
www.allitebooks.com

http://www.allitebooks.org

Copyright

Introduction to Python® Programming and Developing GUI Applications with PyQT
B.M. Harwani

Publisher and General Manager, Course Technology PTR:
Stacy L. Hiquet

Associate Director of Marketing:
Sarah Panella

Manager of Editorial Services:
Heather Talbot

Marketing Manager: Mark Hughes

Senior Acquisitions Editor:
Mitzi Koontz

Project Editor: Kim Benbow

Technical Reviewer: Keith Davenport

Copy Editor: Gene Redding

Interior Layout: MPS Limited, a Macmillan Company

Cover Designer: Mike Tanamachi

Indexer: BIM Indexing Services

Proofreader: Brad Crawford

© 2012 Course Technology, a part of Cengage Learning.

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be
reproduced, transmitted, stored, or used in any form or by any means graphic, electronic,
or mechanical, including but not limited to photocopying, recording, scanning, digitizing,
taping, Web distribution, information networks, or information storage and retrieval
systems, except as permitted under Section 107 or 108 of the 1976 United States
Copyright Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us
at

Cengage Learning Customer & Sales Support, 1-800-
354-9706

www.allitebooks.com

http://www.allitebooks.org

For permission to use material from this text or product,
submit all requests online at

www.cengage.com/permissions
Further permissions questions can be emailed to

permissionrequest@cengage.com

Python and the Python logos are trademarks or registered trademarks of the Python
Software Foundation.

All other trademarks are the property of their respective owners.

All images © Cengage Learning unless otherwise noted.

Library of Congress Control Number: 2011936040

ISBN-13: 978-1-4354-6097-3

ISBN-10: 1-4354-6097-9

eISBN-10: 1-4354-6098-7

Course Technology, a part of Cengage Learning
20 Channel Center Street
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions with office
locations around the globe, including Singapore, the United Kingdom, Australia, Mexico,
Brazil, and Japan. Locate your local office at: international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

For your lifelong learning solutions, visit courseptr.com

Visit our corporate website at cengage.com

Printed in the United States of America
1 2 3 4 5 6 7 13 12 11

Dedication

This book is dedicated to my mother, Mrs. Nita Harwani, and American inventor
and entrepreneur, the late Steve Jobs.

My mother is next to God for me, and whatever I am today is because of the
moral values taught by her.

Steve Jobs, co-founder, chairman, and chief executive officer of Apple Inc. has
been and will always be a great inspiration for me.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgments

I owe a debt of gratitude to Mitzi Koontz, Senior Acquisitions Editor at
Course Technology, Cengage Learning for her initial acceptance and giving
me an opportunity to create this work. I am highly grateful to the whole
team at Cengage for their constant cooperation and contribution to create
this book.

I must thank Keith Davenport, the technical editor for his excellent,
detailed review of the work and the many helpful comments and
suggestions he made. He offered a significant amount of feedback that
helped to improve the book’s content. He played a vital role in improving
its structure and the quality of information.

Special thanks to Gene Redding, the copy editor for first class structural
and language editing. I appreciate his efforts in enhancing the contents of
the book and giving it a polished look.

Big and ongoing thanks to Kim Benbow, my project editor, for doing a
great job and her sincere efforts to get the book published on time.

A great big thank you goes to the production staff who worked tirelessly to
produce this book. I enjoyed working with each of you.

I am also thankful to my family (my small world): Anushka (my wife) and
my two little darlings, Chirag and Naman, for always inspiring me and
giving me the courage to work harder.

I should not forget to thank my dear students who have been good
teachers for me, as they help me to understand the basic problems they
face with a subject, which enables me to directly teach those topics. Their
endlessly interesting queries help me to write books with a practical
approach.

www.allitebooks.com

http://www.allitebooks.org

About the Author

B.M. Harwani is founder and owner of Microchip Computer Education
(MCE), based in Ajmer, India, which provides computer education on all
programming and web developing platforms. Harwani graduated with a BE
in computer engineering from the University of Pune, and also has a C
Level (master’s degree) in computer technology from DOEACC,
Government of India. Being involved in the teaching field for over 16 years,
he has developed the art of explaining even the most complicated technical
topics in a straightforward and easily understandable fashion. He has
written several books on various subjects that include JSP, JSF, EJB, PHP,
.NET, Joomla, jQuery, and smartphones. His latest books include Beginning
Web Development for Smartphones (Shroff, 2011), Core Data iOS
Essentials (Packt Publishing, 2011) and Blogging with WordPress 3 for
Beginners (CreateSpace, 2011). He also writes articles on a variety of
computer subjects, which can be seen on a number of websites. To find out
more, visit his blog at http://bmharwani.com/blog.

www.allitebooks.com

http://www.allitebooks.org

Copyright 2

Acknowledgments 4

About the Author 5

Contens 6

Intrduction 11

Chapter 1 Python and Its Features 15

 1.1 Python 16

 1.2 Installing Python 19

 1.3 Interacting with Python 24

 1.4 Writing Your First Python Program 27

 1.5 Data Types in Python 29

 1.6 Basic Elements in a Program 31

 1.7 Comments 32

 1.8 Continuation Lines 33

 1.9 Printing 34

 Summary 37

Chapter 2 Getting Wet in Python 38

 2.1 Performing Arithmetic Operations 39

 2.2 Bitwise Operations 49

 2.3 Complex Numbers 52

 2.4 Making Decisions 54

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

 2.5 Logical Operators 58

 2.6 Chaining Comparison Operators 60

 2.7 Loops 63

 Summary 73

Chapter 3 Sequences 74

 3.1 Sequences 75

 3.2 Strings 76

 3.3 Lists 90

 3.4 Tuples 96

 3.5 Sets 100

 Summary 103

Chapter 4 Functions and Modules 104

 4.1 Functions 105

 4.2 Function Attributes 115

 4.3 Recursion 117

 4.4 Iterators 120

 4.5 Modules 124

 Summary 129

Chapter 5 Classes 130

 5.1 The Class Statement 131

 5.2 Class Methods 139

 5.3 Static Methods 141

www.allitebooks.com

http://www.allitebooks.org

 5.4 Garbage Collection 144

 5.5 Inheritance 146

 5.6 Multilevel Inheritance 153

 5.7 Operator Overloading 163

 5.8 Descriptors 168

 Summary 172

Chapter 6 File Handling 173

 6.1 Exception Handling 186

 6.2 Raising an Exception 191

 Summary 193

Chapter 7 PyQt 194

 7.1 Qt Toolkit 196

 7.2 PyQt 197

 7.3 Installing PyQt 198

 7.4 Window and Dialogs 201

 7.5 Creating a GUI Application with Code 202

 7.6 Using Qt Designer 205

 7.7 Understanding Fundamental Widgets 220

 7.8 Event Handling in PyQt 223

 7.9 First Application in Qt Designer 224

 7.10 Using Custom Slots 231

 7.11 Converting Data Types 234

www.allitebooks.com

http://www.allitebooks.org

 7.12 Defining Buddies 237

 Summary 242

Chapter 8 Basic Widgets 243

 8.1 Using Radio Buttons 244

 8.2 Using Checkboxes 249

 8.3 Entering Integer and Float Values Using a Spin Box

 256

 8.4 ScrollBars and Sliders 260

 8.5 Working with a List Widget 266

 Summary 274

Chapter 9 Advanced Widgets 275

 9.1 Displaying System Clock Time in LCD Format 276

 9.2 Working with Calendar and Displaying Dates in Different

Formats 280

 9.3 Using Combo Box 286

 9.4 Displaying a Table 291

 9.5 Displaying Web Pages 295

 9.6 Displaying Graphics 299

 Summary 303

Chapter 10 Menus and Toolbars 304

 10.1 Understanding Menus 305

 10.2 Creating a Toolbar 312

www.allitebooks.com

http://www.allitebooks.org

 10.3 Dock Widget 319

 10.4 Tab Widget 325

 10.5 Converting a Tab Widget 332

 Summary 337

Chapter 11 Multiple Documents and Layouts 338

 11.1 Multiple-Document Interface 339

 11.2 Layouts 347

 Summary 355

Chapter 12 Database Handling 356

 12.1 Why MySQL? 357

 12.2 Creating a Database 361

 12.3 Database Maintenance Through Console-Based Programs

 365

 12.4 Database Maintenance Through GUI Programs 374

 Summary 387

Index 388

www.allitebooks.com

http://www.allitebooks.org

Introduction

Python is an interpreted, general-purpose, high-level programming
language that is very popular among developers and professionals because
of its vast library of addon modules. It is a platform-independent scripted
language that is supported by many individuals as an open-source project.
The fact that it is freely available and runs on all platforms makes it ever
more popular.

The goal of Introduction to Python Programming and Developing GUI
Applications with PyQT is to teach the Python programming language
through practical examples. Whether you are new to computers or are an
experienced programmer, this book is intended to help you develop your
programming skills. It is written with the requirements of all levels in mind
—developers, professionals, and beginners. The book begins with a solid
introduction of Python from scratch—loops, control structures, sequences,
functions, classes, and exception handling. Thereafter, the book explains
persistence through file handling and targets developers by introducing
GUI application development in PyQT.

As you read through the book, you will acquire the skills needed for
building practical Python programming applications and will learn how
these skills can be put into use in real-world scenarios.

Like any good book, Introduction to Python Programming explains the more
basic concepts, one step at a time, by writing small programs to
demonstrate each step. Gradually, once the reader is acquainted with
logical blocks, the book explains using the blocks for understanding more
complex concepts. By the time you finish the book, you will understand
how to break problems down into manageable chunks, and then refine your
code into applications.

How This Book is Organized

This book starts with a discussion of Python’s basics, beginning with easy
examples, and then gradually going deeper to uncover the more complex
topics of GUI programming in Python. By the end of the book, readers will
also have an understanding of using back-end databases for storing and
fetching information.

Chapter 1, “Python and its Features”: In this chapter, you will have a
detailed introduction to Python and its features, such as installing Python
on different platforms, interacting with Python through Command Line
mode and the IDLE IDE. You will also learn to write your first Python
program. The chapter also introduces the Python basics, like its different
data types, literals, variables, and keywords. Finally, the chapter explains
how to write comments, continuation lines, and print messages.

Chapter 2, “Getting Wet in Python”: In this chapter, you will learn to
apply arithmetic operations and different logical and membership operators
in Python programs. You will see the use of escape sequences. You will
learn to get data from the user as well as process incoming data. You will
also see how to convert data into different types, learn to display octal and
hexa values, perform bitwise operations, and use complex numbers. You
will also learn how to use the if...else statement in making decisions.

Finally, the chapter explains how to use while and for loops for doing

repetitive tasks.

Chapter 3, “Sequences”: This chapter focuses on using different
containers. You will learn to perform different operations on strings,
including concatenating strings, splitting strings, and then converting them
into different cases, such as uppercase, title case, and lowercase, etc. Also,
you will learn to do list slicing, searching elements in tuples, and
performing operations on sets, such as finding their union, intersection,
and differences. You will learn how key/value pairs are maintained in a
dictionary and how to append, delete, or and modify key/value pairs.
Finally, the chapter explains how to create one- and two-dimensional
arrays.

Chapter 4, “Functions and Modules”: In this chapter, you will learn
about different statements that define and return values from functions.
Also, you will learn to use default value parameters and keyword
arguments in a function, as well as use local and global variables. The
chapter explains how to create lambda functions for smaller expressions.
Also, you will learn how to apply functions to sequences using different
function attributes and implement recursion. For accessing collections of
data, the chapter explains how to use iterators, generators, and generator
expressions. You will learn to import and use modules for built-in functions.
The chapter also explains how to pass command-line arguments to a
Python program.

Chapter 5, “Classes”: This chapter focuses on classes. You will learn how
to define a class, define functions for it, initialize its instance variables, and
use class and static methods. You will also learn to use class attributes to
display specific information related to the class. You will learn the concept
of garbage collection and its role in freeing up memory consumed by
objects that are out of scope. Also, you will learn to apply single,
multilevel, and multiple inheritance through running practical examples.
You will learn the use of private and public access specifiers and how to

apply method overriding and operator overloading to perform arithmetic
operations on instances. Finally, the chapter explains polymorphism and
setting and getting values of instance attributes through properties and
descriptors.

Chapter 6, “File Handling”: In this chapter, you will learn to perform
different operations on files. You will learn to open a file in different modes
and to read its contents, update existing content, delete content, and
append new content. You will also see how to copy a file, read a file
sequentially or randomly, and read only specific content. You will learn to
create a binary file as well as pickle and unpickle objects. Finally, the
chapter explains how to implement exception handling and the procedure
for raising exceptions.

Chapter 7, “PyQt”: In this chapter, you will be introduced to the Qt
toolkit, Qt Designer, and PyQt. You will learn about different Qt Designer
components, such as the toolbar, the Object Inspector, the Property Editor,
and the Widget Box. You will also learn to create a GUI application through
coding. Also, you will learn about the fundamental Label, Line Edit, and
Push Button widgets as well as learn to develop applications using them.
You will also learn about signal/slot connection in the Qt Designer and how
to connect signals to both predefined slots and to custom slots.

Chapter 8, “Basic Widgets”: This chapter demonstrates how to create a
GUI application using Radio Buttons, which enable the user to select one
option out of several. You will also learn how to select more than one option
by using CheckBoxes and specify integers as well as float values using Spin
Boxes. Also, you will learn to use ScrollBars and Sliders to display large
documents and represent integer values. Finally, the chapter explains how
to display options with a List widget, add items to a List widget, and delete
and edit existing items in a List widget.

Chapter 9, “Advanced Widgets”: This chapter explains how to access
and display system clock time in LCD digits. You also will see how to
display a calendar and display a selected date in different formats. You will
learn to create an application that displays options with a Combo Box,
displays information with a Table widget, displays web pages, and displays
graphics.

Chapter 10, “Menus and Toolbars”: In this chapter, you will learn to
create menus and toolbars. Also, you will learn about the Action Editor and
how it can help you define actions for menus and toolbars. You will also
learn how to manage application resources in one place through a resource
file. You will see how to create dockable windows and how to display
information in small chunks with the Tab widget. Finally, the chapter
explains how to convert a Tab widget into a Tool Box or Stacked widget.

Chapter 11, “Multiple Documents and Layouts”: In this chapter, you
will learn to manage multiple documents in a main window through an

MDI. You will see how child windows in MdiArea can be arranged in
cascading and tile fashions. You will also learn to place a collection of
widgets that do similar tasks in a Group Box. You will also learn to organize
widgets in different layouts.

Chapter 12, “Database Handling”: In this chapter, you will learn to
install and use the MySQLdb module, which is required in order to access
the MySQL Database Server through Python. Also, you will learn to
maintain a database through console-based programs and through GUI
programs. You will also learn to write Python scripts to insert, fetch, delete,
search, and update rows in a database table.

Companion Website Downloads

You may download the companion website files from
www.courseptr.com/downloads. Please note that you will be redirected to
the Cengage Learning website.

Chapter 1. Python and Its Features

This chapter covers the following:

Introduction to Python and its features

Installing Python on different platforms

Interacting with Python through Command Line Mode and IDLE

Writing Your First Python Program

Understanding data types and basic elements in Python

Writing comments and continuation lines and printing messages

Python

Python is a very powerful high-level, dynamic object-oriented programming
language created by Guido van Rossum in 1991. It is implemented in C,
and relies on the extensive portable C libraries. It is a cross-platform
language and runs on all major hardware platforms and operating systems,
including Windows, Linux/UNIX, and Macintosh. Python has an easy-to-use
syntax and is quite easy to learn, making it suitable for those who are still
learning to program. Python has a rich set of supporting libraries, and
many third-party modules are available for it. Python is a programming
language that also supports scripting, making it suitable for rapid
application development. Python comes with a powerful and easy to-use
graphical user interface (GUI) toolkit that makes the task of developing
GUI applications in Python quite easy. It is freely available.

Python Implementations

Python currently has three implementations, known as CPython, Jython,
and Iron-Python. In this book, you will be using CPython, the most widely
used implementation, which I will refer to as just Python for simplicity. A
small description of all three implementations is as follows:

CPython. Classic Python (often just called Python) is the fastest, most

up-to-date, and complete implementation of Python. It is
implemented in C (i.e., its libraries and modules are all coded in
standard C). It is cross-platform and runs on almost all platforms.

Jython. Jython is a Python implementation that is Java Virtual

Machine (JVM) compliant. With Jython, we can use all Java libraries
and frameworks.

IronPython. IronPython is a Python implementation for the Microsoft

designed Common Language Runtime (CLR), popularly known as .NET.
With Iron Python, you can use all CLR libraries and frameworks.

Features of Python

As mentioned earlier, Python is a scripting language that includes a vast

library of add-on modules. It supports integration of pre-built components
for creating complex applications. Python has full access to operating
system (OS) services. Following are a few of its features:

Python is easy to learn. Programmers familiar with traditional

languages will find all the familiar constructs, such as loops,
conditional statements, arrays, and so on.

It has easier to read syntax. It avoids the use of punctuation

characters like { } $ / and \.

It uses white space to indent lines for defining blocks instead of

using brackets.

Python is free. You can download and install any version of Python

and use it to develop software for commercial or personal applications
without paying a penny. Python is developed under the open-source
model. You can copy Python, modify it, and even resell it.

It comes with a large number of libraries included, and there are

many more that you can download and install.

Python can be integrated with other languages, like C, C++, and

Java. That is, the components written in these languages can be
embedded with Python programs, thus making it easier to develop
complex solutions.

Python is an interpreted language, therefore it supports a complete

debugging and diagnostic environment making the job of fixing
mistakes much faster. Also, the software development is quite rapid
and flexible in it.

Python is a good choice for web development, networking,

games, data processing, and business applications.

For efficient memory management, Python uses garbage collection,

so you don’t have to worry about memory leaks. The Python run-time
environment handles garbage collection of all Python objects. Each
object has a reference counter to make sure that no live objects are
removed. Only the object with a reference counter value equal to 0 is
garbage collected.

Python supports exception handling. That is, errors are raised as

exceptions so that you can take corrective measures. Python signals
almost all errors with an exception.

However, you cannot take advantage of Python’s features unless you install
it and begin using it. So, read on to understand how Python is installed on
different platforms.

Installing Python

To install Python, you will need to download its most recent distribution
from the following URL: www.python.org. Don’t worry if you already have
an earlier version of Python installed on your machine. You can have
multiple versions of Python on the same computer. The new version of
Python is installed in a separate location and will not interfere with the
older version on your computer. Many Linux distributions and Mac OS X
come with Python 2.x as part of the operating system. Let’s have a look at
the steps for installing Python on Microsoft Windows.

Installing Python on Microsoft Windows

For Microsoft Windows, download the latest Python installer program from
its site. This book is based on Python version 3.2, and its installer program
is python-3.2.msi. Download it, and then double-click on it to begin the
installation wizard.

Note

You need to be logged in as the administrator to run the install.

The first dialog box of the installation wizard, shown in Figure 1.1, asks
whether you want to install this Python version for all the users or only for
one user (i.e., the administrator). Select the option Install For All Users,
followed by selecting the Next button.

Figure 1.1. Python installation wizard.

In the next dialog, you will be asked for the destination folder where you
want to install Python files. The wizard also displays a folder name by
default that represents the Python version being installed. In this case, the
default folder will be C:\Python32\. You can either keep the default folder
or specify a new folder for your Python installation. Select the Next button
to continue. If you have a previous installation, then you will be asked
whether you wish to back up replaced files. The option to make backups is
already selected, and the default folder for the backup appears as C:
\Python32\BACKUP. Click Next to continue. The next dialog is to specify the
Python features (i.e., the components) that you want to install, as shown in
Figure 1.2. You can select or unselect the features as per your requirement.
On selecting a feature, the hard disk space needed by its files will be
displayed. Keeping the default components selected, click Next to continue.

Figure 1.2. Selecting Python components to install.

www.allitebooks.com

http://www.allitebooks.org

The installer program will copy the Python files to the selected folder, and
you will be asked to select the Finish button to exit the installation wizard.
On successful installation of Python, you will find a new group, called
Python 3.2, added to your Windows system that you can see by selecting
the Start > All Programs option. The Python 3.2 group shows several
options, such as IDLE (Python GUI), Module Docs, Python (Command Line),
Python Manuals, and Uninstall Python.

On selecting the Python (Command Line) menu item, you see the Python
Command Line window displaying the Python prompt (>>>), as shown in
Figure 1.3. The window informs you which version of Python is running, the
date the version was released, and a few hints for viewing copyright,
credits, and license information. Below the hints messages is displayed the
Python prompt (>>>) where you can issue Python commands. To execute
Python commands, you write them at the prompt followed by pressing the
Enter key. To close the Python Command Line window, press Ctrl+Z
followed by the Enter key.

Figure 1.3. Python Command Line window.

[View full size image]

Congratulations for successfully installing Python on Windows! Now I’ll
show you how to install Python on Mac OS X.

Installing Python on the Mac

Python is part of the Mac OS environment. Tiger (Mac OS 10.4) includes
Python 2.3.5 and IDLE (Integrated DeveLopment Environment). Leopard
(Mac OS 10.5) includes Python 2.5.1. Snow Leopard (Mac OS 10.6)
includes Python 2.6. The Python files can be found in the
/System/Library/Frameworks/Python.framework/Versions folder. To install
or upgrade to Python 3.2, download the pre-built Mac OS X installer from
www.python.org. The file name will be python-3.2.macosx.dmg. To initiate
the installation procedure, double-click the file. It will create a disk image
named Universal MacPython 3.2. The disk image will contain a license, a
ReadMe file, and the MacPython.mpkg file. You need to double-click the
MacPython.mpkg file to install Python on your computer. The installer will
take you through a few steps that include agreeing to the license terms
and conditions for using Python, specifying a destination folder, and
selecting installation type (e.g., whether it is an upgrade or a fresh
installation).

To test whether the upgraded version of Python is successfully installed on
your Mac platform, open the Terminal window and type python followed by
the Enter key. The Python command invokes Python and displays its
prompt (>>>) along with the version information. If the prompt displays
the version as 3.2, it confirms that the upgraded version of Python is
successfully installed on your computer, and you can execute Python
commands at the prompt. To close the prompt and exit Python, press
Ctrl+D.

Installing Python on UNIX

To install Python on the UNIX platform, the first step, as usual, is to
download and extract its installer program from www.python.org. The next
step is to give the following command to configure options for your UNIX
system:

./configure

Thereafter, the following commands are needed to begin the installation
procedure:

make
make install

The preceding commands will install Python files in the /usr/local/bin folder
and install its libraries in /usr/local/lib/python32 folder. Since the make

install command can overwrite your previous Python installation, it is

better to use the make altinstall command:

make altinstall prefix=~ exec-prefix=~

prefix=~ installs all platform-independent files in the ~/lib folder, and

exec-prefix=~ installs all binary and other platform-specific files in the

~/bin folder. The make altinstall command creates

${prefix}/bin/python, which refers to the new python installation.

Interacting with Python

There are two ways to work with Python interactively:

Using Command Line Mode

Using IDLE IDE

Command Line Mode

In command line mode, you type Python instructions one line at a time.
You can also import code from other files or modules. To open Python’s
command line mode in Windows, select Start > All Programs > Python 3.2
to open the Python 3.2 group. The group shows several options, such as
IDLE (Python GUI), Module Docs, Python (command line), Python Manuals,
and Uninstall Python. Select the Python (command line) option from the
group. Alternatively, you can open a command prompt window and type
python followed by pressing the Enter key. If you get an error message
saying that the Python program couldn’t be found, it means that your
operating system could not find the path for the Python installation. To
define the correct path for the Python installation, right-click on the My
Computer icon and select Properties from the shortcut menu that appears.
Select the Advanced tab from the dialog that appears, and click the
Environment Variables button at the bottom. A list of environment
variables will be displayed. Double click the Path variable to edit it. In the

Edit box, add the location of your Python installation (i.e., ;C:\python32)
at the end of the line, and select OK. Also, click the OK button in all of the
windows that are open until you get back to your desktop. Open another
command prompt window (because the old window will still have the old
path settings) and invoke Python by typing python followed by Enter.

On Mac OS X, open the Terminal window and type python3 followed by the
Enter key. On UNIX, open a new shell window and type python3.2 at a
command prompt.

After typing the appropriate command in the respective platform, Python’s
command line mode is invoked, displaying a window (refer to Figure 1.3).
While working in command line mode, a history of the commands given is
maintained. You can use the up and down arrows, as well as the Home,

End, Page Up, and Page Down keys, to scroll through the commands used
previously. Since whatever you type in command line mode is not saved, it
is better to save code in a file and then execute it. The following section
shows you how to use this method, too.

IDLE (Integrated DeveLopment Environment)

IDLE is a simple IDE that comes with the standard Python distribution.
IDLE combines an interactive interpreter with code editing, debugging
tools, and several specialized browsers/viewers built into it. It provides
automatic indentation and colors to the code based on Python syntax
types, making your program more readable. Also, you can navigate to the
previously given commands that are in the buffer using the mouse, arrow
keys, or Page Up and Page Down keys. You can also toggle up and down
through the previously given commands using the Alt+P and Alt+N key
commands. You can also complete Python keywords or user-defined values
by pressing Alt+/.

To start IDLE on Windows, select Start > All Programs > Python 3.2 > IDLE
(Python GUI). On Mac OS X, navigate to the Python 3.2 subfolder in the
Applications folder, and run IDLE from there. On UNIX, type idle3.2 at a
command prompt. The Python Shell window opens upon invoking IDLE, as
shown in Figure 1.4.

Figure 1.4. Python Shell window.

Besides executing individual Python commands in the Python Shell
window, you can also write and edit Python programs in any editor and
execute them through IDLE. You can use any text editor, like Notepad on
Windows or ed on Linux, for writing and editing Python programs. Besides
using external editors, you can also use IDLE’s built-in editor for the same
purpose. To open IDLE’s editor, select File > New Window. A blank window
appears where you can type a Python program. To save the program, select
File > Save As. The program will be saved with extension .py. The .py
extension shows that it is a Python program. To execute the program,
select Run > Run Module or press the F5 key. While running a program,
IDLE will display the line(s) where errors, if any, occur. You can also open
and edit programs written in other editors by selecting File > Open.
Alternatively, you can right-click on the program name in an Explorer
window and select Edit with IDLE to open it in IDLE’s editor.

Writing Your First Python Program

As mentioned earlier, you can write your first Python program either
through IDLE’s built-in editor or through any editor. I will be using IDLE’s
editor throughout the book for writing programs. You can launch IDLE by
selecting Start > All Programs > Python 3.2 > IDLE (Python GUI). Then
select the File > New Window option to open IDLE’s built-in editor and
write the following small program:

arearect.py
The program calculates area of rectangle
l=8
b=5
a=l*b
print ("Area of rectangle is ", a)

Save it to your computer in any desired folder by any name, for example,
arearect.py.

Note

Remember to add the .py extension when saving the file, as IDLE
does not add the extension automatically.

The program consists of two variables, l and b, initialized to values 8 and 5,
respectively. The l and b variables here represent the length and breadth of
a rectangle. The l and b are multiplied, and the result is stored in a third
variable, a, that is then displayed as the area of a rectangle. To run the
program, select Run > Run Module from the menu or just press F5. You will
get the following output:

Area of rectangle is 40

Congratulations! You have successfully written and executed your first

Python program.

Running Python Programs from the Command
Prompt

You can run Python programs from the command prompt, too. Open the
command prompt and type python arearect.py followed by the Enter key
to open Python and tell it to run the script file, arearect.py. You will get the
output of the program as previously shown. You might have noticed that
variables l, b, and a are of integer types. What are other data types in
Python? Go to the next section for a brief overview of different data types in
Python.

Data Types in Python

Python has a rich set of fundamental data types. The operations that are
applicable on an object depend on its data type (i.e., an object’s data type
determines which operations are applicable on it). The list of data types are
as follows:

Integers: Integers are 32 bits long, and their range is from –232 to

232 – 1 (i.e., from –2,147,483,648 to 2,147,483,647).

Long Integers: It has unlimited precision, subject to the memory

limitations of the computer.

Floating Point Numbers: Floating-point numbers are also known as

double-precision numbers and use 64 bits.

Boolean: It can hold only one of two possible values: True or False.

Complex Number: A complex number has a real and an imaginary

component, both represented by float types in Python. An imaginary
number is a multiple of the square root of minus one, and is denoted
by j. For instance, 2+3j is a complex number, where 3 is the
imaginary component and is equal to 3 × √−1.

Strings: Sequences of Unicode characters.

Lists: Ordered sequences of values.

Tuples: Ordered, immutable sequences of values.

Sets: Unordered collections of values.

Dictionaries: Unordered collections of key-value pairs.

Note

Unicode is a standard that uses 16-bit characters to represent
characters on your computer. Unlike ASCII (American Standard
Code for Information Interchange), which consists of 8 bits, Unicode
uses 16 bits and represents characters by integer value denoted in

base 16.

A number does not include any punctuation and cannot begin with a
leading zero (0). Leading zeros are used for base 2, base 8, and base 16
numbers. For example, a number with a leading 0b or 0B is binary, base 2,
and uses digits 0 and 1. Similarly, a number with a leading 0o is octal,
base 8, and uses the digits 0 to 7, and a number with a leading 0x or 0X is
hexadecimal, base 16, and uses the digits 0 through 9, plus a, A, b, B, c,
C, d, D, e, E, f, and F.

Note

An object that can be altered is known as a mutable object, and one
that cannot be altered is an immutable object.

www.allitebooks.com

http://www.allitebooks.org

Basic Elements in a Program

Every program consists of certain basic elements, a collection of literals, variables, and keywords. The next few sections
explain what these terms mean.

Literals

A literal is a number or string that appears directly in a program. The following are all literals in Python:

10 # Integer literal
10.50 # Floating-point literal
10.50j # Imaginary literal
'Hello' # String literal
"World!" # String literal
'''Hello World!
It might rain today # Triple-quoted string literal
Tomorrow is Sunday'''

In Python, you can use both single and double quotes to represent strings. The strings that run over multiple lines are
represented by triple quotes.

Variables

Variables are used for storing data in a program. To set a variable, you choose a name for your variable, and then use the
equals sign followed by the data that it stores. Variables can be letters, numbers, or words. For example,

l = 10
length = 10
length_rectangle = 10.0
k="Hello World!"

You can see in the preceding examples the variable can be a single character or a word or words connected with
underscores. Depending on the data stored in a variable, they are termed as integer, floating point, string, boolean, and
list or tuple variables. Like in above examples, the variables l and length are integer variables, length_rectangle is a

floating-point variable, and k is a string variable. Following are examples of boolean, list, and tuple variables:

a=True # Boolean variable
b=[2,9,4] # List variable
c=('apple', 'mango', 'banana') # tuple variable
A tuple in python language refers to an ordered, immutable (non changeable) set of
values of any data type.

Keywords

Python has 30 keywords, which are identifiers that Python reserves for special use. Keywords contain lowercase letters
only. You cannot use keywords as regular identifiers. Following are the keywords of Python:

and assert break class continue def del elif else except exec finally for from global if import in is lambda not or pass print raise return try while with yield

Comments

Comments are the lines that are for documentation purposes and are
ignored by the interpreter. The comments inform the reader what the
program is all about. A comment begins by a hash sign (#). All characters
after the # and up to the physical line end are part of the comment. For
example,

This program computes area of rectangle
a=b+c # values of b and c are added and stored in a

Continuation Lines

A physical line is a line that you see in a program. A logical line is a single
statement in Python terms. In Python, the end of a physical line marks the
end of most statements, unlike in other languages, where usually a
semicolon (;) is used to mark the end of statements. When a statement is
too long to fit on a single line, you can join two adjacent physical lines into
a logical line by ensuring that the first physical line has no comment and
ends with a backslash (\). Besides this, Python also joins adjacent lines
into one logical line if an open parenthesis ((), bracket ([), or brace ({)
is not closed. The lines after the first one in a logical line are known as
continuation lines. The indentation is not applied to continuation lines but
only to the first physical line of each logical line.

Printing

For printing messages and results of computations, the print() function is

used with the following syntax,

print(["message"][variable list])

where message is the text string enclosed either in single or double quotes.

The variable list may be one or more variables containing the result of
computation, as shown in these examples:

print ("Hello World!")
print (10)
print (l)
print ("Length is ",l)

You can display a text message, constant values, and variable’s values
through the print statement, as shown in the preceding examples.

After printing the desired message/value, the print() function also prints

the new-line character, meaning the cursor moves onto the next line after
displaying the required message/value. As a result, the message/value
displayed through the next print() function appears on the next line. To

suppress printing of the newline character, end the print line with end=‘ ’

followed by a comma (,) after the expression so that the print() function

prints an extra space instead of a newline character. For example, the
strings displayed via the next two print() functions will appear on the

same line with a space in between:

print("Hello World!", end=" ')
print('It might rain today')

You can also concatenate strings on output by using either a plus sign (+)
or comma (,) betweens strings. For example, the following print function

will display the two strings on the same line separated by a space:

print('Hello World!', 'It might rain today')

The following statement merges the two messages and displays them
without any space in between:

print('Hello World!'+'It might rain today')

In order to get a space in between the strings, you have to concatenate a
white space between the strings:

print('Hello World!'+ ' '+ 'It might rain today')

You can also use a comma for displaying values in the variables along with
the strings:

print ("Length is ", l, " and Breadth is ", b)

Assuming the values of variables l and b are 8 and 5, respectively, the
preceding statement will display the following output:

Length is 8 and Breadth is 5

You can also use format codes (%) for substituting values in the variables at

the desired place in the message:

print ("Length is %d and Breadth is %d" %(l,b))

where %d is a format code that indicates an integer has to be substituted at

its place. That is, the values in variables l and b will replace the respective
format codes.

Note

If the data type of the values in the variables doesn’t match with
the format codes, auto conversion takes place.

The list of format codes is as shown in Table 1.1. You will be learning to
apply format codes in the next chapter.

Table 1.1. Frequently Used Format Codes

Format
Code

Usage

%s Displays in string format.

%d Displays in decimal format

%e Displays in exponential format.

%f Displays in floating-point format.

%o Displays in octal (base 8) format.

%x Displays in hexadecimal format.

%c Displays ASCII code.

The following program demonstrates using the print() function for

displaying different output:

printex.py
print (10)
print('Hello World! \
It might rain today. \
Tomorrow is Sunday.')
print('''Hello World!
It might rain today.
Tomorrow is Sunday.''')

Output:

10
Hello World! It might rain today. Tomorrow is Sunday.
Hello World!
It might rain today.
Tomorrow is Sunday.

Summary

In this chapter, you had a detailed introduction to Python and its features.
You saw the procedure of installing Python on different platforms. You saw
how to interact with Python through command line mode and through the
IDLE IDE. You also learned to write your first Python program. I also
introduced you to the Python basics, like its different data types, literals,
variables, and keywords. Finally, you saw how to write comments,
continuation lines, and print messages.

In the next chapter, you will learn to apply different arithmetic operations
in Python programs, use escape sequences in a program, and get data from
a user and convert it into the desired data type. Also, you will learn to deal
with octal and hexa values. You will also learn to perform bitwise
operations, use complex numbers, and take decisions through an if

...else statement. Finally, you will learn to use different loops, like while

and for loops.

Chapter 2. Getting Wet in Python

This chapter covers the following:

Performing Arithmetic Operations

Using Escape Sequences

Displaying Octal and Hexa Values

Performing Bitwise Operations

Using Complex Numbers

Making Decisions: if...else Statement

Using Loops: while and for Loops

Breaking and Continuing a Loop

Using Operators: Logical Operators and Membership Operators

Performing Arithmetic Operations

Arithmetic operators play a major role in programming, and it is essential
to understand the use of different operators for efficient programming.
Python provides several arithmetic operators for performing different
operations on numerical data. The list of arithmetic operators used in
Python is shown in Table 2.1.

Table 2.1. Arithmetic Operators

Operation Description

x + y Addition

x - y Subtraction

x * y Multiplication

x / y Division

x // y Truncating division

x ** y Exponentiation. Sets x to the power y; i.e.,
xy

x % y Modulo operator

–x Unary minus

+x Unary plus

Table 2.1 displays the usual arithmetic operators such as addition,
subtraction, and multiplication. The multiplication and division operators
have higher precedence than the addition and subtraction operators. The
modulo operator returns the remainder of the division operation. What is
the difference between the division operator and the truncating division
operator? Let’s see.

Division Operator

The truncating division operator (//), also known as floor division,

truncates the result to an integer (ignoring the remainder) and works with

both integers and floating-point numbers. The true division operator (/)

also truncates the result to an integer if the operands are integers. It also
means that the true division operator returns a floating-point result if
either operand is a floating-point number.

Note

When both operands are integers, the / operator behaves like //.

The following program uses the true division operator for calculating the
area of a triangle.

areatriangle.py
b=17
h=13
a=1.0/2.0*b*h
print ("Area of triangle is", a)
print ("Base= %d, Height is %d, Area of triangle is %f" %(b,h,a))
Output:
Area of triangle is 110.5
Base= 17, Height is 13, Area of triangle is 110.500000

In this program, you are using the true division operator, /, which returns

an integer if both the operands are integers. To get the correct result, 1/2
is converted into a float, 1.0/2.0, so that the result from the true division
operator comes out to be a float. One thing to observe in the program’s
output is that the %f directive returns the float value up to six decimal

places. Can it be rounded to 2 or 3 decimal places? Let’s see.

The following program calculates the average of three values and displays
the result rounded up to the desired number of decimal places:

average1.py
p=q=r=10
a=1.0/3.0*(p+q+r)
print ("Average of three variables is", a)
print ("Average of three variables is %.2f" %a)
print ("Average of three variables is %d" %a)
Output:
Average of three variables is 10.0
Average of three variables is 10.00
Average of three variables is 10

www.allitebooks.com

http://www.allitebooks.org

In this program, you see that the floating-point result is rounded to 2
places by using %.2f. Also, you see that the floating-point value is

truncated to a decimal value when %d format code is applied to it.

While using the true division operator, /, you need to ensure that either

operand is a floating-point number to avoid getting an incorrect truncating
integer. While using the true division operator, it’s better to begin the
source file with this statement:

from _ _future_ _ import division

This statement ensures that the true division operator works without
truncation on operands of any type. Basically, the from __future__

statement ensures that the script uses the new-style floating-point division
operator.

average2.py
from __future__ import division
p=q=r=10
a=(p+q+r)/3
print ("Average of three variables is", a)
Output:
Average of three variables is 10.0

Exponentiation

To apply exponentiation, use double asterisks: **. For example, a**b

means ab. You get an exception if a is less than zero and b is a floating-

point value with a nonzero fractional part. You can also use the built-in
pow() function for applying exponentiation. For example, pow(a, b) is the

same as a**b.

You will learn about exception handling in Chapter 6, “File Handling.”

Let’s write a program to calculate the volume of a sphere. The formula is
4/3*pi*r3, where the value of radius r is known to be 3.

volsphere.py
from __future__ import division
r=3
pi=22/7
v=4/3*pi*pow(r,3)
print ("Volume of sphere is %.2f" %v)
Output:
Volume of sphere is 113.14

In this program, you can see that r3 is computed through pow(). The

expression pow(r,3) can also be replaced by r**3, as both do the same

task. Is there any way to get the value of pi instead of computing it
manually as 22/7?

Yes, the math module, besides other important functions, also provides the
value of pi to use directly in arithmetic expressions. You will learn about
the math module in detail in Chapter 4, “Functions and Modules.”

For now, let’s see how the value of pi can be used through the math
module. Rewrite the program above to use the pi value provided by the
math module.

from __future__ import division
from math import pi
r=3
v=4/3*pi*pow(r,3)
print ("Volume of sphere is %.2f" %v)

The statement from math import pi imports the value of pi from the math

module to be used directly in the arithmetic expression. The value
represented will be 3.1415926535897931.

Multiple Assignment Statement

The basic assignment statement can do more than assign the result of a
single expression to a single variable. It can also assign multiple variables
at one time. The rule is that the left and right sides must have the same
number of elements, and the values will be assigned on a one-to-one basis.

Examples
p,q,r=10,20,30
sum, avg=p+q+r,(p+q+r)/3

The values on the right side of the assignment operator will be assigned on
a one-to-one basis; for example, 10 will be assigned to the p variable, 20

will be assigned to the q variable, and so on. Similarly, in the second

example, the result of the expression p+q+r will be assigned to the sum

variable, and the result of the expression (p+q+r)/3 will be assigned to the

variable avg.

Using Escape Sequences

Escape sequences are special characters that represent nonprinting
characters such as tabs, newlines, and such. These special characters begin
with a backslash. When Python sees a backslash, it interprets the next
character with a special meaning. Table 2.2 shows a list of escape
characters that can be used in Python scripts.

Table 2.2. Escape or Non-Printable Characters

Escape Character Description

\a Bell (beep)

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Tab

\v Vertical tab

\\ Literal backslash

\' Single quote

\" Double quote

Note

In a double-quoted string, an escape character is interpreted; in a
single-quoted string, an escape character is preserved.

The following program demonstrates using escape sequences in a program:

escapeseq.py
print('Hello World\nIt\'s hot today')
print('Festival Discount\b\b\b\b\b\b\b\b\b Offer')
print("Isn't it?")
print('Isn\'t it?')
print("He said: \"I am going \"")
print('\\Text enclosed in back slashes\\')
print ('Bell sound \a')
print('Name\tEmail Address\tContact Number')

Output is shown in Figure 2.1.

Figure 2.1. Output of escape sequence program.

In the output you see that the text Hello World and It's hot today

appear on two different lines because of the newline character between.
The text Festival Discount appears as Festival Offerunt because after

displaying the term Festival Discount when the cursor was standing after

the character t of the word Discount, the cursor is shifted back nine

characters where the D is. At the location of character D, the text Offer is

displayed, overwriting the first five characters of the word Discount and

leaving unt to appear after Offer. Displaying of the text Isn't it twice

reveals that the single quote can be displayed either when enclosed within
double quotes or when preceded by \ when enclosed within single quotes.

Similarly, you use \ to display the text I am going enclosed within double

quotes. Similarly, Text enclosed in back slashes appears with \ on either

side because of \\. The \a escape character makes a bell sound, and \t

makes Name, Email Address, and Contact Number appear at the tab stops.

Note

The IDLE (Python GUI) doesn’t recognize a few escape sequence
characters, including \a and \b. Therefore, when you run the
preceding program in IDLE instead of the command prompt, no bell
sound will appear and you will get the following output:

Hello World
It's hot today
Festival Discount••••••••• Offer
Isn' t it?
Isn' t it?
He said: "I am going "
\Text enclosed in back slashes\
Bell sound •
Name Email Address Contact Number

You can see that \b and \a appear as some unusual symbols.

Finding a Data Type

To find the data type of the specified object, you use the type() function,

which returns the data type of the object passed to it.

Syntax:
type(x)

where x is the object whose data type will be returned. The function

accepts all types of parameters, such as integers, strings, lists,
dictionaries, tuples, functions, classes, and modules.

Examples:

type(10)
type('Hello')

The following program displays data types integers, floats, strings,
Booleans, and so on.

typeexample.py
a=10
b=15.5
c="Hello"
d=[2,9,4]
e=('apple', 'mango', 'banana')
f=True
print (type(a))
print (type(b))
print (type(c))
print (type(d))
print (type(e))
print (type(f))
Output:
<class 'int' >
<class 'float'>
<class 'str' >
<class 'list' >
<class 'tuple'>
<class 'bool' >

This program initializes variables a, b, c, d, e, and f to data type integer,

floatingpoint, string, list, tuple, and Boolean, respectively. Thereafter, the

data type of these variables is determined and displayed using the type()

function.

Displaying Octal and Hexa Values

To assign an octal value to a variable, the number should be preceded by
0o. Similarly, if a number is preceded by 0x, it is considered a hexa value.

The following program demonstrates conversion of a decimal value into
octal and hexa and vice versa.

octhex.py
a=0o25
b=0x1af
print ('Value of a in decimal is', a)
c=19
print ('19 in octal is %o and in hex is %x' %(c,c))
d=oct(c)
e=hex(c)
print ('19 in octal is', d, 'and in hexa is', e)
Output:
Value of a in decimal is 21
19 in octal is 23 and in hex is 13
19 in octal is 0o23 and in hexa is 0x13

In this program, variables a and b are assigned octal and hexa values,

respectively. The octal value is converted and displayed as a decimal.

Similarly, the decimal value 19 is converted to octal and hexa and

displayed using the directives %o and %x, respectively. Also, by using the

oct() and hex() functions, the number 19 is converted to octal and hexa,

respectively.

Getting Data

To get input from the user, you use the input method. It prompts the user

to enter data and reads one line from the standard input and returns it as a
string that can be consequently assigned to a variable.

Syntax:
variable=input ('Message')

The data entered by the user is assigned to the variable in string format. If
you want the data in another format (integer, float, etc.), it has to be
converted explicitly. Before you see explicit conversion, let’s talk about
auto conversion (coercion) in Python.

Coercion

In Python, if you do some arithmetic operations on the operands of the
same data type, no auto conversion or coercion takes place. When
operands of different data types are computed, coercion takes place.
Python converts the operand with the “smaller” type to the “larger” type.
For example, if either of the operands is a floating number, then the other
operand is also converted to float point. If either argument is a complex
number, the other is also converted to complex. Similarly, if either is of
type long, the other is converted to long. An integer operand is converted

to float by adding .0 to it. A non-complex type is converted to a complex

number by adding a zero imaginary component, 0j, to it.

For explicit conversion, the functions that you will be frequently using are
int(), float(), and str(). The function that is needed for the next

program is an int() function.

Converting Explicitly into integer Type

To convert the specified numerical or string into an integer data type, you
use the int() function.

int()

The data to be converted into the integer is passed as an argument to the
int() function.

Syntax:
int([x[, base]])

The specified x object is converted into integer format. The base parameter

can be any value in the range 2 to 26 and refers to the base for the
conversion. The default value of the base is 10. If the argument contains

some fractional part, it is dropped. For example, int(7.5) will return 7.

