial controller. The serial

API version, manufacturer ID, product type, and product
ID can be learned from this message.

0x01, 0x03, 0x00, 0x02, 0xfe Requests initial data from the serial controller. Responses
includes information about devices included in the device.

You can follow up with Z-Wave messages (frames) with open source projects for
more information on this.

The following wiki page shows the Z-wave command classes:
http://wiki.micasaverde.com/index.php/ZWave_
Command_Classes

http://wiki.micasaverde.com/index.php/ZWave_Command_Classes
http://wiki.micasaverde.com/index.php/ZWave_Command_Classes

Chapter 3

[63]

Summary
During the course of this chapter, we have tried to develop two simple applications.
First, we have gone over all the C application development steps for a temperature
sensor and talked about the importance of temperature data in home automation.
We also measured relative humidity from the sensor, which it already calculates.

Then we discussed remote switches and tried to work on a device that exists in the
market. In order to work on this remote switch, we included a controller sensor
to communicate via the serial protocol with Intel Galileo. In order to make our
application work with serial devices, we learned about building kernel modules
for new devices attached to Intel Galileo.

Finally, we implemented functions to help us send and receive data from the serial
Z-Wave controller and tried our samples to control energy consumption values from
the remote wall plug.

In the next chapter, we will cover more on remote switches, that control light bulbs
and lamp holders, and get more information on handling basic Z-Wave messages.
While covering new devices, we will make our application more automated by
adding threading capabilities.

[65]

Energy Management with
Light Sensors and Extending

Use Cases
We will follow on from the previous chapter with some new home automation
devices and sensors, which are usable with Intel Galileo, and are related to energy
management. In this chapter, we will try to focus on the lighting of our home. We'll
check out some existing devices which you can use with Intel Galileo.

While finalizing the previous chapter, we made an introduction to the process of
sending and receiving commands to Z-Wave devices with a USB controller; here,
we will get into more detail about the use of Z-Wave commands.

Using light sensors
Light sensors are used to measure the current intensity of light in the ambient
environment. Light intensity is measured in lumen units depending on the sensor
and the amount of light emitted by the source. Lux is also used to indicate the light
amount in the environment Lux means the luminous flux per unit area, which is
equal to one lumen per square meter. For example, when there is full daylight, the
amount of light is around 10000-25000 Lux. During full moon days, the amount of
light is around 0.267 Lux.

Light intensity data can help you to automate your lighting system to switch it on
or off. Switching off light automatically with your home automation system, where
light intensity is high enough to see, will save energy. You can also create your own
luminance data table and use it to automate your application to regulate when to
switch lights on or off.

Energy Management with Light Sensors and Extending Use Cases

[66]

There are many sensors compatible with the Intel Galileo pinout. You can either
use photocells or digital light sensors to make your circuit with Intel Galileo and
implement your application to measure the illumination of the environment.

The following figure shows a photocell. Photocells act as resistors when the current
light intensity that increases resistance would decrease on the photocell and you
would start to read high voltages from the Intel Galileo analog pins.

The next figure shows a digital light sensor manufactured by Adafruit. Adafruit
TSL2561 uses the I2C protocol to communicate with Intel Galileo. In order to get
the luminance value of your environment, you need to connect the sensor to Intel
Galileo's corresponding pins for I2C and start reading.

More information about the Adafruit sensor can be found at the
following link: http://www.adafruit.com/product/439

You can find many other sensors available to use with Intel Galileo. Lighting sensors
provide you with useful data to save energy to automate your lighting system.

http://www.adafruit.com/product/439

Chapter 4

[67]

Smart light bulbs
There is an increasing trend of using new wireless light bulbs for home appliances.
There are many light bulbs available that use Zigbee, Z-Wave, Bluetooth 4.0, and
other home automation protocols. Some of the light bulbs only allow remote
switching on and switching off; some allow remote dimming of the light intensity
of the bulb. New LED Light Bulbs also allow you to set the color of the light bulb
by sending the RGB value to the light bulbs.

Using Philips Hue with Intel Galileo
One of the most popular wireless light bulb systems is Philips Hue. The Philips Hue
system includes a bridge and remote led bulbs. The Philips Hue bridge connects
with a home network to allow the user to manage light bulbs via a local network
connection. Philips Hue bulbs use the Zigbee Light Link protocol, and the Philips
Hue bridge controls the bulbs.

Philips provides software development kits for users to access the bridge and control
light bulbs with REST API. Official SDKs and tools are provided for iOS, OS X, and
Java platforms, but third-party developers ported SDK for many other platforms
such as Node.js, ActionScript, Bash Script, Qt, C++, C#, Go, Perl, PHP, Python,
and so on.

You can access the Philips Hue developer website at the following link:
http://www.developers.meethue.com/.

The Intel Galileo Linux image that we have created does support Node.js, Python,
Bash Scripts, and so you can pick any of them to start developing an application for
Philips Hue on your Intel Galileo.

Extending a home automation system
with lighting control
We looked at lighting sensors and devices used for home automation. Let's go
back to our home automation application to extend its use cases by connecting
our Z-Wave wall plug to a desk lamp and using a Z-Wave lamp holder to read
illumination values from a remote Z-Wave sensor.

http://www.developers.meethue.com/

Energy Management with Light Sensors and Extending Use Cases

[68]

In the previous chapter, we just made a brief introduction to using Z-Wave devices
with a Z-Wave USB controller. During the course of this chapter, we will learn more
about Z-Wave commands and how to control lighting devices from our Z-Wave
USB controller.

The following picture shows our new device, a Z-Wave lamp holder produced by
Everspring. We have included it in the Z-Wave network, as defined in the previous
chapter, and we will add the ability to switch on and switch off the device remotely
from Intel Galileo.

Our next circuit is a desk lamp attached to a Z-Wave wall plug from Fibaro. We
have already included the device in our Z-Wave network. We will add the ability
to switch on and off the desk lamp remotely from our application.

Chapter 4

[69]

The last device in the following image includes multiple sensors produced by Philio
which are a temperature sensor, illumination sensor, door/window sensor, and a
motion sensor. In this chapter, we will try to only obtain illumination from a sensor.
In the following chapter, we will use the motion and door/window sensor ability for
security appliances.

Energy Management with Light Sensors and Extending Use Cases

[70]

Continuing to home automation application
development
In the previous chapter, we developed a simple application to read temperature
and humidity values from an SHT11 sensor. We will use the functions from that
application in our new application. You can start a new project from Eclipse or edit
the previous ones.

Before proceeding, let's create new sources to increase the code reuse if needed. First,
let's create our own GPIO library for basic functionality. In order to do that, we have
added the galileo_gpio.h and galileo_gpio.c files to our project and copied our
previously implemented functions into the galileo_gpio.c file; we also copied the
function signatures to the galileo_gpio.h file and our header file looked like this:

#ifndef GALILEO_GPIO_H_
#define GALILEO_GPIO_H_
//GPIO VALUES
#define HIGH 1
#define LOW 0
#define INPUT "in"
#define OUTPUT "out"
//GPIO BUFFER
#define BUF 8
#define MAX_BUF 256
int gpio_set_value(int gpio_num, int value);
int gpio_set_mode(int gpio_num, const char* mode);
int gpio_export(int gpio_num);
int gpio_get_value(int gpio_num);
#endif /* GALILEO_GPIO_H_ */

This will enable us to use these functions for any new interaction with sensors
previously mentioned and reuse the code. You can create or export any other
libraries for your use to your project folder.

Then we created the thermometer.c source and the thermometer.h files to our
project to define the thermometer code as a separate module. The defined function
signatures in the thermometer.h file and header file will look like this:

#ifndef THERMOMETER_H_
#define THERMOMETER_H_
#include <stdint.h>
#define LSBFIRST 0
#define MSBFIRST 1
#define DATA_PIN 38 //IO 7
#define CLOCK_PIN 40 //IO 8
int shiftIn(int bit_order, int n_bits);

Chapter 4

[71]

void shiftOut(uint8_t bitOrder, uint8_t val);
void delay(unsigned long ms);
void delayMicroseconds(unsigned int us);
float read_humidity();
float read_temperature();
void skip_crc();
#endif /* THERMOMETER_H_ */

And finally, we will create serial.c and serial.h files for serial communication
with our Z-Wave USB adapter. We have made some little changes to our function
signatures to make them reusable for other classes in our project. The preceding
changes will give us the ability to make a more modular design and add many more
features easily. The serial.h header file will be like this:

#ifndef SERIAL_H_
#define SERIAL_H_
#include <stdint.h>
int open_serial_device(const char* serial_device_path);
int close_serial_device(int device_file);
int read_from_serial_device(int device_file, uint8_t* data);
int write_to_serial_device(int device_file, uint8_t buffer[], int
 length);
#endif /* SERIAL_H_ */

Following the application, we will use very basic Z-Wave messages to handle
messages from devices and control them. In order to interact with the device, we
will implement a very basic terminal user interface, as follows, to read from stdin
to execute the command. As we described in the previous section, we still keep our
reader thread to handle incoming messages continuously. Our simple user interface
is shown here. We will develop better interfaces in later chapters.

root@clanton:~/apps# ./smart_home

Successfully Set the Serial Device Parameters

Starting Home Manager

1 : Show Current Temperature

2 : Show Current Relative Humidity

3 : Get Current Status of Lamp Holder

4 : Switch On Lamp Holder

5 : Switch Off Lamp Holder

6 : Get Current Status of Wall Plug

7 : Switch On Wall Plug

8 : Switch Off Wall Plug

9 : Get Current Power Consumption

Energy Management with Light Sensors and Extending Use Cases

[72]

10: Get Energy Consumption

11: Get Power Level of Wall Plug

12: Get Power Level of Lamp Holder

13: Get Luminance of Environment

14: Quit

Enter Command to Execute:

The preceding command is our smart home application's user interface. The first
two commands will call read_temperature and read_humidity functions from the
first sample application developed with the SHT11 sensor, and so the SHT11 sensor
should be connected to Intel Galileo. Other commands execute a simple command
to manage remote Z-Wave devices.

Understanding Z-Wave commands
In the previous chapter, we executed a command but didn't look into any details.
The message in Z-Wave can be more complex, but we will only look into the basic
ones, which will help us to switch the wall plug and lamp holder on and off.

Z-Wave commands are a list of bytes, each of which indicates a specific value for a
message type. Z-Wave messages read or sent to a serial controller start with 0x01,
0x06, 0x15, and 0x18. If the first value is 0x01, it shows the start of the message. If
the received message from the serial controller is 0x06, it is an acknowledgment
that the message is received. If it is 0x18, it means the message can't send and so it
notifies you to resend a message. Let's continue with the following simple Switch ON
message in the table.

An example of Switch OFF message for Lamp Holder device to send a Z-Wave serial
controller is this: 0x01, 0x0A, 0x00, 0x13, 0x04, 0x03, 0x25, 0x01, 0x00, 0x25, 0x01, 0x00.

Message Byte Byte Translation
0x01 This indicates the start of the Z-Wave message.
0x0A In this message, there are 10 more bytes after the second byte; this is the

message length after the second byte.
0x00 This byte defines the type of message, and it is a request. If the message

is responded to, it would be 1.
0x13 This defines the function of this message, which means we want to send

data to the corresponding device. 0x13 is a constant value.
0x04 This byte shows the corresponding device's ID. The lamp holder ID is 4.

Chapter 4

[73]

Message Byte Byte Translation
0x03 This byte shows the data length. The following three bytes define the

operation or requested action from the device. This byte would be bigger
if we wanted to set temperature value on a thermostat; in this case, we
only send binary data to switch the lamp holder on or off.

0x25 This defines the command type. 0x25 corresponds to the binary switch
operation. Other commands are defined later in the section.

0x01 This shows whether we will set the value of switch or get the value of
switch. 1 indicates that we will set the switch. If it is 0, the device will
respond with the status of the switch and the following byte will not be
in this message.

0x00 This byte indicates what value we want to set for the switch. 0 means
that we will switch it off; 1 means we'll switch it on.

0x25 This byte indicates the transmit type to the corresponding device. 0x25
indicates to send a message to the indicated node directly.

0x01 This byte is the message identification assigned by the user or program;
it is the callback ID of the message.

0x00 This byte should be generated later; this is a checksum value. In the
following section, the calculation of the checksum value will be shown.

The first byte shows the start of the message as we've already described. The second
byte is the number of bytes in the rest of the message. 0x0A means that there are 10
more bytes following this.

The third byte represents the message type, which means either respond or request.
If it is a request, we place 0x00, and if it is a response, it is 0x01. The fourth byte
represents a message function; 0x13 is the value for sending data to the serial
controller.

The fifth byte in our example shows the node ID number in the Z-Wave controller.
The Z-Wave controller automatically increases the node ID number when devices
are included. In our example in this book, we first added the Philip multisensor, and
so 0x02 is the multisensor device. 0x03 is the wall plug and 0x04 is the lamp holder.
0x01 is assigned to the Aeon Z-Wave controller.

After the node ID byte, 0x03 shows the length of the command to be executed by the
remote device. So following 0x03 after the node ID, the three bytes are the command,
which will be executed by the remote device.

Energy Management with Light Sensors and Extending Use Cases

[74]

After the command length information, the seventh byte shows the command class,
which defines the type of action that the device needs to take and the type of value
we have received. The following table shows some simple command classes and
their values, which we will use in our example:

Command classes Values Description
COMMAND_CLASS_BASIC 0x20 Set and get basic data
COMMAND_CLASS_SWITCH_ALL 0x27 Switch on and off
COMMAND_CLASS_SWITCH_BINARY 0x25 Binary switch on and off
COMMAND_CLASS_METER 0x32 Receive or request meter values
COMMAND_CLASS_ALARM 0x71 Alarm data to broadcast
COMMAND_CLASS_POWERLEVEL 0x73 Power level of device
COMMAND_CLASS_BATTERY 0x80 Battery level of device
COMMAND_CLASS_SENSOR_BINARY 0x30 Binary sensor like motion sensor, if

there is motion or not
COMMAND_CLASS_SENSOR_
MULTILEVEL

0x31 Sensor representing more than a
binary value like a temperature sensor

COMMAND_CLASS_SENSOR_
MULTILEVEL_V2

0x31 Similar to the previous command
class

COMMAND_CLASS_SENSOR_ALARM 0x9C When sensor raises an alarm

These commands classes can only be used in the devices which support them. If
you send a node a command including battery and if it doesn't have a battery, there
won't be any response. Basically, commands are usually used to get the status of the
device if the latter is online and in the network. Almost all device manuals include
information about supported command classes for the device, and so you can check
your device's manual to see what command classes you can use it with.

More details and more command classes can be learned from open source
projects such as OpenZWave, LinuxMCE, or the RaZberry project. The
following links are great reading material to get more information about
Z-Wave commands:

• https://github.com/yepher/RaZBerry

• http://wiki.micasaverde.com/index.php/ZWave_
Command_Classes

• http://wiki.zwaveeurope.com/index.php?title=Z-
Wave_Application_Layer

You can also check Z-Wave SDK from Z-Wave Alliance for more
information at the following link:
http://z-wavealliance.org/z-wave-oems-developers/

https://github.com/yepher/RaZBerry
http://wiki.micasaverde.com/index.php/ZWave_Command_Classes
http://wiki.micasaverde.com/index.php/ZWave_Command_Classes
http://wiki.zwaveeurope.com/index.php?title=Z-Wave_Application_Layer
http://wiki.zwaveeurope.com/index.php?title=Z-Wave_Application_Layer
http://z-wavealliance.org/z-wave-oems-developers/

Chapter 4

[75]

The following command class value is in the message; there is a byte for the
operation type if it is for setting a value in the remote device or requesting a report.
0x01 defines a setting operation and 0x02 is for getting information from a device. As
we want to switch off the device, we need to send the switch off value. The switch off
value is 0x00, and the switch on value is 0xFF for binary switches.

Finally, there is a transmitting type value 0x25 defined for Aeon Stick. It follows with
a callback ID, which you can check from the received messages, that the message has
been received by the device. Finally, the checksum value is appended in the message
buffer. All messages have a checksum value at the last byte.

It will be clearer while we proceed on our example coding while trying to manage
the appliances at home from Intel Galileo.

Handling Z-Wave messages from Intel Galileo
In order to send and receive Z-Wave messages to/from Z-Wave USB adapter,
message classes have been defined. The message.c and message.h files are created
to store functions that create messages to send and parse the incoming messages. We
have also defined the necessary values to be used in the function in the message.h
header file, which are shown next:

#ifndef MESSAGE_H_
#define MESSAGE_H_
#include <stddef.h>
#include <stdint.h>
#define BUFFER 256
#define REQUEST 0x00
#define RESPONSE 0x01
#define BASIC_SET 0x01
#define BASIC_REPORT 0x03
#define COMMAND_CLASS_CONTROLLER_REPLICATION 0x21
#define COMMAND_CLASS_APPLICATION_STATUS 0x22
#define COMMAND_CLASS_HAIL 0x82
#define TRANSMIT_OPTION 0x25
#define ControllerNodeID 0x01
#define MultiSensorNodeID 0x02
#define WallPlugNodeID 0x03
#define LampHolderNodeID 0x04
/*
 * Message Type
 */
typedef enum ZWAVE_MESSAGE_TYPE {

Energy Management with Light Sensors and Extending Use Cases

[76]

 SOF = 0x01, ACK = 0x06, NAK = 0x15, CAN = 0x18,
 } MESSAGE_TYPE;
/*
 * Message Function
 */
enum FUNCTION {
 SEND_DATA = 0x13, RESPONSE_RECEIVED = 0x04
};
/*
 * Multilevel Sensor Type
 */
enum SENSOR_TYPE {
 TEMPERATURE_SENSOR = 0x01, LUMINANCE_SENSOR = 0x03, POWER_SENSOR
 = 0x04
};
/*
 * Binary Sensor Value
 */
enum BINARY_SENSOR_VALUE {
 ON = 0xFF, OFF = 0x00,
};
/*
 * Sensor Message Types
 */
enum SENSOR_COMMANDS {
 BINARY_SET = 0x01,
BINARY_GET = 0x02,
BINARY_REPORT = 0x03, // Response to the Get Command
 MULTILEVEL_GET = 0x04,
 MULTILEVEL_REPORT = 0x05
};
/*
 * Energy Meter Message Types
 */
enum ENERGY_METER_COMMANDS {
 METER_GET = 0x01,
 METER_REPORT = 0x02,
 METER_SUPPORTED_GET = 0x03,
 METER_SUPPORTED_REPORT = 0x04,
 METER_RESET = 0x05
};
/*
 *WALL Plug Meter Type
 */

Chapter 4

[77]

