
www.allitebooks.com

http://www.allitebooks.org

Implementing Domain-Specific
Languages with Xtext and
Xtend

Learn how to implement a DSL with Xtext and Xtend
using easy-to-understand examples and best practices

Lorenzo Bettini

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

[FM-2]

Implementing Domain-Specific Languages with Xtext
and Xtend

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2013

Production Reference: 1140813

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-030-4

www.packtpub.com

Cover Image by Suresh Mogre (suresh.mogre.99@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

[FM-3]

Credits

Author
Lorenzo Bettini

Reviewers
Dr. Jan Koehnlein

Henrik Lindberg

Pedro J. Molina

Sebastian Zarnekow

Acquisition Editor
James Jones

Lead Technical Editor
Neeshma Ramakrishnan

Technical Editors
Dipika Gaonkar

Anita Nayak

Sonali S. Vernekar

Project Coordinators
Shiksha Chaturvedi

Hardik Patel

Proofreader
Paul Hindle

Indexer
Rekha Nair

Graphics
Sheetal Aute

Ronak Dhruv

Abhinash Sahu

Production Coordinator
Aparna Bhagat

Kirtee Shingan

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

[FM-4]

About the Author

Lorenzo Bettini is an assistant professor (Researcher) in computer science
at Dipartimento di Informatica, Università di Torino, Italy. Previously, he was
a Postdoc and a contractual researcher at Dipartimento di Sistemi e Informatica,
Università di Firenze, Italy.

He has a Masters Degree in computer science and a PhD in theoretical computer science.

His research interests cover design, theory, and the implementation of programming
languages (in particular, object-oriented languages and network-aware languages).

He has been using Xtext since version 0.7. He has used Xtext and Xtend
for implementing many Domain Specific Languages and Java-like
programming languages.

He is also the author of about 60 papers published in international conferences
and international journals.

You can contact him at http://www.lorenzobettini.it.

www.allitebooks.com

http://www.allitebooks.org

[FM-5]

Acknowledgement

First of all, I would like to thank the main reviewers of this book, Jan Koehnlein,
Henrik Lindberg, Pedro J. Molina, and Sebastian Zarnekow. Their constructive
criticism, extensive suggestions, and careful error reporting helped extremely in
improving the book. I also thank the additional reviewers, Marian Edu, Mayur Hule,
and Neeshma Ramakrishnan.

I'm also grateful to all the people from Packt I dealt with, Shiksha Chaturvedi,
Amber Dsouza, James Jones, James Keane, Anita Nayak, Hardik Patel, Neeshma
Ramakrishnan, and Sonali S. Vernekar.

This book would not have been possible without the efforts that all the skilled
Xtext developers have put in this framework. Most of them are always present
in the Xtext forum and are very active in providing help to the users. Many other
people not necessarily involved with Xtext development are always present in the
forum and are willing to provide help and suggestions in solving typical problems
about Xtext. They also regularly write on their own blogs about examples and best
practices with Xtext. Most of the contents in this book is inspired by the material
found on the forum and on such blogs. The list would be quite long, so I will
only mention the ones with whom I interacted most: Meinte Boersma, Christian
Dietrich, Moritz Eysholdt, Peter Friese, Dennis Huebner, Dr. Jan Koehnlein, Henrik
Lindberg, Ed Merks, Alexander Nittka, Karsten Thoms, Hallvard Trætteberg, and
Sebastian Zarnekow.

A very special thanks to Sven Efftinge, the project lead for Xtext and Xtend, for
creating Xtext.

I'm also grateful to itemis Schweiz for sponsoring the writing of this book, and in
particular, I'm thankful to Serano Colameo.

Last but not least, a big thank you to my parents for always supporting me through
all these years. A warm thank you to my Silvia, the "rainbow" of my life, for being
there and for not complaining about all the spare time that this book has stolen
from us.

www.allitebooks.com

http://www.allitebooks.org

[FM-6]

About the Reviewers

Dr. Jan Koehnlein is a core committer of the Xtext project and the Xtend
language. He has several years of experience in model-driven software development
and on the Eclipse platform. Jan is currently working as a consultant and software
architect for itemis in Germany.

Henrik Lindberg has worked for many companies since the early 80s, and he
has had the opportunity to work with most aspects of software development from
operating systems to applications as a developer, architect, CTO, and founder.

He is currently CTO and founder of Cloudsmith Inc, a Puppet Labs Inc. partner
specializing in services and tools for the creation, testing, and deployment of
software stacks in local and cloud infrastructures. Prior to Cloudsmith, he ran the
BEA/JRockit development office (now Oracle's JVM division).

Henrik always had a passion for computer languages and parser technology, and he
has worked with Eclipse Xtext on several projects, most recently the Puppet Language
IDE called Geppetto. He is an Eclipse committer on Eclipse p2 and leads the Eclipse
Buckminster and b3 projects. He is a frequent contributor to the Xtext forum.

You can contact him on Twitter as @hel and also on the Eclipse and Puppet IRCs
with the tag helindbe as well as on the Eclipse forums.

I would like to thank Carl Barks and The Junior Woodchucks
Guidebook that in an early Swedish edition contained a section with
the Woodchucks Crypto—this inspired me to invent several written
and spoken languages that I tried to teach my friends. This had
limited success, we were after all only 7 years old.

www.allitebooks.com

http://www.allitebooks.org

[FM-7]

Pedro J. Molina is a practitioner and researcher in the field of model-driven
development. From his masters thesis in 1998 to his PhD in 2004, he worked on
the research of conceptual user interface patterns for code generation on business
applications and published more than 20 papers and 2 books.

Within industry, he has been working for CARE Technologies developing
commercial code generators and doing consultancy and software architecture for
Capgemini. Nowadays, he is the chief architect officer for Icinetic, a firm building
modeling and code generation tools with a strong focus on architecture.

Pedro has been taking part in the program committee for Code Generation
Conference for the last 7 years and keeps up-to-date with industrial MDD efforts.
He maintains a blog: The Metalevel, where he talks about MDD and code-generation
at http://pjmolina.com/metalevel.

www.allitebooks.com

http://www.allitebooks.org

[FM-8]

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get
in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Implementing a DSL 7

Domain Specific Languages 7
So, why should you create a new language? 8

Implementing a DSL 9
Parsing 10
The Abstract Syntax Tree (AST) 12

IDE integration 13
Syntax highlighting 14
Background parsing 14
Error markers 14
Content Assist 15
Hyperlinking 15
Quickfixes 15
Outline 16
Automatic build 16
Summarizing DSL implementation 16

Enter Xtext 17
Installing Xtext 18
Let's try Xtext 18

The aim of this book 23
Summary 23

Chapter 2: Creating Your First Xtext Language 25
A DSL for entities 25

Creating the project 25
Xtext projects 26
Modifying the grammar 27
Let's try the Editor 30

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

The Xtext generator 33
The Eclipse Modeling Framework (EMF) 35
Improvements to the DSL 38

Dealing with types 39
Summary 43

Chapter 3: The Xtend Programming Language 45
An introduction to Xtend 45

Using Xtend in your projects 46
Xtend – a better Java with less "noise" 47

Extension methods 52
The implicit variable – it 55
Lambda expressions 55
Multi-line template expressions 60
Additional operators 64
Polymorphic method invocation 66
Enhanced switch expressions 66

Debugging Xtend code 68
Summary 69

Chapter 4: Validation 71
Validation in Xtext 71

Default validators 72
Custom validators 74

Quickfixes 77
Textual modification 80
Model modification 81
Quickfixes for default validators 83

Summary 85
Chapter 5: Code Generation 87

Introduction to code generation 87
Writing a code generator in Xtend 88
Integration with the Eclipse build mechanism 91
Standalone command-line compiler 94
Summary 96

Chapter 6: Customizations 97
Dependency injection 97
Google Guice in Xtext 102
Customizations of IDE concepts 103

Labels 104
The Outline view 107

Table of Contents

[iii]

Customizing other aspects 109
Custom formatting 110
Other customizations 112
Summary 116

Chapter 7: Testing 117
Introduction to testing 117
Junit 4 119
The ISetup interface 119
Implementing tests for your DSL 120

Testing the parser 121
Testing the validator 125
Testing the formatter 128
Testing code generation 132

Test suite 137
Testing the UI 138

Testing the content assist 138
Testing workbench integration 140
Testing the editor 142
Other UI testing frameworks 145

Testing and modularity 146
Clean code 149
Summary 150

Chapter 8: An Expression Language 151
The Expressions DSL 151

Creating the project 152
Digression on Xtext grammar rules 152

The grammar for the Expressions DSL 154
Left recursive grammars 157

Associativity 160
Precedence 163
The complete grammar 167

Forward references 168
Typing expressions 174

Type provider 176
Validator 179

Writing an interpreter 184
Using the interpreter 186

Summary 190

Table of Contents

[iv]

Chapter 9: Type Checking 191
SmallJava 191

Creating the project 192
SmallJava grammar 192

Rules for declarations 193
Rules for statements and syntactic predicates 194
Rules for expressions 197
The complete grammar 200

Utility methods 202
Testing the grammar 203

First validation rules 205
Checking cycles in class hierarchies 205
Checking member selections 207
Checking return statements 209
Checking for duplicates 212

Type checking 214
Type provider for SmallJava 215
Type conformance (subtyping) 217
Expected types 219
Checking type conformance 221
Checking method overriding 224

Improving the UI 225
Summary 228

Chapter 10: Scoping 229
Cross-reference resolution in Xtext 229

Containments and cross-references 229
The index 230
Qualified names 231
Exported objects 232
The linker and the scope provider 234
Component interaction 238

Custom scoping 239
Scope for blocks 240
Scope for inheritance and member visibility 244
Visibility and accessibility 250
Filtering unwanted objects from the scope 254

Global scoping 255
Packages and imports 257
The index and the containers 260
Checking duplicates across files 262

Table of Contents

[v]

Providing a library 264
Default imports 266
Using the library outside Eclipse 267
Using the library in the type system and scoping 270

Dealing with super 273
What to put in the index? 275
Additional automatic features 276
Summary 278

Chapter 11: Building and Releasing 279
Release engineering 279

Headless builds 280
Target platforms 280
Continuous integration 281

Introduction to Buckminster 282
Installing Buckminster 283

Using the Xtext Buckminster wizard 283
Building the p2 repository from Eclipse 286
Customizations 288
Defining the target platform 289
Build headlessly 290

Maintaining the examples of this book 292
Summary 293

Chapter 12: Xbase 295
Getting introduced with Xbase 295
The Expressions DSL with Xbase 297

Creating the project 297
The IJvmModelInferrer interface 299
Code generation 303
Debugging 304

The Entities DSL with Xbase 305
Creating the project 306
Defining attributes 306
Defining operations 310
Imports 314

Customizations 315
Summary 316

Bibliography 317
Index 319

Preface
Xtext is an open source Eclipse framework for implementing Domain Specific
Languages together with their integration in the Eclipse IDE. Xtext lets you implement
languages quickly by covering all aspects of a complete language infrastructure,
starting from the parser, code generator, or interpreter, up to a full Eclipse IDE
integration (with all the typical IDE features such as editor with syntax highlighting,
code completion, error markers, automatic build infrastructure, and so on).

This book will incrementally guide you through the very basics of DSL
implementation with Xtext and Xtend, such as grammar definition, validation,
and code generation; the book will then cover advanced concepts such as unit
testing, type checking, and scoping. Xtext comes with good and smart default
implementations for all these aspects. However, every single aspect can be
customized by the programmer.

Although Java can be used for customizing the implementation of a DSL, Xtext fosters
the use of Xtend, a Java-like programming language completely interoperable with
the Java type system which features a more compact and easier to use syntax and
advanced features such as type inference and lambda expressions. For this reason,
we will use Xtend throughout the book.

Most of the chapters have a tutorial nature and will describe the main concepts
of Xtext through uncomplicated examples. The book also uses test driven
development extensively.

This book aims at being complementary to the official documentation, trying to give
you enough information to start being productive in implementing a DSL with Xtext.
This book will try to teach you some methodologies and best practices when using
Xtext, filling some bits of information that are not present in the official documentation.

The chapters are meant to be read in order, since they typically refer to concepts
that were introduced in the previous chapters.

Preface

[2]

All the examples shown in the book are available online, see the section Downloading
the example code. We strongly suggest that you first try to develop the examples
while reading the chapters and then compare their implementations with the ones
provided by the author.

What this book covers
After a small introduction to the features that a DSL implementation should cover
(including integration in an IDE), the book will introduce Xtend since it will be used
in all the examples. The book proceeds by explaining the main concepts of Xtext; for
example, validation, code generation, and customizations of runtime and UI aspects.
The book will then show how to test a DSL implemented in Xtext with Junit in order
to follow a Test Driven Development strategy that will help you to quickly implement
cleaner and more maintainable code. The test-driven approach is used
in the rest of the book when presenting advanced concepts such as type checking
and Scoping. The book also shows how to build and release a DSL so that it can
be installed in Eclipse and hints on how to build the DSL headlessly in a continuous
integration server. The last chapter briefly introduces Xbase.

Chapter 1, Implementing a DSL, gives a brief introduction to Domain Specific
Languages (DSL) and sketches the main tasks for implementing a DSL and its
integration in an IDE. The chapter also shows how to install Xtext and gives
a first idea of what you can do with Xtext.

Chapter 2, Creating Your First Xtext Language, shows a first example of a DSL
implemented with Xtext and gives an introduction to some features of the Xtext
grammar language. The chapter describes the typical development workflow
of programming with Xtext and provides a small introduction to EMF (Eclipse
Modeling Framework), a framework on which Xtext is based.

Chapter 3, The Xtend Programming Language, describes the main features of the
Xtend programming language, a Java-like language interoperable with Java.
We will use Xtend to implement every aspect of an Xtext DSL.

Chapter 4, Validation, describes validation, in particular, the Xtext mechanism
to implement validation, that is, the validator. This chapter is about implementing
additional constraint checks that cannot be done at parsing time. It also shows how
to implement quickfixes corresponding to the errors generated by the validator.

Chapter 5, Code Generation, shows how to write a code generator for an Xtext DSL
using the Xtend programming language. The chapter also shows how a DSL
implementation can be exported as a Java standalone command-line compiler.

Preface

[3]

Chapter 6, Customizations, describes the main mechanism for customizing Xtext
components, Google Guice, a Dependency Injection framework. In particular, the
chapter shows how to customize both the runtime and the UI aspects of an Xtext DSL.

Chapter 7, Testing, describes how to test a DSL implementation using Junit and the
additional utility classes provided by Xtext. The chapter shows the typical techniques
for testing both the runtime and the UI aspects of a DSL implemented in Xtext.

Chapter 8, An Expression Language, covers the implementation of a DSL for expressions,
including arithmetic, boolean, and string expressions. The chapter shows how to deal
with recursive rules and with typical problems when writing Xtext grammars. The
implementation will be described incrementally and in a test-driven way. The chapter
also shows how to implement a type system for checking that expressions are correct
with respect to types and how to implement an interpreter for these expressions.

Chapter 9, Type Checking, covers the implementation of a small object-oriented DSL,
which can be seen as a smaller version of Java that we call SmallJava. This chapter
shows how to implement some type checking techniques that deal with object-oriented
features, such as inheritance and subtyping.

Chapter 10, Scoping, covers the main mechanism behind visibility and cross-reference
resolution in Xtext. Since scoping and typing are often strictly connected and
inter-dependent especially for object-oriented languages, the chapter is based on
the SmallJava DSL introduced in the previous chapter. The chapter describes both
local and global scoping and how to customize them.

Chapter 11, Building and Releasing, describes how you can release your DSL
implementation by creating an Eclipse p2 repository so that others can easily install
it in Eclipse. The chapter is based on the Xtext wizard that creates the infrastructure
to build a p2 repository with Buckminster. The wizard will also create all the needed
files to build your projects and test them in a headless way so that you can easily run
your builds in a continuous integration server.

Chapter 12, Xbase, describes Xbase a reusable expression language interoperable
with Java. By using Xbase in your DSL, you will inherit all the Xbase mechanisms
for performing type checking according to the Java type system and the automatic
Java code generation.

What you need for this book
The book assumes that you have a good knowledge of Java; it also assumes that
you are familiar with Eclipse and its main features. Existing basic knowledge
of a compiler implementation would be useful, though not strictly required,
since the book will explain all the stages of the development of a DSL.

Preface

[4]

Who this book is for
This book is for programmers who want to learn about Xtext and how to use it to
implement a DSL or a programming language together with the Eclipse IDE tooling.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and
an explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through
the use of the include directive".

A block of code is set as follows:

public static void main(String args[]) {

 System.out.println("Hello world");

Where keywords of the languages are typeset in bold and static members
are typeset in italics (for example, Java static methods and fields).

Bibliographic references are of the form "Author" "year" when there is a single
author, or "First author et al." "year" when there is more than one author.
Bibliographic references are used for books, printed articles, or articles published
on the Web. The Bibliography can be found at the end of the book.

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
on the Next button moves you to the next screen". When the user is requested
to select submenus, we separate each menu with a pipe, like this: "To create a new
project, navigate to File | New | Project...".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message. If there is a topic that you
have expertise in and you are interested in either writing or contributing to a book,
see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

The example code for this book is also available on a Git repository at
https://github.com/LorenzoBettini/packtpub-xtext-book-examples.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

www.allitebooks.com

http://www.allitebooks.org

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

Implementing a DSL
In this chapter, we will give a brief introduction on Domain Specific Languages
(DSL) and the issues concerning their implementation, especially in the context of
an IDE. The initial part of the chapter is informal: we will sketch the main tasks for
implementing a DSL and its integration in an IDE. At the end of the chapter, we will
also show you how to install Xtext and will give you a glimpse of what you can do
with Xtext. Xtext is an Eclipse framework for the development of DSLs that covers all
aspects of a language implementation, including its integration in the Eclipse IDE.

Domain Specific Languages
Domain Specific Languages, abbreviated as DSL, are programming languages or
specification languages that target a specific problem domain. They are not meant to
provide features for solving all kinds of problems; you probably will not be able to
implement all programs you can implement with, for instance, Java or C (which are
known as General Purpose Languages). But if your problem's domain is covered by
a particular DSL, you will be able to solve that problem easier and faster by using
that DSL instead of a general purpose language.

Some examples of DSLs are SQL (for querying relational databases), Mathematica
(for symbolic mathematics), HTML, and many others you have probably used in
the past. A program or specification written in a DSL can then be interpreted or
compiled into a general purpose language; in other cases, the specification can
represent simply data that will be processed by other systems.

For a wider introduction to DSLs, you should refer to Fowler 2010, Ghosh 2010,
and Voelter 2013.

Implementing a DSL

[8]

So, why should you create a new language?
You may now wonder why you need to introduce a new DSL for describing specific
data, for example, models or applications, instead of using XML, which allows you
to describe data in a machine in human-readable form. There are so many tools now
that, starting from an XML schema definition, allow you to read, write, or exchange
data in XML without having to parse such data according to a specific syntax. There
is basically only one syntax to learn (the XML tag syntax) and then all data can be
represented with XML.

Of course, this is also a matter of taste, but many people (including the author
himself) find that XML is surely machine-readable, but not so much human-readable.
It is fine to exchange data in XML if the data in that format is produced by a
program. But often, people (programmers and users) are requested to specify data in
XML manually; for instance, for specifying an application's specific configuration.

If writing an XML file can be a pain, reading it back can be even worse. In fact, XML
tends to be verbose, and it fills documents with too much additional syntax noise
due to all the tags. The tags help a computer to process XML, but they surely
distract people when they have to read and write XML files.

Consider a very simple example of an XML file describing people:
<people>
 <person>
 <name>James</name>
 <surname>Smith</surname>
 <age>50</age>
 </person>
 <person employed="true">
 <name>John</name>
 <surname>Anderson</surname>
 <age>40</age>
 </person>
</people>

It is not straightforward for a human to grasp the actual information about a person
from such a specification: a human is distracted by all those tags. Also, writing
such a specification may be a burden. An editor might help with some syntax
highlighting and early user feedback concerning validation, but still there are
too many additional details.

Chapter 1

[9]

How about this version written in an ad-hoc DSL?:

person {
 name=James
 surname=Smith
 age=50
}
person employed {
 name=John
 surname=Anderson
 age=40
}

This contains less noise and the information is easier to grasp. We could even do
better and have a more compact specification:

James Smith (50)
John Anderson (40) employed

After all, since this DSL only lets users describe the name and age of people, why not
design it to make the description both compact and easy to read?

Implementing a DSL
For the end user, using a DSL is surely easier than writing XML code; however, the
developer of the DSL is now left with the task of implementing it.

Implementing a DSL means developing a program that is able to read text written
in that DSL, parse it, process it, and then possibly interpret it or generate code in
another language. Depending on the aim of the DSL, this may require several phases,
but most of these phases are typical of all implementations.

In this section we only hint at the main concepts of implementing a DSL.

From now on, throughout the book we will not distinguish, unless
strictly required by the context, between DSL and programming language.

Implementing a DSL

[10]

Parsing
First of all, when reading a program written in a programming language, the
implementation has to make sure that the program respects the syntax of
that language.

To this aim, we need to break the program into tokens. Each token is a single atomic
element of the language; this can be a keyword (such as class in Java), an identifier
(such as a Java class name), or symbol name (such as a variable name in Java).

For instance, in the preceding example, employed is a keyword; the parentheses are
operators (which can be seen as special kinds of keywords as well). All the other
elements are literals (James is a string literal and 50 is an integer literal).

The process of converting a sequence of characters into a sequence of tokens is called
lexical analysis, and the program or procedure that performs such analysis is called
a lexical analyzer, lexer, or simply a scanner. This analysis is usually implemented
by using regular expressions syntax.

Having the sequence of tokens from the input file is not enough: we must make sure
that they form a valid statement in our language, that is, they respect the syntactic
structure expected by the language.
This phase is called parsing or syntactic analysis.

Let us recall the DSL to describe the name and age of various people and a possible
input text:

James Smith (50)
John Anderson (40) employed

In this example each line of the input must respect the following structure:

• two string literals
• the operator (
• one integer literal
• the operator)
• the optional keyword employed

In our language, tokens are separated by white spaces, and lines are separated by
a newline character.

You can now deduce that the parser relies on the lexer.

Chapter 1

[11]

If you have never implemented a programming language, you might be scared
at this point by the task of implementing a parser, for instance, in Java. You are
probably right, since it is not an easy task. The DSL we just used as an example is
very small (and still it would require some effort to implement), but if we think
about a DSL that has to deal also with, say, arithmetic expressions? In spite of their
apparently simple structure, arithmetic expressions are recursive by their own
nature, thus a parser implemented in Java would have to deal with recursion
as well (and, in particular, it should avoid endless loops).

There are tools to deal with parsing so that you do not have to implement a parser
by hand. In particular, there are DSLs to specify the grammar of the language, and
from this specification they automatically generate the code for the lexer and parser
(for this reason, these tools are called parser generators or compiler-compilers). In
this context, such specifications are called grammars. A grammar is a set of rules that
describe the form of the elements that are valid according to the language syntax.

Here are some examples of tools for specifying grammars.

Bison and Flex (Levine 2009) are the most famous in the C context: from a high
level specification of the syntactic structure (Bison) and lexical structure (Flex)
of a language, they generate the parser and lexer in C, respectively. Bison is an
implementation of Yacc (Yet Another Compiler-compiler, Brown et al. 1995), and
there are variants for other languages as well, such as Racc for Ruby.

In the Java world, the most well-known is probably ANTLR (pronounced
Antler, ANother Tool for Language Recognition) (Parr 2007). ANTLR allows the
programmer to specify the grammar of the language in one single file (without
separating the syntactic and lexical specifications in different files), and
then it automatically generates the parser in Java.

Just to have an idea of what the specification of grammars looks like in ANTLR,
here is the (simplified) grammar for an expression language for arithmetic
expressions (with sum and multiplication):

expression
 : INT
 | expression '*' expression
 | expression '+' expression
;

Even if you do not understand all the details, it should be straightforward to get its
meaning: an expression is either an integer literal, or (recursively) two expressions
with an operator in between (either * or +).

From such a specification, you automatically get the Java code that will parse
such expressions.

Implementing a DSL

[12]

The Abstract Syntax Tree (AST)
Parsing a program is only the first stage in a programming language implementation.
Once the program is checked as correct from the syntactic point of view, the
implementation will have to do something with the elements of the program.

First of all, the overall correctness of a program cannot always be determined during
parsing. One of the correctness checks that usually cannot be performed during
parsing is type checking, that is, checking that the program is correct with respect to
types. For instance, in Java, you cannot assign a string value to an integer variable,
or, you can only assign instances of a variable's declared type or subclasses thereof.

Trying to embed type checking in a grammar specification could either make the
specification more complex, or it could be simply impossible, since some type checks
can be performed only when other program parts have already been parsed.

Type checking is part of the semantic analysis of a program. This often includes
managing the symbol table, that is, for instance, handling the variables that are
declared and that are visible only in specific parts of the program (think of fields
in a Java class and their visibility in methods).

For these reasons, during parsing, we should also build a representation of the parsed
program and store it in memory so that we can perform the semantic analysis on the
memory representation without needing to parse the same text over and over again.
A convenient representation in memory of a program is a tree structure called the
Abstract Syntax Tree (or AST). The AST represents the abstract syntactic structure
of the program. In this tree, each node represents a construct of the program.

Once the AST is stored in memory, the DSL implementation will not need to parse the
program anymore, and it can perform all the additional semantic checks on the AST,
and if they all succeed, it can use the AST for the final stage of the implementation,
which can be the interpretation of the program or code generation.

In order to build the AST we need two additional things.

We need the code for representing the nodes of such a tree; if we are using Java,
this means that we need to write some Java classes, typically one for each language
construct. For instance, for the expression language we might write one class for the
integer literal and one for the binary expression. Remember that since the grammar is
recursive, we need a base class for representing the abstract concept of an expression.
For example,

interface Expression { }

class Literal implements Expression {
 Integer value;

Chapter 1

[13]

 // constructor and set methods...
}

class BinaryExpression implements Expression {
 Expression left, right;
 String operator;
 // constructor and set methods...
}

Then, we need to annotate the grammar specification with actions that construct the
AST during the parsing; these actions are basically Java code blocks embedded in the
grammar specification itself; the following is just a (simplified) example and it does
not necessarily respect the actual ANTLR syntax:

expression:
 INT { $value = new Literal(Integer.parseInt($INT.text)); }
| left=expression '*' right=expression {
 $value = new BinaryExpression($left.value, $right.value);
 $value.setOperator("*");
}
| left=expression '+' right=expression {
 $value = new BinaryExpression($left.value, $right.value);
 $value.setOperator("+");
}
;

IDE integration
Even once you have implemented your DSL, that is, the mechanisms to read,
validate, and execute programs written in your DSL, your work cannot really be
considered finished.

Nowadays, a DSL should be shipped with good IDE support: all the IDE tooling that
programmers are used to could really make the adoption of your DSL successful.

If your DSL is supported by all the powerful features in an IDE such as a syntax-aware
editor, immediate feedback, incremental syntax checking, suggested corrections,
auto-completion, and so on, then it will be easier to learn, use, and maintain.

In the following sections we will see the most important features concerning IDE
integration; in particular, we will assume Eclipse as the underlying IDE (since Xtext
is an Eclipse framework).

Implementing a DSL

[14]

Syntax highlighting
The ability to see the program colored and formatted with different visual styles
according to the elements of the language (for example, comments, keywords,
strings, and so on) is not just "cosmetic".

First of all, it gives immediate feedback concerning the syntactic correctness of what
you are writing. For instance, if string constants (typically enclosed in quotes) are
rendered as red, and you see that at some point in the editor the rest of your program
is all red, you may soon get an idea that somewhere in between you forgot to insert
the closing quotation mark.

Moreover, colors and fonts will help the programmer to see the structure of the
program directly, making it easier to visually separate the parts of the program.

Background parsing
The programming cycle consisting of writing a program with a text editor, saving it,
shifting to the command line, running the compiler, and, in case of errors, shifting
back to the text editor is surely not productive.

The programming environment should not let the programmer realize about
errors too late; on the contrary, it should continuously check the program in the
background while the programmer is writing, even if the current file has not been
saved yet. The sooner the environment can tell the programmer about errors the
better. The longer it takes to realize that there is an error, the higher the cost in
terms of time and mental effort to correct.

Error markers
When your DSL parser and checker issue some errors, the programmer should
not have to go to the console to discover such errors; your implementation should
highlight the parts of the program with errors directly in the editor by underlining
(for instance, in red) only the parts that actually contain the errors; it should also
put some error markers (with an explicit message) on the left of the editor in
correspondence to the lines with errors, and should also fill the Problem view with
all these errors. The programmer will then have the chance to easily spot the parts of
the program that need to be fixed.

Chapter 1

[15]

Content assist
It is nice to have the editor propose some content when you write your programs
in Eclipse. This is especially true when the proposed content makes sense in that
particular program context. Content assist is the feature that automatically, or on
demand, provides suggestions on how to complete the statement/expression the
programmer just typed. For instance, when editing a Java file, after the keyword
new, Eclipse proposes only Java class names as possible completions.

Again, this has to do with productivity; it does not make much sense to be forced to
know all the syntax of a programming language by heart (especially for DSLs, which
are not common languages such as Java), neither to know all the language's library
classes and functions.

It is much better to let the editor help you with contextualized proposals.

In Eclipse the content assist is usually accessed with the keyboard shortcut
Ctrl + Space bar.

Hyperlinking
Hyperlinking is a feature that makes it possible to navigate between references in
a program; for example, from a variable to its declaration, or from a function call
to where the function is defined. If your DSL provides declarations of any sort (for
instance, variable declarations or functions) and a way to refer to them (for instance,
referring to a variable or invoking a declared function), then it should also provide
Hyperlinking: from a token referring to a declaration, it should be possible to
directly jump to the corresponding declaration. This is particularly useful if the
declaration is in a file different from the one being edited. In Eclipse this corresponds
to pressing F3 or using Ctrl + click.

This functionality really helps a lot if the programmer needs to inspect a specific
declaration. For instance, when invoking a Java method, the programmer may
need to check what that method actually does.

Hovering is a similar IDE feature: if you need some information about a specific
program element, just hovering on that element should display a pop-up window
with some documentation about that element.

Quickfixes
If the programmer made a mistake and your DSL implementation is able to fix it
somehow, why not help the programmer by offering suggested quickfixes?

www.allitebooks.com

http://www.allitebooks.org

Implementing a DSL

[16]

As an example, in the Eclipse Java editor, if you invoke a method that does not exist
in the corresponding class, you are provided with some quickfixes (try to experiment
with this); for instance, you are given a chance to fix this problem by actually
creating such a method. This is typically implemented by a context menu available
from the error marker.

In a test driven scenario this is actually a methodology. Since you write tests before
the actual code to test, you can simply write the test that invokes a method that does
not exist yet, and then employ the quickfix to let the IDE create that method
for you.

Outline
If a program is big, it is surely helpful to have an outline of it showing only the main
components; clicking on an element of the outline should bring the programmer
directly to the corresponding source line in the editor.

Think about the outline view you get in Eclipse when editing a Java source file. The
outline shows, in a compact form, all the classes and the corresponding methods of
the currently edited Java file without the corresponding method bodies. Therefore,
it is easy to have a quick overview of the contents of the file and to quickly jump to a
specific class or method through the outline view.

Furthermore, the outline can also include other pieces of information such as types and
structure that are not immediately understood by just looking at the program text. It
is handy to have a view that is organized differently, perhaps sorted alphabetically to
help with navigation.

Automatic build
In Eclipse, you have a Java project, and when you modify one Java file and save it,
you know that Eclipse will automatically compile that file and, consequently, all
the files that depend on the file you have just modified.

Having such functionality for your DSL will make its users happier.

Summarizing DSL implementation
In this section we briefly and informally introduced the main steps to implement
a DSL.

The IDE tooling can be implemented on top of Eclipse, which already provides
a comprehensive framework.

Chapter 1

[17]

Indeed, all the features of the Eclipse Java editor (which is part of the project JDT,
Java Development Tools) are based on the Eclipse framework, thus, you can employ
all the functionalities offered by Eclipse to implement the same features for your
own DSL.

Unfortunately, this task is not really easy: it certainly requires a deep knowledge of
the internals of the Eclipse framework and lot of programming.

Finally, the parser will have to be connected to the Eclipse editing framework.

To make things a little bit worse, if you learned how to use all these tools (and this
requires time) for implementing a DSL, when it comes to implement a new DSL,
your existing knowledge will help you, but the time to implement the new DSL
will still be huge.

All these learning and timing issues might push you to stick with XML, since the
effort to produce a new DSL does not seem to be worthwhile. Indeed, there are many
existing parsing and processing technologies for XML for different platforms that
can be used, not to mention existing editors and IDE tooling for XML.

But what if there was a framework that lets you achieve all these tasks in a very
quick way? What if this framework, once learned (yes, you cannot avoid learning
new things), will let you implement new DSLs even quicker than the previous ones?

Enter Xtext
Xtext is an Eclipse framework for implementing programming languages and
DSLs. It lets you implement languages quickly, and most of all, it covers all aspects
of a complete language infrastructure, starting from the parser, code generator, or
interpreter, up to a complete Eclipse IDE integration (with all the typical IDE features
we discussed previously).

The really amazing thing about Xtext is that to start a DSL implementation, it only
needs a grammar specification similar to ANTLR; it does not need to annotate the rules
with actions to build the AST, since the creation of the AST (and the Java classes to
store the AST) is handled automatically by Xtext itself. Starting from this specification,
Xtext will automatically generate all the mechanisms sketched previously. It will
generate the lexer, the parser, the AST model, the construction of the AST to represent
the parsed program, and the Eclipse editor with all the IDE features!

Implementing a DSL

[18]

Xtext comes with good and smart default implementations for all these aspects,
and indeed most of these defaults will surely fit your needs. However, every single
aspect can be customized by the programmer.

With all these features, Xtext is easy to use, it produces a professional result quickly,
and it is even fun to use.

Installing Xtext
Xtext is an Eclipse framework, thus it can be installed into your Eclipse installation
using the update site as follows:

http://download.eclipse.org/modeling/tmf/xtext/updates/composite/
releases

Just copy this URL into the dialog you get when you navigate to Help | Install new
software... in the textbox Work with and press Enter; after some time (required to
contact the update site), you will be presented with lots of possible features to install.
The important features to install are Xtend SDK 2.4.2 and Xtext SDK 2.4.2.

Alternatively, an Eclipse distribution for DSL developers based on Xtext is also
available from the main Eclipse downloads page, http://www.eclipse.org/
downloads, called Eclipse IDE for Java and DSL Developers.

At the time of writing this book, the current version of Xtext was 2.4.2,
and this is the version used in this book.

Let's try Xtext
Hopefully, by now you should be eager of seeing for yourself what Xtext can do!
In this section we will briefly present the steps to write your first Xtext project and
see what you get. Do not worry if you have no clue about most of the things you
will see in this demo; they will be explained in the coming chapters.

1. Start Eclipse and navigate to File | New | Project...; in the dialog, navigate
to the Xtext category and select Xtext Project.

Chapter 1

[19]

2. In the next dialog you can leave all the defaults, but uncheck the option
Create SDK feature project (we will use the Create SDK feature project
feature later in Chapter 11, Building and Releasing).

Implementing a DSL

[20]

The wizard will create three projects and will open the file MyDsl.xtext ,which
is the grammar definition of the new DSL we are about to implement. You do not
need to understand all the details of this file's contents for the moment. But if you
understood how the grammar definitions work from the examples in the previous
sections, you might have an idea of what this DSL does. It accepts lines starting
with the keyword Hello followed by an identifier, then followed by !.

1. Now it is time to start the first Xtext generation, so navigate to the file
MyDsl.xtext in the project org.xtext.example.mydsl, right-click on it, and
navigate to Run As | Generate Xtext Artifacts. The output of the generation
will be shown in the Console view. You will note that (only for the first
invocation) you will be prompted with a question in the console:
ATTENTION It is recommended to use the ANTLR 3 parser generator
(BSD licence - http://www.antlr.org/license.html).Do you agree to
download it (size 1MB) from 'http://download.itemis.com/antlr-
generator-3.2.0.jar'? (type 'y' or 'n' and hit enter)

Chapter 1

[21]

2. You should type y and press Enter so that this JAR will be downloaded and
stored in your project once and for all (this file cannot be delivered together
with Xtext installation: due to license problems, it is not compatible with the
Eclipse Public License). Wait for that file to be downloaded, and once you
read Done in the console, the code generation phase is finished, and you will
note that the three projects now contain much more code. Of course, you will
have to wait for Eclipse to build the projects.

3. Your DSL implementation is now ready to be tested! Since what the wizard
created for you are Eclipse plug-in projects, you need to start a new Eclipse
instance to see your implementation in action. Before you start the new
Eclipse instance, you must make sure that the launch configuration has
enough PermGen size, otherwise you will experience " out of memory "
errors. You need to specify this VM argument in your launch configuration:
-XX:MaxPermSize=256m; alternatively, you can simply use the launch
configuration that Xtext created for you in your project org.xtext.
example.mydsl, so right-click on that project and navigate to Run As | Run
Configurations...; in the dialog, you can see Launch Runtime Eclipse under
Eclipse Application; select that and click on Run.

Implementing a DSL

[22]

4. A new Eclipse instance will be run and a new workbench will appear. In this
instance, your DSL implementation is available; so let's create a new General
project (call it, for instance, sample). Inside this project create a new file;
the name of the file is not important, but the file extension must be mydsl
(remember that this was the extension we chose in the Xtext new project
wizard). As soon as the file is created it will also be opened in a text editor
and you will be asked to add the Xtext nature to your project. You should
accept that to make your DSL editor work correctly in Eclipse.

5. Now try all the things that Xtext created for you! The editor features syntax
highlighting (you can see that by default Xtext DSLs are already set up to
deal with Java-like comments like // and /* */), immediate error feedback
(with error markers only in the relevant parts of the file), outline view (which
is automatically synchronized with the elements in the text editor), and code
completion. All of these features automatically generated starting from a
grammar specification file.

This short demo should have convinced you about the powerful features of Xtext
(implementing the same features manually would require a huge amount of work).
The result of the code generated by Xtext is so close to what Eclipse provides you for
Java that your DSLs implemented in Xtext will be of high quality and will provide
the users with all the IDE benefits.

Chapter 1

[23]

The aim of this book
Xtext comes with some nice documentation; you can find such documentation
in your Eclipse help system or online at http://www.eclipse.org/Xtext/
documentation.html, where a PDF version of the whole documentation is available.

This book aims at being complementary to the official documentation, trying to
give you enough information to start being productive in implementing DLSs
with Xtext. This book will try to teach you some methodologies and best practices
when using Xtext, filling some bits of information that are not present in the official
documentation. Most chapters will have a tutorial nature and will provide you
with enough information to make sure you understand what is going on. However,
the official documentation should be kept at hand to learn more details about the
mechanisms we will use throughout the book.

Summary
In this chapter we introduced the main concepts related to implementing a DSL,
including IDE features.

At this point, you should also have an idea of what Xtext can do for you.

In the next chapter, we will use an uncomplicated DSL to demonstrate the main
mechanisms and to get you familiar with the Xtext development workflow.

Creating Your First Xtext
Language

In this chapter we will develop a DSL with Xtext and learn how the Xtext grammar
language works. We will see the typical development workflow of programming
with Xtext when we modify the grammar of the DSL. The chapter will also provide
a small introduction to EMF (Eclipse Modeling Framework), a framework that Xtext
relies upon to build the AST (Abstract Syntax Tree) of a program.

A DSL for entities
We will now implement a simple DSL to model entities, which can be seen as simple
Java classes; each entity can have a super type entity (you can think of it as a Java
superclass) and some attributes (similar to Java fields). This example is a variant of
the domain model example that can be found in the Xtext documentation.

Creating the project
First of all, we will use the Xtext project wizard to create the projects for our DSL
(we have already experimented with this at the end of Chapter 1, Implementing a DSL).

1. Start Eclipse and navigate to File | New | Project.... In the dialog navigate
to the Xtext category and select Xtext Project.

2. In the next dialog you should specify the following names:
 ° Project name: org.example.entities
 ° Name: org.example.entities.Entities
 ° Extensions: entities
 ° Uncheck the option Create SDK feature project (we will use the

Create SDK feature project only in Chapter 11, Building and Releasing)

www.allitebooks.com

http://www.allitebooks.org

Creating Your First Xtext Language

[26]

The wizard will create three projects and it will open the file Entities.xtext, which
is the grammar definition.

The main dialog of the wizard is shown in the following screenshot:

Xtext projects
The Xtext wizard generates three projects, and, in general, every DSL implemented
in Xtext will have these three projects (with a name based on the Project name you
specified in the wizard). In our example we have:

• org.example.entities is the main project that contains the grammar
definition and all the runtime components that are independent from the UI

• org.example.entities.tests contains the unit tests

Chapter 2

[27]

• org.example.entities.ui contains the components related to the UI
(the Eclipse editor and features related to the user interface)

We will describe UI functionalities in Chapter 6, Customizations and unit tests in
Chapter 7, Testing.

Modifying the grammar
As you may recall from Chapter 1, Implementing a DSL, a default grammar is generated
by Xtext. In this section you will learn what this generated grammar contains, and we
will modify it to contain the grammar for our Entities DSL. The generated grammar
looks like the following:

grammar org.example.entities.Entities with org.eclipse.xtext.common.
Terminals

generate entities "http://www.example.org/entities/Entities"

Model:
 greetings+=Greeting*;

Greeting:
 'Hello' name = ID '!';

The first line declares the name of the language (and of the grammar), and it
also corresponds to the fully qualified name of the .xtext file (the file is called
Entities.xtext, and it is in the package org.example.entities).

The declaration of the grammar also states that it reuses the grammar Terminals,
which defines the grammar rules for common things like quoted strings, numbers,
and comments, so that in our language we will not have to define such rules. The
grammar Terminals is part of the Xtext library; in Chapter 12, Xbase we will see
another example of Xtext library grammar (the Xbase grammar).

The generate declaration defines some generation rules for EMF and we will discuss
this later.

After the first two declarations, the actual rules of the grammar will be specified. For
the complete syntax of the rules, you should refer to the official Xtext documentation
(http://www.eclipse.org/Xtext/documentation.html). For the moment, all the
rules we will write will have a name, a colon , the actual syntactic form accepted by
that rule, and are terminated by a semicolon.

Creating Your First Xtext Language

[28]

Now we modify our grammar as follows:

grammar org.example.entities.Entities with
 org.eclipse.xtext.common.Terminals

generate entities "http://www.example.org/entities/Entities"

Model: entities += Entity*;

Entity:
 'entity' name = ID ('extends' superType=[Entity])? '{'
 attributes += Attribute*
 '}'
;

Attribute:
 type=[Entity] array?=('[]')? name=ID ';';

The first rule in every grammar defines where the parser starts and the type of the
root element of the model of the DSL, that is, of the Abstract Syntax Tree (AST).
In this example, we declare that an Entities DSL program is a collection of Entity
elements. This collection is stored in a Model object, in particular in a feature called
entities (as we will see later, the collection is implemented as a list). The fact that
it is a collection is implied by the operator +=. The star operator, *, states that the
number of the elements (in this case Entity) is arbitrary; in particular, it can be any
number >= 0. Therefore, a program can also be empty and contain no Entity.

If we wanted our programs to contain at least one Entity, we
should have used the operator + instead of *.

The shape of Entity elements is expressed in its own rule:

Entity:
 'entity' name = ID ('extends' superType=[Entity])? '{'
 attributes += Attribute*
 '}'
;

First of all, string literals (which in Xtext can be expressed with either single or
double quotes) define keywords of the DSL. In this rule we have three keywords,
namely 'entity', 'extends', '{', and '}'.

Chapter 2

[29]

Therefore, a valid entity declaration statement starts with the keyword 'entity'
followed by an ID; there is no rule defining ID in our grammar because that is one of
the rules that we inherit from the grammar Terminals. If you are curious to know
how an ID is defined, you can Ctrl + click on the ID in the Xtext editor and that will
bring you to the grammar Terminals, where you can see that an ID starts with an
optional '^' character, followed by a letter ('a'..'z'|'A'..'Z'), a '$' character,
or an underscore '_' followed by any number of letters, '$' characters, underscores,
and numbers ('0'..'9'):

'^'? ('a'..'z'|'A'..'Z'|'$'|'_')

 ('a'..'z'|'A'..'Z'|'$'|'_'|'0'..'9')*;

The optional '^' character is used to escape an identifier if there are conflicts with
existing keywords. The parsed ID will be assigned to the feature name of the parsed
Entity model element.

The ()? operator declares an optional part. Therefore, after the ID, you can write
the keyword 'extends' and the name of an Entity. This illustrates one of the
powerful features of Xtext, that is, cross-references. In fact, what we want after the
keyword 'extends' is not just a name, but the name of an existing Entity. This can
be expressed in the grammar using square brackets and the type we want to refer to.
Xtext will automatically resolve the cross-reference by searching in the program for
an element of that type (in our case an Entity) with the given name. If it cannot find
it, it will automatically issue an error. Note that in order for this mechanism to work,
the referred element must have a feature called name. As we will see in the following
section, the automatic code completion mechanism will also take into consideration
cross-references, thus proposing elements to refer to.

By default, cross-references and their resolutions are based on
the feature name and on an ID. This behavior can be customized
as we will see in Chapter 10, Scoping.

Then, the curly brackets '{' '}' are expected and within them Attribute elements
can be specified (recall the meaning of += and *); these Attribute elements will be
stored in the attributes feature of the corresponding Entity object.

Attribute:
 type=[Entity] array?=('[]')? name=ID ';';

Creating Your First Xtext Language

[30]

The rule for Attribute requires an Entity name (as explained previously, this is a
cross-reference) that will be stored in the type feature and a name for the attribute;
attributes must also be terminated with ';'. Note that after the type, an optional
'[]' can be specified; in this case, the type of the attribute is considered an array
type, and the feature array will be true. This feature is Boolean since we used the
?= assign operator and after such an operator we specify an optional part.

Let's try the Editor
At the end of Chapter 1, Implementing a DSL, we saw how to run the Xtext generator;
you should follow the same steps, but instead of right-clicking on the .xtext file
and navigating to Run As | Generate Xtext Artifacts, we right-click on the .mwe2
file (in our example it is GenerateEntities.mwe2) and navigate to Run As | MWE2
Workflow. (Remember to accept the request for downloading the ANTLR generator,
as explained in Chapter 1, Implementing a DSL).

Before you start the new Eclipse instance, you must make sure that the launch
configuration has enough PermGen size, otherwise you will experience "out of
memory" errors.

You need to specify the following value as VM arguments in your launch
configuration: -XX:MaxPermSize=256m.

You can also simply use the launch configuration that Xtext created for you in your
org.example.entities project in the directory .launch; you might not be able to
see that directory, since by default the workbench hides resources starting with a dot,
so make sure to remove that filter in your workspace preferences. Alternatively, you
can right-click on that project and navigate to Run As | Run Configurations...; in the
dialog, you can see Launch Runtime Eclipse under Eclipse Application; select it and
click on Run.

A new Eclipse instance will be run and a new workbench will appear; in this instance,
our Entities DSL implementation is available. So let's create a new General project
(call it, for instance, sample). Inside this project, create a new file; the name of the file
is not important, but the file extension must be entities (remember that this was the
extension we chose in the Xtext project wizard). As soon as the file is created, it will
also be opened in a text editor, and you will be asked to add the Xtext nature to your
project. You should accept that to make your DSL editor work correctly in Eclipse.

The editor is empty, but there is no error since an empty program is a valid Entities
program (remember how the Model rule was defined with the operator *). If you
access content assist (with Ctrl + Space bar), you will get no proposal; instead, the
entity keyword is inserted for you. This is because the generated content assist is
smart enough to know that in that particular program context there is only one valid
thing to do: start with the keyword entity.

Chapter 2

[31]

After that you get an error (refer to the following screenshot), since the entity
definition is still incomplete (you can see that the syntax error tells you that an
identifier is expected instead of the end of file):

If you access the content assist again, you will get a hint that an identifier is expected
(refer to the following screenshot), so let's write an identifier:

Creating Your First Xtext Language

[32]

If you access the content assist after the identifier, you will see that you get two
proposals (refer to the following screenshot). Again, the generated content assist
knows that in that program context, you can continue either with an 'extends'
specification or with an open curly bracket.

If you choose the open curly bracket, {, you will note some interesting things in the
generated editor (refer to the following screenshot):

• The editor automatically inserts the corresponding closing curly bracket
• Inserting a newline between the brackets correctly performs indentation

and moves the cursor to the right position
• The folding on the left of the editor is automatically handled
• The error marker turned gray, meaning that the problems in the current

program are solved, but it has not been saved yet (saving the file makes
the error marker go away and the Problems view becomes empty)

Chapter 2

[33]

Continue experimenting with the editor; in particular, in the context where an entity
reference is expected (that is, after the extends keyword or when declaring an
attribute), you will see that the content assist will provide you with all the Entity
elements defined in the current program.

We should not allow an entity to extend itself; moreover, the
hierarchy should be acyclic. However, there is no way to express
these constraints in the grammar; these issues have to be dealt with
by implementing a custom Validator (Chapter 4, Validation) or a
custom Scoping mechanism (Chapter 10, Scoping).

We would also like to stress that all these functionalities, which are far from easy
to implement manually, have been generated by Xtext starting from the grammar
definition of our DSL.

The Xtext generator
Xtext uses the MWE2 DSL to configure the generation of its artifacts; the default
generated .mwe2 file already comes with good defaults, thus, for the moment, we
will not modify it. However, it is interesting to know that by tweaking this file we
can request the Xtext generator to generate support for additional features, as we will
see later in this book.

During the MWE2 workflow execution, Xtext will generate artifacts related to
the UI editor for your DSL, but most important of all, it will derive an ANTLR
specification from the Xtext grammar with all the actions to create the AST while
parsing. The classes for the nodes of the AST will be generated using the EMF
framework (as explained in the next section).

Creating Your First Xtext Language

[34]

The generator must be run after every modification to the grammar (the .xtext
file). The whole generator infrastructure relies on the Generation Gap Pattern
(Vlissides 1996). Indeed, code generators are fine, but when you have to customize
the generated code: subsequent generations may overwrite your customizations.
The Generation Gap Pattern deals with this problem by separating the code that is
generated (and can be overwritten) from the code that you can customize (without
the risk of being overwritten). In Xtext the generated code is placed in the source
folder src-gen (this holds for all of the three projects); what is inside that source
folder should never be modified, since on the next generation it will be overwritten.
The programmer can instead safely modify everything in the source folder src.
Indeed, on the first generation, Xtext will also generate a few stub classes in the
source folder src to help the programmer with a starting point. These classes are
never regenerated and can thus safely be edited without the risk of being overwritten
by the generator. Some stub classes inherit from default classes from the Xtext
library, while other stub classes inherit from classes which are in src-gen.

Most generated stub classes in the src folder are actually Xtend classes; the Xtend
programming language will be introduced in the next chapter, thus, for the moment,
we will not look at these stub classes.

There is one exception to the previously described generation strategy, which
concerns the file plugin.xml (in the runtime and in the UI plug-ins): further Xtext
generations will generate the file plugin.xml_gen in the root directory of your
projects. It is up to you to check whether something has changed by comparing it
with plugin.xml. In that case you should manually merge the differences. This
can be easily done by using Eclipse: select the two files, right-click and navigate to
Compare With | Each Other..., as illustrated in the following screenshot:

In general, checking the differences between plugin.xml and plugin.xml_gen is
only needed either when modifying the .mwe2 file or when using a new version of
Xtext (which can introduce new features).

Chapter 2

[35]

Finally, after running the MWE2 workflow, since the grammar has changed, new
EMF classes can be introduced or some existing EMF classes can be modified; thus,
it is necessary to restart the other Eclipse instance where you are testing your editor.

The Eclipse Modeling Framework (EMF)
The Eclipse Modeling Framework (EMF) (Steinberg et al., 2008), http://www.
eclipse.org/modeling/emf, provides code generation facilities for building tools
and applications based on structured data models. Most of the Eclipse projects that in
some way deal with modeling are based on EMF since it simplifies the development of
complex software applications with its modeling mechanisms. The model specification
(metamodel) can be described in XMI, XML Schema, UML, Rational Rose, or
annotated Java. It is also possible to specify the metamodel programmatically using
Xcore, which was implemented in Xtext. Typically, a metamodel is defined in the
Ecore format, which is basically an implementation of a subset of UML class diagrams.

Pay attention to the meta levels in this context: an Ecore model
is a metamodel, since it is a model describing a model. Using the
metamodel EMF produces a set of Java classes for the model. If
you are not familiar with modeling technologies, you can think of
a metamodel as a way of defining Java classes (that is, hierarchy
relations, fields, method signatures, and so on). All Java classes
generated by EMF are subclasses of EObject, which can be seen
as the EMF equivalent of java.lang.Object. Similarly, EClass
corresponds to java.lang.Class for dealing with introspection
and reflection mechanisms.

Xtext relies on EMF for creating the AST, Abstract Syntax Tree, which we talked
about in Chapter 1, Implementing a DSL. From your grammar specification, Xtext
will automatically infer the EMF metamodel for your language. You can refer to
the Xtext documentation for all the details about metamodel inference. For the
moment, you can consider this simplified scenario: for each rule in your grammar,
an EMF interface and class will be created with a field for each feature in the rule
(together with a getter and setter). For instance, for the Entity rule, we will have
the corresponding Java interface (and the corresponding implementation Java class):

public interface Entity extends EObject {
 String getName();
 void setName(String value);
 Entity getSuperType();
 void setSuperType(Entity value);
 EList<Attribute> getAttributes();
}

www.allitebooks.com

http://www.allitebooks.org

Creating Your First Xtext Language

[36]

Since these Java artifacts are generated, they are placed in the corresponding package
in the src-gen folder.

You can have a look at the generated metamodel file Entities.ecore by opening
it with the default EMF Ecore editor. Although you may not know the details of the
description of a metamodel in EMF, it should be quite straightforward to grasp the
meaning of it (refer to the following screenshot; in the screenshot, you can also see
some expanded Java interfaces generated by EMF):

The inference of the metamodel and the corresponding EMF code generation is
handled transparently and automatically by Xtext. However, Xtext can also use an
existing metamodel that you maintain yourself, as detailed in the documentation
(we will not use this mechanism in this book).