The following program computes and displays the area of a rectangle. The
area of a rectangle is the multiplication of length and width, and their
values will be supplied by the user. The values supplied by the user will be
through the input() function, which returns the supplied values in string

format and hence will be converted into the integer data type using the
int() function.

arearectinput.py
l=input("Enter length: ")

b=input("Enter width: ")
a=int(l)*int(b)
print ("Area of rectangle is",a)
Output:
Enter length: 9
Enter width: 5
Area of rectangle is 45

In this program, you can see that the user is asked to enter values for
length and width through the input() method. The values entered by the

user will be assigned to the variables l and b, respectively. As said earlier,

the input method returns data in string format, hence the values in
variables l and b are first converted from string to integer format through

the int() function before they are used in any arithmetic operation.

The following program computes and returns the area of a circle. The

formula is pi*r2. The r in the formula refers to radius, and its value will be

supplied by the user.

areacircleinput.py
from math import pi
r=int(input("Enter radius: "))
a=pi*r*r
print ("Area of the circle is", a)
print ("Area of the circle is %.2f" %a)
Output:
Enter radius: 5
Area of the circle is 78.53981633974483
Area of the circle is 78.54

Bitwise Operations

Every numerical that is entered in a computer is internally represented in
the form of binary digits. For instance, the decimal value 25 is internally
represented in the form of binary digits as 11001. The bitwise operators
operate on these binary digits to give desired results.

Note

The shifting and bitwise operators can only be applied to integers
and long integers.

Considering x and y as two operands, following are the shifting and bitwise

operators:

x << y (binary shift left): Returns x with the bits shifted to the left by

y places. The digit is padded with 0s on the right side. This operation

is the same as multiplying x by 2**y.

x >> y (binary shift right): Returns x with the bits shifted to the right

by y places. This operation is the same as dividing x by 2**y.

x & y (bitwise AND): Corresponding bits of x and y are compared. It

returns 1 if the corresponding bit of x AND y is 1; otherwise 0 is

returned.

x | y (bitwise AND): Corresponding bits of x and y are compared. It

returns 0 if the corresponding bit of x and of y is 0; otherwise it

returns 1. That is, if either x or y is 1, the operator returns 1.

x ̂ y (bitwise exclusive AND): Corresponding bits of x and y are

compared. It returns 1 if either x or y is 1; otherwise it returns 0. That

is, the operator returns 0 if the corresponding bits of x and y are the

same.

~ x (bitwise inversion): It returns the complement of x; i.e., binary

digit 1 is converted to 0, and 0 is converted to 1.

The following program demonstrates the application of AND, OR,
EXCLUSIVE AND, and left and right shift operators.

bitwise.py
a=10
b=7
c=a&b
d=a ̂ b
e= a | b
print ('The result of 10 and 7 operation is', c)
print ('The result of 10 exclusive or 7 operation is' , d)
print ('The result of 10 or 7 operation is', e)
g=a<<2
print ('Left shifting - Multiplying 10 by 4 becomes:' , g)
h=a>>1
print ('Right shifting - Dividing 10 by 2 becomes:',h)
Output:
The result of 10 and 7 operation is 2
The result of 10 exclusive or 7 operation is 13
The result of 10 or 7 operation is 15
Left shifting - Multiplying 10 by 4 becomes: 40
Right shifting - Dividing 10 by 2 becomes: 5

The integers 10 and 7 and the result of application of the & (AND) operator

on them are shown in Figure 2.2(a). The figure shows that the AND
operator returns 1 if both the integers are 1; otherwise it returns 0. Figure
2.2(b) shows the result of applying the EXCLUSIVE OR operator on the two
integers, 10 and 7. You can see that the EXCLUSIVE OR operator returns 1
if either of the two integers is 1. Figure 2.2(c) shows the result of applying
the OR operator; it returns 1 if either or both of the integers are 1.

Figure 2.2. (a) Result of the AND operator. (b) Result of the
EXCLUSIVE OR operator. (c) Result of the OR operator.

Figure 2.3(a) shows the result of left shifting the value 10 by 2. You can
see that two 0s are added to the right in the number. On every left shift,
the value of the number is multiplied by 2. That is, on left shifting the
number by two, the number is multiplied by 4, giving the result as 40.

www.allitebooks.com

http://www.allitebooks.org

Figure 2.3(b) shows the number 10 shifted one bit to the right. The right-
most bit of the number is dropped, and a 0 is added to its left, dividing the
number by 2 and giving the result as 5.

Figure 2.3. (a) Result of left-shifting the number by 2. (b)
Result of right-shifting the number by 1.

Complex Numbers

A complex number is the combination of a real and an imaginary
component, where both are represented by floating-point data type. The
imaginary component of the complex number is a multiple of the square
root of minus one and is denoted by j.

Example:
3+1.2j

In this example, 3 is a real component, and 1.2 is the imaginary

component and is equal to 1.2 × √−1.

The real and imaginary components of a complex object can be accessed
by using its real and imag attributes.

The following program shows the addition of two complex numbers:

complex.py
a = 3.0 + 1.2j
b= -2.0 - 9.0j
print ('The two complex numbers are', a, 'and', b)
c=a+b
print ('The addition of two complex numbers is:', c)
print ('The addition of two real numbers is:', a.real+b.real)
print ('The addition of two imaginary number is:', a.imag+b.imag)
Output:
The two complex numbers are (3+1.2j) and (-2-9j)
The addition of two complex numbers is: (1-7.8j)
The addition of two real numbers is: 1.0
The addition of two imaginary number is: -7.8

This program defines two complex numbers, a and b. The real and

imaginary components of the complex number a are 3.0 and 1.2,

respectively. Similarly, the real and imaginary components of the complex
number b are -2.0 and -9.0, respectively. While adding the complex

numbers, the respective real and imaginary components of the two
complex numbers are added, as shown in Figure 2.4. The program also
accesses the real and imaginary components of the two complex numbers
by adding their real and imag attributes.

Figure 2.4. Addition of two complex numbers.

Note

The complex numbers are displayed enclosed in parentheses ().

When writing programs, you come across a situation where you want to
execute a block statement out of the two blocks. That is, you need to
control flow of the program and execute a block statement out of available
choices, depending on the prevalent conditions. Let’s see how to make
decisions in Python.

Making Decisions

The statement that helps in making decisions and controlling flow of the
program is the if...else statement.

if...else statement

The if...else statement decides which block of statements to execute on

the basis of the logical expression included. A block of statements is
attached with if as well as with else, and when the logical expression is

evaluated, either the if or the else block statement is executed.

Syntax:

if (logical expression):
statement(s)
else:
statement(s)

If the logical expression evaluates to true, then the if statement is

executed; otherwise, the else statement is executed.

Note

The else statement is optional.

Let’s write a program that asks the user to enter a student’s grades. If the
grades are greater than or equal to 60, the program should display a
message, First Division. If not, it should display the message Second

Division.

ifelse1.py
m=int(input("Enter grades: "))
if(m >=60):

 print ("First Division")
else:
 print ("Second Division")
Output:
Enter grades: 75
First Division

Enter grades: 50
Second Division

You can see in this program that the user enters grades through an
input() method. Since the value entered by input() is in string format, it

is converted to an integer and assigned to the variable m. Using an

if...else statement, you check the value in variable m. If the value in

variable m is greater than or equal to 60, the if block will be executed,

displaying the message First Division. If the value entered is less than

60, the else block will be executed, displaying the text Second Division.

The output of the program confirms this.

In this program, greater than or equal to (>=) compares the value of the

variable m with 60. Table 2.3 lists the comparison operators.

Table 2.3. Comparison Operators

Operator Meaning

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

== Equal to

!= Not equal to

In the next program, again you ask the user to enter a student’s grades. If
the grades entered are greater than or equal to 60, a message First

Division will be displayed. If the grades entered are greater than or equal

to 45 but less than 60, the message Second Division will be displayed. If

the grades entered are less than 45, Third Division will be displayed. For

such programs, you nest an if...else block within the else block of the

outer if...else statement. Let’s see how this nesting is done in the

following program:

ifelse2.py

m=int(input("Enter grades: "))
if(m >=60):
 print ("First Division")
else:
 if(m >=45):
 print ("Second Division")
 else:
 print ("Third Division")
Output:
Enter grades: 75
First Division

Enter grades: 50
Second Division

Enter grades: 40
Third Division

You can see in this program that an if...else statement is written within

an else statement of the outer if...else statement. The if...else

statement within the else statement will be executed if the logical

expression included in the outer if statement evaluates to False. That is,

if the user enters a value less than 60, the inner if...else statement will

be executed to check if the entered value is greater than 45, and the
appropriate message will be displayed.

if-elif-else statement

If you have multiple logical expressions to evaluate, and on the basis of
those logical expressions you want to execute a specific set of code block,
you need to use an if-elif-else statement.

Syntax:
if (logical expression):
 statement(s)
elif (logical expression 1):
 statement(s)
[elif (logical expression n):
 statement(s)]
else:
 statement(s)

You can see that the else statement and the if statement nested in it are

merged to form an elif statement. An elif statement is helpful in

avoiding excessive indentation. The program ifelse2.py that you wrote

earlier can be rewritten with an if-elif-else statement as shown here:

ifelif.py
m=int(input("Enter grades: "))
if(m >=60):
 print ("First Division")
elif (m >=45):
 print ("Second Division")
else:
 print ("Third Division")

What if you need to combine more than one logical expression? You use
logical operators for connecting logical expressions. Let’s have a quick look
at logical operators.

Logical Operators

In writing logical expressions, you sometimes need to combine two or more
logical expressions. The logical expressions are usually combined with the
logical operators AND, or, and not. The list of logical operators with a brief

description is shown in Table 2.4.

Table 2.4. Logical Operators

Logical Operator Description

AND The logical expression connected with
the AND logical operator returns true if

all the logical expressions evaluate to
true.

or The logical expression connected with
the or logical operator returns true if

any of the logical expressions evaluates
to true.

not The logical expression preceded by the
not logical operator is negated.

 That is, the logical expression that
evaluates to true becomes false when

preceded by the logical not operator

and vice versa.

Consider the logical expressions x and y connected with the logical AND

operator as shown below:

x and y

On combining the logical expressions by the logical AND operator, first the
logical expression x is evaluated, and if it returns false, the result of the

combination will be x; otherwise, the result will be y.

Similarly, on combining the logical expressions x and y by the logical or

operator, first the logical expression x is evaluated, and if it results in true,

the result of the combination will be x; otherwise, the result will be y.

The program ifelse2.py that you wrote earlier can be rewritten by

combining the logical expressions with logical operators:

ifelse3.py
m=int(input("Enter grades: "))
if(m >=60):
 print ("First Division")
if(m >=45 and m<60):
 print ("Second Division")
if (m<45):
 print ("Third Division")

You see that if the grade entered is greater than 60, the first if block will

be executed, displaying the message First Division. If the grade entered

is greater than 45 and less than 60, both logical expressions, m>=45 and

m<60, are true, and the message in the second if block, Second Division,

will be displayed. If the grade entered is less than 45, the third if block

will be executed, displaying the message Third Division.

Chaining Comparison Operators

Consider the following comparison operators, which are connected with the
AND operator:

x<=y and y<=z

These comparison operators can be chained as:

x<=y <=z

As expected, if the logical expression x<=y is true, then only the logical

expression y<=z will be evaluated.

For example, the statement used in the program above, m>=45 and m<60,

can be chained to appear as 45 <=m <60.

Let’s rewrite the program by chaining comparison operators.

ifelschaining.py

m=int(input("Enter grades: "))
if(m >=60):
 print ("First Division")
if(45<= m <60):
 print ("Second Division")
if(m<45):
 print ("Third Division")

If the grade entered is greater than or equal to 45, the next part of the
chained operators is evaluated to see if the value entered is less than 60.

The following program asks the user to enter a value between 1 and 10 and
prints a message based on the value entered:

www.allitebooks.com

http://www.allitebooks.org

opr1.py
m=int(input("Enter a number between 1 and 10: "))
if 1<= m <=10:
 print ("Number is within range")
else:
 print ("Number is out of range")
Output:
Enter a number between 1 and 10: 3
Number is within range

Enter a number between 1 and 10: 15
Number is out of range

You can see that the program prints the message Number is within range

if the entered value is between 1 and 10; otherwise it prints the message
Number is out of range.

The following program determines if the value entered is even or odd. The
program uses the modulo operator, %. Remember that the modulo operator

returns the remainder of the division.

evenodd.py
m=int(input("Enter a number "))
n = m%2
if n ==0:
 print ("Number is even")
else:
 print ("Number is odd")
Output:
Enter a number 6
Number is even

Enter a number 9
Number is odd

In this program, the user is asked to enter a number that is assigned to
variable m. Variable m is divided by 2, and if the remainder is 0, meaning

the number is a multiple of 2, a message Number is even is displayed.

Similarly, if the remainder of the division operation is not 0, the number is
not a multiple of 2, and Number is odd is displayed.

Note

Python provides a divmod function, which takes two numeric

arguments and returns the quotient and the remainder, so you

don’t have to use both // for the quotient and % for the remainder.

When writing programs, sometimes you want to execute some statements
several times. For such situations, you use loops. Let’s see how to use
loops in Python.

Loops

Loops are used to execute a set of statements while a logical expression is
true. You will learn two loops in this section: the while loop and the for

loop.

The while Loop

A while loop is repeatedly executes a block of code as long as a specified

logical expression remains true. The logical expression in a while loop is

evaluated first, and if it evaluates to false, the body of the while loop will

not execute. If the logical expression evaluates to true, the block of code in
the while loop is executed. After executing the body, control jumps back to

the beginning of the loop to confirm if the logical expression is still true.
The loop will continue to execute until the logical expression evaluates to
false, in which case the execution of the program continues from the
statement following the while loop.

Syntax:
while expression :
 statement1
 statement2
 statement3

Here you see that the block of code in the while loop is indented. Why is

that?

Indentation

Python uses indentation to express the block structure of a program. Unlike
other languages, Python does not use braces or begin/end delimiters to
denote blocks. Instead it uses indentation to represent blocks of
statements.

A block is a contiguous sequence of logical lines, all indented by the same
amount, and a logical line with less indentation ends the block. The first

statement in a block must have no indentation—it must not begin with any
white space. You can use tabs or spaces to indent statements. Python
replaces each tab with up to eight spaces.

Note

Don’t mix spaces and tabs for indentation, as tabs may be treated
differently by different editors.

The following program displays numbers from 1 to 10 using the while

loop:

whileloop.py
k=1
while k <=10 :
 print (k)
 k=k+1
Output:
1
2
3
4
5
6
7
8
9
10

You can see that the while loop is set to execute as long as the value in

variable k is less than or equal to 10. In the loop, you print the value of

variable k and increment its value by 1 to print the next successive value.

You also see that the while loop terminates when the logical expression

evaluates to false. Is there any other way to terminate a loop? Also, what if
you want to skip the loop on occurrence of some condition? The following
section explains how to terminate and skip a loop.

Breaking and Continuing a Loop

There are two situations when a loop terminates and you exit from a loop:
when the logical expression evaluates to false, and on occurrence of a
break statement in the loop.

The break Statement

The break statement terminates and exits from the current loop and

resumes execution of the program from the statement following the loop. It
is typically used in an infinite loop.

Syntax:
break

The following program demonstrates using a break statement to terminate

an infinite while loop to print 10 numbers:

breakex1.py
k=1
while 1 :
 print (k)
 k=k+1
 if(k>10):
 break
Output:
1
2
3
4
5
6
7
8
9
10

You initialize the variable k to value 1. Also, you set a while loop to run

infinitely. In the loop, you display variable k and then increment its value

by 1. When k becomes more than 10, you exit from the infinite loop

through the break statement.

Remember that value 1 represents the Boolean value true. You can also

replace while 1 by while true to create an infinite loop.

Now let’s look at the statement that tells Python to skip the part of the
current loop and begin with the next iteration.

The continue Statement

The continue statement stops execution of the current iteration by

skipping the rest of the loop and continuing to execute the loop with the
next iterative value.

Syntax:
continue

The following program prints numbers from 1 to 10 except for the value 7:

continueex.py
k=1
while k <=10 :
 if k==7:
 k+=1
 continue
 print (k)
 k=k+1
Output:
1
2
3
4
5
6
8
9
10

First, initialize variable k to 1. Then, set the while loop to execute as long

as k is less than or equal to 10. In the while loop, print the value of k and

then increment its value by 1. Also, skip the body of the loop through a
continue statement when the value of k is 7. That is, you don’t print k but

just increment its value by 1 to execute the loop with the next value in
sequence.

The pass Statement

The pass statement is used in Python to indicate an empty block of

statements. It is also used as a placeholder for code that you want to write
later and acts as a reminder of where a program can be expanded.

You can rewrite the previous program to display the numbers from 1 to 10
except for 7 by using the pass statement as shown here:

passex1.py

k=1
while k <=10 :
 if k==7:
 pass
 else:
 print (k)
 k+=1

Output:

1
2
3
4
5
6
8
9
10

You can see that value of k is initialized to 1. The while loop will execute

until k becomes larger than 10. In the while loop, the value of k is

displayed and its value incremented by 1. When the value of k is equal to

7, the pass statement is executed; k is not displayed and is incremented

by 1 to execute the loop with the next value in sequence.

The range () Function

The range() function generates and returns a sequence of integers and is

very commonly used in looping statements. There are three variations of
the range() function, depending on the number of parameters passed to

it:

range(x): Returns a list whose items are consecutive integers from 0

(included) to x (excluded).

range(x, y): Returns a list whose items are consecutive integers from

x (included) to y (excluded). The result is an empty list if x is greater

than or equal to y.

range(x, y, step): Returns a list of integers from x (included) to y

(excluded), and the difference between each successive value is the
value defined by step. If step is less than 0, range counts down from

x to y. The function returns an empty list when x is greater than or

equal to y and step is greater than 0, or when x is less than or equal

to y and step is less than 0. If 0 is specified as the step value, the

range() function raises an exception. When step is not specified, its

default value is 1.

The for Loop

The for loop iterates through a sequence of objects. A sequence is a

container object that may be in the form of a list, tuple or string.

Note

Containers in Python means sets, sequences such as lists, tuples,
and strings, and mappings such as dictionaries. You will learn about
these containers in detail in Chapter 3, “Sequences.”

Syntax:
for iterating_var in sequence:
 statement1
 statement2
 statement3

The first item in the sequence is assigned to the iterating variable
iterating_var, and the statement block is executed. One by one, each

item in the sequence is assigned to iterating_var, and the statement

block is executed until the entire sequence is finished.

The following program displays numbers from 1 to 10:

forloop.py
for i in range(1,11):
 print (i)

This prints a sequence of numbers, which are generated from 1 to 10 using
the built-in range() function. Since the value for step is not indicated, the

default value of 1 is the step value.

The following program displays the odd numbers between 1 and 10. The
two successive odd values differ by 2, so you use the step value of 2 in the

range() function.

forloop2.py

print ("Odd numbers between 1 and 10 are:")
for i in range(1,11,2):
 print (i)
Output:
Odd numbers between 1 and 10 are:
1
3
5
7
9

The range(1,11,2) function will first generate a value 1. To this value, the

step value 2 is added to generate the next value in the list, 3. The process

will continue until the generated value is less than or equal to 10.

A for loop can be used to print random values from a tuple. We will

discuss tuples in detail in the next chapter. For now it is sufficient to know
that a tuple is an immutable object that can be used to represent a set of
values of any data type. The values or elements of a tuple are enclosed in
parentheses, (). An immutable object is one that cannot be changed once

it is created. You will be using membership operators to display elements
from the tuple.

Membership Operators

A membership operator tests for membership in a sequence, such as
strings, lists, or tuples. There are two membership operators, as shown in
Table 2.5.

Table 2.5. Membership Operators

Operator Description

in Returns Boolean value true if it finds the

specified variable in the given sequence;
otherwise it returns false.

not in Returns Boolean value true if it does not find

the specified variable in the given sequence;
otherwise it returns false.

Here are some examples:

ab in abcde—Returns true because the string ab is found in the

string abcde.

2 in (10,3,5,2,1)—Returns true because the value 2 exists in the

tuple.

bob not in ab—Returns true because the string bob is not found in

the string ab.

The following program displays the random values included in a tuple using
the membership operator in through a for loop:

for i in (7, 3, 8, 1, 4):
 print i

Here you provide a tuple of values in the for loop. The first value from the

tuple will be assigned to the variable i, and the loop will be executed. Then

the next value in the tuple will be assigned to i and the loop executed. The

loop will be executed with each value in the tuple. In the body of the loop
you display just the value assigned to i, displaying all the values in the

tuple one by one.

The following program displays a random value between 1 and 9. To get
random values, you will use a choice() function.

The choice () Function

The choice() function picks and returns a random item from a sequence.

It can be used with lists, tuples, or strings.

Syntax:
choice(sequence)

where sequence can be a list, tuple, or string.

Note

To use the choice() function in a program, you need to import a

random module.

Example:
k=choice([2,4,6,8,10])

www.allitebooks.com

http://www.allitebooks.org

You will get a random value picked from the specified sequence, which may
be 2, 6, or some other value from the list.

randomnumber.py
from random import choice
k=choice(range(1,10))
print ("Random number is",k)
Output:
Random number is 4
Random number is 1

In this program, the range() function will return values between 1 and 9.

The choice() function will pick up any value at random from these nine

values and assign it to the variable k, which is then displayed on the

screen. Every time you execute the program, the choice() function returns

a random value.

The following prints the prime numbers between 1 and 100.

primes.py
print (1)
for i in range(2,101):
 x=1
 for j in range(2, i):
 n=i%j
 if n==0:
 x=0
 break
 if x==1:
 print (i)
Output:
1
2
3
5
7
11
13
17
19
23
29
31
37
41
43
47

53
59
61
67
71
73
79
83
89
97

This program displays value 1, knowing it is a prime number. Then it uses

a for loop to generate values from 2 to 100, and each value is assigned to

variable i. The value in variable i is divided by 2 through i–1 values. If it

divides by any of these values, it is not a prime number and is not
displayed. The value in variable i is displayed when it does not divide by

any value between 2 and i–1.

Summary

In this chapter you learned to apply arithmetic operations and different
logical and membership operators in Python programs. You also saw the
use of escape sequences. To enhance interaction with the user, you learned
to get data from the user and process the incoming data. You saw
conversion of data into different types. You also learned to display octal and
hexa values, perform bitwise operations and use complex numbers. You
also saw usage of if...else statement in making decisions. Finally you

saw using while and for loops for doing repetitive tasks.

In the next chapter, you are going to learn about containers: sequences,
mappings, and sets. A sequence includes strings, lists, and tuples, and
mappings include dictionaries. You will also learn to perform operations on
sequences through their respective methods. Also, you will learn about
one- and two-dimensional arrays. Finally, you will learn to apply operations
to sets such as unions, intersections, and differences.

Chapter 3. Sequences

This chapter covers the following:

How data is stored in a string

Creating and displaying one- and two-dimensional arrays

List slicing and its methods

Creating tuples and searching for elements

Key/value pairs and their methods

Union, intersection, and difference operators

Sequences

A sequence contains objects that are kept in a specific order. You can
identify an object in a sequence by its index location. Also, you can extract
from a sequence with the slicing operation. In this chapter you will look at
three examples of sequences: lists, tuples, and strings.

Strings use quotes, such as 'Hello', "Hello", '"Hello"',
"""Hello""".

Lists use square brackets, such as [Tiger, Coffee, 1,'a', 10.50,

'b'].

Tuples use parentheses, such as (Tiger, Coffee, 1,'a',10.50,
'b').

Tuples and strings are immutable—they cannot be modified after they are
created. A copy of a string or a tuple is created when you apply an
operation to the original string or tuple. A list is mutable; you can append
elements, remove existing elements, or rearrange elements. All
modifications in a list are made without creating a new list object.

The three operations that are commonly applied to sequences are these:

+ will concatenate sequences to make longer sequences.

* is used with a numerical digit to repeat the sequence several

times.

[] fetches a particular element from the sequence (indexing) or

a subset of elements from the sequence (slicing).

Note

Positions are numbered from zero in sequences; that is, the first
element in a sequence is at index value 0.

Strings

A string is a sequence of characters used to store and represent text information. A string literal can
be enclosed in single ('), double (") or triple quotes ('''). Strings are immutable in Python; you

cannot modify an existing string object. When you perform an operation on a string object, you
create a new string object.

Examples of strings in single, double, and triple quotes are as follows:

k='Hello World!'
k="Hello World!"
k='''
Hello World!
It\' s hot today
Let\'s party '''

To make the string appear on two lines, you can embed a newline in the string:

k="Hello World!\nIt's hot"

If the string literal spans multiple lines, use a backslash as the last character of a line to indicate that
the next line is a continuation:

k="Hello World!\
It's hot"

To display a single quote in a string, you need to use the escape character:

k='Isn\'t it?'

There is no need to use an escape character to display a single quote within a double-quoted string.

k="Isn't it?"

A triple-quoted string may be enclosed in matching triplets of quote characters (''' or """). The

string literal above can also be written as:

k="""
Hello World!
It' s hot today
Let' s party"""

In a triple-quoted string literal, line breaks in the literal are preserved as newline characters. You
cannot use a backslash in a triple-quoted string.

Note

Unlike other programming languages, there is no separate character data type in Python. A

character is considered a string of length one.

How Characters Are Stored in a String

When text is assigned to a string, each of its characters is stored at a specific index location. For
example, the statement k="David" will assign the text David to the variable k. Internally, the

characters will be stored in variable k, as shown in Figure 3.1.

Figure 3.1. Characters stored in a string.

Where 0,1... are the index. A string is terminated by a NULL character, \0. You can access any

character of the string through its index. For example, k[0] accesses the first character, D, k[1]

accesses the second character, a, and so on.

Python strings support several methods and functions. What is the difference between functions and
methods?

Differences Between Functions and Methods

A function is a module of code that is called by name. You can pass data to the function in the form
of arguments, and it can return some value. The data to be passed to the function needs to be
passed explicitly. A method also is called by name and may return a value. The main difference
between a method and a function is that a method is associated with an object, and the object for
which it is called is implicitly passed to it. Also, a method is able to operate on data that is contained
within the class. The list of methods and functions is given in Table 3.1.

Table 3.1. String Methods and Functions

Method/Function Description

str() Returns a string representation of the object.
If the argument is a string, the returned
value is the same object.

max() Returns the maximum alphabetical character
in the string.

min() Returns the minimum alphabetical character
in the string.

len() Counts and returns the number of characters
in the sequence (string, tuple, or list) or in
the mapping (dictionary).

sorted() Returns the string’s characters in sorted
order. After it is expanded into a list of
individual characters, the string is sorted and
returned.

reversed() Returns the string’s characters in reverse
order.

capitalize() Returns the string with its first character in
uppercase.

lower() Returns the string converted to lowercase.

upper() Returns the string converted to uppercase.

swapcase() Returns the string with uppercase characters
converted to lowercase and vice versa.

title() Returns the string with first character of each
word converted to uppercase characters and
the rest all characters in lowercase.

join(sequence) Returns a string that is the concatenation of
the strings in the sequence.

ljust(width) Returns the string left-justified in a string of
length width. The string is padded using

spaces.

rjust(width) Returns the string right-justified in a string
of length width. The string is padded using

spaces.

center(width) Returns the string centered in a string of
length width. The string is padded with

spaces.

lstrip() Returns the string with leading white space
removed.

rstrip() Returns the string with trailing white space
removed.

strip() Returns the string with leading and trailing
white space removed.

isalnum() Returns true if all characters in the string are
alphanumeric, otherwise returns false.

isalpha() Returns true if all characters in the string are
alphabetic, otherwise returns false.

isdigit() Returns true if all characters in the string are
digits, otherwise returns false.

islower() Returns true if all characters in the string are
lowercase, otherwise returns false.

istitle() Returns true if the string is title cased (the
first character of each word is in uppercase
and the rest all in lower case). The function
returns false otherwise.

isupper() Returns true if all characters in the string are
in uppercase, otherwise returns false.

Finding the Length of a String

To find the number of characters in a string, use the len() function. As indicated in Table 3.1, the

len() function counts and returns the number of characters in a sequence (string, tuple, or list). The

program for doing so is shown here:

string1.py
n=input("Enter your name: ")
l=len(n)
print ("The name entered is", n, "and its length is", l)
Output:
Enter your name: John
The name entered is John and its length is 4

In this program, you ask the user to enter a string that is temporarily stored in a variable n. Then,

through the len() function, you find out the length of the string and display it.

The following program checks if the entered value is numeric or non-numeric:

ifelse4.py
m=input("Enter marks: ")
if m.isdigit():
 print ("Entered data is numeric")
else:
 print ("Entered data is not numeric")
Output:
Enter marks: 50
Entered data is numeric

Enter marks: fifty
Entered data is not numeric

The program uses the isdigit() method to know if the entered value is a numeric value or not. The

isdigit() method returns the Boolean value true if the referenced object is numerical; otherwise it

returns false.

The following program demonstrates the use of the upper(), lower(), title(), capitalize(), and

swapcase() methods. A string, Hello World!, is converted to uppercase, lowercase, capitalized, and

swapcase (the uppercase letters are switched to lowercase and vice versa).

string2.py
s="Hello World!"
print ("Original String is", s)
print('String after toggling the case:', s.swapcase())
print ("String in uppercase is", s.upper())
if (s.istitle()):
 print("String in lowercase is", s.lower())
print("String,", s, "is in title case:", s.istitle())
print ("String in capitalized form is", s.capitalize())
Output:
Original String is Hello World!
String after toggling the case: hELLO wORLD!
String in uppercase is HELLO WORLD!
String in lowercase is hello world!
String, Hello World! is in title case: true
String in capitalized form is Hello world!

The following program displays the first character of the entered string. Also, the entered string is
displayed characterwise—each character is displayed one by one.

characterwise.py
s=input("Enter a string: ")
n=len(s)
print ("The first character of", s, "is", s[0])
print ("The entered string will appear character wise as:")
for i in range(0,n):
 print (s[i])
print ("The entered string will appear character wise as:")
for i in s:
 print (i)
print ("String with its characters sorted is", sorted(s))
print ("String in reverse form is", "".join(reversed(s)))
Output:
Enter a string: katherine
The first character of katherine is k
The entered string will appear character wise as:
k
a
t
h
e

e
r
i
n
e
The entered string will appear character wise as:
k
a
t
h
e
r
i
n
e
String with its characters sorted is ['a', 'e', 'e', 'h', 'i', 'k', 'n', 'r', 't']
String in reverse form is enirehtak

Knowing that a string’s index is zero-based, you display the first character of the string by accessing
its 0th index location. The program also finds the length of the entered string and prints each of its
characters through its index. Also, the program uses the membership operator in to access and

display each character of the string. The program displays the characters of the string after sorting
them alphabetically. Finally, the string is reversed and displayed using the reversed() function.

The following program displays the maximum and minimum alphabetical character in an entered
string. Also, the program converts an entered number into string data type, counts the number of
digits, and displays its first digit by applying string functions to it.

string3.py
s=input('Enter a string: ')
print ('The string entered is:', s)
print('The maximum alphabetical character from the string is:' , max(s))
print('The minimum alphabetical character from the string is:' , min(s))
n=int(input('Enter a number: '))
m=str(n)
print('The number in string form is', m, 'its length is', len(m), 'and its first digit
is', m[0])
Output:
Enter a string: enormous
The string entered is: enormous
The maximum alphabetical character from the string is: u
The minimum alphabetical character from the string is: e
Enter a number: 53
The number in string form is 53 its length is 2 and its first digit is 5

The program asks the user to enter a string and displays its maximum and minimum alphabetical
characters. The maximum and minimum characters are those that have the highest and lowest ASCII
values, respectively. Also, the program demonstrates how a numerical value is converted intro string
type using the str() function. Once the number is converted into string type, you can apply a string

function such as len() to count the number of digits in it. You also see the first digit of the number

is accessed by accessing the content at index location 0.

The following program demonstrates string concatenation, the application of the * operator to repeat

a string several times and join the strings:

stringconcat1.py
s="Hello World!"
t="Nice Day"
print (s+t)
print (s+" "+t)
print (s*3)
u="#"
print('The string after joining character # to the string', t,':', u.join(t))

u="hello"
print('The string after joining word, hello to the string',t,':', u.join(t))

Output:
Hello World!Nice Day
Hello World! Nice Day
Hello World!Hello World!Hello World!
The string after joining character # to the string Nice Day : N#i#c#e# #D#a#y
The string after joining word, hello to the string Nice Day : Nhelloihellochelloehello
helloDhelloahelloy

In this program, the two strings Hello World! and Nice Day are concatenated without a space and

with a space. Then, the string Hello World! is displayed three times using the * operator. The

join() method is used to demonstrate joining a character to all the characters of the specified string.

Also, a complete string is joined to each character of the given string.

The following program asks the user to enter two strings and then joins a string to each of the
characters of another string:

stringjoin.py
p=input("Enter a string: ")
q=input("Enter another string: ")
print ("The first string is:", p)
print ("The second string is:", q)
print ("The combination is", p.join(q))
Output:
Enter a string: Hello
Enter another string: ABC
The first string is: Hello
The second string is: ABC
The combination is AHelloBHelloC

You can see that the two strings entered are Hello and ABC. The string Hello is joined to each

character of the string ABC.

Do strings in Python support methods that help in searching or finding a substring in a string? Yes.
Table 3.2 displays the string methods that help in finding substrings in a string.

Table 3.2. String Methods Used to Find Substrings in

a String

Method Description

count(s, [start],
[end])

Returns the number of occurrences of
substring s in a string. If start or end

is specified, the substring s is searched

and counted within the index range.

find(s, [start],
[end])

Returns the lowest index in a string
where substring s is found. The

function returns -1 if the substring is

not found.

index(s, [start],
[end])

Returns the lowest index in a string
where substring s is found. The

function raises ValueError if the

substring is not found.

rfind(s, [start],
[end])

Returns the highest index in a string
where substring s is found. It returns

-1 if the substring is not found.

The following program demonstrates the use of different functions to count the number of vowels in a
sentence:

countvowel.py
s=input('Enter a sentence: ')
n=len(s)
c=0
for i in range(0,n):
 if(s[i]=='a' or s[i]=='A' or s[i]=='e' or s[i]=='E' or s[i]=='i' or s[i]=='I' or s[i]
=='o' or s[i]=='O' or s[i]=='u' or s[i]=='U'):
 c+=1
print ('The number of vowels in the sentence is' , c)
t=s.count('a', 0, n)+ s.count('A', 0, n)+ s.count('e', 0, n)+s.count('E', 0, n)+
s.count('i', 0, n)+ s.count('I', 0, n)+ s.count('o', 0, n)+ s.count('O', 0, n)+
s.count('u', 0, n)+s.count('U', 0, n)

print ('The number of vowels in the sentence is' , t)

v=s.count('a')+ s.count('A')+ s.count('e')+s.count('E')+ s.count('i')+
s.count('I')+ s.count('o')+ s.count('O')+ s.count('u')+s.count('U')
print ('The number of vowels in the sentence is' , v)
Output:
Enter a sentence: amazing day in alaska
The number of vowels in the sentence is 8
The number of vowels in the sentence is 8
The number of vowels in the sentence is 8

In this program, the user is asked to enter a sentence. Using the index, every character of the
sentence is accessed to see if it is a vowel. A variable c that is initialized to 0 is incremented by 1

every time a vowel is found in the sentence. The program also displays the two ways of using the
count() function for counting vowels in the sentence.

The following program uses membership operators to see if an entered substring is in a string:

checkstr.py
m=input("Enter a string: ")
n=input("Enter a substring: ")
if n in m:
 print (n, "is found in the string", m)
else:
 print (n,"does not exist in the string", m)
Output:
Enter a string: education
Enter a substring: cat
cat is found in the string education

Enter a string: education
Enter a substring: cari
cari does not exist in the string education

The following program is one step ahead of the previous program. It not only informs if a substring is
found in a string or not but also displays where the substring appears in the given string if it is
found. The program uses the find() method.

searchstr1.py
p=input("Enter a string: ")
print ("Entered String is ", p)
q=input("Enter the substring to search: ")
r=p.find(q)
if r==-1:
 print (q, "not found in", p)

else:
 print (q, "found in", p, "at location", r+1)
Output:
Enter a string: katherine
Entered String is katherine
Enter the substring to search: her
her found in katherine at location 4

Here you ask the user to enter a main string and a substring and assign them to the variables p and

q, respectively. Then, the find() method is used to search the substring q in the string p. The

find() method returns either the value -1 if the substring is not found in the string or the lowest

index location where the substring occurs in the string. On the basis of the value returned by the
find() method, either a message saying the substring is not found in the string or the location of the

occurrence of the substring in the string is displayed.

You can use the find() method for finding the occurrence of the substring in the given string, but

you cannot use it for counting the occurrences of the substring in the string. For this, you use the
count() method, as demonstrated in the following program:

searchstr2.py
p=input("Enter a string: ")
print ("Entered String is", p)
q=input("Enter the substring to search: ")
r=p.count(q)
if r==0:
 print (q, "not found in", p)
else:
 print (q, "occurs in", p, r, "times")
Output:
Enter a string: alabalabalab
Entered String is alabalabalab
Enter the substring to search: la
la occurs in alabalabalab 3 times

This program accepts a string and a substring from the user and uses the count() method to count

the occurrences of the substring in the given string. The count is then displayed.

Are there any string methods to see if a string begins or ends with a given prefix or suffix? Yes, and
they are these:

startswith(s, [start], [end])—Returns true if the string starts with the specified prefix,

otherwise returns false. The prefix can be a single string or a sequence of individual

strings.

endswith(suffix, [start], [end])—Returns true if the string ends with the specified

suffix; otherwise false is returned. The suffix can be a single string or a sequence of

individual strings.

The following program asks the user to enter a sentence and then checks to see if it begins or ends
with the given prefix or suffix.

stringfunc2.py
s=input("Enter a sentence: ")
print ('The original sentence is:', s)
if s.startswith('It'):
 print('The entered sentence begins with the word It')
if s.startswith('It', 0, 2):
 print('The entered sentence begins with the word It')
if s.endswith('today'):
 print('The entered sentence ends with the word today')
if s.endswith('today', 10, 15):
 print('The entered sentence ends with the word today')

Output:
Enter a sentence: It is hot today
The original sentence is: It is hot today
The entered sentence begins with the word It
The entered sentence begins with the word It
The entered sentence ends with the word today
The entered sentence ends with the word today

In this program, the sentence entered by the user is checked to see if it begins with the prefix It or

ends with the suffix today; then the appropriate message is displayed. The program demonstrates

the use of the startswith() and endswith() methods.

You might need to split a string into parts. Or you might need to replace certain specific characters or
a substring in a string with other data. Python provides string methods for this. Table 3.3 displays
the string methods for breaking a string and replacing substrings.

Table 3.3. Methods for Breaking a String and Replacing
Substrings

Method Description

partition(separator) Partitions and returns the string in three
parts: the text prior to the first occurrence of
separator in the string, the separator, and

the text after the first occurrence of the
separator. If the separator doesn’t occur, the
complete string is returned as the first part,
and the other parts are returned as empty
strings.

split(separator, [n])Splits the string on the basis of the specified
separator and returns an array of strings. The
string is split wherever the separator occurs
in the string. If the optional value n is
specified, the string will be split into at most
n parts. If separator is not specified, white

space is considered a default separator. The
white space includes the escape characters
\n (carriage return) and \t (tab character).

splitlines(boolean) Splits the string on line boundaries and
returns the list of lines. The line breaks are
not included in the resulting list unless
boolean value true is specified in the

function.

expandtabs([tabsize])Returns the string with all tabs expanded
using spaces. If tabsize is not given, a tab

size of 8 characters is assumed.

replace(sl, s2, n) Returns the string with all occurrences of
substring s1 replaced by s2. If the optional

argument n is specified, only the first n

occurrences are replaced.

The following program breaks the sentence entered into words and returns:

splitting.py
p=input("Enter a sentence: ")
print ("The sentence entered is:", p)
print ("The words in the sentence are")
print (p.split())

Output:
Enter a sentence: It is a great day
The sentence entered is: It is a great day
The words in the sentence are
['It', 'is', 'a', 'great', 'day']

This program looks for white spaces in the sentence and splits it into words at occurrence of white
spaces. The words of the sentence are returned as an array of strings.

The following program asks the user to enter a name consisting of a first and a last name and then
displays it after interchanging the two:

interchangenme.py
n=input('Enter your first name and last name: ')
k=n.partition(' ')
print('The name after interchanging first and last name:', k[2], k[0])
Output:
Enter your first name and last name: Caroline Stevens
The name after interchanging first and last name: Stevens Caroline

In this program, the first and last names entered by the user are assigned to variable n. The name in

variable n is partitioned into three parts on occurrence of the white space, using the partition()

method: the first name, white space, and the last name. To interchange the first and last name, you
display the third part, followed by the first part of the string.

The following program demonstrates three methods: partition(), replace(), and split():

breaking.py
s='education '
k=s.partition('cat')
print('The word', s, 'is partitioned into three parts')
print('The first part is', k[0], 'separator is', k[1], 'and the third part is',k[2])
t=input('Enter a sentence: ')
print('The original sentence is', t)
print('The sentence after replacing all the characters "a" by "#" is:', t.replace('a',
'#'))
print('The sentence after replacing first three "a" characters by "#" is:',
t.replace('a', '#', 3))
u=t.split(' ')
print('The words in the entered sentence are', u)
print('The words in the entered sentence are')
for i in range(0, len(u)):
 print(u[i])
u=t.split(' ',1)
print('The sentence is split into two parts:', u[0], 'and', u[1])
Output:
The word education is partitioned into three parts
The first part is edu separator is cat and the third part is ion
Enter a sentence: amazing day in alaska
The original sentence is amazing day in alaska
The sentence after replacing all the characters "a" by "#" is: #m#zing d#y in #l#sk#
The sentence after replacing first three "a" characters by "#" is: #m#zing d#y in alaska
The words in the entered sentence are ['amazing', 'day', 'in', 'alaska']
The words in the entered sentence are
amazing
day
in
alaska
The sentence is split into two parts: amazing and day in Alaska

The string education is partitioned into three parts at the substring cat using the partition()

method. The three parts will be edu, cat, and ion. Also, the program uses replace() to replace the

character a in the sentence by #. The program uses replace() to replace only the first three

occurrences of character a by #. The program splits the entered sentence into an array of strings

using split() and displays its words. Finally, the program splits the sentence into two parts on

occurrence of a white space.

You have seen examples that deal with arrays of characters. Now let’s look at examples that deal
with arrays of numbers.

Arrays

Numerical arrays are used for storing numerical data. Since they don’t have NULL characters,
numerical arrays are not terminated by NULL characters as with strings, but the index concept still
applies to them for accessing their elements. The arrays are of two types, one- and two-dimensional
arrays.

One-Dimensional Arrays

Consider a numerical array, p, which has five numerical values: 8, 3,1, 6, and 2. These values will be

represented by the structure shown in Figure 3.2.

Figure 3.2. Numbers stored in a one-dimensional array.

The values are the indices that can be used to access the elements in the array. That is, p[0] will

access the first element of the array, 8, p[1] will access the second element of the array, 3, and so

on.

The following program demonstrates creation of a numerical array of five elements:

numericarr.py
p= [0 for i in range(5)]
print ("Enter five numbers")
for i in range(5):
 p[i]= int(input())
print ("Numbers entered in the array are", p)
print ("Numbers entered in the array are")
for n in p:
 print (n)
Output:
Enter five numbers
8
3
1
6
2
Numbers entered in the array are [8, 3, 1, 6, 2]
Numbers entered in the array are
8
3
1
6
2

The first line of the program declares that p is an array of 5 numbers. Using a for loop, the user is

asked to enter five numbers that will be stored in the respective indexes, p[0], p[1], p[2], p[3],

and p[4]. The numerical values in the array p are then displayed.

Now let’s see how two-dimensional arrays are created in Python.

Two-Dimensional Arrays

Two-dimensional arrays are divided into rows and columns. The indices of row and column begin at
value 0. To access each element of the array, you have to specify two indices; one represents the
row, and the other represents the column. Both are enclosed in square brackets.

In Figure 3.3 you see that every location in the array is represented by a row and column location.
The index p[0][0] refers to the element stored at 0th row and 0th column position. Similarly, the

index p[0][1] refers to the element that is stored at 0th row and 1st column position in the two-

dimensional array.

Figure 3.3. Two-dimensional array showing the index values.

The following program creates a two-dimensional array of 3 rows and 3 columns. The program also
computes and displays the sum of elements of the array.

matrix1.py
table= [[0 for i in range(3)] for j in range(3)]
print ("Enter values for a matrix of order 3 x 3")
for d1 in range(3):
 for d2 in range(3):
 table[d1][d2]= int(input())
print ("Elements of the matrix are", table)
print ("Elements of the matrix are")
for row in table:
 print (row)
s=0
for row in table:
 for n in row:
 s+=n
print ("The sum of elements in matrix is",s)
Output:
Enter values for a matrix of order 3 x 3
1
2
3
4
5
6
7
8
9
Elements of the matrix are [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
Elements of the matrix are
[1, 2, 3]
[4, 5, 6]
[7, 8, 9]
The sum of elements in matrix is 45

The data supplied by the user is entered in the two-dimensional array in row major form (see Figure
3.4). When the first row is full, the elements will be stored in the second row, and so on.

Figure 3.4. Numerical values stored in a two-dimensional array.

The first line declares table as a two-dimensional array of three rows and three columns. The values

entered by the user are stored in the two-dimensional array through two nested for loops. On

displaying a row of the two-dimensional array, the row will appear with its elements enclosed in
square brackets. The program also adds and displays the sum of the elements.

The following program demonstrates addition of elements of two-dimensional arrays. The elements in
the two arrays consisting of three rows and three columns will be added and displayed.

matrix2.py
m1 = [[1, 2], [3, 4], [5, 6], [7, 8]]
m2 = [[9, 8], [7, 6], [5, 4], [3, 2]]
m3= [2*[0] for i in range(4)]
print("Addition of two matrices is")
for i in range(4):
 for j in range(2):
 m3[i][j]= m1[i][j]+m2[i][j]
for row in m3:
 print (row)
Output:
Addition of two matrices is
[10, 10]
[10, 10]
[10, 10]
[10, 10]

The elements in the two-dimensional arrays m1 and m2 are arranged as shown in Figure 3.5.

Figure 3.5. Numerical values stored in two-dimensional arrays.

For storing the addition of the elements of the two-dimensional arrays m1 and m2, you declare another

two-dimensional array, m3. Using nested for loops, you access the elements at the respective row

and column position of the two two-dimensional arrays and store their addition in the third array, m3.