#define ENERGY 0x00
#define POWER 0x10
/*
 * ZWave Command Classes
 */
enum ZWAVE_COMMAND_CLASS {
 COMMAND_CLASS_NO_OPERATION = 0x00,
 COMMAND_CLASS_BASIC = 0x20,
 COMMAND_CLASS_SWITCH_ALL = 0x27,
 COMMAND_CLASS_SWITCH_BINARY = 0x25,
 COMMAND_CLASS_METER = 0x32,
 COMMAND_CLASS_ALARM = 0x71,
 COMMAND_CLASS_POWERLEVEL = 0x73,
 COMMAND_CLASS_BATTERY = 0x80,
 COMMAND_CLASS_SENSOR_BINARY = 0x30,
 COMMAND_CLASS_SENSOR_MULTILEVEL = 0x31,
 COMMAND_CLASS_SENSOR_MULTILEVEL_V2 = 0x31,
 COMMAND_CLASS_SENSOR_ALARM = 0x9C
};
/*
 * Functions to Handle Messaging
 */
uint8_t generate_checksum(uint8_t buffer[], int length);
int parse_incoming_mesage(uint8_t* message, int length);
int handle_incoming_message(int serial_device, uint8_t message[],
 int length);
int binary_switch_on_off(int serial_device, uint8_t nodeID,
 uint8_t on_off,uint8_t callbackID);
int get_meter_level(int serial_device, uint8_t nodeID, uint8_t
 type,
 uint8_t callbackID);
int get_binary_switch_status(int serial_device, uint8_t nodeID,
 uint8_t callbackID);
int get_node_power_level(int serial_device, uint8_t nodeID,
 uint8_t callbackID);
int get_luminance_value(int serial_device, uint8_t nodeID, uint8_t
 sensor_type,uint8_t callbackID);
#endif /* MESSAGE_H_ */

We have defined all the necessary functions and constants for use in the application.
In our main function, we will continue to use the reader thread as in the previous
chapter, but we will make the thread also handle incoming messages to Intel Galileo.

void* reader_thread(void *arg) {
 while (1) {
 uint8_t data[256];
 int m_length = read_from_serial_device(device_file, data);

Energy Management with Light Sensors and Extending Use Cases

[78]

 if (m_length > 0) {
 handle_incoming_message(device_file, data, m_length);
 }
 }
}

The commands will be handled with a switch that picks the right function to call
and execute a command. As shown in following code snippet, the main function
reads the user input and sends it to the execute_command function to start the
required function:

int main(int argc, char* argv[]) {
 //Open Serial Device
 device_file = open_serial_controller(serial_device_path);
 if (device_file < 0) {
 printf("Can't Open Serial Device %s", serial_device_path);
 return EXIT_FAILURE;
 }
 int err = pthread_create(&reader, NULL, &reader_thread, NULL);
 if (err != 0) {
 close_serial_controller(device_file);
 printf("Can't create Thread\n");
 return -1;
 }
 printf("Starting Home Manager\n");
 int choice = 0;
 user_menu();
 while (choice != 14) {
 printf("Enter Command to Execute:");
 scanf("%d", &choice);
 execute_command(choice);
 }
 if (pthread_join(reader, NULL)) {
 fprintf(stderr, "Error joining thread\n");
 return 2;
 }
 close_serial_device(device_file);
 return EXIT_SUCCESS;
}

void execute_command(int choice) {
 switch (choice) {
 case 1:
 printf("Current Temperature is: %f Celcius\n",
 read_temperature());

Chapter 4

[79]

 break;
 case 2:
 printf("Current Temperature is: %f Celcius\n",
 read_humidity());
 break;
 case 3:
 get_binary_switch_status(device_file, LampHolderNodeID, 1);
 break;
 case 4:
 binary_switch_on_off(device_file, LampHolderNodeID, ON, 2);
 break;
 case 5:
 binary_switch_on_off(device_file, LampHolderNodeID, OFF, 3);
 break;
 case 6:
 get_binary_switch_status(device_file, WallPlugNodeID, 4);
 break;
 case 7:
 binary_switch_on_off(device_file, WallPlugNodeID, ON, 5);
 break;
 case 8:
 binary_switch_on_off(device_file, WallPlugNodeID, OFF, 6);
 break;
 case 9:
 get_meter_level(device_file, WallPlugNodeID, POWER, 7);
 break;
 case 10:
 get_meter_level(device_file, WallPlugNodeID, ENERGY, 8);
 break;
 case 11:
 get_node_power_level(device_file, WallPlugNodeID, 9);
 break;
 case 12:
 get_node_power_level(device_file, LampHolderNodeID, 10);
 break;
 case 13:
 get_luminance_value(device_file, MultiSensorNodeID,
 LUMINANCE_SENSOR, 11);
 break;
 case 14:
 printf("Quitting.....");
 break;
 default:
 break;
 }}

Energy Management with Light Sensors and Extending Use Cases

[80]

Reading the status of remote devices from
Intel Galileo
Let's start with requesting the current status of the wall plug and the lamp holder
from Intel Galileo. When we request the status, the following function will be
executed:

int get_binary_switch_status(int serial_device, uint8_t nodeID,
 uint8_t callbackID) {
 int message_length = 11;
 uint8_t checksum = 0x00;
 uint8_t message_buffer[] = { SOF, 0x09, REQUEST, SEND_DATA,
 nodeID, 0x02, COMMAND_CLASS_SWITCH_BINARY, BINARY_GET,
 TRANSMIT_OPTION, callbackID, checksum };
 checksum = generate_checksum(message_buffer, message_length);
 message_buffer[message_length - 1] = checksum;
 return write_to_serial_device(serial_device, message_buffer,
 message_length);
}

We send the serial device file, node ID, and callback ID parameter to the function
and create the message with COMMAND_CLASS_SWITCH_BINARY and BINARY_GET to
receive the status of the device. This message length is 11 bytes as we are not setting
any value and just making a status request. The following is the output received
when we request the status of the lamp holder:

Enter Command to Execute: 3
Writing: 0x1 0x9 0x0 0x13 0x4 0x2 0x25 0x2 0x25 0x1 0xe0
Write Successful
Enter Command to Execute:Received: 0x6
ACK Received
Writing: 0x6
Write Successful
Received: 0x1 0x4 0x1 0x13 0x1 0xe8
Data Sent to ZWave Stack
Received: 0x1 0x5 0x0 0x13 0x1 0x0 0xe8
Data Request with Callback ID 0x1 Received
Received: 0x1 0x9 0x0 0x4 0x0 0x4 0x3 0x25 0x3 0xff 0x2c
Response From Lamp Holder Node Received: Status of Device is ON

Let's parse the received message. The first byte is 0x1, which is the start of the message.
0x9 is the length of the rest. The Node ID is the sixth byte, which is the lamp holder
node ID. The next byte is 0x3, which shows the length of the command. If the 0x25
command class is received, we have 0x3, which means the report from the sensor.
Finally, we have the 0xff value to indicate the status of the device, which is on here.

Chapter 4

[81]

Switching the lamp holder on/off with
Intel Galileo
Let's switch off the lamp holder and then check its status. We will execute the
function given below. The following message is similar to the one we examined
in the previous chapter:

int binary_switch_on_off(int serial_device, uint8_t nodeID,
 uint8_t on_off,
 uint8_t callbackID) {
 int message_length = 12;
 uint8_t checksum = 0x00;
 uint8_t message_buffer[] = { SOF, 0x0a, REQUEST, SEND_DATA,
 nodeID, 0x03,
 COMMAND_CLASS_SWITCH_BINARY, BINARY_SET, on_off,
 TRANSMIT_OPTION, callbackID, checksum };
 checksum = generate_checksum(message_buffer, message_length);
 message_buffer[message_length - 1] = checksum;
 return write_to_serial_device(serial_device, message_buffer,
 message_length);
}

When we execute the command, we need to send this function the node ID, the on or
off value at that time, and the callback ID. The execution is shown next:

Enter Command to Execute: 5
Writing: 0x1 0xa 0x0 0x13 0x4 0x3 0x25 0x1 0x0 0x25 0x3 0xe3
Write Successful
Enter Command to Execute: Received: 0x6
ACK Received
Writing: 0x6
Write Successful
Received: 0x1 0x4 0x1 0x13 0x1 0xe8
Data Sent to ZWave Stack
Received: 0x1 0x5 0x0 0x13 0x3 0x0 0xea
Data Request with Callback ID 0x3 Received
Enter Command to Execute:3
Writing: 0x1 0x9 0x0 0x13 0x4 0x2 0x25 0x2 0x25 0x1 0xe0
Write Successful
Enter Command to Execute: Received: 0x6
ACK Received
Writing: 0x6
Write Successful
Received: 0x1 0x4 0x1 0x13 0x1 0xe8
Data Sent to ZWave Stack

Energy Management with Light Sensors and Extending Use Cases

[82]

Received: 0x1 0x5 0x0 0x13 0x1 0x0 0xe8
Data Request with Callback ID 0x1 Received
Received: 0x1 0x9 0x0 0x4 0x0 0x4 0x3 0x25 0x3 0x0 0xd3
Response From Lamp Holder Node Received: Status of Device is OFF

After we execute the command, we get ACK from the controller and command
callback ID, which shows that our message transmitted successfully.

Handling incoming messages
As we've seen in the terminal output, we have parsed the incoming messages. It is
not easy to handle messages, but we need to check each command class to decide
what value has been received to the Z-Wave controller.

We can simply identify the fourth byte for what type of value is received. If it is
0x04, we know that a sensor has sent a message or response. Then we know that we
need to check the sixth byte to check the node ID. It follows with the length of the
command, command class, length of value, and the sensor or device value. A very
basic parsing of a received message from the binary switch or a multilevel sensor is
given here:

uint8_t length_of_rest = message[1];
uint8_t message_type = message[2];
uint8_t message_function = message[3];
uint8_t data_length = message[6];
uint8_t command_class = message[7];
if (message_function == RESPONSE_RECEIVED) {
 printf("Response From ");
 if (message[5] == MultiSensorNodeID) {
 printf("Multi Sensor Node Received: ");
 } else if (message[5] == WallPlugNodeID) {
 printf("Wall Plug Node Received: ");
 } else if (message[5] == LampHolderNodeID) {
 printf("Lamp Holder Node Received: ");
} }
if (command_class == COMMAND_CLASS_SWITCH_ALL) {
printf("Status of Device is ");
 if (message[9] == OFF) {
 printf("OFF\n");
 } else if (message[9] == ON) {
 printf("ON\n");
} else if (command_class == COMMAND_CLASS_SENSOR_MULTILEVEL_V2) {
 if (message[8] == MULTILEVEL_REPORT) {
 if (message[9] == TEMPERATURE_SENSOR) {

Chapter 4

[83]

 printf("Temperature Value is %d Fahreneit\n", message[12]);
 } else if (message[9] == LUMINANCE_SENSOR) {
 printf("Illumination is %d % \n", message[11]);}}}

The Philio multisensor reports when there is a change in any of the sensors. Let's
hold our desk lamp directly to the Philio multisensor to measure luminance and
then let's switch off the wall plug with command 8. Now, read the luminance
value change:

Received: 0x1 0xb 0x0 0x4 0x0 0x2 0x5 0x31 0x5 0x3 0x1 0x5a 0x9b
Response From Multi Sensor Node Received: Illumination is 90%
Enter Command to Execute: 8
Received: 0x6
ACK Received
Writing: 0x6
Write Successful
Received: 0x1 0x4 0x1 0x13 0x1 0xe8
Data Sent to ZWave Stack
Received: 0x1 0x5 0x0 0x13 0x6 0x0 0xef
Data Request with Callback ID 0x6 Received
Received: 0x1 0xb 0x0 0x4 0x0 0x2 0x5 0x31 0x5 0x3 0x1 0x5 0xc4
Response From Multi Sensor Node Received: Illumination is 5%

These kinds of sensor data are very useful to automate your home. You can add the
logic to your application to switch off the light if the illumination received is more
than 20 percent or switch it on if it is less than 5 percent according to this sensor.

Summary
In this chapter, we tried to cover devices and sensors related to lighting and light
intensity measurement and their use in the Linux application running on Intel Galileo.

In the first part, we looked into the sensors compatible with Intel Galileo, which may
help you obtain light intensity measurement and use the data for your home. Then
we followed up with remote light bulbs and mentioned the popular ones such as
Philips Hue and its SDKs, which are compatible with Intel Galileo.

Remote light bulbs are getting more popular by the day with other protocols,
especially with the Zigbee Light Link protocol. With the information given in this
chapter, you should have an idea on how to automate your lighting system. We set
up some basic circuits to show the usage. We connected our remote wall plug to a
desk lamp and used a Z-Wave lamp holder for the room bulb. You can extend these
cases by adding different devices and use remote wall plugs or bulbs as you need.

Energy Management with Light Sensors and Extending Use Cases

[84]

Along with this chapter, we also finished looking at the energy management concept,
and we will follow up with the security concept of home management and will also
talk about related sensors and devices as we did in Chapter 2, Getting Started with
Home Automation Applications and Chapter 3, Energy Management with Environmental
and Electrical Sensors.

In the following chapter, we will start learning about the security concept in home
automation. We will discover new devices and sensor use cases of our home
automation application. We will also continue to iterate our smart home application
with one more step by adding new features.

[85]

Home Monitoring with
Common Security Sensors

In Chapter 3, Energy Management with Environmental and Electrical Sensors and Chapter
4, Energy Management with Light Sensors and Extending Use Cases, we worked with
sensors, to achieve energy management. Now, we will proceed to learn about the
security concept in home automation and use cases with Intel Galileo.

Security is another major topic in home automation. Securing a residential area while
creating a home automation system is done with various sensors and devices. For
example, a motion sensor can be used to monitor an area if someone breaks into it.
A door or a window sensor can be used for a similar purpose such as monitoring a
door and window to check whether they have been opened without your knowledge.
Network cameras are another set of devices used for security in home automation
systems to monitor homes or any other area included remotely.

Besides securing residential areas from burglary, you must also look out for devices
that sense fire, gas leaks, or water leaks. Smoke detectors, gas detector, water leaks,
and flood detectors can be included into the home automation system. With the
addition of these sensors, any damage or disaster can be prevented.

In this chapter, we will briefly examine the sensors existing in the market, that
are usable with Intel Galileo for security. We will also look at devices with home
automation protocols.

Security sensors with Intel Galileo
There are many sensors, that can be used with Intel Galileo to create security devices.
Let's look at some of them.

Home Monitoring with Common Security Sensors

[86]

PIR motion sensors
There are many motion or passive infrared detection (PIR) sensors available to be
used with Intel Galileo. The sensor shown in the following image, manufactured
by SeeedStudio, is one of them. Their use is pretty straightforward. All you need to
do is connect VCC, Ground, and one GPIO pin for detection output. After you have
connected pins, you will read HIGH (1) from the connected GPIO pin; otherwise, you
would read LOW (0).

You can find more information about motion sensors from
SeeedStudio from the following link: http://www.seeedstudio.
com/wiki/PIR_Motion_sensor_module

Motion sensors can be used to develop a device that can sense movement and alert
the user. Another use case with energy management is that you can turn on or off a
light bulb after a motion has been detected.

Magnetic sensors
These sensors are the main mechanism used for door/window sensors. Digital
magnetic sensors work at a very basic level. They produce a digital high value if
there is a magnetic object near the sensor. The following image shows a very basic
sensor from DFRobot, whose pins can be connected to VCC, GND, and GPIO
to read digital values in order to sense whether any magnetic object is nearby:

http://www.seeedstudio.com/wiki/PIR_Motion_sensor_module
http://www.seeedstudio.com/wiki/PIR_Motion_sensor_module

Chapter 5

[87]

The preceding image shows a magnetic sensor from dfrobot; more
information about this can be found at the following link http://
www.dfrobot.com/wiki/index.php/Digital_magnetic_
sensor_SKU:_DFR0033.

By using a magnetic sensor, it is possible to develop a device to detect if a door or
window has been opened. It is also possible to use magnetic sensors for energy
management; if any door has been opened, you can switch on the lights in the
given room.

Gas sensors
There are many gas sensors available to be used with Intel Galileo. Each gas sensor
is able to detect a specific gas. Some sensors detect the levels of carbon monoxide,
methane, propane, and alcohol in the air. It helps you to detect any rise in the
level of dangerous gases so that you can take precautions immediately to prevent
any accident.

Using gas sensors with Intel Galileo
Here, we have an example of a MQ-9 gas sensor, which is sensitive to carbon
monoxide, methane, and liquid petrol gas. Changes in the level of the given gases
affect the conductivity of the sensor. A change in conductivity results in the output
voltage of the sensor increasing. MQ-9 is an analog sensor, and so we need to use
analog pins in Intel Galileo to read voltage changes.

There are multiple sources for similar MQ-9 datasheets. Just search
using your favorite search engine. One of the sources is here:
http://www.sgbotic.com/products/datasheets/sensors/
MQ-9.pdf

http://www.dfrobot.com/wiki/index.php/Digital_magnetic_sensor_SKU:_DFR0033
http://www.dfrobot.com/wiki/index.php/Digital_magnetic_sensor_SKU:_DFR0033
http://www.dfrobot.com/wiki/index.php/Digital_magnetic_sensor_SKU:_DFR0033
http://www.sgbotic.com/products/datasheets/sensors/MQ-9.pdf
http://www.sgbotic.com/products/datasheets/sensors/MQ-9.pdf

Home Monitoring with Common Security Sensors

[88]

The following image is the MQ-9 sensor we've used in the following sample
application:

1. First, we need to set the Intel Galileo GPIO pin to 37 low to be able to read
analog values from analog input 0. Our main function will look like this:
#define PINMUX 37
#define ANALOGPIN 0
/**
 * Analog Device File Operations
 */
int open_analog_device(int pin_number);
int read_analog_device_value(int device_file);
float read_voltage_scale(int pin_number);
int main(void) {
 // Read from Analog 0, mux GPIO Pin 37 to read voltage
 values
 if (gpio_set_mode(PINMUX, OUTPUT) < 0) {
 printf("Can't Set GPIO Mux Pin Mode\n");
 return EXIT_FAILURE;
 }
 if (gpio_set_value(PINMUX, LOW) < 0) {
 printf("Can't Set GPIO Mux Pin Value\n");
 return EXIT_FAILURE;
 }
 printf("Pin Mux Successful\n");
 // Read Digital Value Scale
 float v_scale = read_voltage_scale(ANALOGPIN);
 printf("Voltage Scale is %f\n", v_scale);
 // Open Analog Device
 int analog = open_analog_device(ANALOGPIN);
 if (analog > -1) {
 printf("Analog IO File Opened Successfully\n");

Chapter 5

[89]

 }
 // Read Voltage Values from Analog 0
 while (1) {
 printf("Voltage : %d \n", read_analog_device_value(analog));
 usleep(1000 * 1000);
 }
 close(analog);
 return 0;
}

2. Then, we will read the raw analog values from the filesystem. We need to
open /sys/bus/iio/devices/iio\:device0/in_voltage0_raw and read
the values:
int open_analog_device(int pin_number) {
 //Analog Device Values Read from
 const char* analog_file_path =
 "/sys/bus/iio/devices/iio\:device0/in_voltage%d_raw";
 int fanalog, a_err = -1;
 char analog_file_buffer[MAX_BUF];
 //Set analog reading file path and pin number
 if (sprintf(analog_file_buffer, analog_file_path,
 pin_number) < 0) {
 printf("Can't create analog file path\n");
 return a_err;
 }
 fanalog = open(analog_file_buffer, O_RDONLY);
 if (fanalog < 0) {
 printf("Can't open analog device\n");
 return a_err;
 }
 return fanalog;
}
int read_analog_device_value(int device_file) {
 char buf[1024];
 int a_err = -1;
 int ret = read(device_file, buf, sizeof(buf));
 if (ret == a_err) {
 printf("Couldn't get value from Analog Pin\n");
 return -1;
 }
 buf[ret] = '\0';
 lseek(device_file, 0, 0);
 return atoi(buf);
}

Home Monitoring with Common Security Sensors

[90]

3. There is an extra piece of code to read the scale of the raw values for future
conversion requirements. It is done by reading /sys/bus/iio/devices/
iio\:device0/in_voltage%d_scale :
float read_voltage_scale(int pin_number) {
 //Analog Device Values Read from
 const char* scale_file_path =
 "/sys/bus/iio/devices/iio\:device0/in_voltage%d_scale";
 int fscale, a_err = -1;
 char scale_file_buffer[MAX_BUF];
 //Set analog reading file path and pin number
 if (sprintf(scale_file_buffer, scale_file_path,
 pin_number) < 0)
{
 printf("Can't create scale file path\n");
 return a_err;
 }
 fscale = open(scale_file_buffer, O_RDONLY);
 if (fscale < 0) {
 printf("Can't open scale device\n");
 return a_err;
 }
 char buf[1024];
 int ret = read(fscale, buf, sizeof(buf));
 if (ret == a_err) {
 printf("Couldn't get value from Analog Pin\n");
 return -1;
 }
 buf[ret] = '\0';
 return atof(buf);
}

4. Let's run the application on the Intel Galileo. We get the following output
from our gasdetector application:
root@clanton:~/apps# ./gasdetector
Pin Mux Successful
Voltage Scale is 1.220703
Analog IO File Opened Successfully
Voltage : 652
Voltage : 748
Voltage : 776
Voltage : 2916
Voltage : 2848
Voltage : 2812
Voltage : 2728
Voltage : 2708

Chapter 5

[91]

This was a basic sample working with analog sensors. Gas sensors also have a
very important place in security. The reliable use of gas sensors can prevent many
accidents in residential and industrial areas.

