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Preface

Our goal in writing this book is to provide readers and students with the
theory, details, and tools necessary to be able to build visualizations and
systems involving the visualization of data. There are a number of books
that provide visualization taxonomies with numerous examples, but none
that look at the algorithmic and software engineering issues in building such
visualizations and systems, and none that discuss visualization theory. Fur-
thermore, this book covers the spectrum of data visualizations, including
mathematical and statistical graphs, cartography for displaying geographic
information, two- and three-dimensional scientific displays, and general in-
formation visualization techniques.

We believe that it is not enough to provide detailed descriptions of each
visualization or of the key techniques. We discuss implementation and lan-
guage issues, performance demands and limitations, and application require-
ments and results. We also describe how visualizations are used in knowledge
discovery and problem solving, as well as how to evaluate different visualiza-
tions. We also discuss the various roles visualization plays in larger applica-
tion frameworks, such as those in knowledge discovery and visual analytics.
This will provide a view into the various visualization interfaces that can be
delivered and will help explain the design process.

Goals of This Book

The main goal of this book is to enable readers and students to expand
their understanding of the field of interactive data visualization. To achieve
this, we explore the fundamental components of the visualization process,

xiii
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xiv Preface

from the data to the human viewer. At each stage, we present the basic
terminology and concepts, along with techniques and algorithms in common
use today.

The book is geared towards practitioners and developers, as well as those
just wishing to gain some exposure to the field, for which we present topics at
multiple levels of detail. Those wanting an in-depth understanding of tech-
niques are provided with sufficient information, often with full source code,
to complete an implementation, while those with more modest aspirations
can focus on the concepts and high-level algorithm details.

For developers, we provide guidance in the design of effective visualiza-
tions, using methods derived from the study of human perception, graphical
design, art, and usability analysis. While we cannot guarantee the effec-
tiveness of a visualization designed using these guidelines (in fact, some
guidelines may be contradictory), it is a good idea to examine the resulting
visualization using different evaluation criteria.

For practitioners, we describe a wide range of existing visualization sys-
tems, both public and commercial, and show how these are used to solve
specific problems in a wide range of domains. This will enable users of
visualization systems to select appropriate tools for their tasks.

Finally, for researchers in visualization, we describe directions for cur-
rent and future research, identifying some of the emerging technology and
hot topics being developed at academic and industrial centers today. We
hope that the information contained in this textbook is sufficient to en-
able researchers new to the field to acquire the background necessary to
understand the details and significance of current research being presented
in conferences and journals in this field.

Assumptions about the Reader

We assume readers are conversant with some programming language and
have some understanding of algorithms. The more knowledgeable readers
are, the more they will get out of the book, as the topics are covered in
great detail. Each chapter contains programming activities that will help
readers better understand the process of developing and testing a visualiza-
tion. Some of these can be performed using Excel and its built-in plotting
techniques. Others assume the use of regular programming languages such
as Java or C++, as long as they have graphics libraries available. Readers
should feel free to develop their code in other languages as well.
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Outline of This Book

The book consists of 15 chapters:

Chapter 1 presents an overview and history of visualization and its connec-
tion with computer graphics.

Chapter 2 provides the foundations and characteristics of data, which forms
the beginning of the visualization pipeline.

Chapter 3 explores the human component of the visualization pipeline, with
descriptions of the perceptual system and the roles it plays in under-
standing and interpreting visualizations.

Chapter 4 deals with the foundations of the visualization processes, from
basic building blocks to taxonomies and frameworks.

Chapters 5 through 9 cover a wide gamut of visualization techniques, loosely
grouped by data characteristics, describing the methods and algo-
rithms used to map data to graphical depictions.

Chapters 10 and 11 describe the role of user interaction within visualiza-
tions, and presents a wide range of interaction techniques and styles.

Chapters 12 and 13 discuss the visualization design process, presenting prin-
ciples and guidelines to improve the effectiveness of specific visualiza-
tions, as well as techniques for evaluating the resulting visualizations.

Chapter 14 reviews a variety of available visualization systems, identifying
key features and observed limitations.

Chapter 15 touches on directions for future work for those wishing to ad-
vance their knowledge of the field beyond what is covered in this book.

Discussion of Exercises

Several types of exercises are provided at the end of each chapter. Some are
review questions that are geared towards reminding readers of the significant
concepts covered by the chapter. Others are expansion questions designed
to encourage students to think beyond the material covered, to build on the
concepts to design alternate approaches to solving a problem. Both types of
questions would be appropriate for use in examinations.
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xvi Preface

We also provide programming projects. Some require very little in the
way of graphics support, and thus can be implemented readily on any plat-
form, including those discussed. This minimal configuration would simply
require the ability to set a pixel and a line on the screen and control its
color. On the web site we provide demonstration programs for a number of
languages and operating systems that could be used for this. Other projects
require a more extensive graphics package, such as OpenGL, to support 3D
viewing, lighting control, and so on. Students who have completed a course
in computer graphics should have already obtained the background necessary
to use these packages. Programming projects range from the simple imple-
mentation of algorithms provided in pseudocode in the text, to extending
various algorithms or techniques or even to programming techniques signif-
icantly different from those presented in the text. We expect that this last
type of project will take more time to complete than the others, and may be
the basis for term projects and/or advanced studies.

Web Site for This Book

The web site associated with this textbook (http://www.idvbook.com/) con-
tains a wealth of valuable information for both instructors and students. This
web site includes downloadable software tools (described in Appendix C)
along with example data sets (Appendix B), providing hands-on experience
for understanding the various techniques described in this book. Additional
links to useful data repositories, as well as sites describing data file formats,
are also provided. As new visualization tools are always becoming available,
and companies active in the visualization field come and go, we maintain
an up-to-date listing of software packages and vendors, with an occasional
review written by one of the authors or contributed by others in the field.

Instructional tools, such as reading lists, slides for lectures, and demon-
stration programs, are also available. It is hoped that as more faculty use
this text in their courses, additional material will be contributed, including
additional exercises, supplementary web pages that expand on particular
topics, and software to provide students good starting points for their own
implementations.

The web site contains updates and corrections to the printed text, along
with a mechanism for readers to electronically submit identified bugs, and
suggestions for improvements to both the text (for future editions) and the
web site.
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Reliability of Programs: Disclaimer

The programs in this book and on the web site have been written carefully.
Use of these programs is, however, at your own risk. The authors and
publisher disclaim all liability for direct or consequential damages resulting
from use of the programs.
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CHAPTER 1

Introduction

This chapter provides a high-level introduction to data and information vi-
sualization, what visualizations are, and why imagery is so important. It
presents reasons for using visualization, shows how visualizations are ap-
plied to problem solving, and discusses the process of visualization. The
visualization pipeline is presented with its relationship to other data anal-
ysis pipelines. Finally, the importance of human perception in connection
with visualization is introduced. We assume that the reader already has a
basic understanding of computer graphics.

1.1 What Is Visualization?

We define visualization as the communication of information using graphical
representations. Pictures have been used as a mechanism for communication
since before the formalization of written language. A single picture can
contain a wealth of information, and can be processed much more quickly
than a comparable page of words. This is because image interpretation is
performed in parallel within the human perceptual system, while the speed
of text analysis is limited by the sequential process of reading. Pictures
can also be independent of local language, as a graph or a map may be
understood by a group of people with no common tongue.

1.1.1 Visualization in Everyday Life

It is an interesting exercise to consider the number and types of data and
information visualization that we encounter in our normal activities. Some

1
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2 1. Introduction

of these might include

• a table in a newspaper, representing data being discussed in an article;

• a train and subway map with times used for determining train arrivals
and departures;

• a map of the region, to help select a route to a new destination;

• a weather chart showing the movement of a storm front that might
influence your weekend activities;

• a graph of stock market activities that might indicate an upswing (or
downturn) in the economy;

• a plot comparing the effectiveness of your pain killer to that of the
leading brand;

• a 3D reconstruction of your injured knee, as generated from a CT scan;

• an instruction manual for putting together a bicycle, with views specific
to each part as it is added;

• a highway sign indicating a curve, merging of lanes, or an intersection.

Visualization is used on a daily basis in many areas of employment as
well, such as

• the result of a financial and stock market analysis;

• a mechanical and civil engineering rotary bridge design and systems
analysis;

• a breast cancer MRI for diagnosis and therapy;

• a comet path data and trend analysis;

• the analysis of human population smoking behaviors;

• the study of actuarial data for confirming and guiding quantitative
analysis;

• the simulation of a complex process;

• the analysis of a simulation of a physical system;

• marketing posters and advertising.
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1.1. What Is Visualization? 3

In each case, the visualization provides an alternative to, or a supplement
for, textual or verbal information. It is clear that visualization provides a
far richer description of the information than the word-based counterpart.
But why is this so? In what kinds of situations are visualizations effective?
What types of information can and cannot be visualized? How many dif-
ferent ways are there to show the same data, and which ones are best for
particular circumstances? In this book, we will explore these and other ques-
tions. Perhaps the most important question is this: why should we study
visualization?

1.1.2 Why Is Visualization Important?

There are many reasons why visualization is important. Perhaps the most
obvious reason is that we are visual beings who use sight as one of our key
senses for information understanding. The two examples below highlight
why visualization is so important in decision making, and the role of human
preferences and training. One example focuses on data distortion, and the
other on human interpretation.

What is the effect of the presentation of data on the decision-making pro-
cess? Can the presentation of data impact the decision, and can we say which
presentations are better or more influential than others? In Figures 1.1(a)
through 1.1(d), we show several views of the same data set. In Figure 1.1(a),
data are shown at a large uniform scale (equally) in both x and y; the scale
is so large that the values of the data are all close to each other, resulting in
a blob that does not allow the differentiation of individual data points and
gives the appearance that the data is tightly clustered. In Figures 1.1(b)
and 1.1(c) we alter the scales. In (b) the y-axis is scaled larger, thereby
clustering the data in the vertical direction, resulting in a linear horizontal
pattern. In (c) the scaling is in the x-direction, producing a strong linear
pattern in the vertical direction. Finally, in Figure 1.1(d), we do not scale
at all, but use the range of the data to determine the scaling (from min x to
max x and min y to max y of all the values). By changing the origin of the
graph with alternative scalings, we can produce graphs that look startlingly
different (even turning linear data into quadratic data). Looking at any of
these figures, we would be tempted to categorize the data’s “natural” struc-
ture (we discuss this data in greater detail at the end of this chapter). We
might be inclined to say the plot is very linear (a–c), while it is actually
inversely proportional (d). Clearly, visualization can distort the “truth” and
in fact can be used to do so.
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4 1. Introduction

(a) (b)

(c) (d)

Figure 1.1. The same data plotted with different scales is perceived dramatically differently:

(a) Equally (uniformly) large scale in both x and y. (b) Large scale in y. (c) Large

scale in x. (d) Scale determined by range of x- and y-values.

A second example is very real and highlights the need for testing user
interpretation of visualizations in specific decision-making processes. In 1999
Linda Elting and colleagues [98] presented to 34 clinicians the preliminary
results from hypothetical clinical trials of a generic conventional treatment
compared with a generic investigational treatment, both treating the same
condition, using four different visualization techniques. The two treatments
differed from one another, with one of the treatments made to appear much
better than the other. Clinicians seeing that difference should then decide
to stop the trial.

Figure 1.2 shows the four presentations of the same data. In the upper
left we have a simple table, in the upper right pie charts, in the lower left
stacked bar charts, and in the lower right a sequence of rectangles, each
representing a patient. In all representations, both the conventional and the
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Figure 1.2. Various visual representations of a hypothetical clinical trial. The icon display

(lower right) was the most effective for the decision to stop the clinical trial. The

bar and pie charts were the least effective. (Image courtesy [98], c© 1999 BMJ.)

investigational treatments are presented. The green color shows that the
drug induced a response and the red that none occurred.

The decision to stop varied significantly, depending on the presentation
of the data. Correct decisions were 82% with icon displays (lower right),
68% with tables, and 56% with pie charts or bar graphs. In actual clinical
practice, up to 25% of the patients treated according to the data displayed
as bar or pie charts would have received inappropriate treatment. Clearly,
the choice of visualization impacted the decision process. Elting noted that
most (21) clinicians preferred the table, and that several were contemptuous
of the icon display. This emphasizes that it is not only the visualization
that is key in presenting data well, but that user preferences are heavily
involved.

Figure 1.3 shows a diagram of an organization that is difficult to de-
scribe verbally. However, the image can easily be comprehended with only
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Figure 1.3. An organizational chart. Patterns often require a great deal of words to describe.

a brief examination. For example, it is obvious that Marketing has the most
consultants and that the Driver has the longest chain of command.

The flood of data, its democratization, and the web have brought about
an increasing use of both static and interactive visualizations that are much
more aesthetic and understandable to the user. The exploration and analysis
of large marketing, financial, security, medical, and biological data sets has
led to results needing to be explained. Visualization is a cornerstone of
these new knowledge discovery tools. Applications often use visualizations
within larger applications to provide alternative views of the data and to
help describe some structure, pattern or anomaly in the data. One thing is
certain: given the increasing levels of information available to people to run
their businesses, solve their problems, and assist in decision making, there
is a growing need for tools and techniques to help make effective use of this
information overflow. Likewise, there is a growing need to find mechanisms
for communicating information to people in an efficient and effective manner,
and to help educate them about processes and concepts that affect everyday
life, from global warming to economic trends to genetic engineering. In
virtually any domain, visualization can be, and is becoming, an effective
tool to assist in analysis and communication.

1.2 History of Visualization

As we embark on the study of visualization, we start with a quick look at the
history of the field. This is by no means a thorough review, but a cursory
one aimed at piquing your curiosity. See Michael Friendly’s web site [117]
for a wonderful collection and more details.
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1.2.1 Early Visualizations

Perhaps the first technique for graphically recording and presenting infor-
mation was that used by early man. An example is the early Chauvet-Pont-
d’Arc Cave, located near Vallon-Pont-d’Arc in southern France [421]. The
Chauvet Cave contains over 250 paintings, created approximately 30,000
years ago. These were likely meant to pass on information to future gener-
ations. See Figure 1.4 for an example of a cave painting.

The oldest writing systems used pictures to encode symbols and whole
words. Such systems are called logograms [75]. The Kish limestone tablet
(see Figure 1.5) is considered the earliest written document. It is from
Mesopotamia and is mostly pictographic, but it has the beginning of syllabic
writing found in cuneiform scripts. It is located in the Ashmolean Museum,
Oxford [338].

Another early writing system, which came from the ancient Egyptians, is
called hieroglyphics [5]. Hieroglyphs are divided into three major categories:
logograms, phonograms, and determinatives. Hieroglyphic logograms are
signs that represent morphemes, “the smallest language unit that carries
a semantic interpretation” [166]. Phonograms are signs that represent one
or more sounds. Determinatives are signs that help to join logograms and
photograms together to disambiguate the meaning of a sequence of glyphs.

Figure 1.4. One of the Lascaux cave paintings on the northern slopes of the French Pyrenees

on the banks of the Vézère river [329].
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Figure 1.5. Early graphical writing. The Kish limestone tablet from Mesopotamia [338].

Figure 1.6. A copy of one of the 12 pages of the Peutinger Map set, showing the roads of the

Roman Empire. (Image courtesy http://www.livius.org/pen-pg/peutinger/map

.html.)
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1.2. History of Visualization 9

Early visualizations came about out of necessity: for travel, commerce,
religion, and communication. Maps provided support for travelers where
planning or survival was the key. The Peutinger Map or cartogram, one
page of which is shown in Figure 1.6, was an early road map of the 70,000
miles of imperial highways of a section of the Roman world, with roads (in
red) and their approximate mileage. It adds key landmarks such as staging
posts and distances between large rivers and forests. One interesting aspect
of the map is that distances are distorted. East-west distances are scaled up
more than north-south ones. Thus, Rome appears nearer to Carthage than
Naples is to Pompeii. Such distorted maps arose for many reasons. Relative
positions were more important than actual accuracy, and in some cases the
distortions were due to the medium being used (the map itself is 22 feet 1.75
inches by 13.25 inches): “The archetype may well have been on a papyrus
roll, designed for carrying around in a capsa [tool box]. As such, its width

Figure 1.7. The famous Hereford map, the largest surviving map of the Middle Ages (1280s).

(Image courtesy Wikimedia Commons.)
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would be severely limited, whereas its length would not” [146]. The original
map is now in the Österreichische Nationalbibliothek in Vienna, Austria.

There were qualitative maps of land that highlighted the number of rivers
to cross, mountain passes, and in some cases, the location of known brigands.
There were maps showing the trade winds for sea travelers and maps used
for battle planning. The European medieval world depended on sea trade for
wealth. Thus, maps drawn by explorers and voyagers provided a great deal
of information and were kept secret. However, as is usual, the information
leaked, and a number of maps and books became available.

The Hereford map (see Figure 1.7) is an approximately four and a half
feet by five feet calf skin map of the world that can be seen in the cathedral
at Hereford, Wales. It depicts the land masses of Asia, Africa, and Europe,
with Jerusalem at the center and the Holy City at the exact center (where, in
fact, an image of the crucified Jesus appears). Some real and some religious
information is available on the map. On the external boundaries of the map,
where little was known at the time but where there was much superstition,
one can find numerous mythical figures. See [392] for a very detailed analysis
of the map. Note that there were earlier maps.

Figure 1.8 shows a portion of John Snow’s map of the deaths resulting
from cholera in London in 1663. Each stacked bar within the houses repre-

Figure 1.8. A section of John Snow’s map of the deaths from cholera in London in 1663.

Each bar within the houses represents one deceased individual. (Image courtesy

Wikimedia Commons.)

www.allitebooks.com

http://www.allitebooks.org
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Figure 1.9. Overview map of the deaths from Cholera in London in 1663. Note the concen-

tration around the Broad Street Water Pump. Note as well the outliers. (Image

courtesy Wikimedia Commons.)

sents one deceased individual. There’s much that can be done with such a
map. For example, the overview map in Figure 1.9 highlights a concentration
around the central water pump. What caused this concentration? Why were
there individuals who died far from that center? Tufte [363] stated, “Snow
observed that cholera occurred almost entirely among those who lived near
(and drank from) the Broad Street water pump. He had the handle of the
contaminated pump removed, ending the neighborhood epidemic which had
taken more than 500 lives.” It is maps such as these that allowed one to
explore and communicate geographical links to disease and other time-based
events.

Time series visualizations had been around even prior to Descartes in
the 1600s. One of the earliest was a circular representation of the phases
of the moon by Abu Rayhan Muhammad ibn Ahmad al-Biruni, born in
Kath, Khwarezm. Burani was well known in the Muslim world and one of
the most encyclopedic and broadest scientists of his time. Biruni completed
his extensive astronomical encyclopedia Kitab al-Qanun al-Mas’udi in which
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(a) (b)

Figure 1.10. Two early time series visualizations: (a) produced by Biruni circa 1030, shows the

phases of the moon in orbit; (b) drawn around the same time, shows planetary

motion. (Image courtesy Wikimedia Commons.)

Figure 1.10(a) appears. Figure 1.10(b) appeared about the same time, but
in the Western world. It displays the movement of the planets.

Minard’s Napoleonic march representation was a brilliant tour-de-force,
presenting linked geographic and time-series data on a static representa-
tion. This is one of his last maps, perhaps to appeal the destruction of
France through war. The map strongly emphasizes the loss of troops during
the Napoleonic Russian expedition. There were actually two maps, one of
Hannibal’s campaigns and the one shown in Figure 1.11. The armies are

Figure 1.11. Minard’s map, showing Napoleon’s march on Moscow. The width of the line

conveys the size of the army at that location. Color indicates the direction of

movement. The temperature is plotted at different points along the retreat at the

bottom. (Image courtesy Wikimedia Commons.)
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1.2. History of Visualization 13

represented as flows whose width corresponds to the size of the army, and
time is annotated. The size of French army went from over 400,000 to 10,000.
The image is one of the most reproduced and has often been used as a test
of the capabilities of visualization systems.

A clear breakthrough for information visualization was the abstract rep-
resentation for axes, allowing other parameters to be used as the coordi-
nates. Without the abstract (mathematical) interpretation, we would stay
with strictly planar geospatial interpretations. Thus one could have density
as one axis and temperature as the other. For example, Figure 1.12(a) shows
the national debt over time, as developed by William Playfair [277], one of
the pioneers of information visualization. Other examples of early infor-
mation visualization include Playfair’s plot of the balance of trade between
England and Norway/Denmark over a number of years (Figure 1.12(b)),

(a) (b)

Figure 1.12. Early visualizations of William Playfair: (a) a plot of the national debt

over time; (b) a display of the balance of trade between England and Nor-

way/Denmark (1786). (Image courtesy Wikimedia Commons.)
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Figure 1.13. Joseph Priestley’s display of the longevity of famous people (1765). (Image cour-

tesy Wikimedia Commons.)

Joseph Priestley’s display of the life spans of famous people (Figure 1.13),
and Florence Nightingale’s presentation of monthly deaths within the army,
comparing those who died in battle with those dying from other causes (Fig-

Figure 1.14. Florence Nightingale’s coxcomb chart showing monthly deaths from battle and

other causes. Blue represents the deaths from disease, red represents deaths from

wounds, and black represents all other deaths. (From an interactive on-line tool

at http://understandinguncertainty.org/node/213.)
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Figure 1.15. Leonardo Da Vinci’s study of the motion of the human arm (1510). (Image cour-

tesy Wikimedia Commons.)

ure 1.14). Medical visualizations were also quite popular, particularly for
the training of new doctors. Many examples exist, though few are more
famous than Leonardo Da Vinci’s amazing drawings of human anatomy
(Figure 1.15).

1.2.2 Visualization Today

Visualization most often provides different levels of both qualitative and
quantitative views of the information being communicated. For example,
Figure 1.16 shows a map of the Tokyo underground. It provides an easy-to-
read yet logically distorted view of the criss-crossing network of the subway
system to facilitate interpretation; similar techniques have been used for a
number of subway and other transportation systems as well as for processes
and their flows.



�

�

�

�

�

�

�

�
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Figure 1.16. The Tokyo Underground map. A logical representation of the metro highlighting

qualitative relationships between the stops. (Image courtesy Wikimedia Com-

mons.)

Figure 1.17. The google.com map directions from 198 Riverside St., Lowell, MA (UMass Lowell,

North Campus) to 883 Broadway St., Lowell, MA (UMass Lowell, South Campus).

Google.com maps provide graphical cues drawn on top of road maps to indicate

driving directions from point A to point B. (Image c© 2009 Google.)
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Distorted views are often interpreted imprecisely and depend on the
viewer. Most representations of two-dimensional maps exhibit some degree
of distortions due to the 3D-to-2D projection (globe to plane). However,
since a small area on the globe is well approximated by a plane, local street
maps have minimal distortions and thus can provide strong relative detail
and especially link information, including connectedness, closeness, above, or
below. Figure 1.17 displays Google map directions between two local street
addresses, indicating the roads, intersections, and turns to make throughout
the trip.

The difference between a statement such as “the Dow Jones average rose
by 125 points today” and a plot of the Dow Jones average (Figure 1.18)
is that the sentence provides a single, exact piece of information, while the
plot provides several pieces of imprecise information; a viewer can gauge
the degree and direction of the change, along with trend information, but
may only have an approximation for the numeric values involved. This
becomes even more pronounced over larger plots, where more patterns may
be discerned.

It is possible for visualizations to provide very precise views of the data.
Figure 1.19 provides such precision. Numbers and text definitely are visual
representations and are considered visualizations, as is a table or a document.
They are representations of data. The figure is the running U.S. National
Debt Clock. With a population of about 300 million, the average debt share

Figure 1.18. Dow Jones Industrial Average (DJIA) from 1900 to 2000. The Dow Jones Indus-

trial Average is a U.S. stock index based on the weighted average of the stock

prices of 30 large and actively traded U.S. companies. The divisor changes over

time as stock splits, so as not to alter that average in those cases. (Image courtesy

Wikimedia Commons.)
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Figure 1.19. The outstanding United States public debt as of January 22, 2006.

was around $27,000 in January of 2006. As of May 2008, the average debt
share had risen to over $30,000, and as of July 2009 it was $37,826!

Modern visualizations harness digital media. For example, Figure 1.20(a)
shows a normal ECG (electrocardiogram) while that of Figure 1.20(b) shows
an 83 year old man with left ventricular and arterial hypertrophy. An ECG
is an electrical recording of the heart in action (beating) and is used to
identify heart ailments or problems [175]. The diagnosis is based on differ-
ences from the normal or base ECG. Many such differences can be seen in
Figure 1.20(b).

(a) (b)

Figure 1.20. Two examples of 12-lead ECGs: (a) a normal adult; (b) an 83-year-old adult with

heart problems. (Image courtesy http://www.ecglibrary.com/ecghome.html.)

Figure 1.21 displays a scatterplot for analyzing the mechanism of action
for yeast. The x-coordinate represents the number of atoms and the y-
coordinate, heat of formation. We do not need to understand the parameters
nor the domain to see the scatterplot representation of the data and to
recognize the line of regression. Clearly that regression line can be computed
from the data without using the image. The result is an equation of the form
y = mx + b, where m represents the slope of the line and b the y-intercept
(here m = −12.5 and b = 50). The analyst would then have the regression.
However the figure allows the user to explore more detail, such as the spread,
what outliers are present, and other patterns. For example, the user might
notice the color trend (which conveys the Gibbs energy at each point) from
bottom left to top right that might not have been identified in a statistical
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Figure 1.21. Yeast mechanism of action data with regression line. (Image Generated by UMass

Lowell UVP Software.)

analysis. This ability to provide rich descriptions of the data is one of the
key strengths of visualizations.

We now deal with data every day and are quite familiar with maps, sim-
ple graphs and charts. These more abstract representations of data (graphs
and charts) have gone beyond their first applications (trading, economic
analysis) and are much more widely used. Visualization provides a visual
representation of objects that may include data, algorithms, results of com-
putations, processes, user controls, and numerous other components of an
application. These visual representations provide information through the
use of computer-generated graphics. In an interactive visualization the user
can query the display and thus interact with the application display directly
rather than using menus. It is even possible for an application to be totally
driven through its visualizations.

The following are a collection of modern visualizations from a variety
of applications, including medical reconstruction, aerospace simulation, and
bioinformatics. Figure 1.22 shows the blood vessels in red overlaid on a skull.
Figure 1.23 shows the airflow generated by a jet during take-off.
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Figure 1.22. Blood vessel configuration of the head and brain. (Image c© Gunther von Hagens,

Institute for Plastination, Heidelberg, Germany, www.bodyworlds.com.)

Figure 1.23. Simulation visualization of the air flow generated by a Harrier jet when tak-

ing off. Here, color depicts the amount of force exerted by the underlying

representation, red being the highest and blue the lowest. (Image courtesy

http://quest.nasa.gov/aero/background/tools.)

www.allitebooks.com

http://www.allitebooks.org
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Figure 1.24. A pathway represented by a network with nodes representing genes and color the

level of expression. (Image generated using UMass Lowell UVP software.)

The background image in Figure 1.24 comes from the Kyoto Encyclo-
pedia of Genes and Genomes web site (KEGG), which provides XML files
containing the coordinates of the genes in the image. Expression data from
the Stanford web site for yeast expression data has been overlaid. The slider
along the bottom indicates a specific microarray experiment. The colors
indicate the expression level for the gene. Green is low and red is high.

1.3 Relationship between Visualization and Other Fields

1.3.1 What Is the Difference between Visualization and Computer Graphics?

Originally, visualization was considered a subfield of computer graphics, pri-
marily because visualization uses graphics to display information via images.
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As illustrated by any of the computer-generated images shown earlier, vi-
sualization applies graphical techniques to generate visual displays of data.
Here, graphics is used as the communication medium.

In all visualizations, one can clearly see the use of the graphics prim-
itives (points, lines, areas, and volumes). Beyond the use of graphics, the
most important aspect of all visualizations is their connection to data. Com-
puter graphics focuses primarily on graphical objects and the organization
of graphic primitives; visualizations go one step further and are based on the
underlying data, and may include spatial positions, populations, or physi-
cal measures. Consequently, visualization is the application of graphics to
display data by mapping data to graphical primitives and rendering the
display.

However, visualization is more than simply computer graphics. The field
of visualization encompasses aspects from numerous other disciplines, includ-
ing human-computer interaction, perceptual psychology, databases, statis-
tics, and data mining, to name a few. While computer graphics can be used
to define and generate the displays that are used to communicate the infor-
mation, the sources of data and the way users interact and perceive the data
are all important components to understand when presenting information.
The sources and types of data will be described in Chapter 2, perception in
Chapter 3, and interactions in Chapters 10 and 11.

Our view is that computer graphics is predominantly focused on the cre-
ation of interactive synthetic images and animations of three-dimensional
objects, most often where visual realism is one of the primary goals. A sec-
ondary application of computer graphics is in art and entertainment, with
video games, cartoons, advertisements, and movie special effects as typical
examples. Visualization, on the other hand, does not emphasize visual re-
alism as much as the effective communication of information. Many types
of visualizations do not deal with physical objects, and those that do are
often communicating attributes of the objects that would normally not be
visible, such as material stress or fluid flow patterns. Thus, while computer
graphics and visualization share many concepts, tools, and techniques, the
underlying models (the information to be visualized) and goals (what the
viewer hopes to extract) are fundamentally different.

Thus, computer graphics consists of the tools that display the visualiza-
tions seen in this book. This includes the graphics-programming language
(OpenGL, DirectX, Processing, Java3D), the underlying graphics hardware
(NVidia or ATI/AMD graphics cards), the rendering process (flat, Gouraud,
Phong, ray tracing, or radiosity), the output format (JPEG, TIFF, AVI,
MPEG), and more. We consider computer graphics to be the underpinning
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Figure 1.25. A visualization of a patient’s heart, along with visualizations representing addi-

tional parameters not easily representable on that 3D model. (Image from [138],

c© 2000 IEEE.)

of visualization and thus need to keep abreast of it. In Appendix A we
provide a brief history of computer graphics.

The visualization in Figure 1.25 shows the dependency of interactive
visualization on computer graphics. The visualization displays a patient’s
heart (scientific/medical visualization) in the upper left window with two
other frames showing additional parameters not easily displayable on the
heart. These last two are the ones that are often considered information
visualizations, but clearly all three are! Computer graphics is the rendering
engine for this integrated visualization.

1.3.2 Scientific Data Visualization vs. Information Visualization

Although during the 1990s and early 2000s the visualization community dif-
ferentiated between scientific visualization and information visualization, we
do not. Both provide representations of data. However the data sets are
most often different. Figure 1.25 highlights the importance and value of
having both. Biomolecular chemistry, which once only considered the vi-
sual representation of molecules as stick and balls, has migrated over time
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Figure 1.26. An example of a drug that targets HIV-I reverse transcriptase. (Image courtesy

IBM OpenDX Highlights.)

to representations as spheres with rods, to more realistic ones, as shown in
Figures 1.26 and 1.27, to now including information visualizations (scatter-
plots and other visualizations). This book takes the view that both scientific
visualization and information visualization are allied fields. In some cases,
the data being visualized begs different handling: a large volume (1K × 1K
× 1K = 1 billion points) requires dealing with large numbers of memory
accesses and large scale computations, whereas displaying a scatterplot of a
million patients from a file is more concerned with reading the data from the
database or file; the computations are much simpler.

Figure 1.27. Electron microscopic image of filaments of DNA, generated with Alias/Wavefront

Visualizer. (Image courtesy Ed Egelman.)
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Figure 1.28. The visualization process at a very high or primitive level view.

1.4 The Visualization Process

What is involved in the visualization process? The designer of a new visual-
ization most often begins with an analysis of the type of data available for
display and of the type of information the viewer hopes to extract from or
convey with the display. The data can come from a wide variety of sources
and may be simple or complex in structure. The viewer may wish to use the
visualization for exploration (looking for “interesting” things), to confirm a
hypothesis (either conjectured or the result of quantitative analysis), or to
present the results of one’s analysis to an audience. Examples of interesting
results are anomalies (data that does not behave consistent with expecta-
tions), clusters (data that has sufficiently similar behavior that may indicate
the presence of a particular phenomenon), or trends (data that is changing
in a manner that can be characterized, and thus used for predictive models).

To visualize data, one needs to define a mapping from the data to the
display (see Figure 1.28). There are many ways to achieve this mapping. The
user interface consists of components, some of which deal with data needing
to be entered, presented, monitored, analyzed, and computed. These user
interface components are often input via dialog boxes, but they could be
visual representations of the data to facilitate the selections required by the
user. Visualizations can provide mechanisms for translating data and tasks
into more visual and intuitive formats for users to perform their tasks.

This means that the data values themselves, or perhaps the attributes
of the data, are used to define graphical objects, such as points, lines, and
shapes; and their attributes, such as size, position, orientation, and color.
Thus, for example, a list of numbers can be plotted by mapping each number
to the y-coordinate of a point and the number’s index in the list to the x-
coordinate. Alternatively, we could map the number to the height of a bar
or the color of a square to get a different way to view the data. In this
book we present dozens of possible mappings (see Chapters 5–9), along with
strategies for selecting effective mappings (see Chapter 12).

Another significant, yet often overlooked, component of the visualization
process is the provision of interactive controls for the viewing and mapping of
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variables (attributes or parameters). While early visualizations were static
objects, printed on paper or other fixed media, modern visualization is a
very dynamic process, with the user controlling virtually all stages of the
procedure, from data selection and mapping control to color manipulation
and view refinement. There is no formula for guaranteeing the effectiveness of
a given visualization. Different users, with different backgrounds, perceptual
abilities, and preferences, will have differing opinions on each visualization.
The user’s task will also affect the usefulness of the visualization. Even a
change in the data being visualized can have implications on the resulting
visualization. Thus it is critical to enable users to customize, modify, and
interactively refine visualizations until they feel they have achieved their goal,
such as extracting a complete and accurate description of the data contents
or presenting a clear depiction of patterns that they want to convey.

Visualization is often part of a larger process, which may be exploratory
data analysis, knowledge discovery, or visual analytics. In this discovery
process, the preparation of data depends upon the task and often requires
massaging erroneous or noisy data. Visualization and analysis go hand in
hand with the goal of building a model that represents or approximates
the data. Visualization in data exploration is used to convey information,
discover new knowledge, and identify structures, patterns, anomalies, trends,
and relationships.

The process of starting with data and generating an image, a visualiza-
tion, or a model via the computer is traditionally described as a pipeline—a
sequence of stages that can be studied independently in terms of algorithms,
data structures, and coordinate systems. These processes or pipelines are
different for graphics, visualization, and knowledge discovery, but overlap a
great deal. All start with data and end with the user. These pipelines are
presented in the next three sections.

1.4.1 The Computer Graphics Pipeline

For computer graphics the stages are as follows (see Figure 1.29):

Modeling. A three-dimensional model, consisting of planar polygons defined
by vertices and surface properties, is generated using a world coordi-
nate system.

Viewing. A virtual camera is defined at a location in world coordinates,
along with a direction and orientation (generally given as vectors). All
vertices are transformed into a viewing coordinate system based on the
camera parameters.
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Figure 1.29. The graphics pipeline.

Clipping. By specifying the bounds of the desired image (usually given by
corner positions on a plane of projection placed in front of the camera),
objects out of view can be removed, and those that are partially visible
can be clipped. Objects may be transformed into a normalized viewing
coordinates to simplify the clipping process. Clipping can actually be
performed at many different stages of the pipeline.

Hidden surface removal. Polygons facing away from the camera, or
those obscured by others, are removed or clipped. This process may
be integrated into the projection process.

Projection. Three-dimensional polygons are projected onto the two-
dimensional plane of projection, usually using a perspective transfor-
mation. The results may be in a normalized 2D coordinate system or
device/screen coordinates.

Rendering. The actual color of the pixels associated with a visible polygon
depends on a number of factors, including the material properties be-
ing synthesized (base color, texture, surface roughness, shininess), the
type(s), location(s), color, and intensity of the light source(s), the de-
gree of occlusion from direct light exposure, and the amount and color
of light being reflected off of other objects onto the polygon. This pro-
cess may also be applied at different stages of the pipeline (e.g., vertex
colors can be assigned during the modeling process); however, due to
its computational complexity, it is usually performed in conjunction
with projection.

Ray tracing, a variant on this pipeline, involves casting rays from the
camera through the plane of projection to ascertain what polygon(s) are
hit. For reflective or translucent surfaces, secondary rays can be generated
upon intersection with the surface, and the results accumulated (we shall see
examples of this sort of accumulation when we discuss certain methods of
volume rendering). The key algorithms involved include determining where
rays intersect surfaces, the orientation of the surface at the intersection point,
and the mechanism for combining the effects of secondary rays. Since each
ray needs to be intersected against many, if not all, polygons, significant
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effort is often involved in pruning objects that will be unlikely to intersect a
given ray prior to performing the intersection formulae.

1.4.2 The Visualization Pipeline

The data/information visualization pipeline has some similarities to the
graphics pipeline, at least on an abstract level. The stages of this pipeline
(see Figure 1.30) are as follows:

Data modeling. The data to be visualized, whether from a file or a database,
has to be structured to facilitate its visualization. The name, type,
range, and semantics of each attribute or field of a data record must be
available in a format that ensures rapid access and easy modification.

Data selection. Similar to clipping, data selection involves identifying the
subset of the data that will be potentially visualized. This can occur
totally under user control or via algorithmic methods, such as cycling
through time slices or automatically detecting features of potential
interest to the user.

Data to visual mappings. The heart of the visualization pipeline is performing
the mapping of data values to graphical entities or their attributes.
Thus, one component of a data record may map to the size of an
object, while others might control the position or color of the object.
This mapping often involves processing the data prior to mapping,
such as scaling, shifting, filtering, interpolating, or subsampling.

Scene parameter setting (view transformations). As in traditional graphics, the
user must specify several attributes of the visualization that are rel-
atively independent of the data. These include color map selection

Figure 1.30. One example of the visualization pipeline. There are many variants, but all trans-

form data into some internal representation within the computer and then use

some visual paradigm to display the data on the screen.
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(for different domains, certain colors have clearly defined meaning),
sound map selection (in case the auditory channels will be conveying
information as well), and lighting specifications (for 3D visualizations).

Rendering or generation of the visualization. The specific projection or render-
ing of the visualization objects varies according to the mapping being
used; techniques such as shading or texture mapping might be in-
volved, although many visualization techniques only require drawing
lines and uniformly shaded polygons. Besides showing the data itself,
most visualizations also include supplementary information to facili-
tate interpretation, such as axes, keys, and annotations.

1.4.3 The Knowledge Discovery Pipeline

The knowledge discovery (also called data mining) field has its own pipeline.
As with the graphics and visualization pipelines, we start with data; in this
case we process it with the goal of generating a model, rather than some
graphics display. Figure 1.31 presents one view of that pipeline.

Note that the visualization pipeline can be overlaid on this knowledge
discovery (KD) pipeline. If we were to look at a pipeline for typical statistical
analysis procedures, we would find the same process structure:

Data. In the KD Pipeline there is more focus on data, as the graphics and
visualization processes often assume that the data is already structured
to facilitate its display.

Data integration, cleaning, warehousing and selection. These involve identifying
the various data sets that will be potentially analyzed. Again, the user
may participate in this step. This can involve filtering, sampling, sub-
setting, aggregating, and other techniques that help curate and manage
the data for the data mining step.

Data mining. The heart of the KD pipeline is algorithmically analyzing the
data to produce a model.

Figure 1.31. One view of the knowledge discovery pipeline or process.
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Pattern evaluation. The resulting model or models must be evaluated to de-
termine their robustness, stability, precision, and accuracy.

Rendering or visualization. The specific results must be presented to the user.
It does not matter whether we think of this as part of the graphics or
visualization pipelines; the fact is that a user will eventually need to see
the results of the process. Model visualization is an exciting research
area that will be discussed later.

Interactive visualization can be used at every step of the KD pipeline.
One can think of this as computational steering.

1.4.4 The Role of Perception

In all visualizations, a critical aspect related to the user is the abilities and
limitations of the human visual system. If the goal of visualization is to
accurately convey information with pictures, it is essential that perceptual
abilities be considered. A well-drawn picture can be stimulating, but if we
are presenting a conclusion, we do not want ambiguities such as Shepard’s
many-legged elephant in Figure 1.32. The following illusions, and many
more very interesting ones, are from http://www.ritsumei.ac.jp/∼akitaoka/
index-e.html.

Consider a collection of black squares spaced slightly apart (Figure 1.33).
Note the effect these squares have as you stare at them. There are of course
no moving black dots at the intersections of the white lines, but clearly such
a presentation of data would create instabilities. It thus makes little sense
to map a variable to a graphical attribute that humans have limited abil-
ity to control or quantify, if the goal is to communicate a numeric value
with accuracy. For example, most people cannot gauge textures accurately

Figure 1.32. How many legs does this elephant have? (Image from http://www.ilusa.com/

gallery/elephant-illusion.jpg.)

www.allitebooks.com
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Figure 1.33. The strength of the eye’s saccadic movement is hard to overcome.

(“Is texture A twice the value of texture B?”), though our abilities to per-
form relative comparisons are much stronger than absolute judgment (see
Chapter 3).

Users interact with visualizations based upon what they see and inter-
pret. Understanding how we see should help us produce better displays,
or at least avoid producing very poor ones. About half of the human brain
deals with visual input, and much of the processing is parallel and effectively
continuous. Texture, color, and motion are examples of primitive attributes
that we perceive. What are good colors for data? How does motion percep-
tion work? We discuss these in Chapter 3, but here we quickly review some
of the key issues. For example, eight percent of males are color deficient.
This implies that good visualization software should provide the ability to
change the color of objects on the screen. What colors to use will depend
on the user’s deficiency and what the visualization is trying to convey. In
the rest of this section, we present some key perceptual processes, so that
we can use these in discussions on visualizations.

As in the pipelines briefly discussed earlier, the human perceptual sys-
tem receives input data and processes it in various ways. The first process is
preattentive processing, a fast, high-performance system that quickly iden-
tifies differences in, for example, color or texture. There are other features
that the visual system deals with, such as line orientation, length, width,
size of an object, curvature, grouping, and motion.

Figure 1.34 shows a set of colored points with a distractor that can be eas-
ily distinguished from the others. Figure 1.35 also shows a distractor with
targets. In this case, line orientation is the perceptual element explored.
Note that it, too, is processed in parallel (preattentively). Figure 1.36 shows
an example of a display in which identifying the distractor is done atten-
tively, with focused attention. The identification of preattentive primitives
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Figure 1.34. A display showing one distractor (red) in a sea of blue colored points. It is preat-

tentively distinguished.

Figure 1.35. A display where orientation is the key perceptual factor explored.

Figure 1.36. It is difficult in this display to identify the inner square consisting of right-handed

Rs.
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has helped in the development of modern display techniques for harnessing
human perceptual capabilities.

Understanding visual perception leads to certain guidelines. For exam-
ple, the Gestalt School of Psychology, started in 1912, attempted to define a
set of laws by which we perceive patterns. These laws included rules about
proximity, similarity, continuity, closure, symmetry, foreground and back-
ground, and size. We discuss these laws in detail in Chapter 3 and how they
can be used in the visualization design process in Chapter 11.

Several steps are involved after the pre- and post-attentive processes.
Cognition forces some visual interpretations, and thus understanding its role
clearly helps in the development of task-oriented visualizations solutions.

1.5 Pseudocode Conventions

Throughout the text we include pseudocode wherever possible. In our pseu-
docode, we aim to convey the essence of the algorithms at hand, while leaving
out details required for user interaction, graphics nuances, and data manage-
ment. We therefore assume that the following global variables and functions
exist in the environment of the pseudocode:

• data—The working data table. This data table is assumed to contain
only numeric values. In practice, dimensions of the original data ta-
ble that contain non-numeric values must be somehow converted to
numeric values. When visualizing a subset of the entire original data
table, the working data table is assumed to be the subset.

• m—The number of dimensions (columns) in the working data table.
Dimensions are typically iterated over using j as the running dimension
index.

• n—The number of records (rows) in the working data table. Records
are typically iterated over using i as the running record index.

• Normalize(record, dimension), Normalize(record, dimension, min,

max)—A function that maps the value for the given record and
dimension in the working data table to a value between min and max,
or between zero and one if min and max are not specified. The normal-
ization is typically linear and local to a single dimension. However, in
practice, code must be structured such that various kinds of normal-
ization could be used (logarithmic or square root, for example) either
locally (using the bounds of the current dimension), globally (using the
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bounds of all dimensions), or local to the active dimensions (using the
bounds of the dimensions being displayed). Also, in practice, one must
accommodate multiple kinds of normalization within a single visual-
ization. For example, a scatterplot may require a linear normalization
for the x-axis and a logarithmic normalization for the y-axis.

• Color(color)—A function that sets the color state of the graphics
environment to the specified color (whose type is assumed to be an
integer containing RGB values).

• MapColor(record, dimension)—A function that sets the color state
of the graphics environment to be the color derived from applying
the global color map to the normalized value of the given record and
dimension in the working data table.

• Circle(x, y, radius)—A function that fills a circle centered at the given
(x, y)-location, with the given radius, with the color of the color state
of the graphics environment. The plotting space for all visualizations
is the unit square. In practice, this function must map the unit square
to a square in pixel coordinates.

• Polyline(xs, ys)—A function that draws a polyline (many connected
line segments) from the given arrays of x and y coordinates.

• Polygon(xs, ys)—A function that fills the polygon defined by the
given arrays of x- and y-coordinates with the color of the current color
state.

For geographic visualizations, the following functions are assumed to exist
in the environment:

• GetLatitudes(record), GetLongitudes(record)—Functions that
retrieve the arrays of latitude and longitude coordinates, respectively,
of the geographic polygon associated with the given record. For exam-
ple, these polygons could be outlines of the countries of the world.

• ProjectLatitudes(lats, scale), ProjectLongitudes(longs, scale)
—Functions that project arrays of latitude values to arrays of y values,
and arrays of longitude values to arrays of x values, respectively.

For graph and 3D surface data sets, the following is provided:

• GetConnections(record)—A function that retrieves an array of re-
cord indices to which the given record is connected.

Arrays are indexed starting at zero.
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1.6 The Scatterplot

We conclude our introductory chapter with a detailed discussion of one of
the most basic visualization techniques, one we have already used in previous
illustrations: the scatterplot. We include it early in the book to provide a
basis with which to discuss visualization in general, and to provide exercises
for both coding and theory/applications. This will give us some experience
with transforming data into a visual representation that is understood by
most readers. The scatterplot is one of the earliest and most widely used
visualizations developed. It is based on the Cartesian coordinate system.

The following pseudocode renders a scatterplot of circles. Records are
represented in the scatterplot as circles of varying location, color, and size.
The x- and y-axes represent data from dimension numbers xDim and yDim,
respectively. The color of the circles is derived from dimension number
cDim. The radius of the circles is derived from dimension number rDim, as
well as from the upper and lower bounds for the radius, rMin and rMax.

Scatterplot(xDim, yDim, cDim, rDim, rMin, rMax)
1 for each record i � For each record,
2 do x← Normalize(i, xDim) � derive the location,
3 y ← Normalize(i, yDim)
4 r ← Normalize(i, rDim, rMin, rMax) � radius,
5 MapColor(i, cDim) � and color, then
6 Circle(x, y, r) � draw the record as a circle.

We consider the 2004 new car and truck data set, which consists of de-
tailed specifications for 428 vehicles. The variables included are dealer and
retail price, weight, size, horsepower, fuel efficiency for city and highway, and
more (see the book’s web site). Although it looks like there are 19 variables
for each vehicle, columns 2–7 effectively identify the type of car, and columns
8 and 9 the wheel drive type. Table 1.1 shows three records of the data; the
table in Figure 1.37 shows a subset of the complete data focused on Toyota
vehicles. Some records have missing entries. The column variables are as
follows:

1. vehicle name (text 1–45 characters);

2. small, sporty, compact or large sedan (1=yes, 0=no);

3. sports car? (1=yes, 0=no);

4. sport utility vehicle? (1=yes, 0=no);
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5. wagon? (1=yes, 0=no);

6. minivan? (1=yes, 0=no);

7. pickup? (1=yes, 0=no);

8. all-wheel drive? (1=yes, 0=no);

9. rear-wheel drive? (1=yes, 0=no);

10. suggested retail price, what the manufacturer thinks the vehicle is
worth, including adequate profit for the automaker and the dealer (U.S.
dollars);

11. dealer cost (or “invoice price”), what the dealership pays the manu-
facturer (U.S. dollars);

12. engine size (liters);

13. number of cylinders (=-1 if rotary engine);

14. horsepower;

15. city miles per gallon;

16. highway miles per gallon;

17. weight (pounds);

18. wheel base (inches);

19. length (inches);

20. width (inches).

We can look at the table of data for some of the variables. What patterns
can be seen in the table? Now let’s try using graphical methods. Let’s begin
to explore the data. Suppose we select all Toyota vehicles (see Figure 1.37).
It is difficult to get a sense of the data just by looking at even this small

Vehicle Name Sedan Sports SUV Wagon Minivan Pickup AWD RWD Price
Acura 3.5 RL 4dr 1 0 0 0 0 0 0 0 43755
Acura MDX 0 0 1 0 0 0 1 0 36945
Suzuki XL-7 EX 0 0 1 0 0 0 0 0 23699

Table 1.1. A simple partial table of the car and truck data. Note that you can think of this

as a row-based table (cars and trucks) or a column-based table (car attributes).
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Figure 1.37. Toyota vehicle table. All variables are shown. Notice that there are a few missing

values.

subset of 28 records. Specific questions about the data can be asked. For
example, what are the relationships between weight and length? Is there a
correlation between vehicle model and MPG (specific models have specific
ranges of MPGs)? Does the dealer price mean we have a better performing
vehicle (higher price implies better MPGs)? Do foreign vehicles perform
better than domestic ones?

In fact, even when looking at just three of these records the task is not
simple. Imagine looking at tables with hundreds of records—how would one
answer these questions? Figure 1.38 represents two selected variables for
those 28 records.

Much can be quickly and easily discerned from the visualization. For
example all Toyota vehicles are broken down into three categories and there
is clearly a close to linear relationship between horsepower and city miles per
gallon. Is this a general rule? If we select another model, say Kia vehicles,
we find a very similar relationship (see Figure 1.39).

So we have a hypothesis! In fact, there may be several. Increasing
horsepower in 2004 vehicles yields a decrease in MPG. Perhaps that is too
broad and we should restrict it to foreign vehicles. Let’s test that hypothesis.
We want to confirm that increasing horsepower in foreign vehicles yields a
decrease in city MPG. There are many ways to do this. We’ll jump right to
another foreign car to check it out. Consider the Lexus data in Figure 1.40.
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Figure 1.38. A scatterplot of horsepower versus city MPG for Toyota vehicles. The vehicle class

is mapped to color.

Figure 1.39. Table and scatterplot of the Kia vehicles. Note that here, too, a linear relationship

holds.

It’s clear that there are relationships, but they are not necessarily as simple
as we stated earlier. Consider the whole data set plotted (see Figure 1.41).
This is where we can start to explore the data further.
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Figure 1.40. Table and scatterplot of the Lexus vehicles. Note that the hypothesis is not vali-

dated.

Figure 1.41. Scatterplot of all vehicles. There is lots to explore here.

There are a number of questions we can ask:

1. Do the trends defined for 28 records apply to the whole data set, or if
not, what specific subsets do they apply to? In other words, can we
generalize the model we’ve discovered or identified?
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2. How many records have missing values, and for what fields (attributes)?

3. What can we say about the missing data?

4. What can we say about the data overall?

(a) What is the distribution of MPG?

(b) Are there trends?

(c) Are there groups?

There are many more questions that could be asked and discoveries that
could be made. We will discuss further analyses of this data set in the
exercises. Before leaving this example, we note that one can criticize the
visualization. There is no legend. Some rectangles are bigger than others.
What happens if points overlap? Why does it use squares?

1.7 The Role of the User

In computer graphics, the role of the user is predominantly at either of the
two ends of the pipeline, either in creating the model of the scene to be
rendered or observing the end results, perhaps with some interactive control
of camera or animation parameters. As what is being rendered is often a
simulation of a three-dimensional “world,” it is assumed that our innate
perceptual abilities are sufficient and well trained for the task. In addition,
the role of the resulting image is generally straightforward, that is, to convey
to the user the scene contents and the actions and interactions of the objects
within the scene.

On the other hand, the user can be involved in most, if not all stages
of the visualization pipeline, and the role of the visualization can have sig-
nificant impact on the types of user involvement. It is useful to categorize
visualizations based on the purpose they serve. These include the following:

Exploration. The user possesses a data set and wants to examine it to ascer-
tain its contents and/or whether a particular feature or set of features
is present or absent (Figure 1.41).

Confirmation. The user has determined (e.g., via computational analysis) or
hypothesized that a given feature is present in the data and wants to
use the visualization to verify this fact or hypothesis (Figure 1.39).

www.allitebooks.com
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(a) (b)

Figure 1.42. (a) A storm over time with a horizontal cross section in the small window. (b) The

same storm with different views [17]. (Images c© 1995 IEEE.)

Presentation. The user is trying to convey some concept or set of facts to an
audience (Figure 1.2). Note the added labeling and stronger colors to
emphasize and support the author’s conclusion.

The major experience most people have had with visualization is in pre-
sentations, where a speaker or author uses a bar chart or line graph to in-
dicate a set of values and their relationships. Other common visualizations,
such as maps and organizational charts, also primarily serve this purpose.
The creator of the visualization is fully aware of the information that he/she
wishes to convey and usually has a reasonable idea of the types of visual-
izations with which the intended audience is familiar. The reason that pre-
sentation visualizations are the primary visualization experiences for most
people is that, until recently, visualizations have been mostly static images
requiring significant efforts to generate. The advent of more powerful com-
puters and easier mechanisms for creating visualizations has made possible
the other types of visualization. Presentation visualizations take a great deal
of time to produce and are used in a wide variety of areas, such as training
and education. Figure 1.42 presents screen shots from animations used for
explaining a complex model over time, showing the evolution of storm.

In exploratory visualization we look for patterns in the data to explain
its structure. Figure 1.43 displays the gene expression patterns of selected
genes measured from a number of patients’ tissue samples and controls. The
higher-expressed genes are portrayed in red; the lower-expressed genes are
in green. Along the two dimensions, the tissue samples are organized by
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Figure 1.43. Exploratory visualization used in microarray gene expression experiment analysis.

(Image courtesy [419].)

disease type, and genes are organized by their discriminative disease type in
terms of analytic. This visualization allows one to see quickly which genes
are related to which diseases.

Each of these categories of visualization has its own special tools. For ex-
ample, presentation visualizations more commonly use presentation graphics
as their layout and visual control tools. Many products, such as Photoshop,
provide rich controls for fine tuning the visualization.

1.8 Related Readings

There are several web sites and articles written on the history of visualization
and related topics. Here is a brief list:

History. NSF has a brief document on the history of its funded pioneering
visualization activities, mostly centered on scientific visualization. See
http://www.nsf.gov/about/history/nsf0050/pdf/visualization.pdf.
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Siggraph. The ACM Special Interest Group in Computer Graphics has a
great deal of information and education materials. See http://education
.siggraph.org/.

Cartography. Michael Friendly and Daniel J. Denis maintain a web page
with numerous beautiful images on Milestones in the History of The-
matic Cartography, Statistical Graphics, and Data Visualization, an
illustrated chronology of innovations. See http://www.math.yorku.ca/
SCS/Gallery/milestone/.

Visual analytics. The National Visualization and Analytics Center
(NVAC) has a wonderful book available on line entitled Illuminating
the Path: The Research and Development Agenda for Visual Analytics.
See http://nvac.pnl.gov/agenda.stm.

John Snow. A great deal of history is associated with Dr. John Snow’s map
of the deaths from Cholera in London. Snow used bars and an in-
terpretation by Gilbert replaced the bars with dots [126]. Sedwick,
Tufte and others credited the dots map to Snow. A nice description
of the evolution of Snow’s maps and different usages was done by Tom
Koch [127].

1.9 Exercises

1. Choose a topic from computer graphics or visualization and research
its origins. Feel free to skim ahead in this book to find a topic, such as
volume rendering or parallel coordinates. Send your contributions to
the authors via the book’s web site. If we can verify it, your findings
may be placed in our online history page.

2. Describe the linkages between the stages of the graphics pipeline and
those of the visualization pipeline. Are there any stages in one pipeline
that do not have a clear linkage in the other pipeline?

3. Describe the linkages between the stages of the visualization pipeline
and those of the knowledge discovery pipeline. Are there any stages in
one pipeline that do not have a clear linkage in the other pipeline?

4. Give an example of each of the three categories of visualization: pre-
sentation, confirmation, and exploration.
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5. Familiarize yourself with scatterplots: write up a summary of what
they are, how they are created, and how they are used. There are
hundreds of different variations on scatterplots, so select one as an
example in your summary.

6. Select a member of the MIT aesthetics and computation research group
(http://wacg.media.mit.edu). Briefly discuss that person’s work and
provide a review of the potential for that technique to help in informa-
tion visualization (amount of information communicated vs. amount
of aesthetics).

1.10 Projects

1. Using the vehicle data set and an existing visualization tool (e.g., Excel,
Weka, Weave, or XmdvTool), perform the following tasks.

(a) Read the full data set into the program.

(b) Select a subset of the data that contains an obvious correlation
(exploratory visualization).

(c) State a hypothesis and confirm it using the full data set (confir-
matory visualization).

(d) Present your results in a PowerPoint slide (presentation visual-
ization).

2. Write a scatterplot program from scratch, using the following steps.

(a) Write a program that reads the data, stores that data internally,
and identifies which records have missing values. Keep track of
the minimum and maximum of each variable.

(b) Select two of the variables as your axes. Draw coordinate axes
and label them with the names of the variables.

(c) Loop through all nonmissing data records and plot a circle or
square at location (x, y) based on your selected variables. Skip
any record that has missing values.

(d) Additions to consider: color the square or circle by some other
value; use size to represent yet another value of the record; have
the user select which variables to use as the axes; handle missing
values by replacing the missing data with some very large number,
some very small number, or the average value for that variable.
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CHAPTER 2

Data Foundations

Since every visualization starts with the data that is to be displayed, a first
step in addressing the design of visualizations is to examine the character-
istics of the data. Data comes from many sources; it can be gathered from
sensors or surveys, or it can be generated by simulations and computations.
Data can be raw (untreated), or it can be derived from raw data via some
process, such as smoothing, noise removal, scaling, or interpolation. It also
can have a wide range of characteristics and structures.

A typical data set used in visualization consists of a list of n records,
(r1, r2, . . . , rn). Each record ri consists of m (one or more) observations or
variables, (v1, v2, . . . vm). An observation may be a single number/symbol/
string or a more complex structure (discussed in more detail later in this
chapter). A variable may be classified as either independent or dependent.
An independent variable ivi is one whose value is not controlled or affected
by another variable, such as the time variable in a time-series data set. A
dependent variable dvj is one whose value is affected by a variation in one or
more associated independent variables. Temperature for a region would be
considered a dependent variable, as its value could be affected by variables
such as date, time, or location. Thus we can formally represent a record as

ri = (iv1, iv2, . . . ivmi , dv1, dv2, . . . dvmd
),

where mi is the number of independent variables and md is the number of
dependent variables. With this notation we have, m = mi + md.

In many cases, we may not know which variables are dependent or inde-
pendent.

We can also think of data as being generated by some process or function.
In this case, the independent variables would be considered the domain of
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46 2. Data Foundations

the function, and the dependent variables would be the range of the function,
as for each entry in the domain there is a single unique entry in the range.
Note that, in general, a data set will not contain an exhaustive list of all
possible combinations of values for the variables in its domain.

2.1 Types of Data

In its simplest form, each observation or variable of a data record represents
a single piece of information. We can categorize this information as being
ordinal (numeric) or nominal (nonnumeric). Subcategories of each can be
readily defined.

Ordinal. The data take on numeric values:

• binary—assuming only values of 0 and 1;

• discrete—taking on only integer values or from a specific subset
(e.g., (2, 4, 6));

• continuous—representing real values (e.g., in the interval [0, 5]).

Nominal. The data take on nonnumeric values:

• categorical—a value selected from a finite (often short) list of
possibilities (e.g., red, blue, green);

• ranked—a categorical variable that has an implied ordering (e.g.,
small, medium, large);

• arbitrary—a variable with a potentially infinite range of values
with no implied ordering (e.g., addresses).

Another method of categorizing variables is by using the mathematical
concept of scale.

Scale. Three attributes that define a variable’s measure are as follows:

• Ordering relation, with which the data can be ordered in some
fashion. By definition, ranked nominal variables and all ordinal
variables exhibit this relation.

• Distance metric, with which the distances can be computed be-
tween different records. This measure is clearly present in all
ordinal variables, but is generally not found in nominal variables.
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• Existence of absolute zero, in which variables may have a fixed
lowest value. This is useful for differentiating types of ordinal
variables. A variable such as weight possesses an absolute zero,
while bank balance does not. A variable possesses an absolute
zero if it makes sense to apply all four mathematical operations
(+,−,×,÷) to it [129].

Scale is an important attribute to examine when designing appropri-
ate visualizations because each graphical attribute that we can control has
a scale associated with it. Ideally, the scale of a data variable should be
compatible with the scale of the graphical entity or attribute to which it is
mapped, though it is somewhat dependent on the task to be performed with
the visualization.

2.2 Structure within and between Records

Data sets have structure, both in terms of the means of representation (syn-
tax ), and the types of interrelationships within a given record and between
records (semantics).

2.2.1 Scalars, Vectors, and Tensors

An individual number in a data record is often referred to as a scalar. Scalar
values, such as the cost of an item or the age of an individual, are often
the focus for analysis and visualization. Multiple variables within a single
record can represent a composite data item. For example, a point in a
two-dimensional flow field might be represented by a pair of values, such
as a displacement in x and y. This pair, and any such composition, is
referred to as a vector. Other examples of vectors found in typical data sets
include position (2 or 3 spatial values), color (a triplet of red, green, and
blue components), and phone number (country code, area code, and local
number). While each component of a vector might be examined individually,
it is most common to treat the vector as a whole.

Scalars and vectors are simple variants on a more general structure known
as a tensor. A tensor is defined by its rank and by the dimensionality of the
space within which it is defined. It is generally represented as an array or
matrix. A scalar is a tensor of rank 0, while a vector is a tensor of rank 1.
One could use a 3 × 3 matrix to represent a tensor of rank 2 in 3D space,
and in general, a tensor of rank M in D-dimensional space requires DM data
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values. An example of a tensor that might be found in a data record would
be a transformation matrix to specify a local coordinate system.

2.2.2 Geometry and Grids

Geometric structure can commonly be found in data sets, especially those
from scientific and engineering domains. The simplest method of incorpo-
rating geometric structure in a data set is to have explicit coordinates for
each data record. Thus, a data set of temperature readings from across the
country might include the longitude and latitude associated with the sen-
sors, as well as the sensor values. In modeling of 3D objects, the geometry
constitutes the majority of the data, with coordinates given for each vertex.

Sometimes the geometric structure is implied. When this is the case,
it is assumed that some form of grid exists, and the data set is structured
such that successive data records are located at successive locations on the
grid. For example, if one had a data set giving elevation at uniform spacing
across a surface, it would be unnecessary to include the coordinates for each
record; it would be sufficient to indicate a starting location, orientation, and
the step size horizontally and vertically.

There are many different coordinate systems that are used for grid-
structured data, including cartesian, spherical , and hyperbolic coordinates.
Often, the choice of coordinate system is domain-specific, and is partially
dependant on how the data is acquired/computed, and on the structure of
the space in which the data resides. Generally, a straightforward transfor-
mation matrix can be used to convert positions in the data space coordinate
system into positions on the display space coordinate system.

Nonuniform, or irregular , geometry is also common. For example, in
simulating the flow of wind around an airplane wing, it is important to
have data computed densely at locations close to the surface, while data
for locations far from the surface can be computed much more sparsely.
For irregular geometry it is, of course, essential that the coordinates be
explicitly specified in the data file. As the geometry changes from a uniform
to a nonuniform or irregular grid, the computations for display increase in
complexity.

2.2.3 Other Forms of Structure

A timestamp is an important attribute that can be associated with a data
record. Time perhaps has the widest range of possible values of all aspects
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of a data set, since we can refer to time with units from picoseconds to mil-
lenia. It can also be relative or absolute in terms of its base value. Data
sets with temporal attributes can be uniformly spaced, such as in the sam-
pling of a continuous phenomenon, or nonuniformly spaced, as in a business
transaction database.

Another important form of structure found within many data sets is that
of topology, or how the data records are connected. Connectivity indicates
that data records have some relationship to each other. Thus, vertices on a
surface (geometry) are connected to their neighbors via edges (topology), and
relationships between nodes in a hierarchy or graph can be specified by links.
Connectivity information is essential to support the processes of resampling
and interpolation. This form of structure can either be included explicitly
in the data record (e.g., with a fixed or variable length vector identifying
the records to which the current record is linked) or as an auxilliary data
structure.

The following are examples of various structured data:

MRI (magnetic resonance imagery). Density (scalar), with three spatial at-
tributes, 3D grid connectivity;

CFD (computational fluid dynamics). Three dimensions for displacement, with
one temporal and three spatial attributes, 3D grid connectivity (uni-
form or nonuniform);

Financial. No geometric structure, n possibly independent components, nom-
inal and ordinal, with a temporal attribute;

CAD (computer-aided design). Three spatial attributes with edge and poly-
gon connections, and surface properties;

Remote sensing. Multiple channels, with two or three spatial attributes, one
temporal attribute, and grid connectivity;

Census. Multiple fields of all types, spatial attributes (e.g., addresses), tem-
poral attribute, and connectivity implied by similarities in fields;

Social Network. Nodes consisting of multiple fields of all types, with various
connectivity attributes that could be spatial, temporal, or dependent
on other attributes, such as belonging to the same group or having
some common computed values.
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2.3 Data Preprocessing

In most circumstances, it is preferable to view the original raw data. In
many domains, such as medical imaging, the data analyst is often opposed
to any sort of data modification process, such as filtering or smoothing, for
fear that important information will be lost or deceptive artifacts will be
added. Viewing raw data also often identifies problems in the data set, such
as missing data, or outliers that may be the result of errors in computation
or input. Depending on the type of data and the visualization techniques
to be applied, however, some forms of preprocessing might be necessary.
Some common methods for preprocessing data are briefly discussed later in
this chapter. The interested reader is directed to the many fine textbooks
dedicated to these topics for more in-depth coverage.

2.3.1 Metadata and Statistics

Information regarding a data set of interest (its metadata) and statistical
analysis can provide invaluable guidance in preprocessing the data. Meta-
data may provide information that can help in its interpretation, such as the
format of individual fields within the data records. It may also contain the
base reference point from which some of the data fields are measured, the
units used in the measurements, the symbol or number used to indicate a
missing value (see below), and the resolution at which measurements were
acquired. This information may be important in selecting the appropriate
preprocessing operations, and in setting their parameters.

Various methods of statistical analysis can provide us with useful in-
sights. Outlier detection can indicate records with erroneous data fields.
Cluster analysis can help segment the data into groups exhibiting strong
similarities. Correlation analysis can help users eliminate redundant fields
or highlight associations between dimensions that might not have been ap-
parent otherwise.

The most common statistics about data include the mean

μ =
1
n

n∑
i=0

(xi)

and the standard deviation

σ =
√

(
∑

(xi − μ)2).

The most common statistical plot is the distribution of data, in the form of
a histogram.

www.allitebooks.com

http://www.allitebooks.org
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2.3.2 Missing Values and Data Cleansing

One of the realities of analyzing and visualizing “real” data sets is that they
often are missing some data entries or have erroneous entries. Missing data
may be caused by several reasons, including, for example, a malfunctioning
sensor, a blank entry on a survey, or an omission on the part of the person
entering the data. Erroneous data is most often caused by human error and
can be difficult to detect. In either case, the data analyst must choose a
strategy for dealing with these common events. Some of these strategies,
specifically those that are commonly used in data visualization, are outlined
below.

Discard the bad record. This seemingly drastic measure, namely to
throw away any data record containing a missing or erroneous field, is
actually one of the most commonly applied, since the quality of the
remaining data entries in that record may be in question. However,
this can potentially lead to a significant loss of information, especially
in data sets containing large numbers of records. In some domains, as
much as 90% of records have at least one missing or erroneous field. In
addition, those records with missing data may be the most interesting
(e.g., such as due to a malfunctioning sensor or an overly high response
to a drug).

Assign a sentinel value. Another popular strategy is to have a designated sen-
tinel value for each variable in the data set that can be assigned when
the real value in a record is in question. For example, in a variable that
has a range of 0 to 100, one might use a value such as −5 to designate
an erroneous or missing entry. Then, when the data is visualized, the
records with problematic data entries will be clearly visible. Of course,
if this strategy is chosen, care must be taken not to perform statistical
analysis on these sentinel values.

Assign the average value. A simple strategy for dealing with bad or missing
data is to replace it with the average value for that variable or dimen-
sion. An advantage to using this strategy is that it minimally affects
the overall statistics for that variable. The average, however, may not
be a good “guess” for this particular record. Another drawback of us-
ing this method is that it may mask or obscure outliers, which can be
of particular interest.

Assign value based on nearest neighbor. A better approximation for a substi-
tute value is to find the record that has the highest similarity with
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the record in question, based on analyzing the differences in all other
variables. The basic idea here is that if record A is missing an entry for
variable i, and record B is closer than any other record to A without
considering variable i, then using the value of variable i from record B

as a substitute in A is a reasonable assumption. The problem with
this approach, however, is that variable i may be most dependent on
only a subset of the other dimensions, rather than on all dimensions,
and so the best nearest neighbor based on all dimensions may not be
the best substitute for this particular dimension.

Compute a substitute value. Researchers in multivariate statistics have dedi-
cated a significant amount of energy to developing methods for gener-
ating values to replace missing or erroneous data. The process, known
as imputation, seeks to find values that have high statistical confidence.
Schafer [308] has developed a model-based imputation technique (see
the projects at the end of the chapter).

In all cases where a value is substituted for the missing or erroneous
value, it is critically important that the fact that this value is “suspect”
be preserved, and that any visualization of this data must convey this
information.

2.3.3 Normalization

Normalization is the process of transforming a data set so that the results
satisfy a particular statistical property. A simple example of this is to trans-
form the range of values a particular variable assumes so that all numbers
fall within the range of 0.0 to 1.0. Other forms of normalization convert the
data such that each dimension has a common mean and standard deviation.
Normalization is a useful operation since it allows us to compare seemingly
unrelated variables. It is important in visualization as well, since graphical
attributes have a range of values that are possible, and thus to map data to
those attributes, we need to convert the data range to be compatible with
the graphical attribute range.

For example, if dmin and dmax are the minimum and maximum values for
a particular data variable, we can normalize the values to the range of 0.0
to 1.0 using the formula

dnormalized = (doriginal − dmin)/(dmax − dmin).

To ease interpretation, we sometimes choose the scaling and offset factors to
coincide with intuitive maximum and minimum values, rather than the ones
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the data possess. For example, if the data corresponds to percentages that
fall between 40 and 90, we might use the full range of 0 to 100 instead.

Normalization may also involve bounding values, so that, for example,
values exceeding a particular threshold are capped at that threshold. In
this way the details falling within the specified range can be more effectively
interpreted when mapped to a specific graphical attribute. For example,
density values in a tomographic data set may have a substantial range, yet
the range of interest for someone interpreting the data may be a very small
portion of that range. By truncating the range and normalizing, the variation
across the shortened range will be more easily perceived. This is especially
important when extreme outliers exist.

2.3.4 Segmentation

In many situations, the data can be separated into contiguous regions, where
each region corresponds to a particular classification of the data. For exam-
ple, an MRI data set might originally have 256 possible values for each data
point, and then be segmented into specific categories, such as bone, mus-
cle, fat, and skin. Simple segmentation can be performed by just mapping
disjoint ranges of the data values to specific categories. However, in most sit-
uations, the assignment of values to a category is ambiguous. In these cases,
it is important to look at the classification of neighboring points to improve
the confidence of classification, or even to do a probabilistic segmentation,
where each data point is assigned a probability for belonging to each of the

Figure 2.1. Slice from skull data set, with original values and after segmenting into four sub-

ranges.
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available classifications. Figure 2.1 shows an image with 256 levels of grey
segmented into four classes, based on the analysis of subranges of data.

A typical problem with segmentation is that the results may not coincide
with regions that are semantically homogeneous (undersegmented), or may
consist of large numbers of tiny regions (oversegmented). One solution to
this problem is to follow the initial segmentation process with an iterative
split-and-merge refinement stage. The structure of such an algorithm is as
follows:

similarThresh = similarity measure indicating two regions have

similar characteristics

homogeneousThresh = uniformity measure indicating a region is

too nonhomogeneous

do {

changeCount = 0

for each region

compare region with neighboring regions to find most

similar

if most similar neighbor is within similarThresh of

current region

merge two regions

changeCount++

evaluate homogeneity of region

if region homogeneity is less than homogeneousThresh

split region into two

changeCount++

} until changeCount == 0

The complex tasks of the above algorithm consist of:

• determining if two regions are similar—a simple procedure is to com-
pare the average values within each region,

• evaluating the homogeneity of a region—one possible algorithm is to
evaluate the histogram of the values within the region to determine if
it is unimodal or multimodal,

• splitting a region—a typical algorithm creates two (or more) subregions
at the points where the values are most different and grows regions
around these seed points until all data points within the region have
been reassigned.

Care must be taken to avoid an infinite loop caused by repeated splitting
and merging of the same region. A solution to this problem is to tighten the
similarity threshold or loosen the homogeneity threshold as the algorithm
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progresses. More sophisticated algorithms can incorporate other features
of the regions, such as smoothness of boundaries or the size and shape of
regions, to obtain desirable characteristics in the resulting segments.

2.3.5 Sampling and Subsetting

Often it is necessary to transform a data set with one spatial distribution
into another data set with a different spatial resolution. For example, we
might have an image we would like to shrink or expand, or we might have
only a small sampling of data points and wish to fill in values for locations
between our samples. In each case, we assume that the data we possess
is a discrete sampling of a continuous phenomenon, and therefore we can
predict the values at another location by examining the actual data nearest
to it. The process of interpolation is a commonly used resampling method in
many fields, including visualization. Some common techniques include the
following:

Linear interpolation. Given the value of a variable d at two locations A and
B, we can estimate the value of that variable at a location C that is between
A and B by first calculating the percentage of the distance between A and
B where C lies. This percentage can then be used in conjunction with the
amount the variable changes in value between the two points to determine
the amount the value should have changed by the time point C is reached. If
we assume the points lie on the x-axis, then we know the following equation
is true:

(xC − xA)/(xB − xA) = (dC − dA)/(dB − dA)

or
dC = dA + (dB − dA) ∗ (xC − xA)/(xB − xA).

This is similar to the normalization transformation we encountered in Sec-
tion 2.3.3. To remove the restriction of the line being on the x-axis, we can
use parametric equations to define both the change in position and change
in value between points A and B, compute the value of the parameter in the
line equation that defines point C, and use this number in the value equa-
tion to generate the value at location C. The parametric form of a line is
P (t) = PA + V t, where V = PB −PA. Note that this will work for arbitrary
spaces, as we haven’t specified the number of dimensions used to define P .
By setting the left-hand side to PC , we can then compute the value of t and
use it in the associated equation for the value change, d(t) = dA +Ut, where
U = dB − dA.
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Bilinear interpolation. We can extend this concept to two dimensions (or to
an arbitrary number of dimensions) by repeating the procedure for each
dimension. For example, a common task in two dimensions is to compute
the value of d at location (x, y) given a uniform grid of data values (i.e., the
space between points is uniform in both directions, as in an image). If the
location coincides with a grid point, the answer is simply the value stored at
that location. But what happens if (x, y) lies between grid points? To solve
this, we first find the four grid locations that surround (x, y). If we assume
the grid positions are all whole numbers with a spacing of 1.0 and that
(x, y) both have fractional components, the bounding box of grid elements
containing the point will be (i, j), (i+1, j), (i, j +1) and (i+1, j +1), where
i is the largest whole number less than x and j is the largest whole number
less than y.