The addition of m1 and m2 is computed and stored in array m3 (see Figure 3.6), which is then

displayed.

Figure 3.6. Addition of two-dimensional arrays.

This finishes our discussion on arrays. Next comes another sequence, lists.

Lists

A list is a collection of elements, which might include other lists. Lists begin and end with a square
bracket, and the elements inside are separated with commas.

["John", "Kelly", 1, 2, [Sugar, Butter, 10]]

The first element of the list is at index 0, the second is at index value 1, and so on. The last element is
at index -1.

The following example displays the first and last elements of a list:

list1.py
names=['John', 'Kelly', 'Caroline', 'Paula']
print (names[0])
print (names[-1])
Output:
John
Paula

The index values 0 and -1 refer to the first and last elements of the list, John and Paula.

Finding the Length of the List

To find the length of a list, you use the len() function, which returns the length as an index location

of the last element plus one. From this, you can say that the index location of the last element of the
list is len(list)-1. Similarly, the index location of the second to last element of the list is computed

as len(list)-2. Besides using the len() method for finding the index location of the last element,

there is one more way: the index location of the last element is defined as -1 by default. This way,

you can compute the index location of the second-to-last element as -2 and so on. In other words,

list[len(list)-1] and list[-1] are the same and will display the last element of the list. Thus any

element in the list can be indexed in two ways: from the front (using the len() function) and from the

back (using -1).

The following example displays all the elements of the list:

list2.py
names=['John', 'Kelly', 'Caroline', 'Paula']
for i in range(0,len(names)):
 print (names[i])
Output:
John
Kelly
Caroline
Paula

Here, the len() function will return the length of the list as 4. range(0,4) will return values 0 through

3 (excluding 4), so all the elements of the list from index location 0 through 3 will be displayed.

You can also access the elements of the list using the membership in operator as shown in the

following program:

list3.py
names=['John', 'Kelly', 'Caroline', 'Paula']
for n in names:
 print (n)
Output:
John
Kelly
Caroline
Paula

The in operator with an if statement can be used to search for an element in the list. The following

example searches for the desired content in the list:

list4.py
names=['John', 'Kelly', 'Caroline', 'Paula']
n=input("Enter a name: ")
if n in names:
 print ("Entered name is present in the list")
else:
 print ("Sorry the entered name is not in the list")
Output:
Enter a name: Susan
Sorry the entered name is not in the list

Enter a name: Caroline
Entered name is present in the list

The next program asks the user to enter a numerical value for a month and displays the name of the
month in text form. For instance, if the user enters 1, the program will display the output as January.

If the user enters 2, the program will print February, and so on.

list5.py
months = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August',
'September', 'October', 'November', 'December']
n = int(input("Enter a value between 1 and 12: "))
if 1 <= n <= 12:
 print ("The month is", months[n-1])
else:
 print ("Value is out of the range")
Output:
Enter a value between 1 and 12: 5
The month is May

Enter a value between 1 and 12: 13
Value is out of the range

The elements in the months list will be stored as shown in Figure 3.7.

Figure 3.7. Elements in the months list.

When a user enters a value, it will be assigned to the variable n. You decrement the value in n by 1

because the index locations in the list begin at 0 and not 1. Its value will become 4, and you print the

element at index location 4, which is the desired output, May. To avoid entering a value above the

given range, you validate the value entered by applying chaining of comparison operators to ensure
that the value entered by the user is between 1 and 12.

Next let’s see how lists can be divided or sliced into parts.

List Slicing

You can slice a list into parts to get desired elements. To slice a list, you specify the index locations
from which you want to extract elements.

Syntax:
list[first_index:following_index]

This returns the elements from first_index to the index before following_ index is returned.

Note

If first_index is not specified, then the beginning of the list is assumed. If following_index

is not specified, then the rest of the list is assumed.

To better understand the concept of slicing, let’s assume you have a list named tmplist with these

contents:

tmplist=['John', 'Kelly', 10, 'Caroline', 15, 'Steve', 'Katheline']

Now observe the output of the following examples:

tmplist[0:3] will return the elements at the index value 0 through 2 ['John', 'Kelly',

10].

tmplist[2:4] will return the elements at the index value 2 through 3 [10, 'Caroline'].

tmplist[-4] will return the fourth element from the last ['Caroline'].

tmplist[-4:-2] will return the fourth element from the last through the third element from

the last ['Caroline', 15].

tmplist[-5:5] will return the fifth element from the last through the fourth element from

the beginning [10, 'Caroline', 15].

tmplist[:3] will return the first three elements of the list ['John', 'Kelly', 10].

tmplist[3:] will return the elements at index value 3 to the end of the list ['Caroline',

15, 'Steve', 'Katheline'].

tmplist[:-3] will return the element from index value 0 through the third element from the

last ['John', 'Kelly', 10, 'Caroline'].

tmplist[-3:] will return the third element from the last to the end of the list [15, 'Steve',

'Katheline'].

Table 3.4 shows some of the methods that can be applied to lists.

Table 3.4. List Methods

Method Description

append(object) Appends the specified object to the end of

the list.

insert(index, Inserts the specified object before the index

object) position. If index is greater than the length

of the list, object is appended to the list. If

index is less than zero, object is prepended.

pop([index=-1])Removes and returns the last item from the
list. That is, the element at index location -1

is returned. An exception is raised if the list
is empty.

del[n] Deletes item with the n index number from

the list. That is, the element at index
location n is removed from the list.

remove(value) Removes the first occurrence of value from

the list. An exception is raised if the value is

not found in the list.

reverse() Reverses the elements in the list.

extend(list) Takes a single argument, which is always a
list, and adds the elements on that list to the
original list.

count(value) Returns the number of occurrences of value

in the list.

index(value) Returns the index of the first occurrence of
value in the list.

The following program performs list slicing to display the first four elements in the list, finds the
length of the list, appends the new elements to the list, deletes an element from the list, and displays
elements in the list.

list6.py
tmplist=['John', 'Kelly', 10, 'Caroline', 15, 'Steve', 'Katheline']
print ("The original list is", tmplist)
print ("The first four elements in the list are:", tmplist[0:4])
print ("The number of elements in the list are", len(tmplist))
m=input ("Enter a name to add to the list ")
tmplist.append(m)
print ("The elements in the list now are", tmplist)
n=int(input ("Enter the element number to delete "))
del tmplist[n-1]
print ("The elements in the list now are", tmplist)
print ("The elements in the list can also be displayed as shown:")
for i in range(0, len(tmplist)):
 print (tmplist[i])
Output:
The original list is ['John', 'Kelly', 10, 'Caroline', 15, 'Steve', 'Katheline']
The first four elements in the list are: ['John', 'Kelly', 10, 'Caroline']
The number of elements in the list are 7
Enter a name to add to the list Rebecca
The elements in the list now are ['John', 'Kelly', 10, 'Caroline', 15, 'Steve', ' Kathe-
line', 'Rebecca']
Enter the element number to delete 2
The elements in the list now are ['John', 10, 'Caroline', 15, 'Steve', 'Katheline' ,
'Rebecca']
The elements in the list can also be displayed as shown:
John
10
Caroline
15
Steve
Katheline
Rebecca

This program defines seven elements by the name tmplist. You first display all the elements of the

list. Then, with the slicing method, you display the first four elements of the list.

Print the count of the elements in the list using the len() function. Then ask the user to enter an

element that is to be appended to the list. The data entered by the user is appended to the list
through the append() method.

Then you ask the user to enter the location of the element that is required to be removed from the list.
Knowing that the user will count the location beginning from value 1, whereas the elements in the list

begin at index value 0, decrement the location entered by the user by 1 so that it matches the index

location of the element the user wishes to remove from the list. Finally, with the del() method, the

element at that index location is removed from the list.

The following program demonstrates adding new elements to the list, searching for an element in the
list, and updating the element.

list7.py
names=[]
n=int(input("How many names? "))
print("Enter", n, "names")
for i in range (0,n):
 m=input()
 names.append(m)
print ("The original list of names is", names)
p=input ("Enter the name to search: ")
if p in names:
 print ("The name", p, "is found in the list at location ", names.index(p)+1)
else:
 print ("The name", p, "is not found in the list ")
q=input ("Enter the name to update/change: ")
if q in names:
 loc=names.index(q)
 r=input("Enter the new name: ")
 names[loc]=r
 print ("The name", q, "in the list is changed to", r)
else:
 print ("The name", q, "is not found in the list")
names.sort()
print ("Sorted names are", names)
Output:
How many names? 4
Enter 4 names
Kelly
Caroline
David
Beth
The original list of names is ['Kelly', 'Caroline', 'David', 'Beth']
Enter the name to search: David
The name David is found in the list at location 3
Enter the name to update/change: Caroline
Enter the new name: Candace
The name Caroline in the list is changed to Candace
Sorted names are ['Beth', 'Candace', 'David', 'Kelly']

The program creates an empty list, names, and asks the user to add the desired number of names (any

text) to it. After some names are added to the list, its original content is displayed. Then you ask the
user to enter the name to search for. The name entered is searched in the list using the membership
in operator. If the name is found in the list, its location is displayed; otherwise, the message name

not found is displayed. After searching comes updating. The program asks the user to enter the name

to update. If the name entered is found, its index location is accessed using the index() method, and

the new name is stored at that index location, replacing the old name. Finally, the program displays
all the names in the list after sorting them alphabetically using sort().

Tuples

Tuples are a type of sequence, like strings. But unlike strings, which can contain only characters,
tuples can contain elements of any type. A tuple is an immutable object that cannot be changed
once it is created. As with every sequence, tuple indices are zero based; the first element is at
index 0, and the last element is at index -1.

The following program demonstrates how a tuple is defined and how its elements are accessed and
displayed:

tup1.py
names=('John', 'Kelly', 'Caroline', 'Steve', 'Katheline')
print ("The names in the tuple are:", names)
print ("The first name in the tuple is", names[0])
print ("The last name in the tuple is", names[len(names)-1])
print ("The names in the tuple are")
for n in names:
 print (n)
Output:
The names in the tuple are: ('John', 'Kelly', 'Caroline', 'Steve', 'Katheline')
The first name in the tuple is John
The last name in the tuple is Katheline
The names in the tuple are
John
Kelly
Caroline
Steve
Katheline

In this program, a tuple names is defined that contains five elements: John, Kelly, Caroline,

Steve, and Katheline. All the elements of the tuple are displayed, followed by the first and last

elements. The program also shows how elements of a tuple are accessed using the membership in

operator.

The next program demonstrates searching for an element in a tuple and concatenating two tuples.

tup2.py
names=('John', 'Kelly', 'Caroline', 'Steve', 'Katheline')
n=input("Enter the name to search: ")
if n in names:
 print ("The name", n, "is present in the tuple")
else:
 print ("The name", n, "does not exist in the tuple")
countries=('U.S.', 'U.K', 'India')
names+=countries
print ("The tuples are concatenated. The concatenated tuple is", names)
Output:
Enter the name to search: Beth
The name Beth does not exist in the tuple
The tuples are concatenated. The concatenated tuple is ('John', 'Kelly', 'Caroline',
'Steve', 'Katheline', 'U.S.', 'U.K', 'India')

Here, names is defined as consisting of five elements. The user is asked to enter a name to search

for. Using the membership in operator, the name entered is searched for in the names tuple, and a

message is displayed. Also, one more tuple, countries, is defined to include three elements. The

elements in countries are added to the names tuple. The elements in the concatenated tuple,

names, are then displayed.

Mappings are mutable objects that are used for mapping values to objects. The standard mapping
type that we discuss next is the dictionary.

Dictionary

A dictionary is a combination of key/value pairs in which every key has to be unique. Key/value
pairs are separated by a colon, and the pairs are separated by commas. The key/value pairs are
enclosed in a curly brackets.

Syntax:
d = {key1 : value1, key2 : value2 }

Dictionaries are mutable, which means a dictionary can be modified, and you don’t have to create
a copy of it to modify it. Dictionary keys are case sensitive and immutable because Python
associates them with a unique number called a hash. Also, dictionary keys can be of mixed data
types: strings, integers, and others. Table 3.5 shows some of the methods that can be applied to
the dictionary.

Table 3.5. Dictionary Methods

Method Description

clear() Removes all items from the dictionary.

pop(key,
[default])

Returns and removes the value associated
with the specified key from the dictionary. If
the key does not exist, the method returns
the default value provided. If the key does
not exist and no default value is provided, a
KeyError exception is raised.

update(new,
[key=value...])

Merges the new key/value pairs in the
dictionary. The existing key/value pairs are
updated.

copy() Makes a copy of the dictionary. The objects
in the new dictionary are references to the
objects in the original dictionary.

get(key,
[default])

Returns the value associated with the given
key. If key is not present and default is

provided, the method returns the default

value. If key is not present and no default is

provided, a KeyError exception is raised.

items() Returns all the items in the dictionary as a
sequence of key/value tuples.

keys() Returns all the keys in the dictionary as a
sequence of keys.

values() Returns all the values from the dictionary as
a sequence.

The following program demonstrates how to fetch a value from the dictionary by supplying a key.
Also, the program shows how to add a key/value pair to an existing dictionary and delete an
existing key/value pair. The program demonstrates the use of the dictionary in accessing the

capital of the country whose name is entered by the user.

dict1.py
countrycap={'U.S.' : 'Washington D.C.', 'U.K.' : 'London', 'India' : 'New Delhi', }
n=input('Enter country: ')
if n in countrycap:
 print ('The capital of', n , 'is', countrycap[n])
else:
 print ('Sorry the country', n, 'does not exist in our dictionary')
countrycap['Australia']='Sweden'
print ('The dictionary after adding a country:')
for country, capital in countrycap.items():
 print ('Capital of', country, 'is' , capital)
m=input('Enter the country to delete:')
del countrycap[m]
print ('The dictionary after deleting a country:')
for country, capital in countrycap.items():
 print ('Capital of', country, 'is' , capital)

Output:
Enter country: U.S.
The capital of U.S is Washington D.C.
The dictionary after adding a country:
Capital of U.S. is Washington D.C.
Capital of Australia is Sweden
Capital of India is New Delhi
Capital of U.K. is London
Enter the country to delete: U.K.
The dictionary after deleting a country:
Capital of U.S. is Washington D.C.
Capital of Australia is Sweden
Capital of India is New Delhi

This program defines a dictionary named countrycap with three key/value pairs in it. The keys are

the country names U.S., U.K., and India, and the values of these keys are the respective capitals

of the countries. You ask the user to enter the country name whose capital is required. Taking the
entered country name as the key, its respective value is accessed and displayed. One key/value
pair is added to the dictionary, with Australia as its key and Sweden as its value. The program

also displays the dictionary elements, each country with its respective capital. The program also
deletes the desired country/capital pair from the dictionary.

The following program demonstrates the use of items(), keys(), values(), and get() methods of

the dictionary. Also, it shows how two dictionaries are merged.

dictexample.py
student1={'John' : 60, 'Kelly' : 70, 'Caroline' : 80}
student2=dict([('David', 90), ('John',55)])
print ('The items in dictionary student1 are:', student1.items())
print ('The keys in student1 dictionary are:', student1.keys())
print ('The values in student1 dictionary are:', student1.values())
student1.update(student2)
print ('The items in dictionary student1 after merging with student2 dictionary are:',
student1.items())
n=input('Enter name whose marks you want to see: ')
if n in student1:
 print ('The marks of', n , 'are' , student1.get(n))
else:
 print ('Sorry the name', n, 'does not exist in student1 dictionary')
Output:
The items in dictionary student1 are: dict_items([('Kelly', 70), ('John', 60),
('Caroline', 80)])
The keys in student1 dictionary are: dict_keys(['Kelly', 'John', 'Caroline'])

The values in student1 dictionary are: dict_values([70, 60, 80])
The items in dictionary student1 after merging with student2 dictionary are: dict_items
([('Kelly', 70), ('John', 55), ('Caroline', 80), ('David', 90)])
Enter name whose marks you want to see: Caroline
The marks of Caroline are 80

The program defines two dictionaries, student1 and student2. The student2 dictionary is created

by applying the dict() function to the pairs of values. All the key/value pairs of the student1

dictionary are displayed using the items() function. Also, the keys and values of the student1

dictionary are accessed through the keys() and values() functions and displayed. The key/value

pairs of the dictionary student2 are merged with the dictionary student1. While merging, the

values of the keys in dictionary student1 will be updated with the values of the matching keys in

dictionary student2. The merged key/value pairs are displayed. Also, the user is asked to enter a

student’s name whose marks are required. Using the get() function, the supplied name is

accessed and displayed.

Let’s finish the chapter by discussing one more container object, sets.

Sets

A set is a collection of certain values. You can perform a number of set operations,
including union (|), intersection (&), difference (-), and symmetric difference ()̂. Let’s

begin with the union operation.

Union (|)

In a union operation, an element appears in the union if it exists in one set or the other.
For example, consider the two sets S1 and S2 with the following elements:

S1=set([3,5,6,10,11,100])
S2=set([1,3,5,6,11,15])

S1 | S2 will display the union as:

set([1,3,5,6,10,11,15,100])

Intersection (&)

In an intersection operation, the elements that appear in both sets appear in the
intersection.

S1 & S2 will display the intersection as:

set([3, 5, 6, 11])

Difference (-)

In a difference operation, all the elements that are in the left set but not in the right set
will appear in the difference operation.

S1-S2 will display the difference as :

set([10, 100])

Similarly, S2-S1 will display the difference as:

set([1, 15])

Let’s look at the methods and functions that can be applied to sets. Remember that a
function is a module of code that is called by name, and data is passed to it explicitly. It
can return a value. A method is associated with an object, and the object for which it is
called is passed to it implicitly. The list of methods and functions that can be applied to
sets is given in Table 3.6.

Table 3.6. Set Methods/Functions

Method/Function Description

len() Returns the number of items in the set.
Duplicate items are considered as one item.

max() Returns the maximum item in the set.

min() Returns the minimum item in the set.

sum() Returns the sum of items in the set.
Duplicate items are added only once.

any() Returns true if any item in the set is true.

false and 0 are considered as false, and

every other value is considered as true.

all() Returns true if all items in the set are true.

sorted() Returns the set items in sorted order.

clear() Removes all the items from the set.

pop() Removes and returns an arbitrary item from
the set. If the set is empty, the function will
raise a KeyError exception.

add(item) Adds the specified item to the set. If the
item is already in the set, nothing happens.

remove(item)/discard
(item)

Removes the specified item from the set. If
the item does not exist in the set, a
KeyError exception is raised.

update(set) Merges values from the specified set into the
original set.

The following program demonstrates the use of set methods such as max(), min(),

any(), all(), sum(), and sorted(). The program also demonstrates the application of

union, intersection, difference, and merging operations on the sets.

setexample.py
S1=set([3,5,6,10,11,100])
S2=set([1,3,5,6,11,15])
print ('Length of set S1 is:', len(S1))
print ('Maximum value in set S1 is:' , max(S1))
print ('Minimum value in set S2 is:' , min(S2))
print ('Sum of items in set S1 is:', sum(S1))
print ('Applying any() to set S1 results into:', any(S1))
print ('Union of the two sets is:', S1 j S2)
print ('Intersection of the two sets is:', S1 & S2)
print ('Difference of S1-S2 is:' , S1 - S2)
print ('Difference of S2-S1 is:' , S2 - S1)

S1.add(0)
print ('The items in set S1 after adding an item are:' , sorted(S1))
print ('As set S1 now has a value 0, so all() will result into:', all(S1))
S1.update(S2)
print ('The items in set S1 after merging set S2 are:' , sorted(S1))
Output:
Length of set S1 is: 6
Maximum value in set S1 is: 100
Minimum value in set S2 is: 1
Sum of items in set S1 is: 135
Applying any() to set S1 results into: true
Union of the two sets is: {1, 3, 100, 5, 6, 10, 11, 15}
Intersection of the two sets is: {11, 3, 5, 6}
Difference of S1-S2 is: {10, 100}
Difference of S2-S1 is: {1, 15}
The items in set S1 after adding an item are: [0, 3, 5, 6, 10, 11, 100]
As set S1 now has a value 0, so all() will result into: false
The items in set S1 after merging set S2 are: [0, 1, 3, 5, 6, 10, 11, 15, 100]

This program displays the count of the number of elements in the set, the highest value,
the lowest value, and the sum of the values in the set. The application of the any()

function on set S1 returns true as it contains several non-zero values. The program also

displays the union, intersection, and difference of the sets. A value 0 is added to the set

S1 by using the add() method. Also, the set S1 is displayed after sorting its elements.

The application of the all() function on set S1 returns false as it now contains a 0

value. The elements in set S2 are merged to the elements of set S1, and the merged set

is displayed after sorting its elements.

Summary

This chapter focused on different containers. You learned to perform
different operations on strings, including concatenating, splitting, and
converting them into different cases such as uppercase, title case, and
lowercase. You also learned about list slicing and searching elements in
tuples. You performed operations on sets such as finding their union,
intersection, and difference. You saw how key/value pairs are maintained in
a dictionary and how to append, delete, and modify key/value pairs.
Finally, you created one- and two-dimensional arrays.

Chapter 4. Functions and Modules

This chapter covers the following:

Creating and using functions

Using default value parameters and keyword arguments

Using local and global variables

Creating lambda functions

Applying functions to the sequences

Using function attributes

Implementing recursion

Using iterators, generators, and generator expressions

Importing and using modules

Using command-line arguments

Let us begin the chapter with functions and their statements.

Functions

A function is a group of statements that can be invoked any number of times.
Besides the built-in functions, you can define your own functions. The statement that
invokes a function is known as a function call. In calling a function, you can pass
arguments to it to perform the desired computation. In Python, a function always
returns a value that may be either None or that represents the task performed by the

function.

In Python, functions are treated as objects, and so you can pass a function as an
argument to another function. Similarly, a function can return another function. Also,
a function, just like any other object, can be bound to a variable, an item in a
container, or an attribute of an object.

Let’s look at the statements used in defining a function.

The def Statement

The def statement is used to define a function.

Syntax:
def function-name(parameters):
statement(s)

where function-name is an identifier to recognize the function. parameters is an

optional list of identifiers that are bound to the values supplied as arguments while
calling the function.

When calling a function, the data you send to the function is called arguments, and
the variables in the function that receive the arguments are called parameters.
Hence, while calling a function, you should pass the same number of arguments as
there are parameters listed in the function definition. The parameters are local
variables of the function, and each call to the function binds these local variables to
the corresponding values passed as arguments. The function body can contain zero
or more occurrences of the return statement.

The following program demonstrates the addition of two numerical values using a
function.

func1.py
def sum(a, b):
 return a + b

k=sum(10,20)
print ("Sum is", k)

Output:
Sum is 30

In this program, a sum() function is called, passing two arguments 10 and 20. The

arguments 10 and 20 will be assigned to the parameters a and b, defined in the

sum() function. The sum() function computes the addition of the values assigned to

the parameters a and b and returns the result to the main program. The result is

assigned to the variable k in the main program, which is then displayed.

The return Statement

The return statement is used for returning output from the function. The statement

is optionally followed by an expression. When return executes, the function

terminates, and the value of the expression is passed to the caller. When there is
nothing to be returned to the caller, the function returns None.

If a function doesn’t require any external data to process, it can be defined with no
parameters. The following program demonstrates a function that takes no parameter
and returns a value:

func3.py
def quantity():
 return 10

print (quantity())
q=quantity()
print (q)
Output:
10
10

In this program, a quantity() function is defined that takes no parameters. On

calling the function in a print statement, it prints the value 10 that is returned. In

the next function call, you assign the value returned to the variable q, which is then

displayed.

The following program asks the user to enter a numerical value between 1 and 4 and
displays it in text form. For example, if the user enters 1, the program will display

one. If the user enters 2, the program will display two, and so on.

func4.py
def conv(x):
 if x==1:
 return "one"
 if x==2:
 return "two"
 if x==3:
 return "three"
 if x==4:
 return "four"

n=int(input("Enter a number between 1 and 4: "))
print (n, "in words is", conv(n))
Output:
Enter a number between 1 and 4: 3
3 in words is three

The program asks the user to enter a value between 1 and 4 that is converted to
integer data type and assigned to a variable n. The variable n is then passed as an

argument to the function conv(). In conv(), n is assigned to the parameter x. Using

if statements, the value in parameter x is analyzed, and its text form is returned.

Sometimes you want a function to return a value of None. Consider a situation when

the value passed to the function’s parameter is not within the expected range. That
is, the data passed is not suitable for performing any processing on it. You want the
function to skip its body and return None. The following program displays the text

form of the number passed between 1 and 4. If the number passed is 0, the output
will be None.

passex2.py
def conv(x):
 if x==0:
 pass
 if x==1:
 return "one"
 if x==2:
 return "two"
 if x==3:
 return "three"
 if x==4:
 return "four"

print (conv(2))
print (conv(0))

Output:
two
None

You can see that when value 2 is passed as an argument to the conv() function, the

respective if statement is executed to display the text two. When 0 is passed to the

conv() function, the first if statement in the function is executed. It does nothing

because it contains the pass statement, so None is returned. Remember that the

pass statement indicates an empty block of statements. It is usually used as a

placeholder for code you plan to write later.

Default Value Parameters

The parameters listed in the function definition may be mandatory or optional. The
mandatory parameters are those whose value has to be supplied in the form of

arguments when calling the function. The optional parameters are those whose value
may or may not be passed when calling the function. An optional parameter is
defined with the following syntax:

identifier=expression

The expression is evaluated and is assigned as the default value for the identifier.
When a function call does not supply an argument corresponding to an optional
parameter, the call binds the parameter to its default value.

The following program demonstrates the use of a default parameter. In this program,
you define a function that has two parameters; one is mandatory, and the other is
optional or the default. When the function call passes the value for the default
parameter, the passed value is applied; otherwise the default value is applied.

func2.py
def sum(x, y=10):
 return x+y

print (sum(10))
print (sum(5,8))
Output:
20
13

In this program, the sum() function is called twice. In the first call, only one

argument, 10, is passed and is assigned to parameter x. The function will take the

default value of the parameter y (10) while executing the function. In the second call

to the sum() function, arguments 5 and 8 are passed and are assigned to the

parameters x and y, respectively. The default value of y, 10, is ignored, and the value

passed as an argument (8) is applied.

Keyword Arguments

If when calling a function you want to supply arguments for only a few of its
parameters, you do so by naming the parameters when passing arguments. A value
passed to a parameter by referring to its name is known as a keyword argument. The
advantage of using this approach is that you don’t have to worry about the order of
the arguments.

The following program demonstrates using keyword arguments when calling a
function.

keywordarg.py
def volume(l, b=5, h=10):
 print ('l is', l, 'and b is', b, 'and h is', h, 'and volume is', l*b*h)

volume(2, 4)
volume(3, h=6)
volume(h=7, l=2)
Output:

l is 2 and b is 4 and h is 10 and volume is 80
l is 3 and b is 5 and h is 6 and volume is 90
l is 2 and b is 5 and h is 7 and volume is 70

The volume() function has three parameters, one that has no default value and two

parameters that do. In the first function call, volume(2,4), the l parameter gets the

value 2, the b parameter gets the value 4, and h gets its default value, 10. In the

second function call, volume(3, h=6), the l parameter gets the value 3 due to the

position of the argument. Then, the h parameter gets the value 6 as a keyword

argument. The b parameter gets its default value, 5. In the third function call,

volume (h=7, l=2), you use keyword arguments to specify the values of the h and l

parameters. The h parameter will get 7, l will get 2, and b will get the default 5.

The scope of variables in a function is determined by whether it is locally or globally
defined.

Local and Global Variables

Local variables have scope within the body of the function in which they are defined.
That is, local variables are accessible inside the function. Global variables are
accessible inside and outside of functions.

Note

You get an error if you try to access a local variable outside the function.

Global Variables

Global variables are not bound to any particular function and can be accessed within
the body of the function, outside the body of the function, or by any other function.
The changes made to a global variable by any function will be visible by other
functions. If a function needs global variables, the first statement of the function
must be this:

global identifiers

where identifiers is one or more identifiers separated by commas. Identifiers listed

in a global statement are referred to as global variables.

You use the keyword global to define a global variable; otherwise, an UnboundLocal-

Error exception is raised because the variable is an uninitialized (unbound) local

variable.

The following program explains the concept of global variables. The main thing to
observe in this program is how the changes made in the global variable by one
function can be seen in another function.

globalvar.py

def compute():
 global x
 print ("Value of x in compute function is", x)
 x += 5
 return None
def dispvalue():
 global x
 print ("Value of x in dispvalue function is", x)
 x-=2
 return None

x=0
compute()
dispvalue()
compute()
Output:
Value of x in compute function is 0
Value of x in dispvalue function is 5
Value of x in compute function is 3

In this program, you define two functions, compute() and dispvalue(). Both

functions define a global variable, x. Remember, global variables are accessible in

every part of the program, in the main program as well as functions. Changes made
in global variables are visible in other parts of the program. You can see that the
global variable x is initialized to 0 in the main program. The main program calls the

compute() function to print the value of the global variable and modify its value. The

value of the global variable x being 0, the compute() function prints 0, increments its

value by 5, and returns to the main program. The main program then calls the
dispvalue() function to display and modify the global variable. The value of the

global variable x was set to 5 by the compute() function and so the dispvalue()

function prints its value as 5 and decrements its value by 2, making it 3, and returns

to the main program. The main program calls the compute() function again to see if

the changes made to x in the dispvalue() function are visible in compute(). The

compute() function displays the current value of x (3) and increments the value of x

by 5, making it 8, and returns to the main program. This confirms that the global

variable is accessible in every part of the program, and changes made to the global
variable in one part of the program will be seen in another part.

Let’s now see how local variables are defined and accessed in a function.

Local Variables

By default, any variable that is bound within a function body is a local variable. Each
function has its own copy of a local variable, and its value is not accessible or
modifiable outside the body of the function.

The following program demonstrates the use of local variables:

localvar.py
def compute(x):
 x += 5
 print ("Value of x in function is", x)

 return None

x=10
compute(x)
print ("Value of x is still", x)
Output:
Value of x in function is 15
Value of x is still 10

The main program initializes the value of the local variable x at 10. The variable x is

then passed to the compute() function as an argument. In the compute() function,

the value of the parameter x is incremented by 5, making its value 15. But x being

local to the function, the modified value of x (15) is visible only within the body of

the compute() function. When you display the value of x in the compute() function, it

will print the modified value 15, but when you return to the main program, the

program picks up the older value of x (10). Hence, the main program prints the old

value of x, 10.

Sometimes you need to create very small functions, consisting of just a single line.
Can you handle such small functions in Python? Yes. Let’s see how.

Lambda Functions

For functions that are small enough (a single line expression) and that are going to
be used only once, you generally don’t define function objects. Instead, you use
lambda functions.

A lambda function is an anonymous and one-use-only function that can have any
number of parameters and that does some computation. The body of the lambda
function is small, a single expression. The result of the expression is the value when
the lambda is applied to an argument. There is no need for a return statement in
lambda functions.

Note

The scope of a lambda function is limited. It exists only in the scope of a
single statement’s execution.

Consider a small function that multiplies a passed argument by 2 and returns, as
shown here:

def f(x):
return x*2

f(3)
6

You can see that a function f takes a parameter x that it returns by multiplying it by

2. On calling the function with argument 3, it will return 6 as output. You can rewrite

this function as a lambda function:

g = lambda x: x*2
g(3)
6

You can see that the lambda function has no name and is called through the variable
it is assigned to.

You can use a lambda function without even assigning it to a variable. The following
is a lambda function with no name that accepts a single argument. It multiplies the
argument by 2 and returns the result:

(lambda x: x*2)(3)
6

You can see that there are no parentheses around the argument list, and the return

keyword is missing. The return is implied in the lambda function as the entire
function consists of a single expression.

Note

A lambda function cannot contain commands and cannot contain more than
one expression.

Applying Functions to Sequences

Now that you know about defining and calling functions, let’s apply them to
sequences. In the previous chapter, you learned about the three types of sequences:
strings, lists, and tuples. The three methods in this section are filter(), map(), and

reduce(). To implement these methods, you use functions.

filter(function, sequence)

The filter() method returns a sequence consisting of those elements for which the

included function returns true, those that satisfy the criteria given in the specified

function. If the included function is None, the method returns those elements of the

sequence that are supposed to be returned when the function returns true. Let’s

examine the use of this method through an example. The following program filters
out the odd values and returns only the even values using the filter() method.

def evenval(x):
 return x % 2 ==0

evens=filter(evenval, range(1,11))
print(list(evens))

Output:
[2,4,6,8,10]

In this example, you see that the filter() method uses an evenval() function and

a range() method. The range(1,11) method will generate numerical values from 1

to 10, which are then passed to the evenval() function as arguments. The

evenval() function divides the parameter value by 2, compares the remainder with

0, and returns True or False. The function will return True if the result of the mod

operation is 0, indicating that the parameter’s value is even. The function will return

False if the result of the mod operation is 1, indicating that the parameter’s value is

odd. Since the filter() method will return only those values for which the included

function returns True, the program will display only even values.

map(function, sequence)

The map method calls the included function for each of the elements in the sequence

and returns a list of the returned values.

The following example displays the square values of the first 10 sequence numbers
using the map() method:

def square(x):
 return x*x

sqr=map(square, range(1, 11))
print(list(sqr))

Output:
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

In this example, the map() method includes a square() function and a range()

method. The range(1,11) method will generate numerical values from 1 to 10, which

are then passed to the square() function as arguments. The square() function

simply returns the square of the supplied parameter. The program will display the
square values of the first 10 sequence numbers.

Let’s see an example of the map() method that converts the elements of the supplied

sequence into integer values.

k=map(int, [5, 10.15, 20, 25.628, 7])
print (list(k))
Output:
[5, 10, 20, 25, 7]

In this program, you see that the map() method includes an int() function and a list

of values. The list includes values of different types, including integers, floating-point
and long integers. The int() function truncates the elements of the list to integers.

Note

You can also pass more than one sequence in a map() method. The function

included in map() is then set to accept multiple arguments. The

corresponding elements from each sequence are provided as arguments to
the function. If any sequence falls short, None is used for the missing values.

reduce(function, sequence)

The reduce() method returns a single value that is produced by calling the function

on the first two elements of the sequence. The function then is called on the result of
the function and the next element in the sequence, and so on. For example, the
following reduce() method computes the sum of the numbers 1 through 10:

import functools
def add(x,y):
 return x+y

r=functools.reduce(add, range(1, 11))
print(r)

Output:
55

Here, the reduce() method, which is the part of functools module, includes an

add() function and a range() method. The range(1,11) method will return values

from 1 to 10. The first two values generated by the range() method are passed to

the specified function, add(), and the result (3) and the next value in the sequence

(3) are again passed to the add() function. Again, the result of addition (6) and the

next value in sequence (4) are passed to the add() function. When all the values

generated by the range() method are applied, the final result is returned by the

add() function for display.

Note

The functools module is imported at the top because the reduce() method

is defined in that module. You will learn more about modules later in this
chapter.

Python provides a facility to access more specific information of a function—function
attributes.

Function Attributes

A function object has a number of attributes that you can use to get more information about

a function. Also, you can change these attributes. A list of function attributes is shown in
Table 4.1.

Table 4.1. Function Attributes

Attribute Description

functionname.__doc__ Represents the docstring from the first
line of the function’s body.

functionname.__name__ Represents the function name.

functionname.__module__ Represents the name of the module in
which the function is defined.

functionname.__defaults__Represents the tuple with default
values to be assigned to the default
arguments of the function.

functionname.__code__ Represents the actual code object, the
statements in the body of the function.

functionname.__dict__ Represents the dictionary that defines
the local namespace for the attributes
of the function.

Note

You can set and get your own function attributes, too.

The following program demonstrates using function attributes to display specific information
of the function, such as its version, author, docstring, and default arguments.

funcattrib.py
def sum(a, b=5):
 "Adds the two numbers"
 return a + b

sum.version= "1.0"
sum.author= "bintu"
k=sum(10,20)
print ('Sum is', k)
print('The documentation string is', sum.__doc__)
print('The function name is', sum.__name__)
print('The default values of the function are', sum.__defaults__)
print('The code object of the function is', sum.__code__)
print('The dictionary of the function is', sum.__dict__)
Output:
Sum is 30

The documentation string is Adds the two numbers
The function name is sum
The default values of the function are (5,)
The code object of the function is <code object sum at 0x00F11250, file "D:\python\
funcattrib.py", line 1>
The dictionary of the function is {'version': '1.0', 'author': 'bintu'}

In this program, the version and author information of the sum() function is set in the form of

a dictionary, in the key/value pattern. Thereafter, the sum() function is called with two

arguments, 10 and 20, which are assigned to the parameters a and b, respectively. The first

line in the body of the function is the docstring. That is, the docstring or __doc__ attribute of

the function, sum(), is set to the text Adds the two numbers. Thereafter, the docstring and its

default arguments are displayed by printing the __doc__, __name__, and

__defaults__attributes. Finally, the code object and dictionary of the function are displayed

through the __code__ and __dict__ attributes.

Documentation String

The documentation string (docstring) helps to document the program better and makes it
easier to understand. A string on the first logical line of a function is the docstring for that
function. To display a documentation string, you use the following attribute:

__doc__

This displays the documentation of the function, class, or module.

Note

The docstring also applies to modules and classes that we will discuss later. If the first
statement in the class body is a string literal, the compiler binds that string as the
documentation string attribute for the class.

The following program displays the multiline documentation string of a function:

docstr.py
def rect(l,b):
 '''Computes the area of rectangle
 Values for length and breadth are passed to the function for computation'''
 print ('Area of rectangle is', l*b)
rect(5,8)
print (rect.__doc__)
Output:
Area of rectangle is 40
Computes the area of rectangle
 Values for length and breadth are passed to the function for computation

The attribute __doc__ displays the docstring of the function.

Can a function call itself? Yes—the procedure is called recursion.

Recursion

Recursion is said to occur when a function calls itself. As expected, a
function calling itself will generate recursive function calls and result in an
infinite loop. When implementing recursion, an exit condition must be
included in the function.

Note

Recursion is implemented with the help of a structure known as a
stack.

Let’s examine the concept of recursion through an example. The following
program calculates the sum of 10 numbers using recursion:

recurfunc.py
def addseq(x):
 if x == 1: return 1
 else: return x + addseq(x-1)

print ('The sum of first 10 sequence numbers is', addseq(10))
Output:
The sum of first 10 sequence numbers is 55

The addseq() function is called, passing value 10 to it, which will be

assigned to its x parameter. In the body of the function, you see that the

first line defines the exit condition. The function terminates or exits,
returning 1, if the value of the x parameter is 1. Since the current value of

the parameter is 10, an else statement is executed, which is

10+addseq(9).

The else statement calls the addseq() function recursively, passing value 9

to the x parameter. Again the else statement is called, which executes the

statement 9+addseq(8).

Again, the addseq() function is called, passing 8 to its x parameter,

resulting in an else statement being executed. The process continues until

the value of the x parameter becomes 1, in which case the function exits,

returning 1. The execution of the function is shown here:

10+addseq(9)
 9+ addseq(8)
 8+ addseq(7)
 ...
 ...
 2+ addseq(1)
 1

The final expression returned from the addseq(10) function call is

10+9+8+7+6 ...+1. The program displays 55, which is the sum of the 10

numbers.

Let’s write one more program on recursion. The following program
calculates the factorial of 5 through recursion.

factorial.py
def fact(x):
 if x == 1: return 1
 else: return x * fact(x-1)

print ('The factorial of 5 is', fact(5))

Output:
The factorial of 5 is 120

The fact(5) function call passes 5 to the fact() function, which will be

assigned to its x parameter. The first statement in the function is an exit

condition that ensures that the function will terminate, returning 1 if the

value of the x parameter becomes 1. Since the value of the x parameter in

the first call to the function is 5, the else statement is executed and

returns the following statement:

5 * fact(4)

The call to the fact(4) function will pass 4 to the x parameter, and again

the else statement will be executed and return the following statement:

4* fact(3)

Again the call to the fact(3) function will pass 3 to the x parameter,

resulting in execution of the else statement again. The process continues

until the value assigned to the x parameter is 1, in which case the function

exits, returning 1. The complete expression that results in execution of the

program is this:

5*4*3*2*fact(1) or
5*4*3*2*1

The program prints the result as 120, which is the factorial of 5.

Iterators

Iterators are used for looping through collections of data. Every time you
use a for loop in a list, iterators are invoked in the background for

retrieving data. An iterator has a next() method that can be called to get

each value in the sequence. When all the values are applied, a
StopIteration exception is raised. You will learn about exception handling

in Chapter 6, “File Handling.” For the time being it is enough to know that
raising an exception means an occurrence of some kind of error.

To create an iterator object, you need to call the iter() method.

iter(object)

The iter() method is used to get an iterator object. The iter(object)

method calls that object’s __iter__ method to get an iterator object. Once,

you get an iterator object, you can iterate over the object using its next()

method.

The following program displays all the elements of a list using the iterator
object:

createiter.py
names=['John', 'Kelly', 'Caroline', 'Paula']
i = iter(names)
print (i.__next__())
print (i.__next__())
print (i.__next__())
print (i.__next__())
print (i.__next__())
Output:
John
Kelly
Caroline
Paula
Traceback (most recent call last):
 File "D:\python\createiter.py", line 7, in <module>

 print (i.__next__())
StopIteration

In this program, a list is defined, names, that contains four elements: John,

Kelly, Caroline, and Paula. An iterator object, i, is created from the list

names by invoking the iter() method. Thereafter, you iterate over the

object i by using its next() method and display all the four elements of

the list. The last call to next() is made deliberately to raise the

StopIteration exception and to display the error message that it

generates.

The two ways of creating iterators that we are going to discuss next are
using generators and using generator expressions.

Generators

A generator is a function that creates an iterator. For a function to become
a generator, it must return a value using the yield keyword. In other

words, the generator function uses the yield keyword to get the next value

in the container.

yield

The yield statement is used only when defining a generator function and is

used only in the body of the generator function. The presence of a yield

statement in a normal function definition converts it into a generator
function. When a generator function is called, it returns an iterator known
as a generator iterator, or just a generator. The body of the generator
function is executed by calling the generator’s __next__() method

repeatedly until it raises an exception.

generatorex.py
def fruits(seq):
 for fruit in seq:
 yield '%s' % fruit

f=fruits(['Apple', 'Orange', 'Mango', 'Banana'])
print ('The list of fruits is:')
print (f.__next__())
print (f.__next__())
print (f.__next__())
print (f.__next__())
f=fruits(['Apple', 'Orange', 'Mango', 'Banana'])
print ('The list of fruits is:')

for x in f:
 print (x)
Output:
The list of fruits is:
Apple
Orange
Mango
Banana
The list of fruits is:
Apple
Orange
Mango
Banana

In this program, the fruits() function has become a generator function

because it contains a yield keyword. The generator that the fruits()

function returns is assigned to a variable, f. On calling the __next__()

method of the generator f, the first string in the list, Apple, is yielded.

When the __next__() method is called for the first time in the generator,

execution of the fruits generator function begins and continues until the

yield keyword is encountered. On every successive call of the __next__()

method, execution of the generator function will continue on the statement
following the yield keyword, resulting in yielding the next string in

sequence. Since the yield statement occurs within a loop, execution will

continue within the loop. The program also displays all the strings through
the generator object.

If you call __next__() after that, you get an exception:

Traceback (most recent call last):
 File "D:\python\generatorex.py", line 12, in <module>
 print (f.__next__())
StopIteration

Beside generators, there is one more way to create iterators, and that is
through generator expression.

Generator Expression

A generator expression is an expression in parentheses that creates an
iterator object. On getting the iterator object, you can call the __next__()

method to get the next value from the iterator as you have seen in the
previous two programs. The generator expression is like an anonymous
function that yields values and usually consists of at least one for clause

and zero or more if clauses. The generator expression you are going to use

in the following program consists of one for loop:

(squarenum(x) for x in range(6))

This generator expression will produce an iterator object.

genexpression.py

def squarenum(x):
 return x*x

iteratorobj = (squarenum(x) for x in range(6))
print('The squares of first five sequence numbers')
print (iteratorobj.__next__())
print (iteratorobj.__next__())
print (iteratorobj.__next__())
print (iteratorobj.__next__())
print (iteratorobj.__next__())
print (iteratorobj.__next__())
Output:
The squares of first five sequence numbers
0
1
4
9
16
25

In this program, you can see that the generator expression (squarenum(x)

for x in range(6)) creates an iterator object, which is then assigned to

iteratorobj. The generator expression calls the squarenum() function and

uses a for loop to yield the squares of the numerical values from 0 to 5.

Thereafter, using the __next__(), you access the square values from the

iterator object one by one.

Modules

A module is a file consisting of a few functions and variables used for a particular task. A module can be
reused in any other program that imports it. The functions and variables of the module become
available in the current program and can be used in it. The filename of the module must have a .py
extension.

To import a module to a program, you use the import statement. You can use import in several forms.

Consider a calendar module that displays a calendar of a specified month and year. Let’s have a look at

different ways of importing a calendar module in the current program. The first way is through this

statement:

import calendar

Python looks for the calendar.py file in the disk drive. If the file is found, then the statements in the

main block of that module are executed so that its functions can be reused in the current program. That
is, all the functions of the calendar module become accessible in the current program. To refer a

prcal() function of the calendar module, write the following statement:

calendar.prcal()

The second way of importing a calendar module to the current program is through this statement:

from calendar import prcal

This imports the prcal() function from the calendar module. Now you can directly refer to the prcal()

function in the current program without prefixing the module name calendar to it:

prcal()

The third way of importing a calendar module to the current program is through this statement:

from calendar import *

This imports all objects from the calendar module. You can access any function of the calendar

module directly without prefixing the module name to the function. To refer to the prcal() function of

the calendar module, you can write:

prcal()

The fourth way of importing a calendar module to the current program is through this statement:

import calendar as cal

It imports the calendar module in the current program and makes it accessible through the term cal.

Its prcal() function can now be accessed by prefixing it with the term cal:

cal.prcal()

The following program imports a calendar module in the program and displays the calendar of the

specified year, using its prcal() function.

module1.py
import calendar
year = int(input("Type in the year number:"))
calendar.prcal(year)

You can also rewrite the program as shown here:

from calendar import prcal
year = int(input("Type in the year number:"))
prcal(year)

The output of the program will be the calendar of the year entered, as shown in Figure 4.1.