Security devices for home automation
We have looked at some of the sensors available for use with Intel Galileo. In this
section, we will explore some of the devices already in the market and ready to use
with home automation systems.

Motion, window, and door lock sensors
For security, there are many devices out in the market with most of the home
automation protocols. Let's first look at door/window sensors and motion sensors.
There are door/window sensors with almost all of the home automation protocols.
For example, we have the Philio multi-sensor device, which includes a door/window
sensor with a magnetic piece to detect whether the door or window is open or closed.
You can find the door/window sensor sold separately with your selected home
automation protocol to add to your home automation system.

The following image shows the Z-Wave Philio multi-sensor. It is for when door or a
window is open. In a home automation system, you can get multiple door/window
sensors in your home and can customize the names of the sensors to understand
which room's door or window is open at a given time.

Home Monitoring with Common Security Sensors

[92]

As shown in the preceding image, on the Philio multi-sensor device, you will also see
a motion sensor at the head of the bigger part of the device. Motion sensors can also
be used separately and you can place them in various places to detect motion.

Besides the door/window and motion detectors, you can also find door locks, that
replace classical door locks. These locks allow you to remotely monitor and control
the lock system. For example, you can connect to your home automation system
remotely to check if the door is locked and, if it's not, you can lock it remotely.

The following image shows one of the door locks that can be used
with Z-Wave and ZigBee by Yale. More information about the product
can be found at http://www.yaleresidential.com/en/yale/
yaleresidential-com/Residential/?groupId=1294297&produ
ctId=1294301.

Smoke and flood detectors
Preventing dangerous events from occurring or being notified when they are
happening is key to securing your home. Smoke and flood detectors will help you
to do that. There are many smoke detectors with every home automation protocol
for fire detection. When you include a smoke detector in your home automation
system, the home automation system can automatically switch the wall plugs off
immediately to prevent fire damage to electricity outlets. Any other action can be
defined according to the home automation system's capabilities.

http://www.yaleresidential.com/en/yale/yaleresidential-com/Residential/?groupId=1294297&productId=1294301
http://www.yaleresidential.com/en/yale/yaleresidential-com/Residential/?groupId=1294297&productId=1294301
http://www.yaleresidential.com/en/yale/yaleresidential-com/Residential/?groupId=1294297&productId=1294301

Chapter 5

[93]

There are also flood detectors available to alarm systems to detect any water leakage
in the residential area. These can be placed onto your kitchen floor or anywhere in
the residential area, that is ideally supposed to be dry. Flood detectors are useful
when there is a broken pipe that leaks water or an amount of water has somehow
entered an area that should be dry. Flood detectors might not help much during
sudden natural disasters but will help you to detect water in normal situations.

In the following sections, we will use a Z-Wave flood detector and include it into our
Smart Home application. We will use a flood detector (as shown in the following
image) produced by Everspring. In the application, we will get the sensor status and
take action according to it. We will make a test to close the lamp holder and wall
plug if flood is detected by the sensor.

Let's start by adding new features to our Smart Home application that we have
started in the previous chapters.

Adding security features to the Smart
Home application
We have already added the Philio multisensor to our system to read illumination
and temperature values. Let's add a flood detector to the Aeon USB controller; and as
you have in previous chapters, follow inclusion instructions from its manual. Then
we can start the required implementation in the application.

Home Monitoring with Common Security Sensors

[94]

Before proceeding to work with security sensors, we need to define sensor types and
command classes to identify messages.

The following commands are used to report sensor changes:

Sensor type Message sent Report value
Binary sensor COMMAND_CLASS_BINARY_SENSOR,

0x30
BINARY_REPORT, 0x03

Sensor alarm COMMAND_CLASS_SENSOR_ALARM,
0x9C

SENSOR_ALARM_
REPORT, 0x02

These constants have been defined in the message.h file, as shown here:

#define FloodSensorNodeID 0x05

enum BINARY_SENSOR_TYPE {
 GENERAL_PURPOSE = 0x01,
 WATER_DETECTION_SENSOR = 0x06,
 TAMPER_SENSOR = 0x08,
 DOOR_WINDOW_SENSOR = 0x0A,
 MOTION_DETECTION_SENSOR = 0x0C,
 GLASS_BREAK = 0x0D
};
/**
 * Sensor Alarm Types
 */
enum ALARM_TYPE {
 GENERAL_ALARM = 0x01,
 SMOKE_ALARM = 0x02,
 CARBON_MOXIDE_ALARM = 0x03,
 HEAT_ALARM = 0x04,
 FLOOD_ALARM = 0x05
};
/**
 * ALARM COMMANDS
 */
enum SENSOR_ALARM_COMMAND{
 SENSOR_ALARM_GET = 0x01,
 SENSOR_ALARM_REPORT = 0x02,
 SENSOR_ALARM_SUPPORTED_GET = 0x03,
 SENSOR_ALARM_SUPPORTED_REPORT = 0x04
};
………..
/*

Chapter 5

[95]

 * ZWave Command Classes
 */
enum ZWAVE_COMMAND_CLASS {
 .
 COMMAND_CLASS_ALARM = 0x71,
 COMMAND_CLASS_SENSOR_ALARM = 0x9C,
 COMMAND_CLASS_SILENCE_ALARM = 0x71,
 ……
 COMMAND_CLASS_SENSOR_BINARY = 0x30,
 ……..
 COMMAND_CLASS_WAKE_UP = 0x84,
 …….
};

Motion detection
Motion sensors are binary sensors that report whether there is motion or not. We
will make some additions to the message handler to identify the message from the
motion sensor.

While we were dealing with the Z-Wave Temperature or Luminance sensor, we
checked if the incoming message's command class is a multilevel sensor (0x31); this
time we will check for the command class binary sensor (0x30) and check the sensor
type. The following code needs to be added to the message handler to parse an
incoming message from a motion sensor:

..
else if (command_class == COMMAND_CLASS_SENSOR_BINARY) {

 if (message[8] == BINARY_REPORT) {

 if (data_length == 0x04) {

if (message[10] == MOTION_DETECTION_SENSOR) {

 if (message[9] == ON) {
 printf("Motion DETECTED\n");
 } else if (message[9] == OFF) {
 printf("NO Motion Detected\n");
}}}}}

Home Monitoring with Common Security Sensors

[96]

When a motion is detected, the motion sensor sends a message to the Z-Wave
controller and our Smart Home application receives and parses the message
to create the following output:

Received: 0x1, 0xa, 0x0, 0x4, 0x0, 0x2, 0x4, 0x30, 0x3, 0xff, 0xc,
 0x37,
Response From Multi-Sensor Node Received: Motion DETECTED

Door/window sensor detection
Door/window sensors are binary sensors too. It reports when the door is opened,
and so we will use the same command class as we did for the motion sensor. We
have already added the sensor type in the previous section, and so we only need to
add another case to control if the reporting binary sensor is a door/window sensor.
Message handling for binary sensors will be as follows:

..
else if (command_class == COMMAND_CLASS_SENSOR_BINARY) {
 if (message[8] == BINARY_REPORT) {
 if (data_length == 0x04) {
 if (message[10] == DOOR_WINDOW_SENSOR) {
 if (message[9] == ON) {
 printf("Door/Window Sensor is OPEN\n");
 } else if (message[9] == OFF) {
 printf("Door/Window Sensor is CLOSE\n");
 }
 } else if (message[10] == MOTION_DETECTION_SENSOR) {
 if (message[9] == ON) {
 printf("Motion DETECTED\n");
 } else if (message[9] == OFF) {
 printf("NO Motion Detected\n");
 }
 } }}}
..

When a door/window sensor is opened, it will send a message to the Z-Wave
controller. Our Smart Home application will parse the message and show the
following output:

Received: 0x1, 0xa, 0x0, 0x4, 0x0, 0x2, 0x4, 0x30, 0x3, 0xff, 0xa,
 0x31,
Response From Multi-Sensor Node Received: Door/Window Sensor is
 OPEN

Chapter 5

[97]

When the door/window sensor is closed, it will send a message indicating that the
sensor status is closed.

Received: 0x1, 0xa, 0x0, 0x4, 0x0, 0x2, 0x4, 0x30, 0x3, 0x0, 0xa,
0xce,
Response From Multi-Sensor Node Received: Door/Window Sensor is CLOSE

Flood detection
Let's add our new device to the application. The Everspring Flood detector has a
long cable ending with two metal pins, as seen in the previous image. When those
two pins come into contact with water, they raise an alarm.

After inclusion of the flood detector, it will be assigned node ID 0x05 by the USB
controller. The flood detector will send a sensor alarm to the home automation
system. The flood detection alarm uses the COMMAND_CLASS_SENSOR_ALARM Z-Wave
command class.

An alarm command class, alarm commands, and sensor types have been defined.
We can proceed to handle incoming alarm messages from the flood detector. We
will only try to deal with the sensor alarm at this moment.

In order to handle the sensor alarm, we need to handle a new command class case.
The following lines will be added to our message handler to identify the sensor
alarm and to alert the user. We also added the smoke alarm case here:

else if (command_class == COMMAND_CLASS_SENSOR_ALARM) {
 printf("Sensor Alarm ");
 if (message[8] == SENSOR_ALARM_REPORT) {
 printf("Reported ");
 if (message[10] == FLOOD_ALARM) {
 if (message[11] == ON) {
 printf("FLOOD Detected\n");
 } else if (message[11] == OFF) {
 printf("NO Flood Danger\n");
 }
 } else if (message[10] == SMOKE_ALARM) {
 if (message[11] == ON) {
 printf("SMOKE Detected\n");
 } else if (message[11] == OFF) {
 printf("NO Fire Danger\n"); }}}}

Let's make a test with the flood detector. We first put the metal pins into a glass of
water to see if we are able to receive alarms from the flood detector.

Home Monitoring with Common Security Sensors

[98]

A sample output from the Smart Home application is as follows:

Received: 0x1, 0xd, 0x0, 0x4, 0x0, 0x5, 0x7, 0x9c, 0x2, 0x0, 0x5,
 0xff, 0x0, 0x0, 0x90,
Response From Flood Sensor Node Received: Sensor Alarm Reported
 FLOOD Detected

When we take the pins out of the glass, the flood detector reports no flood detected
to the application.

Received: 0x1, 0xd, 0x0, 0x4, 0x0, 0x5, 0x7, 0x9c, 0x2, 0x0, 0x5,
 0x0, 0x0, 0x0, 0x6f,
Response From Flood Sensor Node Received: Sensor Alarm Reported NO
 Flood Danger

We have added new cases to handle reports from security sensors for the Z-Wave
message handler. In the next session, we will make an overview of the system.

Wrapping up the message parsing
system
We have added new sensors to the Smart Home application. In order to handle
all incoming messages correctly, we need to be able to parse messages correctly to
inform the user. When we added new command classes, we needed to handle their
values separately. A part of the message parser, which handles sensor commands,
is shown here. We also used a part of this in the previous chapter to handle energy
meter values such as illumination and temperature:

int parse_incoming_mesage(uint8_t* message, int length) {
//Message Length
 uint8_t length_of_rest = message[1];
 uint8_t message_type = message[2];
 uint8_t message_function = message[3];

 else if (message_function == RESPONSE_RECEIVED) {
 printf("Response From ");
 if (message[5] == MultiSensorNodeID) {
 printf("Multi-Sensor Node Received: ");
 } else if (message[5] == WallPlugNodeID) {
 printf("Wall Plug Node Received: ");
 } else if (message[5] == LampHolderNodeID) {
 printf("Lamp Holder Node Received: ");
 } else if (message[5] == FloodSensorNodeID) {
 printf("Flood Sensor Node Received: ");

Chapter 5

[99]

 }
 //Length of Data
 uint8_t data_length = message[6];
 uint8_t command_class = message[7];

 //Check Command Class and Take Action Accordingly
 if (command_class == COMMAND_CLASS_BATTERY) {
 int battery = 0;
 //If battery is not 0%
 if (message[9] != 0xFF) {
 battery = message[9];
 }
 if (message[5] == MultiSensorNodeID) {
 multi_sensor_battery_level = battery;
 } else if (message[5] == FloodSensorNodeID) {
 flood_sensor_battery_level = battery;
 }
 printf("Battery Level of Device is %d % \n", battery);
 } else if (command_class == COMMAND_CLASS_SENSOR_BINARY) {
 if (message[8] == BINARY_REPORT) {
 if (data_length == 0x04) {
 if (message[10] == DOOR_WINDOW_SENSOR) {
 if (message[9] == ON) {
 printf("Door/Window Sensor is OPEN\n");
 door_sensor_status = message[9];
 } else if (message[9] == OFF) {
 printf("Door/Window Sensor is CLOSE\n");
 door_sensor_status = message[9];
 }
 } else if (message[10] == MOTION_DETECTION_SENSOR) {
 if (message[9] == ON) {
 printf("Motion DETECTED\n");
 motion_sensor_status = message[9];
 } else if (message[9] == OFF) {
 printf("NO Motion Detected\n");
 motion_sensor_status = message[9]; } }}

} else if (command_class == COMMAND_CLASS_SENSOR_MULTILEVEL_V2) {
 if (message[8] == MULTILEVEL_REPORT) {
 // Calculate Sensor Value
 int len = data_length - 3;
 uint8_t *data = malloc(len * sizeof(uint8_t));
 uint8_t scale;
 int i = 0;

Home Monitoring with Common Security Sensors

[100]

 for (; i < len; i++) {
 data[i] = message[10 + i];
 }
 float value = calculate_sensor_value(data, len, &scale);
 if (message[9] == TEMPERATURE_SENSOR) {
 printf("Temperature Value is %f ", value);
 temperature = value;
 if (scale) {
 printf("Fahrenheit \n");
 } else {
 printf("Celcius \n");
 }
 } else if (message[9] == LUMINANCE_SENSOR) {
 printf("Illumination is %f ", value);
 illumination = value;
 if (scale) {
 printf("Lux \n");
 } else {
 printf("% \n");
 }
 } else if (message[9] == POWER_SENSOR) {
 printf("Power Value is %f \n", value);
 current_energy_consumption = value;
 if (scale) {
 printf("BUT/h \n");
 } else {
 printf("Watts \n");
 }
 }
 }
 } else if (command_class == COMMAND_CLASS_BASIC) {
 printf("Device is ");
 if (message[9] == OFF) {
 printf("Sleeping\n");
 } else if (message[9] == ON) {
 printf("Active\n");
 }
 if (message[5] == WallPlugNodeID) {
 wall_plug_status = message[9];
 } else if (message[5] == MultiSensorNodeID) {
 multi_sensor_status = message[9];
 } else if (message[5] == LampHolderNodeID) {
 lamp_holder_status = message[9];
 } else if (message[5] == FloodSensorNodeID) {

Chapter 5

[101]

 flood_detector_status = message[9];
 }
 }
……//some code here…………
………………….
 } else if (command_class == COMMAND_CLASS_METER) {
 //Open ZWave Meter
 int len = data_length - 3;
 uint8_t *data = malloc(len * sizeof(uint8_t));
 uint8_t scale;
 int i = 0;
 for (; i < len; i++) {
 data[i] = message[10 + i];
 }
 float value = calculate_sensor_value(data, len, &scale);
 if (message[8] == METER_REPORT) {
 uint8_t meter_type = message[9] & 0x1F;
 if (meter_type == METER_ELECTRICITY) {
 const char* label = electricity_label_names[scale];
 const char* unit = electricity_unit_names[scale];
 printf("Electicity Meter Report %s %f %s\n", label,
 value, unit);
 if (scale == 2) {
 current_energy_consumption = value;
 } else if (scale == 0) {
 cumulative_energy_level = value;
 }
 }
 }
 } else if (command_class == COMMAND_CLASS_SENSOR_ALARM) {
 printf("Sensor Alarm ");
 if (message[8] == SENSOR_ALARM_REPORT) {
 printf("Reported ");
 if (message[10] == FLOOD_ALARM) {
 if (message[11] == ON) {
 printf("FLOOD Detected\n");
 } else if (message[11] == OFF) {
 printf("NO Flood Danger\n");
 }
 flood_sensor_status = message[11];
 } else if (message[10] == SMOKE_ALARM) {
 if (message[11] == ON) {
 printf("SMOKE Detected\n");
 } else if (message[11] == OFF) {

Home Monitoring with Common Security Sensors

[102]

 printf("NO Fire Danger\n");
 }}}}}
 return 0;
}

We have also added a new command function to request an alarm sensor status.
get_sensor_alarm_value makes the request to the corresponding alarm sensor
to get its latest status:

 int get_sensor_alarm_value(int serial_device, uint8_t nodeID,
 uint8_t sensor_type, uint8_t callbackID) {
 int message_length = 12;
 uint8_t checksum = 0x00;
 uint8_t message_buffer[] = { SOF, (message_length - 2), REQUEST,
 SEND_DATA,
 nodeID, 0x03, COMMAND_CLASS_SENSOR_ALARM, SENSOR_ALARM_GET,
 sensor_type,
 TRANSMIT_OPTION, callbackID, checksum };
 checksum = generate_checksum(message_buffer, message_length);
 message_buffer[message_length - 1] = checksum;
 return write_to_serial_device(serial_device, message_buffer,
 message_length);
}

As can be seen in the message parser function, when a sensor value or device status
is received, it sets a static variable value, that will help us in the following chapter to
monitor the current situation of the area. In order to monitor sensors and send them
messages, a synchronous mechanism needs to be implemented carefully so as to not
miss any messages from the controller.