We will first interpolate horizontally, and then vertically. Reusing the
one-dimensional interpolation above, we compute the percentage of the way
that x is between i and i + 1. Let us call this value s. We can now compute
the value of d at positions (x, j) and (x, j + 1) using the values at the four
grid points. Next, we compute the percentage of the way that y is between
j and j +1. Call this percentage t. We finally compute the value at position
(x, y) by interpolating using the above calculated values from our horizontal
interpolation and the percentage t, namely,

dx,y = dx,j + t ∗ (dx,j+1 − dx,j).

In the end, dx,y is simply a weighted average of the four grid values
nearest to it. Calculating the closed form solution for this weighted average
is left as an exercise.

Nonlinear interpolation. One of the deficiencies of linear interpolation tech-
niques is that, while the local change in values is smooth, the changes on
opposite sides of a grid point can be noticeably different. In fact, the con-
tinuity at a grid point is only order 0, as the first derivative on either side
will, in general, be different. We can improve on this by using a different
formulation for interpolation, namely a higher-order polynomial equation,
as a means of estimating the intermediate values. Several quadratic and
cubic curves known as splines, and commonly found in graphics, have been
employed. Indeed, the primary purpose of those curves has been to interpo-
late surface positions, given a set of control points and blending functions.
For our purposes, it is important that the data values at the grid points be
preserved, i.e., the curve defining the changing values must go through the
control points. A popular curve satisfying this condition is the Catmull-Rom
curve, which we describe below.
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Figure 2.2. Nonlinear interpolation of a 5 × 5 grid of random values provides smooth transi-

tions between adjacent points.

Given control points (p0, p1, p2, p3), the cubic curve that goes through
these points is defined as

q(t) = 0.5 ∗ (1.0 t t2 t3) ∗

⎛
⎜⎜⎝

0 2 0 0
−1 0 1 0
2 −5 4 −1
−1 3 −3 1

⎞
⎟⎟⎠ ∗

⎛
⎜⎜⎝

p0

p1

p2

p3

⎞
⎟⎟⎠

or
q(t) =0.5 ∗ ((2 ∗ p1) + (−p0 + p2) ∗ t + (2 ∗ p0 − 5 ∗ p1

+ 4 ∗ p2 − p3) ∗ t2 + (−p0 + 3 ∗ p1 − 3 ∗ p2 + p3) ∗ t3).

Figure 2.2 shows a sparse grid of random values with the intermediate values
computed using Catmull-Rom interpolation. Data values are mapped to grey
scale.

Depending on the density or sparsity of the data, it might be possible to
either selectively sample the data to reduce its size, or use data replication
to expand the size. Subsampling can be fairly simplistic, such as choos-
ing regularly spaced data from the original set. However, this can easily
lead to lost data features. For example, selecting every fourth point on a
map could easily miss important objects such as roads and streams. Other
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Figure 2.3. Low-resolution version of skull data shown above, using pixel replication and av-

eraging to interpolate additional data points.

approaches involve averaging neighborhoods, selecting median or random
points in the subregion of the original data that will map to a single point,
or domain-specific feature preservation. Figure 2.3 shows a low-resolution
medical image using two methods for resampling: pixel replication and av-
eraging neighborhoods.

Data subsetting is also a frequently used operation both prior to and
during visualization. This is especially helpful for very large data sets, as
the visualization of the entire data set may lead to substantial visual clutter.
A user may specify a set of constraints (a query) to retrieve for visualization
only the data that meet the desired conditions, such as all the data for a
specific time period, or all data for which the change in stock value exceeds
a particular threshold. Subsetting may also be performed on the visualiza-
tion itself, with the user highlighting, painting, or otherwise selecting the
data subset of interest (see the discussion about interactive techniques in
Chapter 10). The results of this selection can either be deleted (as currently
uninteresting), masked (i.e., remove all data other than the selected subset),
or simply highlighted. Interactive subsetting is generally easier to control
than query-based subsetting, as the user can see the characteristics of the
overall data set and make an informed decision as to which portion of the
data he or she wishes to explore in more detail. Query-based subsetting has
the advantage of not requiring the loading of the entire data set into the
program, and allows users to specify precise boundaries for their region of
interest.
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2.3.6 Dimension Reduction

In situations where the dimensionality of the data exceeds the capabilities of
the visualization technique, it is necessary to investigate ways to reduce the
data dimensionality, while at the same time preserving, as much as possible,
the information contained within. This can be done manually by allowing the
user to select the dimensions deemed most important, or via computational
techniques, such as principal component analysis (PCA) [328], multidimen-
sional scaling (MDS) [225], and Kohonen self-organizing maps (SOMs) [215].
Each of these can be used to convey, within the dimensionality of the display,
a description of the data set that covers the majority of significant features,
such as clusters, patterns, and outliers. However, it is important to note that
most of these techniques do not produce unique results. Starting configura-
tions, parameters of the calculations, and variations in the computations can
lead to quite different results, as we will encounter in the aggregation tech-
niques. In Figure 2.4 we can see the results of reducing a four-dimensional
data set to two dimensions using PCA and plotting the resulting points. In
fact, we use a form of glyph, called a star glyph, to convey the original data
points. Clearly, the PCA algorithm does a good job of separating data into
clusters.

Figure 2.4. The Iris data set in star glyphs, with the position of each point based on the

first two principal components. The star glyph represents four variables as the

lengths of the each of the lines emanating from the center of a four-pointed star.

Reasonable clustering can be seen.
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A popular method for dimension reduction is to use principal component
analysis (PCA) [328]. PCA is a data reduction technique that produces ad-
ditional attributes that are linear combinations of the original data variables.
These new attributes define a subspace of variables that minimizes the aver-
age error of lost information. The steps of PCA are as follows (from [328]):

1. Assume the data has m dimensions/attributes. For each member of a
record, subtract the mean value for that dimension, resulting in a data
set with mean=0.

2. Compute the covariance matrix (see any statistics book).

3. Compute the eigenvectors and eigenvalues of the covariance matrix.

4. Sort the eigenvectors based on their eigenvalues, from largest to small-
est.

5. Select the first mr eigenvectors, where mr is the number of dimensions
you want to reduce your data set to.

6. Create a matrix of these eigenvectors as the rows, with the first one
being the top row of the matrix.

7. For each data record, create a vector of its values, transpose it, and pre-
multiply it with the matrix above. This completes the transformation;
each data record is now represented in the reduced dimension space.

A more intuitive description of PCA is as follows:

1. Select a line in space that spreads the projected n-dimensional data
the most. This line represents the first principal component.

2. Select a line perpendicular to the first that now spreads the data the
most. That line is the second PCA.

3. Repeat until all PC dimensions are computed, or until the desired
number of PCs have been obtained.

As another example of a dimension reduction process, we present below
the pseudocode for a form of multidimensional scaling known as a gradient
descent approach. Briefly, MDS tries to find a lower dimensional represen-
tation for a data set that best preserves the inter-point distances from the
original data set. In other words, we wish to minimize, for every pair of
points (i, j), the difference between dij (the distance between the points in
N dimensions) and δij (the distance between the points in the reduced space).
This discrepancy is usually referred to as the stress of the configuration. The
procedure is as follows:
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1. Compute the pairwise distances in n-dimensional space. If there are n

data points, this requires the calculation of n(n− 1)/2 data points.

2. Assign all data points locations (often random) in the lower dimen-
sional space.

3. Calculate the stress of the configuration (a normalized, signed value or
a mean-squared error are just two of the possibilities).

4. If the average or accumulated stress is less than a user-prescribed
threshold, terminate the process and output the results.

5. If not, for each data point, compute a vector indicating the direction in
which it should move to reduce the stress between it and all other data
points. This would be a weighted sum of vectors between this point
and all its neighbors, pointing either towards or away from the neigh-
bors and weighted proportional to the pairwise stress. Thus, positive
stresses would move the points away from each other, and negative
stresses would bring them together, and the greater the absolute value
of the stress, the larger the motion.

6. Move each data point in the lower dimensional space, according to the
vector computed, and return to step 3.

Care must be taken to avoid infinite loops caused by points overshooting
their “best” configuration. Likewise, as in all optimization processes, the
algorithm can become stuck in a nonlocal optimum. This can be caused by
blockages, where some points that should be close together are caught on
opposite sides of a repulsive force (points that are trying to maintain a long
distance from the points in question). In this case, repeating the algorithm
with different starting conditions, or allowing, as in simulated annealing
[227], an occasional jump with a magnitude and/or direction different from
the vector calculated, to enable a point to clear such blockages if they exist.

Many visualization and statistical graphics packages include both MDS
and PCA implementations. In fact, some will even use PCA to compute
initial positions to be used in the MDS process, which can greatly reduce
the number of iterations required to converge on a low-stress configuration.
It is worthwhile to note that there are examples of higher dimensional data
where the first few principal components do not separate the data well, but
the later principal components with very small eigenvalues do.
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2.3.7 Mapping Nominal Dimensions to Numbers

In many domains, one or more of the data dimensions consist of nominal
values. We may have several alternative strategies for handling these dimen-
sions within our visualizations, depending on how many nominal dimensions
there are, how many distinct values each variable can take on, and whether
an ordering or distance relation is available or can be derived. The key is
to find a mapping of the data to a graphical entity or attribute that doesn’t
introduce artificial relationships that don’t exist in the data. For example,
when looking at a data set consisting of information about cars, the manu-
facturer and model name would both be nominal fields. If we were mapping
one or both of these to positions on a plot, how would we do the assignment
of positions to names? One might simply assign integers to different names,
perhaps using an alphabetic ordering. However, this might imply some false
relationships, such as Hondas being closer to Fords than Toyotas. Clearly,
we need a better approach. While ranked nominal values can be readily
mapped to any of the graphical attributes at our disposal, nonranked values
pose a more significant problem.

For variables with only a modest number of different values, there are
several options for graphical attributes that have less of an ordering relation
than position or size. These include color and shapes. Indeed, most plot-
ting programs support a number of different plotting symbols to enable easy
separation of modest numbers of distinct values or classes of data, and sig-
nificant research has gone into identifying colors that are readily separated,
and in general, do not imply an ordering relationship (see the discussion of
color perception in Chapter 3).

If there is a single nominal variable, there are a few possible techniques
we can use. The simplest is to just use this variable as the label for the
graphical elements being displayed. This works fine for data sets with mod-
est numbers of records, but it quickly overwhelms the screen for large data
sets. Innovative strategies include showing random subsets of labels and
changing the points with labels being shown on a regular basis, and showing
only the labels on objects near the cursor [106]. For mapping this single
variable to numbers, we could look at similarities between the numeric vari-
ables associated with a pair of nominal values. If the statistical properties
of the records associated with one nominal value are sufficiently similar to
the properties of a different value, then that implies that these two values
should likely be mapped to similar numeric values. Conversely, if there are
sufficient differences in properties, then likely they should be mapped to
quite distinct values. Given all the pairwise similarities, we could then use a
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technique such as MDS to map the different nominal values to positions in
one dimension. This is a simplified variant on a technique called correspon-
dence analysis in statistics [137]. It can even be applied if all of the dimen-
sions of the data set are nominal, which is termed multiple correspondence
analysis.

2.3.8 Aggregation and Summarization

In the event that too much data is present, it is often useful to group data
points based on their similarity in value and/or position and represent the
group by some smaller amount of data. This can be as simple as aver-
aging the values, or there might be more descriptive information, such as
the number of members in the group and the extents of their positions or
values. Thus there are two components to aggregation: the method of group-
ing the points and the method of displaying the resulting groups. Grouping
can be done in a number of ways; the literature on data clustering is quite
rich [174]. Methods include bottom-up merging of adjacent points, top-down
partitioning of the data space, and iterative split-and-merge methods. In all
cases, the important computations are the distance between data points, the
goodness of the resulting clusters, and the quality of separation between ad-
jacent clusters. Variations in these computations can lead to quite different
results. Indeed, there is often distrust of cluster results by people knowl-
edgeable about their data. Again, it is important to convey to users when
and how aggregation has been done.

The key to visually depicting aggregated data is to provide sufficient
information for the user to decide whether he or she wishes to perform a
drill-down on the data, i.e., to explore the contents of one or more clusters.
Simply displaying a single representative data point per cluster may not help
in the understanding of the variability within the cluster, or in detecting
outliers in the data set. Thus, other cluster measures, such as those listed
above, are useful in exploring this sort of preprocessed data. Figure 2.5
shows the iris data set using parallel coordinates, with one side showing the
original data and the other showing aggregations resulting from a bottom-up
clustering algorithm. The dominant clusters are clearly distinguishable.

2.3.9 Smoothing and Filtering

A common process in signal processing is to smooth the data values, to
reduce noise and to blur sharp discontinuities. A typical way to perform this
task is through a process known as convolution, which for our purposes can
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(a) (b)

Figure 2.5. The Iris data set in parallel coordinates: (a) the original data; (b) the centers and

extents of clusters after aggregation. Each axis in parallel coordinates represents

a dimension, with each record being drawn as a polyline through each of the

coordinate values on the axes.

be viewed as a weighted averaging of neighbors surrounding a data point. In
a one-dimensional case, this might be implemented via a formula as follows:

p1
i =

pi−1

4
+

pi

2
+

pi+1

4
,

where each pi is a data point.
The result of applying this operation is that values that are significantly

different from their neighbors (e.g., noise) will be modified to be more similar
to the neighbors, while values corresponding to dramatic changes will be
“softened” to smooth out the transition. Many types of operations can be
accomplished via this filtering operation, by simply varying the weights or
changing the size or shape of the neighborhood considered.

2.3.10 Raster to Vector Conversion

In computer graphics, objects are typically represented by sets of connected,
planar polygons (vertices, edges, and triangular or quadrilateral patches),
and the task is to create a raster (pixel level) image representing these
objects, their surface properties, and their interactions with light sources
and other objects. In spatial data visualization, our objects can be points
or regions, or they can be linear structures, such as a road on a map. It
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is sometimes useful to take a raster-based data set, such as an image, and
extract linear structures from it. Reasons for doing this might include:

• Compressing the contents for transmission. A vertex and edge list is
almost always more compact than a raster image.

• Comparing the contents of two or more images. It is generally easier
and more reliable to compare higher-level features of images, rather
than their pixels.

• Transforming the data. Affine transformations such as rotation and
scaling are easier to apply to vector representations than to raster.

• Segmenting the data. Isolating regions by drawing boundaries around
them is an effective method for interactive exploration and model
building.

The image processing and computer vision fields have developed a wide
assortment of techniques for converting raster images into vertex and edge-
based models [133, 314]. A partial list of these include the following:

Thresholding. Identify one or more values with which to break the data into
regions, after which the boundaries can be traced to generate the edges
and vertices. The values may be user-defined, or computed based on
histogram analysis, and may be adjusted for different regions of the
image (termed adaptive thresholding).

Region-growing. Starting with seed locations, either selected by a human ob-
server or computed via scanning of the data, merge pixels into clusters
if they are sufficiently similar to any neighboring point that has been
assigned to a cluster associated with one of the seed pixels. A major
problem is defining a suitable measure of similarity.

Boundary-detection. Compute a new image from the existing image by con-
volving the image with a particular pattern matrix. Convolution is
a straightforward process. Each pixel and its immediate neighbors
are multiplied by a value corresponding to their position in a pattern
matrix (with the selected pixel mapped to the center of the pattern).
These products are then summed, and the corresponding pixel in the
result image is set to this value. A vast assortment of image trans-
formations are possible, based on the contents of the pattern matrix.
For boundary detection, we use patterns that will emphasize (set to
high values) either horizontal, vertical, or diagonal boundaries, while
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deemphasizing (setting to low values) pixels that are very similar to
all their neighbors.

Thinning. The convolution process mentioned above can also be used to per-
form a process called thinning, where the goal is to reduce wide linear
features, such as arteries, to a single pixel in width. These resulting
connected pixels form the center or medial axis of the regions that were
thinned.

A wide range of such operators have been developed. A good text on the
subject is [332].

2.3.11 Summary of Data Preprocessing

While these and other processes can improve the effectiveness of the visual-
ization and lead to new visual discoveries, it is important to convey to the
user that these processes have been applied to the data. An understanding
of the types of transformation the data has undergone can help in properly
interpreting it. Likewise, misinterpretation or erroneous conclusions can be
drawn from data that has been preprocessed without the user’s knowledge
(see Chapter 12).

2.4 Data Sets Used in This Book

Throughout this book, we will give numerous examples of data visualiza-
tions. While each may be appreciated without understanding the data being
displayed, in general, the effectiveness of a visualization is enhanced by the
user having some context for interpreting what is being shown. Thus, we
will draw most examples from the following data sets, each of which may be
downloaded from the book’s web site.

djia-100.xls. A univariate, nonspatial data set consisting of 100+ years of
daily Dow Jones Industrial Averages.

Source—http://www.analyzeindices.com/dow-jones-history.shtml

Format—Excel spreadsheet. After the header, each entry is of the form
YYMMDD followed by the closing value.

Code—file can be viewed with Excel.

colorado elev.vit. A two-dimensional, uniform grid, scalar field representing
the elevation of a square region of Colorado.



�

�

�

�

�

�

�

�

2.4. Data Sets Used in This Book 67

Source—included with the distribution of OpenDX (http://www.opendx
.org/).

Format—binary file with a 268-byte header followed by a 400 × 400
array of 1-byte elevations.

Code—file can be rendered with TopoSurface, a Processing program
included in Appendix C and on the book’s web site.

uvw.dat. A three-dimensional uniform grid vector field representing a sim-
ulated flow field. The data shows one frame of the unsteady velocity
field in a turbulent channel flow, computed by a finite volume method.
The streamwise velocity (u) is much larger than the secondary veloci-
ties in the transverse direction (v and w).

Source—Data courtesy of Drs. Jiacai Lu and Gretar Tryggvason,
ME Department, Worcester Polytechnic Institute (http://www.me.wpi
.edu/Tryggvason).

Format—plain text. After the header, each entry is a set of 6 float
values, 3 for position, 3 for displacement. There is roughly a 20:1:1
ratio between the 3 displacements.

Code—file can be rendered with FlowSlicer, a Processing program,
and FlowView, a Java program (also need Voxel.java) included in Ap-
pendix C and on the book’s web site.

city temp.xls. A two-dimensional, nonuniform, geo-spatial, scalar data set
containing the average January temperature for 56 U.S. cities.

Source—Peixoto, J.L. (1990), “A Property of Well-Formulated Poly-
nomial Regression Models.” American Statistician, 44, 26–30. Also
found in: Hand, D.J., et al. (1994) A Handbook of Small Data Sets,
London: Chapman & Hall, 208–210. Downloaded from http://lib.stat
.cmu.edu.

Format—Excel spreadsheet. After a header, each entry is a city name
and state, followed by three numbers: average January temperature,
latitude, and longitude.

Code—file can be viewed with Excel.

CThead.zip. A three-dimensional uniform grid, scalar field consisting of a
113-slice MRI data set from a CT scan of a human head.

Source—Data taken on the General Electric CT Scanner and provided
courtesy of North Carolina Memorial Hospital. From http://graphics
.stanford.edu/data/voldata/.
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Format—Each slice is stored in a separate binary file (no header).
Slices are stored as a 256 × 256 array with dimensions of z = 113,
y = 256, x = 256 in z, y, x order. Format is 16-bit integers—two
consecutive bytes make up one binary integer (Mac byte ordering).
x : y : z shape of each voxel is 1:1:2.

Code—file can be rendered with VolumeSlicer, a Java program included
in Appendix C and on the book’s web site.

cars.xls, detroit.xls, cereal.xls. Several multivariate, nonspatial data sets com-
monly used in multivariate data analysis.

Source—http://lib.stat.cmu.edu

Format—Excel spreadsheets, mostly with no headers.

Code—files can be viewed with Excel.

Health-related multivariate data sets. Subsets from UNICEF’s basic indicators
by country and the CDC’s obesity by state; several multivariate, spa-
tial data sets used with Geospatial Information Systems.

Source—http://OpenIndicators.org

Format—Excel spreadsheets.

Code—files can be viewed with Excel, with Weave, and with many
other visualization systems.

VAST Contest and Challenge Data. Several heterogeneous data sets that rep-
resent realistic scenarios (though they are synthetic) and have embed-
ded ground truth. These were used in the various IEEE VAST contests
and challenges.

Source—http://hcil.cs.umd.edu/localphp/hcil/vast/archive/index.php

Format—tables, text files, spreadsheet, images, videos, and others.

Code—files will likely require work to be read into a typical visual-
ization system. For example, the text files require some processing to
be dealt with. Several tools are available that analyze the data and
even provide various visualizations, including Weka, RapidMiner, and
Jigsaw.

US Counties Census Data. A subset of the US census for the 3137 counties
in the US (including the District of Columbia) that includes county
and state, total population broken down by age, race, family relation-
ships (number children, age of children, . . . ) and household parameters
(own, rent, . . . ).
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Source—http://www.census.gov and cleaned subset is at http://www
.openindicators.org/data

Format—comma-separated values.

Code—The file can be viewed in Excel and in Weave (http://www
.openindicators.org/).

iris.csv. Size data for Iris plants classified by type.

Source—http://archive.ics.uci.edu/ml/datasets/Iris

Format—comma-separated values.

Code—The file can be viewed with Excel or as text.

2.5 Related Readings

Collecting data sets for visualization and analysis quickly leads one to realize
the incredible number of distinct file formats that need to be parsed in
order to start analysis. For image data, one of the best sources for format
information is the book by Brown et al. [38]. Another somewhat dated web
site on data file formats is [343].

The web is overflowing with data sets available for analysis. A few of the
ones that have been around for a while include StatLib [337], a library of
statistical data sets and algorithms, the UC Irvine KDD Repository [369],
NOAA’s collection of public climate data sets [264], and the Human Com-
puter Interaction Lab’s archive of VAST and other related data sets [370].

2.6 Exercises

1. Give examples, other than the ones listed in this chapter, of data sets
with the following characteristics:

(a) with and without an ordering relationship,

(b) with and without a distance metric,

(c) with and without an absolute zero.

2. Describe the difference between a data attribute and a value. Use
examples to clarify your response.

3. There are numerous strategies for dealing with missing data in a data
set. These include deleting the row containing the missing value,
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replacing the missing value with a special number, such as −999,
replacing the value with the average value for that data dimension,
and replacing the value with the corresponding entry from the nearest
neighbor (using some distance calculation). Comment on the strengths
and weaknesses of each of these strategies: what is gained or lost by
following one approach over the others?

4. Perform a web search looking for repositories of publicly available data.
Retrieve two or three, and analyze them in terms of their structure
and meaning. Does the data have spatial or temporal attributes? Is it
nominal or ordinal (or both)? Does it come in a standard or custom
file format?

5. Repeat the above process, using a newspaper as your source. What
sorts of data can you extract from the newspaper? What are the data
types? What data sets could you derive by processing the information
in the newspaper? Try to design at least one data set for each section
of the newspaper.

6. List at least ten sources of data from your normal daily activities (you’ll
be surprised—data is all around us!). For example, nutrition labels
from the food we consume have a wealth of information, some of which
you probably don’t want to know. Start gathering one or two types of
data to be used for future projects in this course.

2.7 Projects

1. Write a program that accepts as input a uniform, 3D scalar field (each
record is an integer) whose dimensions are (heighti, widthi, depthi) and
that computes and outputs a file with dimensions (heightj, widthj ,

depthj). Assume the program is invoked with the command:

resample file1 height1 width1 depth1 file2 height2 width2 depth2

2. A common task when dealing with data is dividing it into categories,
such as low, medium, and high. There are numerous strategies for per-
forming this task, each of which has strengths and weaknesses. Write
a program that reads in a list of integers and divides them into a given
set of bins (this number can be passed into the program), using one or
more of the following strategies:
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• uniform bin width—the size of the range of values for each bin is
the same;

• uniform bin count—as best as possible (without dividing a sin-
gle number between multiple bins), each bin has about the same
number of elements in it;

• best break points—start with everything in one bin. Search for
the largest gaps, and divide at those locations. If no gaps exist,
break at values with low number of occurrences.

3. Normalization is a process in which one or more dimensions are pro-
cessed so that the resulting values have a particular range and/or mean.
This allows two or more dimensions with very different characteristic
ranges (such as temperature and elevation) to be combined into a dis-
tance calculation. Given a list of floating point values, write a program
that normalizes these values into one or more of the following ranges
(you will see why this is useful when we start mapping to graphical
attributes):

• all values fall between 0.0 and 1.0;

• the values are mapped such that the resulting set has a mean of
0.0 and standard deviation of 1.0;

• all values are integers between 0 and 255.

4. Imputation for a single variable or column is rather straightforward.
However, in situations where numerous values are missing in many
columns, Schafer [308] has developed a model-based technique. Test
Schafer’s technique on a data set having missing values, and then im-
plement that technique and compare your results. The R project [282]
is an open-source and free software environment for statistical comput-
ing and graphics where you can find an implementation of Schafer’s
algorithm.
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CHAPTER 3

Human Perception and
Information Processing

This chapter deals with human perception and the different ways in which
graphics and images are seen and interpreted. The early approach to the
study of perception focused on the vision system and its capabilities. Later
approaches looked at cognitive issues and recognition. We discuss each ap-
proach in turn and provide details. Significant parts of this chapter, in-
cluding many of the figures, are based on the work of Christopher G. Healey
(http://www.csc.ncsu.edu/faculty/healey/PP/index.html) [150], who has
kindly granted permission for their reuse in this book.

3.1 What Is Perception?

We know that humans perceive data, but we are not as sure of how we
perceive. We know that visualizations present data that is then perceived,
but how are these visualizations perceived? How do we know that our visual
representations are not interpreted differently by different viewers? How can
we be sure that the data we present is understood? We study perception
to better control the presentation of data, and eventually to harness human
perception.

There are many definitions and theories of perception. Most define per-
ception as the process of recognizing (being aware of), organizing (gathering
and storing), and interpreting (binding to knowledge) sensory information.
Perception deals with the human senses that generate signals from the envi-
ronment through sight, hearing, touch, smell and taste. Vision and audition

73
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Figure 3.1. Two seated figures, making sense at a higher, more abstract level, but still dis-

turbing. On closer inspection, these seats are not realizable. (Image courtesy

N. Yoshigahara.)

are the most well understood. Simply put, perception is the process by
which we interpret the world around us, forming a mental representation of
the environment. This representation is not isomorphic to the world, but it’s
subject to many correspondence differences and errors. The brain makes as-
sumptions about the world to overcome the inherent ambiguity in all sensory
data, and in response to the task at hand.

Visual representations of objects are often misinterpreted, either because
they do not match our perceptual system, or they were intended to be misin-
terpreted. Illusions are a primary source of such misinterpretations. Figures
3.1 and 3.2 highlight our inability to notice visual problems except on more
detailed perusal. The drawings are those of physically nonrealizable objects.

Figure 3.2. Four �= three. As in Figure 3.1, this object would have a problem being built (there

are four boards on the left and three on the right).



�

�

�

�

�

�

�

�

3.1. What Is Perception? 75

Figure 3.3. A more complex illusion: there are two people drawn as part of the face.

Sometimes the ambiguity presented is easily seen, but more difficult to ex-
plain. Sometimes it is not even perceived.

Figure 3.3 highlights that on first glance an image may represent a pri-
mary object, one that is perceived more obviously than the secondary others
that may require more effort or time. There are many such illusions, and
these are easy to construct. In effect, the artist puts together a primary im-
age out of secondary images. There may even be tertiary ones. Tools have
been developed to support such imagery. For example, Rob Silvers uses a
computational technique to form an image composed of a mosaic of smaller
given images (see Figure 3.4 and Figure 3.5, which contains a detailed view).

Our visual machinery also performs similar computations, but perhaps
not as we would expect. Figure 3.6 highlight that our vision system is,
foremost, not static, and secondly, often not under our full control. It is
clear that there appear to be black squares being generated between the
white spaces in Figure 3.6(a) and black circles in Figure 3.6(b). Why? If we
forcibly stare at an intersection of the spaces between the black squares, we
can actually stop the “spots” from appearing. This is akin to our stopping
breathing. When we visualize data, we need to make sure that no such
interferences are present that would impede the understanding of what we
are trying to convey in the visualizations.
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Figure 3.4. Photomosaic of Benjamin Franklin using images of international paper money or

bank notes. (Photomosaic R© by Robert Silvers, http://www.photomosaic.com.)

Figure 3.5. Close-up view of the eye in Figure 3.4. (Photomosaic R© by Robert Silvers, http://

www.photomosaic.com.)
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(a) (b)

Figure 3.6. The Hermann grid illusion: (a) illusionary black squares appear over the complete

image as you gaze at it; (b) similar to (a) but even more dynamic and engaging.

Similarly, Figure 3.7(a) and (b) highlight that there is more to our visual
system than meets the eye (pun intended). In both of these images, we seem
to have machinery forcing the interpretation of the objects we see in a specific
manner. The study of perception is to identify not just this machinery, but
the whole process of perception, from sensation to knowledge. What is
causing the lines not to appear perfectly straight, or the triangle to stand
out? More generally can we explain the causes of these and other illusions
we see? These are the important questions we need to answer in order to
be able to generate synthetic images that will represent data unambiguously
and not pop out an artifact.

(a) (b)

Figure 3.7. (a) The Hering illusion: red lines are straight. (Use a straight edge to verify.)

(b) The Kanizsa illusion: a triangle seems to pop out of the image even though no

such triangle is drawn.
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These illusions are due to our perceptual system’s structure, and the
assumptions it makes about an image or scene. The interpretations are due
to a variety of reasons and are the result of how the process works. To
understand this process and identify its structure, we first need to measure
what we see and then develop models explaining the measured results. These
models should also help explain the illusions.

There are two main approaches to the study of perception. One deals
with measures, and the other with models. Both are linked. Measurements
can help in the development of a model, and in turn, a model should help
predict future outcomes, which can then be measured to validate the model.
We can measure low-level sensory perception (which line is longer) or higher-
level perception (can you recognize the bird in this scene?). Each requires
a different set of tools and approaches. This approach, however, still does
not explain why we see these differences, or why we recognize objects. That
requires a model of the process.

Not paying attention to perception will lead to problems in visualiza-
tion. For example, Figure 3.6 clearly shows how visual patterns can impact
a display. We need to understand, at least rudimentarily, what aspects of
visualization cannot be violated. Some of these involve color (perceived
differently by individuals) and three-dimensional perception (forced inter-
pretations by inherent perceptual assumptions, such as where a light source
is typically placed). We will see several more examples later in this chapter.

3.2 Physiology

The main sensory component of vision involves the gathering and recording
of light scattered from objects in the surrounding scene, and the forming of
a two-dimensional function on the photoreceptors [187,302]. Photoreceptors
are generally very small sensory devices that respond in the presence of
photons that make up light waves.

3.2.1 Visible Spectrum

Visible light, the light waves that are capable of being perceived by hu-
man eyes, actually represents a very small section on the electromagnetic
spectrum (see Figure 3.8). This sub-spectrum ranges from about 380nm
(nanometers) near ultraviolet, up through to about 700nm towards the in-
frared. This range is very much dependent on the individual and generally
shrinks in size after the age of twenty [233]. Color blindness and total blind-
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Figure 3.8. The electromagnetic spectrum with an expanded visible light spectrum [233]. (Im-

age courtesy Wikimedia Commons.)

ness in humans are the result of an individual not responding to certain
wavelengths.

Beyond just the consideration of light is the importance of physical object
properties. It is through the visual system that information concerning the
external objects in the surrounding environment is captured. This exchange
of information between the environment and the observer is presented to
the eyes as variations of wavelengths. These variations are a result of ob-
ject properties that include object geometry, scene illumination, reflectance
properties, and sensor photoreceptor characteristics.

3.2.2 Anatomy of the Visual System

The human eye is a marvelous organ, yet its construction is quite simple.
Figure 3.9 shows a horizontal cross-section of the right eye, viewed from
above. This diagram provides names to most of the fundamental macro-
structures that provide humans with the ability to see their surrounding
environment. The major parts that directly involve the path taken by light
waves include the cornea, iris, pupil, lens, and retina. Overall, the eye is a
fluid-filled sphere of light-sensitive cells with one section open to the outside
via a basic lens system, and connected to the head and brain by six motion-
control muscles and one optic nerve.

Lens System and Muscles. First, the six muscles are generally considered as
motion controllers, providing the ability to look at objects in the scene. The
action of looking at specific areas in the environment involves orienting the
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Figure 3.9. Horizontal cross-section of the human eye, viewed from above. (Image courtesy

Wikimedia Commons.)

eye’s optical system to the regions of interest through muscle contractions
and relaxations. Also, the muscles tend to maintain the eye-level with the
horizon when the head is not perfectly vertical. These muscles also play
another important role in the stabilization of images. Continually making
minor adjustments, eyes are never at rest, although we do not perceive these
actions visually. In an engineered system, such motions are usually consid-
ered as imperfections, yet they have been found to improve the performance
of the human visual system [269].

The optical system of the eye is similar in characteristic to a double-
lens camera system. The first component is the cornea, the exterior cover
to the front of the eye. Acting as a protective mechanism against physical
damage to the internal structure, it also serves as one lens focusing the
light from the surrounding scene onto the main lens [128]. From the cornea,
light passes through the pupil, a circular hole in the iris, similar in function
to an aperture stop on a photographic camera [233]. The iris is a colored
annulus containing radial muscles for changing the size of the pupil opening.
Thus, the pupil determines how much light will enter the rest of the internal
chamber of the eye. The third major component is the lens, whose crystalline
structure is similar to onion skin. Surrounded by the ciliary body, a set of
muscles, the lens can be stretched and compressed, changing the thickness
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and curvature of the lens and consequently adjusting the focal length of the
optical system. As a result, the lens can focus on near and relatively far
objects. The elasticity of the lens determines the range of shape changes
possible, which is lost as one ages, leaving the lens in a slightly stretched
state [128]. Once the light has passed through this lens system, the final
light rays are projected onto the photoreceptive layer, called the retina. The
process is not as precise as camera optics, however. As Overington states:

An important point to note about the lens system is that is has very
little facility built-in for correction of many of the aberrations which
are normally corrected in good quality instrumental optical systems.
This inevitably means that the image produced is far from perfect.
Yet the apparent image perceived appears very sharp, whilst quite
phenomenally fine subtleties in the image can be observed. [269, p. 7]

The Retina. The retina of the human eye contains the photoreceptors respon-
sible for the visual perception of our external world. It consists of two types
of photosensitive cells: rods and cones (see Figure 3.10) [128, 233]. These
two types of cells respond differently to light stimulation. Rods are primar-
ily responsible for intensity perception, and cones for color perception. Rods
are typically ten times more sensitive to light than cones. There is a small
region at the center of the visual axis known as the fovea that subtends
1 to 2 degrees of visual angle. The structure of the retina is roughly radially
symmetric around the fovea. The fovea contains only cones, and linearly,

Figure 3.10. Human rod (left) and cone (right). (Image c© Colour4Free.)
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there are about 147,000 cones per millimeter [128]. The fovea is the region
of sharpest vision. Because the human eye contains a limited number of rods
and cones (about 120 million rods and 6 million cones), it can only manage a
certain amount of visual information over a given time frame. Additionally,
the information transferred from these two types of cells is not equivalent.

Another interesting fact is that the optic nerve only contains about one
million fibers; thus the eye must perform a significant amount of visual pro-
cessing before transmitting information to the brain. What makes the retina
an unusual layer for light stimulation is the orientation of the photoreceptive
cells. The whole layer of cells that makes up the retina is actually backwards;
the light rays must pass through the output neurons and optic nerve fibers
first, before reaching the photosensitive cells, which are also facing away from
the light source. The reason suggested for this arrangement in all vertebrates
is that “eyes are actually part of the brain and represent an outgrowth from
it,” and that “the cells of the retina are formed during development from
the same cells that generate the central nervous system” ( [128] p. 18).

The eye contains separate systems for encoding spatial properties (e.g.,
size, location, and orientation), and object properties (e.g., color, shape,
and texture). These spatial and object properties are important features
that have been successfully used by researchers in psychology for simple
tasks such as target detection, boundary detection, and counting. These
properties have also been used extensively by researchers in visualization to
represent high-dimensional data collections [384].

Rods. Rods are the most sensitive type of photoreceptor cells available in the
retina; consequently, they are associated with scotopic vision, night vision,
operating in clusters for increased sensitivity in very low light conditions.
As these cells are thought to be achromatic we tend to see objects at night
in shades of gray. Rods do operate, however, within the visible spectrum
between approximately 400 and 700 nm [233]. It has been noted that during
daylight levels of illumination, rods become hyperpolarized, or completely
saturated, and thus do not contribute to vision [128].

Cones. On the other hand, cones provide photopic vision, i.e., are responsible
for day vision. Also, they perform with a high degree of acuity, since they
generally operate individually. There are three types of cones in the human
eye: S (short), M (medium), and L (long) wavelengths [128]. These three
types (see Figure 3.11) have been associated with color combinations using
R (red), G (green), and B (blue). The long wavelength cones exhibit a
spectrum peak at 560 nm, the medium wavelength cones peak at 530 nm,
and the short wavelength cones peak at around 420 nm. However, it must
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Figure 3.11. The retina layer contains the three types of cones (short, medium, and long).

(Image courtesy Wikimedia Commons.)

be noted that there are considerably fewer short cones, compared to the
number of medium and long wavelength cones [269]. In spite of this, humans
can visually perceive all the colors within the standard visible spectrum.
Unlike rods, cones are not sensitive over a large fixed wavelength range, but
rather over a small moving-window-based range. Cones tend to adapt to the
average wavelength where there is sensitivity above and below their peaks,
and a shift in their response curve occurs when the average background
wavelength changes [128].

Blind Spot. Given that humans have two types of photoreceptors with three
types of cones, how are these cells distributed on the retina? First, there is
an overall distribution of all cells across the retina, with the highest concen-
tration occurring at the center of our visual field in the fovea and reducing
in coverage towards the edges [128]. Where the optic nerve meets the retina,
a blind spot occurs, due to the lack of photoreceptive cells. Second, there
is a striking separation between the locations of rods and cones. The fovea
consists of only cone receptors, and no rods, for highly detailed and exact
vision [233]. Surrounding the fovea are three concentric bands: parafovea
with an outer ring of 2.5-mm diameter, perifovea with an outer ring of 5.5-
mm diameter, and the peripheral retina, covering approximately 97.25% of
the total retinal surface and consisting largely of rods [233]. Each of these
areas is marked by a dramatic reduction in cones, and it is significant to
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Figure 3.12. Blind spot discovery by identifying disappearance of target.

note here that within the parafovea there already are significantly more rods
than cones.

The identification (more really verification) of one’s blind spot can be
done simply with this Optic Disk experiment (see Figure 3.12). Close your
right eye and look directly at the number 3. You should see the yellow spot
in your peripheral vision. Now, slowly move toward, or away from the screen
or paper image. At some point, the yellow spot will disappear, as its sensory
reflection hits the blind spot.

There are some very interesting outcomes resulting from the physiology
of human eyes. First, the photoreceptive cells are packed into the retina
parallel to each other, and are not directed toward the pupil [128]. Thus,
the eye obtains its best stimulation from light entering straight on through
the pupil.

Next, the rods and cones are packed in a hexagonal structure for op-
timized coverage. Such a packing scheme, in conjunction with an initially
blurred image, resulting from cell sampling, has been demonstrated to pro-
vide near-optimal information transfers [269]. Another fascinating fact about
the retina concerns the sampling rate of the photoreceptive cells. Through
the effects of temporal smoothing, where receptors only respond every few
milliseconds, humans perceive flickering lights up to a certain frequency,
beyond which the eye only registers a constant light source [128].

It has been said that the United States Air Force tested pilots’ ability to
respond to changes in light by flashing a picture of an aircraft on a screen in
a dark room for 1/220th of a second. According to these anecdotal reports,
pilots were consistently able to detect the afterimage of the flash, and were
also able to identify the aircraft type.

Finally, it has been shown that the human eye responds to ratios of
intensities and not absolute values [128]. These ratios play an important
part in adaptation and contrast sensitivity and the eye will adapt to changes
in wavelength ranges.
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Figure 3.13. A representation of a retinal cross-section.(Image

c©

The Brain from Top to Bot-

tom.)

3.2.3 Visual Processing

Signal processing in humans is performed by neurons, the elementary bio-
logical components that make up the nervous system. This system operates
on sequences of frequency-modulated pulses sent between two neurons in
communication. Through chemical actions, each neuron stimulates other
neurons—possibly hundreds to thousands of other nervous system cells—
causing information to travel.

Retinal Processing. The retina of the eye is actually a complex layer of many
neurons and photoreceptive cells, as depicted in Figure 3.13. This illustration
has the photoreceptors pointing up; thus, the front of the eye is pointing
down, so that light first hits the bottom layer and progresses through the
various layers, until it stimulates the rods and cones. The relatively large
black bulbs represent the nucleus of each neuron.

There are four neuron layers within the retina that perform initial image
processing on the stimulations resulting from the individual photoreceptors,
the cones and rods. Figure 3.13 is a highly stylized diagram of the human
retina, showing the four layers plus the top layer of receptors; again, the
light enters from the bottom. These four layers are composed of individual
types of neuron cells, based on their connectivity properties: horizontal cells
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only connect sets of receptors, bipolar cells connect receptors to other layers,
amacrine cells join numerous bipolar and ganglion cells, and ganglion cells
transmit retinal stimulation from the eye to the brain is the optic nerve [233].

As mentioned previously, the retina develops directly from brain cells;
thus the obvious ability for preprocessing of the stimulus image. Like the in-
dividual groups of photoreceptive cells, there are also various types of bipolar
and ganglion cells that have very distinct properties dealing with the combi-
nations of rods and cones [269]. Some cones within the fovea are connected
to individual ganglia via a single bipolar link. Rods on the outer periphery
of the retina are grouped together and joined with bipolar cells, where sev-
eral bipolar groups output to a single ganglion. Hence, the retina is already
performing some kinds of image compression, and possibly segmentation.
This reduction of retinal stimulation is required, as there are only about a
million optic nerve fibers relaying image information to the brain, which is
a hundred times less than the total number of rods and cones [4]. There is
also other valuable information formed during this compression. Individual
rods and cones by themselves do not provide much information, due to the
limitations of the optic nerve. Furthermore, individual cones only respond
to fixed wavelength ranges; thus one cell cannot provide color information.
Consequently, it is through the combinations of photoreceptor stimuli that
intensity and color descriptions can be obtained, which is believed to happen
at a very early stage in visual processing [128].

Figure 3.14. The anatomy of the visual system. (Image courtesy Wikimedia Commons.)
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The Brain. The brain is the center of all bodily functions and is composed
of the majority of neurons found in the human nervous system. The overall
structure of the brain is divided into two hemispheres, left and right, with
the addition of a few smaller structures located under these hemispheres.
Of importance is the fact these hemispheres have relative functional regions,
one of which is designed for processing visual stimulation [233]. Before the
optic nerves from each eye reach the inner regions of the brain they partially
cross at the optic chiasma—half the fibers from each eye cross to the op-
posite side of the corresponding brain region (see Figure 3.14). Thus, each
hemisphere receives visual information from both eyes, possibly to help with
the perception of depth. As there is so much visual processing performed
at both the eyes and within the brain, these linked organs form an integral
visual system [4].

3.2.4 Eye Movement

Perhaps the most critical aspect of perception is the importance of eye move-
ment in our understanding of scenes, and therefore images. It explains, for
example, the illusionary black dots in the earlier figures [123,309,334]. There
are a variety of eye movements performed for scene interpretation.

Smooth pursuit movements. These are just as their name implies. The eyes
move smoothly instead of in jumps. They are called pursuit because this
type of eye movement is made when the eyes follow an object. For exam-
ple, to make a pursuit movement, look at your forefinger at arms’ length
and then move your arm left and right while fixating on your fingertip.
Such movements are also called conjugate eye movements or coordinated eye
movements. The angles from the normal to the face are equal (left and right
as well as up and down).

Vergence eye movements. These result from nonconjugate movement and
yield different angles to the face normal. Moving a finger closer to the face
and staring at it will force the eyes inward, resulting in vergence movement.
Defocusing to merge depths in illusions is another example.

Saccadic eye movements. These result from multiple targets of interest (not
necessarily conscious). The eye moves as much as 1000 degrees per second,
bringing the gaze on those targets within 25 msec. It holds its position
once on target. Selected targets are determined in the frontal part of the
cerebral cortex. The selection is discriminatory, dependent on a variety of
parameters, and somewhat random.
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(a) (b)

Figure 3.15. (a) The face used to study eye tracking. (b) The results of the tracking of the

gaze.

Saccadic masking. Saccadic masking or suppression occurs during two states
between saccadic views. The gap produced is ignored (some say blocked).
A continuous flow of information is interpreted, one that makes sense. The
higher level visual system filters out the blurred images acquired by the low
level one, and only the two saccadic stop views are seen.

Marketing research has helped identify how to set up advertisements to
force the visual focus on objects of interest. For example, when looking at
the face in Figure 3.15(a), we find that the eye moves as in Figure 3.15(b).
Note how the concentration of vertices highlights the targets to which the
eye is attracted. The same tracking for the left image is shown on the right
one in Figure 3.16. Note the role of the boundaries and the key focal points
of faces.

Figure 3.16. The right image shows the path followed by the eye in looking at the image on

the left. Note the targets, which can easily be identified from the concentration of

vertices of the path, and note the role of the boundary.
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Figure 3.17. Classic model of the flow of sensory data for cognition (based on [72]).

3.3 Perceptual Processing

We use the classic model of information processing [72] for understanding
the flow of sensory information, from the low level pre-attentive to the higher
cognitive levels (Figure 3.17). This model highlights that memory is involved
in post processing, but this is known to be only partially correct. Perception
can be intrinsic and uncontrolled (preattentive) or controlled (attentive).

Automatic or preattentive perception is fast and is performed in parallel,
often within 250ms. Some effects pop out and are the result of preconscious
visual processes. Attentive processes (or perception) transform these early
vision effects into structured objects. Attentive perception is slower and uses
short-term memory. It is selective and often represents aggregates of what is
in the scene. Low-level attributes are rapidly perceived and then converted
to higher-level structured ones for performing various tasks, such as finding
a door in an emergency. We first focus on low-level attributes, then turn to
higher level ones, and finally put it all together with memory models.

3.3.1 Preattentive Processing

For many years vision researchers have been investigating how the human
visual system analyzes images. An important initial result was the discovery
of a limited set of visual properties that are detected very rapidly and accu-
rately by the low-level visual system. These properties were initially called
preattentive, since their detection seemed to precede focused attention. We
now know that attention plays a critical role in what we see, even at this
early stage of vision. The term preattentive continues to be used, however,
since it conveys an intuitive notion of the speed and ease with which these
properties are identified.

Typically, tasks that can be performed on large multielement displays in
less than 200 to 250 milliseconds (msec) are considered preattentive. Eye
movements take at least 200 msec to initiate, and random locations of the
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(a) Target is present in a sea of blue circle
distractors.

(b) Target is absent.

Figure 3.18. An example of searching for a target red circle based on a difference in hue.

elements in the display ensure that attention cannot be prefocused on any
particular location; yet viewers report that these tasks can be completed
with very little effort. This suggests that certain information in the display
is processed in parallel by the low-level visual system.

A simple example of a preattentive task is the detection of a red circle
in a group of blue circles (Figure 3.18). The target object has a visual prop-
erty “red” that the blue distractor objects do not (all nontarget objects are

(a) Target is absent in a sea of red square
distractors.

(b) Target is present.

Figure 3.19. An example of searching for a target red circle based on a difference in curvature.
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(a) Target is absent in a sea of red square
and blue circle distractors.

(b) Target is present.

Figure 3.20. An example of a conjunction search for a target red circle.

considered distractors). A viewer can tell at a glance whether the target
is present or absent. In Figure 3.18 the visual system identifies the target
through a difference in hue, specifically, a red target in a sea of blue distrac-
tors. Hue is not the only visual feature that is preattentive. In Figure 3.19
the target is again a red circle, while the distractors are red squares. As
before, a viewer can rapidly and accurately determine whether the target is
present or absent. Here, the visual system identifies the target through a
difference in curvature (or form).

A unique visual property in the target (e.g., a red hue in in Figure 3.19(a)
or a curved form in Figure 3.19(b)) allows it to “pop out” of a display. A
target made up of a combination of nonunique features (a conjunction target)
normally cannot be detected preattentively. Figure 3.20 shows an example
of conjunction search. The red circle target is made up of two features:
red and circular. One of these features is present in each of the distractor
objects (red squares and blue circles). This means the visual system has
no unique visual property to search for when trying to locate the target.
If a viewer searches for red items, the visual system always returns true,
because there are red squares in each display. Similarly, a search for circular
items always sees blue circles. Numerous studies have shown that this target
cannot be detected preattentively. Viewers must perform a time-consuming
serial search through the displays to confirm its presence or absence.

If the low-level visual system can be harnessed during visualization, it
can be used to draw attention to areas of potential interest in a display.
This cannot be accomplished in an ad-hoc fashion, however. The visual
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features assigned to different data attributes (the data-feature mapping)
must take advantage of the strengths of our visual system, must be well-
suited to the analysis needs of the viewer, and must not produce visual in-
terference effects (e.g., conjunction search) that could mask information in a
display.

The following lists some of the visual features that have been identified
as preattentive: length, width, size, curvature, number, terminators, inter-
section, closure, hue, intensity, flicker, direction of motion, binocular luster,
stereoscopic depth, 3D depth cues, and lighting direction.

The key perceptual attributes associated with the above include lumi-
nance and brightness, color, texture, and shape. Luminance is the measured
amount of light coming from some place. Brightness is the perceived amount
of light coming from a source. Perceived brightness is a nonlinear function of
the amount of light emitted by the source, typically a power function S = ai,
where S = sensation and i = intensity. Note that these look very different on
a screen versus on paper. Texture is the characteristic appearance of an area
or surface. Whereas texture applies to multiple sensory objects (the texture
of a music, the texture of a fabric), shape is strictly a geometric attribute.

Experiments in psychology have used these features to perform the fol-
lowing preattentive visual tasks:

Target detection. Users rapidly and accurately detect the presence or ab-
sence of a “target” element with a unique visual feature within a field
of distractor elements (Figures 3.18, 3.19, and 3.20);

Boundary detection. Users rapidly and accurately detect a texture boundary
between two groups of elements, where all of the elements in each group
have a common visual property;

Region tracking. Users track one or more elements with a unique visual fea-
ture as they move in time and space; and

Counting and estimation. Users count or estimate the number of elements
with a unique visual feature.

3.3.2 Theories of Preattentive Processing

A number of theories have been proposed to explain how preattentive pro-
cessing occurs within the visual system. We describe four well-known mod-
els: feature integration theory, texton theory, similarity theory, and guided
search theory. We also discuss briefly the phenomenon of postattentive vi-



�

�

�

�

�

�

�

�

3.3. Perceptual Processing 93

(a) A boundary defined by a unique feature
hue (red circles and red squares on the top,
blue circles and blue squares on the bottom)
is preattentively classified as horizontal.

(b) A boundary defined by a conjunction of
features (red circles and blue squares on the
left, blue circles and red squares on the right)
cannot be preattentively classified as vertical.

Figure 3.21. An example of a boundary detection, from Treisman’s experiments.

sion, which shows that prior exposure to a scene does not help a viewer
answer questions about the content of the scene.

Feature Integration Theory. Anne Treisman was one of the original researchers
to document the area of preattentive processing. She provided important
insights into this phenomenon by studying two important problems. First,
she tried to determine which visual properties are detected preattentively
[359,360,362]. She called these properties “preattentive features” [361]. Sec-
ond, she formulated a hypothesis about how the human visual system per-
forms preattentive processing [358].

Treisman ran experiments using target and boundary detection to clas-
sify preattentive features. For target detection, subjects had to determine
whether a target element was present or absent in a field of background
distractor elements (Figures 3.18 amd 3.20). Boundary detection involved
placing a group of target elements with a unique visual feature within a
set of distractors to see if the boundary could be preattentively detected
(Figure 3.21).

Treisman and other researchers measured preattentive task performance
in two different ways: by response time and by accuracy. In the response
time model-viewers are asked to complete the task (e.g., target detection)
as quickly as possible while still maintaining a high level of accuracy. The
number of distractors in a scene is repeatedly increased. If task completion
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time is relatively constant and below some chosen threshold, independent
of the number of distractors, the task is said to be preattentive. If the task
were not preattentive, viewers would need to search serially through each
display to confirm a target’s presence or absence. Increasing the number of
elements in the display would therefore produce a corresponding increase in
the time required to report on the target.

In the accuracy model , the display is shown for a small, fixed exposure
duration, then removed from the screen. Again, the number of distractors
in the scene varies (i.e., increases) across trials. If viewers can complete the
task accurately, regardless of the number of distractors, the feature used
to define the target is assumed to be preattentive. A common exposure
duration threshold is 200 to 250 msec, since this allows subjects only “one
look” at the scene. The human visual system cannot decide to change where
the eye is looking within this time frame.

Treisman and others have used their experiments to compile a list of
visual features that are detected preattentively, as mentioned above. It is
important to note that some of these features are asymmetric. For example, a
sloped line in a sea of vertical lines can be detected preattentively. However,
a vertical line in a sea of sloped lines cannot be detected preattentively.
Another important consideration is the effect of different types of background
distractors on the target feature. These factors must often be addressed when
trying to design display techniques that rely on preattentive processing.

To explain the phenomenon of preattentive processing, Treisman pro-
posed a model of low-level human vision made up of a set of feature maps and
a master map of locations. Each feature map registers activity in response
to a specific visual feature. Treisman suggested a manageable number of fea-
ture maps, including one for each of the opponent color primaries (green, red,
yellow, and blue), as well as separate maps for orientation, shape, texture,
and other preattentive features.

When the human visual system first sees an image, all the features are
encoded in parallel into their respective maps. A viewer can access a par-
ticular map to check for activity, and perhaps to determine the amount of
activity. However, the individual feature maps give no information about
location, spatial arrangement, or relationships to activity in other maps.

This framework provides a general hypothesis that explains how preat-
tentive processing occurs. If the target has a unique feature, one can simply
access the given feature map to see if any activity is occurring. Feature maps
are encoded in parallel, so feature detection is almost instantaneous. A con-
junction target cannot be detected by accessing an individual feature map.
Activity there may be caused by the target, or by distractors that share the
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Figure 3.22. Treisman’s feature integration model for early vision; individual maps can be ac-

cessed to detect feature activity; focused attention acts through a serial scan of

the master map of locations

given preattentive feature. To locate the target, one must search serially
through the master map of locations, looking for an object with the correct
combination of features. This use of focused attention requires a relatively
large amount of time and effort.

In later work, Treisman has expanded her strict dichotomy of features
being detected as being either in parallel or in serial [359, 362]. She now
believes that parallel and serial represent two ends of a spectrum. “More”
and “less” are also encoded on this spectrum, not just “present” and “ab-
sent.” The amount of differentiation between the target and the distractors
for a given feature will affect search time. For example, a long vertical line
can be detected immediately among a group of short vertical lines. As the
length of the target shrinks, the search time increases, because the target
is harder to distinguish from its distractors. At some point, the target line
becomes shorter than the distractors. If the length of the target continues
to decrease, search time decreases, because the degree of similarity between
the target and the distractors is now decreasing.

Treisman has also extended feature integration to explain certain cases
where conjunction search is preattentive. In particular, conjunction search
tasks involving motion, depth, color, and orientation have been shown to
be preattentive by Nakayama and Silverman [263], Driver et al. [86], and
Wolfe et al. [399]. Treisman hypothesizes that a significant target-nontarget
feature difference would allow individual feature maps to ignore nontarget
information contained in the master map. For example, consider a search
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for a green horizontal bar within a set of red horizontal bars and green
vertical bars. This should result in a conjunction search, since horizontal
and green occur within each of the distractors. In spite of this, Wolfe et
al. [399] showed that search times are independent of display size. If color
constituted a significant feature difference, the red color map could inhibit
information about red horizontal bars. Thus, the search reduces to finding
a green horizontal bar in a sea of green vertical bars, which can be done
preattentively.

Texton Theory. Bela Julesz was also instrumental in expanding our under-
standing of what we “see” in an image. Julesz’s initial investigations focused
on statistical analysis of texture patterns [180–183,185]. His goal was to de-
termine whether variations in a particular order statistic were seen (or not
seen) by the low-level visual system. Examples of variations in order statis-
tics include contrast (a variation in a texture’s first-order statistic), orienta-
tion and regularity (a variation of the second-order statistic), and curvature
(a variation of the third-order statistic). Unfortunately, Julsz’s results were
inconclusive. First-order variations were detected preattentively. In addi-
tion, some (but not all) second-order variations were also preattentive, as
were an even smaller set of third-order variations.

Based on these findings, Julsz modified his theory of how preattentive
processing occurs. He suggested that the early visual system detects a group
of features called textons [179,184,185]. Textons can be classified into three
general categories:

• elongated blobs (e.g., line segments, rectangles, ellipses) with specific
properties such as hue, orientation, and width;

• terminators (ends of line segments);

• crossings of line segments.

Julesz believed that only a difference in textons or in their density can be
detected preattentively. No positional information about neighboring tex-
tons is available without focused attention. Like Treisman, Julesz suggested
that preattentive processing occurs in parallel and focused attention occurs
in serial. Figure 3.23 provides an example of textons that appear different
in isolation, but have the same size, number of terminators, and join points.
This shows that even when each appear very different in isolation, it may be
difficult, if not impossible, to differentiate any pattern when in a texture or
grid.

Julesz used texture segregation, the task of locating groups of similar
objects and the boundaries that separate them, to demonstrate his theory
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Figure 3.23. Two simple textons, easily differentiable.

(other researchers, including Treisman, also used this type of task, for exam-
ple, identifying the orientation of the boundary between groups of common
elements in Figure 3.21). Figure 3.24 shows an example of an image that
supports the texton hypothesis. Although the two objects look very different
in isolation, they are actually the same texton. Both are blobs with the same
height and width. Both are made up of the same set of line segments, and
each has two terminators. When both are oriented randomly in an image,
one cannot preattentively detect the texture boundary between the target
group and the background distractors.

Figure 3.24. A target group of b-textons is difficult to detect in a background of a-textons when

a random rotation is applied.
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Similarity Theory. Some researchers do not support the dichotomy of serial
and parallel search modes. Initial work in this area was done by Quinlan
and Humphreys [281]. They investigated conjunction searches by focusing
on two factors. First, search time may depend on the number of items of in-
formation required to identify the target. Second, search time may depend
on how easily a target can be distinguished from its distractors, regard-
less of the presence of unique preattentive features. Treisman addressed
this second factor in her later work [359]. Quinlan and Humphreys found
that Treisman’s feature integration theory was unable to explain the results
they obtained from their experiments. Duncan and Humphreys developed
their own explanation of preattentive processing. Their model assumes that
search ability varies continuously, depending on both the type of task and
the display conditions [88,89,258]. Search time is based on two criteria: T-N
similarity and N-N similarity. T-N similarity is the amount of similarity be-
tween the targets and nontargets. N-N similarity is the amount of similarity
within the nontargets themselves. These two factors affect search time as
follows:

1. As T-N similarity increases, search efficiency decreases and search time
increases.

2. As N-N similarity decreases, search efficiency decreases and search time
increases.

3. T-N similarity and N-N similarity are related (see Figure 3.25); de-
creasing N-N similarity has little effect if T-N similarity is low; in-
creasing T-N similarity has little effect if N-N similarity is high.

Treisman’s feature integration theory has difficulty explaining the results
of Figure 3.25. In both cases, the distractors seem to use exactly the same
features as the target, namely oriented, connected lines of a fixed length. Yet
experimental results show displays similar to Figure 3.25 on the left produce
an average search time increase of 4.5 msec per additional distractor, while
displays similar to Figure 3.25 on the right produce an average search time
increase of 54.5 msec per additional distractor.

In order to explain the above and other search phenomena, Duncan and
Humphreys proposed a three-step theory of visual selection. The visual
field is segmented into structural units. Individual structural units share
some common property (e.g., spatial proximity, hue, shape, motion). Each
structural unit may again be segmented into smaller units. This produces
a hierarchical representation of the visual field. Within the hierarchy, each
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(a) High N-N (nontarget-nontarget) similar-
ity allows easy detection of target L.

(b) Low N-N similarity increases the diffi-
culty of detecting the target L.

Figure 3.25. Example of N-N similarity affecting search efficiency for a target shaped like the

letter L.

structural unit is described by a set of properties (e.g., spatial location, hue,
texture, size). This segmentation process occurs in parallel.

Because access to visual short-term memory is limited, Duncan and
Humphreys assume that there exists a limited resource that is allocated
among structural units. Because vision is being directed to search for par-
ticular information, a template of the information being sought is available.
Each structural unit is compared to this template. The better the match, the
more resources are allocated to the given structural unit, relative to other
units with a poorer match.

Because units are grouped in a hierarchy, a poor match between the
template and a structural unit allows efficient rejection of other units that
are strongly grouped to the rejected unit. Structural units with a relatively
large number of resources have the highest probability of access to the visual
short-term memory. Thus, structural units that most closely match the
template of information being sought are presented to the visual short-term
memory first. Search speed is a function of the speed of resource allocation
and the amount of competition for access to the visual short-term memory.

Given these three steps, we can see how T-N and N-N similarity affect
search efficiency. Increased T-N similarity means that more structural units
match the template, so competition for visual short-term memory access
increases. Decreased N-N similarity means that we cannot efficiently reject
large numbers of strongly grouped structural units, so resource allocation
time and search time increase.
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Guided Search Theory. More recently, Jeremy Wolfe has suggested a visual
search theory that he calls “guided search” [397,399,403]. He hypothesized
that an activation map based on both bottom-up and top-down information
is constructed during visual search. Attention is drawn to peaks in the acti-
vation map that represent areas in the image with the largest combination
of bottom-up and top-down influence.

Like Treisman, Wolfe believes that early vision divides an image into
individual feature maps (see Figure 3.26). In his theory, there is one map
for each feature type (e.g., one map for color, one map for orientation, and
so on). Within each map, a feature is filtered into multiple categories. For
example, in the color map there might be independent representations for
red, green, blue, and yellow. Wolfe had already found evidence to sug-
gest that orientation is categorized into steep, shallow, right, and left [401].
The relationship between values within a feature map is different than the
relationship between values from different maps (the relationship between
“red” and “blue” is different than the relationship between “blue” and
“shallow”).

Bottom-up activation follows feature categorization. It measures how
different an element is from its neighbors. Differences for each relevant
feature map are computed and combined (e.g., how different are the elements
in terms of color, how different are they in terms of orientation?) The
“metrics” used to measure differences in each feature map are still being
investigated.

Top-down activation is a user-driven attempt to find items with a specific
property or set of properties. For example, visual search for a blue element
would generate a top-down request that activates “blue” locations. Previ-
ous work suggests subjects must specify requests in terms of the categories
provided by each feature map [398, 401]. Thus, subjects could search for
“steep” or “shallow” elements, but not for elements rotated by a specific
angle. Obviously, subjects should pick the category that best differentiates
the target from its distractors. Finding the “best” category is often non-
intuitive, however. Wolfe suggests this might explain cases where subjects’
performance for a task improves over time.

The activation map is a combination of bottom-up and top-down activa-
tion. The weights assigned to these two values are task dependent. A con-
junction search would place priority on top-down information, since bottom-
up results are, in essence, useless. A search for a target with a unique feature
would assign a high weight to bottom-up activation. Hills in the activation
map mark regions that generated a relatively large amount of bottom-up or
top-down influence. There is no information in the activation map about
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Figure 3.26. Framework for guided search, the user wants to find a green steep target; image is

filtered into categories for each feature map. Bottom-up and top-down activation

“mark” regions of the image; an activation map is built by combining bottom-up

and top-down information, attention is draw to the highest “hills” in the map [150].

the source of a hill. High activation from a color map looks exactly the same
as high activation from an orientation map. A subject’s attention is drawn
from hill to hill in order of decreasing activation.

Wolfe’s theory easily explains traditional “parallel” visual search. Target
elements produce the highest level of activation, regardless of the number
of distractor elements. This causes the target to “pop-out” of the scene in
time independent of the number of distractors. This also explains Duncan
and Humphreys’ similarity theory results. Low N-N similarity causes dis-
tractors to report higher bottom-up activation, since they now differ from
their neighbors. High T-N similarity causes a reduction in the target ele-
ments’ bottom-up activation. Moreover, guided search also provides a pos-
sible explanation for situations where conjunction search can be performed
preattentively [263, 399, 400]. User-driven top-down activation may permit
efficient searching for conjunction targets.

Postattentive Vision. Preattentive processing asks in part: “What visual prop-
erties draw our eyes, and therefore our focus of attention, to a particular
object in a scene?” An equally interesting question is: “What happens to
the visual representation of an object when we stop attending to it and look
at something else?” Jeremy Wolfe addressed this question in his work on
postattentive vision [402]. The intuitive belief that a rich visual representa-
tion accumulates as we look at more and more of a scene appears not to be
true. This provides important insight into why the low-level visual system
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performs the way it does. The results also act as a bridge between preat-
tentive processing and the new area of change blindness, which shows that
people are often “blind” to significant variations that occur between glances
at a scene.

Attention to different objects may allow a viewer to learn what is in a
scene (if the objects are familiar and recognizable), but it does not allow the
viewer to see the scene in a different manner. In other words, the preattentive
visual representation of an object after a viewer studies it and looks at
something else appears to be identical to its representation before the viewer
studied it. No additional information is “saved” in the visual system after
the focus of attention shifts to a new location.

Wolfe argues that if multiple objects are recognized simultaneously in the
low-level visual system, it would involve a search for links between the objects
and their representation in long-term memory (LTM). LTM can be queried
nearly instantaneously, compared to the 40–50 msec per item required to
search a visual scene. Preattentive processing can help to rapidly draw the
focus of attention to a target with a unique visual feature (e.g., little or no
searching is required in the preattentive case). To remove this assistance,
Wolfe designed targets with two critical properties (Figure 3.27):

• The targets were formed from a conjunction of features (e.g., they
could not be detected preattentively).

• The targets were arbitrary combinations of colors and shapes (e.g.,
they were not objects that could be semantically recognized and re-
membered on the basis of familiarity).

Wolfe initially tested two search types. In both cases, viewers were asked
to answer as quickly as possible while maintaining a high level of accuracy
(e.g., a response-time search):

Traditional search. Text on a blank screen was shown to identify the target.
This was followed by a display containing 4, 5, 6, 7, or 8 potential target
objects in a 3 × 3 array (formed by combinations of seven colors and
five shapes (Figure 3.27 (top)).

Postattentive search. The display to be searched was shown to the user for a
specific duration (up to 300 msec). Text identifying the target was then
inserted into the scene (Figure 3.27(bottom)). Results showed that
the postattentive search was as slow (or slower) than the traditional
search, with approximately 25–40 msec per object required for the
target present trials. This implies that previewing the scene provides



�

�

�

�

�

�

�

�

3.3. Perceptual Processing 103

Figure 3.27. Examples of search for color-and-shape conjunction targets, both with and with-

out a preview of the scene: (top) no preview of the scene is shown (although text

identifying the target is shown prior to the search)—in this case, the green verti-

cal target is present; (bottom) a preview of the scene is shown, followed by text

identifying the target; in this case, a white oblique target is not present.

no advantage to the viewer for finding a conjunction target. In order
to explore further, Wolfe studied a number of different search scenarios
to test for any benefit from previewing the scene.

These scenarios include:

Repeated search. Viewers were asked to search the same display five times
for five different targets. The display was shown with target text, and
after an answer was provided (target present or absent), the target
text changed to identify a new target. This experiment tested whether
additional exposure to the display improved search performance.

Repeated search with letters. Viewers searched in a manner identical to re-
peated search, but with displays containing letters rather than combi-
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nations of colors and shapes. This experiment tested whether the type
of target used affected search performance.

Repeated search versus memory search. Viewers were asked to search a group
of five letters 350 times for a target letter. Half the viewers were shown
the five letters. The other half were required to memorize the five
letters prior to the target queries. This experiment tested whether a
prolonged exposure to a set of objects improved search performance.
It also tested to see how visual search and short-term memory search
performance differed.

In each case, viewers continued to require 20-50 msec per object to com-
plete the search. Wolfe’s conclusion was that sustained attention to the
objects tested in his experiments did not make visual search more efficient.
This has a significant potential impact for visualization design. In most
cases, visualization displays are novel, and their contents cannot be com-
mitted to long-term memory. This means that studying a display may offer
no assistance in searching for specific data values. In this scenario, meth-
ods that draw attention to areas of potential interest within a display (i.e.,
preattentive methods) would be critical in allowing viewers to rapidly and
accurate explore their data.

3.3.3 Feature Hierarchy

Based on our understanding of low-level human vision, one promising strat-
egy for multidimensional visualization is to assign different visual features
to different data attributes (e.g., building a data-feature mapping that maps
data to a visual representation). This allows multiple data values to be shown
simultaneously in a single image. One key requirement of this method is a
data-feature mapping that does not produce visual interference. Interac-
tions between different visual features hide or mask information in a display.
Obviously, we want to avoid this situation during visualization. One simple
example of visual interference is the conjunction search shown in Figure 3.20.
If we want to search rapidly for combinations of data values, care must be
taken to ensure that the resulting combinations contain at least one unique
feature for the visual system to cue on.

Other types of visual interference can also occur. An important type
of interference results from a feature hierarchy that appears to exist in the
visual system. For certain tasks, the visual system seems to favor one type
of visual feature over another. For example, during boundary detection,
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(a) (b)

Figure 3.28. An example of hue-on-form feature hierarchy: (a) a horizontal hue boundary is

preattentive identified when form is held constant; (b) a vertical hue boundary is

preattentively identified when form varies randomly in the background.

researchers have shown that the visual system favors color over shape (Fig-
ures 3.28 and 3.29). Background variations in color interfere with a viewer’s
ability to identify the presence of individual shapes and the spatial patterns
they form [46]. If color is held constant across the display, these same shape
patterns are immediately visible. The interference is asymmetric: random
variations in shape have no effect on a viewer’s ability to see color patterns.

(a) (b)

Figure 3.29. Another example of hue-on-form feature hierarchy: (a) a vertical form boundary is

preattentively identified when hue is held constant; (b) a horizontal form boundary

cannot be preattentively identified when hue varies randomly in the background.



�

�

�

�

�

�

�

�

106 3. Human Perception and Information Processing

Callaghan also documented a luminance-on-hue preference during her
experiments [44, 45]. More recently, a hue-on-texture interference has been
shown to exist [151, 152, 330, 361]; random variations in hue interfere with
the identification of texture patterns, but not vice-versa. These hierar-
chies suggest that the most important data attributes (as defined by the
viewer) should be displayed with the most salient visual features, if possible.
The data-feature mapping should avoid situations where the display of
secondary data values masks the information the viewer wants
to see.

3.3.4 Change Blindness

Recent research in visualization has explored ways to apply rules of percep-
tion to produce images that are visually salient [384]. This work is based in
large part on psychophysical studies of the low-level human visual system.
One of the most important lessons of the past twenty-five years is that human
vision does not resemble the relatively faithful and largely passive process of
modern photography [278,359,361,402,403]. The goal of human vision is not
to create a replica or image of the seen world in our heads. A much better
metaphor for vision is that of a dynamic and ongoing construction project,
where the products being built are short-lived models of the external world
that are specifically designed for the current visually guided tasks of the
viewer [92, 244, 288, 325]. There does not appear to be any general-purpose
vision. What we “see” when confronted with a new scene depends as much
on our goals and expectations as it does on the array of light that enters our
eyes.

These new findings differ from one of the initial ideas of preattentive
processing, that only certain features in an image are recognized without
the need for focused attention, and that other features cannot be detected,
even when viewers actively search for these exact features. More recent
work in preattentive vision has presented evidence to suggest that this strict
dichotomy does not hold. Instead, “visible” or “not visible” represent two
ends of a continuous spectrum. Issues like the difference between a target’s
visual features and its neighbors’ features, what a viewer is searching for, and
how the image is presented, can all have an effect on search performance.
For example, Wolfe’s guided search theory assumes both bottom-up (e.g.,
preattentive) and top-down (e.g., attention-based) activation of features in
an image [397,399,403]. Other researchers have also studied the dual effects
of preattentive and attention-driven demands on what the visual system
sees [360, 362]. Wolfe’s discussion of postattentive vision also points to the
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Figure 3.30. Only one image of many examples of change blindness, each image shows a frame

from a sequence which contains a significant variation from the other frame; the

animations are available on the book’s web site. All sequences courtesy of Ron

Rensink; see his discussion of change blindness for additional resources [287]. See

also the famous basketball example.

fact that details of an image cannot be remembered across separate scenes,
except in areas where viewers have focused their attention [402].

New research in psychophysics has shown that an interruption in what is
being seen (i.e., a blink, an eye saccade, or a blank screen) renders us “blind”
to significant changes that occur in the scene during the interruption. This
change blindness phenomenon can be illustrated using a task similar to a
game that has amused children reading the comic strips for many years
[244, 288, 325]. Figure 3.30 shows a pair of images from a series of movies
dealing with change blindness; each movie is made up of two separate images,
with a short blank interval separating them. A significant change occurs
between the two images. Run the movies on the book’s web site and try to
locate the change. Many viewers have a difficult time seeing any difference
and often have to be coached to look carefully to find it. Once they discover
it, they realize that the difference is not a subtle one. Change blindness is
not a failure to see because of limited visual acuity; rather, it is a failure
based on inappropriate attentional guidance. Some parts of the eye and the
brain are clearly responding differently to the two pictures. Yet this does
not become part of our visual experience until attention is focused directly
on the objects that vary.

The presence of change blindness in our visual system has important
implications for visualization. The images we produce are normally novel
for our viewers, so prior expectations cannot be used to guide their analyses.
Instead, we strive to direct the eye, and therefore the mind, to areas of
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interest or importance within a visualization. This ability forms the first step
towards enabling a viewer to abstract details that will persist over subsequent
images.

Dan Simons offers a wonderful overview of change blindness in his intro-
duction to the Visual Cognition special issue on change blindness and visual
memory [325]. We provide a brief summary of his list of possible explana-
tions for why change blindness occurs in our visual system. Interestingly,
none of these explanations by themselves can account for all of the change
blindness effects that have been identified. This suggests that some combi-
nation of these ideas (or some completely different hypothesis) is needed to
properly model this phenomenon.

Overwriting. One intuitive suggestion is that the current image is overwrit-
ten, either by the blank between images, or by the image seen after the
blank. Information that was not abstracted from the first image is lost. In
this scenario, detailed change can only be detected for objects the viewer
focuses on, and even then, only abstract differences may be recognized.

First Impression. A second hypothesis is that only the initial view of a scene
is abstracted. This is plausible, since the purpose of perception is to rapidly
understand our surroundings. Once this is done, if the scene is not perceived
to have changed, features of the scene should not need to be re-encoded. This
means that change will not be detected, except for objects in the focus of
attention. One example of this phenomenon is an experiment conducted
by Simons and Levin [323,324]. Subjects were asked to view a short movie.
During a cut scene in the movie, the central character was switched to a com-
pletely different actor. Subjects were not told to search for any unexpected
change in the movie (i.e., they were naive to the presence of the change).
After viewing the movie, subjects were asked if they noticed anything odd.
Nearly two-thirds of the subjects failed to report that the main actor was
replaced. When queried, 70% of the subjects who failed to see the change
described the central character using details from the initial actor, and not
the replacement. This suggests that their first impression of the actors was
the lasting one.

Nothing Is Stored. A third explanation is that after a scene has been viewed
and information has been abstracted, no details are represented internally.
This model suggests that the world itself acts as a memory store; if we need to
obtain specific details from the scene, we simply look at it again. A somewhat
weaker form of this model suggests that some detail is preserved between
scenes (e.g., the details of the objects in the viewer’s focus of attention). In



�

�

�

�

�

�

�

�

3.4. Perception in Visualization 109

this way, we are blind to change unless it affects our abstracted knowledge
of the scene, or unless it occurs where we are looking in the scene.