Figure 4.1. Calendar of the year 2011.

This program displays the calendar of the year entered by the user. The technique of calling the
prcal() function changes according to the method used in importing the calendar module to the

program.

The following program prints the system clock time infinitely:

module2.py
from time import time, ctime

prev_time = ""
while(True):

 curr_time = ctime(time())
 if(prev_time != curr_time):
 print ("The time is:",ctime(time()))
 prev_time = curr_time
Output:
The time is: Wed Feb 02 10:16:33 2011
The time is: Wed Feb 02 10:16:34 2011
The time is: Wed Feb 02 10:16:35 2011
The time is: Wed Feb 02 10:16:36 2011
The time is: Wed Feb 02 10:16:37 2011

In this program, you want to display the system clock infinitely and don’t want the same time to be
repeated again. Remember, CPU machine cycles are much faster than a clock and execute a loop or a
program several times in a second. Hence, the same time will be displayed again and again. To avoid
this, you use two variables—one stores the current system clock time, and the other waits for the time
to change.

First the program imports the time and ctime functions of the time module in the current program.

Then an infinite loop is executed. In the loop, the current system clock time is accessed and stored
temporarily in the variable curr_time. The time in curr_time is displayed and assigned to another

variable, prev_time. In the next iteration of the while loop, the system clock time is again fetched and

stored in the curr_time variable. Until the time in curr_time differs from the time in prev_time, the

new time fetched in curr_time will not be displayed. After displaying the new time in curr_time, it is

assigned to the prev_time variable, and the loop continues.

The math Module

The math module contains not only common trigonometric functions but also several constants and

functions:

math.pi—Returns the value of pi, 3.1415926535897931.

math.e—Returns the value of e, 2.7182818284590451.

ceil(x)—Displays the next larger whole number.

floor(x)—Displays the next smaller whole number.

The math module is made available to the program through this statement:

import math

The following program computes and displays the next larger and smaller whole numbers of the
specified float value using the ceil() and floor() functions of the math module.

mathmethod.py
import math
print (math.ceil(7.3))
print (math.ceil(-7.3))
print (math.floor(7.9))
print (math.floor(-7.9))

Output:
8
-7
7
-8

In this program, you import the math module and use its ceil() and floor() methods to display the

next larger and smaller whole numbers.

Does Python provide a function that you can use to see all the identifiers defined in a module? Yes, and
the function name is dir().

The dir() Function

The dir() function is used to list the identifiers defined by a module. The identifiers are the functions,

classes, and variables defined in that module.

When you supply a module name to the dir() function, it returns a list of the names defined in that

module. When no argument is applied to it, the dir() function returns a list of the names in the

current local scope.

The following program displays the list of identifiers defined in the sys and calendar modules:

direx.py
import sys, calendar
print("The list of methods and attributes in the local scope:",dir())
print ("\nThe list of methods and attributes in the calendar module:", dir(calendar))
print ("\nThe list of methods and attributes in the sys module:", dir(sys))

Output:
The list of methods and attributes in the local scope: ['__builtins__', '__doc__' ,
'__name__', '__package__', 'calendar', 'sys']

The list of methods and attributes in the calendar module: ['Calendar', 'EPOCH', ' FRI-
DAY', 'February', 'HTMLCalendar', 'IllegalMonthError', 'IllegalWeekdayError', ' Janu-
ary' , 'LocaleHTMLCalendar', 'LocaleTextCalendar' , 'MONDAY', 'SATURDAY', 'SUNDAY' ,
'THURSDAY', 'TUESDAY', 'TextCalendar', 'WEDNESDAY' , '_EPOCH_ORD', '__all__' ,
'__builtins__' , '__cached__', '__doc__', '__file__', '__name__' , '__package__' ,
'_colwidth', '_locale', '_localized_day', '_localized_month', '_spacing', 'c', ' cal-
endar', 'datetime', 'day_abbr', 'day_name', 'different_locale', 'error', ' firstweek-
day' , 'format' , 'formatstring' , 'isleap', 'leapdays' , 'main', 'mdays', 'month' ,
'month_abbr' , 'month_name', 'monthcalendar' , 'monthrange', 'prcal', 'prmonth' ,
'prweek', 'setfirstweekday', 'sys', 'timegm', 'week', 'weekday', 'weekheader']

The list of methods and attributes in the sys module: ['__displayhook__', '__doc__' ,
'__excepthook__', '__name__' , '__package__' , '__stderr__' , '__stdin__' ,
'__stdout__' , '_clear_type_cache', '_current_frames' , '_getframe', '_xoptions' ,
'api_version', 'argv', 'builtin_module_names' , 'byteorder', 'call_tracing' , ' call-
stats', 'copyright', 'displayhook', 'dllhandle', 'dont_write_bytecode', 'exc_info' ,
'excepthook', 'exec_prefix', 'executable', 'exit', 'flags' , 'float_info', ' float_
repr_style', 'getcheckinterval', 'getdefaultencoding', 'getfilesystemencoding' ,
'getprofile', 'getrecursionlimit', 'getrefcount', 'getsizeof', 'getswitchinterval' ,
'gettrace', 'getwindowsversion', 'hash_info', 'hexversion' , 'int_info', 'intern' ,
'maxsize', 'maxunicode', 'meta_path', 'modules', 'path', 'path_hooks', ' path_impor-
ter_cache', 'platform', 'prefix', 'setcheckinterval', 'setprofile', ' setrecursionli-
mit', 'setswitchinterval', 'settrace', 'stderr', 'stdin', 'stdout', 'subversion' ,
'version', 'version_info', 'warnoptions', 'winver']

Command-Line Arguments

Command-line arguments are used to pass arguments to a program while running it. Each command-
line argument that you pass to the program will be stored in the sys.argv variable. The sys.argv

variable is a list that always has a length of at least 1. The item at index 0 is the name of the Python

program you are running.

Note

Command-line arguments are separated by spaces.

The following program lists the command-line arguments passed to the program, their count, and the
path of the Python installation.

commandline1.py
import sys
print ('There are %d arguments' % len(sys.argv))
print ('The command line arguments are:')
print (sys.argv)
for i in sys.argv:
 print(i)
print ('Path of the Python is' , sys.path)

Output is shown in Figure 4.2.

Figure 4.2. Command-line arguments passed to the program.

[View full size image]

Summary

In this chapter you learned about different statements that define and
return values from functions. You also learned to use default value
parameters and keyword arguments in a function. You learned to use local
and global variables. For smaller expressions, you learned to create lambda
functions. Also, you saw how to apply functions to sequences using
different function attributes and implement recursion. For accessing
collections of data, you learned to use iterators, generators, and generator
expressions. To use built-in functions, you learned to import and use
modules. Finally, you saw how to pass command-line arguments to a
Python program.

The next chapter will discuss object-oriented programming (OOP). You will
learn to define classes, define functions in a class, and use class attributes.
You will learn to initialize instance variables through the __init__ method.

You will learn to define and use class and static methods. You will see how
Python removes the objects that go out of scope through garbage
collection. The chapter also covers an important topic in OOP, inheritance.
You will learn to apply single, multilevel, and multiple inheritance. You will
also learn to apply method overriding and arithmetic operations to
instances through operator overloading. The chapter will also explain the
concept of polymorphism and the use of properties and descriptors.

Chapter 5. Classes

This chapter covers the following:

Defining classes

Using class attributes

Defining functions in a class

Accessing class variables in instance methods

Creating instances and initializing instance variables through the

__init__() method

Using class and static methods

Understanding garbage collection

Understanding inheritance—single, multilevel, and multiple inheritance

Using access control specifiers

Method overriding

Operator overloading

Polymorphism

Using properties and descriptors

The Class Statement

Python supports object-oriented programming and provides reusable code in the form of
classes. It is always better to use old code than to start from scratch because existing code has
already been used and tested, so it saves time in debugging a project.

A class is like a template or blueprint for data and operations. It consists of a number of
attributes that include variables and methods. The variables are called data members, and
methods are called member functions. The functions define the operations that can be applied
to data members. From classes, you create instances, also known as objects. The instances
automatically get access to data members and methods.

To create a class, you use the class statement, an executable statement that is used for

creating a class object. It not only creates a new class object but also assigns it the name
specified.

Syntax:
class classname(base-classes):
statement(s)

where classname is an identifier that is bound to the class object. You can create either an

independent class or one that inherits from other classes. The class that inherits is also known
as a derived class or a sub-class, and the class that is inherited from is known as a super or
base class. When creating a derived class, you specify the comma-delimited base classes from
which the new class is going to be derived. The base classes are also known as the parents of
the new class being created. The new class inherits the attributes of its parent classes. It can
override any of the parent’s attributes and can add attributes of its own. Base classes are
optional. To create a class without bases, you can omit (base-classes), placing the colon right

after classname.

The sequence of statements that follows the class statement is known as the class body, where
you specify the functions and other attributes of the class.

Attributes of Class Objects

To specify an attribute of a class object, you bind a value to an identifier within the class body.
For example:

class rect:
 l = 8
print (rect.l)

In this example, rect is a class object with an attribute named l that is bound to the value 8,

and rect.l refers to that attribute.

The following example shows a class object, rect, with two attributes, l and b, bound to the

values 8 and 5.

rectclass1.py

class rect:
 l=8
 b=5
print ("Length is %d, Breadth is %d" %(rect.l, rect.b))
Output:
Length is 8, Breadth is 5

You can see that when referring to the attributes, the class object is prefixed to the attributes.

You also can have a class that does nothing, as is shown in the following example:

passex.py
class rect(object):
 pass

rect.l = 10
print (rect.l)
Output:
10

The pass statement does nothing and represents an empty block of statements. It acts as a

placeholder for code that you plan to write later. In this program, you can see that the l

attribute of the rect class object is bound to value 10 outside the body of the class that is then

displayed.

Built-In Class Attributes

A class statement implicitly sets some class attributes. You can use these class attributes to
get information about a class. A list of class attributes is shown in Table 5.1.

Table 5.1. Class Attributes

Attribute Description

__name__ The class name identifier used in the class
statement.

__bases__ The tuple of class objects specified as the base
classes in the class statement.

__dict__ The dictionary object that the class uses to hold its
other attributes. To assign a value to an attribute,
you use the dictionary object. The following
example assigns value 8 to the l attribute of the

rect class object: rect.__dict__['l']=8

__doc__ The class documentation string.

__module__The name of the module in which the class is
defined.

The following program displays the class’s name, base class, dictionary object, and so on using
the class attributes:

rectclass2.py
class rect:
 l=8
 b=5
print ("Length is %d, Breadth is %d" %(rect.l, rect.b))

print ("Length is %d, Breadth is %d" %(rect.l, rect.b))
print ("Class name is ", rect.__name__, " and Base class is ",rect.__bases__)
print ("Attributes of this class are ", rect.__dict__)
Output:
Length is 8, Breadth is 5
Class name is rect and Base class is (<class 'object'>,)
Attributes of this class are {'__module__': '__main__', 'b': 5, 'l': 8, '__dict__':
<attribute '__dict__' of 'rect' objects>, '__weakref__': <attribute '__weakref__' of
'rect' objects>, '__doc__': None}

This program defines and initializes two attributes of the rect class object, l and b, to values 8

and 5. The l and b attributes, class name, and base class name are then displayed. The

program also displays the attributes of the class through a dictionary object.

Note

If you don’t specify a base class, the default is object.

Defining Functions in a Class

The functions defined in a class are known as methods. A method defined in a class always has
a mandatory first parameter named self that refers to the instance on which you call the

method. The self parameter plays a special role in method calls. The methods that you will be

defining in the class are called instance methods. Later you will see how to define class
methods in a class. The format of the class with methods added is this:

class classname(base-classes):
 class variable(s)
 def method 1(self):
 instance variable(s)
 statement(s)
 [def method n(self):
 instance variable(s)
 statement(s)]

A class can have two types of data members:

Class variable—The data member that is outside of any method of the class is known
as a class variable. All instances of the class share the class variables, and changes
made in the class variable by one instance will be seen by other instances.

Instance variable—The variables that are defined inside a method belong only to the
current instance of the object and are known as instance variables. Changes made to
instance variables by any instance are limited to that particular instance and don’t
affect the instance variables of other instances.

Let’s see how to create an instance method and how it can be used to access class variables.

Accessing Class Variables in Instance Methods

To access class variables, the methods defined in a class body must use a fully qualified name;
the class object must be prefixed with the class variables. The following example demonstrates
accessing class variables in an instance method:

class rect:
 l = 8

 b=5
 def area(self):
 print rect.l*rect.b

Two class variables, l and b, are initialized to 8 and 5. The area() instance method refers to

the class l and b variables, using the fully qualified names rect.l and rect.b.

You cannot understand the concept of instance variables until you know about instances of a
class and how to create them.

Instances

A class is a template or blueprint of data and operations; to use the data and operations
independently, you need to create instances. An instance is a variable that acts as a replica of a
class. You can create as many instances of a class as desired. Each instance gets a separate
copy of the methods and attributes defined in the class. Each instance can access the methods
and attributes of the class independently, and an attribute of one instance doesn’t interfere
with an attribute of another instance. It also means that through instances, you can use a class
for performing operations with several different sets of data. To create an instance of a class,
you call the class object as if it were without parameters, as shown here:

r=rect()

You can see that the class object rect is called as if it is a function. Each call returns a new

instance of that class. The above statement returns a new instance of the class, rect, and

assigns it to the variable r.

The following program computes the area of a rectangle by creating an instance of the class
and invoking a method through the instance:

rectclass3.py
class rect:
 l=8
 b=5
 def rectarea(self):
 return rect.l * rect.b
r=rect()
print ("Area of rectangle is ", r.rectarea())
Output:
Area of rectangle is 40

In this program, an instance of class rect is created with the name r. The class has two class

variables, l and b, initialized to 8 and 5. The rectarea() method of the class is invoked

through the instance r, which computes and returns the area of a rectangle. Remember, you

need to specify self explicitly when defining the method, whereas you do not specify it when

calling the method, as Python adds it automatically.

Note

Python adds the self argument automatically when calling the methods via instance, so

you don’t have to include the term self when you call the methods of the class.

In this program, the variables l and b defined in the class rect are the class variables, and

class variables are implicitly shared by all instances of the class. It also means that changes
applied to the class variables by one instance can be seen by another instance of the class. This
problem will be solved when creating instance variables.

The method we are going to discuss next helps in initializing variables of an instance.

The __init__() Method

The __init__ method is the first method to be executed after creation of an instance. This

method is like a constructor in C++ and Java languages and is used to perform initialization.
Arguments may or may not be passed to the __init__ method.

Note

The instance is already constructed by the time __init__ is called.

The first argument of every class method is a reference to the current instance of the class. This
first argument is named self. In the __init__ method, self refers to the newly created

instance; in other class methods, it refers to the instance whose method was called. When
defining __init__, you must remember to call the ancestor’s __init__ method explicitly if it is

there.

For example:

class rect:
 def __init__(self):
 self.l = 8
 self.b = 5

r=rect()

In this example, an instance is created for the rect class by name r. The __init__ method will

be automatically executed to perform the task of initializing the variables of the instance. Here,
the __init__ method initializes the variables l and b of the instance r to 8 and 5. The variables

l and b defined in the class are instance variables.

Note

The __init__ method must not return a value, or a TypeError exception is raised.

The following program demonstrates the __init__ method in initializing instance variables and

also calculates the area of a rectangle:

defaultcons.py

class rect:
 def __init__(self):
 self.l = 8
 self.b = 5
 def rectarea(self):
 return self.l * self.b
r=rect()
print ("Area of rectangle is ", r.rectarea())
Output:
Area of rectangle is 40

An instance of the rect class object is created by name r. The __init__ method will be

automatically executed to initialize the variables of the instance r. The variables l and b of the

instance r will be initialized to 8 and 5. Finally, the rectarea() method is called through

instance r and calculates and returns the area of the rectangle.

After the creation of an instance, the __init__ method is automatically executed. Can you pass

arguments to the __init__ method for initializing instance variables?

Passing Arguments to the __init__ Method

The following program demonstrates passing arguments to the __init__ method:

paramcons.py
class rect:
 def __init__(self, x,y):
 self.l = x
 self.b = y
 def rectarea(self):
 return self.l * self.b

r=rect(5,8)
print ("Area of rectangle is ", r.rectarea())
Output:
Area of rectangle is 40

An instance of the rect class object is created by name r. The two arguments, 5 and 8, which

are supplied during creation of the instance, r will be passed to the __init__ method as

arguments. That is, the values 5 and 8 will be assigned to parameters x and y of the __init__

method from where they will be assigned to the instance variables l and b. Finally, the

rectarea() method is called through instance r that calculates and returns the area of

rectangle.

Note

The arguments to be passed to the __init__ method if any have to be supplied when

initializing of the instance.

Can you have default value parameters in __init__ method as in normal functions? Yes.

Defining Default Value Parameters in the __init__ Method

This example shows how default values are specified for the parameters of the __init__

method so that if the value of any parameter is not supplied when initializing an instance, its
default value is used.

The following program demonstrates using default value parameters in the __init__ method.

The program demonstrates creates two instances: one that supplies the arguments and another
that doesn’t supply any argument. The default values will be considered for the instance that
doesn’t supply arguments. Here is the code:

constructor.py
class rect:
 def __init__(self,x=8, y=5):

 self.l = x
 self.b = y
 def rectarea(self):
 return self.l * self.b

r=rect()
s=rect(10,20)
print ("Area of rectangle is ", r.rectarea())
print ("Area of rectangle is ", s.rectarea())
Output:
Area of rectangle is 40
Area of rectangle is 200

You can see that the __init__ method defines the default values for its parameters x and y as

8 and 5. The two instances of rect are created as r and s. The instance r has no arguments for

the __init__ method and hence, the default values 8 and 5 in the parameters x and y will be

used to initialize its instance variables l and b. The s instance supplies the arguments 10 and

20 when it’s initialized and will be assigned to the parameters x and y from where they will be

assigned to its instance variables l and b. The rectarea() method when invoked by the two

instances will calculate and return the area of a rectangle on the basis of the values assigned to
their instance variables, l and b.

By now, you know how to create an instance and how to initialize its variables through
__init__. Now let’s see the procedure for printing the instance. Remember, you are not

printing the instance variables but the instance itself. When printing an instance, it is
converted into a string.

String Representation of an Instance

The __str__ method is called by the str() and print statements to display the string

representation of an instance.

classstr.py
class rect:
 def __init__(self, x,y):
 self.l = x
 self.b = y
 def __str__(self):
 return 'Length is %d, Breadth is %d' %(self.l, self.b)
 def rectarea(self):
 return self.l * self.b
r=rect(5,8)
print (r)
print ("Area of rectangle is ", r.rectarea())
Output:
Length is 5, Breadth is 8
Area of rectangle is 40

This program creates an instance r of class rect and passes values 5 and 8 to the __init__

method for assigning them to its instance variables l and b. Then, instance r is passed to a

print statement that results in creation of the string representation of the instance and hence

invokes the __str__ method. The __str__ method returns a message displaying values of the

instance variables l and b, so the whole instance is returned in the form of a string. The

program also computes and displays the area of rectangle through rectarea().

Besides the instance methods, you can also create class methods and static methods in a class.

Let’s learn about them.

Class Methods

A class method has no self argument and receives a class as its first

argument. By convention, the argument to the class method is called cls.

That is, in a class method, the class on which it is called is passed to it as
the first argument. The class method can also be called directly through
the class object without instantiating the class. A class method is defined
using the @classmethod decorator. A decorator provides a convenient

method to insert and modify code in functions or classes.

Syntax:
@classmethod
def f(cls, parm1, parm2, . . .):
 body of the method

This shows a class method, f, with few parameters parm1, parm2, and so

on.

The following program creates a class as well as an instance method and
accesses them to display the content of instance and class variables.

classmethod.py
class book:
 price=100
 @classmethod
 def display(cls):
 print (cls.price)
 def show(self,x):
 self.price=x
 print (self.price)

b=book()
c=book()
book.display()
b.display()
b.show(200)
c.show(300)
Output:

100
100
200
300

This program defines a class object, book, which contains a class variable,

price, initialized to 100. Also, the class contains a class method,

display(), and an instance method, show(). Two instances, b and c, are

created of the class book. The class method display() is called through the

class object, book, which displays the value of the price class variable,

100. The class method display() is called through the instance b, which

again displays the value of the class variable price as 100. Then the

instance method show() is called through instance b, passing value 200 to

it, which is assigned to its parameter x and which is finally assigned to its

instance variable, price. Now there are two price variables, a class

variable initialized to value 100, which is common for all instances, and an

instance variable of the instance b set to 200. The show() instance method

is called through the instance c, passing value 300 as an argument to be

assigned to its instance variable, price.

There is an alternative to the class method known as the static method.

Static Methods

A static method is an ordinary function that is built using the @staticmethod

decorator and that binds its result to a class attribute. The difference between a
static method and a class method is that a static method has no cls parameter.

It doesn’t use the self parameter, either. There is one more difference—the class

method is automatically inherited by any child classes, whereas the static method
is not. Also, the definition of a static method is immutable via inheritance. A
static method can be called on a class or on any instance of a class.

Syntax:
@staticmethod
def name (parm. . .) :
 body of the method

This shows a static method, name, with parameters parm....

The following program defines a class that contains a static method and accesses
it via a class object as well as through an instance.

staticmethod.py
class rect:
 @staticmethod
 def disp_message():
 l=50
 print ("Length is ", l)

rect.disp_message()
r=rect()
r.disp_message()
Output:
Length is 50
Length is 50

The program creates a rect class with a disp_message() static method in it.

First, disp_message() is called through the class object rect. The method

initializes an attribute l to value 50 and displays it. Then, an instance r is created

of rect, and disp_message() is called through the instance r. In

disp_message(), again, the value of the attribute l will be set to 50 and

displayed. Hence, the program confirms that the static method can be called on a
class as well as on an instance of a class.

The following program creates a class that contains both a static method and a
class method and shows how a class variable is displayed through the two
methods:

staticlassmethod.py
class product:
 count = 0
 def __init__(self, name):
 self.name=name
 product.count += 1
 @staticmethod
 def prodstatcount():
 return product.count

 @classmethod
 def prodclasscount(cls):
 print('Class info: ', cls)
 print ('Class method - The product count is: ', cls.count)

p1=product('Camera')
p2=product('Cell')
print('Static method - The product count is: ', product.prodstatcount())
p2.prodclasscount()
Output:
Static method - The product count is: 2
Class info: <class '__main__.product'>
Class method - The product count is: 2

The program defines a product class that contains a class variable, count,

initialized to 0. The class contains a static method and a class method,

prodstatcount() and prodclasscount(). An instance, p1, of class product is

created that passes the string ‘Camera’ to the __init__ method to be assigned to

its instance variable, name. The __init__ method also increments the value of the

class variable count by 1. Similarly, another instance, p2, is created that passes

the string ‘Cell’ to the __init__ method to be assigned to its instance variable,

name. The __init__ method again increments the value of the class variable

count by 1, making its value 2. Thereafter, the static method prodstatcount() is

called on the product class object, which returns the value of the class count

variable, 2. Finally, the class method prodclasscount() is called on instance p2,

passing the product class to it via the cls parameter. The information of the

class is displayed by printing the cls parameter, and the value of the count class

variable is displayed.

Assigning One Instance to Another

Python provides a facility to assign one instance to another. Assigning an instance

to another results in creation of a new instance if it doesn’t exists. For example,
assuming inst1 and inst2 are instances of some class, then the following

statement:

inst1=inst2

will create the instance inst1 if it doesn’t exist, and all the instance variables of

inst1 will be initialized to values equal to those in instance variables of inst2.

The following program demonstrates how an instance is assigned to another and
results in assigning the attributes of an instance to another instance.

assignobj.py
class rect:
 def __init__(self, x,y):
 self.l = x
 self.b = y
 def rectarea(self):
 return self.l * self.b
r=rect(5,8)
s=r
print ("Area of rectangle is ", r.rectarea())
print ("Area of rectangle is ", s.rectarea())
Output:
Area of rectangle is 40
Area of rectangle is 40

In this program, an object r is created of class rect. The arguments 5 and 8 are

passed to the __init__ method, and then are assigned to the l and b variables of

the r instance. The content of instance r is assigned to instance s. That is, the

instance s will also have its instance variables initialized to 5 and 8. This is proved

by computing the area of a rectangle by invoking rectarea() through both the

instances, and the area comes out the same.

Garbage Collection

Garbage collection is a procedure of freeing up the memory that is used by
the variables or instances that are no longer required. The memory that is
used by the instances is usually freed up automatically when the variables
assigned to them go out of scope. That’s why memory leaks are rare in
Python.

For garbage collection, Python uses a reference countering mechanism.
Each object has a reference count that indicates the number of references
that exist for that object. The reference count increases for each reference
added to the object and is decreased by removing the reference to that
object. When the refer count reaches zero, the object is garbage collected.

The following program demonstrates the concept of garbage collection. It
creates two instances. A class variable is incremented by 1 on creation of

an instance and is decremented by 1 on deleting an instance.

destructor.py
class rect:
 n=0
 def __init__(self,x,y):
 rect.n +=1
 self.l=x
 self.b=y
 def __del__(self):
 rect.n -=1
 class_name = self.__class__.__name__
 print(class_name,' destroyed')
 def rectarea(self):
 print ('Area of rectangle is ', self.l * self.b)
 def noOfObjects(self):
 print ('Number of objects are: ', rect.n)

r=rect(3,5)
r.rectarea()
s=rect(5,8)
s.rectarea()
r.noOfObjects()

del r
s.noOfObjects()
del s
Output:
Area of rectangle is 15
Area of rectangle is 40
Number of objects are: 2
rect destroyed
Number of objects are: 1
rect destroyed

In this program, an instance r is created and passes values 3 and 5 as

arguments to the __init__ method for assigning them to its instance

variables l and b. On creation of the instance r, the class variable that was

initially set to 0 will be incremented by 1. Similarly, another instance, s, is

created, passing arguments 5 and 8 to its __init__ method for assignment

to its instance variables l and b. Again, the value of the class variable n is

incremented by 1, making its value 2. The area of a rectangle is computed

on instances r and s. The noOfObjects() method displays the value of the

class variable n (2), which confirms the existence of two instances of the

class. When the instance r is deleted, the __del__ method is executed, the

value of the class variable n is decremented, and a message is displayed

confirming destruction of the instance. After deleting the instance r, when

you call the noOfObjects() method, the value of the class variable n is

displayed as 1, confirming that only a single instance of the rect class is

left. Finally, s is also deleted, which decrements the value of the class

variable to 0.

Inheritance

Inheritance is a technique of copying the data members and member
functions of an existing class into another class. That is, instead of
beginning from scratch, an existing class can be inherited, and additional
data members and member functions can be defined. The class that is
being inherited is called the base class or the super class, and the
inheriting class is called the derived class or sub-class. The sub-class
inherits all the properties of the base class and hence results in saving time
and effort.

Types of Inheritance

I will discuss three types of inheritance:

Single inheritance

Multilevel inheritance

Multiple inheritance

Single Inheritance

This is the simplest type of inheritance, where one class is derived from
another single class, as shown in Figure 5.1.

Figure 5.1. Single inheritance.

Class B inherits class A, or class B is derived from class A. A derived class

has to identify the class from which it is derived. Suppose, for example,
you want to derive the triangle class from the rect class. The class

definition of triangle will appear like this:

class triangle(rect):

This statement indicates that rect is a base class, and triangle is a

derived class.

Consider the following program of single inheritance. In this program, a
triangle class inherits the base class, rect, as a result of which the

instance of the triangle class can access the public member functions of

the rect class (beside its own member functions).

inherit1.py
from __future__ import division

class rect:
 def __init__(self):
 self.l = 8
 self.b = 5
 def rectarea(self):
 return self.l * self.b

class triangle(rect):
 def __init__(self):
 rect.__init__(self)
 self.x = 17
 self.y = 13
 def trigarea(self):
 return 1/2*self.x * self.y

r=triangle()
print ("Area of rectangle is ", r.rectarea())
print ("Area of triangle is ", r.trigarea())
Output:
Area of rectangle is 40
Area of triangle is 110.5

Note

If you have __init__ in both classes, the base class’s __init__

method must be made from the __init__ method of the derived

class.

This program defines a rect class consisting of an __init__ and a

rectarea() method. One more class, triangle, is defined in the program

that is derived from rect. The triangle class consists of __init__ and

trigarea() methods.

An instance r of triangle is created. Since the triangle class derives the

rect, the instance r can invoke the methods of the rect base class, as well

as that of its own class. After creation of the instance r, the __init__

method of triangle is executed, which in turn invokes the __init__

method of its base class, rect. Recall that the __init__ method must

explicitly call the ancestor’s __init__ method if it is there. The __init__

method of the rect class initializes the values of the instance variables l

and b to 8 and 5. After the execution of the __init__ method of the rect

class, the __init__ method of the triangle class will be executed, which

initializes the values of the instance variables x and y to 17 and 13. Being

able to call methods of both the classes, the instance r invokes the

rectarea() and trigarea() methods to compute and display the area of

the rectangle and the triangle.

Access Control Specifiers

Access control specifiers define the visibility of the members of the class.
All the members of the class are assigned a boundary in which they can be
accessed using these control specifiers. There are two keywords, public

and private.

Public member—Accessed from inside as well as outside of the

class.

Private member—Cannot be accessed from outside the body of

the class. A private member is preceded by a double underscore
(__).

Accessing public Members

The following program shows how to define and access public members

publicaccess.py
class rect:
 def __init__(self, x,y):
 self.l = x
 self.b = y
 def rectarea(self):
 return self.l * self.b

r=rect(5,8)
print ("Area of rectangle is ", r.rectarea())
print ("Area of rectangle is ", r.l* r.b)
Output:
Area of rectangle is 40
Area of rectangle is 40

The program creates an instance r of rect and passes 5 and 8 as

arguments to the __init__ method to be assigned to its instance variables,

l and b. The program calculates the area of a rectangle by invoking the

rectarea() method on instance r as well as by accessing and multiplying

the instance variables l and b outside the body of the class, which confirms

that the instance variables l and b are publicly accessible.

Accessing private Members

When in a method of a class body, an identifier is defined starting with two
underscores but not ending with underscores, it is considered a private

identifier of the class. The private identifiers cannot be accessed from

outside the body of the class.

The following program demonstrates how to define private accessible

variables in a class:

privateaccess.py
class rect:
 def __init__(self, x,y):
 self.__l = x
 self.__b = y
 def rectarea(self):
 return self.__l * self.__b
r=rect(5,8)
print ("Area of rectangle is ", r.rectarea())
print ("Area of rectangle is ", r._rect__l* r._rect__b)
Output:
Area of rectangle is 40
Area of rectangle is 40

This program defines two private instance variables, l and b, represented

by __l and __b. These can be accessed within the body of the class. If you

try to access the private members such as r.__l * r.__b, you will get

AttributeError: ‘rect’ has no attribute ‘__l’. To access private

variables from outside the body of the class, you need to use the class

name, along with the instance name such as r._rect__l.

A derived class can access the public data members and member

functions of the base class. Perhaps the derived class needs to access a
member function of the base class but with slight modification. For
example, suppose the base class has a member function named
commission() that computes commission equal to 5% of an amount,

whereas the derived class needs a member function that computes
commission of 10%. In this case, the derived class needs to redefine the
commission() member function that computes the commission of 10% in

its own body, overriding the member function of the base class. Let’s see
the concept in detail.

Method Overriding

If in a derived class you have a member function with the same signature
as that of the base class, then you say that the member function of the
derived class is overriding the member function of the base class. If the
member function is invoked by the instance of the derived class, the
member function of the derived class will be executed (and not the
member function of the base class).

The following program demonstrates the concept of method overriding. A
triangle class inherits from the class rect and overrides the area()

method of the base class by redefining it. Here is the code:

override.py
from __future__ import division
class rect:
 def __init__(self):
 self.l = 8
 self.b = 5
 def area(self):
 return self.l * self.b

class triangle(rect):
 def __init__(self):
 rect.__init__(self)
 self.x = 17
 self.y = 13
 def area(self):
 return 1/2*self.x * self.y
r=triangle()
print ("Area of triangle is ", r.area())
Output:
Area of triangle is 110.5

The program creates an instance r of the triangle class. Since the

triangle class inherits from the rect class, its instance can execute the

methods of rect as well as those of triangle. On creation of the instance,

the __init__ method of triangle is invoked, which in turn invokes the

__init__ method of rect, initializing the instance variables l, b, x, and y

to values 8, 5, 17, and 13. triangle overrides the area() method, so when

the area() method on instance r is invoked, it will execute the area()

method of the triangle class, computing and returning the area of

triangle instead of the area of rectangle.

What if I want to get the area of rectangle as well as the area of

triangle? For this, you need to call the method of the base class from the

derived class.

Accessing Methods of a Base Class from a Derived Class

You can access methods of the base class from the derived class by using a
fully qualified name, by prefixing the class name to the method name. The
following program shows how to access a method of the base class from
the derived class:

inherit2.py
from __future__ import division

class rect:
 def __init__(self):
 self.l = 8
 self.b = 5
 def area(self):
 print ("Area of rectangle is ", self.l * self.b)

class triangle(rect):
 def __init__(self):
 rect.__init__(self)
 self.x = 17
 self.y = 13
 def area(self):
 rect.area(self)
 print ("Area of triangle is ", 1/2*self.x * self.y)

r=triangle()
r.area()
Output:
Area of rectangle is 40
Area of triangle is 110.5

The program contains two classes, rect and triangle, both consisting of the

methods __init__ and area(). The triangle class inherits from the rect

class, hence it overrides the area() method of the base class, rect. An

instance r of triangle is created, and area() is invoked on it. As expected,

it will invoke the area() method of the derived class, triangle. In the

area() method of the triangle class, the area() method of the base class,

rect, is invoked, and the program prints the area of rectangle as well as

the area of triangle.

Now let’s learn about multilevel inheritance.

Multilevel Inheritance

When a class inherits a class that in turn is inherited by some another
class, you call it multilevel inheritance, as shown in Figure 5.2.

Figure 5.2. Multilevel inheritance.

The B class inherits from the A class, which in turn is inherited by class C. B

can access the public members of A, and C can access the public members

of B and hence of A.

For example, consider the following:

class worker:
...

...
class officer(worker):
...

...
class manager(officer):
...

...

The manager class inherits from the officer class, which is a derived class

of the worker class. In this scenario, worker is the base class, officer is

an intermediate base class, and manager is a derived class. manager

inherits the properties of officer directly and the properties of the worker

class indirectly via the officer class. The manager class can access the

public members of the officer class, which in turn can access the public

members of the worker class.

Let’s examine the concept through a program.

multilevel.py

from __future__ import division

class worker:
 def __init__(self, c, n, s):
 self.code = c
 self.name= n
 self.salary = s
 def showworker(self):
 print ("Code is ", self.code)
 print ("Name is ", self.name)
 print ("Salary is ", self.salary)

class officer(worker):
 def __init__(self, c,n,s):
 worker.__init__(self,c,n,s)
 self.hra = s*60/100
 def showofficer(self):
 worker.showworker(self)
 print ("HRA - House Rent Allowance is ", self.hra)
class manager(officer):
 def __init__(self, c,n,s):
 officer.__init__(self,c,n,s)
 self.da = s*98/100
 def showmanager(self):
 officer.showofficer(self)
 print ("DA - Dearness Allowance is ", self.da)

w=worker(101, 'John' , 2000)
o=officer(102, 'David', 4000)
m=manager(103, 'Ben' , 5000)
print ("Information of worker is ")
w.showworker()
print ("\nInformation of officer is ")
o.showofficer()
print ("\nInformation of manager is ")
m.showmanager()

Output:
Information of worker is
Code is 101
Name is John
Salary is 2000

Information of officer is
Code is 102
Name is David
Salary is 4000
HRA - House Rent Allowance is 2400.0

Information of manager is
Code is 103
Name is Ben
Salary is 5000
HRA - House Rent Allowance is 3000.0
DA - Dearness Allowance is 4900.0

The program contains three classes: worker, officer, and manager.

officer inherits from worker. The manager class inherits from officer. The

manager class can access the methods of officer, which in turn can access

the methods of the worker class. The instances of worker, officer, and

manager are created by the names w, o, and m. worker is supposed to

display code, name, and salary. The officer class is supposed to display

code, name, salary, and hra. manager is supposed to display code, name,

salary, hra, and da.

In multilevel inheritance, one class is inherited by another class that in
turn is inherited by a third class. Can a class be inherited by two or more
classes?

Two Classes Inheriting from the Same Base Class

Consider a situation in which you want to create two classes, A and B,

having attributes in common. Class A consists of attributes p, q, and r, and

B consists of attributes p, q, and s. You can see that both the classes have

p and q in common. In this situation it is better to create a third class C

with two attributes p and q and let A and B inherit from C. This approach

helps reduce the code and effort because you only need to write code for
the r attribute for A and for the s attribute for B.

In the following program, two classes inherit from the same base class. You
want to store the code, name, and salary information of officers and

managers. The attributes required for storing information for officers are

code, name, salary, and hra, and that for managers is code, name, salary,

hra, and da. Both classes have three attributes in common: code, name,

and salary. So, to save time and effort, it is better to create a class named

worker consisting of three attributes: code, name, and salary and let both

officer and manager inherit from this class. Here is the complete code:

inherit3.py
from __future__ import division

class worker:
 def __init__(self, c, n, s):
 self.code = c
 self.name= n
 self.salary = s
 def showworker(self):
 print ("Code is ", self.code)
 print ("Name is ", self.name)
 print ("Salary is ", self.salary)

class officer(worker):
 def __init__(self, c,n,s):
 worker.__init__(self,c,n,s)
 self.hra = s*60/100
 def showofficer(self):
 worker.showworker(self)
 print ("HRA - House Rent Allowance is ", self.hra)
class manager(worker):
 def __init__(self, c,n,s):
 worker.__init__(self,c,n,s)
 self.hra=s*60/100
 self.da = s*98/100
 def showmanager(self):
 worker.showworker(self)
 print ("HRA - House Rent Allowance is ", self.hra)
 print ("DA - Dearness Allowance is ", self.da)

w=worker(101, 'John' , 2000)
o=officer(102, 'David', 4000)
m=manager(103, 'Ben' , 5000)
print ("Information of worker is ")
w.showworker()
print ("\nInformation of officer is ")
o.showofficer()
print ("\nInformation of manager is ")
m.showmanager()
Output:
Information of worker is
Code is 101

Name is John
Salary is 2000

Information of officer is
Code is 102
Name is David
Salary is 4000
HRA - House Rent Allowance is 2400.0

Information of manager is
Code is 103
Name is Ben
Salary is 5000
HRA - House Rent Allowance is 3000.0
DA - Dearness Allowance is 4900.0

This program defines a worker class consisting of three attributes: code,

name, and salary. The officer class inherits from the worker class and its

__init__ method, and, besides calling the __init__ method of the worker

class, also computes the attribute hra. Similarly, the manager class inherits

from the worker class, and its __init__ method, after calling the __init__

method of the worker class, computes the hra and da attributes. The idea

is that the common attributes be dealt with by one common class and the
others be dealt with by the inheriting class, reducing the code and effort.

Let’s look at one more program that demonstrates one class being inherited
by two classes. Suppose you want to store the information of science and
arts students. The attributes that you want to store for science students are
roll, name, physics, and chemistry. For the arts students you want to

store roll, name, history, and geography. Both classes have two attributes

in common, roll and name. A student class is created with these two

common attributes, roll and name, and both classes will inherit from the

student class. Here is the complete code:

inherit4.py
class student:
 def __init__(self, r, n):
 self.roll = r
 self.name= n
 def showstudent(self):
 print ("Roll : ", self.roll)
 print ("Name is ", self.name)

class science(student):
 def __init__(self, r,n,p,c):
 student.__init__(self,r,n)

 self.physics = p
 self.chemistry=c
 def showscience(self):
 student.showstudent(self)
 print ("Physics marks : ", self.physics)
 print ("Chemistry marks : ", self.chemistry)

class arts(student):
 def __init__(self, r,n,h,g):
 student.__init__(self,r,n)
 self.history = h
 self.geography=g
 def showarts(self):
 student.showstudent(self)
 print ("History marks : ", self.history)
 print ("Geography marks : ", self.geography)

s=science(101, 'David', 65, 75)
a=arts(102, 'Ben', 70, 60)
print ("Information of science student is ")
s.showscience()
print ("\nInformation of arts student is ")
a.showarts()
Output:
Information of science student is
Roll : 101
Name is David
Physics marks : 65
Chemistry marks : 75

Information of arts student is
Roll : 102
Name is Ben
History marks : 70
Geography marks : 60

The program creates two instances of science and arts class, s and a, and

both of them pass information for the student as an argument to their
__init__ methods. Since both classes inherit from the student class, their

__init__ method invokes the __init__ method of the student class to

initialize the instance variables, roll and name, which are common to both

instances. After that, the __init__ methods of the science and arts

classes are invoked to assign the marks for the rest of the attributes such
as physics and chemistry marks of science students and history and

geography marks of arts students. To display the information of the

science student, the showscience() method on instance s is invoked,

which in turn invokes the showstudent() method of the student class to

print the common attributes, roll and name. The information of the other

attributes, physics and chemistry, is displayed through the

showscience() method. Similarly, the information of the arts student is

displayed through the showarts() method, which invokes the

showstudent() method to display the common attributes, roll and name.

Can a class inherit one or more classes? Yes! And the procedure is called
multiple inheritance.

Multiple Inheritance

If a class is derived from more than one base class, you call it multiple
inheritance, as shown in Figure 5.3. Usually when you need to use the
members of two or more classes (having no connection) via another class,
you combine the features of all those classes by inheriting them.

Figure 5.3. Multiple inheritance.

The class C inherits from both A and B. Now C can access the public

members of A and B.

For example, consider the following:

class worker
{
...

...

}
class officer
{
...

...

}
class manager(worker,officer)
{
...

...

}

You see that, with no connection between them, the two base classes,
worker and officer, are inherited from by the manager class. Now manager

can access the public members of worker as well as officer.

Note

All the base classes that are to be inherited have to be separated by
commas.

The following program explains multiple inheritance. Two classes, student

and science, are inherited by a third class, results.

multiple.py
from __future__ import division
class student:
 def __init__(self, r, n):
 self.roll = r
 self.name= n
 def showstudent(self):
 print ("Roll : ", self.roll)
 print ("Name is ", self.name)

class science:
 def __init__(self, p,c):
 self.physics = p
 self.chemistry=c
 def showscience(self):
 print ("Physics marks : ", self.physics)
 print ("Chemistry marks : ", self.chemistry)

class results(student,science):
 def __init__(self, r,n,p,c):
 student.__init__(self,r,n)
 science.__init__(self,p,c)
 self.total = self.physics+self.chemistry

 self.percentage=self.total/200*100

 def showresults(self):
 student.showstudent(self)
 science.showscience(self)
 print ("Total marks : ", self.total)
 print ("Percentage marks : ", self.percentage)

s=results(101, 'David', 65, 75)
print ("Result of student is ")
s.showresults()

Output:
Result of student is
Roll : 101
Name is David
Physics marks : 65
Chemistry marks : 75
Total marks : 140
Percentage marks : 70.0

student is defined by two attributes, r and n, representing roll and name.

One more class, science, is defined that has attributes p and c,

representing physics and chemistry. A results class is defined that

inherits from both student and science, so results can access the

attributes of student and science: r, n, p, and c. The results class

calculates total and percentage from p and c (psychics and chemistry)

and displays all six attributes.

In case of multiple inheritance, a confusing state may arise.

Two Base Classes Having a Method with the Same Name and
Signature

What will happen if the two classes that are derived by a third class contain
a method with the same signature? Suppose there are two classes, A and B,

that have a method with the same name and signature, area(), and a third

class C inherits from both A and B. The instance of C will have two copies of

the area() method. Which area() method will it execute, the one from A or

the one from B?

The answer is that the method of the class A will be executed. The following

program confirms that the method of the first class will be accessed if two
classes have a method of the same signature in multiple inheritance:

basefunc.py

from __future__ import division

class rect:
 def __init__(self):
 self.l = 8
 self.b = 5
 def area(self):
 return self.l * self.b

class triangle:
 def __init__(self):
 self.x = 17
 self.y = 13
 def area(self):
 return 1/2*self.x * self.y

class both(rect, triangle):
 pass

r=both()
print ("Area of rectangle is ", r.area())
Output:
Area of rectangle is 40

The program contains two classes, rect and triangle, both consisting of

__init__ and area() methods. Both classes are accessed by a class named

both. both has no methods of its own. Also, its r instance will have two

copies of the area() method. On accessing area() through r, you observe

that it accesses the area() method of rect, displaying the area of the

rectangle.

You can apply arithmetic operations on the class instances in the same way
as you apply them on numbers. Let’s learn more about it.

Operator Overloading

To overload a standard operator means that you apply arithmetic operators
to a class instance to perform the desired operations. You can add,
subtract, multiply, and divide instances using the standard operators in the
same way they are used with numbers. For example, the __add__ method

is used to add instances just as the plus operator (+) does.

When you use an operator such as +, Python calls the special method

__add__ in the background. All you need to do is implement __add__ to

add two instances.

The following program adds the instances r1 and r2 of the class rect

through the + operator:

operatorovr1.py
class rect:
 def __init__(self, x,y):
 self.l = x
 self.b = y
 def __str__(self):
 return 'Length is %d, Breadth is %d' %(self.l, self.b)
 def __add__(self, other):
 return rect(self.l+ other.l, self.b+other.b)
 def rectarea(self):
 return self.l * self.b
r1=rect(5,8)
r2=rect(10,20)
r3=r1+r2
print (r3)
print ("Area of rectangle is ", r3.rectarea())
Output:
Length is 15, Breadth is 28
Area of rectangle is 420

In this program, r1 and r2 are created of class rect. The instance variables

l and b of instance r1 are initialized to values 5 and 8. l and b of instance

r2 are initialized to values 10 and 20. Then, r1 and r2 are added through

the + operator, and the result is stored in the newly created instance r3.

The + operator will be invoked through r1 instances, passing itself and the

second instance, r2, to the __add__ method, where the l and b of both

instances are added, returned, and assigned to the instance r3. The

__str__ method is invoked by calling a print statement to display the

string representation of the instance r3. The __str__ method displays the

values of the instance variables of r3. The program also computes and

displays the area of rectangle on the added instance.