In the next chapter, while we are in the process of improving our sample application,
we will add a thread lock mechanism to use the Z-Wave USB adapter safely with
multiple threads. That will help us monitor, send messages, and receive messages
in a more secure way.

With the latest code samples, we will get experience at handling Z-Wave messages.
This will help you to understand how complex it gets when the number of devices
and cases increases, and so every case should be handled carefully, especially
security cases; in real life scenarios, not doing so can cause damage in your home
or any other residential areas where home automation has been setup.

Chapter 5

[103]

Summary
During the course of this chapter, we have looked into sensors that can be used to
develop a security device with Intel Galileo. These sensors are motion (PIR) sensors,
door/window sensors, water sensors, and gas/smoke sensors. We have developed a
simple application with the MQ-9 gas sensor to detect carbon monoxide in the air. In
order to get the value of the carbon monoxide level in the air, we used analog pins in
Intel Galileo.

Then we proceeded to cover some home security devices such as remote door/
window sensors, motion sensors, smoke detectors, water leak detectors, and
door lock sensors. We added a new sensor, a flood detector, to our Smart Home
application system to detect floods in the residential area.

In the next chapter, we will investigate how we can use cameras with Intel Galileo
for home surveillance. Then we will extend our application to control the camera in
order to increase the security use case by coordinating other security sensors.

[105]

Home Surveillance and
Extending Security Use Cases

In the previous chapter, we looked into devices and sensors used to secure your
home. We will proceed by using another device at the heart of home automation,
a camera. Cameras are the main devices used for security. They have been used in
all kinds of places for security reasons. Government officials use security cameras
to monitor streets and other public areas. Private companies monitor their offices.
Cameras are also widely used in home automation.

The main reason to use security cameras for home automation is to detect if anyone
broke into your house and capture their video or photo. They are also used to
monitor a newborn baby by working parents. There are many providers who sell
cameras with cloud services to monitor homes with a smartphone or any other
connected device.

In this chapter, we will use a network camera to capture frames with Intel Galileo.
Cameras will be the last device to be included in our home automation system.
Following the use of cameras within the home automation system, we will improve
the Smart Home application with new use cases and learn more about software
development on Intel Galileo for home automation.

Introducing network cameras
Nowadays, there are plenty of manufacturers who sell network cameras that
are able to connect to home network via Ethernet or Wi-Fi. Most of the companies
also provide a free or paid cloud account for you to register your camera to their
cloud system. After you've authorized your camera to stream to a private cloud
server, you will be able to get a video stream from your home anywhere with an
Internet connection.

Home Surveillance and Extending Security Use Cases

[106]

Network cameras use the HTTP or RTSP Internet protocols to enable you to access
a video stream from the camera. Most network cameras stream videos with the
MJPEG (Motion JPEG) format over HTTP. MJPEG is a widely used format by
digital cameras; it compresses sequences of JPEG images in a MJPEG container.

Most network cameras also have a web interface to access the camera via a local
network and change settings. Within these settings, it also enables security with
defined users wherein only users who have an account on the network cameras
are allowed to access them and stream.

Throughout this chapter, we will use a network camera from D-Link DCS-930L, as
shown in the following image, for our samples in the following section. We will try
to obtain captures with Intel Galileo and see how to stream video coming from a
network camera via Intel Galileo.

Some network cameras have a few built-in functions to be used for the security of
your home. These built-in functions could be motion detection and sound detection. In
accordance with the defined function, it can send a frame to the defined email client.

D-Link DCS-930L is a pure network camera without any other connection protocol
defined. There are also network cameras powered with home automation protocols
such as ZigBee and Z-Wave. These protocols are not used for video streaming;
their purpose is to enable remote control on cameras. For example, you can rotate,
zoom in, or zoom out a ZigBee camera remotely by sending a command via the
ZigBee protocol.

Chapter 6

[107]

There are plenty of network cameras with different features enabled. We will deal
with the main feature of the camera to stream or capture photos.

Using cameras with Intel Galileo
Even though Intel Galileo is a headless device without any video output support or
graphical processor unit, you can get video streams to Intel Galileo. In order to work
with video cameras, either a USB webcam or a network camera, we will need the
OpenCV (Open Source Computer Vision) library. If you work with an USB camera,
you will also need the required Linux kernel modules (v4l2) to recognize video
devices connected to Intel Galileo from the USB port.

Before getting into the details of OpenCV API and internals, we will build the
OpenCV library and v4l2 module for Intel Galileo and make it ready for development
with OpenCV. If you have not built OpenCV, you can follow the instructions given in
the following section.

Building OpenCV and V4L2 for Intel Galileo
As Intel Galileo has a different processor, Intel Quark, from regular computers,
we need to recompile and build any libraries with the cross-compiler and toolchain
provided with Yocto Project. A successful cross-compile process will create necessary
binaries for us to run on Intel Galileo.

In the Chapter 1, Getting Started with Intel Galileo, we initialized a build environment
for Yocto Project in order to create a Linux filesystem and toolchain for Intel Galileo.
Yocto Project allows you to build a full Linux filesystem or any other software
without rebuilding the whole Linux filesystem. During the build environment
initialization process, many Yocto Project recipes have been downloaded but not
been used as they have not been included in the image. OpenCV recipe is one of
the recipes downloaded during this process along with many others.

If you've already made the full-image build in Chapter 1, Getting
Started with Intel Galileo, it includes the OpenCV and video device
drivers installed with the image.

Home Surveillance and Extending Security Use Cases

[108]

You can locate the OpenCV Yocto Project recipe in $BUILD_DIRECTORY/meta-
clanton_v1.0.1/meta-oe/meta-oe/recipes-support/opencv directory.
opencv_2.4.9.bb is the file that includes instructions and rules to download
the OpenCV source from an upstream repository and build. When you open the
opencv_2.4.9.bb file, you will see that the line starts with DEPENDS; it is the variable
that includes the OpenCV library, which needs to be built. v4l2-utils is the library
that includes the kernel modules, so when we start building, OpenCV v4l2 modules
will be built together.

$ cd $BUILD_DIRECTORY/meta-clanton_v1.0.1

$ cd source poky/oe-init-build-env yocto_build

$ bitbake opencv

The previous build process should work to build OpenCV for the
Intel Galileo Quark processor without any problem. In some cases,
the OpenCV recipe might not be updated and you could have some
build errors. In the event of an error, you can check the upstream
source code link; MD5 checksum in the recipe.

OpenCV ipk packages are listed under $BUILD_DIRECTORY/meta-clanton_v1.0.1/
yocto_build/tmp/deploy/ipk/i586. The v4l2 kernel module packages are in
the $BUILD_DIRECTORY/meta-clanton_v1.0.1/yocto_build/tmp/deploy/ipk/
clanton directory.

In order to install related packages, you can copy OpenCV, the v4l2 packages,
and their dependency module packages to the Intel Galileo filesystem and then
install them with the help of opkg tool. In addition to installing the packages
to Intel Galileo, you also need to install development files to the Intel Galileo
toolchain directory on your host to compile and build your OpenCV application. In
Chapter 1, Getting Started with Intel Galileo, we installed SDK to the /opt/clanton-
tiny/1.4.2/ directory. You need to install development files into the /opt/
clanton-tiny/1.4.2/sysroots/i586-poky-linux-uclibc directory.

However, instead of using a copy and install process, you can add OpenCV to
the image recipe and that will automatically install the required packages to the
filesystem image.

Edit $BUILD_DIRECTORY/meta-clanton_v1.0.1/meta-clanton-distro/recipes-
core/images/image-full.bb, add a new line as IMAGE_INSTALL += "opencv",
and rebuild the image and toolchain. Then follow the instructions from Chapter 1,
Getting Started with Intel Galileo, to copy the required files to the SD card and re-install
the toolchain into your host machine supporting OpenCV.

Chapter 6

[109]

You can add any application you want to your custom Linux image
built by Yocto Project with the defined method.

Introducing OpenCV
In order to work with images or video coming from your security camera, you need
to know the basics of the OpenCV library. OpenCV is an open source cross-platform
computer vision and machine learning library. OpenCV provides hundreds of
algorithms for analytics on images, mostly for real-time use cases, and that's why
it is used in robotics appliances.

This link is the OpenCV Official website: http://opencv.org.
This link has the OpenCV Offical documentation: http://docs.
opencv.org.

Visual analytics algorithms require a vast amount of processing power. Therefore,
OpenCV requires a powerful CPU and GPU for complex analytics. However, we
will only use some basic functionality from OpenCV just for surveillance purposes.
Intel Galileo's CPU is powerful enough to do basic image manipulation such as saving
a captured image or video from a camera. It will be enough for home surveillance. If
you would like to do more complex analytics with your home automation application
such as face recognition, Intel Galileo may lack the required computational power.

OpenCV API is essentially a C++ API, but for basic functionality you
can still use C API. It is suggested you use C++ API for this purpose.
Yocto Linux also has a C++ compiler and libraries, and so you can
also use the OpenCV C++ API with it.

Let's briefly overview the functionality we will use from OpenCV to capture frames
from a network camera or USB camera.

highgui – high-level GUI and media I/O
The highgui module provides functions for developers to create graphical user
interface (GUI) elements for applications. This helps developers to create windows
to show the captured video or a frame. Another useful functionality of this module
is to provide an interface for developers to read video from a USB camera, a network
camera, or a video file on disk. While helping developers to read video, it also
provides functions to write or save a picture or a video to a file on storage devices.

http://opencv.org
http://docs.opencv.org
http://docs.opencv.org

Home Surveillance and Extending Security Use Cases

[110]

Since Intel Galileo doesn't have video output, we do not need to use GUI
functionality. However, we definitely need to be able to read from video
devices for home surveillance.

We will use the following functions from the OpenCV highgui module:

• C++: This is the VideoCapture module that captures video from a USB
device or network camera.
VideoCapture cap(0) //Capture from /dev/video0
VideoCapture cap("http://network.cam.ip/stream.mjpeg")
 //Capture from network camera

• C: In the C API, we need to call the cvCaptureFromCAM(int index) function
to get streams from a USB camera; we need to use cvCaptureFromFile(const
char* filename) to capture streams from a network camera.

cvCaptureFromCAM(0) //Capture from /dev/video0
cvCaptureFromFile("http://network.cam.ip/stream.mjpeg")

• C++: The imwrite(const string& filename, InputArray img, const
vector<int>& params=vector<int>()) function can be used to save an
image to disk in a C++ application.
imwrite("capture.jpeg",image);

• C: The cvSaveImage(const char* filename, const CvArr* image,
const int* params=0) function can be used to save an image to disk
in a C application:
cvSaveImage("capture.jpeg",image,0);

• C++: The VideoWriter(const string& filename, int fourcc, double
fps, Size frameSize, bool isColor=true) function can be used to save
video stream to disk in a C++ application. A basic use of this is shown here:
Size S = Size((int)capture.get(CV_CAP_PROP_FRAME_WIDTH),
 (int)capture.get(CV_CAP_PROP_FRAME_HEIGHT));
VideoWriter vWriter("video_output.avi",
CV_FOURCC('P','I','M','1'), 20, S, true);
vWriter(frame);

• C: The cvCreateVideoWriter (const char* filename, int fourcc,
double fps, CvSize frame_size, int is_color=1) function can be
used to save video streams to disk in a C application.
CvSize S;
s.width = iwidth;
s.height = height;

Chapter 6

[111]

CvVideoWriter *writer =
cvCreateVideoWriter("video_output.avi",
 CV_FOURCC('M', 'J', 'P', 'G'), 20, S);

We will mostly use the basic functionalities mentioned previously from OpenCV.
Along with the functions mentioned previously, we will also need to use data
structures that store frames and their properties. It is suggested you use the C++ API
but, to bind with all the samples we have developed during the book, we will not
develop a complicated application, and so we will do basic C applications in the
later sections.

Let's follow up with sample applications to capture and store images from
Intel Galileo.

Capturing images from a camera with
Intel Galileo
We will have two sample applications to capture images from a USB camera and the
D-Link DSC-930L network camera and save them to Intel Galileo.

We started with creating a new C Project, as described in Chapter 1, Getting Started
with Intel Galileo, when we created a C file as capture_from_usb.c. We need to add
OpenCV libraries to Makefile in order to build application with OpenCV libraries.
Makefile.am should look like this:

bin_PROGRAMS = capture_from_usb
capture_from_usb_SOURCES = capture_from_usb.c
AM_CFLAGS = @capture_from_usb_CFLAGS@
AM_LDFLAGS = @capture_from_usb_LIBS@ -lopencv_core -lopencv_imgproc -
 lopencv_legacy -lopencv_ml -lopencv_highgui -lm
CLEANFILES = *~

While capturing from USB devices, we need to provide the index of the video file. In
our case, the video file is /dev/video0, and so we put the index as 0.

#include <stdlib.h>
#include <stdio.h>
#include "opencv/cxcore.h"
#include "opencv/cv.h"
#include "opencv/highgui.h"
#define USBCAM 0
int main(void) {
 //Get USB Cam Device

Home Surveillance and Extending Security Use Cases

[112]

 CvCapture *pCapturedImage = cvCreateCameraCapture(USBCAM);
 //Get Frame from Capture Device
 IplImage *pSaveImg = cvQueryFrame(pCapturedImage);
 //Save Image to Filesystem
 cvSaveImage("capture.jpg", pSaveImg, 0);
 //Release Image Pointer
 cvReleaseImage(&pSaveImg);
 return 0;
}

When we run the application capture_from_usb binary inside the Intel Galileo,
it will create the capture.jpeg file.

root@clanton:~# ./capture_from_usb

Let's create a new project to capture from a network camera. In the new project,
we created capture_from_network.c and build with Intel Galileo toolchain.

While accessing streams from a network camera, we need to provide the IP address
of the network camera. In our case, it is 192.168.2.141 in our local network. In most
cases, network cameras are secured with user credentials. We also provided the
username and password as admin and 123 respectively with the link with IP_CAM,
as seen in the sample code given here:

#include <stdlib.h>
#include <stdio.h>
#include "opencv/cxcore.h"
#include "opencv/cv.h"
#include "opencv/highgui.h"
#define IP_CAM "http://admin:123@192.168.2.141:80/mjpeg.
cgi?user=admin&password=1 23&channel=0&.mjpg"
int main(void) {
 //Get Capture Device assign to a memory location
 CvCapture *pCapturedImage = cvCaptureFromFile(IP_CAM);
 //Frame to Save
 IplImage *pSaveImg = cvQueryFrame(pCapturedImage);
 //Save Image to Filesystem
 cvSaveImage("capture.jpg", pSaveImg, 0);
 //Release Memory Pointer
 cvReleaseImage(&pSaveImg);
 return 0;
}

Chapter 6

[113]

When we run the application capture_from_network inside Intel Galileo, it will
create the capture.jpeg file:

root@clanton:~# ./capture_from_network

You can copy the .jpeg file to your host machine to open and view the frame. Just
like copying files to Intel Galileo from your host machine using the SCP tool, you can
use SCP to transfer files to your host machine using your host machine's credentials.

Saving a video from a camera with
Intel Galileo
Let's follow up from the previous section with saving video, instead of only one
frame, to Intel Galileo. We will get the video from a network camera and will
save it to Intel Galileo.

We have created a new project and a new .c file save_video.c in the project. We
will use the same libraries that were used in capturing an image. Our aim is to record
5 seconds of video to Intel Galileo, as shown here:

#include <stdlib.h>
#include <stdio.h>
#include "opencv/cxcore.h"
#include "opencv/cv.h"
#include "opencv/highgui.h"
#include <time.h>
#define IP_CAM
 "http://admin:123@192.168.2.141:80/mjpeg.cgi?user=admin&password=1
 23&channel=0&.mjpg"
#define FPS 15
#define DURATION 5 //seconds
int main(void) {
 //Capture Device and Captured Frame
 CvCapture *pCapture = cvCaptureFromFile(IP_CAM);
 int width = (int) cvGetCaptureProperty(pCapture,
 CV_CAP_PROP_FRAME_WIDTH);
 int height = (int) cvGetCaptureProperty(pCapture,
 CV_CAP_PROP_FRAME_HEIGHT);
 //Get Size of Video
 CvSize S;
 S.height = height;
 S.width = width;
 //Frame Structure
 IplImage *frame;
 //Create VideoWriter

Home Surveillance and Extending Security Use Cases

[114]

 CvVideoWriter* videoWriter = cvCreateVideoWriter("record.avi",
 CV_FOURCC('X', 'V', 'I', 'D'), FPS, S, 1);
 //Get Current Time
 time_t now;
 struct tm *tm;
 now = time(0);
 //Start Recording for Given Time
 printf("Recording....\n");
 if ((tm = localtime(&now)) == NULL) {
 printf("Can't Get Time\n");
 return -1;
 }
 int start = tm->tm_sec;
 int progress = tm->tm_sec;
 while ((progress - start) <= DURATION) {
 frame = cvQueryFrame(pCapture);
 cvWriteFrame(videoWriter, frame);
 now = time(0);
 if ((tm = localtime(&now)) == NULL) {
 printf("Can't Get Time\n");
 return -1;
 }
 progress = tm->tm_sec;
 }
 printf("Saved....\n");
 //Release Pointers from Memory
 cvReleaseCapture(&pCapture);
 //This is needed to make recorded video container to be closed
 properly
 cvReleaseVideoWriter(&videoWriter);
 return 0;
}

When we have run the save_video binary, it will create a record.avi file. You can
copy the file to your host machine and view the recorded video with a video player:

root@clanton:~# ./save_video

Recording

Saved

Chapter 6

[115]

Saving video to Intel Galileo is not recommended as it has limited space.
The initial state of the filesystem on the SD card will not allow you to save
larger files or use all the space on the SD card. It is advised to resize the
filesystem image on the SD card. First mount your SD card on your Linux
host machine as shown in the following command:
$ sudo mount /dev/sdc1 /media/sdcard

Run a filesystem check on the current filesystem image file as shown in
the following command:
$ sudo fsck.ext3 –f /media/sdcard/image-full-galileo-
 clanton.ext3

Finally, you can resize with the following command. In our example, we
resize our image to 4-gigabyte, by supplying 4-gigabyte as kilobytes:
$ sudo resize2fs /media/sdcard/image-full-galileo-
clanton.ext3 1638400

Now you can unmount the SD card from the host machine and can boot
on Intel Galileo.

Streaming a video from Intel Galileo
Accessing the video camera in your home remotely is essential for home security. If
you want to connect your Intel Galileo to a cloud system and access a video stream
through your Intel Galileo, you need to stream video from Intel Galileo. You may
also want to stream video from a USB device and access it remotely; for this you
would need to create an application, or a worker thread in your application, to
stream the video.

Since Intel Galileo doesn't have GPU or any other supported video encoders/
decoders, it will be wise not to try any transcoding to change the video format. A
suggested method is to stream video from Intel Galileo, writing the JPEG frames
to a network socket, and have another device read the frames.

You can check the Linux socket programming for more details.