Everything Is Stored, Nothing Is Compared. Another intriguing possibility is
that details about each new scene are stored, but cannot be accessed until
an external stimulus forces the access. For example, if a man suddenly be-
comes a woman during a sequence of images, this discontinuity in abstracted
knowledge might allow us to access the details of past scenes to detect the
change. Alternatively, being queried about particular details in a past scene
might also produce the stimulus needed to access this image history. In
one study, an experimenter stops a pedestrian on the street to ask for di-
rections [325]. During this interaction, a group of students walks between
the experimenter and the pedestrian. As they do this, one of the students
takes a basketball that the experimenter is holding. After providing the di-
rections, the pedestrian is asked if anything odd or unusual changed about
the experimenter’s appearance. Only a very few pedestrians reported that
the basketball had gone missing. When asked specifically about a basket-
ball, however, more than half of the remaining subjects reported it missing,
and many provided a detailed description. For example, one pedestrian re-
ported, “Oh yeah, he did have a ball, it was red and white.” Not only was
the pedestrian able to recall the presence of the basketball when prompted;
he was also able to provide specific details about its unique appearance.

Feature Combination. A final hypothesis is that details from an initial view
might be combined with new features from a second view to form a combined
representation of the scene. Presumably, viewers would not be aware of
which parts of their mental image come from the first scene, and which
come from the second. The details being combined must make sense, and
must be consistent with the viewer’s abstract understanding of the scene;
otherwise, the change will be recognized as “impossible” or “out of place.”

3.4 Perception in Visualization

Figure 3.31 shows several examples of perceptually motivated multidimen-
sional visualizations:

1. A visualization of intelligent agents competing in simulated e-commerce
auctions: the x-axis is mapped to time, the y-axis is mapped to auction
(each row represents a separate auction), the towers represent bids by
different agents (with color mapped to agent ID), height is mapped to
bid price, and width is mapped to bid quantity.
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(a) (b) (c)

Figure 3.31. Examples of perceptually motivated multidimensional visualizations: (a) a visu-

alization of intelligent agents competing in simulated e-commerce auctions; (b) a

visualization of a CT scan of an abdominal aortic aneurism; (c) a painter-like

visualization of weather conditions over the Rocky Mountains.

2. A visualization of a CT scan of an abdominal aortic aneurism: yellow
represents the artery, purple represents the aneurism, and red repre-
sents metal tines in a set of stents inserted into the artery to support
its wall within the aneurism.

3. A painter-like visualization of weather conditions over the Rocky Moun-
tains across Utah, Wyoming, and Colorado: temperature is mapped
to color (dark blues for cold, to bright pinks for hot), precipitation is
mapped to orientation (tilting right for heavier rainfall), wind speed
is mapped to coverage (less background showing through for stronger
winds), and pressure is mapped to size (larger strokes for higher pres-
sure).

We briefly describe how perceptual properties of color, texture, motion,
and nonphotorealism have been used in visualization.

3.4.1 Color

Color is a common feature used in many visualization designs. Examples
of simple color scales include the rainbow spectrum, red-blue or red-green
ramps, and the grey-red saturation scale [383]. More sophisticated tech-
niques attempt to control the difference viewers perceive between different
colors, as opposed to the distance between their positions in RGB space.
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This improvement allows:

Perceptual balance. A unit step anywhere along the color scale produces a
perceptually uniform difference in color.

Distinguishability. Within a discrete collection of colors, every color is equally
distinguishable from all the others (i.e., no specific color is “easier” or
“harder” to identify).

Flexibility. Colors can be selected from any part of color space (e.g., the
selection technique is not restricted to only greens, or only reds and
blues).

Color models such as CIE LUV, CIE Lab, or Munsell can be used to
provide a rough measure of perceptual balance [30, 65, 260]. Within these
models, Euclidean distance is used to estimate perceived color difference.
More complex techniques refine this basic idea. Rheingans and Tebbs plot-
ted a path through a perceptually balanced color model, then asked viewers
to define how attribute values map to positions along the path [290]. Nonlin-
ear mappings emphasize differences in specific parts of an attribute’s domain
(e.g., in the lower end with a logarithmic mapping, or in the higher end with
an exponential mapping). Other researchers have constructed rules to auto-
matically select a colormap for a target data attribute [24,296]. Properties of
the attribute, such as its spatial frequency, its continuous or discrete nature,
and the type of analysis to be performed, are used to choose an appropriate
color representation. Ware constructed a color scale that spirals up around
the luminance axis to maintain a uniform simultaneous contrast error along
its length [383]. His solution matched or outperformed traditional color
scales for metric and form identification tasks. Healey and Enns showed that
color distance, linear separation, and color category must all be controlled
to select discrete collections of equally distinguishable colors [152, 153].

Figure 3.32 shows historical weather conditions over the eastern United
States for March, with color mapped to temperature (blue and green for
cold, to red and pink for hot), luminance mapped to wind speed (brighter
for stronger winds), orientation mapped to precipitation (more tilted for
heavier rainfall), size mapped to cloud coverage (larger for more cloudy),
and frost frequency mapped to density (denser for higher frost).

Healey’s color selection technique combines different aspects of each of
these methods. A single loop spiraling up around the Laxis (the luminance
pole) is plotted near the boundary of our monitor’s gamut of displayable
colors in CIE LUV space. The path is subdivided into r named color regions
(i.e., a blue region, a green region, and so on). Here, n colors can then be
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(a) (b)

Figure 3.32. Example of color representations for weather maps: (a) a nonphotorealistic vi-

sualization using simulated brush strokes to display the underlying data; (b) a

traditional visualization of the same data using triangular glyphs.

selected by choosing n/r colors uniformly spaced along each of the r color
regions. The result is a set of colors selected from a perceptually balanced
color model, each with a roughly constant simultaneous contrast error, and
chosen such that color distance and linear separation are constant within
each named color region (Figure 3.32).

3.4.2 Texture

Texture is often viewed as a single visual feature. Like color, however, it
can be decomposed into a collection of fundamental perceptual dimensions.
Researchers in computer vision have used properties such as regularity, di-
rectionality, contrast, size, and coarseness to perform automatic texture seg-
mentation and classification [145,285,286,345]. These texture features were
derived both from statistical analysis, and through experimental study. Re-
sults from psychophysics have shown that many of these properties are also
detected by the low-level visual system, although not always in ways that
are identical to computer-based algorithms [3,76,179–181,183,330,362,403].

One promising approach in visualization has been to use perceptual tex-
ture dimensions to represent multiple data attributes. Individual values of
an attribute control its corresponding texture dimension. The result is a
texture pattern that changes its visual appearance based on data in the un-
derlying data set. Grinstein et al. visualized multidimensional data with
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“stick-figure” icons whose limbs encode attribute values stored in a data
element [140]; when the stick-men are arrayed across a display, they form
texture patterns whose spatial groupings and boundaries identify attribute
correspondence. Ware and Knight designed Gabor filters that modified their
orientation, size, and contrast, based on the values of three independent
data attributes [382]. Healey and Enns constructed perceptual texture ele-
ments (or pexels) that varied in size, density, and regularity [151,152]; results
showed that size and density are perceptually salient, but variations in reg-
ularity are much more difficult to identify. More recent work found that
2D orientation can also be used to encode information [391]; a difference of
15 degrees is sufficient to rapidly distinguish elements from one another. A
follow-on to these studies showed that certain 3D orientation properties can
also be detected by the low-level visual system [237].

Interrante, Kim, and Hagh-Shenas have studied the use of different tex-
ture types and orientations for showing the shape of an underlying 3D ob-
ject. Initial experiments investigated textures that varied in luminance (e.g.,
greyscale patterns) [172, 173, 208]. More recent work has studied the use of
relief textures. The textures were arrayed over the surface using orienta-
tions that were either isotropic (e.g., all following a common direction), or
anisotropic (e.g., following different directions based on a property at that
point on the surface). Preliminary results suggest that anisotropic textures
that follow both the first or second principal curvature directions produce
surface perception that is as good or better than either principal direction
alone, or than other orientation rules [207].

3.4.3 Motion

Motion is a third visual feature that is known to be perceptually salient.
The use of motion is common in certain areas of visualization, for example,
the animation of particles, dye, or glyphs to represent the direction and
magnitude of a vector field (e.g., fluid flow visualization). Motion transients
are also used to highlight changes in a data set across a user-selected data
axis (e.g., over time for a temporal data set, or along the scanning axis for
a set of CT or MRI slices). As with color and texture, our interest is in
identifying the perceptual dimensions of motion and applying them in an
effective manner. Three motion properties have been studied extensively
by researchers in psychophysics: flicker, direction of motion, and velocity of
motion.

For visualization purposes, our interest is in flicker frequencies F (the
frequency of repetition measured in cycles per second) that are perceived as
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discrete flashes by the viewer. Brown noted that frequency must vary from
2–5% to produce a distinguishable difference in flicker at the center of focus
(1.02 ≤ Δ F ≤ 1.05), and at 100% or more for distinguishable difference in
flicker in the periphery (Δ F ≥ 2.0) [39, 122,257].

Tynan and Sekuler showed that a decrease in a target object’s velocity
or an increase in its eccentricity increased identification time [367], although
in all cases viewers responded rapidly (200–350 msec for targets in the pe-
riphery, 200–310 msec for targets in the center of focus). In addition, van
Doorn and Koenderink confirmed that higher initial velocities produce a
faster response to a change in the velocity [163, 250, 372, 373]. They claim
this is due to the need for the target to traverse a “critical distance” before
it can be detected. For a baseline velocity V1 and a target velocity V2 = 2V1,
approximately 100 msec is needed to see the velocity change from V1 to V2

for slow V1 (1◦ per second) and approximately 50 msec for faster V1 (2◦ per
second or higher).

Researchers in psychology have used properties of motion to extend a
viewer’s ability to perform basic exploration tasks. Nakayama and Silverman
showed that coherent motion or stereoscopic depth can be used to separate
elements into coherent groups, allowing viewers to search each group inde-
pendently [263]. For example, consider searching for a red circle in a back-
ground of red squares and blue circles, a situation that normally produces a
time-consuming serial search for the target. If the red elements are animated
to move up and the blue elements are animated to move down, however, the
target is immediately visible. Applying different motion patterns to the red
and blue groups allows a viewer’s visual system to separate them and search
them independently, producing the rapid search for a curved element (a red
circle) in a background of linear elements (red squares). Similar results can
be achieved by displaying the red and blue elements on different stereoscopic
planes. Driver et al. showed that oscillation can also be used to separate
elements into independent visual groups, but only if the oscillation pattern
is coherent [86]. For example, a viewer could identify a red circle in a set
of red squares and blue circles if all the red items oscillate up and down
in lock step, and all the blue elements oscillate left and right in lock step.
If the elements oscillate “out of phase,” however (i.e., some red elements
start moving down while others are still moving up), viewers are forced to
revert to serial search. More sophisticated motion patterns have also been
analyzed, although with less success in terms of achieving high-speed search
performance. Braddick and Holliday studied both divergence (e.g., squares
increase or decrease in size over a period of time, then snap back to their
original size) and deformation (e.g., rectangles deform from tall and skinny
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to short and wide, then snap back to their original shape) [33]. Although the
basic motion properties being shown can be rapidly identified in isolation,
the combinations that form deformation and divergence were not detected
by the low-level visual system. See also the iconic extensions to pixels called
moxels [414].

Properties of motion have been extended to visualization design. Ani-
mated motion is used in flow visualization to show the direction and speed
of different flow patterns (e.g., by Kirby [210]). Kerlick proposed the use of
animated glyphs to visualize 2D and 3D multidimensional data sets [206].
He designed a set of “boids” to encode attribute values at specific locations
in the data set, for example, a sphere boid to query data values at a user-
selected location, or pyramid and dart boids that animate over a vector field
to visualize its shape. Bartram et al. studied the use of variations in color,
shape, and motion to “notify” viewers while they were engaged in a sepa-
rate, attention-demanding task [18]. Results showed that applying motion
to a static glyph significantly eased recognition, compared to changing the
glyph’s color or shape. This finding held both when the glyph was near the
center of focus and when it was located on the periphery of the viewer’s
gaze. The authors also studied how distracting a secondary motion cue was
judged to be. Flicker was the least distracting, followed by oscillating mo-
tion, then divergence, and finally movement over long distances. Related
work by Bartram et al. confirmed that different motion paths can be used
to perceptually group glyphs in a manner similar to the work of Nakayama
and Silverman [263] or Driver et al. [19]. The groups can then be searched
independently for a target feature.

3.4.4 Memory Issues

Three types of memory are relevant to our study of perception in visualiza-
tion:

Sensory memory. Sensory memory is high capacity information storage. It is
effectively preattentive eye filters. Large quantities of information are
processed very fast (less than 200 msec). Such learning is physical and
can be harnessed by repeated actions. This explains the importance,
for example, of positional learning in typing or playing piano (it feels
almost as if the memory is in the hand and fingers).

Short-term memory. Short-term memory analyzes information from both
sensory and long-term storage. It has limited information capacity.
It occurs at a high level of processing, but the time span is limited
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typically to less than 30 seconds. It represents the beginning of think-
ing. It can be harnessed by grouping and repetition, by not requiring
users to remember too many things, and by chunking. The chunks are
grouped objects remembered as a unit, with the number limited to 5
to 9 (see Section 3.5).

Long-term memory. Long-term memory is complex and theoretically limit-
less, much like a data warehouse. This storage is multicoded, redun-
dantly stored, and organized in a complex network structure. Infor-
mation retrieval is a key problem and access is unreliable and slow. It
can be harnessed by using association mnemonics and chunking.

The following was distributed as an example highlighting how memory
supported the quick scanning of words in a document, showing that not all
letters are needed.

Rinadeg Oedrr

Aoccdrnig to a rscarhee at Cigdmabre Uinervtisy, it deosn’t mte-
tar in waht oredr the ltteers in a wrod are, the olny iprmoatnt
tihng is taht the frist and lsat ltteer be at the rghit pclae. The
rset can be a taotl mses and you can sitll raed it wouthit porbelm.
Tihs is bcuseae the huamn mnid deos not raed ervey lteter by
istlef, but the wrod as a wlohe.

In the next section we will see how memory can play a part in studying
a visualization.

3.5 Metrics

How many distinct line lengths and orientations can humans accurately per-
ceive? How many different sound pitches or volumes can we distinguish with-
out error? What is our “channel capacity” when dealing with color, taste,
smell, or any other of our senses? How are humans capable of recognizing
hundreds of faces and thousands of spoken words? These and related issues
are important in the study of data and information visualization. When
designing a visualization, it is important to factor in human limitations to
avoid generating images with ambiguous, misleading, or difficult-to-interpret
information. Many efforts have been made to try and ascertain these limits,
using experiments that test human performance on measuring and detecting
a wide assortment of sensed phenomena. This section presents an overview
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of some early seminal work on measuring perceptual capabilities and relate
it to current work in data visualization. The sorts of questions we would like
to be able to answer include:

• What graphical entities can be accurately measured by humans?

• How many distinct entities can be used in a visualization without con-
fusion?

• With what level of accuracy do we perceive various primitives?

• How do we combine primitives to recognize complex phenomena?

• How should color be used to present information?

The answers to these and other questions will enable us to design more
effective visualizations, and to have a better understanding of how accurately
we are communicating information with the visualization.

3.5.1 Resource Model of Human Information Processing

To be able to measure and compare human perceptual performance on var-
ious phenomena, one needs a metric, a gauge or yardstick that can reliably
evaluate performance and associate numbers with the results of testing a
group of subjects. George Miller, in 1956 [255], borrowed the concept of
channel capacity from the field of information theory. Suppose that we as-
sume the human being is a communication channel, taking input (perceiv-
ing some phenomena) and generating output (reporting on the phenomena).
The overlap between input and output is the information about the phenom-
ena that has been perceived correctly, and is thus the amount of transmitted
information.

For each primitive stimulus, whether it be visual, auditory, taste, touch,
or smell, we measure the number of distinct levels of this stimulus that the
average participant can identify with a high degree of accuracy. The results
will follow an asymptotic behavior, e.g., at a certain point, increasing the
number of levels being used causes an increase in the error rate, and no
additional information will be extracted from the source stimulus. Miller
called this level the “channel capacity” for information transfer by the hu-
man. He measured it in bits (borrowing again from information theory),
depending on the number of levels that the average human could measure
with high accuracy. Thus if errors routinely begin when more than 8 levels
of a phenomenon are tested, the channel capacity for this phenomenon is 3
bits.
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As in all experiments involving human subjects, it is important to estab-
lish controls, so that only the single isolated phenomenon is being tested.
Training time must therefore be limited, as some individuals can fine-tune
their perceptual abilities much faster than others. For the same reason, we
need to avoid including the results from specialists. Clearly, a musician will
likely be more able to accurately perceive sound pitches than the average
subject, and a cartographer or navigator will be able to identify spatial fea-
tures more readily than someone who does spatial analysis less frequently.
Related to this is the aspect of context ; it is very important to design percep-
tual experiments to be as context-free as possible, as we don’t want to bias
the results via associations and factors that have little to do with perception.
Finally, the experimental data should be free of error and noise; while real
data and phenomena are rarely noise-free, it is difficult to obtain accurate
measurements from data of variable quality.

There are many other guidelines for the design of perceptual experiments.
This section, and the contents of the rest of the chapter, are merely meant to
illustrate the general procedure for conducting this sort of analysis. Those
wishing to understand the process in more detail are directed to the literature
in perceptual psychology, social sciences, and human factors analysis.

3.5.2 Absolute Judgment of 1D Stimuli

A large number of experiments have been performed over the years to ascer-
tain the ability of humans to judge absolute levels of different stimuli. In this
section, we summarize a number of these experiments (from [255]) in terms
of the number of bits in the channel capacity of humans, as defined earlier.
For each, we provide the name of the researcher, the experimental set-up,
and the number of levels that could, on average, be accurately measured.

1. Sound pitches (Pollack): Subjects were exposed to sets of pitches at
equal logarithmic steps (from 100–8000 cps). The result was that the
average listener could reliably distinguish 6 pitches. Varying the range
didn’t change the results appreciably; subjects who correctly classified
5 high pitches or 5 low pitches could not accurately classify 10 when
combined. This is a channel capacity of 2.5 bits.

2. Sound loudness (Gardner): In another auditory experiment, the loud-
ness of a sound was varied between 15–110 dbs. On average, 5 levels
were accurately discerned, for a capacity of 2.3 bits.

3. Salinity (Beebe-Center): Taste perception had similar results. By vary-
ing salt concentrations from 0.3 to 34.7 gm per 100 cc water, subjects



�

�

�

�

�

�

�

�

3.5. Metrics 119

were found to be able to distinguish just under 4 levels, on average,
corresponding to a capacity of 1.9 bits.

4. Position on a line (Hake/Gardner): In an experiment much more rel-
evant to data visualization, this experiment varied the position of a
pointer located between two markers. Participants attempted to clas-
sify its position either from a list of possibilities or on a scale of 0 to
100. Most subjects were able to correctly label between 10 and 15
levels, though this increased with longer exposure. This corresponds
to a channel capacity of 3.25 bits.

5. Sizes of squares (Eriksen/Hake): In another graphics-related experi-
ment, the size of squares was varied. Surprisingly, the capabilities of
humans to accurately classify the sizes was only between 4 and 5 levels,
or 2.2 bits.

6. Color (Eriksen): As color is often used to convey information in vi-
sualizations, it is important to understand how well this attribute is
perceived. In experiments that varied single color parameters, it was
found that users could correctly classify 10 levels of hue and 5 levels
of brightness, or 3.1 and 2.3 bits, respectively.

7. Touch (Gelard): In this unusual experiment, vibrators were placed at
different locations on the chest area. Several parameters were varied
individually, including location, intensity, and duration. The results
estimated the capacity at 4 intensities, 5 durations, and 7 locations.

8. Line geometry (Pollack): Lines have many attributes that can be used
to convey information. In this experiment, line length, orientation,
and curvature were tested. The results were: 2.6–3 bits for line length
(depending on duration), 2.8–3.3 bits for orientation, and 2.2 bits for
curvature with constant arc length (while only 1.6 bits for constant
chord length).

To summarize these experiments, there appears to be some built-in limit
on our capability to perceive and accurately measure 1D signals. The average
from these experiments was 2.6 bits, with a standard deviation of .6 bits.
This means that if we want users of our visualization systems to be able to
extract more than 6 or 7 levels of a data value with accuracy, we must look
at other means.
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3.5.3 Absolute Judgment of Multidimensional Stimuli

One solution to the dilemma regarding this limitation on the number of levels
of a data value that can be accurately measured is to use more than one
stimulus simultaneously. A logical assumption would be that if we combine
stimulus A, with a channel capacity of CA bits (or 2CA levels), and stimulus
B, with a channel capacity of CB bits (or 2CB levels), we should get a
resulting capacity of approximately CA + CB , or the product of the two
numbers of levels. Unfortunately, experiments have shown otherwise:

1. Dot in a square (Klemmer/Frick): Given that a dot in a square is
actually two position measurements (vertically and horizontally) we
should get a capacity that is twice that of gauging the position of a
marker on a line (6.5 bits), but it was measured at 4.6 bits.

2. Salinity and sweetness (Beebe-Center): In an experiment that com-
bined sucrose and salt solutions, the total capacity should have been
twice that of measuring salinity alone, or 3.8 bits. However, it was
measured at 2.3 bits.

3. Loudness and pitch (Pollack): The combination of two auditory chan-
nels should have produced a capacity equal to the sum of the results
for pitch and loudness in isolation, or 4.8 bits, but it was measured at
3.1 bits.

4. Hue and saturation (Halsey/Chapanis): Combining hue and saturation
should have resulted in a capacity of 5.3 bits, but it was measured at
only 3.6 bits.

5. Size, brightness, and hue (Eriksen): In an experiment combining ge-
ometry and color, the size, hue, and brightness of shapes were varied.
The sum of the individual capacities is 7.6 bits, but a capacity of only
4.1 bits was observed.

6. Multiple sound parameters (Pollack/Ficks): In a very ambitious exper-
iment, 6 auditory variables (frequency, intensity, rate of interruption,
on-time fraction, duration, and location) were varied. As individual
stimuli, each had a capacity of 5 values, so the results should have
been 15,600 combinations that could be accurately discerned. How-
ever, the results were only 7.2 bits of channel capacity, or 150 different
combinations.
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To summarize, combining different stimuli does enable us to increase the
amount of information being communicated, but not at the levels we might
hope. The added stimuli resulted in the reduction of the discernibility of the
individual attributes. With that said, however, having a little information
about a large number of parameters seems to be the way we do things. This
agrees with linguistic theory, which identifies 8 to 10 dimensions, where each
can only be classified in two or three categories.

We now look at strategies for improving the the information content of
data visualizations by taking advantage of alternative perceptual skills.

3.5.4 Relative Judgment

William Cleveland and his colleagues have performed a number of experi-
ments in graphical perception to better understand the ways information can
be communicated via images [67]. Their emphasis, rather than on absolute
measurement (classification), was on relative judgment. Thus, the task they
were interested in was the detection of differences, rather than extracting
a numeric value. In Figure 3.33, it is much easier to detect and gauge the
change in heights when the bars are surrounded by a box (a relative change).

They studied how well humans gauge differences using the following 10
graphical attributes (shown in Figure 3.34):

1. angle;

2. area;

3. color hue;

4. color saturation;

Figure 3.33. The boxes on the left are not the same size, but it is difficult to estimate the magni-

tude of the difference. The same boxes are shown on the right. The encapsulating

frame makes it easier to gauge the relative difference between them.
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Figure 3.34. Examples of graphical attributes used in perceptual experiments. Left column

(from top): length, angle, orientation, hue. Right column: area, volume, position

along a common scale, position along identical, nonaligned scales.

5. density (amount of black);

6. length (distance);

7. position along a common scale;

8. position along identical, nonaligned scales;

9. slope;

10. volume.

Their experiments showed errors in perception ordered as follows (in-
creasing error):

1. position along a common scale;

2. position along identical, nonaligned scales;

3. length;

4. angle/slope (though error depends greatly on orientation and type);

5. area;

6. volume;

7. color hue, saturation, density (although this was only informal testing).
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Figure 3.35. Illustration of Stevens’ Law. The size ratio for each pair is 1:4. This magnitude

is readily apparent in the lines, but it is easily underestimated in the squares and

cubes.

This seems to support the idea that bar charts and scatterplots are ef-
fective tools for communicating quantitative data, as they both depend on
position along a common scale. It also suggests that pie charts are probably
not as effective a mechanism, as one is either judging area or angles.

Two important principles came into play with these experiments. The
first, named Weber’s Law , states that the likelihood of detecting a change
is proportional to the relative change, not the absolute change, of a graph-
ical attribute. Thus, the difference between a 25-centimeter line and a 26-
centimeter line should be no easier to perceive than the difference between a
2.5- and a 2.6-centimeter line. This means that simply enlarging an object
or otherwise changing the range of one of its attributes will not, in general,
increase its effectiveness at communicating information.

A second useful principle, known as Stevens’ Law , states that the per-
ceived scale in absolute measurements is the actual scale raised to a power.
For linear features, this power is between 0.9 and 1.1; for area features, it
is between 0.6 and 0.9, and for volume features it is between 0.5 and 0.8.
This means that as the dimensionality of an attribute increases, so increases
the degree at which we underestimate it. This implies that using attributes
such as the volume of a three-dimensional object to convey information is
much less effective and much more error-prone than using area or, better
yet, length (see Figure 3.35).

3.5.5 Expanding Capabilities

The experiments described in the previous three sections indicate that our
abilities to perceive various stimuli, and graphical phenomena in particular,
is fairly limited. If we need to communicate information with a higher ca-
pacity, we must investigate strategies for expanding our capabilities. One
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way, as illustrated in the previous section, is to try and reconfigure the com-
munication task to require relative, rather than absolute, judgment. Thus,
in many cases, we can supplement a visualization so that the viewer just
needs to gauge whether an item’s attribute is greater than, less than, or
equal to some other item’s attribute. This is why adding grid lines and axis
tick marks is a useful and powerful addition to a visualization.

We can also increase capacity by increasing the dimensionality, as seen
in the experiments on multiple stimuli. In most cases, adding another stim-
ulus will lead to larger bit rates. However, there is likely to be a limit to
the number of dimensions that can be reasonably managed. This span of
perceptual dimensionality, according to Miller [255], is hypothesized to be
about 10. Another problem with this solution is that in graphics there are a
limited number of parameters that we can use (color, size, position, orienta-
tion, line/fill style, and so on), although when we discuss glyphs in Chapter 7
we will examine efforts to pack many more dimensions into the components
of a composite graphical entity.

Another potential strategy is to reconfigure the problem to be a sequence
of different absolute judgments, rather than simultaneous stimuli. In this
manner, we might be able to overcome some of the loss of capacity that was
shown in the experiments on measuring multiple stimuli. If the viewer is
directed to examine a sequence of visualizations and compose the measure-
ments from each, we may be able to achieve an improved communication
rate. This leads to the analysis of immediate memory.

3.5.6 The Relationship to Immediate Memory

Many studies have examined human memory performance. Immediate (short-
term) memory is used for very short-term recall, often immediately after a
stimulus has been received. Many games have been devised that are based
on one’s immediate memory skills. Studies have shown the span of immedi-
ate memory to be approximately 7 items. In other words, people, in general,
can remember with accuracy a sequence of 7 or so stimuli. One question
that might arise is whether this is related to our span of absolute judgment,
as the capacities are similar.

The answer is that they are unrelated. Absolute judgment is limited
by the amount of information, while immediate memory is limited by the
number of items, no matter how complex. Thus, they are measurements
at different granularities; absolute judgment is measured in bits correspond-
ing to distinct levels, while immediate memory involves chunks of varying
size or complexity. Several experiments involving binary digits, decimal dig-
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its, letters, syllables, words, and mixtures have shown that the number of
chunks that can be remembered is relatively constant. An interesting obser-
vation is that we can remember 6 or so monosyllabic words, but also 6 or so
multisyllabic words.

It is conjectured that we “chunk” things at the largest logical unit. But
what is that logical unit? Can we increase its complexity to increase our
capacity? This process is known as recoding.

3.5.7 The Role of Recoding

Recoding is the process of reorganizing information into fewer chunks, with
more bits of information per chunk. For example, in the process of learning
Morse code, one starts by connecting patterns of dots and dashes into letters,
and then longer patterns into words. This process is also found in other
avenues of learning, including music and dance. A similar concept, known
as compilation, can be found in the artificial intelligence field as a form of
machine learning.

Many experiments have been designed to study the ability of humans
to recode information in this manner. Experiments in recalling long strings
of binary digits show nearly linear improvement with chunk size. In other
words, remembering a sequence of N individual binary digits is comparable
to the effort of remembering a sequence of N binary digit chunks of length
2 or 3.

One problem is that the way we perform recoding differs from person to
person. We remember events by creating a verbal recoding of what we saw,
and then elaborate from this coded version. This accounts for variations in
witness testimonies to a crime or accident; in the recoding process, differ-
ent aspects are chunked together, and depending on the complexity of the
chunks, it may be difficult to recall exact details (we are convinced that our
particular decoding is a very accurate depiction of what took place). It also
explains how people can change their appearance fairly dramatically (make
a major change in hair style, switch from glasses to contacts, gain or lose
significant weight) and have it go unnoticed by friends and colleagues. As
long as the new attributes fit within the decoded memories, the change may
not be detected.

3.5.8 The Role of Focus and Expectation

Related to the use of multiple data coding attributes and sequences of de-
cisions is the work reported by Chapman [55], who observed that in images
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with multiple attributes, but with observers only reporting on one, prior no-
tification of focus resulted in significantly better results than post selection
of focus. This may seem obvious, but it is important, as it indicates that
people do better when focusing on a single attribute at a time. Recall from
the experiments on judging multiple stimuli that the performance was worse
(often much worse) than the combination of the capacities of the individual
stimuli. Chapman’s work indicates that if the user can focus attention on a
small set of attributes (or one attribute), he or she can reduce the influence
of the attributes that are outside of the focus group. Thus, if viewers can be
trained to look for certain features in isolation and have forewarning as to
what those features should be, their performance can be improved. If users
are uninformed as to the features containing the most relevant information,
it is less likely that they will be able to extract the desired information at
the desired accuracy.

This seems directly related to change blindness, an attempt to probe the
types of visual representations being built when looking at a scene. The
visual system makes assumptions to fill in details outside of the focus of
attention. For example, if no motion transient is seen, the visual system
may assume that the scene is static. This explains why one can “miss” a big
change in a location not being focused on during an eye saccade.

If this theory is accurate, pre-focusing the viewer on a particular feature
or feature-value would help, as one would only need to build one Boolean
map to search for and/or identify what is being looked for (the target).
Without prefocusing, one would build maps with some other priority, possi-
bly building and discarding multiple maps until one hits on the right one.

3.5.9 Summary on Metrics

Many factors are involved in communicating information via the human
perceptual system. The span of absolute judgment and immediate memory
limits our ability to perceive information accurately. We can expand this
ability by reformatting into multiple dimensions or sequences of chunks. We
can also take advantage of the fact that our ability to perform relative judg-
ment (detection) is more powerful than our absolute (measured) judgment
abilities.

In terms of the implications to data visualization, for applications where
absolute judgment is required, the best we can do with a single graphical
attribute is between 4 and 7 values. To get a larger range of recognizable
levels, we must repose the problem in multiple dimensions, do a sequence of
simple decisions, or perform some type of chunking.
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Alternatively, we could redefine the problem in such a way that relative,
rather than absolute, judgment could be used to focus attention, with a
second, more quantitatively accurate, stage following the initial focus of
attention.

3.6 Related Readings

Parts of the section on metrics came from the excellent article by George
Miller, “The Magic Number Seven, Plus or Minus Two: Some Limits on our
Capacity for Processing Information” [255].

More recent work on graphical perception is from the chapter entitled
“Graphical Perception” in William S. Cleveland, The Elements of Graphing
Data [67].

Work on AI and cognition include, Kurzweil, The Age of Spiritual Ma-
chines [226] and Looks et al., “Novamente: An Integrative Architecture for
Artificial General Intelligence” [239].

3.7 Exercises

1. List the features you believe you use in recognizing a friend by sight
and/or by sound. How might you use related features to communicate
a data set?

2. Design an experiment that would integrate an eye tracking study with
a target discovery test.

3. Design an experiment to identify which is better for visualizing a linear
pattern in a large data set: a simple point plot, or a point plot where
the points are circular, rectangular, colored, or vibrating. Guess at the
outcome.

4. Since about 8% of males are color deficient [235] (with less than 1 %
for females) mostly in the red and green ranges, how would you deal
with color in the display of a scatterplot?

3.8 Projects

1. Take the scatterplot code you’ve written. Consider some perceptual
attribute you’ve read about and are interested in. Generate a display
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for a perceptual study, say a target (one objector or a pattern) to be
identified within an area of distractors. Ask a few classmates if they
can easily identify the target.

2. Write a program to reproduce one of the perceptual experiments, vary-
ing either a single graphical attribute or multiple ones. Start with two
or three values for a given attribute, and increase this number until you
(or a willing friend) start making errors over a short sequence of sam-
ples. Describe what feature you are testing, whether you are testing
for absolute or relative judgment, and what your results are.

3. Using the VIAT Windows-based software available on the book’s web
site, design an experiment for some of the perceptual features described
in this chapter.
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CHAPTER 4

Visualization Foundations

We have now covered the start and the end of the visualization pipeline
(see Figure 4.1), namely getting data into the computer, and, on the human
side, how perception and cognition help us interpret images. We have looked
at one fundamental visualization, namely the scatterplot. There are many
other visualization techniques and systems (see some examples in Table 4.1).
To make sense of them we need to organize methods into categories or tax-
onomies. This is necessary for us to structure our study of the field. We first
review the visualization pipeline and then discuss various ways to view the
multitudes of techniques and systems that have been developed to date.

4.1 The Visualization Process in Detail

Let’s review the steps that need to be taken to define a visualization of
data. Figure 4.1 is our reference visualization process. Most visualization

Figure 4.1. Our reference visualization pipeline. (Image modified from [47].)

129
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Apt Graphviz Parallel coordinates Star Coordinates
Attribute Explorer gViz Parallel sets Tableau
Bifocal display H3Viewer Perspective wall Tablelens
Chat circle Heatmaps Photomesa Tag cloud
Chernoff faces Hyperbolic trees Piccolo Tango
Cone trees Informational mural Polka Tarantula
Cviz Inxight PV-WAVE Textarc
Data mountain ITK Radvis Thebrain
Dendrograms Jigsaw Scatterplot matrix ThemeMap
Disk tree Kohonen maps Second life Tilebar
Document lens Lifelines Seeit Treemap
Excentric labeling Magic lens Seenet Trellis
Film finder Map of science Seesoft VIBE
Fisheye views Occulus Sequoia view VTK
Fluid text Omniviz Spotfire WebBook
Galaxy OpenDX Star plot XmdvTool
GGobi Palantir Sunburst UVP

Table 4.1. Visualization tools, packages and systems.

pipelines and systems map easily to these stages. Any transformation or
computation can be placed at any of the stages. We selected this as the
simplest representation of the process. We also note two key points: user
interaction ideally takes place at any point in this pipeline (nodes and links),
and each link is a many-to-many mapping. For example, many visualization
systems have multiple visualizations at the same time on the screen, and
thus have multiple representation mappings and corresponding renderings.
We now focus on the transformations and processes that alter the data.

Data preprocessing and transformation. The starting point is to process the
raw data into something usable by the visualization system. The first part
is to make sure that the data is mapped to fundamental data types for com-
puter ingestion. The second step entails dealing with specific application
data issues such as missing values, errors in input, and data too large for
processing. The data may be simulated or sampled. Missing data may re-
quire interpolation. Large data may require sampling, filtering, aggregation,
or partitioning.

Mapping for visualizations. Once the data is clean, we can decide on a spe-
cific visual representation. This requires representation mappings: geometry,
color, and sound, for example. It is easy to simply develop a nonsense visu-
alization, or one that conveys the wrong information. Figure 4.2(a) shows
an improper use of a bar chart. By having the bars extend over each of the
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(a) (b)

Figure 4.2. (a) Poor use of a bar chart. (b) Better use of a scatterplot.

x-coordinate tick marks, there is an implication that the x-coordinate is in-
volved, when no such association occurs. For example, the Volvo, second row
from the bottom, cuts across several x-values (USA, Japan, Germany, . . . )
until it gets to Sweden. A better representation is the one in Figure 4.2(b),
but even that one can be significantly improved.

Crucial influences on the visualization of data sets are expressiveness and
effectiveness. It is an interesting exercise to develop measures or metrics for
expressiveness and effectiveness; after all, we do use them as measures.

Rendering transformations. The final stage involves mapping from geometry
data to the image. This includes interfacing with a computer graphics Appli-
cation Programmer’s Interface (API). We need to select the viewing param-
eters, shading technique if 3D, device transformations (for display, print-
ers, . . . ). This stage of the pipeline is very dependent on the underlying
graphics library. In Appendix C and on the book’s web site, we have pro-
vided examples using OpenGL, Processing, Java, and Flex. There are many
others.

We have already precisely defined measures and distance metrics. We
now define two measures of visualizations mathematically. Such measures
and modifications can actually be applied at all stages of the pipeline. This is
becoming increasingly important as we want to measure information trans-
fer. The measures of visualization are:

Expressiveness. An expressive visualization presents all the information, and
only the information. Expressiveness thus measures the concentration
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of information. Given information that we actually display to the user,
we can define one measure of expressiveness as the ratio Mexp of that
information, divided by the information we want to present to the user.
We have 0 ≤ Mexp ≤ 1. If Mexp = 1 we have ideal expressiveness. If
the information displayed is less than that desired to be presented,
then Mexp < 1. If Mexp > 1, we are presenting too much information.
Expressing additional information is potentially dangerous, because it
may not be correct and may interfere with the interpretation of the
essential information. Such a measure of expressiveness may be ex-
tended to include various sets of information, in which case it becomes
a function on sets (see projects).

Effectiveness. A visualization is effective when it can be interpreted accu-
rately and quickly and when it can be rendered in a cost-effective
manner. Effectiveness thus measures a specific cost of information
perception. We can define a measure of effectiveness Meff as some
ratio similar to that for expressiveness. However it is a bit more com-
plex. What we want is a measure such that for small data sets we
measure interpretation time (since rendering is usually very fast) and
when that time increases, either due to the increasing complexity or
the size of the data set, Meff decreases, emphasizing the rendering time.
We define

Meff = 1/(1 + interpret + render).

We then have 0 < Meff ≤ 1. The larger Meff is, the greater the visu-
alization’s effectiveness. If Meff is small, then either the interpretation
time is very large, or the rendering time is large. If Meff is large (close
to 1), then both the interpretation and the rendering time are very
small.

Figures 4.3(a) and 4.3(b) show displays for which Eexp can be consid-
ered very close, if not identical, for the task of presenting the car prices
and mileage for 1979; both display all the information, and only the infor-
mation, and both can be rendered quickly (there’s very little data to be
displayed). However, Eeff is different. The information in Figure 4.3(b) can
be interpreted more accurately or more quickly than that in Figure 4.3(a)
for some questions. For example, which car has the best mileage? However,
if we ask which car has the best mileage under $11,000, Figure 4.3(b) is
less efficient.
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(a) (b)
Figure 4.3. (a) Scatterplot using plus as symbol provides good query-answering capabilities,

but is slower for simple one variable queries. (b) Bar charts clearly display cost and

mileage, but don’t provide as much flexibility in answering some other queries.

4.2 Semiology of Graphical Symbols

We consider a visual object called a graphical symbol. Figure 4.4 is an ex-
ample. Such symbols are easily recognized. They often make up parts of
visualizations (arrows, labels, . . . ). We will look at how a graphical ob-
ject or representation can be well designed, and how it is perceived. The
science of graphical symbols and marks is called semiology. Every possible
construction in the Euclidean plane is a graphical representation made up
of graphical symbols. This includes diagrams, networks, maps, plots, and
other common visualizations. Semiology uses the qualities of the plane and
objects on the plane to produce similarity features, ordering features, and
proportionality features of the data that is visible for human consumption.

There are numerous characteristics of visualizations, of images, or of
graphics made up of symbols. We describe some of these in the following
sections.

4.2.1 Symbols and Visualizations

Figure 4.4(a) contains an image that is universally recognizable (yield sign).
Such images become preattentively recognizable with experience. Figure 4.4(b),
on the other hand, requires a great deal of attention to understand; the first
steps are to recognize patterns within that figure.

Figure 4.4(a) is perceived in one step, and that step is simply an associ-
ation of its meaning. Figure 4.4(b) takes two steps for understanding. The
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(a) (b)

Figure 4.4. (a) Symbol with obvious meaning. (b) Representation with complex meaning.

first identifies the major elements of the image, with the second identifying
the various relationships between these. With attentive effort, the symbols
are perceived (transferred from long-term memory). Patterns, mostly sub-
sets of groups or information having perceptual or cognitive commonality,
are extracted from the overall image. The last step is identifying the most in-
teresting things (such as the most interesting point clusters, genes, countries,
or products), that is, those having the most interesting or special features.

Important: Without external (cognitive) identification, a graphic is unus-
able. The external identification must be directly readable and understand-
able. Since much of our perception is driven by physical interpretations,
meaningful images must have easily interpretable x-, y-, and z-dimensions
and the graphics elements of the image must be clear.

Discovery of relations or patterns occurs through two main steps. The
first is a mapping between any relationship of the graphic symbols and the
data that these symbols represent. In other words, any pattern on the screen
must imply a pattern in the data. If it does not, then it is an artifact of
the selected representation (and is disturbing). This can happen. Similarly,
any perceived pattern variation in the graphic or symbol cognitively implies
such a similar variation in the data. The same is true for ordering. Any
perceived order in graphic symbols is directly correlated with a perceived
corresponding order between the data, and vice versa. If some order pops
out visually and such an order is not present in the data, we are mislead. In
summary:

• similarity in data structure ⇐⇒ visual similarity of corresponding
symbols;

• order between data items ⇐⇒ visual order between corresponding
symbols.
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Figure 4.5. Matrix representation of a set of relationships between nodes in a graph. The size

represents the strength of the relationship.

4.2.2 Features of Graphics

Graphics have three (or more) dimensions. Figure 4.5 shows a matrix with
points of various sizes within each cell. Every point of the graphic can be
interpreted as a relation between a position in x and a position in y. The
points vary in size, providing a third dimension or variable to interpret.
In effect, this can be considered a value in z. This produces a one-to-one
correspondence between a 3D view with height and a 2D view with size,
thus different interpretations for the z value. Several relationships pop out,
such as the size of the circles along the diagonal (the circles in the upper
right are larger than those in the lower left). The set of all points either in
the 2D or 3D image represents the totality of the relations among the three
dimensions x, y, and z, and any patterns present imply a pattern in the
data.

When looking at Figure 4.6, we immediately see two tree branches. The
eye sees either branch independent from the number of its leaves. The graphic
can contain a very large number of single data items, themselves graphics,
with the only possible limitations being technical ones, such as making sure
that the various graphic symbols are distinguishable from each other. But
even then, perhaps the texture resulting from the en masse number of sym-
bols may produce an object of interest. The eye can preattentively see the
various distributions of symbols. As we saw in the previous chapter, the eye
can be directed towards specific elements or groups of elements in an image,
while registering spontaneously the three levels of information.
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Figure 4.6. We identify the tree as the dominant feature of this image, rather than the indi-

vidual parts that make up the tree.

Rules of a graphic. All graphics are represented on the screen. All objects
will be interpreted as flat (in 2D) or as physical objects (in 3D). As we saw
in Chapter 3, any perceptual interpretation of the data will assume that the
graphic represents parts of a 3D scene. So 3D is the medium by which we
need to interpret the graphic.

We can identify some fundamental rules:

1. The aim of a graphic is to discover groups or orders in x, and groups
or orders in y, that are formed on z-values;

2. (x, y, z)-construction enables in all cases the discovery of these
groups;

3. Within the (x, y, z)-construction, permutations and classifications solve
the problem of the upper level of information;

4. Every graphic with more than three factors that differs from the
(x, y, z)-construction destroys the unity of the graphic and the upper
level of information; and

5. Pictures must be read and understood by the human.
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Analysis of a graphic. In Chapter 3, we discussed perception and cognition.
When analyzing a graphic, we first perceive groups of objects (preatten-
tively). We then attempt to characterize these groups (cognitively). Finally,
we examine special cases not within the groups or relationships between the
groups (combination of both). This process can be done at many levels
and with many different visualizations. Supporting analysis plays a signifi-
cant role (for example, we can cluster the data and show the results of the
computation, hence speeding up the likely perception of groups).

4.3 The Eight Visual Variables

The application of graphics to communicate information requires an under-
standing of graphic primitives and their properties. For the most part, all
graphic primitives will be termed marks. One way to encode data for display
is to map different data values to different marks and their attributes. How-
ever, marks by themselves do not define informative displays, since all the
marks would simply obscure all previously drawn marks; it is only through
the spatial arrangement of marks that informative displays are created. The
positioning of marks within a display space provides a means to map or re-
veal additional properties of the underlying data, including similarity and
distributions. Once the layout and types of marks are specified, then addi-
tional graphical properties can be applied to each mark. Marks can vary in
size, can be displayed using different colors, and can be mapped to different
orientations, all of which can be driven by data to convey information.

In total there are eight ways in which graphical objects can encode in-
formation, i.e., eight visual variables: position, shape, size, brightness, color,
orientation, texture, and motion. These eight variables can be adjusted as
necessary to maximize the effectiveness of a visualization to convey informa-
tion. Nonetheless, when defining a visualization, it is important to remember
that the result will be an image that is to be interpreted by the human visual
system and that is subject to all the perception rules and problems identified
in Chapter 3.

4.3.1 Position

The first and most important visual variable is that of position, the place-
ment of representative graphics within some display space, be it one-, two-,
or three-dimensional. Position has the greatest impact on the display of
information, because the spatial arrangement of graphics is the first step in
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(a) (b)

Figure 4.7. Example visualizations: (a) using position to convey information. Displayed here

is the minimum price versus the maximum price for cars with a 1993 model year.

The spread of points appears to indicate a linear relationship between minimum

and maximum price; (b) another visualization using a different set of variables.

This figure compares minimum price with engine size for the 1993 cars data set.

Unlike (a), there does not appear to be a strong relationship between these two

variables.

reading a visualization. In essence, the maximization of the spread of repre-
sentational graphics throughout the display space maximizes the amount of
information communicated, to some degree. The visualization display with
the worst case positioning scheme maps all graphics to the exact same posi-
tion; consequently, only the last-drawn graphic is seen, and little information
is exchanged. The best positioning scheme maps each graphic to unique po-
sitions, such that all the graphics can be seen with no overlaps. Interestingly,
for the standard computer screen with a resolution setting of 1024 by 768,
the maximum number of individual pixels is only 786,432; hence, if each data
representation is mapped to a unique pixel, we are still not able to display
a million values. And since most graphics employed to represent data take
up considerably more visual real estate than a single pixel, the actual num-
ber of displayable marks diminishes rapidly. Example displays are shown in
Figure 4.7.

The selection of variables used to organize data within a display can
answer a variety of questions. First, where do most of the data values fall?
Does the data fit any well-known statistical distribution? Are there visible
trends in the data? Furthermore, through the use of perception and the
relationships of proximity, symmetry, and other Gestalt principles described
in Chapter 1, are there clusters and structures within the data?
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In addition to selecting appropriate variables to organize the display
space and to present values with representative graphics, scales can be ap-
plied to variables to remap values to reveal structures. Although scaling is
generally not necessary, there are times when it must be used. The first
type of scale is the linear scale; in this case, the mapping is simply an offset,
and a stretching or shrinking of the range. The second type of scale is the
logarithmic scale that is used to map exponentially increasing variables into
more compact ranges.

Although linear and logarithmic scales are applied to a single data vari-
able, there are times when two-dimensional based mappings need to be ap-
plied, especially for cartography and the generation of maps. The mapping
of two or more variables is more correctly termed a projection from one data
space to another, the second generally of a lower dimensionality. Various pro-
jections used for defining maps are presented in Chapter 6. Many of these
projection techniques can also be used for nonspatial data, as described in
Chapter 7.

In addition to displaying representational graphics and using various
scales or projections, when working with one, two, or three variables, it
is common to add supplementary graphics to describe the space. Axes are
graphical elements that provide additional information for understanding
how the visual space is defined. Axes typically contain tick-marks indi-
cating intervals of the data range, and text labels that provide data val-
ues. An axis title usually contains the name of the data variable being
mapped.

4.3.2 Mark

The second visual variable is the mark or shape: points, lines, areas, volumes,
and their compositions. Marks are graphic primitives that represent data.
For example, both visualizations in Figure 4.7 use the default point to display
individual values. Any graphical object can be used as a mark, including
symbols, letters, and words (see Figure 4.8). When working purely with
marks, it is important not to consider differences in sizes, shades of intensity,
or orientation, as these are additional visual variables that will be described
later.

Figure 4.8. Several examples of different marks or glyphs that can be used.
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Figure 4.9. This visualization uses shapes to distinguish between different car types in a plot

comparing highway MPG and horsepower. Clusters are clearly visible, as well as

some outliers.

When using marks, it is important to consider how well one mark can
be differentiated from other marks. Within a single visualization there can
be hundreds or thousands of marks to observe; therefore, we try not to se-
lect marks that are too similar. For example, a set of marks that provides
easy reading is shown in Figure 4.8 and used in a scatterplot in Figure 4.9.
Another is the set (T and L) or (+ and −), that harnesses our perceptual
systems (see examples in Chapter 3). The goal is to be able to easily distin-
guish between different marks quickly, while maintaining an overall view of
the projected data space. Also, different mark shapes in a given visualiza-
tion must have similar area and complexity, to avoid visually emphasizing
one or more of them inadvertently.

4.3.3 Size (Length, Area and Volume)

The previous two visual variables, position and marks, are required to define
a visualization. Without these two variables there would not be much to see.
The remaining visual variables affect the way individual representations are
displayed; these are the graphical properties of marks other than their shape.

The third visual variable and first graphic property is size. Size de-
termines how small or large a mark will be drawn (see Figure 4.10). Size
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Figure 4.10. Example sizes to encode data.

easily maps to interval and continuous data variables, because that property
supports gradual increments over some range. And while size can also be
applied to categorical data, it is more difficult to distinguish between marks
of near similar size, and thus size can only support categories with very small
cardinality.

A confounding problem with using size is the type of mark. For points,
lines, and curves the use of size works well, in that size provides a relatively
quantifiable measure of how marks relate, as illustrated in Figure 4.11. How-
ever, when marks are represented with graphics that contain sufficient area,
the quantitative aspects of size fall, and the differences between marks be-
comes more qualitative.

Figure 4.11. This is a visualization of the 1993 car models data set, showing engine size versus

fuel tank capacity. Size is mapped to maximum price charged.

4.3.4 Brightness

The fourth visual variable is brightness or luminance. Brightness is the
second visual variable used to modify marks to encode additional data vari-
ables. While it is possible to use the complete numerical range of brightness
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Figure 4.12. Brightness scale for mapping values to the display.

values, as discussed in Chapter 3, human perception cannot distinguish be-
tween all pairs of brightness values. Consequently, brightness can be used
to provide relative difference for large interval and continuous data vari-
ables, or for accurate mark distinction for marks drawn using a reduced
sampled brightness scale, as shown in Figure 4.12. Furthermore, it is rec-
ommended that a perceptually linear brightness scale be used, which de-
fines a step-based brightness scale that maximizes perceived differences. An
example visualization using brightness to display information is shown in
Figure 4.13.

Figure 4.13. Another visualization of the 1993 car models data set, this time illustrating the use

of brightness to convey car width (the darker the points, the wider the vehicle).

4.3.5 Color

The fifth visual variable is color; see Chapter 3 for a detailed discussion of
color and of how humans perceive color. While brightness affects how white
or black colors are displayed, it is not actually color. Color can be defined
by the two parameters, hue and saturation. Figure 4.14 displays Microsoft’s
color selector with hue on the horizontal axis and saturation on the vertical
axis. Hue provides what most think of as color: the dominant wavelength
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Figure 4.14. Microsoft hue/saturation color selector.

from the visual spectrum. Saturation is the level of hue relative to gray, and
drives the purity of the color to be displayed.

The use of color to display information requires mapping data values to
individual colors. The mapping of color usually entails defining colormaps

Figure 4.15. Example colormap that can be used to encode a data variable.

Figure 4.16. A visualization of the 1993 car models, showing the use of color to display the

car’s length. Here length is also associated with the y-axis and is plotted against

wheelbase. In this figure, blue indicates a shorter length, while yellow indicates a

longer length.
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Figure 4.17. Some common colormaps: standard linear gray scale, rainbow, heated, blue to

cyan, and blue to yellow.

that specify the relationship between value ranges and color values. Col-
ormaps are useful for handling both interval and continuous data variables,
since a colormap is generally defined as a continuous range of hue and satura-
tion values, as illustrated in Figure 4.15 and Figure 4.16. When working with
categorical or interval data with very low cardinality, it is generally accept-
able to manually select colors for individual data values, which are selected
to optimize the distinction between data types. Many books and articles
have been written on color selection for effective communication [34, 235].
Figure 4.17 show examples of popular color maps for visualization.

4.3.6 Orientation

The sixth visual variable is orientation or direction. Orientation is a prin-
cipal graphic component behind iconographic stick figure displays, and is
tied directly to preattentive vision (see Chapter 3). This graphic property
describes how a mark is rotated in connection with a data variable. Clearly,
orientation cannot be used with all marks; for instance, a circle looks the
same under any rotation. The best marks for using orientation are those
with a natural single axis; the graphic exhibits symmetry about a major
axis. These marks can display the entire range of orientations. For exam-
ple, Figure 4.18 displays a mark that looks like an elongated triangle, which
clearly defines a single major axis. While this figure limits the range or ori-
entation to 90 degrees, this mark could easily map to the entire 360-degree
circle, as used within flow fields. Figure 4.19 displays a sample visualization
that uses this triangle-based mark.

Figure 4.18. Example orientations of a representation graphic, where the lowest value maps to

the mark pointing upward and increasing values rotate the mark in a clockwise

rotation.



�

�

�

�

�

�

�

�

4.3. The Eight Visual Variables 145

Figure 4.19. Sample visualization of the 1993 car models data set depicting using highway miles-

per-gallon versus fuel tank capacity (position) with the additional data variable,

midrange price, used to adjust mark orientation.

4.3.7 Texture

The seventh visual variable is texture. Texture can be considered as a com-
bination of many of the other visual variables, including marks (texture
elements), color (associated with each pixel in a texture region), and orien-
tation (conveyed by changes in the local color). Dashed and dotted lines,
which constitute some of the textures of linear features, can be readily dif-
ferentiated, as long as only a modest number of distinct types exist. Varying
the color of the segments or dots can also be perceived as a texture.

Texture is most commonly associated with a polygon, region, or surface.
In 3D, a texture can be an attribute of the geometry, such as with ridges
of varying height, frequency, and orientation. Similarly, it can be associated
with the color of the graphical entity, with regular or irregular variations in
color with different ranges and distributions (see Figures 4.20 and 4.21). In
fact, geometric textures can be readily emulated with color textures, with
color variations similar to those obtained via lighting effects. Finally, the
distribution and orientation of marks themselves can form regions of texture.

Figure 4.20. Six possible example textures that could be used to identify different data values.
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Figure 4.21. Example visualization using texture to provide additional information about the

1993 car models data set, showing the relationship between wheelbase versus horse-

power (position) as related to car types, depicted by different textures.

4.3.8 Motion

The eighth visual variable is motion. In fact, motion can be associated
with any of the other visual variables, since the way a variable changes
over time can convey more information. One common use of motion is in
varying the speed at which a change is occurring (such as position change
or flashing, which can be seen as changing the opacity). The eye will be
drawn to graphical entities based not only on similarities in behavior, but
also on outliers. The other aspect of motion is in the direction; for position,
this can be up, down, left, right, diagonal, or basically any slope, while for
other variables it can be larger/smaller, brighter/dimmer, steeper/shallower
angles, and so on. As conveying this concept is difficult on the static page,
we’ve included some examples on the book’s web site.

4.3.9 Effects of Visual Variables

Different visual variables can serve different purposes. We can categorize
these purposes in a variety of ways. Below, we give one such categorization,
provide some examples, and indicate which visual variables are effective for
the purpose.
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Selective visual variables. After coding with such variables, different data val-
ues are spontaneously divided by the human into distinguished groups
(e.g., for visualizing nominal values).

• Size (length, area/volume);

• Brightness;

• Sample/texture;

• Color (only primary colors): varies with the brightness value;

• Direction/orientation.

Associative visual variables. All factors have same visibility (e.g., for visualiz-
ing nominal values).

• Sample/texture (see Figure 4.22(a));

• Color (see Figure 4.22(b));

• Direction/orientation (see Figure 4.22(c));

• Shape (see Figure 4.22(d)).

Ordinal visual variables. After coding with such variables, different data val-
ues are spontaneously ordered by the human (e.g., for visualizing or-
dinal and quantitative data).

• Sample/texture;

• Size;

• Brightness.

(a) (b)

(c) (d)

Figure 4.22. Example associative variables: (a) textures; (b) colors; (c) direction; (d) shape.
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Figure 4.23. Example of separating texture.

Proportional visual variables. In addition, these variables obtain a direct asso-
ciation of the relative size (e.g., for visualizing ordinal and quantitative
data).

• Size (length, area/volume);

• Direction/orientation;

• Brightness.

Separating visual variables. All elements are visible (the rest are not visible).

• Sample/texture (see Figure 4.23);

• Color;

• Direction/orientation;

• Shape.

4.4 Historical Perspective

Although many examples of the various visualization techniques can be
found, we still lack a comprehensive language to describe our graphical cre-
ations. The art of visualization, the principles of graphics and their compre-
hension, is generally understood. But as a science, we have yet to define a
consistent formalism for general visualizations, or even just for the class of
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data visualizations. Researchers are now starting to look into such an idea
through the development of various models; Robertson first proposed this
need for formal models as a foundation for visualization systems [293]. In
this section, we look at a number of efforts over the years to formalize the
field of visualization. The following section contains descriptions of some
taxonomies of visualization techniques.

4.4.1 Bertin (1967) Semiology of Graphics

In 1967, Jacques Bertin, possibly the most important figure in visualization
theory, published his Sémiologie Graphique [26]. This was the first rigorous
attempt at defining graphics and its application to the portrayal of informa-
tion. Bertin presents the fundamentals of information encoding via graphic
representations as a semiology, a science dealing with sign systems. His first
key point is the strict separation of content (the information to encode) from
the container (the properties of the graphic system). To fully comprehend
a sign system, one must first completely understand the primitive elements
that define such a system. Consequently, Bertin embarks on defining a
graphical vocabulary.

Bertin’s graphical vocabulary, shown in Table 4.2, identifies some very
specific graphical primitives that correspond to perceptual attributes, graphic
qualities that are perceptually identifiable. A graphic is defined as a com-
bination of plane properties (implantation plus imposition) and retinal vari-
ables (visual variables above the plane).

Bertin notes that the plane “is so familiar that its properties seem self-
evident, but the most familiar things are often the most poorly understood”;
he goes on to define the plane as homogeneous with two dimensions. It is
important here to remember that the plane for Bertin is a plain sheet of
white paper of a standard size, “visible at a ‘glance’.” The plane is marked
by implantations, classes of representations that constitute the elementary
figures of plane geometry: points, lines, and areas. These three types of
figures are organized in the two planar dimensions by the imposition, dividing
graphics into four groups: diagrams, networks, maps, and symbols. With
the implantations and an imposition, a visualization is specified.

Marks Points, lines, and areas

Positional Two planar dimensions

Retinal Size, value, texture, color, orientation, and shape

Table 4.2. Bertin’s graphical vocabulary.
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The third and final component is the graphic representations utilizing
retinal variables, graphic variations designed for visual perception. These
variations affect the implantations and are depicted “above” the graphic
plane. There are six retinal variables identified by experimental psychol-
ogy: size (height, area, or number), value (saturation), texture (fineness
or coarseness), color (hue), orientation (angular displacement), and shape.
Bertin then defines various levels of organization specifying how these vari-
ables can be combined (see [26] for further explanations).

4.4.2 Mackinlay (1986) APT

Mackinlay introduced a design for an automated graphical presentation de-
signer of relational information, named APT (A Presentation Tool) [246].
APT was designed to extract some information from a database and to ren-
der a graphical design that presented this information. A graphical design
is an abstract description of the graphical techniques encoding information.
Like Bertin, Mackinlay focused his research on static two-dimensional pre-
sentations, such as bar charts, scatterplots, and connected graphs; however,
Mackinlay went on to describe graphical languages, defining graphical pre-
sentations as sentences of these languages:

A graphical sentence s is defined to be a collection of tuples: s ⊂ {<
o, l >: o ∈ O ∧ l ∈ L}, where O is a set of graphical objects and
L is a set of locations. Each tuple, which is called a located object,
indicates the placement of an object at a given location. The syntax
of a graphical language is defined to be a set of well-formed graphical
sentences. [246]

Two graphic design criteria were then identified for these languages: first,
the expressiveness criterion, stating that the graphical languages must ex-
press the desired information; and second, the effectiveness criterion, re-
quiring for any given situation that the graphical languages must effec-
tively utilize the display medium and the human visual system. Mackin-
lay based these criteria on the perceptual experiments of Cleveland and
McGill [66].

Marks Points, lines, and areas

Positional 1D, 2D and 3D

Temporal Animation

Retinal Color, shape, size, saturation, texture, and orientation

Table 4.3. Mackinlay’s graphical vocabulary, extended from Bertin.
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Encoding Technique Primitive Graphical Language

Retinal-list Color, shape, size, saturation, texture, orientation
Single-position Horizontal axis, vertical axis
Apposed-position Line chart, bar chart, plot chart
Map Road map, topographic map
Connection Tree, acyclic graph, network
Misc. (angle, contain, ...) Pie chart, Venn diagram, ...

Table 4.4. Mackinlay’s basis set of primitive graphical languages.

The important aspect of Mackinlay’s work pertains to his composition al-
gebra, a collection of primitive graphic languages and composition operators
that can form complex presentations. Mackinlay mentioned that his idea
for this composition algebra occurred to him after looking at a particular
diagram and “realizing that many presentations could be described as com-
positions of a set of primitive languages.” Starting with a modified graphical
vocabulary from Bertin (see Table 4.3), (although three-dimensional posi-
tions and temporal properties are not discussed), Mackinlay defined the basis
set of primitive graphical languages (see Table 4.4). This basis set is then
transformed into syntactical structures.

Three principles are defined for composing two presentations by merg-
ing graphics that encode the same information. First is the double-axes
composition: the composition of two graphical sentences that have identical
horizontal and vertical axes. Second is the single-axis composition, which
aligns two sentences that have identical horizontal or vertical axes. Third
is the mark composition for merging mark sets by pairing each and every
mark of one set with a compatible mark of the other set. Mackinlay then
goes on to define various properties of these compositions, and finally the
implementation within his APT system.

4.4.3 Bergeron and Grinstein (1989) Visualization Reference Model

The Visualization Reference Model by Bergeron and Grinstein defines an
abstraction of the visualization problem, which establishes a mapping from
the underlying data space to a physical representation [23]. Based on the
conventional graphics system’s viewing pipeline, the model is represented
by a conceptual visualization pipeline. This pipeline is organized into four
stages. The first stage identifies the source and provides appropriate infor-
mation about the data structure. Standardized data from the previous stage
enters the model transformation stage which defines appropriate projections
of the source data space to a usable representation data space. Next, the
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view specification stage identifies the appropriate mappings from the trans-
formed data space to visual representations. Finally, an association stage
performs the generation of graphics defined by the representations and en-
coded with the data, resulting in the perceptual stimulation of the data,
including both graphic and sound representations.

4.4.4 Wehrend and Lewis (1990)

Wehrend and Lewis also defined a mechanism for automatically defining
visualizations [390]. They constructed a large catalog of encoding techniques
and their effective uses. The catalog is arranged as a two-dimensional matrix
classified as objects and operations. The objects identify the problems and
are grouped together based on their target domains, while the operations
identify groups of similar goals. The catalog is filled with problems (tasks to
perform) and solutions (visualization techniques that provide answers). The
resulting catalog matches domain tasks and desired goals with appropriate
visualization techniques. Wehrend and Lewis surveyed numerous encoding
techniques described in the literature and identified suitable cells for each
within the matrix. Although the ideas for an automated system were never
implemented, Beshers points out that the catalog would prove especially
useful as a visualization knowledge base for such a system [28].

4.4.5 Robertson (1990) Natural Scene Paradigm

The Natural Scene Paradigm introduced by Robertson aims to visually dis-
play data represented by identifiable properties of realistic scenes [295].
Robertson reasoned that people have highly developed skills for analyz-
ing multiple aspects of natural scenes, and aimed to exploit these skills
for multivariate analysis. Natural scene views are defined as two- or three-
dimensional spatial surfaces with spectral and temporal variables. Visual
properties such as surface height, material, density, phase, and wetness are
defined and ranked, based on perceptual characteristics. To these charac-
teristics, data variables are matched appropriately to generate data views
that match interpretation requirements. The matching procedure takes
into consideration the priority ordering of the interpretation aims, and se-
lects corresponding natural scene representations to maximize the desired
aims.
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4.4.6 Roth (1991) Visage and SAGE

Roth et al. created Visage [300], a prototype user-interface environment for
exploring information, which incorporates SAGE, a knowledge-based auto-
matic graphic design tool, and extends the ideas of Mackinlay for general
two-dimensional graphics [299]. The primary contribution of Visage is its
“information-centric” approach, where the central focus of user interaction
is connected directly to the data elements (graphic representations). The
whole environment is based on two basic object types: elements and frames.
The elements are the various data representations, the graphic objects of a
visualization. The frames serve as the containers for marks.

As part of Visage, SAGE adds a knowledge-based automatic system for
intelligent graphics presentation. Although SAGE is designed with two pri-
mary components, graphics and natural language, we are only interested in
the specification of visualizations, the graphical support for explanations.
SAGE defines two types of graphical objects that encode either the elements
of data sets or the correspondence between pairs of elements in two sets (see
Table 4.5). The data representations are encoded via positions and retinal
variables. Marks and their offsets define the correspondence objects.

Data Objects Position Axis, table, keys, network nodes
Labels Size, color, length

Correspondence Objects Points, bars, links, lines, and spatial offsets

Table 4.5. SAGE’s graphical objects.

As with the other models, SAGE also implements a number of composi-
tion operations. Like APT, SAGE includes the axis and mark compositions
defined by Mackinlay. In addition, Sage includes four other operators:

1. for merging display edges;

2. for merging retinal techniques, textural techniques, or gauges;

3. for merging network nodes used to build multirelational graphs;

4. for merging object labels with axis labels or text columns, permitting
the alignment of graphical techniques in a table.

4.4.7 Casner (1991) BOZ

BOZ, developed by Stephen Casner, is an automated graphic design and
presentation tool to assist in performing specific tasks [51]. The main focus of
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BOZ is to replace logical task descriptions with perceptually equivalent tasks
by encoding logical inferences (mental arithmetic or numerical comparisons)
with perceptual inferences (shortest distance and average size), from which
solutions can be visually obtained. BOZ can be used to design different
presentations of the same information customized to the requirements of
different tasks. This framework consists of five components:

1. a logical task description language for describing information-processing
tasks;

2. a perceptual operator substitution component for converting logical
task descriptions to perceptual operators;

3. a perceptual data structuring component that collects sharable per-
ceptual operators into more complex graphical objects;

4. a perceptual operator selection component for defining detailed per-
ceptual procedures and their accompanying graphics; and

5. a rendering component for displaying the resulting graphical designs.

The logical task description language provides a means of describing the
information-processing task to BOZ. It contains two basic components: no-
tation for expressing logical facts, and notation for describing logical proce-
dures that manipulate the logical facts. Logical facts are defined as relational
tuples of the form (attribute, object, value), where attribute names some prop-
erty of the object with the specified value. Logical procedures require three
parts. First, a set of domain set definitions specifying the data schema.
Next, a set of logical operator definitions that includes an operator name, a
list of logical facts, and a single logical fact to compute. Logical operators
are one of two types, a search operator for querying, or a computation oper-
ator for performing arithmetic or logical processing. Finally, the main body
of the logical procedure is an ordered sequence of calls to the set of defined
logical operators.

The perceptual operator substitution component identifies appropriately
equivalent perceptual operators to replace the prescribed logical operators.
This component contains a catalog of perceptual operators organized around
a set of primitive graphical languages (see Table 4.6 ), plus a substitution
algorithm based on some underlying perceptual operator equivalence classes.
A perceptual operator qualifies as a substitute for a logical operator if and
only if the logical operator can be categorized in the same equivalence class
as the perceptual operator.
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Horizontal Position (100) Area (10) Line Thickness (3)

Vertical Position (100) Shading (4) Line Dashing (2)

Height (50) Connectivity (8) Shape (5)

Width (50) Color (12) Visibility (2)

Line Length (50) Labels (∞) Tabular (∞)

Table 4.6. Casner’s primitive graphical languages. The numbers indicate Casner’s original

upper limits on the number of distinct values that each primitive can practically

encode.

Next, the perceptual data structure component analyzes each logical op-
erator by identifying associated domain sets and their associations with the
logical operators. This component produces a perceptual data structure
specification that outlines the appropriate visualizations that will be used
to support the input task, the information that should appear, and how the
information is to be grouped. However, this component does not decide how
the information is to be graphically encoded within visualizations. Here,
a feature space is introduced, defined by the cross product of the specified
input domain sets. Vectors are then defined over this feature space for each
logical operator. These vectors are then organized to define the underlying
data space of the resulting visualization.

The resulting vector relationships are then used by the perceptual op-
erator selection component. The selection component chooses appropriate
perceptual operators to substitute for each logical operator in such a way
as to maximize the perceptual gain of the resulting visualization. This pro-
cedure assumes that the set of primitive graphical properties has been pre-
viously defined to include their appropriateness and effectiveness to render
mapped information. Here, Casner uses a two-tier ranking system that is a
generalization of the approach used within Mackinlay’s APT program [246].
Finally, the rendering component displays the resulting graphical facts onto
the computer screen.

4.4.8 Beshers and Feiner (1992) AutoVisual

AutoVisual is an automatic system for designing visualizations within the
n-Vision visualization system [27,28]. The n-Vision system implements the
worlds within worlds visualization technique that recursively defines subspace
coordinate systems, and is defined as a hierarchy of interactors consisting of
four components: encoding objects, encoding spaces, selections, and a user
interface [104].
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AutoVisual supports explore, search, and compare operators using task
operators and task selections to define the user’s specification. With these
task operators, users specify a set of visualization tasks to be performed
on a set of data relations. Resulting displays are defined by combinations
of “ready-made” graph types, using the worlds within worlds technique.
Appropriate displays use a modified version of Mackinlay’s expressiveness
and effectiveness criteria that supports interactive visualizations.

In support of interactive visualizations, AutoVisual incorporates render-
ing time information about each encoding technique into the selection pro-
cess. To ensure interactivity within the environment, encoding techniques
that would reduce the resulting interactive performance are excluded from
consideration in the encoding process [29].

4.4.9 Senay and Ignatius (1994) VISTA

Senay and Ignatius extended the work of Mackinlay, but focused on scientific
data visualization. They developed VISTA (Visualization Tool Assistant), a
knowledge-based system for visualization design [313]. Senay and Ignatius,
like Bertin and Mackinlay, implement composition rules for the generation
of complex visualizations from simple visualization techniques. They start
by identifying three sub-processes defining the visualization pipeline: data
manipulation, visualization mapping, and rendering. These three transfor-
mations process the data into graphic representations that are rendered to
a display. From this, they classify system knowledge into five categories:
data characterization, visualization vocabulary, primitive visualization tech-
niques, composition rules, and visual perception rules. As in Mackinlay’s
system, VISTA incorporates human perceptual experimental results, plus
heuristic rules defining a visualization’s effectiveness.

Senay and Ignatius define two types of marks, simple and compound, as
defined in Table 4.24. Similar to Bertin and Mackinlay, VISTA’s marks en-
code data using three variation methods: positional, temporal, and retinal.
Having defined the vocabulary and primitives of visualizations, five composi-
tion rules are defined. Through the application of these rules, pairs of visual-
ization techniques are combined to form composite techniques for displaying
multidimensional data. The mark composition, Figure 4.24(a), merges marks

Simple marks Points, lines, areas, and volumes

Compound marks Contour lines, glyphs, flow ribbons, and particles

Table 4.7. VISTA’s visualization marks.
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(a)

(e)

(d)

(c)

(b)

Figure 4.24. VISTA’s composition rules [313, Figure 3]. (Image c© 1994 IEEE.)

by pairing each mark of one technique with a compatible set of marks of the
other, identical to Mackinlay’s mark composition. The second rule, compo-
sition by superimposition, Figure 4.24(b), merges marks by superimposing
one mark set onto the other. The composition by union, Figure 4.24(c), com-
bines marks using set union. Fourth, composition by transparency, Figure
4.24(d) combines two visualization techniques by manipulating the opacity
values of marks belonging to either or both visualization techniques. Finally,
composition by intersection, Figure 4.24(e), computes the intersection of vi-
sualization techniques and then superimposes this intersection onto one of
the components. Rules two and three are similar to Mackinlay’s double-axes
composition.
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4.4.10 Hibbard (1994) Lattice Model

Hibbard presents a lattice model for describing visualizations [160]. Unlike
the previous graphical models that focused on the graphic primitives, the
lattice model focuses on data to display transformations. Hibbard notes,
“data objects are approximations to mathematical objects and real displays
are approximations to ideal displays” [160]. He considers the process of spec-
ifying visualizations as a mathematical transformation from data to displays.
His general idea is to define a data model (a set U of data objects) with a
display model (a set V of displays), and a visualization process (a function
D: U → V ).

The data model U and the display model V are represented as lattices of
data objects and display objects, respectively. These objects are ordered by
how precisely they approximate either mathematical data objects or ideal
displays. For the display model, Mackinlay’s expressiveness criteria are used
to order displays according to their information content.

The display model is actually defined as an 8-tuple of graphical primi-
tive values, as specified by Bertin (i.e., two screen coordinates, size, value,
texture, color, orientation, and shape) [26]. Specifically, a finite set DS of
display scalars represents the graphical primitives, and the display model V

is defined as the complete lattice of all subsets A of Y = {Id : d ∈ DS},
the cross product of the value sets of the display scalars in DS. In addition
to Bertin’s simple scalars, more complex graphic objects such as icons can
be represented via indexing from discrete display scalars. Hibbard then de-
fines general scalar mappings from data lattices to display lattices, based on
expressiveness conditions.

4.4.11 Golovchinsky (1995) AVE

AVE (Automatic Visualization Environment) is an automatic graphical pre-
sentation system based on a generative theory of diagram design, the con-
struction of diagrams from basic components corresponding to relations
present in the data [132]. Diagrams are composed of graphical elements—
only rectangles in this implementation—that have attributes and are related
to other elements through graphical relations based on the underlying data
relations. The resulting graphics are trees and graphs depicting nodes as
rectangles and relationships with lines or arrows.

The visualization process within AVE consists of four stages: query, anal-
ysis, constraint network generation, and geometric layout. The query stage
consists of defining database views that return records of interest, the result
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of which is a collection of tuples, a domain frame (the set of objects), a slot (a
directed arc), and a range frame. The analysis stage groups these tuples into
categories based on their relationship type (slot-based relation) and frame
type (type-based relation). For example, if the domain type is person, the
relation (e.g., slot) is place of birth, and the range type is location, then the
relation or slot type is a unique mapping. The constraint network generation
stage takes the slot-based and type-based relations and maps them to one or
more graphical relations. Using a ranked scoring system, multiple potential
graphical relations are specified and ranked; the top scoring specification is
passed on. The geometric layout stage calculates appropriate object posi-
tions that satisfy the constraints of graphical resources (e.g., rectangles with
connecting lines or edges), which are then displayed.