Overloading the Comparison Operator (==)

The following program explains how to overload the comparison operator
(==) to see if the two instances have instance variables with the same

value.

operatorovr2.py
class rect:
 def __init__(self, x,y):
 self.l = x
 self.b = y
 def __str__(self):
 return 'Length is %d, Breadth is %d' %(self.l, self.b)
 def __eq__(self, other):
 return ((self.l== other.l) and (self.b==other.b))
 def rectarea(self):
 return self.l * self.b
r1=rect(5,8)
r2=rect(10,20)
if r1==r2 :
 print('The two instances are equal')
else:
 print('The two instances are not equal')
Output:
The two instances are not equal

The program creates two instances of class rect, r1 and r2. The instance

variables l and b of instance r1 are initialized to 5 and 8. The instance

variables l and b of instance r2 are initialized to 10 and 20. The instances

r1 and r2 are compared through the equal to (==) operator to see if they

are the same. Since the values of the instance variables of the two
instances are not the same, the program displays a message, The two

instances are not equal.

Polymorphism

Poly means many, and morph means change. Through polymorphism, you
can have a method with the same name in different classes to perform
different tasks. You can handle objects of different types in the same way.

To implement polymorphism, you define a number of classes or subclasses
that have method(s) with the same name. These classes or subclasses are
polymorphic. You can access the polymorphic methods without knowing
which class or subclass is invoked.

For example, the commission percentage from selling a book may be
different for a stockist, a distributor, and a retailer. You can define a
commission() method in three classes—stockist, distributor, and

retailer, where each method computes a different percentage of

commission. On execution of the program, the respective commission()

method is called on each instance. Here is a complete program that
demonstrates polymorphism.

polymorphism.py
class book:
 def __init__(self,x):
 self.price = x

class stockist(book):
 def __init__(self,x):
 book.__init__(self,x)
 def commission(self):
 self.comm=self.price*5/100
 print ("Commission of Stockist is %.2f" %self.comm)

class distributor(book):
 def __init__(self,x):
 book.__init__(self,x)
 def commission(self):
 self.comm=self.price*8/100
 print ("Commission of Distributor is %.2f" %self.comm)

class retailer(book):
 def __init__(self,x):
 book.__init__(self,x)
 def commission(self):
 self.comm=self.price*10/100
 print ("Commission of Retailer is %.2f" %self.comm)

r = stockist(100)
s = distributor(100)
t = retailer(100)
prncomm = [r,s,t]
for c in prncomm:
 c.commission()

Output:
Commission of Stockist is 5.00
Commission of Distributor is 8.00
Commission of Retailer is 10.00

The program creates r, s, and t instances of stockist, distributor, and

retailer. All three classes, stockist, distributor, and retailer, inherit

the book class. The three instances initialize their instance variable price

by invoking the __init__ method of the book class. A prncomm list is

created that contains the three instances. One instance at a time is
accessed from prncomm, and its commission() method is accessed to

compute and display the commission of the respective class. From the
output, you observe that the commission() method of each class calculates

and displays the commission accordingly, hence implementing
polymorphism.

Properties

Properties are used to manage attributes with get/set methods. In earlier

versions of Python, management of attributes was done by overriding
__getattr__ and __setattr__ methods. To avoid the overhead of

overriding these two methods, properties are used. You use properties to
reroute an attribute’s set, get, or even delete operation to a function.

propertyex.py
class product(object):
 def __init__(self, name):
 self._name = name
 def set_name(self, name):
 print ('Setting product name: %s' % name)
 self._name = name
 def get_name(self):
 return self._name
 def del_name(self):
 del self._name

 name = property(get_name, set_name)

p = product('Camera')
print('Getting product name ', p.name)
p.name='Cell'
print('Getting product name ', p.name)
Output:
Getting product name Camera
Setting product name: Cell

Getting product name Cell

This program creates a name property that consists of two methods,

get_name and set_name, in the product class. An instance of products, p,

is created that initializes its instance variable _name to Camera by invoking

its __init__ method. On accessing the name property on p, the get_name

method of the property will be invoked automatically and return the value
of the _name instance variable. Similarly, on assigning value to the name

property, the set_name method will be invoked, assigning the value passed

to the property to the instance variable, _name.

There is another way to manage instance attributes, descriptors. A
descriptor is a superset of properties.

Descriptors

Descriptors are classes that enable us to manage instance attributes
efficiently. To manage instance attributes, three methods are used:
__set__, __get__, and __delete__. The descriptors are of two types:

Non-data descriptor—The class that implements only the __get__

method for an object is known as a non-data descriptor.

Data descriptor—The class that implements __delete__ and __set__

methods as well as the __get__ method for an object is known as a

data descriptor.

When you access an instance attribute, Python obtains the attribute’s value
by calling __get__ on the corresponding descriptor. Similarly, when you

assign some value to an instance attribute with a corresponding descriptor,
the value of that attribute is set by calling __set__ on the descriptor.

The syntax for coding descriptors is this:

class Descriptor:
 def __get__(self, instance, owner):
 ...
 def __set__(self, instance, value):

 ...
 def __delete__(self, instance):
 ...

The following program demonstrates using the __set__ and __get__

methods in setting and getting instance attributes:

descript.py
class product:
 def __init__(self, name, x=5):
 self.name = name
 self.price=x
 def __set__(self, obj, value):

 print ('Setting attribute' , self.name)
 self.price = value
 def __get__(self, obj, objtype):
 print ('Getting attribute',self.name)
 return self.price

class cart:
 p = product('butter',7)

k=cart()
print(k.p)
k.p=10
print(k.p)
Output:
Getting attribute butter
7
Setting attribute butter
Getting attribute butter
10

A product class is defined, consisting of three methods, __init__,

__set__, and __get__. Another class, cart, is defined that contains an

instance p of product. p initializes its instance variables, name and price,

to butter and 7.

A k instance of the cart class is created. The p instance of product is

accessed via k in a print statement. The __get__ method is automatically

invoked on accessing an instance. The __get__ method returns the values

of the instance variables name and price to display the information in

them. Also, the program assigns 10 to the p instance of the k instance. As

expected, the __set__ method is invoked on assigning a value to any

instance variable. The __set__ method assigns the passed value 10 to the

instance variable price of the instance p.

To read and write class attributes, you can use the __getattr__ and

__setattr__ methods.

The __setattr__ Method

The __setattr__ method is called whenever you try to assign a value to an

instance variable. When assigning a value to an attribute, you should take
care that the value not be assigned in the usual way as shown here:

self.name = value,

This will result in an infinite number of recursive calls to __setattr__.

Hence, you use dictionary to assign values to the instance variables:

def __setattr__(self, name, value):
 self.__dict__[name] = value

The __setattr__ method can also be used to perform type checking on

values before assigning them to instance variables.

The __getattr__ Method

The __getattr__ method fetches an attribute of an instance using a string

object and is called when attribute lookup fails, that is, when you try to
access an undefined attribute. The __getattr__ method should either

return the value (of any type) of the instance variable or raise an
AttributeError exception.

def __getattr__(self, name):
 return self.name

The __delattr__ Method

The __delattr__ method is called when an attribute of an instance is

deleted via the del statement.

def __delattr__(self, name):
 del self.name

The following program demonstrates using __setattr__ and __getattr__

methods for setting and getting instance attributes:

getsetattr.py

class product:
 price=25
 def __init__(self, name):
 self.name=name
 def __setattr__(self,name,value):
 self.__dict__[name]=value
 def __getattr__(self,name):
 return self.name

p=product('Camera')
print (p.price)
print (p.name)
p.price=15
p.name="Cell"
print (p.name)
print(p.price)
Output:
25
Camera
Cell
15

A product class is defined using three methods: __init__, __setattr__,

and __getattr__. The class contains a class attribute, price, initialized to

25. A p instance of product is created that initializes its name instance

variable to Camera. Then the price and name attributes of the instance are

accessed, which results in invoking __getattr__. The __getattr__ method

returns the value of the name instance variable. Also, the program assigns

the values 15 and Cell to price and name, resulting in __setattr__ being

invoked. In the __setattr__ method, the values are assigned to the

instance variables using dictionary to avoid recursive calls.

Summary

This chapter focused on classes. You learned to define a class, define
functions for it, initialize its instance variables, and use class and static
methods. You also learned to use class attributes to display specific
information related to the class. We looked at garbage collection and its
role in freeing up memory consumed by objects that are out of scope. You
learned to apply single, multilevel, and multiple inheritance through
running examples. You learned the use of private and public access

specifiers and how to apply method overriding and operator overloading to
perform arithmetic operations on instances. Finally, you learned about
polymorphism and setting and getting values of instance attributes
through properties and descriptors.

In the next chapter you will learn about file handling. You will learn to open
files in different modes and perform different tasks such as reading,
updating, deleting, and appending content to a file. You will learn to copy
content from one file to another.

Chapter 6. File Handling

This chapter covers the following:

Opening a file

Performing actions on a file

Displaying information of a file object

Reading from a file

Appending content to a file

Copying a file

Deleting content from a file

Updating content of a file

Reading content of a file randomly

Accessing specific content of a file

Creating a binary file

Serialization (pickling)

Exception handling

Using a try/except block

Using a try/finally block

Raising exceptions

A file is a container for a sequence of data objects, represented as sequences of bytes. File
handling is a technique by which you can store data and can retrieve it later. When you run a
program, it asks you to enter some data (for processing), and the processed information is
displayed on the screen. The data that you enter while running a program is stored in RAM, which
is temporary in nature, so if later you want to see the data that was entered, you can’t get it. To
retrieve the data in the future, you need to make it persistent.

You will be dealing with three types of files: text, binary, and pickled objects:

Text files are encoded and stored in a format that is viewable by many programs as
well as people. Text files are difficult to update in place.

Binary files are formatted to optimize processing speed. A binary file will typically place
data at known offsets, making it possible to access any particular byte using the seek()

method.

Pickled files are formatted to store objects. The objects are stored in binary format to
optimize performance.

The following three steps are required for working with files:

Opening a file

Performing actions on the file (reading, writing, updating contents)

Closing the file

Opening a File

The syntax for opening a file is this:

open(file_name, mode)

file_name represents the name of the file, and mode specifies the purpose for opening the file.

The open() method returns a file handler that represents the file on the disk drive. The file

handler can also be positioned at desired byte locations in the file to read or write specific
contents from the file. Table 6.1 shows the mode options for opening a file.

Table 6.1. Mode Options

Mode Description

R Opens the file for reading. This is the default.

W Creates a file for writing. It overwrites the earlier
contents if a file already exists with the same name.

A Opens the file for appending contents. It creates a new
file if it does not already exist.

r+ Opens the file for reading and writing. The file must
already exist.

w+ Creates a new file for reading and writing. It overwrites
the contents if a file already exists with the same name.

a+ Opens the file for reading and for appending the
contents to the end of the file. It creates a new file if it
does not already exist.

For example:

f = open('xyz.txt', 'w')

This creates the file xyz.txt in write mode and returns the file handler to variable f. Any earlier

content in xyz.txt will be erased.

Performing Actions on a File

After opening a file, the next step is to perform some task on the file such as writing, reading,
setting the file handler at a specific location, or getting the location of the file handler. Let’s have
a quick look at different file methods. Table 6.2 shows methods used for operating a file in
Python.

Table 6.2. File Methods Used in Python

Method Purpose

close() Closes the file, flushing all data.

read([n]) Reads the n number of characters or bytes

from the file. If the optional value n is

negative or omitted, the rest of the file is
read.

readline([n]) Reads the next line from the file. If n is

negative or omitted, the next complete line
is read. The positive value of parameter n is

if provided will read n number of characters

from the file. If a complete line is read, it
includes the trailing newline character, \n.

readlines([n]) Reads the next lines from the file. If the
optional value n is provided, the method

reads the next lines from the next n

characters from file. If n is negative or

omitted, the rest of the file is read. All lines
will include the trailing newline character, \n.

flush() Flushes all data from the internal buffers to
the OS file.

write(string) Writes the given string to the file.

writelines(list)Writes the list of strings to the file.

seek(offset,
location)

Sets the location of file handler at the
specified offset. The location defines whether
the offset relates to the current position of
the file handler, beginning of the file, or the
end of the file. The default value of the
location is 0. Examples:
f.seek(0) moves the file handler to the

beginning of the file.
f.seek(10, 1) moves the file handler 10

bytes from its current position. If offset is

negative, the file handler will move
backwards from its current position.
f.seek(10, 2) moves the file handler to the

10th byte from the end of the file.
f.seek(0, 2) moves the file handler at the

0th byte from the end of the file. This
positions the file handler at the end of the
file, making it possible to append contents to
the file.

tell() Returns the position of the file handler.

To understand the use of these methods, let’s write some programs. The following program
creates a file named aboutbook.txt and writes a couple of lines in it. The text written in the file is

then accessed and displayed on the screen.

createfile1.py
matter = '''Python is a great language
Easy to understand and learn
Supports Object Oriented Programming
Also used in web development '''
f = open('aboutbook.txt', 'w')
f.write(matter)
f.close()
f = open('aboutbook.txt')
while True:
 line = f.readline()
 if len(line) == 0:
 break
 print (line,)
f.close()

Output:
Python is a great language
Easy to understand and learn

Supports Object Oriented Programming

Also used in web development

Multiline text is assigned to the matter variable. A file named aboutbook.txt is opened in write

mode, deleting its contents, if any. The file handler for the aboutbook.txt file is assigned to

variable f. The multiline text in the matter variable is written into the file using the write()

method, and the file is closed. To confirm the content is written in the file, it is opened in read
mode, and the text lines in the file are accessed and assigned to a line variable, which is then

displayed on the screen.

Note

A blank line carries a newline character \n and is considered a string of length 1.

Displaying Information from a File Object

On creation of a file object, you can use different methods and attributes to get detailed
information about the object’s status. Methods and attributes of the file object are shown in Table
6.3.

Table 6.3. Methods and Attributes of a File Object

Method/Attribute Description

fileno() Returns the internal file descriptor used by the OS
library when working with this file.

isatty() Returns true if the file is connected to the console
or keyboard.

closed This attribute is true if the file is closed.

mode This attribute is the mode of the file that was used
to create the file object through the open()

function.

name This attribute is the filename that was passed to
the open() function when creating the file object.

Following is a program that displays the attributes of a file object:

fileattrib.py
f = open("aboutbook.txt", "r")
print ("Name of the file:", f.name)
print ("Closed?", f.closed)
print ("Opening mode:", f.mode)
print ("File number descriptor is:", f.fileno())
f.close()
Output:
Name of the file: aboutbook.txt
Closed? False
Opening mode: r
File number descriptor is: 3

The program opens aboutbook.txt in write mode. The file handler of the file is represented by a

variable f. The filename, its mode, its file descriptor, and its status (open or closed) are displayed

by calling the respective methods and attributes.

Reading from a File

In the program createfile1.py you used readLine() in a loop to access one line at a time from

the file to display on the screen. The following program shows how to read the entire contents of
the file.

fileread.py
f = open('aboutbook.txt', 'r')
lines = f.read()
print (lines)
f.close()
Output:
Python is a great language
Easy to understand and learn
Supports Object Oriented Programming
Also used in web development

The program opens the file aboutbook.txt that you created in the previous program in read

mode. The content of the file is accessed through read() and assigned to the variable lines,

which is then displayed on the screen. Finally, the file is closed.

In this program, you opened the file aboutbook.txt in read mode. What if the file aboutbook.txt

doesn’t exist? Python displays a technical error message when it tries to open a file that doesn’t
exist, as shown here:

Traceback (most recent call last):
 File "C:\pythonprograms\fileread.py", line 1, in <module>
 f = open('aboutbook.txt', 'r')
IOError: [Errno 2]No such file or directory: 'aboutbook.txt'

The error message is displayed through the default Python error handler. You can make the error
message more readable through exception handling. You will learn exception handling in detail in
the next section, but here’s a small example:

filereadtry.py
import sys
try:
 f = open('aboutbook.txt', 'r')
 lines = f.read()
except IOError:
 print ('File aboutbook.txt does not exist')
 sys.exit(1)
f.close()
print (lines)
Output:
File aboutbook.txt does not exist
Traceback (most recent call last):
 File "C:\pythonprograms\filereadtry.py", line 7, in <module>
 sys.exit(1)
SystemExit:1

When opening a file for reading, an IOError exception is raised if the file doesn’t exist. Without a

try/except block, Python just prints out the error message in technical language, as you saw in

an earlier program. When using the same approach with a try/except block, the IOException is

caught by the except clause, and the statement in the except clause is executed to display

readable error message(s) so as to guide the user to take corrective measures. The except clause

will be ignored if the file that you are trying to open already exists. The contents of the file will be
displayed without any error message in that case.

The stdin, stdout, and stderr variables contain stream objects corresponding to the standard

I/O streams. You can use them to have better control over streams. The following program
demonstrates using stdout for displaying contents on the screen:

fileread2.py
import sys
f = open('aboutbook.txt', 'r')
lines = f.readlines()
f.close()
print('The contents in the file are:', lines)
print('\nThe contents in the file are:')
for line in lines:
 sys.stdout.write(line)
print('\n\nThe contents in the file are:')
for i in range(0, len(lines)):
 sys.stdout.write(lines[i])
Output:
The contents in the file are: ['Python is a great language\n', 'Easy to understand and
learn\n', 'Supports Object Oriented Programming\n', 'Also used in web development ']

The contents in the file are:
Python is a great language
Easy to understand and learn
Supports Object Oriented Programming
Also used in web development

The contents in the file are:
Python is a great language
Easy to understand and learn
Supports Object Oriented Programming
Also used in web development

The sys module is imported into the program. The aboutbook.txt file is opened in read mode. All

the text in the file is accessed and stored in a lines variable. lines is a list in which each

element represents a line of the file. Then stdout is used to display each element in lines.

Appending Content to a File

The following program shows how to append content to a file:

fileappend.py
import sys
matter2 = ''' Its very hot today
Lets have a Cold drink '''
f = open('aboutbook.txt', 'a')
f.write("\n%s" %matter2)
f.close()
f = open('aboutbook.txt', 'r')
lines = f.readlines()
f.close()
print('The contents in the file are:')
for line in lines:
 sys.stdout.write(line)
Output:

The contents in the file are:
Python is a great language
Easy to understand and learn
Supports Object Oriented Programming
Also used in web development
Its very hot today
Lets have a Cold drink

Multiline text is assigned to a variable, matter2. An aboutbook.txt file is opened in append mode

so that its file handler will be positioned at the end of file. The text in matter2 will be added to

the end of aboutbook.txt. The file is then closed. To confirm if the text is really appended to the

file, you can open it in read mode, and its contents are accessed and stored in a variable lines.

On displaying the contents in lines, you observe that the contents in matter2 are added to the

previous contents in aboutbook.txt.

Copying a File

The following program shows how to make a copy of the file aboutbook.txt and name it

copyaboutbook.txt:

filecopy.py
f = open('aboutbook.txt', 'r')
lines = f.read()
f.close()
g = open('copyaboutbook.txt', 'w')
g.write(lines)
g.close()
print('The copy of the file is made')
g = open('copyaboutbook.txt', 'r')
lines = g.read()
print (lines)
g.close()
Output:
The copy of the file is made
Python is a great language
Easy to understand and learn
Supports Object Oriented Programming
Also used in web development

The program opens aboutbook.txt in read mode, reads its content, and stores it in the variable

lines. The file is then closed. After that, a file named copyaboutbook.txt is opened in write

mode. The content of the file aboutbook.txt in lines is written into copyaboutbook.txt. To

confirm if the content is correctly copied to copyaboutbook.txt, you can open it in read mode,

and its contents are accessed and displayed.

Deleting Content from a File

The following program shows the procedure of deleting content from a file. The procedure is quite
simple. First the file is opened in read mode, and its existing content is temporarily copied into a
list. Then the contents to be deleted are deleted from the list. The file is then opened in write
mode, deleting all its content. The content in the list that represents the desired data and from
which the unwanted content is already removed is then copied into the file. The code for deleting
content in a file appears as shown here:

delfilecontent.py
import sys
f = open('aboutbook.txt', 'r')
lines = f.readlines()
print('Original content of the file:')

for line in lines:
 sys.stdout.write(line)
f.close()
del lines[1:3]
f = open('aboutbook.txt', 'w')
f.writelines(lines)
f.close()
print('\nThe content of the file after deleting second and third line:')
f = open('aboutbook.txt', 'r')
lines = f.read()
print (lines)
f.close()
Output:
Original content of the file:
Python is a great language
Easy to understand and learn
Supports Object Oriented Programming
Also used in web development
The content of the file after deleting second and third line:
Python is a great language
Also used in web development

The program opens aboutbook.txt in read mode and fetches and stores its contents in lines.

The file is then closed. The content that is to be deleted from the file is deleted from lines.

aboutbook.txt and is opened in write mode, erasing its existing content. The content in lines is

written into aboutbook.txt, and the file is closed. To confirm that the data is deleted from the

file, you can open it in read mode, and its content is displayed. The output confirms that the
undesired content is removed from the file.

Updating the Content of a File

The following program demonstrates the task of updating the content of a file. First the file is
opened in read mode, and its existing content is temporarily copied into a variable, lines. The

original content in the file is displayed from lines. The user is then asked to specify the line

number to update. The new content entered by the user is stored at the location in lines

specified by the user, replacing its previous content. The file is then opened in write mode,
deleting all its content. The content in the list that represents the updated data is then copied
into the file. The code for updating content in a file appears here:

updatefilecont.py
import sys
f = open('aboutbook.txt', 'r')
lines = f.readlines()
print('Original content of the file:')
for line in lines:
 sys.stdout.write(line)
f.close()
n=int(input ("\n\nEnter the line number to change: "))
if n <=len(lines):
 r=input("Enter the new content: ")
 lines[n-1]=r+"\n"
 f = open('aboutbook.txt', 'w')
 f.writelines(lines)
 f.close()
 print('The content of the file after updating line' , n)
 f = open('aboutbook.txt', 'r')
 lines = f.read()
 print (lines)
 f.close()
else:
 print ("The line number", n, "is not found in the file")

Output:
Original content of the file:
Python is a great language
Easy to understand and learn
Supports Object Oriented Programming
Also used in web development
Enter the line number to change: 2
Enter the new content: Easy to develop applications
The content of the file after updating line 2
Python is a great language
Easy to develop applications
Supports Object Oriented Programming
Also used in web development

The program opens aboutbook.txt in read mode and fetches and stores its contents in lines.

The original contents of the file are displayed by displaying elements in lines. The file is then

closed. The user is asked to specify the line number(s) to modify and their new content. The new
content entered by the user is stored in the list at the specified index locations, replacing the
previous content. The content in lines is written into aboutbook.txt, followed by closing the file.

To confirm that the data is updated in the file, it is opened in read mode, and its content are
displayed. The output confirms that the content in the file is updated.

Reading the Content of a File Randomly

Can you read the content of the file randomly? That is, instead of reading the file content from the
beginning, can you read from any location you want? Yes! This program does that.

filerandomread.py
f = open('aboutbook.txt', 'r')
line=f.readline()
print('A line from file is:', line)
f.seek(5)
line=f.readline()
print('The line from character 6 till end of line is:', line)
print ('The pointer is at location', f.tell())
f.seek(10)
line=f.read(15)
print ('The fifteen characters starting at location 11 are as:', line)
Output:
A line from file is: Python is a great language
The line from character 6 till end of line is: n is a great language
The pointer is at location 28
The fifteen characters starting at location 11 are as: a great language

The program opens aboutbook.txt in read mode. On opening the file, the file handler is

positioned at the beginning of the file by default. Hence, reading a line from the file when the file
handler is at the beginning of the file will display the first line of the file. Then the file handler is
positioned at the fifth byte from the beginning of the file with the seek() method to read the

entire line beginning at the sixth character. Again, the file handler is positioned at the tenth byte
from the beginning of the file to read 15 characters beginning from the eleventh character.

Accessing Specific Content in a File

Is there any way to access a specific line of text from the file instead of accessing the complete
file? Yes, and here is the code for doing so. The following program accesses and displays the third
line from aboutbook.txt.

fileanyline.py
import linecache
line=linecache.getline('aboutbook.txt', 3)

print ('The content of the third line is:', line)
Output:
The content of the third line is: Supports Object Oriented Programming

This assumes that aboutbook.txt has the following contents:

Python is a great language
Easy to understand and learn
Supports Object Oriented Programming
Also used in web development

This program imports the linecache module and uses its getline method to access the third line

from aboutbook.txt, which is then displayed on the screen.

Now let’s see how to create a numerical file. The following program creates a file and stores
numbers in it:

filenumerical.py
f = open('numbers.txt', 'w')
n=int(input('How many numbers? '))
print('Enter', n, 'numbers')
for i in range(0,n):
 m=input()
 f.write("%s\n" %m)
f.close()
f = open('numbers.txt')
lines = f.readlines()
f.close()
print('The numbers stored in the file are')
for line in lines:
 print (int(line),)
print('The numbers in the file multiplied by 2')
for line in lines:
 print (int(line)*2,)
Output:
How many numbers? 5
Enter 5 numbers
1
2
3
4
5
The numbers stored in the file are
1
2
3
4
5
The numbers in the file multiplied by 2
2
4
6
8
10

This program opens a numbers.text file in write mode and prompts the user to specify how many

numbers are to be stored in it. The numbers entered by the user are stored in the file and the file
is closed. To confirm that the file was created and has the content entered, it is opened in read

mode, and its content is accessed and displayed on the screen. To confirm that the content in the
file is of numerical type, the program displays all the numbers in it after multiplying them by 2.

Creating a Binary File

The following program creates a binary file and stores a string in it:

binaryfile1.py
str = 'Hello World!'
f = open("filebinary.bin","wb")
f.write(str.encode('utf-8'))
f.close()
f = open("filebinary.bin","rb")
fcontent=f.read()
f.close()
print('The content in the file is:')
print (fcontent.decode('utf-8'))
Output:
The content in the file is:
Hello World!

The program opens a file named filebinary.bin in write mode and stores a string, Hello

World!, in it. The string is first encoded into UTF-8 before being written into the file. The file is

then closed. To confirm if the string is stored correctly in the file, it is opened in read mode, and
the string stored in it is fetched, decoded, and displayed on the screen.

Serialization (Pickling)

Serialization (also known as pickling) is a process of converting structured data into data stream
format. Through serialization, structures such as lists, tuples, functions, and classes are preserved
using ASCII characters between data values. The serialized data format is standardized, so
structures serialized with serialization can be deserialized with cPickle and vice versa.

Serialization is done when storing data, and deserialization is done when retrieving data. For
pickling, you can use either module, Pickle or cPickle. Both modules function the same, except

that the cPickle module is written in the C language and is faster and results in better

performance. The following program uses the Pickle module to store an instance into a file:

pickleprog.py
import pickle

class rect:
 def __init__(self, x,y):
 self.l = x
 self.b = y
 def rectarea(self):
 return "Area of rectangle is", self.l * self.b

r=rect(5,8)
f = open('studentinfo.bin', 'wb')
pickle.dump(r, f)
f.close()
del r
f = open('studentinfo.bin','rb')
storedobj = pickle.load(f)
print (storedobj.rectarea())
Output:
('Area of rectangle is',40)

The program defines a rect class consisting of two methods, __init__ and rect-area(). An

instance r of class rect is created, and its instance variables, l and b, are initialized to 5 and 8. A

binary file, studentinfo.bin, is opened in write mode, and r is pickled and dumped into it. The

file is then closed. r is deleted after it is copied into the binary file. To read r from the file and set

it back into useable form, the file is opened in read mode, and the instance is read from the file
with pickle.load(), unpickled, and assigned to storedobj. The area of the rectangle is

calculated and displayed by calling rectarea() on the storedobj object.

This program demonstrates pickling and unpickling an instance from a file. Let’s use the process
to pickle and unpickle more than one instance. The following program stores information by
pickling an instance of the user class. Also, the program unpickles the instances to display the

stored information.

pickleprog2.py
import pickle

class user:
 def __init__(self, x,y,z):
 self.id = x
 self.name = y
 self.emailadd=z
 def dispuser(self):
 print('User ID:', self.id)
 print('User Name:', self.name)
 print('Email Address:', self.emailadd)

f = open('UsersInfo.bin', 'wb')
n=int(input('How many users? '))
print('Enter', n, 'numbers')
for i in range(0,n):
 u=input('User ID: ')
 n=input('User Name: ')
 e=input('Email Address: ')
 usrobj=user(u,n,e)
 pickle.dump(usrobj,f)
f.close()
print('\nInformation of the users is:')
f = open('UsersInfo.bin','rb')
while True:
 try:
 usrobj = pickle.load(f)
 except EOFError:
 break
 else:
 usrobj.dispuser()
f.close()
Output:
How many users? 3
Enter 3 numbers
User ID: johny111
User Name: John
Email Address: johny@gmail.com
User ID: kelly222
User Name: Kelly
Email Address: kelly@hotmail.com
User ID: bintu333
User Name: Bintu
Email Address: bintu@yahoo.com

Information of the users is:
User ID: johny111
User Name: John
Email Address: johny@gmail.com

User ID: kelly222
User Name: Kelly
Email Address: kelly@hotmail.com
User ID: bintu333
User Name: Bintu
Email Address: bintu@yahoo.com

The program defines a user class consisting of two methods, __init__ and disp-user(). The

__init__ method is for initializing the instance variables of the respective instance of the user

class id, name, and emailadd. The dispuser() method is for displaying information stored in the

instance variables. A UsersInfo.bin binary file is opened in write mode. The user is asked to

specify the number of users whose information has to be stored in the file. With the help of a
loop, the user ID, name, and email address information of a specified number of users is entered
and used to initialize the id, name, and emailadd instance variables of the instance usrobj of user

class. The usrobj instance containing information of a user is pickled and dumped into the binary

file. The file is then closed. To read the instances from the file and set them back into a useable
form, the file is opened in read mode and, through pickle.load(), the instances are read from

the file one by one, unpickled, and assigned to usrobj. The information in usrobj is displayed by

calling dispuser() on the usrobj object.

Exception Handling

Exceptions occur when certain situations arise in a program. For example, dividing a value by 0,
accessing a list element out of its index range, or reading a file that does not exist are situations
that cause exceptions. When an exception occurs, Python usually displays a technical message that
is a bit hard to understand. To make it easier for a user to understand what went wrong and
provide an opportunity to correct the mistake, you can catch specific exceptions and display user-
friendly messages. Syntax errors are different from exceptions in that syntax errors occur when
any statement doesn’t match the grammar of the Python interpreter. Misspelling in a statement or
a missing parenthesis or quotation mark are all syntax errors.

To handle exceptions, you write the code in a block that begins with the word try. There are two

kinds of try blocks:

try/except: The code that might raise an error is written in the try block, and all the

errors and exceptions are handled through the except clause. The except clause can

handle a single specified error or exception. If you don’t specify any error name or
exception, except will handle all errors and exceptions that appear in the code written in

the try block. There has to be at least one except clause associated with every try block.

If any error or exception is not handled, then the default Python handler is invoked, which
stops the execution of the program and displays the error message.

try/finally: The code written in the finally block always executes whether an

exception occurs or not. That is, the code that you want to execute in all situations is
written in a finally block. Most commonly, the statements for closing open files,

releasing memory, and such are written in a finally block.

Using a try/except Block

For handling exceptions through a try/except block, you specify the code that might result in an

exception along with a group of except clauses. Each except clause names a class of exception

and provides the statements to execute in response to that exception.

Syntax:
try:
 statement(s)
except SomeException:
 code for handling exception
[else:
 statement(s)]

You can have an unlimited number of except clauses in a single try block. The body of each

except clause is known as an exception handler. Exception handling with a try/except block is

done as follows:

1. Python runs the statements in the try block.

2. If none of the statements in the try block raises an exception, the except clauses are

ignored.

3. If any of the statements in the try block raise an exception, the rest of the statements in

the try block are skipped, and each of the except clauses is examined to locate a clause

that matches the exception raised. If there is a match, Python runs the except clause.

4. If the raised exception doesn’t match any of the except clauses, Python looks for a

matching exception handler in any code that the try block is nested in. If Python doesn’t

find a matching exception handler, then Python uses its built-in exception handler and
prints the technical error message.

5. The else clause runs only if the try block runs successfully and completely. That is, if no

exception is raised or no block-exiting statement is executed, the else clause executes.

The statements that you want to run if the try clause doesn’t raise an exception are

written in the else clause.

Once an exception has been handled, the program continues its execution from the first line after
the try/except block.

Note

You can nest try blocks.

Table 6.4 shows exceptions that you can handle while a program runs.

Table 6.4. Exceptions That Can Be Handled While Running a
Program

Exception Description

AssertionError Raised when Assertion fails.

AttributeError Raised when an attribute is not found in an object.

EOFError Raised when you try to read beyond the end of a
file.

FloatingPointErrorRaised when a floating-point operation fails.

IOError Raised when an I/O operation fails.

IndexError Raised when you use an index value that is out of
range.

KeyError Raised when a mapping key is not found.

OSError Raised when an OS system call fails.

OverflowError Raised when a value is too large to be represented.

TypeError Raised when an argument of inappropriate type is
supplied.

ValueError Raised when an inappropriate argument value is
supplied.

ZeroDivisionError Raised when a number is divided by 0 or when the
second argument in a modulo operation is zero.

Let’s see how an exception occurs and how it is handled to display a user-friendly message and to
take corrective measures through a running example. The following program demonstrates
occurrence and handling of an EOFError exception

try1.py
import sys
try:
 n = input('Enter your name ')
except EOFError:
 print ('EOF error has occurred')

 sys.exit(1)
except:
 print ('Some error has occurred')
print ('The name entered is', n)
Output:
Enter your name
EOF error has occurred
Traceback (most recent call last):
 File "C:\pythonprograms\try1.py", line 6, in <module>
 sys.exit(1)
SystemExit:1

Enter your name Bintu
The name entered is Bintu

This program prompts the user to enter a name. The statement asking for the user name is
enclosed in a try block. If the user presses Ctrl+D instead of entering a name, an EOFError

exception will be raised, displaying EOF error has occurred followed by exiting from the

application. The program also displays Some error has occurred if some exception other than

EOFError occurs. No error message will be displayed if the user enters a name. The name entered

by the user is displayed on the screen when no exception occurs. You can rewrite the above
program by using the else clause in the try/except block. Remember that the statement in the

else block will be executed only when no exception occurs.

tryelse.py
import sys
try:
 n = input('Enter your name ')
except EOFError:
 print ('EOF error has occurred')
 sys.exit(1)
except:
 print ('Some error has occurred')
else:
 print('The name entered is', n)
Output:
Enter your name
EOF error has occurred
Traceback (most recent call last):
 File "D:\pythonprograms\tryelse.py", line 6, in <module>
 sys.exit(1)
SystemExit:1

Enter your name John
The name entered is John

The following program demonstrates how TypeError and ZeroDivisionError exceptions occur and

how they are handled. Remember that a TypeError exception occurs when an argument of

inappropriate type is supplied, and a ZeroDivisionError exception occurs when a number is

divided by 0.

try2.py
from __future__ import division
import sys
n = input('Enter a number ')
if n.isdigit():
 n=int(n)
try:
 m=15/n

except TypeError as ex:
 print ('You have not entered a numeric value:', ex)
 sys.exit(1)
except ZeroDivisionError as ex:
 print ('You have entered zero value:', ex)
 sys.exit(1)
print ('The result is', m)
Output:
Enter a number John
You have not entered a numeric value unsupported operand type(s) for /: 'int' and 'str'
Traceback (most recent call last):
 File "D:\pythonprograms\try2.py", line 11, in >module>
 sys.exit(1)
SystemExit: 1

Enter a number 0
You have entered zero value: division by zero
Traceback (most recent call last):
 File "C:\pythonprograms\try2.py", line 14, in >module>
 sys.exit(1)
SystemExit: 1

Enter a number 5
The result is 3.0

The program prompts the user to enter a number that is used in a division operation. If the
entered number is not of numerical type, a TypeError exception occurs and You have not entered

a numeric value is displayed on the screen, followed by exiting from the application. If the

entered data is of numerical type and its value is 0, a ZeroDivisionError exception occurs and

You have entered zero value is displayed, followed by exiting from the application. If neither of

the two exceptions occurs, which means the user entered a non-zero numerical value, the result of
the division operation is displayed on the screen.

Using a try/finally Block

When an exception is raised, the program usually stops execution and exits. There are certain
essential statements that you want to be executed whether an exception is raised or not. These
statements, which might include freeing up memory or closing an opened file, are written in a
finally block.

The try/finally block follows these steps:

1. Python runs the statements in the try block.

2. If none of the statements in the try block raise an exception, the statements in the

finally block are executed.

3. If there is a block exiting statement in the try block such as return, break, or continue,

the finally clause is executed on the way out.

4. If an exception occurs in the try block, Python skips the rest of the block, runs the

finally clause, and then raises the exception again.

The following program demonstrates using the finally block to execute the statements that you

want to execute whether an exception occurs or not:

filetryfinal.py
import sys
try:
 f = open('aboutbook.txt', 'r')
 try:
 lines = f.read()
 finally:
 f.close()
except IOError:
 print ('File aboutbook.txt does not exist')
 sys.exit(1)
print (lines)
Output:
File aboutbook.txt does not exist
Traceback (most recent call last):
 File "D:\pythonprograms\filertryfinal.py", line 11, in >module>
 sys.exit(1)
SystemExit: 1

This program opens aboutbook.txt in read mode in the try block. If an IOError exception occurs

while opening the file, then File aboutbook.txt does not exist is displayed, followed by exiting

from the application. Also, the lines from the file are read through read(), and whether an

exception occurs or not, the file is closed through the finally block.

Raising an Exception

Exceptions are automatically raised when some undesired situation occurs during program
execution. You can raise an exception explicitly through the raise statement in a try/except

block.

Syntax:
raise customException, statement for customException

When raising an exception in a try block, the format will be this:

try:
 if condition:
 raise customException, statement for customException
except customException, e:
 statements for customException

The following program demonstrates how to create and raise an exception:

raiseexcepclass.py
class myException(Exception):
 def __init__(self, quantity):
 Exception.__init__(self)
 self.quantity = quantity
try:
 s = int(input('Enter quantity '))
 if s <=0 :
 raise myException(s)
except EOFError:
 print ('You pressed EOF ')
except myException as ex:
 print ('myException: The quantity entered is %d, it must be some positive value' %
ex.quantity)
else:
 print ('No exception raised.')
Output:
Enter quantity -3
myException: The quantity entered is -3, it must be some positive value

Enter quantity 5
No exception raised.

The program creates a myException class that inherits from the Exception class. The class

contains __init__, which initializes the quantity instance variable of the class and that calls the

__init__ method of the super class, Exception. The user is asked to enter the quantity of an

item that is assigned to variable s. If the value entered is less than zero, the custom exception

myException is raised, invoking the class and passing the value of quantity to it. If the user

presses Ctrl+D instead of providing a value for quantity, an EOFError exception is raised,

displaying You pressed EOF. When myException is raised, myException: The quantity entered

is _, it must be some positive value is displayed. If no exception is raised, the statement in

the else block will be executed, displaying No exception raised.

The assert Statement

The assert statement is used to place an error-checking statement in the program. It is a

convenient way to debug a program. Through an assert statement, you can check the values of

the variables in the middle of the program. The assert statement returns true if all the values of

the variables are as expected, no matter what inputs are provided. If something is wrong in the
program, the assert statement returns false. The AssertionError exception is raised when the

assert statement returns false.

assertex.py
n=int(input('Enter a positive value: '))
assert(n >=0), "Entered value is not a positive value"
Output:
Enter a positive value: -5
Traceback (most recent call last):
 File "D:\python\assertex.py", line 2, in >module>
 assert(n >=0), "Entered value is not a positive value"
AssertionError: Entered value is not a positive value

Enter a positive value: 5

Summary

In this chapter you learned to perform different operations on files. You
learned to open a file in different modes and to read its contents, update
existing content, delete content, and append new content. You also saw
how to copy a file, read a file sequentially or randomly, and read only
specific content. You also learned to create a binary file and pickle and
unpickle objects. Finally, you learned to implement exception handling and
the procedure of raising exceptions.

In the next chapter you will learn to develop GUI applications in Python
through PyQt. You will learn to install PyQt and use Qt Designer to develop
GUI applications.

Chapter 7. PyQt

In the previous chapter you learned about file handling. You learned to
open a file in different modes, read its contents, update existing content,
delete content, append new content, and make a copy. You learned to read
files sequentially as well as randomly. Besides this, you also learned to
create binary files, pickle and unpickle objects, and implement exception
handling.

The applications that you have created so far were console-based
applications. From now on you will be learning to develop graphical user
interface (GUI) applications in Python through PyQt. This chapter covers
the following:

Introduction to Qt toolkit and PyQt

PyQt installation

Window and dialogs

Creating GUI Application through coding

Using Qt Designer

Understanding fundamental widgets—Label, Line Edit, and Push

Button

Event handling in PyQt

First Application in Qt Designer

Connecting to the predefined slots

Using custom slots

Converting data types

Defining buddies and setting tab order

Let’s begin the chapter with an introduction to Qt toolkit.

Qt Toolkit

Qt toolkit, known simply as Qt, is a cross-platform application and UI
framework developed by Trolltech that is used for developing GUI
applications. It runs on several platforms, including Windows, Mac OS X,
Linux, and other UNIX platforms. It is also referred to as a widget toolkit
because it provides widgets such as buttons, labels, text boxes,
pushbuttons, and list boxes, which are required in designing a GUI. It
includes a cross-platform collection of classes, integrated development
tools, and a cross-platform IDE.

PyQt

PyQt is a set of Python bindings for the Qt toolkit. PyQt combines all the
advantages of Qt and Python. With PyQt, you can include Qt libraries in
Python code, enabling you to write GUI applications in Python. In other
words, PyQt allows you to access all the facilities provided by Qt through
the Python code. Since PyQt depends on the Qt libraries to run, when you
install PyQt, the required version of Qt is also installed automatically on
your machine.

Installing PyQt

You need to have Python Interpreter installed on your system before you
install PyQt. Recall from Chapter 1, “Python and its Features,” that you
have already installed Python 3.2 on your system, so you can go ahead and
download PyQt from
http://www.riverbankcomputing.co.uk/software/pyqt/download. The latest
version at the time of this writing is PyQt version 4.8.5 for Python 3.2. The
name of the downloaded file is PyQt-Py3.2-x86-gpl-4.8.5-1.exe. Just

double-click the downloaded file to begin installation. The first screen that
you see is a welcome screen to the PyQt Setup Wizard, as shown in Figure
7.1. The screen displays general information about the components that
come with PyQt. Select Next to move forward.

Figure 7.1. PyQt Setup Wizard dialog.

Note

Your operating system may complain, saying the program is from
an unknown publisher and may harm your computer. Select the Yes
button to proceed with the installation. If you don’t see a Yes
button, select Actions to see the list of possible actions. In the
dialog that appears, select the More Options drop-down and select
Run to begin with the installation procedure.

The next screen shows the License Agreement, which you need to read and
agree to before installing PyQt. Select I Agree to continue installation.
Next, you get a screen that shows the list of components that you can
install with PyQt (see Figure 7.2). You can select or deselect any
component. The dialog also shows the disk space that will be required for
installing the selected components.

Figure 7.2. Selecting the features of PyQt to install.

Let’s go ahead with Full Installation and select Next to move on. The next
screen will prompt you to specify the name and location of the folder where
Python 3.2 is installed. The reason is that PyQt is installed in the site-

packages folder of the Python installation. The wizard auto-detects and

shows the location of the Python installation by default, as shown in Figure

7.3. You can also select Browse to modify the folder name. After specifying
the location of the Python installation, select Install to begin copying and
installing the PyQt files.

Figure 7.3. Specifying a location for PyQt installation.

[View full size image]

When PyQt files are copied and installed, you will be prompted to select
Finish to close the wizard.

Note

Don’t forget to set the path of the PyQt folder so that you can
access it from any folder on your computer.

Congratulations! You successfully installed PyQt on your computer. You can
now begin creating your GUI applications. When doing so, you might be
prompted to specify whether you want to create a main window application
or a dialog application. What does this mean? Let’s see.

Window and Dialogs

A GUI application may consist of a main window with several dialogs or just
dialogs. A small GUI application usually consists of at least one dialog. A
dialog application contains buttons. It doesn’t contain a menu bar, toolbar,
status bar, or central widget, whereas a main window application normally
has all of those. A central widget is one that contains other widgets.

Dialogs are of two types: modal and modeless. A modal dialog is one that
blocks the user from interacting with other parts of the application. The
dialog is the only part of the application that the user can interact with.
Until the dialog is closed, no other part of the application can be accessed.
The modeless dialog is the opposite of a modal dialog. When a modeless
dialog is active, the user is free to interact with the dialog and with the rest
of the application.

Ways of Creating GUI Applications

There are two ways to write a GUI application:

From scratch using a simple text editor.

With Qt Designer, a visual design tool that comes with PyQt.

Obviously, you will be using Qt Designer for developing GUI applications in
PyQt. Before you do that, to understand the structure of a GUI application,
let’s create one through coding.

Creating a GUI Application with Code

The application that you are going to create will display a pushbutton with
the text Close on it. When you click the Close button, the application will
terminate. Type the code below in any text editor and save the file with the
extension .pyw. However, don’t include the line numbers in the code, as

they are just meant to identify each statement individually to explain their
role.

Note

The console applications that you created before this chapter were
saved with the .py extension. The GUI applications that you are

going to develop now will be saved with the .pyw extension. This is

to invoke the Pythonw.exe interpreter instead of the Python.exe

interpreter so that no console window appears on executing a
Python GUI application.

1. import sys
2. from PyQt4 import QtGui, QtCore
3. class demowind(QtGui.QWidget):
4. def __init__(self, parent=None):
5. QtGui.QWidget.__init__(self, parent)
6. self.setGeometry(300, 300, 200, 200)
7. self.setWindowTitle('Demo window')
8. quit = QtGui.QPushButton('Close', self)
9. quit.setGeometry(10, 10, 70, 40)
10. self.connect(quit, QtCore.SIGNAL('clicked()'), QtGui.qApp,
 QtCore.SLOT('quit()'))
11. app = QtGui.QApplication(sys.argv)
12. dw = demowind()
13. dw.show()
14. sys.exit(app.exec_())

Before running this application, let’s see what the code in different lines

does.