Since the model of your DSL programs are generated as instances of these generated
EMF Java classes, a basic knowledge of EMF is required. As soon as you have to
perform additional constraint checks for your DSL and to generate code, you will
need to inspect this model and traverse it.

Chapter 2

[37]

It is easy to use the generated Java classes since they follow conventions. In
particular, instances of EMF classes must be created through a static factory (which
results from EMF generation itself), thus there is no constructor to use; initialization
of fields (that is, features) can be done with getters and setters. A collection in EMF
is implemented as an EList interface (which is an extension of the standard library
List). With only these notions in mind, it is easy to programmatically manipulate
the model of your program. For instance, this Java snippet programmatically creates
an Entities model that corresponds to an Entities DSL program:

import org.example.entities.entities.Attribute;
import org.example.entities.entities.EntitiesFactory;
import org.example.entities.entities.Entity;
import org.example.entities.entities.Model;

public class EntitiesEMFExample {

 public static void main(String[] args) {
 EntitiesFactory factory = EntitiesFactory.eINSTANCE;

 Entity superEntity = factory.createEntity();
 superEntity.setName("MySuperEntity");

 Entity entity = factory.createEntity();
 entity.setName("MyEntity");
 entity.setSuperType(superEntity);

 Attribute attribute = factory.createAttribute();
 attribute.setName("myattribute");
 attribute.setArray(false);
 attribute.setType(superEntity);

 entity.getAttributes().add(attribute);

 Model model = factory.createModel();
 model.getEntities().add(superEntity);
 model.getEntities().add(entity);
 }
}

EMF is easy to learn, but as with any powerful tool, there is much to learn to fully
master it. As hinted previously, it is widely used in the Eclipse world, thus you can
consider it as an investment. Notably, the new Eclipse platform, called e4, uses an
application model based on EMF, thus if you plan to develop RCP applications
based on the new Eclipse e4, you will have to deal with EMF.

Creating Your First Xtext Language

[38]

Improvements to the DSL
Now that we have a working DSL, we can do some improvements and modifications
to the grammar.

After every modification to the grammar, as we said in the section The Xtext
generator, we must run the MWE2 workflow so that Xtext will generate the new
ANTLR parser and the updated EMF classes.

First of all, while experimenting with the editor, you might have noted that while

MyEntity[] myattribute;

is a valid sentence of our DSL, this one (note the spaces between the square brackets)

MyEntity[] myattribute;

produces a syntax error.

This is not good, since spaces should not be relevant in a DSL (although there are
languages like Python and Haskell where spaces are indeed relevant).

The problem is due to the fact that in the Attribute rule, we specified [], thus, no
space is allowed between the square brackets; we can modify the rule as follows:

Attribute: type=[Entity] (array?='[' ']')? name=ID ';';

Since we split the two square brackets into two separate tokens, spaces between
the brackets are allowed in the editor. Indeed, spaces are automatically discarded
(unless they are explicit in the token definition).

We can further refine the array specification in our DSL by allowing an optional length:

Attribute:
 type=[Entity] (array ?='[' (length=INT)? ']')? name=ID ';';

There is no rule defining INT in our grammar: we inherit this rule from the grammar
Terminals. As you can imagine, INT requires an integer literal, thus the length
feature in our model will have an integer type as well. Since the length feature is
optional (note the question mark), both the following attribute definitions will be
valid sentences of our DSL:

MyEntity[] a;
MyEntity[10] b;

When the length is not specified, the length feature will hold the default integer
value (0).

Chapter 2

[39]

Dealing with types
The way we defined the concept of an attribute type is not conceptually correct, since
the array feature is part of Attribute when it should be something that concerns
only the type of Attribute.

We can then separate the concept of AttributeType in a separate rule (which will
also result in a new EMF class in our model):

Attribute:
 type=AttributeType name=ID ';';

AttributeType:
 entity=[Entity] (array ?='[' (length=INT)? ']')?;

If you run the MWE2 workflow, you will note no difference in your DSL editor,
but the metamodel for your AST has changed. For example, consider this part
of the EntitiesEMFExample we showed previously:

 Attribute attribute = factory.createAttribute();
 attribute.setName("myattribute");
 attribute.setArray(false);
 attribute.setType(superEntity);

This is no longer valid Java code, and has to be changed as follows:

 Attribute attribute = factory.createAttribute();
 attribute.setName("myattribute");
 AttributeType attributeType = factory.createAttributeType();
 attributeType.setArray(false);
 attributeType.setLength(10);
 attributeType.setEntity(superEntity);
 attribute.setType(attributeType);

As a further enhancement to our DSL, we would like to have some basic types: at
the moment, only entities can be used as types. For instance, let us assume that our
DSL provides three basic types: string, int, and boolean. Therefore, a basic type
is represented by its literal representation. On the contrary, an entity type (the only
type concept we have used up to now) is actually a reference to an existing Entity.
Furthermore, we want to be able to declare arrays both of basic and of entity types.

Creating Your First Xtext Language

[40]

For these reasons, the array feature still belongs to AttributeType, but we need to
abstract over the element types; thus, we modify the grammar as follows:

AttributeType:
 elementType=ElementType (array ?='[' (length=INT)? ']')?;

ElementType:
 BasicType | EntityType;

BasicType:
 typeName=('string'|'int'|'boolean');

EntityType:
 entity=[Entity];

As you can see, we introduce a rule, ElementType, which in turn relies on two
alternative rules (mutually exclusive): BasicType and EntityType. Alternative rules
are separated using the pipe operator "|". Note that rules like ElementType, which
basically delegates to other alternative rules, implicitly introduce an inheritance
relation in the generated EMF classes; thus, both BasicType and EntityType inherit
from ElementType. In the BasicType rule, the string feature typeName will contain
the corresponding keyword entered in the program.

After running the MWE2 workflow, you can try your editor and see that now
you can also use the three basic types; furthermore, in a context where a type
specification is expected, the content assist (refer to the following screenshot) will
present all possible element type alternatives (both entity types and basic types):

Chapter 2

[41]

In general, it is better not to rely on hardcoded alternatives in the
grammar like the basic types we used previously. Instead, it would
be better to provide a standard library for the DSL with some
predefined types and functions. An application of this technique
will be presented in Chapter 10, Scoping.

Now that our EMF model has changed again, we need to change our
EntitiesEMFExample class accordingly as follows:

 Attribute attribute = factory.createAttribute();
 attribute.setName("myattribute");
 AttributeType attributeType = factory.createAttributeType();
 attributeType.setArray(false);
 attributeType.setLength(10);
 EntityType entityType = factory.createEntityType();
 entityType.setEntity(superEntity);
 attributeType.setElementType(entityType);
 attribute.setType(attributeType);

If you reopen the generated Entities.ecore (refer to the following screenshot), you
can see the current metamodel for the AST of our DSL (note the inheritance relations:
BasicType and EntityType inherit from ElementType):

Creating Your First Xtext Language

[42]

The preceding EMF metamodel can also be represented with a graphical notation
following UML-like conventions (refer to the following diagram):

Model

EntityType

ElementTypeAttributeType

array : Eboolean

dimension : Elnt

BasicType

typeName : EString

attributes

0..*

type

0..1

0..1

entity

0..1

superType

elementType

0..1

Entity

entities

0..*

name : EString

name : EString
Attribute

We now have enough features in the Entities DSL to start dealing with additional
tasks typical of language implementation. We will be using this example DSL in
the upcoming chapters.

Chapter 2

[43]

Summary
In this chapter, you learned how to implement a simple DSL with Xtext and you
saw that, starting from a grammar definition, Xtext automatically generates many
artifacts for the DSL, including IDE tooling.

You also started to learn the EMF API that allows you to programmatically
manipulate a model representing a program AST. Being able to programmatically
access models is crucial to perform additional checks on a program that has been
parsed and also to perform code generation, as we will see in the rest of the book.

In the next chapter, we will introduce the new programming language, Xtend (which
is shipped with Xtext, and is implemented in Xtext itself): a Java-like general purpose
programming language tightly integrated with Java that allows you to write much
simpler and much cleaner programs. We will use Xtend in the rest of the book to
implement all the aspects of languages implemented in Xtext.

The Xtend
Programming Language

In this chapter, we will introduce the Xtend programming language, a
fully-featured Java-like language that is tightly integrated with Java. Xtend has
a more concise syntax than Java and provides additional features such as type
inference, extension methods, and lambda expressions, not to mention multi-line
template expressions (which are useful when writing code generators). All the
aspects of a DSL implemented in Xtext can be implemented in Xtend instead of Java,
since it is easier to use and allows you to write better-readable code. Since Xtend is
completely interoperable with Java, you can reuse all the Java libraries; moreover,
all the Eclipse JDT (Java Development Tools) will work with Xtend seamlessly.

An introduction to Xtend
The Xtend programming language comes with very nice documentation, which
can be found on its website, http://www.eclipse.org/xtend. We will give an
overview of Xtend in this chapter, but we strongly suggest that you then go through
the Xtend documentation thoroughly. Xtend itself is implemented in Xtext and it is
a proof of concept of how involved a language implemented in Xtext can be.

We will use Xtend throughout this book to write all parts of a DSL implementation.
Namely, we will use it to customize UI features, to write tests, to implement
constraint checks, and to write code generators or interpreters for all the example
DSLs we will develop in this book. In particular, starting with version 2.4, all the stub
classes generated by Xtext for your DSL projects are Xtend classes by default (instead
of Java, as in the previous versions).

www.allitebooks.com

http://www.allitebooks.org

The Xtend Programming Language

[46]

You can still generate Java stub classes by customizing the MWE2 workflow, but
in this book we will always use Xtend classes. Xtend, besides providing useful
mechanisms for writing code generators (most of all, multi-line template expressions),
also provides powerful features that make model visiting and traversing really easy,
straightforward, and natural to read and maintain. Indeed, besides the grammar
definition, for the rest of the time when implementing a DSL, you will have to visit
the AST model. Xtend programs are translated into Java, and Xtend code can access
all the Java libraries, thus Xtend and Java can coexist seamlessly.

Using Xtend in your projects
You can use Xtend in your Eclipse Java projects (both plain Java and plug-in projects).

In a plug-in project, you can right-click on your source folder and select New |
Xtend Class; you will see that this wizard is similar to the standard New Java Class
wizard, so you can choose the package, the class Name, Superclass, and Interfaces
(refer the following screenshot):

Chapter 3

[47]

As soon as the class is created, you will get an error marker with the message
"Mandatory library bundle 'org.eclipse.xtext.xbase.lib' 2.4.0 or higher not found on
the classpath". You just need to use the quickfix "Add Xtend libs to classpath" and
the required Xtend bundles will be added to your project's dependencies.

A new source folder will be created in your plug-in project, xtend-gen, where the
Java code corresponding to your Xtend code will be automatically generated (using
the building infrastructure of Eclipse) as soon as you save an .xtend file. Just like
src-gen created by the Xtext generator (as seen in the previous chapter), the files in
xtend-gen must not be modified by the programmer, since they will be overwritten
by the Xtend compiler.

The folder xtend-gen is not automatically added to the build
source folders of your plug-in project, and therefore, you should add
it manually in your build.properties file (the file has a warning
marker, and the editor will provide you with a quickfix to add that
folder). This is requested only for plug-in projects.

You can use the same steps to create an Xtend class in a plain Java project (again, you
will have to use the quickfix to add the Xtend libraries to the classpath). Of course, in
this case, there is no build.properties to adjust.

Starting from version 2.4.0, Xtext automatically generates Xtend stub
classes for your DSL (instead of the Java ones), thus, the runtime and
UI plug-in projects are already setup to use Xtend and its libraries.
However, this does not hold for the tests plug-in project; thus,
when starting to write Xtend classes in the tests plug-in project (as
we will see in Chapter 7, Testing), you will need to perform the setup
steps described in this section.

Xtend – a better Java with less "noise"
Xtend is a statically typed language and it uses the Java type system (including Java
generics). Thus Xtend and Java are completely interoperable.

Most of the linguistic concepts of Xtend are very similar to Java, that is, classes,
interfaces, and methods. Moreover, Xtend supports most of the features of Java
annotations. One of the goals of Xtend is to have a less "noisy" version of Java;
indeed, in Java, some linguistic features are redundant and only make programs
more verbose.

The Xtend Programming Language

[48]

Let's write a "Hello World" program in Xtend:

package org.example.xtend.examples

class XtendHelloWorld {
 def static void main(String[] args) {
 println("Hello World")
 }
}

You can see that it is similar to Java, though there are some differences. First of
all, the missing semicolons ; are not mistakes; in Xtend, they are not required
(though they can be used). All method declarations start with either def or
override (explained later in the chapter). Methods are public by default.

Note that the editor works almost the same as the one provided by JDT
(for example, see the Outline view for the Xtend class in the following screenshot).
You may also want to have a look at the generated Java class in the xtend-gen folder
corresponding to the Xtend class (refer the following screenshot):

Chapter 3

[49]

Although it is usually not required to see the generated Java code, it might be
helpful, especially when starting to use Xtend, to see what is generated in order to
learn Xtend's new constructs. Instead of manually opening the generated Java file,
you can open the Xtend Generated Code view; the contents of this view will show
the generated Java code, in particular, the code corresponding to the section of the
Xtend file you are editing (refer the following screenshot). This view will be updated
when the Xtend file is saved.

Here are some more Xtend examples:

class MyFirstXtendClass {
 val s = 'my field' // final field
 var myList = new LinkedList<Integer> // non final field

 def bar(String input) {
 var buffer = input
 buffer == s || myList.size > 0
 // the last expression is the return expression
 }
}

Fields and local variables are declared using val (for final fields and variables)
and var (for non-final fields and variables). Fields are private by default.

The Xtend Programming Language

[50]

You may have noticed that we wrote == for comparing two Java strings. This is
usually one of the common mistakes in Java, since you will then compare the object
references, not their actual values. However, Xtend handles operators transparently
and correctly, thus == actually compares the values of the strings (indeed, it maps to
the method equals).

Xtend provides some "syntactic sugar" (that is, syntax that is designed to write code
which is easier to read) for getter and setter methods, so that instead of writing, for
example, o.getName(), you can simply write o.name; similarly, instead of writing
o.setName("..."), you can simply write o.name = "...". The same convention
applies for boolean fields according to JavaBeans conventions (where the getter
method starts with is instead of get). Similar syntactic sugar is available for method
invocations, so that when a method has no parameter, the parenthesis can be avoided.
Therefore, in the preceding code, myList.size corresponds to myList.size().

The preceding code also shows other important features of Xtend:

• Type inference: when the type of a variable can be inferred (for example,
from its initialization expression), you are not required to specify it.

• Everything is an expression: in Xtend there are no statements, everything
is an expression; in a method body, the last expression is the return
expression (note the absence of return, although a return expression
can be explicitly specified).

The declaration of a method's return type is not required: it is inferred from the
returned expression (in this example it is boolean).

Text hovering the Xtend elements in the editor will give
you information about the inferred types.

Note that the types of method parameters must always be specified.

Access to static members (fields and methods) of classes in Xtend must be done
using the operator ::, instead of . that is used only for non-static members
(differently from Java, where . is used for both), for example:

import java.util.Collections
class StaticMethods {
 def static void main(String[] args) {
 val list = Collections::emptyList
 System::out.println(list)
 }
}

Chapter 3

[51]

Access to inner classes/interfaces of a Java class is done by using $, for example,
given this Java class:

public class MyJavaClass {
 interface MyInnerInterface {
 public static String s = "s";
 }
}

We can access the inner interface in Xtend using the following syntax:

MyJavaClass$MyInnerInterface

and, accordingly, the static field can be accessed as follows:

MyJavaClass$MyInnerInterface::s

In Xtend 2.4.2, static members and inner types are accessible with
the dot operator as well. Therefore, the preceding line can also be
written as follows: MyJavaClass.MyInnerInterface.s.

References to a Java class, that is, a type literal (which in Java you refer to by using
the class name followed by .class), are expressed with typeof(class name),
for example:

typeof(Entity) // corresponds to Entity.class in Java

In Xtend 2.4.2, type literals can also be specified by their simple
name: instead of typeof(Entity), you can simply write
Entity.

Xtend is stricter concerning method overriding: if a subclass overrides a method,
it must explicitly define that method with override instead of def, otherwise a
compilation error is raised. This should avoid accidental method overrides (that is,
you did not intend to provide an overridden version of a method of a superclass).
Even more importantly, if the method that is being overridden later is removed,
you would want to know why your method may not ever be called.

In Xtend (and in general, by default, in any DSL implemented with Xtext using the
default terminals grammar), strings can be specified both with single and double
quotes. This allows the programmer to choose the preferred format depending on the
string contents so that quotes inside the string do not have to be escaped, for example:

val s1 = "my 'string'"
val s2 = 'my "string"'

Escaping is still possible using the backslash character \ as in Java.

The Xtend Programming Language

[52]

Extension methods
Extension methods is a syntactic sugar mechanism that allows you to add new
methods to existing types without modifying them; instead of passing the first
argument inside the parentheses of a method invocation, the method can be called
with the first argument as its receiver. It is as if the method was one of the argument
type's members.

For example, if m(Entity) is an extension method, and e is of type Entity, you can
write e.m() instead of m(e), even though m is not a method defined in Entity.

Using extension methods often results in a more readable code, since method calls are
chained; for example, o.foo().bar() rather than nested, for example: bar(foo(o)).

Xtend provides several ways to make methods available as extension methods,
as described in this section.

Xtend provides a rich runtime library with several utility classes and static methods.
These static methods are automatically available in Xtend code so that you can use
all of them as extension methods.

Of course, the editor also provides code completion for extension methods so that
you can experiment with the code assistant. These utility classes aim at enhancing
the functionalities of standard types and collections.

Extension methods are highlighted in orange in the
Xtend editor.

For example, you can write:
"my string".toFirstUpper

instead of:
StringExtensions.toFirstUpper("my string")

Similarly, you can use some utility methods for collections, for example, addAll as in
the following code:

val list = new ArrayList<String>
list.addAll("a", "b", "c")

You can also use static methods from existing Java utility classes (for example, java.
util.Collections) as extension methods by using a static extension import in an
Xtend source file, for example:

import static extension java.util.Collections.*

Chapter 3

[53]

In that Xtend file, all the static methods of java.util.Collections will then be
available as extension methods.

Methods defined in an Xtend class can automatically be used as extension methods
in that class; for example:

class ExtensionMethods {
 def myListMethod(List<?> list) {
 // some implementation
 }

 def m() {
 val list = new ArrayList<String>
 list.myListMethod
 }

Finally, by adding the "extension" keyword to a field, a local variable, or a
parameter declaration, its instance methods become extension methods in that class,
code block, or method body, respectively. For example, assume you have this class:

class MyListExtensions {

 def aListMethod(List<?> list) {
 // some implementation
 }

 def anotherListMethod(List<?> list) {
 // some implementation
 }
}

and you want to use its methods as extension methods in another class, C. Then, in
C, you can declare an extension field (that is, a field declaration with the extension
keyword) of type MyListExtensions, and in the methods of C, you can use the
methods declared in MyListExtensions as extension methods:

class C {

 extension MyListExtensions e = new MyListExtensions

 def m() {
 val list = new ArrayList<String>
 list.aListMethod
 list.anotherListMethod
 }

The Xtend Programming Language

[54]

You can see that the two methods of MyListExtensions are used as extension
methods in C. Indeed, the two method invocations inside the method m are
equivalent to:

 e.aListMethod(list)
 e.anotherListMethod(list)

As mentioned earlier, you can achieve the same goal by adding the keyword
extension to a local variable:

 def m() {
 val extension MyListExtensions e = new MyListExtensions
 val list = new ArrayList<String>
 list.aListMethod
 list.anotherListMethod
 }

or to a parameter declaration:

 def m(extension MyListExtensions e) {
 val list = new ArrayList<String>
 list.aListMethod
 list.anotherListMethod
 }

When declaring a field with the keyword extension, the name of the field is optional.
The same holds true when declaring a local variable with the keyword extension.

As we hinted previously, the static methods of the classes of the Xtend library are
automatically available in Xtend programs. Indeed, the static methods can be used
independently of the extension method's mechanisms. The println method in the
first XtendHelloExample class is indeed a static method from an Xtend utility class.
Many utility methods are provided for dealing with collections; in particular, instead
of writing:

val list = new ArrayList<String>
list.addAll("a", "b", "c")

we can simply write:

val list = newArrayList("a", "b", "c")

By using these methods, you make full use of the type inference mechanism of Xtend.

Chapter 3

[55]

The implicit variable – it
You know that in Java, the special variable this is implicitly bound in a method
to the object on which the method was invoked; the same holds true in Xtend.
However, Xtend also introduces another special variable it. While you cannot
declare a variable or parameter with the name this, you are allowed to do so using
the name it. If in the current program context a declaration for it is available, then
all the members of that variable are implicitly available without using the . (just like
all the members of this are implicitly available in an instance method), for example:

class ItExamples {
 def trans1(String it) {
 toLowerCase // it.toLowerCase
 }

 def trans2(String s) {
 var it = s
 toLowerCase // it.toLowerCase
 }
}

This allows you to write much more compact code.

Lambda expressions
A lambda expression (or lambda for short) defines an anonymous function. Lambda
expressions are first class objects that can be passed to methods or stored in a
variable for later evaluation.

Lambda expressions are typical of functional languages that existed long before
object-oriented languages were designed. Therefore, as a linguistic mechanism,
they are so old that it is quite strange that Java has not provided them from the
start (they are planned to be available in Java 8). In Java, lambda expressions can
be simulated with anonymous inner classes, as in the following example:

import java.util.*;
public class JavaAnonymousClasses {
 public static void main(String[] args) {
 List<String> strings = new ArrayList<String>();
 ...
 Collections.sort(strings, new Comparator<String>() {
 public int compare(String left, String right) {
 return left.compareToIgnoreCase(right);
 }
 });
 }
}

www.allitebooks.com

http://www.allitebooks.org

The Xtend Programming Language

[56]

In the preceding example, the sorting algorithm would only need a function
implementing the comparison; thus, the ability to pass anonymous functions to other
functions would make things much easier (anonymous inner classes in Java are often
used to simulate anonymous functions).

Indeed, most uses of anonymous inner classes employ interfaces (or abstract classes)
with only one method (for this reason, they are also called SAM types – Single
Abstract Method); this should make it even more evident that these inner classes
aim to simulate lambda expressions.

Xtend supports lambda expressions: they are declared using square brackets [];
parameters and the actual body are separated by a pipe symbol, |. The body of the
lambda is executed by calling its apply method and passing the needed arguments.

The following code defines a lambda expression that is assigned to a local variable,
taking a string and an integer as parameters and returning the string concatenation
of the two. It then evaluates the lambda expression passing the two arguments:

val l = [String s, int i | s + i]
println(l.apply("s", 10))

Xtend also introduces types for lambda expressions (function types); parameter
types (enclosed in parentheses) are separated from the return type by the symbol
=> (of course, generic types can be fully exploited when defining lambda expression
types). For example, the preceding declaration could have been written with an
explicit type as follows:

val (String, int)=>String l = [String s, int i | s + i]

Recall that Xtend has powerful type inference mechanisms: variable type declarations
can be omitted when the context provides enough information. In the preceding
declaration, we made the type of the lambda expression explicit, thus the types of
parameters of the lambda expression are redundant since they can be inferred:

val (String, int)=>String l = [s, i | s + i]

Function types are useful when declaring methods that take a lambda expression
as a parameter (remember that the types of parameters must always be specified),
for example:

def execute((String, int)=>String f) {
 f.apply("s", 10)
}

Chapter 3

[57]

We can then pass a lambda expression as an argument to this method. When we pass
a lambda as an argument to this method, there is enough information to fully infer
the types of its parameters, which allows us to omit these declarations:

execute([s, i | s + i])

A lambda expression also captures the current scope; all final local variables and
all parameters that are visible at definition time can be referred to from within the
lambda expression's body. This is similar to Java anonymous inner classes that can
access surrounding final variables and final parameters.

In Xtend, method parameters are always automatically final.

Indeed, under the hood, Xtend generates Java inner classes for lambda expressions
(and it will be Java 8 compatible in the future). The lambda expression is "closed"
over the environment in which it was defined: the referenced variables and
parameters of the enclosing context are captured by the lambda expression. For this
reason, lambda expressions are often referred to as closures.

For example, consider the following code:

package org.example.xtend.examples
class LambdaExamples {
 def static execute((String,int)=>String f) {
 f.apply("s", 10)
 }
 def static void main(String[] args) {
 val c = "aaa"
 println(execute([s, i | s + i + c])) // prints s10aaa
 }
}

You can see that the lambda expression uses the local variable c when it is defined,
but the value of that variable is available even when it is evaluated.

Formally, lambda expressions are a linguistic construct, while closures
are an implementation technique. From another point of view, a
lambda expression is a function literal definition while a closure is a
function value. However, in most programming languages and in the
literature, the two terms are often used interchangeably.

The Xtend Programming Language

[58]

Although function types are not available in Java, Xtend can automatically perform
the required conversions; in particular, Xtend can automatically deal with Java SAM
(Single Abstract Method) types: if a Java method expects an instance of a SAM type,
in Xtend, you can call that method by passing a lambda (Xtend will perform all the
type checking and conversions). This is a further demonstration of how Xtend is
tightly integrated with Java.

Therefore, the Java example using java.util.Collections.sort passing an inner
class can be written in Xtend as follows (the code is much more compact when using
a lambda):

val list = newArrayList("Second", "First", "Third")
Collections::sort(list,
 [arg0, arg1 | arg0.compareToIgnoreCase(arg1)])

Again, note how Xtend infers the type of the parameters of the lambda.

Xtend also supports loops; in particular, in for loops, you can use the type inference
and avoid writing the type (for example, for (s : list)). However, if you get
familiar with lambdas, you will discover that you will tend not to use loops most
of the time. In particular, in Java, you typically use loops to find something in a
collection; with Xtend lambdas (and all the utility methods of the Xtend library that
can be automatically used as extension methods), you do not need to write those
loops anymore; your code will be more readable. For example, consider this Java
code (where strings is a List<String>):

String found = null;
for (String string : strings) {
 if (string.startsWith("F")) {
 found = string;
 break;
 }
}
System.out.println(found);

The corresponding Xtend code using a lambda is as follows:

println(strings.findFirst([s | s.startsWith("F")]))

In the Java version, you do not immediately understand what the code does.
The Xtend version can almost be read as an English sentence (with some known
mathematical notations): "find the first element s in the collection such that s starts
with an F".

Xtend provides some additional syntactic sugar for lambdas to make code even
more readable.

Chapter 3

[59]

First of all, when a lambda is the last argument of a method invocation, it can be put
outside the (...) parentheses (and if the invocation only requires one argument, the
() can be omitted):

Collections::sort(list)[arg0, arg1 |
 arg0.compareToIgnoreCase(arg1)]
strings.findFirst[s | s.startsWith("F")]

Furthermore, the special symbol it we introduced earlier is also the default
parameter name in a lambda expression; thus, if the lambda has only one parameter,
you can avoid specifying it and instead use it as the implicit parameter:

strings.findFirst[it.startsWith("F")]

and since all the members of it are implicitly available without using ".", you can
simply write the following:

strings.findFirst[startsWith("F")]

This is even more readable. If you need to define a lambda that takes no parameter
at all, you need to make it explicit by defining an empty list of parameters before the
| symbol. For example, the following code will issue a compilation error since the
lambda (implicitly) expects one argument:

val l = [println("Hello")]
l.apply()

The correct version should be expressed as follows:

val l = [| println("Hello")]
l.apply()

When implementing checks and generating code for a DSL, most of the time you
will have to inspect models and traverse collections; all of the preceding features will
help you a lot with this. If you are still not convinced, let us try an exercise: suppose
you have the following list of Person (where Person is a class with string fields
firstname, surname, and an integer field age):

personList = newArrayList(
 new Person("James", "Smith", 50),
 new Person("John", "Smith", 40),
 new Person("James", "Anderson", 40),
 new Person("John", "Anderson", 30),
 new Person("Paul", "Anderson", 30))

The Xtend Programming Language

[60]

and we want to find the first three younger persons whose first name starts with J,
and we want to print them as "surname, firstname" on the same line separated by ";
", thus, the resulting output should be (note: ; must be a separator):

Anderson, John; Smith, John; Anderson, James

Try to do that in Java; in Xtend (with lambdas and extension methods), it is as simple
as follows:

val result = personList.filter[firstname.startsWith("J")].
 sortBy[age].
 take(3).
 map[surname + ", " + firstname].
 join("; ")
println(result)

Multi-line template expressions
Besides traversing models, when writing a code generator, most of the time you will
write strings that represent the generated code; unfortunately, also for this task, Java
is not ideal. In fact, in Java, you cannot write multi-line string literals.

This actually results in two main issues: if the string must contain a newline character,
you have to use the special character \n; if, for readability, you want to break the
string literal in several lines, you have to concatenate the string parts with +.

If you have to generate only a few lines, this might not be a big problem; however, a
generator of a DSL usually needs to generate lots of lines.

For example, let us assume that you want to write a generator for generating some
Java method definitions; you can write a Java class with methods that take care of
generating specific parts, as shown in the following code:

public class JavaCodeGenerator {
 public String generateBody(String name, String code) {
 return "/* body of " + name + " */\n" + code;
 }

 public String generateMethod(String name, String code) {
 return "public void " + name + "() {" +
 "\t" + generateBody(name, code) +
 "}";
 }
}

Chapter 3

[61]

You can then invoke it as follows:

JavaCodeGenerator generator = new JavaCodeGenerator();
System.out.println(generator.generateMethod("m",
 "System.out.println(\"Hello\"));\nreturn;"));

We can, however, spot some drawbacks of this approach:

• The shape of the final generated code is not immediately understandable
(the variable parts break the constant parts)

• Code indentation is not trivial to handle
• Newline and tab characters are not easy to spot
• Some recurrent characters must be manually escaped (for example, the ""

quotations)

The result of running this generator is as follows:

public void m() { /* body of m */
System.out.println("Hello"));
return;}

Although the generated code is a valid Java code, it is not nicely formatted (the Java
compiler does not care about formatting, but it would be good to generate nicely
formatted code, since the programmer might want to read it or debug it). This is due
to the way we wrote the methods in the class JavaCodeGenerator: the code is buggy
with this respect, but it is not easy to get this right when using Java strings.

The Xtend Programming Language

[62]

Xtend provides multi-line template expressions to address all of the preceding issues
(indeed, all strings in Xtend are multi-line). The corresponding code generator written
in Xtend using multi-line template expressions is shown in the following screenshot:

Before explaining the code, we must first mention that the final output is nicely
formatted as it was meant to be:

public void m() {
 /* body of m */
 System.out.println("Hello");
 return;
}

Template expressions are defined using triple single quotes (this allows us to use
double quotes directly without escaping them); they can span multiple lines, and a
newline in the expression will correspond to a newline in the final output. Variable
parts can be directly inserted in the expression using guillemets («», also known as
angle quotes or French quotation marks). Note that between the guillemets, you
can specify any expression, and you can even invoke methods. You can also use
conditional expressions and loops (we will see an example later in this book; you can
refer to the documentation for all the details).

Curly brackets {} are optional for Xtend method
bodies that only contain template expressions.

Chapter 3

[63]

Another important feature of template expressions is that indentation is handled
automatically and in a smart way. As you can see from the previous screenshot, the
Xtend editor uses a specific syntax coloring strategy for multi-line template strings, in
order to give you an idea of what the indentations will look like in the final output.

To insert the guillemets in the Xtend Eclipse editor, you can use the
keyboard shortcuts Ctrl + Shift + < and Ctrl + Shift + > for « and »
respectively. On a Mac operating system, they are also available
with Alt + q («) and Alt + Q (»). Alternatively, you can use content
assist inside a template expression to insert a pair of them.

The drawback of guillemets is that you will have to have a consistent encoding,
especially if you work in a team using different operating systems. You should
always use UTF-8 encoding for all the projects that use Xtend to make sure that the
right encoding is stored in your project preferences (which is in turn saved on your
versioning system, such as Git). You should right-click on the project and then select
Properties..., and in the Resource property, set the encoding explicitly (refer to the
following screenshot). You must set this property before writing any Xtend code
(changing the encoding later will change all the guillemets characters, and you will
have to fix them all by hand). Systems such as Windows use a default encoding that
is not available in other systems, such as Linux, while UTF-8 is available everywhere.

The Xtend Programming Language

[64]

Additional operators
Besides standard operators, Xtend has additional operators that helps to keep
code compact.

First of all, most standard operators are extended to lists with the expected meaning.
For example, when executing the following code:

val l1 = newArrayList("a")
l1 += "b"
val l2 = newArrayList("c")
val l3 = l1 + l2
println(l3)

the string [a, b, c] will be printed.

Quite often, you will have to check whether an object is not null before invoking
a method on it, otherwise you may want to return null (or simply perform no
operation). As you will see in DSL development, this is quite a recurrent situation.
Xtend provides the operator ?., which is the null-safe version of the standard
selection operator (the dot .). Writing o?.m corresponds to if (o != null) o.m.
This is particularly useful when you have cascade selections, for example, o?.f?.m.

The Elvis ?: operator is another convenient operator for dealing with default values
in case of null instances. It has the following semantics: x ?: y returns x if it is not
null and y otherwise.

Combining the two operators allows you to set up default values easily, for example:

// equivalent to: if (o != null) o.toString else 'default'
result = o?.toString ?: 'default'

The with operator (or double arrow operator), =>, binds an object to the scope of a
lambda expression in order to do something on it; the result of this operator is the
object itself. Formally, the operator => is a binary operator that takes an expression on
the left-hand side and a lambda expression with a single parameter on the right-hand
side: the operator executes the lambda expression with the left-hand side as
the argument. The result is the left operand after applying the lambda expression.

For example, the code:

return eINSTANCE.createEntity => [name = "MyEntity"]

is equivalent to:

val entity = eINSTANCE.createEntity
entity.name = "MyEntity"
return entity

Chapter 3

[65]

This operator is extremely useful in combination with the implicit parameter it
and the syntactic sugar for getters and setters to initialize a newly created object to
be used in a further assignment without using temporary variables (again increasing
code readability). As a demonstration, consider the Java code snippet we saw in
Chapter 2, Creating Your First Xtext Language, that we used to build an Entity with an
Attribute (with its type) that we will report here for convenience:

Entity entity = eINSTANCE.createEntity();
entity.setName("MyEntity");
entity.setSuperType(superEntity);
Attribute attribute = eINSTANCE.createAttribute();
attribute.setName("myattribute");
AttributeType attributeType = eINSTANCE.createAttributeType();
attributeType.setArray(false);
attributeType.setDimension(10);
EntityType entityType = eINSTANCE.createEntityType();
entityType.setEntity(superEntity);
attributeType.setElementType(entityType);
attribute.setType(attributeType);
entity.getAttributes().add(attribute);

This requires many variables that are a huge distraction (are you able to get a quick
idea of what the code does?). In Xtend, we can simply write:

eINSTANCE.createEntity => [
 name = "MyEntity"
 superType = superEntity
 attributes += eINSTANCE.createAttribute => [
 name = "myattribute"
 type = eINSTANCE.createAttributeType => [
 array = false
 dimension = 10
 elementType = eINSTANCE.createEntityType => [
 entity = superEntity
]
]
]
]

The Xtend Programming Language

[66]

Polymorphic method invocation
Method overloading resolution in Java (and by default in Xtend) is a static
mechanism, meaning that the selection of the specific method takes place according
to the static type of the arguments. When you deal with objects belonging to a
class hierarchy, this mechanism soon shows its limitation: you will probably write
methods that manipulate multiple polymorphic objects through references to their
base classes, but since static overloading only uses the static type of those references,
having multiple variants of those methods will not suffice. With polymorphic
method invocation (also known as multiple dispatch, or dynamic overloading),
the method selection takes place according to the runtime type of the arguments.

Xtend provides Dispatch Methods for polymorphic method invocation: upon
invocation, overloaded methods marked as dispatch are selected according to the
runtime type of the arguments.

Going back to our Entities DSL of Chapter 2, Creating Your First Xtext Language,
ElementType is the base class of BasicType and EntityType, and AttributeType
has a reference, elementType, to an ElementType; to have a string representation for
such a reference, we can write two dispatch methods as in the following example:

def dispatch typeToString(BasicType type) {
 type.typeName
}
def dispatch typeToString(EntityType type) {
 type.entity.name
}

Now when we invoke typeToString on the reference elementType, the selection
will use the runtime type of that reference:

def toString(AttributeType attributeType) {
 attributeType.elementType.typeToString
}

With this mechanism, you can get rid of all the ugly instanceof cascades
(and explicit class casts) that have cluttered many Java programs.

Enhanced switch expressions
Xtend provides a more powerful version of Java switch statements. First of all, only
the selected case is executed, in comparison to Java that falls through from one case
to the next (thus, you do not have to insert an explicit break instruction to avoid
subsequent case block execution); furthermore, a switch can be used with any
object reference.

Chapter 3

[67]

Xtend switch expressions allow you to write involved case expressions, as shown in
the following example:

def String switchExample(Entity e, Entity specialEntity) {
 switch e {
 case e.name.length > 0 : "has a name"
 case e.superType != null : "has a super type"
 case specialEntity : "special entity"
 default: ""
 }
}

If the case expression is a boolean expression (like the first two cases in the
preceding example), then the case matches if the case expression evaluates to true.
If the case expression is not of type boolean, it is compared to the value of the main
expression using the equals method (the third case in the preceding example). The
expression after the colon of the matched case is then evaluated, and this evaluation
is the result of the whole switch expression.

Another interesting feature of Xtend switch expressions is type guards. With this
functionality, you can specify a type as the case condition and the case matches only
if the switch value is an instance of that type (formally, if it conforms to that type). In
particular, if the switch value is a variable, that variable is automatically casted to the
matched type within the case body. This allows us to implement a cleaner version of
the typical Java cascades of instanceof and explicit casts. Although we could use
dispatch methods to achieve the same goal, switch expressions with type guards can
be a valid and more compact alternative.

For example, the code in the previous section using dispatch methods can be
rewritten as follows:

def toString(AttributeType attributeType) {
 val elementType = attributeType.elementType
 switch elementType {
 BasicType : // elementType is a BasicType here
 elementType.typeName
 EntityType: // elementType is an EntityType here
 elementType.entity.name
 }
}

Note how entityType is automatically casted to the matched type in the case body.

The Xtend Programming Language

[68]

Depending on your programming scenario, you might want to choose between
dispatch methods and type-based switch expressions; however, keep in mind that
while dispatch methods can be overridden and extended (that is, in a derived class,
you can provide an additional dispatch method for a combination of parameters that
was not handled in the base class), switch expressions are inside a method, and thus
they do not allow for the same extensibility features. Moreover, dispatch cases are
automatically reordered with respect to type hierarchy (most concrete types first),
while switch cases are evaluated in the specified order.

Debugging Xtend code
The Java code generated by Xtend is clean and easy to debug. However, it is also
possible to debug Xtend code directly (instead of the generated Java), thanks to the
complete integration of Xtend with the Eclipse JDT debugger.

This means that you can start debugging a Java application that at some point
invokes Java code that has been generated by Xtend and, stepping through
that, automatically brings you to debugging the original Xtend source. The next
screenshot shows a debugging session of Xtend code. Note that all the JDT debugger
views are available; furthermore, implicit variables such as it can be inspected in the
Variables view:

Chapter 3

[69]

You can also debug an Xtend file (for example, containing a main method) directly,
since all the Run and Debug configuration launches are available for Xtend files
as well. Breakpoints can be inserted in an Xtend file by double-clicking on the
breakpoint ruler in the editor (currently, the Debug context menu is not available for
Xtend files).

If, for any reason, while debugging Xtend code you need to debug the generated Java
code, you can do so by right-clicking on the Debug view on an element corresponding
to an Xtend file line and selecting Show Source (refer the following screenshot).

Summary
Xtend provides many features that allow you to write clean and more readable code.
Since it is completely integrated with Java, all the Java libraries are accessible from
within Xtend; moreover, the IDE tooling of Xtend itself is basically the same as the
ones of JDT. For all of the aforementioned reasons, Xtext fosters the use of Xtend to
develop all the aspects of a DSL implementation.

In the next chapter, we will show you how to implement constraint checks for a DSL
using the EMF Validator mechanism using the Xtext enhanced API.

Validation
In this chapter we will introduce the concept of validation, and in particular, the
Xtext mechanism to implement validation: the validator. With validation you can
implement additional constraint checks of a DSL which cannot be done at parsing
time. Xtext allows you to implement such constraint checks in an easy and declarative
way; furthermore, you only need to communicate to Xtext the possible errors or
warnings and it will take care of generating the error markers accordingly in the IDE.
The validation will take place in the background while the user of the DSL is typing
in the editor, so that an immediate feedback is provided. We will also show how to
implement quickfixes corresponding to the errors and warnings generated during
validation, so that we can help the user to solve problems due to validation errors.

Validation in Xtext
As we hinted in Chapter 1, Implementing a DSL, parsing a program is only the
first stage in a programming language implementation. In particular, the overall
correctness of a program cannot always be determined during parsing. Trying to
embed additional constraint checks in the grammar specification could either make
such specification more complex or it could be simply impossible as some additional
static analysis can be performed only when other program parts are already parsed.

Actually, the best practice is to do as little as possible in the grammar and as much
as possible in validation (we will use this practice in Chapter 9, Type Checking and
Chapter 10, Scoping). This is because it is possible to provide far better error messages
and to more precisely detect problems that are eligible for quickfixes.

The mechanism of validation will be used extensively in all example DSLs of this
book. Typically, even for small DSLs, a validator has to be implemented to perform
additional constraint checks.

Validation

[72]

In Xtext, these constraints checks are implemented using a validator, which is a
concept inherited from the corresponding EMF API (see Steinberg et al., 2008).
In EMF, you can implement a validator which performs constraint checks on the
elements of an EMF model. Since Xtext uses EMF for representing the AST of a
parsed program, the mechanism of the validator naturally extends to an Xtext DSL.
In particular, Xtext enhances the EMF API for validation, by providing a declarative
way to specify rules for constraints of your DSL. Moreover, Xtext comes with default
validators, some of which are enabled by default, to perform checks which are
common to many DSLs (for example, cross-reference checks). Your custom validator
can be composed with the default ones of Xtext.

Default validators
Let us go back to the Entities DSL of Chapter 2, Creating your First Xtext Language.
Since we expressed cross-references in our Entities grammar, we can see the Xtext
linker/validator in action in the generated editor. If we enter an incorrect reference
(for example, the name of a super entity that does not exist), we get the error
"Couldn't resolve reference to...". This check on cross-references is performed by
one of the default validators provided by Xtext (cross-reference resolution is the
main subject of Chapter 10, Scoping).

Another standard validator provided by Xtext is the one that checks whether the
names are unique within your program. This check validates that names are unique
per element type; for example, you can have an attribute named the same as an
entity, but not two entities with the same name.

A unique name validator is not enabled by default, but it can be turned on
by modifying the MWE2 file as shown in the following code snippet. In our
example, it is GenerateEntities.mwe2; in particular, we need to uncomment
the composedCheck specification which concerns NamesAreUniqueValidator:

fragment = validation.ValidatorFragment auto-inject {
 composedCheck =
 "org.eclipse.xtext.validation.NamesAreUniqueValidator"
}

After that, of course, you need to run the MWE2 workflow.

Chapter 4

[73]

If you now try to declare two entities with the same name in the Entities DSL editor,
you will get an error as shown in the following screenshot:

It is interesting to note that, besides the element type, this validator also takes into
consideration the containment relations, for example, two attributes declared in
two different entities are allowed to have the same name (as you can see from the
preceding screenshot, both A and B have the attribute s, and this is allowed).

Technically, everything that is referenceable via name is
named in a namespace, implied by the containment relation.
This leads to qualified names, which will be explained in
Chapter 10, Scoping.

The default behavior of this validator should suit most DSLs. If your DSL needs
to have more rigid constraints about names, or in general about duplicate elements,
you will have to implement a customized NamesAreUniqueValidator class or
simply disable NamesAreUniqueValidator and implement these name checks in
your own validator (an example of a custom duplicate name check is shown in
Chapter 9, Type Checking).

Validation

[74]

Custom validators
While the default validators can perform some common validation tasks, most of the
checks for your DSL will have to be implemented by you, according to the semantics
you want your DSL to have.

These additional checks can be implemented using the Xtend class that Xtext has
generated for you in the validation subpackage in the src folder of the runtime
plug-in project. In our example, this class is called EntitiesValidator. Remember
that since this class is in the src folder, it will not be overwritten by future MWE2
workflow executions. Xtext performs validation by invoking each method annotated
with @Check, passing all instances having a compatible runtime type to each
such method. The name of the method is not important, but the type of the single
parameter is important. You can define as many annotated methods as you want for
the same type; Xtext will invoke them all. Inside such methods you can implement
the semantic checks for that element. If a semantic check fails, you can call the error
method, which will be explained shortly.

For example, we want to make sure that there is no cycle in the hierarchy of an
entity; thus, we write the following annotated method in our validator:

class EntitiesValidator extends AbstractEntitiesValidator {

 @Check
 def checkNoCycleInEntityHierarchy(Entity entity) {
 if (entity.superType == null)
 return // nothing to check

 val visitedEntities = <Entity>newHashSet()
 visitedEntities.add(entity)
 var current = entity.superType
 while (current != null) {
 if (visitedEntities.contains(current)) {
 error("cycle in hierarchy of entity '"+current.name+"'",
 EntitiesPackage::eINSTANCE.entity_SuperType)
 return
 }
 visitedEntities.add(current)
 current = current.superType
 }
 }
}

In the preceding method we traverse the hierarchy of an entity (of course, if an entity
has no superType, there is nothing to check) by recording all the entities we are
visiting. If during this visit we find an entity that we have already visited it means
that the hierarchy contains a cycle and we issue an error. It is crucial to leave the
while loop in that case, otherwise the loop will never end (after all, we found a cycle
and we would traverse the hierarchy endlessly).

Chapter 4

[75]

The method error (we refer to Xtext documentation for further details) has many
overloaded versions. In this example, we use the version that requires the following:

• A message for the error (and it is up to you to provide meaningful
information).

• The EMF feature of the examined EObject which the error should be
reported against, that is, which should be marked with error. In this case,
the feature containing the error is the superType feature.

Access to classes and features are obtained from the EPackage class that is generated
for our DSL's metamodel (in our example ,EntitiesPackage). Using this EPackage,
EMF features can be obtained in two ways:

• Using the static instance of the package and then the method corresponding
to the feature (as we did in the preceding code):
EntitiesPackage::eINSTANCE.entity_SuperType.

• Using the static fields of the inner interface Literals:
EntitiesPackage$Literals::ENTITY__SUPER_TYPE.

In both cases, in your Xtend programs, you can rely on the content assist to select the
feature easily.

We can now try the above validation check in the Entities DSL editor by defining
entities which contain a cycle in the hierarchy, as shown in the following screenshot:

Validation

[76]

You can see that the highlighted element in the editor is the entity name after the
keyword extends, since that corresponds to the feature superType.

The three error markers also show that Xtext calls our @Check annotated method for
all the elements of type Entity in the program.

Calling the error method with the appropriate information will let Xtext manage
the markers for Xtext based resources (clearing them before reparsing, keeping
track of dirty versus saved state, and so on). Markers will appear wherever they are
supported in the IDE: in the right and left editor ruler, in the Problems view, and in
the package explorer.

If you want to issue warnings instead of errors (which are considered to mean that
the model is invalid), simply call the warning method that has the same signature as
the error method. For example, in our Entities DSL, we follow a standard convention
about names: the name of an entity should start with a capital letter, while the name of
an attribute should be lowercase. If the user does not follow this convention, we issue
a warning; the program is considered valid anyway. To implement this, we write the
following methods in the EntitiesValidator class (note the use of imported static
methods as extension methods from the class Character):

import static extension java.lang.Character.*

class EntitiesValidator extends AbstractEntitiesValidator {

 ...
 @Check
 def checkEntityNameStartsWithCapital(Entity entity) {
 if (entity.name.charAt(0).lowerCase)
 warning("Entity name should start with a capital",
 EntitiesPackage::eINSTANCE.entity_Name)
 }

 @Check
 def checkAttributeNameStartsWithLowercase(Attribute attr) {
 if (attr.name.charAt(0).upperCase)
 warning("Attribute name should start with a lowercase",
 EntitiesPackage::eINSTANCE.attribute_Name)
 }
}

Chapter 4

[77]

The following screenshot shows how warning markers are created instead of
error markers:

In Xtext 2.4 an "info" severity level has been added (the method to
call is info). In this case an information marker is shown only in the
editor's ruler, while the corresponding file is not marked.

This is just an example of a simple validator implementation; in the rest of the book,
we will see many other implementations that perform more complex constraint
checks (among which, type checking, as shown in Chapter 8, An Expression Language
and in Chapter 9, Type Checking).

Quickfixes
As we said in Chapter 1, Implementing a DSL, a quickfix is a proposal to solve a
problem in a program. Quickfixes are typically implemented by a context menu
available from the error marker, and they are available both in the editor ruler
and in the Problems view.

Since quickfixes are tightly connected to validation, we describe
them in this chapter. Moreover, they allow us to get familiar with the
manipulation of the EMF model representing the AST of a program.

Validation

[78]

In our Entities DSL we can provide a quickfix for each warning and error issued
by our validator; moreover, as we will see later, we can also provide quickfixes for
errors issued by Xtext default validators.

Xtext provides an easy mechanism to implement a quickfix connected to an error or
warning issued by a validator. The Xtext generator generates an Xtend stub class for
quickfixes into the UI plug-in project; in our Entities DSL example, this class is org.
example.entities.ui.quickfix.EntitiesQuickfixProvider.

A quickfix is triggered by an issue code associated with an error or warning marker.
An issue code is simply a string that uniquely identifies the issue. Thus, when
invoking the error or warning method, we must provide an additional argument
which represents the issue code. In the validator, this is typically done by defining
a public String constant, whose value is prefixed with the package name of the
DSL and ends with a sensible name for the issue. It might also make sense to pass
additional issue data that can be reused by the quickfix provider to show a more
meaningful description of the quickfix and to actually fix the program. It is worth
noting that issue data is very useful when validation needs to compute something
that is costly; the quickfix may then avoid having to compute it again. Thus, we use
another version of the method error and warning which takes four arguments, and
we modify our validator as follows (only the modified parts are shown):

class EntitiesValidator extends AbstractEntitiesValidator {

 public static val HIERARCHY_CYCLE =
 "org.example.entities.HierarchyCycle";

 public static val INVALID_ENTITY_NAME =
 "org.example.entities.InvalidEntityName";

 public static val INVALID_ATTRIBUTE_NAME =
 "org.example.entities.InvalidAttributeName";

 @Check
 def checkNoCycleInEntityHierarchy(Entity entity) {
 ...
 error("cycle in hierarchy of entity '"+current.name+"'",
 EntitiesPackage::eINSTANCE.entity_SuperType,
 HIERARCHY_CYCLE,
 current.superType.name)
 ...
 }

 @Check
 def checkEntityNameStartsWithCapital(Entity entity) {
 if (entity.name.charAt(0).lowerCase)

Chapter 4

[79]

 warning("Entity name should start with a capital letter",
 EntitiesPackage::eINSTANCE.entity_Name,
 INVALID_ENTITY_NAME,
 entity.name)
 }

 @Check
 def checkAttributeNameStartsWithLowercase(Attribute attr) {
 if (attr.name.charAt(0).upperCase)
 warning("Attribute name should start with a lowercase",
 EntitiesPackage::eINSTANCE.attribute_Name,
 INVALID_ATTRIBUTE_NAME,
 attr.name)
 }
}

The issue constant is passed as the third argument to the methods error and warning.
Issue data is optional and you can pass a variable number of issue data arguments. To
implement a quickfix, we define a method in EntitiesQuickfixProvider annotated
with @Fix and a reference to the issue code this quickfix applies to. The name of the
method is not important, but the parameter types are fixed.

For example, for the warning concerning the first letter of an entity name, which
must be capital, we implement a quickfix which automatically capitalizes the first
letter of that entity:

class EntitiesQuickfixProvider extends DefaultQuickfixProvider {

 @Fix(EntitiesValidator::INVALID_ENTITY_NAME)
 def void capitalizeEntityNameFirstLetter(Issue issue,
 IssueResolutionAcceptor acceptor) {
 acceptor.accept(issue,
 "Capitalize first letter", // label
 "Capitalize first letter of '"
 + issue.data.get(0) + "'", // description
 "Entity.gif", // icon
 [
 context |
 val xtextDocument = context.xtextDocument
 val firstLetter = xtextDocument.get(issue.offset, 1);
 xtextDocument.replace(issue.offset, 1,
 firstLetter.toFirstUpper);
]
);
 }

Validation

[80]

Let us analyze what this code does. The first parameter of a quickfix provider
method is the Issue object that represents the error information; this is built
internally by Xtext using the information passed to error or warning in your
validator. The second parameter is an acceptor. Acceptor is a concept, and you will
see different types of acceptors used in many places in Xtext; you usually only have
to invoke the method accept on an acceptor, passing some arguments.

The first three arguments passed to the method accept of the acceptor are the label
(shown in the quickfix pop up for this fix), a description (which should show what
the effect of selecting this quick fix would mean, or something that makes the user
confident it is a fix they want to apply), and an icon (if you do not want an icon, you
can pass an empty string; how to use custom icons in your DSL UI will be explained
in Chapter 6, Customizations). Note that for the description, we use the first element of
the issue data (an array) since we know that in the validator we passed the name of
the supertype as the single issue data (when implementing the quickfix you must be
consistent with the information passed by the validator).

The fourth argument is the most interesting one, since it is actually the modification
code performed by the quickfix when selected by the user. In Java, the fourth
argument would be an inner class, but in Xtend, we can pass a lambda. Quickfixes
can perform the correction based on the source text (textual modification), or on the
model (semantic modification). These are explained in the next two sections.

Textual modification
You can specify a lambda which takes a single parameter of the type
IModificationContext. Due to the powerful type inference mechanisms of Xtend,
it is enough to just specify the name of the parameter (and Xtend will infer its type).
We could have also specified no parameter at all, since by default, lambdas have
automatically one parameter named it. In our example, the name of the parameter
was explicitly stated for clarity.