4.4.12 Card, Mackinlay and Shneiderman (1999) Spatial Substrate

For the introduction to Chapter 1 in their book, “Readings in Information
Visualization: Using Vision to Think,” Card, Mackinlay and Shneiderman
summarize information visualization research and applications [47]. Of in-
terest here is their section on “mapping data to visual form.” Within this
section, Card et al. present a reference model for visualizations describ-
ing three primary transformations for mapping data to visual form, that
also support human interaction: data transformations, visual mappings, and
view transformations.

Their spatial substrate, an integral part of the visual structures, deals
with the use of spatial positioning for encoding data within the display.
As they note, “Empty space itself, as a container, can be treated as if it
has metric structure. We describe this structure in terms of ‘axes’ and
their properties” [47]. The authors present four elementary types of axes:
unstructured (no axis), nominal (a region is divided into sub-regions), ordinal
(the ordering of these sub-regions is meaningful), and quantitative (a region
has a metric, possibly an interval or ratio or specialized).

Finally, five techniques are described for increasing the amount of infor-
mation that can be encoded by spatial positions:

1. the composition of axes—orthogonal placement of axes creating a two-
dimensional metric space;

2. the alignment of axes—repetition of an axis at a different position in
space;

3. the folding of axes—continuation of an axis in an orthogonal dimension;
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4. the application of recursion to axes—repeated subdivision of space;
and

5. the overloading of axes—reusing the same display space.

4.4.13 Kamps (1999) EAVE

EAVE (Extended Automatic Visualization Engine) by Kamps is an extension
of AVE [186]. EAVE takes arbitrary relations as input and generates dia-
gram visualizations. While the diagrams generated by this system primarily
depend on data characteristics and graphical knowledge, user preferences
are also taken into account. This system only generates traditional types
of diagrams that are commonly used in publications. Kamps introduces a
language for defining diagrams internal to EAVE.

The automatic design of diagrams is accomplished through a three-phase
process: a data classification phase, a graphical resource allocation phase,
and a layout phase. The classification phase identifies the specific proper-
ties of the given data relation input. The goal of the resource allocation
process is to encode the data relations using graphical relations. Finally,
the layout phase is responsible for the realization of the design decisions by
way of walking down the nested relation’s graph and triggering the appro-
priate procedural layout techniques implemented by the associated graphical
relations.

Starting with the definitions for data structures, data types, data objects,
and graphical relations, Kamps introduces the general problem of visualiz-
ing an object network, the result of a database query. Data relations are
visually transcribed by selecting adequate graphical relations and mapping
data elements and data tuples into graphical elements and graphical tu-
ples, respectively. An important underlying formalism implemented within
EAVE is the application of formal concept analysis, an applied mathemati-
cal discipline based on a formal notion of concepts and concept hierarchies,
allowing the mathematical reasoning of conceptual data analysis and pro-
cessing [186]. Kamps uses formal concept analysis to define the relation type
lattice of concepts used to model the binary data relationships and identify
logical dependencies between data types.

The next step involves mapping the data relations to graphical relations
using a set of specific graphical binary relations; appropriate graphical map-
pings are defined by matching relation types. The resulting visualization of
n-ary relations in general becomes the composition of appropriate graphical
binary relations, which implies the designing of a discrete optimization pro-
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cess for selecting those graphical mappings that result in the most expressive
display. The final stage involves the layout of the selected graphical binary
relations, another optimization process aimed to maximize the readability
of the resulting display.

4.4.14 Wilkinson (1999) Grammar of Graphics

Wilkinson’s Grammar of Graphics, based on his original Graphics Alge-
bra, specifies the construction of statistical graphics [394]. This grammar of
graphics is actually a grammar of statistical visualizations, a subclass of data
visualizations readily used for statistical analyses. Each individual compo-
nent of these graphics is defined as instances of various graphical objects;
the combination of individual components defining the resulting display. As
with all the other graphical models presented in this section, the grammar of
graphics also takes a compositional approach to the generation of complex
displays.

There are three primary stages for graphic creation: specification, as-
sembly, and display. Although the assembly and display of graphics are
important for the final visual output of the graphic, Wilkinson’s specifica-
tions establish the foundation for all visualizations defined by the grammar.
The statistical graphic specifications, as Wilkinson put it, form the core of
a graphics system, and identify the numerous object transformations and
representational mappings that define the display.

The grammar specification is composed of seven parts (see Table 4.8).
Data and Trans operate on the data space. Frame, Scale, and Coord de-
fine the underlying geometry of the graphic and the arrangement of data
variables (dimensions). Graph defines the visual graphic representations for
individual data points, and Guide defines individual labels and markers.
Just as Bertin, Mackinlay, and others identified graphic marks with reti-
nal variables, Wilkinson’s specification defines a collection of primitive geo-

Data a set of data operations that create variables from data sets

Trans data variable transformations

Frame a set of variables, related by operators, that define a space

Scale scale transformations

Coord a coordinate system

Graph graph (points) and their aesthetic attributes

Guide one or more guides

Table 4.8. Wilkinson’s seven specifications [394].
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Form Surface Motion Sound Text

Position Color Direction Tone Label
stack hue Speed Volume
dodge brightness Acceleration Rhythm
jitter saturation Voice

Size Texture
Shape pattern

polygon granularity
glyph orientation
image Blur

Rotation Transparency

Table 4.9. Wilkinson’s aesthetic attributes [394].

metric graphs (Bertin’s marks) along with various aesthetic attributes (i.e.,
form, surface, motion, sound, or text properties) (see Table 4.9). Although
there are important perceptual considerations when combining aesthetic at-
tributes, this grammar of graphics does not use the effectiveness or expres-
siveness of graphics as associated with the previously described graphics
models, as this model’s only goal is to specify arbitrary data graphics.

There are two primary visualization concepts identified by Wilkinson.
First and foremost is the distinction between data points and their visual
representations; the graph specification defines mappings from data points
to aesthetic objects. Ordinarily, a visualization of data is an empty display
without the encoding of the data points by perceptual objects. Second is the
formalism of the visualization plane, the algebraic formalism applied to the
data variables defining the graphic frame. With the application of an alge-
bra, data variables are combined with operators { blend (+), cross (*), and
nest (/) } to define graphic dimensions that are later scaled and mapped to
a specific coordinate system specifying the display. More importantly, these
algebra operators provide the means to specify complex variable-dimension
arrangements. Furthermore, a facet can be defined, enabling the specifi-
cation of frames within frames. Clearly, Wilkinson captures the important
difference between the mathematical underpinning of a visualization and the
visible graphic properties enabling a visualization to be perceived.

4.4.15 Hoffman (2000) Table Visualizations

The formal model for Table Visualizations developed by Hoffman was the
first attempt at defining a generalized space of data visualizations [162].
The aim was the encapsulation of the primitive-graphic properties that de-
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P1 size of the scatterplot points
P2 length of the perpendicular lines extending from individual anchor points in a scatterplot
P3 length of the lines connecting scatterplot points associated with the same data point
P4 width of the rectangle in a survey plot
P5 length of the parallel coordinate lines
P6 blocking factor for the parallel coordinate lines
P7 size of the RadViz plot point
P8 length of the spring lines extending from individual anchor points of a RadViz plot
P9 the zoom factor for the spring K constant

Table 4.10. Hoffman’s dimensional anchor graphical parameters.

fine individual visualization techniques, and then the inference of the space
of these techniques as the combination of graphic elements within some geo-
metric layout. This research combined four specific visualization techniques:
survey plots, scatterplots, RadViz, and parallel coordinates.

Table visualizations are defined as graphic presentations for two-
dimensional data tables. The fundamental primitive for this formal model
is a dimensional anchor, a graphic curve defining a mathematical axis asso-
ciated with a particular data dimension. The arrangement of some number
of dimensional anchors and associated parameters by a specific geometry
defines a particular visualization technique.

Each dimensional anchor is associated with a vector containing nine
graphic parameters encoding the four visualization techniques (see Table
4.10). Unlike the previously described graphics models, Hoffman’s model
does not distinguish between marks and their retinal variables. Instead,
Hoffman takes a functional approach, where the vector of graphics parame-
ters becomes an input to the visualization’s drawing function. Consequently,
through the rendering of a visualization, the various types of marks and reti-
nal variables are realized.

By defining individual vectors of parameters with specific geometric lay-
outs, one obtains the four predefined visualizations; and through the linear
combination of these parameters for a fixed geometric layout one can gener-
ate, as Hoffman puts it, “new visualizations.” By implementing the grand
tour [15] applied to the vector of graphics parameters, Hoffman graphically
demonstrates a subspace of visualizations for data sets used to investigate
the mechanism of action for compounds (See the book’s web site for a movie).

4.4.16 Summary of the History

In summary, there exist a wide variety of graphics models that formalize
the graphical objects used to display information. Primarily, these models
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characterize graphics by three components: marks, positions, and perceptual
variables. Initiated by Bertin and extended by others, the research of these
components continues and provides valuable insights into the foundations for
a general theory of visualizations. Of all the currently published research,
the authors feel that Wilkinson provides the most substantial formalization
of statistical graphics, capturing many of the rudimentary elements of most
visualization techniques.

4.5 Taxonomies

A taxonomy is a means to convey a classification. Often hierarchical in
nature, a taxonomy can be used to group similar objects and define rela-
tionships. In visualization, we are interested in many forms of taxonomies,
including data, visualization techniques, tasks, and methods for interaction.
In this section we briefly describe a number of such taxonomies from the lit-
erature. Interested readers are directed to the cited papers. Note that many
other researchers have defined such taxonomies; this is just a representative
sample.

4.5.1 Taxonomy of Visualization Goals (Keller and Keller)

Keller and Keller, in their book Visual Cues [205], classify visualization
techniques based on the type of data being analyzed and the user’s task(s).
Similar to those identified earlier in this book, the data types they consider
are:

• scalar (or scalar field);

• nominal;

• direction (or direction field);

• shape;

• position;

• spatially extended region or object (SERO).

The authors also define a number of tasks that a visualization user might
be interested in performing. While some of the tasks seem interrelated,
their list is a useful starting position for someone setting out to design a
visualization for a particular application. Their task list consists of:
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• identify—establish characteristics by which an object is recognizable;

• locate—ascertain the position (absolute or relative);

• distinguish—recognize as distinct or different (identification is not needed);

• categorize—place into divisions or classes;

• cluster—group similar objects;

• rank—assign an order or position relative to other objects;

• compare—notice similarities and differences;

• associate—link or join in a relationship that may or may not be of the
same type;

• correlate—establish a direct connection, such as causal or reciprocal.

Given these two lists, they then categorized more than 100 techniques
from the literature. While this book is somewhat dated, it can be useful for
assessing different visualization techniques and tools.

4.5.2 Data Type by Task Taxonomy (Shneiderman)

A related strategy was proposed by Shneiderman [319]. His list of data types
was somewhat different from Keller and Keller’s, and included more types
from the information visualization field. His list of data types consisted of:

• one-dimensional linear;

• two-dimensional map;

• three-dimensional world;

• temporal;

• multidimensional;

• tree;

• network.

For his tasks, Shneiderman looked more at the behavior of analysts as
they attempt to extract knowledge from the data. His task set consisted of
the following:
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Overview. Gain an overview of the entire collection, e.g., using a fisheye
strategy for network browsing.

Zoom. Zoom in items of interest to gain a more detailed view, e.g., holding
down a mouse button to enlarge a region of the display.

Filter. Filter out uninteresting items to allow the user to reduce the size of
a search, e.g., dynamic queries that can be invoked via sliders.

Details-on-demand. Select an item or group and get details when needed,
e.g., a pop-up window can show more attributes of a specific object on
the screen.

Relate. View relationships among items, e.g., select a particular object that
can then show all other objects related to it.

History. Keep a history to allow undo, replay, and progressive refinement,
such as allowing a mistake to be undone, or a series of steps to be
replayed.

Extract. Extract the items or data in a format that would facilitate other
uses, i.e., saving to file, sending via e-mail, printing, or dragging into
another application (statistical or presentation package).

Shneiderman suggested that an effective visual exploration tool should
support most or all of these tasks in an easy-to-use manner.

4.5.3 Keim Taxonomy

As shown in Figure 4.25, Keim designed a classification scheme for visual-
ization systems based on three dimensions: data types, visualization tech-
niques, and interaction/distortion methods [204]. His interaction/distortion
technique classification has some similarities to Shneiderman’s tasks, as do
his data types, but his classification of the visualization techniques used is
not included in the other taxonomies. The components of each of his classi-
fication dimensions are listed below:

Classification of Data Types. 6 types of data exist:

1. One-dimensional data—i.e., temporal data, news data, stock
prices, text documents

2. Two-dimensional data—i.e., maps, charts, floor plans, newspaper
layouts
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Figure 4.25. Classification of information visualization techniques [204]. (Image c© 2002 IEEE.)

3. Multidimensional data—i.e., spreadsheets, relational tables

4. Text and hypertext—i.e., new articles, web documents

5. Hierarchies and graphs—i.e., telephone/network traffic, system
dynamics models

6. Algorithm and software—i.e., software, execution traces, memory
dumps

Classification of Visualization Techniques. 5 classes of visualization techniques
exist:

1. Standard 2D/3D displays—i.e., x, y- or x, y, z-plots, bar charts,
line graphs;

2. Geometrically-transformed displays—i.e., landscapes, scatterplot
matrices, projection pursuit techniques, prosection views, hyper-
slice, parallel coordinates;

3. Iconic displays—i.e., Chernoff faces, needle icons, star icons, stick
figure icons, color icons, tilebars;

4. Dense pixel displays—i.e., recursive pattern, circle segments,
graph sketches;

5. Stacked displays—i.e., dimensional stacking, hierarchical axes,
worlds-within-worlds, treemaps, cone trees.
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Classification of Interaction & Distortion Techniques. 5 classes of interaction tech-
niques exist:

1. Dynamic projection—i.e., grand tour system, XGobi, XLispStat,
ExplorN;

2. Interactive filtering—i.e., Magic Lenses, InfoCrystal, dynamic
queries, Polaris;

3. Interactive zooming—i.e., TableLens, PAD++, IVEE/Spotfire,
DataSpace, MGV and scalable framework;

4. Interactive distortion—i.e., hyperbolic and spherical distortions,
bifocal displays, perspective wall, graphical fisheye views, hyper-
bolic visualization, hyperbox;

5. Interactive linking and brushing—i.e., multiple scatterplots,
bar charts, parallel coordinates, pixel displays and maps, Polaris,
scalable framework, S-Plus, XGobi, XmdvTool, DataDesk.

4.6 Related Readings

Bertin’s Semiology of Graphics [26] is essential reading for all researchers in
visualization. It is currently out of print, but many libraries contain copies
of it. At the time of this writing, there was a movement afoot to get it
republished.

Wilkinson’s The Grammar of Graphics [394] is an intriguing model for
designing visualization techniques and systems. While mostly geared to-
wards statistical graphics, it is applicable to a broader range of applications.

Ed Chi’s Data State Reference Model for Information Visualization [61]
has been widely cited, and several visualization packages have been devel-
oped based on it. His Ph.D. dissertation [62] is well worth reading.

4.7 Exercises

1. Show that Mexp and Meff , as defined earlier, are distance metrics.

2. Identify some of the tools, systems or packages listed in Table 4.1
that are either outdated or no longer available (lots of visualization
companies have come and gone!).

3. Identify and describe some currently available visualization tools, sys-
tems, or packages that could be added to Table 4.1.
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4. Compare and contrast two or more of the taxonomies or classification
schemes described in this chapter. Choose the ones you feel have the
most overlap.

4.8 Projects

1. Extend your scatterplot program to enable a third data dimension to
be mapped to at least five of the seven remaining visual variables (not
counting position).

2. Extend your scatterplot program to enable one of the dimensions to
take on nominal values. Test different ways of displaying this dimension
using the results of the previous project.

3. Extend Mexp to deal with different sets of information. For example,
suppose A and B are sets of information from some Universe (U). Try
to define Mexp(A ∩B), Mexp(A ∪B), Mexp(U −A), and so on.

4. Extend Meff as in Project 3.
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CHAPTER 5

Visualization Techniques for
Spatial Data

Spatial data visualization, under which the field of scientific visualization
falls, assumes that the data has an implicit or explicit spatial or spatio-
temporal attribute. This constraint facilitates both the creation and inter-
pretation of the visualization, as there is an intuitive, and often straightfor-
ward, mapping of the data attributes to graphical attributes of the entities
conveying the information in the visualization. As our visual perception
system is constantly receiving and interpreting imagery of the physical phe-
nomena surrounding us, it is quite natural to process the same form of
imagery on a computer screen. The main differences are:

• In viewing the world surrounding us, we are not constrained by a two-
dimensional, discrete, low-resolution projection.

• On the screen, we can visually explore phenomena (real or simulated)
at arbitrary scales.

• On the screen, we can dynamically modify contrast, lighting, resolu-
tion, density, and other parameters and aspects of the data.

• On the screen, we can interactively navigate spaces that would be hard
to enter in real life.

• On the screen, we can interactively add and remove parts of the data
to get more context or remove clutter.

171
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172 5. Visualization Techniques for Spatial Data

In creating a visualization of spatial data, we must decide what spatial
attributes of the data will map to the spatial attributes (locations) on the
screen. This can involve many forms of transformation, including scaling,
rotation, translation, shearing, and projection. Once the spatial attributes
are accommodated, other attributes and values associated with the data
must then be mapped to other components of the visualization, whether it
is an attribute such as color or texture or the size or shape of a graphical
entity.

In this chapter we will survey a wide range of techniques that have been
applied to spatial data. We will order the presentation according to the
dimensionality of the data, with the implicit assumption that lower dimen-
sional techniques can be used to convey projections or subsections of higher
dimensional data. We shall see several examples of this.

5.1 One-Dimensional Data

One dimensional spatial data is often the result of accumulating samples
or readings of some phenomenon while moving along a path in space. For
example, a drill-hole sample will contain mineral content and ore grade in-
formation based on the distance from the top of the drill-hole. This sort of
sampling is often referred to as a probe when exploring structures of higher
dimensions.

Given a one-dimensional sequence of univariate data (only one value per
data item), we can map the spatial data to one of the screen dimensions
and the data value itself to either the other screen dimension (to form a line
graph, see Figure 5.1) or to the color of a mark or region along the spatial
axis (to form a color bar). The data needs to be scaled to fit within the range
of the display attribute (either number of pixels or number of colors). Parts
of the display space or color range might be reserved for other aspects of the
visualization, such as the axes, labels, and key, so the most general structure
for an algorithm to generate such a visualization will use parameters for the
bounds of both the data and display spaces.

Assume that (datamin, datamax) are computed as the minimum and max-
imum values for the data, and datacount indicates the number of data points
to be displayed (this could be all of the data, or just a selected subset). Also
assume the section of the display that will hold the visualization is defined
by the rectangle (xmin, ymin, xmax, ymax). To generate a line graph from an
array called “data,” we could use the following code (assuming the drawing
commands moveTo and lineTo exist).
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Figure 5.1. A line graph of a 1D sequence of data values. Image generated with OpenDX [267].

Draw-Line-Graph(data, dataCount, xMin, xMax, yMin, yMax)
1 dataMin ← computeMin(data, dataCount)
2 dataMax ← computeMax(data, dataCount)
3 xFrom ← xMin
4 yFrom ← worldToScreenY(data[0], dataMin, dataMax, yMin, yMax)
5 for i← 1 to dataCount
6 do xTo ← worldToScreenX(i, dataCount, xMin, xMax)
7 yTo ← worldToScreenY(data[i], dataMin, dataMax, yMin, yMax)
8 drawLine(xFrom, yFrom, xTo, yT o)
9 xFrom ← xTo

10 yFrom← yTo

worldToScreenX(index, dataCount, xMin, xMax)
return (xMin + index ∗ (xMax− xMin)/dataCount)

worldToScreenY(value, dataMin, dataMax, yMin, yMax)
return (yMin + (value− dataMin) ∗ (yMax− yMin)/(dataMax− dataMin))

Note that each transformation is a combination of offsets and scaling
that we use to convert values in one coordinate system into another. This
operation is used heavily in computer graphics, and we will use variants on
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it numerous times in this book. It is derived based on the observation that a
point within a given range can be transformed to a point within a different
range by computing the relative position of the point within the range, e.g.,
what percentage of the distance from one end of the range to the other is
the selected point. Mathematically, this is given as:

(Ai −Amin)/(Amax −Amin) = (Bi −Bmin)/(Bmax −Bmin) (5.1)

where Ai is a location in the range [Amin → Amax] and Bi is the correspond-
ing location in the range [Bmin → Bmax].

Also note that the world2screenX function is simpler than the world2-
screenY function, as we are assuming that the indices in the list of values
start at 0. To make it more general and enable the user to select an arbitrary
range of values, the function would look as follows:

world2screenX(index) {

return(xMin + (index-indexMin) * (xMax-xMin) / (indexMax-indexMin));

}

There are many embellishments to the procedure described above. For
example, if the number of data points to be displayed exceeds the number of
pixels available in the display range, we might want to sample or average val-
ues (see the discussion in Chapter 3 on preprocessing data). Also, we might
want to change the data scale to better reveal some structure. For example,
using a logarithmic scale can overcome problems with data that have a large
range of values. To convert the above to a color bar, we simply replace the
line drawing with the drawing of rectangles whose color is proportional to
the data value, again transformed into the range of available colors (see the
exercises). A bar graph is similar to a line graph, except that each data point
is replaced by a (colored) rectangle whose height is proportional to the value.
The rectangle is usually centered on the spatial attribute of the data, and
its width is often uniform.

If the data set is multivariate, e.g., it contains more than one variable
or value per data entry, we can expand on any of the univariate strategies
using either juxtapositioning or superimpositioning. For line graphs, this
would mean that either the visualization would consist of a stack of non-
overlapping graphs (most effective if the variables have different scales) or a
graph containing plots of two or more variables. In the latter case, different
line styles or colors would need to be used to differentiate the variables.
Multivariate bar graphs can also be composed in a similar manner, although
an alternate form of superimposition involving stacking the bars on top of
each other is often more readily interpreted than using a common baseline.
Note that it is important to convey the scale of each variable to the user.
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5.2 Two-Dimensional Data

Data with two spatial dimensions gets visualized predominantly by mapping
the spatial attributes of the data to the spatial attributes of the screen. The
result can be one of the following visualizations:

1. An image results if a single data value at each location is mapped to
color and all intermediate pixels are colored via interpolation (see the
algorithms in Chapter 2). Figure 5.2 shows an example.

2. A rubber sheet results if the data, whether regularly or irregularly
spaced, is mapped to the height of a point in three dimensions, with
the points triangulated so that a surface can be formed. Figure 5.3
shows sea level and ground elevation for the Florida region.

3. A cityscape is formed by drawing three-dimensional objects (generally
boxes) at locations on a plane, where the data can control the at-
tributes of the graphical objects (i.e., height and color), such as seen
in Figure 5.4.

Figure 5.2. An image from a tomographic data set.
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Figure 5.3. A Rubber Sheet visualization of elevation data for the southeast U.S. (Image gen-

erated using OpenDX [267].)

4. A scatterplot results if, at each location on the plot, the data value(s)
control the color, shape, or size of a marker. Note that unlike for
images, no interpolation is performed.

5. A map results if the data contains linear and area features, as well as
point objects. A linear feature, such as a road or stream, is represented
as a sequence of connected coordinates, which are plotted as a series of
line segments. Area features, such as a lake or political boundary, are

Figure 5.4. A cityscape showing the density of air traffic over the United States at a particular

time period.
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Figure 5.5. A map of the San Francisco area, generated by Google Maps. (Image c© 2008

Google Map; data c© 2008 NAVTEQTM.)

generally represented as a closed contour, a set of coordinates where
the first and last points are the same. These are generally rendered
by converting the data coordinates to screen coordinates (using the
mapping discussed in the previous section) and drawing a polygon on
the display. This might be filled with a semantically meaningful color,
texture pattern, or repeated symbol. In the latter case, the boundary
may not be explicitly drawn, such as when depicting land cover or
use information. Point features, such as utility poles or schools, are
generally represented by a symbol plotted at or near the specified lo-
cation (this alludes to the complex problem of automated cartography,
where objects are positioned in such a way as to be reasonably accu-
rate, while avoiding overlaps and excessive congestion on the display).
Objects may also have labels associated with them, the placement of
which is another complex process. An example is shown in Figure 5.5.
More details on geovisualization are presented in Chapter 6.

6. A contour or isovalue map conveys boundary information extracted
from an image depicting a continuous phenomenon, such as elevation
or temperature. The term isovalue means “single value,” and thus a
contour on such a map indicates the boundary between points above
this value and points below the value. It can be formed by considering
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Figure 5.6. Contour lines from an image slice of a hydrogen molecule. (Image generated using

OpenDX [267].)

two-by-two arrays of adjacent data values as the corners of a rectangle
or square, and generating edges across this rectangle when one or more
values are on the opposite side of the isovalue from one or more of the
others. The actual transition points, which will lie on the edges con-
necting the corners, can be determined via interpolation (see Section
2.3.5). Each isovalue may generate multiple closed contours. Multiple
isovalues may be plotted simultaneously, using color, line thickness,
line style, or labels to differentiate values. Figure 5.6 shows several
contour lines from a 2D image, using color to encode the isovalue.

For multivariate 2D data, we can expand these techniques as we did with
1D data: via juxtapositioning and superimpositioning. For juxtapositioning,
this would simply involve stacking several 2D univariate visualizations into a
3D visualization, such as a set of images separated vertically in space. While
it can be difficult to see some features of the data due to occlusion, and de-
tecting correlations between variables may be difficult, this approach does
allow us to get an overview of all data attributes at once. This technique is
also limited in terms of the number of variables that can be readily accommo-
dated, especially when using univariate techniques that already exploit the
third dimension, such as cityscapes and rubber sheets. Superimpositioning
is similarly limited in terms of the number of variables that can be handled.
For example, in cityscapes we can stack blocks of different colors, where each
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color represents a data variable, but beyond 8 or 10 variables, this becomes
difficult to interpret. With translucent surfaces, one could layer multiple
rubber sheets, and by varying the individual opacities, the different layers
could be revealed. Again, this method would not scale well to large numbers
of variables. Maps are perhaps the most common example of superimposed
2D data visualization, as a digital map is generally composed of multiple lay-
ers of point, linear, and area features. However, excessive overlapping can
make it difficult to extract the individual components. To some extent, this
can be handled by minor adjustments to positions to reduce overlap without
distorting the data too much. An alternate approach when the number of
variables gets too large is to explore the nonspatial multivariate visualization
techniques presented in Chapter 7.

5.2.1 Probing Two-Dimensional Data

Besides the visualization techniques that display the entire data set, we can
also choose to visualize one-dimensional subsets, projections, or summariza-
tions of the data. After reducing the dimensionality in some manner, we are
then free to employ any of the techniques described in the previous section.
Let us examine some of the projection options in detail.

Frequency histograms. We can summarize data sets of arbitrary dimensional-
ity by computing the frequency at which values or subranges of values occur
in the data, and then display this information as a bar graph. Important
considerations when using subranges are how to decide the number of sub-
ranges to use, and where the breaks between subranges should be. Features
of importance in the data might be lost if this is done incorrectly, and is
best performed by someone extremely familiar with the data characteristics.
Simply dividing the range into a fixed number of evenly sized subranges,
while simple, is rarely an effective strategy.

Row and column aggregations. Visually depicting summarizations of the rows
and/or columns of an image is a useful mechanism for localizing the bound-
aries of features of interest and regions of low or high variability. Many
descriptors can be used for this purpose, including the sum, average, me-
dian, standard deviation, maximum, or minimum values. The resulting
one-dimensional visualization can be viewed separately or, as often the case,
placed alongside the two-dimensional visualization as supplemental informa-
tion. Color bars, line plots, and bar graphs have all been used with success
in this type of visualization.
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Linear probes. A one-dimensional probe of a two-dimensional data set can
be likened to a drill hole for mineral exploration. A line is passed through
the data, and the values encountered are visualized using one of the one-
dimensional techniques previously described. To accomplish this, we use
two of the mathematical tools already presented in this chapter: parametric
equations and bilinear interpolation. We start by creating a parametric
equation of our probe using input from the user (either a pair of points or
a point and a direction). If we assume that this line was specified as two
sets of coordinates, P1 and P2, the parametric equation of the line segment
joining the points is simply P (t) = P1 + t(P2 − P1), where 0 ≤ t ≤ 1.0. We
can then get the coordinate of an arbitrary point along this line segment by
choosing a value of t within this range. Generally, these are evenly spaced,
and the number of samples computed is proportional to the length of the
line segment (so that probes that barely clip a corner of the data grid do
not get represented by the same number of samples as a probe along the
diagonal of the grid). Given the coordinates of the sampled points, we can
now use the interpolation procedure to compute values, which can then be
visualized as a one-dimensional data set.

5.3 Three-Dimensional Data

As with two-dimensional data, three-dimensional spatial data may be either
discrete samples of a continuous phenomenon or a structure best described
via vertices, edges, and polygons. In reality, many visualizations of science
and engineering data contain a combination of these data representations,
such as air flow around a wing or stress attributes of a mechanical part. We
will first examine basic visualization techniques for this type of data, and
later in the chapter will discuss methods for combining techniques.

5.3.1 Visualizing Explicit Surfaces

An explicit surface is one that has been defined in one of two ways:

1. a list of three-dimensional vertices, a list of connections between the
edges (specified as a pair of indices into the vertex list), and a list of
planar polygon patches (usually specified as a fixed or variable length
list of indices into the edge list);

2. a set of parametric equations for defining the x-, y-, and z-coordinates
of points on the surface, along with an interconnection strategy (e.g.,
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triangular or rectilinear grid) for computing the edges and patches.
The step size of the parameters can be used to control the smoothness
of the curved surface.

For example, a unit cube can be represented by the following lists:

vertex[0] = (0., 0., 0.)

vertex[1] = (0., 0., 1.)

vertex[2] = (0., 1., 1.)

vertex[3] = (0., 1., 0.)

vertex[4] = (1., 0., 0.)

vertex[5] = (1., 0., 1.)

vertex[6] = (1., 1., 1.)

vertex[7] = (1., 1., 0.)

edge[0] = (0, 1)

edge[1] = (1, 2)

edge[2] = (2, 3)

edge[3] = (3, 0)

edge[4] = (0, 4)

edge[5] = (1, 5)

edge[6] = (2, 6)

edge[7] = (3, 7)

edge[8] = (4, 5)

edge[9] = (5, 6)

edge[10] = (6, 7)

edge[11] = (7, 4)

face[0] = (0, 1, 2, 3)

face[1] = (8, 9, 10, 11)

face[2] = (0, 5, 8, 4)

face[3] = (1, 6, 9, 5)

face[4] = (2, 7, 10, 6)

face[5] = (3, 4, 11, 7)

Note that every edge is shared by exactly two faces, and that every vertex
is a member of two or more edges. Also note that edge direction can be an
issue; we often try to maintain a consistent orientation in traversing the edges
of a face (either clockwise or counter-clockwise, from the outside of the face)
to insure that we can compute surface normals correctly, e.g., pointing away
from the inside of the object defined by the surface.

The parametric form for a unit cylinder aligned with the y-axis can be
defined as follows:

y = 1.0, x = cos θ, z = sin θ, 0.0 ≤ θ ≤ 2π, (top)

y = 0.0, x = cos θ, z = sin θ, 0.0 ≤ θ ≤ 2π, (bottom)

y = h, x = cos θ, z = sin θ, 0.0 ≤ θ ≤ 2π, 0.0 ≤ h ≤ 1.0. (sides)
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By changing the step size for θ, we can get cylinders with varying smooth-
ness. Note that if we set the step size for h to be 1 and for θ to be π/2,
we get a box with a height of 1 and cross section of 2. Other examples of
parametric surfaces, such as B-splines and Bëzier curves, can be found in
textbooks on computer graphics and geometric modeling.

In general, the visualization of spatial data defined on an explicit sur-
face depends on whether the values to be conveyed are associated with the
vertices, edges, or faces. Examples of each are:

• the temperature or stress at a joint (vertex information);

• the strength of attraction for a chemical bond (edge information);

• the ground cover for a map region (face information).

The information to be conveyed in the visualization may be mapped to
any of the nonspatial graphical attributes (we assume that the spatial data
attributes normally get mapped to the spatial graphical attributes), such as
color, opacity, texture, or other surface property. We can also choose to con-
vey point data, e.g., data that is associated with a single location and is not
to be interpolated in the surrounding neighborhood, using a shape or symbol
(often referred to as a glyph, icon, or mark). Examples might be the use of
an arrow to depict flow direction (see Section 5.4) or a cylinder whose height,
width, and color encode three data dimensions. Remember, as was pointed
out in Chapter 3, it is generally not wise to map separate data dimensions
to the red, green, and blue components of a color, as most people cannot
extract the individual color components and their intensity/proportion with
any accuracy.

5.3.2 Visualizing Volume Data

As pixels are to two-dimensional visualization, voxels, or volume elements,
are to three-dimensional visualization. Volume data is generally a sampling
of a continuous phenomenon, and can be either acquired via sensors (e.g.,
tomographic data sets) or generated via simulations (e.g., computational
fluid dynamics). In each case, we have one or more data dimensions with
regular or irregular positions, and the goal is to convey to the viewer the
structure, patterns, and anomalies within the data.

Most approaches to visualizing volume data fall into one of the following
categories [236]:

Slicing techniques. Using a cut plane, either aligned with an axis or arbitrar-
ily oriented, probe the data to extract a two-dimensional slice of the
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data, and then use one of the two-dimensional spatial data visualiza-
tion methods.

Isosurface techniques. Given a user-specified value, generate a surface de-
scription and visualize it using one of the explicit surface visualization
techniques.

Direct volume rendering. Either cast rays into the volume and compute a
pixel value based on the data encountered by the ray, or project each
voxel onto the projection plane using some method of accumulating
effects on pixels.

In all of these approaches, resampling is an essential component. For
isosurfaces (see the description of the Marching Cubes algorithm below), we
need to find the locations where the data matches the selected isovalue, which
is almost always between points of the original data set. We saw this process
in the discussion of contour map generation in two dimensions. In slicing,
especially when the slicing plane is not aligned with an axis, it is essential to
resample the data to get an evenly spaced set of pixels. Interpolation is also
necessary when dealing with nonuniform spacing of data points. In direct
volume rendering, we need to sample data values along a ray, again using
resampling, although with parallel projections along major axes we generally
wouldn’t need to resample. Thus we see that the resampling process, and
coordinate system transformations, are essential tools in the visualization of
spatial data.

Slicing Volume Data with Cut Planes. As with two-dimensional data visualiza-
tion, one strategy we can follow is to probe the three-dimensional data to
create a subset of data with a lower dimension. A popular technique for vol-
ume data is the use of cut planes, where the data block is sliced by a plane
with a given orientation and position, and the data that the plane intersects
are mapped to the plane for display.

The simplest implementation of this technique is to constrain the ori-
entation of the cut plane so that its normal coincides with one of the data
axes. The user then specifies a row, column, or depth in the data block, and
the corresponding slice is displayed using one of the techniques described in
the section on two-dimensional spatial data visualization. An effective strat-
egy is to animate the slice selection so that the user can form associations
between adjacent slices.

For arbitrary orientations, each voxel intersected by the cut plane may
influence the value of one or more pixels. We can choose to resample the data
volume at locations on a regular grid on the cut plane, or alternatively, we
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can choose the nearest voxel to a cut plane pixel to represent the volume at
the location. Still another approach would be to combine the contributions of
the nearest voxels to each element on the cut plane, with weightings inversely
proportional to the distance from the center of the voxel to the cut plane.
To specify the cut plane, six parameters need to be set: three positional and
three for the plane normal. Interactive manipulation of such a surface can
be challenging to the user, so often one would first set the orientation and
then adjust a slider to indicate the depth along the normal to the plane.

Many variations on this technique exist, and each can provide significant
details about the interior of the volume. Some of these include:

• nonplanar slices;

• consecutive slices in varying orientations to remove blocks of the data;

• stacked slices displayed simultaneously;

• orthogonal slices displayed simultaneously.

Isosurface Extraction Using Marching Cubes. Marching Cubes is an algorithm
developed by Lorensen and Cline in 1987 [240] for rendering isosurfaces in
volumetric data (Wyvill et. al. developed a similar strategy a year ear-
lier [407]). The basic notion is that we can define a voxel (cube) by the
values at the eight corners of the cube. If one or more corners of a cube
have values less than the user-specified isovalue, and one or more have val-
ues greater than this value, we know that the voxel must contribute some
component of the isosurface. By determining which edges of the cube are
intersected by the isosurface, we can create triangular patches that divide
the cube between regions within the isosurface and regions outside. By con-
necting the patches from all cubes on the isosurface boundary, we get a
surface representation.

Algorithm details. The following algorithm is based on the description
found in [385]. There are two major components of this algorithm. The first
is deciding how to define the section or sections of surface that chop up an
individual cube. If we classify each corner as either being below or above the
isovalue, there are 256 possible configurations of corner classifications. Two
of these are trivial; where all points are inside or outside the isovalue, the
cube does not contribute to the isosurface. For all other configurations, we
need to determine where, along each cube edge, the isosurface crosses, and
use these edge intersection points to create one or more triangular patches
for the isosurface.
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(a) (b) (c) (d)

Figure 5.7. Configurations of voxels for Marching Cubes.

If you account for symmetries, there are really only 14 unique configu-
rations in the remaining 254 possibilities. When there is only one corner
less than the isovalue, this forms a single triangle that intersects the edges
that meet at this corner, with the patch normal facing away from the corner.
Obviously, there are 8 related configurations of this sort (see Figure 5.7(a)).
By reversing the normal we get 8 configurations that have 7 corners less than
the isovalue. We don’t consider these really unique, however. For configura-
tions with 2 corners less than the isovalue, there are 3 unique configurations
(see Figure 5.7(b)), depending on whether the corners belong to the same
edge, belong the same face of the cube, or are diagonally positioned relative
to each other. For configurations with 3 corners less than the isovalue, there
are again 3 unique configurations (see Figure 5.7(c)) depending on whether
there are 0, 1, or 2 shared edges (2 shared edges gives you an “L” shape).
There are 7 unique configurations when you have 4 corners less than the
isovalue, depending on whether there are 0, 2, 3 (3 variants on this one), or
4 shared edges (see Figure 5.7(d)).

Each of the nontrivial configurations results in between 1 and 4 triangles
being added to the isosurface. The actual vertices themselves can be com-
puted by interpolation along edges, or to simplify computations, you can
default their location to the middle of the edge. The interpolated locations
will obviously give you better shading calculations and smoother surfaces.
Figure 5.8 shows a 3D field from a hydrogen atom rendered with a simple
version of Marching Cubes, using edge midpoints as the triangle vertices.
Note the blockiness of the results due to the limited number of unique sur-
face orientations and the small size of the data set.

Now that we can create surface patches for a single voxel, we can apply
this process to the entire volume. We can process the volume in slabs, where
each slab is comprised of 2 slices of pixels. We can either treat each cube
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Figure 5.8. 3D hydrogen data rendered with an algorithm based on Marching Cubes.

independently, or we can propagate edge intersections between cubes that
share the edges. This sharing can also be done between adjacent slabs, which
increases storage and complexity a bit, but saves in computation time. The
sharing of edge/vertex information, which inspired the name for the algo-
rithm, also results in a more compact model, and one that is more amenable
to interpolated shading.

Problems and Alternatives. One obvious problem with Marching Cubes is
the amount of memory needed to store the resulting surface. As each bound-
ary cube can generate up to 4 sub-pixel facets, the result can be quite large.
We can reduce this somewhat by sharing vertices and edges, or even merg-
ing coplanar patches into larger facets. Another solution might be to try to
fit parametric surfaces to groups of boundary points, though this may be
difficult for complex surface geometries.

Another problem arises when you don’t have a filled space of voxels. De-
pending on how the volume data was acquired, there may be voids that need
to be assigned values or circumnavigated in the surface generation algorithm.
Any interpolated value used may reduce the validity of the resulting surface.

Direct Volume Visualization Techniques. Direct volume rendering means that
no three-dimensional polygons are created for use with traditional graphics
rendering techniques. Rather, pixels in the resulting image are computed
on an individual basis, either by casting rays through the pixel through the
volume, or by projecting voxels onto the plane of projection. We shall cover
the details of each approach below.
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The basic process of rendering a volumetric data set starts by transform-
ing the positions of the voxels into the viewing coordinate system, following
the same procedure used in the traditional three-dimensional graphics pipe-
line. This may or may not include perspective distortion. The viewer must
specify a view reference point (the origin of the plane of projection), a view
direction (the normal to the plane of projection), the height and width of the
image to be projected on the plane of projection, and, for a perspective pro-
jection, the distance from the camera to the plane of projection. The reader
is referred to textbooks on computer graphics for details of this process.

Once the voxels have been positioned, we have the option of either:

• forward mapping—project each voxel onto the plane of projection and
determine which pixels will be affected and in what way;

• inverse mapping—also called ray casting, send a ray from each pixel
in the plane of projection through the volume, sampling values along
the ray, and determining the resulting value for each pixel.

In forward mapping, we have a number of problems to be resolved (from
[236]), including:

1. how to deal with pixels that are influenced by multiple voxels (F1);

2. how to handle pixels to which no voxel directly maps (F2); and

3. how to deal with the fact that voxels usually project to positions be-
tween pixels (F3).

For inverse mapping, we have similar problems:

1. how to select the number of points to be sampled along the ray (I1);

2. how to compute the value at these points, which usually fall between
voxels (I2); and

3. how to combine the points encountered along each ray(I3).

Problems F2 and F3 can be solved by mapping each voxel to a region
of the plane of projection, allowing it to partially influence the value of
several pixels adjacent to the location to which it projects. Two common
methods for performing this are to weight the voxel’s value for each pixel,
based on the distance between the pixel and the projected location for that
voxel. Generally, at most four pixels would normally be affected. Another
approach, known as splatting, associates a small texture region with each
voxel and projects this region onto the plane of projection.
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Problem I1 is readily resolved by determining the spacing between voxels
and setting the sampling rate to be less than this distance. In this way,
features in the volume cannot be passed over, unless the pixels on the plane of
projection are too widely separated. The sampling itself can be accomplished
using the resampling/interpolation techniques covered earlier in the chapter.

Problems F1 and I3 are normally solved using a process known as com-
positing in the volume rendering community. While the simplest forms of
compositing, such as taking the maximum volume value, or averaging all
volume values associated with a pixel/ray, provide some information on the
data set contents, a more common approach is to assume that each voxel
has an opacity associated with it and integrate all voxels mapped to a given
pixel. If we assume that voxel i has color ci and opacity oi, its contribution
to the final pixel value will be ci ∗oi ∗

∏i−1
j=0(1−oj). In other words, we must

determine the accumulated transparency (recall that transparencyi = 1−oi)
between the plane of projection and the voxel, and use this to adjust the
intensity (ci ∗ oi) of the voxel. The final value for the pixel is given by the
equation

I(x, y) =
n∑

i=0

ci ∗ oi ∗
i−1∏
j=0

(1− oj).

Note that if the accumulated transparency term approaches 0, we can
terminate the calculation. Several variations of this formulation have been
suggested, including the back-to-front process, which simply accumulates the
transparency terms from j = i + 1 to j = n. This results in the same value,
but executes more efficiently. However, early termination is not possible.

An important issue in rendering the volume is determining the opacity
and color associated with particular data values. This process is often re-
ferred to as classification, and results in a set of functions defining how the
opacity, red, green, and blue channels (or, alternately, hue, saturation, and
value) will be set for a given voxel value. These are often referred to as
transfer functions. Initially, they may be set by analyzing the data and de-
termining the voxel values where significant transitions occur. These make
logical points for changes in color, opacity, or both. Alternatively, the user
may want to interactively control these functions. This way, regions of in-
terest (where the value of the volume points falls within certain ranges) can
be given a different color or more opacity than others, and will thus be
emphasized in the resulting image.

Another important problem in direct volume rendering is computing the
effects of lighting and shading. As there are no explicit surfaces (and the
normals used to compute the shading effect), an approximation is made,
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based on the calculation of gradients (rate of change) in each direction. For
a given voxel (vx, vy, vz), we can estimate how rapidly the voxel is changing
value in, say, the x-direction by examining the voxel’s neighbors in that
direction, namely (vx−1, vy, vz) and (vx+1, vy, vz). The simplest gradient is
just the difference between the voxel and one of its immediate neighbors.
Thus gx, the x-component of the gradient, would just be vx − vx−1. This
is referred to as the intermediate difference operator. By computing three
subtractions, namely between the voxel and its neighbors in three directions,
we arrive at a vector that gives a very coarse estimate of the direction of
maximum change in voxel value. This vector can thus be used in place of the
normal in our shading calculation. More accurate estimates of this vector
can be obtained by examining a larger neighborhood surrounding the voxel.
The central difference gradient estimator uses the points on both sides of the
voxel, rather than the voxel itself. In this case, gx is computed as vx+1−vx−1;
a larger neighborhood is used, but by ignoring the value at (vx, vy, vz) we
can lose some fine detail information. Larger gradient operators, such as
the three-dimensional Sobel operator, use all 26 immediately neighboring
voxels, and it is possible to use even larger neighborhoods. Accurate gradient
estimation can have a significant impact on the visual appeal of the resulting
visualization.

Figure 5.9 shows some examples of direct volume visualization. Each has
strengths and weaknesses in terms of performance and interpretability.

Figure 5.9. Direct volume visualization. The left image is generated using an emissive model,

e.g., all points emit light in a level proportional to their value. No shading calcu-

lations are included. (Image generated with OpenDX [267].) The right image uses

a texture-based approach and includes diffuse and specular lighting components.

(Image from VRVis [375].)
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5.3.3 Implicit Surfaces

The typical method of modeling surfaces in computer graphics is using para-
metric equations to define points on the surface, which can then be connected
to form polygonal meshes. This representation is very useful for performing
transformations and computing surface normals. An alternative method is
the use of implicit representations [32], where the surface is defined as the
zero contour of a function of two or three variables. Implicit representations
have strengths in operations such as blending and metamorphosis, and have
been becoming increasingly popular. They can also be used in data visu-
alization to convey sparse data sets and the field of influence for the data
points. They also enable combining clouds of data into higher-level surfaces
and solids.

Metaballs, also known as blobby objects [407], are a type of implicit mod-
eling technique. We can think of a metaball as a particle surrounded by
a density field, where the density attributed to the particle (its influence)
decreases with distance from the particle location. A surface is implied by
taking an isosurface through this density field—the higher the isosurface
value, the nearer it will be to the particle. The powerful aspect of metaballs
is the way they can be combined. By simply summing the influences of each
metaball on a given point, we can get very smooth blendings of the spherical
influence fields.

The key to using metaballs is the definition of the equation for specifying
the influence on an arbitrary point from an arbitrary particle. Blinn [31]
used exponentially decaying fields for each particle, with a Gaussian bump
with height b and standard deviation a. If r is the distance from the
particle to a location in the field, the influence of the particle is b−ar.
For efficiency purposes, this was changed to the squared distance to avoid
computing the square root. The resulting density of an arbitrary loca-
tion in the field is simply the summation of the contributions from all the
particles.

Wyvill et al. [407] simplified the calculations somewhat by defining a
cubic polynomial based on the radius of influence for a particle and the
distance from the center of the particle to the field location in question. The
key is that the influence must be 1.0 when the distance r is 0.0, and 0.0
when the distance is equal to the radius R of influence. A function that
satisfies these requirements is C(r) = 2r3/R3 − 3r2/R2 + 1 . This equation
is a bit slow, due to the square root calculation, so like Blinn, they recast it
as a function in r2 and R2. By using an additional condition (influence at
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Figure 5.10. Examples of implicit surfaces. The figure on the left shows two intersecting spheres,

while the figure on the right contains a bent grid of 25 spheres with different ranges

of influence, where the center sphere is missing.

R/2 = 0.5), and for a = −.444444, b = 1.888889, and c = −2.444444, the
resulting function is

C(r) = ar6/R6 + br4/R4 + cr2/R2 + 1.

Given a set of data points, we define a grid and compute the density at
each point based on the data in the neighborhood. Once this field is gener-
ated, any scalar field visualization technique can be used to render it, such
as the Marching Cubes algorithm or direct volume rendering. Figure 5.10
shows a couple of examples of the types of renderings that can be performed
with implicit surfaces. The first image was generated using just two spheres,
with an isovalue of 0.11. Intersecting elements were summed together. Note
the smooth transition between the two objects: no discontinuities are visible.
The second image contains 24 spheres laid out in an L-shape, with a hole
in the middle. The inner spheres were given a smaller radius in an attempt
to mimic a cushion that is compressed in the middle. It is important to
remember that this moderately complex surface was defined by a total of 24
positions and radii, plus an isovalue.

5.4 Dynamic Data

Flow visualization is the study of methods to display dynamic behavior in
liquids and gases. The field dates back at least to the mid-1400s, where Leo-
nardo Da Vinci sketched images of fine particles of sand and wood shavings
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that had been dropped into flowing liquids. Since then, laboratory flow
visualization has become more and more exact, with careful control of the
particulate size and distribution. Advances in photography has also helped
extend our understanding of how fluids flow under various circumstances.

More recently, computational fluid dynamics (CFD) has extended the
abilities of scientists to study flow by creating simulations of dynamic be-
havior of fluids under a wide range of conditions. The result of this analysis
is usually a 2D or 3D grid of velocity vectors, which may be uniformly or
nonuniformly spaced. The goal is then to analyze this vector field to iden-
tify features such as turbulence, vortices, saddle points, and other forms of
structure.

There are several variations on the structure of the field data that is
generated by these experiments. A static field is one in which there is only
a single, unchanging velocity field. Time-varying fields may either have
fixed positions with changing vector values or both changing positions and
changing vectors (for example, when modeling rotating turbine blades or
pitching airfoils). These latter types are referred to as unsteady.

5.4.1 Definitions

We provide some definitions that we will need in our discussion of the math-
ematics of particle advection.

• pathline—The trajectory of a particle released into a flow field; it as-
sumes multiple time instances. In experimental visualization, this can
be achieved by long-term film exposure.

• streakline—Simultaneous positions of a set of particles continuously
released from one or more locations.

• timeline—Position at an instant of time of a batch of particles that
have been released simultaneously.

• streamline—A line through the velocity field that is tangent to the
velocity field at every point.

• steady flow—A flow field that does not change with time. For steady
flow, streaklines, pathlines, and streamlines coincide.

• particle advection—Computing the motion of particles through a flow
field.
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• vorticity—The curl of the velocity field, giving the magnitude and di-
rection of angular velocity for each particle in the velocity field.

5.4.2 Mathematics of Particle Advection

Below is the pseudocode for computing streaklines in the most general sit-
uation, namely where both vectors and grid positions for the field may be
changing over time (derived from [228]).

Assume there are Ns seed locations and Nt time steps. Thus there will
be s traces, each with a varying number of particles. Each iteration of the
outermost loop will compute new positions based on the current time and
next time, thus requiring two time steps of flow and grid position data. After
each iteration, the next set of flow and position data is read. This procedure
looks as follows:

Read first 2 time steps of flow and grid data

For t = 1 to Nt-1 do

Advect_trace(t, t+1)

Write curent traces to file

Read next time step of flow data

If moving grid, Read next time step of grid data

End for

For each time step, we look at each trace and each particle within the
trace. We compute a new position for each particle, and if it is still within
the region associated with the field, we save it. Finally, we start a new
particle at the seed location for each trace.

For s = 1 to Ns do

Copy trace s to working trace w

W_length = Trace_length(s)

Clear trace s and set Trace_length s to 0

for i = 1 to W_length do

p = ith particle of working trace w

advect_particle(current_time, next_time, p)

if p within field space

store p in trace s

Trace_length(s)++

End if

End for

Release a new particle for trace s at the seed location

Trace_length(s)++

End for
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To advect a particle between two time periods, we need to integrate the
point position in small step sizes until either the position falls out of the field
space or the ending time is reached. This is usually done using a Runge-
Kutta integration based on a predictor-corrector algorithm. This requires
a trilinear interpolation of the vector field to compute the velocity at an
arbitrary location. The following shows a second-order integration.

t = current_time

While (t < next_time AND p inside field) do

V = Interpolate_velocity(p, t, current_time, next_time)

Adjust:

h = c/max(V) /* C is a step size between 0 and 1 */

If (t + h > next_time) h = next_time - t

t = t + h

Predict:

p_approx = p + h * V

V_new = Interpolate_velocity(p_approx, t+h, current_time, next_time)

Adapt_step:

V_total = (V + V_new)/2

if (h * max(V_total) > c) then

V = V_total

t = t - h

Goto Adjust

End if

Corrector:

p = p + h * (V + V_new)/2

End while

5.4.3 Visualization Techniques

Many methods for visualizing flow have been developed over the years [14].
The simplest form of flow visualization is to display the velocity field data
itself, either as displacement vectors using such things as arrow glyphs (see
Figure 5.11) or as magnitude scalar values using image, surface, or volume
visualization techniques (mapping values to color, size, or position). The
number and placement of the displayed components is a crucial factor in
conveying the important features of the data; showing too many flow field
components can lead to significant occlusion, while using too few elements
raises the potential for missed features. While the simplest solution is to
allow the user to interactively change the density of elements (often specified
by a plane or vector in space, along with a sampling rate), recent research
has focused on automated placement of displayed flow field components by
analyzing the data and identifying regions where potentially interesting flow
is occurring.
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Figure 5.11. A storm cloud visualization containing glyphs showing wind direction and strength.

(Image generated with OpenDX [267].)

The next most common technique is the generation of streamlines based
on a static velocity field. The user selects seed locations (often along a line
or at two-dimensional grid locations), and computes a path for each seed
point through the field, maintaining a continuous tangent to the flow field.

Besides using lines to indicate the streams, we can use planar or solid
objects, such as ribbons and tubes. Other attributes of the field, such as

Figure 5.12. Flow data visualized using ribbons, with vorticity mapped to twist. (Image gen-

erated with OpenDX [267].)
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Figure 5.13. Corresponding points from several time slices can be joined to form streaklines.

(Image generated with OpenDX [267].)

magnitude or vorticity, can now be mapped to other attributes of the stream-
ribbons or stream-tubes, such as color, size, or twist (see Figure 5.12).

Streaklines are often represented as a continuous stream of particles ema-
nating from a discrete set of points and flowing through the field
(see Figure 5.13). Individual points in a given trace (all particles coming
from a particular location belong to the same trace) may be identified by
color-coding to help distinguish related points that get separated when en-
tering areas of high velocity.

One more recent technique for flow visualization is called a streamball ,
which is based on the use of metaballs or blobby/soft objects [35]. This is an
implicit surface based on a field created by computing the influence of seed
points on each location in the field. In effect, each seed point will influence
a certain part of space, and locations in space can be influenced by multiple
points. What this means is that if we use each particle along a streamline or
streakline to influence a spherical segment of the field, locations under the
influence of multiple particles will have continuous, smooth transitions from
one particle to the other. This can form both tubes and surfaces, depending
on how close the particles and streamlines are to each other.

Line Integral Convolution. An interesting approach to vector field visualiza-
tion was developed by Cabral and Leedom in 1993 [43]. The method, called
line integral convolution, or LIC, uses a random field and a vector field with
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the same height and width to generate a dense display of flow information
(see Figure 5.14). Basically, every pixel in the resulting image is a weighted
average of a sequence of adjacent pixels in the random field along a linear
path centered on the given pixel and following the streamline going through
the pixel. More formally, we can start at each location (i, j) in the vector
field and create two chains of pixels emanating from this location in opposite
directions tangent to the vector orientation. The length of the chain is set to
2L, where L is the distance traveled in each direction. These pixels form a
1-pixel-wide filter kernel. The corresponding pixels in the random field (the
authors use white noise) are summed and normalized by the chain length,
and the result of the computation is stored at position (i, j) in the result
image. The result is that pixels along lines with adjacent similar vectors will
have similar sums from the noise texture image.

An improvement on this technique, which defines the actual LIC, is to
form the filter by advecting points starting at position (i, j) along the stream-
line containing the point. The advection, which follows a similar strategy to
that presented earlier, takes small steps from the initial position using the
initial orientation, and then adjusts the orientation based on the local vec-
tor information. A high level view of LIC is presented below. Many options
for the advection and convolution processes exist, and the number of points
advected for each position can have a significant impact on the results (a
value of 10 is suggested by the authors of the technique [43]).

1. Given a vector field V and a texture image T .

2. Read and store V and T , computing the maximum vector magnitude.

3. For each point (i, j) in the result image:

(a) Compute via interpolation the flow direction and magnitude at
this point.

(b) Advect L points forward and backward, stopping at boundaries.
Step size depends on normalized vector magnitude.

(c) Given 2L + 1 positions, extract corresponding values from T .

(d) Convolve list of texture points, normalizing based on the shape of
the convolution kernel to maintain good range of color/intensity
values.

This process continues until the length of the streamline centered on the
selected point is equal to 2L. Again, the texture points are summed and
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Figure 5.14. The texture field on the left is combined with the vector field in the middle to

create the line integral convolution on the right. (Images generated with LicFactory

[423].)

normalized. They may also be weighted using a Gaussian filter to allow a
tapering effect at the ends of the filter kernel. The resulting convolution,
while much more computationally expensive than the simple straight line
version, is much more accurate for flow lines with a small radius of curvature.
An interesting effect can be obtained by animating this computation.

5.5 Combining Techniques

Many effective visualizations are actually combinations of two or more of the
techniques described above. Each technique has its strengths and weaknesses
in terms of the types of information it can or cannot effectively visualize,
so a combined visualization, as long as occlusion is minimized, can generate
results that are the sum of the strengths. At the same time, more and
more problems require the simultaneous analysis of multiple data sets to
arrive at an informed result. For example, weather forecasting involves the
combination of air and surface temperature, wind speed, relative humidity,
and a number of other factors to develop an accurate prediction. In this
section we will examine a number of visualizations formed by combining
some of the methods previously discussed, highlighting factors important to
their successful design and interpretation.

5.5.1 Slice Plus Isosurface

In Figure 5.15, an isosurface from a medical data set is combined with an
orthogonal slicing of the same data set, mapping the isosurface to one color
and the values in the image resulting from the slice mapped to a separate
color ramp. The isosurface is capable of conveying surface structure, which
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Figure 5.15. A medical volume data set displayed with an isosurface and two-dimensional slice.

(Image generated with OpenDX [267].)

is difficult to obtain from volume slicing, even with animation of the slice
position. However, the isosurface only provides information on a single value
within the entire volume, with no indication of the distribution of other
values or the gradient (rate of change) of the selected value at different
locations. The slice provides very detailed two-dimensional information,
especially with an appropriate choice of color assignments. It can convey
to the user the regions of relative uniformity, as well as those exhibiting
significant change. Another advantage is that the image slice can convey
nested regions of a particular value range, while the isosurface, in general,
will only display the outer-most surface.

Several considerations and capabilities are important when designing and
developing this visualization:

• it is critical to support rapid and intuitive modification of the isosurface
value;

• the position and orientation (along the three axes) of the slice should be
easily controlled by the user, with the option for animating its position
as it steps through the volume;

• camera position and orientation control are essential to enable viewing
of the surface and slice from all orientations;
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• color assignment is crucial, as features of interest in the slice may
only be revealed with a carefully chosen color map. Similarly, we
might want to choose the color of the isosurface so that it does not
appear in the color map used for the slice, to reduce the potential for
misinterpretation;

• the user should be able to easily hide either of the two visualization
components to make it easier to study the remaining data display. An-
other option is to allow the user to control the opacity of the compo-
nents, perhaps using a slider that ranges from hiding the slice entirely
to hiding the isosurface.

5.5.2 Isosurface Plus Glyphs

As mentioned in the previous section, isosurfaces are useful for conveying
details of three-dimensional surfaces, but, in general, do not incorporate
other aspects of the data. Glyphs (described in more detail in Chapter 7),
such as the popular arrow glyph, can be used to display the magnitude and
direction of change within a data set, either as a gradient in static data or
a flow in dynamic data. The glyphs may be positioned in close proximity
to the isosurface, since these are known to be positions of interest, or the
positions may be controlled separately.

In Figure 5.16, a section of a storm cloud is displayed, with the isosurface
indicating water density within the cloud and the arrow glyphs showing the
direction and magnitude of the wind field. Additionally, a cut plane is used
to show water density details. By moving the starting positions of the arrow
glyphs (attached to a movable plane), regions of calm and turbulence can
be isolated and investigated. By modifying the isovalue, the shape and
position of the cloud may be fixed, and interactions with the wind field can
be explored.

Many of the design considerations from the previous example pertain
to this visualization, as well. Interactive control of the parameters of the
visualization—the isosurface value, glyph base position, and viewing posi-
tion and angle—contribute to making this an effective visualization. Other
controls are necessary for improving the information content of the glyphs,
including:

• varying the density of the glyphs;

• scaling the glyph sizes;
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• controlling the color of glyphs to convey additional information or re-
dundantly map to the wind magnitude;

• computing base positions for the glyphs based on regions of interest in
the vector or water density fields.

Other potential enhancements to this visualization would be to use a cut
plane or rubber sheet to display variability within one or more fields, taking
advantage of the translucent isosurface to maintain context and bearings.
Streamlines could also be added to enhance the viewer’s understanding of
the flow field.

5.5.3 Rubber Sheet plus Contour Lines and Color

We have mentioned several times the benefits of redundant mapping of the
same data to different attributes of the visualization. In this example, we
start with a rubber sheet to convey a two-dimensional field of values as
a height field. This can reveal peaks and valleys found in the data, and
by creating a virtual landscape, we can build on users’ intuition about

Figure 5.16. A storm cloud visualization containing an isosurface and cut plane for water density

and glyphs showing wind direction and strength. (Image generated with OpenDX

[267].)
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Figure 5.17. A rubber sheet display of the height above and below sea level for the southeast

United States. (Image generated with OpenDX [267].)

Figure 5.18. The same data as in Figure 5.17, with color mapped to elevation. (Image generated

with OpenDX [267].)
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Figure 5.19. A zoomed-in region of the same data as the previous two figures, with additional

contour lines. (Image generated with OpenDX [267].)

interpreting the data in a topographic manner (see Figure 5.17). We can
augment this visualization by mapping color to the elevation, thus mak-
ing it easier to identify widely separated regions of similar height (see Fig-
ure 5.18). Finally, we can superimpose contour lines at certain levels, making
the gradient information much more apparent (see Figure 5.19). Note that
each addition to the visualization has improved our understanding of the
data, yet there is some value to viewing the data in multiple ways. This
reinforces our design consideration regarding selective hiding and showing of
visualization components to best take advantage of their individual strengths
while enabling users to incrementally enhance their mental model of the data
contents.

5.6 Summary

In this chapter we have surveyed many of the common techniques for visual-
izing spatio-temporal data, e.g., data with an implicit spatial, and sometimes
temporal, dimension. As we progressed through data of increasing dimen-
sionality, we examined several of the algorithms upon which the visualization
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techniques are built. As there are many options for visualizing a data set,
it is important to understand the benefits and drawbacks of each technique
in terms of what data features are clearly presented or potentially hidden.
Indeed, unless the domain area and visualization task are fairly well defined
and focused, it is often preferable to support more than one way of visualiz-
ing a particular data set. We will reiterate this point in later chapters that
focus on the visualization of nonspatial data.

5.7 Related Readings

The book Introduction to Scientific Visualization by Helen Wright provides a
compact, relatively high-level view of the field of scientific visualization [406].
The author provides software demonstrations of many of the concepts de-
scribed. The book Data Visualization: Principles and Practice” by Alexan-
dru Telea provides a more mathematical treatment of the field, and also
includes discussion of information visualization techniques [346]. For those
interested in a more in-depth study of scientific visualization, an excellent
collection of articles is The Visualization Handbook [144], edited by Charles
Hansen and Christopher Johnson. A good textbook for algorithms related
to scientific visualization is [385]. It includes the basics for several of the
algorithms found in this chapter. Other useful books include Lichtenbelt et
al.’s book on volume rendering [236] and Bloomenthal and Wyvill’s book on
implicit surfaces [32]. Many of the algorithms used in spatial data visualiza-
tion have their roots in image processing and computer vision. Many fine
textbooks for these fields exist, including [314] and [133].

5.8 Exercises

1. These days, many people carry small, portable display devices with
them, such as mobile phones and PDAs. Discuss the ramifications of
migrating to a small display for the visualization techniques discussed
in this chapter. Which mappings maintain most of their benefits when
scaling occurs? What strategies might you pursue to allow viewers
access to the same or similar resolution of information?

2. Researchers in the visualization field have spent considerable time try-
ing to differentiate classes of techniques, such as scientific versus in-
formation visualization, spatial versus nonspatial visualization, and
continuous versus discrete data visualization. Describe what you feel
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are the aspects of the techniques and data discussed in this chapter
that seem to be shared. Are there any techniques that don’t fit this
model as well as others?

3. A new topic called visual analytics is now further differentiating the
field. Its definition is “Visual analytics is the science of analytical
reasoning facilitated by interactive visual interfaces” [71]. Describe
what you feel are aspects that this new field includes which so far have
not been discussed in the chapter.

4. In flow simulation, one often computes a number of different attributes
at each time slice and location. Describe at least three distinct ways
you could map temperature, pressure, and velocity in a three-
dimensional flow field. For each, discuss the accuracy/resolution at
which the viewer could attain the data values. Also, discuss the issue
of occlusion and the potential for misinterpretation due to partially
visible data points.

5.9 Projects

1. Rewrite drawLineGraph() to instead draw a color bar, given a color
ramp with a range (colormin, colormax). You can assume that the num-
ber of data points is less than the width of the screen in determining
the width of the rectangle. Set the height of the rectangle to some
user-specified constant.

2. Write a program that extends drawLineGraph() to subsample the data
whenever the number of data points dataCount exceeds the number
of pixels in the drawing area (xMax− xMin).

3. Write a program that reads in a three-dimensional volume data set
and displays a user-selected slice. Assume a grayscale color map with
256 intensity levels.

4. Extend the above program to allow the user to specify an orientation
for the slice (0 = aligned with x-axis, 1 = aligned with y-axis, and 2
= aligned with z-axis). Note that since the size of the data volume
often differs for each dimension, the selected slice must be confined to
a range that depends on the orientation.

5. Extend the above program to allow arbitrary orientation, as specified
with a vector normal to the cutting plane plus center point for the
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cut plane that is within the data volume. Note that this project will
require resampling of the data in almost all cases.
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CHAPTER 6

Visualization Techniques for
Geospatial Data

Geospatial data is different from other kinds of data in that spatial data
describes objects or phenomena with a specific location in the real world.
Geospatial data arises in many applications, including credit card payments,
telephone calls, environmental records, and census demographics. In this
chapter, we provide an overview of the special characteristics and methods
that are needed for the visualization of geospatial data, sometimes called
geovisualization. We introduce the most important basics of geospatial vi-
sualization, such as map projections, and discuss visualization techniques
for point, line, area, and surface data. Due to the large scope of visual-
ization techniques in geographic information systems (GIS) and cartogra-
phy, we only provide a basic introduction from a visualization perspective.
More details about GIS, spatial visualization, and cartography can be found
in [54, 223, 243, 283, 327]. After reading the chapter, the reader should have
a general understanding about state-of-the-art visualization techniques for
geospatial data and should be able to implement and use them.

6.1 Visualizing Spatial Data

Large spatial data sets can be seen as a result of accumulating samples or
readings of phenomena in the real world, while moving along two dimen-
sions in space. Often, spatial data sets are discrete samples of a continuous
phenomenon. Nowadays, there exists a large number of applications where
it is important to analyze relationships that involve geographic location.

207
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Examples include global climate modeling (e.g., measuring temperature,
rainfall, and wind-speed), environmental records (e.g., measuring CO2 and
other pollution levels), economic and social measures and indicators (e.g.,
unemployment rate, education level), customer analysis, telephone calls,
credit card payments, and crime data. Because of its special characteris-
tics, the basic visualization strategy for spatial data is straightforward: we
map the spatial attributes directly to the two physical screen dimensions,
resulting in map visualizations.

Maps are the world reduced to points, lines, and areas. The visualiza-
tion parameters, including size, shape, value, texture, color, orientation, and
shape, show additional information about the objects under consideration.
According to the U.S. Geological Survey (USGS), map visualizations are
defined as a set of points, lines, and areas, all defined both by position ref-
erence to a coordinate system (spatial attributes) and by their nonspatial
attributes. MacEachren defines geographic visualization as the use of vi-
sual representations to make spatial contexts and problems visible, so as to
engage the most powerful human processing abilities, those associated with
vision [242].

From the definitions it becomes clear that we may distinguish spatial
phenomena according to their spatial dimension or extent:

• point phenomena—have no spatial extent; they can be termed zero-
dimensional and can be specified by a longitude and latitude coordi-
nate pair, along with a set of descriptors or attributes. Examples are
buildings, oil wells, aggregated measures, and cities.

• line phenomena—have length, but essentially no width; they can be
termed one-dimensional and can be specified by an unclosed series of
longitude and latitude coordinate pairs for each phenomenon. Ex-
amples are large telecommunication networks, roads, and boundaries
between countries. Attributes associated with line phenomena might
include capacities, traffic levels, and names.

• area phenomena—have both length and width; they can be termed
two-dimensional and can be specified by a series of longitude and lati-
tude coordinate pairs that completely enclose a region, along with a set
of attributes for each phenomenon. Examples are lakes, and political
units such as states or counties.

• surface phenomena—have length, width and height; they are termed
two-and-half-dimensional and can be specified by a series of longitude,
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latitude, and height coordinate vectors with a set of attributes for each
(longitude, latitude) pair.

Maps can be subdivided into map types based on properties of the data
(qualitative versus quantitative; discrete versus continuous) and the proper-
ties of the graphical variables (points, lines, surface, volumes). Examples of
the resulting maps are

• symbol maps (nominal point data);

• dot maps (ordinal point data);

• land use maps (nominal area data);

• choropleth maps (ordinal area data);

• line diagrams (nominal or ordinal line data);

• isoline maps (ordinal surface data);

• surface maps (ordinal volume data).

Note that the same data may be visualized by different map types. By
aggregating point data within areas, a choropleth map may be generated out
of a dot map, or a land use map out of a symbol map. We may also generate
a density surface from a dot map and display it as an isoline map or a surface
map. If we aggregate the point data within areas and map the number of
points within the areas to their size, we obtain cartogram visualizations.
More details on map types can be found in Chapter 7 of [222].

In exploratory geovisualization, interaction with maps is crucial. In con-
trast to traditional cartography, the classification and mapping of the data
can be interactively adapted by the user, and interactive querying as well as
manipulation of the display are possible [11]. A number of techniques and
systems have been developed that make extensive use of such interaction
capabilities. They allow, for example, a linking of multiple maps or a com-
bination of maps with standard statistical visualizations, such as bar charts
and line charts, or even with complex multidimensional visualization tech-
niques such as parallel coordinates or pixel techniques (see Chapter 7). In
addition, they usually provide an advanced browsing or querying interface.
An example of such as system is the CommonGIS system [9,10].
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6.1.1 Map Projections

In visualizing geospatial data, map projections play a critical role. Map
projections are concerned with mapping the positions on the globe (sphere)
to positions on the screen (flat surface). A map projection is defined as
Π : (λ, ϕ) → (x, y). The data format for degrees of longitude (λ) is fixed to
the interval [-180, 180], where negative values stand for western degrees and
positive values for eastern degrees. The degrees of latitude (ϕ) are defined
similarly on the interval [-90, 90],where negative values are used for southern
degrees and positive values for northern degrees. Map projections may have
different properties:

• A conformal projection retains the local angles on each point of a map
correctly, which means that they also locally preserve shapes. The
area, however, is not preserved.

• A map projection is called equivalent or equal area if a specific area
on one part of the map covers exactly the same surface on the globe,
as another part of the map. Area-accurate projections result in a
distortion of form and angles.

• A projection is called equidistant if it preserves the distance from some
standard point or line.

• Gnomonic projections allow all great circles to be displayed as straight
lines. Great circles are the largest circle that can be drawn on a given
sphere and cut the sphere into two halves of equal size. Gnomic pro-
jections preserve the shortest route between two points.

• Azimuthal projections preserve the direction from a central point. Usu-
ally these projections also have radial symmetry in the scales, e.g.,
distances from the central point are independent of the angle and con-
sequently, circles with the central point as center result in circles that
have the central point on the map as their center.

• In a retroazimuthal projection, the direction from a point S to a fixed
location L corresponds to the direction on the map from S to L.

Map projections may also be classified by the type of surface onto which
the sphere is projected. The most important surfaces are (see Figure 6.1) as
follows:



�

�

�

�

�

�

�

�

6.1. Visualizing Spatial Data 211

Figure 6.1. Cylinder, plane, and cone projections.

• Cylinder projections project the surface of the sphere on a cylinder that
is put around the sphere. Each point of the sphere is projected outward
on the cylinder. Cylinder projections allow the entire spherical surface
to be visible. Most cylinder projections preserve local angles and are
therefore conformal projections. The degrees of longitude and latitude
are usually orthogonal to each other. Pseudo-cylindrical projections
represent the central meridian and each parallel as a single straight
line segment, but not the other meridians.

• Plane projections are azimuthal projections that map the surface of
the sphere to a plane that is tangent to the sphere, with the tangent
point corresponding to the center point of the projection. Some plane
projections are true perspective projections.

• Cone projections map the surface of the sphere to a cone that is tangent
to the sphere. Degrees of latitude are represented as circles around the
projection center, degrees of longitude as straight lines outgoing from
this center. Cone projections may be designed in a way that preserves
the distance from the center of the cone. There are also a number of
pseudo-conical projections that, for example, retain the distances from
the pole, as well as the distances from the meridian.

ϕ measured degrees of latitude in radians

λ measured degrees of longitude in radians

x horizontal axis of the two-dimensional map

y vertical axis of the two-dimensional map

ϕ0; λ0 latitude of the standard parallel resp. meridian measured in radians

Table 6.1. Variables used in map projections.
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In the following, we provide the mapping details for a few widely used
map projections. A comprehensive list of all map projections support by
ArcGIS can be found at [101]. Variables used in map projections are defined
in Table 6.1.

Figure 6.2. Equirectangular projection.

Equirectangular Cylindrical Projections. The equirectangular projection [142]
(see Figure 6.2), one of the oldest and simplest projections, is a cylindrical
projection. It maps meridians to equally spaced vertical straight lines and
circles of latitude to evenly spread horizontal straight lines. The spherical
coordinates are transferred one-to-one to a rectangular surface:

x = λ, y = ϕ,

The projection does not have any of the desirable map properties and is
neither conformal nor equal area. Because of the distortions introduced by
equirectangular projections, it has little use in navigation, but finds its main
usage in thematic mapping.

Figure 6.3. Lambert cylindrical projection.
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Lambert Cylindrical Projection. The Lambert Cylindrical projection [142] (see
Figure 6.3) is an equal area projection that is easy to compute and provides
nice world maps. The mapping is defined as

x = (λ − λ0) ∗ cosϕ0, y =
sinϕ

cosϕ0
.

Figure 6.4. Hammer-Aitoff projection.

Hammer-Aitoff Projection. The Hammer-Aitoff projection [331] is a modified
azimuthal projection. The central meridian and the equator are straight
lines, with the meridian being half as long as the equator. The other merid-
ians and equator-parallels are unequally spaced curves (see Figure 6.4). The
mapping is defined as

x =
2
√

2 cosϕ sin λ
2

(1 + cosϕ cos λ
2 )

1
2
, y =

√
2 sin ϕ

(1 + cosϕ cos λ
2 )

1
2
.

It is an equal area projection, and its eliptic form gives the viewer a reference
to the spherical shape of the earth. Hammer-Aitoff projections are mainly
used in thematic world mapping.