1, 2. Imports the necessary modules. The basic GUI widgets
are located in the QtGui module.

3. QWidget is the base class of all user interface objects in

PyQt4, so you are creating a new demowind class that

inherits from the base class, QWidget.

4, 5. Provides the default constructor for QWidget. The default

constructor has no parent, and a widget with no parent
is known as a window.

6. setGeometry() sets the size of the window and defines

where to place it. The first two parameters are the x and
y locations at which the window will be placed. The third
is the width, and the fourth is the height of the window.
A window 200 pixels high and wide will be positioned at
coordinates 300,300.

7. This statement sets the window title to Demo Window.
The title will be visible in the title bar.

8. Creates a pushbutton with the text Close.

9. Defines the width and height of the pushbutton as 70
and 40 pixels, respectively, and positioning it on the
QWidget (window) at coordinates 10,10.

10. Event handling in PyQt4 uses signals and slots. A signal
is an event, and a slot is a method that is executed on
occurrence of a signal. For example, when you click a
pushbutton, a clicked() event, also known as a signal,

occurs, or is said to be emitted. The
QtCore.QObject.connect() method connects signals

with slots. In this case, the slot is a predefined PyQt4
method: quit(). That is, when the user clicks the

pushbutton, the quit() method will be invoked. You will

learn about event handling in detail soon.

11. Creates an application object with the name app through

the QApplication() method of the QtGui module. Every

PyQt4 application must create an application object.
sys.argv, which contains a list of arguments from the

command line, is passed to the method while creating
the application object. sys.argv helps in passing and

controlling the startup attributes of a script.

12. An instance of the demowind class is created with the

name dw.

13. The show() method will display the widget on the

screen.

14. Begins the event handling loop for the application. The
event handling loop waits for an event to occur and then
dispatches it to perform some task. The event-handling
loop continues to work until either the exit() method is

called or the main widget is destroyed. The sys.exit()

method ensures a clean exit, releasing memory
resources.

Note

The exec_() method has an underscore because exec is a Python

keyword.

On executing the above program, you get a window titled Demo Window
with a pushbutton with text Close on it, as shown in Figure 7.4. When the
pushbutton is selected, the quit() method will be executed, terminating

the application.

Figure 7.4. Output displaying the Close pushbutton.

Now, let’s see how the Qt Designer tool, which comes with PyQt, makes the
task of creating user interfaces quicker and easier.

Using Qt Designer

Though you can write PyQt programs from scratch using a simple text
editor, you can also use Qt Designer, which comes with PyQt. For
developing GUI applications in PyQt, using Qt Designer is a quick and easy
way to design user interfaces without writing a single line of code. To open
Qt Designer, click the Start button and then select All Programs > PyQt GPL
v4.8.5 for Python v3.2 (x86) > Qt Designer.

Qt Designer is for building graphical user interfaces. It makes it very easy
for you to create dialogs or main windows using predefined templates, as
shown in Figure 7.5.

Figure 7.5. First screen on opening Qt Designer.

[View full size image]

Qt Designer provides predefined templates for a new application:

Dialog with buttons at the bottom: Creates a form with OK and

Cancel buttons in the right bottom corner.

Dialog with buttons on the right: Creates a form with OK and

Cancel buttons on the right side.

Dialog without buttons: Creates an empty form on which you can

place widgets. The superclass for dialogs is QDialog. You will learn

more about these classes soon.

Main window: Provides a main application window with a menu bar

and a toolbar that can be removed if not required.

Widget: Creates a form whose superclass is QWidget rather than

QDialog.

Note

When creating a GUI application, you need to specify a top-level
widget, which is usually QDialog, Qwidget, or QMainWindow. If you

create an application based on the Dialog template, the top-level
widget or the first class that you inherit is QDialog. Similarly, if the

application is based on the Main Window template, the top-level
widget will be QmainWindow, and if you use the Widget template for

your application, the top-level widget will be QWidget. The widgets

that you use for the user interface are then treated as child widgets
of the classes.

Qt Designer displays a menu bar and toolbar at the top. It shows a Widget
Box on its left that contains a variety of widgets used to develop
applications, grouped in sections. All you have to do is drag and drop the
widgets you want from the form. You can arrange widgets in layouts, set
their appearance, provide initial attributes, and connect their signals to
slots. The user interface that you create with Qt Designer is stored in a .ui

file that includes all the form’s information: its widgets, layout, and so on.
The .ui file is an XML file, and you need to convert it to Python code. That

way, you can maintain a clear separation between the visual interface and
the behavior implemented in code. You will soon see the methods of
converting .ui files into Python code.

Note

You can create widgets with code, also.

On the right side of Qt Designer you will find three windows by default, as
shown in Figure 7.6.

Figure 7.6. Three windows: Object Inspector, Property Editor,
and Resource Browser.

Object Inspector: Displays a hierarchical list of all the objects

present on the form. You can select any object on a form by clicking on
its corresponding name in the Object Inspector. Usually you select an
object in Object Inspector window when you have overlapping objects.
The window also displays the layout state of the containers. Containers
are those widgets that can store other widgets or objects. Containers
include frames, group boxes, stacked widgets, tab widgets, and tool

box widgets.

Property Editor: Used to view and change the properties of the form

and widgets. It consists of two columns, Property and Value. The
Property column lists property names, and the Value column lists the
corresponding values. To change a property to the same value for a set
of widgets, select all of them. To select a set of widgets, click one of
the widgets and then Shift+Click the others one by one. When a set of
widgets is selected, the Property Editor window will show the
properties that are common in all the selected widgets, and any
change made to one property will be applied to the selected widgets.

Resource Browser: Qt Designer enables you to maintain resources

like images, audio, video, etc., of your applications through the
Resource Browser. For each form of your application, a separate
resource file is maintained. You can define, load, and edit resource files
of your application through the Resource Browser. Below the Resource
Browser window, you find two more tabs, the Signal/Slot Editor and
Action Editor.

Signal/Slot Editor: This window displays the signal/slot connections

between objects. You can edit the signal/slot connections through this
window.

Action Editor: The Action Editor lets you to manage the actions of

your applications. To initiate actions, the toolbar and menu bar are
designed in an application. The respective action or task for each of
the icons of the toolbar and menu items of the menu bar are defined
through the Action Editor. You can create new actions, delete actions,
edit actions, and define icons for the actions through the Action Editor.
Also, you can associate respective actions with menu items and
toolbars.

Note

For quick and handy actions, Qt Designer provides a context menu
that you get by right-clicking an object.

The main component used for creating a user interface is widgets. Button,
menus, and scrollbars are examples of widgets and are not only used for
receiving user input but also for displaying data and status information.
Widgets can be nested inside another in a parent-child relationship. A
widget that has no parent widget is called a window. The class for widgets,
QWidget, provides methods to render them on screen, receive user input,

and handle different events. All UI elements that Qt provides are
subclasses of QWidget. Qt Designer displays a list of widgets in a Widget

Box displayed on the left side.

Widget Box

The Widget Box (see Figure 7.7) displays a categorized list of widgets and
other objects that you can use for designing a user interface quickly and
easily. Widgets with similar functions and uses are grouped into categories.
It’s very simple to create a graphical user interface by switching to Widget
Editing mode. Select an icon from the toolbar and drag the desired widgets
to the form.

Figure 7.7. Widget Box.

You can also group widgets that you use often in a category you create,
also known as a scratch pad category. To place widgets in the scratch pad
category, simply drag them from the form and drop them into the
category. These widgets can be used in the same way as any other widget.
You can change the name of any widget and remove it from the scratch
pad with the context menu.

Widgets are objects of their respective classes. (Qt Designer does not use
class names for its widgets; the name of the widget signifies the class it
refers to.)

The widgets in Widget Box are grouped into the following categories:

Layouts

Spacers

Buttons

Item Views (Model-Based)

Item Widgets (Item-Based)

Containers

Input Widgets

Display Widgets

Phonon

A description of the widgets in each category is as follows.

Layouts

Layouts are used for arranging widgets in a desired manner. The layout
controls the size of the widgets within it, and widgets are automatically
resized when the form is resized. The widgets in the Layouts group is
shown in Table 7.1.

Table 7.1. Widgets in the Layouts Group

Widget Description

Vertical Layout
(QVBoxLayout)

Arranges widgets vertically, one
below the other.

Horizontal Layout Arranges widgets horizontally,

(QHBoxLayout) one next to the other.

Grid Layout (QGridLayout) Arranges widgets into rows and
columns.

Form Layout (QFormLayout) Arranges widgets in a two-
column layout. The first column
usually displays message(s) in
labels, and the second column
usually contains the widgets,
enabling the user to enter/edit
data corresponding to the labels
in the first column.

Spacers

Spacers are not visible while running a form and are used for inserting
spaces between widgets or groups of widgets. The widgets in the Spacers
group are shown in Table 7.2.

Table 7.2. Widgets in the Spacers Group

Widget Description

Horizontal Spacer
(Spacer)

Inserts horizontal spaces between
widgets.

Vertical Spacer
(Spacer)

Inserts vertical spaces between
widgets.

Buttons

Buttons are used to initiate an action. They are event or signal generators
that can be used to perform tasks. The widgets in the Buttons group are
shown in Table 7.3.

Table 7.3. Widgets in the Buttons Group

Widget Description

Push Button (QPushButton) Displays a command button.

Tool Button (QToolButton) Displays a button to access
commands or options. Used
inside a toolbar.

Radio Button
(QRadioButton)

Displays a radio button with a
text label.

Check Box (QCheckBox) Displays a check box with a text
label.

Command Link Button
(QCommandLinkButton)

Displays a command link button.

Button Box
(QDialogButtonBox)

A sub-class of QWidget that

presents a set of buttons in a
layout.

Item Views (Model-Based)

Item Views widgets are used for displaying large volumes of data. Model-
based means that the widgets are part of a model/view framework and
enable you to present data in different formats and through multiple views.
The classes of these widgets implement the interfaces defined by the
QAbstractItemView class to allow it to display data provided by models

derived from the QAbstractItemModel class. The widgets in the Item Views

(Model-Based) group are shown in Table 7.4.

Table 7.4. Widgets in the Item Views (Model-Based)
Group

Widget Description

List View (QListView) Used to display a list of items. Must be
used with a QAbstractItemModel

subclass.

Tree View
(QTreeView)

Used to display hierarchical data. Must
be used with a QAbstractItemModel

subclass.

Table View
(QTableView)

Used to display data in tabular form.
Can display icons as well as text in
every cell. Must be used in conjunction
with a QAbstractItemModel subclass.

Column View
(QColumnView)

Provides a model/view implementation
of a column view. It displays data in a
number of list views.

Item Widgets (Item-Based)

Item Widgets have self-contained views. The widgets in the Item Widgets
(Item-Based) group are shown in Table 7.5.

Table 7.5. Widgets in the Item Widgets (Item-Based)

Table 7.5. Widgets in the Item Widgets (Item-Based)
Group

Widget Description

List Widget
(QListWidget)

Used to display a list of items. It has a
built-in model, so items can be added
to it directly.

Tree Widget
(QTreeWidget)

Used to display hierarchical data. It has
a built-in model, so items can be
added to it directly.

Table Widget
(QTableWidget)

Used to display data in tabular form.
Can display icons as well as text in
every cell. It has a built-in model, so
items can be added to it directly.

Containers

Container widgets are used to control a collection of objects on a form. A
widget dropped onto a container becomes a child object of the container.
The child objects in a container can also be arranged in desired layouts.
The widgets in the Containers group are shown in Table 7.6.

Table 7.6. Widgets in the Containers Group

Widget Description

Group Box (QGroupBox) Used to group together a
collection of widgets of similar
function.

Scroll Area (QScrollArea) Used to display the contents of a
child widget within a frame. If
the child widget exceeds the size
of the frame, scrollbars appear to
enable you to view the entire
child widget.

Tool Box (QToolBox) Displays a series of pages or
sections in a tool box.

Tab Widget (QTabWidget) Displays tabs that can be used to
display information. A large
volume of information can be
displayed by splitting it into
chunks and displaying it under
individual tabs

Stacked Widget
(QStackedWidget)

Displays a stack of widgets where
only one widget is visible at a

time.

Frame (QFrame) Used to enclose and group
widgets. Can also be used as a
placeholder in forms.

Widget (QWidget) The base class of all user
interface objects.

MdiArea (QMdiArea) Provides an area for displaying
MDI windows.

Dock Widget (QDockWidget) Can be docked inside a main
window or floated as an
independent tool window.

Input Widgets

Input Widgets are for used for interacting with the user. The user can
supply data to the application through these widgets. The widgets in the
Input Widgets group are shown in Table 7.7.

Table 7.7. Widgets in the Input Widgets Group

Widget Description

Combo Box (QComboBox) Displays a pop-up list.

Font Combo Box
(QFontComboBox)

Displays a combo box that allows
font selection.

Line Edit (QLineEdit) Displays a single-line text box for
entering/editing plain text.

Text Edit (QTextEdit) Used to edit plain text or HTML.

Plain Text Edit
(QPlainTextEdit)

Used to edit and display plain
text.

Spin Box (QSpinBox) Displays a spin box.

Double Spin Box
(QDoubleSpinBox)

Displays a spin box for double
values.

Time Edit (QTimeEdit) Used for editing times.

Date Edit (QDateEdit) Used for editing dates.

Date/Time Edit
(QDateTimeEdit)

Used for editing dates and times.

Dial (QDial) Displays a rounded range control.

Horizontal Scrollbar Displays a horizontal scrollbar.

(QScrollBar)

Vertical Scrollbar
(QScrollBar)

Displays a vertical scrollbar.

Horizontal Slider (QSlider) Displays a horizontal slider.

Vertical Slider (QSlider) Displays a vertical slider.

QsciScintilla Scintilla is an editing component
that performs syntax styling,
code completion, break points,
auto indenting, and other tasks.
It is very useful in editing and
debugging source code. The
Scintilla component is inside
QsciScintilla and used in Qt

Designer for developing GUI
applications like any other Qt
widget.

Display Widgets

Display widgets are used for displaying information or messages to the
user. The widgets in the Display Widgets group are shown in Table 7.8.

Table 7.8. Widgets in the Display Widgets Group

Widget Description

Label (QLabel) Displays text or images.

Text Browser
(QTextBrowser)

Displays a read-only multiline
text box that can display both
plain text and HTML, including
lists, tables, and images. It
supports clickable links as well as
cascading style sheets.

Graphics View
(QGraphicsView)

Used to displays graphics.

Calendar
(QCalenderWidget)

Displays a monthly calendar
allowing you to select a date.

LCD Number (QLCDNumber) Displays digits in LCD-like
display.

Progress Bar
(QProgressBar)

Displays horizontal and vertical
progress bars.

Horizontal Line (QFrame) Displays a horizontal line.

Vertical Line (QFrame) Displays a vertical line.

QDeclarativeView A QGraphicsView subclass

provided for displaying QML
interfaces. To display a QML
interface within QWidget-based
GUI applications that do not use
the Graphics View framework,
QDeclarative is used.

QDeclarativeView initializes

QGraphicsView for optimal

performance with QML so that
user interface objects can be
placed on a standard
QGraphicsScene and displayed

with QGraphics-View. QML is a

declarative language used to
describe the user interface in a
tree of objects with properties.

QWebView Used to view and edit web
documents.

Phonon

Phonon is a multimedia API that provides an abstraction layer for
capturing, mixing, processing, and playing audio and video. The widgets in
the Phonon group are shown in Table 7.9.

Table 7.9. Widgets in the Phonon Group

Widget Description

Phonon::VideoPlayer Used to display video.

Phonon::SeekSlider Displays slider for setting positions in media
stream.

Phonon::VolumeSliderDisplays slider to control volume of audio
output.

Qt Designer displays a toolbar at the top that shows icons for frequently
used tasks such as opening and saving files, switching modes, and
applying layouts. Let’s look at the toolbar.

Toolbar

At the top of Qt Designer is a toolbar with icons as shown in Figure 7.8.

Figure 7.8. Qt Designer toolbar.

The following is a brief description of icons shown in the toolbar:

New: Displays a New Form dialog box (refer to Figure 7.5) showing

different templates for creating a new form.

Open: Opens the Open Form dialog box, which you can use to browse

your disk drive to search and select a .ui file to work on.

Save: Used to save the form.

Send to Back: Sends the selected widget to the back in overlapping

widgets, making it invisible. Consider two overlapping pushbuttons,
PushButton1 and PushButton2. If you select PushButton1 and click

Send to Back, PushButton1 will be hidden behind PushButton2, as

shown in Figure 7.9(a).

Figure 7.9. (a) PushButton1 sent back. (b) PushButton1

brought to the front.

Bring to Front: Brings the selected widget to the front, making it

visible. This icon works only when widgets overlap each other. If you
select PushButton1 and click Bring to Front, it will become visible, as

shown in Figure 7.9(b).

Edit Widgets: The Widget Editing mode allows you to edit widget

properties. Also, you can drop widgets into existing layouts on the
form in this mode. You can also drag widgets between forms. You can
also clone a widget by dragging it with the Ctrl key pressed. To
activate the Widget Editing mode, you can choose any of the three
options: press F3, select the Edit > Edit Widgets from the menu, or
click the Edit Widgets icon on the toolbar.

Edit Signals/Slots: The Signals and Slots Editing mode is used

for representing and editing signal/slot connections between
objects on a form. To switch to the Signals and Slots Editing
mode, you can press the F4 key, select the Edit > Edit
Signals/Slots option, or select the Edit Signals/Slots icon from the
toolbar. The mode displays all the signal and slot connections in
the form of arrows so that you know which object is connected to
what. You can also create new signal and slot connections
between widgets in this mode and delete an existing signal. The
signals and slots refer to different events and corresponding
methods that are executed on occurrence of an event. To establish
signal and slot connection between two objects in a form, select
an object by clicking with the left mouse button and drag the
mouse towards the object to which you want to connect and
release the mouse button. You can also cancel the connection
while dragging the mouse by pressing the Esc key. When you
release the mouse over the destination object, a Connection
Dialog box appears, prompting you to select a signal from the
source object and a slot from the destination object. After
selecting the respective signal and slot, select OK to establish the
signal/slot connection. You can also select Cancel in the
Connection dialog box to cancel the connection operation. The
selected signal and slot will appear as labels in the arrow
connecting the two objects. To modify a connection, double-click
the connection path or one of its labels to display the Connection
dialog box. From the Connection dialog you can edit a signal or a
slot as desired. To delete a signal/slot connection, select its arrow
on the form and press the Del key. The signal/slot connection can
also be established between an object and the form; you can
connect signals from objects to the slots in the form. To connect
an object to the form, select the object, drag the mouse, and
release the mouse button over the form. The end point of the
connection changes to the electrical ground symbol. To come out
of the Signals and Slots Editing mode, select Edit > Edit Widgets
or press the F3 key.

Edit Buddies: Buddy Editing mode is used for setting keyboard

focus on the widgets that cannot accept keyboard input. That is,
by making a widget that can accept keyboard input a buddy,
widgets that cannot accept keyboard input will also gain keyboard
focus. Arrows appear to show the relationships between widgets
and their buddies. To activate the Buddy Editing mode, you can
either select the Edit > Edit Buddies option from the menu, or
click the Edit Buddies icon on the toolbar.

Edit Tab Order: In this mode, you can specify the order in which

input widgets can get keyboard focus. The default tab order is
based on the order in which widgets are placed on the form.

Lay Out Horizontally: Arranges selected widgets in a horizontal

layout next to each other. Shortcut key is Ctrl+1.

Lay Out Vertically: Arranges selected widgets in a vertical

layout, one below another. Shortcut key is Ctrl+2.

Lay Out Horizontally in Splitter: In this layout, the widgets are

placed in a splitter, arranged horizontally and allowing you to
adjust the amount of space allocated to each widget. Shortcut key
is Ctrl+3.

Lay Out Vertically in Splitter: The widgets are arranged

vertically, allowing the user to adjust the amount of space
allocated to each widget. Shortcut key is Ctrl+4.

Lay Out in a Grid: Arranges widgets in a table-like grid (rows

and columns). Each widget occupies one table cell that you can
modify to span several cells.

Lay Out in a Form Layout: Arranges selected widgets in a two-

column format. The left column is usually for Label widgets
displaying messages, and the right column shows widgets for
entering/editing/showing data for the corresponding labels in the
first column, such as Line Edit, Combo Box, and Date Edit.

Break Layout: Once widgets are arranged in a layout, you cannot

move and resize them individually, as their geometry is controlled
by the layout. This icon is to break the layout. Shortcut key is
Ctrl+0.

Adjust Size: Adjusts the size of the layout to accommodate

contained widgets and to ensure that each has enough space to
be visible. Shortcut key is Ctrl+J.

In almost all applications, you need some very fundamental widgets such
as Labels, Line Edits, and Push Buttons. These widgets are required to
display text messages, to accept input from the user, and to initiate some
action, respectively. Let’s look at these fundamental widgets.

Understanding Fundamental Widgets

The first widget we will discuss is the Label widget, a very popular way of
displaying text or information in a GUI application.

Displaying Text

To display non-editable text or an image, Label widgets are used; a Label is
an instance of the QLabel class. A Label widget is a very popular widget for

displaying messages or information to the user. The methods provided by
the QLabel class are shown in Table 7.10.

Table 7.10. Methods Provided by the QLabel Class

Methods Usage

setText() Assigns text to the Label widget.

setPixmap() Assigns a pixmap, an instance of the
QPixmap class, to the Label widget.

setNum() Assigns an integer or double value to the
Label widget.

clear() Clears text from the Label widget.

The default text of a QLabel is TextLabel. That is, when you add a QLabel to

a form by dragging a Label widget and dropping it on the form, it will
display “TextLabel.” Besides using setText(), you can also assign text to a

selected QLabel by setting its text property in the Property Editor window.

For instance, if you set the text property to Enter your name, the

selected QLabel will show the text “Enter your name” on the form.

You can also set any letter in the QLabel text to act as a shortcut key by

preceding it with an ampersand symbol (&). For instance, if you set the
text property of the selected QLabel to &Enter your name, the letter E

will become a shortcut key, and you can access that QLabel with the Alt+E

keys.

Entering Single-Line Data

To allow the user to enter or edit single-line data, you use the Line Edit
widget, which is an instance of QLineEdit. The widget supports simple

editing mechanisms such as undo, redo, cut, and paste. The methods
provided by QLineEdit are shown in Table 7.11.

Table 7.11. Methods Provided by QLineEdit

Method Usage

setEchoMode()Used to set the echo mode of the Line Edit widget
to determine how the contents of the Line Edit
widget are displayed. The available options are
these:
Normal: Default mode. Displays characters as they

are entered.
NoEcho: Doesn’t display anything.

Password: Displays asterisks as the user enters

data.
PasswordEchoOnEdit: Displays characters when

editing; otherwise, asterisks are displayed.

maxLength() Used to specify the maximum length of text that
user can enter. For multiline editing, you use
QTextEdit.

setText() Assigns text to the Line Edit widget.

text() Fetches the text entered in the Line Edit widget.

clear() Clears the contents of the Line Edit widget.

setReadOnly()Passes the Boolean value true to this method to
make the Line Edit widget read-only. The user
cannot edit the contents of the Line Edit widget
but can copy it. The cursor will become invisible in
read-only mode.

isReadOnly() Returns true if the Line Edit widget is in read-only
mode.

setEnabled() The Line Edit widget will be blurred, indicating that
it is disabled. You cannot edit content in a disabled
Line Edit widget, but you can assign text via the
setText() method.

setFocus() Used to set the cursor on the specified Line Edit
widget.

Signals emitted by the Line Edit widget are these:

textChanged(): The signal is emitted when text in the Line Edit

widget is changed.

returnPressed(): The signal is emitted when Return or Enter is

pressed.

editingFinished(): The signal is emitted when focus is lost on

the Line Edit widget, confirming the editing task is over on it.

The next widget is the most common way of initiating actions in any
application.

Displaying Buttons

To display pushbuttons (usually command buttons) in an application, you
need to create an instance of the QPushButton class. When assigning text

to buttons, you can create shortcut keys by preceding any character in the
text with an ampersand. For example, if the text assigned to a pushbutton
is &Click Me, the character C will be underlined to indicate that it is a

shortcut key, and the user can select the button by pressing Alt+C. The
button emits a clicked() signal if it is activated. Besides text, an icon can

also be displayed in the pushbutton. The methods for displaying text and
an icon in a pushbutton are these:

setText(): Used to assign the text to the pushbutton.

setIcon(): Used to assign icon to the pushbutton.

The only concept left to examine before you begin with your first
application in Qt Designer is event handling. Let’s see how events are
handled in PyQt.

Event Handling in PyQt

In PyQt, the event-handling mechanism is also known as signals and slots.
Every widget emits signals when its state changes. Whenever a signal is
emitted, it is simply thrown. To perform a task in response to a signal, the
signal has to be connected to a slot. A slot refers to the method containing
the code that you want to be executed on occurrence of a signal. Most
widgets have predefined slots, you don’t have to write code for connecting
a predefined signal to a predefined slot. To respond to the signals emitted,
you identify the QObject and the signal it emits and invoke the associated

method. You can use Qt Designer for connecting signals with built-in slots.
How? Let’s see by creating an application.

Note

Signals differ according to the widget type.

First Application in Qt Designer

Let’s create an application in Qt Designer to demonstrate how to connect signals with built-in
slots. On opening, Qt Designer asks you to select a template for your new application, as shown
previously in Figure 7.5. Qt Designer provides a number of templates that are suitable for
different kinds of applications. You can choose any of these templates and then select the Create
button. Select Dialog with Buttons Bottom and click the Create button. A new form will be
created with an “untitled” caption. The form contains a button box that has two buttons, OK and
Cancel, as shown in Figure 7.10. The signal-slot connections of the OK and Cancel buttons are
already set up by default.

Figure 7.10. Dialog box with two buttons, OK and Cancel.

In order to learn how to connect signals with slots manually, select the button box by clicking
either of the buttons, and then delete it (which removes the buttons). Now you have an entirely
blank form. Add a QLabel, QLineEdit, and QPushButton to the form by dragging and dropping a

Label, Line Edit, and Push Button widget from the Widget Box on the form. The default text

property of Label is TextLabel, as shown in Figure 7.11(a). You can change it by changing the

text property in the Property Editor. Select the Label widget and set its text property to Enter

Text through the Property Editor. Similarly, set the text of the Push Button widget to Clear, as
shown in Figure 7.11(b).

Figure 7.11. (a) Three widgets dropped on the form. (b) Widgets on the form with
the text property set.

[View full size image]

Note

To preview a form while editing, select either Form, Preview or Ctrl+R.

You want some action to happen when the user selects Clear on the form, so you need to
connect Push Button’s signal to Line Edit’s slot.

Connecting to Predefined Slots

Currently, you are in widget editing mode, and to apply signal/slot connections, you need to first
switch to signals and slots editing mode. Select the Edit Signals/Slots icon from the toolbar to
switch to signals and slots editing mode. On the form, select the Clear button and drag the
mouse to the Line Edit widget and release the mouse button. The Configure Connection dialog
will pop up, allowing you to establish a signal-slot connection between the Clear button and the
Line Edit widget, as shown in Figure 7.12.

Figure 7.12. Configure Connection dialog displaying predefined slots.

[View full size image]

When the user selects the Clear button, you want any text in the Line Edit widget to be deleted.
For this to happen, you have to connect the pushbutton’s clicked() signal to the Line Edit’s

clear() slot. So, in the Configure Connection dialog, select the clicked() signal from the Push

Button column and the clear() slot from the Line Edit column and select OK. On the form, you

will see that an arrow appears, representing the signal-slot connection between the two widgets
as shown in Figure 7.13.

Figure 7.13. The signal-slot connection in widgets represented with arrows.

Let’s save the form with the name FirstApp. The default location where the form will be saved is
C:\Python32\Lib\site-packages\PyQt4. The form will be saved in a file with the .ui extension.

The FirstApp.ui file will contain all the information of the form, its widgets, layout, and so on.

The .ui file is an XML file, and it contains the following code:

FirstApp.ui
<?xml version="1.0" encoding="UTF-8"?>
<ui version="4.0">
 <class>Dialog</class>
 <widget class="QDialog" name="Dialog">
 <property name="geometry" >
 <rect>
 <x>0</x>
 <y>0</y>
 <width>337</width>
 <height>165</height>
 </rect>
 </property>
 <property name="windowTitle">
 <string>Dialog</string>
 </property>
 <widget class="QPushButton" name="pushButton">
 <property name="geometry" >
 <rect>
 <x>110</x>
 <y>90</y>
 <width>75</width>
 <height>23</height>
 </rect>
 </property>
 <property name="text">
 <string>Clear</string>
 </property>
</widget>
<widget class="QLineEdit" name="lineEdit">
 <property name="geometry">
 <rect>
 <x>140</x>
 <y>20</y>
 <width>151</width>
 <height>20</height>
 </rect>
 </property>
</widget>
<widget class="QLabel" name="label">

 <property name="geometry">
 <rect>
 <x>50</x>
 <y>20</y>
 <width>71</width>
 <height>16</height>
 </rect>
 </property>
 <property name="text">
 <string>Enter Text</string>
 </property>
 </widget>
 </widget>
 <resources/>
 <connections>
 <connection>
 <sender>pushButton</sender>
 <signal>clicked()</signal>
 <receiver>lineEdit</receiver>
 <slot>clear()</slot>
 <hints>
 <hint type="sourcelabel">
 <x>161</x>
 <y>103</y>
 </hint>
 <hint type="destinationlabel">
 <x>164</x>
 <y>24</y>
 </hint>
 </hints>
 </connection>
 </connections>
</ui>

To use the file, you first need to convert it into Python script. The command utility that you will
use for converting a .ui file into a Python script is pyuic4. In Windows, the pyuic4 utility is

bundled with PyQt. To do the conversion, you need to open a command prompt window and
navigate to the folder where the file is saved and issue this command:

C:\Python32\Lib\site-packages\PyQt4>pyuic4 FirstApp.ui -o FirstApp.py

Recall that you saved the form at the default location, C:\Python32\Lib\site-packages\PyQt4.

The command shows the conversion of the FirstApp.ui file into a Python script, FirstApp.py.

Note

The Python code generated by this method should not be modified manually, as any
changes will be overwritten the next time you run the pyuic4 command.

The Python script file FirstApp.py may have the following code. Your generated code may

slightly vary when compared with the following code, as it depends on several factors, including
window size, button location, and so on:

FirstApp.py
Form implementation generated from reading ui file 'FirstApp.ui'

from PyQt4 import QtCore, QtGui

try:
 _fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
 _fromUtf8 = lambda s: s

class Ui_Dialog(object):
 def setupUi(self, Dialog):
 Dialog.setObjectName(_fromUtf8("Dialog"))
 Dialog.resize(337, 165)
 self.pushButton = QtGui.QPushButton(Dialog)
 self.pushButton.setGeometry(QtCore.QRect(110, 90, 75, 23))
 self.pushButton.setObjectName(_fromUtf8("pushButton"))
 self.lineEdit = QtGui.QLineEdit(Dialog)
 self.lineEdit.setGeometry(QtCore.QRect(140, 20, 151, 20))
 self.lineEdit.setObjectName(_fromUtf8("lineEdit"))
 self.label = QtGui.QLabel(Dialog)
 self.label.setGeometry(QtCore.QRect(50, 20, 71, 16))
 self.label.setObjectName(_fromUtf8("label"))
 self.retranslateUi(Dialog)
 QtCore.QObject.connect(self.pushButton, QtCore.SIGNAL(_fromUtf8("clicked()")),
self.lineEdit.clear)
 QtCore.QMetaObject.connectSlotsByName(Dialog)

 def retranslateUi(self, Dialog):
 Dialog.setWindowTitle(QtGui.QApplication.translate("Dialog", "Dialog" , None,
QtGui.QApplication.UnicodeUTF8))
 self.pushButton.setText(QtGui.QApplication.translate("Dialog", "Clear" , None,
QtGui.QApplication.UnicodeUTF8))
 self.label.setText(QtGui.QApplication.translate("Dialog", "Enter Text" , None,
QtGui.QApplication.UnicodeUTF8))

This script is very easy to understand. A class with the name of the top-level object is created,
with Ui_ prepended. Since, the top-level object used in our application is Dialog, the class

Ui_Dialog is created and stores the interface elements of our widget. That class has two

methods, setupUi() and retranslateUi(). The setupUi() method sets up the widgets; it

creates the widgets that you used while defining the user interface in Qt Designer. The method
creates the widgets one by one and also sets their properties. The setupUi() method takes a

single argument, which is the top-level widget in which the user interface (child widgets) is
created. In our application, it is an instance of QDialog. The retranslateUi() method translates

the interface. The file imports everything from both modules, QtCore and the QtGui, as you will

be needing them in developing GUI applications.

QtCore: The QtCore module forms the foundation of all Qt-based applications. It

contains the most fundamental classes, such as QCoreApplication, QObject, and so

on. These classes perform several important tasks, such as file handling, event
handling through the event loop, implementing the signals and slot mechanism,
concurrency control, and much more. The module includes several classes, including
QFile, QDir, QIODevice, QTimer, QString, QDate, and QTime.

QtGui: The QtGUI module contains the classes required in developing cross-platform

GUI applications. The module contains the majority of the GUI classes, including
QCheckBox, QComboBox, QDateTimeEdit, QLineEdit, QPushButton, QPainter,

QPaintDevice, QApplication, QTextEdit, and QTextDocument.

You will be treating the code as a header file, and you will import it to the source file from which
you will invoke its user interface design. Let’s create the source file with the name
callFirstApp.pyw and import the FirstApp.py code to it. The code in the file is as shown here:

callFirstApp.pyw
import sys
from FirstApp import *

class MyForm(QtGui.QDialog):
 def __init__(self, parent=None):
 QtGui.QWidget.__init__(self, parent)
 self.ui = Ui_Dialog()
 self.ui.setupUi(self)

if __name__ == "__main__":
 app = QtGui.QApplication(sys.argv)
 myapp = MyForm()
 myapp.show()
 sys.exit(app.exec_())

The sys module is imported to enable you to access the command-line arguments stored in the

sys.argv list. First you create an QApplication object. Every PyQt GUI application must have a

QApplication object to provide access to information such as the application’s directory, screen

size, and so on. When creating an QApplication object, you pass the command-line arguments

to it for the simple reason that PyQt can act on command-line arguments if required. You create
an instance of MyForm and call its show() method, which adds a new event to the QApplication

object’s event queue: a request to paint the widgets specified in the class, MyForm. The method

app.exec_() is called to start the QApplication object’s event loop. Once the event loop begins,

the top-level widget used in the class, MyForm, is displayed along with its child widgets. All the

events that occur, whether through user interaction or system-generated, are added to the event
queue. The application’s event loop continuously checks to see if any event has occurred. If so,
the event loop processes it and eventually passes it to the associated method. When you close
the top-level widget being displayed, it goes into hidden mode, and PyQt deletes the widget and
performs a clean termination of the application.

In PyQt, any widget can be used as a top-level window. To declare QDialog as a top-level

window, all you need is to declare the parent of the class MyForm as None. So to the __init__()

method of our MyForm class, you pass a default parent of None to indicate that the QDialog

displayed through this class is a top-level window.

Note

A widget that has no parent becomes a top-level window.

Recall that the user interface design is instantiated by calling the setupUI() method of the class

that was created in the Python code (Ui_Dialog). What you need is to create an instance of the

class Ui_Dialog, the class that was created in the Python code, and invoke its setupUi()

method. The Dialog widget will be created as the parent of all the user interface widgets and
displayed on the screen.

Note

QDialog, QMainWindow, and all PyQt’s widgets are derived from QWidget.

On running the above Python script, the application prompts for text to be entered in the Line
Edit widget, as shown in Figure 7.14.

Figure 7.14. Output of FirstApp application.

Any text in the Line Edit widget will be deleted when you select the Clear button.

Congratulations on successfully creating and executing your first GUI application.

In this application, you saw how to connect the built-in signals with slots. What if you want a
custom method to execute an occurrence of an event?

Using Custom Slots

The application you are going to create now will prompt a user to enter a name and select a
pushbutton. When the pushbutton is selected, the application will display a welcome message to
the user. This time let’s use the Dialog without Buttons template, which provides a blank form
ready to receive widgets. Recall that an instance of QDialog is the top-level widget in

applications based on the Dialog template. Let’s add two QLabels, a QlineEdit, and a

QPushButton to the form by dragging and dropping two Label, Line Edit, and Push Button

widgets from the Widget Box, as shown in Figure 7.15(a). Set the objectName property of the

first and second Label to labelEnterName and labelMessage, respectively. Also, set the object-

Name property of the Line Edit and Push Button widgets to lineUserName and ClickMeButton,

respectively. Set the text property of the first Label widget to Enter your name. Also, delete

the default text property, TextLabel, from the second Label as you will be setting its text

through a Python script to display the welcome message to the user. The second Label will
become invisible on deleting its text property. Also, set the text of the Push Button widget to

Click Me, as shown in Figure 7.15(b).

Figure 7.15. (a) Four widgets dropped on the form. (b) Widgets on the form with
the text property set.

Note

The objectName property helps in distinguishing widgets in the form, and it is only

through the object names that the widgets are accessed in coding.

Save the form with the name welcomemsg.ui. You know that a .ui file is an XML file and has to

be converted into Python code through the pyuic4 command-line utility. The generated Python

code is shown here:

welcomemsg.py
#Form implementation generated from reading ui file 'welcomemsg.ui'

from PyQt4 import QtCore, QtGui

try:
 _fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
 _fromUtf8 = lambda s: s

class Ui_Dialog(object):

 def setupUi(self, Dialog):
 Dialog.setObjectName(_fromUtf8("Dialog"))
 Dialog.resize(400, 300)
 self.ClickMeButton = QtGui.QPushButton(Dialog)
 self.ClickMeButton.setGeometry(QtCore.QRect(150, 120, 75, 23))
 self.ClickMeButton.setObjectName(_fromUtf8("ClickMeButton"))
 self.labelEnterName = QtGui.QLabel(Dialog)
 self.labelEnterName.setGeometry(QtCore.QRect(30, 30, 101, 21))
 self.labelEnterName.setObjectName(_fromUtf8("labelEnterName"))
 self.labelMessage = QtGui.QLabel(Dialog)
 self.labelMessage.setGeometry(QtCore.QRect(120, 75, 161, 21))
 self.labelMessage.setText(_fromUtf8(""))
 self.labelMessage.setObjectName(_fromUtf8("labelMessage"))
 self.lineUserName = QtGui.QLineEdit(Dialog)
 self.lineUserName.setGeometry(QtCore.QRect(130, 30, 181, 20))
 self.lineUserName.setObjectName(_fromUtf8("lineUserName"))
 self.retranslateUi(Dialog)
 QtCore.QMetaObject.connectSlotsByName(Dialog)

 def retranslateUi(self, Dialog):
 Dialog.setWindowTitle(QtGui.QApplication.translate("Dialog", "Dialog" , None,
QtGui.QApplication.UnicodeUTF8))
 self.ClickMeButton.setText(QtGui.QApplication.translate("Dialog", "Click Me" ,
None, QtGui.QApplication.UnicodeUTF8))
 self.labelEnterName.setText(QtGui.QApplication.translate("Dialog", " Enter your
name", None, QtGui.QApplication.UnicodeUTF8))

As stated earlier, the top-level object used in the application is Dialog, hence the Ui_Dialog

class is created that stores the interface elements of our widget. The class has two methods,
setupUi() and retranslateUi(). The setupUi() method is for setting up the widgets and their

properties, and the retranslateUi() method is for translating the interface.

The next task is to connect slots and write code for the slots to perform processing. For this, you
need to write another Python script and import the previous Python code to invoke the user
interface design. Let’s create the source file, name it callwelcome.pyw, and import the Python

code welcomemsg in it. The code in callwelcome.pyw is shown here:

callwellcome.pyw
import sys
from welcomemsg import *
class MyForm(QtGui.QDialog):
 def __init__(self, parent=None):
 QtGui.QWidget.__init__(self, parent)
 self.ui = Ui_Dialog()
 self.ui.setupUi(self)
 QtCore.QObject.connect(self.ui.ClickMeButton, QtCore.SIGNAL('clicked()'),self.
dispmessage)

 def dispmessage(self):
 self.ui.labelMessage.setText("Hello "+ self.ui.lineUserName.text())

if __name__ == "__main__":
 app = QtGui.QApplication(sys.argv)
 myapp = MyForm()
 myapp.show()
 sys.exit(app.exec_())

As stated earlier, every PyQt GUI application must have a QApplication object to provide access

to information such as the application’s directory, screen size, and so on. You create an instance
of MyForm and call its show() method, which adds a new event to the QApplication object’s

event queue. The app.exec_() method is called to start the QApplication object’s event loop.

Once the event loop begins, the top-level widget used in the class MyForm is displayed, along

with its child widgets. On occurrence of an event, the event loop processes it and eventually
passes it to the associated method. To the __init__() method of MyForm, you pass a default

parent of None to cause the QDialog class to be treated as a top-level window.

Recall that the user interface design is instantiated by calling the setupUI() method of the class

that was created in the Python code (Ui_Dialog). You need to create an instance of the class

Ui_Dialog, the class that was created in the Python code, and invoke its setupUi() method. On

calling the setupUi() method, the Dialog widget will be created as the parent of all the widgets

and displayed on the screen.

To respond to the events, the clicked() signal (event) of the Click Me pushbutton with the

ClickMeButton object name is connected to the dispmessage() slot (method). Hence, when the

user selects the Click Me pushbutton, the code in disp-message() will be executed. The code in

dispmessage() retrieves the name entered by the user in the Line Edit widget, lineUserName,

and displays it through the Label labelMessage after prefixing it with a string, Hello. In Figure

7.16, you can see that if the user enters the user name Caroline in Line Edit and selects the
Click Me pushbutton, the welcome displayed via Label will be Hello Caroline.

Figure 7.16. Welcome message displayed on selecting the Click Me button.

Converting Data Types

The default data type in a Line Edit widget is string. What if you want to use the widget for
numerical data? Let’s think of an application where you want to add two integer values and print
their sum through a Label widget. First you need to convert string data entered in the Line Edit
widget to integer data type and then convert the sum of the numbers, which will be of integer
data type, back to string type before being displaying through a Label widget.

Let’s create an application based on the Dialog without Buttons template and add three QLabels,

two QlineEdits, and a QPushButton to the form by dragging and dropping three Labels, two Line

Edits, and a Push Button on the form as shown in Figure 7.17(a). Set the text property of the

two Label widgets to Enter First Number and Enter Second Number (Figure 7.17(b)). Set the

objectName property of the three Labels to labelFirstNumber, labelSecondNumber, and

labelAddition. Also, set the objectName property of the two Line Edit widgets to

lineFirstNumber and lineSecondNumber. Set the objectName property of the Push Button to

AddButton and also change its text property to Add. You don’t need to change the third label’s

text property because the Python script will set the value and then display it when the two
numerical values are added. Also, remember to drag the Label widget in the Designer to ensure
it is long enough to display the text that will be assigned to it through the Python script. You can
also increase the width of the Label widget by selecting Geometry > Width Property from the
Property Editor.

Figure 7.17. (a) Four widgets dropped on the form. (b) Widgets on the form with
the text property set.

[View full size image]

Save the UI file as addtwonum.ui. The .ui file, which is in XML format when converted into
Python code will appear as shown here:

addtwonum.py
Form implementation generated from reading ui file 'addtwonum.ui'
from PyQt4 import QtCore, QtGui

try:
 _fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
 _fromUtf8 = lambda s: s

class Ui_Dialog(object):
 def setupUi(self, Dialog):
 Dialog.setObjectName(_fromUtf8("Dialog"))
 Dialog.resize(435, 255)

 self.lineFirstNumber = QtGui.QLineEdit(Dialog)
 self.lineFirstNumber.setGeometry(QtCore.QRect(190, 30, 113, 20))
 self.lineFirstNumber.setObjectName(_fromUtf8("lineFirstNumber"))
 self.lineSecondNumber = QtGui.QLineEdit(Dialog)
 self.lineSecondNumber.setGeometry(QtCore.QRect(190, 70, 113, 20))
 self.lineSecondNumber.setObjectName(_fromUtf8("lineSecondNumber"))
 self.labelSecondNumber = QtGui.QLabel(Dialog)
 self.labelSecondNumber.setGeometry(QtCore.QRect(50, 70, 111, 16))
 self.labelSecondNumber.setObjectName(_fromUtf8("labelSecondNumber"))
 self.AddButton = QtGui.QPushButton(Dialog)
 self.AddButton.setGeometry(QtCore.QRect(180, 130, 75, 23))
 self.AddButton.setObjectName(_fromUtf8("AddButton"))
 self.labelFirstNumber = QtGui.QLabel(Dialog)
 self.labelFirstNumber.setGeometry(QtCore.QRect(60, 30, 101, 16))
 self.labelFirstNumber.setObjectName(_fromUtf8("labelFirstNumber"))
 self.labelAddition = QtGui.QLabel(Dialog)
 self.labelAddition.setGeometry(QtCore.QRect(100, 100, 171, 21))
 self.labelAddition.setObjectName(_fromUtf8("labelAddition"))
 self.retranslateUi(Dialog)
 QtCore.QMetaObject.connectSlotsByName(Dialog)

 def retranslateUi(self, Dialog):
 Dialog.setWindowTitle(QtGui.QApplication.translate("Dialog", "Dialog" , None,
QtGui.QApplication.UnicodeUTF8))
 self.labelSecondNumber.setText(QtGui.QApplication.translate("Dialog", " Enter
Second Number", None, QtGui.QApplication.UnicodeUTF8))
 self.AddButton.setText(QtGui.QApplication.translate("Dialog", "Add" , None,
QtGui.QApplication.UnicodeUTF8))
 self.labelFirstNumber.setText(QtGui.QApplication.translate("Dialog", " Enter
First Number", None, QtGui.QApplication.UnicodeUTF8))
 self.labelAddition.setText(QtGui.QApplication.translate("Dialog", "TextLabel" ,
None, QtGui.QApplication.UnicodeUTF8))

Let’s create a Python script named calltwonum.pyw that imports the Python code addtwonum.py

to invoke a user interface design and that fetches the values entered in the Line Edit widgets
and displays their addition. The code in the Python script calltwonum.pyw is shown here:

calltwonum.pyw
import sys
from addtwonum import *

class MyForm(QtGui.QDialog):
 def __init__(self, parent=None):
 QtGui.QWidget.__init__(self, parent)
 self.ui = Ui_Dialog()
 self.ui.setupUi(self)
 QtCore.QObject.connect(self.ui.AddButton, QtCore.SIGNAL('clicked()'), self.
dispsum)

 def dispsum(self):
 if len(self.ui.lineFirstNumber.text())!=0:
 a=int(self.ui.lineFirstNumber.text())
 else:
 a=0
 if len(self.ui.lineSecondNumber.text())!=0:
 b=int(self.ui.lineSecondNumber.text())
 else:
 b=0
 sum=a+b
 self.ui.labelAddition.setText("Addition: " +str(sum))

if __name__ == "__main__":
 app = QtGui.QApplication(sys.argv)
 myapp = MyForm()
 myapp.show()
 sys.exit(app.exec_())

Before we look at the code, let’s consider the three functions used in it:

len(): Returns the number of characters in the string.

str(): Converts the passed argument into string data type.

int(): Converts the passed argument into integer data type.