In the preceding code, we use the IDocument argument, which is passed in the given
modification context, to get access to the text we want to modify in our quickfix. We
have been given the offset and length of where the error/warning is marked in the
Issue object. We can now use the document methods get(offset, length) and
replace() to perform the capitalization of the first letter.

Chapter 4

[81]

This quickfix is shown in the following screenshot.

Using this strategy for implementing quickfixes has the drawback that we need to
deal with the actual text of the editor.

Model modification
The alternative strategy relies on the fact that the program is also available in memory
as an EMF model: if we modify the model, the Xtext editor will automatically update
its contents. For this reason, we can specify a lambda which takes two parameters:
the EMF element (that is, the EObject) that contains the error, and the modification
context. The EObject element is the one the warning was reported against.

For instance, to uncapitalize the first letter of an attribute, we can write the quickfix
using the following strategy:

@Fix(EntitiesValidator::INVALID_ATTRIBUTE_NAME)
def void uncapitalizeAttributeNameFirstLetter(Issue issue,
 IssueResolutionAcceptor acceptor) {
 acceptor.accept(issue,
 "Uncapitalize first letter", // label
 "Uncapitalize first letter of '"
 + issue.data.get(0) + "'", // description
 "Attribute.gif", // icon
 [
 element, context |
 (element as Attribute).name = issue.data.get(0).toFirstLower
]
);
}

Validation

[82]

In this case, the element is the Attribute object against which the warning was
reported. Therefore, we simply assign the fixed name to the name of the attribute.
Note that with this strategy, we only manipulate the EMF model, without having
to deal with the contents of the editor: Xtext will then take care of updating the
editor's contents.

The ability to directly modify the EMF model of the program makes more complex
quickfixes easier to implement. For example, if we want to implement the quickfix
to remove the supertype of the entity which contains a cycle in the hierarchy, we just
need to set the superType feature to null, as shown in the following code snippet
(you can see the quickfix in the following screenshot):

@Fix(EntitiesValidator::HIERARCHY_CYCLE)
def void removeSuperType(Issue issue,
 IssueResolutionAcceptor acceptor) {
 acceptor.accept(issue,
 "Remove supertype",
 '''Remove supertype '«issue.data.get(0)»' ''',
 "delete_obj.gif",
 [element, context |
 (element as Entity).superType = null;
]
);
}

Chapter 4

[83]

Note that the semantic change results in there not being any supertype in the model
element and thus the source text extends is also removed. Implementing the same
quickfix by modifying the text of the program would require more effort and would
be more error prone. On the other hand, textual modifications allow fixing things
that are not present in the semantic model. We could, for example, allow some
punctuation to be optional in the grammar in order to provide better error messages
such as "missing comma" as opposed to "syntax error". Such lenient behavior makes
it possible for the parser to produce a model, and there is something semantic to base
validation as opposed to a syntax error where we get no model at all. Also, semantic
changes always include formatting, and this may have other unwanted side effects
(we will deal with formatting in Chapter 6, Customizations).

Quickfixes for default validators
As mentioned before, we can also provide quickfixes for errors issued by default
Xtext validators. You might have noted that if you refer to a missing entity in the
Entities DSL editor, Xtext already proposes some quickfixes: if there are other
entities in the source file, it proposes to change the reference to one of the existing
entities. We can provide an additional quickfix that proposes to automatically add
the missing entity. In order to do this, we must define a method in our quickfix
provider for the issue org.eclipse.xtext.diagnostics.Diagnostic.LINKING_
DIAGNOSTIC. We want to add the missing entity to the current model; to make things
more interesting, the quickfix should add the missing entity after the entity which
refers to the missing entity. For example, consider the following source file:

entity MyFirstEntity {
 FooBar s;
 int[] a;
}

entity MyOtherEntity {
}

The referred FooBar entity in the attribute definition is not defined in the program,
and we would like to add it after the definition of MyFirstEntity (and before
MyOtherEntity), since that is the entity which contains the attribute definition
referring to the missing entity.

Let's first present the code for this quickfix (we will use Xtend features for getters,
setters, template strings, and the with operator to make our logic more compact):

import static extension org.eclipse.xtext.EcoreUtil2.*

@Fix(Diagnostic::LINKING_DIAGNOSTIC)

Validation

[84]

def void createMissingEntity(Issue issue,
 IssueResolutionAcceptor acceptor) {
 acceptor.accept(issue,
 "Create missing entity",
 "Create missing entity",
 "Entity.gif",
 [element, context |
 val currentEntity =
 element.getContainerOfType(typeof(Entity))
 val model = currentEntity.eContainer as Model
 model.entities.add(
 model.entities.indexOf(currentEntity)+1,
 EntitiesFactory::eINSTANCE.createEntity() => [
 name = context.xtextDocument.get(issue.offset,
 issue.length)
]
)
]
);
}

Consider that the EObject element passed to the lambda is the program element
which refers to the missing entity, thus, it is not necessarily an Entity (for instance,
if the missing entity is in an attribute's type specification, as in the preceding Entities
program snippet, then the EObject element is an AttributeType). To get the
containing entity, we could walk up the containment relation of the EMF model
till we get to an Entity element. Alternatively, we can use one of the many static
utility methods, here imported as extension methods, provided by Xtext in the class
EcoreUtil2 (this complements the standard EcoreUtil class of EMF). In particular,
we use getContainerOfType, which does this walking up in the containment relation
for us, until it finds an element of the specified type. For retrieving the root Model
element we can simply cast the container of the found entity (since in our Entities
DSL, an Entity can only be contained in a Model). Then, we insert the newly created
entity in the desired position (that is, right after the position of the current entity).

Spend some time to take a look at the classes EcoreUtil and
EcoreUtil2, since they provide many useful methods you will
need when dealing with an EMF model.

Chapter 4

[85]

To create the missing entity, we must know its name. For this issue (which is not
generated by our own validator), the issue data does not contain any information
about the missing element's name. However, the issue offset tells us in which
position in the document the missing element's name is referred. Thus, the name of
the missing element can be retrieved using this offset (the length is also contained in
the issue) from the editor's document.

You can now check what this quickfix does (see the following screenshot; this also
shows the default quickfixes provided by Xtext which propose to change the name
of the referred entity to one available in the current source).

Summary
In this chapter you learned how to implement constraint checks, using the Xtext
validator mechanism based on @Check annotated methods. Just by implementing
a custom validator and calling the method error or warning with the appropriate
information, Xtext produces error and warning markers that result in marking the
text regions as well as showing the markers in the various views in Eclipse.

We also showed how to implement quickfixes. Since Xtext automatically synchronizes
the DSL editor's contents with the EMF model of the AST, we can simply modify such
model without dealing with the textual representation of the program.

In the next chapter we will write a code generator for the Entities DSL implemented
in Xtend, relying on its advanced features for code generation: starting from a
program written in our Entities DSL, we will generate the corresponding Java code.
You will see that Xtext automatically integrates your code generator into the building
infrastructure of Eclipse.

Code Generation
In this chapter you will learn how to write a code generator for your Xtext DSL using
the Xtend programming language. Using the Entities DSL that we developed in the
previous chapters, we will write a code generator which, for each entity declaration,
will generate the corresponding Java class. We will also see how the code generator is
automatically integrated by Xtext into the Eclipse builder infrastructure. Finally, the
DSL implementation can be exported as a Java standalone command-line compiler.

Introduction to code generation
After a program written in your DSL has been parsed and validated, you might
want to do something with the parsed EMF model, that is, the AST of that program.
Typically, you may want to generate code in another language (for example, Java
code), a configuration file, XML, a text file, and so on. In all of these cases, you will
need to write a code generator.

Since the parsed program is an EMF model, you can indeed use any EMF framework
which somehow deals with code generation. Of course, you might also use plain Java
to generate code, after all, as we saw in the previous chapters, you have all the Java
APIs to access the EMF model.

However, in this book, we will use Xtend (introduced in Chapter 3, The Xtend
Programming Language) to write code generators, since it is very well suited for the task.
Moreover, the task of writing a code generator is greatly simplified by the fact that
Xtext automatically integrates your code generator into the Eclipse build infrastructure.
All we have to deal with is producing the desired output (for example, Java source,
XML, and so on).

Code Generation

[88]

Writing a code generator in Xtend
A generator stub is automatically created by Xtext. In our example the stub
is created in the package org.example.entities.generator:

class EntitiesGenerator implements IGenerator {
 override void doGenerate(Resource res, IFileSystemAccess fsa) {
 // TODO implement me
 }
}

Before writing the actual code, let us recall that Xtext is a framework, thus, the
overall flow of control is dictated by the framework, not by the programmer
(this is also known as the Hollywood Principle: "Don't call us, we'll call you").
This means that you do not have to run the generator; your DSL Xtext editor is
already integrated in the automatic building infrastructure of Eclipse, and the
generator will be automatically called when a source written in your DSL changes
(indeed, it will be called also if one of its dependencies changes, as we will see in
later chapters). Note that the method you have to implement just accepts an EMF
Resource, which contains the EMF model representation of the program. This means
that if this generation method is invoked, the corresponding source program has
already been parsed and validated: it will only be called when the source program
does not have any validation errors. You do not even have to worry about the
physical base path location where your code will be generated: that is hidden in the
passed IFileSystemAccess file. You only need to specify the relative path where
the generated file will be created and its contents as a string (actually, it can be any
java.lang.CharSequence).

First of all, we need to decide what we want to generate from our DSL programs.
For the Entities DSL it might make sense to generate a Java class for each Entity.
Thus, we need to retrieve all the Entity objects in the passed Resource. Here is how
to do this with one line of Xtend code:

resource.allContents.toIterable.filter(typeof(Entity))

Then, we iterate over these entities and generate a Java file for each of them using the
entity's name for the file name. Since we do not have explicit packages in our DSL,
we choose to generate all the Java classes in the package entities. Thus, the Java file
path will be:

"entities/" + entity.name + ".java"

Chapter 5

[89]

Remember that we do not have to care about the base path (it will be configured into
the passed IFileSystemAccess file). Summarizing we get:

override void doGenerate(Resource res, IFileSystemAccess fsa) {
 for (e : res.allContents.toIterable.filter(typeof(Entity))){
 fsa.generateFile(
 "entities/" + e.name + ".java",
 e.compile)
 }
}

Now we have to implement the compile method, which must return a string
with the contents that will be stored in the generated file. We use Xtend multi-line
template expressions to implement such a method; the method is illustrated in the
following screenshot:

Note that the Xtend editor also shows the tab indentations of the final resulting
string. Xtend smartly ignores indentations of the loop constructs, which are there
only to make Xtend code more readable; these indentations and newline characters
will not be a part of the resulting string.

Code Generation

[90]

We basically write a template for a Java class using the information stored in the
Entity object. We generate the extends part only if the entity has a supertype.
This is achieved using the IF conditional inside the template. Then, we iterate over
the entity's attributes twice using the template FOR loop construct; the first time to
generate Java fields and the second time to generate getter and setter methods. Doing
that in two separate iterations allows us to generate all the fields at the beginning of
the Java class. We use the toFirstUpper extension method to correctly generate the
names of the getter and setter methods.

Notice that IF and FOR (with capital letters) are used
to specify conditions and loops, respectively, within a
template expression.

We delegate the compilation of attribute types to another method:

def compile(AttributeType attributeType) {
 attributeType.elementType.typeToString +
 if (attributeType.array) "[]"
 else ""
}

def dispatch typeToString(BasicType type) {
 if (type.typeName == "string") "String"
 else type.typeName
}

def dispatch typeToString(EntityType type) {
 type.entity.name
}

Observe that the BasicType literals of our DSL already correspond to Java basic
types; the only exception is "string", which in Java corresponds to "String". To keep
the example simple, we do not consider the length feature of AttributeType
during the code generation.

Chapter 5

[91]

Integration with the Eclipse build
mechanism
It is time to see our generator in action: launch Eclipse, create a Java project in the
workspace, and, in the src folder, create a new .entities file (remember to accept
to add the Xtext nature to the project, otherwise the generator will not run). Continue
by adding one or more entities with some attributes. Notice that a src-gen folder is
automatically created as soon as you save the file. At this point, you should also add
this generated folder to the projects source folders by going to Build Path | Use as
Source Folder. Exploring the content of the src-gen folder you will find a generated
Java class for each entity in your .entities file. You can see an example in the
following screenshot.

Observe that a code generator just creates text. Other
components have to make sense of that, for example, a Java
compiler. That is why we need to add the src-gen folder to
the project source folders: this way, the Eclipse Java compiler
automatically compiles the generated Java sources.

Make some changes and observe that the Java files are regenerated as you save the
changes. Remove an entity and observe that the corresponding Java file is removed.
Your DSL generator is completely integrated in the Eclipse build system.

Code Generation

[92]

For instance, in the following screenshot, we can see how the generated Java file
is changed after removing a field from MyFirstEntity and how the previously
generated Java file for MySecondEntity is automatically deleted after we removed
the corresponding entity definition in the input file:

As we hinted before, the generator is automatically invoked by Xtext when the
input file changes, provided that the file contains no validation error. Xtext also
automatically keeps track of the association between the generated files and the
original input file (as in this example, from an input file we can generate several
output files). When a DSL source file is found to be invalid (that is, having validation
errors) everything that was generated from that file is automatically removed,
independent of the input program's element that contains the error.

Chapter 5

[93]

For instance, in the following screenshot, we show what happens if we modify the
example.entities file introducing an error: even if the error does not concern
MyFirstEntity, its corresponding generated Java file is still deleted:

The integration with the Eclipse build infrastructure is
customizable, but the default behavior, including the
automatic removal of generated files corresponding to
an invalid source file, should fit most cases. In fact, code
generators tend to be written for complete and valid
models and often throw exceptions for incomplete models
or produce complete garbage.

Code Generation

[94]

When running the MWE2 workflow, Xtext also creates preference pages for your
DSL. One of these preference pages concerns code generation. In the new Eclipse
instance you can check what Xtext created (go to Window | Preferences); you will
see that there is a dedicated section for the Entities DSL with typical configurations
(for example, syntax highlighting colors and fonts and code generation preferences),
see the following screenshot:

Standalone command-line compiler
We already know that the Xtext project wizard created the projects for our DSL
separating the features related to the user interface in a separate project (the .ui
project); the runtime project does not depend on the Eclipse user interface. Thus,
we can create a command-line application consisting of a simple Java class with a
main method. Simply add the following lines to your MWE2 workflow file:

// generator API
fragment = generator.GeneratorFragment {
 generateJavaMain = true
}

Chapter 5

[95]

If you now run the workflow, you will find a Main class in the src folder of your
project in the org.example.entities.generator package. As you may recall
from Chapter 2, Creating Your First Xtext Language, files generated into the src folder
are only generated once (if they do not exist) and thus you can safely add/modify
the logic of the Main class. This is not required at this point; we will use the class as
it was generated. You do not have to worry about not understanding everything
that is done by the Main class at this point, this will be revealed in later chapters.
For now it is enough to know that the generated Main class' main method accepts
a command-line argument for the file to parse, validate, and generate code for.

Finally, you can also export a JAR file for your standalone Entities compiler;
in Eclipse, an easy way to do that is given in the following steps:

1. Run the Main.Java file as a Java application (right-click and select Run As
| Java Application). In the console view you can see that the application
terminates with the error "Aborting: no path to EMF resource provided!"
since you did not specify any command-line argument (but that is not the
reason why we are creating this launch configuration).

2. From the File menu select Export... | Java | Runnable JAR File, then click
on Next.

3. Select the launch configuration you created in step 1, specify the path of the
exported JAR file (for example, entities-compiler.jar), and in the Library
handling section, select Package required libraries into generated JAR
(see the following screenshot) and click on Finish.

Code Generation

[96]

The generated JAR file is found in the directory denoted by the output path. Note
that this JAR file is quite big (almost 20 MB) because besides the class files of your
projects, it also contains all the required JARs (for example, the Xtext and EMF JAR
files). This means that your JAR file is self-contained and does not need any further
library. You can now try your standalone compiler from the command line, just go in
the directory where the jar file has been created and run it with Java, giving the path
of an .entities file as an argument:

java -jar entities-compiler.jar <path to an .entities file>

If the given file contains errors, you will see the errors reported as result; otherwise,
you should see the message "Code generation finished". In the latter case, you will
find all the generated Java files in the src-gen folder.

This was a demonstration that Xtext can generate a standalone
command-line based compiler that does not require a full
Eclipse infrastructure.

Summary
Generating code from your DSL sources is a typical task when developing
a DSL. Xtend provides many interesting features that make writing a code
generator really easy.

Xtext automatically integrates your code generator into the Eclipse building
infrastructure so that building takes place incrementally upon file saving, just like in
the Eclipse JDT. You can also get a command-line standalone compiler so that your
DSL programs can be compiled without Eclipse.

In the next chapter you will learn about the Dependency Injection framework Google
Guice, on which Xtext heavily relies for customizing all of its features. In particular,
you will also see how to customize the runtime and the IDE concepts for your DSL.

Customizations
In this chapter we describe the main mechanism for customizing Xtext components:
Google Guice, a Dependency Injection framework. With Google Guice we can
easily and consistently inject custom implementations of specific components into
Xtext. In the first section, we will briefly show some Java examples that use Google
Guice. Then, we will show how Xtext uses this dependency injection framework. In
particular, you will learn how to customize both the runtime and the UI aspects.

Dependency injection
The Dependency Injection pattern (Fowler, 2004) is used to inject implementation
classes into a class hierarchy in a consistent way. This is useful when classes
delegate specific tasks to other classes: messages are simply forwarded to the objects
referenced in fields (which abstract the actual behavior).

Let us consider a possible scenario: a Service class that abstracts from the actual
implementation of a Processor class and a Logger class (although in this section
we show Java code, all the injection principles naturally apply to Xtend as well).
The following is a possible implementation:

public class Service {
 private Logger logger;
 private Processor processor;

 public void execute(String command) {
 logger.log("executing " + command);
 processor.process(command);
 logger.log("executed " + command);
 }
}

Customizations

[98]

public class Logger {
 public void log(String message) {
 System.out.println("LOG: " + message);
 }
}

public interface Processor {
 public void process(Object o);
}

public class ProcessorImpl implements Processor {
 private Logger logger;

 public void process(Object o) {
 logger.log("processing");
 System.out.println("processing " + o + "...");
 }
}

These classes correctly abstract from the implementation details, but the problem
of initializing the fields correctly still persists. If we initialize the fields in the
constructor, then the user still needs to hardcode the actual implementation class
names. Also note that Logger is used in two independent classes, thus, if we have
a custom logger, we must make sure that all the instances use the correct one.

These issues can be dealt with by using dependency injection. With dependency
injection hardcoded dependencies will be removed. Moreover, we will be able to
easily and consistently switch the implementation classes throughout the code.
Although the same goal can be achieved manually by implementing factory method
or abstract factory patterns (Gamma et al., 1995), with dependency injection
frameworks it is easier to keep the desired consistency and the programmer needs
to write less code. Xtext uses the dependency injection framework Google Guice,
http://code.google.com/p/google-guice/. We refer to the Google Guice
documentation for all the features provided by this framework; in this section we
just briefly describe its main features.

You annotate the fields you want Guice to inject with the @Inject annotation (com.
google.inject.Inject):

public class Service {
 @Inject private Logger logger;
 @Inject private Processor processor;

 public void execute(String command) {
 logger.log("executing " + command);
 processor.process(command);

Chapter 6

[99]

 logger.log("executed " + command);
 }
}

public class ProcessorImpl implements Processor {
 @Inject private Logger logger;

 public void process(Object o) {
 logger.log("processing");
 System.out.println("processing " + o + "...");
 }
}

The mapping from injection requests to instances is specified in a Guice Module,
a class that is derived from AbstractModule. The method configure is
implemented to specify the bindings using a simple and intuitive API.

You only need to specify the bindings for interfaces, abstract classes, and for custom
classes. This means that you do not need to specify a binding for Logger since it
is a concrete class; on the contrary, you need to specify a binding for the interface
Processor. The following is an example of a Guice module for our scenario:

public class StandardModule extends AbstractModule {
 @Override
 protected void configure() {
 bind(Processor.class).to(ProcessorImpl.class);
 }
}

You create an Injector using the static method Guice.createInjector by passing
a module. You then use the injector to create instances:

Injector injector = Guice.createInjector(new StandardModule());
Service service = injector.getInstance(Service.class);
service.execute("First command");

The initialization of injected fields will be done automatically by Google Guice.
It is worth noting that the framework is also able to initialize (inject) private fields
(like in our example). Instances of classes that use dependency injection must
be created only through an injector; creating instances with new will not trigger
injection, thus all the fields annotated with @Inject will be null.

Customizations

[100]

When implementing a DSL with Xtext you will never have to
create a new injector manually. In fact, Xtext generates utility
classes to easily obtain an injector, for example, when testing your
DSL with Junit, as we will see in Chapter 7, Testing. We also refer to
Köhnlein, 2012 for more details. The example shown in this section
only aims at presenting the main features of Google Guice.

If we need a different configuration of the bindings, all we need to do is define
another module. For example, let us assume that we have defined additional
derived implementations for logging and processing. Here is an example where
Logger and Processor are bound to custom implementations:

public class CustomModule extends AbstractModule {
 @Override
 protected void configure() {
 bind(Logger.class).to(CustomLogger.class);
 bind(Processor.class).to(AdvancedProcessor.class);
 }
}

Creating instances with an injector obtained using this module will ensure that the
right classes are used consistently (for example, the CustomLogger class will be used
both by Service and Processor).

You can create instances from different injectors in the same application, for example:

executeService(Guice.createInjector(new StandardModule()));
executeService(Guice.createInjector(new CustomModule()));

void executeService(Injector injector) {
 Service service = injector.getInstance(Service.class);
 service.execute("First command");
 service.execute("Second command");
}

It is possible to request injection in many different ways, such as
injection of parameters to constructors, using named instances,
specification of default implementation of an interface, setter
methods, and much more. In this book, we will mainly use
injected fields.

Chapter 6

[101]

Injected fields are instantiated only once when the class is instantiated. There are
situations where this is not ideal; you may want to decide when you need an element
to be instantiated, or you may need to create several instances from within method
bodies. In such situations, instead of injecting an instance of the wanted type C, you
inject a com.google.inject.Provider<C> instance, which has a get method that
produces an instance of C.

For example:

public class Logger {
 @Inject
 private Provider<Utility> utilityProvider;

 public void log(String message) {
 System.out.println("LOG: " + message + " - " +
 utilityProvider.get().m());
 }
}

Each time we create a new instance of Utility by using the injected Provider class.
The nice thing is that to inject a custom implementation of Utility, you do not need
to provide a custom Provider: you just bind the Utility class in the Guice module
and everything will work as expected:

public class CustomModule extends AbstractModule {
 @Override
 protected void configure() {
 bind(Logger.class).to(CustomLogger.class);
 bind(Processor.class).to(AdvancedProcessor.class);
 bind(Utility.class).to(CustomUtility.class);
 }
}

It is crucial to keep in mind that once classes rely on injection,
their instances must be created only through an injector,
otherwise all the injected elements will be null. In general, once
dependency injection is used in a framework, all classes of the
framework must rely on injection.

Customizations

[102]

Google Guice in Xtext
All Xtext components rely on Google Guice dependency injection, even the classes
that Xtext generates for your DSL. This means that in your classes, if you need
to use a class from Xtext, you just have to declare a field of such type with the
@Inject annotation.

The injection mechanism allows a DSL developer to customize basically every
component of the Xtext framework.

When running the MWE2 workflow, Xtext generates both a fully configured module
and an empty module derived from the generated one. Customizations are added
to the empty stub module. The generated module should not be touched. Xtext
generates one runtime module that defines the non-user interface related parts
of the configuration and one specific for usage in the Eclipse IDE. Guice provides
a mechanism for composing modules that is used by Xtext: the module in the UI
project uses the module in the runtime project and overrides some bindings.

Let us consider the Entities DSL example; you can find in the src directory of
the runtime project the class EntitiesRuntimeModule, which inherits from
AbstractEntitiesRuntimeModule in the src-gen directory. Similarly, in the
UI project you can find in the src directory the class EntitiesUiModule, which
inherits from AbstractEntitiesUiModule in the src-gen directory.

The Guice modules in src-gen are already configured with the bindings for the stub
classes generated during the MWE2 workflow. Thus, if you want to customize an
aspect using a stub class then you do not have to specify any specific binding. The
generated stub classes concern typical aspects that the programmer usually wants
to customize, for example, validation and generation (as we saw in the previous
chapters) in the runtime project, and labels and outline in the UI project (as we will
see in the next sections). If you need to customize an aspect which is not covered by
any of the generated stub classes, then you will need to write a class yourself and
then specify the binding for your class in the Guice module in the src folder.
We will see an example of this scenario in the section Other customizations.

Bindings in these Guice module classes can be specified as we saw in the previous
section, by implementing the configure method. However, Xtext provides an
enhanced API for defining bindings: Xtext reflectively searches for methods with a
specific signature in order to find Guice bindings. Thus, assuming you want to bind a
BaseClass class to your derived CustomClass, instead of writing the following:

public class EntitiesRuntimeModule extends ... {
 @Override
 protected void configure() {
 bind(BaseClass.class).to(CustomClass.class);

Chapter 6

[103]

 ...

}

you can simply define a method in your module with a specific signature, as follows:

public Class<? extends BaseClass> bindBaseClass() {
 return CustomClass.class;
}

Remember that these methods are invoked reflectively, thus their signature must
follow the expected convention. We refer to the official Xtext documentation for the
complete description of the module API; typically, the binding methods that you will
see in this book will have the preceding shape, in particular, the name of the method
must start with "bind" followed by the name of the class or interface we want to
provide a binding for.

It is important to understand that these bind methods do not necessarily have to
override a method in the module base class; you can also make your own classes
(which are not related to Xtext framework classes at all) participants of this injection
mechanism (as long as you follow the preceding convention on method signatures).
One important note is that bindings defined in a super module class must be
overridden by a method with the same signature, or the result is an erroneous
attempt to provide multiple/conflicting bindings of the same class/interface.

In the rest of this chapter we will show examples of customizations of both IDE and
runtime concepts. For most of these customizations we will modify the corresponding
Xtend stub class that Xtext generated when running the MWE2 workflow. As hinted
before, in these cases we will not need to write a custom Guice binding. We will also
show an example of a customization which does not have an automatically generated
stub class.

Starting from version 2.4.0, all the stub classes generated by Xtext
are Xtend classes. The only exceptions are the Guice module
classes, which are Java classes.

Customizations of IDE concepts
In this section we show typical concepts of the IDE for your DSL that you may want
to customize. Xtext shows its usability in this context as well, since, as you will see, it
reduces the customization effort.

Customizations

[104]

Labels
Xtext UI classes make use of an ILabelProvider interface to obtain textual labels
and icons via its methods getText and getImage, respectively. ILabelProvider
is a standard component of Eclipse JFace-based viewers. You can see an
ILabelProvider interface in action in the Outline view and in content assist
proposal pop-ups (as well as in various other places).

Xtext provides a default implementation of a label provider for all DSLs, which does
its best to produce a sensible representation of the EMF model objects by using the
name feature, if it is found in the corresponding object class, and a default image.
You can see that in the Outline view when editing an entities file, refer to the
following screenshot:

However, you surely want to customize the representation of some elements
of your DSL.

The label provider stub class for your DSL can be found in the UI
plug-in project in the subpackage ui.labeling. This stub class extends the
base class DefaultEObjectLabelProvider. In the Entities DSL, the class is
called EntitiesLabelProvider.

Chapter 6

[105]

This class employs a Polymorphic Dispatcher mechanism (similar to the dispatch
methods of Xtend described in Chapter 3, The Xtend Programming Language), which is
also used in many other places in Xtext. Thus, instead of implementing the getText
and getImage methods, you can simply define several versions of methods text
and image taking as parameter an EObject object of the type you want to provide a
representation for. Xtext will then search for such methods according to the runtime
type of the elements to represent.

For example, for our Entities DSL we can change the textual representation of
attributes in order to show their names and a better representation of types (for
example, "name : type"). We then define a method text taking Attribute as a
parameter and returning a string:

class EntitiesLabelProvider extends ... {

 @Inject extension TypeRepresentation

 def text(Attribute a) {
 a.name +
 if (a.type != null)
 " : " + a.type.representation
 else ""
 }
}

To get a representation of the AttributeType element, we use an injected extension,
TypeRepresentation (it is similar to the way we generate Java code for attribute
types in the generator of Chapter 5, Code Generation), in particular its method
representation.

Remember that the label provider is used, for example, for the Outline
view, which is refreshed when the editor contents change, and its contents
might contain errors; thus, you must be ready to deal with an incomplete
model, and some features might still be null. That is why you should
always check that the features are not null before accessing them.

Note that we inject an extension field of type TypeRepresentation instead of
creating an instance with new in the field declaration. Although it is not strictly
necessary to use injection for this class, we decided to rely on that because in the
future, we might want to be able to provide a different implementation for that class.
Another point for using injection instead of new is that the other class may rely on
injection (or it may do so in the future). Using injection leaves the door open for
future and unanticipated customizations.

Customizations

[106]

The Outline now shows as in the following screenshot:

We can further enrich the labels for entities and attributes by using images for them.
To do this, we create a directory where we place the image files of the icons we
want to use. In order to benefit from Xtext's default handling of images, we call the
directory icons, and we place two gif images there, Entity.gif and Attribute.
gif (for entities and attributes respectively). We then define two image methods in
EntitesLabelProvider where we only need to return the name of the image files
(Xtext will do the rest for us):

class EntitiesLabelProvider extends DefaultEObjectLabelProvider {
 ... as before
 def image(Entity e) { "Entity.gif" }

 def image(Attribute a) { "Attribute.gif" }
}

You can see the result by relaunching Eclipse, as seen in the following screenshot:

Now the entities and attributes labels look nicer.

Chapter 6

[107]

If you plan to export the plugins for your DSL so that others can install
them in their Eclipse (see Chapter 11, Building and Releasing), you must
make sure that the icons directory is added to the build.properties
file, otherwise that directory will not be exported. The bin.includes
section of the build.properties file of your UI plugin should look like
the following:

bin.includes = META-INF/,\
 .,\
 plugin.xml,\
 icons/

The Outline view
The default Outline view comes with nice features. In particular, it provides toolbar
buttons to keep the Outline view selection synchronized with the element currently
selected in the editor. Moreover, it provides a button to sort the elements of the
tree alphabetically.

By default, the tree structure is built using the containment relations of the
metamodel of the DSL; this strategy is not optimal in some cases. For example,
an Attribute definition also contains the AttributeType element, which is a
structured definition with children (for example, elementType, array, and length).
This is reflected in the Outline (see the following screenshot) if you expand the
Attribute elements.

Customizations

[108]

This shows unnecessary elements (such as BasicType names), which are now
redundant since they are shown in the label of the attribute, and additional
elements which are not representable with a name (such as the array feature).

We can influence the structure of the Outline tree by using the generated stub
class EntitiesOutlineTreeProvider in the src folder org.example.entities.
ui.outline. Also in this class, customizations are specified in a declarative way
using the polymorphic dispatch mechanism. The official documentation details all
the features that can be customized.

In our example we just want to make sure that the nodes for attributes are "leaf"
nodes, that is, they cannot be further expanded and they have no children. In
order to achieve this, we just need to define a method named _isLeaf (note the
underscore) with a parameter of the type of the element, returning true. Thus,
in our case we write:

class EntitiesOutlineTreeProvider extends
 DefaultOutlineTreeProvider {
 def _isLeaf(Attribute a) { true }
}

Let's relaunch Eclipse, and now see that the attribute nodes do not expose children
anymore (see the following screenshot).

Besides defining leaf nodes, you can also specify the children in the tree for a specific
node by defining a method _createChildren taking as parameters the type of the
outline node and the type of the model element. This can be useful to define the actual
root elements of the Outline tree. You see that, by default, the tree is rooted with a
single node for the source file. In this example, it might be better to have a tree with
many root nodes, each one representing an entity. The root of the Outline tree is
always represented by a node of type DefaultRootNode; the root node is actually not
visible, it is just the container of all nodes that will be displayed as roots in the tree.

Chapter 6

[109]

Thus, we define the following method (our Entities model is rooted by a
Model element):

public class EntitiesOutlineTreeProvider ... {
 ... as before
 def void _createChildren(DocumentRootNode outlineNode,
 Model model) {
 model.entities.forEach[
 entity |
 createNode(outlineNode, entity);
]
 }
}

This way, when the Outline tree is built, we create a (root) node for each entity
instead of having a single root for the source file (the method createNode is part
of the Xtext base class); the result can be seen in the following screenshot:

Customizing other aspects
In Chapter 8, An Expression Language, we will show how to customize the content
assistant; there is no need to do this for the simple Entities DSL since the default
implementation already does a fine job.

Customizations

[110]

Custom formatting
If you tried to apply one of the quickfixes we implemented in Chapter 4, Validation,
you might have noticed that after the EMF model has changed, the editor
immediately reflects this change; however, the resulting textual representation is not
well formatted (as shown in the following screenshot, where we applied the quickfix
which adds the missing entity FooBar).

In general, the EMF model representing the AST does not contain any information
about the textual representation, that is, all white space characters are not part of
the EMF model (after all, the AST is an abstraction of the actual program).

Xtext keeps track of such information in another in-memory model called the node
model. The node model carries the syntactical information, that is, offset and length
in the textual document. However, when we manually change the EMF model, we
do not provide any formatting directives, and Xtext uses the default formatter
to get a textual representation of the modified or added model parts.

Indeed, in the editor of your DSL, Xtext already generated the menu for formatting
your source; as it is standard in Eclipse editors (for example, the JDT editor), you
can access the Format menu from the context menu of the editor or by using the key
combination Ctrl + Shift + F.

The default formatter is OneWhitespaceFormatter and you can test this in the
Entities DSL editor: this formatter simply separates all tokens of your program
with a space. Typically you will want to change this default behavior.

If you provide a custom formatter, this will be used not only when the Format
menu is invoked, but also when Xtext needs to update the editor contents after
a manual modification of the AST model (for example, a quickfix performing a
semantic modification).

Chapter 6

[111]

The Xtext generator has created a stub class for customizing the formatting for your
DSL. The formatter stub can be found in the main plugin project, and for our Entities
DSL the class is org.example.entities.formatting.EntitiesFormatter.

The method to implement is configureFormatting, which is given a
FormattingConfig object as an argument. Using this object we can declaratively
state the formatting actions (for example, do a line wrap, indent, remove spaces, and
so on) to be applied on specific tokens (for example, before, after, around, and so on).

For our Entities DSL, we decide to perform formatting as follows:

• Insert one line-wrap after the entity left curly bracket "{"
• Insert two line-wraps after the entity right curly bracket "}" so that entities

will be separated by an empty line
• Indent tokens between entities curly brackets (so that attributes will be

indented within an entity)
• Insert one line-wrap after each attribute declaration (that is, after the ";")
• Remove possible white spaces before the ";" of an attribute declaration

The FormattingConfig method names are descriptive (for example,
setIndentation, setLinewrap, and so on). To specify the token to which we
want to apply the formatting, we can rely on the GrammarAccess class of our DSL
(generated by Xtext); in our example it is called EntitiesGrammarAccess. Using
this class we can access the tokens related to rules (for example, getEntityAccess,
getAttributeAccess, and so on) and keywords (for example, curly brackets,
semicolons, and so on). For the latter, Eclipse content assist will help you in selecting
the right method to use.

Summarizing, to achieve the formatting that we have just sketched, we need to
implement the configureFormatting method as follows:

class EntitiesFormatter extends AbstractDeclarativeFormatter {

 @Inject EntitiesGrammarAccess g

 override protected void configureFormatting(FormattingConfig c){
 // formatting for entities
 val e = g.getEntityAccess()
 // indentation between { }
 c.setIndentation(e.getLeftCurlyBracketKeyword_3(),
 e.getRightCurlyBracketKeyword_5())
 // newline after {
 c.setLinewrap().after(e.getLeftCurlyBracketKeyword_3())

Customizations

[112]

 // two newlines after }
 c.setLinewrap(2).after(e.getRightCurlyBracketKeyword_5())
 // formatting for attributes
 val a = g.getAttributeAccess()
 // newline after ;
 c.setLinewrap(1).after(a.getSemicolonKeyword_2())
 // remove possible spaces before the ;
 c.setNoSpace().before(a.getSemicolonKeyword_2())
 }
}

If you now relaunch Eclipse and try to apply our quickfixes, you will see that the
added entity is nicely formatted, as shown in the following screenshot:

Moreover, you can also try to format the whole source in the editor by selecting
Format from the context menu or by using the key combination Ctrl + Shift + F.

Other customizations
All the customizations you have seen so far were based on modification of a
generated stub class with accompanying generated Guice bindings in the module
under the src-gen directory.

However, since Xtext relies on injection everywhere, it is possible to inject a custom
implementation for any mechanism, even if no stub class has been generated.

Chapter 6

[113]

If you installed Xtext SDK in your Eclipse, the sources of Xtext are
available for you to inspect. You should learn to inspect these sources by
navigating to them and see what gets injected and how it is used. Then
you are ready to provide a custom implementation and inject it. You can
use the Eclipse Navigate menu. In particular, to quickly open a Java file
(even from a library if it comes with sources), use Ctrl + Shift + T (Open
Type...). This works only for Java classes, so if you want to quickly open
another source file (for example, an Xtend class or the Xtext grammar
file) use Ctrl + Shift + R (Open Resource...). Both dialogs have a text field
where, if you start typing, the available elements soon show up. Eclipse
supports CamelCase everywhere, so you can just type the capital letters
of a compound name to quickly get to the desired element; for example,
to open the EntitiesRuntimeModule Java class, use the Open Type...
menu and just digit "ERM" to see the filtered results.

As an example, we show how to customize the output directory where the generated
files will be stored (as we saw in Chapter 5, Code Generation, the default is src-gen).
Of course, this output directory can be modified by the user using the Properties
dialog that Xtext generated for your DSL (see Chapter 5, Code Generation), but we
want to customize the default output directory for Entities DSL so that it becomes
entities-gen.

The default output directory is retrieved internally by Xtext using an injected
IOutputConfigurationProvider instance. If you take a look at this class
(see the preceding tip), you will see:

import com.google.inject.ImplementedBy;

@ImplementedBy(OutputConfigurationProvider.class)
public interface IOutputConfigurationProvider {
 Set<OutputConfiguration> getOutputConfigurations();
 ...

The @ImplementedBy Guice annotation tells the injection mechanism the default
implementation of the interface. Thus, what we need to do is create a subclass of
the default implementation (that is, OutputConfigurationProvider) and provide
a custom binding for the interface IOutputConfigurationProvider.

The method we need to override is getOutputConfigurations; if we take a look
at its default implementation we see:

public Set<OutputConfiguration> getOutputConfigurations() {
 OutputConfiguration defaultOutput = new
 OutputConfiguration(IFileSystemAccess.DEFAULT_OUTPUT);
 defaultOutput.setDescription("Output Folder");
 defaultOutput.setOutputDirectory("./src-gen");

Customizations

[114]

 defaultOutput.setOverrideExistingResources(true);
 defaultOutput.setCreateOutputDirectory(true);
 defaultOutput.setCleanUpDerivedResources(true);
 defaultOutput.setSetDerivedProperty(true);
 return newHashSet(defaultOutput);
}

Of course, the interesting part is the call to setOutputDirectory. We might simply
copy the whole method body in our overridden version of the method and change
that line; however, we prefer to:

1. Call the super implementation and store the result in a local variable
(it is a set).

2. Take the first element of the set.
3. Call setOutputDirectory with our desired output directory.
4. Return the set stored in the local variable.

Instead of defining a Java subclass, we define an Xtend subclass. The preceding
operations are easily implemented using the Xtend "with operator" (see Chapter
3, The Xtend Programming Language); moreover, we use implicit static extension
methods from the Xtend default library (in particular, head, which returns the first
element of the set) and the syntactic sugar for setter methods. Our custom Xtend
class is as follows:

class EntitiesOutputConfigurationProvider extends
OutputConfigurationProvider {

 public val ENTITIES_GEN = "./entities-gen"

 override getOutputConfigurations() {
 super.getOutputConfigurations() => [
 head.outputDirectory = ENTITIES_GEN
]
 }
}

Note that we use a public constant for the output directory since we might need it
later in other classes.

We create this class in the main plug-in project, since this concept is not just an UI
concept (it is used also in other parts of the framework); moreover, since it deals
with generation functionalities, we create it in the generator subpackage.

Chapter 6

[115]

Now we must bind our implementation in the EntitiesRuntimeModule class:

public class EntitiesRuntimeModule extends
 AbstractEntitiesRuntimeModule {

 public Class<? extends IOutputConfigurationProvider>
 bindIOutputConfigurationProvider() {
 return EntitiesOutputConfigurationProvider.class;
 }
}

If we now relaunch Eclipse, we can verify that the Java code is generated into
entities-gen instead of src-gen, as shown in the following screenshot. If you
previously used the same project, the src-gen directory might still be there
from previous generations; you need to manually remove it and set the new
entities-gen as a source folder.

Customizations

[116]

Summary
In this chapter we introduced the Google Guice dependency injection framework
on which Xtext relies. You should now be aware of how easy it is to inject custom
implementations consistently throughout the framework. You also learned how to
customize some basic runtime and IDE concepts for a DSL.

The next chapter shows how to perform unit testing for languages implemented in
Xtext. Test driven development is an important programming technique which will
make your implementations more reliable, resilient to changes of the libraries, and
will allow you to program quickly.

Testing
In this chapter you will learn how to test a DSL implementation by using the Junit
framework and the additional utility classes provided by Xtext. This way, your DSL
implementation will have a suite of tests that can be run automatically. We will use
the Entities DSL developed in previous chapters for showing the typical techniques
for testing both the runtime and the UI features of a DSL implemented in Xtext.

Introduction to testing
Writing automated tests is a fundamental technology/methodology when
developing software. It will help you write quality software where most aspects
(possibly all aspects) are somehow verified in an automatic and continuous way.
Although successful tests do not guarantee that the software is bug free, automated
tests are a necessary condition for professional programming (see Beck 2002, Martin
2002, 2008, 2011 for some insightful reading about this subject).

Tests will also document your code, whether it is a framework, a library, or an
application; tests are a form of documentation that does not risk to get stale with
respect to the implementation itself. Javadoc comments will likely not be kept in
synchronization with the code they document, manuals will tend to become obsolete
if not updated consistently, while tests will fail if they are not up-to-date.

The Test Driven Development (TDD) methodology fosters the writing of tests
even before writing production code. When developing a DSL one can relax this
methodology by not necessarily writing the tests first. However, one should write
tests as soon as a new functionality is added to the DSL implementation. This must
be taken into consideration right from the beginning, thus, you should not try to
write the complete grammar of a DSL, but proceed gradually; write a few rules to
parse a minimal program, and immediately write tests for parsing some test input
programs. Only when these tests pass you should go on to implementing other parts
of the grammar.

Testing

[118]

Moreover, if some validation rules can already be implemented with the current
version of the DSL, you should write tests for the current validator checks as well.

Ideally, one does not have to run Eclipse to manually check whether the current
implementation of the DSL works as expected. Using tests will then make the
development much faster.

The number of tests will grow as the implementation grows, and tests should be
executed each time you add a new feature or modify an existing one. You will see
that since tests will run automatically, executing them over and over again will
require no additional effort besides triggering their execution (think instead if you
should manually check that what you added or modified did not break something).

This also means that you will not be scared to touch something in your
implementation; after you did some changes, just run the whole test suite and
check whether you broke something. If some tests fail, you will just need to check
whether the failure is actually expected (and in case fix the test) or whether your
modifications have to be fixed.

It is worth noting that using a version control system (such as Git)
is essential to easily get back to a known state; just experimenting
with your code and finding errors using tests does not mean you
can easily backtrack.

You will not even be scared to port your implementation to a new version of the used
frameworks. For example, when a new version of Xtext is released, it is likely that
some API has changed and your DSL implementation might not be built anymore
with the new version. Surely, running the MWE2 workflow is required. But after your
sources compile again, your test suite will tell you whether the behavior of your DSL
is still the same. In particular, if some of the tests fail, you can get an immediate idea of
which parts need to be changed to conform to the new version of Xtext.

Moreover, if your implementation relies on a solid test suite, it will be easier for
contributors to provide patches and enhancements for your DSL; they can run the
test suite themselves or they can add further tests for a specific bugfix or for a new
feature. It will also be easy for the main developers to decide whether to accept the
contributions by running the tests.

Last but not the least, you will discover that writing tests right from the beginning
will force you to write modular code (otherwise you will not be able to easily test it)
and it will make programming much more fun.

Xtext and Xtend themselves are developed with a test driven approach.

Chapter 7

[119]

Junit 4
Junit is the most popular unit test framework for Java and it is shipped with the
Eclipse JDT. In particular, the examples in this book are based on Junit version 4.

To implement Junit tests, you just need to write a class with methods annotated
with @org.junit.Test. We will call such methods simply test methods. Such
Java (or Xtend) classes can then be executed in Eclipse using the "Junit test" launch
configuration; all methods annotated with @Test will be then executed by Junit. In
test methods you can use assert methods provided by Junit to implement a test. For
example, assertEquals(expected, actual) checks whether the two arguments
are equal; assertTrue(expression) checks whether the passed expression
evaluates to true. If an assertion fails, Junit will record such failure; in particular, in
Eclipse, the Junit view will provide you with a report about tests that failed. Ideally,
no test should fail (and you should see the green bar in the Junit view).

All test methods can be executed by Junit in any order, thus, you
should never write a test method which depends on another one; all
test methods should be executable independently from each other.

If you annotate a method with @Before, that method will be executed before each
test method in that class, thus, it can be used to prepare a common setup for all
the test methods in that class. Similarly, a method annotated with @After will be
executed after each test method (even if it fails), thus, it can be used to cleanup
the environment. A static method annotated with @BeforeClass will be executed
only once before the start of all test methods (@AfterClass has the complementary
intuitive functionality).

The ISetup interface
Running tests means we somehow need to bootstrap the environment to make it
support EMF and Xtext in addition to the implementation of our DSL. This is done
with a suitable implementation of ISetup. We need to configure things differently
depending on how we want to run tests; with or without Eclipse and with or without
Eclipse UI being present. The way to set up the environment is quite different
when Eclipse is present, since many services are shared and already part of the
Eclipse environment. When setting up the environment for non-Eclipse use (also
referred to as standalone) there are a few things that must be configured, such as
creating a Guice injector and registering information required by EMF. The method
createInjectorAndDoEMFRegistration in the ISetup interface is there to do
exactly this.

Testing

[120]

Besides the creation of an Injector, this method also performs all the initialization
of EMF global registries so that after the invocation of that method, the EMF API to
load and store models of your language can be fully used, even without a running
Eclipse. Xtext generates an implementation of this interface, named after your DSL,
which can be found in the runtime plugin project. For our Entities DSL it is called
EntitiesStandaloneSetup.

The name "standalone" expresses the fact that this class has to be
used when running outside Eclipse. Thus, the preceding method
must never be called when running inside Eclipse (otherwise the
EMF registries will become inconsistent).

In a plain Java application the typical steps to set up the DSL (for example, our
Entities DSL) can be sketched as follows:

Injector injector = new EntitiesStandaloneSetup().
createInjectorAndDoEMFRegistration();
XtextResourceSet resourceSet =
 injector.getInstance(XtextResourceSet.class);
resourceSet.addLoadOption
 (XtextResource.OPTION_RESOLVE_ALL, Boolean.TRUE);
Resource resource = resourceSet.getResource
 (URI.createURI("/path/to/my.entities"), true);
Model model = (Model) resource.getContents().get(0);

This standalone setup class is especially useful also for Junit tests that can then be
run without an Eclipse instance. This will speed up the execution of tests. Of course,
in such tests you will not be able to test UI features.

As we will see in this chapter, Xtext provides many utility classes for testing which
do not require us to set up the runtime environment explicitly. However, it is
important to know about the existence of the setup class in case you either need to
tweak the generated standalone compiler or you need to set up the environment in
a specific way for unit tests.

Implementing tests for your DSL
Xtext highly fosters using unit tests, and this is reflected by the fact that, by default,
the MWE2 workflow generates a specific plug-in project for testing your DSL. In fact,
usually tests should reside in a separate project, since they should not be deployed
as part of your DSL implementation. This additional project ends with the .tests
suffix, thus, for our Entities DSL, it is org.example.entities.tests. The tests
plug-in project has the needed dependencies on the required Xtext utility bundles
for testing.

Chapter 7

[121]

We will use Xtend to write Junit tests.

In the src-gen directory of the tests project, you will find the injector providers for
both headless and UI tests. You can use these providers to easily write Junit test
classes without having to worry about the injection mechanisms setup. The Junit
tests that use the injector provider will typically have the following shape (using the
Entities DSL as an example):

@RunWith(typeof(XtextRunner))
@InjectWith(typeof(EntitiesInjectorProvider))
class MyTest {
 @Inject MyClass
 ...

As hinted in the preceding code, in this class you can rely on injection; we used
@InjectWith and declared that EntitiesInjectorProvider has to be used to create
the injector. EntitiesInjectorProvider will transparently provide the correct
configuration for a standalone environment. As we will see later in this chapter,
when we want to test UI features, we will use EntitiesUiInjectorProvider
(note the "Ui" in the name).

Testing the parser
The first tests you might want to write are the ones which concern parsing.

This reflects the fact that the grammar is the first thing you must write when
implementing a DSL. You should not try to write the complete grammar before
starting testing: you should write only a few rules and soon write tests to check if
those rules actually parse an input test program as you expect.

The nice thing is that you do not have to store the test input in a file (though you
could do that); the input to pass to the parser can be a string, and since we use Xtend,
we can use multi-line strings.

The Xtext test framework provides the class ParseHelper to easily parse a string.
The injection mechanism will automatically tell this class to parse the input
string with the parser of your DSL. To parse a string, we inject an instance of
ParseHelper<T>, where T is the type of the root class in our DSL's model – in our
Entities example, this class is called Model. The method ParseHelper.parse will
return an instance of T after parsing the input string given to it.

Testing

[122]

By injecting the ParseHelper class as an extension, we can directly use its methods
on the strings we want to parse. Thus, we can write:

@RunWith(typeof(XtextRunner))
@InjectWith(typeof(EntitiesInjectorProvider))
class EntitiesParserTest {

 @Inject extension ParseHelper<Model>

 @Test
 def void testParsing() {
 val model = '''
 entity MyEntity {
 MyEntity attribute;
 }
 '''.parse

 val entity = model.entities.get(0)
 Assert::assertEquals("MyEntity", entity.name)

 val attribute = entity.attributes.get(0)
 Assert::assertEquals("attribute", attribute.name);
 Assert::assertEquals("MyEntity",
 (attribute.type.elementType as EntityType).
 entity.name);
 }
 ...

In this test, we parse the input and test that the expected structure was constructed
as a result of parsing. These tests do not add much value in the Entities DSL, but in a
more complex DSL you do want to test that the structure of the parsed EMF model is
as you expect (we will see an example of that in Chapter 8, An Expression Language).

You can now run the test: right-click on the Xtend file and select Run As | JUnit
Test as shown in the following screenshot. The test should pass and you should
see the green bar in the Junit view.

Chapter 7

[123]

Note that the parse method returns an EMF model even if the input string contains
syntax errors (it tries to parse as much as it can); thus, if you want to make sure
that the input string is parsed without any syntax error, you have to check that
explicitly. To do that, you can use another utility class, ValidationTestHelper.
This class provides many assert methods that take an EObject argument. You can
use an extension field and simply call assertNoErrors on the parsed EMF object.
Alternatively, if you do not need the EMF object but you just need to check that there
are no parsing errors, you can simply call it on the result of parse, for example:

class EntitiesParserTest {

 @Inject extension ParseHelper<Model>
 @Inject extension ValidationTestHelper
...
 @Test
 def void testCorrectParsing() {
 '''
 entity MyEntity {
 MyEntity attribute
 }
 '''.parse.assertNoErrors
 }

Testing

[124]

If you try to run the tests again, you will get a failure for this new test, as shown in
the following screenshot:

The reported error should be clear enough: we forgot to add the terminating ";" in
our input program, thus we can fix it and run the test again; this time the green bar
should be back.

You can now write other @Test methods for testing the various features of the DSL
(see the sources of the examples). Depending on the complexity of your DSL you
may have to write many of them.

Tests should test one specific thing at a time; lumping things
together (to reduce the overhead of having to write many test
methods) usually makes it harder later.

Remember that you should follow this methodology while implementing your DSL,
not after having implemented all of it. If you follow this strictly, you will not have to
launch Eclipse to manually check that you implemented a feature correctly, and you
will note that this methodology will let you program really fast.

Ideally, you should start with the grammar with a single rule, especially if the
grammar contains nonstandard terminals. The very first task is to write a grammar
that just parses all terminals. Write a test for that to ensure there are no overlapping
terminals before proceeding; this is not needed if terminals are not added to
the standard terminals. After that add as few rules as possible in each round of
development/testing until the grammar is complete.

Chapter 7

[125]

Testing the validator
Earlier we used the ValidationTestHelper class to test that it was possible to parse
without errors. Of course, we also need to test that errors and warnings are detected.
In particular, we should test any error situation handled by our own validator. The
ValidationTestHelper class contains utility methods (besides assertNoErrors)
that allow us to test whether the expected errors are correctly issued.

For instance, for our Entities DSL, we wrote a custom validator method that checks
that the entity hierarchy is acyclic (Chapter 4, Validation). Thus, we should write a test
that, given an input program with a cycle in the hierarchy, checks that such an error
is indeed raised during validation.

Although not strictly required, it is better to separate Junit test classes according
to the tested features, thus, we write another Junit class, EntitiesValidatorTest,
which contains tests related to validation. The start of this new Junit test class should
look familiar:

@RunWith(typeof(XtextRunner))
@InjectWith(typeof(EntitiesInjectorProvider))
class EntitiesValidatorTest {

 @Inject extension ParseHelper<Model>
 @Inject extension ValidationTestHelper
 ...