Mollweide Projection. The Mollweide projection [331] is an equal-area pseudo-
cylindrical projection that represents the earth in the form of an ellipse (see
Figure 6.5). All equator-parallels are straight lines, and all meridians ex-
cept the central meridian are equally spaced elliptical arcs. The Mollweide
mapping is defined as

x =
2
√

2(λ − λ0) cos θ

π
, y = 2

1
2 sin θ 2θ + sin(2θ) = π sin ϕ.

The variable θ is calculated using an interpolation method (Newton) in solv-
ing Equation 6.1.1. Mollweide projections are mainly used for thematic maps
of the entire world.
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Figure 6.5. Mollweide projection.

Cosinusodial Projection. The Cosinusodial projection [331] is a simple pseudo-
cylindrical equal-area projection that can be quickly computed. It has a
unique form and surprisingly good local properties (see Figure 6.6). The
mapping is defined as

x = (λ − λ0) ∗ cosϕ, y = ϕ.

Figure 6.6. Cosinusodial projection.

Albers Equal-Area Conic Projection. The Albers Equal-Area Conic projection
[142] is an area accurate cone projection. Its basic idea is to use two standard
parallels (defined by β1 and β2) to reduce some of the distortions resulting
from projection with only one standard parallel. The meridians are equally
spaced straight lines intersecting in one point. The equator-parallels are
unequally spaced concentric circles. The mapping is

n =
cosβ1 + cosβ2

2
, p =

√
4
n
∗ sin(

π
2 − ϕ

2
) +

4
n2

∗ (sin
β1

2
)
2

∗ (sin
β2

2
)
2

,

x =
p

sin(n ∗ λ)
, y = − p

cos(n ∗ λ)
.
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Figure 6.7. Albers equal-area conic projection.

Neither shape nor distances are correct, but the distortion of these properties
is minimized in the region between the two standard parallels. The distances
are most accurate in the middle latitudes, and therefore the projection is
mostly used for smaller regions with east-west orientation located in the
middle latitudes (see Figure 6.7).

6.1.2 Visual Variables for Spatial Data

Maps are used in many different ways: for example, to provide specific in-
formation about particular locations, to provide general information about
spatial patterns, or to compare patterns in multiple maps. The mapping of
spatial data properties to the visual variables must reflect this goal. The
visual variables for spatial data are (see Figure 6.8):

• size—size of individual symbols, width of lines, or size of symbols in
areas;

• shape—shape of individual symbols or pattern symbols in lines and
areas;

• brightness—brightness of symbols, lines, or areas;

• color—color of symbols, lines, or areas;

• orientation—orientation of individual symbols or patterns in lines and
areas;

• spacing (texture)—spacing of patterns in symbols, lines, or areas;
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Arrangement

Point

Linear

Areal

Size Shape Brightness Color Orientation Spacing Perspective

height

Figure 6.8. Visual variables for spatial data. (Image based on [327].)

• perspective height—perspective three-dimensional view of the phenom-
ena with the data value mapped to the perspective height of points,
lines, or areas;

• arrangement—arrangement of patterns within the individual symbols
(for point phenomena), patterns of dots and dashes (for line phenom-
ena), or regular versus random distribution of symbols (for area phe-
nomena).

Cartographic design has been studied intensively for several decades, and
there are well-established guidelines for map design [243]. All are based on
the results of perceptual research (see Chapter 3), and the same basic map-
ping principles as discussed in Chapter 4 must be observed. Note that in
spatial data mapping, the chosen class separation, normalization, and spa-
tial aggregation may have a severe impact on the resulting visualization. In
Figure 6.9 (top), for example, two visualizations of the same data are shown.
The only difference is that the class separation chosen has been slightly mod-
ified, with a significant impact on the generated map. Figure 6.9 (bottom)
shows the significant change resulting from an absolute versus relative map-
ping. On the left side, the absolute numbers are shown, while on the right
side, the numbers are displayed relative to the population numbers. Note
that due to the large population differences in some areas, an inverted vi-
sual effect results. The visualization also heavily depends on the extent of
the areas for aggregation. Figure 6.10 shows the well-known London cholera
example with different area aggreations, resulting in quite different maps.
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Figure 6.9. Mapping problems: (top) different class breaks yield different choropleth maps;

(bottom) absolute versus relative mappings yield different choropleth maps.

Figure 6.10. Different spatial aggregation yields different choropleth maps.
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Figure 6.11. Discrete versus continuous and smooth versus abrupt (based on [243]).

6.2 Visualization of Point Data

The first important class of spatial data is point data. Point data is discrete
in nature, but it may describe a continuous phenonmenon, for example,
temperature measurements at specific locations. Depending on the nature
of the data and the task, the designer must decide whether to display the
data continuously, versus discrete and smooth, versus abrupt. Figure 6.11
show the different options. Discrete data is presumed to occur at distinct
locations, while continuous data is defined at all locations. Smooth data
refers to data that changes in a gradual fashion, while abrupt data changes
suddenly.

6.2.1 Dot Maps

Point phenomena can be visualized by placing a symbol or pixel at the
location where that phenomenon occurs. This simple visualization is called
a dot map. A quantitative parameter may be mapped to the size or the color
of the symbol or pixel. Circles are the most widely used symbol in dot maps,
but squares, bars, or any other symbol can be used as well. If the size of the
symbol is used to represent a quantitative parameter, a specific question is
how to scale the symbols. Calculating the correct size of the symbols does
not necessarily mean that the symbols will be perceived correctly [113]. The
perceived size of the symbols does not necessarily correspond to the actual
size, due to problems in size perception (see Chapter 3). The perceived size
of the symbols depends on their local neigborhood (e.g., the Ebbinghaus
illusion [292]), therefore no global formula for perceptual scaling is possible.
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If color is used to represent a quantitative parameter, the problems of color
perception (see Chapter 3) must be taken into account.

Dot maps are an elegant medium for communicating a wealth of infor-
mation about the relationships of spatial point phenomena in a compact,
convenient, and familiar format. However, when large data sets are drawn
on a map, the problem of overlap or overplotting of data points arises in
highly populated areas, while low-population areas are virtually empty (see
Figure 6.12), since spatial data are highly nonuniformly distributed in real-
world data sets. Examples of such spatial data sets are credit card payments,
telephone calls, health statistics, environmental records, crime data, and cen-
sus demographics. Note that the analysis may involve multiple parameters
that may be shown on multiple maps. If all maps show the data in the same
way, it may be possible to relate the parameters and detect local correlations,
dependencies, and other interesting patterns. There are several approaches
already in common use for coping with dense spatial data [124]. One widely
used method is a 2.5D visualization showing data points aggregated up to
map regions. This technique is commercially available in systems such as Vi-
sualInsight’s In3D [2] and ESRI’s ArcView [100]. An alternative that shows
more detail is a visualization of individual data points as bars, according
to their statistical value on a map. This technique is embodied in systems
such as Vero Insight’s MineSet [41] and AT&T’s Swift 3D [220]. A problem
here is that a large number of data points are plotted at the same position,
and therefore only a small portion of the data is actually visible. Moreover,
due to occlusion in 3D, a significant fraction of the data may not be visible
unless the viewpoint is changed.

Figure 6.12. USA dot map: every circle represents the spatial location of an event. Even in the

zoomed-in version there is a large degree of overlap. (Image reprinted from [197]

with permission of Springer Science and Business Media.)
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6.2.2 PixelMaps

One approach that does not aggregate the data, but avoids overlap in the
two-dimensional display, is the PixelMap approach [200]. The idea is to
reposition pixels that would otherwise overlap. The basic idea of the repo-
sitioning algorithm is to recursively partition the data set into four subsets
containing the data points in four equal-sized subregions. Since the data
points may not fit into the four subregions, we must determine new extents
of the subregions (without changing the four subsets of data points), such
that the data points in each subset can be visualized in their corresponding
subregion. For an efficient implementation, a quadtree-like data structure
manages the required information and supports the recursive partitioning
process. The partitioning process works as follows. Starting with the root
of the quadtree, in each step, the data space is partitioned into four subre-
gions. The partitioning is made such that the area occupied by each of the
subregions (in pixels) is larger than the number of pixels belonging to the
corresponding subregion. If—after a few recursions—only a limited num-

(a) 0:00 am (EST) (b) 6:00 am (EST)

(c) 10:00 pm (EST) (d) 6:00 pm (EST)

Figure 6.13. The figures display U.S. Telephone Call Volume at four different times during

one day. The idea is to place the first data items at their correct position and

position overlapping data points at nearby unoccupied positions. (Image reprinted

from [197] with permission of Springer Science and Business Media.)
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ber of data points is left in a subregion, the points are positioned by a pixel
placement algorithm that positions the first data item at its correct position,
and subsequent overlapping data points at nearby unoccupied positions, re-
sulting in a placement that appears locally quasi-random. The details of the
algorithm can be found in [200]. A problem of PixelMaps is that in areas
with high overlap, the repositioning depends on the ordering of the points
in the database. Figure 6.13 presents four time steps of such visualizations,
showing the U.S. Telephone Call Volume within a 10-minute interval of the
time denoted. The time sequence shows the development of the call volume
over time. The visualizations allow an intuitive understanding of the devel-
opment of the call volume, showing the wake-up from east to west and the
drop down in call volume at commuting and lunch time, for example. The
visualizations show expected patterns but also reveal unexpected patterns,
such as the little dark spots in the Kansas City, KS, and Omaha, NE, areas
in the central U.S., which are the locations of call centers with nationwide
service during the night (see Figure 6.13(a)).

6.3 Visualization of Line Data

The basic idea for visualizing spatial data describing linear phenomena is
to represent them as line segments between pairs of endpoints specified by
longitude and latitude. A standard mapping of line data allows data param-
eters to be mapped to line width, line pattern, line color, and line labeling.
In addition, data properties of the starting and ending points, as well as in-
tersection points, may also be mapped to the visual parameters of the nodes,
such as size, shape, color, and labeling. The lines do not need to be straight,
but may be polylines or splines, in order to avoid clutter in the display.
Which mapping is best depends on the application and the task. Note that
the choices in visualizing line data are similar to those in graph drawing (see
Chapter 8), except that the position of the nodes in the display is fixed in
geospatial applications, whereas it is part of the mapping and optimization
process in graph drawing applications.

6.3.1 Network Maps

Network maps are widely used in a variety of applications. Some approaches
only display the connectivity of networks for understanding their general be-
havior and structure. Eick and Wills [93] used functions such as aggregation,
hierarchical information, node position, and linked displays for investigating
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Figure 6.14. Swift-3D. (Image from [221].)

large networks with hierarchies and without a natural layout. They used
color and shape for coding node information and color and line width for
coding link information. Researchers at NCSA [73] added 3D graphics to
their network maps to display animations of Internet traffic packets within
the network backbone. Becker, Eick and Wilks [21] describe a system called
SeeNet , which is motivated by research in dynamic statistical graphics. The
basic idea is to involve the human and let him/her interactively control the
display to focus on interesting patterns. They use two static network dis-
plays to visualize the geographic relationships, and a link matrix, which gives
equal emphasis to all network links. Another interesting system for visual-
izing large network data is AT&T’s SWIFT-3D System [194,220,221]. This
system integrates a collection of relevant visualization techniques, ranging
from familiar statistical displays to pixel-oriented overviews, with interactive
3D-maps and drag+drop query tools (see Figure 6.14). The visualization
component maps the data to a set of linked 2D and 3D views created by dif-
ferent visualization techniques: statistical 2D visualizations, pixel-oriented
2D visualizations, and dynamic 3D visualizations. In all mentioned ap-
proaches, however, the visualization of large networks on maps leads to the
overlap problem of line segments in dense areas.

6.3.2 Flow Maps and Edge Bundling

There are a number of approaches that try to avoid the overlap problem
of traditional network maps by using curved lines instead of straight lines
(see Figure 6.15). While this has been done mostly manually by cartogra-
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Figure 6.15. ArcMap. (Image from [74], c© 1996 IEEE.)

phers in the past, a number of approaches for an algorithmically generated
visualization of network maps with curved lines have been proposed. Two
prominent examples are Stanford flow maps [273] and Danny Holten’s edge
bundling [164].

The flow map technique is inspired by graph layout algorithms that min-
imize edge crossings and node position distortions, while retaining their rel-
ative positions. Algorithmically, a hierarchical clustering based on node
positions and flows between the nodes is performed to compute a useful
merging and rerouting of flows. Details can be found in [273]. In compari-
son to other computer-generated flow maps (Figure 6.16(a)), the results of
the Stanford system show a much clearer picture, with the clutter being
significantly reduced (Figure 6.16(b)).

Edge bundling also aims at reducing the clutter in line drawings. If a
hierarchy is defined on the nodes, the edges can be bundled according to the

(a) (b)
Figure 6.16. Flow maps: (a) flows of tourists in Berlin; (b) produced by the Stanford system

showing the migration from California (image from [273], c© 2005 IEEE).
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Figure 6.17. The visualizations show IP flow traffic from external nodes on the outside to inter-

nal nodes, visualized as treemaps on the inside. The edge bundling visualization

(right side) significantly reduces the visual clutter compared to the straight line

visualization (left side). For more details, see [248]. (Image reprinted from [110]

with permission of Springer Science and Business Media.)

hierarchy by using the hierarchy as defining points for B-splines connecting
two nodes. Nodes connected through the root of the hierarchy are maximally
bent, while nodes within the same subhierarchy are only minimally bent.
Hierarchical bundling significantly reduces visual clutter. It is a generic
method that can be used in conjunction with a number of visualization
techniques, including traditional maps, but also standard tree visualizations,
circular trees, treemaps, and many others. The example in Figure 6.17
displays edge bundling being applied to a visualization of IP traffic data. The
visualization shows the traffic from external nodes that are on the outside,
to internal nodes that are visualized as a treemap (see Chapter 8). The
comparison between the standard visualization of the connections by straight
lines and the edge bundling visualization clearly shows the advantage of the
technique.

6.4 Visualization of Area Data

Thematic maps are the main approach to visualizing area phenomena. There
are different variants of thematic maps. The most popular type of thematic
maps are choropleth maps (Greek: choro = area, pleth = value), in which
the values of an attribute or statistical variable are encoded as colored or
shaded regions on the map. Choropleth maps (Figure 6.18(a)) assume that
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(a) (b)
Figure 6.18. Thematic maps: (a) A choropleth map showing U.S. election results of the 2008

Obama versus McCain presidential election. (b) An isarithmic map showing the

number of pictures taken on Mainau Island, using a heat map, where the colors

range from black to red to yellow, with yellow representing the most photographs.

the mapped attribute is uniformly distributed in the regions. If the at-
tribute has a different distribution than the partitioning into regions, other
techniques, such as dasymetric maps, are used. In dasymetric maps, the
variable to be shown forms areas independent of the original regions, e.g., in
contrast to choropleth maps, the boundaries of the areas derived from the
attribute do not need to match the given map’s regions. A third important
type of map is an isarithmic map (Figure 6.18(b)), which shows the contours
of some continuous phenomena. Widely used examples of isarithmic maps
are contour maps or topographic maps. If the contours are determined from
real data points (such as temperatures measured at a specific location) the
maps are called isometric maps; if the data are measured for a certain re-
gion (such as a county) and, for example the centroid is considered as the
data point, the maps are called isopleth maps. One of the main tasks in
generating isarithmic maps is the interpolation of the data points to obtain
smooth contours, which is done, for example, by triangulation, or inverse
distance mapping. A complex, but less frequently used mapping technique,
is cartograms, in which the size of regions is scaled to reflect a statistical vari-
able, leading to unique distortions of the map geometry. There are different
variants of cartograms, ranging from continuous cartograms that retain the
topology of the polygon mesh, to noncontinuous cartograms that simply
scale each polygon independently to rectangular or circular approximations
of the areas.

Note that the area information may also be visualized by displaying
discrete points or symbols on the map: for example, by showing symbols
that are proportionally sized to the statistical parameter on the map, or by
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generating a dot map with the regional dot density corresponding to the
statistical variable. In the following, choropleth maps and cartograms will
be discussed in more detail.

6.4.1 Choropleth Maps

Choropleth maps usually present the area phenomena as shaded polygons
that are closed contours of sets of points, where the first and the last points
are the same. Examples of closed contours are states, counties, and parks.
Choropleth maps are used to emphasize the spatial distribution of one or
more geographic attributes. In generating choropleth maps, the normaliza-
tion of the data (see Chapter 2), as well as color or grayscale mapping (see
Chapter 3), are important design decisions. In Figure 6.18(a), a choropleth
map showing the 2008 presidential election results is shown.

A problem of choropleth maps is that the most interesting values are often
concentrated in densely populated areas with small and barely visible poly-
gons, and less interesting values are spread out over sparsely populated areas
with large and visually dominating polygons. Choropleth maps, therefore,
tend to highlight patterns in large areas, which may, however, be of lower
importance. In the U.S. Census Demographics, for example, such maps tend
to highlight patterns in areas where few people live, e.g. the large states in
the U.S.A.

6.4.2 Cartograms

Cartograms are generalizations of ordinary thematic maps that avoid the
problems of choropleth maps by distorting the geography according to the
displayed statistical value. Cartograms are a specific type of map transfor-
mation, where the regions are resized according to a geographically related
input variable. Example applications include population demographics [354],
election results [214], and epidemiology [353].

Several categories of cartogram problems exist. As shown in Figure 6.19(a),
noncontinuous cartograms can exactly satisfy area and shape constraints, but
don’t preserve the input map’s topology. Because the scaled polygons are
drawn inside the original regions, the loss of topology doesn’t cause per-
ceptual problems. More critical is that the polygon’s original size restricts
its final size. Consequently, you can’t make small polygons arbitrarily large
without scaling the entire map, so important areas can be difficult to see,
and screen usage can be poor. Noncontiguous cartograms, shown in Fig-
ure 6.19(b), scale all polygons to their target sizes, perfectly satisfying the
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(a) Noncontinuous cartogram.
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(b) Noncontiguous cartogram.

(c) Circular cartogram. (d) Continuous cartogram.

Figure 6.19. Different types of cartograms. (Images from [201], c© 2005 IEEE.)

area objectives. Shapes can be slightly relaxed, so polygons touch without
overlapping, and the map’s topology is also highly relaxed, because poly-
gons don’t retain their adjacency relationships. Noncontiguous cartograms
provide perfect area adjustment, with good shape preservation. However,
they lose the map’s global shape and topology, which can make perceiving
the generated visualization as a map difficult. Circular cartograms, shown
in Figure 6.19(c), completely ignore the input polygon’s shape, representing
each as a circle in the output. In many cases, area and topology constraints
are also relaxed, so circular cartograms have some of the same problems
as noncontiguous cartograms. The final category is continuous cartograms,
shown in Figure 6.19(d). Unlike the other categories, continuous cartograms
retain a map’s topology perfectly, but they relax the given area and shape
constraints. In general, cartograms can’t fully satisfy shape or area ob-
jectives, so cartogram generation involves a complex optimization prob-
lem in searching for a good compromise between shape and area preserva-
tion. Although continuous cartograms are difficult to generate, the resulting
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Figure 6.20. A U.S. state population cartogram with the presidential election results of 2000.

The area of the states in the cartogram corresponds to the population, and the

color (shaded and not shaded areas) corresponds to the percentage of the vote. A

bipolar colormap depicts which candidate has won each state. (Image reprinted

from [197] with permission of Springer Science and Business Media.)

polygonal meshes resemble the original map more than other computer-
generated cartogram variants. The rest of this section therefore focuses on
continuous cartograms.

Because cartograms are difficult to make by hand, the study of computer-
generated automated methods is of special interest [80,85,312,352,354,355].
Cartograms can also be seen as a general information visualization technique.
They provide a means for trading shape against area to improve a visual-
ization by scaling polygonal elements according to an external parameter.
In population cartograms, more space is allocated to densely populated ar-
eas; patterns that involve many people are highlighted, while those involving
fewer people are less emphasized. Figure 6.20 shows a conventional map of
the 2000 U.S. presidential election, along with a population-based cartogram
presenting the same information. In the cartogram, the area of the states
is scaled to their population, so it reveals the close result of a presidential
election more effectively than the original choropleth map in Figure 6.18(a).
For a cartogram to be effective, a human being must be able to quickly un-
derstand the displayed data and relate it to the original map. Recognition
depends on preserving basic properties, such as shape, orientation, and con-
tiguity. This, however, is difficult to achieve, and it has been shown that
the cartogram problem is unsolvable in the general case [199]. Even when
allowing for errors in the shape and area representations, we are left with
a difficult simultaneous optimization problem for which currently available
algorithms are very time consuming.
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The Continuous Cartogram Problem and the CartoDraw Algorithm The contin-
uous cartogram problem can be defined as a map deformation problem. The
input is a planar polygon mesh (map) P and a set of values X , one for each
region. The goal is to deform the map into P so that the area of each region
matches the value assigned to it, doing this in such a way that the overall
shape of the regions is preserved, and that they all remain recognizable.

Problem (The Cartogram Problem):
Input: A planar polygon mesh P consists of polygons p1, . . . , pk, values
X = x1, . . . xk with xi > 0,

∑
xi = 1. Let A(pi) denote the normalized

area of polygon pi with A(pi) > 0,
∑

A(pi) = 1.
Output: A topology-preserving polygon mesh P consists of polygons p1, . . . , pk,
such that the function f(S, A) = ω ·∑k

i=1 si +(1−ω) ·∑k
i=1 ai is minimized

with

S = {s1, . . . , sk} where si = dS(pi, pi), (Shape Error)

A = {a1, . . . ak} where ai = dA(xi, A(pi)). (Area Error)

Here, ∀j = 1, . . . , k and the weighting factor ω with 0 ≤ ω < 1.
Intuitively, topology preservation means that the faces of the input mesh

must stay the same, e.g., that the cyclic order of adjacent edges in P must
be the same as in P . This can be expressed formally by saying that the
graphs are pseudo-duals1.

Even a simple variant of the cartogram problem, which even ignores issues
of shape preservation (ω = 0), is likely to be NP-complete. Since it may
be impossible to simultaneously fulfill the area and shape constraints, the
functions f(·.·), dS(·, ·), and dA(·, ·) model the error of the output cartogram.

There are a number of algorithms to solve the cartogram problem. Most
approaches for the automated drawing of contiguous cartograms, however,
do not yield results comparable in quality to good hand-made drawings.
One reason, first identified by Dent [78, 79], is that straight lines, right an-
gles, and other features are important in human recognition of cartograms.
Radial methods such as the conformal maps proposed by Tobler [354], the
radial expansion method of Selvin et al. [312], and the line integral method
of Guseyn-Zade and Tikunov [352], in many cases do not provide accept-
able results, since the shapes of the polygons are often heavily deformed.
Likewise, the pseudo-cartograms of Tobler expand the lines of longitude and

1The pseudo-dual of a planar graph is a graph that has one vertex for each face and
an edge connecting two vertices if the corresponding faces are adjacent.
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latitude to achieve a least root mean square area error [355]. Very similar
drawings are made by approaching the problem as distortion viewing by
nonlinear magnification [50, 188,190,262].

Another family of approaches operates on a a grid or mesh imposed on
the input map. The “piezopleth” method of Cauvin, Schneider, and Cher-
rier transforms the grid by a physical pressure load model [52]. Dorling’s
cellular automaton approach trades grid cells until each region achieves the
desired number of cells [84]. The combinatorial approach of Edelsbrunner
and Waupotitsch [91] computes a sequence of piecewise linear homeomor-
phisms of the mesh, which preserve its topology. While the first method
is good at preserving the shape of the polygons, the second method al-
lows a very good fit for area but does not account for shape preservation.
A synthesis of both approaches was devised by Kocmoud and House, who
proposed a force-based model to alternately optimize shape and the area er-
ror [214]. Although the results are better than most other methods, this op-
timization has a prohibitively high execution time for interactive cartogram
generation.

Another algorithm that allows explicit control of the shape and area
error while retaining interactive performance is the CartoDraw algorithm
[199, 201]. The basic idea of CartoDraw is to incrementally reposition the
vertices of the map’s polygons by means of scanlines. Local changes are
applied if they reduce total area error without introducing an excessive shape
error. The main loop iterates over a set of scanlines. For each scanline,
it computes a candidate transformation of the polygons, and checks it for
topology and shape preservation. If the candidate transformation passes the
tests, it is made persistent; otherwise it is discarded. The order of scanline
processing depends on the potential for reducing area error. The algorithm
iterates over the scanlines until the area error improvement over all scanlines
falls below a threshold.

The input scanlines are arbitrary lines and may be automatically com-
puted (e.g., the medial axes of the overall boundary of the map or of the
individual polygons) or interactively entered. The idea for distorting the
polygon mesh is to use line segments (called cutting lines) perpendicular
to scanlines at regular intervals. Consider the two edges on the boundary
of the polygon intersected by a cutting line on either side of the scanline.
These edges divide the polygon boundary into two connected chains. Now,
if the area constraints require that the polygon expand, the algorithm ap-
plies a translation parallel to the scanline to each vertex of the two connected
pieces of the boundary (in opposite directions) to stretch the polygon at that
point. Similarly, if a contraction is called for, the direction of translation is
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(a) (b)
Figure 6.21. Medial Axes CartoDraw Algorithm: (a) US map with medial axis and polygons

that have to become large colored red and polygons that have to become smaller

colored blue; (b) medial axes transformation for a few locations. (Images from

[201], c© 2005 IEEE.)

reversed. Figure 6.21(a) shows the original polygons with the medial axis.
Polygons that should be larger are colored red, and polygons that should be
smaller are colored blue. Figure 6.21(b) shows how the CartoDraw algorithm
works locally. The local shrinking or expanding operations are performed
iteratively, until no further improvement is obtained.

The Rectangular Cartogram Problem and the RecMap Algorithm. The idea of
rectangular cartograms is to approximate familiar land-covering map region
shapes by rectangles, and to find a partition of the available screen space
where the areas of these rectangular regions are proportional to given sta-
tistical values. In order to support the understanding of the information
represented by a cartogram, the rectangles are placed as close as possible to
their original positions, and as close as possible to their original neighbors.
The problem may be defined as an optimization problem with a number of
constraints and optimization criteria, including the area, topology, relative
polygon position, proportion of the rectangle, and empty space. In defining
a specific instance of the problem, these criteria may be set as required con-
straints or as a weighted part of the optimization function. For some of the
variants of the rectangular cartogram problem, efficient approximation al-
gorithms such as the RecMap algorithm exist. The RecMap algorithm [157]
uses heuristics and a general optimization procedure to generate multiple
variants on a rectangular cartogram, including space-filling partitions of the
screen space with respect to the given geolocations and one that preserves the
proportion of the individual rectangles. Both variants construct cartograms
where the area of each rectangle exactly reflects the statistical variable to
be shown. Note that the technique performs a fully automatic optimiza-
tion, with explicit user control, over all constraints. See Figure 6.22 for
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Figure 6.22. A rectangular U.S. population cartogram on the state and county level. The area

of the rectangles corresponds to the population and the color redundantly encodes

the population numbers. (Image from [157], c© 2004 IEEE.)

examples of a rectangular population cartogram on the state and county
level, generated with the second variant, which exactly represents the sta-
tistical variable by the size of the rectangles, preserves their relative propor-
tions, and optimizes all other criteria.

6.5 Other Issues in Geospatial Data Visualization

Prerequisite to generating useful visualizations of spatial phenomena are a
number of well-known techniques from Cartography, including map general-
ization and map labeling. Map generalization is the process of selecting and
abstracting information on a map. Generalization is used when a special-
purpose small-scale map is derived from a large-scale data containing de-
tailed information. The goal is to adapt the objects on the map in such a way
that the objects of interest may be easily perceived in the resulting visual-
ization. Note that map generalizations are application- and task-dependent,
e.g., good map generalizations emphasize the map elements that are most
important for the task at hand, while still representing the geography in the
most accurate and recognizable way. It is important that the visibility and
recognizability of the objects displayed on the map outweigh the lost details
of items that are generalized. The goal is to preserve the distinguishing
characteristics of what makes the map useful in the particular application.

Examples for typical map generalizations are:

• Simplify points—remove or combine points that are not relevant or not
separately visible on the small-scale map.
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• Simplify lines—remove small fluctuations and bends or collapse dual
lines to centerlines. Lines that are in danger of touching each other in
the scaled version of the map may be removed.

• Simplify polygons—remove small fluctuations and bends while preserv-
ing the essential shape feature. This includes the removal or simplifi-
cation of building footprint boundaries while preserving the essential
shape and size, as well as the combination of disjoint but adjacent
polygons into a new area based on a specified tolerance distance.

Map labeling deals with placing textual or figurative labels close to
points, lines, and polygons. This seems to be an easy and straightforward
task, but it has been shown to be a difficult problem [82, 114]. There are
a large number of label placement algorithms that differ in their effective-
ness, e.g., quality of the results, and their efficiency, e.g., speed of calculating
the label placement. Map labeling algorithms are based on heuristics, and in
most cases use a rule-based label placement followed by an optimization algo-
rithm, such as local search, greedy algorithms, simulated annealing, random
placement, and genetic algorithms [63]. Two examples of labeling software
are Label-EZ [115] by MapText, Inc. and Maplex by ESRI [102].

Many other issues are related to the design of effective geographic infor-
mation systems (GIS). A GIS essentially allows users to create interactive
queries for dynamic search and exploration, to compare and edit spatial data
on different geographic map layers, and finally to present the results of all
these operations. Geospatial data visualization is just a part of GIS. The
advance of visualization and other relevant GIS functions could benefit each
other to make the whole system more powerful and useful.

In recent years, with the advance of fast-growing web technology and
APIs (e.g., Flex, AJAX, and the Google MAP API), as well as public avail-
ability of digitized geographic data and various economic, social, environ-
mental measures and indicators data via the Internet, the GIS community
has developed a large number of interactive high-performance tools for spa-
tial data visualization. These tools significantly increase the awareness and
better understanding of public issues among large populations of people. It
turns out that the visualization of geospatial data has become exciting to
many people.

For an advanced GIS, there is a trend that the geospatial data visual-
ization needs to integrate with temporal data visualization, such that the
system could more easily and systematically track and model the informa-
tion as it changes over time [268]. As GIS needs sufficiently integrate data
from different sources for facilitating interoperability (e.g., comparing data
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whose metadata might be slightly different) and data is reused among GIS
applications, it is important for geospatial visualization to work with as-
sociated ontologies, which provide a semantic approach to allow different
specifications of the same concepts and relationships in a given domain to
work in a uniform workspace [350].

6.6 Related Readings

The third edition of the book Thematic Cartography and Geovisualization by
Terry Slocum, Robert McMaster, Fritz Kessler, and Hugh Howard [326] pro-
vides a comprehensive coverage of the field of geographic visualization. The
authors provide a broad coverage of relevant topics and in most cases give the
mathematical details to implement the methods. The book Cartography—
Visualization of Geospatial Data by Menno-Jan Kraak and Ferjan Ormel-
ing [222] provides a more practical treatment of the field, covering all steps
necessary for creating map visualizations. The book is easy to read and in-
cludes a large number of examples and figures. The book How Maps Work—
Representations, Visualization, and Design by Alan MacEachren [243] fo-
cuses on the cognitive and perceptual aspects of map understanding and de-
sign. For those interested in a systematic study of exploratory spatial data
analysis, the book Exploratory Analysis of Spatial and Temporal Data—A
Systematic Approach by Natalia and Gennady Andrienko [11] contains a
broad and systematic coverage of data, task, and tools. The Andrienkos
provide a mathematical framework and extract a set of general principles.
The book also contains many examples from their rich research work. There
are also a number of recent books containing paper collections in the area of
geovisualization, including Exploring Geovisualization [90] and Geographic
Visualization: Concepts, tools, and Applications [83].

6.7 Exercises

1. Map projections are used to visualize geospatial data. Why are these
projections difficult?

2. Different projection techniques do exist. At which points do the dif-
ferent projections have no distortion?

3. In the R-project distribution (a public-domain statistics tool at http://
www.r-project.org) there is a data set called “quakes.” Plot this data
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and interpret the results of the visualization. Where are the two clear
planes of seismic activity?

4. Shape files represent polygonal boundaries of regions. Look up their
definitions, history, and identify issues that would present themselves
in coding maps.

5. Discuss the projection issues in comparing two regions of the world
such as Germany and the United States, or even closer ones such as
Atlanta and Boston. Note that this issues help explain the distortions
we see in a flatland world map.

6. Use the software Weave to explore various measures and indicators
data around the US or World. See http://www.openindicators.org or
the course web site for how to use the software.

6.8 Projects

1. Use the TIGER-System (Topologically Integrated Geographic Encod-
ing and Referencing), a provided geographic polygon data set from
the U.S. Census (TGR06001.RT2), to write a script that converts the
polygon data in the following format:

−121764253|+ 37160714
−121746453|+ 37611800
−121746709|+ 37611300
NA—NA

NA—NA marks the end of a polygon.

2. Use the R-project function “polygon” to draw the extracted polygons
of Project 1.

3. Write a program to visualize the “quakes” data from Exercise 3 using
the Google Maps API. Think about how to visualize the attributes of
depth, magnitude, and stations for each data point in the map with a
suitable glyph visualization.

Hint: Create an image for each of the three attributes, and scale it
according to the data value. Place them side by side on the Google
Map, so that they look like one glyph.

Sources: quakes.xml (10% Sample of the “quakes” data; depth, sta-
tions, magnitude are normalized) http://www.google.com/apis/maps/
(Google Maps API).
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4. Write a program that distorts map regions along the two Euclidean
dimensions x and y. The distortion operations should be done by
computing a histogram with a given number of bins in the two di-
mensions x and y to determine the distribution of the geospatial data
points in these dimensions. The distortion depends on the number of
data points that are geographically located in the bins.



�

�

�

�

�

�

�

�

CHAPTER 7

Visualization Techniques for
Multivariate Data

In this chapter we discuss techniques for the visualization of lists and tables of
data that does not generally have an explicit spatial attribute. We organize
the presentations based on the graphical primitive used in the rendering,
namely points, lines, or regions, followed by techniques that combine two
or more of these types of primitives. We conclude with a section on issues
common to all multivariate visualization techniques.

7.1 Point-Based Techniques

Point plots are introduced as visualizations that project records from an
n-dimensional data space to an arbitrary k-dimensional display space, such
that data records map to k-dimensional points. For each record, a graphical
representation, mark, or other aesthetic entity is drawn at its associated
k-dimensional point. Individual visualization techniques identified as point
plots define appropriate data projections and specific visual representations.
Point plots can be defined to display individual records or summary records,
and can be structured by various projection techniques. Several popular
point-based methods are described in this section. Others may be found in
the suggested readings.

237
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7.1.1 Scatterplots and Scatterplot Matrices

As described in Chapter 1, scatterplots are one of the earliest and most
widely used visualization techniques used in data analysis. Both 2D and 3D
scatterplots can be found in most packages designed to support data and
information analysis. Their success stems from our innate abilities to judge
relative position within a bounded space. As the dimensionality of the data
increases, the choices for visual analysis consist of:

• dimension subsetting—allowing the user to select a subset of the di-
mensions to display, or to develop algorithms to find the dimensions
containing the most useful information for the task at hand.

• dimension reduction—using techniques such as principal component
analysis or multidimensional scaling to transform the high-dimensional
data to data of lower dimension, while attempting to preserve as best
as possible the relationships among the data points.

Figure 7.1. A scatterplot matrix with the diagonal plot showing a histogram of each dimension.

Note that the points and histogram regions in red indicate selected data.
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• dimension embedding—mapping dimensions to other graphical
attributes besides position, such as color, size, and shape (though there
are limits to how many dimensions can be included this way).

• multiple displays—showing, either superimposed or juxtaposed, several
plots, each of which contains some of the dimensions.

For the case of multiple displays, the most common approach is to use a
scatterplot matrix. This consists of a grid of scatterplots, with the grid having
N2 cells, where N is the number of dimensions. Thus, every pairwise plot
will be shown twice, differing by a 90 degree rotation. The ordering of the
dimensions is usually the same for the horizontal and vertical orientations,
resulting in symmetry along the diagonal. The diagonal plots, which would
normally plot a variable against itself, are often used to convey the names of
the dimensions in the corresponding rows/columns, or sometimes to show a
histogram of a given dimension. Figure 7.1 shows an example of a scatterplot
matrix.

7.1.2 Force-Based Methods

Many techniques for projecting high-dimensional points into 2D or 3D dis-
play space have been developed. The key goal is to attempt to maintain the
N -dimensional features and characteristics of the data through the projec-
tion process, e.g., relationships that exist in the original data must also exist
after projection. This, however, is not always possible, especially as the di-
mensionality of the data increases. The projection may also unintentionally
introduce artifacts that may appear in the visualization and are not present
in the data. In this section, we describe several such projection methods.

Multidimensional scaling (MDS) [225] is a large class of dimension re-
duction algorithms in common use in statistical analysis and information
visualization. The basic structure of a typical MDS algorithm is as follows:

1. Given a data set with M records and N dimensions, create an M by M

matrix Ds that contains similarity measures between each pair of data
items. For example, one might use Euclidean distance as a measure of
similarity.

2. Assuming that you are projecting the data into K dimensions (e.g.,
for display purposes, K is usually between 1 and 3), create an M by
K matrix L to contain the locations for the projected points. These
M locations can be randomly chosen, or techniques such as principal
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component analysis (PCA) can be used to create reasonable initial
positions.

3. Compute an M by M matrix Ls that contains the similarities between
all pairs of points in L.

4. Compute the value of stress, S, which is a measure of the differences
between Ds and Ls. Many such stress measures exist; most assume
that the coordinate systems have been normalized so that the maxi-
mum distance between points is 1.0.

5. If S is sufficiently small, or hasn’t changed significantly in recent iter-
ations, the algorithm terminates.

6. Otherwise, attempt to shift the positions of points in L in a direction
that will reduce their individual stress levels. For example, this might
be a weighted sum of displacements based on comparing the point
with all other points, or perhaps only with its nearest neighbors. The
displacement should be scaled such that points don’t oscillate between
positions.

7. Return to step 3.

As one can imagine, there are many possible variants on this algorithm,
including different similarity and stress measures, different initial and ter-
mination conditions, and different position update strategies. As in any
optimization process, there is the potential to fall into a local minimal con-
figuration that still has a high level of stress. Common strategies to alleviate
this include occasionally adding a random jump in the position of a point to
see if it will converge to a different location. Figure 7.2 shows an example of
the Iris data set, which contains four numeric dimensions, projected using
MDS.

As is true for most, if not all, the projection techniques in this section,
there are many common criticisms. Obviously, the results are not unique:
minor changes in the starting conditions can lead to dramatically different
results. Another problem is that the coordinate system after projection is
not meaningful to the user in terms of the dimensions of their original data.
For example, it is typical to have a data point map to a location high in the
display in one running of the algorithm and then map to a low position in
a different algorithm execution. What is important is relative, not absolute,
positions.

RadViz [161] is a force-driven point layout technique that is based on
Hooke’s Law for equilibrium. For an N -dimensional data set, N anchor
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Figure 7.2. Iris data set projected using MDS.

points are placed on the circumference of the circle to represent the fixed
ends of the N springs attached to each data point. To simplify computa-
tions and provide an intuitive feel for the algorithm, these anchors are most
commonly placed on a circle of radius 1.0 centered on the origin. Thus,
given a normalized data vector Di = (di,0, di,1, . . . di,N−1) and a set of unit
vectors A, where Aj represents the jth anchor point, we get the following
equilibrium equation:

N−1∑
j=0

(Aj − p)dj = 0,

where p is the vector for the point at equilibrium. Solving for p yields

p =

∑N−1
j=0 (Ajdj)∑N−1

j=0 dj

. (7.1)

Note that different placement and ordering of the anchors will give dif-
ferent results, and that points that are quite distinct in N dimensions may
map to the same location in 2D. However, this is a problem common to all
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Figure 7.3. Different views of the same data set in RadViz, using manual reordering of dimen-

sions. Cars are color-coded according to their cost (low, medium, and high), and

the goal is to find attributes of cars that can best predict which cost range a car

is likely to fall into.
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Figure 7.4. This figure shows a class discrimination algorithm that selects the dimensions

providing the most spread in the data in a RadViz display. By placing the genes

expressed in acute lymphoblastic leukemia (ALL) patients close to each other and

the genes expressed in acute myeloblastic leukemia (AML) close to each other, the

AML patients were separated from the ALL patients.

projection and dimension reduction techniques. In the case of RadViz, a
simple solution is to provide interactions such as moving and reordering the
anchors and observing the changes in the visual layout. Relationships in
the data can often be teased out in this manner, especially if the changed
positions of points are animated along with the anchor movement (see Fig-
ure 7.3). Another approach is to implement search algorithms, similar to
projection pursuit, that try to find dimension layouts that result in the
maximum spread, such as shown in Figure 7.4.

Vectorized RadViz, or VRV, constructs multiple dimensions from in-
dividual dimensions by a flattening process, breaking each dimension into
many [315]. For example, the dimension representing the number of cylin-
ders can be broken down into 5 new dimensions: having 1 or 2 cylinders,
having 3 or 4 cylinders, having 5 or 6, having 7, or having 8. The number
of new dimensions can be determined algorithmically or manually. This is
similar to identifying bins in data (such as the grouping of low, medium,
and high for prices of cars). Each original dimension is thus represented by
a vector of new dimensions, with each new coordinate in that vector having
the value 0 or 1, namely whether the record has the value corresponding to
that dimension or not. Thus, for each record, each new vector of dimensions
has exactly one dimension with the value 1, and all the others have value
zero. An example of VRV is shown in Figure 7.5.
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Figure 7.5. Vectorized RadViz, formed by splitting each dimension into multiple dimensions

to create a binary representation for each data record. In this case, each cluster set

is separated into multiple dimensions, where each dimension represents a cluster

in each cluster set [315].

Barycentric displays [275] are similar in appearance to RadViz. How-
ever, instead of assigning positions based on springs connected to anchor
points, coordinates are considered as weighted sums of the anchor posi-
tions. While closed form solutions for small numbers of anchors have been
developed, generalizing these displays to arbitrary numbers of anchors is
still a research problem (although a recent patent claims to have solved the
general case).

7.2 Line-Based Techniques

Point-based methods represent each data value or record with a small mark.
In line-based methods, points corresponding to a particular record or di-
mension are linked together with straight or curved lines. These lines not
only reinforce the relationships among the data values, but also convey per-
ceivable features of the data via slopes, curvature, crossings, and other line
patterns. We describe a couple of techniques within this class of methods.
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Figure 7.6. An example of a multivariate line chart, in this case, the four-dimensional Iris data

set. Note that the modest separation between dimensions makes it easy to identify

trends and outliers.

7.2.1 Line Graphs

A line graph is a univariate visualization technique where the vertical axis
represents the range of values for the variable and the horizontal axis repre-
sents some ordering of the records in the data set. Most univariate visual-
ization techniques can be extended to multivariate data by either superim-
posing or juxtaposing the visual representations of individual variables. A
commonly used method of this sort is via line graphs. For a modest number
of data dimensions, the line plots can be drawn on a common set of axes, dif-
ferentiating the dimensions using color, line style, width, or other graphical
attributes (see Figure 7.6).

When the number of dimensions increases, or the dimensions have signifi-
cant overlap in their data ranges, superimposing becomes more problematic.
Figure 7.7(a) shows an 8-dimensional data set (AAUP faculty salaries and
compensation for different ranks at 100 universities). Clearly, patterns are
difficult to perceive. However, a few strategies are possible. Figure 7.7(b)
shows a stacked line chart, where instead of using a common baseline, each
dimension uses the plot from the previous dimension as a base. While this
reduces the number of occlusions, it makes it more difficult to assess actual
values of data points. Figures 7.7(c) and 7.7(d) show the effect of another
strategy, namely sorting the records based on one of the dimensions. Pat-
terns in both the regular and stacked versions are easier to identify.
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(a) superimposed (b) stacked

(c) ordered superimposed (d) ordered stacked

Figure 7.7. Four versions of line graphs for a subset of the AAUP data set: superimposed,

stacked, ordered superimposed, and ordered stacked. Ordering is based on the

first dimension, which represents salaries of full professor.

The effectiveness of the examples above is due in large part to the fact
that common units exist between the dimensions (e.g., size in one and dollars
in the others). When variables have different units, things get a bit more
complex. One approach commonly used is to include multiple vertical axes,
each labeled and ticked independently. Both the left and right sides of
the plot can be used to reduce the clutter. Clearly, if the tick marks are
not aligned, it would be unwise to have grid lines on the plot, unless the
dimension controlling the grid lines could be readily changed by the user.
Another approach is to create a set of plots, one for each dimension, and to
stack them vertically (usually after scaling them in the vertical dimension
to enable all or most of the plots to be visible simultaneously). Some form
of linked brushing (see the chapters on Interaction Techniques) can be used
to enable users to see the values in other dimensions that correspond to a
feature of interest in one of the plots.
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7.2.2 Parallel Coordinates

Parallel coordinates, also called ||-coords and PCP (for parallel coordinates
plot), were first introduced by Inselberg in 1985 as a mechanism for studying
high-dimensional geometry [170]. Since then, numerous researchers, includ-
ing Inselberg, have studied and enhanced PCPs for use in multivariate data
analysis. The basic idea is that axes, rather than being orthogonal, are
parallel, with evenly spaced vertical or horizontal lines representing a par-
ticular ordering of the dimensions. A data point is plotted as a polyline that
crosses each axis at a position proportional to its value for that dimension.
Figure 7.8 shows an example. One could consider a PCP as a line graph
after rotating the data, since the values of a record are linked together, as
opposed to the values of a dimension.

To interpret the plot, one looks for clusters of similar lines (indicating
partial correlation between pairs of dimensions), similar crossing points (in-
dicating partial negative correlations), and lines that are either isolated or
have a slope that is significantly different from their neighbors (indicating
outliers). One problem is that, like scatterplots, parallel coordinates have
their strength in showing relationships between pairs of dimensions. To ex-
tend this capability, interactive selection and highlighting of records allows
users to see relationships that span all dimensions. For example, the lines

Figure 7.8. An example of a 7-dimensional data set visualized with parallel coordinates. A

single datapoint is represented as the darkened polyline.
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Figure 7.9. A set of points is selected in the parallel coordinates plot. Selected points are

colored dark red, and the subspace containing them is shown in grey.

drawn in dark red in Figure 7.9 were isolated by dragging the mouse along
the high values of the MPG coordinate, thus selecting the records falling in
that range for the specified dimension. The light grey region identifies the
extents of the N -dimensional box that contains the selected points.

Many researchers have extended the capabilities of parallel coordinates
over the years. Some of these include:

• hierarchical parallel coordinates that show data clusters rather than
the original data [118];

• using semi-transparent lines to reveal clusters in large data sets [253];

• clustering, reordering, and spacing of axes based on correlation [410];

• reordering axes to reduce visual clutter [272];

• grouping data into cluster bands with special treatment of outliers
[265];

• incorporating histograms into the axes to better convey univariate dis-
tributions [384];

• fitting curves to the intersection points to better convey continuity
across axes [417].
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(a) (b)

Figure 7.10. An example of Andrews curves using two different dimension orders: (a) based on

the original order of the dimensions (sepal length, sepal width, petal length, petal

width); (b) based on the original order of the dimensions in reverse order.

7.2.3 Andrews Curves

Another line-based visualization for multivariate data is the Andrews curve,
developed by David F. Andrews in 1972 [8]. Each multivariate data point
D = (d1, d2, . . . , dN ) is used to create a curve of the form

f(t) =
d1√
2

+ d2 sin(t) + d3 cos(t) + d4 sin(2t) + d5 cos(2t) + . . . .

For an odd number of dimensions, the final term is dN cos(N−1
2 t), while

for an even number of dimensions the final term is dN sin(N
2 t). As in many

multivariate visualization techniques, the order of the dimensions can have a
significant effect on the resulting Andrews curve. Figures 7.10(a) and 7.10(b)
show the same data with different dimension orders. In particular, outliers
may become more or less perceivable, depending on ordering.

7.2.4 Radial Axis Techniques

For each of the techniques that orient the coordinate systems horizontally
and/or vertically, there is an equivalent technique that uses a radial orienta-
tion. For example, a circular line graph is one in which the plotted lines are
offset from a circular base (see Figure 7.11). A long graph can be nested by
dividing it up into equal size segments and mapping each to a base of differ-
ent radius. This is a potentially useful way to study cyclic events. Variants
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Figure 7.11. An example of a circular line graph. (Image courtesy http://www.cemframework

.com/img/PolarPlot1.png.)

on circular line graphs include radar and star graphs . Many other circular
charts have been developed over the years, including:

• polar graphs—point plots using polar coordinates;

• circular bar charts—like circular line graphs, but plotting bars on the
base line;

• circular area graphs—like a line graph, but with the area under line
filled in with a color or texture;

• circular bar graphs—with bars that are circular arcs with a common
center point and base line (note the difference between these and cir-
cular bar charts: in one, the bar is straight and the base is curved, but
vice versa for the other).

Any of the techniques that use radial axes and involve more than one
cycle can either use concentric rings or a continuous spiral as a layout. For
example, Figure 7.12 shows a bar chart with a spiral base. These methods
don’t suffer from the discontinuity at the end of each cycle that is present
in the concentric circle layout. Note that comparisons within and between
cycles are fairly easy to perform, especially with the bars all oriented along
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Figure 7.12. An example of a spiral layout for a bar graph, as generated by SpiralGlyphics [377].

the vertical axis, rather than perpendicular to the spiral base. Based on
our knowledge of human perception, measuring differences between adjacent
elements is harder than if we had a common baseline; however, a traditional
bar graph would not allow us to easily see patterns between elements in the
same position of different cycles.

7.3 Region-Based Techniques

In region-based techniques, filled polygons are used to convey values, based
on their size, shape, color, or other attributes. Even though it was men-
tioned in Chapter 3 that our ability to accurately measure area is noticeably
worse than our ability to measure attributes such as length, many effective
techniques in this category have been developed. For some, the goal is not to
show the raw data itself, but rather summaries or distributions of the values.
Many of the region-based techniques were initially designed for univariate
data, such as pie charts and bar charts. Some, however, have been extended
to multiple dimensions. The rest of this section contains descriptions of some
of these methods.

7.3.1 Bar Charts/Histograms

One of the most common visualizations, in addition to line plots, scatter-
plots, and maps, is the bar chart, where rectangular bars are used to convey
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numeric values. As mentioned in Chapter 3, humans have high visual acuity
when it comes to comparing the length of linear features. Thus, bar charts
are a natural choice for visualizing many kinds of data. Both horizontal and
vertical bars are routinely used and are readily interpretable, which means
that the visualization designer has some flexibility in the way they are in-
tegrated into a given application. If each bar is to receive a text label, it is
somewhat easier to deal with variable length strings with horizontally ori-
ented bars, but even that can be overcome by angling the text for vertical
bars.

One of the critical decisions that needs to be made when using bar charts
is deciding how many bars are needed to best represent the data. If the bars
represent the state of N variables, then as long as N is not too large, there
can be a one-to-one correspondence between variables and bars. If the goal
is to represent a summarization or distribution of a data set, we can develop
a Histogram to convey the number of occurrences of data values. If the data
takes on nominal values or a modest number of distinct integers, the decision
is simple—just have the same number of bars as there are different values.
For continuous data or integer variables with a large range, we need to divide
the data into subranges and assign each subrange to a bar.

If the data is multivariate, there are several options for using bar charts.
A common alternative is a stacked bar graph, where each bar consists of sev-
eral shorter bars to represent the values for each dimension (Figure 7.13a).
It is common to vary the color, texture, or other attributes of the bars to
make them readily distinguishable within a given bar and comparable be-
tween bars. Similarly, bars for different variables can be placed next to each
other, giving them a common baseline and thus simplifying their interpre-

(a) Stacked bar chart. (b) Clustered bar chart.

Figure 7.13. Examples of 2D bar graphs for showing multivariate data.
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(a) Bar graphs. (b) Cityscape.

Figure 7.14. Examples of 3D visualizations for showing multivariate data.

tation (Figure 7.13b). The choice between these approaches is often based
on the number of variables, as well as the number of bars. Stacked bars
distribute the burden in two directions, while adjacent bars can demand
significant space, unless the bar and dimension counts are modest.

Cityscapes are a 3D version of bar graphs, where 3D boxes are used
instead of 2D rectangles. Bars are laid out on a grid using two data dimen-
sions to position the bar on the surface. Other variables control the size and
color of the stacked boxes at a given location. Cityscapes get their name
from the fact that the resulting visualization often looks like the buildings
of a city. If all cells in the grid are populated, the graph is sometimes called
a 3D Histogram. The problem with going to 3D is that there is now the
possibility of occlusion (Figure 7.14a). Several strategies exist for reducing
or eliminating this occlusion. One is to provide the user the option to rotate
the view, thus exposing bars that were previously blocked. Another is to
shrink the thickness of the bars to reduce the size of their footprints and
therefore reduce the number of bars that a given bar can block. A third
approach is to vary the opacity of bars, allowing one to see the bars blocked
by those closer to the viewpoint. All of these approaches have shortcom-
ings, but even with their limitations, cityscapes are a popular visualization
technique, especially with georeferenced data (Figure 7.14(b)).

7.3.2 Tabular Displays

Multivariate data is often stored in tables, and a number of visualization
techniques have been modeled on this structure. These techniques mostly
vary in the types of interactions they support.



�

�

�

�

�

�

�

�

254 7. Visualization Techniques for Multivariate Data

Permuted Data Matrix
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Figure 7.15. A heatmap showing social statistics for several countries from a U.N. survey. Rows

and columns have been reordered via clustering. (Image courtesy Leland Wilkinson

[393].)

Figure 7.16. A section of a survey plot as computed by the DataLab tool. Each column is a

visual representation of each of the four dimensions of the Iris data set.
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Heatmaps are created by displaying the table of record values using color
rather than text. For this visualization technique, all data values are mapped
to the same normalized color space, and each is rendered as a colored square
or rectangle. Using different color maps, as well as allowing users to stretch
or compress colors to emphasize or deemphasize some value ranges (as we
saw in volume rendering using transfer functions), enhances the usefulness
of this technique (Figure 7.15).

Permutation or reorderable matrices are basically heatmaps with the
option to reorganize rows and columns to expose features of the data [26].
Columns and rows can be reordered to maximize diagonalization, forming a
matrix with higher-valued cells aligned along the diagonal. Other variants
reorder to isolate clusters of similar values or patterns of values.

Survey plots create a variant on permutation matrices by varying the
size of cells, rather than coloring them and aligning cell centers within in-
dividual attributes [238]. This alleviates biases in color perception caused
by the effects of adjacent colors. However, because measurement of area is
more error-prone than measuring length, this method also has its deficiencies
(Figure 7.16).

Figure 7.17. An example of Inxight Table Lens showing the cars data set sorted first by car

origin and then by MPG.
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Finally, table lens combines all these ideas and includes a level-of-detail
mechanism for providing panning and zooming capabilities to display whole
table views, while still providing some detail through local table lenses [284].
Data can be presented in many ways, depending on how much screen space
the user allocates to a particular row or column. Sorting columns helps to
quickly identify trends, correlations, and outliers (Figure 7.17).

7.3.3 Dimensional Stacking

Dimensional stacking is a method developed by LeBlanc et al. [231] for map-
ping data from a discrete N -dimensional space to a two-dimensional image
in a manner that minimizes the occlusion of data, while preserving much of
the spatial information. Briefly, the mapping is performed as follows: begin
with data of dimension 2N + 1 (for an even number of dimensions there
would be an additional implicit dimension of cardinality one). Select a finite
cardinality/discretization for each dimension. Choose one of the dimensions
to be the dependent variable. The rest will be considered independent.

Create ordered pairs of the independent dimensions (N pairs) and assign
to each pair a unique value (speed) from 1 to N . The pair corresponding to
speed 1 will create a virtual image whose size coincides with the cardinality
of the dimensions (the first dimension in the pair is oriented horizontally,
the second vertically). At each position of this virtual image, create another
virtual image to correspond to dimensions of speed 2, again whose size is
dependent on the cardinality of the dimensions involved. Repeat this process
until all dimensions have been embedded. In this manner, every location
in the discrete high dimensional space has a unique location in the two-
dimensional image resulting from the mapping. The concept of the speed of
a dimension can best be likened to the digits on an odometer, where digits
cycle through their values at different rates.

The value of the dependent variable at the location in the high dimen-
sional space is then mapped to a color/intensity value at that location in the

Figure 7.18. Conceptualization of dimensional stacking; collapsing six dimensions into two

dimensions.
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Figure 7.19. An example of 4D data visualized using dimensional stacking. The data consists

of drill-hole data, with three spatial dimensions, and the ore grade as the fourth

dimension.

two-dimensional image. This embedding process is illustrated in Figure 7.18
with a six-dimensional data set, where dimensions d1,. . . , d6 have cardi-
nalities 4, 5, 2, 3, 3, and 6, respectively. For clarity, we have not displayed
the values associated with a dependent variable, which would be the sev-
enth dimension and would dictate the colors in the smallest grid locations.
Figure 7.19 is another example of dimensional stacking.

Dimensional stacking is basically a 2D extension of a technique developed
by Mihalisin et al. [252], which involves graphing scalar fields in multiple
dimensions. Their technique consists of embedding graphs in a recursive
fashion, using color and baseline displacement to indicate steps in the slower
dimensions. The major differences between the techniques are the use of
intensity/color instead of location for the data/graphic mapping (thus per-
mitting a significant increase in information presentation in exchange for a
reduction in quantitative perception) and the display of data sets instead
of functions. A 3D version of embedded dimensions has also been explored
by Feiner and Beshers [104] in a technique referred to as “Worlds within
Worlds.”

Dimensional stacking can be viewed as an N -dimensional histogram if
the color of a cell is set proportional to the number of data values that
map to it. The authors are unaware of any other visualization technique
that better captures the occupancy and distribution of a high-dimensional
data space, although as the dimensionality or number of bins per dimension
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increases, the percentage of the space that is empty also increases (the so-
called “curse of dimensionality”). Another powerful use of this technique
is in presenting the results of simulations involving a significant number
of input parameters. By mapping the input parameters to the mapping
dimensions and the evaluation metric(s) to color, an analyst can examine
large collections of simulations to ascertain which parameter settings lead
to good results. This use of dimensional stacking was reported recently by
John Langton and his colleagues [229].

7.4 Combinations of Techniques

In addition to the techniques based on points, lines, or regions, there are a
number of hybrid techniques that combine features of two or more of these
classes. We describe two of the more popular techniques of this type: glyphs
and dense pixel displays.

7.4.1 Glyphs and Icons

In the context of data and information visualization, a glyph1 is a visual
representation of a piece of data or information where a graphical entity and
its attributes are controlled by one or more data attributes. As an example,
the width and height of a box could be controlled by a student’s score on the
midterm and final exam for a course, while the color could be associated with
the gender of the student. This is a rather broad definition for the term, as it
can cover such visual elements as the markers in a scatterplot, the bars of a
histogram, or even an entire line plot. However, a narrower definition would
not be sufficient to capture the wide range of data visualization techniques
that have been developed over the centuries and are termed glyphs.

Many authors have developed lists of graphical attributes to which data
values can be mapped [26, 67, 68]. These include: position (1, 2, or 3D),
size (length, area, or volume), shape, orientation, material (hue, saturation,
intensity, texture, or opacity), line style (width, dashes, or tapers), and
dynamics (speed of motion, direction of motion, rate of flashing).

In this section, a wide range of possible mappings for data glyphs are
discussed, including:

• one-to-one mappings, where each data attribute maps to a distinct and
different graphical attribute;

1In some fields, the terms glyph and icon are synonymous, while in others an icon is a
pictorial representation of an object, process, or concept.
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• one-to-many mappings, where redundant mappings are used to im-
prove the accuracy and ease with which a user can interpret data val-
ues; and

• many-to-one mappings, where several or all data attributes map to a
common type of graphical attribute, separated in space, orientation,
or other transformation.

One-to-one mappings are often designed to take advantage of the user’s
domain knowledge, using intuitive pairings of data to graphical attributes to
ease the learning process. Examples include mapping color to temperature,
and flow direction to line orientation. Redundant mappings can be useful
in situations where the number of data dimensions is low and the desire is
to reduce the possibility of misinterpretation. For example, one might map
population to both size and color to ease analysis for color-impaired users,
and to facilitate comparison of two populations with similar values. Many-
to-one mappings are best used in situations where it is important to not
only compare values of the same dimension for separate records, but also to
compare different dimensions for the same record. For example, mapping
each dimension to the height of a vertical bar facilitates both intra-record
and inter-record comparison.

The following list (from [381]) contains a subset of glyphs that have been
proposed in the literature or are in common use. Some are customized to a
particular application, such as visualizing fluid flow, while others are more
general purpose.

• profiles [87]—height and color of bars (Figure 7.20(a));

• stars [321]—length of evenly spaced rays emanating from center (Fig-
ure 7.20(b));

• Anderson/metroglyphs [6, 130]— length of rays (Figure 7.20(b));

• stick figures [274]—length, angle, color of limbs (Figure 7.20(c));

• trees [213]—length, thickness, angles of branches; branch structure
derived from analyzing relations between dimensions (Figure 7.20(c));

• autoglyph [22]—color of boxes (Figure 7.20(d));

• boxes [148]—height, width, depth of first box; height of successive
boxes (Figure 7.20(d));
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(a) (b) (c)

(d) (e) (f)

Figure 7.20. Examples of multivariate glyphs (from [381]).

• hedgehogs [212]—spikes on a vector field, with variation in orientation,
thickness, and taper;

• faces [59]—size and position of eyes, nose, mouth; curvature of mouth;
angle of eyebrows (Figure 7.20(e));

• arrows [396]—length, width, taper, and color of base and head (Fig-
ure 7.20(f));

• polygons [310]—conveying local deformation in a vector field via ori-
entation and shape changes;

• dashtubes [120]—texture and opacity to convey vector field data;

• weathervanes [116]—level in bulb, length of flags (Figure 7.20(f));

• circular profiles [251]—distance from center to vertices at equal angles;

• color glyphs [234]—colored lines across a box;

• bugs [64]—wing shapes controlled by time series; length of head spikes
(antennae); size and color of tail; size of body markings;

• wheels [64]—time wheels create ring of time series plots, value controls
distance from base ring; 3D wheel maps time to height, variable value
to radius;
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• boids [206]—shape and orientation of primitives moving through a
time-varying field;

• procedural shapes [297]—blobby objects controlled by up to 14 dimen-
sions;

• Glyphmaker [291]—user-controlled mappings;

• Icon Modeling Language [279]—attributes of a 2D contour and the
parameters that extrude it to 3D and further transform/deform it;

In using glyphs for information visualization, we need to be aware of the
many biases and limitations of the technique. First and foremost are the
perceptual biases, depending on what graphical attributes are being used.
As discussed in Chapter 3, there are some attributes, such as the length of
a line, that we can judge more accurately than others, such as orientation
or color. Other issues of bias include the fact that relationships between
adjacent graphical attributes are much easier to perceive than those that
are more distant, with a few notable exceptions (e.g., comparing two ears on
a Chernoff face might be easier than comparing two different, but adjacent,
facial features). Similarly, comparing two glyphs that are near each other
on the screen is easier than if the glyphs are more separated. Finally, the
number of data dimensions and records that can be effectively handled with
glyphs is limited.

Once a glyph design is chosen, there are N ! different dimension orderings
that can be used in the mapping. Which ones are likely to reveal the most
interesting features? Several ordering strategies can be imagined:

• Dimensions could be ordered according to their correlation, so that
similar dimensions are mapped adjacent to each other. This can help
reveal general trends, as well as expose some outliers.

• Dimensions can be mapped in such a way as to promote symmetrically
shaped glyphs, which can be easier to perceive and remember. Shapes
that are less symmetric than their neighbors will also stand out.

• Dimensions can be sorted according to their values in one record.
For example, if the data represents a multivariate time series, sort-
ing the dimensions based on the first record can make the trends over
time more pronounced, conveying which dimensional relationships were
maintained versus those that changed significantly.
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(a) Uniform. (b) Data-driven using dimensions.

(c) Data-driven using PCA. (d) Structure-driven in spiral.

(e) Structure-driven using algorithms.

Figure 7.21. Examples of glyph positioning strategies (from [381]).
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• Dimensions can be manually sorted, based on the user’s knowledge of
the domain. Thus, semantically similar dimensions can be grouped or
used for symmetric glyph features, which can simplify the interpreta-
tion.

A final important consideration in designing a glyph-based visualization
is the layout of the glyphs on the screen. As described in [381], there are
three general classes of layout strategies:

1. uniform—glyphs are scaled and positioned with equal space between
them to occupy the entire screen. This strategy eliminates overlaps,
while making efficient use of the screen space. Different orderings of
records can expose different data features in the same way that different
dimension orderings can (Figure 7.21(a)).

2. data-driven—data values are used to control the positioning of the
glyphs. Two approaches are possible. In the first, two data dimensions
(or three for 3D display) are chosen to set the locations(Figure 7.21(b)),
while in the second, positions are derived from the data values using
algorithms such as PCA (Figure 7.21(c)) and MDS. In either case,
we can apply one or more additional passes over the data to reduce
overlaps by separating glyphs that are too close.

3. structure-driven—if the data has an implicit or explicit structure to it,
such as cyclic or hierarchical, this can be used to control the position-
ing. For example, glyphs may be laid out in a spiral or a grid to em-
phasize cyclic patterns(Figure 7.21(d)); likewise, any of the multitudes
of tree-drawing algorithms (see Chapter 8) can be used to position
glyphs to help convey hierarchical relations (Figure 7.21(e)).

7.4.2 Dense Pixel Displays

Dense pixel displays (also known as pixel-oriented techniques) are a hybrid
between point-based and region-based methods. Pioneered by Keim and his
colleagues [191, 203], these techniques map each value to individual pixels
and create a filled polygon to represent each data dimension. The displays
make maximal use of the screen space, allowing data sets with millions of
values to be shown on a single screen. Each data value will control the color
for a single pixel; changing the color map used can potentially reveal new
features of the data, as we’ll see in Chapter 10. Given a data set and a color
map, the issues that remain to be resolved are the layout of the data records
and their ordering.
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(a) Examples of screen-filling layouts. (b) Examples of recursive pattern layouts.

Figure 7.22. Examples of pixel layout patterns in dense pixel displays. (Right images from [193],

c© 1995 IEEE.)

In its simplest form, each dimension of a data set will generate a separate
subimage within the display. Thus, we can treat each dimension as an inde-
pendent list of numbers, each of which drives the color of the corresponding
pixels. We then need to lay out the elements of this list in a manner that
accentuates relationships between points that are close to each other in the
list. For example, we might create a subimage where we alternate a left-to-
right and right-to-left traversal, shifting down one row when we reach the
edge of the subimage. Different shapes of subimages can potentially convey
different features of the data. Another approach is to use a spiral layout,
where the first data point is centered in the subimage and successive points
are laid out in concentric squares. Yet another method is to use one of the
many space-filling recursive curves as a layout strategy [193], such as a Peano
curve. These curves have the feature that points that are close to each other
in the ordered list are near to each other on the screen. Figure 7.22 shows a
number of these layouts.

Subimages corresponding to the data for each dimension can be posi-
tioned on the screen in a number of ways. The simplest is to create a grid
of subimages, which maximizes screen utilization. Different organizations of
the grid can be created by changing the dimension order, which can help re-
veal correlations between dimensions. The recursive pattern technique uses
a grid arrangement of the subimages (see Figure 7.23(a)). Another variant
is circle segments [12], where instead of laying out the pixels in a rectan-
gular subimage, they are instead placed in a circular wedge, starting with
the center of the circle and weaving back and forth and outward from the
center. Each dimension occupies one N th of a circle, where N is the number
of dimensions. Again, reordering the dimensions can help expose similar
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(a) Recursive pattern visualization of daily stock prices of
100 stocks over 20 years.

(b) Circle segements visualization of daily
stock prices of 50 stocks over 20 years.

Figure 7.23. Examples of circle segments and recursive pattern visualizations. (Left image

from [193], c© 1995 IEEE; right image from [12], c© 1996 IEEE.)

data characteristics. Figure 7.23(b) presents an example of circle segments.
Other approaches to positioning subimages allow overlaps. For example, the
Value and Relation techniques of Yang et al. [413,416] use multidimensional
scaling to place similar dimensions together on the screen, which can help
reveal clusters of dimensions and outliers (Figure 7.24).

The final major issue with pixel-oriented displays is the data ordering.
For some data, such as time series, the order is predetermined and fixed.
In other cases, however, reordering the records can expose many interesting
features. For example, if the records are ordered based on one of the di-
mensions, clusters of values within that dimension will be revealed, as will
other dimensions having similar clusters. Another approach is to order the
records based on their N -dimensional distance from a selected point. This
can expose clusters involving many dimensions at once, rather than one at
a time, and by coloring the pixels based on their distance from the selected
point, the user gets some insights into the number of clusters in the data,
as well as the gaps between them. Figure 7.25 shows the same data with
different orderings.

The dense pixels may also be positioned on top of a standard bar chart.
To make effective use of the screen space, pixel bar charts [195,196] usually
use the bar width instead of the bar height to represent the aggregated data
parameter mapped to the bar. In addition, the bars are colored pixel by
pixel to show the detailed information about individual values of the data
aggregated in the bars. Additional parameters are mapped to the sorting
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Figure 7.24. A value-and-relation display using pixel-oriented visualizations with the dimen-

sions positioned based on MDS [413,416]. (Image c© 2007 IEEE.)

Figure 7.25. Examples of different orderings of records. In the left image, data is ordered

according to full professor salaries. The degree of correlation in other fields seems

to drop off with the difference between ranks. In the right image, the data is

ordered based on the number of full professors. While there is good correlation

with the total number of faculty, there is some disagreement with other ranks.
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(a) (b) (c) (d)

Figure 7.26. An example pixel bar chart showing 150,000 e-customer purchasing activities (by

month): (a) color represents month; (b) color represents purchase amount; (c) color

represents number of visits; (d) color represents quantity purchased. (Image from

[196], c© 1996 Palgrave Macmillan.)

in x- and y-directions which poses an interesting optimization problem, re-
quiring heuristic algorithms to create useful solutions. Figure 7.26 shows
multiple pixel bar charts that use the same pixel arrangement (partition-
ing by month, sorting within bars in the y-direction according to purchase
amount and in the x-direction according to the number of visits) within
the bars, but that color the corresponding pixel according to different at-
tributes of the web purchase transactions. The visualization allows the user
to observe interesting facts about the transactions such as:

• December has the largest number of customers, while February, March,
and May have the lowest number.

• The months February to May have the most top purchase amounts.

• The purchase amount in December is mostly in the medium price
range.

• In March to June, customers come back more often than in other
months. December customers are mostly one-time customers.

• Customers with high purchase amounts tend to come back more fre-
quently and buy more items.

Dense pixel algorithms map also be applied to maps, resulting in PixelMaps
[198]. See Chapter 6 for details.
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Note that most aspects in the generation of dense pixels, including ar-
rangement of pixels, shape of the subimages, and the ordering of the di-
mensions, require solving complex optimization problems, some of which
have been shown to be NP-hard [13]. A more detailed description of the
formalization of these optimization problems can be found in [203].

7.5 Related Readings

There are several available sources for general introductions to the subject
of multivariate data visualization. In Cleveland’s 1985 book, The Elements
of Graphing Data [67], an overview of standard visualization methods is
presented. Tufte provides a comprehensive historical review of graphic ap-
proaches [363]. In addition to the standard graphical methods, there are
other sources that present many of the modern visualization techniques
(e.g., [147]).

7.6 Exercises

1. For each of the following plot types, describe at least one situation
where you would choose this plot over the others.

(a) Line plot

(b) Area plot (area under line is filled)

(c) Bar graph

2. Rank the techniques presented in this chapter in order of their ability
to effectively display data sets with large numbers of records. Write a
brief rationale for your choices.

3. Rank the techniques presented in this chapter in order of their ability to
effectively display data sets with large numbers of dimensions/variables.
Write a brief rationale for your choices.

4. Rank the techniques presented in this chapter in order of their abil-
ity to convey pairwise correlations between dimensions. Write a brief
rationale for your choices.

5. Compare the asymptotic upper bounds for parallel coordinates, Rad-
Viz, and multidimensional scaling using the “big-O” notation.
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6. Display the cars (1993) data set using dense pixel displays.

7. Display the cars (1993) data set using glyphs.

8. Display the cars (1983) data using RadViz.

9. Show how circle segments can be thought of a transformation of parallel
coordinates.

10. Prove that in a line in n-dimensional data maps to a line or a point in a
RadViz display. Thus lines are invariant in the RadViz transformation.
Show that this also applies no matter what the initial positions of the
dimensional anchors are (whether on the circumference or even in a
grid).

7.7 Projects

1. Write a program to display a data set using a choice of three or more
of the glyph types described in this chapter. Test it on a data set
with a modest number of records (less than 300) and dimensions (less
than 10). Which glyph do you think is most effective? Why?

2. Write a program that will draw multiple line plots (one for each variable
of a data set). The program should have two options: juxtaposing the
plots (e.g., by slicing the screen horizontally and drawing one plot per
slice) and superimposing the plots (e.g., drawn on top of each other).
Test it with three color schemes:

(a) randomly selected hue, saturation, and value

(b) evenly spaced hues, with full saturation and value

(c) a perceptually designed color map, such as those described by
Cindy Brewer (http://www.colorbrewer.org)

Comment on the effectiveness of the various color schemes and the two
different layouts.

3. Write a program to generate a heat map from a table of values. Each
cell should be a square or rectangle whose color is proportional to the
value. Use a standard color ramp, such as grey scale or yellow to red.
Make sure you normalize the values first to make best use of the full
range of colors. Now write a function for reordering the columns of the
table such that the sum of the absolute differences between adjacent
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columns is minimized (if you have a modest number of dimensions,
you can test all possible orderings of columns to find the minimum;
otherwise you should use a heuristic search strategy to find a local
minimum). Note the patterns that emerge in the final view. What
does it tell you about the relationships between dimensions/columns?

4. Extend the previous program to reorder the rows based on the same
or similar distance measures and search strategies.
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CHAPTER 8

Visualization Techniques for
Trees, Graphs, and Networks

While most of the visualization techniques discussed thus far focus on the
display of data values and their attributes, another important application of
visualization is the conveying of relational information, e.g., how data items
or records are related to each other. These interrelationships can take many
forms:

• part/subpart, parent/child, or other hierarchical relation;

• connectedness, such as cities connected by roads or computers con-
nected by networks;

• derived from, as in a sequence of steps or stages;

• shared classification;

• similarities in values;

• similarities in attributes (e.g., spatial, temporal).

Relationships can be simple or complex: unidirectional or bi-directional,
nonweighted or weighted, certain or uncertain. Indeed, the relationships may
provide more and richer information than that contained in the data records.
Applications for visualizing relational information are equally diverse, from
categorizing biological species, to exploring document archives, to studying
a terrorist network.

271
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In this chapter we will examine a number of techniques that have been
developed for visualizing relational information. This presentation, how-
ever, will just be the tip of the iceberg, as tree and graph visualization is
a well-established field, with its own books, journals, conferences, software
packages, and algorithms.

8.1 Displaying Hierarchical Structures

Trees or hierarchies (we’ll use the terms interchangeably) are one of the most
common structures to hold relational information. For this reason, many vi-
sualization techniques have been developed for display of such information.
We can divide these techniques into two classes of algorithms: space-filling
and non–space-filling. The rest of this section will provide details on imple-
menting algorithms for visualizing this type of data.

8.1.1 Space-Filling Methods

As the name implies, space-filling techniques make maximal use of the dis-
play space. This is accomplished by using juxtapositioning to imply rela-
tions, as opposed to, for example, conveying relations with edges joining
data objects. The two most common approaches to generating space-filling
hierarchies are rectangular and radial layouts.

Treemaps [176] and their many variants are the most popular form of
rectangular space-filling layout. In the basic treemap, a rectangle is recur-
sively divided into slices, alternating horizontal and vertical slicing, based on
the populations of the subtrees at a given level. Pseudocode for this process
is given in Figure 8.1, and an example is shown in Figure 8.2.