The clicked() event of AddButton is connected to the dispsum() method to display the sum of

the numbers entered in the two Line Edits. In the dispsum() method, you first validate

lineFirstNumber and lineSecondNumber to ensure that if either Line Edit is left blank by the

user, the value of that Line Edit is zero. The value entered in the two Line Edits is retrieved,
converted into integers through int(), and assigned to the two variables a and b. The sum of

the values in the variables a and b is computed and stored in the variable sum. The result in the

variable sum is converted into string format through str() and displayed via labelAddition. You

can see in Figure 7.18 that when the user selects the Add button after entering two numbers in
the Line Edits, the addition is displayed through the Label widget.

Figure 7.18. The sum of the numbers entered in Line Edit is displayed through a
Label widget.

Can you have a shortcut key for Line Edits? Consider a form with several Line Edit widgets that
you want to access with a shortcut key. It is possible through buddies.

Defining Buddies

To establish a connection through between widgets or relate corresponding widgets, you create
buddies. The benefit of using buddies is to have quick keyboard focus via shortcut keys on the
widgets that do not accept focus. For example, to get focus on a Line Edit widget, you can set it
as a buddy of a Label widget and assign a shortcut key to the Label widget. When the user
presses the shortcut key for the Label widget, keyboard focus will be set on its Line Edit buddy
widget.

Let’s create a new application based on the Dialog without Buttons template. Add four QLabels,

three QlineEdits, and a QPushButton to the dialog by dragging and dropping from the

respective groups in the Widget Box. Set the text property of the three Label widgets to

&Number of items, &Price per item, and &Discount Percentage. Recall that preceding any

character in the text with an ampersand (&) will make it a shortcut key for the selected widget.

Assigning the text &Number of items to the first Label (see Figure 7.19) will declare its first

character, N, as its shortcut key. That also means that the Label will be accessed by Alt+N.

Similarly, the shortcut keys for the next two Labels will be Alt+P and Alt+D. Set the text for the
button to Calculate Amount. Set the objectName of the three Line Edit widgets to quantity,

rate, and discount. Recall that it is through the object names that the widgets are

distinguished and accessed in coding. Also set the objectName of the fourth Label to result and

leave its default text property TextLabel as such because you will be setting its actual text in

the program for displaying the result of computation. Also, increase the width of the fourth label
either by dragging its nodes in the Designer or by selecing Geometry > Width Property in the
Property Editor so that it can display all the information assigned to it by the script.

Figure 7.19. Setting a shortcut key for the Label.

[View full size image]

To begin setting buddies, select Edit > Edit Buddies or the Edit Buddies icon from the toolbar to
switch to Buddy Editing mode. To go back to Widget Editing mode from Buddy Editing mode,
you can choose any of the three options: press F3, select the Edit > Edit Widgets from the
menu, or click the Edit Widgets icon on the toolbar. In Buddy Editing mode, select a Label
widget and drag it to the Line Edit widget that you want to set as its buddy and release the
mouse button. The Label and Line Edit widgets will become buddies. On defining a buddy for the
Label widget, the & (ampersand) in its text becomes invisible. After setting the three Line Edit

widgets as buddies of the Label widgets, the dialog will appear as shown in Figure 7.20(a). To
switch from Buddy Editing to Widget Editing mode, either press F3 or select the Edit Widgets
icon from the toolbar. The dialog in Widget Editing mode will appear as shown in Figure 7.20(b).

Figure 7.20. (a) Widgets on the form with the buddies set. (b) The dialog in
Widget Editing mode.

[View full size image]

Before running the application, let’s see how to set the tab order of the widgets.

Setting Tab Order

Tab order means the order in which the widgets will get focus when the Tab and Shift+Tab keys
are pressed. The default tab order is based on the order in which widgets are placed on the form.
To change this order, you need to switch to Tab Order Editing mode by either selecting the Edit,
Edit Tab Order option or choosing the Edit Tab Order icon from the toolbar. In Tab Order Editing
mode, each input widget in the form is shown with a number indicating its position in the tab
order (see Figure 7.21(a)). If the user gives the first input widget the input focus and then
presses the Tab key, the focus will move to the second input widget, and so on. You can change
the tab order by clicking on each number in the correct order. When you select a number, it will
change to red, indicating the currently edited position in the tab order chain. Clicking on the
next number will make it the second in the tab order, and so on. In case of a mistake, you can
restart numbering by choosing Restart from the form’s context menu. To edit the tab order in
the middle of the form, select a number with the Ctrl key pressed from where you want to
change the tab order or choose Start from Here from the context menu. Let’s set the tab order of
the widgets on our dialog as shown in Figure 7.21(b).

Figure 7.21. (a) Initial tab order of the widgets on the form. (b) Modified tab
order of the widgets on the form.

[View full size image]

Note

There is one more way to specify the tab order. Right-click anywhere on the form and
select Tab Order List from the context menu that appears.

Save the application with the name buddytab.ui. Upon conversion to Python code, the XML file

buddytab.ui will appear as shown here:

buddytab.py

#Form implementation generated from reading ui file 'buddytab.ui'

from PyQt4 import QtCore, QtGui

try:
 _fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
 _fromUtf8 = lambda s: s
class Ui_Dialog(object):
 def setupUi(self, Dialog):
 Dialog.setObjectName(_fromUtf8("Dialog"))
 Dialog.resize(490, 182)
 self.label = QtGui.QLabel(Dialog)
 self.label.setGeometry(QtCore.QRect(10, 20, 91, 16))
 self.label.setObjectName(_fromUtf8("label"))
 self.quantity = QtGui.QLineEdit(Dialog)
 self.quantity.setGeometry(QtCore.QRect(120, 10, 113, 20))
 self.quantity.setObjectName(_fromUtf8("quantity"))
 self.label_2 = QtGui.QLabel(Dialog)
 self.label_2.setGeometry(QtCore.QRect(280, 10, 71, 16))
 self.label_2.setObjectName(_fromUtf8("label_2"))
 self.rate = QtGui.QLineEdit(Dialog)
 self.rate.setGeometry(QtCore.QRect(370, 10, 113, 20))
 self.rate.setObjectName(_fromUtf8("rate"))
 self.label_3 = QtGui.QLabel(Dialog)
 self.label_3.setGeometry(QtCore.QRect(10, 50, 101, 16))
 self.label_3.setObjectName(_fromUtf8("label_3"))
 self.discount = QtGui.QLineEdit(Dialog)
 self.discount.setGeometry(QtCore.QRect(130, 50, 113, 20))
 self.discount.setObjectName(_fromUtf8("discount"))
 self.pushButton = QtGui.QPushButton(Dialog)
 self.pushButton.setGeometry(QtCore.QRect(120, 100, 111, 23))
 self.pushButton.setObjectName(_fromUtf8("pushButton"))
 self.result = QtGui.QLabel(Dialog)
 self.result.setGeometry(QtCore.QRect(50, 140, 351, 16))
 self.result.setText(_fromUtf8(""))
 self.result.setObjectName(_fromUtf8("result"))
 self.label.setBuddy(self.quantity)
 self.label_2.setBuddy(self.rate)
 self.label_3.setBuddy(self.discount)
 self.retranslateUi(Dialog)
 QtCore.QMetaObject.connectSlotsByName(Dialog)
 Dialog.setTabOrder(self.quantity, self.discount)
 Dialog.setTabOrder(self.discount, self.rate)
 Dialog.setTabOrder(self.rate, self.pushButton)

 def retranslateUi(self, Dialog):
 Dialog.setWindowTitle(QtGui.QApplication.translate("Dialog", "Dialog" , None,
QtGui.QApplication.UnicodeUTF8))
 self.label.setText(QtGui.QApplication.translate("Dialog", "&Number of items" ,
None, QtGui.QApplication.UnicodeUTF8))
 self.label_2.setText(QtGui.QApplication.translate("Dialog", "& per item" ,
None, QtGui.QApplication.UnicodeUTF8))
 self.label_3.setText(QtGui.QApplication.translate("Dialog", " &Discount Per-
centage", None, QtGui.QApplication.UnicodeUTF8))
 self.pushButton.setText(QtGui.QApplication.translate("Dialog", " Calculate
Amount", None, QtGui.QApplication.UnicodeUTF8))

Let’s create a Python script to import the Python code to invoke the user interface design and to
compute the amount when number of items, price per item, and discount percentage are

supplied by the user. Name the Python script callbuddytab.pyw; its code is shown below:

callbuddytab.pyw

from __future__ import division
import sys
from buddytab import *

class MyForm(QtGui.QMainWindow):
 def __init__(self, parent=None):
 QtGui.QWidget.__init__(self, parent)
 self.ui = Ui_Dialog()
 self.ui.setupUi(self)
 QtCore.QObject.connect(self.ui.pushButton, QtCore.SIGNAL('clicked()'), self.
calculate)

 def calculate(self):
 if len(self.ui.quantity.text())!=0:
 q=int(self.ui.quantity.text())
 else:
 q=0
 if len(self.ui.rate.text())!=0:
 r=int(self.ui.rate.text())
 else:
 r=0
 if len(self.ui.discount.text())!=0:
 d=int(self.ui.discount.text())
 else:
 d=0
 totamt=q*r
 disc=totamt*d/100
 netamt=totamt-disc
 self.ui.result.setText("Total Amount: " +str(totamt)+", Discount: "+str(disc)+" ,
Net Amount: "+str(netamt))

if __name__ == "__main__":
 app = QtGui.QApplication(sys.argv)
 myapp = MyForm()
 myapp.show()
 sys.exit(app.exec_())

In this code, you can see that the Push Button’s clicked() signal is connected to the

calculate() function. After supplying the values for number of items, price per item, and

discount percentage in the Line Edit widgets, when the user selects the Calculate Amount Push

Button, the calculate() function will be invoked. In the calculate() function, you validate the

Line Edit widgets to check if any Line Edit widget is left blank. The value of Line Edit that is left
blank is assumed to be 0. Thereafter, you compute the net amount, which is total amount

minus discount, where total amount is the product of number of items and price per item.

The computed net amount is then converted to string data type to be displayed via a Label

widget.

On running the application, you will find the underscored characters N, P, and D in the Label’s

texts, Number of items, Price per item, and Discount Percentage, as shown in Figure 7.22. The
underscored characters mean that you can use Alt+N, Alt+P, and Alt+D shortcut keys for setting
focus to the respective Line Edit widgets for entering values for number of items, price per

item, and discount percentage. If you don’t see the underscored characters in the Labels, just

press Alt, and underscores will appear.

Figure 7.22. The characters acting as shortcut key appear underlined.

Summary

In this chapter you had a brief introduction to the Qt toolkit and PyQt. You
learned the procedure of installing PyQt. You learned about different Qt
Designer components such as the toolbar, the Object Inspector, the
Property Editor, and the Widget Box. You also learned to create a GUI
application through coding. You learned about the fundamental Label, Line
Edit, and Push Button widgets and developed applications using them.

You also had a good introduction to signal/slot connections in Qt Designer
and learned to connect signals to the predefined slots and to custom slots.
In the next chapter you will learn about basic widgets such as Radio
Buttons, Checkboxes, Spin Boxes, Scroll Bars, Sliders, and Lists. To better
understand these basic widgets, you will develop individual application
using each of them.

Chapter 8. Basic Widgets

In this chapter, we will focus on a few basic widgets. These enable the user
to choose one or more options and select integer or float values from a
specified range. Not only will you learn how to display options to the user
but also how to add, delete, or modify existing options. We will cover the
following in this chapter:

Using radio buttons

Using checkboxes

Entering integer and float values using a spin box

Scroll bars and sliders

Working with List widget

Let’s begin the chapter with radio buttons.

Using Radio Buttons

To display selectable options that are mutually exclusive (selecting one option automatically
deselects other options in the group), you use Radio Button widgets, which are instances of
the QRadioButton class. The class displays a radio button along with a text label. The radio

button can be either in a selected (checked) or unselected (unchecked) state. If you want two
or more sets of radio buttons, where each set allows exclusive selection of a radio button, put
them into different button groups (instances of QButtonGroup). Button groups are explained in

detail in Chapter 11, “Multiple Documents and Layouts.” Methods provided by QRadioButton

are shown in Table 8.1.

Table 8.1. Methods Provided by the QRadioButton
Class

Method Use

isChecked() Returns true if the button is in selected
state.

setIcon() Used to display an icon with the radio
button.

setText() Used to set the text of the radio button. To
specify a shortcut key for the radio button,
precede the preferred character in the text
with an ampersand (&).

setChecked() Pass the Boolean value true to this method
to make the radio button the default.

Signals emitted by QRadioButton are shown in Table 8.2.

Table 8.2. Signals Emitted by the QRadioButton Class

Signal Description

toggled() Emitted whenever button changes its state from
checked to unchecked or vice versa.

clicked() Emitted when a button is activated (i.e.,
pressed and released) or when its shortcut key
is pressed.

stateChanged()Emitted when a radio button changes its state
from checked to unchecked or vice versa.

To understand the concept of radio buttons, let’s create an application that asks the user to
enter two numbers and displays four options—Add, Subtract, Multiply, and Divide—in the form
of radio buttons. On selecting an option through Radio Button, the respective operation will be
performed on the two numbers and the result displayed.

Let’s create a new application based on the Dialog without Buttons template. Drag and drop

three Label widgets, two LineEdit widgets, four radio buttons, and a push button onto the
form. Set the text property of the first two Label widgets to Enter First Number and Enter

Second Number. Leave the text property of the third Label at the default, TextLabel, as you

will be setting its text through the program to display the result of computation. Also, set the
text property of the four radio buttons to Add, Subtract, Multiply, and Divide. Set the

objectName property of the three Label widgets to labelFirstNumber, labelSecondNumber,

and labelResult. Set the objectName property of the two LineEdit widgets to

lineFirstNumber and lineSecondNumber. The default objectNames of the four Radio Buttons

are radioButton, radioButton_2, radioButton_3, and radioButton_4. Change these to

radioAdd, radioSubtract, radioMultiply, and radioDivide. Set the objectName of the push

button to ComputeButton. The form will appear as shown in Figure 8.1.

Figure 8.1. Form displaying four options to the user via radio buttons.

Save the application with the name radiobtn.ui. On converting the .ui (XML) file into Python

code through the pyuic4 command utility, you will get the code shown here:

radiobtn.py
Form implementation generated from reading ui file 'radiobtn.ui'

from PyQt4 import QtCore, QtGui

try:
 _fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
 _fromUtf8 = lambda s: s

class Ui_Dialog(object):
 def setupUi(self, Dialog):
 Dialog.setObjectName(_fromUtf8("Dialog"))
 Dialog.resize(430, 448)
 self.labelResult = QtGui.QLabel(Dialog)
 self.labelResult.setGeometry(QtCore.QRect(60, 240, 171, 21))
 self.labelResult.setObjectName(_fromUtf8("labelResult"))
 self.lineSecondNumber = QtGui.QLineEdit(Dialog)
 self.lineSecondNumber.setGeometry(QtCore.QRect(170, 60, 113, 20))
 self.lineSecondNumber.setObjectName(_fromUtf8("lineSecondNumber"))
 self.labelSecondNumber = QtGui.QLabel(Dialog)
 self.labelSecondNumber.setGeometry(QtCore.QRect(50, 60, 111, 16))

 self.labelSecondNumber.setObjectName(_fromUtf8("labelSecondNumber"))
 self.labelFirstNumber = QtGui.QLabel(Dialog)
 self.labelFirstNumber.setGeometry(QtCore.QRect(60, 30, 101, 16))
 self.labelFirstNumber.setObjectName(_fromUtf8("labelFirstNumber"))
 self.ComputeButton = QtGui.QPushButton(Dialog)
 self.ComputeButton.setGeometry(QtCore.QRect(180, 280, 75, 23))
 self.ComputeButton.setObjectName(_fromUtf8("ComputeButton"))
 self.radioAdd = QtGui.QRadioButton(Dialog)
 self.radioAdd.setGeometry(QtCore.QRect(60, 110, 82, 17))
 self.radioAdd.setObjectName(_fromUtf8("radioAdd"))
 self.radioDivide = QtGui.QRadioButton(Dialog)
 self.radioDivide.setGeometry(QtCore.QRect(60, 200, 82, 17))
 self.radioDivide.setObjectName(_fromUtf8("radioDivide"))
 self.radioSubtract = QtGui.QRadioButton(Dialog)
 self.radioSubtract.setGeometry(QtCore.QRect(60, 140, 82, 17))
 self.radioSubtract.setObjectName(_fromUtf8("radioSubtract"))
 self.radioMultiply = QtGui.QRadioButton(Dialog)
 self.radioMultiply.setGeometry(QtCore.QRect(60, 170, 82, 17))
 self.radioMultiply.setObjectName(_fromUtf8("radioMultiply"))
 self.lineFirstNumber = QtGui.QLineEdit(Dialog)
 self.lineFirstNumber.setGeometry(QtCore.QRect(170, 30, 113, 20))
 self.lineFirstNumber.setObjectName(_fromUtf8("lineFirstNumber"))

 self.retranslateUi(Dialog)
 QtCore.QMetaObject.connectSlotsByName(Dialog)

 def retranslateUi(self, Dialog):
 Dialog.setWindowTitle(QtGui.QApplication.translate("Dialog", "Dialog", None,
QtGui.QApplication.UnicodeUTF8))
 self.labelResult.setText(QtGui.QApplication.translate("Dialog", "TextLabel",
None, QtGui.QApplication.UnicodeUTF8))
 self.labelSecondNumber.setText(QtGui.QApplication.translate("Dialog", "Enter
Second Number", None, QtGui.QApplication.UnicodeUTF8))
 self.labelFirstNumber.setText(QtGui.QApplication.translate("Dialog", "Enter
First Number", None, QtGui.QApplication.UnicodeUTF8))
 self.ComputeButton.setText(QtGui.QApplication.translate("Dialog", "Compute",
None, QtGui.QApplication.UnicodeUTF8))
 self.radioAdd.setText(QtGui.QApplication.translate("Dialog", "Add", None,
QtGui.QApplication.UnicodeUTF8))
 self.radioDivide.setText(QtGui.QApplication.translate("Dialog", "Divide",
None, QtGui.QApplication.UnicodeUTF8))
 self.radioSubtract.setText(QtGui.QApplication.translate("Dialog", "Subtract",
None, QtGui.QApplication.UnicodeUTF8))
 self.radioMultiply.setText(QtGui.QApplication.translate("Dialog", "Multiply",
None, QtGui.QApplication.UnicodeUTF8))

Let’s import the code as a header file in the Python script that you are going to create next to
invoke the user interface design. In the Python script, you will also write code to perform the
arithmetic operation on the basis of the radio button selected by the user. Name the source
file callradios.pyw; its code is shown here:

callradios.pyw
from __future__ import division
import sys
from radiobtn import *

class MyForm(QtGui.QDialog):
 def __init__(self, parent=None):
 QtGui.QWidget.__init__(self, parent)

 self.ui = Ui_Dialog()
 self.ui.setupUi(self)
 QtCore.QObject.connect(self.ui.ComputeButton, QtCore.SIGNAL('clicked()'),
self.calculate)
 self.ui.radioAdd.setChecked(1)

 def calculate(self):
 if len(self.ui.lineFirstNumber.text())!=0:
 a=int(self.ui.lineFirstNumber.text())
 else:

 a=0

 if len(self.ui.lineSecondNumber.text())!=0:
 b=int(self.ui.lineSecondNumber.text())
 else:
 b=0
 if self.ui.radioAdd.isChecked()==True:
 result=a+b
 if self.ui.radioSubtract.isChecked()==True:
 result=a-b
 if self.ui.radioMultiply.isChecked()==True:
 result=a*b
 if self.ui.radioDivide.isChecked()==True:
 result=a/b

 self.ui.labelResult.setText("Result: " +str(result))
if __name__ == "__main__":
 app = QtGui.QApplication(sys.argv)
 myapp = MyForm()
 myapp.show()
 sys.exit(app.exec_())

The clicked() event of ComputeButton is connected to the calculate() method, which will do

the desired calculation. In the calculate() function, you set the default value of the LineEdits

to 0, so if the user leaves either of the LineEdit widgets blank, its default value will be 0. The
values entered in the two LineEdit widgets lineFirstNumber and lineSecondNumber are

retrieved, converted into integers, and assigned to the variables a and b, respectively. After

that, the state of the radio buttons is tested. Hence, if radioAdd is selected, the values in the

variables a and b are added, and the addition is stored in the result variable. Similarly, if

radioSubtract is selected, the values in variables a and b are subtracted, and the result is

stored in result. Similarly, multiplication and division operations are performed when

radioMultiply and radioDivide are selected. Finally, the result of the computation stored in

result is displayed via labelResult. Figure 8.2 displays the addition and division operations

applied to the number values entered in the LineEdit widgets.

Figure 8.2. (a) The addition operation applied to two numbers on selection of
the Add radio button. (b) The division operation applied to the numbers on

selection of Divide radio button.

Radio buttons display mutually exclusive options. You can select only one option from a set of
available options. Selecting another option automatically deselects the earlier selected option.
What if you want to select more than one option? Let’s see.

Using Checkboxes

Where radio buttons allow only one option to be selected in a group, checkboxes allow you to
select more than one option. That is, selecting a checkbox will not affect other checkboxes in
the application. Checkboxes are displayed with a text label as an instance of the QCheckBox

class. A checkbox can be in any of three states: selected (checked), unselected (unchecked), or
tristate (unchanged). Tristate is a no change state; the user has neither checked or unchecked
the checkbox. The methods provided by QCheckBox are shown in Table 8.3.

Table 8.3. Methods Provided by the QCheckBox Class

Method Use

isChecked() Returns true if the checkbox is checked; otherwise
returns false.

setTristate()Pass Boolean value true to this method to use the
“no change” state of the checkbox. With this state,
you give the user the option of neither checking
nor unchecking a checkbox.

setIcon() Used to display an icon with the checkbox.

setText() Used to set the text of the checkbox. To specify a
shortcut key for the checkbox, precede the
preferred character with an ampersand in the text.

setChecked() Pass Boolean value true to this method to make
the checkbox checked by default.

The signals emitted by QCheckBox are shown in Table 8.4.

Table 8.4. Signals Emitted by the QCheckBox Class

Signal Description

toggled() The signal is emitted whenever a checkbox
changes its state from checked to unchecked
or vice versa.

clicked() The signal is emitted when a checkbox is
activated (i.e. pressed and released) or when
its shortcut key is typed.

stateChanged()The signal is emitted whenever a checkbox
changes its state from checked to unchecked
or vice versa.

Note

The QAbstractButton class is the abstract base class of button widgets and provides

functionality common to buttons. It provides support for pushbuttons, checkboxes, and
radio buttons.

To understand the Checkbox widget, let’s assume that you run a Food Corner where several
food items such as pizzas, hot dogs, french fries, and chicken burgers are sold. The price of the
food item is also mentioned with it. The user can select one or more food items. What you want
is that when a food item is selected, the total price of the selected food items will be displayed.
Begin by creating a new application based on the Dialog without Buttons template. Drag and
drop two Label widgets, one LineEdit widget, four checkboxes, and a push button onto the
form. Set the text property of the two Label widgets to XYZ Food Corner and Total Amount.

Through the Property Editor, increase the font size of the first Label and make it bold to make it
appear as a header in the application. Also, disable the LineEdit by unchecking its enabled

property from the Property Editor because you will be displaying the result of computation with
it and don’t want it to be editable. Set the text of the four checkboxes to Pizza $20, Hot Dog

$5, French Fries $10, and Chicken Burger $15. Also, set the text of the push button to

Calculate Amount. The default objectNames of the four checkboxes are checkBox, checkBox_2,

checkBox_3, and checkBox_4. Change these to checkPizza20, checkHotDog5, check-Fries10,

and checkBurger15, respectively. Also set the objectName of the push button and LineEdit to

CalculateButton and lineAmount, respectively. The form will appear as shown in Figure 8.3.

Figure 8.3. Form with four checkboxes, a push button, and a LineEdit widget in
disabled mode.

Save the application with the name checkbx.ui. The .ui (XML) file is then converted into

Python code through the pyuic4 command utility. The Python code is shown here:

checkbx.py
Form implementation generated from reading ui file 'checkbx.ui'

from PyQt4 import QtCore, QtGui

try:
 _fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
 _fromUtf8 = lambda s: s
class Ui_Dialog(object):
 def setupUi(self, Dialog):
 Dialog.setObjectName(_fromUtf8("Dialog"))
 Dialog.resize(328, 270)
 Dialog.setWindowTitle(QtGui.QApplication.translate("Dialog", "Dialog", None,
QtGui.QApplication.UnicodeUTF8))
 self.label = QtGui.QLabel(Dialog)

 self.label.setGeometry(QtCore.QRect(110, 10, 141, 20))
 font = QtGui.QFont()
 font.setPointSize(11)
 font.setBold(True)
 font.setWeight(75)
 self.label.setFont(font)
 self.label.setText(QtGui.QApplication.translate("Dialog", "XYZ Food Corner",
None, QtGui.QApplication.UnicodeUTF8))
 self.label.setObjectName(_fromUtf8("label"))
 self.label_2 = QtGui.QLabel(Dialog)
 self.label_2.setGeometry(QtCore.QRect(40, 210, 81, 16))
 self.label_2.setText(QtGui.QApplication.translate("Dialog", "Total Amount",
None, QtGui.QApplication.UnicodeUTF8))
 self.label_2.setObjectName(_fromUtf8("label_2"))
 self.lineAmount = QtGui.QLineEdit(Dialog)
 self.lineAmount.setEnabled(False)
 self.lineAmount.setGeometry(QtCore.QRect(120, 210, 131, 20))
 self.lineAmount.setObjectName(_fromUtf8("lineAmount"))
 self.checkPizza20 = QtGui.QCheckBox(Dialog)
 self.checkPizza20.setGeometry(QtCore.QRect(110, 40, 91, 17))
 self.checkPizza20.setText(QtGui.QApplication.translate("Dialog", "Pizza $20",
None, QtGui.QApplication.UnicodeUTF8))
 self.checkPizza20.setObjectName(_fromUtf8("checkPizza20"))
 self.checkHotDog5 = QtGui.QCheckBox(Dialog)
 self.checkHotDog5.setGeometry(QtCore.QRect(110, 70, 111, 17))
 self.checkHotDog5.setText(QtGui.QApplication.translate("Dialog", "Hot Dog $5",
None, QtGui.QApplication.UnicodeUTF8))
 self.checkHotDog5.setObjectName(_fromUtf8("checkHotDog5"))
 self.checkFries10 = QtGui.QCheckBox(Dialog)
 self.checkFries10.setGeometry(QtCore.QRect(110, 100, 121, 17))
 self.checkFries10.setText(QtGui.QApplication.translate("Dialog", "French
Fries $10", None, QtGui.QApplication.UnicodeUTF8))
 self.checkFries10.setObjectName(_fromUtf8("checkFries10"))
 self.checkBurger15 = QtGui.QCheckBox(Dialog)
 self.checkBurger15.setGeometry(QtCore.QRect(110, 130, 121, 17))
 self.checkBurger15.setText(QtGui.QApplication.translate("Dialog", "Chicken
Burger $15", None, QtGui.QApplication.UnicodeUTF8))
 self.checkBurger15.setObjectName(_fromUtf8("checkBurger15"))
 self.CalculateButton = QtGui.QPushButton(Dialog)
 self.CalculateButton.setGeometry(QtCore.QRect(100, 170, 141, 23))
 self.CalculateButton.setText(QtGui.QApplication.translate("Dialog", "Calculate
Amount", None, QtGui.QApplication.UnicodeUTF8))
 self.CalculateButton.setObjectName(_fromUtf8("CalculateButton"))
 self.retranslateUi(Dialog)
 QtCore.QMetaObject.connectSlotsByName(Dialog)

 def retranslateUi(self, Dialog):
 pass

Let’s import the code as a header file in our program to invoke the user interface design and to
write code to calculate the total cost of food items selected and display the cost through a
LineEdit widget when the user selects the push button. Let’s name the program
callchecks.pyw; its code is shown here:

callchecks.pyw
import sys
from checkbx import *

class MyForm(QtGui.QDialog):
 def __init__(self, parent=None):

 QtGui.QWidget.__init__(self, parent)
 self.ui = Ui_Dialog()
 self.ui.setupUi(self)
 QtCore.QObject.connect(self.ui.CalculateButton, QtCore.SIGNAL('clicked()'),
self.calculate)

 def calculate(self):
 amt=0
 if self.ui.checkPizza20.isChecked()==True:
 amt=amt+20
 if self.ui.checkHotDog5.isChecked()==True:
 amt=amt+5
 if self.ui.checkFries10.isChecked()==True:
 amt=amt+10
 if self.ui.checkBurger15.isChecked()==True:
 amt=amt+15
 self.ui.lineAmount.setText(str(amt))

if __name__ == "__main__":
 app = QtGui.QApplication(sys.argv)
 myapp = MyForm()
 myapp.show()
 sys.exit(app.exec_())

The clicked() event of CalculateButton is connected to the calculate() function, which will

calculate the cost of the food items selected. In the calculate() function, you check the status

of the checkboxes to know if they are checked or unchecked. The cost of the food items whose
checkboxes are checked is added and stored in the amt variable. Finally, the addition of the

amount stored in amt is displayed via lineAmount. To avoid any alterations in the amount

displayed via LineEdit, LineEdit is disabled. On running the application, you get a dialog
prompting you to select the food items that you want to order. Figure 8.4(a) shows the total
cost for Hot Dog and French Fries, and Figure 8.4(b) shows the total for all food items.

Figure 8.4. (a) The cost of two food items is displayed. (b) The cost of all four
food items is displayed.

[View full size image]

Initiating Action Without Using a Push Button

In the previous application, you saw that the total cost of the food items selected by the user
appears only when the CalculateButton push button is selected by the user. It is so because

the calculate() function that does the computation is connected to the push button’s

clicked() signal. Now let’s modify the application slightly. Instead of selecting the push

button for getting the result, you want the amount to be displayed when the user checks or

unchecks any checkbox, without the need to select the push button. It also means that you
want the calculate() function to be fired every time the status of any checkbox changes and

not on selecting the push button. To apply these modifications, you will remove the push
button and connect the clicked() signal of each checkbox to the calculate() method. As a

result, the total amount will be displayed via the lineAmount LineEdit, as soon as any checkbox

is checked or unchecked. The application will appear as shown in Figure 8.5.

Figure 8.5. Form with the push button removed and LineEdit disabled.

Save the modified application with a different name, checkbx2.ui. When the .ui (XML) file is

converted into Python code through the pyuic4 command utility, it will appear as shown here:

checkbx2.py
Form implementation generated from reading ui file 'checkbx2.ui'
from PyQt4 import QtCore, QtGui

try:
 _fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
 _fromUtf8 = lambda s: s

class Ui_Dialog(object):
 def setupUi(self, Dialog):
 Dialog.setObjectName(_fromUtf8("Dialog"))
 Dialog.resize(328, 220)
 Dialog.setWindowTitle(QtGui.QApplication.translate("Dialog", "Dialog", None,
QtGui.QApplication.UnicodeUTF8))
 self.label = QtGui.QLabel(Dialog)
 self.label.setGeometry(QtCore.QRect(110, 10, 141, 20))
 font = QtGui.QFont()
 font.setPointSize(11)
 font.setBold(True)
 font.setWeight(75)
 self.label.setFont(font)
 self.label.setText(QtGui.QApplication.translate("Dialog", "XYZ Food Corner",
None, QtGui.QApplication.UnicodeUTF8))
 self.label.setObjectName(_fromUtf8("label"))
 self.label_2 = QtGui.QLabel(Dialog)
 self.label_2.setGeometry(QtCore.QRect(40, 170, 71, 16))
 self.label_2.setText(QtGui.QApplication.translate("Dialog", "Total Amount",
None, QtGui.QApplication.UnicodeUTF8))
 self.label_2.setObjectName(_fromUtf8("label_2"))
 self.lineAmount = QtGui.QLineEdit(Dialog)
 self.lineAmount.setEnabled(False)

 self.lineAmount.setGeometry(QtCore.QRect(120, 170, 131, 20))
 self.lineAmount.setObjectName(_fromUtf8("lineAmount"))
 self.checkPizza20 = QtGui.QCheckBox(Dialog)
 self.checkPizza20.setGeometry(QtCore.QRect(110, 40, 91, 17))
 self.checkPizza20.setText(QtGui.QApplication.translate("Dialog", "Pizza $20",
None, QtGui.QApplication.UnicodeUTF8))
 self.checkPizza20.setObjectName(_fromUtf8("checkPizza20"))
 self.checkHotDog5 = QtGui.QCheckBox(Dialog)
 self.checkHotDog5.setGeometry(QtCore.QRect(110, 70, 111, 17))
 self.checkHotDog5.setText(QtGui.QApplication.translate("Dialog", "Hot Dog $5",
None, QtGui.QApplication.UnicodeUTF8))
 self.checkHotDog5.setObjectName(_fromUtf8("checkHotDog5"))
 self.checkFries10 = QtGui.QCheckBox(Dialog)
 self.checkFries10.setGeometry(QtCore.QRect(110, 100, 121, 17))
 self.checkFries10.setText(QtGui.QApplication.translate("Dialog", "French
Fries $10", None, QtGui.QApplication.UnicodeUTF8))
 self.checkFries10.setObjectName(_fromUtf8("checkFries10"))
 self.checkBurger15 = QtGui.QCheckBox(Dialog)
 self.checkBurger15.setGeometry(QtCore.QRect(110, 130, 121, 17))
 self.checkBurger15.setText(QtGui.QApplication.translate("Dialog", "Chicken
Burger $15", None, QtGui.QApplication.UnicodeUTF8))
 self.checkBurger15.setObjectName(_fromUtf8("checkBurger15"))
 self.retranslateUi(Dialog)
 QtCore.QMetaObject.connectSlotsByName(Dialog)

 def retranslateUi(self, Dialog):
 pass

Import the code as a header file into the Python script to invoke the modified user interface
design and to write code that initiates the calculation() method on checking or unchecking of

the checkbox. Let’s name the script callchecks2.pyw; its code is shown here:

callchecks2.pyw
import sys
from checkbx2 import *

class MyForm(QtGui.QDialog):
 def __init__(self, parent=None):
 QtGui.QWidget.__init__(self, parent)
 self.ui = Ui_Dialog()
 self.ui.setupUi(self)
 QtCore.QObject.connect(self.ui.checkPizza20, QtCore.SIGNAL('clicked()'),
self.calculate)
 QtCore.QObject.connect(self.ui.checkHotDog5, QtCore.SIGNAL('clicked()'),
self.calculate)
 QtCore.QObject.connect(self.ui.checkFries10, QtCore.SIGNAL('clicked()'),
self.calculate)
 QtCore.QObject.connect(self.ui.checkBurger15, QtCore.SIGNAL('clicked()'),
self.calculate)

 def calculate(self):
 amt=0
 if self.ui.checkPizza20.isChecked()==True:
 amt=amt+20
 if self.ui.checkHotDog5.isChecked()==True:
 amt=amt+5
 if self.ui.checkFries10.isChecked()==True:
 amt=amt+10
 if self.ui.checkBurger15.isChecked()==True:
 amt=amt+15

 self.ui.lineAmount.setText(str(amt))

if __name__ == "__main__":
 app = QtGui.QApplication(sys.argv)
 myapp = MyForm()
 myapp.show()
 sys.exit(app.exec_())

The clicked() signals in the four checkboxes are connected to the calculate() method;

whenever any of the checkboxes is checked or unchecked, the calculate() function will be

invoked. The calculate() function checks the status of each checkbox. The cost of the food

items in the checked checkboxes is added and stored in amt, which is then displayed via

lineAmount.

The next widget you are going to learn about is used in GUI applications for selecting integer or
float values from a range of values.

Entering Integer and Float Values Using a Spin Box

The Spin Box widget is frequently used to display integer values, floating-point values, and
text. It displays an initial value by default that can be increased or decreased by selecting the
up/down button or up/down arrow key on the keyboard. You can choose a value that is being
displayed by either clicking on it or typing it in manually. A spin box can be created via two
classes, QSpinBox and QdoubleSpinBox. The former displays only integer values, and the latter

displays floating-point values. Methods provided by QSpinBox are shown in Table 8.5.

Table 8.5. Methods Provided by QSpinBox

Method Use

value() Returns the current integer value of the spin
box.

text() Returns the text displayed by the spin box.

setPrefix() Sets the text that you want to be prepended
to the value returned by the spin box.

setSuffix() Sets the text that you want to be appended
to the value returned by the spin box.

cleanText() Returns the value of the spin box without a
suffix, a prefix or leading or trailing white
spaces.

setValue() Sets the value of the spin box.

setSingleStep()Sets the step size of the spin box. The value
of the spin box will increase or decrease by
this amount when the up or down button is
pressed.

setMinimum() Sets the minimum value of the spin box.

setMaximum() Sets the maximum value of the spin box.

setWrapping() Sets its value to true if you want wrapping
behavior in the spin box. Wrapping or
circular behavior means the spin box returns
to the first value (minimum value) when the
up button is pressed if the spin box is
displaying the maximum value.

Signals emitted by the QSpinBox class are as follows:

valueChanged(): Emitted when the value of the spin box is changed either by

selecting the up/down button or by the setValue() method.

editingFinished(): Emitted when focus is lost on the spin box confirming that

editing is finished.

As stated earlier, the class used for dealing with float values is QDoubleSpinBox. The

QDoubleSpinBox class also supports the methods above. It displays values up to 2 decimal

places by default. To change the precision, you use setDecimals(), which displays the values

up to the specified number of decimal places. The value will be rounded to the specified
number of decimals.

Note

The default minimum, maximum, singleStep, and value properties of a spin box are 0, 99,

1, and 0, respectively. The default minimum, maximum, singleStep, and value properties

of a double spin box are 0.000000, 99.990000, 1.000000, and 0.000000, respectively.

The next application allows the user to add two numbers; one will be an integer, and the other
will be a floating-point value. You might think that this application is similar to the
addtwonum.py application that you created earlier. But unlike that application, here the user will

not enter values to be added through LineEdit widgets; instead he will select them through
spin boxes.

As usual, let’s create a new application based on the Dialog without Buttons template and drag
and drop three Label widgets, a Spin Box, a Double Spin Box, two LineEdits, and a Push Button
widget. The text property of the two labels is set to Select First value and Select Second

value, and the objectName of the third label is set to labelAddition. The text property of the

push button is set to Add. Set the objectNames of the two LineEdit widgets to lineFirstValue

and lineSecond-Value and that of the push button to AddButton. Delete the default text

property of the third label, TextLabel, as you will be setting its text in the program to display

the sum of the numbers. The third label will become invisible on deleting its text property.

Also, disable the two LineEdit widgets by unchecking their enabled property from the Property

Editor window, as you want them to display non-editable values that are selected from the spin
boxes. The form will appear as shown in Figure 8.6.

Figure 8.6. The form with a spin box, a double spin box, a push button, two
labels, and two LineEdit widgets.

Save the application with the name spinner.ui. On using the pyuic4 command utility, the .ui

(XML) file will be converted into Python code as shown here:

spinner.py

Form implementation generated from reading ui file 'spinner.ui'

from PyQt4 import QtCore, QtGui

try:
 _fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
 _fromUtf8 = lambda s: s

class Ui_Dialog(object):

 def setupUi(self, Dialog):
 Dialog.setObjectName(_fromUtf8("Dialog"))
 Dialog.resize(389, 161)
 self.spinBox = QtGui.QSpinBox(Dialog)
 self.spinBox.setGeometry(QtCore.QRect(140, 10, 42, 22))
 self.spinBox.setObjectName(_fromUtf8("spinBox"))
 self.lineSecondValue = QtGui.QLineEdit(Dialog)
 self.lineSecondValue.setEnabled(False)
 self.lineSecondValue.setGeometry(QtCore.QRect(240, 40, 113, 20))
 self.lineSecondValue.setObjectName(_fromUtf8("lineSecondValue"))
 self.labelAddition = QtGui.QLabel(Dialog)
 self.labelAddition.setGeometry(QtCore.QRect(130, 90, 121, 16))
 self.labelAddition.setText(_fromUtf8(""))
 self.labelAddition.setObjectName(_fromUtf8("labelAddition"))
 self.doubleSpinBox = QtGui.QDoubleSpinBox(Dialog)
 self.doubleSpinBox.setGeometry(QtCore.QRect(140, 40, 62, 22))
 self.doubleSpinBox.setObjectName(_fromUtf8("doubleSpinBox"))
 self.label_2 = QtGui.QLabel(Dialog)
 self.label_2.setGeometry(QtCore.QRect(20, 50, 101, 16))
 self.label_2.setObjectName(_fromUtf8("label_2"))
 self.lineFirstValue = QtGui.QLineEdit(Dialog)
 self.lineFirstValue.setEnabled(False)
 self.lineFirstValue.setGeometry(QtCore.QRect(240, 10, 113, 20))
 self.lineFirstValue.setObjectName(_fromUtf8("lineFirstValue"))
 self.AddButton = QtGui.QPushButton(Dialog)
 self.AddButton.setGeometry(QtCore.QRect(150, 120, 75, 23))
 self.AddButton.setObjectName(_fromUtf8("AddButton"))
 self.label = QtGui.QLabel(Dialog)
 self.label.setGeometry(QtCore.QRect(20, 20, 91, 16))
 self.label.setObjectName(_fromUtf8("label"))

 self.retranslateUi(Dialog)
 QtCore.QMetaObject.connectSlotsByName(Dialog)

 def retranslateUi(self, Dialog):
 Dialog.setWindowTitle(QtGui.QApplication.translate("Dialog", "Dialog", None,
QtGui.QApplication.UnicodeUTF8))
 self.label_2.setText(QtGui.QApplication.translate("Dialog", "Select Second
value", None, QtGui.QApplication.UnicodeUTF8))
 self.AddButton.setText(QtGui.QApplication.translate("Dialog", "Add", None,
QtGui.QApplication.UnicodeUTF8))
 self.label.setText(QtGui.QApplication.translate("Dialog", "Select First value",
None, QtGui.QApplication.UnicodeUTF8))

Now let’s create a Python script file that imports the code, enabling you to invoke the user
interface design that displays the numbers selected through spin boxes in Line-Edit widgets
and also compute their addition. The file will appear as shown here:

callspinner.pyw
import sys
from spinner import *

class MyForm(QtGui.QDialog):
 def __init__(self, parent=None):
 QtGui.QWidget.__init__(self, parent)
 self.ui = Ui_Dialog()
 self.ui.setupUi(self)
 QtCore.QObject.connect(self.ui.spinBox, QtCore.SIGNAL('editingFinished()'),
self.result1)
 QtCore.QObject.connect(self.ui.doubleSpinBox, QtCore.SIGNAL

('editingFinished()'), self.result2)
 QtCore.QObject.connect(self.ui.AddButton, QtCore.SIGNAL('clicked()'),
self.addvalues)

 def result1(self):
 self.ui.lineFirstValue.setText(str(self.ui.spinBox.value()))

 def result2(self):
 self.ui.lineSecondValue.setText(str(self.ui.doubleSpinBox.value()))

 def addvalues(self):
 sum=self.ui.spinBox.value()+self.ui.doubleSpinBox.value()
 self.ui.labelAddition.setText('Sum is '+str(sum))

 if __name__ == "__main__":
 app = QtGui.QApplication(sys.argv)
 myapp = MyForm()
 myapp.show()
 sys.exit(app.exec_())

In this code, you can see that the editingFinished() signal of the two spin boxes is attached

to the functions, result1() and result2(). It means that when focus is lost on any of the spin

boxes, the respective method will be invoked. Focus is lost on a widget when the user moves
onto other widget with the mouse or by pressing the Tab key. In the result1() function, you

retrieve the integer value from the Spin Box widget and display it through the first LineEdit
widget, lineFirstValue. Similarly, in result2(), you retrieve the floating-point value from the

double spin box and display it through the second LineEdit widget, lineSecondValue. The

clicked() signal of the push button is connected to addvalues(), which means that, after

selecting the values in the two spin boxes when the user selects the push button, the
addvalues() function will be invoked. In the addvalues() function, the values of the two spin

boxes are added and displayed through the third Label widget, labelAddition, as shown in

Figure 8.7.

Figure 8.7. The spin box and double spin box values displayed through LineEdit
along with their sum.

The widgets that we are going to discuss next are helpful in viewing larger documents and in
specifying integer values within a bounded range.

ScrollBars and Sliders

Scrollbars are something that you usually come across while looking at large documents or
images. Scrollbars appear horizontally or vertically, indicating your current position in the
document or image and the amount that is not visible. Using the slider handle provided
with these bars, you can access the hidden part of the document or image.

Sliders are a way of selecting an integer value between two values. That is, a slider can
represent a minimum and maximum range of values, and the user can select a value within
this range by moving the slider handle to the desired location in the slider. First let’s look at
ScrollBars.