We are now going to use the assertError method from ValidationTestHelper,
which, besides the EMF model element to validate, requires the following arguments:

• EClass of the object which contains the error (which is usually retrieved
through the EMF EPackage class generated when running the MWE2
workflow)

• The expected Issue Code
• An optional string describing the expected error message

Testing

[126]

Thus, we parse input containing an entity extending itself and we pass
the arguments to assertError according to the error generated by
checkNoCycleInEntityHierarchy in EntitiesValidator
(see Chapter 4, Validation):

@Test
def void testEntityExtendsItself() {
 '''
 entity MyEntity extends MyEntity {

 }
 '''.parse.assertError(EntitiesPackage::eINSTANCE.entity,
 EntitiesValidator::HIERARCHY_CYCLE,
 "cycle in hierarchy of entity 'MyEntity'"
)
}

Note that the EObject argument is the one returned by the parse method (we use
assertError as an extension method). Since the error concerns an Entity object, we
specify the corresponding EClass (retrieved using EntitiesPackage), the expected
Issue Code, and finally, the expected error message. This test should pass.

We can now write another test which tests the same validation error on a more
complex input with a cycle in the hierarchy involving more than one entity; in this
test we make sure that our validator issues an error for each of the entities involved
in the hierarchy cycle:

@Test
def void testCycleInEntityHierarchy() {
 val model = '''
 entity A extends B {}
 entity B extends C {}
 entity C extends A {}
 '''.parse

 model.assertError(EntitiesPackage::eINSTANCE.entity,
 EntitiesValidator::HIERARCHY_CYCLE,
 "cycle in hierarchy of entity 'A'"
)
 model.assertError(EntitiesPackage::eINSTANCE.entity,
 EntitiesValidator::HIERARCHY_CYCLE,
 "cycle in hierarchy of entity 'B'"
)

Chapter 7

[127]

 model.assertError(EntitiesPackage::eINSTANCE.entity,
 EntitiesValidator::HIERARCHY_CYCLE,
 "cycle in hierarchy of entity 'C'"
)
}

Note that this time we must store the parsed EMF model into a variable since we will
call assertError many times.

We can also test that the NamesAreUniqueValidator method detects elements with
the same name (we refer to Chapter 4, Validation, for the details about this validator):

@Test
def void testDuplicateEntities() {
 val model = '''
 entity MyEntity {}

 entity MyEntity {}
 '''.parse

 model.assertError(EntitiesPackage::eINSTANCE.entity,
 null,
 "Duplicate Entity 'MyEntity'"
)
}

In this case, we pass null for the issue argument, since no Issue Code is reported by
NamesAreUniqueValidator.

Similarly, we can write a test where the input has two attributes with the same name:

@Test
def void testDuplicateAttributes() {
 val model = '''
 entity MyEntity {
 MyEntity attribute;
 MyEntity attribute;
 }
 '''.parse

 model.assertError(EntitiesPackage::eINSTANCE.attribute,
 null,
 "Duplicate Attribute 'attribute'"
)
}

Testing

[128]

Note that in this test we pass the EClass corresponding to Attribute, since
duplicate attributes are involved in the expected error.

Do not worry if it seems tricky to get the arguments for
assertError right the first time; writing a test that fails the first
time it is executed is expected in Test Driven Development. The
error of the failing test should put you on the right track to specify
the arguments correctly. However, by inspecting the error of the
failing test, you must first make sure that the actual output is what
you expected, otherwise something is wrong either with your test or
with the implementation of the component that you are testing.

Testing the formatter
As we said in the previous chapter, the formatter is also used in a non-UI
environment (indeed, we implemented that in the runtime plug-in project), thus,
we can test the formatter for our DSL with plain Junit tests. At the moment, there
is no helper class in the Xtext framework for testing the formatter, thus we need
to do some additional work to set up the tests for the formatter. This example will
also provide some more details on Xtext and EMF, and it will introduce unit test
methodologies that are useful in many testing scenarios where you need to test
whether a string output is as you expect.

First of all, we create another Junit test class for testing the formatter; this time we
do not need the helper for the validator; we will inject INodeModelFormatter as an
extension field since this is the class internally used by Xtext to perform formatting.

One of the main principles of unit testing (which is also its main
strength) is that you should test a single functionality in isolation.
Thus, to test the formatter, we must not run a UI test that opens an
Xtext editor on an input file and call the menu item which performs
the formatting; we just need to test the class to which the formatting
is delegated and we do not need a running Eclipse for that.

import static extension org.junit.Assert.*

@RunWith(typeof(XtextRunner))
@InjectWith(typeof(EntitiesInjectorProvider))
class EntitiesFormatterTest {

 @Inject extension ParseHelper<Model>
 @Inject extension INodeModelFormatter;

Chapter 7

[129]

Note that we import all the static methods of the Junit Assert class as
extension methods.

Then, we write the code that actually performs the formatting given an input string.
Since we will write several tests for formatting, we isolate such code in a reusable
method. This method is not annotated with @Test, thus it will not be automatically
executed by Junit as a test method. This is the Xtend code that returns the formatted
version of the input string:

(input.parse.eResource as XtextResource).parseResult.
 rootNode.format(0, input.length).formattedText

The method ParseHelper.parse returns the EMF model object, and each EObject
has a reference to the containing EMF resource; we know that this is actually
XtextResource (a specialized version of an EMF resource). We retrieve the result
of parsing, that is, an IParseResult object, from the resource. The result of parsing
contains the node model; recall from Chapter 6, Customizations, that the node model
carries the syntactical information that is, offsets and spaces of the textual input. The
root of the node model, ICompositeNode, can be passed to the formatter to get the
formatted version (we can even specify to format only a part of the input program).

Now we can write a reusable method that takes an input char sequence and an
expected char sequence and tests that the formatted version of the input program
is equal to what we expect:

def void assertFormattedAs(CharSequence input,
 CharSequence expected) {
 expected.toString.assertEquals(
 (input.parse.eResource as XtextResource).parseResult.
 rootNode.format(0, input.length).formattedText)
}

The reason why we convert the expected char sequence into a string will be clear
in a minute. Note the use of Assert.assertEquals as an extension method.

We can now write our first formatting test using our extension method
assertFormattedAs:

@Test
def void testEntities() {
 '''
 entity E1 { } entity E2 {}
 '''.assertFormattedAs(
 '''...'''
)
}

Testing

[130]

Why did we specify "…" as the expected formatted output? Why did we not try to
specify what we really expect as the formatted output? Well, we could have written the
expected output, and probably we would have gotten it right on the first try, but why
not simply make the test fail and see the actual output? We can then copy that in our
test once we are convinced that it is correct. So let's run the test, and when it fails, the
Junit view tells us what the actual result is, as shown in the following screenshot:

Chapter 7

[131]

If you now double-click on the line showing the comparison failure in the Junit
view, you will get a dialog showing a line by line comparison, as shown in the
following screenshot:

You can verify that the actual output is correct, copy that, and paste it into your test
as the expected output. The test will now succeed:

@Test
def void testEntities() {
 '''
 entity E1 { } entity E2 {}
 '''.assertFormattedAs(
'''
entity E1 {
}

entity E2 {
}'''
)
}

We did not indent the expected output in the multi-line string
since it is easy to paste it like that from the Junit dialog.

Testing

[132]

Using this technique you can easily write Junit tests that deal with comparisons.
However, the "Result Comparison" dialog appears only if you pass String objects
to assertEquals; that is why we converted the char sequence into a string in the
implementation of assertFormattedAs.

We now add a test for testing the formatting of attributes; the final result will be:

@Test
def void testAttributes() {
 '''
 entity E1 { int i ; string s; boolean b ;}
 '''.assertFormattedAs(
'''
 entity E1 {
 int i;
 string s;
 boolean b;
 }'''
)
}

Testing code generation
Xtext provides a helper class to test your code generator, CompilationTestHelper,
which we inject as an extension field in the Junit test class. This helper class parses an
input string, validates the model, and runs the code generator, thus we do not need
the parser helper in this test class:

@RunWith(typeof(XtextRunner))
@InjectWith(typeof(EntitiesInjectorProvider))
class EntitiesGeneratorTest {

 @Inject extension CompilationTestHelper

Chapter 7

[133]

This helper class provides the method assertCompilesTo, which takes a char
sequence representing an input program and a char sequence representing the
expected generated output. Using that as an extension method, we can then write
the following test method, which tests that the generated Java code is as we expect
(we use the technique of the Junit view to get the actual output as illustrated in the
previous section):

@Test
def void testGeneratedCode() {
 '''
 entity MyEntity {
 string myAttribute;
 }
 '''.assertCompilesTo(
'''
package entities;

public class MyEntity {
 private String myAttribute;

 public String getMyAttribute() {
 return myAttribute;
 }

 public void setMyAttribute(String _arg) {
 this.myAttribute = _arg;
 }

}
''')
}

Testing that the generated output corresponds to what we expect is already a good
testing technique. However, when the generated code is Java code (as in our Entities
DSL), it might be good to also test that it is valid Java code (that is, the Java compiler
compiles the generated code without errors). In a simple DSL like Entities, having a
look at the generated Java code might be enough to be convinced that it is valid Java
code, but, in a more involved DSL, manually checking that the (probably complex)
generated Java code is valid is not an option.

Testing

[134]

To test that the generated code is valid Java code, we use the
CompilationTestHelper.compile method, which takes an input string and a
lambda. The parameter of the lambda is a Result object (an inner class). In the
lambda we can use the Result object to perform additional checks. To test the
validity of the generated Java code, we can call the Result.getCompiledClass
method. This method compiles the generated code with the Eclipse Java compiler.
If the Java compiler issues an error, then our test will fail and the Junit view will
show the compilation errors.

Since the Eclipse JDT compiler is used to test the compilation, you
will need to add org.eclipse.jdt.core as a required bundle in
your .tests plug-in project's MANIFEST.MF file.

We write the following test (remember that if no parameter is explicitly declared in
the closure, the special implicit variable it is used):

@Test
def void testGeneratedValidJavaCode() {
 '''
 entity MyEntity {
 string myAttribute;
 }
 '''.compile[getCompiledClass]
 // check that it is valid Java code
}

If the getCompiledClass class terminates successfully, it also returns a Java Class
object which can be used to instantiate the compiled Java class by reflection; this
allows us to test the generated Java class' runtime behavior. We can easily invoke
the created instance's methods via the reflection support provided by the Xtext class
ReflectExtensions. For example:

…
@Inject extension ReflectExtensions

@Test
def void testGeneratedJavaCode() {
 '''
 entity E {
 string myAttribute;
 }

Chapter 7

[135]

 '''.compile[
 getCompiledClass.newInstance => [
 assertNull(it.invoke("getMyAttribute"))
 it.invoke("setMyAttribute", "value")
 assertEquals("value",
 it.invoke("getMyAttribute"))
]
]
}

This method tests (via the getter method) that the attributes are initialized to null
and that the setter method sets the corresponding attribute.

You can test situations when the generator generates several files originating from
a single input. In the Entities DSL, a Java class is generated for each entity, thus,
we can perform checks on each generated Java file by using the method Result.
getGeneratedCode(String) that takes the name of the generated Java class as an
argument and returns its contents. Since the generator for our Entities DSL should
generate the Java class entities.E for an entity named "E", we can test this with the
following test:

@Test def void testGeneratedCodeWithTwoEntites() {
 '''
 entity FirstEntity {
 SecondEntity myAttribute;
 }

 entity SecondEntity { }
 '''.compile[
'''
package entities;

public class FirstEntity {
 private SecondEntity myAttribute;

 public SecondEntity getMyAttribute() {
 return myAttribute;
 }

 public void setMyAttribute(SecondEntity _arg) {
 this.myAttribute = _arg;
 }

}

Testing

[136]

'''.
toString.assertEquals(getGeneratedCode("entities.FirstEntity"))

'''
package entities;

public class SecondEntity {

}
'''.
toString.assertEquals(getGeneratedCode("entities.SecondEntity"))
]
}

The method getGeneratedCode assumes that the requested
generated artifact is a Java file. If your DSL also generates other
artifacts, for example, XML files, then you will have to write a
custom CompilationTestHelper class if you want to test the
generated artifacts which are not Java files.

Similarly, we can check that the several generated Java files compile correctly
and we can perform reflective Java operations on all the compiled Java classes
using Result.getGeneratedCode(String) specifying the fully qualified name
of the generated Java class:

@Test def void testGeneratedJavaCodeWithTwoClasses() {
 '''
 entity FirstEntity {
 SecondEntity myAttribute;
 }

 entity SecondEntity {
 string s;
 }
'''.compile[
 val FirstEntity =
 getCompiledClass("entities.FirstEntity").newInstance
 val SecondEntity =
 getCompiledClass("entities.SecondEntity").newInstance
 SecondEntity.invoke("setS", "testvalue")
 FirstEntity.invoke("setMyAttribute", SecondEntity)

Chapter 7

[137]

 SecondEntity.assertSame(FirstEntity.invoke("getMyAttribute"))
 "testvalue".assertEquals
 (FirstEntity.invoke("getMyAttribute").invoke("getS"))
]
}

In particular, in this last example, the first generated Java class depends on the
second generated Java class.

Again, these tests might not be valuable in this DSL, but in more complex DSLs,
having tests which automatically check the runtime behavior of the generated
code enhances productivity.

Test suite
When you write several Junit classes, it becomes uncomfortable to run them
individually; after all, you write unit tests because you want an automatic
mechanism to test your implementation, and you want to run all tests with
just one operation.

When Xtext first generates the projects for your DSL in the .tests plug-in project,
it also generates a Junit launch which automatically runs all the Junit tests in that
project. This launch can be found in the root folder of the test plug-in project; in our
Entities DSL it is called org.example.entities.tests.launch. You can execute
this launch by going to Run As | Junit Test.

If you need more control over the tests that must be run or you want to group some
tests, you can write a Junit Test Suite. For example, you can write a suite for tests
which are not related to generation as follows:

import org.junit.runner.RunWith;
import org.junit.runners.Suite;

@RunWith(Suite.class)
@Suite.SuiteClasses({
 EntitiesParserTest.class,
 EntitiesFormatterTest.class,
 EntitiesValidatorTest.class
})
public class EntitiesNotGeneratorRelatedTests {
}

You can run such suite as a standard Junit test and it will run all the test methods
in all the test classes specified.

Testing

[138]

Testing the UI
Most of the mechanisms of a DSL implemented in Xtext can be tested with plain Java
Junit tests without a UI environment. However, when testing UI features, tests need
a running Eclipse.

In the Entities DSL we did not customize the content assist, thus we do not really need
to test it; however, for more complex DSLs, you want to test that the custom content
assist works as expected, and you want to avoid having to manually check that.

Eclipse provides a specific launch configuration, "Junit Plug-in Test", which executes
Junit tests with a running Eclipse.

Implementing tests for the UI concepts might be tricky, since usually you will need
to write code to set up Eclipse workbench infrastructures such as projects, files, and
so on. Xtext provides some base classes for testing UI concepts which do most of the
job for you, so that you can simply test specific features without having to worry
about the setup steps.

The examples in this section do not necessarily represent valuable
tests; they should be seen as starting points for more complex tests
of more complex DSLs.

Testing the content assist
To test the content assist, we use the base class AbstractContentAssistTest.
We use the annotation @RunWith and @InjectWith as we did in the previous
sections; however, for UI tests, we use the generated UI injector provider
EntitiesUiInjectorProvider (note the "Ui" in the name):

@RunWith(typeof(XtextRunner))
@InjectWith(typeof(EntitiesUiInjectorProvider))
class EntitiesContentAssistTest extends
 AbstractContentAssistTest {

Then, in the test methods we can simply use the API of the
AbstractContentAssistTest base class:

• newBuilder creates an object to test the content assist
• append appends some input text
• assertText declares the expected content assist proposals as strings

(there are other assert methods, but this is the only one we will use)

Chapter 7

[139]

Thus, our test class looks like this:

@RunWith(typeof(XtextRunner))
@InjectWith(typeof(EntitiesUiInjectorProvider))
class EntitiesContentAssistTest extends
 AbstractContentAssistTest {
 @Test
 def void testEmptyProgram() {
 newBuilder.assertText("entity")
 }

 @Test
 def void testSuperEntity() {
 newBuilder.append
 ("entity E extends ").assertText("E")
 }
 @Test
 def void testSuperEntity2() {
 newBuilder.append("entity A{} entity E extends ").
 assertText("A", "E")
 }

 @Test
 def void testAttributeTypes() {
 newBuilder.append("entity E { ").
 assertText
 ("E", "boolean", "int", "string", "}")
 }
}

Remember that you must run this class as a "Junit Plug-in Test".

Make sure you have the bundle org.eclipse.xtext.common.
types.ui as a dependency in the MANIFEST.MF file of the tests
plug-in project.

Let us examine what the preceding tests do:

1. When the input is empty, we should get "entity" as the only proposal.
2. After an "extends", we should get as proposals the names of the available

entities (with a single entity, we get its own name as the only proposal).

Testing

[140]

3. If there are two entities, we get both names as proposals.
4. After the entity opening curly bracket, we get as proposals all the types

available, but also the closing curly bracket, since an entity can be defined
without attributes.

Testing workbench integration
Sometimes you may want to test whether your DSL implementation "integrates"
correctly with the Eclipse workbench. Usually, in these tests you also need a project
in the running Eclipse.

In the following example we want to test whether a project with Entities DSL files
builds correctly without errors.

Xtext provides the base class AbstractWorkbenchTest for testing Eclipse workbench
related operations. In particular, this base class implements @Before and @After
methods so that each @Test method is executed in a clean environment (that is, with
an empty workbench) and the workbench is cleaned after each test (that is, all test
projects are closed and deleted).

Besides that, Xtext provides the classes IResourcesSetupUtil and
JavaProjectSetupUtil with many static utility methods to programmatically create
workspace projects (we will import these static methods as static extension methods
in the Xtend test class).

In our case, we want to create before each test, a Java workspace project and add
the Xtext nature to that project (recall the dialog you get when you first add an
entities file into a project); moreover, we also add entities-gen as a source folder.
The ID of the Xtext nature is retrieved using the XtextProjectHelper class, which
is contained in the bundle org.eclipse.xtext.ui (thus, you must add that as a
dependency in the .tests plug-in project's MANIFEST.MF file).

We then write a reusable method which:

1. Creates an entities file in the workspace project with the specified contents.
2. Waits for Eclipse to build the project.
3. Checks whether there are error markers related to the entities file.

Chapter 7

[141]

All these operations use the utility methods of the two preceding mentioned classes
(the error markers are retrieved using the standard Eclipse API):

import static org.junit.Assert.*
import static extension org.eclipse.xtext.junit4.ui.util.
JavaProjectSetupUtil.*
import static extension org.eclipse.xtext.junit4.ui.util.
IResourcesSetupUtil.*

class EntitiesWorkbenchTest extends AbstractWorkbenchTest {

 val TEST_PROJECT = "mytestproject"

 @Before
 override void setUp() {
 super.setUp
 createJavaProjectWithXtextNature
 }

 def void createJavaProjectWithXtextNature() {
 createJavaProject(TEST_PROJECT) => [
 getProject().addNature
 (XtextProjectHelper::NATURE_ID)
 addSourceFolder("entities-gen")
]
 }

 def void checkEntityProgram(String contents,
 int expectedErrors) {
 val file = createFile(TEST_PROJECT +
 "/src/test.entities", contents)
 waitForAutoBuild();
 assertEquals(expectedErrors,
 file.findMarkers(EValidator::MARKER, true,
 IResource::DEPTH_INFINITE).size);
 }

Testing

[142]

Now we can write two test methods to check that for a valid entities file there is no
error marker and that for a non-valid entities file we get an error marker:

 @Test
 def void testValidProgram() {
 checkEntityProgram("entity E {}", 0)
 }

 @Test
 def void testNotValidProgram() {
 checkEntityProgram("foo", 1)
 }

You may have noticed that we did not use any injection mechanisms in
the test; indeed, we only manipulate Eclipse concepts (such as projects,
files, and so on) thus we do not need direct access to classes of our
DSL implementation. Xtext is executing in the background while we
programmatically create projects and files in the Eclipse test workbench.

Testing the editor
There are situations where you may want to perform specific test operations
with the editor of your DSL. The test class in this case should derive from
AbstractEditorTest (which in turn derives from AbstractWorkbenchTest). This
base class provides utility methods to programmatically open an Eclipse editor on a
file in the workbench (represented by IFile). The base class AbstractEditorTest
requires us to implement the method getEditorId to return the ID of the editor of
the DSL we want to test; the setup methods are similar to EntitiesWorkbenchTest,
so we omit them here:

class EntitiesEditorTest extends AbstractEditorTest {

 ... as in EntitiesWorkbenchTest

 override protected getEditorId() {
 "org.example.entities.Entities"
 }

 def createTestFile(String contents) {
 createFile(TEST_PROJECT +
 "/src/test.entities", contents)
 }

Chapter 7

[143]

 @Test
 def void testEntitiesEditor() {
 createTestFile("entity E {}").openEditor
 }

The code also shows a first test which checks that we can open an editor for our DSL.
Note that openEditor returns an instance of XtextEditor, which can be used to
access (and possibly to modify) the editor contents.

When developing your DSL, you may want to add further features in the IDE
which are not covered by the Xtext framework itself; for example, you may want
to add context menus for the editor of your DSL that perform some actions on
the contents of the editor and possibly change the contents. As we saw in Chapter
6, Customizations, Xtext already adds similar menus like "Format", or similar
functionalities like quickfixes. In order to do that, you must learn the API of Eclipse
editors and, in particular, of XtextEditor (which specializes the standard Eclipse
text editor).

A nice way of learning a new API is to write Learning Tests (Beck 2002): these tests
basically verify that the API works as expected. Thus, in the rest of this section we
write some tests which allow us to learn how to use the XtextEditor API. Note that
besides making us learn how to use this API, these tests will also guarantee that if
that API changes in a non-backward compatible way in the future, we will realize
that since these tests will fail.

The actual text edited by an Eclipse editor is stored in an IDocument instance and can
be retrieved as a String using the method get (we have already used this in Chapter
4, Validation, when implementing quickfixes). This works also with XtextEditor,
as shown by this test (which only checks that the editor's text is exactly the same as
stored in the test file):

@Test
def void testEntitiesEditorContents() {
 "entity E {}".assertEquals(
 createTestFile("entity E {}").
 openEditor.document.get)
}

Testing

[144]

Usually, you will not need the string text, you will need the parsed EMF model.
The class XtextEditor uses a specialization of IDocument, IXtextDocument, which
provides access to the underlying parsed EMF model. However, in an Eclipse
workbench, the access to the EMF model underlying an edited program must be
performed in a "synchronized" way, since there are concurrent components running
in different threads accessing such model (both UI components, like the editor itself,
and non UI components, like the parser and the validator). Thus, for example, if you
open an Xtext editor and you need the parsed EMF model, you will have to wait for
the editor's text to be parsed. Similarly, if you want to modify the underlying model,
you will have to wait until there are no other threads that are using it.

The EMF model of an Xtext editor's document can be accessed using the method
readOnly; this method takes as an argument a lambda with a parameter of type
XtextResource (a specialized EMF resource, as we saw when testing the formatter).
We can retrieve the model from the passed XtextResource. When the body of the
lambda is executed, there will be no other concurrent threads accessing the EMF
resource. Thus, within the body of the lambda, the access to the model is guaranteed
to be synchronized. This learning test reads the EMF model corresponding to the
editor contents, retrieves the entity and checks that its name is as expected:

@Test
def void testEntitiesEditorContentsAsModel() {
 "E".assertEquals(
 createTestFile("entity E {}").
 openEditor.document.readOnly [
 // 'it' is an XtextResource
 contents.get(0) as Model
].entities.get(0).name
)
}

The lambda passed to readOnly can return any type (Xtend will infer it). In the
preceding test, the return type of the lambda is Model.

Similarly, we can access and modify the EMF model using the method modify and
passing a lambda. The synchronization, in case of a modification, will also ensure
that after the underlying model is modified, all the other components (like the parser
and validator) will be notified.

Chapter 7

[145]

The following test creates a test file with a single entity, E, and then modifies the
EMF model by adding another entity, Added, which extends E; it then checks that
the editor string contents have been updated accordingly:

@Test
def void testChangeContents() {
 val editor = createTestFile("entity E {}").openEditor

 editor.document.modify [
 val model = (contents.get(0) as Model)
 val currentEntity = model.entities.get(0)
 model.entities +=
 EntitiesFactory::eINSTANCE.createEntity => [
 name = "Added"
 superType = currentEntity
]
]
 '''
 entity E {}

 entity Added extends E {
 }'''.toString.assertEquals(editor.document.get)
}

Note that the resulting editor's text corresponding to the entity we added
programmatically is formatted according to the formatter we implemented in
Chapter 6, Customizations; in Chapter 6, Customizations, we also saw that the formatter
is automatically triggered when selecting the quickfix provider based on semantic
modification. Indeed, quickfix provider implementations are also automatically
executed in a synchronous way.

Although the tests for the editor shown in this section are learning tests, they should
give you an idea of how the Xtext editor API works.

Other UI testing frameworks
In the previous section, we saw that we are able to test UI concepts with the utility
classes of Xtext.

These tests, however, do not test the actual operations that a user can perform in
the IDE, like, for example, selecting a menu, right-clicking on an item and selecting
a context menu, interacting with a dialog, and so on. The tests that confirm that a
system does what the users are expecting it to are called Functional Tests.

Testing

[146]

If you need to test these UI features, you should consider using a functional UI
testing framework. The most known in the Eclipse scenario are SWTBot (http://
www.eclipse.org/swtbot) and Jubula (http://www.eclipse.org/jubula). Other
frameworks (free, open source, or commercial) are briefly described at this URL:
http://wiki.eclipse.org/Eclipse/Testing.

The treatment of these frameworks is out of the scope of this book.

Testing and modularity
One of the nice advantages of Test Driven Development is that it forces you to write
modular code: it is not easy to test code that is not modular. Thus, either you give
up on testing (an option which the author hopes you will never consider) or you
decouple modules to easily test them. If you did not adopt this methodology from
the beginning, remember that it is always possible to refactor the code to make it
more modular and more testable. Thus, TDD and modular/decoupled design goes
hand in hand and drives quality; well designed modular code is easier to test and
well tested code has a known quality.

When evaluating whether to accept this programming methodology, you should
also take into consideration that testing UI aspects is usually harder (as the examples
in this chapter have shown). Thus, you should try to isolate the code that does not
depend on a running Eclipse. Fortunately, in a DSL implementation this is easy.

Let us consider our quickfix provider we implemented in Chapter 4, Validation,
which adds the missing referred entity; we show that here again for convenience:

@Fix(Diagnostic::LINKING_DIAGNOSTIC)
def void createMissingEntity(Issue issue,
 IssueResolutionAcceptor acceptor) {
 acceptor.accept(issue,
 "Create missing entity",
 "Create missing entity",
 "Entity.gif",
 [EObject element, IModificationContext context |
 val currentEntity =
 element.getContainerOfType(typeof(Entity))
 val model = currentEntity.eContainer as Model
 model.entities.add(model.entities.indexOf(currentEntity)+1,
 EntitiesFactory::eINSTANCE.createEntity() => [
 name =
 context.xtextDocument.get(issue.offset, issue.length)
]
)

Chapter 7

[147]

]
);
}

Testing the quickfix provider is not straightforward. However, what we would
really like to test here is that the desired entity is added in the right place in the
model; this has nothing to do with the quickfix provider itself.

The manipulation of the EMF model does not need any IDE feature, thus we can
isolate that in a utility class' static method, for example:

class EntitiesModelUtil {
 def static addEntityAfter(Entity entity,
 String nameOfEntityToAdd) {
 val model = entity.eContainer as Model
 EntitiesFactory::eINSTANCE.createEntity() => [
 name = nameOfEntityToAdd
 model.entities.add
 (model.entities.indexOf(entity)+1, it)
]
 }
}

Manipulating an EMF model is easy using the EMF API, but when the operations to
perform on the model are complex, it is crucial to test them. Now that the code that
modifies the EMF model is in a method that is independent from the UI, it is easy
to test the insertion of an entity in the expected position:

class EntitiesModelUtilTest {
 val factory = EntitiesFactory::eINSTANCE

 @Test
 def void testAddEntityAfter() {
 val e1 = factory.createEntity => [name = "First"]
 val e2 = factory.createEntity => [name = "Second"]
 val model = factory.createModel => [
 entities += e1
 entities += e2
]

 EntitiesModelUtil::addEntityAfter(e1, "Added").
 assertNotNull
 3.assertEquals(model.entities.size)

Testing

[148]

 "First".assertEquals(model.entities.get(0).name)
 "Added".assertEquals(model.entities.get(1).name)
 "Second".assertEquals(model.entities.get(2).name)
 }
}

This checks that the new entity is inserted right after the desired existing entity
(between First and Second).

Now we can also test that this code can be executed with an EMF model underlying
an Xtext editor:

class EntitiesEditorTest extends AbstractEditorTest {
 … as in the preceding code
@Test
def void testAddEntity() {
 val editor = createTestFile(
 '''entity E1 {}

 entity E2 {}''').openEditor

 editor.document.modify [
 EntitiesModelUtil::addEntityAfter(
 (contents.get(0) as Model).entities.get(0),
 "Added")
]
 '''
 entity E1 {}

 entity Added {
 }

 entity E2 {}'''.toString.assertEquals(editor.document.get)
}

This shows that our method for adding an entity works also in the context of an
Xtext editor and that its contents get updated consistently.

Now, we can refactor our quickfix provider method as follows:

@Fix(Diagnostic::LINKING_DIAGNOSTIC)
def void createMissingEntity(Issue issue,
 IssueResolutionAcceptor acceptor) {
 acceptor.accept(issue,
 "Create missing entity", // label
 "Create missing entity", // description

Chapter 7

[149]

 "Entity.gif", // icon
 [EObject element, IModificationContext context |
 EntitiesModelUtil::addEntityAfter(
 element.getContainerOfType(typeof(Entity)),
 context.xtextDocument.get(issue.offset, issue.length)
)
]
);
}

We can safely assume that this quickfix provider will work, since it depends on
concepts that we have already tested in isolation. We could retrieve the name of the
entity to add in the wrong way, but that would be easier to spot in the preceding
code than in the original implementation of the quickfix provider.

Clean code
Keeping your code "clean" (see Martin 2008, 2011) is important for the development
of software (and this includes modularity, readability, and maintainability). Xtext
provides many features to keep your DSL implementation clean and modular,
thanks to its decomposition into many customizable aspects. Xtend extremely
enhances the ability to write clean code thanks to its syntax and its advanced features
such as lambda expressions and extension methods. In this book we will put much
effort into writing clean code when implementing a DSL, in particular, we will try
to write small methods and to factor common code into reusable methods.

Tests must be clean as well since they are part of the development cycle and they will
have to be modified often. Remember that tests also provide documentation, thus
they must be easily readable. In this chapter we tried to write small test methods by
relying on reusable utility methods and classes. Note that writing small methods
does not necessarily mean writing a few lines of code; for example, when we want
to compare generated code, we need to embed the expectation in the test method.
However, the number of expressions/statements is kept to the minimum, and the
meaning of the test should be easily understood.

Testing

[150]

Summary
In this chapter we introduced unit testing for languages implemented with Xtext.
Being able to test most of the DSL aspects without having to start an Eclipse
environment really speeds up development.

Test Driven Development is an important programming methodology that helps you
make your implementations more modular, more reliable, and resilient to changes of
the libraries used by your code.

In the next chapter we will implement a DSL based on expressions; besides the
apparent simplicity, parsing and checking expressions is not that trivial, since
arithmetic and boolean expressions are inherently recursive, and dealing with
recursion always requires some additional attention and effort. We will also
implement a type system to check that expressions are well-typed.

An Expression Language
In this chapter we will implement a DSL for expressions, including arithmetic,
boolean, and string expressions. We will do incrementally and in a test-driven way.
Since expressions are by their own nature recursive, writing a grammar for this DSL
requires some additional efforts, and this allows us to discover additional features of
Xtext grammars.

You will also learn how to implement a type system for a DSL to check that
expressions are correct with respect to types (for example, you cannot add an
integer and a boolean). We will implement the type system so that it fits the Xtext
framework and integrates correctly with the corresponding IDE tooling.

Finally, we will implement an interpreter for these expressions. We will use
this interpreter to write a simple code generator that creates a text file with the
evaluation of all the expressions of the input file, and also to show the evaluation
of an expression in the editor.

The Expressions DSL
In the DSL we develop in this chapter, which we call Expressions DSL, we want to
accept input programs consisting of expressions and variable declarations with an
initialization expression. Expressions can refer to variables and can perform arithmetic
operations, compare expressions, use logical connectors (and and or), and concatenate
strings. We will use + both for representing arithmetic addition and for string
concatenation; when used with strings, the + will also have to automatically
convert integers and booleans occurring in such expressions into strings.

Here is an example of a program that we want to write with this DSL:

i = 0
j = (i > 0 && (1) < (i+1))
k = 1

An Expression Language

[152]

j || true
"a" + (2 * (3 + 5)) // string concatenation
(12 / (3 * 2))

For example, "a" + (2 * (3 + 5)) should evaluate to the string "a16".

Creating the project
First of all, we will use the Xtext project wizard to create the projects for our DSL
(following the same procedure explained in Chapter 2, Creating Your First Xtext
Language).

Start Eclipse and perform the following steps:

1. Navigate to File | New | Project..., in the dialog navigate to the Xtext
category and click on Xtext Project.

2. In the next dialog provide the following values:

 ° Project name: org.example.expressions
 ° Name: org.example.expressions.Expressions
 ° Extensions: expressions
 ° Uncheck the option Create SDK feature project

The wizard will create three projects and it will open the file Expressions.xtext,
which is the grammar definition.

Digression on Xtext grammar rules
Before writing the Xtext grammar for the Expressions DSL, it is important to spend
some time to understand how the rules in an Xtext grammar and the corresponding
EMF model generated for the AST are related.

From the previous chapters we know that Xtext, while parsing the input program,
will create a Java object corresponding to the used grammar rule. Let us go back to
our Entities DSL example and consider the rule:

Entity:
 'entity' name = ID ('extends' superType=[Entity])? '{'
 attributes += Attribute*
 '}' ;

Chapter 8

[153]

When the parser uses this rule it will create an instance of the Entity class (that
class has been generated by Xtext during the MWE2 workflow). However, the actual
creation of such an instance will take place on the first assignment to a feature of the
rule; in this example, no object will be created when the input only contains entity;
the object will be created as soon as a name is specified, for example, when the input
contains entity A. This happens because such an ID is assigned to the feature name
in the rule. This is reflected in the outline view, as shown in the following screenshots:

This also means that the created Entity object is not "complete" at this stage, that
is, when only a part of the rule has been applied. That is why when writing parts of
the DSL implementation, for example, the validator, the UI customizations, and so
on, you must always take into consideration that the model you are working on may
have some features set to null.

The actual creation of the object of the AST can be made explicit by the programmer
using the notation {type name} inside the rule; for example:

Entity:
 'entity' {Entity} name = ID ('extends' superType=[Entity])? '{'
 attributes += Attribute*
 '}' ;

If you change the rule as shown, then an Entity object will be created as soon as the
entity keyword has been parsed, even if there has not been a feature assignment.

In the examples we have seen so far, the type of the object corresponds to the
rule name; however, the type to instantiate can be specified using returns in
the rule definition:

A returns B:
 ... rule definition ...
;

An Expression Language

[154]

In this example, the parser will create an instance of B. A is simply the name of the
rule, and there will be no generated A class. Indeed, the shape of the rule definitions
we have used so far is just a shortcut for:

A returns A:
 ... rule definition ...
;

That is, if no returns is specified, the type corresponds to the name of the rule.

Moreover, the returns statement and the explicit {type name} notation can be
combined:

A returns B:
 ... {C} ... rule definition ...
;

In this example, the parser will create an instance of C (and C is generated as a subclass
of B). However, the object returned by the rule will have type B. Also in this case, there
will be no generated A class.

When defining a cross-reference in the grammar, the name
enclosed in square brackets refers to a type, not to a rule's
name, unless they are the same.

When writing the grammar for the Expressions DSL, we will use these features.

The grammar for the Expressions DSL
The DSL that we want to implement in this chapter should allow us to write lines
containing either a variable consisting of an identifier and an initialization expression
(the angle brackets denote non-terminal symbols):

<ID> = <Expression>

or an expression by itself:

<Expression>

If we write something like this

ExpressionsModel:
 variables += Variable*
 expressions += Expression*
;

Chapter 8

[155]

We will not be able to write a program where variables and expressions can be
defined in any order; we could only write variables first and then expressions.

To achieve the desired flexibility, we introduce an abstract class for both variable
declarations and expressions; then, our model will consist of a (possibly empty)
sequence of such abstract elements.

For the moment, we consider a very simple kind of expression: integer constants.
These are the first rules (we skip the initial declaration parts of the grammar):

ExpressionsModel:
 elements += AbstractElement*;

AbstractElement:
 Variable | Expression ;

Variable:
 name=ID '=' expression=Expression;

Expression:
 value=INT;

The generated EMF classes for Variable and Expression will be subclasses of
AbstractElement.

We are ready to write the first tests for this grammar. This chapter assumes that you
fully understood the previous chapter about testing; thus, the code for testing we
show here should be clear:

@RunWith(typeof(XtextRunner))
@InjectWith(typeof(ExpressionsInjectorProvider))
class ExpressionsParserTest {

 @Inject extension ParseHelper<ExpressionsModel>
 @Inject extension ValidationTestHelper

 @Test def void testSimpleExpression() {
 '''10'''.parse.assertNoErrors
 }

 @Test def void testVariableExpression() {
 '''i = 10'''.parse.assertNoErrors
 }
}

An Expression Language

[156]

These methods test that both variable declarations and expressions can be parsed
without errors.

We now continue adding rules; for example, we want to parse string and boolean
constants besides integer constants.

We could write a single rule for all these constant expressions:

Expression:
(intvalue=INT)|
(stringvalue=STRING)|
(boolvalue=('true'|'false'));

But this would not be good. It is generally not a good idea to have constructs that
result in a single class that represents multiple language elements, since later when
we are performing validation and other operations we cannot differentiate on class
alone and instead have to inspect the corresponding fields (which, as you may recall,
may not always be initialized due to partial parsing).

It is much better to write a separate rule for each element as shown in the following
code snippet, and this will lead to the generation of separate classes:

Expression:
 IntConstant | StringConstant | BoolConstant;

IntConstant: value=INT;
StringConstant: value=STRING;
BoolConstant: value=('true'|'false');

Note that, although IntConstant, StringConstant, and BoolConstant will all
be subclasses of Expression, the field value will not be part of the Expression
superclass; for IntConstant the field value will be of type integer, while for the
other two it will be of type string; thus it cannot be made common.

At this point you must run the MWE2 workflow and make sure that the previous tests
still run successfully; then you should add additional tests for parsing a string constant
and a boolean constant (this is left as an exercise). We can write the aforementioned
rules in a more compact form, using the notation {type name} that we introduced in
the previous section, Digression on Xtext grammar rules:

Expression:
 {IntConstant} value=INT |
 {StringConstant} value=STRING |
 {BoolConstant} value=('true'|'false');

Again, run the workflow and make sure tests still pass.

Chapter 8

[157]

We add a rule which accepts a reference to an existing variable as follows:

Expression:
 {IntConstant} value=INT |
 {StringConstant} value=STRING |
 {BoolConstant} value=('true'|'false') |
 {VariableRef} variable=[Variable];

To test this last modification, we need an input with a variable declaration and an
expression that refers to that variable:

@Test def void testVariableReference() {
 val e =
 '''
 i = 10
 i
 '''.parse
 e.assertNoErrors;

 (e.elements.get(1) as VariableRef).variable.
 assertSame(e.elements.get(0))
}

Note that we also test that the variable reference actually corresponds to the declared
variable; assertSame comes from org.junit.Assert, whose static methods have
been imported as extension methods.

Left recursive grammars
When moving on to a more complex expression, such as addition, we need to
write a recursive rule since the left and right parts of an addition are expressions
themselves. It would be natural to express such a rule as follows:

Expression:
 ... as above
 {Plus} left=Expression '+' right=Expression;

An Expression Language

[158]

However, this results in an error from the Xtext editor as shown in the
following screenshot:

Xtext uses a parser algorithm that is suitable for use for interactive editing due to its
better handling of error recovery. Unfortunately this parser algorithm does not deal
with left recursive rules. A rule is left recursive when the first symbol of the rule is
non-terminal and refers to the rule itself. The preceding rule for addition is indeed
left recursive and is rejected by Xtext.

Xtext generates an ANTLR parser (Parr 2007), which relies on an
LL(*) algorithm; we will not go into details about parsing algorithms;
we refer the interested reader to Aho et al. 2007. Such parsers have
nice advantages concerning debugging and error recovery, which are
essential in an IDE to provide a better feedback to the programmer.
However, such parsers cannot deal with left recursive grammars.

The good news is that we can solve this problem, the bad news is that we have to
modify the grammar to remove the left recursion, using a transformation referred to
as left-factoring.

The parser generated by ANTLR cannot handle left recursion since it relies on
a top-down strategy. Bottom-up parsers do not have this problem, but they would
require to handle operator precedence (which determines which sub-expressions
should be evaluated first in a given expression) and associativity (which
determines how operators of the same precedence are grouped in the absence of
parentheses). As we will see in this section, left-factoring will allow us to implicitly
define operator precedence and associativity.

Chapter 8

[159]

You may be tempted to remove the left recursion by simply adding a token before
the recursion, for instance, parentheses:

Expression:
 ... as above
 {Plus} '(' left=Expression '+' right=Expression ')';

But clearly this is not a solution; our DSL would accept addition expressions only
if enclosed in parentheses. We will add parentheses to the grammar later, for the
purpose of allowing expression grouping as a means to influence precedence ––
for example, 10/(5+5) => 1 instead of 10/5+5 => 7.

Instead, we remove the left recursion using a standard technique: we introduce a
rule for expressions which are atomic and we state that an addition consists of a left
part, which is an atomic expression, and an optional right part, which is recursively
an expression (note that the right recursion does not disturb the ANTLR parser):

Expression:
 {Plus} left=Atomic ('+' right=Expression)?;

Atomic returns Expression:
 {IntConstant} value=INT |
 {StringConstant} value=STRING |
 {BoolConstant} value=('true'|'false') |
 {VariableRef} variable=[Variable];

Remember that the rule name is Atomic, but objects in the AST created by this
rule will be of type IntConstant, StringConstant, and so on, according to the
alternative used (indeed, no Atomic class will be generated from the preceding rule).
Statically, these objects will be considered of type Expression, and thus the left
and right fields in the Plus class will be of type Expression.

The preceding solution still has a major drawback, that is, additional useless nodes will
be created in the AST. For example, consider an atomic expression such as a variable
reference; when the atomic expression is parsed using the preceding rule, the AST will
consist of a Plus object where the VariableRef object is stored in the left feature:

VariableRef

left

Plus

An Expression Language

[160]

This indirection tends to be quite disturbing. For instance, the previous test method
testVariableReference will now fail due to a ClassCastException and must be
modified as follows:

@Test def void testVariableReference() {
 ...

 ((e.elements.get(1) as Plus).left as VariableRef).variable.
 assertSame(e.elements.get(0))
}

What we need is a way of telling the parser to:

• Try to parse an expression using the Atomic rule
• Search for an optional + followed by another expression
• If the optional part is not found then the expression is the element parsed

with the Atomic rule
• Otherwise, instantiate a Plus object where left is the previously parsed

expression with Atomic and right is the expression parsed after the +

All these operations can be expressed in an Xtext grammar as follows:

Expression:
 Atomic ({Plus.left=current} '+' right=Expression)? ;

The part {Plus.left=current} is a tree rewrite action, and it does what we want:
if the part (...)? can be parsed, then the resulting tree will consist of a Plus object
where left is assigned the subtree previously parsed by the Atomic rule and right
is assigned the subtree recursively parsed by the Expression rule.

Now, the test method testVariableReference can go back to its original form,
since parsing an atomic expression does not result in an additional Plus object.

Associativity
Associativity instructs the parser how to build the AST when there are several infix
operators with the same precedence in an expression. It will also influence the order
in which elements of the AST should be processed in an interpreter or compiler.

What happens if we try to parse something like 10 + 5 + 1? The parsing rule
invokes the rule for Expression recursively; the rule is right recursive, and thus we
expect the preceding expression to be parsed in a right-associative way, that is, 10 +
5 + 1 will be parsed as 10 + (5 + 1). In fact, the optional part (...)? can be used
only once; thus, the only way to parse 10 + 5 + 1 is to parse 10 with the Atomic
rule and the rest with the optional part.

Chapter 8

[161]

IntConstant

left

Plus

IntConstant

left

Plus

right

right

IntConstant

If, on the contrary, we write the rule as follows:

Expression:
 Atomic ({Plus.left=current} '+' right=Atomic)* ;

We will get left associativity, that is, 10 + 5 + 1 will be parsed as (10 + 5) +
1. In fact, the optional part (...)* can be used many times; thus, the only way
to parse 10 + 5 + 1 is to apply that part twice (note that right=Atomic and not
right=Expression as in the previous section).

IntConstant

left

Plus

left

Plus

right

right

IntConstantIntConstant

It is important to check that the associativity of the parsed expressions is as expected.
A simple way to check the result of associativity is to generate a string representation
of the AST where non-atomic expressions are enclosed in parentheses.

def stringRepr(Expression e) {
 switch (e) {
 Plus:
 '''(«e.left.stringRepr» + «e.right.stringRepr»)'''
 IntConstant: '''«e.value»'''
 StringConstant: '''«e.value»'''
 BoolConstant: '''«e.value»'''
 VariableRef: '''«e.variable.name»'''
 }.toString
}

An Expression Language

[162]

Then we write a method assertRepr(input,expected) that checks that the
associativity of the input corresponds to the expected representation:

def assertRepr(CharSequence input, CharSequence expected) {
 input.parse => [
 assertNoErrors;
 expected.assertEquals(
 (elements.last as Expression).stringRepr
)
]
}

We will use this method in the rest of the section to test the associativity of
expressions. For instance, for testing the associativity of an addition, we write:

@Test def void testPlus() {
 '''10 + 5 + 1 + 2'''.assertRepr("(((10 + 5) + 1) + 2)")
}

We add a rule for parsing expressions in parentheses:

Atomic returns Expression:
 '(' Expression ')' |
 {IntConstant} value=INT |
 ... as above

Note that the rule for parentheses does not perform any assignment to features; thus,
given the parsed text (exp), the AST will contain a node for exp, not for (exp). This
can be verified by this test:

@Test def void testParenthesis() {
 "(10)".parse.elements.get(0) as IntConstant
}

Although parentheses will not be part of the AST, they will influence the structure
of the AST:

@Test def void testPlusWithParenthesis() {
 "(10 + 5) + (1 + 2)".assertRepr("((10 + 5) + (1 + 2))")
}

For the sum operator, left associativity and right associativity are equivalent
(indeed, sum is an associative operation); the same holds for multiplication
(with the possible exception of overflows or loss of precision that depends on
the order of evaluation). This does not hold for subtraction and division.
In fact, how we parse and then evaluate such operations influences the result:
(3 – 2) – 1 is different from 3 – (2 – 1).

Chapter 8

[163]

In these cases, you can disable associativity by using this pattern for writing the
grammar rule:

Expression:
 Atomic ({Operation.left=current} '-' right=Atomic)? ;

In fact the ? operator (instead of *) does not allow to parse an Atomic on the right more
than once. This way, the user will be forced to explicitly use grouping expressions for
the operations with no associativity when there are more than two operands.

The alternative solution is to choose an associativity strategy for the parser and
implement the evaluator accordingly. Typically arithmetic operations are parsed and
evaluated in a left-associative way (this holds in Java for instance), and we prefer
this solution since users will get no surprises with this default behavior. Of course,
parentheses can always be used for grouping. We modify the grammar for dealing
with subtractions; we want to use a dedicated class for a subtraction expression, for
example, Minus. We then modify the rule for Expression as follows:

Expression:
 Atomic (
 ({Plus.left=current} '+' | {Minus.left=current} '-')
 right=Atomic
)* ;

Note that the tree rewrite action inside the rule is selected according to the parsed
operator. Though we are not doing that in this section (due to lack of space), you
should write a test with a subtraction operation; of course, you must also update
the stringRepr utility method for handling the case for Minus.

Precedence
We can write the case for addition and subtraction in the same rule because they
have the same arithmetic operator precedence. If we add a rule for multiplication and
division we must handle their precedence with respect to addition and subtraction.

To define the precedence we must write the rule for the operator with less
precedence in terms of the rule for the operator with higher precedence. This
means that in the grammar, the rules for operators with less precedence are defined
first. Since multiplication and division have higher precedence than addition and
subtraction, we modify the grammar as follows:

Expression: PlusOrMinus;

PlusOrMinus returns Expression:

An Expression Language

[164]

 MulOrDiv (
 ({Plus.left=current} '+' | {Minus.left=current} '-')
 right=MulOrDiv
)* ;

MulOrDiv returns Expression:
 Atomic (
 ({MulOrDiv.left=current} op=('*'|'/'))
 right=Atomic
)* ;

In the preceding rules, we use returns to specify the type of the created objects; thus,
the features left and right in the corresponding generated Java classes will be of
type Expression.

We added a main rule for Expression which delegates to the first rule to start parsing
the expression; remember that this first rule (at the moment PlusOrMinus) concerns
the operators with lowest precedence. There will be no class called PlusOrMinus since
only objects of class Plus and Minus will be created by this rule. On the contrary in the
rule MulOrDiv, we create objects of class MulOrDiv. In this rule we also chose another
strategy: we have a single object type, MulOrDiv, both for multiplication and division
expressions. After parsing, we can tell between the two using the operator which is
saved in the feature op. Whether to have a different class for each expression operator
or group several expression operators into one single class is up to the developer; both
strategies have their advantages and drawbacks, as we will see in the next sections.

We now test the precedence of these new expressions:

@Test
def void testPlusMulPrecedence() {
 "10 + 5 * 2 - 5 / 1".assertRepr("((10 + (5 * 2)) - (5 / 1))")
}

def stringRepr(Expression e) {
 switch (e) {
 Plus:
 '''(«e.left.stringRepr» + «e.right.stringRepr»)'''
 Minus:
 '''(«e.left.stringRepr» - «e.right.stringRepr»)'''
 MulOrDiv:
 '''(«e.left.stringRepr» «e.op» «e.right.stringRepr»)'''
... as before

Chapter 8

[165]

Now we add boolean expressions and comparison expressions to the DSL; again, we
have to deal with their precedence, which is as follows, starting from the ones with
less precedence:

1. boolean or (operator ||)
2. boolean and (operator &&)
3. equality and dis-equality (operators == and !=, respectively)
4. comparisons (operators <, <=, >, and >=)
5. addition and subtraction
6. multiplication and division

Following the same strategy for writing the grammar rules, we end up with the
following expression grammar:

Expression: Or;

Or returns Expression:
 And ({Or.left=current} "||" right=And)* ;

And returns Expression:
 Equality ({And.left=current} "&&" right=Equality)* ;

Equality returns Expression:
 Comparison (
 {Equality.left=current} op=("=="|"!=")
 right=Comparison
)* ;

Comparison returns Expression:
 PlusOrMinus (
 {Comparison.left=current} op=(">="|"<="|">"|"<")
 right=PlusOrMinus
)* ;

... as before

When writing tests for these new expressions, we need to test for the correct
precedence for the new operators both in isolation and in combination with other
expressions (remember to update the stringRepr method to handle the new classes).
We leave these tests as an exercise; they can be found in the sources of the examples.
While adding rules for new expressions, we also added test methods in our parser test
class, and we run all these tests each time: this will not only ensure that the new rules
work correctly, but also that they do not break existing rules.

An Expression Language

[166]

As a final step, we add a rule for boolean negation (operator "!"); this operator has the
highest precedence among all the operators seen so far. Therefore, we can simply add a
case in the Atomic rule:

Atomic returns Expression:
 '(' Expression ')' |
 {Not} "!" expression=Atomic |
 ... as before

We can now write a test with a complex expression and check that the parsing takes
place correctly:

@Test def void testPrecedences() {
 "!true||false&&1>(1/3+5*2)".
 assertRepr
 ("((!true) || (false && (1 > ((1 / 3) + (5 * 2)))))")
}

Now might be a good time to refactor the rule Atomic, since it includes cases that
are not effective atomic elements. We introduce the rule Primary for expressions
with the highest priority that need some kind of evaluation; the rule MulOrDiv
is refactored accordingly:

MulOrDiv returns Expression:
 Primary (
 {MulOrDiv.left=current} op=('*'|'/')
 right=Primary
)*
;

Primary returns Expression:
 '(' Expression ')' |
 {Not} "!" expression=Primary |
 Atomic
;

Atomic returns Expression:
 {IntConstant} value=INT |
 {StringConstant} value=STRING |
 {BoolConstant} value=('true'|'false') |
 {VariableRef} variable=[Variable]
;

Chapter 8

[167]

The complete grammar
We sum up the section by showing the complete grammar of the Expressions DSL:

grammar org.example.expressions.Expressions with
 org.eclipse.xtext.common.Terminals

generate expressions
 "http://www.example.org/expressions/Expressions"

ExpressionsModel:
 elements += AbstractElement*;

AbstractElement:
 Variable | Expression ;

Variable:
 name=ID '=' expression=Expression;

Expression: Or;

Or returns Expression:
 And ({Or.left=current} "||" right=And)*
;

And returns Expression:
 Equality ({And.left=current} "&&" right=Equality)*
;

Equality returns Expression:
 Comparison (
 {Equality.left=current} op=("=="|"!=")
 right=Comparison
)*
;

Comparison returns Expression:
 PlusOrMinus (
 {Comparison.left=current} op=(">="|"<="|">"|"<")
 right=PlusOrMinus
)*
;

PlusOrMinus returns Expression:
 MulOrDiv (

An Expression Language

[168]

 ({Plus.left=current} '+' | {Minus.left=current} '-')
 right=MulOrDiv
)*
;

MulOrDiv returns Expression:
 Primary (
 {MulOrDiv.left=current} op=('*'|'/')
 right=Primary
)*
;

Primary returns Expression:
 '(' Expression ')' |
 {Not} "!" expression=Primary |
 Atomic
;

Atomic returns Expression:
 {IntConstant} value=INT |
 {StringConstant} value=STRING |
 {BoolConstant} value=('true'|'false') |
 {VariableRef} variable=[Variable]
;

Forward references
You should know by now that parsing is only the first stage when implementing
a DSL and that it cannot detect all the errors from the programs. We need to
implement additional checks in a validator.