Adding new use cases
We have finished working with devices for home automation. We covered almost
all the common devices used for home automation. As we have completed adding
a camera, we have successfully achieved the state where we can monitor a home.

Home Surveillance and Extending Security Use Cases

[116]

Now we will proceed to make a few last additions to the Smart Home application
such as adding some rules; this includes completing some actions when a certain
device value is changed,. For example, when motion is detected, we will make the
Smart Home application perform a capture.

Let's first include the camera module in the Smart Home application. We have added
the camera.c and camera.h files to manage a network camera and also changed
the Makefile.am file to link OpenCV libraries for the build process. The following
header file can be used within the application:

#ifndef CAMERA_H_
#define CAMERA_H_
#define IP_CAM "http://admin:123@192.168.2.141:80/mjpeg.
cgi?user=admin&password=1
 23&channel=0&.mjpg"
#define USBCAM 0
/**
 * Capture Frame from Network Camera if defined else from USB
 Camera
 * @param void
 * @return void
 */
void capture_frame(void);
/**
 * Record Video from Network Camera if defined else from USB
 Camera
 * @param int duration in seconds
 * @return void
 */
void record_video(int sec);

#endif /* CAMERA_H_ */

We made a small change in our code as previously shown in the sample camera
applications. We used a predecessor to check whether we have defined the IP camera
video URL for capture, for conditional compilation of the code. If we don't define it,
the compiler will automatically build the application for a USB camera. After we add
the predecessor, the capture_frame function looks like this:

void capture_frame() {
 //Get Capture Device assign to a memory location
#ifdef IP_CAM
 CvCapture *pCapturedImage = cvCaptureFromFile(IP_CAM);
#else
 CvCapture *pCapturedImage = cvCreateCameraCapture(USBCAM);

Chapter 6

[117]

#endif
 //Frame to Save
 IplImage *pSaveImg = cvQueryFrame(pCapturedImage);
 //Get TimeStamp
 //Get Current Time
 time_t now;
 struct tm *tm;
 now = time(0);
 if ((tm = localtime(&now)) == NULL) {
 printf("Can't Get Time\n");
 return;
 }
 char buf[256];
 printf("Capturing....\n");
 sprintf(buf, "capture%d_%d_%d_%d_%d_%d.jpg", tm->tm_year, tm-
 >tm_mon,
 tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec);
 //Save Image to Filesystem
 cvSaveImage(buf, pSaveImg, 0);
 printf("Saved....\n");
 return;
}

As we set the device control in the capture_frame function, we also implemented
the same setting in the record_video function.

Let's proceed to add some conditions to our application; let it capture frames if
motion is detected or the door sensor is opened.

Adding new rules
While developing the Smart Home application, we added all the devices connected
to Intel Galileo. In order to handle periodic updates from devices, we created a
thread to query the devices, get the latest updates from them and, according to the
updated value, take the necessary emergency action. We called this module device
and added device.c and device.h files. The device.h file includes the defined
macros, stores the latest status of the devices, and records it to a XML file for external
access to device statuses.

#ifndef DEVICE_H_
#define DEVICE_H_
#include "message_queue.h"
/**
 * Transmit Option for ZWave Controller
 */

Home Surveillance and Extending Security Use Cases

[118]

#define TRANSMIT_OPTION 0x25 //Aeon USB Stick
/**
 * Staus Variable Buffers
 */
#define BUFFER_MAX 256
#define FILE_LINE 1024
/**
 * Define Update Frequency
 */
#define UPDATE_FREQUENCY 2 //Minutes
/**
 * Device Status XML Filename
 */
#define XML_FILE_NAME "/home/root/smarthome/home.xml"
#define JSON_FILE_NAME "/home/root/smarthome/home.json"
/**
 * Constant Strings
 */
#define status_sleeping "Sleeping"
#define status_active "Active"
#define device_on "ON"
#define device_off "OFF"
#define detected "DETECTED"
#define not_detected "NOT DETECTED"
#define door_open "OPEN"
#define door_closed "CLOSED"
/**
 * Defined Nodes
 */
#define NumberofNodes 5
#define ControllerNodeID 0x01
#define MultiSensorNodeID 0x02
#define WallPlugNodeID 0x03
#define LampHolderNodeID 0x04
#define FloodSensorNodeID 0x05
/**
 * Device Names
 */
#define TemperatureSensorName "SHT11 Sensor"
#define GasSensorName "MQ-9 CO Sensor"
#define ControllerNodeName "AeonUSB Stick"
#define MultiSensorNodeName "Philio Multi-Sensor"
#define WallPlugNodeName "Fibaro Wall Plug"
#define LampHolderNodeName "Everspring Lamp Holder"
#define FloodSensorNodeName "Everspring Flood Detector"

Chapter 6

[119]

#define NetworkCameraName "D-Link Network Camera"
/**
 * Device Status for ZWave Nodes
 */
char multi_sensor_status[BUFFER_MAX];
char wall_plug_status[BUFFER_MAX];
char lamp_holder_status[BUFFER_MAX];
char flood_detector_status[BUFFER_MAX];
char temperature_sensor_status[BUFFER_MAX];
char gas_sensor_status[BUFFER_MAX];
/**
 * Power Level Statuses for ZWave Nodes
 */
char multi_sensor_power_level[BUFFER_MAX];
char wall_plug_power_level[BUFFER_MAX];
char lamp_holder_power_level[BUFFER_MAX];
char flood_detector_power_level[BUFFER_MAX];
/**
 * Battery Levels
 */
int multi_sensor_battery_level;
int flood_detector_battery_level;
/**
 * Current Environment Status
 */
float temperature_f;
float temperature_c;
float relative_humidity;
float illumination;
float co_level;
/**
 * Energy Meter
 */
float current_energy_consumption;
float cumulative_energy_level;
/**
 * Switch Status
 */
char lamp_holder_switch[BUFFER_MAX];
char wall_plug_switch[BUFFER_MAX];
/**
 * Security Sensor Status
 */

Home Surveillance and Extending Security Use Cases

[120]

char flood_sensor_status[BUFFER_MAX];
char door_sensor_status[BUFFER_MAX];
char motion_sensor_status[BUFFER_MAX];
/**
 * Camera Related Status
 */
char network_camera_status[BUFFER_MAX];
char network_camera_port[BUFFER_MAX];
void* update_status(void* arg);
void print_device_xml(const char* file_name);
#endif /* DEVICE_H_ */

The update_status thread is our worker thread that requests updates from Z-Wave
devices, reads from the MQ-9 Gas Sensor, the SHT11 temperature and humidity
sensor, and finally takes emergency actions.

/**
 * Periodic update worker
 * @param null
 * @return null
 */
void* update_status(void* arg) {
 set_defaults();
 while (1) {
 /**
 * Periodic Updates from Connected Devices
 */
 /**
 * Philio Multi-Sensor Node Commands
 */
 get_device_status(MultiSensorNodeID, 1);
 get_battery_level(MultiSensorNodeID, 2);
 get_binary_sensor_value(MultiSensorNodeID,
 DOOR_WINDOW_SENSOR, 3);
 get_binary_sensor_value(MultiSensorNodeID,
 MOTION_DETECTION_SENSOR, 4);
 get_multilevel_sensor_value(MultiSensorNodeID,
 TEMPERATURE_SENSOR, 5);
 get_multilevel_sensor_value(MultiSensorNodeID,
 LUMINANCE_SENSOR, 6);
 get_node_power_level(MultiSensorNodeID, 7);
 /**
 * Fibaro Wall Plug Commands
 */
 get_device_status(WallPlugNodeID, 8);

Chapter 6

[121]

 get_binary_switch_status(WallPlugNodeID, 9);
 get_meter_level(WallPlugNodeID, POWER, 10);
 get_meter_level(WallPlugNodeID, ENERGY, 11);
 get_node_power_level(WallPlugNodeID, 12);
 /**
 * Everspring Lamp Holder Commands
 */
 get_device_status(LampHolderNodeID, 13);
 get_binary_switch_status(LampHolderNodeID, 14);
 get_node_power_level(LampHolderNodeID, 15);
 /**
 * Everspring Flood Detector Commands
 */
 get_device_status(FloodSensorNodeID, 16);
 get_sensor_alarm_value(FloodSensorNodeID, FLOOD_ALARM, 17);
 get_node_power_level(FloodSensorNodeID, 18);
 /**
 * Read From Sensors Connected to Intel Galileo
 * SHT11 and MQ-9
 */
 delaySeconds(2);
 snprintf(temperature_sensor_status, sizeof(status_active),

 status_active);
 temperature_c = read_temperature();
 delaySeconds(2);
 relative_humidity = read_humidity();
 delaySeconds(2);
 snprintf(gas_sensor_status, sizeof(status_active),
 status_active);
 co_level = read_gas_sensor();
 /**
 * Check for Emergency Actions
 */
 emergency_actions();
 /**
 * Sleep for 2 Minutes Print Report to devices.xml file
 */
 update_device_xml(XML_FILE_NAME);
 update_device_json(JSON_FILE_NAME);
 delayMinutes(UPDATE_FREQUENCY);

 }
 return NULL;
}

Home Surveillance and Extending Security Use Cases

[122]

The emergency_actions function is an enclosed function inside the device.c file to
complete emergency actions as given in the following code snippet:

void emergency_actions() {
 //If There is a Flood Switch Off Wall Plug
 if (strcmp(flood_detector_status, detected) == 0) {
 if (strcmp(wall_plug_switch, device_on) == 0) {
 binary_switch_on_off(WallPlugNodeID, OFF, 0x11);
 }
 }
 //If There is a Gas Leank Switch Off Wall Plug
 if (gas_voltage > GAS_THRESHOLD) {
 if (strcmp(wall_plug_switch, device_on) == 0) {
 binary_switch_on_off(WallPlugNodeID, OFF, 0x11);
 }
 }
 //If There is a motion capture from Network Camera
 if (strcmp(motion_sensor_status, detected)) {
 capture_frame();
 }
 //If Door Window Sensor is Open
 if (strcmp(door_sensor_status, door_open)) {
 capture_frame();
 }
}

As we've seen in the emergency_actions function, when there is motion detection
or the door/window sensor is open, the Smart Home application will capture an
image from the network camera. This is a very basic security precaution to capture
images where there is motion, as this isn't supposed to happen.

We may also add the capture_frame function commands to the Z-Wave message
handler as we did in the previous section to directly capture a frame when motion is
detected. First, we need to include the camera.h file into the message.c file for this.
Then, we can add the capture_frame function, as shown in the following code:

.
//Code section from message.c
if (message[10] == DOOR_WINDOW_SENSOR) {
 if (message[9] == ON) {
 printf("Door/Window Sensor is OPEN\n");
 snprintf(door_sensor_status, sizeof(door_open),
 door_open);
 capture_frame();
 } else if (message[9] == OFF) {

Chapter 6

[123]

 printf("Door/Window Sensor is CLOSE\n");
 snprintf(door_sensor_status, sizeof(door_closed),
 door_closed);
 }
 } else if (message[10] == MOTION_DETECTION_SENSOR) {
 if (message[9] == ON) {
 printf("Motion DETECTED\n");
 snprintf(motion_sensor_status, sizeof(detected),
 detected);
 capture_frame();
 } else if (message[9] == OFF) {
 printf("NO Motion Detected\n");
 snprintf(motion_sensor_status, sizeof(not_detected),
 not_detected);
 }
 }
……………. //code section end from message.c

Summary
In this chapter, you learned how to work with a camera with Intel Galileo. Before
developing applications with Intel Galileo, we have provided an introduction to the
OpenCV library. We have briefly looked at the OpenCV library and at how we can
build the library for Intel Galileo Yocto Linux.

Then we developed simple applications to capture images and record video from
USB and network cameras. After having enough practice with cameras, we added a
new module to the Smart Home application to add some new security features such
as getting captures when we detect a motion or when a door sensor is open.

In the following chapter, we will make our Smart Home application work as a
service application or a background process. We will add new features to the Smart
Home application and use the Yocto Project to define the service recipe file in order
to add an application as a service.

[125]

Building Applications and
Customizing Linux for

Home Automation
In the previous chapters, you learned how to develop applications that work on
Intel Galileo. You learned how to deploy applications to Intel Galileo with the help
of Eclipse IDE or by using the SCP command-line tool to transfer application binary
files. During the course of this chapter, we will work on how we can make our
application or applications start at boot time and run as a background process or
service on Intel Galileo Yocto Linux operating system.

While we arrived around the end of the development process, we would like to run
our application in Intel Galileo when the board boots up with no user command
to start it. We want the Smart Home application to run automatically because
managing a home from just a command line terminal interface is not so user friendly.
Therefore, for this, we will also need to define some features for the Smart Home
application to send commands to and receive data from.

Let's start with what we can do to make Smart Home application start as a
background process in Intel Galileo.

Customizing Linux with the Yocto Project
Customizing Linux means changing the default system configurations and adding
or removing applications and kernel modules to the default Linux build for Intel
Galileo. While following the steps described in the Chapter 1, Getting Started with
Intel Galileo, we didn't make any changes, and so we only built the default full image
defined for Intel Galileo.

Building Applications and Customizing Linux for Home Automation

[126]

In the previous chapters, we briefly mentioned adding the OpenCV library and added
the cp210x kernel module to our default Linux image. The OpenCV library is an open
source package and it was already delivered with the Intel Galileo board support
package. In this section, we will make the required configurations and changes to
build a structure to add our own application to the Linux image.

Adding a new application to Yocto Project
To add a new application, we need to add a Yocto Project recipe to the Intel Galileo
Yocto Project. If you have developed a whole software stack with a number of
applications, services, and libraries, it would be better to create your own directory
like meta-clanton-distro and add the required configuration files to the directory.
Finally, we need to add the new directory in the setup.sh file to the BBLAYERS
variable. Configuration files make the BitBake script read the whole directory under
the defined directory, parse the recipes, and build all of them. We will only deploy
one application to the Intel Galileo default Yocto Linux image. Therefore, we will
work only on the existing recipes and create our own Yocto Project recipe. Before
going forward, it will be a good practice to review Chapter 1, Getting Started with
Intel Galileo, to remember the steps you have initialized for the Yocto Project build
environment. The build directory (BUILD_DIR) was /home/onur/galileo_build,
and the Yocto Project files were stored in meta-clanton_v1.0.1.

Let's go into the build directory to create a new file and start writing the recipe, as
shown in the following commands:

$ cd $BUILD_DIR/meta-clanton_v1.0.1

1. First, we need to create a directory for the recipe in /meta-oe/meta-oe/
recipes-support. Directories such as recipes-multimedia, recipes-core,
recipes-extended, and others, can also be selected. How you classify
your application depends on you. Now create a directory using the
following command:
$ mkdir meta-oe/meta-oe/recipes-support/smarthome

2. Create the .bb file with which we will define our application for the build
process; save it empty with Ctrl + O:
$ nano meta-oe/meta-oe/recipes-support/smarthome_0.0.1.bb

3. We will start by entering the description for the application, application
section, and a library or a base. Then you need to enter the software license
type; like all the code in this book, this application is also licensed under the
MIT license, license file checksum, and build dependency.

Chapter 7

[127]

Generate the checksum for the COPYING file under the
project folder. You can generate the checksum with the
md5sum tool as shown in the following command:
$ md5sum COPYING

We defined the first lines of smarthome_0.0.1.bb file which are given here:
DESCRIPTION = "Home Automation Application for Intel Galileo"
SECTION = "base"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://COPYING;md5=c5bb609535f48d5cd02fe14a780
f3d8c"
DEPENDS += "opencv"

4. Now, we will proceed to define the source code path to fetch the source code.
In Yocto Project, recipes define the upstream source path. BitBake script
downloads the source code from the given path and builds the downloaded
source code. Paths are defined to the SRC_URI variable. Paths can be a Git,
SVN repository, HTTP, FTP, or a local path. In the sample recipes, we defined
the source in a local path. We also need to enter the checksum and sha256sum
values. We added the following lines to our recipe:
SRC_URI = "file:///home/onur/tmp/galileo_ha/smarthome-0.0.1.tar.
gz"
SRC_URI[md5sum] = "46ef1371208ee57f89cbfa793a689eba"
SRC_URI[sha256sum] =
"dd4d8cd85c86c440173e60af36e227fbc2cffb151877ebaed8d474625cd889cd"

You can use sha256sum Linux to generate a sha256sum
value with the following commands on your host machine:
$ sha256 /home/onur/tmp/galileo_ha/smarthome-
0.0.1.tar.gz

5. In this step, we will define how to build our application. First, we define the
source directory where the source code will be extracted. Then, we define
how the BitBake script will build the application. We defined in the recipe
to use autotools for the build process. We created the applications in Eclipse
by selecting autotools. Autotools configurations are already defined in Yocto
Project, and so we inherited configurations from an existing project to the
recipe. See the next two lines for descriptions:
S = "${WORKDIR}/${PN}-${PV}"
inherit autotools gettext

Building Applications and Customizing Linux for Home Automation

[128]

6. Finally, we define the installation steps to make our home automation
application automatically start and write outputs to a defined file. The
BitBake script will use the defined autotools installation process and it will
install the application into /usr/bin. The following definition will carry out
extra installation steps for auto start descriptions. We will add the following
lines at the end of the smarthome_0.0.1.bb file:

do_install_append(){
 mkdir ${D}/etc
 mkdir ${D}/etc/init.d
 mkdir ${D}/etc/rcS.d
 install -m 0755 ${S}/scripts/startha.sh ${D}${sysconfdir}/init.d
 ln -sf ../init.d/startha.sh ${D}${sysconfdir}/rcS.d/S99startha.
sh
}

As you see in the previous installation definition, we also have a startup
script to execute at boot time. We have included the script to the project
source folder under scripts folder as startha.sh. The startup script is
defined as given in the following command:

#!/bin/sh
Start the Home Automation Application
echo "Starting Home Automation Application" > /var/log/homelog
/usr/bin/smart_home &> /var/log/homelog

7. The final content of the Yocto Project recipe for Smart Home application is
as follows:
DESCRIPTION = "Home Automation Application for Intel Galileo"
SECTION = "base"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://COPYING;md5=c5bb609535f48d5cd02fe14a780
f3d8c"
DEPENDS += "opencv"
SRC_URI = "file:///home/onur/tmp/galileo_ha/smarthome-0.0.1.tar.
gz"
SRC_URI[md5sum] = "46ef1371208ee57f89cbfa793a689eba"
SRC_URI[sha256sum] =
"dd4d8cd85c86c440173e60af36e227fbc2cffb151877ebaed8d474625cd889cd"
S = "${WORKDIR}/${PN}-${PV}"
inherit autotools gettext
do_install_append(){
 mkdir ${D}/etc
 mkdir ${D}/etc/init.d
 mkdir ${D}/etc/rcS.d

Chapter 7

[129]

 install -m 0755 ${S}/scripts/startha.sh ${D}${sysconfdir}/init.d
 ln -sf ../init.d/startha.sh ${D}${sysconfdir}/rcS.d/S99startha.
sh
}

8. We are done with creating our Yocto Project recipe. It is time to build our
new image and start it on Intel Galileo. Run the following commands inside
the meta-clanton_v1.0.1 folder to build Smart Home application and
create the new image:
$ source poky/oe-init-build-env yocto_build
$ bitbake image-full-galileo

You can follow the defined steps in Chapter 1, Getting Started with Intel
Galileo, to copy the created files to an SD card and boot the image on
Intel Galileo.