As mentioned, many variants on treemaps have been proposed and de-
veloped since they were introduced, including squarified treemaps [40] (to
reduce the occurrence of long, thin rectangles) and nested treemaps [176]
(to emphasize the hierarchical structure).

The methods described above are structured using horizontal and vertical
divisions to convey the hierarchy. A number of other approaches are pos-
sible, however, such as those that divide space radially. Radial space-filling
hierarchy visualizations , sometimes referred to as sunburst displays [336],
have the root of the hierarchy in the center of the display and use nested
rings to convey the layers of the hierarchy. Each ring is divided based on the
number of nodes at that level. These techniques follow a similar strategy
to treemaps, in that the number of terminal nodes in a subtree determines
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Start: Main Program

Width = width of rectangle

Height = height of rectangle

Node = root node of the tree

Origin = position of rectangle, e.g., [0,0]

Orientation = direction of cuts, alternating between horizontal and vertical

Treemap(Node, Orientation, Origin, Width, Height)

End: Main Program

Treemap(node n, orientation o, position orig, hsize w, vsize h)

if n is a terminal node (i.e., it has no children)

draw_rectangle(orig, w, h)

return

for each child of n (child_i), get number of terminal nodes in subtree

sum up number of terminal nodes

compute percentage of terminal nodes in n from each subtree (percent_i)

if orientation is horizontal

for each subtree

compute offset of origin based on origin and width (offset_i)

treemap(child_i, vertical, orig + offset_i, w * percent_i, h)

else

for each subtree

compute offset of origin based on origin and height (offset_i)

treemap(child_i, horizontal, orig + offset_i, w, h * percent_i)

End: Treemap

Figure 8.1. Pseudocode for drawing a hierarchy using a treemap.

Figure 8.2. A sample hierarchy and the corresponding treemap display.
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Start: Main Program

Start = start angle for a node (initially 0)

End = end angle for a node (initially 360)

Origin = position of center of sunburst, e.g., [0,0]

Level = current level of hierarchy (initially 0)

Width = thickness of each radial band - based on max depth and display size

Sunburst(Node, Start, End, Level)

End: Main Program

Sunburst(node n, angle st, angle en, level l)

if n is a terminal node (i.e., it has no children)

draw_radial_section(Origin, st, en, l * Width, (l+1) * Width)

return

for each child of n (child_i), get number of terminal nodes in subtree

sum up number of terminal nodes

compute percentage of terminal nodes in n from each subtree (percent_i)

for each subtree

compute start/end angle based on size of subtrees, order, and angle range

Sunburst(child_i, st_i, en_i, l+1)

End: Sunburst

Figure 8.3. Pseudocode for drawing a hierarchy using a sunburst display.

Figure 8.4. A sample hierarchy and the corresponding sunburst display.
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the amount of screen space that will be allocated for it. However, unlike
treemaps, which assign most screen space to conveying the terminal nodes,
radial techniques also show the intermediate nodes. The process is described
in pseudocode in Figure 8.3, and an example is shown in Figure 8.4.

For these and other space-filling techniques, color can be used to convey
many attributes, such as a value associated with the node (e.g., classification)
or it may reinforce the hierarchical relationships, e.g., siblings and parents
may have similarities in color, as seen in Figure 8.4. Symbols and other
markings may also be embedded in the rectangular or circular segments to
communicate other data features.

8.1.2 Non–Space-Filling Methods

The most common representation used to visualize tree or hierarchical re-
lationships is a node-link diagram. Organizational charts, family trees, and
tournament pairings are just some of the common applications for such dia-
grams. The drawing of such trees is influenced the most by two factors: the
fan-out degree (e.g., the number of siblings a parent node can have) and the
depth (e.g., the furthest node from the root). Trees that are significantly
constrained in one or both of these aspects, such as a binary tree or a tree
with only three or four levels, tend to be much easier to draw than those
with fewer constraints.

When designing an algorithm for drawing any node-link diagram (not just
trees), one must consider three categories of often-contradictory guidelines:
drawing conventions, constraints, and aesthetics. Conventions may include
restricting edges to be either a single straight line, a series of rectilinear lines,
polygonal lines, or curves. Other conventions might be to place nodes on
a fixed grid, or to have all sibling nodes share the same vertical position.
Constraints may include requiring a particular node to be at the center of
the display, or that a group of nodes be located close to each other, or that
certain links must either go from top to bottom or left to right. Each of the
above guidelines can be used to drive the algorithm design.

Aesthetics, however, often have significant impact on the interpretability
of a tree or graph drawing, yet often result in conflicting guidelines. Some
typical aesthetic rules include:

• minimize line crossings

• maintain a pleasing aspect ratio

• minimize the total area of the drawing
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Figure 8.5. An example of visualizing hierarchies with a simple node-link diagram, using equal

spacing per level.

• minimize the total length of the edges

• minimize the number of bends in the edges

• minimize the number of distinct angles or curvatures used

• strive for a symmetric structure

For trees, especially balanced ones, it is relatively easy to design algo-
rithms that adhere to many, if not most, of these guidelines. For example,
a simple tree drawing procedure is given below (sample output is shown in
Figure 8.5):

1. Slice the drawing area into equal-height slabs, based on the depth of
the tree.

2. For each level of the tree, determine how many nodes need to be drawn.

3. Divide each slice into equal-sized rectangles based on the number of
nodes at that level.

4. Draw each node in the center of its corresponding rectangle.

5. Draw a link between the center-bottom of each node to the center-top
of its child node(s).

Many enhancements can be made to this rather basic algorithm in order
to improve space utilization and move child nodes closer to their parents.
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Some of these include:

• Rather than using even spacing and centering, divide each level based
on the number of terminal nodes belonging to each subtree.

• Spread terminal nodes evenly across the drawing area and center par-
ent nodes above them.

• Add some buffer space between adjacent nonsibling nodes to emphasize
relationships.

• If possible, reorder the subtrees of a node to achieve more symmetry
and balance.

• Position the root node in the center of the display and lay out child
nodes radially, rather than vertically.

For large trees, a popular approach is to use the third dimension, supple-
mented with tools for rotation, translation, and zooming. Perhaps the most
well-known of such techniques is called a cone tree [293]. In this layout, the
children of a node are arranged radially at evenly spaced angles and then
offset perpendicular to the plane. The two parameters critical to this process
are the radius and offset distance; varying these influences the density of the
display and the level of occlusion. Minimally they should be set so that

Figure 8.6. An example of a hierarchy displayed with a cone tree [293]. (Image c© 1991 Associ-

ation of Computing Machinery. Reprinted by permission, courtesy of PARC, Inc.)



�

�

�

�

�

�

�

�

278 8. Visualization Techniques for Trees, Graphs, and Networks

separate branches of the tree do not fall into the same section of 3D space.
One method to ensure this is to have the radius inversely proportional to
the depth of a node in the tree. In this manner, nodes close to the root
are significantly separated, and those near the bottom of the tree are closer
together. An example is shown in Figure 8.6.

8.2 Displaying Arbitrary Graphs/Networks

Trees are just one type of a more general representation of relations called
a graph. Technically speaking, a tree is a connected, unweighted, acyclic
graph. Clearly, there are many other possibilities, including graphs with
weighted edges, undirected graphs, graphs with cycles, disconnected graphs,
and so on. Rather than give more algorithms specific to other classes of
graphs, which could certainly fill more than a textbook, we will describe
some general approaches for visualizing graphs in which the class or struc-
ture is not known, which we term an arbitrary graph. For our purposes,
we will assume that the graph is undirected, though some of the techniques
presented are easily extended to directed graphs. We will look at two dis-
tinct graph drawing approaches: node-link diagrams (building on the ma-
terial from the previous section) and matrix displays . Readers interested
in a broader or deeper exposure to graph drawing are directed to the vast
amount of literature on this topic, some of which is listed at the end of
the chapter.

8.2.1 Node-Link Graphs

Force-directed graph drawing methods use a spring analogy to represent
the links, with node positions iteratively refined until the overall energy or
stress of the system is minimized (see Figure 8.7). For each pair of connected
nodes, there are two forces: fij , the force caused by the spring between them,
and gij , an electrical repulsion force to keep nodes from getting too close.
A simple model is to use Hooke’s law to represent the spring force and an
inverse square law to represent the repulsion force. If d(i, j) is the Euclidean
distance between nodes i and j, si,j is the natural spring length (at rest),
and kij is the spring tension, the x-component of the spring force between
two nodes can be computed as

fij(x) = kij ∗ (d(i, j)− sij) ∗ (xi − xj)/d(i, j).
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Figure 8.7. An example of a force-directed graph. The graph, showing relationships between

countries of Europe, was generated with aiSee: http://www.aisee.com.

If rij is the strength of the repulsion between nodes i and j, the x-
component of the repulsion force can be computed as

gij(x) = (rij/d(i, j)2) ∗ (xi − xj)/d(i, j).

Thus, one step of the position refinement process would calculate the
sum of all the forces on each node (x-, y-, and z-components, as appropriate)
and move its position proportional to that force. Clearly, once points have
moved, all the forces need to be recalculated and another shift of positions
made. To avoid oscillation, it is common to start with movements that are a
significant percentage of the force and then use smaller and smaller step sizes
to converge on the point where the forces are minimized. Initial positions
can be assigned randomly. As it is quite possible to end up in a local, rather
than a global, energy minimum, it is common to run the layout algorithm
multiple times with different initial configurations to find the best of several
computed configurations. The goodness of the layout can be computed based
on the sum of the magnitude of forces on a given configuration.
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Planar graph drawing techniques start with the assumption that the
underlying graph is planar, e.g., it has no edge crossings. These algorithms
have gotten a lot of attention, for several reasons. First, as the theory
of planar graphs has a long history, there are many concepts that can be
exploited from the literature. Second, as edge-crossings tend to make graphs
difficult to read, it is a good strategy to minimize or eliminate such crossings.
Finally, planar graphs tend to be sparse; Euler’s formula indicates that a
planar graph with n vertices has at most 3n − 6 edges. Concentrating on
planar graphs is not overly restrictive, as one can eliminate crossings by
inserting dummy nodes at the crossings, perform the layout using a planar
graph algorithm, and then remove the dummy nodes.

We will, in addition, assume that the graph is connected, e.g., there is a
path from every node to every other node. Graphs that are not connected can
be separated into subgraphs that can be drawn separately. A subgraph that
is maximally connected (all nodes are connected) is a connected component
of the graph. Other useful definitions include:

• A face is a partition of the plane isolated by a set of connected vertices.

• A neighbor set is a counter-clockwise listing of the vertices incident to
a particular vertex.

• A planar embedding is a class of planar graph drawings with the same
neighbor sets for each vertex. A planar graph can have an exponential
number of such embeddings.

• A cutvertex is any node that causes the graph to be disconnected if it
is removed.

• A biconnected graph is one without a cutvertex.

• A block is a maximally biconnected subgraph of a graph.

• A separating pair means two vertices whose removal causes a bicon-
nected graph to become disconnected.

• A triconnected graph is one without a separating pair. A planar tri-
connected graph has a unique embedding.

We first need a strategy for determining if a graph is planar. Several such
algorithms exist, though efficient ones have a very high degree of complexity
and simple ones tend to be computationally expensive. We can start by
simplifying the problem a bit. We do this by noting that a graph is planar
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only if all of its connected components are also planar. Similarly, we can
state that a connected graph is planar only if all its biconnected components
are planar. Thus, we just need an algorithm that determines if a biconnected
graph is planar or not.

The general reasoning of the algorithm is as follows. We will perform
a divide-and-conquer approach by noting that if our graph contains a cycle
such that no other cycle is present that doesn’t contain an edge of the original
cycle (e.g., there aren’t cycles left when the edges involved in the original
cycle are removed), what remain are paths that start and stop on one of the
vertices of the cycle (called attachments). These pieces of the graph can be
drawn either within the cycle or outside the cycle. Two such pieces interlace
if they both start and end on nodes of the cycle, and the two ends of one piece
are separated by one end of the other piece. To be drawn in a planar fashion,
one of these interlaced pieces would need to be drawn inside the cycle, and
the other on the outside. If we now create a graph of all the pieces, with an
edge between two pieces if they interlace, as long as this graph is bipartite
(separable into two sets of vertices such that no edge exists between members
of the same set), the original graph is planar. Figure 8.8 shows examples of
these components. Note that there are a couple of instances of interlacing
among the parts.

If the graph contains more cycles after removing the edges of the original
cycle, this means that one or more of the pieces contains a cycle (see the
purple piece in Figure 8.8). In this case, we create a subgraph containing
this piece and a section of the original cycle connecting the end points of
the part, and recursively call the planarity test algorithm. The pseudocode

Figure 8.8. An example of a biconnected graph, a cycle (in black), and the five pieces (in

different colors).
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for this algorithm is as follows [20]. Note that a separating cycle is one that
generates at least two pieces.

Given a biconnected graph G and a separating cycle C:

1. Compute all the pieces of G with respect to C.

2. For each piece P that is not a simple path (e.g., that contains a cycle).

(a) Create graph G′ consisting of P plus C.

(b) Create cycle C′ consisting of a path through P plus the section of
C joining the ends.

(c) Apply the algorithm to (G′, C′). If the result is nonplanar, G is
nonplanar.

3. Compute the interlacement graph I of the pieces of G.

4. If I is not bipartite, G is nonplanar; else G is planar.

If a graph is nonplanar, we can make it planar using the following
strategy:

1. Determine the largest planar subgraph of the graph.

2. For the remaining vertices, place each within a face that minimizes the
number of edge crossings.

3. For each edge crossing, break the edges into two parts each, and con-
nect the broken ends to a new dummy vertex.

Once a graph has been either determined to be planar or has been aug-
mented to achieve planarity, there are many possible strategies for generating
a drawing. One such technique, called the visibility approach [20], consists
of a two-step process. In the first step, called the visibility step, a visibility
representation of the graph is formed. In such a representation, each vertex
is depicted as a horizontal line segment, and each edge is depicted as a ver-
tical line connecting the corresponding vertex segments. It should be clear
that for a planar graph, it is always possible to draw such a representation
without crossing edges other than where they meet the vertex segments.
Obviously, many possible orderings of the vertex segments are possible; one
strategy would be to arrange them to minimize the total length of the vertical
connectors.

In the second step, called the replacement step, each vertex segment
is collapsed to a single point, and each vertical connector is replaced by a



�

�

�

�

�

�

�

�

8.2. Displaying Arbitrary Graphs/Networks 283

Figure 8.9. The stages of drawing a planar graph. From left to right: original graph, visibility

representation, and replacement step.

polyline that follows the original edge as much as possible, with a segment
at each end connecting the edge to its corresponding vertex. Many options
exist for the replacement step, including the location of the nodes and the
strategy used to form the connections (e.g., straight versus curved lines,
single segment versus multiple segments). An example of the process is
shown in Figure 8.9.

8.2.2 Matrix Representations for Graphs

An alternate visual representation of a graph is via an adjacency matrix,
which is an N by N grid (where N is the number of nodes), where posi-
tion (i, j) represents the existence (or not) of a link between nodes i and j.
This may be a binary matrix, or the value might represent the strength or
weight of the link between the two nodes. This method overcomes one of the
biggest problems with node-link diagrams, namely that of crossing edges,
though it doesn’t scale well to graphs with large numbers (thousands) of
nodes. Bertin [26] was one of the first researchers to investigate the power
of this representation, using different reordering strategies to organize the
rows and columns to reveal structures within the graph. The importance of
the reordering is apparent in Figure 8.10, where each matrix represents the
same eight-node graph. The two four-node cliques are clearly apparent in
the second display.

There have been numerous algorithms proposed for reordering the rows
and columns of the matrix to expose the most structure. Some are primarily
user-driven, which would support ordering based on the values in one of the
rows or columns as a starting point. Others are purely automatic, which
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a b c d e f g h

a • • •
b • • •
c • • • •
d • • •
e • • •
f • • •
g • • •
h • • •

p q r s t u v w

p • • •
q • • •
r • • •
s • • • •
t • • • •
u • • •
v • • •
w • • •

Figure 8.10. Two matrix displays of the same graph, using different orderings of nodes. Struc-

ture is more clearly present in the matrix on the right.

rely on some metric for evaluating a particular ordering and a strategy for
generating orders to test. As in any optimization process, there is a good
chance that finding the optimal ordering is NP-complete (namely, that no
algorithm of polynomial or less complexity can be found). Thus, a number
of heuristics have been proposed over the years that generally result in good
orderings, especially for certain classes of graphs.

As an example, we can use a simplistic order evaluation strategy, namely
to count the number of occurrences of matching elements in adjacent rows
or columns. This tends to group nodes that link or don’t link to a common
node. In Figure 8.10, the left-most matrix has a score of 9 when counting
only vertical neighbors, while the right-most matrix has a score of 20. By
enumerating all possible orders, we can find the orderings that give the high-
est match score. For modest numbers of nodes, this would be an acceptable
strategy, but since the number of possible orderings is on the order of N!, this
approach does not scale well. Ordering of nodes is similar to the traveling
salesman problem (TSP), where one tries to find a path that passes through
a collection of cities without visiting any city more than once, while at the
same time minimizing the total distance traveled. As this is basically the
same problem as finding the ordering of the rows or columns of a matrix to
minimize some metric, heuristic solutions that have been used for the TSP
can also be employed here.

8.3 Other Issues

Once a basic visualization of a tree or graph has been developed, there
are a number of additional considerations, primarily addressing the issue of
interpretability. Two such important considerations will be elaborated upon
in this section: labeling and interaction.
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8.3.1 Labeling

Proper labeling of a visualization is crucial to allow a viewer to understand
what is being shown. A map would be of little value without some form
of labeling; similarly, a color-coded plot would be difficult to understand
without some indication of the meaning associated with the colors. In tree
and graph drawing, the problem of labeling is compounded, not only because
of the potential for many nodes, but also because labels might also be needed
for the links between nodes.

If there are only a small number of distinct labels, such as showing the
type of link or a class associated with a node, it is best to use nontextual
labels, such as the color, size, or shape of a node or the color, thickness, or
line style of a link. This does not require much screen space and can usually
be interpreted unambiguously even in the presence of modest amount of
line crossing and node occlusion. However, if the number of distinct labels
exceeds five or six, the likelihood of misinterpretation can become large. A
key for interpreting the graphical attribute mapping is essential.

For small graphs, a common strategy for node labeling is to put the labels
within the nodes, using rectangular or oval node shapes to accommodate the
text. To avoid distorting the perception of the nodes, the size of the nodes
should be dictated by the length of the longest label. For situations where
the labels can be very long, one option is to use abbreviations or numeric
labels, along with a key for interpretation. Viewers will eventually learn the
correspondences between the shortened labels and their actual meaning. A
similar strategy can be used for edge labeling, placing the labels near the
center of the edge. For edges that are predominantly vertical, these should
be to the left or right of the edge, while for predominantly horizontal edges,
they should be above or below. Using a consistent strategy will reduce the
potential for erroneously associating a label with the wrong edge.

At the other extreme, if there are a large number of distinct labels that
need to be shown, or the labels themselves are quite long, it becomes readily
apparent that simultaneous display of all labels will be ineffective. Several
strategies have been developed to cope with this problem. A common so-
lution is to only show labels in a small region of the graph, for example,
within a certain radius of the cursor position. If the density of the display
is too high, a distortion of the visualization may be required (see the next
subsection) to provide more screen space for that section of the graph. An
alternate to distortion that sometimes works is to rotate the graph to reduce
the overlap between labels (see Figure 8.11). Another interesting solution
proposed in [37] is to only show a random subset of the labels for a short



�

�

�

�

�

�

�

�

286 8. Visualization Techniques for Trees, Graphs, and Networks

Figure 8.11. Improving the readability of labels via rotation. (Image from [412], c© 2003 Pal-

grave Macmillan.)

period of time, and then switch to showing the labels for a different subset.
The idea behind this approach is that the viewer’s short-term memory will
enable recall of a larger number of labels as compared to a static display,
especially if this memory is refreshed on a regular basis.

8.3.2 Interactions

Even though Chapters 10 and 11 of this text are dedicated to interactions
within visualization environments, there are a few interaction techniques
that are most relevant to tree and graph visualization that will be described
in this chapter. Some types of interaction, such as panning and zooming, are
common to all types of visualization, and thus will only be briefly mentioned
here for completeness. Others, such as focus+context, while applicable to a
wide range of visualizations, have been primarily developed in the area of
tree and graph visualization and will thus be described in more detail here.

Interactions with the virtual camera. Interactions such as panning, zooming,
and rotation can be viewed as simple changes to the virtual camera being
used to capture a segment of a scene. These allow the viewer to incremen-
tally build up a mental model of the objects of the scene and their interre-
lationships. Operations of this type are often manually controlled, though
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automated techniques such as data-driven fly-throughs and spinning of 3D
objects can be automatically derived and presented.

Interactions with the graph elements. Most interactions of this type start with
a selection operation, where one or more of the components of the graph are
isolated for some action, such as highlighting, deleting, masking, moving,
or obtaining details. For example, to declutter a graph one might select
some nodes and drag them to a less-occupied section of the screen, while
maintaining their links. Similarly, one might select and move or change the
shape of a link to eliminate a crossing or improve the aesthetics of a graph.
Selection may involve a single object, all objects within a specified region or
distance, or a set of objects that satisfy a user-specified set of constraints
(e.g., all nodes directly connected to a given node). One of the biggest
problems with selecting elements in a graph occurs in dense regions of the
drawing, where elements are so close together that unambiguous selection is
difficult or impossible. This exposes the need for other types of interaction,
such as zooming or the distortion techniques described later.

Interactions with the graph structure. There are two classes of interactions that
are directed at the graph structure. The first class result in changes to the
structure itself. For example, reordering the branches of a tree may expose
relationships that were not apparent in the original ordering. Redrawing
a graph with different weights on the constraints can generate graphs that
make certain tasks easier to perform. Reordering the columns or rows in a
matrix visualization can expose new features or relations within the data.
Techniques within this class are often very specific to the type of graph being
shown.

A second class of interactions associated with the graph structure com-
prises the so-called focus+context techniques, where a selected subset of the
structure (focus) is presented in detail, while the rest of the structure is
shown in low detail to help the viewer maintain context. These techniques
are related to panning and zooming, without the loss of context. The most
popular of these distortion techniques are the many variants on a fisheye
lens, where the parts of the visualization falling within a focal region are
enlarged using a nonlinear scaling, while the parts outside the focal region
are proportionally shrunk to maintain their presence in the display. This dis-
tortion can be performed either in screen space (i.e., based on pixels) or in
structure space (i.e., based on the components of the graph). It is the latter
case that is more interesting in graph visualization, as we might, for example,
enlarge one branch of a tree while reducing the size of other branches, or en-
large all links within three connections of a particular node in order to view
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(a) (b)

Figure 8.12. Some interaction operations on sunburst displays: (a) the blue subtree has been

expanded, while the rest of the tree has been compressed; (b) several subtrees

have been rolled up to simplify the display. (Image from [412], c© 2003 Palgrave

Macmillan.)

its neighborhood in more detail. An example of structure space distortion
can be seen in Figure 8.12, where the blue subtree of Figure 8.11 has been
angularly enlarged to enable easier exploration and interactive selection.

A technique that can be considered related to both of these classes is
that of selective hiding or removal of sections of the graph. For example,
once a branch of a tree has been thoroughly investigated, the user might
want to remove it from the display to provide more space for the unexplored
regions. In a sense, this can be seen as changing the structure (deleting a
component), or as reducing the level of detail for the branch to its root. The
terms roll-up and drill-down are often used to describe the process of hiding
and exposing details in a visualization. Figure 8.12 shows several subtrees
that have been rolled up, with the double white band informing the user
that details exist under those nodes.

8.4 Related Readings

Robertson et al. [293] and Brian Johnson and Ben Schneiderman [176] in-
troduce the concepts of cone trees and treemaps, respectively. John Stasko
and Eugene Zhang [336] describe one of several variants on radial space-
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filling techniques for tree visualization. The book, Graph Drawing: Algo-
rithms for the Visualization of Graphs [20] is an excellent introduction to
the field of graph drawing. The Semiology of Graphs [26] by J. Bertin is
the seminal work on reorderable matrix representations for graphs. Herman
et al. [159] presents a survey of graph visualization and interactions with
graphs. The paper by Leung and Apperley [232] contains a comprehensive
survey of distortion techniques, many of which are applicable to tree and
graph visualizations.

8.5 Exercises

1. Give some examples of how rules for graph drawing can conflict with
each other.

2. Compare rectilinear and radial space-filling tree visualization tech-
niques. Under what conditions, or for what tasks, is one better or
worse than the other?

3. Compare node-link and matrix graph visualization techniques. Under
what conditions, or for what tasks, is one better or worse than the
other?

4. What is the smallest node-link graph (e.g., smallest number of nodes
and links) that you can devise that is nonplanar?

8.6 Projects

1. Write a program that reads in a graph in the following format:

number_of_vertices number_of_edges

edge1_start edge1_end

edge2_start edge2_end

....

edgeN_start edgeN_end

Add a very simple drawing function that places the vertices in random
positions and connects the vertices based on the edge list. Run the
program several times with a data set of your design (it should have
more than 10 nodes and 20 edges). What conclusions can you draw
from observing the output?
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2. Modify the above program to place the vertices at equal angles around
a circle. Again, run the program several times and describe your obser-
vations. From these observations, can you propose a vertex-ordering
algorithm that will generally result in less cluttered displays?

3. Write a program that will determine if a graph entered in the above
format is connected, e.g., if there is a path from every node to every
other node.

4. Write a program that will determine if a graph entered in the above for-
mat is biconnected, e.g., if removal of a single node will not disconnect
the graph.

5. Assuming that the input graph represents a tree, and that all links are
given in the order of (parent, child), write a program that will draw
the tree as in Figure 8.5, where all nodes on the same level are evenly
spaced. (Hint: in a single pass through the list of links, you should be
able to assign each node to a level.)

6. Modify the above program to generate a radial layout, e.g., the layers
are arranged as concentric circles with a radius proportional to the tree
depth.

7. Modify either or both of the above programs to insert extra space
between adjacent nonsibling nodes.

8. Write a program that generates the adjacency matrix A using the same
data as in Project 1 or some other graph data. Use R-project (or your
own code) to compute A2 and draw it differentiating the values in
the matrix using color (note that is may have values larger than 1).
Explain what you see and the meaning of the numbers.
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CHAPTER 9

Text and Document Visualization

We now have huge resources of information; from libraries, to email archives,
to all facets of applications running on the World Wide Web. Visualization
is a great aid in analyzing such data. We can visualize in many different ways
things such as a blog, a wiki, a twitter feed, billions of words, a collection
of papers, or a digital library. Since visualizations are task dependent, we
can look at what tasks are necessary for dealing with text, documents, or
web-based objects. For text and documents, the most obvious tasks are
searching for a word, phrase, or topic. For partially structured data, we may
search for relationships between words, phrases, topics, or documents. For
structured text or document collections, the key task is most often searching
for patterns and outliers within the text or documents.

In this chapter we focus on visualization tasks dealing with text, and the
various approaches to the visual analysis of text.

9.1 Introduction

We define a collection of documents as a corpus (plural corpora). We deal
with objects within corpora. These objects can be words, sentences, para-
graphs, documents, or even collections of documents. We may even consider
images and videos. Often these objects are considered atomic with respect
to the task, analysis and visualization. Text and documents are often mini-
mally structured and may be rich with attributes and metadata, especially
when focused in a specific application domain. For example, documents have
a format and often include metadata about the document (i.e., author, date
of creation, date of modification, comments, size). Information retrieval sys-
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292 9. Text and Document Visualization

tems are used to query corpora, which requires computing the relevance of
a document with respect to a query. This requires document preprocessing
and interpretation of the semantics of text.

We can compute statistics about documents. For example, the number of
words or paragraphs, or the word distribution or frequency all can be used
for author authenticity. Are there any paragraphs that repeat the same
words or sentences? We can also identify relationships between paragraphs
or documents within a corpus. For example, one could ask “What documents
relate to the spread of flu?” This is not a simple query; it isn’t simply
searching for the word flu. Why? We can further look for natural connections
or relationships between various documents. What clusters are there? Do
they represent themes within the corpus? Similarity could be defined in
terms of citations, common authorships, topics, and so on.

9.2 Levels of Text Representations

We define three levels of text representation: lexical, syntactic, and semantic.
Each requires us to convert the unstructured text to some form of structured
data.

Lexical level. The lexical level is concerned with transforming a string of
characters into a sequence of atomic entities, called tokens . Lexical an-
alyzers process the sequence of characters with a given set of rules into
a new sequence of tokens that can be used for further analysis. Tokens
can include characters, character n-grams, words, word stems, lexemes,
phrases, or word n-grams, all with associated attributes. Many types
of rules can be used to extract tokens, the most common of which are
finite state machines defined by regular expressions.

Syntactic level. The syntactical level deals with identifying and tagging (an-
notating) each token’s function. We assign various tags, such as sen-
tence position or whether a word is a noun, expletive, adjective, dan-
gling modifier, or conjunction. Tokens can also have attributes such as
whether they are singular or plural, or their proximity to other tokens.
Richer tags include date, money, place, person, organization, and time
(Figure 9.3). The process of extracting these annotations is called
named entity recognition (NER). The richness and wide variety of
language models and grammars (generative, categorical, dependency,
probabilistic, and functionalist) yield a wide variety of approaches.
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Semantic level. The semantic level encompasses the extraction of meaning
and relationships between pieces of knowledge derived from the struc-
tures identified in the syntactical level. The goal of this level is to define
an analytic interpretation of the full text within a specific context, or
even independent of context.

9.3 The Vector Space Model

Computing term vectors is an essential step for many document and corpus
visualization and analysis techniques. In the vector space model [304], a
term vector for an object of interest (paragraph, document, or document
collection) is a vector in which each dimension represents the weight of a
given word in that document. Typically, to clean up noise, stop words (such
as “the” or “a”) are removed (filtering), and words that share a word stem
are aggregated together (stemming) [165].

The pseudocode below counts occurrences of unique tokens, excluding
stop words. The input is assumed to be a stream of tokens generated by
a lexical analyzer for a single document. The terms variable contains a
hashtable that maps unique terms to their counts in the document.

Count-Terms(tokenStream)
1 terms← ∅ � initialize terms to an empty hashtable.
2 for each token t in tokenStream
3 do if t is not a stop word
4 do increment (or initialize to 1) terms[t]
5 return terms

We can apply the pseudocode to the following text.

There is a great deal of controversy about the safety of genetically

engineered foods. Advocates of biotechnology often say that the risks are

overblown. ‘‘There have been 25,000 trials of genetically modified crops in

the world, now, and not a single incident, or anything dangerous in these

releases,’’ said a spokesman for Adventa Holdings, a UK biotech firm.

During the 2000 presidential campaign, then-candidate George W. Bush said

that ‘‘study after study has shown no evidence of danger.’’ And Clinton

Administration Agriculture Secretary Dan Glickman said that ‘‘test after

rigorous scientific test’’ had proven the safety of genetically engineered

products.



�

�

�

�

�

�

�

�

294 9. Text and Document Visualization

The paragraph contains 98 string tokens, 74 terms, and 48 terms when
stop words are removed. Here is a sample of the term vector that would be
generated by the pseudocode:

9.3.1 Computing Weights

This vector space model requires a weighting scheme for assigning weights to
terms in a document. There exist many such methods, the most well known
of which is the term frequency inverse document frequency (tf-idf) [303]. Let
Tf (w) be the term frequency or number of times that word w occurred in the
document, and let Df (w) be the document frequency (number of documents
that contain the word). Let N be the number of documents. We define
Tf Idf(w) as

TfIdf(w) = Tf(w) ∗ log
(

N

Df(w)

)
.

Figure 9.1. An illustration of term vectors for many documents, containing their tf-idf values.
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This is the relative importance of the word in the document, which
matches our intuitive view of the importance of words. A word is more
important the fewer documents it appears in (lower Df ), as well as if it ap-
pears several times in a single target document (larger Tf ). Said another
way, we are more interested in words that appear often in a document, but
not often in the collection. Such words are intuitively more important, as
they are differentiating, separating or classifying words. Figure 9.1 shows
term vectors for a group of documents using tf-idf weights.

The following pseudocode computes tf-idf vectors for each document in
a given document collection. It uses the Count-Terms function in the pre-
vious pseudocode example. The first section iterates through all documents,
computing and storing term frequencies and document frequencies. The sec-
ond section computes the tf-idf vectors for each document and stores them
in a table.

Compute-TfIdf(documents)
1 termFrequencies← ∅ � Looks up term count tables for document names.
2 documentFrequencies← ∅ � Counts the documents in which a term occurs.
3 uniqueT erms← ∅ � The list of all unique terms.
4 for each document d in documents
5 do docName← Name(d) � Extract the name of the document.
6 tokenStream← Tokenize(d) � Generate document token stream.
7 terms← Count-Terms(tokenStream) � Count the term frequencies.
8 termFrequencies[docName]← terms � Store the term frequencies.
9 for each term t in Keys(terms)

10 do increment (or initialize to 1) documentFrequencies[t]
11 uniqueT erms← uniqueT erms∪ t
12
13 tfIdfV ectorTable← ∅ � Looks up tf-idf vectors for document names.
14 n← Length(documents)
15 for each document name docName in Keys(termFrequencies)
16 do tfIdfV ector ← create zeroed array of length Length(uniqueT erms)
17 terms← termFrequencies[docName]
18 for each term t in keys(terms)
19 do tf ← terms[t]
20 df ← documentFrequencies[t]
21 tfIdf ← tf ∗ log(n/df)
22 tfIdfV ector[index of t in uniqueT erms]← tfIdf
23 tfIdfV ectorTable[docName]← tfIdfV ector
24 return tfIdfV ectorTable
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Figure 9.2. The distribution of terms in Wikipedia, an example of Zipf’s Law in action. Term

frequency is on the y-axis, and frequency rank is on the x-axis.

9.3.2 Zipf’s Law

The normal and uniform distributions are the ones we are most familiar with.
The power law distribution is common today with the large data sizes we
encounter, which reflect scalable phenomena. The economist Vilfredo Pareto
stated that a company’s revenue is inversely proportional to its rank—a
classic power law, resulting in the famous 80-20 rule, in which 20% of the
population holds 80% of the wealth.

Harvard linguist George Kingsley Zipf stated the distribution of words
in natural language corpora using a discrete power law distribution called
a Zipfian distribution. Zipf’s Law [420] states that in a typical natural
language document, the frequency of any word is inversely proportional to
its rank in the frequency table. Plotting the Zipf curve on a log-log scale
yields a straight line with a slope of -1 (see Figure 9.2).

One immediate implication of Zipf’s Law is that a small number of words
describe most of the key concepts in small documents. There are numerous
examples of text summarization that permit a full description with just a
few words.
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Figure 9.3. A document view in which named entities are highlighted, color-coded by entity

type.

9.3.3 Tasks Using the Vector Space Model

The vector space model, when accompanied by some distance metric, allows
one to perform many useful tasks. We can use tf-idf and the vector space
model to identify documents of particular interest. For example, the vector
space model, with the use of some distance metric, will allow us to answer
questions such as which documents are similar to a specific one, which doc-
uments are relevant to a given collection of documents, or which documents
are most relevant to a given search query—all by finding the documents
whose term vectors are most similar to the given document, the average
vector over a document collection, or the vector of a search query.

Another indirect task is how to help the user make sense of an entire
corpus. The user may be looking for patterns or for structures, such as a
document’s main themes, clusters, and the distribution of themes through
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a document collection. This often involves visualizing the corpus in a two-
dimensional layout, or presenting the user with a graph of connections be-
tween documents or entities to navigate through. The visualization pipeline
maps well to document visualization: we get the data (corpus), transform it
into vectors, then run algorithms based on the tasks of interest (i.e., simi-
larity, search, clustering) and generate the visualizations.

9.4 Single Document Visualizations

Here we present several visualizations of a single text document, taken from
the VAST Contest 2007 data set.

Figure 9.4. A tag cloud visualization generated by the free service tagCrowd.com [339]. The

font size and darkness are proportional to the frequency of the word in the docu-

ment.

Figure 9.5. A Wordle visualization generated by the free service wordle.net [103]. The size of

the text corresponds to the frequency of the word in the document.
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9.4.1 Tag Clouds

Tag clouds (Figure 9.4), also known as text clouds or word clouds, are layouts
of raw tokens, colored and sized by their frequency within a single document.
Text clouds and their variations, such as a Wordle (Figure 9.5), are exam-
ples of visualizations that use only term frequency vectors and some layout
algorithm to create the visualization.

9.4.2 WordTree

The WordTree visualization [386] is a visual representation of both term
frequencies, as well as their context (Figure 9.6). Size is used to represent
the term or phrase frequency. The root of the tree is a user-specified word or
phrase of interest, and the branches represent the various contexts in which
the word or phrase is used in the document.

Figure 9.6. A WordTree visualization generated by the free service ManyEyes [168]. The

branches of the tree represent the various contexts following a root word or phrase

in the document.

9.4.3 TextArc

We can extend the representation of word distribution by displaying con-
nectivity. There are several ways in which connections can be computed.
TextArc [270] is a visual representation of how terms relate to the lines of
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Figure 9.7. A TextArc visualization that uses the full text of Alice in Wonderland. Words

that occur evenly throughout the document are positioned in the center of the

display, while words that appear only in specific sections are located closer to the

circumference. (Image from [270], c© 2002 IEEE.)

text in which they appear (Figure 9.7). Every word of the text is drawn in
order around an ellipse as small lines with a slight offset at its start. As in a
text cloud, more frequently occurring words are drawn larger and brighter.
Words with higher frequencies are drawn within the ellipse, pulled by its oc-
currences on the circle (similar to RadViz). The user is able to highlight the
underlying text with probing and animate “reading” the text by visualizing
the flow of the text through relevant connected terms.

9.4.4 Arc Diagrams

Arc diagrams [387] are a visualization focused on displaying repetition in
text or any sequence. Repeated subsequences are identified and connected
by semicircular arcs. The thickness of the arcs represents the length of the
subsequence, and the height of the arcs represents the distance between the
subsequences. Figure 9.8 displays Bach’s Minuet in G Major, visualizing the
classic pattern of a minuet. It contains two parts, each consisting of a long
passage played twice. The parts are loosely related, as shown by the bundle
of thin arcs connecting the two main parts. The overlap of the two main
arcs shows that the end of the first passage is the same as the beginning of
the second.
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Figure 9.8. An arc diagram visualization of Bach’s Minuet in G Major. Repeating sequences

are connected with semicircular arcs. (Image from [387], c© 2002 IEEE.)

Figure 9.9. Literature fingerprinting technique. Here, literature fingerprinting is used to an-

alyze the ability of several text measures to discriminate between authors. Each

pixel represents a text block, and the pixels are grouped into books. Color is

mapped to the feature value, in this case to the average sentence length. If a mea-

sure is able to discriminate between the two authors, the books in the first row

(written by London) are visually set apart from the remaining books (written by

Mark Twain). (Image from [192], c© 2007 IEEE.)
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9.4.5 Literature Fingerprinting

Literature fingerprinting is a method of visualizing features used to char-
acterize text [192]. Instead of calculating just one feature value or vector
for the whole text (this is what is usually done), we calculate a sequence
of feature values per text and present them to the user as a characteristic
fingerprint of the document. This allows the user to “look inside” the docu-
ment and analyze the development of the values across the text. Moreover,
the structural information of the document is used to visualize the docu-
ment on different levels of resolution. Literature fingerprinting was applied
to an authorship attribution problem to show the discrimination power of
the standard measures that are assumed to capture the writing style of an
author (see Figure 9.9).

9.5 Document Collection Visualizations

In most cases of document collection visualizations, the goal is to place sim-
ilar documents close to each other and dissimilar ones far apart. This is a
minimax problem and typically O(n2). We compute the similarity between
all pairs of documents and determine a layout. The common approaches
are graph spring layouts, multidimensional scaling, clustering (k-means, hi-
erarchical, EM, support vector), and self organizing maps. We present sev-
eral document collection visualizations, such as self organizing maps, cluster
maps, and themescapes.

9.5.1 Self-Organizing Maps

A self-organizing map [215] is an unsupervised learning algorithm using a
collection of typically 2D nodes, where documents will be located. Each
node has an associated vector of the same dimensionality as the input vectors
(the document vectors) used to train the map. We initialize the SOM nodes,
typically with random weights. We choose a random vector from the input
vectors and calculate its distance from each node. We adjust the weights
of the closest nodes (within a particular radius), making each closer to the
input vector, with the higher weights corresponding to the closest selected
node. As we iterate through the input vectors, the radius gets smaller. An
example of using SOMs for text data is shown in Figure 9.10 [388], which
shows a million documents collected from 83 newsgroups.
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Figure 9.10. A self-organizing map (SOM) layout of Finnish news bulletins. The labels show

the topical areas, and color represents the number of documents, with light areas

containing more [388].

Figure 9.11. A themescape from PNNL that uses height to represent the frequency of themes

in news articles. (Image reprinted from [348] with permission of Springer Science

and Business Media.)
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Figure 9.12. The IEEE InfoVis 2008 proceedings corpus, represented by a matrix of document

cards. The frequency of the term on each page is shown on the right side of the

document card (the more red, the higher the frequency, as can be seen in the first

document of row three) [342].
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9.5.2 Themescapes

Themescapes are summaries of corpora using abstract 3D landscapes in
which height and color are used to represent density of similar documents.
The example shown in Figure 9.11 from Pacific Northwest National Labs
[348] represents news articles visualized as a themescape. The taller moun-
tains represent frequent themes in the document corpus (height is propor-
tional to number of documents relating to the theme).

9.5.3 Document Cards

Document cards are a compact visualization (Figure 9.12) that represents
the document’s key semantics as a mixture of images and important key
terms, similar to cards in a top trumps game [342]. The key terms are
extracted using an advanced text mining approach based on an automatic
extraction of document structure. The images and their captions are ex-
tracted using a graphical heuristic, and the captions are used for a semi-
semantic image weighting. Furthermore, the image color histogram is used
to classify images into classes (class 1: photography/rendered image, class 2:
diagram/sketch/graph, class 3: table) and show at least one representative
from each non-empty class.

9.6 Extended Text Visualizations

Here we investigate several text visualization techniques that involve meta-
data or otherwise go beyond the typical term-vector-based visualizations.

9.6.1 Software Visualization

Eick et al. developed a visualization tool called SeeSoft [94] that visualizes
statistics for each line of code (i.e., age and number of modifications, pro-
grammer, dates). In Figure 9.13, each column represents a source code file
with the height representing the size of the file. If the file is longer than the
screen, it continues into the next column. In the classic SeeSoft representa-
tion, each row represents one line of code. Since the number of lines is too
large for one row, each line of code is represented by a pixel in the row. This
increases the number of lines able to be displayed. Color is used to represent
the call count. The more red a line is the more often the line is called, and
thus is a key hot-spot. A blue line is an infrequently called one. Color can
be used to represent other parameters, such as time of last modification or
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Figure 9.13. The SeeSoft software visualization. Rectangles represent source code files. The

sizes of the rectangles in each column correspond to the length of the source code

file, and the color of each line represents parameters related to modification. (Image

from [94], c© 1992 IEEE.)

number of modifications. With a 1K × 1K screen, SeeSoft is able to display
up to 50,000 lines of code. This figure contains 52 files with 15,255 lines of
code. The selected file is file1.c, a block of code with a zoomed-in view of
line 408.

9.6.2 Search Result Visualization

Marti Hearst developed a simple query result visualization foundationally
similar to Keim’s pixel displays [202] called TileBars [154], which displays
a number of term-related statistics, including frequency and distribution of
terms, length of document, term-based ranking, and strength of ranking.
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Figure 9.14. The TileBars query result visualization. Each large rectangle indicates a document,

and each square within the document represents a text segment. The darker the

tile, the more frequent the query term set. (Image from [154], c© 1995 Addision-

Wesley.)

Each document of the result set is represented by a rectangle, where width
indicates relative length of the document and stacked squares correspond
to text segments (see Figure 9.14). Each row of the stack represents a set
of query terms, and the darkness of the square indicates the frequency of
terms among the corresponding terms. Titles and the first words from the
document appear next to its TileBar. Each large rectangle indicates a docu-
ment, and each square within the document represents a text segment. The
darker the tile, the more frequent is the query term set. This produces a
representation that is compact and provides feedback on document structure
reflecting relative document length, query term frequency, and query term
distribution.
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Figure 9.15. A stream graph (ThemeRiver), depicting the election night speeches of several

different candidates for a Canadian election. (Image from [149], c© 2002 IEEE.)

9.6.3 Temporal Document Collection Visualizations

ThemeRiver [149], also called a stream graph, is a visualization of thematic
changes in a document collection over time (Figure 9.15). This visualiza-
tion assumes that the input data progresses over time. Themes are visually
represented as colored horizontal bands whose vertical thickness at a given
horizontal location represents their frequency at a particular point in time.

Jigsaw is a tool for visualizing and exploring text corpora [134]. Jigsaw’s
calendar view positions document objects on a calendar based on date en-
tities identified within the text. When the user highlights a document, the
entities that occur within that document are displayed (see Figure 9.16).
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Figure 9.16. News articles are presented with the Jigsaw calendar view, based on the extracted

date entities. (Image from [134], c© 2007 IEEE.)

Figure 9.17. A sentiment analysis visualization [376]. News items are plotted along the time

axis. Shape and color show to which category an item belongs, and the vertical

position depends on the automatically determined sentiment score of an item.

The visual objects representing news items are painted semi-transparent in order

to make overlapping items more easily distinguishable.
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Wanner et al. developed a visual analytics tool for conducting semi-
automatic sentiment analysis of large news feeds [376]. While the tool au-
tomatically retrieves and analyzes RSS feeds with respect to positive and
negative opinion words, the more demanding news analysis of finding trends,
spotting peculiarities, and putting events into context is left to the human
expert. As shown in Figure 9.17, each single news item is represented by
one visual object and plotted on a horizontal time axis according to its pub-
lication time. The shape and color of an item reveal information about
the category it belongs to, and its vertical shift indicates whether it has a
positive connotation (upward shift) or a negative one (downward shift).

9.6.4 Representing Relationships

Jigsaw [134] also includes an entity graph view (Figure 9.18), in which the
user can navigate a graph of related entities and documents. In Jigsaw,

Figure 9.18. The Jigsaw graph view, representing connections between named entities and doc-

uments. (Image from [134], c© 2007 IEEE.)



�

�

�

�

�

�

�

�

9.7. Summary 311

Figure 9.19. The Jigsaw list view, displaying the connections between people (left), places (cen-

ter), and organizations (right). (Image from [134], c© 2007 IEEE.)

entities are connected to the documents in which they appear. The Jigsaw
graph view does not show the entire document collection, but it allows the
user to incrementally expand the graph by selecting documents and entities
of interest.

The Jigsaw list view is an alternative to the graph view in that it allows
the user to explore relationships between various entity types and documents.
As shown in Figure 9.19, when the user selects items of interest, the list view
draws connection lines showing their relationships.

9.7 Summary

In this chapter we have explored the fundamental computational approaches
to transforming unstructured text into structured data suitable for visualiza-
tion and analysis. We introduced visualizations such as text clouds and word
trees for finding themes and patterns within single documents. Visualiza-
tions such as SOMs, map displays, and themescapes are useful for visualizing
document collections. For further analysis of document collections with com-
plex relationships and temporal characteristics, we briefly surveyed several
visualizations, such as node graphs, ThemeRiver, and Calendar View.
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9.8 Related Readings

A wonderful collection of papers originating from a meeting in 2005 to dis-
cuss the state of the art in visual information processing and describing
integrating text analysis and visualization can be found in the book Visual
Data Mining: Theory, Techniques and Tools for Visual Analytics, edited by
Simoff, Bohlen, and Mazeika [322]. More details on text mining and analysis
can be found in Feldman and Sanger’s book, The Text Mining Handbook: Ad-
vanced Approaches in Analyzing Unstructured Data [107]. The book covers
the full knowledge-discovery pipeline including visualization. Marti Hearst
has a great book entitled Search User Interfaces [155] , which includes a very
relevant chapter on information visualization for text analysis; the book is
also available on line at http://searchuserinterfaces.com/book/.

9.9 Exercises

1. Give examples of the suggested computations required for document
analysis for the following applications:

(a) identifying plagiarism

(b) determining papers that discuss a specific topic

(c) selecting a Chinese restaurant with good reviews

(d) any other of your choosing

2. What are some advantages and disadvantages of tag clouds?

3. Select a document of your choice and generate a tag cloud.

4. Perform a web search looking for repositories of publicly available text
corpora. Retrieve two or three and analyze them in terms of what
problems they could be used to solve. What format are they in? What
preprocessing is necessary to implement the visualizations given in this
chapter?

5. Repeat the above process, using a newspaper as your source. What
sorts of data can you extract from the newspaper? What are the data
types? What data sets could you derive by processing the information
in the newspaper? Try to design at least one data set for each section
of the newspaper.
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6. The techniques in this chapter could be used with television news.
How?

7. Look up Rapid Miner (http://rapid-i.com/) whose core is open source
and provide a brief review of its history. RapidMiner can be used as a
computational engine for preprocessing text for visualization.

9.10 Projects

1. Write a program that determines the distribution of words in a docu-
ment.

2. Using the above, compute the tf-idf for that same document.

3. Write a program that generates a tag cloud.

4. A common task when dealing with data is dividing it into categories,
such as low, medium, and high. Write a program that reads in a doc-
ument and divides the words into three classes: simple, complex, and
those in between.

5. Implement the pseudocode of this chapter on a section of text, say one
of your reports or on one of the smaller VAST-like data sets available
on the book web site.

6. Explore Zipf’s Law on a few documents.

7. Download and install RapidMiner. Then use it on one of the smaller
VAST-like data sets available on the book web site or, if you are am-
bitious, on one of the VAST data sets.
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CHAPTER 10

Interaction Concepts

Interaction within the data and information visualization context is a mech-
anism for modifying what the users see and how they see it. Many classes
of interaction techniques exist [418], including:

• navigation—user controls for altering the position of the camera and
for scaling the view (what gets mapped to the screen) such as panning,
rotating, and zooming.

• selection—user controls for identifying an object, a collection of ob-
jects, or regions of interest to be the subject of some operation, such
as highlighting, deleting, and modifying.

• filtering—user controls for reducing the size of the data being mapped
to the screen, either by eliminating records, dimensions, or both.

• reconfiguring—user controls for changing the way data is mapped to
graphical entities or attributes, such as reordering the data or layouts,
thereby providing a different way of viewing a data subset.

• encoding—user controls for changing the graphical attributes, such as
point size or line color, to potentially reveal different features.

• connecting—user controls for linking different views or objects to show
related items.

• abstracting/elaborating—user controls for modifying the level of detail.

• hybrid—user controls combining several of the above in one technique,
for example, increasing the screen space assigned to one or more focus
areas to enable users to see details, while showing the other areas of
data in a smaller space, in a way that preserves context.

315
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A variety of techniques and tools for performing interactions within data
and information visualization systems have been proposed to date. While
some of these tools appear quite unrelated, they actually share a number of
features and serve a common purpose. As the field of data and information
visualization evolves, it is beneficial to try to identify unifying themes and
frameworks to help solidify our understanding of the basic building blocks
of the field.

In this chapter, we describe such a framework for interaction techniques,
identifying distinct classes and shared concepts that will help facilitate dis-
cussions and focus future research. We begin by identifying classes of interac-
tive operations and describing them in terms of operators and the operand
(the space upon which the operator is applied). Each is described in de-
tail, with references to relevant techniques in the literature. We then define
an architecture that combines the different interaction spaces into a single
pipeline, along with the interface tools needed by the user to control the pro-
cess. We conclude with some ideas for future research in the development
and assessment of this framework. This chapter draws heavily from a paper
written by one of the authors [379] and presented at the 2004 Eurographics
Symposium on Visualization.

10.1 Interaction Operators

In this section we describe in more detail a wide range of interaction opera-
tions commonly found in data and information visualization. This list is not
exhaustive, but it covers many typical interaction tools. Readers interested
in more extensive lists of visualization interactions are directed to Keim’s
classification [204] and Chi’s taxonomy [61]. One important note is that
interaction operators often can fall into many of the suggested interaction
classes, and that almost all operators can be made interactive or automatic
when in a visualization, or actually a noninteractive part of some visualiza-
tion. For example, zooming is available in almost all visualizations; however,
it can be thought of as generating a new visualization, especially if different
data (such as more roads in a map) need to be displayed.

10.1.1 Navigation Operators

Navigation (also sometimes referred to as exploration) is used to search for
a subset of data to be viewed, the orientation of this view, and the level of
detail (LOD). The subset in question may be one that is recognized by some
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Figure 10.1. Views of the grand tour for the grades data set using GGobi.

visual pattern or one on which further or more detailed exploration is desired.
In a typical three-dimensional space, this can be specified using a camera
location, a viewing direction, the shape and size of the viewing frustrum,
and an LOD indicator. In multiresolution visualizations, LOD changes can
correspond to drilling down or rolling up hierarchical representations of the
data.

Navigation operators can work in absolute or relative coordinates within
their particular spaces. Incremental navigation may have different granu-
larities, depending on whether the user wants a small or significant change.
Navigation can be user-driven or automatic; a good example of automated
exploration is the grand tour [15], where multidimensional data is explored
by flying along a path that smoothly covers many or all possible orientations
of the data space, as projected onto two dimensions (Figure 10.1). The user
can control the step size between views, with the trade-off being smooth-
ness versus the number of projections that need to be inspected. Another
automated form of exploration is projection pursuit [167], where projections
are computationally analyzed and the subset of views that exceed a user’s
threshold for “interestingness” is displayed.

10.1.2 Selection Operators

In selection, the user isolates a subset of the display components, which will
then be subjected to some other operation, such as highlighting, deleting,
masking, or moving to the center of focus. Many variations on selection have
been developed to date [395], and decisions need to be made on what the
results should be for a sequence of selections. For example, should the new
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selection replace the previous selection or supplement the previous selection?
The granularity of selection is also an issue. Clicking on an entity in the
display might result in selection of the smallest addressable component (e.g.,
a vertex or edge) or might target a broader region around the specified
location (e.g., a surface, region of the screen, or object).

Selection can be articulated in many different ways. The user may click
on entities, paint over a selection of entities (e.g., holding the mouse button
down while moving over the entities of interest), or otherwise isolate the
entities via techniques such as bounding boxes and lassoes. Finally, selections
may be performed in an indirect manner, where the system selects elements
that match a user’s input set of constraints. An example would be the
selection of nodes in a graph that have a user-specified distance from a
selected node.

10.1.3 Filtering Operators

Filtering, as the name implies, reduces the volume of data to be visualized
by setting constraints specifying the data to be preserved or removed. A
good example of such a filter is the dynamic query specification described
by Shneiderman et al. [318]. One- or two-handled sliders are used to specify
a range of interest, and the visualization is immediately updated to reflect
the changes made by the user. Range queries are just one form of filtering,
however. One might also select items from a set or list to preserve or hide,
such as the column hiding operation in Excel. Figure 10.2 shows the effects
of filtering on a visualization to simplify the view and ease interpretation.

Figure 10.2. Filtering rows and columns of the grades data set using XmdvTool.
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The distinction between filtering and selection followed by deletion or
masking is a subtle, but important point. Filtering, in general, is most often
done in an indirect manner, e.g., the filter specification is not performed on
the data visualization itself, but via a separate interface or dialog box. In
fact, filtering is often done prior to viewing the data, to avoid overloading the
data display. Selection is most often done in a direct manner, by indicating
objects on the visualization via mouse motions, for example. The operation
performed on the selected subset can result in a view that is indistinguishable
from a filtering operation.

10.1.4 Reconfiguring Operators

Reconfiguring the data within a particular visualization can often be used to
expose features or cope with complexity or scale. By reorganizing the data,
say by filtering some dimensions and reordering those that remain, different
views are provided to the user. For example, a powerful tool with table-
based visualizations is to sort the rows or columns of the data to highlight
trends and correlations. Other types of reconfiguration might be to change
the dimensions being used to control the x- and y-coordinates of a plotted
marker, or even to derive positions based on transformations of the data.
Popular instances of this include the use of principal component analysis
(PCA) or multidimensional scaling (MDS) to layout data points so that
relationships among all the dimensions are best conveyed in the 2D layout.

10.1.5 Encoding Operators

Any given data set can be used to generate countless different visualizations.
Recoding can provide the user a library of possible different types of visu-
alization; features of the data that are difficult or impossible to see with
one such mapping might become quite apparent in another. For example, a
scatterplot with one axis representing years may have many points overlap,
whereas a parallel coordinate display would represent these uniquely. Many
visualization tools today support multiple types of visualization, because no
single visualization is effective for all tasks that need to be carried out by the
user. Each visualization is most suitable for a subset of data types, data set
characteristics, and user tasks. While some work has been done to identify
or select the best visualization, it is apparent that such guidelines are at best
suggestions, and the analyst is most likely to benefit from examining their
data using a number of different mappings and views. This is the essence of
interactive visualization.
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Other forms of encoding operations include those that modify the color
map used, the size of graphical entities, and their shape. These can be
considered variations within a particular type of visualization, and can be
used to emphasize or reveal features of interest. Even limitations of some
visualizations can be overcome using variations. The overlapping issue in
scatterplots where occluded points are not visible can be overcome by jitter-
ing the points or making the size of the points reflect the number of points
at that same position. Other attributes of graphical entities that can be
controlled include opacity, textures, line or fill style, and dynamic attributes
such as fade or flashing rate. Note that these effects can often be mim-
icked by performing transformations on the data itself, rather than on the
graphical entities.

10.1.6 Connection Operators

A frequent use for selection operations is to link the selected data in one view
to the corresponding data in other views. While other forms of connection
between subwindows of an application exist, such as when opening a new
data file, linked selection is probably the most common form of communi-
cation between windows found in modern visualization tools. Its popularity
stems in large part from the fact that each view of one’s data can reveal
interesting features, and that by highlighting such a feature in one view, it

Figure 10.3. Example of linked brushing. A cluster is isolated in parallel coordinates, with

linked selection in the scatterplot matrix. Selected data is dark, while brush extents

are shown as light bands or rectangles.
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is possible to build a more complete mental model of the feature by seeing
how it appears in other views (see Figure 10.3). This can also help reveal
relationships between this feature and others in the data set. For example,
when examining multivariate spatial data, it is often useful to jump between
the spatially referenced view and the dependent variable view, which often
does not preserve the spatial attributes.

When the selection data is allowed to be interactively changed, the op-
erator is called brushing, in which case the user is continuously changing
the selection in one view, and the corresponding linked data in one or more
other views is highlighted. The resulting interactive and dynamic display
provides information about the changes in values in the linked displays.

Another strength of linked brushing is in specifying complex constraints
on one’s selection. Each type of view is optimized for conveying certain types
of information, as well as for specifying conditions on particular types and
with a particular degree of accuracy. Thus, for example, one might specify a
temporal constraint using a visualization containing a timeline, a constraint
on a name field using a sorted list view, and a geographic constraint using a
map. While each is effective as a tool for accurate and intuitive specification
of a part of a query, none could be used for the complete query.

In some situations, the user may want to unlink some visualizations in
order to maintain a given view while exploring a different area of the data or
different data set. Some systems allow the user to indicate for each window
whether it is transmitting information to other views, and from which other
windows it will receive input. A user may also want to constrain the type
of information being communicated, as well as its direction. Some types of
interaction may be local to a particular window, e.g., zooming in and out,
while others are meant to be shared, such as reordering dimensions. Also, in
some situations, such as with hierarchically related windows, it may make
more sense for the information to move from parent to child, but not the
other way. Thus, a fairly rich set of connection and communication options
may be needed to maximize flexibility.

10.1.7 Abstraction/Elaboration Operators

In dense data and information displays, it is often desirable to focus in on
a subset of the data to acquire details (elaboration) while reducing the level
of detail (abstraction) on other parts of the data set. One of the most
popular techniques of this type is using distortion operators. While some
researchers classify distortion as a visualization technique, it is actually a
transformation that can be applied to any type of visualization. Like panning
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and zooming, distortion is useful for interactive exploration. Many distortion
operators (also called functions) have been proposed in the past [232]. These
include methods that distort the entire space being analyzed, and others
that have more localized effects. The distortion may take place within the
original visualization, or may appear in a separate window. Distortions vary
in the features that are preserved and the amount of context maintained.
For example, text distortion techniques strive for readability within a small
region of interest, with the rest of the text positioned to reinforce document
structure, but not generally readable. For other types of distortion, it is
important that the undistorted and compressed regions continue to convey
useful information, while details are provided in the focus area.

Distortion operators may be linear or nonlinear, with 0th, 1st, or 2nd

order continuity (discontinuous operators are also possible). Operators may
also operate on structures, rather than on continuous spaces, and thus may
be specific to a particular type of operand (see the next section for details).
Different operators have different footprints, e.g., the shape and extents of
the space affected by the transformation. Common footprint shapes include
rectangular and circular, and their analogous hyperboxes and hyperellipses
for higher dimensional spaces. Extents are usually specified by a distance
function within the space being distorted, and are often multidimensional.
These extents can be fixed or variable, user-controlled, or driven by the
semantics of the information (e.g., page or paragraph extents for text distor-
tion). Finally, operators generally have a variable degree of magnification,
depending on the level of detail desired.

10.2 Interaction Operands and Spaces

Parameters of the interaction operators described in the previous section are
discussed in more detail later in the chapter. First, however, we present our
categorization of the interaction operands, as this will help clarify the role
these parameters take in the interaction process, and their semantics within
the different spaces.

An interaction operand is the section of space upon which an interactive
operator is applied. To determine the result of an interactive operation, one
needs to know within what space the interaction is to take place. In other
words, when a user clicks on a location or set of locations on the screen, what
entities does he or she wish to indicate? Possibilities include the pixel(s),
the data value or record mapped to the location, or even the component of
the visualization structure (e.g., an axis) at or near that location. We have
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identified several distinct classes of interaction spaces. Each is described
below, including examples of existing interaction techniques that fall into
each class.

10.2.1 Screen Space (Pixels)

Navigation in screen space typically consists of actions such as panning,
zooming, and rotation. Note that in each case, no new data is used; the
process consists of pixel-level operations such as transformation, sampling,
and replication.

Pixel-based selection means that at the end of the operation, each pixel
will be classified as either selected or unselected. As previously mentioned,
the selection can be performed on individual pixels, rectangles or circles of
pixels, or on arbitrarily shaped regions that the user specifies. Selection
areas may also be contiguous or noncontiguous.

Distortion in screen space involves transformations on pixels, e.g., (x′, y′)
= f(x, y). In order to avoid occlusion, this function should be order-preserving
and at least C0 continuous [190]. The magnification m(x, y) at a particu-
lar point is simply the derivative of this transformation, and, in fact, it is

            

Figure 10.4. In screen space techniques, pixel regions are enlarged or reduced to provide selective

detail. In this scatterplot matrix display, a center of focus has been selected and

magnified using a confocal lens technique. (Image from [379], c© 2004 IEEE.)
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useful to be able to switch between transformations and their associated
magnifications when controlling the distortion process [190]. Examples of
screen space techniques are the fisheye lens [121] and rubber sheet methods
[48, 306], although the latter techniques could also be placed in the object-
space category described below. Figure 10.4 is an example of this type of
distortion.

10.2.2 Data Value Space (Multivariate Data Values)

Navigating in data value space involves using the data values as a mechanism
for view specification. The analogous operations for panning and zooming
would be to change the data values being displayed; panning would shift the
start of the value range to be shown, while zooming would decrease the size
of this range.

Data value space selection is similar to a database query in that the user
specifies a range of data values for one or more data dimensions. This can be
performed via direct manipulation, as in the data-driven brushing reported
in [249] (see Figure 10.5(a)) or via sliders or other query specification mech-
anisms [318]. Selection may involve a single value, or one or nonlinear ranges
of values.

Data value space is perhaps the most obvious space in which to per-
form filtering. When visualizing extremely large data sets, it is common to
first reduce the data to a particular region of data space. For spatial data,
this is analogous to clipping the data falling outside of a viewing region;
for nonspatial data, this involves eliminating some records, dimensions, or
both. For example, sampling might be used to examine a representative
subset of a large data repository [96] where the visualization might other-
wise be too cluttered to retrieve any useful patterns. Dimensions may also
be filtered [411] to allow the user to either examine a subset of dimensions
with similar characteristics or select representatives from clusters of related
dimensions.

For distortion in data value space, data values (d0, d1, . . . , dn) may be
transformed via a function j : (d′0, d

′
1, . . . , d

′
n) = j(d0, d1, . . . , dn) prior to

visualization. In fact, each dimension may have its own transformation
function ji : d′i = ji(di). In its most general case, the function ji could
depend on any number of dimensions, although user control of such a func-
tion might be problematic. An example of data value-space distortion is the
dimensional zooming found in XmdvTool [118], where each dimension of a
selected subset of the data is scaled so that the subset fills the display area
(see Figure 10.5).
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(a) (b)

Figure 10.5. In data value space distortion, transformations are performed according to the

dimensionality of the data. In this example, generated using XmdvTool [118],

an N-dimensional hyperbox is selected via painting over a section of an axis and

scaled in all dimensions (by different amounts) to fill a unit hypercube, which is

then displayed. Animation is used to preserve context. Clusters and anomalies

within the selected region are much easier to see in the zoomed version. (Image

from [379], c© 2004 IEEE.)

10.2.3 Data Structure Space (Components of Data Organization)

Data can be structured in a number of ways, such as lists, tables, grids,
hierarchies, and graphs. For each structure, one can develop interaction
mechanisms to indicate what portions of the structure will be manipulated,
and how this manipulation will be manifested. Navigation in data struc-
ture space involves moving the view specification along the structure, as in
showing sequential groups of records, or moving down or up a hierarchical
structure (as in drill-down and roll-up operations). For example, Figure 10.6
shows the difference between a screen space zoom (involving pixel replica-
tion) and a data structure space zoom (involving retrieval of more detailed
data). A technique presented by Resnick et al. [289] selects subsets of data
to be visualized by specifying a focus, extents, and density in a regular grid
structure, where the density can be a function of distance from the focus.

Selection in data structure space generally involves displaying the struc-
ture and allowing the user to identify regions of interest within it. This
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Figure 10.6. In screen space zooming (left), pixels are replicated to provide selective size, while

in data space zooming (right), the data itself can be resampled at the appropriate

resolution.

in turn can drive the display of the data corresponding to the selected
substructure. For example, structure-based brushing [119] involves con-
trolling the selection of data stored in a cluster hierarchy, with interac-
tions such as highlighting data that fall within a particular branch of the
tree. Similarly, InterRing is a radial space-filling hierarchy visualization tool
that allows semi-automatic selection of nodes, according to the hierarchical

Figure 10.7. Selection of nodes in a hierarchy via InterRing. Nodes with a red stripe in them

have been selected via a user-specified query, rather than one node at a time.

(Image from [409], c© 2003 IEEE.)
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structure [409]. Figure 10.7 shows a dimension hierarchy in InterRing, with a
subset of terminal nodes automatically selected via a query on their common
parent node.

Filtering is often performed in data structure space to reduce the amount
of information on the display. For example, in time-series visualization, it is
common to identify a range in the time axis (implied by the data ordering)
on which to focus one’s attention [377]. Examining neighborhoods in a
graph visualization often consists of filtering out nodes and links that are
greater than a particular number of links away from a focus point, and many
techniques for hierarchy visualization allow users to filter based on the level
of the hierarchy.

An example of three-dimensional grid distortion is presented by Carpen-
dale et al. [49]. They apply concepts from screen space distortion to elements
with three spatial dimensions. Four classes of distortion are defined: stretch
orthogonal, nonlinear orthogonal, nonlinear radial, and step orthogonal. To
provide improved visibility to entities within the volume of data, they define
a visual access distortion that shifts data to provide a clear line of sight to
internal objects.

Distortion of hierarchies is a common practice due to the density of infor-
mation that can result from broad or deep hierarchies. Several researchers
have developed techniques based on radial hierarchy displays, such as An-
drews and Heidegger [7], Stasko and Zhang [336], and Yang [409]. Other
multiresolution techniques, such as wavelet transforms [404], have been used
to visualize details in a focused region of an ordered list of data records.

In each of the cases above, it is the structure holding the data, rather
than the data values themselves or the mechanism by which they are visu-
alized, that is the focus of the distortion. Formalization of this procedure is
somewhat more complicated than for the other spaces, but we can classify
most of these distortions as mapping a vector (D, S), where D is the data
and S is the structure holding the data, to (D′, S′), where the transformation
may modify the data, the structure, or both.

10.2.4 Attribute Space (Components of Graphical Entities)

Navigation in attribute space is similar to that in data value space; panning
involves shifting the range of the values of interest, while zooming can be ac-
complished by either scaling the attributes or enlarging the range of values of
interest. As in data value-driven selection, attribute-space selection requires
the user to indicate the subrange of a given attribute of interest. For exam-
ple, given a visual depiction of a color map, a user can select one or more
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entries to highlight. Similarly, if data records have attributes such as quality
or uncertainty, a visual representation of these attributes, accompanied by
suitable interaction techniques, can allow users to filter or emphasize data
according to the attributes. Remapping is often done in attribute space,
either via selecting different ranges of an attribute to be used in the data to
graphic mapping, or by choosing a different attribute to be controlled by the
data. For example, in the GlyphMaker system [291], users could select map-
pings for a given data dimension from a list of possible graphical attributes.
Many visualization tools provide an assortment of predefined color scales to
be used for the visualization, some perceptually designed, others designed
to be compatible with a particular application domain.

Given an attribute A of a graphical entity being used to convey infor-
mation, we can perform a distortion transformation by applying a function

                        

Figure 10.8. Attribute-based distortion modifies one or more attributes of the graphical objects

used to depict the data, as shown in this colormap modification, generated using

the colormap editor in OpenDX. The color map is distorted to allot a greater

portion to values in the middle of the data range.
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k : a′ = k(a). We can assume A can take on values in the range [a0 → a1], or
that A is specified as a vector. For example, distortion of a color map would
allocate a wider or narrower range of colors for some subranges than for
others, thus enabling fine variations to be more readily perceived (see Fig-
ure 10.8). This form of distortion is often used in medical image analysis to
identify regions of interest. The size attribute of a data glyph or scatterplot
marker, when not used to convey a data dimension, can also be distorted
to emphasize or deemphasize selected subsets. Attribute-space techniques
can be seen as complementary to data value space methods, since similar
effects may be attained through either approach if one or more of the data
dimensions is controlling the specified attribute.

10.2.5 Object Space (3D Surfaces)

In these displays, the data is mapped to a geometric object, and this object
(or its projection) can undergo interactions and transformations. Navigation
in object space often consists of moving around objects and observing the
surfaces on which the data is mapped. The system should support global
views of the object space as well as close-up views. The latter may be
constrained to enable the user to find good views more quickly. Selection

Figure 10.9. Object-based techniques distort an object upon which data has been projected. In

this example, inspired by the perspective wall [245], a parallel coordinates display is

projected onto walls, and perspective is used to make a selected wall more readable,

while maintaining context with the rest of the data (from [379]).
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involves clicking anywhere on the object(s) of interest, or indicating target
objects from a list.

A typical example of remapping in object space would be changing the
object upon which the data is being mapped, such as switching the mapping
of geographical data between a plane and a sphere.

For distortion, examples of this form of interaction are perspective walls
[245] (Figure 10.9) and hyperbolic projections [261]. These methods can
be envisioned as a variant on screen-based methods, where the object onto
which the data is projected encapsulates the distortion function. However,
after mapping, the surfaces can undergo additional transformations in 3D,
such as rotation, scaling, and perspective distortion. For example, Kreuseler
et al. [224] map hierarchies first to a hemisphere, and then adjust the focus
by changing the center of projection, resulting in a distortion that enlarges
one region while shrinking others. We can represent the process of object-
space distortion as a sequence of two functions. The first maps the data
(generally parameterized to two dimensions) onto a 3D structure ((x, y, z) =
g(a, b)), and then this structure is transformed and projected to the screen
((i, j) = h(x, y, z)).

10.2.6 Visualization Structure Space

A visualization consists of a structure that is relatively independent of the
values, attributes, and structure of data. For example, the grid within which
a scatterplot matrix is drawn and the axes displayed in many types of vi-
sualizations are each components of the visualization structure, and can be
the focus of interactions.

Examples of navigation in visualization structure space might include
moving through pages in a spreadsheet-style visualization tool or zoom-
ing in on an individual plot in a scatterplot matrix. For selection, typi-
cal operations would include choosing components to hide, move, or rear-
range. For example, one might select an axis in parallel coordinates and
drag it to a new location to discover different relationships among the data
dimensions.

A good example of distortion in this space is the table lens technique [284,
347], which allows users to transform rows and/or columns of a spreadsheet
to provide multiple levels of detail. See Figure 10.10 for an example of this
process, as applied to a scatterplot matrix.
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Figure 10.10. Structure-based distortion modifies the underlying structural elements of the visu-

alization. This example, inspired by TableLens [284], shows a scatterplot matrix

with two grid cells (and their corresponding rows and columns) magnified, with a

corresponding shrinkage in other cells (from [379]).

10.3 A Unified Framework

For each interaction operator to be applied to a specified space/operand,
several parameters are required. Some of these may be constants for a given
system. The parameters are described below.

Focus. The location within the space at the center of the area of user inter-
est. There may be multiple simultaneous foci, though for navigation
this usually requires multiple display windows.

Extents. The range within the space (can be multidimensional) defining the
boundaries of the interaction. The metric used for specifying the range
is specific to the space; in screen space this would be in pixels, while
in structure-space this might be the number of rows in a table or links
in a graph.
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Transformation. The function applied to the entities within the extents, gen-
erally a function of distance or offset from the focus. The shape of this
transformation might also depend on the type of information being
affected. For example, text distortion is more likely to have a flat peak
to the transformation function. Another component of the transforma-
tion is the degree or scale factor for the transformation, thus allowing
varying amounts of the specified action.

Blender. How to handle parts of space touched by more than one inter-
action. For selection, this operation may include performing logi-
cal operations on overlapping entities [249]. For distortion, Keahey
and Robertson identify several approaches, including weighted aver-
age, maximal value, and composition [189]. Each has advantages in
terms of smoothness and ease of interpretation.

In Figure 10.11 we show a pipeline depicting the structure of the gener-
alized distortion process (similar figures can be generated for other forms of
interaction). At each stage, the user can control any or all of the operator
parameters described above. While no system implemented to date supports
all of these pipeline components, most visualization systems support one or
more of them, allowing users interactive control over one or more of the op-
erator parameters. It should be noted that the order in which the operations
are applied may be modified, although the screen space method is most intu-
itively placed last. The order of operation presented in Figure 10.11 seems to
the authors to progress in an intuitive, progressive fashion, but experiments
are needed to verify this hypothesis.

Figure 10.11. The distortion pipeline. The user interactively controls each stage of the pipeline.

Each distortion operation is optional. (Image from [379], c© 2004 IEEE.)
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10.4 Summary

In this chapter we presented a framework for enveloping the wide assort-
ment of interaction techniques developed to date for data and information
visualization. By identifying the type of the operator (navigation, selec-
tion, manipulation, distortion, filtering) and the space of the interaction
(screen, data value, data structure, attribute, object, or visualization struc-
ture), along with the parameters of the interaction operator (focus, extents,
transformation, blender), we can define an extensive assortment of interac-
tion operations. We also described a computational architecture to support
interactions within the visualization pipeline.

Most visualization systems developed to date support, at most, a small
set of interaction techniques. Future work should involve assessing user re-
actions to an environment containing a wider range of interaction operators.
Questions to be addressed include:

• Given training in the use of individual interaction operations, how
readily will users acquire expertise in composing interactions in differ-
ent spaces?

• What combinations of operations will prove to be most effective, and
in what situations?

• What are the best ways to provide users with unambiguous controls of
the individual operations?