One important thing we need to check in our Expressions DSL is that an expression
(including the initialization expression of a variable) does not refer to a variable
defined after the very expression. Using an identifier before its declaration is usually
called a forward reference.

Therefore, this program should not be considered valid:

i = j + 1
j = 0

since the initialization expression of i refers to j,which is defined after. Of course,
this is a design choice: since we want to interpret the expressions, it makes sense to
interpret them in the order they are defined.

Chapter 8

[169]

This strategy also avoids possible mutual dependency problems:

i = j + 1
j = i + 1

 A variable which is initialized referring to itself is a special case of the preceding:

i = i + 1

We want to avoid this because our interpreter would enter an endless loop when
evaluating expressions; this choice is also consistent with the design choice that
variables, once initialized, cannot be further assigned.

Restricting the visibility of references can also be implemented
with a custom ScopeProvider; the subject of Scoping will be
detailed in Chapter 10, Scoping. However, visibility and validity
are not necessarily the same mechanism. Therefore, it also makes
sense to implement this checking in the validator.

We write a @Check method in the ExpressionsValidator class to report
such problems.

To summarize, given a variable reference inside an expression, we need to:

• Get the list of all the variables defined before the containing expression
• Check that in the list there is a variable with the name of the reference

Note that we need to do that only if the variable is correctly bound; that is, if
the cross-reference has already been resolved by Xtext, otherwise an error has
already been reported.

The harder part is getting the list of all the variables defined before the containing
expression. First of all, given an expression, we must get the AbstractElement
containing such expression. For example, in an isolated expression, say 10, such
element is the expression itself; if we have k = (10 + 5) < (j * 2), and we
want to validate the variable reference j, then the element we need is the whole
k = (10 + 5) < (j * 2). This functionality only deals with model traversing,
and we isolate it into a utility class, ExpressionsModelUtil (we have already seen
this technique in Chapter 7, Testing, section Testing and Modularity). We will also
reuse this utility class when implementing other parts of this DSL.

An Expression Language

[170]

We implement the static method variablesDefinedBefore(AbstractElement
e). In this method, we get the containing root model object using the method org.
eclipse.xtext.EcoreUtil2.getContainerOfType. From the root, we get the list of
all the elements. We then need to find the element containing e, that is, either e itself,
or the element which contains e. We use the static method org.eclipse.emf.ecore.
util.EcoreUtil.isAncestor to get that. Then, we get the sublist of variables. This is
implemented in Xtend as follows:

import static extension org.eclipse.emf.ecore.util.EcoreUtil.*
import static extension org.eclipse.xtext.EcoreUtil2.*

class ExpressionsModelUtil {
 def static variablesDefinedBefore(AbstractElement e) {
 val allElements =
 e.getContainerOfType(typeof(ExpressionsModel)).elements
 val containingElement =
 allElements.findFirst[isAncestor(it, e)]
 allElements.subList(0,
 allElements.indexOf(containingElement)).
 typeSelect(typeof(Variable))
 }
}

This algorithm is potentially slow when dealing with large models
and complex logic since it always searches from the top element down.
Depending on your DSL, you might want to implement other strategies,
such as bottom-up search, creating an index upfront, and so on. Once
you have a bunch of tests for the simple implementation, you can
experiment with optimizations and make sure that the tests still succeed.

We can now test this class in a separate JUnit test class (we show only a snippet) to
make sure it does what we expect:

@Test def void variablesBeforeVariable() {
 '''
 true // (0)
 i = 0 // (1)
 i + 10 // (2)
 j = i // (3)
 i + j // (4)
 '''.parse => [
 assertVariablesDefinedBefore(0, "")
 assertVariablesDefinedBefore(1, "")
 assertVariablesDefinedBefore(2, "i")

Chapter 8

[171]

 assertVariablesDefinedBefore(3, "i")
 assertVariablesDefinedBefore(4, "i,j")
]
}

def void assertVariablesDefinedBefore(ExpressionsModel model,
 int elemIndex, CharSequence expectedVars) {
 expectedVars.assertEquals(
 model.elements.get(elemIndex).variablesDefinedBefore.
 map[name].join(",")
)
}

Writing the @Check method in the validator is easy now:

import static extension org.example.expressions.typing.
ExpressionsModelUtil.*

class ExpressionsValidator extends AbstractExpressionsValidator {
 public static val FORWARD_REFERENCE =
 "org.example.expressions.ForwardReference";

 @Check
 def void checkForwardReference(VariableRef varRef) {
 val variable = varRef.getVariable()
 if (variable != null &&
 !varRef.variablesDefinedBefore.contains(variable))
 error("variable forward reference not allowed: '"
 + variable.name + "'",
 ExpressionsPackage::eINSTANCE.variableRef_Variable,
 FORWARD_REFERENCE, variable.name)
 }
}

It is also easy to test it (we show only a snippet):

@Test
def void testForwardReferenceInExpression() {
 '''i = 1 j+i j = 10'''.parse => [
 assertError(ExpressionsPackage::eINSTANCE.variableRef,
 ExpressionsValidator::FORWARD_REFERENCE,
 "variable forward reference not allowed: 'j'"
)
 // check that it is the only error
 1.assertEquals(validate.size)
]
}

An Expression Language

[172]

Note that in this test we also make sure that there is only one error concerning j and
not i, which is correctly used after its declaration. We test this using the list of issues
returned by ValidationTestHelper.validate. We issue an error in case of a forward
reference, but we did not customize the way Xtext resolves references, thus the user of
the Expressions DSL can still jump to the actual declaration of the variable, also in case
of a forward reference error. This is considered a good thing in the IDE; for example, in
JDT if you try to access a private member of a different class, you get an error, but you
can still jump to the declaration of that member.

At the same time, though, the content assist of our DSL will also propose variables
defined after the context where we are writing in the editor; this should be
avoided since it is misleading. We can fix this by customizing the content assist.
Xtext already generated a stub class in the UI plug-in project, for customizing
this; in this example, it is org.example.expressions.ui.contentassist.
ExpressionsProposalProvider in the src folder. Also this class relies on
a method signature convention as shown in the following code snippet:

public void complete{RuleName}_{FeatureName} (
 EObject element, Assignment assignment,
 ContentAssistContext context,
 ICompletionProposalAcceptor acceptor)
public void complete_{RuleName} (
 EObject element, RuleCall ruleCall,
 ContentAssistContext context,
 ICompletionProposalAcceptor acceptor)

In the signatures, RuleName is the name of the rule in the grammar and FeatureName
is the name of the feature (with the first letter capitalized) assigned in that rule. The
idea is to use the first method signature to customize the proposals for a specific
feature of that rule and the second one for customizing the proposals for the rule
itself. In our case, we want to customize the proposals for the variable feature in
the Atomic rule (that is, the rule which parses a VariableRef); thus we define a
method called completeAtomic_Variable. The stub class extends a generated class
in the src-gen folder, AbstractExpressionsProposalProvider that implements
all of these complete methods. You can inspect the base class to get the signature
right. You should also use the @Override annotation so that you get an error if the
name of the rule or of the feature changes in the grammar. Most of the time, you
will only use the first parameter, which is the EObject object representing the object
corresponding to the rule being used and the acceptor to which you will pass your
custom proposals.

In the method completeAtomic_Variable, we get the variables defined before the
passed EObject and create a proposal for each variable:

override completeAtomic_Variable(EObject elem,
 Assignment assignment,

Chapter 8

[173]

 ContentAssistContext context,
 ICompletionProposalAcceptor acceptor) {
 if (!(elem instanceof AbstractElement))
 return; // no proposal

 (elem as AbstractElement).variablesDefinedBefore.forEach[
 variable |
 acceptor.accept(createCompletionProposal
 (variable.name,
 variable.name + " - Variable", null,
 context));
]
}

Proposals are created using the createCompletionProposal method; you need to
pass the string which will be inserted in the editor, the string shown in the content
assist menu, a default image, and the context you received as a parameter. Each
proposal must be passed to the acceptor.

Remember that for a given offset in the input program file, there
can exist several possible grammar elements. Xtext will dispatch
to the method declarations for any valid element, and thus many
complete methods may be called.

In the previous chapter, we showed you how to test the content assist; we will now
test our custom implementation (we only show the relevant parts):

@Test
def void testVariableReference() {
 newBuilder.append("i = 10 1+").
 assertText('!', '"Value"', '(', '+', '1', 'false', 'i', 'true')
}

@Test
def void testForwardVariableReference() {
 newBuilder.append("k= 0 j=1 1+ i = 10 ").
 assertTextAtCursorPosition("+", 1,
 '!', '"Value"', '(', '+', '1', 'false', 'j', 'k', 'true')
}

In the first method, we verify that we did not remove variable proposals that are
valid; in the second one, we verify that only the variables that are defined before
the current context are proposed. In particular, in the second test, we used an assert
method passing the character in the input to set the (virtual) cursor at and
an additional offset: we ask for the proposals right after the first + in the input
string. We test that j and k are proposed, but not i.

An Expression Language

[174]

Typing expressions
In the Expressions DSL, types are not written explicitly by the programmer.
However, due to the simple nature of our expressions, we can easily deduce the type
of an expression by looking at its shape. In this DSL we have a fixed set of types:
string, integer, and boolean. The mechanism of deducing a type for an expression is
usually called type computation or type inference.

The base cases for type computation in the Expressions DSL are constants; trivially,
an integer constant has type integer, a string constant has type string, and a boolean
constant has type boolean.

As for composed expressions, besides computing a type, we must also check that
its sub-expressions are correct with respect to types. This mechanism is usually
called type checking. For example, consider the expression !e, where e is a generic
expression. We can say that it has type boolean, provided that, recursively, the sub-
expression e has type boolean; otherwise, the whole expression is not well-typed.

All the type mechanisms are part of the type system of the language. The type
system depends on the semantics, that is, the meaning that we want to give to the
elements of the DSL. For the Expressions DSL we design a type system that reflects
the natural treatment of arithmetic and boolean expressions, in particular:

• If in a Plus expression one of the sub-expressions has type string, the whole
expression is considered to have type string; if they have both type integer,
then the whole expression has type integer; two boolean expressions cannot
be added

• Equality can only act on sub-expressions with the same type
• Comparison can only act on sub-expressions with the same type, but not

on booleans

Of course, a type system should also be consistent with code generation or
interpretation; this is typically formally proved, but this is out of the scope of the
book (we refer the interested reader to Hindley 1987, Cardelli 1996, and Pierce
2002). For instance, in our DSL, we allow expressions of the shape 1 + "a" and "a"
+ true: we consider these expressions to have type string, since we use + also for
string concatenation and implicit string conversion. If in a Plus expression the two
sub-expressions have both type integer, the whole expression will have type integer,
since that will be considered as the arithmetic addition. During interpretation, we
must interpret such expressions accordingly.

Chapter 8

[175]

Typically, type computation and type checking are implemented together and,
as just seen, they are recursive. In general, the type of an expression depends on
the type of the sub-expressions; the whole expression is not well-typed if any of
its sub-expressions are not well-typed. Here are some examples: j * true is not
well-typed since multiplication is defined only on integers; true == "abc" is not
well-typed since we can only compare by equality expressions of the same type,
true < false is not well-typed since comparison operators do not make sense on
booleans, and so on.

When implementing a type system in an Xtext DSL, we must take into consideration a
few aspects: Xtext automatically validates each object in the AST, not only on the first
level elements. For instance, if in our validator we have these two @Check methods:

@Check
public void checkType(And and)

@Check
public void checkType(Not not)

and the input expression is !a && !b then Xtext will automatically call the second
method on the Not objects corresponding to !a and !b and the first method on the
object And corresponding to the whole expression. Therefore, it makes no sense
to perform recursive invocations ourselves inside the validator's methods. If an
expression contains some sub-expressions which are not well-typed, it should be
considered not well-typed itself; however, does it make sense to mark the whole
expression with an error? For example, consider this expression:

(1 + 10) < (2 * (3 + "a"))

If we mark the whole expression as not well-typed, we would provide useless
information to the programmer. The same holds true if we generate additional
errors for the sub-expressions (2 * (3 + "a")) and (3 + "a"). Indeed, the useful
information is that (3 + "a") has type string while an integer type was expected by
the multiplication expression.

Due to all the aforementioned reasons, we adopt the following strategy:

• Type computation is performed without recurring on sub-expressions unless
required in some cases; for example, a MulOrDiv object has type integer
independently of its sub-expressions. This is implemented by the class
ExpressionsTypeProvider.

An Expression Language

[176]

• In the validator, we have a @Check method for each kind of expression,
excluding the constant expressions, which are implicitly well-typed; each
method checks that the types of the sub-expressions, obtained by using
ExpressionsTypeProvider, are as expected by that specific expression.
For example, for a MulOrDiv, we check that its sub-expressions have both
type integer, otherwise, we issue an error on the sub-expression that does
not have type integer.

As we will see, this strategy avoids checking the same object with the validator several
times, since the type computation is delegated to ExpressionsTypeProvider, which
is not recursive. It will also allow the validator to generate meaningful error markers
only on the problematic sub-expressions.

Type provider
Since we do not have types in the grammar of the Expressions DSL, we need a way
of representing them. Since the types for this DSL are simple, we just need an interface
for types, for example, ExpressionsType, and a class implementing it for each
type, for example, StringType, IntType, and BoolType. These classes implement
a toString method for convenience, but they do not contain any other information.

We write the classes for types and for the type provider in the new Java
sub-package typing. If you want to make its classes visible outside
the main plug-in project, you should add this package to the list of
exported packages in the Runtime tab of the MANIFEST.MF editor.

In the type provider, we define a static field for each type. Using singletons will
allow us to simply compare a computed type with such static instances.

class ExpressionsTypeProvider {
 public static val stringType = new StringType
 public static val intType = new IntType
 public static val boolType = new BoolType

We now write a method, typeFor, which, given an Expression, returns an
ExpressionsType object. We use the dispatch methods for special cases and
switch for simple cases. For expressions whose type can be computed directly,
we write:

def dispatch ExpressionsType typeFor(Expression e) {
 switch (e) {
 StringConstant: stringType
 IntConstant: intType
 BoolConstant: boolType

Chapter 8

[177]

 Not: boolType
 MulOrDiv: intType
 Minus: intType
 Comparison: boolType
 Equality: boolType
 And: boolType
 Or: boolType
 }
}

We now write a test class for our type provider with several test methods
(we only show some of them):

import static extension org.junit.Assert.*

@RunWith(typeof(XtextRunner))
@InjectWith(typeof(ExpressionsInjectorProvider))
class ExpressionsTypeProviderTest {
 @Inject extension ParseHelper<ExpressionsModel>
 @Inject extension ExpressionsTypeProvider

 @Test def void intConstant() { "10".assertIntType }
 @Test def void stringConstant() { "'foo'".assertStringType }
...
 @Test def void notExp() { "!true".assertBoolType }

 @Test def void multiExp() { "1 * 2".assertIntType }
 @Test def void divExp() { "1 / 2".assertIntType }
...
 def assertStringType(CharSequence input) {
 input.assertType(ExpressionsTypeProvider::stringType)
 }
...
 def assertType(CharSequence input,
 ExpressionsType expectedType) {
 expectedType.assertSame
 (input.parse.elements.last.typeFor)
 }
}

We wrote the method assertType that does most of the work: it parses the passed
input and computes the type of the last element of the program.

An Expression Language

[178]

Then, we can move on to more elaborate type computations, which we implement in
a dispatch method for better readability.

def dispatch ExpressionsType typeFor(Plus e) {
 val leftType = e.left?.typeFor
 val rightType = e.right?.typeFor
 if (leftType == stringType || rightType == stringType)
 stringType
 else
 intType
}

For Plus, we need to compute the type of sub-expressions, since if one of them has
type string, the whole expression is considered to be a string concatenation (with
implicit conversion to string); thus, we give it a string type. Otherwise, it is considered
to be the arithmetic sum and we give it type integer. In this type system, this is the
only case where type computation depends on the types of sub-expressions.

Remember that the type provider can also be used on a non-complete model, and
thus we use the null-safe operator ?., described in Chapter 3, The Xtend Programming
Language.

We can now test this case for the type provider:

@Test def void numericPlus() { "1 + 2".assertIntType }
@Test def void stringPlus() { "'a' + 'b'".assertStringType }
@Test def void numAndStringPlus() { "'a' + 2".assertStringType }
@Test def void numAndStringPlus2() { "2 + 'a'".assertStringType }
@Test def void boolAndStringPlus(){"'a' + true".assertStringType }
@Test def void boolAndStringPlus2(){"false+'a'".assertStringType }

Also, the case for variable reference requires some more work:

def dispatch ExpressionsType typeFor(VariableRef varRef) {
 if (varRef.variable == null ||
 !(varRef.variablesDefinedBefore.contains(varRef.variable)))
 return null
 else
 return varRef.variable.expression?.typeFor
}

Chapter 8

[179]

We must check that the reference concerns a variable defined before the current
expression, otherwise we might enter an infinite loop; to this aim, we reuse the
ExpressionsModelUtil class whose static methods are here imported as extension
methods. We must also consider the case when the reference is not resolved. In
both cases, we simply return null, and we know that an error has already been
reported (by our own validator in the former case and by the default validator
for cross-references in the latter case). Otherwise, the type of a variable reference
is the type of the referred variable, which, in turn, is the type of its initialization
expression. We must check that the initialization expression is not null, in case
of an incomplete program. The test for this case of the type provider is as follows:

@Test def void varRef() { "i = 0 i".assertIntType }

Remember that you should follow the Test Driven Development
strategy illustrated in Chapter 7, Testing; first, write the implementation
for a single kind of expression, write a test for that case then execute it;
then, proceed with the implementation for another kind of expression,
write a test for that case and run all the tests, and so on. As an exercise,
you should try to re-implement everything seen in this section from
scratch yourself following this methodology.

Validator
We are ready to write the @Check methods in the ExpressionsValidator.

It is possible that some of the tests for the parser you have previously
written fail now due to the validator methods and due to the fact that
when you wrote those test expressions, you were not considering types.
This is a standard situation in test driven development, and there is
nothing to worry about. You can either modify the test expressions in
the parser tests so that they are correct also with respect to types, or
simply remove the call to assertNoErrors. In the latter case, the tests
still make sense: when checking the associativity and precedence by
traversing the AST, if the parsing failed due to a syntax error, the AST
would be incomplete and the tests would fail with null pointer exception.

In the existing validator, we inject an instance of ExpressionsTypeProvider and
we write some reusable methods which perform the actual checks. Thanks to these
methods, we will be able to write the @Check methods in a very compact form.

class ExpressionsValidator extends
 AbstractExpressionsValidator {

 public static val WRONG_TYPE =

An Expression Language

[180]

 "org.example.expressions.WrongType";

 @Inject extesion ExpressionsTypeProvider

 def private checkExpectedBoolean(Expression exp,
 EReference reference) {
 checkExpectedType(exp,
 ExpressionsTypeProvider::boolType, reference)
 }

 def private checkExpectedInt(Expression exp,
 EReference reference) {
 checkExpectedType(exp,
 ExpressionsTypeProvider::intType, reference)
 }

 def private checkExpectedType(Expression exp,
 ExpressionsType expectedType, EReference reference) {
 val actualType = getTypeAndCheckNotNull(exp, reference)
 if (actualType != expectedType)
 error("expected " + expectedType +
 " type, but was " + actualType,
 reference, WRONG_TYPE)
 }

 def private ExpressionsType getTypeAndCheckNotNull(
 Expression exp, EReference reference) {
 var type = exp?.typeFor
 if (type == null)
 error("null type", reference, WRONG_TYPE)
 return type;

 }...

Although we present the reusable methods first, the actual strategy
we followed when implementing the type checking in the validator is
to first write some @Check methods, and then refactor the common
parts. Before refactoring, we wrote some tests; after refactoring, we
execute the tests to verify that refactoring did not break anything.

It should be straightforward to understand what the aforementioned methods do.
The methods are parameterized over the EMF feature to use when generating an error;
remember that this feature will be used to generate the error marker appropriately.

Chapter 8

[181]

Let us see some @Check methods:

@Check def checkType(Not not) {
 checkExpectedBoolean(not.expression,
 ExpressionsPackage$Literals::NOT__EXPRESSION)
}

@Check def checkType(And and) {
 checkExpectedBoolean(and.left,
 ExpressionsPackage$Literals::AND__LEFT)
 checkExpectedBoolean(and.right,
 ExpressionsPackage$Literals::AND__RIGHT)
}

For Not, And, and Or, we check that the sub-expressions have type boolean and
we pass the EMF features corresponding to the sub-expressions. (The case for
Or is similar to the case of And, and it is therefore not shown).

Following the same approach, it is easy to check that the sub-expressions of Minus
and MultiOrDiv both have integer types (we leave this as an exercise, but you can
look at the sources of the example).

For an Equality expression, we must check that the two sub-expressions have the
same type. This holds true also for a Comparison expression, but in this case, we
also check that the sub-expressions do not have type boolean, since in our DSL, we
do not want to compare two boolean values. The implementation of these @Check
methods are as follows, using two additional reusable methods:

@Check def checkType(Equality equality) {
 val leftType = getTypeAndCheckNotNull(equality.left,
 ExpressionsPackage$Literals::EQUALITY__LEFT)
 val rightType = getTypeAndCheckNotNull(equality.right,
 ExpressionsPackage$Literals::EQUALITY__RIGHT)
 checkExpectedSame(leftType, rightType)
}

@Check def checkType(Comparison comparison) {
 val leftType = getTypeAndCheckNotNull(comparison.left,
 ExpressionsPackage$Literals::COMPARISON__LEFT)
 val rightType = getTypeAndCheckNotNull(comparison.right,
 ExpressionsPackage$Literals::COMPARISON__RIGHT)
 checkExpectedSame(leftType, rightType)
 checkNotBoolean(leftType,
 ExpressionsPackage$Literals::COMPARISON__LEFT)
 checkNotBoolean(rightType,

An Expression Language

[182]

 ExpressionsPackage$Literals::COMPARISON__RIGHT)
}

def private checkExpectedSame(ExpressionsType left,
 ExpressionsType right) {
 if (right != null && left != null && right != left) {
 error("expected the same type, but was "+left+", "+right,
 ExpressionsPackage$Literals::EQUALITY.getEIDAttribute(),
 WRONG_TYPE)
 }
}

def private checkNotBoolean(ExpressionsType type,
 EReference reference) {
 if (type == ExpressionsTypeProvider::boolType) {
 error("cannot be boolean", reference, WRONG_TYPE)
 }
}

The final check concerns the Plus expression; according to our type system,
if one of the two sub-expressions has type string, everything is fine, and therefore
all these combinations are accepted as valid: string+string, int+int, string+boolean,
and string+int (and the corresponding specular cases). We cannot add two
boolean expressions or an integer and a boolean. Therefore, when one of the two
sub-expressions has type integer or when they both have a type different from string,
we must check that they do not have type boolean:

@Check def checkType(Plus plus) {
 val leftType = getTypeAndCheckNotNull(plus.left,
 ExpressionsPackage$Literals::PLUS__LEFT)
 val rightType = getTypeAndCheckNotNull(plus.right,
 ExpressionsPackage$Literals::PLUS__RIGHT)
 if (leftType == ExpressionsTypeProvider::intType
 || rightType == ExpressionsTypeProvider::intType
 || (leftType != ExpressionsTypeProvider::stringType &&
 rightType != ExpressionsTypeProvider::stringType)) {
 checkNotBoolean(leftType,
 ExpressionsPackage$Literals::PLUS__LEFT)
 checkNotBoolean(rightType,
 ExpressionsPackage$Literals::PLUS__RIGHT)
 }
}

Chapter 8

[183]

Of course, while writing these methods, we also wrote test methods in the
ExpressionsValidatorTest class. Due to lack of space, we are not showing these
tests, and instead we refer you to the source code of the Expressions DSL.

Let's try the editor and look at the error markers as shown in the following screenshot:

The error markers are placed only on the sub-expression that is not well-typed;
it is clear where the problem inside the whole expression is. If we did not follow
the preceding strategy for computing and checking types, in a program with some
not well-typed expressions, most of the lines would be red, and this would not
help. With our implementation, the expression j || true does not have error
markers, although the initialization expression of j contains an error; our type
provider is able to deduce that j has type boolean anyway. Formally, also j,
and in turn j || true, are not well-typed; however, marking j || true with an
error would only generate confusion.

An Expression Language

[184]

Writing an interpreter
We will now write an interpreter for our Expressions DSL. The idea is that this
interpreter, given an AbstractElement, returns a Java object which represents
the evaluation of that element. Of course, we want the object with the result of the
evaluation to be of the correct Java type; that is, if we evaluate a boolean expression,
the corresponding object should be a Java boolean object.

Such an interpreter will be recursive, since to evaluate an expression, we must first
evaluate its sub-expressions and then compute the result.

When implementing the interpreter we make the assumption that the passed
AbstractElement is valid. Therefore, we will not check for null sub-expressions; we
will assume that all variable references are resolved and we will assume that all the
sub-expressions are well-typed; for example, if we evaluate an And expression, we
assume that the objects resulting from the evaluation of its sub-expressions are Java
Boolean objects.

For constants, the implementation of the evaluation is straightforward:

class ExpressionsInterpreter {

 def dispatch Object interpret(Expression e) {
 switch (e) {
 IntConstant: e.value
 BoolConstant: Boolean::parseBoolean(e.value)
 StringConstant: e.value

Note that the feature value for an IntConstant object is of Java type int and for
a StringConstant object, it is of Java type String, and thus we do not need any
conversion. For a BoolConstant object the feature value is also of Java type String,
and thus we perform an explicit conversion using the static method of the Java
class Boolean.

As usual, we immediately start to test our interpreter, and the actual assertions are
all delegated to a reusable method:

class ExpressionsInterpreterTest {
 @Inject extension ParseHelper<ExpressionsModel>
 @Inject extension ValidationTestHelper
 @Inject extension ExpressionsInterpreter

 @Test def void intConstant() { "1".assertInterpret(1)}
 @Test def void boolConstant() { "true".assertInterpret(true)}
 @Test def void stringConstant() {"'abc'".assertInterpret("abc")}

 def assertInterpret(CharSequence input, Object expected) {
 input.parse => [

Chapter 8

[185]

 assertNoErrors
 expected.assertEquals(elements.last.interpret)
]
 }...

Note that, in order to correctly test the interpreter, we check that there are no errors
in the input (since that is the assumption of the interpreter itself) and we compare
the actual objects, not their string representation. This way, we are sure that the
object returned by the interpreter is of the expected Java type.

Then, we write a case for each expression. We recursively evaluate the sub-
expressions, and then apply the appropriate Xtend operator to the result of the
evaluation of the sub-expressions. For example, for And:

switch (e) {
...
And: {
 (e.left.interpret as Boolean) && (e.right.interpret as Boolean)
}

Note that the method interpret returns an Object, and thus we need to cast the
result of the invocation on sub-expressions to the right Java type. We do not perform
an instanceof check because, as hinted previously, the interpreter assumes that the
input is well-typed.

With the same strategy, we implement all the other cases. We show here only the most
interesting ones. For MulOrDiv, we will need to check the actual operator, stored in the
feature op:

switch (e) {
...
 MulOrDiv: {
 val left = e.left.interpret as Integer
 val right = e.right.interpret as Integer
 if (e.op == '*')
 left * right
 else
 left / right
}

For Plus, we need to perform some additional operations: since we use + both
as the arithmetic sum and as string concatenation, we must know the type of the
sub-expressions. We use the type provider and write:

class ExpressionsInterpreter {
 @Inject extension ExpressionsTypeProvider

An Expression Language

[186]

 def dispatch Object interpret(Expression e) {
 switch (e) {
 ...
 Plus: {
 if (e.left.typeFor.isString || e.right.typeFor.isString)
 e.left.interpret.toString + e.right.interpret.toString
 else
 (e.left.interpret as Integer) +
 (e.right.interpret as Integer)
 }...

The method isString is a utility method that we added to
ExpressionsTypeProvider to avoid doing the comparison with string types.

Finally, we deal with the case of variable and variable reference:

def dispatch Object interpret(Expression e) {
 switch (e) {
 ...
 VariableRef: e.variable.interpret
 ...
}

def dispatch Object interpret(Variable v) {
 v.expression.interpret
}

Using the interpreter
Xtext allows us to customize all UI aspects, as we saw in Chapter 6, Customizations.
We can provide a custom implementation of text hovering (that is, the pop-up
window that comes up when we hover for some time on a specific editor region)
so that it shows the type of the expression and its evaluation. We refer to the Xtext
documentation for the details of the customization of text hovering; here, we only
show our implementation (note that we create a multi-line string using HTML syntax):

Chapter 8

[187]

class ExpressionsEObjectHoverProvider extends
 DefaultEObjectHoverProvider {
 @Inject extension ExpressionsTypeProvider
 @Inject extension ExpressionsInterpreter
 override getHoverInfoAsHtml(EObject o) {
 if (o instanceof AbstractElement && o.programHasNoError) {
 val elem = o as AbstractElement
 return '''
 <p>
 type : «elem.typeFor.toString»

 value : «elem.interpret.toString»
 </p>
 '''
 } else
 return super.getHoverInfoAsHtml(o)
 }

 def programHasNoError(EObject o) {
 Diagnostician::INSTANCE.validate(o.rootContainer).
 children.empty
 }
}

Remember that our interpreter is based on the assumption that it is invoked
only on an EMF model that contains no error. We invoke our validator
programmatically using the EMF API, that is, the Diagnostician class; we must
validate the entire AST; thus, we retrieve the root of the EMF model using the
method EcoreUtil.getRootContainer and check that the list of validation issues
is empty. We need to write an explicit bind method for our custom implementation
of text hovering in the ExpressionsUiModule:

public Class<? extends IEObjectHoverProvider>
 bindIEObjectHoverProvider() {
 return ExpressionsEObjectHoverProvider.class;
}

An Expression Language

[188]

In the following screenshot, we can see our implementation when we place the
mouse over the * operator of the expression 2 * (3 + 5): the pop-up window
shows the type and the evaluation of the corresponding multiplication expression:

Finally, we can write a code generator which creates a text file (by default, it will be
created in the directory src-gen):

import static extension
 org.eclipse.xtext.nodemodel.util.NodeModelUtils.*

class ExpressionsGenerator implements IGenerator {
 @Inject extension ExpressionsInterpreter

 override void doGenerate(Resource resource,
 IFileSystemAccess fsa) {
 resource.allContents.toIterable.
 filter(typeof(ExpressionsModel)).forEach[
 fsa.generateFile
 ('''«resource.URI.lastSegment».evaluated''',
 interpretExpressions)
]
 }

 def interpretExpressions(ExpressionsModel model) {
 model.elements.map[
 '''«getNode.getTokenText» ~> «interpret»'''
].join("\n")
 }
}

Chapter 8

[189]

Differently from the code generator we saw in Chapter 5, Code Generation, here we
generate a single text file for each input file (an input file is represented by an EMF
Resource); the name of the output file is the same as the input file (retrieved by taking
the last part of the URI of the resource), with an additional evaluated file extension.

Instead of simply generating the result of the evaluation in the output file, we
also generate the original expression. This can be retrieved using the Xtext class
NodeModelUtils. The static utility methods of this class allow us to easily access
the elements of the node model corresponding to the elements of the AST model.
(Recall from Chapter 6, Customizations that the node model carries the syntactical
information, for example, offsets and spaces of the textual input.) The method
NodeModelUtils.getNode(EObject) returns the node in the node model
corresponding to the passed EObject. From the node of the node model, we retrieve
the original text in the program corresponding to the EObject.

An example input file and the corresponding generated text file are shown in the
following screenshot:

An Expression Language

[190]

Summary
In this chapter, we implemented a DSL for expressions; this allowed us to explore
some techniques for dealing with recursive grammar rule definitions in Xtext
grammars and some simple type checking. We also showed how to write an
interpreter for an Xtext DSL.

In the next chapter we will develop a small object-oriented DSL. We will use this
DSL to show some advanced type checking techniques that deal with object-oriented
features such as inheritance and subtyping (type conformance).

Type Checking
In this chapter we will develop a small object-oriented DSL, which can be seen as a
smaller version of Java that we call SmallJava. We will use this DSL to show some
type checking techniques that deal with object-oriented features such as inheritance
and subtyping (type conformance). This will also allow us to learn other features of
Xtext grammars and to see some good practices in Xtext DSL implementations.

SmallJava
The language we develop in this chapter is a simplified version of Java, called
SmallJava. This language does not aim at being useful in practice and cannot be used
to write real programs such as Java. However, SmallJava contains enough language
features that will allow us to explore advanced type checking techniques that can
also be reused for other DSLs which have OOP mechanisms such as inheritance
and subtyping.

The implementation we see in this chapter will not be complete, since some features
of this language, such as correct member access, will be implemented in the next
chapter when we introduce the mechanism of local and global scoping. In a Java-like
language type checking and scoping are tightly connected and complement each other;
for the sake of readability, we will split typing and scoping into two separate chapters.

We will not write a code generator or an interpreter for SmallJava: we are more
interested in statically checking SmallJava programs rather than executing them.
However, a code generator or an interpreter could easily be implemented reusing
the same techniques illustrated in Chapter 5, Code Generation and Chapter 8,
An Expression Language respectively.

Type Checking

[192]

Let us stress that implementing the whole Java language and, in particular, its
complete type system, would not be feasible in this book. The Java type system
is complex due to advanced features such as inner classes, static methods,
method overloading, and generics. Furthermore, all these concepts require a solid
background on type theory, which is out of the scope of this book. Instead we
concentrate on a small subset of Java features, which, as hinted previously, are
common also to other object-oriented languages. If your DSL needs to access Java
types and to be interoperable with Java, you may want to consider using Xbase,
briefly described in Chapter 12, Xbase. If your DSL does not have to interact with Java,
the concepts described in this chapter can be reused and adapted to fit your DSL.

Creating the project
First of all, we will use the Xtext project wizard to create the projects for our DSL
(following the same procedure that we saw in the previous chapters).

Start Eclipse and:

1. Navigate to File | New | Project...; in the dialog, navigate to the Xtext
category and click on Xtext Project.

2. In the next dialog, fill in the details for the following fields:

 ° Project name: org.example.smalljava
 ° Name: org.example.smalljava.SmallJava
 ° Extensions: smalljava
 ° Uncheck the option Create SDK feature project

The wizard will create three projects into your workspace and it will open the
SmallJava.xtext file that is the grammar definition.

SmallJava grammar
Before starting to develop this language, we sketch the simplifications we will adopt:

• Classes have no explicit constructors
• There is no cast expression
• Arithmetic and boolean expressions are not implemented
• Basic types (such as int, boolean, and so on) and void methods are not

considered (methods must always return something)
• There is no method overloading

Chapter 9

[193]

• Member access must always be prefixed with the object (even if it is this)
• super is not supported (but it will be implemented in the next chapter)
• The new instance expression does not take arguments (since there are only

implicit default constructors)

Basically, the features that we are interested in and that will allow us to have
a case study for type checking and scoping (next chapter) are class inheritance,
field and method definitions, and blocks of statements with local variable definitions.

Rules for declarations
The rules in the grammar are prefixed with SJ to avoid confusion with the classes
and terms in Java that they mimic.

The first rule is straightforward it states that a SmallJava program is a possibly
empty sequence of classes:

SJProgram:
 classes+=SJClass*;

SJClass: 'class' name=ID ('extends' superclass=[SJClass])? '{'
 members += SJMember*
 '}' ;

SJMember:
 SJField | SJMethod ;

SJField:
 type=[SJClass] name=ID ';' ;

SJMethod:
 type=[SJClass] name=ID
 '(' (params+=SJParameter (',' params+=SJParameter)*)? ')'
 body=SJMethodBody ;

Each class can have a superclass (that is, a reference to another SmallJava class)
and a possibly empty sequence of members. An SJMember object can be either an
SJField object or an SJMethod object; note that since both fields and methods have
a type and a name feature, these two features will end up in their common base
class SJMember.

Type Checking

[194]

The body of a method is a sequence of SJStatement (defined later) enclosed in
curly brackets:

SJMethodBody:
 '{' statements += SJStatement* '}';

If we define the rule for the method body as in the preceding code snippet, we get
a warning:

The rule 'SJMethodBody' may be consumed without object
instantiation. Add an action to ensure object creation, for example,
'{SJMethodBody}'.

In fact, the only assignment is to the feature statements, which is based on
SJStatement*; if no statement is parsed, the rule will be valid, but the feature will
not be assigned and no object will be instantiated (see the Digression on Xtext grammar
rules section, Chapter 8, An Expression Language for an explanation of how object
instantiation and feature assignment in a rule are connected). As suggested by the
warning, we add an action to ensure object creation:

SJMethodBody:
 {SJMethodBody} '{' statements += SJStatement* '}';

Rules for statements and syntactic predicates
These are the rules for statements:

SJStatement:
 SJVariableDeclaration |
 SJReturn |
 SJExpression ';' |
 SJIfStatement
;

SJReturn:
 'return' expression=SJExpression ';'
;

SJVariableDeclaration:
 type=[SJClass] name=ID '=' expression=SJExpression ';'
;

SJIfStatement:
 'if' '(' expression=SJExpression ')' thenBlock=SJIfBlock
 (=>'else' elseBlock=SJIfBlock)?
;

Chapter 9

[195]

SJIfBlock:
 statements += SJStatement
 | '{' statements += SJStatement+ '}' ;

The blocks for an if statement can also be specified without curly brackets; in this
case, a single statement can be specified.

The rule for the if statement shows another important feature of Xtext grammars:
syntactic predicates represented by the symbol =>. These are useful to solve
ambiguities in a grammar; we will use the if statement as an example to describe
such situations. If we write the rule for the if statement as follows:

SJIfStatement:
 'if' '(' expression=SJExpression ')' thenBlock=SJIfBlock
 ('else' elseBlock=SJIfBlock)?
;

during the MWE2 workflow we will get this warning in the console:

warning(200): Decision can match input such as "'else'" using multiple
alternatives: 1, 2
As a result, alternative(s) 2 were disabled for that input

This issue is also known as the Dangling Else Problem; if you consider this nested
if statement:

if (...)
 if (...)
 statement
 else
 statement

The parser would not know to which if statement the else belongs to (remember
that spaces and indentation are ignored by the parser); it could belong either to the
outer if or to the inner one, and this leads to an ambiguity.

Never ignore warnings issued by the MWE2 workflow
concerning the generated ANTLR parser: each warning will
surely be a source of problems if not solved, even when
ambiguities are automatically resolved by the parser itself using
a default strategy. Make sure each ambiguity is resolved the
way you want.

Type Checking

[196]

By using the syntactic predicate, i.e., the => before the 'else' keyword, we remove
such ambiguity by directing the parser: we tell the parser that if it finds the 'else'
keyword, then it should not try to search for other ways of parsing the statement,
and the else will belong to the inner if (which is the typical behavior of languages
with an if statement).

Another way of solving ambiguities is to enable backtracking
for the ANTLR parser generator. However, this is strongly
discouraged, and it is only a source of further problems not easily
detectable; thus we will not consider this option in this book.

The block for the method body and the one for the if statement are similar:

SJMethodBody:
 {SJMethodBody} '{' statements += SJStatement* '}';

SJIfBlock:
 statements += SJStatement
 | '{' statements += SJStatement+ '}' ;

In particular, they both have the statements feature. Therefore we add a rule in the
grammar that introduces a common base class (with the statements feature):

SJBlock: SJMethodBody | SJIfBlock ;

Note that the rule name is grayed in the Xtext grammar editor: this highlights the
fact that this rule is never called by the parser; however, the Java class SJBlock will
be generated as the superclass for SJMethodBody and SJIfBlock. In particular,
since the feature statements is common to both classes, this field will be in the class
SJBlock so that we can treat both a method body and the blocks of an if statement
in the same way. This will be useful when dealing with variable declarations in
nested program blocks in the next chapter.

Similarly, the rule SJParameter and the rule SJVariableDeclaration have
something in common: the type and name features. Therefore, we introduce
a rule for forcing the creation of a common superclass:

SJSymbol: SJVariableDeclaration | SJParameter ;

This will give us a common supertype for referring to a local variable and
a parameter from within a method body, as we will see later in this chapter.

Chapter 9

[197]

Rules for expressions
As we saw in the rule SJStatement, a statement can also be an expression
terminated by ;. In fact, as in Java, a method invocation can be both a standalone
statement and an expression, that is, the right-hand side of an assignment or the
argument for another method invocation.

Also an assignment statement can itself be an expression; for instance, in Java you
can write:

a = b = c ;

with the meaning that c is assigned both to b and to a (formally, first c is assigned
to b and then b is assigned to a). Moreover, both the left-hand and right-hand side
of an assignment can be expressions.

For all of the aforementioned reasons, and from what you learned from Chapter 8,
An Expression Language, you should know that trying to write the rule for the
assignment like this:

SJExpression: SJAssignment;

SJAssignment:
 left=SJExpression '=' right=SJExpression
;

would make the grammar left recursive.

A similar problem is experienced when writing the rule for a member selection
expression, that is, for selecting a field or a method on an object (the most typical
expression in an object-oriented language). In fact, in order to be able to write
selection expressions like:

a.b().c.d()

the left-hand side of a member selection (which is usually called the receiver of the
selection) must be an expression.

Therefore, we cannot write the rule for selection as follows, since it would be
left recursive:

// This is invalid
SJExpression: SJAssignment | SJSelectionExpression;

SJSelectionExpression:
 receiver=SJExpression '.' member=[SJMember]
 ...
;

Type Checking

[198]

Therefore, we need to left factor the grammar using the technique introduced in
Chapter 8, An Expression Language.

To keep the presentation simple, we will not deal with arithmetic and boolean
expressions in the grammar. We will concentrate only on assignments, member
selections, and some additional terminal expressions. All the other expressions can
be easily added taking the Expressions DSL of Chapter 8, An Expression Language
as inspiration.

We must write the rule for the expression with lower precedence first (that is,
the rule for assignment):

SJExpression: SJAssignment;

SJAssignment returns SJExpression:
 SJSelectionExpression
 ({SJAssignment.left=current} '=' right=SJExpression)?
;

The left factoring technique should be familiar by now. Just note that an assignment
expression must be right-associative (refer to Chapter 8, An Expression Language for
associativity). That is why we wrote the right recursive part as:

right=SJExpression)? Right associativity

instead of

right=SJSelectionExpression)* Left associativity

Therefore, a nested assignment expression like

a = b = c

will be parsed as

a = (b = c)

as required by our DSL.

The rule for member selection is as follows:

SJSelectionExpression returns SJExpression:
 SJTerminalExpression
 (
 {SJMemberSelection.receiver=current} '.'
 member=[SJMember]
 (methodinvocation?='('

Chapter 9

[199]

 (args+=SJExpression (',' args+=SJExpression)*)? ')'
)?
)* ;

Remember that while the name of the rule is SJSelectionExpression, the rule will
instantiate an SJMemberSelection object.

Note that this rule deals both with field selection and method invocation; for this
reason, the part that deals with method invocation can have optional parentheses and
arguments. We keep track of the presence of parentheses using the boolean feature
methodinvocation; this will allow us to distinguish between an SJMemberSelection
object that represents a field selection from one that represents a method invocation.

You may also be tempted to distinguish between a field selection and a method
invocation explicitly in the grammar. For instance, we could write the rule as follows:

// alternative DISCOURAGED implementation
SJSelectionExpression returns SJExpression:
 SJTerminalExpression
 (
 ({SJMethodInvocation.receiver=current} '.'
 method=[SJMethod]
 '(' (args+=SJExpression (',' args+=SJExpression)*)? ')')
 |
 ({SJFieldSelection.receiver=current} '.' field=[SJField])
)* ;

After parsing a dot, the parser needs to scan all the way to the right parenthesis;
if it finds it, then it creates an instance of SJMethodInvocation that refers directly
to an SJMethod; otherwise, it parses the selection by creating an instance of
SJFieldSelection which refers directly to an SJField object. This solution has the
advantage that in the AST it is straightforward to distinguish a field selection from
a method invocation since they are represented by objects of different types.

However, this version of the rule will require a parser that performs additional work,
and most important of all, many IDE tooling features (such as the content assist) will
not work as expected.

In general, a good practice in Xtext DSL implementations is to keep the
grammar simple. It is better to have a loose grammar and a strict validation
phase ("loose grammar, strict validation", see Zarnekow 2012).

Therefore, we keep the selection rule in its original form, and we will deal
with the cases for field selection and method invocation in the validator and
in other components.

Type Checking

[200]

Finally, we have the rule for terminal expressions:

SJTerminalExpression returns SJExpression:
 {SJStringConstant} value=STRING |
 {SJIntConstant} value=INT |
 {SJBoolConstant} value = ('true' | 'false') |
 {SJThis} 'this' |
 {SJNull} 'null' |
 {SJSymbolRef} symbol=[SJSymbol] |
 {SJNew} 'new' type=[SJClass] '(' ')' |
 '(' SJExpression ')'
;

Note that we have a single rule for referring both to a parameter (SJParamenter)
and to a local variable (SJVariableDeclaration), since we have a cross-reference
of type SJSymbol (see the rule we added previously to have a base class for both
parameters and local variables). In our DSL you cannot pass arguments when
creating an instance (SJNew) since we simplified the language by removing explicit
parameterized constructors. Finally, as in the Expressions DSL, we have a rule that
allows explicit parentheses.

As we hinted in the beginning of this chapter, member access always requires a
receiver expression, even if it is this. If we also wanted to handle member access
with an implicit receiver expression, we could have changed the rule for SJSymbol
to also include SJMember, for example:

SJSymbol: SJVariableDeclaration | SJParameter | SJMember;

The features type and name are common to SJMember as well. However, this would
require some additional work when implementing other aspects of the DSL, which
might distract from the real intent of the SmallJava DSL, that is, being a case study
for typing and scoping.

The complete grammar
We will sum up by showing the complete grammar of the SmallJava DSL (in the next
chapter we will modify this grammar):

grammar org.example.smalljava.SmallJava with
 org.eclipse.xtext.common.Terminals

generate smallJava "http://www.example.org/smalljava/SmallJava"

SJProgram:
 classes+=SJClass*;

Chapter 9

[201]

SJClass: 'class' name=ID ('extends' superclass=[SJClass])? '{'
 members += SJMember*
 '}' ;

SJMember:
 SJField | SJMethod ;

SJField:
 type=[SJClass] name=ID ';' ;

SJMethod:
 type=[SJClass] name=ID
 '(' (params+=SJParameter (',' params+=SJParameter)*)? ')'
 body=SJMethodBody ;

SJMethodBody:
 {SJMethodBody} '{' statements += SJStatement* '}';

SJStatement:
 SJVariableDeclaration |
 SJReturn |
 SJExpression ';' |
 SJIfStatement
;

SJVariableDeclaration:
 type=[SJClass] name=ID '=' expression=SJExpression ';'
;

SJReturn:
 'return' expression=SJExpression ';'
;

SJIfStatement:
 'if' '(' expression=SJExpression ')' thenBlock=SJIfBlock
 (=>'else' elseBlock=SJIfBlock)?
;

SJIfBlock:
 statements += SJStatement
 | '{' statements += SJStatement+ '}' ;

SJBlock: SJMethodBody | SJIfBlock ;

SJSymbol: SJVariableDeclaration | SJParameter ;

SJExpression: SJAssignment;

Type Checking

[202]

SJAssignment returns SJExpression:
 SJSelectionExpression
 ({SJAssignment.left=current} '=' right=SJExpression)?
;

SJSelectionExpression returns SJExpression:
 SJTerminalExpression
 (
 {SJMemberSelection.receiver=current} '.'
 member=[SJMember]
 (methodinvocation?='('
 (args+=SJExpression (',' args+=SJExpression)*)? ')'
)?
)* ;

SJTerminalExpression returns SJExpression:
 {SJStringConstant} value=STRING |
 {SJIntConstant} value=INT |
 {SJBoolConstant} value = ('true' | 'false') |
 {SJThis} 'this' |
 {SJNull} 'null' |
 {SJSymbolRef} symbol=[SJSymbol] |
 {SJNew} 'new' type=[SJClass] '(' ')' |
 '(' SJExpression ')'
;

Utility methods
As we did for previous DSLs, we write an Xtend class, SmallJavaModelUtil,
with static utility methods for accessing the AST model of a SmallJava program:

import static extension org.eclipse.xtext.EcoreUtil2.*

class SmallJavaModelUtil {
 def static fields(SJClass c) {
 c.members.filter(typeof(SJField))
 }

 def static methods(SJClass c) {
 c.members.filter(typeof(SJMethod))
 }

 def static returnStatement(SJMethod m) {
 m.body.statements.typeSelect(typeof(SJReturn)).head
 }

Chapter 9

[203]

 def static containingClass(EObject e) {
 e.getContainerOfType(typeof(SJClass))
 }

 def static containingBlock(EObject e) {
 e.getContainerOfType(typeof(SJBlock))
 }

 def static containingProgram(EObject e) {
 e.getContainerOfType(typeof(SJProgram))
 }

 def static containingMethod(EObject e) {
 e.getContainerOfType(typeof(SJMethod))
 }
}

Since the feature members in an SJClass object contains both the SJField and
SJMethod instances, it is useful to have utility methods to quickly select them based
on type. We will use these static methods in other Xtend classes with an import
static extension statement so that we will be able to write expressions such as:

• c.methods

• c.fields

As we will see in the rest of the chapter, we will often need to directly access the
containing class, the containing block, the containing program, and the containing
method of an expression or statement thus, we write the corresponding utility
methods (recall that getContainerOfType comes from EcoreUtil2, whose static
methods are imported as extension methods). Finally, the method to quickly access
the return statement will be useful when writing unit tests for the DSL.

Testing the grammar
As you should know by now, we should write unit tests for the parser as soon
as we write some rules for the DSL grammar. In this chapter we show only a few
interesting cases, in particular the tests for the associativity of expressions such as
assignments and member selection (see Chapter 8, An Expression Language, for the
technique for testing associativity). We use the SmallJavaModelUtil utility methods
to write cleaner tests:

import static extension
 org.example.smalljava.util.SmallJavaModelUtil.*
import static extension org.junit.Assert.*

Type Checking

[204]

@RunWith(typeof(XtextRunner))
@InjectWith(typeof(SmallJavaInjectorProvider))
class SmallJavaParserTest {
 @Inject extension ParseHelper<SJProgram>
 @Inject extension ValidationTestHelper

 @Test def void testMemberSelectionLeftAssociativity() {
 '''
 class A {
 A m() { return this.m().m(); }
 }
 '''.parse.classes.head.methods.head.
 body.statements.last.assertAssociativity("((this.m).m)")
 }

 @Test def void testAssignmentRightAssociativity() {
 '''
 class A {
 A m() {
 A f = null;
 A g = null;
 f = g = null;
 return null;
 }
 }
 '''.parse.classes.head.methods.head.
 body.statements.get(2).assertAssociativity("(f = (g = null))")
}

 def private assertAssociativity(SJStatement s, CharSequence
expected) {
 expected.toString.assertEquals(s.stringRepr)
 }

 def private String stringRepr(SJStatement s) {
 switch (s) {
 SJAssignment:
 '''(«s.left.stringRepr» = «s.right.stringRepr»)'''
 SJMemberSelection:
 '''(«s.receiver.stringRepr».«s.member.name»)'''
 SJThis: "this"
 SJNew: '''new «s.type.name»()'''
 SJNull: "null"

Chapter 9

[205]

 SJSymbolRef: s.symbol.name
 SJReturn: s.expression.stringRepr
 }
 }

The additional effort in writing tests for the SmallJava DSL is that when you need to
access statements and expressions, you will need to walk the AST model to access
the class, then the method, and then access the desired expression or statements in
the method's body statement list. However, by relying on Xtend syntactic sugar,
it is easy to write such logic.

First validation rules
Before getting to the main subject of this chapter, we will first implement some
constraint checks that are complementary to type checking.

Checking cycles in class hierarchies
The SmallJava parser accepts input with cyclic class hierarchies, for instance:

class A extends C {}

class C extends B {}

class B extends A {}

This cannot be checked in the parser; we must write a validator @Check method to
mark such situations as errors (this is similar to the validator for the Entities DSL
in Chapter 4, Validation). As you will see later in this chapter, we will often need to
traverse the inheritance hierarchy of a class to perform additional checks. Also in this
case it is our job to avoid an infinite loop in case of cycles. We write a utility method
in SmallJavaModelUtil that collects all the classes in the hierarchy of a given
SJClass, to avoid entering an infinite loop. Similarly to what we did for the Entities
DSL, we will visit the class hierarchy inspecting the superclass feature and we will
stop the visit either when the superclass is null or when a class is already in the list
of visited classes:

class SmallJavaModelUtil {

 def static classHierarchy(SJClass c) {
 val visited = <SJClass>newArrayList()

 var current = c.superclass
 while (current != null && !visited.contains(current)) {
 visited.add(current)

Type Checking

[206]

 current = current.superclass
 }

 visited
 }...

When looking at the example code, you will find that
testing is done in isolation in its own Junit test class for
SmallJavaModelUtil—this is not shown in this chapter.

Now it is straightforward to write the validator method for checking whether the
hierarchy of a class contains a cycle; given an SJClass object, we just need to check
whether that class is contained in its own class hierarchy.

import static extension
 org.example.smalljava.util.SmallJavaModelUtil.*

class SmallJavaValidator extends AbstractSmallJavaValidator {

 public static val HIERARCHY_CYCLE =
 "org.example.smalljava.HierarchyCycle";

 @Check
 def checkClassHierarchy(SJClass c) {
 if (c.classHierarchy.contains(c)) {
 error("cycle in hierarchy of class '" + c.name + "'",
 SmallJavaPackage::eINSTANCE.SJClass_Superclass,
 HIERARCHY_CYCLE, c.superclass.name)
 }
 }...

Differently from what we did in Chapter 4, Validation for the Entities DSL, we do
not build the inheritance hierarchy directly in the validator; we implemented this
functionality in SmallJavaModelUtil since we will use it in other parts.