You can apply the preceding steps to any application you have to add
into the custom Linux image. To gain more expertise, you can read the
Yocto Project Developer's Manual at http://www.yoctoproject.
org/docs/current/dev-manual/dev-manual.html.

Adding new features to the application
We have gone through the steps to add an application to the Linux image running
on Intel Galileo. If you have a service process running in the background, you should
work out the ways in which you communicate with the process, to send commands
to the application.

There are many methodologies that you can apply or implement for your application
to receive commands and send outputs to the requested client. We will investigate
two methodologies to send and receive messages to and from the application. We
will use named pipes and network sockets. Named pipes help you deliver messages
locally to the home automation service. Network sockets give you the ability to
deliver messages through the network connection.

http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html

Building Applications and Customizing Linux for Home Automation

[130]

Using named pipes
A named pipe is usually used to create an inter-process communication structure
between processes. The idea is to create a special Linux device file to read and
write data and bytes to the named file. Named pipes use the first in first out (FIFO)
principle. The first message in the FIFO will be received by the process in the
named pipe.

We will follow the following steps to create a named pipe in the filesystem and read/
write messages from the pipe.

1. We have to create a pipe file. If you create a pipe from the command line,
you can use the mknod tool and set its permissions for the chmod tool. See the
example shown here:
root@clanton:~# mknod test p
root@clanton:~# chmod 666 test
root@clanton:~# ls –all test
prw-rw-rw- 1 root root 0 Jan 2 05:50
 test

If you want to create the pipe in the application, here is the sample code:

/* Create the FIFO if it does not exist */
umask(0);
mknod("PIPE_FILE", S_IFIFO|0666, 0);

2. We created our named pipe, so we need to be able to read the incoming
messages from the pipe. We will use standard file libraries to open and read
from the named pipe. A basic reading can be done with the following code:
FILE *fp;
char readbuf[80];
fp = fopen(FIFO_FILE, "r");
fgets(readbuf, 80, fp);
printf("Received string: %s\n", readbuf);
fclose(fp);

3. In order to write to the pipeline, you can simply use the echo tool or you can
use the standard file library to write into the file you've opened.

When you execute the following command from the command line interface, it
will send the show home status message to the SMARTHOMEPIPE variable and the
application, which has opened the pipe, will receive it.

root@clanton:~# echo "show home status" > SMARTHOMEPIPE

Chapter 7

[131]

You can write in a named pipe in a C application as shown in the following code:

FILE *fp;
if((fp = fopen(FIFO_FILE, "w")) == NULL) {
 perror("fopen");
 exit(1);
}
fputs(argv[1], fp);
fclose(fp);

Using named pipes in the application
In the application, we have created a thread to receive messages from the named
pipe. In our application, we only needed to receive commands as we will write the
output to an XML file. The thread's implementation is shown in the next code:

/**
 * Handle User Requests from PIPE
 */
void* named_pipe_handler(void* arg) {
 FILE *fp;
 char readbuf[USERBUF];

 /* Create the FIFO if it does not exist */
 umask(0);
 mknod(FIFO_FILE, S_IFIFO | 0666, 0);
 fp = fopen(FIFO_FILE, "r");
 while (1) {
 if (fgets(readbuf, USERBUF, fp) != NULL) {
 snprintf(command, sizeof(readbuf), readbuf);
 }
 }
 fclose(fp);
 return NULL;
}

Network sockets
Network sockets are extremely common in today's connected world to create
communication between two devices connected to the Internet. Sockets are the
virtual endpoints of a system on a network. You can imagine them as pipelines used
from two different processes on different devices. If you want to communicate, Intel
Galileo and an Android phone can send and receive messages through allocated
network sockets, which is like using pipelines in the system.

Building Applications and Customizing Linux for Home Automation

[132]

You will use network sockets to enable your home automation application to receive
and send messages from/to remote devices. This ability will enable your application
to receive from any device with an Internet connection. For example, if you want
to manage your Smart Home application with an Android device, you need to
implement the code for the Android application to connect the defined network
socket and send defined commands to our application such as switching a wall
plug or lamp holder on and off.

We have defined a new module in the application named socket_listener. We
have added the socket_listener.c and socket_listener.h variables to define
a new method to work as a new thread to listen the defined network socket and
receive commands from the outside.

#ifndef SOCKET_LISTENER_H_
#define SOCKET_LISTENER_H_

#define SOCKET 3500
#define MAXBUF 5000

void* socket_worker(void* arg);

#endif /* SOCKET_LISTENER_H_ */

The socket_worker function takes one argument, which is the command variable
from the main function. The thread writes the received bytes to the command
and the main function checks the received message. The content of the socket_
listener.c file that includes the code for the socket_worker function is given
here; the code for the socket_worker function is listening to the defined socket,
which is 3000 in this case, and sends ACK as an acknowledgment.

#include "socket_listener.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>

void* socket_worker(void* arg) {
 char buffer[MAXBUF + 1];
 char* msg = "ACK\n";
 struct sockaddr_in dest; /* socket info about the machine connecting
to us */

Chapter 7

[133]

 struct sockaddr_in serv; /* socket info about our server */
 int homesocket; /* socket used to listen for incoming
 connections */
 socklen_t socksize = sizeof(struct sockaddr_in);

 memset(&serv, 0, sizeof(serv)); /* zero the struct before
 filling the fields */
 serv.sin_family = AF_INET; /* set the type of connection to
 TCP/IP */
 serv.sin_addr.s_addr = htonl(INADDR_ANY); /* set our address to
 any interface */
 serv.sin_port = htons(SOCKET); /* set the server port number */

 homesocket = socket(AF_INET, SOCK_STREAM, 0);

 /* bind serv information to mysocket */
 bind(homesocket, (struct sockaddr *) &serv, sizeof(struct
 sockaddr));

 /* start listening, allowing a queue of up to 1 pending
 connection */
 listen(homesocket, 1);
 int consocket = accept(homesocket, (struct sockaddr *) &dest,
 &socksize);
 while (consocket) {
 send(consocket, msg, strlen(msg), 0);
 int received = -1;
 /* Receive message */
 if ((received = recv(consocket, buffer, MAXBUF, 0)) >= 0) {
 //printf("Received %s from %s \n", buffer,
 inet_ntoa(dest.sin_addr));
 snprintf(arg, sizeof(buffer), buffer);
 memset(buffer,0,sizeof(buffer));
 }
 close(consocket);
 consocket = accept(homesocket, (struct sockaddr *) &dest,
 &socksize);
 }
 return NULL;
}

Building Applications and Customizing Linux for Home Automation

[134]

Let's review the code step by step. First, you need to include the required Linux
libraries in your application; <arpa/inet.h>, <sys/types.h>, <netinet/in.h>, and
<sys/socket.h> are the required header files. Then, in the socket_worker function,
you need to define the variables that are needed to create a network socket, send/
receive data, and socket file descriptor. The sockaddr_in and socklen_t structs are
defined in the libraries that we have included.

After variable definitions and declarations, we initialize the network socket and
bind it to any interface, Wi-Fi, or Ethernet interface. Then, run a loop to accept
the incoming connection and use the recv function to receive messages from the
incoming connection, and use the send function to send the ACK message.

Now, copy the received message buffer to arg, which is the command variable
from the main process. The main process checks the incoming message to execute
the command.

Summary
In this chapter, we reviewed how we can customize the Intel Galileo Yocto Linux
image by adding the home automation application. We also reviewed how we
created the required files to build the application with the Yocto Project build
system and install the application into the system image.

Then, we looked into the details of implementing methods to communicate with
our application in Intel Galileo. We reviewed the named pipes for inter-process
communication on Intel Galileo. Then we had a brief on network sockets and
sample code to receive commands from defined network sockets.

In the last chapter, you try to connect to your home automation application
with other platforms to manage the home automation application with remote
applications. In order to do that, we will introduce you to Node.js for a basic web
server to serve files from Intel Galileo and a basic web interface for remote users.
Then you will follow up with a simple Android application to manage Intel
Galileo applications with the network socket connection.

[135]

Extending Use Cases
In the previous chapters, we examined Intel Galileo and developed sample
applications with C programming languages. All our applications run on the Linux
operating system. We aimed to work with devices and sensors, which are frequently
used in home automation systems for our applications. Finally, in the previous
chapter, you had an overview of the methods to add applications into the default
Linux system to act as a service in the operating system.

However, all our application user interfaces are based on the command line. The
command line is a good tool to interface for developers and engineers, but it is not
practical and the visualization is limited to the defined ASCII characters.

In order to make the control of the home automation application by the user or easier
by switching off the wall plug anywhere you are connected, you need to check the
energy consumption from any device like a smartphone, tablet, smart TV, or your
game console.

We will start by investigating Node.js and will use its basic capabilities to create a
basic web server. The web server will also be serving a simple web interface to send
commands to the home automation application in Intel Galileo. We will follow up
with a simple Android application. Our Android application will read the current
status of the home from the served file and send commands from web sockets
defined in the previous chapter.

This chapter will not teach Node.js and Android in depth, and so we suggest you
do further reading for a quick review of JavaScript and Java programming
languages. Then you need to investigate Android SDK. Let's start with Node.js
in the following section.

Extending Use Cases

[136]

Introducing Node.js
Node.js is a cross-platform framework to build network applications with JavaScript
programming languages. Applications developed with Node.js use an event-driven
method, and its most important feature is to develop a non-blocking I/O model for a
network application. Node.js applications mainly use network sockets for I/O.

There are also some APIs provided to developers to interact with low-level C APIs
in order to develop applications with sensors connected to platforms. Node.js is
embraced by the maker community as well. They use it to build simple applications
for devices like Intel Galileo. When we build the full image for an SD card, it will
include Node.js and we can work with it.

The official Node.js website is http://nodejs.org. You can read
the API documentation from the given link.
Before going further with the Node.js sample application, it
is highly recommended to follow up with the following blog:
https://docs.nodejitsu.com/articles/

The blog includes tutorials, which contain the main building blocks
of our Node.js application presented in the following sections.

Using Node.js with Intel Galileo
Let's learn how to use Node.js with a "hello world" sample. We need to create a
JavaScript file with a .js extension from the Intel Galileo terminal. You can also
create the file on your host with your favorite text editor and copy the file to Intel
Galileo with the SCP tool:

$ vi helloworld.js

console.log("Hello World");

We created the helloworld.js file. Node.js is a scripting language such as Python or
shell. You just need to run it as shown here:

$ node helloworld.js

Hello World

This is the basic workaround for Node.js. We will need some basic utilities of Node.
js. We will work to implement a web server, execute Linux processes, parse JSON
files, serve HTML pages, and reply to incoming requests in our application.

http://nodejs.org
https://docs.nodejitsu.com/articles/

Chapter 8

[137]

Let's start by implementing our basic web server with Node.js. In order to create a
HTTP web server with Node.js, we will include the Node.js HTTP module. The HTTP
module will listen to a given socket for incoming network requests:

$ vi httpserver.js

var http = require('http');

http.createServer(function (request, response){

 response.writeHead({'Content-Type' : 'text/plain'});

 response.write("Hello World");

 response.end();

}).listen(2000);

Run this code after you save from the terminal. Then type http://galileo_ip:2000
from any web browser you have; it will prompt Hello World on the web browser.

That was an introduction to Node.js. In the following section, you will learn how
to develop our home server application to interact with the Smart Home native
application and present a user interface to manage the home.

Developing a home automation server
In this section, we will proceed step by step on the home server application. The
source code of the home automation server can be seen and downloaded from
the following URL:

https://github.com/odundar/galileo_ha/tree/master/webinterface

Let's first import the required Node.js modules, which we need to use in the
application, like the HTTP module.

/*
 * Required NodeJS Modules to Include...
 */
var http = require('http');
var path = require('path');
var fs = require('fs');
var url = require('url');
var exec = require('child_process').exec;
var child;

We require HTTP to create a web server. We need the path and fs Node.js modules
to read files on the file system. The URL module needs to parse the incoming requests
from the client. Finally, we require the child_process module to execute the shell
commands and write on the named pipe of the Smart Home application.

https://github.com/odundar/galileo_ha/tree/master/webinterface

Extending Use Cases

[138]

Now we will define the variables with the named pipe JSON files to read the status
of devices; commands can be sent to the Smart Home application and the network
port from which we want to start our web server.

var jsonFilePath = "/home/root/smarthome/home.json";
var commandsFilePath = "/home/root/smarthome/commands.json";
var pipePath = "/home/root/smarthome/SMARTHOMEPIPE";
var resourcePath = "res/";
//Server Listen Port
var PORT = 3000;

We picked /home/root/smarthome as our root directory to store files. We also need
to change the corresponding paths inside the Smart Home application to create the
named pipe file inside this directory. res/ folder includes the images that we will
show on our web interface.

Before going further in the code, we need to read the home status from a saved JSON
file. This JSON file has been created by the Smart Home application. A simple saved
JSON file is shown in the next few lines. It has been named as home.json. The Smart
Home application updates this file if there is any change in the status of any device.
We will read this file to get information about devices.

JSON or JavaScript Object Notation is a format defined to make the
interchange or storage of data easy. It is easier to parse than format the
files as XML, and so it's getting more popular. The official JSON website
is http://www.json.org/.

We are using the JSON file as it is very easy to parse the JSON format with Node.js
and many other programming languages. You can also use XML, but it is easier with
Node.js. A random sample from a home.json file can be seen in the following lines:

{
 "home": {
 "last_update_date": "Tue Jan 2 02:28:18 2015 ",
 "device": [
 {
 "id": "1",
 "name": "SHT11 Sensor",
 "status": "Active",
 "temperature": "24.000000",
 "humidity": "70.000000"
 },
 {
 "id": "2",

http://www.json.org/

Chapter 8

[139]

 "name": "Philio Multi-Sensor",
 "status": "Sleeping",
 "temperature": "76.000000",
 "lumination": "10.000000",
 "motion": "DETECTED",
 "door": "CLOSED",
 "battery": "0",
 "power_level": "Nor"
 },
 {
 "id": "3",
 "name": "Fibaro Wall Plug",
 "status": "Active",
 "switch": "ON",
 "power_meter": "0.600000",
 "energy_meter": "2.130000",
 "power_level": "Normal"
 },
.. Rest of the devices defined in this part
 {
 "id": "7",
 "name": "D-Link Network Camera",
 "status": "Active",
 "port": "134555744"
 }] } }

Before going for the parsing method in the Node.js HTTP server application, let's
make a quick revisit to the Smart Home application to check how we created this
JSON file. As we mentioned in Chapter 6, Home Surveillance and Extending Security Use
Cases, we defined variables in the device.h file to save an XML file. We also defined
a new path for our JSON file in the device.h file as #define JSON_FILE_NAME "/
home/root/smarthome/home.json".

Then we saved the latest values by using the C programming language FILE pointer.
We wrote values in the form of a text file with the correct JSON formatting. The
following is a piece of the update_device_json(const char* filename) function:

void update_device_json(const char* file_name) {
 FILE* json_file;
 json_file = fopen(file_name, "w");
 //TimeStamp for Last Update
 time_t rawtime;
 struct tm * timeinfo;
 time(&rawtime);
 timeinfo = localtime(&rawtime);

Extending Use Cases

[140]

 char time_buf[BUFFER];
 sprintf(time_buf, "%s", asctime(timeinfo));
 int i = 0;
 while(time_buf[i] != '\n'){
 i++;
 }
 time_buf[i] = ' ';
 fprintf(json_file, "{\n \"home\": {\n");
 fprintf(json_file,
 "\t\"last_update_date\": \"%s\",\n
 \t\"device\": [\n", time_buf);
 //Device 1 Temperature Sensor
 fprintf(json_file,
 "\t{\n\t\"id\": \"1\",\n
 \t\"name\": \"%s\",\n
 \t\"status\": \"%s\",\n
 \t\"temperature\": \"%f\",\n
 \t\"humidity\": \"%f\"\n\t},\n", TemperatureSensorName,
 temperature_sensor_status, temperature_c, relative_humidity);

// Some Code Here To Add Other Devices
//.. End of Function

 fprintf(json_file," \t]\n\t}\n}\n");
 fclose(json_file);
}

We call the update_device_json function when there is any change in the devices
or when the thread requests updates from them. Now we can continue to our Node.
js application.

The following lines are enough to read the JSON file to a JSON object named
homestatus:

//Parse JSON File for Home Status
var homestatus;
fs.readFile(jsonFilePath, 'utf8', function (err, data) {
 if (err) throw err;
 homestatus = JSON.parse(data);
});

You can read the last_update_date with a simple line of code like the
following one:

homestatus["home"]["last_update_date"]

Chapter 8

[141]

If you want to read the power_meter value, you can use the following line:

homestatus["home"]["device"][2].power_meter

We get the second index and power_meter element to reach the value.

We will use the homestatus object to read the current status of devices. This will
help us create a more dynamic user interface. As you have seen from the basic
sample, you can send the text output to your browser. We will create our own HTML
output when a connection request comes from an external device. In order to do a
nice HTML user interface easily, with a list of devices, we will use external tools
like jQuery.

jQuery is a JavaScript library. jQuery makes it easy to manipulate
HTML document styling and scripting. You can read more
information about this from the jQuery official web site http://
jquery.com/.

We have implemented a JavaScript function to read the JSON object and create
a list with the latest status of devices. The following function takes the response
parameter of the HTTP server. Then it creates an HTML file by writing all the
corresponding lines.

function JSONtoHtmlUI(res,message) {
 /**
 * Create HTML UI with jQuery List View
 */
 res.writeHead({'Content-Type': 'text/html'});
 res.write('<!DOCTYPE html>');
 res.write('<html>');
 res.write('<head>');
 res.write('<meta charset="UTF-8">');
 res.write('<meta name="viewport" content="width=device-width,
 initial-scale=1">');
 res.write('<link rel="stylesheet" href=
 "http://code.jquery.com/mobile/1.4.5/jquery.mobile-
 1.4.5.min.css">');
 res.write('<script src=
 "http://code.jquery.com/jquery-1.11.1.min.js"></script>');
 res.write('<script src=
 "http://code.jquery.com/mobile/1.4.5/jquery.mobile-
 1.4.5.min.js"></script>');
 res.write('</head>');
 res.write('<body>');
 res.write('<div data-role="page" id="pageone">');

http://jquery.com/
http://jquery.com/

Extending Use Cases

[142]

 res.write('<div data-role="main" class="ui-content">');
 if(message != ""){
 res.write('<p> Message: ' + message + '</p>'); }
 res.write('<h4> Home Status: ' +
 homestatus["home"]["last_update_date"] + '</h4>');
 res.write('<ul data-role="listview" data-inset="true">');
 // List Devices
 // SHT11 Sensor
 res.write('');
 res.write('');
 res.write('');
 res.write('<h3>' + homestatus["home"]["device"][0].name +
 '</h3>');
 /** In this part of this function we are repeating similar
 responses for other devices **/
 res.write('');
 res.write('</div>');
 res.write('</div>');
 res.write('</body>');
 res.write('</html>');
 res.end();
}

Information about each device has been added inside the tag to create a row in
the list. For each device, we loaded the device's image to the list row and added the
corresponding text. In the first few lines, we defined the jQuery links.