Initial experiments aimed at combining data value space and data struc-
ture space selection, navigation, and distortion within XmdvTool [119] have
shown clear advantages to including all types of interaction; users are pro-
vided with many alternative ways of viewing and exploring their data sets,
which can increase the likelihood of discovering features of interest. No
problem in predicting the effects of the composition of operations has been
discerned in this environment. We hope to expand this work into the other
interaction spaces, and to attempt to answer the questions mentioned above,
as well as others that arise during our investigations.

10.5 Related Readings

Several surveys and categorizations of interaction types in information vi-
sualization have been published, including the ones by Yi et al. [418] and
Ward and Yang [379]. Individual types of interaction have also been the
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focus of surveys, including Leung and Apperley’s excellent taxonomy of dis-
tortion techniques [232] and papers on selection by Wills [395] and Resnick
et al. [289]. Most other papers we reference focus on a single interaction op-
erator within a particular visualization technique, though many are readily
generalizable to other spaces.

10.6 Exercises

1. Give three examples of distortions in two distinct spaces generating
identical or very similar results.

2. Give an example of two specific distortions in different spaces that are
commutative, i.e., the results do not depend on the order of application.
Give an example where they are not commutative. Are there any
general rules you can think of for identifying the conditions under
which commutativity would hold or not hold?

3. In most situations, the user should be able to control the degree of
distortion being applied. However, the initial amount should be set
to some default level. Discuss how one might set defaults for different
kinds of distortion. Consider techniques that are driven by character-
istics of the data as well as those independent of the data.

4. Related to the question above, discuss strategies to set the default
extents for different kinds of distortion.

5. Give examples of distortions with 0th-, 1st-, and 2nd-order continuity.
For what reasons might the user choose a particular continuity level?

6. Select a visualization tool with which you are familiar and examine
the types of interaction it supports. List the interaction operators and
operands, as well as the parameters of the interaction that the user
can control.

7. Continuing the previous exercise, identify some interaction operators
and operands not present in the tool that you feel would be useful
additions to the system. Give an example of how they might be used.

10.7 Projects

Programming projects dealing with interaction are included in the next chap-
ter, which covers details of interaction techniques based on the concepts
covered in this chapter.
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CHAPTER 11

Interaction Techniques

In this chapter, we discuss algorithm and implementation details pertaining
to the interaction concepts described in the previous chapter. We give ex-
amples from each of the interaction spaces, and conclude with guidelines for
implementing some of the user interaction dialogs needed to specify some of
the types of interaction. Note that many of the algorithms discussed here
could actually be applied to interactions in multiple spaces.

11.1 Screen Space

Screen-space distortion is a common tool for providing focus+context. We
present one example of such a distortion: the fisheye lens [121]. The imple-
mentation of a fisheye lens is rather straightforward. One needs to specify a
center point for the transformation (cx, cy) a lens radius rl, and a deflection
amount d. We then transform the coordinates of our image into polar coordi-
nates relative to the center point. The lens effect is simply a transformation
on the radius portion of the coordinates. One popular transformation is

rnew = s log(1 + d(rold)), (11.1)

where
s =

rl

log(1 + d ∗ rl)
. (11.2)

This ensures that the radius component of points at the edge of the lens
maintain their original value. The overall pseudocode for the algorithm is
as follows:

335
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1. Clear the output image.

2. For each pixel in the input image,

(a) Compute the corresponding polar coordinates.

(b) If the radius is less than the lens radius,

i. Compute the new radius;
ii. Get the color at this location in the original image;

iii. Set the color of the pixel in the result image.

(c) Else set result image pixel to that of original image.

Depending on the transformation used in screen space distortion, it is
possible to either leave gaps or to cause pixels to overlap on the output image.
While the overlaps do not cause much concern (in some implementations,
these are averaged), the gaps need to be resolved via interpolation. Different
functions give different shapes to the lens; for text visualization, it is common
to use a piecewise linear function with a flat top to make reading easier.

11.2 Object Space (3D Surfaces)

One of the methods for navigating large document and data visualizations
is via a perspective wall [245], which shows one panel of the view on a sur-
face orthogonal to the viewing direction, with the rest of the panels oriented
so they fade into the distance via perspective foreshortening. A simplis-
tic version of the perspective wall can be created by noting that the front
wall implements a horizontal scaling on a segment of the 2D image being
mapped, while the adjacent segments are subjected to a horizontal and ver-
tical scaling proportional to the distance to the edge of the front wall, along
with a shearing transform. Thus if the left, center, and right sections of the
original image to be plotted are bounded by (x0, xleft, xright, x1) and the left,
center, and right panels of the result image are (X0, Xleft, Xright, X1), the
transformation is as follows:

• for x < xleft:

x′ = X0 + (x− x0) ∗ (Xleft −X0)
(xleft − x0)

,

y′ = (Xleft − x′) + y

(
1− (Xleft − x′)

(Xleft −X0)

)
,
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• for xleft <= x < xright:

x′ = Xleft + (x− xleft) ∗ (Xright −Xleft)
(xright − xleft)

,

y′ = y,

• for x >= xright:

x′ = Xright + (x− xright) ∗ (X1 −Xright)
(x1 − xright)

,

y′ = (x′ −Xright) + y

(
1− (x′ −Xright)

(X1 −Xright)

)
.

Given the perspective wall, the user could interact with it by sequen-
tial page movements (forward and backward), either one at a time or in a
scanning or page-flipping manner. Indexes could also be used to jump to
sections of interest, perhaps implemented as a tab sticking out of the top of
the page at the start of each section. It might also be useful to have more
than one page be in the direct focus, thus trading off some detail for a larger
undistorted window on the data.

Other forms of exploration/navigation have similar needs. For example,
a fly-through of a medical data set representing the human heart or digestive
system would require controls to specify direction and rate of motion, as well
as the field of view. However, flying through the vessels at any significant
speed might cause problems in terms of staying within the vessel; as anyone
who has played with a 3D simulator for a car or airplane can tell you, it can
be very challenging to control motion in such a way as to avoid collisions.
For visualization fly-throughs, we therefore may want to automate the path
of motion, and maybe even to force the user to maintain a fixed orientation
(to avoid spinning). For vessels in a volume data set, this would involve
finding the central point of each slice of the vessel and linking these positions
together between frames. This, however, can lead to a rather jerky flight
path, as slices in a volume are not always aligned perfectly, and segmentation
of the boundaries of the vessel can introduce inaccuracies from one frame to
the next. This can require the introduction of smoothing operations.

The smoothing of a path of discrete points can be performed in a number
of ways. The simplest method is to perform one or more passes of neighbor-
hood averaging, whereby each point on the path is replaced by the average
of some number of points before and after it, such as,

p′i = (pi−1 + pi+1)/2,
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or
p′i = (pi−1 + pi + pi+1)/3.

Using larger neighborhoods or multiple passes of averaging can result in
increasingly smoother paths, but there is an increased risk of moving outside
the vessel, especially in regions of high curvature. Inserting constraints,
such as repulsion forces from vessel boundaries, can alleviate this problem,
at the cost of more complex processing. Another approach involves fitting
the points to a parametric curve, which can then be used to plot a path
with arbitrary levels of smoothness. For example, the points could be used
as control points for a Bézier curve or B-spline. Additional control points
could be added to achieve desired shape properties for the path.

Fully automated navigation techniques have also been explored. One
popular method within multivariate statistical graphics is Asimov’s grand
tour [15], which generates a sequence of projections of high-dimensional data
into two or three dimensions for visualization (see Chapter 10 for an exam-
ple); the path is designed such that every possible projection (constrained
only by a step size) will eventually be visited, and adjacent projections differ
so slightly in the viewing parameters that smooth motion is perceived. The
process is as follows.

For those of you who have studied computer graphics, you know that a
rotation of points in 3D around the z-axis is accomplished by multiplying a
vector representation of each point by the following matrix:⎛

⎜⎜⎝
cosα sin α 0 0
− sinα cosα 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ .

This extends to an arbitrary number of dimensions by having all diago-
nal elements set to 1 except for the two dimensions involved in the planar
rotation, which are set to the cosine of the angle of rotation. Likewise, the
off-diagonal values are all set to 0 apart from the two entries with positive
and negative values of the sine for the angle of rotation. Any arbitrary ro-
tation can be specified by multiplying all the transformation matrices for
pairwise planar rotation, e.g.,

Q(θ0,1, θ0,2, . . . , θd−1,d) = R0,1(θ0,1) ∗R0,2(θ0,2) ∗ . . . ∗Rd−1,d(θd−1,d),

where Ri,jθi,j is the rotation matrix for the dimension pair (i, j) for a rotation
angle of θi,j . The total number of rotation angles and matrices required is
n ∗ (n − 1)/2, where n is the number of dimensions in the data. Once the
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rotation is performed on each point, we can project the data to 2D or 3D,
depending on the type of display we are using. By sequencing the changes
in the angles θi,j such that the difference between adjacent angle vectors is
small, we can obtain smooth animation. Several algorithms for generating a
space-filling sequence of angle vectors have been proposed, such as

θ(t) = (λ0t, λ1t, . . . , λpt),

where (λ0, λ1, . . . , λp) is a sequence of mutually irrational real numbers and
λit is interpreted modulo 2π [389]. Other techniques allow users to perform
partial tours by eliminating changes in some planes or allow the user to
control the speed of change, though at a risk of losing the effect of continuity.

11.3 Data Space (Multivariate Data Values)

Data space transformations are actually quite common in data analysis and
visualization. Some typical functions include:

• scaling and translating to fit a particular range of values;

• exponential or log scaling to spread or compress the distribution of the
data;

• sinusoidal functions to help study cyclic behavior;

• absolute value transformation to focus on magnitudes of change;

• negating the values so that low values become high, and vice versa.

A key requirement for these and other types of transformations is that
the user be made aware that a transformation on the data has occurred.
It is all too common that a data set is modified without the viewer being
informed of this modification. Clear labeling of axes is essential; augmenting
the visualization with a note describing any data transforms that have been
applied reduces the chances of misinterpretation. Another key requirement
is to translate and scale the resulting data values to fall within an accept-
able range for the graphical entities and attributes being rendered. Failure
to incorporate this transformation can result in objects being mapped off
the display, color wrap-around, negative values for graphical attributes, and
other undesirable artifacts.
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11.4 Attribute Space (Properties of Graphical Entities)

As mentioned in Chapter 10, a great many interactions on attributes have
direct equivalents with interactions in data space. Examples include global
or local scaling, boundary enhancement, and color equalization. However,
in some situations it makes more intuitive sense to consider the interaction
to be simply on the graphical representation of the data, rather than the
data itself. Thus, for example, when enlarging a data glyph of interest, the
intuition is that you are not changing the data, just modifying the attributes
of the glyph. There is also some overlap between the actions in attribute
space and those in screen space, as the previous example hints at. If the
glyph is not overlapping other glyphs, the enlarging can be based on pixel
operations, rather than scaling the drawing primitives. In attribute space,
however, you are more likely to avoid blocky artifacts that are typical of
pixel-oriented zooming operations.

Perhaps the widest range of attribute space interactions involves mod-
ification of the color and opacity attributes. Techniques such as contrast
enhancement, color histogram equalization, and others have been designed
to make better use of the color space and make features of the data more
readily perceived. For example, via controls for contrast and brightness, we
can emphasize certain regions of the data to attract the attention of the an-
alyst and make feature detection, classification, or measurement easier (see
Figure 11.1).

Figure 11.1. Example of modifying the contrast and brightness of an image to emphasize certain

features.
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Figure 11.2. The interactive colormap editor from OpenDX, and the effect of inserting rapid

changes in the hue over a small range of data values.

Interactive tools for specifying and modifying transfer functions are widely
used in volume rendering to control color and opacity to help reveal struc-
tures in volumetric data. In their simplest form, such tools consist of a visual
representation of a function plotting data value (horizontal axis) versus opac-
ity or a color component (hue, saturation, value), as shown in Figure 11.2.
The user is allowed to insert and move control points, with the resulting
function being a piecewise linear plot through adjacent control points. This
can be tricky, though, since even small changes in the transfer function can
result in significant changes in the visualization. Another problem with such
a strategy is that basing the color or opacity strictly on the data value can
result in visual artifacts caused by noise or variability within the data. For
example, a particular data value might indicate one type of material in a
section of the data set, but another type of material in a different section,
due to lighting differences.
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One solution to this problem is to use more than just the data value
to control the color or opacity. Recent efforts in semi-automatic transfer
function specification have focused on the use of the magnitude of the first
derivative, as well as the magnitude of the second derivative in the direc-
tion of the first derivative, to isolate values that correspond to boundaries
between material types from other occurrences of the specific value or value
range [209]. A critical tool for this effort is what the authors term a histogram
volume, which uses the data values and values for the first two derivatives to
form a 3D histogram. By experimenting with different methods for break-
ing the ranges of values for the first and second derivatives into histogram
bins, they were able to develop opacity functions that proved effective at
highlighting the boundaries in the volume data. This also helped filter out
spurious occurrences of values that were the same or similar to the values
associated with a material of interest, as the signatures of the derivatives
would be different than at a material boundary.

11.5 Data Structure Space (Components of Data Organization)

Most of the common structures for data (i.e., ordering, grids, grouping,
hierarchies, and networks) have logical operations that users will want to
interactively perform on them. In terms of the implementation, the main
decisions to be made are the degree to which the operation can or should
be automated, and whether the interactions will be specified directly on the
visualization or in a separate dialog box. For automatic techniques, one must
evaluate the tradeoffs between thorough, time-consuming techniques versus
quick, yet suboptimal methods. In this section we will examine some of the
design decisions that need to be made in providing these sorts of interactive
operations.

Consider dimension ordering in multivariate data visualization. Fully
manual techniques might involve manipulating text entries in a list, either
via shifting operations (move up, move down) or drag-and-drop methods.
In some visualizations, such as parallel coordinates or scatterplot matrices,
direct manipulation of the axes may be possible. In the case of the scatterplot
matrix, the movement of one element of the matrix would entail changes
to entire rows and columns, in order to preserve the symmetry along the
diagonal plots.

Automated dimension reordering requires at least two major design de-
cisions: how do you measure the goodness of an ordering, and what strategy
will you use to search for good orderings? Many measures are possible. One
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Figure 11.3. Example of shape simplification via dimension reordering. The left image shows

the original order, while the right image shows the results of reordering to reduce

concavities and increase the percentage of symmetric shapes. (Image from [272],

c© 2004 IEEE.)

commonly used one is the sum of the correlation coefficients between each
pair of dimensions. The correlation coefficient between two dimensions is
defined as follows:

ρX,Y =
∑

(xiyi − nμXμY )
(n− 1)σXσY

,

where n is the number of data points, X and Y are the two dimensions,
xI and yi are the values for the ith data point, μX is the mean value for
X , and σX is the standard deviation for X . Other statistical measures of
similarity between dimensions include the correlation ratio and the mutual
information.

Another measure of goodness could involve the ease of interpretation.
Different dimension orders can result in displays with more or less visual
clutter or structure [272]. For example, one might conjecture that when
using star or profile glyphs to represent data points, simpler shapes would
be easier to analyze than complex shapes. Thus, if one could measure the
average or cumulative shape complexity, e.g., by counting the number of
concavities or peaks in the shape, this could be used to compare the visual
complexity of two different dimension orders. An example of this is shown
in Figure 11.3.

Once a goodness measure has been selected, the second big challenge is
to find an effective and efficient search strategy. Enumerating all possible
dimension orders is expensive for situations other than when the number of
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dimensions is quite small, as there are N ! distinct orderings. This can be di-
vided by 2, as one assumes that the inverse of an ordering will have the same
goodness measure, but it is still a large number for even moderate numbers
of dimensions. The typical strategy used in such situations is to explore the
field of optimization and its extensive range of techniques. As the dimension
ordering problem is similar to the traveling salesman problem [230], many
of the strategies developed for that problem are directly applicable. One of
the simplest to implement works as follows.

1. Select two different dimensions at random.

2. Swap their positions and evaluate, using the goodness measure.

3. If this measure is greater than that computed for the original order,
undo the swap.

4. Repeat steps 1-3 either a fixed number of iterations, or until some
number of tests are performed with no improvement.

Such heuristic approaches, while certainly not optimal, will often find
solutions that are reasonable. One can easily envision a hybrid manual-
automatic approach where users could set some of the ordering manually
based on their knowledge of the data and let the system automatically refine
things from that starting position. Likewise, when an automated method
gets stuck in a suboptimal peak or valley, the user might insert a change and
then resume the automated search. There are many opportunities in visual
exploration and design where such optimizations can come in handy, which
suggests that students in the visualization field should add optimization
algorithms to their set of useful tools.

11.6 Visualization Structure Space (Components of the
Data Visualization)

Several of the techniques described earlier can be readily adapted to work
in visualization structure space. For example, the fisheye lens technique in
screen space could just as easily be used in any of the visualization struc-
tures with sequences or grids of components; we could use the same distor-
tion function to adjust the spacing between axes in parallel coordinates or
the size of the grid cells in scatterplot matrices or TableLens. As another
example, we might adapt data clustering, filtering, or optimization actions
(both manual and automated) to select and organize sets of visualizations
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on the screen, such as the results of performing volume visualization with
hundreds or thousands of different parameter sets. Even drill-down, roll-up
operations can be effectively utilized in multi-component visualizations that
are hierarchically structured. One key is to make sure the user is aware at
all times of the operations that can be done on the structure of the visualiza-
tion, using consistent icons, labels, and visual representations that the user
can quickly learn to use. Another key is to use smooth transitions between
visualizations, as is discussed in more detail in the next section.

11.7 Animating Transformations

Virtually all user interactions within visualization systems will result in a
change in the image being viewed. Some of these changes will be quite
dramatic, such as when opening a new data set. Others may keep some
aspects of the view the same, while changing other aspects. In situations
where the user needs to maintain context while having his or her atten-
tion drawn towards the change, it is best to provide smooth transitions be-
tween the initial and final visualizations. Thus, for example, when rotating
a three-dimensional object or data set, smoothly changing the orientation
is generally better than simply jumping to the final orientation. In some
cases, this might involve simply a linear interpolation between the starting
and ending configurations, perhaps with the number of intermediate views
dependent on the magnitude of the change. In some cases, however, linear
interpolation does not result in a constant rate of change (such as moving a
camera along a curved path). In addition, in most cases, a more appealing
result can be obtained by performing smooth acceleration and deceleration
of the change, rather than a constant velocity change. In this section we
will discuss the algorithms necessary to achieve this control of changes. Stu-
dents interested in a detailed exposure to these concepts will find them in
textbooks on computer animation, such as [271].

The first step is to get a uniform parameterization of the variable or
variables you wish to control during the animation. For some variables, such
as position along a straight line, or a scaling transform, linear interpolation
does provide consistent changes in successive equal time steps. For others,
such as position along a curved path, we need to recast the problem using a
new parameter. Assume that the original parameter is a function of t, which
goes from 0 to 1. For example, we might use a cubic polynomial to calculate
the x- or y-position for different values of t, as in x(t) = At3 +Bt2 +Ct+D

(a similar function can be used to compute y(t)). We can then create a list of
positions pi, for 0 ≤ i ≤ n, where n is the number of steps between the initial
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position and the final position. By dividing t into n equal subintervals, we
simply insert the appropriate values of t in the parametric equations above.
We can then estimate the arc length A by summing the distances between
successive points:

A =
i=n∑
i=1

dist(pi−1, pi).

Clearly, the smaller the step size between adjacent points, the more accurate
the estimate of the arc length.

Note that for most curves, the distances between adjacent points will
vary. Thus, if we simply used the positions directly in our animation, the
user would perceive the speed as varying, rather than a uniform velocity.
While computing the arc length, it is also useful to compute for each point
pi, the corresponding di, or the distance from the start of the curve to the
point. We can then compute the function

A(i) = di/A,

which is the percentage of the distance traveled at the ith time step. To keep
things simple, we use t instead of i, with 0.0 <= t <= 1.0. We define a new
parameter, s = A(t), for use as follows.

We store these results in a table so that for each value of t, we know the
value of A(t). We can then use s to generate a uniform velocity by dividing
the arc length A into even step sizes, where the number of steps corresponds
to the number of frames to be used in the animation. Because it represents
the percentage of the arc length, s falls in the range 0.0 ≤ s ≤ 1.0. If
we divide s into equal steps based on the number of frames, we then can
look though the table of percentages of distance traveled to find the values
of A(t) that are on either side of the desired percentage. We perform a
linear interpolation to estimate the value of t that approximates the desired
distance. This value of t will then correspond to the appropriate value for
s, or in other words,

t = A−1s.

The above process is known as reparameterization. The parameter s now
gives us a mechanism to control velocity. If we plot s versus time, we will
get a straight line from the origin 0, 0 to (1.0, 1.0); in other words, when
time starts, we are in the original position, and when time hits 1.0, we are
at the end position. The velocity is simply the slope of this line. But what
happens if this line is curved, rather than straight? For parts of the curve
that have a low slope, the velocity will be low, while a steep slope will indicate
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(a) (b)

Figure 11.4. Examples of position curves: (a) shows constant velocity; (b) shows ease-in, ease-

out behavior.

high velocity. As long as the start and end points are fixed, we’re assured
of finishing where we want. There are an infinite number of possibilities,
including stopping for some duration along the way. The main assumption
is that the curve is monotonically increasing, so that the position can’t go
beyond the arc length and shouldn’t (for now) involve going backwards. A
commonly used curve for controlling animation involves an ease-in, ease-out
behavior, where one accelerates from a velocity of 0 to a cruising speed, and
then decelerates to a speed of 0 when approaching the destination. Segments
of a sine wave, with a straight line between them, can be used to approximate
this behavior. The key is to maintain a smooth curve. Examples are shown
in Figure 11.4.

Sometimes it is easier to specify the movement with a velocity curve. As
we noted, the velocity is simply the first derivative of the position curve. A
velocity curve for the ease-in, ease-out behavior would simply be a straight
segment with positive slope starting at 0, a segment with a slope of 0, and
then a segment with negative slope ending on 0 (see Figure 11.5). The key to
note is that the area under this curve must equal 1.0, so that if the cruising
speed is high, the amount of time spent speeding up or slowing down must
be larger, to ensure that the ending position is correct. Similarly, it is clear
that there is a minimum cruising velocity that must be achieved to reach
the ending point within the time allotted.

A third type of curve that is sometimes used to control movement is an
acceleration curve. This is simply the second derivative of the position curve,
or the first derivative of the velocity curve. The shape of the ease-in, ease-
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Figure 11.5. Example of a velocity curve corresponding to the position curve, with ease-in,

ease-out movement.

Figure 11.6. Example of an acceleration curve corresponding to the position curve, with ease-in,

ease-out movement.
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out acceleration curve is simply three horizontal line segments, one above
the axis (for positive acceleration), one on the horizontal axis (for constant
velocity), and one below the access (for deceleration) (see Figure 11.6). The
relative positions and lengths of the lines above and below the axis can
be used for different effects, and don’t necessarily have to be symmetric.
However, the areas defined by the acceleration and deceleration components
must be equal, to ensure starting and stopping from a resting state.

The position, velocity, and acceleration curves can be used to control
any attribute that is changing during an animation. Forces that mimic the
physics of real-world motion, such as gravity and angular momentum, can
be used in the equations to provide dynamics that ease the interpretation of
the changes and maintain continuity over time. This is especially important
when occlusion is possible, since the normal expectation would be that mo-
tion of unseen objects is consistent with that present when the objects are
visible.

11.7.1 Animation Pseudocode

The following pseudocode renders a scatterplot of circles that animates over
time between two sets of x, y, and r (radius) dimensions using linear in-
terpolation. The numFrames argument specifies the number of frames of
animation to be used for the transition animation, and delay specifies a delay
in milliseconds between frames.

Scatterplot-Animate(xDim1, yDim1, rDim1, xDim2, yDim2, rDim2,

cDim, rMin, rMax, numFrames, delay)
1 for each frame f from 0 to numFrames
2 do for each record i � For each record,
3 do x1← Normalize(i, xDim1) � derive first state,
4 y1← Normalize(i, yDim1)
5 r1← Normalize(i, rDim1, rMin, rMax)
6 x2← Normalize(i, xDim2) � derive second state,
7 y2← Normalize(i, yDim2)
8 r2← Normalize(i, rDim2, rMin, rMax)
9 p← f/numFrames � compute percent complete,

10 x← x1 + (x2− x1) ∗ p � and current state.
11 y ← y1 + (y2− y1) ∗ p
12 r ← r1 + (r2 − r1) ∗ p
13 MapColor(i, cDim) � Derive color, then
14 Circle(x, y, r) � draw the record as a circle.
15 Sleep(delay) � Pause between frames.
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11.8 Interaction Control

At each stage of the pipeline introduced in the previous chapter, the user
requires mechanisms to control the type, location, and level of each interac-
tion as he or she navigates within both the data space and the visualization.
The realization of these controls must be intuitive, unambiguous, and at a
level of detail and accuracy appropriate for the space being operated upon.
In particular, the following lists typical controls and reasonable candidates
for their implementation. Note these are not the only choices; indeed there
exists an extensive body of literature in the field of human-computer interac-
tion dedicated to design strategies for such interfaces, to which the interested
reader is directed.

Focus selection. Selection is most readily accomplished via direct manip-
ulation tools, e.g., using a mouse or other selection device to indi-
cate the focus location. In screen and object space, this can be eas-
ily accomplished via normal selection operations. In data space, an
n-dimensional location might need to be indicated. Depending on the
method of display, this could involve multiple selections (e.g., selecting
in a scatterplot matrix only enables simultaneous specification of two
dimensions). In attribute and structure space, one first needs a graph-
ical depiction of the structure or the range of the attribute, such as a
display of a tree or table, or a curve showing the range of colors in the
color map. Finally, the focus can be specified implicitly, by assuming
that the focus is the center of the extents of the interaction, which can
be specified as outlined below.

Extent selection. Specifying the extents for an interaction is generally depen-
dent on the type of interaction and the space in which the interaction
is being applied, and can be done either via direct manipulation or
separate interface tools. It may be specified via a single value (e.g., a
radius or maximum number of items) or via a vector of values (e.g.,
a range for each data dimension or a set of constraints). In many
systems, the extents are often hard-coded to reduce the effort in per-
forming the operation.

Interaction type selection. Given the many types of interaction possible, and
the variety of spaces in which they may be applied, a reasonable in-
terface for this task would be a pair of menus: one to select the space,
and the other to specify the general class of the interaction.

Interaction level selection. The degree of interaction is an important control
parameter that can be specified by a single value (e.g., the magnitude of
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scaling that will occur at the focal point). A slider or dial is sufficient
for this activity, along with a button to reset the operation to its
minimum level. A direct manipulation equivalent would be to associate
upward mouse motions with an increased interaction level, perhaps
in conjunction with direct manipulation of the extents via horizontal
mouse motions.

Blender type selection. If more than one interaction can be simultaneously
viewed and manipulated, there must be some mechanism for selecting
a strategy for mixing regions of space affected by more than one inter-
action. As with interaction-type selection, this is best accomplished
via a menu of options. Available options might be dependent on both
the space in which the interaction is occurring and the type of inter-
action being used. As interactions in different spaces are applied at
different points in the pipeline, it is necessary to consider methods
for controlling the combination of interactions involving two or more
spaces.

An important feature that should be present in all operations is the
animation of interpolated values of the interaction parameters as they are
changed. This has been shown to be extremely effective in many implemen-
tations of operators for helping users to both preserve context and to obtain
a better understanding of the effects of the operation on the data [374].
Rapid changes can lead to confusion and a loss of orientation, especially
when interactively exploring large data or information repositories. Related
to this, users should have some control over the rate of this animation (the
number of frames or steps in the interpolation).

11.8.1 Algorithms for Selection

The following pseudocode derives a set of selected records in a scatterplot
based on a selection rectangle created by the user.

Scatterplot-Select(xDim, yDim, xMin, xMax, yMin, yMax)
1 s← ∅� Initialize the set of records
2 for each record i � For each record,
3 do x← Normalize(i, xDim) � derive the location,
4 y ← Normalize(i, yDim)
5 if xMin < x < xMax and yMin < y < yMax
6 do s← s ∪ i � select points within the rectangle.
7 return s
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The next pseudocode determines whether a point is in a given polygon. This
task is essential in determining, for example, which polygon in a choropleth
map or glyph in a scatterplot is under a given mouse location. The code
uses the even-odd rule algorithm, which counts the number of times a ray
coming from the point to be tested intersects faces of the polygon. If the
ray intersects the polygon an odd number of times, then the point is inside
the polygon.

Point-In-Polygon(xs, ys, numPoints, x, y)
1 j ← numPoints− 1
2 oddNodes←false
3 for i← 0 to numPoints− 1
4 do if ys[i] < y and ys[j] >= y or ys[j] < y and ys[i] >= y
5 do if xs[i] + (y − ys[i])/(ys[j]− ys[i]) ∗ (xs[j]− xs[i]) < x
6 do oddNodes← not oddNodes
7 j ← i
8 return oddNodes

11.9 Related Readings

While there are perhaps fewer algorithms within interaction design, as com-
pared to other chapters in this book, there is much to read about in terms of
designing effective interfaces. Most modern textbooks in the field of human-
computer interaction dedicate one or more chapters to the design of graph-
ical user interfaces. Some popular texts include Human-Computer Interac-
tion [81], Interaction Design: Beyond Human-Computer Interaction [316],
and Designing the User Interface: Strategies for Effective Human-Computer
Interaction [317].

11.10 Exercises

1. Describe the spaces and interaction techniques in which you feel the
fisheye lens algorithm could be effectively applied.

2. Given a census data set, describe three or more ways you might order
the dimensions prior to visualization. What are the strengths and
weaknesses of each? You may use the US County Census data set
available on the book web site or at the http://www.openindicators.org
web page.
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3. When animating a given change, the number of frames over which the
change takes place can have a significant impact on the user’s compre-
hension and satisfaction. Describe the problems that can occur when
changes are too fast or too slow, and describe some of the criteria you
would use for automatically determining the duration of the animation.

4. Describe two or more distinct options for animating the shifting of
focus on a perspective wall display (Hint: just changing the speed is
not sufficiently distinct). Indicate what you feel are the strengths and
weaknesses of each.

11.11 Projects

1. Implement a screen space distortion that is shaped like a truncated
pyramid, e.g., it is flat on top and has linear ramps on the edges. Note
that such a distortion would be much more appropriate for viewing
text than the more common lens effects.

2. Implement a set of data space transformations for a line plotting pro-
gram. Make sure the resulting data values fall within the range of your
display. Test the program on several 1D data sets.

3. Implement an attribute space transformation that sets the opacity of a
glyph or scatterplot element based on how close one of its data dimen-
sions is to a user-specified value. For example, if the value specified is
0.5 and the first data dimension is selected, then points for which that
data dimension is at 0.0 or 1.0 should have an opacity of 0.5.

4. Modify the program above to enable a range of influence to be speci-
fied. This means that the opacity would be set to 0.0 for points whose
value is further than the range of influence from the selected value.
Thus, distant points would be transparent, unless the range of influ-
ence is very large.

5. Choose one type of distortion and implement it, along with controls for
specifying focus, extents, and transformation. Focus can be controlled
by the mouse or via a dialog box. Extents should just be one or
more sliders that convey a size parameter. Transformation should be
a list of possible types of transformation. This implies that you must
implement at least two such transforms, so that you can switch among
them.
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6. Extend the above system so that smooth animation is used between
the undistorted and distorted views. The user should be allowed to
control the rate of the animation. What range of rates do you think is
most effective or aesthetically pleasing?



�

�

�

�

�

�

�

�

CHAPTER 12

Designing Effective Visualizations

The goal of this chapter is to provide some guidelines for designing suc-
cessful visualizations. A successful visualization is one that efficiently and
accurately conveys the desired information to the targeted audience, while
bearing in mind the task or purpose of the visualization (exploration, con-
firmation, presentation). For any particular set of data there is a myriad of
possible methods for mapping data components to graphical entities and at-
tributes. Similarly, there exists a wide range of interactive tools that the user
may be provided. Selecting the most effective combinations of techniques is
by no means a straightforward process.

A visualization may be ineffective for a number of reasons. It might be
too confusing or complex to be interpreted by the intended audience, or some
of the data may have been distorted, occluded or lost during the mapping
process. Other signs of deficient visualizations are the lack of support for
view modification or color map control. Even aesthetics can influence the
success of a visualization; a visually unappealing presentation can affect an
audience’s willingness to look at the images. In each of the above cases, some
component of the visualization is interfering with the delivery of information
to the user.

This chapter first presents design considerations for the components that
the authors feel are necessary for a good visualization. Following this, we
explore some of the common problems found in visualizations and propose
some techniques for avoiding these problems. We summarize by revisiting
some of the issues presented in Chapter 3 and indicate how they fit into
the visualization design process. At a recent visualization conference, it was
stated that it is much easier to make bad visualizations than good ones.
Hopefully, through reading this chapter, visualization designers will gain

355
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some of the the skills necessary to make design decisions leading to effective
visualizations.

The ideas and techniques presented in this chapter come from not only
the authors’ experiences, but also from the vast body of literature on de-
signing good visualizations. Readers are encouraged to study one or more
of the books on this subject, as listed in the Related Readings section.

12.1 Steps in Designing Visualizations

Creating a visualization involves deciding how to map the data fields to
graphical attributes, selecting and implementing methods for modifying
views, and choosing how much data to visualize. Additional information
regarding the data being shown (e.g., labels) and the mapping (e.g., a color
key) are also essential to facilitate interpretation, and must be integrated
into the visualization. The final, less tangible, consideration is the overall
aesthetics of the resulting display. In this section we present, for each of
these design stages, some issues that should be addressed by the visualiza-
tion designer.

12.1.1 Intuitive Mappings from Data to Visualization

To create the most effective visualization for a particular application, it is
critical to consider the semantics of the data and the context of the typ-
ical user. By selecting data-to-graphics mappings that cater to the user’s
domain-specific mental model, the interpretation of the resulting image will
be greatly facilitated. In addition, the more consistent the designer is in
predicting the user’s expectations, the less chance there will be for misin-
terpretation. Intuitive mappings also lead to more rapid interpretation, as
translation time is reduced. For example, in Figure 12.1, images of planets
are used to plot the relationship between the distance from the planet to the
sun and the duration of its orbit.

Mapping spatial data attributes, such as longitude and latitude, to screen
position is perhaps the most common and intuitive mapping found in visu-
alizations. Some of the earliest visualizations took advantage of the ability
of humans to correlate position on the drawing medium with position in the
three-dimensional world. Likewise, with the advent of animation, it is obvi-
ous that displaying temporally related data sets via animation is reasonably
intuitive, with the added advantage of allowing time to vary in both speed
and direction.
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Figure 12.1. Using intuitive scatterplot symbols to show the distance from planets to the sun

versus the duration of a single orbit. (Image from http://www.physlink.com.)

Other mappings become intuitive when associated with a particular con-
text. For example, mapping temperature to color is fairly common, as many
cultures associate red or white with high temperatures. Color has specific
interpretations in fields such as cartography (land use classification) and ge-
ology (stratigraphic layer classification), and thus the application domain
for the visualization may dictate the logical use for the color attribute.

Height, or alternatively the length of a line, is another useful mapping for
temperature, as we associate temperature with the readout on thermome-
ters. In fact, for medical practitioners, it may be intuitive to use length for
displaying pressure or any other scalar value (e.g., the patient readouts in
the Star Trek sick bay).

One of the important considerations when selecting a mapping is the
compatibility between the scale of the data field and that of the graphical
entity or attribute. For ordered data attributes (e.g., age), it is not rea-
sonable to select a graphical attribute that is not ordered, such as shape.
Similarly, unordered data attributes (e.g., country of origin) should not be
mapped to ordered attributes (e.g., length).
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With that said, it is, however, sometimes interesting to examine data
with nonintuitive mappings, as the resulting image may expose an interesting
attribute in the data. For example, mapping time to color along a streakline
can reveal variations in particle speeds that might otherwise be difficult to
detect. Thus a good rule of thumb is to set the default mappings based on
the most intuitive selection according to the typical user, but, especially for
exploratory tasks, to permit user customization.

12.1.2 Selecting and Modifying Views

Except for fairly simple data sets, one view is rarely sufficient to convey all
the information contained in the data. The key to developing an effective
visualization is to be able to anticipate the types of views and view modifica-
tions that will be of most use to the typical user, and then provide intuitive
controls for setting and customizing the views. Useful views, as mentioned
earlier, depend heavily on the type of data being presented, and the task
associated with the visualization. Each supported view should be clearly la-
beled, and selecting a new view should require minimal actions on the user’s
part.

View modifications fall into a number of categories, and their inclusion
as part of the functionality should be considered, based on user priorities.

• Scrolling and zooming operations are needed if the entire data set
cannot be presented at the resolution desired by the user.

Figure 12.2. Three views of the IRIS data set (scatterplot matrix, star glyphs, and parallel

coordinates). (Image from XmdvTool.)
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Figure 12.3. Levels of detail in maps. (Images courtesy of Google Maps c© 2008 Google; map

data c© 2008 NAVTEQTM.)

• Colormap control is almost always desirable, minimally supporting a
set of different pallettes, and preferably offering the user control of
either individual colors or the complete pallette.

• Mapping control allows users to switch between different ways of vi-
sualizing the same data. Features of the data that are hidden in one
mapping may stand out in others (Figure 12.2).

• Scale control permits the user to modify the range and distribution
of values for a particular data field prior to its mapping. Similarly,
clipping and other forms of filtering allow the user to focus on data
subsets.

• Level-of-detail controls provide the ability to eliminate or highlight
detail, supporting views at different levels of abstraction. Depending
on the task at hand, a user may need to repeatedly switch between
several distinct levels (Figure 12.3).

In all cases, it is essential that the view manipulations be implemented in
a manner that is easy for the user to remember, and that provides suitable
accuracy for the task. If possible, direct manipulation (specifying changes on
the image itself rather than a separate control or command line) is generally
preferred. For example, mouse motion could be mapped to panning, with
button clicks invoking zoom operations. (See Chapters 10 and 11.)

12.1.3 Information Density—When Is It Too Much or Too Little?

One of the key decisions one makes when designing a visualization is de-
termining how much information to display. This gives rise to two extreme
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situations. The first, which might be called “gratuitous graphics,” occurs
when there is very little information to present. Many examples of graph-
ics can be found that convey only two or three distinct values, such as the
percentage of males and females within a particular sample (this actually
can be communicated with one number). Others can be found that “pad”
the number of pieces of information by deriving additional quantities, such
as showing two numbers, their sum, and their difference. In cases such as
these, it is often more effective to simply display the quantitative values as
text. This requires much less screen real estate (which in many applications
is quite valuable), while still getting the message across. It must be remem-
bered that simply because one can create a visualization doesn’t imply that
one must do so.

The other extreme, trying to convey too much information, is also a
common problem. Excessive information content can lead to confusion, in-
timidation, and difficulties in interpretation on the part of the viewer. Im-
portant information contained within the data can be lost or de-emphasized
on a cluttered display, and viewers may have a hard time determining where
to focus their attention.

There are many effective solutions to the problem of excessive information
content in a visualization. One method is to give the user the option of
disabling or enabling different components of the display. In this manner,
a user can decide which parts are most important her, and can have the
less important information displayed on demand. Another solution is to
use multiple screens, either as disjoint panes or with partial occlusions. This
method makes better use of screen space, while making each of the individual
pieces of data readily available.

Another common cause of cluttered displays is large or unevenly dis-
tributed data sets. As mentioned in the previous section, data sets may be
filtered to remove uninteresting data points, allowing the user to concentrate
only on the significant parts. Similarly, uneven distributions, which might
lead to some parts of the screen being congested, while others are sparsely
populated, can sometimes be rectified through scaling of one or more data
dimensions.

12.1.4 Keys, Labels, and Legends

A common problem with many visualizations is that insufficient information
is provided to the user to allow unambiguous and accurate interpretation.
This supporting information should begin with a detailed caption indicating
the particular data fields being displayed, and the mappings that were used.
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Figure 12.4. A complex visualization with and without captions/ticks/legends.

Additionally, grid or tick marks should be displayed to convey the ranges and
values of interest for numeric fields when absolute judgments are important,
and all axes should be labeled with appropriate units. If symbols are being
used, a key must be provided, either along the border of the display or within
a separate widget. Finally, if color has a significance, sufficient information
must be available to allow easy interpretation (e.g., via a labeled color bar).
Figure 12.4 highlights the importance of this supplementary information.

The use of grid and tick marks can be both a boon and a curse to the
visualization. Poor choices of the types of markings and the density used
can occlude the data being displayed and lead to a cluttered appearance.
Figure 12.5 shows three degrees of markings. Clearly, one should avoid the
extremes.

The actual positions of the markings can also have a bearing on how
readily the data is interpreted. Based on the semantics of the data, certain
gaps between markings may make more sense to the user than others. Un-
fortunately, the default values used by some visualization tools may make
no sense to the user (Figure 12.6).

The designer must also decide which range of values is to be displayed
(this decision may have been made in an earlier stage). There is always the
risk of misinterpretation when the expected range of values is not shown.
For example, when dealing with a percentage, most users would expect the
display to range from 0 to 100. However, in many cases this would lead to
significant waste of display space and loss of perceptual resolution (e.g., if all
percentages were below 10 percent), as can be seen in Figure 12.7. Thus, the
range must be carefully chosen and clearly marked to help convey accurate
information.

One final rule of thumb pertains to the use of multiple frames or windows.
It is important to follow a consistent labeling and gridding scheme. Changing
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(a)

(b)

(c)

Figure 12.5. Varying degrees of tick marks: (a) excessive, (b) moderate, and (c) minimal.

(a) (b)

Figure 12.6. Grid spacings: (a) illogical; (b) logical.
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Figure 12.7. Logical and illogical data ranges.

the position of labels and keys or the range of values shown (for the same
field) can cause confusion and increase the risk of misinterpretation. If range
changes are necessary (e.g., for views that differ in level of detail), the label,
as well as the grid markings, should convey the change. Similarly, if different
color mappings are necessary, the visualizations must clearly convey this
information.

12.1.5 Using Color with Care

One of the most frequently misused parameters in visualization design is
that of color. Selecting the wrong color map or attempting to convey too
much quantitative information through color can lead to ineffective or mis-
leading visualizations. Also, since color perception is context-dependent (a
particular color will appear quite different, depending on adjacent colors),

Figure 12.8. Too many colors versus a moderate number of colors.
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Figure 12.9. Treemap of basketball statistics, with points per game redundantly mapped to color

and size. (Figure generated using Tremap 4.0, from the University of Maryland.)

the characteristics of the data itself can influence how the colors are per-
ceived. Finally, it must be remembered that many people are color blind or
color confused; it has been determined that as many as ten percent of all
males have some form of color deficiency. The following guidelines can assist
in the effective use of color in visualization.

1. If the visualization task involves absolute judgment, keep the num-
ber of distinct numeric levels low (see Figure 12.8 and Chapter 3 on
perception).

2. Use redundant mappings if possible, e.g., map a particular field to
both color and size (see Figure 12.9), to improve the chances of the
data being communicated accurately.

3. In creating a color map for conveying numeric information, make sure
that both hue and lightness are changed for each entry (see Figure
12.10).

4. Include a labeled color key to help user interpret the colors (see the
previous section).

Color can add significant visual appeal to a visualization, but can also
significantly decrease the effectiveness of the communication process. Some
interface designers advocate an initial design process that only involves the
use of grayscales. Once this design has been refined and tested, the addition
of color can usually be done in a more effective manner.
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(a) (b)

Figure 12.10. (a) Changing hue; (b) changing both hue and saturation.

12.1.6 The Importance of Aesthetics

Once we have ensured that our designed visualization conveys the desired
information to the user (function), the final step is to assess the aesthetics
(form) of the results. The best visualizations are both informative and pleas-
ing to the eye. In contrast, a visualization might be so visually unappealing
that it detracts from the communication process. An aesthetically pleasing
visualization invites the viewer to study it in depth.

There are many guidelines for attractive visualization design that can be
drawn from the art and graphic design communities. These include:

Focus. The viewer’s focus should be drawn towards the part of the visual-
ization that is most important. If the important components are not

(a) (b)

Figure 12.11. (a) Subdued streamlines vs. (b) highlighted streamlines from OpenDX.
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(a) (b)

Figure 12.12. (a) Everything to one side vs. (b) balanced between left and right.

sufficiently emphasized, viewers don’t have sufficient cues for guiding
their inspection (see Figure 12.11).

Balance. The screen space should be used effectively, with the most impor-
tant components in the center. Emphasis should not be given to any
particular border (Figure 12.12).

Simplicity. Don’t try to cram too much information in one display (see Sec-
tion 12.1.3), and don’t use graphics gimmicks simply because they
are available (e.g., using 3D Phong shaded histograms when a bar or
line chart could convey the same information). A useful procedure to
follow once a visualization has been designed is to iteratively remove
features and measure the loss of information being conveyed. Features
whose removal results in minimal loss can probably be discarded (see
Figure 12.13).

There are many examples of ugly visualizations in the literature. We
reproduce a few of these below (see Figure 12.14). We encourage designers
to perform aesthetic assessment on their results prior to presenting them to

Figure 12.13. Progression from a cluttered chart to a simplified chart.
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Figure 12.14. Some ugly visualizations: (a) from Miller et al. [254] and (b) from a Brazilian

economic statistics report [171].

users, and to seek out and incorporate the extensive literature available on
graphics design.

12.2 Problems in Designing Effective Visualizations

In the following sections we examine some of the common problems found in
visualizations, which can occur even if the steps outlined above are followed.
These problems have a deeper root, and relate to decisions regarding what
to visualize and what is the most appropriate method to use. Some of the
problems involve intentional or inadvertent data distortion, which can lead
to misinterpretation. Others involve hiding the real data behind “cleaned”
versions or excessive supporting graphics. In all cases, steps can be taken to
improve the quality and “honesty” of the visualization.

12.2.1 Misleading Visualizations

One of the foremost rules of visualization is that the image should be an
accurate depiction of the data. However, throughout history, there are ex-
amples of how visualizations from distorted data have been used to sway
opinions and lie to the audience. These so-called “viz lies” can be found ev-
erywhere, from the most prestigious journals to company portfolios. In this
section, we identify some of the common strategies for creating misleading
visualizations, not for the reader to practice, but to try to avoid!
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(a) (b)

Figure 12.15. The problem with data scrubbing: (a) raw data showing lack of correlation;

(b) scrubbed data revealing false correlation.

Data scrubbing. Raw data can often be very rough in form, and the tempta-
tion when creating a visualization is to remove some of the roughness.
Unfortunately, sometimes the selection of which data to remove is bi-
ased to eliminate data that does not support a particular point that the
author of the data is espousing (see Figure 12.15). Outlier removal is a
common tactic in this situation. Unless there is reason to believe that
the outliers resulted from flaws in the data acquisition process, they
should not be removed without informing the viewer and providing the
option for the outliers to be displayed.

Unbalanced scaling. Scaling is a powerful tool in visualization, since careful
selection of scale factors can reveal patterns and structures not visible

Figure 12.16. Vis Lies: perspective distorts size in favor of closer objects.
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in unscaled views. However, scaling can be used to deceive the viewer
into believing that a trend is stronger or weaker than supported by the
data. This can lead to what Tufte refers to as the “lie factor,” which
is the ratio between the raw data change and the change as depicted
in the visualization. For example, in Figure 12.16 the size of objects
in the background is reduced in width and height by perspective, thus
distorting comparison with foreground objects.

Range distortion. As mentioned in an earlier section, viewers often have an
expectation about the ranges for a particular data dimension; by set-
ting this range to be significantly different from this expectation, the
user may be deceived into misinterpretation. This is often done by
moving an axis so it no longer corresponds with the expected “zero
value” (see Figure 12.17). Since relative judgment is such a strong
component of our perceptual system, changing the baseline for the re-
lations being portrayed could have a serious effect on how the image is
interpreted. The designer may want to give the user the option of mov-
ing this baseline to avoid wasting screen space, but it should be made
clear what the baseline is, especially if it departs from the established
norm.

Abusing dimensionality. In Chapter 3 we noted that errors in interpretation
rise with the power of the dimensionality being portrayed. Thus, our
errors in judging volume are much worse than those for area, which
in turn are worse than those for length. Therefore, mapping a scalar
value to a graphical attribute such as volume can dramatically increase
the likelihood of erroneous interpretation. As mentioned earlier, it is
often the case that simpler is better.

Figure 12.17. Plotting data with different baselines.
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Figure 12.18. A nonsense plot, showing sunspot occurrence versus the S+P 500 Index. (Image

from http://www.cxoadvisory.com/blog/internal/blog4-07-09/.)

12.2.2 Visual Nonsense—Comparing Apples and Oranges

Visualizations are designed to convey information, and it is important that
the information be meaningful. Visualizations are often created by combin-
ing data sets from different sources. However, It is easy to combine unre-
lated components into a single visualization and identify what seems to be
structure; for example, plotting stock market values against occurrences of
sunspots (see Figure 12.18). In this case, coincidental relationships can be
confused with causal relationships. In deciding what data to combine, it is
important to first ensure that there is some logic in the combination. One of
the problems found in analytic pattern recognition/data mining processes is
that these irrelevant relationships are often discovered and reported, which
must then be eliminated by a domain specialist. The visualization designer
should attempt to avoid creating nonsense graphics before they are presented
to users.

Another factor that must be considered is compatibility between tem-
poral and spatial ranges for data being compared. Thus, for example, one
(probably) shouldn’t compare the sales of a particular product in one year
for a particular region of the country with the sales of the same product for
a different region and year, unless one is hypothesizing that a migration in
interest for the product is occurring.

Compatibility in units also needs to be examined in creating a data set
for visualization. For example, products that are measured in terms of price
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per volume are often mixed with those measured in price per weight. An
effective visualization of this data might normalize them both to price per
serving.

Finally, there is often a temptation to perform operations suitable for
ordered or continuous data on categorical, unordered data, simply because
the mapping process resulted in an ordered graphical representation. An
example might be an attempt to fit a line or curve to a sequence of data
points that map a company name to a position on the screen. Obviously,
this has no semantic meaning, but because the mapping converts the scale
of the data, users might feel that it is useful to perform the fitting.

The key point is that some thought must be put into the semantics of
the visualization to insure that it makes logical sense.

12.2.3 Losing Data in the Chart Junk

In a previous section we stressed the importance of including labeled grid or
tick marks on visualizations that require quantitative assessment. The ex-
cessive use of such markings is an example of what Tufte referred to as “chart
junk.” Chart junk can be defined as any supplementary (nondata) graphics
in a visualization that are not necessary for the accurate interpretation of
the data. This additional information can lead not only to visualizations
that appear overly complex, but also to occlusion and de-emphasis of the
actual data.

Deciding the amount of supplementary graphics to put in a visualization
is sometimes a difficult process, since the designer might not know the needs
of all potential users. However, because we are dealing with a dynamic,
customizable medium (unlike Tufte’s static charts), the option exists to allow
users to adjust the types and density of this supporting information on the
display. In some visualization tasks, users can switch between qualitative
overviews and quantitative analysis. In the former case, it is usually more
important to give viewers a clear view of the data, while in the latter case,
tools to help quantify the elements of the display are much more desirable.
Thus, a good rule of thumb is to provide sufficient tools to support the user’s
quantitative needs, but with the option of disabling them or altering their
degree of presence in the visualization.

12.2.4 Raw versus Derived Data

A common practice is to compute an analytic model of the data using
curve/surface fitting to obtain a more visually appealing result. Again, this



�

�

�

�

�

�

�

�

372 12. Designing Effective Visualizations

(a) (b)

Figure 12.19. (a) Raw data plot with fitted curve; (b) only fitted curve.

is distorting the truth, and it may lead to false assumptions and conclusions
on the part of the observer. In some visualizations, it is common practice
to throw out all of the raw data and only show the smooth approximation
derived from that data. This forces the viewer to trust that the approxima-
tion is an accurate portrayal of the data, which is often not the case when
the designer blindly applies statistical fitting algorithms. It is best to show
both the raw data and the fitted model first, and to allow one or the other
to be deemphasized or filtered out on demand. (see Figure 12.19)

Yet another form of cleaning the data is the process of resampling, where
raw data positioned either on a sparse grid or randomly is used to create

Figure 12.20. Sparse global temperature change data would give erroneous values for most of the

planet if interpolated. (Image courtesy [131].)
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an approximation on a much denser grid. This can result in a much richer
visualization, approaching that of continuous sampling, but it again deceives
the user into believing the data set is much larger than it actually is. The
denser the resampling, the more likely that the user will misinterpret the
data, unless the phenomenon being observed has little variability. For ex-
ample, Figure 12.20 shows the locations of global temperature monitoring
stations. Clearly, there are large voids where no stations exist, so resampling
could result in many wrong conclusions, such as that the entire northern part
of South America would be interpolated by the readings from four or five sta-
tions, with the conclusion being that the region has dropped in temperature
over the past century.

Insufficient sampling is another problem. As the images in Figure 12.21
show, a sampling that doesn’t look at the data characteristics can miss many
important features. The left image is sampled and interpolated uniformly,
while the right image uses contour information to add sample points where
significant changes occur.

It is critical that the user always have access to the raw data and be
informed of any scrubbing/smoothing/resampling operation that has been
applied. In some domains, such as radiology, analysts are adamantly op-
posed to any sort of data smoothing or filtering, as there is danger that an
important signal in the data might be discarded as noise. Thus, views should
be provided that show the raw data set prior to deriving new versions, allow-
ing the user to decide whether the derivation is an accurate representation
of the original data.

Figure 12.21. Different sampling and interpolation of the same data set. Some of the details in

the right image are not seen in the left image. (Image from [158].)
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12.2.5 Absolute versus Relative Judgment

As mentioned in Chapter 3, humans have a fairly limited ability to make
absolute judgments of visual stimuli. This implies that visualizations that
depend too heavily on users performing accurate measurements of graphi-
cal attributes such as position, length, and color will result in problems in
interpretation. One means of combating this human limitation is to design
visualizations that either rely on relative rather than absolute judgment, or
that are restricted to only using a small number of distinct values for each
graphical attribute being used to convey information.

Bounding boxes, grids, and tick marks are all excellent tools for con-
verting an absolute judgment task to one that depends more on relative
judgment. By comparing the length or position of a graphical entity against
a quantified structure, users can more rapidly determine the approximate
value relative to the known levels. Using residuals (e.g., subtracting values
from their means) can also change a measurement task to one of deciding
whether a value is above or below a particular level.

12.3 Summary

In this chapter we have presented a number of design rules for creating
effective visualizations. These include:

• use data-graphic mappings that are likely to be intuitive to the targeted
audience;

• provide users with multiple views of their data, along with easy-to-use
tools for modifying views;

• avoid putting too much information in a given display; rather, provide
users with the ability to turn components of the visualization off and
on;

• include keys, labels, legends, and grids/ticks to help users interpret the
visualization;

• use color with care; color perception is highly context sensitive, and
humans are limited as to the number of distinct colors that can be
identified with accuracy;

• design your visualizations to be attractive, as well as functional;
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• avoid misleading users with unbalanced scales and other visualization
lies;

• verify that the visualization has semantic meaning and compatible
units;

• use grids in such a way that the data is not overly occluded; too much
chart junk can misdirect the user’s attention;

• always provide users access to the raw data; it is usually OK to perform
some data scrubbing, but the user should be aware of how the resulting
data has been derived;

• design visualizations that rely on relative, rather than absolute, judg-
ment, when possible.

None of these rules are hard and fast; there are exceptions to each, and in-
deed, there are times when one rule conflicts with another. Designers should
be prepared to try many alternatives before deciding on a final form, assess-
ing each based on the criteria presented here. However, be strongly advised
that there is no substitute for rigorous usability studies with subjects drawn
from the anticipated audience. Only after this testing has been performed
can the designer be reasonably assured that an effective visualization has
been created.

12.4 Related Readings

Many books have been written on the design of informative graphics. No-
table authors include Edward Tufte [363–366], Stephen Few [108, 109], and
Stephen Kosslyn [218, 219]. Their work provided much of the information
and concepts in this chapter. A significant percentage of modern HCI text-
books focus on designing effective graphical user interfaces. One early work
dedicated to this topic is the book by Mullet and Sano [259], which provides
a number of useful rules of thumb.

12.5 Exercises

1. Identify at least three problems with the visualization shown in Fig-
ure 12.22.
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Figure 12.22. Rainfall data for Arizona from the USGS.

2. For each of the visualizations in Figure 12.14, suggest at least three
modifications that would improve their effectiveness.

3. Describe four examples of how some of the rules of this chapter may
conflict with each other.

4. Assume that you are plotting the exchange rates for 20 different coun-
tries. List at least three ways of ordering the names of the countries
and describe why each might be useful.

5. Other than the figures used in the exercises, find at least three examples
of figures in this book that could be improved using design guidelines
described in this chapter. Send suggestions for improvements to the
authors (yeah, we can take the criticism!).
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12.6 Projects

1. Choose three visualization programs that you’ve written for this course.
For each, try to find at least three ways of improving them, based on the
design guidelines of this chapter. Re-implement these programs with
the improvements you’ve identified. Compete with your classmates to
see who can create the most attractive, informative visualization.

2. Choose three visualization programs that you’ve written for this course
(they can be the same three as used in the project above). For each, try
to find at least three ways of making them worse by violating design
guidelines of this chapter. Reimplement these programs with the neg-
ative improvements you’ve identified. Compete with your classmates
to see who can create the ugliest, least informative visualization!
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CHAPTER 13

Comparing and Evaluating
Visualization Techniques

A common question from users of visualization tools is “Which visualization
technique(s) should I use to solve my problem?” In general, there is no simple
answer to this question; many factors go into the evaluation process, such as
the specific task or tasks the user wishes to accomplish, the characteristics
of the data, and the user’s level of experience in using visualization to help
solve problems.

Another common problem that is often avoided by developers of visual-
ization techniques is to determine under what conditions their technique is
better than existing techniques, or whether a modification made to a par-
ticular method improves or makes worse some aspect of the technique or
system. Indeed, the degree of formal evaluation for visualization techniques
has been limited to date, partly because it is more satisfying on the part of
the developer to create new methods and partly because performing rigorous
evaluation is difficult and time-consuming.

In this chapter we attempt to identify some of the components and pro-
cedures necessary to assess and compare the effectiveness of visualization
techniques. We first list the types of tasks a user may wish to perform with
the aid of visualization, such as identifying trends or detecting the presence
of a known phenomenon. We then define user characteristics, such as level of
experience, that can affect the success of a visualization technique. Next, we
review the characteristics of data, as presented in Chapter 2, and examine
how these features bear on the process of effective visualization. Finally, we
describe attributes of visualizations themselves, such as the presence or ab-
sence of occlusion, that need to be considered in the evaluation. To conclude

379
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the chapter, we outline a procedure for designing a benchmark process that
would enable a person charged with comparing two or more visualization
techniques to approach the problem in a methodical way.

13.1 User Tasks

To perform a valid assessment of a particular visualization technique, or
to compare two or more techniques, it is important to identify the specific
actions or tasks that one wishes to accomplish with the assistance of visu-
alization. As mentioned in Chapter 4, Keller and Keller [205] identify the
following actions that a user might perform with a visualization:

• identify—to recognize an object based on the characteristics presented,
such as finding a fracture in an x-ray;

• locate—to establish the position of an object, such as determining the
location of maximal stress in structural analysis;

• distinguish—to determine that an object is distinct or different from
another, such as separating elevations that exceed a given threshold
from those below the threshold;

• categorize—to classify objects into distinct types, such as different land
cover or material types;

• cluster—to group similar objects based on some relationship. A related
action is to segment, which consists of separating dissimilar objects;

• rank—to place a group of objects in an order, such as numerical or
chronological;

• compare—to examine the similarities and differences between two or
more objects, where ordering is not possible, such as masking the in-
tersection of two data sets to reveal how they differ;

• associate—to draw a relationship between two or more objects, such
as linking temperature and location in weather maps;

• correlate—to find a causal or reciprocal relationship between two or
more objects, such as determining the relationship between interest
rates and economic growth.
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Each of the above tasks can be performed to varying degrees using vi-
sualization. In deciding if a particular visualization technique is useful for
accomplishing one or more such tasks, one needs to have a clear vision of
the degree of accuracy with which it needs to be accomplished. For exam-
ple, is it essential to correctly identify every occurrence of an object? What
rate of classification or ranking error is acceptable? At what resolution is
the location of an object needed? How many falsely labeled correlations
are acceptable? For what data characteristics is it important that errors be
minimized? Thus, we must augment the generic task with specifics dealing
with the domain, user, and data, as outlined below.

13.2 User Characteristics

Besides the tasks to be performed, the effectiveness of a visualization tech-
nique is tightly associated with the users of the visualization. Users can be
classified based on their knowledge and skills. Some of the particular aspects
of interest include:

Familiarity with domain. How much expertise does the user have with the
domain of the data being explored? Has she studied the field for a
long time, or is she relatively new to the field?

Familiarity with task. How much experience has the user had in performing
the desired task? Is she an expert or a novice, or somewhere in be-
tween? Note that this differs from the previous point, as someone
could have significant domain experience, but minimal experience in a
particular task.

Familiarity with data. Has the user examined this data previously and formed
a reasonable mental model of its contents, or is this her first exposure
to it? Is it similar to other data sets she has examined?

Familiarity with the visualization technique. Is this the user’s first attempt to
interpret the data using this particular kind of visualization, or has she
spent considerable time using the technique?

Familiarity with the visualization environment. Has the user employed the par-
ticular tool in the past, or is it her first exposure? This differs from
the previous factor, as a visualization technique can be implemented
in several different packages, and aspects of the packages themselves
can influence the effectiveness of the exploration of the data.
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Each aspect can be treated as a continuum, and each can influence the
assessment of a visualization. In an ideal evaluation using human subjects,
we would want the range of characteristics of the participants to be as similar
as possible to the intended audience for the technique, and the results should
be evaluated by grouping people with similar characteristics.

13.3 Data Characteristics

In Chapter 3 we discussed many of the attributes of data, from the types
of the lowest level components to its structure. The characteristics of the
data being visualized can have a profound influence on the effectiveness of
the visualization technique, and they must be considered in the evaluation
process. In an ideal assessment, a large variety of data sets should be tested,
and they should span the range of characteristics found in the domain for
which the visualization is being designed. Some of these tests should include:

Type. In many cases, the data is all of the same type (e.g., floating-point
numbers). Often, however, it is a mixture of types, such as text in-
termingled with numbers. All combinations of types that can occur
should be tested.

Size. Data sets in a particular domain can often take on a wide range of
sizes, from a few records to thousands or millions of records. Tests
should cover the normal size range, as well as extreme values for the
size.

Dimensionality. While in many scientific domains the data generally has a
fixed dimensionality (one, two, or three), it is generally useful to test a
visualization with all possible subsets of dimensions (slices or projec-
tions), as well as, with the normal dimensionality.

Number of parameters. The normal number of parameters in a data set
varies widely from one domain to another. Visualization techniques
should be tested with both univariate and multivariate data sets (un-
less only univariate data exists); indeed, a common test is to ascertain
the maximum number of parameters that can be effectively displayed
by a technique.

Structure. In a data set the structure of the data can be simple (e.g., a
uniform grid or a table) or complex (e.g., hierarchical). While many
domains use a single fixed structure (defined by the data model), others
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might allow multiple fixed structures or variable structures. Secondary
structures may also be derivable from the main structures, such as a
hierarchical clustering derived from a list or a multilevel grid. Visu-
alization techniques should be tested using all commonly encountered
structures within the domain.

Range. Objects in data sets can take on a wide range of values. Testing
should involve exercising the entire range of possible values, including
the extremes of the range.

Distribution. Data can be uniformly or nonuniformly distributed, both in
values and in attributes (such as spatio-temporal position). Tests
should involve data sets that include distributions usually encountered
in the domain, as well as some extreme cases.

As can be seen in this section, data has a large number of characteristics,
and thus, to thoroughly evaluate one or more visualizations for a given do-
main can potentially involve gathering or generating a tremendous number
of test data sets. In many domains, however, some of these characteristics
are reasonably constrained, which can greatly reduce the number of distinct
tests that are needed. Few domains have made concerted efforts to gather
large numbers of data sets for testing (nice examples include the machine
learning archive at the University of California, Irvine [369] and the StatLib
repository at CMU [337]), and fewer still have attempted to classify data
sets according to their characteristics to enable testers to gauge the data
attributes that should be tested with the data sets. It would be a great ser-
vice, both to researchers in a given domain and to visualization developers,
for such annotated archives to become more available.

13.4 Visualization Characteristics

Once the task, user, and data have been characterized, we can focus on the
specific visualization technique(s) to be assessed. There are many aspects of
the visualization that can be evaluated. These include the following:

Computational performance. How quickly can the visualization be generated,
using data sets of various sizes?

Memory performance. How much computer memory is required to generate
the visualization?
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Data limitations. What are the upper and lower bounds for the size and com-
plexity of the data that can be visualized with this technique? At what
point does the amount of information extractable from the visualiza-
tion stabilize or decrease with increased data size/complexity? At
what point does the error rate for performing the task increase to an
unacceptable level?

Degree of occlusion. What is the likelihood that some subset of the data to
be displayed will be occluded by other parts of the visualization? How
much is normally occluded? How many views does the user need to
see the entire data set?

Degree of complexity. What is the normal learning curve for the technique?
How many parameters does the user need to set in order to gener-
ate views? How much knowledge is needed to set and adjust these
parameters in an effective manner?

Degree of usability. How easy is it to perform the task? How intuitive is the
interpretation of the visualization? How intuitive are the controls for
interactions?

Degree of accuracy. How frequently is the user successful or unsuccessful in
performing the desired task with this technique? Under what condi-
tions are errors made, and how bad are the errors (i.e., distance from
correctness)?

13.5 Structures for Evaluating Visualizations

Many forms of evaluation for interactive systems have been developed within
the field of human-computer interaction, most of which are applicable and
have been applied to data and information visualization systems. Some of
the most common techniques are detailed below.

Usability tests. These evaluations concentrate on “the Five E’s”: effective,
efficient, engaging, error tolerant, and easy to learn [340]. These tests are
usually carried out by observing users attempting to perform tasks, and
noting the types of difficulties they are having, the features they commonly
use, and their level of comfort/satisfaction with the tool. Often, the evalu-
ation starts with some usability goals or requirements, and the result of the
evaluation indicates whether the goal or requirement has been met or not.
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Expert reviews. While some forms of evaluation depend on having a signifi-
cant number of participants, expert reviews can generally be carried out with
a small number (three or fewer) of qualified reviewers [357]. These evalua-
tors may be experts in visualization, or they may be domain experts who
can thoroughly test the applicability of a tool for a set of specific application
tasks. A visualization expert is someone who has studied visualization design
and has likely used or developed a number of successful tools. He or she may
have a check-list of desirable features for an effective visualization, against
which the object of the evaluation is assessed (this is sometimes referred to
as heuristic evaluation). A domain expert, on the other hand, is generally
familiar with the types of data and tasks found within their domain, and
will attempt to identify the extent to which the system or technique could
accommodate the data and support the tasks.

Field tests. Unlike usability tests, which are often carried out in a controlled
environment over a short period of time to better enable measurement, field
tests are performed in the natural environment of the typical user and may
last for weeks or months [276]. Field tests attempt to assess the degree
to which the new technique or tool becomes an integral part of a user’s
activities once the initial curiosity and learning curve have been overcome.
The results of field tests are often qualitative, and may change significantly
over time. They can be effective, especially if users are encouraged to submit
questions and critiques that can lead to clarifications and improvements in
functionality.

Case studies and use cases. Rather than using experts, users, or student vol-
unteers in evaluation, some visualization researchers attempt to validate the
effectiveness of their techniques by showing real (or sometimes contrived)
examples of how their method can be used in solving a particular problem
or performing a given task. The key to this sort of evaluation is to ensure
that the case studies are sufficiently realistic so that someone with a partic-
ular task to perform can be convinced that at least one of the case studies is
sufficiently similar to his or her own task, and that the tool will effectively
support it.

13.6 Benchmarking Procedures

Benchmarking is a formal procedure for evaluating the performance of some
object or set of objects. A wide assortment of objects can be benchmarked
for a variety of attributes, such as the speed of a car or the user-friendliness
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of an interface. Benchmarks can be quantitative (resulting in a number)
or qualitative (resulting in a relative judgment). Qualitative benchmarks
generally involve the use of human subjects, while quantitative assessment
can be done either with or without the use of human subjects. In general,
quantitative benchmarking experiments are easier to set up and execute than
qualitative experiments, due to the difficulties of factoring in the variability
of users in testing with human subjects. However, the procedures do have
similarities, as outlined below:

1. Formulate a hypothesis. A benchmark requires a specific statement
about one or more attributes of the object being assessed, such as
“This algorithm executes faster than that algorithm” or “This tech-
nique allows the identification of tumors more easily than other ones.”
Care must be taken in designing a hypothesis that isn’t too general—
stating as a hypothesis that system A is “better” than system B is
very difficult to prove or disprove. In terms of comparing visualization
techniques, a more complete hypothesis would be “System A allows
novice users to more easily identify clusters in data sets containing 5-
10 dimensions and 1000 to 10000 data points than system B.” Note, we
have integrated aspects of most of the characteristics described earlier
in the chapter: namely task, user, and data. This degree of specifi-
cation, while resulting in rather constrained results, is much easier to
design, execute, and validate than the more general claims.

2. Design the experiments. The key to designing benchmark experiments
is to create tests that vary only a single attribute at a time. For exam-
ple, a test of computational speed for a set of algorithms would require
that all experiments be run on the same computer, using the same
data, with similar degrees of optimization of the specific implementa-
tions. Similarly, a benchmark measuring the usability of a tool would
require the subjects to perform identical tasks that exercise only the
usability issue, and not peripheral issues such as the color scheme or
the hardware speed.

3. Execute the experiments. There are many ways a well-designed exper-
iment can be executed so that little in the way of reliable conclusions
will result. Factors such as the training of human subjects are crit-
ical; each participant should get a similar amount of instruction on
performing the experiments, including identifying the procedure they
should follow, the expected format of their responses, and the pace at
which they should proceed. The amount of time provided should be
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reasonably constrained, as users often will respond differently, given
differing time constraints. Finally, the audience should be of sufficient
size to make the results statistically significant. For testing a single
attribute of a visualization, it is best to have at least 15-20 subjects
with similar backgrounds.

Similar issues need to be considered for experiments that don’t involve
human subjects. For example, tests of computational performance
should be done on similarly loaded machines at similar times of the
day to insure that external influences are reasonably balanced.

4. Analyze the results and validate the hypothesis. Given the results of
the experiments, it is then necessary to ascertain whether

• the hypothesis is supported,

• the hypothesis is refuted, or

• there is insufficient evidence to support or refute the hypothesis.

Generally, one is looking for results that are statistically significant,
e.g., they are far enough from random to indicate credibility. For
quantitative variables of the experiments, such as data set size, it is
useful to plot results against the variable. For nonquantitative vari-
ables, such as the type of task or structure of the data, it is best to
analyze each value of the variable separately, and then try to draw
conclusions only if there is a dominant trend or clear majority.

13.7 An Example of Visualization Benchmarking

In an article by Ward and Theroux [378], a set of experiments is described
for assessing the strengths and weaknesses of three multivariate visualiza-
tion techniques, namely scatterplot matrices, parallel coordinates, and star
glyphs, in performing two distinct tasks: cluster analysis and outlier detec-
tion. The structure and results of their experiments are outlined below.

13.7.1 Outlier Detection and Measurement Experiments

Stage 1. The first step was to develop a quantifiable definition for an outlier
and create an algorithm capable of labeling data points appropriately. The
first part of the algorithm calculated a one-dimensional projection regression
that resulted in a measure of fit for each point within each dimension. The
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standard deviations of the measures of fit for each dimension were then cal-
culated and compared against a threshold standard deviation to determine
if the point was an outlier. If the standard deviation for a point was greater
than the threshold value, the point was labeled an outlier.

Stage 2. Data sets, both real and simulated, were then acquired or generated
that contained outliers, according to the definition in Stage 1. For some data
sets, the degree of separation between the outliers and the main bodies of
data points were varied to test subject sensitivity (see Figures 13.1 and 13.2).
A total of six outlier experiments were designed, and each was repeated three
times for the three visualization techniques being tested.

Stage 3. After the subjects (19 computer science graduate students with min-
imal exposure to data visualization) were trained to interpret the visualiza-
tion technique(s) to be assessed and given examples of data sets with iden-
tified outliers (approximately one hour of training), they were shown a set
of 18 images of data sets containing between 0 and 6 outliers. The subjects
were asked not to spend more than one minute per image. The tasks given
to them were:

1. Determine if an image contains one or more outliers.

2. Identify the points believed to be outliers.

(a) (b)

Figure 13.1. Parallel coordinates view of data set describing acorn attributes, with a single

outlier (circled, in the acorn size dimension) (a) in its original position and (b) with

the distance artificially shortened [378]. (Image c© 1997 IEEE.)
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(a) (b)

Figure 13.2. Identifying outliers with scatterplot matrices: same data as previous figure, using

scatterplot matrices [378]. (Image c© 1997 IEEE.)

3. Estimate the degree of separation of each outlier on a 5-point scale
(marginal to extreme).

Stage 4: Given the subject responses, the usefulness of each visualization
method tested was assessed in terms of outlier detection and measurement
across data sets with different characteristics. The percentages of correctly
and incorrectly detected outliers were tallied, as well as the average error in
estimating the degree of separation.

13.7.2 Cluster Detection and Measurement Experiments

Stage 1. A quantifiable definition for a cluster was developed and an algo-
rithm capable of labeling data points according to which cluster they belong
to was implemented. The algorithm output gave the probabilities of each
point belonging to each cluster.

Stage 2. Data sets, both real and simulated, were acquired, which contained
clusters according to the definition in Stage 1. For simulated data, the
number, size, and orientation of clusters and their relative positions were
varied. Random noise was also added to some of the simulated data sets
(see Figure 13.3). Sixteen distinct experiments were designed, and each was
presented using the three display techniques.
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(a) (b)

Figure 13.3. Iris data showing different degrees of clustering: (a) the original data; (b) has a

40% added noise factor [378]. (Image c© 1997 IEEE.)

Stage 3. After the subjects (19 computer science graduate students) were
trained to interpret the visualization technique(s) to be assessed and were
given examples of data sets with known clusters (approximately 1 hour of
training), they were given a packet containing 48 images of data sets that
contained between 0 and 4 clusters. The subjects were asked to not spend
more than one minute per image. The tasks given to them were:

1. Determine if an image contains one or more clusters.

2. Highlight the groups of points believed to lie in distinct clusters.

3. Estimate the size of each cluster on a 5-point scale (small to very large).

Stage 4. Given the subject responses, the usefulness of each visualization
method tested could be assessed in terms of cluster detection and measure-
ment across data sets with different characteristics. The percentages of cor-
rectly and incorrectly detected clusters were tallied, as well as the average
error in estimating the size.

13.7.3 Results

In all, over 4000 data points were gathered during the experiments, catego-
rized as cluster identification, cluster size assessment, outlier identification,
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and outlier separation identification. For both tasks, scatterplot matrices
generally fared best, followed by star glyphs positioned by principal com-
ponent analysis, and lastly by parallel coordinates. Each had measurable
strengths and weaknesses, as outlined below.

• Scatterplot matrix

– less effective for overlapping clusters;

– less effective in size assessment for large clusters;

– less effective when outliers fell between clusters;

• Glyphs

– best for identifying internal outliers (between clusters);

– poor for differentiating nonoutliers;

– good for conveying outlier separation;

– good for overlapping clusters;

– good for measuring moderate sized clusters;

• Parallel Coordinates

– good for differentiating nonoutliers.

In some cases, the difference in performance by the different techniques
was quite significant. For example, with scatterplots there were only 27
instances of incorrectly identified clusters (false positives), while for glyphs
and parallel coordinates there were 126 and 159 occurrences, respectively.
On the other hand, there were many circumstances where the performance
difference was less striking. For example, there was no major difference in
the number of accurately identified clusters among the different visualiza-
tion methods (78% for scatterplots, 74% for glyphs, and 71% for parallel
coordinates).