We test this validator rule as follows:

@RunWith(typeof(XtextRunner))
@InjectWith(typeof(SmallJavaInjectorProvider))
class SmallJavaValidatorTest {
 @Inject extension ParseHelper<SJProgram>
 @Inject extension ValidationTestHelper

 @Test def void testClassHierarchyCycle() {
 '''
 class A extends C {}

Chapter 9

[207]

 class C extends B {}
 class B extends A {}
 '''.parse => [
 assertHierarchyCycle("A")
 assertHierarchyCycle("B")
 assertHierarchyCycle("C")
]
 }

 def private void assertHierarchyCycle(SJProgram p,
 String expectedClassName) {
 p.assertError(
 SmallJavaPackage::eINSTANCE.SJClass,
 SmallJavaValidator::HIERARCHY_CYCLE,
 "cycle in hierarchy of class '" + expectedClassName + "'"
)
 }...

Validation rules should be tested for both results; that is, a test for
an input containing a validation error and a test for a valid input
without validation errors. For example, you should also implement
a test with an input without cycles in the hierarchy and use
assertNoErrors. Due to a lack of space, we will skip these tests
in this chapter.

Checking member selections
As we said in the section Rules for Expressions, we preferred to have a simple rule
for member selection; this means that we must check whether a member selection
actually refers to a field and whether a method invocation actually refers to a method
("Loose grammar, Strict validation"); in fact, this program, which is not valid,
is accepted by our DSL:

class C {
 C f;
 C m() {
 this.f(); // method invocation on a field
 this.m; // field selection on a method
 return null;
 }
}

Type Checking

[208]

We therefore write a @Check method for checking these situations. In particular,
we use the boolean feature methodinvocation to know what we need to check;
remember that this feature is set to true if the program text contains an opening
parenthesis after the member reference. Without this feature, we would have
had to inspect the actual text of the program.

public static val FIELD_SELECTION_ON_METHOD =
 "org.example.smalljava.FieldSelectionOnMethod"

public static val METHOD_INVOCATION_ON_FIELD =
 "org.example.smalljava.MethodInvocationOnField"

@Check
def void checkMemberSelection(SJMemberSelection sel) {
 val member = sel.member
 if (member != null) {
 if (member instanceof SJField && sel.methodinvocation)
 error(
 '''Method invocation on a field''',
 SmallJavaPackage::eINSTANCE.
 SJMemberSelection_Methodinvocation,
 METHOD_INVOCATION_ON_FIELD)
 if (member instanceof SJMethod && !sel.methodinvocation)
 error(
 '''Field selection on a method''',
 SmallJavaPackage::eINSTANCE.SJMemberSelection_Member,
 FIELD_SELECTION_ON_METHOD
)
 }
}

Note that for an error concerning a method invocation on a field, we pass the
methodinvocation feature when calling error. This way, the error marker
will be placed on the opening parenthesis.

This validator rule is verified by the following two test methods:

@Test def void invocationOnField() {
 '''
 class A {
 A f;
 A m() {
 return this.f();
 }
 }

Chapter 9

[209]

 '''.parse.assertError(
 SmallJavaPackage::eINSTANCE.SJMemberSelection,
 SmallJavaValidator::METHOD_INVOCATION_ON_FIELD,
 "Method invocation on a field"
)
}

@Test def void fieldSelectionOnMethod() {
 '''
 class A {
 A m() {
 return this.m;
 }
 }
 '''.parse.assertError(
 SmallJavaPackage::eINSTANCE.SJMemberSelection,
 SmallJavaValidator::FIELD_SELECTION_ON_METHOD,
 "Field selection on a method"
)
}

Checking return statements
We must check that a return statement is the last statement of a block. If there
were other statements after the return statement, they would never be executed,
and thus we should issue an "Unreachable code" error (like Java does). We could
have enforced this in the grammar by writing the rule for SJMethodBody as follows
(we only show the case for the block of the method body, since for the blocks of an
if statement it is slightly more complicated):

SJMethodBody:
 {SJMethodBody} '{'
 statements += SJStatement*
 (returnStatement = SJReturn)?
 '}';

SJStatement:
 SJVariableDeclaration |
 SJExpression ';' |
 SJIfStatement
;

Type Checking

[210]

This solution has several drawbacks. First of all, while you can easily access the
return statement of a block, you cannot treat all the statements of a block uniformly,
and you will need to consider the case for the return statement separately. Most
important of all, in case the return statement is not the last statement of a block, the
error issued by the parser does not bring much information; indeed, several syntax
errors will be generated that are hard to understand by the user (see the following
screenshot). Not getting AST elements in such cases also means it is not possible
(or very hard) to offer good quick fixes:

It is much better to have a loose grammar rule in combination with a strict check
to provide better error messages. We will check that the return statement is the last
element of a block's statement list; if this is not the case, we generate an error on the
statement following the return statement, specifying that it is "Unreachable code"
as shown in the following code snippet:

public static val UNREACHABLE_CODE =
 "org.example.smalljava.UnreachableCode"

@Check
def void checkNoStatementAfterReturn(SJReturn ret) {
 val statements = ret.containingBlock.statements
 if (statements.last != ret) {
 // put the error on the statement after the return
 error("Unreachable code",
 statements.get(statements.indexOf(ret)+1),
 null, // EStructuralFeature
 UNREACHABLE_CODE)
 }
}

Chapter 9

[211]

We use the version of the error method that also accepts the EObject to mark with
the error (if not specified, the object that is passed to the @Check method is marked).
Since we pass null for the EStructuralFeature argument, the whole statement will
be marked with the error.

To test that the error is actually generated on the correct statement, we rely on the
type of the statement:

@Test def void testUnreachableCode() {
 '''
 class C {
 C m() {
 return null;
 this.m(); // the error should be placed here
 }
 }
 '''.parse.assertError(
 SmallJavaPackage::eINSTANCE.SJMemberSelection,
 SmallJavaValidator::UNREACHABLE_CODE,
 "Unreachable code"
)
}

In the preceding code, we check that the error is on the statement of type
SJMemberSelection, that is, the statement after the return statement in
the test input code.

In the following screenshot, you can see how much better and informative the
generated error will be:

Type Checking

[212]

If we need a quick way of accessing the return statement of a block, we call the
utility static method returnStatement in SmallJavaModelUtil.

The same utility method can be used to check that a method actually ends with a
return statement (since in SmallJava there are no void methods); the implementation
of this validator method can be found in the sources of the example. Also, in this
case, the error contains more information than what we would get if we tried to
rule out this situation in the grammar.

Checking for duplicates
In the DSL examples we have seen so far, we have always used the default
validator NamesAreUniqueValidator to check for elements of the same kind
with the same name. In this example, we will not enable this validator (by default it
is not enabled in the MWE2 workflow) and we will deal with such checks manually
in our own validator.

We want to allow methods and fields with the same name as in Java,
and NamesAreUniqueValidator would mark this as an error. Moreover,
NamesAreUniqueValidator relies on the Xtext index, which we are going
to customize in an incompatible way at the end of the next chapter.

To check for duplicate elements, we search for an object that is different from the
object being checked and that has the same name. We will use the same issue code
for all errors related to duplicate elements.

For instance, for classes we write:

public static val DUPLICATE_ELEMENT =
 "org.example.smalljava.DuplicateElement"

@Check def void checkNoDuplicateClass(SJClass c) {
 if (c.containingProgram.classes.exists[
 it != c && it.name == c.name])
 error("Duplicate class '" + c.name + "'",
 SmallJavaPackage::eINSTANCE.SJClass_Name,
 DUPLICATE_ELEMENT)
}

Chapter 9

[213]

In order to check that there are no duplicate fields and no duplicate methods, we
write a single @Check method where we examine only the elements of the same kind
as the SJMember being checked. This way, we will allow a field and a method to have
the same name:

@Check def void checkNoDuplicateMember(SJMember member) {
 val duplicate = member.containingClass.members.findFirst[
 it != member && it.eClass == member.eClass &&
 it.name == member.name]
 if (duplicate != null)
 error("Duplicate member '" + member.name + "'",
 SmallJavaPackage::eINSTANCE.SJMember_Name,
 DUPLICATE_ELEMENT)
}

We can safely check for equality on the EClass of the members since EMF
guarantees that for each EClass there is only one instance in the system.

For members, we write tests to verify error situations and valid programs:

@Test def void testDuplicateMethods() {
 '''
 class C {
 C m() { return null; }
 C m() { return null; }
 }
 '''.parse.assertError(
 SmallJavaPackage::eINSTANCE.SJMethod,
 SmallJavaValidator::DUPLICATE_ELEMENT,
 "Duplicate member 'm'"
)
}

@Test def void testDuplicateFields() {
 '''
 class C {
 C f;
 C f;
 }
 '''.parse.assertError(
 SmallJavaPackage::eINSTANCE.SJField,
 SmallJavaValidator::DUPLICATE_ELEMENT,
 "Duplicate member 'f'"
)

Type Checking

[214]

}

@Test def void testFieldAndMethodWithTheSameNameAreOK() {
 '''
 class C {
 C f;
 C f() { return null; }
 }
 '''.parse.assertNoErrors
}

The check for duplicate variable declarations must deal with possible nested blocks,
since we do not allow a local variable to shadow a previously defined variable with
the same name. Instead of inspecting all possible nested blocks manually, we use the
method EcoreUtil2.getAllContentsOfType, which returns the list of all elements
of a given type, even the nested ones:

@Check
def void checkNoDuplicateVariable(SJVariableDeclaration vardecl) {
 val duplicate = vardecl.containingMethod.body.
 getAllContentsOfType(typeof(SJVariableDeclaration)).
 findFirst[it != vardecl && it.name == vardecl.name]
 if (duplicate != null)
 error("Duplicate variable declaration '" + vardecl.name + "'",
 SmallJavaPackage::eINSTANCE.SJSymbol_Name,
 DUPLICATE_ELEMENT)
}

Type checking
Most of the constraint checks for an object-oriented language such as SmallJava
will deal with type checking; that is, checking that expressions and statements
are well-typed.

We have already seen how to perform a simple form of type checking in the
Expressions DSL (Chapter 8, An Expression Language). In this chapter, we will
see an advanced type checking mechanism which includes Subtyping or type
conformance: an object of class C can be used in a context where an object of a
superclass of C is expected.

We will follow the same strategy illustrated in Chapter 8, An Expression Language: we
will separate the type computation from the actual type checking. We will be able to
generate the error on the sub-expression or statement that is the source of the problem.

Chapter 9

[215]

Type provider for SmallJava
The type provider for SmallJava expressions we are about to construct will compute
the type of any SJExpression. The concept of type will be represented by SJClass
since SmallJava does not support native types (such as int, boolean, and so on).

We write a single typeFor method which returns an SJClass object by using a type
switch (the default case simply returns null).

import static extension org.eclipse.xtext.EcoreUtil2.*

class SmallJavaTypeProvider {
 def typeFor(SJExpression e) {
 switch (e) {
 SJNew: e.type
 SJSymbolRef: e.symbol?.type
 SJMemberSelection: e.member?.type
 SJThis : e.getContainerOfType(typeof(SJClass))
 ...
 }
 }...

In the preceding method, the type of a new instance expression is clearly the class
that we are instantiating (the feature: type). The type of a symbol reference is the
type of the referred symbol. Similarly, the type of a member reference is the type of
the referred member. The type for this is simply the type of the containing class.
Note that while at runtime the actual object replacing this could be an object of a
subclass, statically, its type is always the class where this is being used. In all of the
preceding cases, the type always corresponds to an existing SJClass.

Now we need to provide a type for the remaining terminal expressions, that is,
null and the constant expressions. For these expressions, there are no existing
SJClass instances that we can use as types: we will create static instances in
SmallJavaTypeProvider (for convenience, we will also give them a name):

class SmallJavaTypeProvider {
 public static val stringType =
 SmallJavaFactory::eINSTANCE.createSJClass => [name='stringType']
 public static val intType =
 SmallJavaFactory::eINSTANCE.createSJClass => [name = 'intType']
 public static val booleanType =
 SmallJavaFactory::eINSTANCE.createSJClass =>[name='booleanType']

 public static val nullType =
 SmallJavaFactory::eINSTANCE.createSJClass => [name = 'nullType']

Type Checking

[216]

 def typeFor(SJExpression e) {
 switch (e) {
 ...continuation
 SJNull: nullType
 SJStringConstant: stringType
 SJIntConstant: intType
 SJBoolConstant: booleanType
 }
 }

 def isPrimitive(SJClass c) {
 c.eResource == null
 }
...

Note that it is convenient to have a way of identifying the types we created for null
and for constant expressions, which we call primitive types; we have a specific
method for that called isPrimitive. An easy way to identify such types is to check
that they are not part of a resource. We will need this distinction in the next chapter.

To test the type provider and keep the tests clean and compact, we implement a
method that contains the skeleton of the test logic where a single passed expression
is replaced. This way, the actual test methods are compact and simple since they only
specify the expression and the expected type name:

@RunWith(typeof(XtextRunner))
@InjectWith(typeof(SmallJavaInjectorProvider))
class SmallJavaTypeProviderTest {
 @Inject extension ParseHelper<SJProgram>
 @Inject extension ValidationTestHelper
 @Inject extension SmallJavaTypeProvider

 def private assertType(CharSequence testExp,
 String expectedClassName) {
 '''
 class R { public V v; }
 class P extends R { public R m() { return null; } }
 class V extends R { public N n; }
 class N extends R {}
 class F extends R {}

 class C extends R {
 F f;

 R m(P p) {

Chapter 9

[217]

 V v = null;
 «testExp»;
 return null;
 }
 }
 '''.parse => [
 assertNoErrors
 expectedClassName.assertEquals(
 classes.last.methods.last.
 body.statements.get(1).statementExpressionType.name
)
]
 }

 def private statementExpressionType(SJStatement s) {
 (s as SJExpression).typeFor
 }

 @Test def void thisType() {"this".assertType("C")}
 @Test def void paramRefType() {"p".assertType("P")}
 @Test def void varRefType() {"v".assertType("V") }
 @Test def void newType() {"new N()".assertType("N")}
 @Test def void fieldSelectionType() {"this.f".assertType("F")}
...other cases...
 @Test def void intConstantType() {'10'.assertType("intType")}
 @Test def void nullType() {'null'.assertType("nullType")}

This technique is useful when you need a complete program to perform tests.
In SmallJava you cannot type an expression without having a containing method
and a containing class.

Type conformance (subtyping)
In an object-oriented language, the type system must also take type conformance
(or Subtyping) into account: an object of class C can be used in a context where an
object of a superclass of C is expected. For instance, the following code is well-typed:

C c = new D();

provided that D is a subclass (subtype) of C. This holds true in every context
where an expression is assigned, for example, when we pass an argument in
a method invocation.

Type Checking

[218]

We implement type conformance in a separate class, SmallJavaTypeConformance.

To check whether a class is a subclass of another class, we need to inspect the class
hierarchy of the former and see whether we find the latter. In SmallJavaModelUtil,
we already have a method that computes the class hierarchy avoiding infinite loops
in case of a cyclic hierarchy, and we implement the method isSubclassOf as follows:

import static extension org.example.smalljava.util.
SmallJavaModelUtil.*

class SmallJavaTypeConformance {

 def isSubclassOf(SJClass c1, SJClass c2) {
 c1.classHierarchy.contains(c2)
 }...

Type conformance deals with subclasses as well as other special cases. For instance,
a class is not considered a subclass of itself, but it is of course conformant to itself.
Another special case is the expression null; it can be assigned to any variable and
field and passed as an argument for any parameter. The type for null, which is
represented by the static instance nullType in SmallJavaTypeProvider, must be
conformant to any other type.

This is the initial implementation of type conformance for SmallJava:

import static org.example.smalljava.typing.SmallJavaTypeProvider.*

class SmallJavaTypeConformance {
 ...
 def isConformant(SJClass c1, SJClass c2) {
 c1 == nullType || // null can be assigned to everything
 c1 == c2 ||
 c1.isSubclassOf(c2)
 }...

For the moment, we are not considering other cases (we need some additional
concepts, as we will see in the next chapter).

We test this implementation as follows:

@RunWith(typeof(XtextRunner))
@InjectWith(typeof(SmallJavaInjectorProvider))
class SmallJavaTypeConformanceTest {
 @Inject extension ParseHelper<SJProgram>
 @Inject extension SmallJavaTypeConformance
 @Inject extension SmallJavaTypeProvider

Chapter 9

[219]

 @Test def void testClassConformance() {
 '''
 class A {}
 class B extends A {}
 class C {}
 '''.parse.classes => [
 // A subclass of A
 get(0).isConformant(get(0)).assertTrue
 // B subclass of A
 get(1).isConformant(get(0)).assertTrue
 // C not subclass of A
 get(2).isConformant(get(0)).assertFalse
]
 }

 @Test def void testNullConformance() {
 '''
 class C {}
 class D {
 C m() { return null; }
 }
 '''.parse.classes => [
 val typeOfNull = last.methods.head.
 returnStatement.expression.typeFor
 // null can be assigned to anything
 typeOfNull.isConformant(get(0)).assertTrue
 typeOfNull.isConformant(get(1)).assertTrue
]
 }...

Expected types
Now we must check whether an expression has a type which conforms to the
one expected by the context where it is used. The context is not necessarily an
assignment or a method invocation; for instance, the expression used in an if
statement must have the type boolean.

An obvious but not very good way of implementing this check is to write a
@Check method in the validator for each specific context where the conformance
needs to be checked. For example, the check for the assignment expression could
be implemented as shown in the following code snippet:

@Check
def void checkAssignment(SJAssignment a) {
 val actualType = a.right.typeFor
 val expectedType = a.left.typeFor

Type Checking

[220]

 if (!actualType.isConformant(expectedType)) {
 error(...
 }
}

However, if we followed this approach, we would need to write several methods
in the validator, which all have the preceding logic in common.

It is easier to compute the expected type and actual type of an expression
separately and then check for conformance rather than checking explicitly for each
language construct. The expected type of an expression depends on the context
where the expression is being used. We implement the method, expectedType,
in SmallJavaTypeProvider.

The idea is that, given an expression, its expected type depends on its role in the
container of the expression. For instance, consider this SJVariableDeclaration:

C c = new D();

The expected type of the expression new D() depends on the fact that it is
contained in a variable declaration; the role, in particular, is represented by the
feature of the container that contains the expression; in this example, the feature of
SJVariableDeclaration is expression. We get the container using the method
eContainer and the containing feature using the method eContainingFeature.
Then, it is just a matter of dealing with all the cases. We will use a typed switch
that allows us to specify additional conditions (using the keyword case). Note that
the typed switch is performed not on the expression, but on the container of the
expression, and the case part deals with the containing feature. This reflects the fact
that the expected type of an expression does not depend on the expression itself, but
on the containing context.

To summarize, when the expression:

• is the initialization expression of a variable declaration, the expected type
is the type of the declared variable

• is the right-hand side of an assignment, the expected type is the type of the
left-hand side of the assignment

• is the expression of a return statement, the expected type is the return type
of the containing method

• is the expression of an if statement, the expected type is boolean
• is an argument of a method invocation, the expected type is the type of the

corresponding parameter of the invoked method.

Chapter 9

[221]

The implementation is as follows:

val ep = SmallJavaPackage::eINSTANCE

def expectedType(SJExpression e) {
 val c = e.eContainer
 val f = e.eContainingFeature
 switch (c) {
 SJVariableDeclaration case f ==
 ep.SJVariableDeclaration_Expression : c.type
 SJAssignment case f == ep.SJAssignment_Right :
 c.left.typeFor
 SJReturn case f == ep.SJReturn_Expression :
 c.containingMethod.type
 case f == ep.SJIfStatement_Expression:
 booleanType
 SJMemberSelection case f == ep.SJMemberSelection_Args : {
 // assume that it refers to a method and that there
 // is a parameter corresponding to the argument
 try {
 (c.member as SJMethod).params.get(c.args.indexOf(e)).type
 } catch (Throwable t) {
 null // otherwise there is no specific expected type
 }
 }
 }
}

Note that in the last case, we enclose the computation of the expected type in a
try-catch; in fact, there are some things that can go wrong in this case: the invoked
member does not exist, it is not a method, or there is no parameter corresponding to
the argument. In these cases, an exception is thrown and we simply return null as
the expected type. If this happens, the corresponding error situation is reported by
other validation checks.

Checking type conformance
Now we are able to write a single validator method to check type conformance for
a generic expression:

class SmallJavaValidator extends AbstractSmallJavaValidator {
 @Inject extension SmallJavaTypeProvider
 @Inject extension SmallJavaTypeConformance

Type Checking

[222]

 public static val INCOMPATIBLE_TYPES =
 "org.example.smalljava.IncompatibleTypes"

 @Check
 def void checkCompatibleTypes(SJExpression exp) {
 val actualType = exp.typeFor
 val expectedType = exp.expectedType
 if (expectedType == null || actualType == null)
 return; // nothing to check
 if (!actualType.isConformant(expectedType)) {
 error("Incompatible types. Expected '" + expectedType?.name
 + "' but was '" + actualType?.name + "'", null,
 INCOMPATIBLE_TYPES);
 }
 }

To test this method in SmallJavaValidatorTest, we must create a test for each
situation where conformance is not respected; as we did for the type provider, we
write a method that contains the skeleton of the input, where the passed expression
or statement is replaced:

def void assertIncompatibleTypes(CharSequence methodBody,
 EClass c, String expectedType, String actualType) {
 '''
 class F {}
 class R {}
 class P {}
 class P1 {}
 class P2 {}
 class V {}
 class C {
 F f;
 R m(P p) {
 «methodBody»
 }
 R n(P1 p1, P2 p2) { return null; }
 }
 '''.parse.assertError(
 c, SmallJavaValidator::INCOMPATIBLE_TYPES,
 "Incompatible types. Expected '" + expectedType
 + "' but was '" + actualType + "'"
)
 }

Chapter 9

[223]

 @Test def void assertVariableDeclExpIncompatibleTypes() {
 "V v = new P();".
 assertIncompatibleTypes(
 SmallJavaPackage::eINSTANCE.SJNew,"V", "P")
 }

 @Test def void assertReturnExpIncompatibleTypes() {
 "return p;".
 assertIncompatibleTypes(
 SmallJavaPackage::eINSTANCE.SJSymbolRef, "R", "P")
 }

 @Test def void assertArgExpIncompatibleTypes() {
 "this.n(new F(), new V());" => [
 assertIncompatibleTypes(
 SmallJavaPackage::eINSTANCE.SJNew, "P1", "F")
 assertIncompatibleTypes(
 SmallJavaPackage::eINSTANCE.SJNew, "P2", "V")
]
 }...other cases not shown...

We still need to check whether the number of arguments passed to a method
invocation is equal to the number of parameters of the invoked method:

@Check
def void checkMethodInvocationArguments(SJMemberSelection sel) {
 if (sel.member != null && sel.member instanceof SJMethod) {
 val method = sel.member as SJMethod
 if (method.params.size != sel.args.size) {
 error(
 "Invalid number of arguments. The method " +
 method.memberAsStringWithType +
 " is not applicable for the arguments " +
 sel.argsTypesAsStrings,
 SmallJavaPackage::eINSTANCE.SJMemberSelection_Member,
 INVALID_ARGS)
 }
 }
}

We implemented some utility methods (not shown here) to give a
representation of a method signature together with its arguments and
return type (memberAsStringWithType) and of the list of argument types
(argsTypesAsStrings), so that we can produce a better error message.

Type Checking

[224]

The following screenshot shows some validation errors:

Checking method overriding
Finally, we must check that method overrides are correct: the return type must be
conformant to the type of the overridden method and the parameter types must be
the same as the ones of the overridden method (of course, the parameter names can
be different):

@Check
def void checkMethodOverride(SJMethod m) {
 val overridden = m.containingClass.classHierarchy.
 map[methods].flatten.findFirst[it.name==m.name]

 if (overridden != null) {
 if (!m.type.isConformant(overridden.type) ||
 !m.params.map[type].
 elementsEqual(overridden.params.map[type])) {
 error("The method must override a superclass method",
 SmallJavaPackage::eINSTANCE.SJMember_Type,
 WRONG_METHOD_OVERRIDE)
 }
 }
}

Chapter 9

[225]

Let us do a partial examination of this implementation. First of all, we get the list of
the lists of methods in the class hierarchy of the containing class; we combine this list
of lists of methods into a single list (actually an Iterable instance) of methods using
the standard library utility method flatten. Then, we search for a method with
the same name as the examined method. If we find it, we check that the return type
of the examined method is conformant with the one of the overridden method and
that the parameter types are the same. For this latter check, we get the list of types
of parameters of the two methods and we use the standard library utility method
elementsEqual; this checks whether the two Iterables have the same number of
elements and that each element of the first Iterable is equal to the corresponding
element of the other Iterable.

This implementation is potentially slow when dealing with large
models (due to its quadratic complexity). You might want to later
optimize it by aggregating methods in a map with appropriate keys to
find associated methods much faster. Once you have a bunch of tests
for the simple implementation, you can experiment with optimizations
and make sure that tests still succeed.

Improving the UI
To provide a better experience to the user of the SmallJava editor and tooling, we
customize the appearance of SmallJava members (fields and methods) in several
places of the UI.

First of all, we give a better string representation of members by also showing their
type feature; thus, the string representation of a member is its name and its type's
name separated by a colon :. Moreover, for methods, we also show the type of
each parameter. We mimic the representation of Java members as implemented
by Eclipse JDT. We then implement the methods for string representation in
SmallJavaModelUtil:

def static memberAsString(SJMember m) {
 switch (m) {
 SJField: m.name
 SJMethod: m.name + "(" +
 m.params.map[type?.name].join(", ") + ")"
 }
}

def static memberAsStringWithType(SJMember m) {
 m.memberAsString + " : " + m.type.name
}

Type Checking

[226]

We also borrow icons from Eclipse JDT for classes, fields, and methods. As we saw in
Chapter 6, Customizations, we can specify the label representation for our DSL model
elements by implementing text and image methods in SmallJavaLabelProvider.
When we implement text, we can return a JFace StyledString object, which allows
us to also specify the style (font, color, and so on) of the resulting label. For instance,
we want to represent the part starting with : using a different style, again to
mimic JDT:

class SmallJavaLabelProvider extends
 org.eclipse.xtext.ui.label.DefaultEObjectLabelProvider {

 def text(SJMethod m) {
 new StyledString(m.memberAsString).
 append(new StyledString(" : " + m.type.name,
 StyledString::DECORATIONS_STYLER))
 }

 def text(SJField f) {
 new StyledString(f.name).
 append(new StyledString(" : " + f.type.name,
 StyledString::DECORATIONS_STYLER))
 }...

We also want a custom representation of members when they are proposed by
the content assist; this will provide the user with additional information about the
available members. In our SmallJavaProposalProvider class, we can simply override
the getStyledDisplayString method that is automatically called by the default
implementation of the proposal provider to represent the proposals. In this case, we
return a custom StyledString object for representing an SJMember element, and we
use a different style for representing the class containing the proposed member:

class SmallJavaProposalProvider extends
 AbstractSmallJavaProposalProvider {

 override getStyledDisplayString(EObject element,
 String qualifiedNameAsString, String shortName) {
 if (element instanceof SJMember) {
 val member = element as SJMember

Chapter 9

[227]

 new StyledString(member.memberAsStringWithType).
 append(new StyledString(" - " + member.containingClass.name,
 StyledString::QUALIFIER_STYLER))
 } else
 super.getStyledDisplayString(element,
 qualifiedNameAsString, shortName)
 }...

The result can be seen in the following screenshot (we also customized the outline
view, as we did in Chapter 6, Customizations). Note all the type related information
that is now available in the UI:

Type Checking

[228]

Summary
In this chapter we presented type checking techniques that are typical for a DSL with
object-oriented features. A small Java-like language was introduced to demonstrate
how to parse features such as member access and inheritance and how to handle
validation of type conformance.

There is however a crucial aspect that we still have to deal with: correct access to
members (fields and methods). In fact, the selection expression

e.f

is well-typed only if the field f is declared in the class of e (similarly for methods)
or in any superclass of the class of e. If you perform some experiments, you will note
that at the moment, you can access members which are not declared in the class of
the receiver expression, and that you cannot access all the members of the hierarchy
of the class of the receiver expression. Furthermore, local variable access does not
work correctly in the current implementation: you can also refer to variables defined
later and variables defined in inner blocks.

In order to correctly deal with the preceding issues, which concern cross-reference
resolution, we will need to implement a custom scoping mechanism, as we will see
in the next chapter. Scoping defines what is visible in a specific context so that Xtext
can correctly resolve cross-references.

In the next chapter, we will also add to SmallJava access level modifiers for
members (that is, private, protected, and public). We will show you how a
SmallJava program can access classes defined in other files and how to provide a
library with some predefined classes (for example, Object, String, and so on).

Scoping
As we have seen in the previous chapters, the first aspect you need to customize in
your DSL implementation in Xtext is the validator. Typically, the second aspect you
need to customize is scoping, which is the main mechanism behind visibility and
cross-reference resolution. As soon as the DSL needs some constructs for structuring
the code, a custom scoping implementation is required. In particular, scoping and
typing are often strictly connected and interdependent especially for object-oriented
languages. For this reason, in this chapter, we will continue developing the SmallJava
DSL introduced in the previous chapter. We will describe both local and global
scoping and explain how to customize scoping using SmallJava as a case study.

All the components that deal with scoping are fully documented in the Xtext
documentation. However, it looks like scoping is one of the hardest topics to
fully understand when developing with Xtext (it is one of the most common
subjects in the Xtext forum). This is due to the fact that some knowledge about the
infrastructure of Xtext and how scoping is used is required to fully understand
it. In this chapter, we will try to give a presentation of these mechanisms in a way
that should help you implement a custom scoping correctly.

Cross-reference resolution in Xtext
Cross-reference resolution involves several mechanisms. In this section
we introduce the main concepts behind these mechanisms and describe how they
interact. We will also write tests to get familiar with cross-reference resolution.

Containments and cross-references
Xtext relies on EMF for the in-memory representation of a parsed program,
thus, it is necessary to understand how cross-references are represented in EMF.

Scoping

[230]

In EMF, when a feature is not of the basic type (string, integer, and so on), it is
actually a reference (an instance of EReference). A containment reference defines
a stronger type of association. The referenced object is contained in the referring
object, called the container; in particular, an object can have only one container.
For non-containment references, the referenced object is stored somewhere else,
for example, in another object of the same resource or even in a different resource.
A cross-reference is implemented as a non-containment reference.

In Ecore the EReference class has a property called
containment that defines whether the reference is a
containment reference or not.

Let us recall the SmallJava DSL rule for a class definition:

SJClass: 'class' name=ID ('extends' superclass=[SJClass])? '{'
 members += SJMember*
 '}' ;

An SJMember member is contained in an SJClass class, that is, members is a
multi-value containment reference; on the contrary, superclass is a cross-reference.

Scoping deals with cross-references, that is, references with containment set to false.

The index
By default, in a DSL implemented in Xtext, every object which can be given a name
is automatically visible in a program, which means it can be referred to.

This mechanism is handled in Xtext by using an index. The index stores information
about all the objects in every resource. For technical reasons (mainly efficiency and
memory overhead) the index stores the IEObjectDescription elements instead
of the actual objects. An IEObjectDescription element is an abstract description
of EObject. This description contains the name of the object and the EMF URI of
the object. The EMF URI is a path that includes the resource of the object and its
position within the resource; the URI allows to locate and load the actual object when
needed. The description also contains the EClass of the object, which is useful to filter
descriptions by type.

The set of resources handled by the index depends on the context of execution. In the
IDE, Xtext indexes all the resources in all the projects with the Xtext nature; the index
is kept up-to-date in an incremental way using the incremental building mechanism
of Eclipse, thus keeping the overhead minimal.

Chapter 10

[231]

In a plain runtime context, where there is no workspace, the index is based on the
EMF ResourceSet. We will see what this implies when we write Junit tests and
when we implement a standalone compiler.

In both contexts the index is global; visibility across resources is handled by using
containers as shown later in the section, The index and the containers.

Qualified names
The default implementation of the index uses a mechanism based on names.
The computation of names is delegated to IQualifiedNameProvider. The default
implementation of the name provider is based on the feature name, this is why we
always defined elements that we want to refer to with a feature name in the grammar.

Using only the plain name will soon raise problems due to duplicates, even in a
simple program. Most Java-like languages use namespaces to allow for elements
with the same name, provided they are in different namespaces. Thus, for example,
two different methods are allowed to have local variables with the same name, two
different classes are allowed to have fields with the same name, two different packages
are allowed to have classes with the same name, and so on. For this reason, the default
implementation of the name provider computes a qualified name. It concatenates
the name of an element with the qualified name of its container recursively; elements
without a name are simply skipped. By default, all segments of a qualified name are
separated by a dot, which is a common notation for expressing qualified names like,
for example, in Java.

For example, consider the following SmallJava program (the type of declarations is not
important here, thus, we use the class A that we assume as defined in the program):

class C {
 A f;
 A m(A p) {
 A v = null;
 return null;
 }
}

Scoping

[232]

The containment relations are shown in the following tree figure:

The qualified names of the elements of the preceding SmallJava class are shown
in the following table:

Object Qualified Name

SJClass C C

SJField f C.f

SJMethod m C.m

SJParameter p C.m.p

SJVariableDeclaration v C.m.v

Note that SJMethodBody does not participate in the computation of the qualified
name of the contained variable declaration, since it does not have a name feature.

Qualified names are the mechanism also used by
NamesAreUniqueValidator to decide when two
elements are considered as duplicates

Exported objects
To understand the mechanism behind scoping, it is useful to learn how to access
the index. Accessing the index will also be useful for performing additional checks
as shown later in this chapter. We show how to get all the object descriptions of the
current program, that is, of the current resource.

The indexed object descriptions of a resource are stored in IResourceDescription,
which is an abstract description of a resource.

The index is implemented by IResourceDescriptions (plural form) and can be
obtained through an injected ResourceDescriptionsProvider using the method
getResourceDescriptions(Resource).

Chapter 10

[233]

Once we have the index, we can get IResourceDescription of a resource by
specifying its URI.

Once we have IResourceDescription, we get the list of all the
IEObjectDescription elements of the resource that are externally visible, that is,
globally exported, using the method getExportedObjects.

We implement all the index related operations in a separate class, SmallJavaIndex:
class SmallJavaIndex {
 @Inject ResourceDescriptionsProvider rdp
 def getResourceDescription(EObject o) {
 val index = rdp.getResourceDescriptions(o.eResource)
 index.getResourceDescription(o.eResource.URI)
 }

 def getExportedEObjectDescriptions(EObject o) {
 o.getResourceDescription.getExportedObjects
 }
}

We can then write a test (see Chapter 7, Testing) listing the qualified names of the
exported object descriptions:

@RunWith(typeof(XtextRunner))
@InjectWith(typeof(SmallJavaInjectorProvider))
class SmallJavaIndexTest {
 @Inject extension ParseHelper<SJProgram>
 @Inject extension SmallJavaIndex
 @Test def void testExportedEObjectDescriptions() {
 '''
 class C {
 A f;
 A m(A p) {
 A v = null;
 return null;
 }
 }
 class A {}
 '''.parse.assertExportedEObjectDescriptions
 ("C, C.f, C.m, C.m.p, C.m.v, A")
 }
 def private assertExportedEObjectDescriptions(EObject o,
 CharSequence expected) {
 expected.toString.assertEquals(
 o.getExportedEObjectDescriptions.map[qualifiedName].join(", ")
)
 }
}

Scoping

[234]

The linker and the scope provider
The actual cross-reference resolution, that is, the linking, is performed by
LinkingService. Usually, you do not need to customize the linking service, since
the default implementation relies on IScopeProvider, which is the component you
often need to customize. The default linking service relies on the scope obtained for a
specific context in the model, and chooses an object whose name matches the textual
representation of the reference in the program.

Thus, a scope provides information about:

• The objects that can be reached, that is, they are visible, in a specific part of
your model (the context)

• The textual representation to refer to them

You can think of a scope as a symbol table (or a map) where the keys are strings
and the values are instances of IEObjectDescription. The Java interface for
scopes is IScope.

The overall process of cross-reference resolution, that is, the interaction between the
linker and the scope provider, can be simplified as follows:

1. The linker must resolve a cross-reference with text n in the program context c
for the feature f of type t.

2. The linker queries the scope provider: "give me the scope for the elements
assignable to f in the program context c".

3. The linker searches in the obtained scope for an element whose key matches
with n.

4. If it finds it, it resolves the cross-reference and performs the linking.
5. Otherwise, it issues an error of the type "Couldn't resolve reference to...".

The IScopeProvider entry point is a single method:

IScope getScope(EObject context, EReference reference)

Since the program is stored in an EMF model, the context is EObject and the
reference is EReference. Note that cross-references in an Xtext grammar specify
the type of the referred elements. Thus, the scope provider must also take the types
of objects for that specific reference into consideration when building the scope.
The type information is retrieved from EReference passed to getScope.

Chapter 10

[235]

Both scopes and the index deal with object descriptions. The crucial difference is
that a scope also specifies the actual string with which you can refer to an object.
The actual string does not have to be equal to the object description's qualified
name in the index. Thus, the same object can be referred to with different strings
in different program contexts.

To put it in another way, the index provides all the qualified names of the visible
objects of a resource so that all these objects can be referred to using their qualified
names. The scope provides further information , that is, in a given program context,
some objects can be referred to even using simple names or using qualified names
with less segments.

If in our DSL we can only use IDs to refer to objects, and objects are visible only by
their fully qualified names, then we will not be able to refer to any object. Thus, being
able to refer to an object by a simple name is essential.

Another important aspect of scopes is that they can be nested. Usually, a scope
is part of a list of scopes, so that a scope can have an outer scope, also known
as parent scope. If a matching string cannot be found in a scope, it is recursively
searched in the outer scope. If a matching string is found in a scope, the outer scope
is not consulted. This strategy allows Xtext to implement typical situations
in programming languages. For example, in a code block, you can refer to variables
declared in the containing block. Similarly, declarations in a block usually shadow
possible declarations with the same name in the outer context.

The default implementation of IScopeProvider reflects the nested nature of scopes
by using the containment relations of the EMF model. For a given program context,
it builds a scope where all objects in the container of the context are visible by their
simple name; the outer scope is obtained by recursively applying the same strategy
on the container of the context.

Let us go back to our previous SmallJava example:

class C {
 A f;
 A m(A p) {
 A v = null;
 return null; // assume this is the context
 }
}

Scoping

[236]

Let us assume that the context is the expression of the return statement; in that context
the SJMember elements will be visible by simple names and by qualified names:

f, m, C.f, C.m

In the same context, the SJSymbol elements will be visible by the following names:

p, v, m.p, m.v, C.m.p, C.m.v

This is because p and v are contained in m which in turn is contained in C. Note that
they are also visible by simpler qualified names, that is, qualified names with less
fragments, m.p and m.v, respectively.

In the SmallJava grammar, we can refer to members and symbols only by their
simple name using an ID, not by a qualified name. Without a scope we would not
be able to refer to any of such elements, since they would be visible only by their
qualified names.

Again, a learning test that invokes the method getScope can help understand the
default scope provider implementation (note how we specify EReference by using
SmallJavaPackage):

@RunWith(typeof(XtextRunner))
@InjectWith(typeof(SmallJavaInjectorProvider))
class SmallJavaScopeProviderTest {
 @Inject extension ParseHelper<SJProgram>
 @Inject extension ValidationTestHelper
 @Inject extension IScopeProvider
 @Test def void testScopeProvider() {
 '''
 class C {
 A f;
 A m(A p) {
 A v = null;
 return null;
 }
 }
 class A {}
 '''.parse.classes.head.
 methods.last.returnStatement.expression => [
 assertScope
 (SmallJavaPackage::eINSTANCE.SJMemberSelection_Member,
 "f, m, C.f, C.m")
 assertScope

Chapter 10

[237]

 (SmallJavaPackage::eINSTANCE.SJSymbolRef_Symbol,
 "p, v, m.p, m.v, C.m.p, C.m.v")
]
 }

 def private assertScope(EObject context,
 EReference reference, CharSequence expected) {
 context.assertNoErrors
 expected.toString.assertEquals(
 context.getScope(reference).
 allElements.map[name].join(", "))
 }
}

The program context of the preceding test is the expression of the return statement.

In the next diagram, we show the interaction between the linker and the scope
provider for the resolution of the member in a member selection expression:

As we hinted, the outer scopes are consulted only if a matching name is not found
in the current scope; this implements shadowing, which is typical of many DSLs.

For example, in the following SmallJava program:

class C {
 A m(A a) {
 A a = null;
 return a; // assume this is the context
 }
}

Scoping

[238]

The local variable declaration a shadows the method parameter in the context of
the return statement. This can be verified with the following test, which checks that
the symbol reference a in the return statement's expression is linked to the variable
declaration instead of the parameter with the same name:

@Test def void testVariableShadowsParamLinking() {
 '''
 class C {
 A m(A a) {
 A a = null;
 return a;
 }
 }
 class A {}
 '''.parse.classes.head.methods.head => [
 // the local variable should shadow the param
 body.statements.head.assertSame(
 (returnStatement.expression as SJSymbolRef).symbol)
]
}

Summarizing, the default implementation of the scope provider fits most DSLs;
in fact, for the Entities DSL, the cross-reference resolution worked out of the box.

The scope provider is also used by the content assist to provide
a list of all visible elements. Since the scope concerns a specific
program context, the proposals provided by the content assist are
actually sensible for that specific context.

Component interaction
Before getting into scope customization, we conclude this section by summarizing,
in a simplified way, how all of the preceding mechanisms are executed internally
by Xtext:

• Parsing: Xtext parses the program files and builds the corresponding EMF
models; during this stage, cross-references are not resolved

• Indexing: All the contents of the EMF models are processed; if an element
can be given a qualified name, a corresponding object description is put
in the index

• Linking: The linking service performs cross-reference resolution using
the scope provider

Chapter 10

[239]

This workflow is fixed. Consequently, we cannot rely on resolved cross-references
during indexing. We need to keep that into consideration if we modify the indexing
process (as we will see later in the section, What to put in the index?).

Custom scoping
As soon as a DSL introduces more involved features, such as nested blocks
or inheritance relations, the scope provider must be customized according
to the semantics of the language.

The Xtext generator generates an Xtend stub class for implementing a custom scope
provider. In the SmallJava DSL it is SmallJavaScopeProvider.

One way of customizing the scope provider is to redefine the method getScope;
this requires you to manually check the reference and the context's class, for example:

override getScope(EObject context, EReference reference) {
 if (reference == SmallJavaPackage::eINSTANCE.SJSymbolRef_Symbol) {
 if (context instanceof ...)
 ...
 } else if (reference ==
 SmallJavaPackage::eINSTANCE.SJMemberSelection_Member) {
 ...
 } else {
 super.getScope(context, reference)
 }
}

Xtext provides an easier declarative way of customizing the scope that reflects the
mechanisms for customizations as we have seen in Chapter 6, Customizations, using
a convention on method names and their parameters. In particular, you can declare
methods in your scope provider according to one of the following patterns:

IScope scope_<EClass name>_<EFeature name>(<Context type> context,
 EReference reference)
IScope scope_<Object type>(<Context type> context,
 EReference reference)

Scoping

[240]

With the first pattern we declare that we want to provide a custom scope for the
feature <EFeature name> of the class <EClass name> when the context is of type
<Context type>. For example, if we wanted to provide a custom scope for the
feature symbol of the class SJSymbolRef in the context of an SJIfStatement object,
we would write the following method:

def scope_SJSymbolRef_symbol(SJIfStatement context, EReference r)

This first pattern allows us to be as specific as possible concerning the reference.
The second pattern can be used when we want to provide a custom scope for a given
element type and that scope can fit all cross-references of that type. In particular,
if a specific type is referred only in a single rule, we do not need to be specific on
the feature name. For example, in SmallJava, SJSymbol can be referred only in the
rule SJSymbolRef, thus, we could have achieved the same goal by
writing the following method:

def scope_SJSymbol(SJIfStatement context, EReference r)

Xtext will search for such methods reflectively when it has to build a scope. If there
is no such method matching the actual context type, Xtext will repeat the search
using the container of the context. It will keep on walking the containment hierarchy
until it finds a matching method. This allows us to reuse the same scope computation
in different places of the containment hierarchy. It is up to the developer to
understand which context is required to be able to build the scope. Usually, when
writing these methods in the custom scope provider, the context type corresponds
to the EClass name (this holds for SmallJava, as we will see in the following
sections).

Since these methods are searched by Xtext using reflection, there is no
check concerning the correctness of the method name. If you misspell
the feature or the class name in the method name, that method will
simply never be called; thus, you must pay attention when writing
the signature of these methods.

Scope for blocks
The default scope provider can be too permissive. For example, in SmallJava,
it allows an expression to refer to a variable declaration that is defined after that
expression. As we have seen in Chapter 8, An Expression Language, forward references
for variables are usually not permitted in languages. Moreover, if the language
has nested code blocks, the default scope provider allows an outer block to access
variable declarations of an inner block.

Chapter 10

[241]

Let us consider an example of nested blocks in SmallJava:

class C {
 A m(A p) {
 A v1 = v4; // forward reference
 if (true) {
 A v2 = null;
 A v3 = v4; // forward reference
 }
 A v4 = v2; // reference to a var of an inner block
 return null;
 }
}

The example shows variable references that should not be valid. However, with
the default scope provider, all variable declarations are visible in all contexts of the
method body.

In Chapter 8, An Expression Language, we solved the problem of forward references
by implementinga check in the validator, while in this chapter we show how to solve
the visibility of symbols with a custom scope. The idea of the solution is basically the
same: we want to build a scope consisting of the list of symbols defined before the
current program context; while in Chapter 8, An Expression Language, we implicitly had
one single block. In SmallJava we have nested blocks, and we also need to examine
containing blocks. Moreover, when examining the containing block, we still need
to limit the list of visible variables to those declared before the block containing the
current context. This implicitly prevents a variable definition from referring to itself
in its initialization expression. Considering the previous example, when the context is
the variable declaration A v3 = v4; in the if block, the scope should consist of all the
variables of the container (the if block) declared before the context, that is, only v2.
The outer scope should consist of all the variables of the container of the container (the
method's body) declared before the container of the context, that is, only v1, and so
on. The end of this recursion will be the case when the container is the method itself,
in which case the scope is the list of parameters. Thus, we want to build the following
nested scope for the variable declaration A v3 = v4; in the if block:

v2, outer: (v1, outer: (p, outer: null))

To actually create the scope instance, which would require us to build a list of
IEObjectDescription, we can use the static utility method Scopes.scopeFor.
This method takes a list (actually an iterable) of EObject and creates a scope with
the corresponding IEObjectDescription elements; in particular, the object
descriptions are created using the feature name of the passed EObject elements.
This way, the descriptions will have simple names instead of qualified ones, which
is what we want. You can also pass the outer scope to the method Scopes.scopeFor.

Scoping

[242]

To follow the convention of the scope provider method names, we write the
following method:

def scope_SJSymbolRef_symbol(SJExpression context, EReference r)

As we said, in this DSL, we could have instead written:

def scope_SJSymbol(SJExpression context, EReference r)

We use a generic SmallJava expression as the context since we do not need other
specific contextual information to build the scope according to the detailed strategy.
The implementation is as follows:

def scope_SJSymbolRef_symbol(SJExpression context, EReference r) {
 context.eContainer.symbolsDefinedBefore(context)
}

def dispatch IScope symbolsDefinedBefore(EObject cont, EObject o){
 cont.eContainer.symbolsDefinedBefore(o.eContainer)
}

def dispatch IScope symbolsDefinedBefore(SJMethod m, EObject o) {
 Scopes::scopeFor(m.params) // this ends recursion
}

def dispatch IScope symbolsDefinedBefore(SJBlock b, EObject o) {
 Scopes::scopeFor(
 b.statements.variablesDeclaredBefore(o),
 b.eContainer.symbolsDefinedBefore(o.eContainer) // outer scope
)
}

def private variablesDeclaredBefore
 (List<SJStatement> list, EObject o) {
 list.subList(0, list.indexOf(o)).
 filter(typeof(SJVariableDeclaration))
}

The implementation of the method scope_SJSymbolRef_symbol calls the recursive
Xtend dispatch method symbolsDefinedBefore. The generic case of the dispatch
method simply performs another step of the recursion, without participating in the
building of the scope. The case for SJMethod ends the recursion by returning
a scope consisting of the parameters of the method. The case for SJBlock builds
a scope consisting of the variables in the block defined before the passed object;
the outer scope is the one returned by the recursive invocation walking the
containment hierarchy. Recall that the case for SJBlock includes the case for
SJMethodBody and the case for SJIfBlock.

Chapter 10

[243]

The following table illustrates the execution of the recursive dispatch method on the
variable declaration A v3 = v4. The table shows the container, the context, and the
symbols defined in the container before the context, that is, the scope for symbols in
that context; the table also shows the matched dispatch method's parameters:

Container Context Symbols defined
before the context

Matched dispatch method's
parameters

If block A v3 = v4 v2 (SJBlock, EObject)

If statement If block (EObject, EObject)

Method body If statement v1 (SJBlock, EObject)

Method
definition

Method body p (SJMethod, EObject)

Note that when the context is SJIfBlock, the container is SJIfStatement, and there
is no symbol to add in the scope.

The resulting scope is as we wanted:

v2, outer: (v1, outer: (p, outer: null))

In this way, we get the correct behavior for symbol references, which can be verified
in the following test:

@Test def void testScopeProviderForSymbols() {
 '''
 class C {
 A m(A p) {
 A v1 = null;
 if (true) {
 A v2 = null;
 A v3 = null;
 }
 A v4 = null;
 return null;
 }
 }
 class A {}
 '''.parse.classes.head.methods.last.body.eAllContents.
 filter(typeof(SJVariableDeclaration)) => [
 findFirst[name == 'v3'].expression.assertScope

Scoping

[244]

 (SmallJavaPackage::eINSTANCE.SJSymbolRef_Symbol,
 "v2, v1, p")
 findFirst[name == 'v4'].expression.assertScope
 (SmallJavaPackage::eINSTANCE.SJSymbolRef_Symbol,
 "v1, p")
]
}

In this test, we verify the scope when the context is the variable declaration with
name v3, and when the context is the variable declaration with name v4.

With this scope provider implementation, the variables defined in an inner block
or after the program context cannot be referred; the user will get errors of the type
Couldn't resolve reference to... as illustrated in the following screenshot:

Scope for inheritance and member visibility
The default scope provider implementation based on containments does not work
for more complex relations implied by the semantics of the DSL. A typical example
is the inheritance relation in object-oriented languages.

In SmallJava a subclass' method body must be able to refer to superclass' members
(note that for the moment, SmallJava does not have access level modifiers like
private and protected: every member is implicitly public; we will add such
modifiers in the next section).

Chapter 10

[245]

For example, consider the following code snippet:

class C {
 A a;
 A n() { return null; }
}

class D extends C {
 A b;
 A m() {
 this.n(); // cannot access inherited method
 return this.a; // cannot access inherited field
 }
}

With the current scope provider, the members a and n of C will be visible only by
their qualified name in the subclass D. Thus, the body of m of the subclass D is not
able to refer to the members of the superclass C.

Moreover, the default scope provider implementation's strategy of considering
only the containment relation cannot take into consideration the actual receiver
of a member selection, which is instead needed for a valid member access.

For example, with the current scope provider implementation the following code
would be considered valid:

class C {

}

class D {
 A b;
 A m() { return new C().b; }
}

While it should not be well-typed in SmallJava: the field b is not defined in the
class C of the receiver new C().

We must build a custom scope for resolving an SJMember reference in an
SJMemberSelection expression with the following strategy:

1. Get the type C of the receiver expression.
2. Return a nested scope consisting of:

 ° All the members in C
 ° Recursively as outer scope, all the members of the superclass of C

Scoping

[246]

Note that in this case, to be able to build the scope, we need the context of type
SJMemberSelection. Since we need the type of the receiver; we define this method
in our scope provider as follows:

@Inject extension SmallJavaTypeProvider
def scope_SJMember(SJMemberSelection sel, EReference r) {
 var parentScope = IScope::NULLSCOPE
 val type = sel.receiver.typeFor

 if (type == null || type.isPrimitive)
 return parentScope
 for (c : type.classHierarchy.reverseView) {
 parentScope = Scopes::scopeFor(c.members, parentScope)
 }
 Scopes::scopeFor(type.members, parentScope)
}

Let us examine the preceding method. If the receiver has a primitive type, we return
an empty scope, since primitive types have no members. The iteration on the class
hierarchy of the receiver (obtained through the method SmallJavaModelUtil.
classHierarchy) must be performed starting from the top superclass. Thus we use
the utility method of the Xtend library reverseView, since the outer scopes must be
built first. The final scope will consist of all the members in the class of the receiver
and the outer scopes are built iterating over the inheritance hierarchy. If the class of the
receiver has no superclass, the scope will simply consist of the members of that class.

This implementation will also make field shadowing and method redefinitions work
out of the box; a member in a subclass will be considered before a homonymous
member in a superclass (since the latter will be in an outer scope).

You should never return null as a scope; if you need to return
an empty scope you should return IScope::NULLSCOPE.

With this implementation of the scope provider, the members of a superclass will
be visible in the subclass; thus, the first example of this section is now considered
valid. At the same time, only the members in the class hierarchy of the receiver
will be visible in a member selection expression; thus, the second example will
be considered invalid.

Chapter 10

[247]

The following test verifies whether references to fields are resolved correctly
(a similar test can be written for methods), in particular, if fields in subclasses
have the precedence over homonymous fields in superclasses:

@Test def void testFieldScoping() {
 '''
 class A {
 D a;
 D b;
 D c;
 }

 class B extends A {
 D b;
 }

 class C extends B {
 D a;
 D m() { return this.a; }
 D n() { return this.b; }
 D p() { return this.c; }
 }
 class D {}
'''.parse.classes => [
 // a in this.a must refer to C.a
 get(2).fields.get(0).assertSame
 (get(2).methods.get(0).returnExpSel.member)
 // b in this.b must refer to B.b
 get(1).fields.get(0).assertSame
 (get(2).methods.get(1).returnExpSel.member)
 // c in this.c must refer to A.c
 get(0).fields.get(2).assertSame
 (get(2).methods.get(2).returnExpSel.member)
]
}

def private returnExpSel(SJMethod m) {
 m.returnStatement.expression as SJMemberSelection
}

Scoping

[248]

This implementation still has a problem though, due to the fact that we allow
a method and a field to have the same name (as in Java). With this implementation of
scoping, methods and fields are mixed in the scope and they appear in the scope with
their declaration order. Thus, when referring to a member, the first one will be linked
irrespective of whether the expression is a field selection or a method invocation.