We will respond with the above function to show the user interface when the user
makes a connection to our application. In case the user makes a request to switch off
the lamp holder or wall plug, we need to handle the request and send a command to
the Smart Home application. We need to define another function to send commands
to the Smart Home application pipe. We can send commands to the Smart Home's
pipe from the Linux shell. Node.js includes the child_process module and it can
execute shell commands. Therefore, we used the echo command from the Linux shell
to write the corresponding command to the Smart Home application, as shown here:

function sendCommand(command_id) {
 // Parse Commands JSON
 var commands = JSON.parse(fs.readFileSync(commandsFilePath,
 'utf8'));
 console.log("Parsing Commands JSON...");
 var command = 'echo ' +
 commands["commands"]["command"][command_id].text + ' > ' +
 pipePath;
 console.log("Executing....:" + command);

Chapter 8

[143]

 child = exec(command, function(error, stdout, stderr) {
 if (error != null) {
 console.log('exec error: ' + error);
 }
 });
}

The sendCommand function first reads the commands.json file from the given path
to a JSON object. Then it executes the command according to the given command
ID. An example of this is echo switch on 4 > /home/root/smarthome/
SMARTHOMEPIPE.

The commands.json file has been created with the reference of the defined
commands in the Smart Home application; the file is static and doesn't change
at runtime. The following lines form a part of the commands.json file:

{
 "commands": {
 "command": [
 {
 "id": "1",
 "text": "show home status"
 },
.. Other Commands
 {
 "id": "5",
 "text": "switch on 3"
 },
.. Other Commands
 {
 "id": "11",
 "text": "help"
 }] } }

We are done with helper functions and variables. Now we will define our HTTP
server's handler function in the following lines to define how to respond to the
incoming request:

function handler(request, response) {
 if (request.method !== 'GET') {
 response.writeHead(405);
 response.end('Unsupported request method', 'utf8');
 return;
 }
 console.log("Parsing Device File...")

Extending Use Cases

[144]

 fs.readFile(jsonFilePath, 'utf8', function (err, data) {
 if (err) throw err;
 homestatus = JSON.parse(data);
 });
 var request = url.parse(request.url, true);
 var action = request.pathname;
 // Consolo Output for Request
 console.log(action);
 /**
 * Handle HTTP Get Requests
 */
 if (action === '/'){
 JSONtoHtmlUI(response,"");
 return;
 } else if(action == '/switch4'){
 console.log("Switch Request....");
 var switch_action;
 // Switch off
 if(homestatus["home"]["device"][3].switch == "ON"){
 switch_action = "OFF";
 sendCommand(7);
 } else { // Switch on wall plug
 switch_action = "ON";
 sendCommand(6)
 }
 homestatus["home"]["device"][3].switch = switch_action;
 JSONtoHtmlUI(response,"Switched " +
 homestatus["home"]["device"][3].name + " " + switch_action);
 return this;
 // Switch On or Off LampHolder
 } else if(action == '/switch3'){
 console.log("Switch Request.....");
 var switch_action;
 if(homestatus["home"]["device"][2].switch == "ON"){
 switch_action = "OFF";
 sendCommand(5);
 } else{
 switch_action = "ON";
 sendCommand(4);
 }
 homestatus["home"]["device"][2].switch = switch_action;
 JSONtoHtmlUI(response,"Switched " +
 homestatus["home"]["device"][2].name + " " + switch_action);
 return this;

Chapter 8

[145]

 // Capture Frame from Network Camera
 } else if(action == '/capture'){
 sendCommand(8);
 JSONtoHtmlUI(response,"Captured From Network Camera");
 return this;
 }
 /**
 * Serve Requested Static Files
 */
 var filePath = path.join(__dirname, action);
 var stat = fs.statSync(filePath);
 fs.exists(filePath, function (exists) {
 if (!exists) {
 // 404 missing files
 response.writeHead(404, {'Content-Type': 'text/plain' });
 response.end('404 Not Found');
 return;
 }
 var readStream = fs.createReadStream(filePath);
 readStream.on('data',function(data){
 response.write(data);
 });
 readStream.on('end',function(data){
 response.end();
 });
 });
 return;
}

Our handler function parses the incoming requests from the browser. It takes the
appropriate action for each request. If a file requested is http://galileo_ip:3000/
home.json, it servers the corresponding file. If the user requests a resource file with
the URL http://galileo_ip:3000/res/sht11.png; the browser loads the image.
If the user wants to switch the wall plug on or off, the user requests this with
http://galileo_ip:3000/switch3.

Finally, we create the HTTP server with only one line of code, as shown in the
following line:

http.createServer(handler).listen(PORT);

Extending Use Cases

[146]

We have completed our home server application and are now ready to run the
application. Save the code to a JavaScript file. In this sample, we saved the code to
the homeserver.js file inside the /home/root/smarthome folder, which is shown
in the following lines:

$ cd /home/root/smarthome

$ node homeserver.js

Now our Node.js application is working. Let's first try connecting from
our host PC browser; type the Galileo IP address and port, which is
http://192.168.2.235:3000 in our case. The user interface has been tested only on
the Firefox and Chrome browsers on a PC. Look at the following screenshot from a
desktop Firefox browser on the left and an Android mobile browser on the right:

Now we can click on the Fibaro Wall Plug item on the list to switch it on or off from
our smartphone.

You can improve the application by adding more features and beautify the user
interface for a better experience. If your devices are different to the ones presented
here, you can change and add custom requests to handle using the Node.js application.

We will keep the Node.js application running to serve the home.json and commands.
json files for the next section's smartphone application.

Chapter 8

[147]

Use cases with Node.js
In the previous chapter, we made an application to run as a web server, present a
web interface and send commands to the Smart Home application. However, you
can extend your applications with Node.js using some very cool options. As it is easy
to program network applications with Node.js, you can connect any cloud or web
service to Node.js.

One idea could be to integrate your Node.js application with Twitter. Twitter
provides APIs for many platforms; there are many open source APIs for Twitter
as well and they can be used easily with Node.js.

It is a very nice option to use the tweet feature if there is any motion detected at
home. You can tweet if there is any change in the devices such as a flood or gas
leak detected. We have sent commands from a web interface; it is also possible to
define your application with the help of the Twitter API, to read the incoming direct
messages to send commands to the Smart Home application. For example, you can
create a new account for the home automation application. A Node.js application can
send tweets if there is any change at home and can read Twitter direct messages to
send commands to the Smart Home application.

Twitter is only one example; there are many free services with public APIs. You can
add the feature to your home to control it wherever you are connected.

In this section, we tried to cover the basics of Node.js with a sample application.
There are tons of use cases that you can add to Node.js to polish the home automation
application. Now we will proceed by developing an Android application.

Introducing Android
We have developed a Node.js application as a web server as well as to present
an HTML user interface in order for users to interact with the home automation
application. Another way to interact with the Smart Home application on Intel
Galileo could be by developing native applications for your device; the device could
be your personal computer, tablet, game console, smart TV, tablet, or smartphone.

The native application can send commands to the Smart Home application network
socket, which we introduced in the previous section. You can also simply interact
with the Node.js application from your native application instead of using a web
browser. As Android is very popular, we will show how to develop a native
application on our Android smartphone to interact with the Smart Home application.

Extending Use Cases

[148]

If you are not used to Android, this section may be hard to grasp. It is
recommended to review the Android operating system, SDK, and the
application development environment.
Developing Android applications with Android SDK requires you to
know the Java programming language. It is also a good idea to review
the Java programming language.
The following URL's include tutorials and examples for Android
application development. It would be very useful for you to follow
them: http://developer.android.com/index.html, http://
developer.android.com/training/index.html, http://www.
vogella.com/tutorials/AndroidListView/article.html

Before starting to develop with Android SDK, you need to install Java onto your host
PC. Then you should install Android SDK; an easy way to start is to download the
Android ADT Bundle, which includes both Eclipse IDE and Android SDK. Another
option for this is to download Android Studio. You can find more information at
http://developer.android.com/sdk/index.html. We will be using Eclipse IDE
to develop our Android application.

Developing an Android application for home
automation
In this section, we will describe the main steps to develop a home automation
application for Android. You can see and download the source code of the
application from the repository at https://github.com/odundar/galileo_ha/
tree/master/smarthome_app.

In order to start the development, we need to create the Android application project
from IDE. In our sample, we named the project SmartHome. While creating the
application, it prompts you to create an Android activity. For this application, we
will have one Android activity named SmartHome in the SmartHome.java file. The
Android activity handles the entire user interface, workload, and logic. When we
create the activity while creating the Android project, it also populates an XML
file, which holds the Android application's user interface data and elements. It is
automatically named as activity_smart_home.xml.

http://developer.android.com/index.html
http://developer.android.com/training/index.html
http://developer.android.com/training/index.html
http://www.vogella.com/tutorials/AndroidListView/article.html
http://www.vogella.com/tutorials/AndroidListView/article.html
http://developer.android.com/sdk/index.html
https://github.com/odundar/galileo_ha/tree/master/smarthome_app
https://github.com/odundar/galileo_ha/tree/master/smarthome_app

Chapter 8

[149]

Look at the following screenshot from our Android project. You can see the Java
classes and XML files for this project. We also copied all the images of the devices to
the res/drawable-hdpi folder under the project folder. In the Node.js application,
we are loading the images from Intel Galileo but, to make the application faster, it is
better to use local resources in the Android application.

As you can see in the project folder, we also have the DeviceItem.java,
HomeDeviceAdapter.java classes, and the row_layout.xml file. We created these
files to build a custom list to store the image of the device, the name of the device
and the latest status of the device and show them in an Android ListView widget.
Android ListView widgets can be assigned to a data adapter and automatically fill
the list with the given items.

Extending Use Cases

[150]

Let's first check our ListView widget's custom row layout from the row_layout.
xml file. XML files store the user interface structure. In order to show an image in
an Android device, the ImageView class can be used; to write text on an Android
application, TextView objects are used.

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >
 <ImageView
 android:id="@+id/photo"
<!--Here the Properties of View described-->/>
 <TextView
 android:id="@+id/name"
<!--Here the Properties of View described--> />
 <TextView
<!--Here the Properties of View described--> />
</LinearLayout>

The DeviceItem class is a Java class to store device information to fill each row.

public class DeviceItem {
 private String deviceName;
 private String deviceStatus;
 private int deviceImage;
 /*
 * Rest of the code is getters and setters of private members of
 this function
 */
 public String getDeviceName() {
 return deviceName;
 }

 public void setDeviceName(String deviceName) {
 this.deviceName = deviceName;
 }
//// Some Code Here, deviceStatus and deviceImage Getters and
Setter////
}

Chapter 8

[151]

The HomeDeviceAdapter is a child class, which inherits the BaseAdapter class from
Android SDK; it is required to override its getView function to fill the ListView
widget with the given items. In our case, it will pass the DeviceItem objects to fill
the ListView widget of our application to show the home status.

public class HomeDeviceAdapter extends BaseAdapter {
 private final ArrayList<DeviceItem> itemsArrayList;
 private LayoutInflater inflator;
 public HomeDeviceAdapter(Context context,
 ArrayList<DeviceItem> itemsArrayList) {
 super();
 this.itemsArrayList = itemsArrayList;
 inflator = LayoutInflater.from(context);
 }
 /* … Here Other Inherited Methods from BaseAdapter Methods Code
 ….*/
 @Override
 public View getView(int position, View convertView, ViewGroup
 parent) {
 ViewHolder holder;
 if (convertView == null) {
 convertView = inflator.inflate(R.layout.row_layout, null);
 holder = new ViewHolder();
 holder.deviceName = (TextView)
 convertView.findViewById(R.id.name);
 holder.deviceStatus = (TextView) convertView
 .findViewById(R.id.itemDescription);
 holder.deviceImage = (ImageView) convertView
 .findViewById(R.id.photo);
 convertView.setTag(holder);
 } else {
 holder = (ViewHolder) convertView.getTag();
 }
 holder.deviceName.setText(itemsArrayList.get(position).
 getDeviceName());
 holder.deviceStatus.setText(itemsArrayList.get(position)
 .getDeviceStatus());
 holder.deviceImage.setImageResource(itemsArrayList.get
 (position).getDeviceImage());
 return convertView;
 }
 static class ViewHolder {
 TextView deviceName;
 TextView deviceStatus;
 ImageView deviceImage;
 }
}

Extending Use Cases

[152]

In the preceding code, we also defined the private members itemsArrayList
parameter and inflator to use in the getView method. The LayoutInflator inflator
needs to be created from the current context of the application to populate rows
of the ListView widget in the current application. The itemsArrayList parameter
contains the passed DeviceItem objects.

Now we will proceed to implement the SmartHome activity to do all the work. When
we first create the activity during project creation, it inherits the Android SDK,
Activity objects' properties, and the onCreate(Bundle savedInstanceState)
function. The onCreate function is called in Android applications when you run the
application for the first time; it is mostly used to initialize the user interface elements
or initialize the required variables to be used during the application. Let's first add
the required variables to use in the activity class:

private URL homeJSONUrl;
 private URL commandsJSONUrl;
 private String lastUpdateDate;
 private JSONObject homeInfo;
 private String[] commands;
 private String[] deviceNames;
 private String[] deviceStatus;
 private Integer[] deviceImages = { R.drawable.sht11,
 R.drawable.philio,
 R.drawable.fibaro, R.drawable.everspring, R.drawable.flood,
 R.drawable.mq9, R.drawable.dlink };
 private Socket galileSocket;
 private static final int GALILEOPORT = 3500;
 private static final String GALILEO_IP = "192.168.2.235";
 volatile public boolean filesdownloaded = false;
 volatile public boolean socketcreated = false;
 ArrayList<DeviceItem> listItems;
 ListView deviceListView;
 TextView updateDateText;

We have defined the socket port, the Intel Galileo IP address, the user interface
elements to manipulate them in the code, and arrays to store information read
from JSON files.

We need to handle network operations in separate threads. The Android activity
is a thread needed to handle user interaction and user interface elements drawing
to a smartphone screen, and so it doesn't allow us to interrupt the thread to fetch
information from the network. We will define three different threads to handle JSON
file readings and the network socket creation.

Chapter 8

[153]

The following code shows the threads that we will use in the code:

Thread socketThread = new Thread(new Runnable() {
 @Override
 public void run() {
 // TODO Auto-generated method stub
 InetAddress serverAddr;
 try {
 serverAddr = InetAddress.getByName(GALILEO_IP);
 galileSocket = new Socket(serverAddr, GALILEOPORT);
 socketcreated = true;
 } catch (UnknownHostException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 });
 /**
 * JSON Worker to Fetch JSON Files from Intel Galileo
 */
 Thread jsonFetcher = new Thread(new Runnable() {
 @Override
 public void run() {
 // TODO Auto-generated method stub
 try {
 // Initialize URLs
 homeJSONUrl = new
 URL("http://192.168.2.235:3000/home.json");
 commandsJSONUrl = new URL(
 "http://192.168.2.235:3000/commands.json");
 getHomeStatus();
 getCommandsList();
 // Fill String Arrays
 initalizeHomeArray();
 fillListAdapter();
 filesdownloaded = true;
 }
 /* Catch Block Code */
 }
 });
 /**
 * Update Adapter

Extending Use Cases

[154]

 * Periodically Read the home.json File and Update ListView
 Adapter
 */
 Thread updater = new Thread(new Runnable() {
 @Override
 public void run() {
 // TODO Auto-generated method stub
 while (true) {
 try {
 try {
 Thread.sleep(10000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 // Initialize URLs
 homeJSONUrl = new
 URL("http://192.168.2.235:3000/home.json");
 getHomeStatus();
 // Fill String Arrays
 updateHomeArray();
 // Clear Adapter
 listItems.clear();
 fillListAdapter();
 }
/* Catch Block Code */
 }
 }
 });

The updater thread works in ten second periods to read the home.json file
periodically to update the ListView widget if there is any change. The jsonFetcher
parameter works at the start of the application to fetch the initial states of JSON files.
The socketThread parameter creates the network socket which we will use to send
commands to the Smart Home application on Intel Galileo.

Let's proceed to our onCreate function to see how we initialize the user interface
for the application. In the application, we first set the application layout, which is
activity_smart_home.xml. In the main user interface layout, we have the header
text, a list of devices, and finally an update button to update the list any time we
want. The following lines show the XML file content:

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="fill_parent"

Chapter 8

[155]

 android:layout_height="fill_parent"
 android:background="#bdc3c7"
 android:orientation="vertical"
 tools:context="com.galileha.smarthome.SmartHome" >
 <TextView
 android:id="@+id/skip"
 <!--Here the Properties of View described--> />
 <TextView
 android:id="@+id/updateDate"
 <!--Here the Properties of View described--> />
 <LinearLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" >
 <ListView
 android:id="@+id/list"
 android:layout_width="fill_parent"
 android:layout_height="380dp" >
 </ListView>
 </LinearLayout>
 <Button
 android:id="@+id/update"
 <!--Here the Properties of View described--> />
</LinearLayout>

Then we initialize the user interface elements and start threads to fetch the JSON
files. The following function is used to fetch the home.json file inside the Android
application:

public void getHomeStatus() throws IOException,
MalformedURLException, JSONException {
 // Set URL
 // Connect to Intel Galileo get Device Status
 HttpURLConnection httpCon = (HttpURLConnection) homeJSONUrl
 .openConnection();
 httpCon.setReadTimeout(10000);
 httpCon.setConnectTimeout(15000);
 httpCon.setRequestMethod("GET");
 httpCon.setDoInput(true);
 httpCon.connect();
 // Read JSON File as InputStream
 InputStream readStream = httpCon.getInputStream();
 Scanner scan = new Scanner(readStream).useDelimiter("\\A");
 // Set stream to String
 String jsonFile = scan.hasNext() ? scan.next() : "";
 // Initialize serveFile as read string

Extending Use Cases

[156]

 homeInfo = new JSONObject(jsonFile);
 httpCon.disconnect();
}

We finally filled our adapter to populate the ListView widget with corresponding
data in the onCreate function. Then we defined a listener, which is responsible
for sending a command according to the clicked list item.

@Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_smart_home);
 deviceListView = (ListView) findViewById(R.id.list);
 updateDateText = (TextView) findViewById(R.id.updateDate);
 listItems = new ArrayList<DeviceItem>();
 jsonFetcher.start();
 while (!filesdownloaded);
 HomeDeviceAdapter deviceAdapter = new HomeDeviceAdapter(this,
 listItems);
 deviceListView.setAdapter(deviceAdapter);
 deviceListView.setOnItemClickListener(new
 OnItemClickListener() {
 @Override
 public void onItemClick(AdapterView<?> parent, View view,
 int position, long id) {
 JSONObject homeDevices;
 JSONArray devices;
 JSONObject clickedObject = null;
 try {
 homeDevices = homeInfo.getJSONObject("home");
 devices = (JSONArray)
 homeDevices.getJSONArray("device");
 clickedObject = devices.getJSONObject(position);
 } catch (JSONException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 // Switch ON/OFF Wall Plug or LampHolder
/* We check for other positions in this code block */
 } else {
 Toast.makeText(SmartHome.this, "No Available Command for
 Selected Device", Toast.LENGTH_LONG).show();
 }
 }
 });

Chapter 8

[157]

 updateDateText.setText(lastUpdateDate);
 socketThread.start();
 while (!socketcreated);
 updater.start();
 Log.d("SOCKET", "Socket Thread Started");
 }

When we click on a list item, it sends the corresponding command to the
Smart Home application network socket. The following methods get a string
parameter to send to the network socket. The use of the function can be seen in
the onCreate function. We also introduced the update button, which updates
the user interface elements when we click on it. You can define which function
to call when the button is clicked in the XML layout. In this case, we defined the
android:onClick="onUpdate" method. You can see the onUpdate function
shown here:

public void writeToSocket(String message) {
 try {
 PrintWriter out = new PrintWriter(new BufferedWriter(
 new OutputStreamWriter(galileSocket.getOutputStream())),
 true);
 out.println(message);
 Log.d("SOCKET", "Message " + message + " Sent to Socket");
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
}
public void onUpdate(View v) {
 updateDateText.invalidate();
 deviceListView.invalidateViews();
 deviceListView.refreshDrawableState();
 updateDateText.setText(lastUpdateDate);
 updateDateText.refreshDrawableState();
 Log.d("JSON", "Updated Views....");
}

Extending Use Cases

[158]

Finally, our application will look like the following image: a screenshot from the
Android device, and we'll be able to see the devices' status and manage them.

There's more in Android
Android is very rich in supporting libraries to enhance your application with
cool features.

It is also possible with Android to directly connect to network camera and get
a stream to your application. Android includes Media API to play the network
video. More information about Media API can be found from http://developer.
android.com/reference/android/media/package-summary.html.

You can use Bluetooth API to communicate with Intel Galileo from the Android
application. You would need a Bluetooth device attached to Intel Galileo and need
to program it to send the right information to the smartphone when it is connected.
For more information about the Android Bluetooth API, you can access the following
link: http://developer.android.com/reference/android/bluetooth/package-
summary.html

http://developer.android.com/reference/android/media/package-summary.html
http://developer.android.com/reference/android/media/package-summary.html
http://developer.android.com/reference/android/bluetooth/package-summary.html
http://developer.android.com/reference/android/bluetooth/package-summary.html

Chapter 8

[159]

These are some cool features that can be integrated with the application; you can
delve into Android API for more on this. In this book, we only go over the Android
operating system, but you may also try creating a similar application for iPhone and
Windows Phone according to your experience and interest.

Adding voice control to home automation
Nowadays it is popular to use voice-directed personal assistants such as Apple's Siri,
Google's Now and Microsoft's Cortana. Adding speech or sound recognition is a nice
addition to your home automation system.

Speech and voice recognition libraries exist for almost all platforms. Depending on
your design, you can add voice control to home automation. Let's start with Android.

Voice control with Android
An easy way to control your application with voice commands is to extend the
Android sample application with the Android Speech Recognizer library.

Information about the Android Speech Recognizer library can be found at http://
developer.android.com/reference/android/speech/SpeechRecognizer.html.

For our sample application, we would create a new thread to work as a speech
listener by using the SpeechRecognizer library and listening to the incoming voice.

The SpeechRecognizer library populates text, and so you can compare if any of
them matches the commands we loaded from the JSON file. If it does, we can send
a command to the Smart Home application. You may also define better sentences to
match the commands and send the corresponding commands to Intel Galileo. For
example, you can define a phrase such as Open Lights and this text will send the
command switch on 4, which turns on the lamp holder.

Voice recognition with Intel Galileo
The easiest way to add a microphone to get sound from the environment with Intel
Galileo is to use a USB microphone. It is also possible for you to connect an analog
audio sensor to get raw audio to Intel Galileo. It will take more time to handle raw
audio if you do not have much experience with audio.

After you have added a microphone or sound device, you need to add ALSA drivers
to get audio from the hardware device and sound from the environment. ALSA
drivers and the Linux library can be built with the Yocto Project by following the
steps that were described in the previous chapters.

http://developer.android.com/reference/android/speech/SpeechRecognizer.html
http://developer.android.com/reference/android/speech/SpeechRecognizer.html

Extending Use Cases

[160]

When we get the audio, we need to use the audio library to read sound from the
ALSA driver and feed the speech recognizer. A suggested open source library for
audio handling is PortAudio. For speech recognition, Sphinx is one of the most
popular speech recognition libraries to use in the Linux environment. Pocketsphinx,
the core of Sphinx, provides a C API to access and enable your platform for
speech recognition.

More information about libraries can be found from the following links:

• ALSA: http://www.alsa-project.org/main/index.php/Main_Page
• PortAudio: http://www.portaudio.com/
• Sphinx: http://cmusphinx.sourceforge.net/

Summary
Here we come to the end of the book. We tried to develop a piece of home
automation with various devices and technologies to help you understand the
home automation concept, technologies, Intel Galileo, the Linux operating system,
the Yocto Project, and so on. We also presented new technologies to improve the
home automation system with better user interaction methods.

We used Node.js to create an application to run as a web server and to create a basic
HTML user interface and communicate with native applications to send commands
to it via web browser actions.

Then we showed how to develop an Android application to read the devices status
from Intel Galileo and send commands to the Smart Home application from the
network socket. We were not able to study Android too deeply, but it would be a
good move for you to learn more about Android.

http://www.alsa-project.org/main/index.php/Main_Page
http://www.portaudio.com/
http://cmusphinx.sourceforge.net/

[161]

Index
A
Adafruit sensor

URL 66
Adafruit TSL2561 66
Aeon Labs Z-Stick S

URL, for manual 56
Aeon Labs Z-Stick S2 USB adapter 56
Ago Control

about 34
URL 34

ALSA drivers
about 159
URL 160

Android
about 147, 148
features 158
references 158
URL, for tutorials on application

development 148
Android application

developing, for home automation 148-157
Android SDK

URL 148
Android Speech Recognizer library

URL 159
application

adding, to Yocto Project 126-129
building, on Linux Terminal 19
named pipes, using in 131
new features, adding to 129

application development
starting, with C 45-55

Arduino 2
Arduino-certified development boards 2

Arduino IDE, for Intel Galileo
URL, for downloading 16

B
BitBake 13
Bluetooth low energy (BLE) 30
board support package (BSP) 5

C
C

application development, starting
with 45-55

camera
image, capturing from 111, 112
using, with Intel Galileo 107
video, saving from 113-115

clanton 11
command classes, Z-Wave

URL 62
cp210x kernel module 57
cross compilation

Yocto Project's plugin, configuring for 23
CuteCom 7

D
datasheet

sensor, learning from 42-44
development environment

setting up, for Intel Galileo 17, 18
setting up, for Linux 18

D-Link DCS-930L 106
door/window sensors 91

[162]

E
Eclipse IDE

configuring, for remote debugging 24
configuring, for Yocto Project 20
environment, setting up for 20
sample C project, creating in 26
URL, for downloading 20

Eclipse Kepler
URL, for downloading 20

energy management 41, 42
energy management, remote switches

about 55, 56
kernel modules, building for

Intel Galileo 57
remote wall plug, controlling 60-62
serial communication, on Linux 58-60

EnOcean
about 30, 31
URL 31

environment
setting up, for Eclipse IDE 20

F
features, Intel Galileo 5
Fibaro wall plug

about 55
URL, for manual 56

firmware
upgrading, on Intel Galileo 16

first in first out (FIFO) 130
flood detectors 93

G
gas sensors

about 87
using, with Intel Galileo 87-91

graphical user interface (GUI) 109
GtkTerm 7

H
hardware specifications, Intel Galileo 4
highgui module

about 109
functions 110

home automation
about 29
Android application, developing for 148
controllers 34
devices 36
Intel Galileo, using for 3, 4
project, designing with Intel Galileo 37-39
security devices 91
sensors 36
voice control, adding to 159

home automation protocols
about 30
EnOcean 31
Insteon 31
X10 31
ZigBee 32
Z-Wave 31

home automation software ecosystem
about 32
LinuxMCE 33
OpenRemote 33
OpenZWave 33

home automation software projects
Ago Control 34
HomeGenie 34
OpenHab 34
Open Source Automation 34

home automation system, extending with
lighting control

about 67-69
continuing, to home automation application

development 70-72
incoming messages, handling 82, 83
ON/OFF lamp holder, switching from

Intel Galileo 81, 82
status of remote devices, reading from

Intel Galileo 80
Z-Wave commands 72-75
Z-Wave messages, handling from

Intel Galileo 75-77
home automation technologies 30
HomeGenie

about 34
URL 34

[163]

I
image

capturing, from camera 111, 112
Insteon

about 30, 31
URL 31

Insteon USB Interface
URL 58

Intel Galileo
about 2, 3
booting 7, 8
cameras, using with 107
connecting 7, 8
connecting to local network, via Telnet 9
development environment, setting up

for 17, 18
firmware, upgrading on 16
gas sensors, using with 87-91
hardware specifications 4
image, capturing from camera 111, 112
kernel modules, building for 57
Linux filesystems, building for 11-14
Node.js, using with 136, 137
OpenCV, building for 107, 108
Philips Hue, using with 67
remote wall plug, controlling from 60-62
SD card, preparing to boot 14, 15
security sensors 85
sensor based applications,

developing with 42
sensor, connecting to 44
software specifications 5, 6
status of remote devices, reading from 80
URL, for community 3, 10
URL, for downloading kernel source code 3
used, for designing home automation

project 37-39
using, for home automation 3, 4
V4L2, building for 107, 108
video, saving from camera 113-115
video, streaming from 115
Z-Wave messages, handling from 75-77

Intel Galileo Gen 1
reference link 2

Intel Galileo Gen 1 USB host
about 2
URL, for example cable 2

Intel Galileo IO Mapping document
URL 46

Intel Galileo SDK
building 16, 17

Intel Quark board support package
URL, for downloading 10

J
jQuery

URL 141
JSON

URL 138

K
kernel modules

building, for Intel Galileo 57
KNX 30

L
light intensity 65
light sensors

using 65, 66
Linux

customizing, with Yocto project 125, 126
development environment,

setting up for 18
Linux filesystems

building, for Intel Galileo 11-14
Linux image, for Intel Galileo

building, with Yocto Project 10, 11
Linux Media Center Edition (Linux MCE)

about 33
URL 33

Linux Terminal
applications, building on 19

LM35 42
Lux 65

M
magnetic sensors

about 86, 87
reference link 87

message parsing system
wrapping up 98-102

[164]

minicom 7
MJPEG (Motion JPEG) 106
motion sensors 91
MQ-9 gas sensor

about 87
reference link 87

N
named pipes

using 130
using, in application 131

network cameras 105, 106
network sockets 131-134
Node.js

about 4, 136
URL 136
URL, for sample application 136
use cases 147
using, with Intel Galileo 136, 137

Node.js, home automation server
developing 137-146

O
OpenCV

about 13, 109
building, for Intel Galileo 107, 108
references 109

OpenCV API 109
OpenHab

about 34
URL 34

OpenRemote
about 33
URL 33

Open Source Automation
about 34
URL 34

OpenZWave
about 33
URL 33

P
passive infrared detection sensors

(PIR motion sensors)
about 86

reference link 86
Philips Hue

URL, for developer website 67
using, with Intel Galileo 67

photocell 66
Pocketsphinx 160
PortAudio

about 160
URL 160

R
remote debugging

Eclipse IDE, configuring for 24
remote switches 55
remote wall plug

controlling, from Intel Galileo 60-62

S
sample C project

creating, in Eclipse IDE 26
Secure Copy Protocol (SCP) 19
security 85
security devices, for home automation

about 91
door lock sensors 91, 92
flood detectors 92, 93
motion sensors 91, 92
smoke detectors 92
window sensors 91, 92

security feature, adding to Smart Home
application

about 93
door/window sensor detection 96, 97
flood detection 97, 98
motion detection 95, 96

security sensors, Intel Galileo
about 85
gas sensors 87
magnetic sensors 86, 87
PIR motion sensors 86

sensor
connecting, to Intel Galileo 44
learning, from datasheet 42-44

sensor based applications
developing, with Intel Galileo 42

[165]

serial communication 58
SHT11

about 42
URL 43

Smart Home application
rules, adding 117-122
security feature, adding to 93, 94

smart light bulbs
about 67
Philips Hue, using with Intel Galileo 67

smoke detectors 92
software specifications, Intel Galileo 5, 6
SpeechRecognizer library 159
Sphinx

about 160
URL 160

T
Telnet

Intel Galileo, connecting to local network 9
temperature sensors, Texas Instruments

URL 37

U
universal powerline bus (UPB) 30
USB-to-TTL serial UART cable

reference link 2
use cases, Node.js 147

V
V4L2

building, for Intel Galileo 107, 108
video

saving, from camera 113-115
streaming, from Intel Galileo 115

voice control
adding, to home automation 159

voice control, with Android 159
voice recognition, on Intel Galileo 159

W
Wi-Fi 30

X
X10

about 30, 31
URL 31

Y
Yocto Linux 6
Yocto Project

about 6, 10
Eclipse IDE, configuring for 20
Linux, customizing with 125, 126
Linux image for Intel Galileo,

building with 10, 11
new application, adding to 126-129
URL 10

Yocto Project Developer's Manual
URL 129

Yocto Project's Eclipse plugin
installing 22

Yocto Project's plugin
configuring, for cross compilation 23

Z
ZigBee

about 30-32
URL 32

Z-Wave
about 30, 31
URLs 32

Z-Wave adapters 56
Z-Wave commands

about 72, 73
references 74

Z-Wave messages
handling, from Intel Galileo 75, 77

Z-Wave Philio multi-sensor
about 91
URL 92

Thank you for buying
Home Automation with Intel Galileo

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Raspberry Pi Home Automation
with Arduino
ISBN: 978-1-84969-586-2 Paperback: 176 pages

Automate your home with a set of exciting projects
for the Raspberry Pi!

1. Learn how to dynamically adjust your living
environment with detailed step-by-step
examples.

2. Discover how you can utilize the combined
power of the Raspberry Pi and Arduino for
your own projects.

3. Revolutionize the way you interact with your
home on a daily basis.

Arduino Home Automation
Projects
ISBN: 978-1-78398-606-4 Paperback: 132 pages

Automate your home using the powerful
Arduino platform

1. Interface home automation components
with Arduino.

2. Automate your projects to communicate
wirelessly using XBee, Bluetooth, and Wi-Fi.

3. Build seven exciting, instruction-based home
automation projects with Arduino in no time.

Please check www.PacktPub.com for information on our titles

Arduino Robotic Projects
ISBN: 978-1-78398-982-9 Paperback: 240 pages

Build awesome and complex robots with the power
of Arduino

1. Develop a series of exciting robots that can sail,
go under water, and fly.

2. Simple, easy-to-understand instructions to
program Arduino.

3. Effectively control the movements of all types
of motors using Arduino.

4. Use sensors, GSP, and a magnetic compass to
give your robot direction and make it lifelike.

BeagleBone Home Automation
ISBN: 978-1-78328-573-0 Paperback: 178 pages

Live your sophisticated dream with home automation
using BeagleBone

1. Practical approach to home automation using
BeagleBone; starting from the very basics of
GPIO control and progressing up to building
a complete home automation solution.

2. Covers the operating principles of a range of
useful environment sensors, including their
programming and integration to the server
application.

3. Easy-to-follow approach with electronics
schematics, wiring diagrams, and controller
code all broken down into manageable and
easy-to-understand sections.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgements
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Intel Galileo
	Introducing Intel Galileo
	Using Intel Galileo for home automation
	Intel Galileo – hardware specifications
	Intel Galileo – software specifications
	Connecting and booting Intel Galileo
	Connecting to Intel Galileo via Telnet

	Building a Linux image for Intel Galileo with the Yocto Project
	Building Linux filesystems for Intel Galileo
	Preparing the SD card to boot
	Upgrading firmware on Intel Galileo

	Building the Intel Galileo SDK

	Setting up a development environment for Intel Galileo
	Setting up a development environment for Linux
	Building applications on the Linux Terminal

	Setting up an environment to work with the Eclipse IDE
	Configuring the Eclipse IDE for the Yocto Project
	Installing the Yocto Project's Eclipse plugin
	Configuring the Yocto Project's plugin for cross compilation
	Configuring the Eclipse IDE for remote debugging
	Creating a sample C project in the Eclipse IDE

	Summary

	Chapter 2: Getting Started with Home Automation Applications
	Introducing home automation
	An overview of home automation technologies
	Delving into home automation protocols
	X10
	Insteon
	EnOcean
	Z-Wave
	ZigBee

	Introducing a home automation software ecosystem
	LinuxMCE
	OpenRemote
	OpenZWave
	Other software projects

	Home automation devices, sensors, and controllers

	Designing a home automation project with Intel Galileo
	Summary

	Chapter 3: Energy Management with Environmental and Electrical Sensors
	Delving into energy management
	Developing sensor-based applications with Intel Galileo
	Understanding the working of a sensor from the datasheet
	Connecting our sensor to Intel Galileo
	Starting application development with C

	Energy management with remote switches
	Building kernel modules for Intel Galileo
	Serial communication on Linux
	Controlling a remote wall plug from
Intel Galileo

	Summary

	Chapter 4: Energy Management with Light Sensors and Extending Use Cases
	Using light sensors
	Smart light bulbs
	Using Philips Hue with Intel Galileo

	Extending a home automation system with lighting control
	Continuing to home automation application development
	Understanding Z-Wave commands
	Handling Z-Wave messages from Intel Galileo
	Reading the status of remote devices from Intel Galileo
	Switching the lamp holder on/off with
Intel Galileo
	Handling incoming messages

	Summary

	Chapter 5: Home Monitoring with Common Security Sensors
	Security sensors with Intel Galileo
	PIR motion sensors
	Magnetic sensors
	Gas sensors
	Using gas sensors with Intel Galileo

	Security devices for home automation
	Motion, window, and door lock sensors
	Smoke and flood detectors

	Adding security features to the Smart Home application
	Motion detection
	Door/window sensor detection
	Flood detection

	Wrapping up the message parsing system
	Summary

	Chapter 6: Home Surveillance and Extending Security Use Cases
	Introducing network cameras
	Using cameras with Intel Galileo
	Building OpenCV and V4L2 for Intel Galileo
	Introducing OpenCV
	highgui – high-level GUI and media I/O

	Capturing images from a camera with
Intel Galileo
	Saving a video from a camera with
Intel Galileo
	Streaming a video from Intel Galileo

	Adding new use cases
	Adding new rules

	Summary

	Chapter 7: Building Applications and Customizing Linux for Home Automation
	Customizing Linux with the Yocto Project
	Adding a new application to Yocto Project

	Adding new features to the application
	Using named pipes
	Using named pipes in the application

	Network sockets

	Summary

	Chapter 8: Extending Use Cases
	Introducing Node.js
	Using Node.js with Intel Galileo
	Developing a home automation server
	Use cases with Node.js

	Introducing Android
	Developing an Android application for home automation
	There's more in Android

	Adding voice control to home automation
	Voice control with Android
	Voice recognition with Intel Galileo

	Summary

	Index