13.8 Related Readings

Many articles have been written on the evaluation of visualization techniques
and systems. Some of these include [56, 95, 141, 143, 256, 276, 305, 357, 371,
422], many of which were presented at a workshop associated with the AVI
conference in 2006. Some are specific to one type of visualization (e.g.,
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graphs) or to a specific application area (e.g., bioinformatics), but many of
the concepts are more broadly applicable.

The VAST contests and challenges evaluate visualizations and visual an-
alytic systems against benchmark data sets (data sets having embedded
ground truth). The summary papers and the archived papers by the partic-
ipants are a very worthwhile read. See http://vac.nist.gov/index.html.

13.9 Exercises

1. Make a table listing the pros and cons of various evaluation strategies
for visualization tools (you may need to read some of the recommended
literature first). Are there any strategies that are complementary (e.g.,
the pros of one address the cons of the other)? This might indicate
pairings of strategies that together can paint a clearer picture of the
effectiveness of a technique, as compared to running only a single type
of evaluation.

2. Design a set of experiments for evaluating one characteristic of volume
visualization techniques. Be careful to specify in detail the task, data,
and user characteristics (if human subjects would be involved) that
you would be using for the analysis.

3. Repeat the process using a different task.

4. Repeat the process using a different characteristic of the technique.

5. Repeat the process for 2D flow visualization techniques.

6. Choose a paper from the literature that describes a new visualiza-
tion technique. Write a summary of what (if any) assessment was
performed on the technique, and suggest ways in which further assess-
ment could be performed (you will find that only a small percentage
of visualization papers report extensive evaluation).

7. Skim the papers from one information visualization conference and
count how many include evaluations. For each one that does include
evaluation, identify the type of evaluation performed (e.g., usability
test, expert review, field test, case/use study). Which method(s) ap-
pear to be most common?
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8. In light of the above look up the VAST Challenge summary papers
(http://vac.nist.gov/index.html) and the participants’ submissions, de-
termine how the visualizations and even the evaluations could be im-
proved.

13.10 Projects

1. Design and carry out an evaluation of one of the visualizations that you
implemented for this course. If the evaluation requires human subjects,
try recruiting people with similar backgrounds (e.g., the students in
this class).

2. Implement a minor variation on this visualization, for example, using a
different color scheme, default layout, or other easily changed aspect.
Design and carry out an evaluation that compares the original and
modified versions. If there is a noticeable difference in performance or
satisfaction levels, describe what you believe to be the likely cause.

3. Design and carry out an evaluation of a visualization implemented and
evaluated by one of your classmates. You should NOT ask people how
they evaluated their own program, or what the results were! Once the
evaluation has been completed, you should compare the procedures,
as well as the results. How were they similar or different? This might
expose some biases that we often have when it comes to evaluating our
own work—we generally want the results to come out well, while in
evaluating the work of others we don’t usually have a preference as to
how things work out.
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CHAPTER 14

Visualization Systems

In this chapter we present an overview of a number of data and informa-
tion visualization systems and toolkits. We have concentrated primarily on
software that is freely available, to enable students interested in exploring
further in the field of visualization to try out existing technology. These are
only a sampling, however; many fine tools that we have not mentioned are
also available, and readers are encouraged to search for and download them.
We also mention some commercial packages with functionality that overlaps
with the systems we’ve chosen to describe. Caveat: the URLs given were
correct at the time of publication. These may have changed since then, or
some of the tools may no longer be freely distributed.

14.1 Systems Based on Data Type

14.1.1 Scientific Data

OpenDX [267,349], which was formerly marketed as IBM Visualization Data
Explorer, is an extensible visualization environment primarily used for the
analysis of scientific and engineering data. What separates it from most
other visualization platforms is the visual programming process used to cre-
ate custom visualizations. Its Network Editor allows users to drag-and-drop
components onto a canvas and create links between components for com-
municating data of specified types. The modules fall into several distinct
classes, including:

395
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• import and export—modules to load and save data in different formats;

• flow control—modules to create loops and conditional execution;

• realization— modules to map the data to renderable entities, such as
isosurfaces, grids, and streamlines;

• rendering—modules to control display attributes, such as lighting,
cameras, and clipping;

• transformation—functions to apply to the data, such as filtering, math-
ematical functions, and sorting;

• interactor—widgets such as file selectors, menus, dials/sliders, and but-
ton boxes.

Figure 14.1. An example of a network in OpenDX. Flow proceeds from the Import modules

down to the image. This specific program combines an isosurface, a set of stream-

lines represented as ribbons, and a caption for the final display.
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Figure 14.2. An example of the interface for a module in OpenDX. Some parameters are set

manually, while others are set by connecting an input or output tab to the input

or output of another module.

Figure 14.1 shows a typical network. Flow passes along the connectors,
and each component is a pure function, e.g., it doesn’t store any state in-
formation. As each component executes, its color changes in the editor to
let users to monitor progress. If flow stops due to some exception condition,
the component where the problem arose is colored to indicate a problem.
Each component has its own interface to set both required and optional
parameters (see Figure 14.2), other than the connections between compo-
nents, which are set via point-and-click operations. Interactors are widgets
that let people using the program set thresholds, select from menus, modify
color maps, and otherwise control the execution of the program. An iterator
module is provided to enable animating sequences of visualizations.

A large range of existing modules have been developed to date, and visu-
alizations can be created that combine different data and different mappings
into a single visualization (see Figure 14.3). Users can either restrict them-
selves to using the existing library of components/modules, or they may
write their own, using a software development kit that contains libraries to
access data structures and interface components. In this way, OpenDX can
be customized to new applications with proprietary or nonstandard data
file formats. OpenDX was designed to run on UNIX/Linux systems, but
can run on Windows and Mac platforms using an X-server. The OpenDX
software, including source code, executables, documentation, and sample
networks and data can be downloaded from the OpenDX web site [267].
Systems with overlapping capabilities include AVS [16] (commercial) and
SCIRun [53] (public-domain).
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Figure 14.3. Examples of visualizations that can be created with OpenDX. The first combines

a slice through a potential field, superimposed on a geometric model, while the

second combines temperature, moisture levels, and a wind field to see attributes

of a storm cloud.

14.1.2 Multivariate Data

XmdvTool [280], developed at Worcester Polytechnic Institute (WPI) by
Matthew Ward, Elke Rundensteiner, and their students, is a public domain
visualization software package that integrates five common methods for mul-
tivariate data visualization into a single exploration application [249, 380].
This tool includes standard scatterplot matrices, scatterplots of star glyphs,
parallel coordinates, dimensional stacking, and pixel-oriented techniques.
These visualizations are linked together using a simple selection and high-
lighting mechanism called an N -dimensional brush, which defines a hyperbox
in the data space. Selected data in one view are also selected in other views,
and the resulting selection can be highlighted, masked, deleted, or analyzed
separate from the rest of the data.

Beyond its original inception, XmdvTool has been extended to include
additional architectural features for supporting large data sets. First, Ying-
Huey Fua et al. introduced hierarchical parallel coordinates for the explo-
ration of data sets containing many records [118] (see Figure 14.4). Data
is hierarchically clustered and the results displayed in a summarized par-
allel coordinates display using variable opacity bands. This was followed
by the addition of a structure-based brush, an associated user interface
for browsing, and brushing within this hierarchical data structure (see Fig-
ure 14.5(a)). Jing Yang et al. generalized the application of this hierarchical
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Figure 14.4. An example of hierarchical parallel coordinates in XmdvTool. Each line represents

the center of a cluster, and the opacity bands around each centerline indicate the

extents of the cluster in each dimension. The opacity near the center conveys the

cluster population. Users can drill-down or roll-up in the data hierarchy, using a

structure-based brush (see Figure 14.5).

data structure to XmdvTool’s other visualizations and defined the interac-
tive hierarchical displays (IHD) framework [411]. Furthermore, XmdvTool
provides a visual hierarchical dimension reduction (VHDR) framework that
groups and organizes the space of dimensions, providing meaningful sub-
spaces of the dimensions for analysis [411] (see Figure 14.5(b)). XmdvTool
also includes the distance quantification classing (DQC ) approach to han-
dle nominal variables [298] and tools to reorder dimensions to reduce visual
clutter [272].

XmdvTool was first released to the public domain in 1994, and at the time
of this writing is in release 7.0. Beyond its native file format, the software
can import data from Excel spreadsheets and Oracle databases. It has been
successfully employed in a wide range of application domains, including earth
and space sciences, bioinformatics, census studies, and network performance
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(a) (b)

Figure 14.5. Displays of hierarchical structures in XmdvTool: (a) a structure-based brush,

which is used to navigate and select in a data hierarchy; (b) InterRing, which

allows users to cluster dimensions of their data and select subsets or averages of

dimensions for the data display.

analysis. XmdvTool runs on both Windows and UNIX/Linux platforms;
source code, data sets, executables, and documentation can be found at the
project web site [280].

Software with overlapping functionality include Spotfire [351] (commer-
cial) and Tableau Software [344] (commercial), though each of these is far
more developed and robust than XmdvTool.

14.1.3 Graph Data

GraphViz [97,135] is a library of graph layout algorithms developed at AT&T
Research. The architecture and philosophy of GraphViz is rather unique
compared to other visualization tools. It supports a range of graph spec-
ification methods, layout methods, and rendering methods. While some
interactive components have been integrated with the system, it is primar-
ily a script-driven system. One selects a graph description file and feeds
it to a layout engine, along with a desired output format and any other
parameters to the layout technique. The output formats supported are
vast, to enable easy integration of results into documents, web pages, and
applications.
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All GraphViz programs accept input files in the DOT language, which is
defined by an abstract grammar. A simple example of a graph specified in
DOT is as follows:

digraph G {

size="6,6";

node [shape=circle,fontsize=8];

rankdir=LR;

st9 -> st9 [label="11/1"];

st9 -> st10 [label="10/1"];

st8 -> st8 [label="10/1"];

st8 -> st0 [label="00/-"];

st7 -> st8 [label="10/1"];

st7 -> st7 [label="00/1"];

st6 -> st6 [label="01/1"];

st6 -> st0 [label="00/-"];

st5 -> st6 [label="01/1"];

st5 -> st5 [label="11/1"];

st4 -> st4 [label="01/1"];

st4 -> st0 [label="00/-"];

st3 -> st4 [label="01/1"];

st3 -> st3 [label="00/1"];

st2 -> st9 [label="11/1"];

st2 -> st7 [label="00/1"];

st2 -> st2 [label="01/1"];

st10 -> st10 [label="10/1"];

st10 -> st0 [label="00/-"];

st1 -> st5 [label="11/1"];

st1 -> st3 [label="00/1"];

st1 -> st1 [label="10/1"];

st0 -> st2 [label="01/-"];

st0 -> st1 [label="10/-"];

st0 -> st0 [label="00/0"];

}

Each line defines attributes of a graph as a whole, a node, or a link. Both
directed and undirected graphs are allowed (just switch -> to - for undi-
rected). The resulting graph is shown in Figure 14.6 using four different
layouts. The techniques are:

• dot—a layered approach that attempts to aim edges in the same direc-
tion;

• neato—a spring model based on multidimensional scaling;

• circo—a circular layout that is often effective for communications net-
works;
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Figure 14.6. Sample outputs from GraphViz, showing the same graph with four different lay-

outs.

• fdp—a force-directed method that uses multigrid heuristics to enable
handling of large graphs.

GraphViz runs on all popular platforms (Windows, UNIX, Mac), and is
available via the GraphViz web site http://www.graphviz.org. The distribu-
tion includes a large number of sample graphs, and the web site contains a
significant amount of documentation.

Other visualization tools for graphs include Tom Sawyer Software [356]
(commercial).

14.2 Systems Based on Analysis Type

14.2.1 Statistics

GGobi [125] (like its predecessor XGobi) is an interactive tool for multivari-
ate data visualization and analysis developed by Deborah Swayne, Dianne
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Figure 14.7. An example of parallel coordinates in GGobi. Color is controlled by the right-most

dimension.

Cook, and Andreas Buja in the early 90s while they were at Bellcore, Inc.
The system continues to evolve, with many others contributing to its devel-
opment. It supports a number of different visualizations, including scatter-
plots, scatterplot matrices, bar charts, graphs, and parallel coordinates (see
Figure 14.7). For each visualization, a control panel specific to that view is
shown; clicking on any visualization exposes its control panel.

Color is used to link data between multiple views, and the user has a wide
range of options for controlling the colors assigned to graphical entities. The
user starts by selecting a data dimension to control the color; an interactive
histogram can then be used to adjust the ranges of values assigned to each
color (see Figure 14.8). Options are available to either use uniform bin width
or bin count to create the initial histogram. All views of the data set will then
use this color assignment. Linked brushing can then be used to highlight a
selected data point in each view.

One of the most powerful tools within GGobi is the ability to generate
and view so-called grand tours of the data, using a path through projection
space to show the data from all views, or from user-constrained subsets of
views. Users can change the speed of the movement and pause it to examine
features of interest, as well as the viewing parameters that generated the
view.

Many other analytic tools have been added to GGobi over the years,
including linkage to the R statistics package [70], support for several graph
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Figure 14.8. Automated color brushing in GGobi. Users can assign any data dimension to

control the color, and can adjust the ranges and colors used.

Figure 14.9. An example of graph drawing in GGobi. Radial layouts are just one of several

supported.



�

�

�

�

�

�

�

�

14.2. Systems Based on Analysis Type 405

drawing techniques (see Figure 14.9), imputation methods for handling miss-
ing values, and dimension reduction methods such as PCA and MDS. The
software runs on Windows, Mac, and Linux platforms, using the graphics
package GTK as its base. Code, executables, documentation, and other
support can be obtained from the GGobi web site [125].

Other packages for statistical graphing and analysis include SPSS [335]
(commercial) and SAS [307] (commercial), though each of these has far more
functionality than just statistical visualization.

14.2.2 Spatio-Temporal

Macrofocus [36,247] has produced a number of powerful interactive tools for
visually exploring data and information. One such tool is InfoScope, which
links geographic views with several other visual and textual representations
of information. A sample of InfoScope’s main screen is shown in Figure
14.10. In this example, information compiled by the United Nations on
human development can be explored in a wide assortment of ways. The
geographic view (Figure 14.11) shows either a global or local view of the
geographic components of the data set. A bifocal fisheye lens is used to
perform context-preserving zooming by shift-dragging the mouse. The theme
view (Figure 14.12) displays data points that have been laid out based on

Figure 14.10. A sample InfoScope screen.
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Figure 14.11. The Geographic View in InfoScope: users can focus by using set buttons, or by

shift-clicking on a map location.

Figure 14.12. The Theme View in InfoScope: users can select from a number of different layouts

that show relations between data records.
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Figure 14.13. The Graphical View in InfoScope, with a parallel coordinates plot of the data.

Lower values on one of the dimensions have been filtered, resulting in dark coloring

for those data records in all views.

similarities using an optimized spring-based MDS algorithm. The data view
(Figure 14.13) can show the data either as parallel coordinates or in textual
tables.

The power of InfoScope lies in its tight linkages between the different
views. Brushing in any view will highlight the corresponding data in all
views. Up to four brushes can be used to isolate individual records for
simultaneous viewing. Data can be filtered by dragging handles at the top
or bottom of each parallel coordinates axis to enable users to dim out high
or low values. Color can be associated with any of the data variables, so
the user can quickly switch between different thematic maps. Mousing over
data records causes the labels and/or values to be displayed in all appropriate
visualizations.

Animated changes are also used effectively in InfoScope. Zooming opera-
tions in each of the displays are performed in a continuous fashion, allowing
users to easily maintain context. Dimensions in the parallel coordinates dis-
plays can be squeezed or spread out to enable easier analysis. In the theme
view, switching between different themes results in a smooth animation of
the movement of data points, allowing users to differentiate relationships
that are relatively constant between themes versus those that differ signifi-
cantly based on the theme.

Macrofocus software is not technically freeware; the company distributes
executables for free that allow users to explore the several data sets that
Macrofocus provides, but in order to import one’s own data, the commercial
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version of the software is needed. This is available via the company’s web
site [247] for a modest fee.

Spatio-temporal visualization is a strength of geographic information
systems. Many such systems exist, including GRASS [136] (freeware),
ArcGIS [101] (commercial), and ERDAS IMAGINE [99] (commercial).

14.3 Text Analysis and Visualization

Jigsaw [169] is a text visualization tool that was developed by John Stasko
and his students at the Georgia Institute of Technology. This system ex-
plores entities (people, places, dates, money) and the relationships between
them. Jigsaw uses several different views to present information to the user,
including calender, list, graph, scatterplot, text, and time line views, shown
in Figure 14.14. Each view is presented as a separate window that updates
automatically with the results of various queries.

All views are linked by default to one another, so acting on a document
or entity in one view causes all other windows that are listening to update
in accordance with that action. Listening can be toggled on or off in any

Figure 14.14. Examples of various views in Jigsaw. Clockwise, starting from the top, you can

see the list view, the scatterplot view, the graph view, and the timeline view.



�

�

�

�

�

�

�

�

14.4. Modern Integrated Visualization Systems 409

Figure 14.15. An example of a monitor configuration used with Jigsaw. Since real estate is

critical, even this might be insufficient, and a display wall might be recommended.

window to preserve its state. It is often helpful to actually witness the views
as they update, in order to more easily see how they are changing. One may
find that it is necessary to use Jigsaw across four or more screens, as seen in
Figure 14.15, to harness the system’s full potential.

This tool is especially useful in data exploration involving large collec-
tions of data and information. Applications include military intelligence, law
enforcement, or journalism, among many others. It is important to point out
here that while this tool can help an analyst make sense of a large number
of documents, their entities, and the connections between them, it is not
a substitute for actually reading the documents. For example, it will help
an analyst determine which documents are important and need to be read,
saving the time of reading the entire document collection, which may not
be feasible, and the hassle of trying to keep all the facts and connections
straight.

14.4 Modern Integrated Visualization Systems

Tableau [344] is a commercial software package initially developed by Pat
Hanarahan and his students at Stanford. It is designed with more modern
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interactions to aid in data analysis. Tableau allows users to import data
from a wide variety of formats. It provides standard visualizations, such as
graphs, scatterplots, bar charts, and pie charts, as well as maps. Tableau
recognises data types such as geography, and automatically handles the first
steps in the generation of visualizations. It also supports the export of an-
notated presentation visualizations in PDF format and provides interactive
dashboards that automatically update from data sources, as well as web
publishing tools.

Figure 14.16 displays a map with merged data: gas field production
changes from 2004 to 2005, and the paths of hurricanes Rita and Katrina
colored by their strength. Hurricane Rita caused more damage and was
more symmetrical around its path, whereas Katrina’s damage was more to
its right, the surge side. Note the support for presentation visualization
(legend, text, annotation).

Figure 14.16. An example of linked displays and tables in Tableau with overlaid paths colored

by hurricane strengths. A great deal of attention has been paid to the interface

and perceptual issues.
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14.5 Toolkits

14.5.1 Prefuse

Prefuse [25, 156] is a toolkit for building visualization applications. It in-
cludes two components, one using Java and the other written in Action-
Script. The former provides a set of java interfaces and classes to help soft-
ware developers create stand-alone or web-based (Java applet) visualization
applications. The latter, Prefuse Flare, enables users to create visualizations
and animations for Adobe Flash Player. Prefuse Flare is a relatively new
component, whose alpha version was released in October 2007, while the
original Java-based toolkit was released in May 2006. (Prefuse is available
at its web site [25].) Prefuse can support multiple data structures, visual-
ization, and interaction techniques, as follows:

• table, graph and tree data structures;

• various layout, color, size and shape encodings, distortion and anima-
tions;

• common interactive, direct-manipulation operations;

• animation through a general activity scheduling mechanism;

• view transformations, including panning and zooming;

• dynamic queries for interactive filtering;

• integrated text search;

• a physical force simulation engine for dynamic layout and animation;

• multiple views, including “overview+detail” and “small multiple” dis-
plays;

• a built-in, SQL-like expression language for writing queries;

• the ability to issue SQL queries to databases and map query results
into Prefuse data structures;

• the ability to create custom processing, interaction, and rendering com-
ponents.

The structure of the Prefuse toolkit is based on the information visu-
alization reference model proposed by Ed Chi [60]. This model breaks up
the information visualization process into several discrete steps. Prefuse
implemented these steps as shown below:
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Data transformations. Raw data is transformed to construct data tables,
which are the internal representation of data. Note that data tables can
also represent tree or network data, as well as multivariate data, de-
spite the name. Prefuse can handle multiple file formats, such as CSV
(comma-separated values), tab-delimited, GraphML, and TreeML files.
GraphML and TreeML are two types of XML file formats to represent
graph and tree structure data.

Visual mappings. This step aims to create a visual abstraction, a data model
including visual features such as spatial layout, color, size, and shape.
Prefuse provides filtering, layout, color, shape, and size assignment,
distortion and animation for the construction of visual abstractions.

Visual transformations. This step performs the rendering and generates the
final views. One visual abstraction can correspond to multiple views
to support panning, zooming and “small multiple” displays.

Below are some important packages or classes in the Java-based Prefuse
toolkit:

• Packages data and data I/O—defining table, tree and graph data struc-
tures and reading or writing the physical files in various formats;

• Class visualization—creating the visual abstraction through adding the
data that is instanced via Class VisualItem;

• Class display—responsible for the final rendering;

• Package controls—providing some classes to process mouse and key-
board actions on the display to help developers easily create interac-
tions.

Several pictures from the Prefuse demo package or applications devel-
oped using Prefuse are shown below to convey some of the tool’s power.
Figure 14.17 shows an artificial data set to convey network relationships
among different people. Users can use the control panel on the right side
to adjust visualization parameters for different exploration tasks. Another
example is Data Mountain (see Figure 14.18), which displays thumbnails for
a number of objects [294]. Users can drag and drop these thumbnails to
visually manage the objects.

DocuBurst is an application developed based on Prefuse [69]. We present
it to show the extensibility of Prefuse in developing various types of infor-
mation visualization applications. Figure 14.19 uses a radial, space-filling
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Figure 14.17. An example of a graph generated with Prefuse.

Figure 14.18. Thumbnail view of a document collection using Prefuse.
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Figure 14.19. Examining keywords of a document and their relationships using Prefuse.

tree to represent the hyponymy (IS-A) relationship among the keywords in
a document. On the same level, the angular width of a word is proportional
to its number of occurrences in this document. At the same time, the nodes
having gold borders are the query result for keywords whose spelling starts
with “pl.”

14.5.2 The Visualization Toolkit

The Visualization Toolkit (VTK ) [211] is an open source toolkit for building
3D visualizations that include computer graphics, modeling, imaging, and
both scientific and information visualizations. It provides a number of UI
tools, interaction widgets, annotation support, and even supports parallel
computation. It is a written in C++, but has a number of wrappers available.

VTK adheres to the classic visualization (and graphics) pipelines. It
is based, like OpenDX and AVS, on the data-flow paradigm. Modules are
connected into a network, and each performs transformations on data as it
flows through the network. The fundamental data sets are polygonal data
and structured points, and both structured and unstructured grids. These
represent vertices, lines, polygons, and triangle strips (the fundamental prim-
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itives supported by graphics hardware of the 1990s), 2D and 3D images as
structured points, and grids for finite element analysis.

The programming style is similar to OpenGL. The toolkit consists of nu-
merous classes and is an extremely rich environment for programming, mod-
elling, and the development of 3D graphics-based applications. The toolkit
extends the power of OpenGL by providing higher-level functions and con-
trols for the display of 3D data. Whereas programming in OpenGL requires
direct dealing with the 3D points, programming with VTK entails dealing
with the higher-level structure and higher-level controls, thereby relieving
the programmer from low details and making application development more
rapid and less error prone. Figure 14.20 displays a VTK interface highlight-
ing the airflow over a delta aircraft using streamlines, and Figure 14.21 shows
a computed tomography (CT) scan from the Visible Woman data set, which
also includes full magnetic resonance imagery. An isosurface of the skin is
clipped with a sphere, uncovering the underlying bones. Volume rendering is
also possible (data from Bill Lorensen, while at General Electric Corporate
Research and Development).

Figure 14.20. Airflow streamlines over a delta aircraft. (Image from Kitware, http://www.vtk

.org/VTK/project/imagegallery.php.)
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Figure 14.21. A rendering of a section of the Visible Woman, combining outer skin and

bones from a CT scan. (Image from Kitware, http://www.vtk.org/VTK/project/

imagegallery.php.)

Examples of applications built by Kitware on top of VTK include

• ITK—an open source toolkit for image registration and segmentation;

• ParaView—an open source application for the analysis and visualiza-
tion of data sets using distributed computation;

• VolView—an application for interactive volume visualization.

Another toolkit for building visualizations is the InfoVis Toolkit [105]
(freeware).

14.5.3 Weave

Weave [266] is a modern web-based software visualization toolkit, open
source for nonprofits and public agencies, and developed by the Open In-
dicators Consortium for the analysis and visualization of socio-economic,
health, environmental and other indicator data. The Weave software can
be used with any data set that is stored in a server-based database. If
the data is in an excel spreadsheet or a CSV, tools exist to transform the
data from the client’s desktop to the server’s database. It is available at
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http://www.openindicators.org. Weave provides flexible geographic visual-
ization within web pages (see Figure 14.22). It supports a variety of visu-
alizations (including scatterplots, bar or pie charts, line graphs) and maps
with multiple jurisdictions (for example, neighborhoods, census tracts, mu-
nicipalities, voting districts, and watersheds). The software supports multi-
ple visualizations in a single browser web page simultaneously or on multiple
web pages. There are two main data sources: indicator data sets and shape
files both stored in a database and accessed via server queries. Each data
provider (i.e. an organization with their own data sets) has their own server
with security settings defined. Clients are then able to access this data across
the web from a single web application—i.e., a user could ask to look at both
Boston and Atlanta to compare the two (in this case it downloads Boston
data from Boston servers and Atlanta data from Atlanta servers).

Users can open data sets, view and interact with maps or other visual-
ization tools, collaborate with other users, and review or restart previous
sessions. Data that is downloaded is cached on the client-side in order to
provide (a) faster interactions after the initial download and (b) reduction
of bandwidth between client and server. There are three main technolo-
gies used to create the client interface: Adobe Flex, JavaScript, and Flex
SharedObjects.

Figure 14.22. Foreclosures (dots) and black population percentages (colors) in the Boston area,

generated with Weave.



�

�

�

�

�

�

�

�

418 14. Visualization Systems

The client interface includes visualization and data set navigation tools,
session history restoration and navigation, annotation, user preference set-
tings, and collaboration features (including awareness, private and public
spaces, and voice chatting). Annotations allow users to add their own com-
ments and interpretations to the visualization tools and states they create.
User preferences are persistent; any time the user logs in the preferences are
restored. Figure 14.22 shows one example map.

14.6 Related Readings

Several books on visualization contain descriptions of systems in current
use. Some, such as [70, 311, 349], describe a single package, while others,
including [333,346], have figures and descriptions from many systems.

14.7 Exercises

1. Examine the functionality of two visualization tools that focus on the
same type of data, one commercial and one public domain. How would
you characterize their major similarities and differences? Under what
conditions, and for what reasons, would you choose to use one over the
other (besides, of course, the cost)?

2. Search the web for a visualization tool not mentioned in this chapter.
Write a summary of the system in a style similar to those presented
here. Include links to appropriate web pages and published papers.
If you’d like, submit the resulting work to the book web site. Those
deemed accurate and well written will be posted for others to read.

3. Choose one of the visualization systems described in this chapter and
describe some possible applications for the system. You are encouraged
to use the web to identify instances of “real” applications, as well as
to use your imagination.

14.8 Projects

1. Download, install, and test at least one of the visualization systems
described in this chapter. You should attempt to import a data set
into the system from scratch, rather than using the ones provided with
the system.
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2. Download and install one of the toolkits described in this chapter. Fol-
low the guidelines to create a simple application, such as a scatterplot
or line graph, using the toolkit. Write a summary of your experience,
including the difficulty/ease of creating an application, and your sat-
isfaction level with the results.
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CHAPTER 15

Research Directions in
Visualization

Visualization is a sufficiently mature field that many groups of researchers
are dedicating time to contemplate and predict the future directions for it.
Many such research agendas have been published in recent years, including:

• Chris Johnson’s list of top problems in scientific visualization [178];

• Chaomei Chen’s list of top unsolved problems in information visual-
ization [58];

• MacEachren and Kraak’s report on research challenges in geovisual-
ization [241];

• the NVAC research and development agenda for visual analytics [71];

• the NIH/NSF visualization research challenges report [177];

• the Grand Challenge in Information Visualization panel [139].

In this chapter we will identify and elaborate upon some of the common
themes within these and other research agenda reports. Interested readers
are directed to the original reports for in-depth descriptions, as well as identi-
fication of research areas specific to particular branches of the ever-enlarging
field of visualization.

421



�

�

�

�

�

�

�

�

422 15. Research Directions in Visualization

15.1 Issues of Data

Many of the current and proposed future research activities are centered
on expanding the characteristics of data that can be effectively visualized.
Some of these are discussed here.

Scale. Perhaps the most frequently addressed problem dealing with data
is finding solutions to coping with ever-increasing sizes for data sets. For
scientific domains, both acquired and simulated data have been growing
in orders of magnitude, certainly outpacing Moore’s Law. While only a
few years ago researchers were focused on data sets of modest size (kilo-
bytes to a few megabytes), it is now common to be looking at problems
involving gigabytes and terabytes of data [320]. Solutions such as cluster-
ing, sampling, and abstraction are all being actively pursued in areas such
as graph visualization [1], genetic sequence analysis, and large scale flow
simulations [368].

Static versus dynamic. While most visualization techniques to date have been
developed with the assumption that data is static (e.g., in files or databases),
a growing interest is in the area of visual analysis of dynamic data [405].
An increasing number of streaming data sources are being studied in the
database and data mining communities, and efforts to perform visual anal-
ysis on this type of data are starting to emerge. The basic concept is that
the data is continually arriving, and has to be analyzed in real time, both
because of the urgency with which analysis must be performed, as well as
the fact that the volume of data precludes its permanent storage. Analysts
are interested not only in the values at a particular time period, but also in
how the data is changing.

Spatial versus nonspatial data. A growing number of application areas for visu-
alization include both spatial and nonspatial data, including many scientific
and engineering fields. To provide analysts with a powerful environment for
studying this data, several recent efforts have focused on the integration of
the spatial visualization techniques normally found in scientific visualization
with the nonspatial techniques that are common in information visualization.
The linkages between these distinct types of views is critical to successful
analysis [217].

Nominal versus ordinal. The graphical attributes to which we map data in our
visualizations, such as position, size, and color, are primarily quantitative in
nature, while it is quite common to have data that is not quantitative, such
as the name of a gene or the address of an employee. If this nominal data
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is to be used in the visualization, a mapping is needed. However, it is also
important to ensure that relationships derived from visual analysis are truly
part of the data, and not an artifact of the mapping. Some solutions include
selecting color schemes and plot symbols that do not impose a perceptual or-
dering; others attempt to assign a numeric mapping of the nominal variables
that preserves similarities and differences implied by the data [298]. For ex-
ample, in a data set containing statistics about cars, two cars with similar
characteristics in their attributes might have similar numbers assigned to
the name field.

Structured versus nonstructured. Data can be classified based on the degree
to which it follows a predictable structure. For example, tables of numbers
would be considered highly structured, while newspaper articles may be
regarded as unstructured. In between, we can have semi-structured data,
such as an email message that contains both a structured component (sender,
time, receiver) and an unstructured part (message body). Key research
problems include the extraction of useful information from the unstructured
components of data sets and using the structured components as methods
to index and organize the data records. Text analysis and visualization have
made great progress, but the research is still in its infancy.

Time. Time is a special variable (and attribute of data). Time in dynamic
data provides one view: a volume visualization over time deals with a phys-
ical representation, and a common interactive visualization uses time as a
control. Spatio-temporal databases and queries and the visualization of re-
sults are becoming prominent as more data is being made publicly available.
Time here can be handled just as in the volume visualization. But one can
do more. For example, in a data set involving education and health indica-
tor data, a useful question is how to identify similar patterns involving not
just the data, but time as well. This begs a key research question of how to
handle time as just another variable, and what are the ramifications.

Variable quality. While most visualization systems and techniques assume the
data is complete and reliable, in fact most sources of data do not match
these constraints. Often, there are missing fields in the data, often due to
acquisition problems (e.g., defective sensors, incomplete forms). The quality
of the data itself may also be problematic; out-of-date information can have
low certainty associated with it, inaccurate sensors may produce values with
significant variability, and manual entry of data can be error-prone. There is
a great need for visualization technology that can cope with this data quality
issue, not only in its visualization, but also in keeping the analyst informed,
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so that the quality information can be incorporated into the decision-making
process [301,408].

15.2 Issues of Cognition, Perception, and Reasoning

Many of the foundational concepts in data and information visualization
have their roots in our understanding of human perception, particularly in
aspects of selecting effective mappings of data to graphical attributes such
as color and size. Much less work, however, has built on our knowledge of
human cognition and reasoning processes, with the notable exception being
the Gestalt laws to better understand how visual grouping is performed.
Thus, a far-reaching research agenda for the visualization field must include
the study of how humans do problem solving with support from interactive
visual displays, and how we can leverage this knowledge to design even more
effective and powerful visual tools.

Part of this effort will be directed at raising the level at which visual tasks
are performed. For example, rather than using the visualization to identify
a cluster or trend, it might instead be focused on building a mental model of
the entire phenomenon being studied. While this task may be comprised of
several more primitive subtasks, the visualization tool will need to support
the combination and sequencing of these tasks to enable the analyst to cope
with the scale and complexity of the data and information being gathered
and generated. Tasks such as discovering associated patterns of change in
the data will involve not only visualization of the data, but also how the data
is changing and how those changes may be associated with other changes
taking place. These higher-level discoveries can then be used by the analyst
to form, confirm, or refute hypotheses, expand or correct mental models,
and provide confidence in decision-making processes [415].

Beyond decision making, we can also envision the expansion of visualiza-
tion in the process of human learning. Educational opportunities for data
and information visualization abound, but it is critical in the design of tools
to support education that the theories of how humans learn be components
of the design. People vary in the ways in which they learn most effectively:
concrete versus abstract, sequential versus random. Different visual tools
and mechanisms are likely to be needed to address these very different styles
of learning.

In both problem solving and learning activities, we can also imagine using
visualizations as a mechanism to expand and support the memory process,
which is critical to both activities. Providing visual representations of inter-
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mediate results or supporting evidence, as well as structuring these artifacts
on the screen, can help people remember facts and relationships in the same
way that writing notes to oneself can relieve the human memory system of
having to perform accurate recall. The extents to which visualization can
be applied to this have yet to be extensively studied and exploited.

15.3 Issues of System Design

One of the most crucial research challenges in developing visualization tools
is determining how best to integrate computational analysis with interac-
tive visual analysis. While many visualization systems support a modest
number of computational tools, such as clustering, statistical modeling, and
dimension reduction, and similarly many computational analysis systems
support some amount of visualization, such as visualizing the analysis re-
sults, there have been no systems developed to date that provide a truly
seamless integration of visual and computational techniques. Clearly, there
are many tasks for which human perception and cognition are the most ef-
fective means to a solution; however, there are likely comparable numbers
of tasks for which computational solutions are far superior. Indeed, in many
situations, one can easily imagine using computational methods to guide the
visual exploration, and vice versa. For example, one can use visual overviews
of data to decide on appropriate parameters to filtering and clustering al-
gorithms, after which the analyst could examine a resulting cluster to help
select a computational model that best fits the characteristics of the data
subset. Both visual and computational methods could then be used to as-
certain the goodness of fit for the model. Many such scenarios can be easily
envisioned.

Another key problem in visualization system design is the development
of powerful new interaction paradigms to support the user’s tasks. Many
researchers believe that existing modes of interaction during visual analysis
are ill-suited to the tasks being performed. This is likely due to the fact that
while advances in hardware and visualization techniques have been moving
by leaps and bounds, interaction methods have expanded at a much slower
pace. While exciting and novel interaction tools can be seen in the immersive
environment field, these and other types of interactions are either too low-
level or are not designed with a particular high-level task in mind. What
is needed is a fresh look at how users can interact with their data and
information to perform specific tasks, such as determining the underlying
phenomena or processes that are generating the data; understanding causal
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relationships; and designing, executing, and assessing “what if” scenarios.
While existing low-level interactions such as point-and-click and drag-and-
drop may be parts of the solution, there likely is much more needed to make
visual analysis more efficient and effective.

Another issue is that most visualization systems require an expert user.
Visualization in the last few years has made its appearance in daily news-
papers and television, and interactive visualization is common on the web.
These are minimally interactive and often very simple visualizations. Can
we develop ones that are engaging and easy to use? This is becoming critical
as we are encountering the era of the democratization of data.

Finally, we are still developing visualizations and visualization systems
based on experience, pragmatic research, and heuristics. We do not yet
have a science of visualization. There have been attempts at automating
the process: given data, automatically generate a visualization. It’s clear
that tasks need to be incorporated into the process. It’s just as clear that
evaluation and metrics can help solve this complex problem.

15.4 Issues of Evaluation

In the early days of visualization research, rigorous evaluation was rarely
performed; the assumption was that some visualization was better than no
visualization for many tasks, and that if a new technique were developed, it
was sufficient to simply place a couple of sets of images side by side and do a
qualitative judgement of the results. More recently, there have been a large
number of concerted efforts to incorporate a more formal evaluation process
into visualization research, not only to enable quantification of improvements
as they occur, but also to validate that visualization has measurable benefits
to analysis and decision making [57, 276]. While many strategies have been
developed and tested, there are many avenues of research towards improving
the overall process. Some unanswered questions include:

• How important are aesthetics in designing visualizations, and how can
they be measured?

• How can we use the understanding of human perceptual and cognitive
limitations to design and improve visualizations?

• How do we measure the benefits of visual analysis as compared to more
traditional computational analysis?
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• What quantitative and qualitative measures of usability are most im-
portant for different categories (novices versus experts) and domains
of users?

• How do we measure the information content, distortion, or loss in a
visualization and use this information to produce more accurate and
informative visualizations?

• What are the relative benefits of long, longitudinal studies with a small
number of users, versus limited tests with a large number of subjects?

• What mixture of domain knowledge and visualization knowledge is
needed to design and develop effective tools?

These and other aspects of evaluation will be a topic of discussion and re-
search within the field for many years to come. The numerous competitions,
including the VAST challenges, are a step in the right direction. The key
point to make is that evaluation is a necessary component in moving a field
from ad hoc methods to a real science, and we can learn from and build upon
the evaluation strategies used in many other fields, such as human-computer
interaction and sociology, to help validate the usefulness and effectiveness of
techniques.

15.5 Issues of Hardware

Whenever computer technology advances, the applications that employ this
technology must be reassessed to see how the advances can be leveraged.
For visualization, there are several technologies that can and will have an
impact.

Hand-held displays. Most people these days carry with them at least one form
of digital display, whether it be mobile phones, PDAs, portable games, or
mini-PCs. While most visualization systems have been designed for desktop
(or larger) displays, there are significant opportunities to deliver informa-
tion and data on these smaller devices. Examples of potential applications
abound. For maintenance of aircraft, ships, and even buildings, having de-
tailed presentations of wiring and plumbing diagrams, sensor output, and
access paths can greatly simplify a technician’s tasks. For crisis manage-
ment during an emergency, police, firefighters, medical personnel, and other
key players need real-time access to information presented in a clear, un-
ambiguous fashion. For those who monitor border crossings, rapid access to
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risk assessments, cargo manifests, and travel histories can help prevent entry
by unwelcome individuals and material. The key is to develop visual solu-
tions that make effective use of the limited display space and interactivity
options.

Display walls. At the other extreme, large-scale displays, often involving mul-
tiple panels stretching 10–30 feet in each direction, are becoming more and
more common, not only for control centers, but also for investigating large
data and information spaces. While directly porting desktop solutions to
these large displays is generally straightforward, it is not necessarily the
most effective use of the display space. A better solution would be to re-
design the visual analysis environment to arrange the displays of different
types and different views of information in a way that supports the analysis.
In this way, high-resolution displays can always be visible, rather than being
covered in a typical desktop solution, thus requiring viewers to just move
their head or shift their focus to see different views.

Immersive environments. Virtual and augmented reality systems have been
frequently used within the visualization field. Early efforts, such as the
virtual wind tunnel [42], enabled active, user-driven studies of the output
of computational fluid dynamics experiments. Virtual walk-throughs and
fly-throughs have been used in a diversity of fields, including architecture,
medicine, and aeronautics. A key problem with this technology is the need
to render the visualizations with minimal latency, which has spawned signif-
icant research in algorithm optimization. While the “killer application” for
virtual environments has yet to be discovered, it will undoubtedly require
significant visualization technology.

Graphical processing units. The development of special-purpose graphics hard-
ware has actually exceeded the growth in performance of general purpose
CPUs, primarily driven by the computer game industry. There is much ac-
tive research in the visualization community that focuses on harnessing this
computational horsepower [216, 341]. Due to the architecture of a typical
GPU, existing algorithms designed for CPUs do not, in general, port di-
rectly to the GPU, but require a nearly total redesign. However, as more
and more software and hardware engineers become versed in this program-
ming paradigm, it is likely we will see a growing use of this technology, not
only for graphics, but also for complex algorithms in general.

Interaction devices. Each new device for user interaction with the computer
opens up a wide range of possibilities for use in visualization. Voice/sound
input and output have been extensively studied, though they are rarely an
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integral component of a visualization system. Tactile feedback is another
area of great promise. Already, there have been efforts to train surgeons via
virtual surgery, using force-feedback devices to mimic the feel of using probes
and scalpels in surgical procedures [77]. Another avenue for development is
to examine how different controllers used in modern game consoles could
be employed to support visualization. The popular Wii input wand could
be used for specifying actions via gestures. Other devices, such as head
and eye trackers, may have significant potential in the visualization field.
Finally, interactive tables improve on the interactions with touch screens
that have been used successfully for kiosks, and may lead to larger, less tiring
environments. There are many opportunities for research on interaction
metaphors.

15.6 Issues of Applications

Many advances in the field of visualization have been driven by the needs of
a particular application domain. These advances are then often generalized
to be applicable to many other domains and problems. Thus, research issues
can be divided between those specific to a given domain and those involving
the extension of techniques into other domains.

Depth-based innovations. To develop truly useful visualization tools for a par-
ticular domain, it is very important for the visualization designer to under-
stand the domain and the tasks the domain specialist is trying to perform.
Unfortunately, it is often the case that visualization designers just focus on
the syntax or format of the data or information to be analyzed, which can
easily result in tools that are either not useful/understandable to the do-
main analyst, or that provide little advantage over existing techniques. In
a similar process, when domain experts attempt to design and develop vi-
sualization tools for their needs, they often produce tools with poor designs
and user interfaces; this is mainly because they are generally unaware of the
perceptual and cognitive issues involved in visualization design, as well as be-
ing unfamiliar with the range of different visualization techniques that have
been developed for other purposes. In contrast, many of the most successful
visualization systems have resulted from tight interactions between domain
and visualization specialists, focusing on real problems that affect progress in
a domain.

A key research challenge is thus to develop strategies to create effec-
tive collaborations between the two groups. Many professional meetings
and workshops have focused on this issue over the past decade, and much
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can be learned from the reports that have been produced [177]. This is
often difficult, due to issues of time (most active researchers have little
in the way of free time), distance (willing collaborators may be in dif-
ferent institutes, cities, states, or even countries), and institutional con-
straints (collaborations between different schools within a university may
be difficult to gain approval or support for). One of the keys to successful
collaborative development is to convince domain experts that new visual-
ization technology will improve their productivity, perhaps even allowing
them to discover insights into their data that would otherwise be impos-
sible to derive using existing technology. Thus the cost of analyzing the
problem domain, designing, implementing, and evaluating solutions, and
training the domain experts must be weighed against the potential bene-
fits of the new technology. To improve the chances of success, there are
many design considerations, such as ensuring that the technology being de-
veloped fits into the existing analysis environment; in general, people pre-
fer to use tools they know, so designing new tools that interact seamlessly
with existing tools can greatly improve the chances of acceptance within
the domain.

Breadth-based innovations. Another direction of research is to broaden the
number of applications in which data and information visualization can be
applied. Indeed, it is hard to imagine an area in which visualization would
not be applicable, as all areas of society are experiencing a glut of informa-
tion, while at the same time, display devices have become ubiquitous. In
many applications, visual information presentation is rapidly replacing much
of the textual communication, such as weather reports, stock market behav-
ior, health statistics, and so on. Daily schedules are often best captured in
a graphical presentation of an hourly or daily calendar. Graphs are used to
capture complex social networks, organizational charts, process flows, and
communication patterns. One key to successful research and development
in the broadening of the visualization field is to find the appropriate vi-
sual representations and interaction metaphors for new domains and tasks.
Another critical problem is the conversion of data and information into a
format that is amenable to existing visualization techniques. While many
tools now accept input from standard database tables and spreadsheet files,
much data and information is still stored either in proprietary formats or as
unstructured files. Concerted efforts are needed, both in the visualization of
unstructured data, as well as in automatic or semi-automatic conversion of
unstructured data into structured forms, to tap into these rich sources of new
visualization applications.
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15.7 Related Readings

The interested reader is directed to the list of reports given at the start of
this chapter for detailed descriptions of potential research directions for the
field.

15.8 Exercises

1. Think of three activities you perform on a daily or weekly basis that
you currently do without visualization, but that could potentially ben-
efit from the introduction of visual tools. Describe some ideas for dis-
playing the data or information and for interacting with the resulting
views.

2. Which area of graphics hardware development do you feel will have
the biggest impact on the field of visualization: display technology
(i.e., bigger screens, more pixels) or rendering technology (e.g., faster
GPUs)? Explain your answer.

3. Give an example of an unstructured data type, and describe what
aspects of the data could be visualized.

4. For at least three different types of data (e.g., spatial, multivariate,
relational), discuss the impact on typical visualization techniques if
the data is dynamic, rather than static.

5. Watch a weather report on television on two separate occasions, once
with only the sound, and the other time with only the visuals (no
text, either). Describe the quantitative and qualitative information
you got out of each report, including the strengths and weaknesses
of each technique. How much more information would need to be
in the visual presentation to equal the quantitative accuracy of the
spoken/written report? How much more information would need to be
in the spoken/written report to convey qualitative information seen in
the visual presentation? Suggest possible enhancements to each.

6. Choose an application area that currently or potentially uses visual-
ization, and search the web for a published research agenda or list of
major unsolved problems. Is visualization mentioned? If so, for what
tasks (i.e., exploration, confirmation, presentation)? Try to identify
potential uses that were not mentioned.
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7. Talk to a friend, colleague, or family member who you feel is an expert
in some area other than visualization. Ask them if and how visual-
ization plays a part in carrying out his or her work. Discuss some
potential new ways that person might use visualization. Who knows?
It may be the start of a beautiful collaboration!

8. What user interface issues come into play for visualization for the
masses?

15.9 Projects

1. Write a program that will generate a continuous set of numbers. For
example, you could start with a parametric equation and then either
randomly perturb the parameters or the values after they are gener-
ated. Now write a program that plots these points in real time (you
may need to slow down the generator by putting sleep() calls in). What
do you observe happening? Implement at least two distinct solutions
to the scale problem.

2. Take one of the visualization programs you wrote earlier in this course
and modify it so that it would work on a small display (e.g., 200x300
pixels). What design changes would be required? What functionality
would you need to make to enable effective use of the results? Imple-
ment and test some of these changes to see how well you anticipated
the effect of reduced scale.

3. Take one of the visualization programs you wrote earlier in this course
and modify it so that it would run on a GPU (this will likely involve
acquiring a book on GPU programming). Note that you may only be
able to perform a subset of the processing on the GPU. Compare the
performance with your CPU-based implementation.

4. Rewrite the scatterplot program for use by the elderly. Issues include
readability and ease of use. Test your results on someone over the age
of 70. Incorporate their feedback into a revised version of the program.
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APPENDIX A

History of Computer Graphics
and Visualization

Some of the key events and developments that have advanced the computer
graphics field are listed below. Students of data and information visualiza-
tion would be well served by gaining a better understanding of the history of
this field. Disclaimer: this history is by no means complete, and possibly has
some inaccuracies in it. The authors welcome contributions and corrections,
and we will maintain a “live” version of this document on the book’s web
site.

The 1960s:

• The term computer graphics term coined by William Fetter, Boeing
(1960).

• First computer-animated film (Two-Gyro Gravity-Gradient Attitude
Control System, by Edward Zajak, Bell Labs) (1961).

• First video game (Spacewar) developed by Steve Russell at MIT (1961).

• Sketchpad, by Ivan Sutherland, MIT—first extensive interactive draw-
ing program (1963).

• First computer model of a human figure, by William Fetter, Boeing,
for use in the study of cockpit design (1964).

• First computer animation language (BEFLIX), by Ken Knowlton, Bell
Labs (1965).

• Jack Bresenham develops efficient algorithm to scan convert lines (1965).
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434 A. History of Computer Graphics and Visualization

• First computer-generated art show, Stuttgart (1965).

• Ivan Sutherland creates first head-mounted display (1966).

• Ralph Baer develops first home video game (Odyssey) that allowed
users to move points around a screen (1966).

• Scan-line hidden surface removal algorithm developed by Wylie, Rom-
ney, Evans, and Erdahl (1967).

• Jacques Bertin’s Semiologie Graphique is published (1967).

• Ray tracing invented by Appel (1968).

• First frame buffer built (three bits), at Bell Labs (1969).

• Area subdivision hidden surface removal algorithm developed by Warnock
(1969).

The 1970s:

• Intensity interpolated shading developed by Gouraud (1971).

• Goldstein and Nagel perform first ray tracing using Boolean set oper-
ations (the basis of constructive solid geometry) (1971).

• First 8-bit frame buffer (with color map) built by Richard Shoup, Xerox
PARC (1972). Evans and Sutherland started marketing frame buffers
in 1973–74, with first ones sold to NYIT.

• Depth-sorting hidden surface removal algorithm developed by Newell,
Newell, and Sancha (1972).

• Westworld debuts—first significant entertainment film that employed
computer animation (1973).

• Herman Chernoff introduces the use of cartoon faces to convey multi-
variate data (1973).

• Ed Catmull pioneers texture mapping on curved surfaces (1974).

• Sutherland and Hodgman develop a polygon clipping algorithm (1974).

• PRIM-9, the first interactive visualization system for visual data anal-
ysis, is presented by Fishkiller, Friedman, and Tukey (1974).

• Phong Bui-Tuong develops the specular illumination model and normal
interpolation shading (1975).
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• Scatterplot Matrix introduced by John Hartigan (1975).

• Jim Blinn introduces environmental mapping (1976).

• Frank Crow develops solutions to the aliasing problem (1977).

• Jack Bresenham develops an efficient algorithm to scan convert circles
(1977).

• Jim Blinn introduces bump mapping (1978).

• Cyrus and Beck develop a parametric line clipping algorithm (1978).

• Linked brushing invented by Carol Newton (1978).

• First synthesis of rendering transparent surfaces, by Kay and Green-
berg (1979).

• Herman and Liu demonstrate volume rendering on tomographic data
(1979).

The 1980s:

• Turner Whitted creates a general ray tracing paradigm that incorpo-
rates reflection, refraction, antialiasing, and shadows (1980).

• Fisheye lens developed by George Furnas (1981).

• TRON released by Disney films, containing 15 minutes and 235 scenes
of computer-generated images. Companies involved were MAGI, Triple
I, Digital Effects, and Robert Abel and Associates (1982).

• Octrees introduced as a mechanism for geometric modeling by Meager
(1982).

• Silicon Graphics is founded by James Clark (1982).

• James Blinn wins first SIGGRAPH Computer Graphics Achievement
Award (1983).

• Particle systems introduced by William Reeves (1983).

• Radiosity introduced by Goral, Torrance, Greenberg, and Battaile
(1984).

• Liang and Barsky develop an efficient clipping algorithm for rectilinear
clipping regions (1984).
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• Grand Tour for exploring multivariate data invented by Daniel Asimov
(1985).

• Parallel Coordinates introduced by Al Inselberg (1985).

• Pixar is bought from Lucasfilm by Steve Jobs (1986).

• Marching Cubes algorithm published by Lorensen and Cline (1987).

• Tin Toy wins Academy Award for best animated short film (1989).

The 1990s:

• First IEEE Visualization Conference (1990).

• Hanrahan and Lawson introduce Renderman (1990).

• Treemaps introduced by Ben Shneiderman (1991).

• IBM releases Visualization Data Explorer, later to become OpenDX
(1991).

• Advanced Visual Systems releases AVS (1991).

• Silicon Graphics, Inc., release the OpenGL specifications (1992).

• First CAVE virtual reality environment presented at SIGGRAPH by
the University of Illinois (1992).

• Doom and Myst released (1993).

• Table Lens introduced by Ramesh Rao and Stuart Card (1994).

• XmdvTool released to the public domain (1994).

• Keim introduces pixel-oriented techniques in VisDB (1994).

• First Information Visualization Conference (1995).

• Buena Vista Pictures releases Toy Story, the first full length, computer
generated feature film (1995).

• First generation GPUs released—ATI Rage, Nvidia TNT2, and 3Dfx
Voodoo3 (1996).

• Quake released (1996).

• Founding of Spotfire, Inc. (1996); acquired by TIBCO in 2007.
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• Second generation GPUs released—NVidia GeForce 256, ATI Radeon
7500, and S3 Savage3D (1998).

• Alias Maya released (1998).

• Pixar’s Geri’s Game wins Academy Award for animated short film
(1998).

• Star Wars Episode I: The Phantom Menace is released, containing 68
digital characters (including Jar Jar Binks) (1999).

The 2000s:

• Third generation GPUs released—Nvidia GeForce 256, ATI Radeon
8500, and Microsoft Xbox (2001).

• Fourth generation GPUs released—Nvidia GeForce FX and ATI Radeon
9700 (2003).

• Founding of Tableau Software, Inc. (2003).

• Thomas and Cook publish Illuminating the Path: Research and Devel-
opment Agenda Visual Analytics (2005).

• First Visual Analytics Science and Technology Symposium (2006).
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APPENDIX B

Example Data Sets

In this book, we use a variety of data sets to help explain techniques and
illustrate design principles, all available from the book’s web site (http://
www.idvbook.com/). By using data from a wide range of disciplines, we
hope to convey to the reader exactly how widespread the applications for
visualization are; indeed, many innovations in the field have resulted from
the exploration of ways to visualize data in new fields. It also is our expe-
rience that visualization specialists can find roles for themselves in virtually
any domain, which enables us to expand our understanding of new disci-
plines while making a significant contribution to the advancement of both
the visualization field and the application domain area.

One of the most common roadblocks to visualizing data is converting files
from their original format (usually dependent on the tools used to acquire
the data) to one that is acceptable to the visualization tool you wish to
use. Thus, by providing a number of sample data sets, along with detailed
descriptions of their formats, we hope to facilitate users in this process.
All data sets used in this textbook can be found at the book’s web site,
along with links to other data repositories and sites containing very detailed
descriptions and software for different popular data formats.

The Iris Data Set

The Iris data set, a small, well-understood and known data set, consists of
the measurements of four attributes of 150 iris flowers from three types of
irises. The typical task for the Iris data set is to classify the type of iris based
on the measurements. It is one of the most analyzed data sets in statistics,
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440 B. Example Data Sets

data mining, and multivariate visualization. It was first published by R. A.
Fisher in 1936 [111] and is widely available (our copy came from StatLib at
CMU (http://lib.stat.cmu.edu)). The file is in CSV format, which can be
imported to Excel and other programs. The data dimensions are as follows:

1. sepal length in cm;

2. sepal width in cm;

3. petal length in cm;

4. petal width in cm;

5. class:

• Iris Setosa

• Iris Versicolour

• Iris Virginica

The Detroit Data Set

This is a small data set dealing with homicide rates in Detroit between the
years 1961 and 1973. The goal should be to try to find the variables that best
predict the homicide rate. The original data were collected by J.C. Fisher
and used in his paper [112]. The copy we distribute is also from StatLib at
CMU and is in ASCII format. There is one record per year.

The data dimensions are as follows:

• FTP—Full-time police per 100,000 population;

• UEMP—% unemployed in the population;

• MAN—number of manufacturing workers in thousands;

• LIC—Number of handgun licences per 100,000 population;

• GR—Number of handgun registrations per 100,000 population;

• CLEAR—% homicides cleared by arrests;

• WM—Number of white males in the population;

• NMAN—Number of non-manufacturing workers in thousands;

• GOV—Number of government workers in thousands;
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• HE—Average hourly earnings;

• WE—Average weekly earnings;

• HOM—Number of homicides per 100,000 of population;

• ACC—Death rate in accidents per 100,000 population;

• ASR—Number of assaults per 100,000 population.

The Breakfast Cereal Data Set

This data set contains nutritional information for 77 different breakfast ce-
reals. It was used for the 1993 Statistical Graphics Exposition as a challenge
data set. We retrieved this data from StatLib at CMU. The data is from the
nutritional labels and is in CSV format. The variables are:

• Cereal name;

• manufacturer (e.g.,Kellogg’s);

• type (cold/hot);

• calories (number);

• protein (g);

• fat (g);

• sodium (mg);

• dietary fiber (g);

• complex carbohydrates (g);

• sugars (g);

• display shelf (1, 2, or 3, counting from the floor);

• potassium (mg);

• vitamins and minerals (0, 25, or 100, respectively);

• weight (in ounces) of one serving (serving size);

• cups per serving.

Manufacturers are represented by their first initial: A=American Home
Food Products, G=General Mills, K=Kelloggs, N=Nabisco, P=Post, Q=Quaker
Oats, R=Ralston Purina.
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The CT Head Data Set

This data set consists of a 113-slice MRI data set of a CT study of a cadaver
head. Slices are stored in individual files as a 256 × 256 binary array (no
header). Format is 16-bit integers (Mac ordering)—two consecutive bytes
make up one binary integer. Data was acquired using a General Electric CT
Scanner and provided courtesy of North Carolina Memorial Hospital. The
data was acquired from http://graphics.stanford.edu/data/voldata/.

The UVW Data Set

This is a 3D vector data set generated via a computational fluid dynamics
simulator. The data is in ASCII format and represents one time slice of
unsteady velocity in a turbulent channel flow. After a 2 line header, the rows
of the file consist of 6 dimensions—x, y, z, u, v, and w. The dimensions are
96 by 65 by 48. The data set was provided by Drs. Jiacai Lu and Gretar
Tryggvason, ME Department, Worcester Polytechnic Institute. Note, there
is roughly a 20:1:1 ratio between u, v, and w.

The Dow Jones Industrial Average Data Set

This is a time-series data set containing more than 100 years of daily av-
erages for the Dow Jones. The source is http://www.analyzeindices.com/
dow-jones-history.shtml, but it can also be found on StatLib. The format is
ASCII text, with each line being of the form YYMMDD, closing value.

The Colorado Elevation Data Set

This is an array of elevations in Colorado. The data is included in the
distribution of OpenDX (http://www.opendx.org/). The format is a binary
file with a 268-byte header followed by a 400 by 400 array of 1-byte elevations.

The City-Temperature Data Set

This is an ASCII file containing the average January temperatures for a
number of U.S. cities. It consists of the city name and state, the average
temperature, and the longitude and latitude. It is in Excel format.
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APPENDIX C

Sample Programs

Many different languages and programming environments can be used to de-
sign visualizations. Some, such as AVS and OpenDX, use a visual program-
ming structure that allows users to construct programs via point-and-click.
Other languages, such as Java and C++, have bindings to different graph-
ics libraries (2D and 3D), that allow you to build significant applications,
though the programmer needs a fair amount of programming experience to
accomplish this. In between are languages such as Processing that try to
hide some of the low level details of the programming language, allowing
you to rapidly construct nontrivial visualizations. In this appendix, we show
some examples of such programs. Additional code is available on the book’s
web site.

A Processing Program for Terrain Visualization

/**

* TopoSurface - by Matt Ward

* This program reads in a file of elevation data and displays

* a rubber sheet view. Interactions supported include zooming,

* panning, and rotation. Panning is via mouse motions, while

* zooming and rotation are keyboard clicks.

*/

int[][] distances = new int[400][400]; // buffer for elevation data

int shiftX, shiftY; // translation amounts

float angleX, angleY, angleZ; // rotation amounts

int camera_distance; // zooming amount

void setup() {

size(400,400, P3D); // elevation data is 400 by 400
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444 C. Sample Programs

shiftX = width/2; // center the initial translation

shiftY = height/2;

angleX = 0;

angleY = 0;

angleZ = 0;

camera_distance = 500;

// open a file and read its binary data

byte b[] = loadBytes("colorado_elev.vit");

// skip 268 byte header and convert bytes to ints

for(int i = 0; i < 400; i++)

for(int j = 0;j < 400; j++)

distances[i][j] = b[268 + i*400 + j] & 0xff;

}

void draw() {

background(0);

lights();

// set camera to look at middle of data

camera(200, 200, camera_distance,

200, 200, 0,

0.0, 1.0, 0.0);

// interpret left mouse clicks as translates

if(mousePressed && mouseButton == LEFT) {

shiftX = mouseX - width/2;

shiftY = mouseY - height/2;

}

translate(shiftX, shiftY);

// now perform all rotations

rotateY(angleY);

rotateX(angleX);

rotateZ(angleZ);

// don’t draw edges, set fill to white, and draw the surface

noStroke();

fill(255, 255, 255);

drawSurface(distances);

}

// handle all keystroke events for zoom and rotate (fixed amounts)

void keyPressed() {

if(key == ’-’) camera_distance += 100;

else if (key == ’+’) camera_distance -= 100;

else if(key == ’x’) angleX += .25;

else if(key == ’X’) angleX -= .25;

else if(key == ’y’) angleY += .25;

else if(key == ’Y’) angleY -= .25;
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else if(key == ’z’) angleZ += .25;

else if(key == ’Z’) angleZ -= .25;

}

// to draw the surface, make a bunch of triangle strips

void drawSurface(int distances[][]) {

int x = 1; // x and y are the distances between adjacent data points

int y = 1;

float px = -width/2, py = -height/2; // we want things centered on origin

float pts = 399; // the number of triangles in a strip

for(int j = 0;j < pts;j++) {

// create a triangle strip for each row in the data

beginShape(TRIANGLE_STRIP);

// first vertices are along edge

vertex(px,py, (float)distances[j][0]);

vertex(px,py+y, (float)distances[j+1][0]);

// for rest of vertices, alternate between 2 rows

for (int i = 0; i < pts; i++) {

px = px + x;

vertex(px, py, (float)distances[j][i+1]);

vertex(px, py+y, (float)distances[j+1][i+1]);

}

endShape();

// shift row and reset x to edge

py = py + y;

px = -width/2;

}

}

A Processing Program to View Slices of Flow Data

/**

* FlowSlicer - visualizing 3D flow data. Written by Matt Ward

*

* Loads the file uvw.dat, which is an ascii file with about 400K

* 3D vectors. The format is [x y z u v w] in floating point.

* The output is an animation of the slices on a uniform grid

* with 2 of the 3 vector components creating a line in the

* direction of the vector.

*/

String[] lines; // lines of the input data

float[][][] u, v, w; // storage for the 3D vectors

int slice = 0; // slice of the volume being visualized
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void setup() {

size(800, 800);

background(0);

stroke(255);

frameRate(1); // put a little space between frams

lines = loadStrings("uvw.dat"); // data set is hard coded

u = new float[96][65][48]; // as are the dimensions!

v = new float[96][65][48];

w = new float[96][65][48];

int index = 2; // first 2 lines are metadata

for(int i = 0; i < 48; i++)

for(int j = 0;j < 65;j++)

for(int k = 0;k < 96; k++) {

String[] pieces = split(lines[index], ’ ’);

// break line into tokens

u[k][j][i] = float(pieces[3]) * 5.;

// note dx/u is scaled different from others

v[k][j][i] = float(pieces[4]) * 100.;

w[k][j][i] = float(pieces[5]) * 100.;

index++; // get the next line of data

}

}

// draw the current slice

void draw() {

int sx, sy, ex, ey;

background(0); // clear the display first

for(int j = 0;j < 65;j++)

for(int k = 0; k < 96; k++) {

sx = j * 8; // I space the points out so vectors don’t overlap

sy = k * 8;

ex = sx + (int)u[k][j][slice];

// endpoint is based on 2 vector components

ey = sy + (int)w[k][j][slice];

line(sx, sy, ex, ey);

}

slice++; // increment the slice - if the last one, start over

if(slice >= 48) {

slice = 0;

}

}
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A Java Program to View Slices of Flow Data

--------------FlowView.java-------------------------------------------

/* Program to view uvw.dat, a 3D flow data set. Written by Zhenyu Guo.

* Uses 2 classes - FlowView and Voxel (programs similar

* to VolumeSlicer).

* Note - it takes a little while to read in data.

*/

import java.util.*;

import java.awt.*;

import java.awt.event.*;

import java.awt.image.MemoryImageSource;

import javax.swing.*;

import java.io.*;

import javax.swing.event.ChangeEvent;

import javax.swing.event.ChangeListener;

public class FlowView {

private JFrame frm;

private JPanel p1;

JLabel jlabel;

JSlider jslider;

JComboBox jcb;

SlicingFlowData svd;

// set volume size - Note this is fixed

int l = 96;

int h = 65;

int w = 48;

// set up UI

public FlowView() {

frm = new JFrame("Flow Dataset Visualization");

Container c = frm.getContentPane();

c.setLayout(null);

p1 = new JPanel();

svd = new SlicingFlowData();

svd.setBackground(Color.WHITE);

svd.orientation = 0;
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svd.setBounds(0,0,1400,900);

c.add(p1);

c.add(svd);

jslider = new JSlider(0, 100, 0);

jslider.setMaximum(w-1);

jslider.addChangeListener(listener);

jlabel = new JLabel("0");

jcb = new JComboBox();

jcb.addItem("aligned with x");

jcb.addItem("aligned with y");

jcb.addItem("aligned with z");

jcb.addActionListener(new action());

p1.add(jcb);

p1.add(jslider);

p1.add(jlabel);

p1.setBounds(100,900,200,100);

frm.setSize(1450, 1050);

frm.setLocation(0, 0);

frm.setVisible(true);

frm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}

// respond to slider changes

ChangeListener listener = new ChangeListener() {

public void stateChanged(ChangeEvent e) {

if (e.getSource() == jslider) {

int i = jslider.getValue();

jlabel.setText(String.valueOf(i));

svd.pos = i;

Graphics g = svd.getGraphics();

svd.paintComponent(g);

}

}

};

// respond to orientation selection

class action implements ActionListener {

public void actionPerformed(ActionEvent e) {

// decide which button is pressed and execute operation

if (e.getSource() == jcb){

int i = jcb.getSelectedIndex();

svd.orientation = i;

jlabel.setText("0");

jslider.setValue(0);
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if(i==0){

jslider.setMaximum(w - 1);

}else if (i==1){

jslider.setMaximum(h - 1);

}else if(i==2){

jslider.setMaximum(l - 1);

}

Graphics g = svd.getGraphics();

svd.paintComponent(g);

}

}

}

// Start it up

public static void main(String[] args) {

try {

new MainFrame();

} catch (Exception e) {

e.printStackTrace();

}

}

}

class SlicingFlowData extends JPanel {

Voxel [][][] dataset; // each voxel has a 3D vector in it

Color [] ColorMap; // a discrete ramp that is then interpolated

// set volume size

int l = 96;

int h = 65;

int w = 48;

// three orientations for a cut slice

// acceptable value: 0, 1 or 2

int orientation;

// the cut slice position

int pos = 0;

double minMagnitude = 10000000;

double maxMagnitude = -10000;

SlicingFlowData() {

dataset = new Voxel [l][h][w];

Read();
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initColorMap();

}

// A yellow-to-blue discrete ramp

void initColorMap(){

ColorMap = new Color[9];

ColorMap[0] = new Color(255, 255, 217);

ColorMap[1] = new Color(237, 248, 177);

ColorMap[2] = new Color(199, 233, 180);

ColorMap[3] = new Color(127, 205, 187);

ColorMap[4] = new Color(65, 182, 196);

ColorMap[5] = new Color(29, 145, 192);

ColorMap[6] = new Color(34, 94, 168);

ColorMap[7] = new Color(37, 52, 148);

ColorMap[8] = new Color(8, 29, 88);

}

// how to paint for visualization

public void paintComponent(Graphics g) {

clear(g);

Graphics2D g2d = (Graphics2D) g;

int pixDis = 14; // set separation between base points of vectors

int maxArrowLength = 12; // set maximum length of arrow

int startX = 10; // set the position for the initial arrow

int startY = 10;

int r = 1; // half the radius of the circle at the head of the arrow

BasicStroke bs0 = (BasicStroke) g2d.getStroke();

BasicStroke bs = new BasicStroke(2.5f);

g2d.setStroke(bs);

if (orientation == 0) {

// find min and max sizes in this projection

double min = 100000;

double max = -100000;

for (int i = 0; i < l; i++) {

for (int j = 0; j < h; j++) {

Voxel v = dataset[i][j][pos];

double m = v.orientation_x*v.orientation_x

+ v.orientation_y*v.orientation_y;

if(m<min){

min = m;

}
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if(m>max){

max = m;

}

}

}

min = Math.sqrt(min);

max = Math.sqrt(max);

// compute position, dimensions, and color for each vector

for (int i = 0; i < l; i++) {

for (int j = 0; j < h; j++) {

int x = startX + i*pixDis;

int y = startY + j*pixDis;

Voxel v = dataset[i][j][pos];

double m = Math.sqrt(v.orientation_x*v.orientation_x

+ v.orientation_y*v.orientation_y);

int deltaX = (int)(v.orientation_x * (double)maxArrowLength

* ((m-min)/(max-min)));

int deltaY = (int)(v.orientation_y * (double)maxArrowLength

* ((m-min)/(max-min)));

g2d.setColor(getColor(v.magnitude));

// draw the vector with a filled circle at the head

g2d.drawLine(x, y, x + deltaX, y + deltaY);

g2d.drawOval(x + deltaX-r, y + deltaY-r, 2*r, 2*r);

}

}

// do the same for the other orientations

} else if (orientation == 1) {

double min = 100000;

double max = -100000;

for (int i = 0; i < l; i++) {

for (int j = 0; j < w; j++) {

Voxel v = dataset[i][pos][j];

double m = v.orientation_x*v.orientation_x + v.orientation_z

* v.orientation_z;

if(m<min){

min = m;

}

if(m>max){

max = m;

}

}

}

min = Math.sqrt(min);

max = Math.sqrt(max);

for (int i = 0; i < l; i++) {

for (int j = 0; j < w; j++) {
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int x = startX + i*pixDis;

int y = startY + j*pixDis;

Voxel v = dataset[i][pos][j];

double m = Math.sqrt(v.orientation_x*v.orientation_x

+ v.orientation_z*v.orientation_z);

int deltaX = (int)(v.orientation_x * (double)maxArrowLength

* ((m-min)/(max-min)));

int deltaY = (int)(v.orientation_z * (double)maxArrowLength

* ((m-min)/(max-min)));

g2d.setColor(getColor(v.magnitude));

g2d.drawLine(x, y, x + deltaX, y + deltaY);

g2d.drawOval(x + deltaX -r, y + deltaY-r, 2*r, 2*r);

}

}

}else if (orientation == 2) {

double min = 100000;

double max = -100000;

for (int i = 0; i < h; i++) {

for (int j = 0; j < w; j++) {

Voxel v = dataset[pos][i][j];

double m = v.orientation_y*v.orientation_y

+ v.orientation_z*v.orientation_z;

if(m<min){

min = m;

}

if(m>max){

max = m;

}

}

}

min = Math.sqrt(min);

max = Math.sqrt(max);

for (int i = 0; i < h; i++) {

for (int j = 0; j < w; j++) {

int x = startX + i*pixDis;

int y = startY + j*pixDis;

Voxel v = dataset[pos][i][j];

double m = Math.sqrt(v.orientation_y*v.orientation_y

+ v.orientation_z*v.orientation_z);

int deltaX = (int)(v.orientation_y * (double)maxArrowLength

* ((m-min)/(max-min)));

int deltaY = (int)(v.orientation_z * (double)maxArrowLength

* ((m-min)/(max-min)));

g2d.setColor(getColor(v.magnitude));

g2d.drawLine(x, y, x + deltaX, y + deltaY);

g2d.drawOval(x + deltaX-r, y + deltaY-r, 2*r, 2*r);

}
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}

}

g2d.setStroke(bs0);

}

// The color is a yellow-to-blue ramp, interpolated from a discrete

// set of 8 colors

Color getColor(double magnitude){

double colorRange = this.maxMagnitude - this.minMagnitude;

// compute the index into the discrete ramp

double v = 8.0 * (magnitude - this.minMagnitude) / colorRange;

int lowColorIdx = (int)v;

// if this is the maximum magnitude, just return highest color

if(lowColorIdx==8){

return this.ColorMap[lowColorIdx];

}

// need to interpolate between this color and next

int highColorIdx = lowColorIdx + 1;

// interpolation to get a color

double r = (v-(double)lowColorIdx)*

((double)this.ColorMap[highColorIdx].getRed()-

(double)this.ColorMap[lowColorIdx].getRed()) +

(double)this.ColorMap[lowColorIdx].getRed();

double g = (v-(double)lowColorIdx)*

((double)this.ColorMap[highColorIdx].getGreen()-

(double)this.ColorMap[lowColorIdx].getGreen()) +

(double)this.ColorMap[lowColorIdx].getGreen();

double b = (v-(double)lowColorIdx)*

((double)this.ColorMap[highColorIdx].getBlue()-

(double)this.ColorMap[lowColorIdx].getBlue()) +

(double)this.ColorMap[lowColorIdx].getBlue();

return new Color((int)r, (int)g, (int)b);

}

// input the data and compute min and max magnitudes

void Read() {

String s = "uvw.dat"; // the input filename

try {

File f = new File(s);

System.out.println("reading: " + s);

if (!f.exists()) {

System.out.println(s + "doesn’t exist");

}

FileInputStream inputStream = new FileInputStream(f);
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BufferedReader br = new BufferedReader(new InputStreamReader(inputStream));

String [] line; // one line of input file

// pass the first two lines - these are header information

br.readLine();

br.readLine();

// read a single file - note we scale v and w, as otherwise u dominates

for(int k=0; k<w; k++){

for(int j=0; j<h; j++){

for(int i=0; i<l; i++){

line = br.readLine().split(" ");

Voxel curReadingVoxel = new Voxel(Double.parseDouble(line[0]),

Double.parseDouble(line[1]), Double.parseDouble(line[2]),

Double.parseDouble(line[3]), Double.parseDouble(line[4])* 20.,

Double.parseDouble(line[5]) * 20.);

dataset[i][j][k] = curReadingVoxel;

}

}

}

//get max and min magnitude

for(int k=0; k<w; k++){

for(int j=0; j<h; j++){

for(int i=0; i<l; i++){

double mag = dataset[i][j][k].getMagnitude();

if(mag<minMagnitude){

minMagnitude = mag;

}

if(mag>maxMagnitude){

maxMagnitude = mag;

}

}

}

}

} catch (Exception e) {

e.printStackTrace();

}

}

void clear(Graphics g) {

super.paintComponent(g);

}

}
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--------------Voxel.java-------------------------------

// A class to hold a 3D vector from a flow field.

// Written by Zhenyu Guo.

public class Voxel {

double pos_x, pos_y, pos_z;

double magnitude;

double orientation_x, orientation_y, orientation_z;

Voxel(){

}

Voxel(double _pos_x, double _pos_y, double _pos_z, double u,

double v, double w){

this.pos_x = _pos_x;

this.pos_y = _pos_y;

this.pos_z = _pos_z;

this.magnitude = Math.sqrt(u*u + v*v + w*w);

this.orientation_x = u/this.magnitude;

this.orientation_y = v/this.magnitude;

this.orientation_z = w/this.magnitude;

}

double getMagnitude(){

return this.magnitude;

}

}
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