Consider the following example:

class C {
 A m;
 A m() {
 return this.m();
 }
}

The method invocation expression will wrongly refer to the field m.

Indeed, this test fails:

@Test def void testFieldsAndMethodsWithTheSameName() {
 '''
 class C {
 A f;
 A f() {
 return this.f(); // must refer to method f
 }
 A m() {
 return this.m; // must refer to field m
 }
 A m;
 }
 class A {}
 '''.parse.classes.head => [
 // must refer to method f()
 methods.head.assertSame(methods.head.returnExpSel.member)
 // must refer to field m
 fields.last.assertSame(methods.last.returnExpSel.member)
]
}

Chapter 10

[249]

We must build the scope for member selection according to whether it is a method
invocation or a field selection. We distinguish between a method invocation and
a field selection using the feature methodinvocation:

def scope_SJMember(SJMemberSelection sel, EReference r) {
 var parentScope = IScope::NULLSCOPE
 val type = sel.receiver.typeFor

 if (type == null || type.isPrimitive)
 return parentScope
 for (c : type.classHierarchy.reverseView) {
 parentScope = Scopes::scopeFor(c.selectMembers(sel),
 parentScope)
 }
 Scopes::scopeFor(type.selectMembers(sel), parentScope)
}

def selectMembers(SJClass type, SJMemberSelection sel) {
 if (sel.methodinvocation)
 type.methods + type.fields
 else
 type.fields + type.methods
}

Now, the previous test succeeds.

Why do we return the other members, instead of returning only methods or fields
according to the actual member selection kind? Because, without this strategy
a program like the following:

class C {
 C f;
 C m() { return this.f(); }
}

would issue an error saying that the member f cannot be resolved, and this would
not be informative; instead, with the preceding scoping implementation, f is resolved
and our validator issues an error saying that we are trying to perform method
invocation using a field (see Chapter 9, Type Checking); such an error is much better.

Scoping

[250]

Visibility and accessibility
One important thing to understand about scoping is that it should deal with
visibility, not necessarily with validity. For example, an element can be visible
in a certain program context, but that context should not access it.

To illustrate this concept, we introduce in SmallJava the access level modifiers
as in Java. To keep the example simple, we will not consider the Java package-private
modifier, which is the default in Java.

Thus, we modify field and method declarations with the optional access
level specification:

SJField:
access=SJAccessLevel? type=[SJClass] name=ID ';';
SJMethod:
access=SJAccessLevel? type=[SJClass] name=ID
 '(' (params+=SJParameter (',' params+=SJParameter)*)? ')'
 body=SJMethodBody ;
enum SJAccessLevel:
 PRIVATE='private' | PUBLIC='public' | PROTECTED='protected';

To express access level we use an enum rule; this will correspond to a Java enum.
An enum rule always has an implicit default value, which corresponds to the
first value. Thus, if no access level is specified in a SmallJava program, the value
PRIVATE will be assumed.

Remember that, in Java, member access is checked at class level,
not at object level. Inside a class C you can access private members
on any object of class C, not only on this. We will use the same
semantics in SmallJava.

To check if a member is accessible in a given program context, we need to check
the subclass relation between the class containing the context and the class
containing the referred member. We define this method in a dedicated class
SmallJavaAccessibility as follows (we use the static methods of the class
SmallJavaModelUtil):

def isAccessibleFrom(SJMember member, EObject context) {
 val contextClass = context.containingClass
 val memberClass = member.containingClass
 switch (contextClass) {
 case contextClass == memberClass : true

Chapter 10

[251]

 case contextClass.isSubclassOf(memberClass) :
 member.access != SJAccessLevel::PRIVATE
 default:
 member.access == SJAccessLevel::PUBLIC
 }
}

This code should be self-explanatory: if the two classes are the same, the member
can always be accessed. In a subclass you can access only members of superclasses
that are not private; in all other cases, you can only access public members.

This test verifies our implementation for fields (a similar test is written for methods):

@Test def void testFieldAccessibility() {
 '''
 class A {
 private D priv;
 protected D prot;
 public D pub;
 D m() {
 this.priv; // private field
 this.prot; // protected field
 this.pub; // public field
 return null;
 }
 }

 class B extends A {
 D m() {
 this.priv; // private field
 this.prot; // protected field
 this.pub; // public field
 return null;
 }
 }

 class C {
 D m() {
 (new A()).priv; // private field
 (new A()).prot; // protected field
 (new A()).pub; // public field
 return null;
 }
 }

Scoping

[252]

 class D {}
 '''.parse.classes => [
 // method in A
 get(0).methods.get(0).body.statements => [
 get(0).assertMemberAccessible(true)
 get(1).assertMemberAccessible(true)
 get(2).assertMemberAccessible(true)
]
 // method in B
 get(1).methods.get(0).body.statements => [
 get(0).assertMemberAccessible(false)
 get(1).assertMemberAccessible(true)
 get(2).assertMemberAccessible(true)
]
 // method in C
 get(2).methods.get(0).body.statements => [
 get(0).assertMemberAccessible(false)
 get(1).assertMemberAccessible(false)
 get(2).assertMemberAccessible(true)
]
]
}

def private assertMemberAccessible(SJStatement s,
 boolean expected) {
 val sel = s as SJMemberSelection
 expected.assertEquals(sel.member.isAccessibleFrom(sel))
}

Now we can modify the scope provider so that only the members that are accessible
in a context are visible in that context. However, as we said at the beginning of
the section, scoping should only deal with visibility, not with validity. In many ways,
all members of a class are actually visible, the fact that some of them cannot be
accessed is a validation issue.

Instead of restricting the scope, we write a validator rule that checks the accessibility
of a referred member. With this strategy, we can provide better error information,
for example, "private member is not accessible", instead of the default "couldn't
resolve reference to...". In the editor, the user will still be able to navigate to the
definition of a member even if the validator issues an error, since that member is still
visible from the scoping point of view. This strategy is implemented by the Eclipse JDT
editor as well, and it is considered a good practice (Loose scoping, Strict validation, see
Zarnekow 2012).

Chapter 10

[253]

The following is the validator rule:

class SmallJavaValidator extends AbstractSmallJavaValidator {
 @Inject extension SmallJavaAccessibility
 public static val MEMBER_NOT_ACCESSIBLE =
 "org.example.smalljava.MemberNotAccessible"
 @Check
 def void checkAccessibility(SJMemberSelection sel) {
 val member = sel.member
 if (member != null && !member.isAccessibleFrom(sel)) {
 error(
 '''The «member.access» member «member.name» is not accessible
here''',
 SmallJavaPackage::eINSTANCE.SJMemberSelection_Member,
 MEMBER_NOT_ACCESSIBLE
)
 }

An example of accessibility error is shown in the next screenshot. In the subclass D,
we can access the protected field f of superclass C, but not to the private method m
(remember that members are private by default). However, m is correctly linked
to its method definition, and the reported error clearly states the problem.

Scoping

[254]

We adopted the same philosophy of a loose scoping and a strict
validation in Chapter 8, An Expression Language, when checking
forward references to variables. In this chapter, we rule out forward
references to symbols with a restricted scope. In general, the validator
approach allows you to give better feedback to the user, but it
requires you to customize the content assist as shown in the following
this section. On the contrary, the restricted scope approach does not
require customization of other aspects, but the user receives errors of
the type Couldn't resolve reference to..., which are less informative.

Filtering unwanted objects from the scope
Since we are not restricting the scope of the members, the content assist will
still provide all members as proposals, even the private and the protected ones,
irrespective of their accessibility in that specific program context. As we saw in
Chapter 8, An Expression Language, it is good practice to modify the proposals
so that only valid ones are presented to the programmer. In that chapter we
manually built the proposals; in this chapter, since we introduced scoping, we
use a different technique. The default implementation for proposals concerning a
cross-reference relies on scoping; if you look at the implementation of the method
AbstractSmallJavaProposalProvider.completeSJSelectionExpression_Member,
you see that it uses the method lookupCrossReference, which in turn uses the scope
provider. There is an overloaded version of lookupCrossReference that also takes a
predicate to filter proposals. In Xtend, a predicate corresponds to a lambda returning
a Boolean. Such a predicate receives IEObjectDescription as an argument and
it returns true if that description has to be included in the proposals. We override
completeSJSelectionExpression_Member in SmallJavaProposalProvider and
we call lookupCrossReference passing a lambda to filter out members that are not
accessible in that context:

class SmallJavaProposalProvider extends
 AbstractSmallJavaProposalProvider {
 @Inject extension SmallJavaAccessibility
 override void completeSJSelectionExpression_Member
 (EObject model, Assignment a,
 ContentAssistContext context,
 ICompletionProposalAcceptor acceptor) {
 lookupCrossReference
 (a.getTerminal() as CrossReference, context, acceptor) [
 description |

Chapter 10

[255]

 (description.getEObjectOrProxy as SJMember)
 .isAccessibleFrom(model)
]
 }
}

Note that in the lambda we retrieve EObject from the description.

In the code of the SmallJava implementation, you can find some
content assist tests for this customization.

In the next screenshot you can see that the content assist proposes only the members
that are actually accessible in the current context: the private method m of the
superclass is not proposed.

Global scoping
Xtext has a default mechanism for global scoping that allows you to refer to
elements defined in a different file, possibly in a different project of the workspace;
in particular, it uses the dependencies of the Eclipse projects. For Java projects, it uses
the classpath of the projects. Of course, this mechanism relies on the global index.

Global scoping is implied by the fact that the default scoping
mechanism always relies on an outer scope that consists of the
visible object descriptions in the index.

Scoping

[256]

With the default configuration in the MWE2, this mechanism for global scoping
works out of the box. You can experiment with a project with some Entities DSL
files. You can see, as illustrated in the following screenshot, that you can refer
to the entities of another file; content assist works accordingly:

Before proceeding to the use of global scoping, it is worthwhile to learn how to write
Junit tests that concern several input programs.

As hinted in the section The index, when running in a plain Java context where there
is no workspace concept, the index is based on an EMF ResourceSet. When we
have used the method ParseHelper.parse in our tests, we have always passed
a string; there is an overloaded version of parse that also takes the resource set to
be used when loading the passed program string. Thus, if we want to write a test
that involves several files where one of them refers to elements of the other, we
need to parse all input strings using the same resource set.

Chapter 10

[257]

This can be accomplished in two ways. You can inject a Provider<ResourceSet>,
create a resource set through this provider and pass it to the parse method as follows:

@Inject Provider<ResourceSet> resourceSetProvider;
@Test def void testTwoFiles() {
 val resourceSet = resourceSetProvider.get
 val first = '''class B extends A {}'''.parse(resourceSet)
 val second = '''class A { B b; }'''.parse(resourceSet)
 first.assertNoErrors
 second.assertNoErrors

 second.classes.head.assertSame(first.classes.head.superclass)
}

Note that in this test, the two input programs have mutual dependencies and the
cross-reference mechanism works since we use the same resource set.

It is crucial to validate the models only after all the programs are
loaded; remember that ParseHelper only parses the program, it
does not try to resolve cross-references.

Alternatively, you can parse the first input and retrieve its resource set from the
returned model object; then, the subsequent inputs are parsed using that resource set:

@Test def void testTwoFilesAlternative() {
 val first = '''class B extends A {}'''.parse
 val second = '''class A { B b; } '''.
 parse(first.eResource.resourceSet)
 ... as before

In the following sections we will implement some aspects related to global scoping
and the index.

Packages and imports
Since we can refer to elements of other files, it might be good to introduce the
notion of namespace in SmallJava, which basically corresponds to the Java
notion of a package.

Thus, we add an optional package declaration in the rule for SJProgram:

SJProgram:
 ('package' name=QualifiedName ';')?
 classes+=SJClass*;

QualifiedName: ID ('.' ID)* ;

Scoping

[258]

The rule QualifiedName is a data type rule. A data type rule is like a terminal rule,
for example, the terminal rule for ID, and it does not contain feature assignments.
Differently from a terminal rule, a data type rule is valid only in specific contexts, that
is, when it is used by another rule. This way, it will not conflict with terminal rules;
for example, the rule QualifiedName will not conflict with the rule ID.

The Xtext editor highlights a data type rule's name in blue.

According to the default mechanism for computing a qualified name (see the
section Qualified names), when a SJClass is contained in a program with a package
declaration, its fully qualified name will include the package name. For example,
given this program:

package my.pack;
class C { }

the class C will be stored in the index with the qualified name my.pack.C.

It now makes sense to allow the user to refer to a SmallJava class with its fully
qualified name, like in Java.

When you specify a cross-reference in an Xtext grammar, you can use the complete
form [<Type>|<Syntax>], where <Syntax> specifies the syntax for referring to
the element of that type. The compact form [<Type>] we have used so far is just a
shortcut for [<Type>|ID]. In fact, until now, we have always referred to elements
by their ID. Now, we want to be able to refer to SJClass using the QualifiedName
syntax, thus, we modify all the involved rules accordingly. We show the modified
rule for SJClass (but also the rules for field, method, parameter, and variable
declaration must be modified accordingly):

SJClass:
'class' name=ID ('extends' superclass=[SJClass|QualifiedName])?
'{' members += SJMember* '}' ;

Note that the rule for QualifiedName also accepts a single ID, thus, if there is no
package, everything keeps on working as before.

We can now test class references with qualified names in separate files:

@Test def void testPackagesAndClassQualifiedNames() {
 val first = '''
 package my.first.pack;
 class B extends my.second.pack.A {}
 '''.parse

Chapter 10

[259]

 val second = '''
 package my.second.pack;
 class A {
 my.first.pack.B b;
 }
 '''.parse(first.eResource.resourceSet)
 first.assertNoErrors
 second.assertNoErrors

 second.classes.head.assertSame(first.classes.head.superclass)
}

Now it would be nice to have an import mechanism as in Java, so that we can import
a class by its fully qualified name once and then refer to that class simply by its
simple name. Similarly, it would be helpful to have an import with wildcard * in
order to import all the classes of a specific package. Xtext supports imports, even
with wildcards; it only requires that a feature with name importedNamespace is used
in a parser rule and then the framework will automatically treat that value with the
semantics of an import; it also handles wildcards as expected:

SJProgram:
 ('package' name=QualifiedName ';')?
 imports+=SJImport*
 classes+=SJClass*;

SJImport:
 'import' importedNamespace=QualifiedNameWithWildcard ';' ;
QualifiedNameWithWildcard: QualifiedName '.*'? ;

The following test verifies imports:

@Test def void testImports() {
 val first = '''
 package my.first.pack;
 class C1 { }
 class C2 { }'''.parse

 '''
 package my.second.pack;
 class D1 { }
 class D2 { }'''.parse(first.eResource.resourceSet)

 '''
 package my.third.pack;
 import my.first.pack.C1;

Scoping

[260]

 import my.second.pack.*;

 class E extends C1 { // C1 is imported
 my.first.pack.C2 c; // C2 not imported
 D1 d1; // D1 imported by wildcard
 D2 d2; // D2 imported by wildcard
 }
 '''.parse(first.eResource.resourceSet).assertNoErrors
}

To keep the SmallJava DSL simple, we do not require the path of the .smalljava
file to reflect the fully qualified name of the declared class as in Java. Indeed,
in SmallJava, there is no concept of a public class.

The index and the containers
The index does not know anything about visibility across resources. Such a mechanism
is delegated to IContainer that can be seen as an abstraction of the actual container
of a given resource. The inner class IContainer.Manager provides information about
the containers that are visible from a given container. Using these containers, we can
retrieve all the object descriptions that are visible from a given resource.

The implementation of the containers and the managers depends
on the context of execution. In particular, when running in Eclipse,
containers are based on Java projects. In this context, for an element
to be referable, its resource must be on the classpath of the caller's
Java project and it must be exported. This allows you to reuse for
your DSL all the mechanisms of Eclipse projects, and the users will
be able to define dependencies in the same way as they do when
developing Java projects inside Eclipse. We refer to the section About
the index, containers, and their manager of the Xtext documentation for
all the details about available container implementations.

The procedure to get all the object descriptions which are visible from a given
EObject o consists of the following steps:

1. Get the index.
2. Retrieve the resource description of the object o.
3. Use the IContainer.Manager instance to get all the containers in the index

that are visible from the resource description of o.
4. Retrieve the object descriptions from the visible containers, possibly filtering

them by type.

Chapter 10

[261]

We thus add some utility methods to the class SmallJavaIndex:

class SmallJavaIndex {
 @Inject ResourceDescriptionsProvider rdp
 @Inject IContainer$Manager cm
 def getVisibleEObjectDescriptions(EObject o) {
 o.getVisibleContainers.map[container |
 container.getExportedObjects
].flatten
 }

 def getVisibleEObjectDescriptions(EObject o, EClass type) {
 o.getVisibleContainers.map[container |
 container.getExportedObjectsByType(type)
].flatten
 }

 def getVisibleClassesDescriptions(EObject o) {
 o.getVisibleEObjectDescriptions
 (SmallJavaPackage::eINSTANCE.SJClass)
 }

 def getVisibleContainers(EObject o) {
 val index = rdp.getResourceDescriptions(o.eResource)
 val rd = index.getResourceDescription(o.eResource.URI)
 cm.getVisibleContainers(rd, index)
 }...

Note that the result of map in the preceding code is a List<Iterable<IEObjectDes
cription>>; the flatten utility method from the Xtend library combines multiple
iterables into a single one. Thus, the final result will be
an Iterable<IEObjectDescription>.

In the section Exported objects, we created the class SmallJavaIndex with utility
methods to retrieve all the descriptions exported by a resource. We used those
methods to write learning tests to get familiar with the index. The methods we have
just added to SmallJavaIndex will be effectively used in the rest of the chapter
to perform specific tasks that require access to all the visible elements.

Scoping

[262]

Checking duplicates across files
The visibility of elements is implemented in the scope provider; thus, usually the
index is not used directly. One of the scenarios where you must use the index
is when you want to check for duplicates across files in a given container, that
is, in a project and all its dependencies. The validator for SmallJava currently
only implements checks for duplicates in a single resource.

We now write a validator method to check for duplicates across files using the
index. We only need to check instances of SJClass since they are the only globally
visible objects.

Do not traverse the resources in the resource set (that is, visit all of
them) since this is an expensive operation. Instead, use the index in
these situations since this is both better and cheaper. It is OK to visit
elements in the resource being processed.

The idea is to use the method SmallJavaIndex.getVisibleClassesDescriptions
to get all the object descriptions of the type SJClass that are visible from the
resource of a given SmallJava class and search for duplicate qualified names.

As shown in the section Checking for duplicates of Chapter 9, Type Checking, in order
to check for duplicate elements, we search for an object that is different from the
object being checked and that has the same name. When checking for duplicates
across files using the index, we cannot rely on object identities completely since we
only have object descriptions in the index and the corresponding object instances
might not be loaded (after all, one of the aims of the index is to avoid loading all
model objects). Thus, we also verify that the resource of the description is not the
same as the resource of the currently processed class. We do that by checking the
URI of the resources. Getting the URI of the resource of the class being processed is
straightforward; to get the URI of the resource from the object description we get
the URI of the object description and we trim the fragment part which refers to the
position of the object in the resource:

@Inject extension SmallJavaIndex
@Inject extension IQualifiedNameProvider
public static val DUPLICATE_CLASS =
 "org.example.smalljava.DuplicateClass"
// perform this check only on file save
@Check(CheckType::NORMAL)
def checkDuplicateClassesInFiles(SJClass c) {

Chapter 10

[263]

 val className = c.fullyQualifiedName
 c.getVisibleClassesDescriptions.forEach[
 desc |
 if (desc.qualifiedName == className &&
 desc.EObjectOrProxy != c &&
 desc.EObjectURI.trimFragment != c.eResource.URI) {
 error(
 "The type " + c.name + " is already defined",
 SmallJavaPackage::eINSTANCE.SJClass_Name,
 DUPLICATE_CLASS)
 return
 }
]
}

Note that we specified the CheckType::NORMAL in the @Check annotation: this instructs
Xtext to call this method only on file save, not during editing as it happens normally
(the default is CheckType::FAST). This is a good choice since this check might require
some time, and if executed while editing, it might reduce the editor performance.
Eclipse JDT also checks for class duplicates across files only on file save.

The following screenshot shows a project with two SmallJava programs with
duplicate classes:

Scoping

[264]

Providing a library
Our implementation of SmallJava does not yet allow us to make references to types
such as Object, String, Integer, and so on. These types would allow us to declare
variables initialized with constant expressions. In this section we show how to create
a library with predefined types.

One might be tempted to hardcode these classes/types directly in the grammar,
but this is not the best approach. There are many reasons for not doing that; mostly,
that the grammar should deal with syntax only. Moreover, if we hardcoded, for
example, Object in the grammar, we would only be able to use it as a type, but what
if we wanted Object to have some methods? We would not be able to express that in
the grammar.

Instead, we will follow the library approach (see also Zarnekow 2012-b). Our
language implementation will provide a library with some classes, for example,
Object, String, and so on, just like Java does. Since Xtext deals with EMF models,
this library could consist of any EMF model. However, we can write this library just
like any other SmallJava program.

To keep things simple, we write one single file, mainlib.smalljava, with the
following classes:

package smalljava.lang;
class Object {
 public Object clone() {
 return this;
 }

 public String toString() {
 // fake implementation
 return "not implemented";
 }

 public Boolean equals(Object o) {
 // fake implementation
 return false;
 }
}

class String extends Object {}
class Integer extends Object {}
class Boolean extends Object {}

Chapter 10

[265]

SmallJava does not aim at being usable and useful thus, this is just an example
implementation of the classes of SmallJava library. We also use a package name,
smalljava.lang, which reminds us of the main Java library, java.lang. We create
this file in the source folder in the path smalljava/lang/mainlib.smalljava;
furthermore, in the MANIFEST of the runtime SmallJava plug-in project we make sure
that the package smalljava.lang is exported.

Now, if we run Eclipse, create a project, and add as dependency our org.example.
smalljava project, the classes of mainlib.smalljava will be automatically
available. In fact, Xtext global scoping implementation takes into consideration the
project's dependencies; thus, the classes of our library are indexed and available in
SmallJava programs. In the following screenshot you can see a plug-in project which
depends on org.example.smalljava; the SmallJava files in this example project can
then refer to the SmallJava classes defined in our library:

The implementation of SmallJava comes with a project wizard that
creates a plugin project, adds the Xtext nature, adds the project org.
example.smalljava as dependency, and creates an example.
smalljava file with some contents. This wizard was automatically
created by Xtext (and then customized) after enabling the corresponding
fragment in the MWE2 file. We refer to the Xtext documentation for that.

Scoping

[266]

Default imports
As we saw in the last sections, a DSL can automatically refer to elements in other files
thanks to global scoping. In particular, Xtext also takes imported namespaces into
consideration; if we import smalljava.lang.*, then we can refer to, for example,
Object directly, without its fully qualified name. The scope provider delegates this
mechanism to the class ImportedNamespaceAwareLocalScopeProvider.

At this point, in order to use library classes like Object, we have to explicitly
import smalljava.lang. In Java you do not need to import java.lang
since that is implicitly imported in all Java programs. It would be nice to
implement this implicit import mechanism also in SmallJava for the package
smalljava.lang. All we need to do is to provide a custom implementation
of ImportedNamespaceAwareLocalScopeProvider and redefine the method
getImplicitImports (the technical details should be straightforward):

class SmallJavaImportedNamespaceAwareLocalScopeProvider
 extends ImportedNamespaceAwareLocalScopeProvider {
 override getImplicitImports(boolean ignoreCase) {
 newArrayList(new ImportNormalizer(
 QualifiedName::create("smalljava", "lang"), true, ignoreCase
))
 }
}

Now, we need to bind this implementation in the runtime module. This is slightly
different from other customizations in the Guice module we have seen so far; in fact,
we need to bind the delegate field in the scope provider:

public class SmallJavaRuntimeModule extends
 AbstractSmallJavaRuntimeModule {
 @Override
 public void configureIScopeProviderDelegate(Binder binder) {
 binder.bind(org.eclipse.xtext.scoping.IScopeProvider.class)
 .annotatedWith(
 com.google.inject.name.Names
 .named(AbstractDeclarativeScopeProvider.NAMED_DELEGATE))
 .to(SmallJavaImportedNamespaceAwareLocalScopeProvider.class);
 }...

With this modification, we can simply remove the import statement import
smalljava.lang.* and still be able to refer to the classes of the SmallJava library.

Chapter 10

[267]

Using the library outside Eclipse
Being able to load the SmallJava library outside Eclipse is important both for testing
and for implementing a standalone command-line compiler for the DSL.

As we saw in the previous sections, when we write unit tests with several dependent
input programs, we need to load all the resources corresponding to input programs
into the same resource set. Thus, we must load our library into the resource set as
well to make the library available when running outside Eclipse.

We write a reusable class SmallJavaLib, which deals with all the aspects concerning
the SmallJava library. In particular, we start with a method that creates the resource
set, loads the library, and returns the resource set:

class SmallJavaLib {
 @Inject Provider<ResourceSet> resourceSetProvider;
 public val static MAIN_LIB = "smalljava/lang/mainlib.smalljava"
 def loadLib() {
 val stream =
 getClass().getClassLoader().getResourceAsStream(MAIN_LIB)
 resourceSetProvider.get() => [
 resourceSet |
 val resource =
 resourceSet.createResource(URI::createURI(MAIN_LIB))
 resource.load(stream, resourceSet.getLoadOptions())
]
}

The important thing here is that we get the contents of mainlib.smalljava by
using the class loader; in particular, we use getResourceAsStream, which returns
an InputStream to read the contents of the requested file. The class loader will
automatically search for the given file using the classpath; this will work both for
Junit tests and even when the program is bundled in a JAR as for the case of the
standalone compiler. Then we create an EMF resource and load it using the contents
of the library file. Note that an EMF resource does not necessarily have to correspond
to a physical file; after all, in all the Junit tests we wrote so far, the ParseHelper has
always created in-memory EMF resources with the string contents we passed to the
parse method.

Scoping

[268]

We are now able to write some tests to verify that implicit imports work correctly
and also that the library itself contains no error. We use the version of the method
parse that also takes the resource set as an argument; in particular, we use the
resource set returned by the method SmallJavaLib.loadLib shown previously:

@RunWith(typeof(XtextRunner))
@InjectWith(typeof(SmallJavaInjectorProvider))
class SmallJavaLibTest {
 @Inject extension ParseHelper<SJProgram>
 @Inject extension ValidationTestHelper
 @Inject extension SmallJavaLib
 @Test def void testImplicitImports() {
 '''
 class C extends Object {
 String s;
 Object m(Object o) { return o.toString(); }
 }
 '''.loadLibAndParse.assertNoErrors
 }

 @Test def void testLibHasNoError() {
 loadLibrary
 }

 def private loadLibAndParse(CharSequence p) {
 p.parse(loadLibrary)
 }

 def private loadLibrary() {
 loadLib => [
 resources.forEach [contents.get(0).assertNoErrors]
]
 }

We also use SmallJavaLib to implement a standalone command-line compiler
(see section Standalone command-line compiler of Chapter 5, Code Generation).

In the MWE2 workflow, we enable the following fragment:

// generator API
fragment = generator.GeneratorFragment {
 generateXtendMain = true
}

Chapter 10

[269]

Since in SmallJava we did not implement a code generator, the compiler will only
check that there are no errors in the input programs. We modify the generated Main
Xtend class in order to load the library, load all the passed input files, and then
validate all the resources in the resource set. Remember that we must validate the
resources only after all the resources have been loaded, otherwise the cross-reference
resolution will fail:

class Main {
 def static main(String[] args) {
 val injector =
 new SmallJavaStandaloneSetupGenerated().
 createInjectorAndDoEMFRegistration
 val main = injector.getInstance(typeof(Main))
 main.runGenerator(args)
 }

 @Inject IResourceValidator validator
 @Inject SmallJavaLib smallJavaLib

 def protected runGenerator(String[] strings) {
 // load the library
 val set = smallJavaLib.loadLib
 // load the input files
 strings.forEach[s | set.getResource(URI::createURI(s), true)]
 // validate the resources
 var ok = true
 for (resource : set.resources) {
 println("Checking " + resource.URI + "...")
 val issues = validator.
 validate(resource, CheckMode::ALL,
 CancelIndicator::NullImpl)
 if (!issues.isEmpty()) {
 for (issue : issues) {
 System::err.println(issue)
 }
 ok = false
 }
 }
 if (ok)
 System::out.println('Programs well-typed.')
 }
}

Scoping

[270]

You can now follow the same procedure illustrated in Chapter 5, Code Generation,
to export a runnable JAR file together with all its dependencies; the file mainlib.
smalljava will be bundled in the JAR, and the class loader will be able to load it.

Using the library in the type system
and scoping
Now that we have a library, we must update the type system and scope provider
implementations in order to use the classes of the library. We declare public
constants in SmallJavaLib for the names of the classes declared in our library:

class SmallJavaLib {
 public val static LIB_PACKAGE = "smalljava.lang"
 public val static LIB_OBJECT = LIB_PACKAGE+".Object"
 public val static LIB_STRING = LIB_PACKAGE+".String"
 public val static LIB_INTEGER = LIB_PACKAGE+".Integer"
 public val static LIB_BOOLEAN = LIB_PACKAGE+".Boolean"

We use these constants to modify SmallJavaTypeConformance to define special
cases as follows:

class SmallJavaTypeConformance {
 @Inject extension IQualifiedNameProvider
 def isConformant(SJClass c1, SJClass c2) {
 c1 == nullType || // null can be assigned to everything
 (conformToLibraryTypes(c1, c2)) ||
 c1 == c2 ||
 c2.fullyQualifiedName.toString == SmallJavaLib::LIB_OBJECT ||
 c1.isSubclassOf(c2)
 }

 def conformToLibraryTypes(SJClass c1, SJClass c2) {
 (c1.conformsToString && c2.conformsToString) ||
 (c1.conformsToInt && c2.conformsToInt) ||
 (c1.conformsToBoolean && c2.conformsToBoolean)
 }

 def conformsToString(SJClass c) {
 c == stringType ||
 c.fullyQualifiedName.toString == SmallJavaLib::LIB_STRING
 }... similar implementations for int and boolean

Chapter 10

[271]

Concerning the conformance for library types, the type of string constant expression
is conformant to the library class String. The cases for Boolean and integer
expressions are similar. Each class is considered conformant to the library class
Object (as in Java), even if that class does not explicitly extend Object. If we
introduce basic types directly in SmallJava, for example, int and boolean, we would
still have to check conformance with the corresponding library classes, for example,
Integer and Boolean.

The fact that every SmallJava class implicitly extends the library class Object must
be reflected in the scope provider, so that any class is able to access the methods
implicitly inherited from Object. For example, the class should be well-typed even
if it does not explicitly extend Object, but the current implementation rejects it,
since it cannot resolve the references to members of Object:

class C {
 Object m(Object o) {
 Object c = this.clone();
 return this.toString();
 }
}

To solve this problem, we first add a method in SmallJavaLib that loads the EMF
model corresponding to the library Object class:

class SmallJavaLib {
 @Inject extension SmallJavaIndex
 ...

 def getSmallJavaObjectClass(EObject context) {
 val desc = context.getVisibleClassesDescriptions.findFirst[
 qualifiedName.toString == LIB_OBJECT]
 if (desc == null)
 return null
 var o = desc.EObjectOrProxy
 if (o.eIsProxy)
 o = context.eResource.resourceSet.
 getEObject(desc.EObjectURI, true)
 o as SJClass
 }

Scoping

[272]

In the preceding code , we get the object description of the library class Object using
SmallJavaIndex.getVisibleClassesDescriptions. If the EObject corresponding
to Object is still a proxy, we explicitly load the actual EObject from the resource set
of the passed context using the URI of the object description. The preceding code
assumes that the library classes are visible in the current projects. It also assumes that
the EObject context is already loaded, otherwise the resolution of the proxy will fail.

Now, we can implement a method that returns the class hierarchy of a SmallJava
class with the library Object class added at the end of the hierarchy. If the class
explicitly extends Object, we do not need to modify the hierarchy:

class SmallJavaLib {
 @Inject extension IQualifiedNameProvider
 ...

 def getClassHierarchyWithObject(SJClass c) {
 var hierarchy = c.classHierarchy
 if (hierarchy.last?.fullyQualifiedName?.toString
 != LIB_OBJECT) {
 val smallJavaObjectClass = getSmallJavaObjectClass(c)
 if (smallJavaObjectClass != null)
 hierarchy += smallJavaObjectClass
 }
 hierarchy
 }
}

Finally, we modify our scope provider so that it uses this method to get the class
hierarchy and build the scope for members; this will transparently make the
members from Object visible to any class and requires a very small modification
to the scope provider:

class SmallJavaScopeProvider extends AbstractDeclarativeScopeProvider
{
 @Inject extension SmallJavaLib
 def scope_SJMember(SJMemberSelection sel, EReference r) {
 var parentScope = IScope::NULLSCOPE
 val type = sel.receiver.typeFor
 if (type == null || type.isPrimitive)
 return parentScope
 for (c : type.classHierarchyWithObject.reverseView) {
 ...as before

Chapter 10

[273]

Note that it is important to make it possible to easily modify the structure of the
library classes in the future. We did hardcode as public constants the fully qualified
names of library classes in SmallJavaLib, but not the library classes' structure, so
if in the future we want to modify the implementation of the library classes, we will
not have to modify the type system neither the scope provider.

The other interesting feature is that one could easily provide a different
implementation of the library as long as the main library class names are kept.
The current SmallJava implementation will seamlessly be able to use the new library
without any change. This is another advantage of keeping the DSL and the library
implementations separate.

Dealing with super
As a final feature, we add the mechanism for invoking the implementation
of a method in the superclass by using the keyword super. Note that super should
be used only as the receiver of a member selection expression, that is, it cannot
be passed as the argument of a method. Following the practice "loose grammar,
strict validation", we do not impose this at the grammar level. Thus, we add the
rule for super as a terminal expression:

SJTerminalExpression returns SJExpression:
 ...
 {SJSuper} 'super' | ...

and we add a validator rule that checks the correct super usage:

@Check
def void checkSuper(SJSuper s) {
 if (s.eContainingFeature !=
 SmallJavaPackage::eINSTANCE.SJMemberSelection_Receiver)
 error("'super' can be used only as member selection receiver",
 null, WRONG_SUPER_USAGE)
}

Thanks to the way we implemented the scope provider, in order to make members
of the superclass visible when the receiver expression is super, we only need to
provide a type for super. The type for super is the superclass of the containing class:

class SmallJavaTypeProvider {
 def typeFor(SJExpression e) {
 switch (e) {
 SJThis : e.containingClass
 SJSuper : e.containingClass.superclass
 ...as before

Scoping

[274]

However, this way, if a class does not explicitly extend Object, it will not be able
to access the methods of Object with super. To solve this, we just need to return
the loaded instance of Object in case the superclass is null using SmallJavaLib.
getSuperclassOrObject:

class SmallJavaTypeProvider {
 @Inject extension SmallJavaLib
 def typeFor(SJExpression e) {
 switch (e) {
 SJThis : e.containingClass
 SJSuper : e.containingClass.getSuperclassOrObject
 ...as before
 }

 def getSuperclassOrObject(SJClass c) {
 c.superclass ?: getSmallJavaObjectClass(c)
 }

The following screenshot shows a usage example of super. Note that the subclass
redefines the method m and changes the return type with a subtype (as we saw in the
section Checking method overriding of Chapter 9, Type Checking, this is valid). You can
see that super.m() refers to the implementation in the superclass; the superclass m
returns an object of type C, thus we get an Incompatible types error.

Chapter 10

[275]

What to put in the index?
As explained earlier in this chapter, everything that can be given a name will have
a corresponding entry in the index; moreover, by default, each element of the index
can be referred through its fully qualified name. However, only the references
that use the qualified name syntax can refer to these elements using the index.
In SmallJava, only classes can be referred with qualified names.

Therefore, it makes no sense to index those elements that cannot be directly accessed
through a qualified name. In our DSL, this means that only classes should be
indexed. Although the presence of entries in the index for SmallJava methods, fields,
and local variables does not harm, still it occupies some memory space uselessly.
Moreover, the indexing procedure could be optimized by removing the overhead
of indexing useless elements.

We then tweak the strategy for building the index for SmallJava programs; we need
to provide a custom implementation of DefaultResourceDescriptionsStrategy
and redefine the method createEObjectDescriptions. This method is automatically
called by Xtext when the index is built or updated when resources change.
We implement our custom version that creates object descriptions only for
SmallJava classes:

@Singleton
class SmallJavaResourceDescriptionsStrategy extends
DefaultResourceDescriptionStrategy {
 @Inject extension IQualifiedNameProvider
 override createEObjectDescriptions(EObject eObject,
 IAcceptor<IEObjectDescription> acceptor) {
 if (eObject instanceof SJProgram) {
 (eObject as SJProgram).classes.forEach[
 sjClass |
 val fullyQualifiedName = sjClass.fullyQualifiedName
 if (fullyQualifiedName != null)
 acceptor.accept(
 EobjectDescription::create(fullyQualifiedName,
 sjClass)
)
]

 true
 } else false
 }
}

Scoping

[276]

Note that this class must be annotated with @Singleton, indicating that only one
instance per injector will be used for all injections for this class.

Of course, we bind our implementation in the runtime module:

public class SmallJavaRuntimeModule extends
 AbstractSmallJavaRuntimeModule {
 public Class<? extends IDefaultResourceDescriptionStrategy>
 bindIDefaultResourceDescriptionStrategy() {
 return SmallJavaResourceDescriptionsStrategy.class;
 }...

This way, we improve the default indexing behavior.

If you now run the test method testExportedEObjectDescriptions
shown in the section Exported objects, you will see that it fails. You will
need to modify it since the only descriptions in the index will be the ones
of the classes C and A.

As we hinted at in the previous chapter, NamesAreUniqueValidator uses the index
to quickly check for duplicate names of a given type. With our custom strategy,
duplicate names would be detected for classes only. However, as we showed in the
previous chapter, we disabled the NamesAreUniqueValidator for SmallJava and we
implemented duplicate name checks manually.

In general, if you modify the strategy for building the index,
you should also manually customize the uniqueness check since
NamesAreUniqueValidator will surely not work.

Additional automatic features
Xtext makes use of the index to automatically provide many additional IDE features
for your DSL. Some examples are shown in the next screenshot. For example, you can
mark occurrences of any named element by toggling the corresponding toolbar button.
In the following screenshot, it is the one right on top of the Plug-in Development
perspective button, marked with (1). The markers will be evident both in the editor
and in its right-hand side ruler. This feature is based on the IResourceDescription
instances stored in the index; they contain information about cross-references, possibly
to other resources. Furthermore, by right-clicking on an element in the editor, you can
choose the menu References, and in the Search view, you can see all the files in your
project that reference the selected element. In the following screenshot, we selected
the method predicate in the file example.smalljava, and the view shows all its
occurrences also in the other file example2.smalljava:

Chapter 10

[277]

The editor for your DSL automatically supports refactoring of names: just select
an element with a name, right-click on it, and choose Rename Element. This
refactoring has the same user interface as the one of JDT; you can also access
the refactoring dialog so that you can have a preview of what will be modified
and possibly deselect some modifications. Of course, refactoring works across
multiple files as well. For instance, in the following screenshot we change
a SmallJava method's name.

Scoping

[278]

References in the same file are updated while you rename the element. After pressing
Enter, you can note (see the following screenshot) that the method occurrences are
modified accordingly in the other file.

Summary
In this chapter we described scoping, which is the main mechanism behind
visibility and cross-reference resolution. In particular, scoping and typing are often
strictly connected and interdependent especially for object-oriented languages. We
described both local and global scoping and we showed how to customize these
mechanisms using the SmallJava DSL as a case study.

In the next chapter we will show how you can create a p2 repository for your DSL
implementation; this way, other users can easily install it in Eclipse. Xtext provides
a wizard that creates the entire infrastructure to build a p2 repository
with Buckminster, an Eclipse project for automatic building.

Building and Releasing
In this chapter we describe how you can release your DSL implementation by
creating an Eclipse p2 repository. In this way others can easily install it in Eclipse.
With this respect, Xtext provides a wizard that creates the infrastructure to build a p2
repository with Buckminster, an Eclipse project for automatic building. The wizard
will also create all the needed files to build your projects and test them in a headless
way, that is, outside Eclipse. This makes it easy to run your builds on a continuous
integration server.

Release engineering
Once your DSL implementation reaches a mature state, you would like to make it
available on the Internet so that others can install it in their Eclipse. You could use
the standard Eclipse Export wizard to create ZIP files that others can extract in their
Eclipse installation. However, this installation method was deprecated many years
ago, in favor of p2 repositories (also called p2 sites), which in turn, have replaced
old style Eclipse update sites. Most of the sites you have been using to install new
features into your Eclipse are p2 repositories, thus, you should build a p2 repository
for your DSL, if you want users to easily install it.

In software engineering, release engineering, abbreviated as releng, concerns the
compilation, assembly, and delivery of source code into finished products or other
software components. In this section we briefly introduce some scenarios which
require release engineering mechanisms. These will be connected to the creation
of an installable version of your software and also to the capability to build and
test your projects in isolation, outside Eclipse, in an automatic way.

Building and Releasing

[280]

Headless builds
Another important issue when developing a DSL (and in general, any project)
is that you should be able to build all your projects headlessly, that is, from
the command line outside Eclipse, in an automatic way. This will give you more
confidence that your plug-ins can be installed in other Eclipse installations without
problems. Installation problems easily go unnoticed, although it was possible
to build the software locally. If dependencies of your components are not present
in the user's environment, and you did not describe these dependencies, it will not
be possible for others to install your software. While developing, these problems
are easily detected. It simply will not build, but when installing, there are more
considerations such as, will it install on all intended platforms, which Eclipse
versions will it work with, and so on.

For all of the stated reasons, being able to build your software in isolation is
a requirement in software production. This way, the headless building process
will not rely on your Eclipse installation, but on a separate set of dependencies
which are specified in a separate configuration.

Target platforms
A target platform is a set of features and plug-ins that your software, for example,
your DSL implementation, depends on, for compiling, testing, and running.

By using a defined target platform, you can easily separate the tools that you need
to develop your software from the actual dependencies that are required to compile
and execute your software. The tools are usually not needed during the automatic
building process, thus, the target platform contains only what is actually needed
to build and test your software. This way, the compilation of your plug-ins will be
decoupled from the Eclipse development environment. This also holds when you test
your plug-ins both with Junit tests and when you run another Eclipse instance. The
launch configuration will run the new Eclipse instance with the plug-ins specified in
the target platform, and not the ones of your Eclipse development environment.

If no specific target platform is specified, the target platform
defaults to the current Eclipse installation, that is why, even if you
never explicitly define target platforms, everything works anyway.

Defining a target platform allows you to compile and test your software against
dependencies without installing them in your Eclipse development environment.
Defining different target platforms also allows you to test your software against
different Eclipse versions; for example, you can develop with Eclipse Juno,
but your software will be compiled and run using a target platform with Eclipse
Kepler plug-ins.

Chapter 11

[281]

If you develop your software in a team, all developers should use the same target
platform definition. They can develop using different Eclipse installations with
possibly different installed tools, but the compilation and the testing will use the
same defined target platform, ensuring consistency.

In Eclipse, a target platform can be defined by using a target definition file, which
can be created with the corresponding wizard and edited with the corresponding
editor. Once a target platform is defined, it can be set as the current target platform
(using the target platform definition file editor, or using the Eclipse corresponding
preference page). This process will resolve all the specified requirements, possibly
downloading them from remote repositories, and installing them in a separate place
(so that it will not conflict with your Eclipse installation). Since such target definition
files are XML files, a target definition can be easily shared since it can be put in the
SCM repository (such as Git) used by all the developers of the team. Each developer
only needs to open that file and set it as the current target platform.

Continuous integration
If your software consists of many loosely coupled plug-ins, you probably have tests
that test them in isolation; however, you should also have tests for the integration
of all of them, to make sure that they are able to run altogether without problems
in the final execution environment. In this book we implemented both plain Junit
tests and plug-in Junit tests (see Chapter 7, Testing). Although we learned to use
launch configurations and test suites to easily run all the tests, still, runtime tests
are run separately from integration UI tests.

Thus, running all tests after every modification might be a burden for the
programmer, decreasing the production cycle. Typically, you run tests that concern
a specific task/modification/new feature that you are working on. However, single
component modifications should also be tested when integrated in the whole
application. With this respect, Continuous Integration, often abbreviated as CI,
(Fowler, 2006) is the practice in which isolated changes are immediately tested
in the complete code base. In this way, if a bug is introduced into the application
by a single component, it can be easily and quickly identified and corrected. For
this reason, it is crucial to have a build automation mechanism which relies on
a headless building process. Usually, the actual build process is delegated to
a specific software run on a dedicated server. A complete integration build can
take several minutes and the developer can continue working while the server
executes the build and check the result periodically.

Building and Releasing

[282]

Xtext provides a nice wizard to set up the configuration files to allow you to easily
create a release of your DSL. Furthermore, these files will also allow you to run
a complete automatic build headlessly, including execution of tests. This way, most
of the set up for build automation and continuous integration is already done for
you by this wizard. The resulting building infrastructure created by this wizard
relies on the Eclipse tool Buckminster, that we will introduce in the next section.

Introduction to Buckminster
Buckminster (http://www.eclipse.org/buckminster) is a set of frameworks and
tools for automating the building and assembling of components. It comes in two
versions: one is to be installed in the IDE and the second one is to be used headlessly.
A very nice feature of Buckminster is that it provides the same tools in both
environments. This means that the IDE builds and headless builds are performed the
same way; you do not have to deal with multiple ways of building and the potential
differences between build technologies.

Buckminster resolves all the dependencies of the software components needed to
build, including those that are built from source. When Buckminster knows what
is needed, it materializes them by fetching the content, creates workspace projects
for source that should be built, and places everything else in the target platform.
Buckminster supports many different mechanisms for both dependency resolution
and materialization. You can work with the technologies you are already using,
for example, the local filesystem, git, svn, maven repositories, and so on. You
will not have to maintain two different project structures, one for the IDE and
one for the headless build (for example, to be run on a continuous integration
server). This is also a very striking and interesting feature of Buckminster with
respect to other solutions such as, Eclipse PDE-Build (based on ANT scripts) and,
most of all, Maven/Tycho. Note that maintaining two building infrastructures
can really be a burden, especially when things will start working in the IDE but
not in the headless build and vice-versa; this is especially true for unit tests. With
Buckminster, you usually do not experience bad surprises in your headless builds
since the building and testing infrastructure is the same.

Recently, the Tycho project (a set of Maven plug-ins and extensions for building
Eclipse plug-ins with Maven, a build manager for Java projects) is receiving much
attention in the Eclipse community for building and testing of Eclipse projects.
Although Tycho fills most of the gap between Maven building mechanisms and
Eclipse, still it is actually a different building system; you will still need to maintain
two building structures and, very often, specify or repeat project dependencies into
different places. Moreover, Junit tests during a headless Tycho build will not run
exactly the same way as in the IDE.

Chapter 11

[283]

Setting up a Tycho build for an Xtext project may not be easy, and you should
get ready to spend some time to make things work in the IDE the same way as in
the headless build and vice-versa. Xtext provides a wizard to easily set up all the
configuration files for building with Buckminster. In spite of all the attention that
Tycho is receiving, we strongly encourage you to get familiar with Buckminster
to enjoy a nicer and easier building experience.

Installing Buckminster
To install Buckminster in your Eclipse, you need to use the repository that
corresponds to your Eclipse version, for example:

• http://download.eclipse.org/tools/buckminster/updates-4.2
for Eclipse Juno

• http://download.eclipse.org/tools/buckminster/updates-4.3
for Eclipse Kepler

The two main features to install are: Buckminster – Core and Buckminster – PDE
Support (these will be enough to create a p2 repository).

The installation of the headless version of Buckminster, which is required if you
plan to build and test your software headlessly, possibly in a continuous integration
server, requires some additional steps, as shown at http://www.eclipse.org/
buckminster/downloads.html. However, the Xtext Buckminster wizard can install
Buckminster headless for you, so you can rely on that. Moreover, in the sources
of the examples of this book, you will find an ANT target that automatically installs
Buckminster headless.

Using the Xtext Buckminster wizard
In this chapter we will use a brand new example DSL project to demonstrate the
building and releasing mechanisms (of course, the same mechanisms can be applied
to an existing DSL as well):

1. Go to File | New | Project..., in the dialog, navigate to the Xtext category
and select Xtext Project.

2. In the next dialog you should specify the following names:
• Project name: org.example.build.hello
• Name: org.example.build.hello.Hello
• Extensions: hello
• Check the option Create SDK feature project (this option must be checked

for this example to work)

Building and Releasing

[284]

The wizard will create four projects in the workspace and it will open the file
Hello.xtext.

We will use this example only for building and releasing, thus, we are not interested
in the DSL itself; we can simply leave the default grammar as it is. However, make sure
to run the MWE2 workflow at least once, so that all the Xtext artifacts are generated.

We add a Junit Xtend test class, HelloParserTest, in the org.example.build.
hello.tests project with two test methods, just to have some tests to run during
the headless build.

Note that, different from the other examples, this time we also generate an SDK
feature project. A feature project is required if you want your software to be
installable via a p2 repository. You can only install features, not single plug-ins,
with the Eclipse Install New Software wizard.

We now use the Xtext Buckminster wizard. Right-click on the org.example.build.
hello.sdk project, and go to New | Other.... Expand the Xtext category, then the
Continuous Integration category and select Build with Buckminster as shown
in the following screenshot:

Chapter 11

[285]

Let us now examine the wizard page (refer to the next screenshot). The wizard will
inform you that it will create two additional projects:

• org.example.build.hello.buckminster, the releng project, that is,
the project with all the files for the headless build

• org.example.build.hello.site, the project that will be used to create
the p2 site

The wizard dialog accepts the path where the Buckminster headless installation
should be found in your computer. It is not strictly required to specify this path
now; the path is required only if you plan to build your DSL headless from the
command line or in a continuous integration system. The wizard offers you to install
Buckminster headless right at this time; you just need to click on the hyperlink in
the wizard page. You can specify some launch configurations for Junit tests; these
will be run during the headless build. The main Xtext project wizard already creates
a launch configuration for Junit tests (we described this in Chapter 7, Testing), thus,
we select org.example.build.hello.tests.launch in the org.example.build.
hello.tests project. When you press Finish, the two additional projects will
be created:

Building and Releasing

[286]

Building the p2 repository from Eclipse
We are now ready to create a p2 repository for our example DSL. We will do this
from Eclipse by relying on Eclipse Buckminster.

To build a p2 repository, right click on the org.example.build.hello.site project
and go to Buckminster | Invoke Action...; Buckminster offers many default actions
for Eclipse plug-in and feature projects. The one we are interested in is site.p2
(see the following screenshot); thus, select that action and press OK.

You will now see a dialog showing the progress and some output in the "Console"
view. The procedure should terminate without errors.

By default, Buckminster will generate all its artifacts in the system temporary
directory under buckminster/build. The p2 repository can then be found in
the subdirectory org.example.site_1.0.0-eclipse.feature/site.p2.

You can change this path and many other properties used by Buckminster by
providing a properties file. For example, we can create a file, say buckminster.
properties, and store it in the org.example.build.hello.site project with
the following contents:

where all the output should go
buckminster.output.root=${user.home}/build/hello

Chapter 11

[287]

This means that we want Buckminster to generate its output starting from the base
path build/hello in our home directory.

We can now call the site.p2 action again by specifying this properties file in the
corresponding dialog's text field (see the preceding screenshot). This time, the p2
repository will be generated into build/hello/org.example.site_1.0.0-eclipse.
feature/site.p2 in your home directory.

You can try the p2 repository that has just been created. From Eclipse go to
Help | Install New Software..., and in the Work with: text field, paste the absolute
path of the created p2 repository; when you press Enter, you should see your Hello
SDK Feature ready to install (see the following screenshot).

A nice thing of Buckminster is that, by default, it also generates a source feature with
all the sources of all the plug-ins of your DSL implementation. If a user also installs
the source feature, he/she will be able to inspect the sources of your implementation
from Eclipse (without having to access its source repository to find the exact version
being used).

Building and Releasing

[288]

The p2 repository you have just created can now be deployed on a remote web
server; you can then publish the URL of the deployed site so that other users can
install your DSL implementation like any other Eclipse feature.

You may also want to run the action site.p2.zip, which creates a zipped version
of the p2 repository. You can put this zipped repository on the web as well to offer
an offline installable version of your software (the Eclipse Install New Software...
dialog allows you to also specify a local ZIP file as the repository).

Customizations
The projects created by the Xtext Buckminster wizard contain sensible defaults
to build a p2 repository.

You can easily customize the configuration files in the projects created by the wizard.
The description of the feature for your DSL implementation can be found in the
feature.xml file in the org.example.build.hello.sdk feature project. Here you
can change the name of the feature, the vendor, copyright information, and other
things. Eclipse has a form-based editor for features, and we refer to the Eclipse
documentation for the structure of this file.

A repository can potentially contain hundreds of different features to install. Eclipse p2
therefore has the concept of categories, which is used to structure features in a way that
is meaningful to a user. The names of such categories are specified in the category.
xml file of the org.example.build.hello.site project. You can change or customize
the default categories generated by the Xtext Buckminster wizard. Eclipse provides
a specific editor for category.xml or you can simply edit the XML file directly.

For example (see the following screenshot), we can add a description to the main
category; this will appear in the details text area of the Eclipse Install New Software...
dialog. You can add a corresponding description in the main.source category.

Chapter 11

[289]

Note that the main.source category refers to a feature whose name is
not shown, and its icon is gray. If you open category.xml with a text
editor, you can see that it refers to the feature org.example.build.
hello.sdk.source that does not exist. This will be created by
Buckminster when running the site.p2 action, so you can ignore it.

Defining the target platform
Although it is not strictly required to build the p2 repository in the IDE, as we said
in the introduction of this chapter, a defined target platform should be used during
the development in order to make sure that all the team members use the same set
of required plug-ins, and also to have a better control on the requirements of the
software we are developing.

Buckminster can handle standard Eclipse target definition files, and is also able to
specify, resolve, and install a target platform by resolving and materializing
a component through a component query (CQUERY). Without getting into technical
details, the idea is that, when a component is resolved, all its dependencies are
transitively resolved. The org.example.build.hello.buckminster project created
by the Xtext Buckminster wizard, specifies in its component specification (CSPEC),
two features as dependencies: org.eclipse.xtext.sdk and org.eclipse.platform.
Thus, by asking Buckminster to resolve this component, a target platform which
consists of these two features and all of their dependencies will be materialized. At
the end of this process, the so obtained target platform will be set as the current target
platform of the workspace, thus, from then on, you will be compiling and testing
your projects by using only the software in this target platform. This is also the target
platform that will be used in the headless build (see the next section). Unless you
added additional external dependencies in your DSL implementation, these preceding
two features are all you need to implement a DSL in Xtext.

Building and Releasing

[290]

To materialize the target platform, you need to open the projects-platform.cquery
file in the org.example.build.hello.buckminster project with the associated
Buckminster editor. You then press the button Resolve and Materialize and the
target platform resolution will start (as illustrated in the following screenshot).

This requires an Internet connection and it might take several minutes depending
on your network connection, since all the required features will be downloaded from
remote p2 repositories.

Build headlessly
The Xtext Buckminster wizard also creates a build.ant file in the org.example.
build.hello.buckminster project that can be used to build the p2 repository
headlessly, outside Eclipse. The wizard hardcoded the path to Buckminster headless
installation in the ANT file (the path you specified in the dialog of the wizard). If
you plan to build your projects on a continuous integration server machine, it might
be good to use a path relative to an environment variable. For example, you could
modify the buckminster.home property in the ANT file as follows:

<property name="buckminster.home"
 location="${user.home}/buckminster" />

Remember that you can also override properties specified in an ANT file by passing
a new value on the command line with the Java properties specification syntax:
D<key>=<value>.

Chapter 11

[291]

This ANT script will execute the headless version of Buckminster running all the
commands specified in the file commands.txt in the org.example.build.hello.
buckminster project.

Even without knowing Buckminster, looking at the commands.txt file, it should
be quite easy to see what happens during the build:

1. Resolve the target platform.
2. Import all the projects in the (headless) workspace.
3. Build (that is, compile) all the projects.
4. Run the Junit tests.
5. Create the p2 repository.

Basically, the Buckminster headless process just mimics what a programmer would
do in the IDE.

You can see that for running Junit tests headlessly, you just need to provide a standard
Eclipse Junit launch configuration. The created commands.txt file refers to the launch
configuration that Xtext created in your tests plug-in project. We have also used the
created launch configuration for all the Junit tests of the examples shown in this book.
Recall that this launch will run all the tests which are found in the source folder of the
tests plug-in project. In this book we also showed how to write and run plug-in Junit
tests, that require a running Eclipse. If you create a launch configuration for your
plug-in Junit tests, you can add the corresponding command in the commands.txt file
so that Buckminster will run those tests as well during the headless build (you can find
such launch configurations in the sources of the examples of this book).

Note that the ANT script builds the projects and the p2 repository in a separate
directory, buildroot, created in the same path of your projects. If you maintain your
projects in a SCM repository (for example, Git, Svn, CVS), make sure to configure the
repository to ignore this buildroot directory.

The headless build process will materialize the target platform in the directory
buildroot. The creation of such target platform requires an Internet connection,
and the first time it is created it will take some time to populate it (it will need
to download Xtext SDK and the main Eclipse platform features). This means that
this headless build will be independent from the Eclipse installation you used
to develop your DSL; as we said at the beginning of this chapter, this is the expected
behavior in a headless build. This ANT script will resolve the target platform only
the first time it is run. Upon further executions, the target platform will not be
recreated, thus the process takes more time only on the first execution. However,
further executions will still execute a complete clean build; the headless workspace
will be recreated and all the projects will be re-imported from scratch. This reflects
the nature of a headless build which is usually intended as a clean build, as opposed
to what happens when developing in the IDE, where the build is incremental.

Building and Releasing

[292]

Thus, with this ANT script, the building and testing of your DSL implementation
can be automated, even on a continuous integration server. One of the most common
open source continuous integration servers is Jenkins (http://jenkins-ci.org/).
There is also a Buckminster plug-in for Jenkins (https://wiki.jenkins-ci.org/
display/JENKINS/Buckminster+PlugIn). This subject is outside the scope of the
book; we refer the interested reader to the Jenkins documentation for its installation
and use. Once you get familiar with Jenkins, setting up a build job for your Xtext
DSL project is really straightforward by relying on the projects and files generated
by the Xtext Buckminster wizard.

You can use build jobs in Jenkins for your DSL to continuously test your DSL
projects when new modifications are committed to the SCM repository as we do
for the examples of this book, as briefly described in the next section. You can have
nightly jobs that create the p2 repository and make it available on the web; the
nightly builds are common to many Eclipse projects, like Xtext itself.

Further details about building Xtext projects with Buckminster, also on a continuous
integration server, can be found in this blog post: http://www.lorenzobettini.
it/2012/11/building-xtext-projects-with-buckminster/. This will give you
further details about the Buckminster configuration files (namely, .cspec, .cspex,
.cquery, and .rmap) which are essential to make Buckminster run a headless build.
It will provide hints on how to customize such files. Of course, you can refer to the
Buckminster documentation (Lindberg and Hallgren, 2010) for further and advanced
details about Buckminster.

Maintaining the examples of this book
All the example DSLs shown in this book are built using Buckminster. Since
we have many DSLs to build and we want a single headless build procedure
to build them all, we modified the infrastructure of the projects and configuration
files created by the Xtext Buckminster wizard. In particular, we have a single
feature project, org.example.site, for building the p2 repository of all the
example DSLs. Similarly, we have a single releng project, org.example.releng,
to perform the headless build of the p2 site for the examples and to run all the Junit
tests of all the DSLs.

You may want to look at all the Buckminster files in the releng project to see
some variations of what we saw in this chapter. Moreover, the original build.
ant file has been enhanced with some utility tasks like the one that automatically
installs Buckminster headless if it is not present in the system where the ANT
script is executed.

Chapter 11

[293]

Furthermore, all the examples in this book are built on a Jenkins continuous
integration server. The examples are maintained in a Git repository, and as soon
as a commit is pushed to the remote Git repository, the corresponding Jenkins job
is triggered, so that all the examples are built from scratch and all the tests are run
by the Jenkins job.

Summary
Xtext also helps the programmer in the context of release engineering. Using the
Xtext Buckminster wizard it is easy to build a p2 repository for releasing your DSL
implementation. It is also easy to set up a headless build process that can be executed
in a continuous integration server.

In the next chapter we will briefly present Xbase, a reusable expression language
completely interoperable with the Java type system. When you use Xbase in your
DSL you will not only inherit the grammar of its expressions, but also its Java type
system, its code generator, and all its IDE aspects.

Xbase
In this final chapter we briefly present Xbase, a reusable expression language
completely interoperable with the Java type system. By using Xbase in your DSL,
you will inherit all the Xbase mechanisms for performing type checking according
to the Java type system and the automatic Java code generation. Xbase also comes
with many default implementations of UI aspects. The Xbase expression language
is rich and has all the features of a Java-like language, such as object instantiation,
method invocation, exceptions, and so on, and more advanced features such as
lambda expressions and type inference. The Xtend programming language itself
is built on Xbase.

Getting introduced with Xbase
As we saw throughout the examples of this book, it is straightforward to implement
a DSL with Xtext. This is particularly true when you only need to care about structural
aspects; in the Entities DSL of Chapter 2, Creating Your First Xtext Language, we only
need to define the structure of entities. Things become more complicated when it
comes to implementing expressions in a DSL; as we saw in Chapter 8, An Expression
Language, we need to define many rules in the grammar using left factoring to avoid
left recursion, even when we only deal with a limited number of expressions. Besides
the grammar, the validation part also becomes more involved due to type checking.
When we mix structures and expressions, like in the SmallJava DSL, the complexity
increases again; besides advanced type checking (Chapter 9, Type Checking) we also
need to take care of scoping (Chapter 10, Scoping) that is implied by relations such
as inheritance. An inheritance relation also requires type conformance (subtyping)
in the type system, and this introduces additional complexity.

Xbase

[296]

To simplify many of these tasks, when the DSL needs to implement behavioral
aspects (mainly expressions and functions or methods), Xtext provides Xbase,
an expression language that can be reused in a DSL (Efftinge et al. 2012). Xbase
expressions have a rich Java-like syntax, which includes standard expressions
(arithmetic and Boolean), control structures (for example, if statements and loops),
exceptions and object-oriented expressions (for example, method invocation and
field selection). Moreover, it provides advanced features such as lambda expressions.
Indeed, Xtend method bodies are based on Xbase, thus, if you use Xbase in your
DSL, you will have the expressive power of Xtend expressions (however, Xtend
extensions such as multi-line templates are not available in Xbase).

A DSL based on Xbase will inherit not only the syntax of such Java-like expressions,
but also all its language infrastructure components, like its type checking
implementation and the compiler that generates Java code. The Xbase type system
is completely interoperable with the Java type system, thus, a DSL based on Xbase
will be compatible with Java and its type system, including generics; your DSL will
be able to seamlessly access all the Java types, which implies that you will be able to
access any Java library (just like in Xtend).

Note that Xbase only deals with expressions; your DSL will have
to deal with structural features like functions and method bodies
or class hierarchies.

In order to reuse Xbase Java type system in your DSL, you will just have to map the
concepts of your DSL (for example, entities, attributes, and so on) into the Java model
elements of Xbase (for example, classes, fields, and so on). This mapping is performed
by implementing an IJvmModelInferrer interface. The Xbase expressions used in
your DSL will then have to be associated to a Java model method, which becomes
the expression's logical container. Such mapping and association will let Xbase
automatically implement a proper scope for the expressions so that scoping and type
checking will work out of the box. With such information, Xbase will also be able
to automatically generate Java code for your DSL.

In this chapter we only give a brief introduction to Xbase (Xbase also provides
an interpreter for Xbase expressions, but we will not describe it in this chapter). We
refer to the Xtext official documentation, to Efftinge et al. 2012, and to the 7 languages
examples, http://www.eclipse.org/Xtext/7languages.html. Furthermore, by
navigating to New | Example... | Xtext Examples | Xtext Domain-Model Example,
you can import into your workspace the Domain-Model example that ships with Xtext;
this is another example of how Xbase can be used in a DSL.

Chapter 12

[297]

Keep in mind that when using Xbase, your DSL will be tightly
coupled with Java, which might not always be what you need.
We will get back to this in the final section, Summary.

The Expressions DSL with Xbase
For the first example of the use of Xbase, we implement a DSL similar to the
Expressions DSL that we presented in Chapter 8, An Expression Language, which
we call as Xbase Expressions DSL; this DSL is inspired by the Scripting Language
DSL of the 7 languages examples.

Creating the project
First of all, we create the project:

1. Navigate to File | New | Project..., in the dialog navigate to the Xtext
category and select Xtext Project.

2. In the next dialog you should specify the following names:

 ° Project name: org.example.xbase.expressions
 ° Name: org.example.xbase.expressions.Expressions
 ° Extensions: xexpressions
 ° Uncheck the option Create SDK feature project

The wizard will create three projects and it will open the grammar file Expressions.
xtext.

Before running the MWE2 generator for the first time, you should modify
the grammar so that it uses the Xbase grammar, not the Terminals grammar
as we did in all previous chapters' examples:

grammar org.example.xbase.expressions.Expressions with
 org.eclipse.xtext.xbase.Xbase

Since our grammar now inherits from the Xbase grammar, all the Xbase grammar
rules are in effect in our DSL.

Xbase

[298]

When using Xbase, the generated Java files in the src-gen folder will
contain lots of warnings of the shape:

Discouraged access: The method ... from the type ...
is not accessible due to restriction on required
library org.eclipse.xtext.xbase_....jar

This is due to the fact that Xbase API is still provisional and it will
be subject to changes in the future possibly breaking backward
compatibility. Of course you can ignore these warnings. When a new
version of Xbase is released you might have to run the MWE2 workflow
again, and possibly modify your code to be compatible with the new
version. In any case, a test suite is also required to make sure that your
code is still working with the new version of Xbase.

We want to recreate a DSL similar to the Expressions DSL we introduced in Chapter
8, An Expression Language. Thus, we want to be able to both declare variables and to
write expressions like additions, multiplications, and so on. Thus, a program in this
DSL is like a big code block. Xbase has a specific rule for dealing with code blocks:
XBlockExpression.

The most generic form of Xbase expression, which also corresponds to
the base class of all Xbase expressions, is XExpression.

Since Xbase has its own validator that implements lots of useful constraint checks,
and since, like all the validators we implemented in this book, it is based on the types
of the elements being validated, we should make the main rule for our DSL return
an XBlockExpression object. This way, our DSL root element will be conformant
to XBlockExpression and it will be automatically validated accordingly by Xbase.
In the Expressions DSL of Chapter 8, An Expression Language, we also made sure that
variable references are validated so that a variable can only refer to variables already
defined; this check is not necessary anymore when we use Xbase since
it is automatically implemented for the XBlockExpression elements.

Thus, we start writing the grammar as follows:

grammar org.example.xbase.expressions.Expressions with
 org.eclipse.xtext.xbase.Xbase

generate expressions "http://www.example.org/xbase/expressions/
Expressions"

import "http://www.eclipse.org/xtext/xbase/Xbase"

ExpressionsModel returns XBlockExpression:...

Chapter 12

[299]

Remember that when we use returns in a rule, we specify a type, not a rule
name. Since this type, XBlockExpression, is defined in Xbase EMF metamodel,
we need to import this metamodel. We do this by specifying the EMF namespace
corresponding to Xbase (recall that each Xtext grammar defines an EMF
namespace; it is the one defined after the generate section).

Now, we want our ExpressionsModel to consist of variable declarations and single
expressions. Xbase has a specific rule for that: XExpressionInsideBlock; thus, we
can simply reuse that rule:

ExpressionsModel returns XBlockExpression:
 {ExpressionsModel}
 (expressions+=XExpressionInsideBlock)*;

With this simple grammar, we have a working parser that allows us to write
programs consisting of variable declarations and single expressions. These have the
same syntax as Xtend expressions. If you want to experiment with this DSL, you can
start Eclipse, create a plug in project in the workspace, and, in the src folder, create
a new .xexpressions file (remember to accept the option to add the Xtext nature
to the project). You should also add the bundle org.eclipse.xtext.xbase.lib
as a dependency in the Dependencies section of the MANIFEST.MF editor.

The IJvmModelInferrer interface
Besides the grammar rules which can be reused in a DSL, the interesting feature
of Xbase is the integration with Java. The same integration you have already
experienced in Xtend can be reused in any DSL based on Xbase. This means that the
entire type system of Xbase, which corresponds to the type system of Java, together
with the additional type inference mechanisms that you enjoyed in Xtend, can be
a part of your DSL as well.

However, in order to reuse the Xbase type system in your DSL, it is not enough to use
Xbase grammar rules; you also need to give your model elements a "context" so that
Xbase can check your model elements according to that context. You basically need
to tell Xbase how your model elements map to Java elements. The Xbase expressions
which are contained in your model elements will then be typed and checked by Xbase
as parts of the corresponding Java elements.

Xbase

[300]

You basically have to map your model elements to Java types (classes and interfaces),
fields and methods. This mapping is a model to model mapping, since you map
your DSL model elements to a model that represents Java elements. When you map
a model element to a Java method, you can specify that its body is represented by
an Xbase expression. Given that, Xbase will be able to type and check that Xbase
expression, since it will consider it in the context of a Java method (which in turn
is part of a Java class, which can extend another Java class, and so on.). If that Xbase
expression uses this, Xbase will know what it refers to; similarly for super, method
parameters, and so on. Unless you need to do some custom things with Xbase
expressions, just specifying this mapping to Java elements will be enough; you will
not need to provide a custom scoping, since Xbase will be able to compute the scope
using the mapped Java elements.

This mapping is specified by implementing an IJvmModelInferrer interface; since
we use Xbase in our grammar, the MWE2 workflow generates an Xtend stub class,
ExpressionsJvmModelInferrer in the jvmmodel subpackage. The stub class has
an empty dispatch method named infer, which is the method where you specify
the mapping to Java elements:

def dispatch void infer(ExpressionsModel model,
 IJvmDeclaredTypeAcceptor acceptor,
 boolean isPreIndexingPhase)

In this method you will create Java model elements, associate them to your DSL
elements, and pass them to the acceptor; this implements the mapping. The Java
elements themselves can be created using the injected extension JvmTypesBuilder.
This provides a useful API to create Java model elements, for instance, toClass,
toMethod, toField, and so on. All these methods take the source element as the
first parameter. Besides creating a Java model element, these methods also record
the association with the original source element. Xtext uses this association to
provide a default implementation of many UI concepts.

Note that with JvmTypesBuilder you will not create effective Java
elements (for example, java.lang.Class, java.lang.reflect.
Method, java.lang.reflect.Field, and so on), but their
representation in the Xbase EMF model for Java elements (for example,
JvmGenericType, JvmOperation, JvmField, and so on).

Chapter 12

[301]

For our DSL we can specify the mapping as: given an ExpressionsModel object,
we map it to a Java class with a single main method; any Xbase expressions in
our ExpressionsModel will be associated to the body of the main method. In
particular, since ExpressionsModel is itself an XBlockExpression object, we can
directly associate the ExpressionsModel object itself with the body of the main
method. The implementation of our inferrer is as follows:

class ExpressionsJvmModelInferrer extends AbstractModelInferrer {
 @Inject extension JvmTypesBuilder

 def dispatch void infer(ExpressionsModel model,
 IJvmDeclaredTypeAcceptor acceptor,
 boolean isPreIndexingPhase) {
 val className =
 model.eResource.URI.trimFileExtension.lastSegment
 acceptor.accept(model.toClass(className)).
 initializeLater [
 members += model.toMethod('main',
 model.newTypeRef(Void::TYPE)) [
 parameters += model.toParameter
 ("args", model.newTypeRef(typeof(String)).

addArrayTypeDimension)
 static = true
 // Associate the model with the body of the main method
 body = model
]
]
 }
}

Let us comment on this code. First of all, we name the Java class after the
input file (without the file extension). Note that the class is created using the
JvmTypesBuilder method toClass. However, further initialization operations
concerning this class are deferred (initializeLater). In fact, the inferrer is used
by Xtext first on the indexing phase (see Chapter 10, Scoping) and again after the
indexing phase has finished. The method initializeLater is called in the second
step. In the first step, the index has not been completely built, thus you cannot
rely on cross-references having been resolved. Thus in the indexing phase you just
create Java classes or interfaces for your model elements; after the indexing has
finished, you can add elements to the created Java types.

Xbase

[302]

In the previous code, we add to the Java class a method using JvmTypesBuilder.
toMethod, passing the name of the method and its return type. When we
specify types for Java model elements we must always use instances of class
JvmTypeReference. To create a type reference to an existing Java type we use
the method JvmTypesBuilder.newTypeRef that takes a Java Class object; for the
main method, the return type must be void, thus we use the static instance java.
lang.Void.TYPE.

Once we created a Java method, we can further initialize it with a lambda that gets
the created method as parameter (formally, an instance of JvmOperation). In this
example, we add to the created Java method a parameter named args of type
String[] (note that the use of JvmTypesBuilder API); we also specify that the
method is static.

Finally, we associate the whole Xbase expression of the program with the body of
the method (recall that ExpressionsModel is an XBlockExpression). As said before,
this will allow Xbase to build a proper scope for the expressions and to perform type
checking and validation of expressions.

You can now restart Eclipse and try the editor for this DSL again (we assume you
have already created the project as detailed before). The result is shown in the
following screenshot. Here you can see that in the xexpressions file we can declare
variables with the Xbase syntax, which corresponds to the same syntax for variable
declaration in Xtend:

Chapter 12

[303]

Note that all the type checking is automatically performed by Xbase. In the
preceding screenshot you can see two errors due to wrong types in the expressions.
Note also that the conversion to string type, when using the operator +, is performed
automatically. Indeed, besides the IJvmModelInferrer interface, we did not have to
specify anything else, neither a custom scoping nor a custom validator.

Moreover, although the args variable is not defined anywhere in our program,
we can still refer to it since the whole expression block has been associated with
the body of a method with the parameter args. The association we specified in the
inferrer corresponds to the fact that the parameter args is available in the program
with the specified type. Thus, since in the inferrer we specified that args is an array
of String, we can call the method size on args in our program as follows:

println("size: " + args.size)

Code generation
When using Xbase we get code generation for free. This can be observed by saving
an error-free .xexpressions file in the IDE. When you do so, a src-gen folder
is automatically created in your project (you may want to make this new folder
a source folder of your Java project: right-click on the folder, then navigate to Build
Path | Use as Source Folder). We have already seen this behavior in Chapter 5, Code
Generation, when we wrote a code generator for the Entities DSL. However, this time,
we did not write any code generator.

This automatic Xbase code generator mechanism is based on the
IJvmModelInferrer interface; the code generator uses the mapped Java
model to generate Java code. See the following screenshot:

Xbase

[304]

This is an extremely useful feature, since when using Xbase we only need to write
the IJvmModelInferrer interface correctly. Xbase will take care of all the rest,
including type checking and code generation.

The automatic code generation mechanism is performed by
JvmModelGenerator, which is automatically bound in the
Guice module generated during the MWE2 workflow. Of course,
you could still write your own code generator and override the
Guice binding; it is recommended to rely on the automatic Xbase
code generator though since writing a code generator manually
for a DSL that uses Xbase would require some effort.

Debugging
With Xbase you can debug your DSL sources instead of the generated Java code—just
like when working with Xtend. This is another valuable feature you get for free.

You can try and set a break pointer in the .xexpressions program and then
right-click on the generated Java file and navigate to Debug As | Java Application
(this menu is available since the generated Java file contains a main method). Now,
when the execution reaches the line corresponding to the set breakpoint in the
.xexpressions file, you will see that the debugger perspective is opened with the
Expressions editor and the "Variables" view shows the contents of the variables of
your program (see the following screenshot). Just like when debugging Xtend code,
if you need to debug the generated Java code, you can do so by right-clicking on
the Debug view and by navigating to Show Source | Java:

Chapter 12

[305]

The Entities DSL with Xbase
We will now implement a modified version of the Entities DSL we implemented
in Chapter 2, Creating Your First Xtext Language using Xbase. This will allow us to
implement a more involved DSL where, inside entities, we can also write operations
apart from attributes (this is inspired by the Xtext Domain-Model example).

Xbase

[306]

Creating the project
As usual we create the Xtext project by performing the following steps:

1. Navigate to File | New | Project..., in the dialog go to the Xtext category
and select Xtext Project.

2. In the next dialog you should specify the following names:
 ° Project name: org.example.xbase.entities
 ° Name: org.example.xbase.entities.Entities
 ° Extensions: xentities
 ° Uncheck the option Create SDK feature project

The wizard will create three projects and it will open the grammar file Entities.
xtext.

Before running the MWE2 generator for the first time, you should modify the
grammar so that it uses the Xbase grammar:

grammar org.example.xbase.entities.Entities with
 org.eclipse.xtext.xbase.Xbase

Defining attributes
We define the rules for attributes by using some rules inherited from the Xbase
grammar:

grammar org.example.xbase.entities.Entities with org.eclipse.xtext.
xbase.Xbase

generate entities "http://www.example.org/xbase/entities/Entities"

Model:
 entities+=Entity*;

Entity:
'entity' name=ID ('extends' superType=JvmParameterizedTypeReference)?
'{'
 attributes += Attribute*
'}';

Attribute:
 'attr' (type=JvmTypeReference)? name=ID
 ('=' initexpression=XExpression)? ';';

Chapter 12

[307]

The rule for Entity is similar to the corresponding rule of the Entities DSL of Chapter
2, Creating Your First Xtext Language. However, instead of referring to another Entity
in the feature superType, we refer directly to a Java type; since Xbase implements
the Java type system, an entity can extend any other Java type. Moreover, since
an Entity will correspond to a Java class (we will implement this mapping in the
inferrer), it will still be able to have an entity as a super type, though it will specify
it through the corresponding inferred Java class.

We refer to a Java type using the Xbase rule JvmParameterizedTypeReference.
As the name of the rule suggests, we can also specify type parameters, for instance,
we can write:

entity MyList extends java.util.LinkedList<Iterable<String>> {}

Similarly, for attributes, we use Java types for specifying the type of the
attribute. In this case we use the Xbase rule JvmTypeReference; differently from
JvmParameterizedTypeReference, this rule also allows to specify types for
lambdas. Thus, for instance, we can define an attribute as follows:

attr (String,int)=>Boolean c;

We also allow to specify an initialization expression for an attribute using a generic
Xbase expression, XExpression. Note that both the type and the initialization
expression are optional; this design choice will be clear after looking at the
model inferrer:

class EntitiesJvmModelInferrer extends AbstractModelInferrer {
 @Inject extension JvmTypesBuilder
 @Inject extension IqualifiedNameProvider

 def dispatch void infer(Entity entity,
 IJvmDeclaredTypeAcceptor acceptor, boolean isPreIndexingPhase)
{
 acceptor.accept(entity.toClass("entities."+entity.name)).

initializeLater [
 documentation = entity.documentation
 if (entity.superType != null)
 superTypes += entity.superType.cloneWithProxies
 entity.attributes.forEach[
 a |
 val type = a.type ?: a.initexpression?.inferredType
 members += a.toField(a.name, type) [
 documentation = a.documentation
 if (a.initexpression != null)
 initializer = a.initexpression
]

Xbase

[308]

 members += a.toGetter(a.name, type)
 members += a.toSetter(a.name, type)
]
]
 }
}

Note that in this example we provide an infer method for Entity, not
for the root Model. In fact, the default implementation of the superclass
AbstractModelInferrer can be summarized as follows:

public void infer(EObject e, ...) {
 for (EObject child : e.eContents()) {
 infer(child, acceptor, preIndexingPhase);
 }
}

It simply calls the method infer on each element contained in the root of the
model. Thus, we only need to provide a dispatch method infer for each type of
our model that we want to map to a Java model element. In the previous example
we needed to map the whole program (that is, the root model element), while in
this example we map every entity of a program.

As we did in the previous section, we use an inject JvmTypesBuilder extension
to create the Java model elements and associate them with the elements of our DSL
program AST.

First of all, we specify that the the superclass of the mapped class will be the entity's
superType if one is given.

Note that we clone the type reference of superType. This is required
since superType is an EMF containment reference. The referred
element can be contained only in one container, thus, without the clone,
the feature superType would be set to null after the assignment.

For each attribute, we create a Java field using toField and a getter and
setter method using toGetter and toSetter respectively (these are part of
JvmTypesBuilder). If an initialization expression is specified for the attribute,
the corresponding Java field will be initialized with the Java code corresponding
to the XExpression.

Chapter 12

[309]

The interesting thing in the mapping for attributes is that we use Xbase features
for type inference; if no type is specified for the attribute, the type of the Java
field will be automatically inferred by Xbase using the type of the initialization
expression. If neither the type nor the initialization expression is specified, Xbase will
automatically issue an error. Of course, if we specify both the type of the attribute
and its initialization expression, Xbase will automatically check that the type of the
initialization expression is conformant to the declared type. The following screenshot
shows two validation errors issued by Xbase:

Xbase

[310]

Both for the mapped Java model class and Java model field we set the documentation
feature using the documentation attached to the program element. This way, if in
the program we write a comment with /* */ before an entity or an attribute, in the
generated Java code this will correspond to a Javadoc comment, as illustrated in the
following screenshot:

Defining operations
Now we add operations to our entities, which will correspond to Java methods.
Thus, we add the rule for Operation (to keep the example simple and to concentrate
on Xbase, we did not introduce an abstract element for both attributes and
operations, and we require that operations are specified after the attributes):

Entity:
'entity' name=ID ('extends' superType=JvmParameterizedTypeReference)?
'{'
 attributes += Attribute*
 operations += Operation*
'}';

Operation:
'op' (type=JvmTypeReference)? name=ID
'(' (params+=FullJvmFormalParameter (','

Chapter 12

[311]

 params+=FullJvmFormalParameter)*)? ')'
body=XBlockExpression;

Here we use the Xbase rule FullJvmFormalParameter to specify parameters;
parameters will have the syntactic form of Java parameters, that is,
a JvmTypeReference stored in the feature parameterType and a name. The body
of an operation is specified using the Xbase rule XBlockExpression, which also
requires the curly brackets.

In our inferrer we add the mapping to a Java model method with the following code:

entity.operations.forEach[
 op |
 members += op.toMethod(op.name, op.type ?: inferredType) [
 documentation = op.documentation
 for (p : op.params) {
 parameters += p.toParameter(p.name, p.parameterType)
 }
 body = op.body
]
]

This is similar to what we did in the first example of this chapter; however, this
time, we have a corresponding element in our DSL, Operation. Thus, we create a
Java model parameter for each parameter defined in the program, and we use the
Operation instance's body as the body of the mapped Java model method. Also
for the operation the return type can be omitted: in that case, the corresponding
Java model method will have the return type that Xbase infers from the operation's
XBlockExpression.

The association of the method's body with the operation's body implicitly defines the
scope of the XBlockExpression object. Since an operation is mapped to
a non-static Java method, in the operation's expressions you can automatically refer
to the attributes and operations of the containing entity and of the entity's supertype
(since they are mapped to Java fields and methods, respectively).

Xbase

[312]

This can be seen in the following screenshot, where the operation accesses the
entity's fields and the inherited method add; Xbase automatically adds other tooling
features, such as information hovering and the ability to jump to the corresponding
Java method:

In fact, the scope for this is implied by the association between the operation
and the Java model method. The same holds for super, as shown in the following
example, where the operation m overrides the one in the supertype and can access
the original version with super:

entity Base {
 op m() { "Base" }
}

entity Extended extends Base {
 op m() { super.m() + "Extended" }
}

Indeed, associating an Xbase expression with the body of a Java model method
corresponds to making the expression logically contained in the Java method. This
logical containment defines the scope of the Xbase expression.

An Xbase expression can have only one logical container.

In the examples we have shown so far, we have always associated an XExpression
with the body of a Java method or with the initializer of a field. There might be
cases where you want to add a method to the Java model that does not necessarily
correspond to an element of the DSL.

Chapter 12

[313]

In these cases, you can specify a lambda as the body of the created method;
the lambda takes an ITreeAppendable object as a parameter. You can use this
appendable object to specify a string which will correspond to the method body
in the generated Java code. For instance, we can add to the mapped Java class
a toString method as follows:

members += entity.toMethod("toString", entity.
newTypeRef(typeof(String))) [
 body = [
 append(
 '''
 return
 "entity «entity.name» {\n" +
 «FOR a : entity.attributes»
 "\t«a.name» = " + «a.name».toString() + "\n" +
 «ENDFOR»
 "}";'''
)
]
]

For instance, given this entity definition:

entity C {
 attr List l;
 attr s = "test";
}

The generated Java method will be:

public String toString() {
 return
 "entity C {\n" +
 "\tl = " + l.toString() + "\n" +
 "\ts = " + s.toString() + "\n" +
 "}";
}

As usual, remember to write Junit tests for your DSL (see Chapter 7, Testing); for
instance, this test checks the execution of the generated toString Java method:

class EntitiesCompilerTest {

 @Inject extension CompilationTestHelper
 @Inject extension ReflectExtensions

 @Test
 def void testGeneratedToStringExecution() {

Xbase

[314]

 '''
 entity C {
 attr l = newArrayList(1, 2, 3);
 attr s = "test";
 }'''.compile[
 val obj = it.compiledClass.newInstance
 '''
 entity C {
 l = [1, 2, 3]
 s = test
 }'''.toString.assertEquals(obj.invoke("toString"))
]
 }

The JvmTypesBuilder class provides methods to automatically
add into the inferred class methods such as toString, equals,
and hashCode (toToStringMethod, toEqualsMethod,
and toHashCodeMethod, respectively). You should use
theJvmTypesBuilder instance's methods in your DSL if you want
to add the corresponding methods in the generated Java class, since
they generate a sensible implementation. In this chapter, we showed
a manual implementation of toString just for demonstration.

There are many advanced features available when using Xbase that are outside
the scope of this book. Many are illustrated in the "7 languages examples" and other
examples available online, for example, https://github.com/LorenzoBettini/
Xtext2-experiments.

Imports
We saw in Chapter 10, Scoping, that Xtext provides support for namespace-based
imports for qualified names. Xbase provides an automatic mechanism for imports
of Java types and many additional tooling for the Eclipse editor. To include such
feature in a DSL that uses Xbase it is enough to use the rule XImportSection; for
instance, in our Xbase Entities DSL we modify the root rule as follows:

Model:
 importSection=XImportSection?
 entities+=Entity*;

The addition of this rule automatically adds to the DSL the same import
functionalities that you saw in Xtend: in addition to the standard Java import
mechanisms (including static imports), you can now write import static
extension statements for static methods and those static methods will be
available as extension methods in the program.

Chapter 12

[315]

Besides this enhanced import statements, Xbase adds nice tooling functionalities in
the editor of the DSL that reflect the ones of JDT and Xtend; a few of them are listed
in the following bullet list:

• Warnings for unused imported types
• An Organize Imports menu (available also with the keyboard shortcut

Ctrl + Alt + O)
• Automatic insertion of import statements (when you use the autocompletion

for specifying a Java type reference in the program, the corresponding import
statement is automatically added)

Remember to merge the files plugin.xml and plugin.xml_gen
in the UI project after running the MWE2 workflow; this is required
to add the Organize Imports menu items in the editor.

Customizations
Depending on the complexity of your DSL, you might want to customize the default
implementation of several components of Xbase, such as scoping and validation.
This can be achieved by subclassing the corresponding Xbase classes and by
specifying the bindings in the Guice module. Note that the Xbase scope provider
implementation is not based on AbstractDeclarativeScopeProvider, thus, you
cannot rely on the convention for method names that we used in Chapter 10, Scoping;
you will have to redefine the getScope method. Moreover, you will have to inspect
the implementation of Xbase scope provider and validator to understand which
method to override.

It is also possible to override some rules of the Xbase grammar in order to change the
syntactic shape of some expressions. Moreover, you can change an Xbase expression
rule in order to add syntax for new expressions which are specific to your DSL. In this
case, you also need to provide custom implementations for some classes of Xbase,
such as the type provider and the compiler. In particular, you need to specify how to
type your expressions and how they compile into Java. We refer to the official Xtext
documentation and to the 7 languages examples for these advanced topics.

Xbase

[316]

Summary
Xbase can add a powerful Java-like expression language to your DSL, and by
implementing the model inferrer, you will automatically reuse the Xbase Java type
system implementation and the generation of Java code. This does not imply that
all the concepts described in all the previous chapters (validation, code generation,
scoping, and so on) are useless. In fact, knowing the main concepts underlying
Xtext is required to effectively implement a DSL even when using Xbase.
Moreover, in case you need to modify or add expressions to a DSL that uses Xbase,
you may have to provide a custom scoping and validation as well. When using
Xbase, your DSL will be tightly coupled with Java, which might not always be
what you need. Your DSL could be used only for writing specifications or simpler
structures and in that case you will not need Xbase expressions; these would only
add unwanted complexity. Alternatively, your DSL might not be bound to Java
and might require code generation into another target language; also in this case
you cannot use Xbase.

I hope that you enjoyed this book as much as I enjoyed writing it! If you had never
used Xtext before, I hope that this book gave you enough knowledge to get started
and get productive in developing DSLs with Xtext and Xtend. If you were already
familiar with Xtext, I hope that this book increased your knowledge about this
framework and that the methodologies and best practices illustrated throughout
the chapters will make you more productive.

Keep your code clean and well tested!

Bibliography
• Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D., Compilers: principles, techniques,

and tools, 2nd Edition, (2007), Addison-Wesley.
• Beck, K., Test Driven Development: By Example (2002), Addison-Wesley.
• Brown, D., Levine, J., Mason, T., lex & yacc (1995), O’Reilly.
• Cardelli, L., Type Systems (1996), ACM Computing Surveys, 28(1):263–264.
• Efftinge, S., Eysholdt, M., Köhnlein. J., Zarnekow, S., Hasselbring, W., von Massow,

R., Hanus, M., Xbase: Implementing Domain-Specific Languages for Java (2012),
Proceedings of the 11th International Conference on Generative Programming and
Component Engineering, 112-121, ACM.

• Fowler, M., Inversion of Control Containers and the Dependency Injection pattern
(2004), http://www. martinfowler.com/articles/injection.html.

• Fowler, M., Continuous Integration (2006), http://martinfowler.com/
articles/continuousIntegration.html.

• Fowler, M., Domain-Specific Languages (2010), Addison-Wesley.
• Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns: Elements

of Reusable Object-Oriented Software (1995), Addison-Wesley.
• Ghosh, D., DSLs in Action (2010), Manning.
• Hindley, J.R., Basic Simple Type Theory (1987), Cambridge University Press.
• Köhnlein, J., Xtext tip: How do I get the Guice Injector of my language? (2012),

http://koehnlein.blogspot.it/2012/11/xtext-tip-how-do-i-get-
guice-injector.html.

• Levine, J., Flex & Bison: Text Processing Tools (2009), O’Reilly.
• Lindberg, H. and Hallgren, T., Eclipse Buckminster; The Definitive Guide (2010).
• Martin, R.C., Agile Software Development, Principles, Patterns, and Practices

(2002), Prentice Hall.

Bibliography

[318]

• Martin, R.C., Clean Code: A Handbook of Agile Software Craftsmanship (2008),
Prentice Hall.

• Martin, R.C., The Clean Coder: A Code of Conduct for Professional Programmers
(2011), Prentice Hall.

• Parr, T., The Definitive ANTLR Reference: Building Domain-Specific Languages
(2007), Pragmatic Programmers.

• Pierce, B.C., Types and Programming Languages (2002), The MIT Press,
Cambridge, MA.

• Steinberg, D., Budinsky, F., Paternostro, M., and Merks, E., EMF: Eclipse
Modeling Framework, 2nd Edition, (2008), Addison-Wesley.

• Vlissides, J., Generation Gap [software design pattern] (1996), C++ Report, 8(10),
p. 12, 14-18.

• Voelter, M., DSL Engineering: Designing, Implementing and Using Domain-
Specific Languages (2013).

• Zarnekow, S., Xtext Best Practices (2012), EclipseCon Europe, http://www.
eclipsecon.org/europe2012/sessions/xtext-best-practices.

• Zarnekow, S., Xtext Corner #8 - Libraries Are Key (2012-b), http://zarnekow.
blogspot.it/2012/11/xtext-corner-8-libraries-are-key.html.

Index
Symbols
_isLeaf method 108
_createChildren method 108
@After methods 140
@Before class 119
@Before methods 140
@Check method 208
@Check methods 180

A
abstract factory patterns 98
Abstract Syntax Tree. See AST
access level modifiers 250
actions 13
actual type 220
assertCompilesTo method 133
assertError method 125
assertType method 177
assert method 119
array feature 40
AST 12
automatic features

additional features 276, 277

B
backtracking 196
Bison 11
Buckminster

about 282
installing 283

C
CamelCase 113
clean code 149
code generation

about 87
testing 132-137

code generator
writing, in Xtend 88, 89

compiler-compilers 11
compile method 89
compilationTestHelper.compile method 134
completeAtomic_Variable method 172
component query (CQUERY) 289
component specification (CSPEC) 289
configureFormatting method 111
configure method 102
Console view 20
container 230
containment reference 230
content assist

testing 138, 139
Continuous Integration(CI) 281
createNode method 109
createCompletionProposal method 173
createEObjectDescriptions method 275
createInjectorAndDoEMFRegistration

method 119
Create SDK feature project 19
cross-reference resolution, Xtext

components interaction 238
container 230
containment reference 230

[320]

exported objects 232, 233
index 230
linker 234-238
qualified names 231, 232
scope provider 234-238

Ctrl + Shift + R 113
Ctrl + Shift + T 113
custom formatting 110- 112
customizations 112-115
CustomLogger class 100
custom scoping

about 239, 240
access level modifiers 250-253
block scope 240-243
inheritance scope 244
member visibility 244-249
unwanted objects, filtering 254, 255

custom validators 74-77

D
Dangling Else Problem 195
data type rule 258
default validators 72
Dependency Injection 97-101
Dispatch Methods 66
Domain Specific Languages (DSLs)

about 7, 8
implementing 9
improvements 38
parsing 10, 11
tests, implementing 120, 121
types, dealing with 39-42

double arrow operator. See with operator
DSL customizations

imports 315
DSL, for entity modeling

text editor 33
Dynamic Overloading. See polymorphic

method invocation

E
Eclipse build mechanism

integrating with 91-94
Eclipse Juno

URL 283

Eclipse Kepler
URL 283

Eclipse Modeling Framework. See EMF
EcoreUtil2.getAllContentsOfType method

214
EcoreUtil.getRootContainer method 187
eContainingFeature method 220
Ecore format 35
editor

testing 142-145
Elvis ?: operator 64
EMF 35-37
Entities DSL, with XBase

attributes, defining 306-310
imports 314
operations, defining 310-314
project, creating 306

EntitiesRuntimeModule class 115
EntitiesValidator validator 76
enum rule 250
error method 76
error markers 14
examples 292, 293
expected types 219, 221
exported objects 232, 233
Expressions DSL

about 151
grammar 154-157
program, writing 151
project, creating 152
Xbase 297
Xtext grammar rules 152-154

Expressions DSL, with Xbase
about 297
code, generating 303, 304
debugging 304
IJvmModelInferrer interface 299
project, creating 297-299

ExpressionsValidatorTest class 183
extension methods 52-54

F
factory method 98
Flex 11
formatter

testing 128-131
FormattingConfig method 111

[321]

forward reference 168
Functional Tests 145
function types 56

G
getEditorId method 142
General Purpose Languages 7
Generation Gap Pattern 34
getStyledDisplayString method 226
getter method 50
global scoping

about 255,-257
containers 260, 261
duplicates, checking across files 262
duplicates files, checking 262
imports 257-259
index 260, 261
packages 257-259

Google Guice
in Xtext 102, 103

grammar 11

H
Hollywood Principle 88
Hovering 15
Hyperlinking 15

I
IDE concepts

Labels, customizing 104-106
Outline view, customizing 107, 108

IDE integration
about 13
automatic build 16
background parsing 14
DSL implementation, summarizing 16, 17
error markers 14
hyperlinking 15
outline 16
quickfixes 16
syntax highlighting 14

identifier 10
import mechanism 259
index

about 230

scoping 275, 276
indexing 238
installation

Buckminster 283
Xtext 18

interpreter
using 186-189
writing 184-186

ISetup interface 119, 120
isString method 186
it variable 55

J
Java Development Tools (JDT) 17
Java method 15
Jubula 146
Junit Test suite 137
Junit 4 119

K
keyword 10

L
Labels 104-106
lambda expression (lambda) 55, 56
Learning Tests (Beck 2002) 143
left associativity 161
left-factoring 158
length feature 38
lexer 10
lexical analysis 10
lexical analyzer 10
libraray

providing 264
library approach

about 264
default imports 266
Eclipse 267
library outside Eclipse, using 267-270
providing 264, 265
scoping 270-273

linker 234-236
linking 238
literals 10
lookupCrossReference mehod 254

[322]

M
Main class' main method 95
metamodel 35
Methodinvocation feature 249
methods

_isLeaf method 108
_createChildren method 108
@After methods 140
@Before methods 140
@Check method 208
@Check methods 180
assertCompilesTo method 133
assertError method 125
assertType method 177
assert method 119
compile method 89
createCompletionProposal method 173
createEObjectDescriptions method 275
createInjectorAndDoEMFRegistration

method 119
createNode method 109
Dispatch Methods 66
eContainingFeature method 220
EcoreUtil.getRootContainer method 187
error method 76
extension methods 52-54
factory method 98
getter method 50
isString method 186
Java method 15
Main class' main method 95
methodinvocation feature 249
modify method 144
NamesAreUniqueValidator method 127
overriding, checks 224, 225
ParseHelper.parse method 121, 129
parse method 267
println method 54
Result.getGeneratedCode(String) method

135
setter methods 50
stringRepr utility method 163
stringRepr method 165
test methods 119
toString method 176

typeFor method 215
warning method 78
xtend method 62

modify method 144
modular code

writing 146-149
Multiple Dispatch. See polymorphic

method invocation

N
NamesAreUniqueValidator method 127
namespaces 231
node model 110, 189
null-safe version 64

O
outline 16
Outline view 107, 108

P
p2 repository

about 279
building, from Xtext Buckminster wizard

286-288
p2 sites 279
parse method 267
ParseHelper.parse method 121, 129
parser

testing 121-124
parser generators 11
parsing 10, 238
Polymorphic Dispatcher 105
polymorphic method invocation 66
primitive types 216
println method 54

Q
qualified names 231, 232
Quickfixes

about 16, 77-80
for default validators 83-85
model modification 81, 82
textual modification 80, 81

[323]

R
receiver 197
recursive grammars

associative operation 162
associativity 157-160, 163
atomic 159
complete grammar 167, 168
forward reference 168-173
left associativity 161
left-factoring 158
left recursive 158
operator precedence 158, 163-166
tree rewrite action 160

release engineering (releng)
about 279
continuous Integration 281
projects, building headlessly 280
target definition file 281
target platform 280

Result.getGeneratedCode(String) method
135

returned 154
right-associative 160

S
SAM types 56
scanner 10
scope_SJSymbolRef_symbol 242
scope provider 234-238
scoping 229
Scripting Language 297
semantic analysis 12
setter methods 50
Single Abstract Method. See SAM types
SmallJava

about 191, 192
grammar 192
project, creating 192

SmallJava grammar
about 192, 193
complete grammar 200
decleration rules 193, 194
expression rule 197-199
statements rule 194

syntactic predicates rule 195, 196
testing 203, 205
utility methods 202, 203

src-gen folder 96
standalone command line compiler 94-96
static extension import 52
stringRepr method 165
stringRepr utility method 163
Subtyping 214. See type conformance
SWTBot 146
symbol name 10
symbol table 12
syntactic analysis 10

T
target definition 281
target platform 280
Test Driven Development (TDD) 117, 179
test methods 119
test implementation, for DSL

about 120, 121
Code Generation, testing 132-137
formatter, testing 128-131
parser, testing 121-124
validator, testing 125-127

testing 117, 118
tests

implementing, DSL used 120, 121
Test suite 137
text hovering 186
toString method 176
tree rewrite action 160
type checking

about 174, 214
method overrides, checking 224, 225

type computation 174, 175
type conformance

about 214, 217, 218
checking 221

typeFor method 215
type guards 67
type inference 174
type literal 51
type provider 176, 177, 215, 217
type system 174

[324]

X
Xbase

about 295, 296
Entities DSL 305
Expressions DSL 297

Xtend
additional operators 64, 65
benefits 50
code generator, writing 88, 90
extension methods 52-54
features, expression 50
features, type inference 50
it variable 55
lambda expression 55, 56
polymorphic method invocation 66
switch expressions 66, 68

xtend method 62
Xtend SDK 2.4.2 18
Xtext

about 17, 229
cross-reference resolution 229
documentation 23
Google Guice 102, 103
installing 18
validation 71

Xtext Buckminster wizard
about 283
building headlessly 290-292
customizations 288, 289
p2 repository, building 286, 287
target platform, defining 289, 290
using 283-285

Xtext generator 33-35
XtextProjectHelper class 140
Xtext SDK 2.4.2 18

U
UI

improving 225-227
UI testing

about 138
content assist, testing 138-140
editor, testing 142-144
testing frameworks 145
workbench integration, testing 140, 142

utility methods 202, 203

V
validation rules

about 205
cyclic class hierarchies 205, 206
duplicates, checking for 212, 214
member selections, checking 207, 208
return statements, checking 209-212

validation, Xtext
about 71
custom validators 74-77
default validators 72, 73

validator
about 179-183
testing 125-127

W
warning method 78
well-typed 174
with operator 64
workbench integration

testing 140-142

Thank you for buying
Implementing Domain-Specific Languages

with Xtext and Xtend

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

[326]

jQuery Game Development
Essentials
ISBN: 978-1-84969-506-0 Paperback: 244 pages

Learn how to make fun and addictive multi-platform
games using jQuery

1. Discover how you can create a fantastic RPG,
arcade game, or platformer using jQuery!

2. Learn how you can integrate your game with
various social networks, creating multiplayer
experiences and also ensuring compatibility
with mobile devices.

3. Create your very own framework, harnessing
the very best design patterns and proven
techniques along the way.

Microsoft Exchange Server 2013
PowerShell Cookbook: Second
Edition
ISBN: 978-1-84968-942-7 Paperback: 504 pages

Over 120 recipes to help manage and administrate
Exchange Server 2013 with PowerShell 3

1. Newly updated and improved for Exchange
Server 2013 and PowerShell 3

2. Learn how to write scripts and functions,
schedule scripts to run automatically, and
generate complex reports with PowerShell

3. Manage and automate every element of
Exchange Server 2013 with PowerShell such as
mailboxes, distribution groups, and address
lists

Please check www.PacktPub.com for information on our titles

[327]

Corona SDK Hotshot
ISBN: 978-1-84969-430-8 Paperback: 334 pages

A detailed guide with 10 projects specifically
designed to expand the fundamentals of this exciting
mobile development platform!

1. Ten fully developed code projects that build on
previous projects and present new techniques.

2. Freely reusable art and sound files included
with every project help you jumpstart your
own development.

3. Numerous advanced techniques to make the
most out of Corona's features and the Lua
programming language.

IBM Cognos Business
Intelligence
ISBN: 978-1-84968-356-2 Paperback: 318 pages

Discover the practical approach to BI with IBM
Cognos Business Intelligence

1. Learn how to better administer your IBM
Cognos 10 environment in order to improve
productivity and efficiency.

2. Empower your business with the latest
Business Intelligence (BI) tools.

3. Discover advanced tools and knowledge that
can greatly improve daily tasks and analysis.

4. Explore the new interfaces of IBM Cognos 10.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Implementing a DSL
	Domain Specific Languages
	So, why should you create a new language?

	Implementing a DSL
	Parsing
	The Abstract Syntax Tree (AST)

	IDE integration
	Syntax highlighting
	Background parsing
	Error markers
	Content Assist
	Hyperlinking
	Quickfixes
	Outline
	Automatic build
	Summarizing DSL implementation

	Enter Xtext
	Installing Xtext
	Let's try Xtext

	The aim of this book
	Summary

	Chapter 2: Creating Your First Xtext Language
	A DSL for entities
	Creating the project
	Xtext projects
	Modifying the grammar
	Let's try the Editor

	The Xtext generator
	The Eclipse Modeling Framework (EMF)
	Improvements to the DSL
	Dealing with types

	Summary

	Chapter 3: The Xtend
Programming Language
	An introduction to Xtend
	Using Xtend in your projects

	Xtend – a better Java with less "noise"
	Extension methods
	The implicit variable – it
	Lambda expressions
	Multi-line template expressions
	Additional operators
	Polymorphic method invocation
	Enhanced switch expressions

	Debugging Xtend code
	Summary

	Chapter 4: Validation
	Validation in Xtext
	Default validators
	Custom validators

	Quickfixes
	Textual modification
	Model modification
	Quickfixes for default validators

	Summary

	Chapter 5: Code Generation
	Introduction to code generation
	Writing a code generator in Xtend
	Integration with the Eclipse build mechanism
	Standalone command-line compiler
	Summary

	Chapter 6: Customizations
	Dependency injection
	Google Guice in Xtext
	Customizations of IDE concepts
	Labels
	The Outline view
	Customizing other aspects

	Custom formatting
	Other customizations
	Summary

	Chapter 7: Testing
	Introduction to testing
	Junit 4
	The ISetup interface
	Implementing tests for your DSL
	Testing the parser
	Testing the validator
	Testing the formatter
	Testing code generation

	Test suite
	Testing the UI
	Testing the content assist
	Testing workbench integration
	Testing the editor
	Other UI testing frameworks

	Testing and modularity
	Clean code
	Summary

	Chapter 8: An Expression Language
	The Expressions DSL
	Creating the project
	Digression on Xtext grammar rules

	The grammar for the Expressions DSL
	Left recursive grammars
	Associativity
	Precedence
	The complete grammar

	Forward references
	Typing expressions
	Type provider
	Validator

	Writing an interpreter
	Using the interpreter

	Summary

	Chapter 9: Type Checking
	SmallJava
	Creating the project
	SmallJava grammar
	Rules for declarations
	Rules for statements and syntactic predicates
	Rules for expressions
	The complete grammar

	Utility methods
	Testing the grammar

	First validation rules
	Checking cycles in class hierarchies
	Checking member selections
	Checking return statements
	Checking for duplicates

	Type checking
	Type provider for SmallJava
	Type conformance (subtyping)
	Expected types
	Checking type conformance
	Checking method overriding

	Improving the UI
	Summary

	Chapter 10: Scoping
	Cross-reference resolution in Xtext
	Containments and cross-references
	The index
	Qualified names
	Exported objects
	The linker and the scope provider
	Component interaction

	Custom scoping
	Scope for blocks
	Scope for inheritance and member visibility
	Visibility and accessibility
	Filtering unwanted objects from the scope

	Global scoping
	Packages and imports
	The index and the containers
	Checking duplicates across files

	Providing a library
	Default imports
	Using the library outside Eclipse
	Using the library in the type system and scoping

	Dealing with super
	What to put in the index?
	Additional automatic features
	Summary

	Chapter 11: Building and Releasing
	Release engineering
	Headless builds
	Target platforms
	Continuous integration

	Introduction to Buckminster
	Installing Buckminster

	Using the Xtext Buckminster wizard
	Building the p2 repository from Eclipse
	Customizations
	Defining the target platform
	Build headlessly

	Maintaining the examples of this book
	Summary

	Chapter 13: Xbase
	Getting introduced with Xbase
	The Expressions DSL with Xbase
	Creating the project
	The IJvmModelInferrer interface
	Code generation
	Debugging

	The Entities DSL with Xbase
	Creating the project
	Defining attributes
	Defining operations
	Imports

	Customizations
	Summary

	Bibliography
	Index