ScrollBars

Scrollbars are used for viewing documents or images that are larger than the view area. To
display horizontal or vertical scrollbars, you use the HorizontalScrollBar and VerticalScrollBar
widgets, which are instances of the QScrollBar class. On applying scrollbars, you can move

a slider handle to view the hidden area. The location of the slider handle indicates your
location within the document or image so that you know how much of the document or
image is hidden. A ScrollBar has the following controls:

Slider handle: Used to move to any part of the document or image quickly.

Scroll arrows: These are the arrows on either side of the scrollbars that are used to

accurately navigate to a particular place in a document or image. On using these scroll
arrows, the position of the slider handle also changes accordingly.

Page control: The page control is the background of the scrollbar over which the slider

handle is dragged. When the background is clicked, the slider handle moves towards
the click by one page. The amount the slider handle moves can be specified via the
page step. The page step is the amount by which the value changes when the user
presses the Page Up and Page Down keys, and is set with the setPageStep() method

(explained next). The value of the page reresents the proportion of the document area
shown in scrolling view. You can also move the slider handle by a value equal to page
step by pressing Page Up or Page Down.

Methods used to set and retrieve values from ScrollBars are given in Table 8.6.

Table 8.6. Methods Used to Set and Retrieve Values
from ScrollBars

Method Use

value() Retrieves a value that indicates the distance
of the slider handle from the start of the
scrollbar. When the slider handle is at the
top edge in a vertical scrollbar or at the left
edge in a horizontal scrollbar, this method
returns the minimum value. Similarly, when
the slider handle is at the bottom edge in a
vertical scrollbar or at the right edge in a

horizontal scrollbar, this method returns the
maximum value. The slider handle moves to
the start (the minimum value) when the
Home key is pressed and moves to the end
(the maximum value) when the End key is
pressed.

setValue() Sets the value of the scrollbar and hence the
location of the slider handle in the scrollbar.

minimum() Returns the minimum value of the scrollbar.

maximum() Returns the maximum value of the scrollbar.

setMinimum() Sets the minimum value of the scrollbar.

setMaximum() Sets the maximum value of the scrollbar.

setSingleStep()Sets the single step value.

setPageStep() Sets the page step value.

Note

QScrollBar provides only integer values.

The signals emitted through the QScrollBar class are shown in Table 8.7.

Table 8.7. Signals Emitted by the QScrollBar Class

Signal Description

valueChanged() Emitted when the scrollbar’s value is
changed.

sliderPressed() Emitted when the user starts to drag the
slider handle.

sliderMoved() Emitted when the user drags the slider
handle.

sliderReleased() Emitted when the user releases the slider
handle.

actionTriggered()Emitted when the scrollbar is changed by
user interaction.

Let’s take a brief look at sliders before you create an application using the two widgets.

Sliders

Sliders are generally used to represent some integer value. You can make a slider to
represent some value by positioning its handle along a horizontal or vertical groove. You can
increase or decrease the represented value by moving the slider handle toward the top or
bottom edge. In order to display horizontal and vertical sliders, you use HorizontalSlider and
VerticalSlider widgets, which are instances of the QSlider class. The methods used to set

and retrieve the value of the slider handle are the same as you saw in ScrollBars. Also,
sliders generate the same signals (valueChanged(), sliderPressed(), sliderMoved(),

sliderReleased(), etc.) on moving the slider handle as you already saw in ScrollBars. Like

sliderReleased(), etc.) on moving the slider handle as you already saw in ScrollBars. Like

QScrollBar, QSlider also provides only integer ranges.

The slider handle in scrollbars and sliders represents a value within the minimum and
maximum range. If you don’t want the scrollbars or sliders to assume default minimum and
maximum values, it is better to set the values for the minimum, maximum, singleStep, and

pageStep properties before proceeding.

Note

The default values of the minimum, maximum, singleStep, pageStep, and value

properties of scrollbars and sliders are 0, 99, 1, 10, and 0, respectively.

We can also display tickmarks in sliders.

The methods used for configuring tickmarks are these:

setTickPosition(): Sets the position of tickmarks.

setTickInterval(): Specifies the number of ticks desired.

tickPosition(): Returns the current tick position.

tickInterval(): Returns the current tick interval.

Let’s create an application in which a horizontal scrollbar is connected to a horizontal slider
and a vertical scrollbar is connected to a vertical slider. A connection means that the
movement of the slider and the scrollbar’s slider handle is synchronized. If you move the
slider handle of any scrollbar, the slider handle of the corresponding slider should also
move. You want the opposite to be true as well: When the handle of any slider is moved,
the slider handle of the corresponding scrollbar also moves in the same direction. You want
the value represented by the slider handle to be displayed through a Label widget. Let’s
create a new application of the Dialog without Buttons template and drag and drop
horizontal and vertical ScrollBars and Sliders onto the form. Also, drop a Label widget to
display the value of the slider handle. The form will appear as shown in Figure 8.8.

Figure 8.8. Horizontal and vertical ScrollBars and Sliders, along with a Label
widget.

Save the application with the name slidersdemo.ui. The pyuic4 command utility will

convert the .ui (XML) file into Python code as shown here:

slidersdemo.py

Form implementation generated from reading ui file 'slidersdemo.ui'

from PyQt4 import QtCore, QtGui

try:
 _fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
 _fromUtf8 = lambda s: s

class Ui_Dialog(object):
 def setupUi(self, Dialog):
 Dialog.setObjectName(_fromUtf8("Dialog"))
 Dialog.resize(400, 300)
 self.horizontalScrollBar = QtGui.QScrollBar(Dialog)
 self.horizontalScrollBar.setGeometry(QtCore.QRect(60, 20, 160, 16))
 self.horizontalScrollBar.setOrientation(QtCore.Qt.Horizontal)
 self.horizontalScrollBar.setObjectName(_fromUtf8("horizontalScrollBar"))
 self.verticalScrollBar = QtGui.QScrollBar(Dialog)
 self.verticalScrollBar.setGeometry(QtCore.QRect(20, 110, 16, 160))
 self.verticalScrollBar.setOrientation(QtCore.Qt.Vertical)
 self.verticalScrollBar.setObjectName(_fromUtf8("verticalScrollBar"))
 self.horizontalSlider = QtGui.QSlider(Dialog)
 self.horizontalSlider.setGeometry(QtCore.QRect(60, 60, 160, 21))
 self.horizontalSlider.setOrientation(QtCore.Qt.Horizontal)
 self.horizontalSlider.setObjectName(_fromUtf8("horizontalSlider"))
 self.verticalSlider = QtGui.QSlider(Dialog)
 self.verticalSlider.setGeometry(QtCore.QRect(110, 110, 21, 160))
 self.verticalSlider.setOrientation(QtCore.Qt.Vertical)
 self.verticalSlider.setObjectName(_fromUtf8("verticalSlider"))
 self.label = QtGui.QLabel(Dialog)
 self.label.setGeometry(QtCore.QRect(185, 110, 141, 20))
 self.label.setObjectName(_fromUtf8("label"))
 self.retranslateUi(Dialog)
 QtCore.QMetaObject.connectSlotsByName(Dialog)

 def retranslateUi(self, Dialog):
 Dialog.setWindowTitle(QtGui.QApplication.translate("Dialog", "Dialog", None,
QtGui.QApplication.UnicodeUTF8))
 self.label.setText(QtGui.QApplication.translate("Dialog", "TextLabel", None,
QtGui.QApplication.UnicodeUTF8))

The next step is creation of a Python script file that imports the code to invoke the user
interface design and synchronizes the movement of the slider handles. The script will also
display the value of the slider handle with a Label widget. The Python script file will appear
as shown here:

callsliders.pyw
import sys
from slidersdemo import *

class MyForm(QtGui.QDialog):
 def __init__(self, parent=None):

 QtGui.QWidget.__init__(self, parent)
 self.ui = Ui_Dialog()
 self.ui.setupUi(self)
 self.ui.horizontalScrollBar.valueChanged.connect(self.scrollhorizontal)
 self.ui.verticalScrollBar.valueChanged.connect(self.scrollvertical)
 self.ui.horizontalSlider.valueChanged.connect(self.sliderhorizontal)
 self.ui.verticalSlider.valueChanged.connect(self.slidervertical)

 def scrollhorizontal(self,value):
 self.ui.label.setText(str(value))
 self.ui.horizontalSlider.setValue(value)

 def scrollvertical(self, value):
 self.ui.label.setText(str(value))
 self.ui.verticalSlider.setValue(value)

 def sliderhorizontal(self, value):
 self.ui.label.setText(str(value))
 self.ui.horizontalScrollBar.setValue(value)
 def slidervertical(self, value):
 self.ui.label.setText(str(value))
 self.ui.verticalScrollBar.setValue(value)

if __name__ == "__main__":
 app = QtGui.QApplication(sys.argv)
 myapp = MyForm()
 myapp.show()
 sys.exit(app.exec_())

In this code, you are connecting the valueChanged signal of each widget with the respective

functions so that if the slider handle of the widget is moved, the corresponding function is
invoked to perform the desired task. For instance, when the slider handle of the horizontal
scrollbar is moved, the scrollhorizontal() function is invoked. The scrollhorizontal()

function displays the value represented by the slider handle through the Label widget and
sets the value of the horizontal slider’s handle equal to the value of the horizontal scrollbar’s
signal handle. The slider’s handle of the horizontal slider also moves in the same direction
and by the same amount as the horizontal scrollbar’s slider handle. In short, you keep
setting the value of the slider handle when any scrollbar or slider’s signal handle is moved.
In Figure 8.9(a), you see that when the horizontal scrollbar’s slider handle is moved, the
horizontal slider’s handle also moves. Also, the value of the slider handle is displayed with a
Label control. Similarly, Figure 8.9(b) shows that when the slider handle of the vertical
scrollbar or slider is moved, the slider handle of the corresponding widget also moves
accordingly.

Figure 8.9. (a) Movement of the slider handles of the horizontal scrollbar and
the slider is synchronized, and their position is displayed through a Label

widget. (b) The vertical scrollbar and the slider’s handles are synchronized,
and their position is indicated through a Label widget.

[View full size image]

The next widget that you are going to learn about not only enables you to display different
options to the user but also allows you to manipulate them, meaning that you can add
options, delete any or all options, and update an existing option.

Working with a List Widget

To display a list of items, you use a List widget, which is an instance of the QList-Widget

class. You can not only view items, you also can add and remove them. The class provides a
classic item-based interface for adding and removing list items. Also, it has its own internal
model to manage each item in the list. Items in the list are instances of the
QListWidgetItem class. The methods provided by QListWidget are shown in Table 8.8.

Table 8.8. Methods Provided by the QListWidget Class

Method Use

insertItem() Inserts a new item with the specified text into
the List widget at the specified row.

insertItems() Inserts multiple items from a list of supplied
labels, starting at the specified row.

count() Returns the count of the number of items in
the list.

takeItem() Removes and returns item from the specified
row in the List widget.

currentItem() Returns the current item in the list.

setCurrentItem()Replaces the current item in the list with the
specified item.

addItem() Inserts an item with the specified text at the
end of the List widget.

addItems() Inserts items with the specified text at the end
of the List widget.

clear() Removes all items and selections in the view
permanently.

currentRow() Returns the row number of the current item. If
there is no current item, it returns the value -1.

setCurrentRow() Selects the specified row in the List widget.

item() Returns the item at the specified row.

Signals emitted by the QListWidget class are shown in Table 8.9.

Table 8.9. Signals Emitted by QListWidget

Signal Description

currentRowChanged() Emitted whenever the row of the current
item changes.

currentTextChanged()Emitted whenever the text in the current
item is changed.

currentItemChanged()Emitted when the focus of the current

item is changed.

To understand the List widget, you will create two applications. The first will demonstrate the
procedure for adding new items to the List widget. When you are acquainted with that
concept, you will create another application to demonstrate deleting and editing items in the
List widget. Let’s see how to add items to the List widget.

Adding Items to a List Widget

The following is an application that is focused on explaining the procedure of adding an item
to a List widget. In this application, you will use LineEdit, Push Button, and List widgets. The
List widget will be empty initially, and the user is asked to enter a country name in LineEdit
and select an Add button. The country name then will be added to the List widget. All
subsequent country names will be added below the previous entry.

We begin by creating new application based on the Dialog without Buttons template and
dragging and dropping Label, LineEdit, Push Button, and List widgets onto the form. Set the
text property of the Label and Push Button widgets to Enter Country and Add, respectively.

The form will appear as shown in Figure 8.10.

Figure 8.10. The form showing the List, LineEdit, Label, and Push Button
widgets.

Save the application with the name addtolist.ui. The .ui (XML) file is then converted into

Python code through the pyuic4 command utility. The code will appear as shown here:

addtolist.py
Form implementation generated from reading ui file 'addtolist.ui'

from PyQt4 import QtCore, QtGui

try:
 _fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
 _fromUtf8 = lambda s: s

class Ui_Dialog(object):
 def setupUi(self, Dialog):
 Dialog.setObjectName(_fromUtf8("Dialog"))

 Dialog.resize(517, 304)
 self.label = QtGui.QLabel(Dialog)
 self.label.setGeometry(QtCore.QRect(20, 20, 71, 16))
 self.label.setObjectName(_fromUtf8("label"))
 self.listWidget = QtGui.QListWidget(Dialog)
 self.listWidget.setGeometry(QtCore.QRect(290, 20, 201, 261))
 self.listWidget.setObjectName(_fromUtf8("listWidget"))
 self.lineEdit = QtGui.QLineEdit(Dialog)
 self.lineEdit.setGeometry(QtCore.QRect(100, 20, 181, 20))
 self.lineEdit.setObjectName(_fromUtf8("lineEdit"))
 self.pushButton = QtGui.QPushButton(Dialog)
 self.pushButton.setGeometry(QtCore.QRect(110, 60, 75, 23))
 self.pushButton.setObjectName(_fromUtf8("pushButton"))

 self.retranslateUi(Dialog)
 QtCore.QMetaObject.connectSlotsByName(Dialog)

 def retranslateUi(self, Dialog):
 Dialog.setWindowTitle(QtGui.QApplication.translate("Dialog", "Dialog", None,
QtGui.QApplication.UnicodeUTF8))
 self.label.setText(QtGui.QApplication.translate("Dialog", "Enter Country",
None, QtGui.QApplication.UnicodeUTF8))
 self.pushButton.setText(QtGui.QApplication.translate("Dialog", "Add", None,
QtGui.QApplication.UnicodeUTF8))

Let’s create a Python script file that imports the Python code to invoke the user interface
design and adds the country name entered by the user in LineEdit to the List widget. The
Python script file will appear as shown here:

calladdtolist.pyw
import sys
from addtolist import *

class MyForm(QtGui.QDialog):
 def __init__(self, parent=None):
 QtGui.QWidget.__init__(self, parent)
 self.ui = Ui_Dialog()
 self.ui.setupUi(self)
 QtCore.QObject.connect(self.ui.pushButton, QtCore.SIGNAL('clicked()'),
self.addlist)

 def addlist(self):
 self.ui.listWidget.addItem(self.ui.lineEdit.text())
 self.ui.lineEdit.setText('')
 self.ui.lineEdit.setFocus()

if __name__ == "__main__":
 app = QtGui.QApplication(sys.argv)
 myapp = MyForm()
 myapp.show()
 sys.exit(app.exec_())

The clicked() event of the push button is connected to the addlist() function. Hence, after

entering the text to be added to the List widget in the LineEdit widget, when the user selects
the Add button, the addlist() function is invoked. The add-list() function retrieves the

text entered in LineEdit and adds it to the List widget. The text in the LineEdit is then

removed, and the focus is set on it, enabling the user to enter different text.

In Figure 8.11, you can see the text entered by the user in the LineEdit widget is added to
the List widget when the user selects the Add button.

Figure 8.11. The text entered in LineEdit added to the List widget.

We have followed the procedure of adding items to the List widget. Now let’s see how to
perform other operations such as deleting and editing items in the List widget.

Performing Operations on a List Widget

We have seen how new list items can be added to a List widget. Now let’s move one step
ahead and see how the list item can be edited or deleted.

Using List Items

An item that is inserted or added to a List widget is usually an instance of the
QListWidgetItem class. The List widget item represents a single item. Usually, a list item is

created without a parent widget and then inserted into a list using the insertItem() or

addItem() method. List items may be in text or icon form. List items can be checked or

unchecked. Methods provided by QListWidgetItem are given in Table 8.10.

Table 8.10. Methods Provided by the QListWidgetItem
Class

Method Use

setText() Used to specify the text for the list item.

setIcon() Used to specify the icon for the list item.

checkState()Used to see whether the list item is in checked or
unchecked state.

setHidden() Pass Boolean value true to this method to hide the
list item.

isHidden() Returns true if the list item is hidden.

The constructor of QListWidgetItem() constructs an empty List widget item of the specified

type with the given parent. If a parent is not specified, the item can be inserted into a List
widget by using the insertItem() or addItem() method.

Displaying an Input Dialog Box

To get feedback from the user, you display an input dialog box that is an instance of the
QInputDialog class. The data entered by the user can be a string, a number, or an item from

a list. If the dialog is accepted, it returns the text entered by the user in the dialog’s LineEdit
widget. If the dialog is rejected, a null string is returned. You can set the mode of the dialog
box to enable the user to enter text, an integer, or a floating-point value using the InputMode

property. InputMode is used to set different modes of input for the dialog box. The available

options are these:

TextInput: To input text strings.

IntInput: To input integers.

DoubleInput: To input floating-point numbers.

To fetch the string entered by the user in the dialog box, you use the getText() method.

Similarly, to get an integer or a double value entered by the user, you use the getInt() or

getDouble() method.

In the following application, you will see how list items are added, edited, and deleted in the
List widget. You will also see how to remove all list items from the List widget. Unlike the
previous application, the List widget in this application will not be empty but will show some
list items by default.

Open Qt Designer, create a new application based on the Dialog without Buttons template,
and drag and drop a Label, a LineEdit, four Push Button widgets, and a List widget onto the
form. Set the text property of the label to Enter Text. Also, set the text property of the

four push buttons to Add, Edit, Delete, and Delete All. Set the objectName of the four push

buttons to AddButton, EditButton, Delete-Button and DeleteAllButton. The form will

appear as shown in Figure 8.12.

Figure 8.12. The form with a List, a Label, a LineEdit, and four Push Button
widgets.

Save the application with the name listoper.ui. The Python script generated through the

pyuic4 command utility is shown here:

listoper.py
Form implementation generated from reading ui file 'listoper.ui'

from PyQt4 import QtCore, QtGui

try:
 _fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
 _fromUtf8 = lambda s: s

class Ui_Dialog(object):
 def setupUi(self, Dialog):
 Dialog.setObjectName(_fromUtf8("Dialog"))
 Dialog.resize(452, 263)
 self.lineEdit = QtGui.QLineEdit(Dialog)
 self.lineEdit.setGeometry(QtCore.QRect(90, 20, 141, 20))
 self.lineEdit.setObjectName(_fromUtf8("lineEdit"))
 self.DeleteButton = QtGui.QPushButton(Dialog)
 self.DeleteButton.setGeometry(QtCore.QRect(70, 140, 75, 23))
 self.DeleteButton.setObjectName(_fromUtf8("DeleteButton"))
 self.AddButton = QtGui.QPushButton(Dialog)
 self.AddButton.setGeometry(QtCore.QRect(70, 60, 75, 23))
 self.AddButton.setObjectName(_fromUtf8("AddButton"))
 self.label = QtGui.QLabel(Dialog)
 self.label.setGeometry(QtCore.QRect(30, 20, 51, 16))
 self.label.setObjectName(_fromUtf8("label"))
 self.EditButton = QtGui.QPushButton(Dialog)
 self.EditButton.setGeometry(QtCore.QRect(70, 100, 75, 23))
 self.EditButton.setObjectName(_fromUtf8("EditButton"))
 self.DeleteAllButton = QtGui.QPushButton(Dialog)
 self.DeleteAllButton.setGeometry(QtCore.QRect(70, 180, 75, 23))
 self.DeleteAllButton.setObjectName(_fromUtf8("DeleteAllButton"))
 self.listWidget = QtGui.QListWidget(Dialog)
 self.listWidget.setGeometry(QtCore.QRect(250, 20, 191, 221))
 self.listWidget.setObjectName(_fromUtf8("listWidget"))
 self.retranslateUi(Dialog)
 QtCore.QMetaObject.connectSlotsByName(Dialog)

 def retranslateUi(self, Dialog):
 Dialog.setWindowTitle(QtGui.QApplication.translate("Dialog", "Dialog", None,
QtGui.QApplication.UnicodeUTF8))
 self.DeleteButton.setText(QtGui.QApplication.translate("Dialog", "Delete",
None, QtGui.QApplication.UnicodeUTF8))
 self.AddButton.setText(QtGui.QApplication.translate("Dialog", "Add", None,
QtGui.QApplication.UnicodeUTF8))
 self.label.setText(QtGui.QApplication.translate("Dialog", "Enter Text", None,
QtGui.QApplication.UnicodeUTF8))
 self.EditButton.setText(QtGui.QApplication.translate("Dialog", "Edit", None,
QtGui.QApplication.UnicodeUTF8))
 self.DeleteAllButton.setText(QtGui.QApplication.translate("Dialog", "Delete
All", None, QtGui.QApplication.UnicodeUTF8))

Next is to create a Python script file that imports the Python code, enabling you to invoke the
user interface design and add, delete, and edit the list items in the List widget. The code in
the Python script is as shown here:

calllistop.pyw
import sys
from listoper import *
from PyQt4.QtGui import *

class MyForm(QtGui.QDialog):
 def __init__(self, parent=None):

 QtGui.QWidget.__init__(self, parent)
 self.ui = Ui_Dialog()
 self.ui.setupUi(self)
 self.ui.listWidget.addItem('Pizza')
 self.ui.listWidget.addItem('Hot Dog')
 self.ui.listWidget.addItem('French Fries')
 self.ui.listWidget.addItem('Chicken Burgar')
 QtCore.QObject.connect(self.ui.AddButton, QtCore.SIGNAL('clicked()'),
self.addlist)
 QtCore.QObject.connect(self.ui.EditButton, QtCore.SIGNAL('clicked()'),
self.editlist)
 QtCore.QObject.connect(self.ui.DeleteButton, QtCore.SIGNAL('clicked()'),
self.delitem)
 QtCore.QObject.connect(self.ui.DeleteAllButton, QtCore.SIGNAL('clicked()'),
self.delallitems)
 def addlist(self):
 self.ui.listWidget.addItem(self.ui.lineEdit.text())
 self.ui.lineEdit.setText('')
 self.ui.lineEdit.setFocus()
 def editlist(self):
 row=self.ui.listWidget.currentRow()
 newtext, ok=QInputDialog.getText(self, "Enter new text", "Enter new text")
 if ok and (len(newtext) !=0):
 self.ui.listWidget.takeItem(self.ui.listWidget.currentRow())
 self.ui.listWidget.insertItem(row,QListWidgetItem(newtext))
 def delitem(self):
 self.ui.listWidget.takeItem(self.ui.listWidget.currentRow())
 def delallitems(self):
 self.ui.listWidget.clear()

if __name__ == "__main__":
 app = QtGui.QApplication(sys.argv)
 myapp = MyForm()
 myapp.show()
 sys.exit(app.exec_())

To display the initial content of the List widget, four list items with the text Pizza, Hot Dog,

French Fries, and Chicken Burger are added to the List widget through the addItem()

function. Then the clicked() signal of AddButton, EditButton, DeleteButton, and

DeleteAllButton is connected to the functions addlist(), editlist(), delitem(), and

delallitems(), respectively. These functions are invoked by the four pushbuttons and are

used to add, edit, and delete list items from the List widget.

In the addlist() function, the text typed by the user in the LineEdit widget is retrieved

and added to the List widget. The text in the LineEdit widget is deleted to create space
for the new text, and focus is set.

In the editlist() function, the row number of the selected list item is retrieved using

currentRow() and stored in the variable row. An Input dialog box is displayed on the

screen asking the user to enter new text. In the dialog box, the user enters new text for
the selected list item and then selects OK. The text entered in the Input dialog box is
fetched and assigned to the variable newtext. After that, you remove the item from the

List widget using takeItem(), whose row number is stored in the variable row, so you

delete the list item the user wanted to edit from the List widget, and the new text in
newtext is inserted in the List widget.

In the delitem() function, the row number of the selected list item in the List widget is

retrieved using currentRow(), and the list item at that row location is deleted from the

List widget using takeItem().

In the delallitems() function, all list items from the List widget are deleted using the

clear() method.

On execution of the application, you get a List widget initially displaying four list items, Pizza,
Hot Dog, French Fries, and Chicken Burger, as shown in Figure 8.13(a). To add a new item to
the List widget, you enter text in LineEdit and select the Add button. Figure 8.13(b) shows
the addition of Ice Cream to the List widget.

Figure 8.13. (a) The List widget with initial items. (b) Adding Ice Cream to the
List widget.

[View full size image]

To edit a List item, you need to select it from the List widget and select the Edit button. For
instance, if you select Ice Cream from the List widget and click the Edit button, an Input
dialog box pops up asking you to enter new text to replace the Ice Cream item, as shown in
Figure 8.14(a). Enter Cold Drink and select OK on the Enter New Text dialog. Ice Cream will
be replaced with Cold Drink, as shown in Figure 8.14(b).

Figure 8.14. (a) Changing “Ice Cream” to “Cold Drink.” (b) The List widget
displaying the modified content.

[View full size image]

We can also delete a list item from the List widget by selecting it and clicking the Delete
button. Selecting Delete All will delete all list items from the List widget.

Summary

In this chapter you learned to create a GUI application using Radio
Buttons, which enable the user to select one option out of several. You
learned how to select more than one option by using checkboxes and
specify integers as well as float values using spin boxes. Also, you learned
to use ScrollBars and Sliders to display large documents and represent
integer values, respectively. Finally, you learned to display options with a
List widget, add items to a List widget, and delete and edit existing items
in a List widget. In the next chapter you will learn to display system clock
time, display calendar of the desired month and year and display dates in
different formats. Also, you will learn to display options with a Combo Box,
display information in tabular format, display web pages, and display
graphic images.

Chapter 9. Advanced Widgets

In this chapter you will learn several things that are usually required in a
fully featured GUI application. These include accessing and displaying
system clock time, displaying Calendar, displaying dates in different
formats, displaying options through a Combo Box, displaying information in
tabular format, displaying web pages, and displaying graphics images. You
will learn to implement these features one by one. This chapter covers the
following:

Displaying system clock time in LCD format

Working with Calendar and displaying dates in different formats

Using Combo Box

Displaying information in a table

Displaying web pages

Displaying graphics

Let’s begin the chapter with the procedure to display system clock time in
LCD format.

Displaying System Clock Time in LCD Format

To display system clock time in LCD format, you need to know how to do the following:

Display LCD digits (QLCDNumber class)

Use Timers (QTimer class)

Fetch and measure system clock time (QTime class)

Displaying LCD Digits

To display LCD-like digits, you use the LCD Number widget, an instance of the QLCDNumber

class. The widget can display decimal, hexadecimal, octal, and binary digits of any size. The
methods provided by QLCDNumber are shown in Table 9.1.

Table 9.1. Methods Provided by QLCDNumber

Method Use

setMode()Used to change the base of the numbers.
Available options:

 Hex for displaying hexadecimal digits.

 Dec for displaying decimal digits.

 Oct for displaying octal digits.

 Bin for displaying binary digits.

display()To display the specified content as LCD
digits.

value() Returns the numerical value displayed by the
LCD Number widget.

You want the system clock time displayed to be updated automatically. For this, you need to
implement timers.

Using Timers

To perform a repetitive task, you use a timer. A timer is an instance of the QTimer class. To use

timers in an application, you just need to create an instance of QTimer and connect its

timeout() signal to the slot that performs the desired task. A timeout() signal can be

controlled by these methods:

start(n): Initiates the timer to generate a timeout() signal at n millisecond

intervals.

setSingleShot(true): Sets the timer to generate a timeout() signal only once.

singleShot(n): Sets the timer to generate a timeout() signal only once after n

milliseconds.

We will be using timers to invoke the function that displays the system clock in our application
so that the function will update the system clock every second. Next, you need to know about
the class through which you can fetch and measure system clock time.

Fetching and Measuring System Clock Time

To fetch the system clock time and measure a span of elapsed time, you use the QTime class.

The time returned by this class is in 24-hour format. You have the option to use the system
clock’s time or set the number of hours, minutes, seconds, and milliseconds explicitly. The
methods supported by QTime are given in Table 9.2.

Table 9.2. Methods Supported by QTime

Method Description

currentTime()Fetches the system’s clock time and returns
it as a QTime object.

hour() Returns the number of hours.

minute() Returns the number of minutes.

seconds() Returns the number of seconds.

msec() Returns the number of milliseconds.

addSecs() Returns the time after adding a specified
number of seconds.

addMSecs() Returns the time after adding a specified
number of milliseconds.

secsTo() Returns the number of seconds between two
times.

msecsTo() Returns the number of milliseconds between
two times.

Note

The information returned by these methods can be converted into text format with the
toString() method.

Now you are ready to create an application that displays system clock time in LCD-like digits.
From Qt Designer, create a new application based on the Dialog without Buttons template and
drag and drop an LCD Number widget onto the form as shown in Figure 9.1.

Figure 9.1. Form with an LCD Number widget.

Save the application with the name disptime.ui. Use the pyuic4 command utility to convert

the .ui (XML) file into Python code as shown here:

disptime.py
Form implementation generated from reading ui file 'disptime.ui'
from PyQt4 import QtCore, QtGui

 try:
 _fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
 _fromUtf8 = lambda s: s

 class Ui_Dialog(object):
 def setupUi(self, Dialog):
 Dialog.setObjectName(_fromUtf8("Dialog"))
 Dialog.resize(192, 128)
 self.lcdNumber = QtGui.QLCDNumber(Dialog)
 self.lcdNumber.setGeometry(QtCore.QRect(30, 20, 141, 81))
 self.lcdNumber.setObjectName(_fromUtf8("lcdNumber"))
 self.retranslateUi(Dialog)
 QtCore.QMetaObject.connectSlotsByName(Dialog)

 def retranslateUi(self, Dialog):
 Dialog.setWindowTitle(QtGui.QApplication.translate("Dialog", "Dialog", None,
QtGui.QApplication.UnicodeUTF8))

The next step is to create a Python script that imports the code to invoke the user interface
design and display the current system clock time through an LCD Number widget. The script
must also include a timer to keep updating the LCD display at fixed intervals. The Python script
appears as shown here:

showtime.pyw
import sys
from disptime import *

 class MyForm(QtGui.QDialog):
 def __init__(self, parent=None):
 QtGui.QWidget.__init__(self, parent)
 self.ui = Ui_Dialog()
 self.ui.setupUi(self)
 timer = QtCore.QTimer(self)
 timer.timeout.connect(self.showlcd)
 timer.start(1000)
 self.showlcd()

 def showlcd(self):
 time = QtCore.QTime.currentTime()
 text = time.toString('hh:mm')
 self.ui.lcdNumber.display(text)

if __name__ == "__main__":
 app = QtGui.QApplication(sys.argv)
 myapp = MyForm()
 myapp.show()
 sys.exit(app.exec_())

In this code, you see that an instance of QTimer is created with the name timer, and its

timeout() signal is connected to showlcd(). Whenever timeout() is generated, the showlcd()

function will be invoked. Also, via start(), you set the timer to generate a timeout() signal

after every 1,000 milliseconds. In the showlcd() method, you fetch the current system clock

time, convert it into string data type, make it appear in HH:MM format, and display it with an

LCD Number widget as shown in Figure 9.2.

Figure 9.2. LCD Number widget displaying the system clock time.

Now let’s see how dates are handled.

Working with Calendar and Displaying Dates in Different
Formats

In this section you will learn to display a calendar on the screen and also understand the
procedure to display the date selected by the user in the calendar through a Date Edit widget.
You will learn three things in this section:

Using Calendar: Displays a monthly calendar.

Using the QDate class: Provides methods to fetch the system date, extract the day,

month, and year from a given date, find days between the two dates, and so on.

Using the Date Edit widget: Used to display and edit dates.

Displaying Calendar

To display a monthly calendar, you use the Calendar widget, which is an instance of the
QCalendarWidget class. By default, the Calendar widget displays the current month and year,

which you can change. By default, the days are displayed in abbreviated form (Sun, Mon, Tue
...), and Saturdays and Sundays are marked in red. The grid in the calendar is not visible.
The week numbers are displayed, and the first column day is Sunday. Properties of the
Calendar widget that you can use to configure its display are given in Table 9.3.

Table 9.3. Properties of the Calendar Widget

Property Description

minimumDate Used to specify the minimum date range.

maximumDate Used to specify the maximum date range.

selectionMode Set this property to NoSelection to prohibit

the user from selecting a date.

verticalHeaderFormat Set this property to NoVerticalHeader to

remove the week numbers.

gridVisible Set this property to True to turn on the

calendar grid.

HorizontalHeaderFormatUsed for specifying the form in which days
are displayed. The available options are
these:

 SingleLetterDayNames: The header displays

a single letter for days, such as M for
Monday, T for Tuesday and so on.

 ShortDayNames: The header displays a short

abbreviation for days such as Mon for
Monday, Tue for Tuesday, and so on.

 LongDayNames: The header displays complete

days (Monday, Tuesday and so on).

 NoHorizontalHeader: The header is hidden.

Methods provided by QCalendarWidget are given in Table 9.4.

Table 9.4. Methods Provided by QCalendarWidget

Method Description

selectedDate() Returns the currently selected date.

monthShown() Returns the currently displayed month.

yearShown() Returns the currently displayed year.

setFirstDayOfWeek()Used to set the day in the first column.

selectionChanged() Emitted when the user selects a date other
than the currently selected date. The date
can be selected using the mouse or
keyboard.

The date that is selected by the user in the Calendar widget is returned as a QDate object.

Let’s look at the QDate class, which not only enables you to fetch the system date but also

extracts the year, month, and day. The class also provides methods that make manipulating
dates quite easy.

QDate Class

For working with dates, you use an instance of the QDate class. A QDate object contains a

calendar date with the year, month, and day in the Gregorian calendar. It reads the current
date from the system clock. Methods provided by the QDate class are in Table 9.5.

Table 9.5. Methods Provided by the QDate Class

Method Use

currentDate() Returns the system date as a QDate object.

setDate() Sets a date by specifying the year, month,
and day.

year() Returns the year from the specified date

object.

month() Returns the month from the specified date

object.

day() Returns the day from the specified date

object.

dayOfWeek() Returns the day of the week from the
specified date object.

addDays() Adds the specified number of days to the
specified date and returns new date.

addMonths() Adds the specified number of months to the
specified date and returns new date.

addYears() Adds the specified number of years to the
specified date and returns new date.

daysTo() Returns the number of days between two

dates.

daysInMonth() Returns the number of days in the specified
month.

daysInYear() Returns the number of days in the specified
year.

isLeapYear() Returns true if the specified date is in a leap
year.

toPyDate() Returns the date as a string. The format
parameter determines the format of the
result string.

The following expressions are used for specifying the format:

d: Displays the day as a number without a leading zero (1 to 31).

dd: Displays the day as a number with a leading zero (01 to 31).

ddd: Displays the day in abbreviated form (Mon, Tue, and so on).

dddd: Displays the day in long form (Monday, Tuesday, and so on).

M: Displays the month as a number without a leading zero (1 to 12).

MM: Displays the month as a number with a leading zero (01 to 12).

MMM: Displays the month in abbreviated form (Jan, Feb, and so on).

MMMM: Displays the month in long form (January, February, and so on).

yy: Displays the year as a two-digit number (00 to 99).

yyyy: Displays the year as a four-digit number.

Examples:

dd.MM.yyyy will display the date as 15.10.2011.

ddd MMMM d yy will display date as Sun October 15 11.

To display the date that is selected by the user in a Calendar widget, you use a Date Edit
widget.

Using the Date Edit Widget

For displaying and editing dates, you use the Date Edit widget, which is an instance of the
QDateEdit class.

Properties used to configure the Date Edit widget:

minimumDate: This property is used to define the minimum date that can be set to

the widget.

maximumDate: This property is used to define the maximum date that can be set to

the widget.

Methods provided by QDateEdit are given in Table 9.6.

Table 9.6. Methods Provided by the QDateEdit Class

Table 9.6. Methods Provided by the QDateEdit Class

Method Description

setDate() Used to set the date to be displayed in the
widget.

setDisplayFormat()Used to specify the string format that you
want to apply to the date displayed in the
Date Edit widget. Formats with their outputs
are these:

Format Output

dd.MM.yyyy 15.10.2011

MMM d yy Oct 15 11

MMM d yyyy Oct 15 2011

MMMM d yy October 15 11

Note

If an invalid date format is specified, the format will not be set.

In the following example, you will learn to display the date that is selected by the user in the
Calendar widget with the Date Edit widget. Open Qt Designer and create a new Dialog without
Buttons application and drag and drop Calendar and Date Edit widgets onto the form. The
form will appear as shown in Figure 9.3.

Figure 9.3. Form displaying Calendar and Date Edit widgets.

Save the application with the name dispcalendar.ui. The pyuic4 command utility will

convert the .ui (XML) file into Python code:

dispcalendar.py
Form implementation generated from reading ui file 'dispcalendar.ui'
from PyQt4 import QtCore, QtGui
try:
 _fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
 _fromUtf8 = lambda s: s

 class Ui_Dialog(object):

 def setupUi(self, Dialog):
 Dialog.setObjectName(_fromUtf8("Dialog"))
 Dialog.resize(285, 223)
 self.dateEdit = QtGui.QDateEdit(Dialog)
 self.dateEdit.setGeometry(QtCore.QRect(90, 180, 110, 22))
 self.dateEdit.setObjectName(_fromUtf8("dateEdit"))
 self.calendarWidget = QtGui.QCalendarWidget(Dialog)
 self.calendarWidget.setGeometry(QtCore.QRect(30, 20, 232, 141))
 self.calendarWidget.setObjectName(_fromUtf8("calendarWidget"))

 self.retranslateUi(Dialog)
 QtCore.QMetaObject.connectSlotsByName(Dialog)
 def retranslateUi(self, Dialog):
 Dialog.setWindowTitle(QtGui.QApplication.translate("Dialog", "Dialog", None,
 QtGui.QApplication.UnicodeUTF8))

Let’s create a Python script that imports the code to invoke the user interface design and
displays the selected date from the Calendar widget in the Date Edit widget. The Python script
appears as shown here:

callcalendar.pyw
import sys
from dispcalendar import *

class MyForm(QtGui.QDialog):
 def __init__(self, parent=None):
 QtGui.QWidget.__init__(self, parent)
 self.ui = Ui_Dialog()
 self.ui.setupUi(self)
 QtCore.QObject.connect(self.ui.calendarWidget, QtCore.SIGNAL('selectionChanged
()'), self.dispdate)

 def dispdate(self):
 self.ui.dateEdit.setDate(self.ui.calendarWidget.selectedDate())

if __name__ == "__main__":
 app = QtGui.QApplication(sys.argv)
 myapp = MyForm()
 myapp.show()
 sys.exit(app.exec_())

In the code, you see that the selectionChanged() signal of the Calendar widget is connected

to dispdate(). Hence, as the user selects a date, the dispdate() function will be invoked. In

the dispdate() function, the date selected by the user is retrieved through selectedDate()

method and displayed in the Date Edit widget through setDate(). The date is displayed in

default date format mm/dd/yyyy (see Figure 9.4(a)). You can display the date in a different
format with the setDisplay-Format() method. Let’s modify the dispdate() function to

display the date in MMM d yyyy format:

def dispdate(self):
 self.ui.dateEdit.setDisplayFormat('MMM d yyyy')
 self.ui.dateEdit.setDate(self.ui.calendarWidget.selectedDate())

Figure 9.4. (a) Selected date displayed in default format. (b) Selected date

displayed in specified format.

Now the date selected from the Calendar widget will appear in the desired format in the Date
Edit widget as shown in Figure 9.4(b).

The next widget will enable us to display different items or options to the user using minimum
screen space.

Using Combo Box

To display a pop-up list (also known as a Combo Box), you use the QComboBox class. With a Combo

Box, the items are listed in a minimum of screen space. Besides text, pixmaps can be displayed in a
Combo Box. Methods provided by QComboBox are shown in Table 9.7.

Table 9.7. Methods Provided by QComboBox

Method Use

setItemText() Used to change the item in the Combo Box.

removeItem() Used to remove an item.

clear() Used to remove all items.

currentText() Returns the text of the current item.

setCurrentIndex()Used to set the current item.

count() Returns the number of items in the Combo
Box.

setMaxCount() Used to set the maximum number of items.

setEditable() Used to allow editing in the Combo Box.

addItem() Used to add an item to the Combo Box with
specified text. The item is appended to the
list.

addItems() Used to add each of the strings in the text to
the Combo Box. Each item is appended to
the list.

itemText() Returns the text at the specified index in the
Combo Box.

currentIndex() Returns the index of the current item in the
Combo Box. An empty Combo Box or a
Combo Box with no current item selected
returns −1 as the index.

Signals generated by the Combo Box are shown in Table 9.8.

Table 9.8. Signals Generated by QComboBox

Signal Description

currentIndexChanged()The signal is emitted if the index of the
Combo Box is changed (through user
interaction or via program), and a new item
is selected.

activated() The signal is emitted when the index is
changed by user interaction.

highlighted() The signal is emitted when the user
highlights an item in the Combo Box.

editTextChanged() The signal is emitted when the text of an
editable Combo Box is changed.

The next application is a computing application that asks the user to specify the date of a journey,
the number of persons traveling, and the class type the user wants to use. Then it computes the
fare accordingly. The user can specify the date of his journey with a Calendar widget, the number of
persons with a Spin Box, and the class type with a Combo Box. The Combo Box will display four
traveling class options: First Class, Second Class, Business Class, and Economic Class. The

fare of these classes is assumed to be $40, $30, $20, and $10, respectively. In the application, six
Labels, a Calendar, a Spin Box, a Combo Box, and a Push Button are used. The text property of the

first four Labels is set to Reservation form, Date of Journey, Number of persons, and Class.

Set the objectNames of the fifth and sixth Labels to Enteredinfo and Fareinfo, respectively. The

Enteredinfo Label will be used to display the options selected in the different widgets by the user,

and the Fareinfo Label will be used to display the computed fare. Also, delete the text property of

the two Labels, Enteredinfo and Fareinfo, to make them invisible in the form; their respective text

will be assigned through programming. The text property of the Push Button is set to Calculate

Fare, the point size of the Label representing the Reservation Form text is increased, and its Bold

property is set to make it appear as the header of the application (see Figure 9.5).

Figure 9.5. Form displaying Labels, Calendar, Spin Box, Combo Box, and Push Button.

Save the application with the name reservform.ui. The pyuic4 command utility converts the .ui

(XML) file into Python code as shown here:

reservform.py
Form implementation generated from reading ui file 'reservform.ui'
from PyQt4 import QtCore, QtGui

try:
 _fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
 _fromUtf8 = lambda s: s
 class Ui_Dialog(object):
 def setupUi(self, Dialog):
 Dialog.setObjectName(_fromUtf8("Dialog"))
 Dialog.resize(462, 401)
 self.label_4 = QtGui.QLabel(Dialog)
 self.label_4.setGeometry(QtCore.QRect(70, 260, 46, 13))
 self.label_4.setObjectName(_fromUtf8("label_4"))
 self.spinBox = QtGui.QSpinBox(Dialog)
 self.spinBox.setGeometry(QtCore.QRect(170, 220, 42, 22))
 self.spinBox.setObjectName(_fromUtf8("spinBox"))
 self.label_2 = QtGui.QLabel(Dialog)

 self.label_2.setGeometry(QtCore.QRect(70, 70, 91, 16))
 self.label_2.setObjectName(_fromUtf8("label_2"))
 self.calendarWidget = QtGui.QCalendarWidget(Dialog)
 self.calendarWidget.setGeometry(QtCore.QRect(170, 70, 232, 141))
 self.calendarWidget.setObjectName(_fromUtf8("calendarWidget"))
 self.comboBox = QtGui.QComboBox(Dialog)
 self.comboBox.setGeometry(QtCore.QRect(170, 250, 161, 22))
 self.comboBox.setObjectName(_fromUtf8("comboBox"))
 self.Enteredinfo = QtGui.QLabel(Dialog)
 self.Enteredinfo.setGeometry(QtCore.QRect(10, 330, 421, 16))
 self.Enteredinfo.setText(_fromUtf8(""))
 self.Enteredinfo.setObjectName(_fromUtf8("Enteredinfo"))
 self.label = QtGui.QLabel(Dialog)
 self.label.setGeometry(QtCore.QRect(70, 220, 91, 16))
 self.label.setObjectName(_fromUtf8("label"))
 self.label_3 = QtGui.QLabel(Dialog)
 self.label_3.setGeometry(QtCore.QRect(160, 20, 171, 16))
 font = QtGui.QFont()
 font.setPointSize(11)
 font.setWeight(75)
 font.setBold(True)
 self.label_3.setFont(font)
 self.label_3.setObjectName(_fromUtf8("label_3"))
 self.Fareinfo = QtGui.QLabel(Dialog)
 self.Fareinfo.setGeometry(QtCore.QRect(10, 360, 441, 16))
 self.Fareinfo.setText(_fromUtf8(""))
 self.Fareinfo.setObjectName(_fromUtf8("Fareinfo"))
 self.pushButton = QtGui.QPushButton(Dialog)
 self.pushButton.setGeometry(QtCore.QRect(170, 290, 101, 23))
 self.pushButton.setObjectName(_fromUtf8("pushButton"))
 self.retranslateUi(Dialog)
 QtCore.QMetaObject.connectSlotsByName(Dialog)

 def retranslateUi(self, Dialog):
 Dialog.setWindowTitle(QtGui.QApplication.translate("Dialog", "Dialog", None,
QtGui.QApplication.UnicodeUTF8))
 self.label_4.setText(QtGui.QApplication.translate("Dialog", "Class", None,
QtGui.QApplication.UnicodeUTF8))
 self.label_2.setText(QtGui.QApplication.translate("Dialog", "Date of Journey",
None, QtGui.QApplication.UnicodeUTF8))
 self.label.setText(QtGui.QApplication.translate("Dialog", "Number of persons",
None, QtGui.QApplication.UnicodeUTF8))
 self.label_3.setText(QtGui.QApplication.translate("Dialog", "Reservation form",
None, QtGui.QApplication.UnicodeUTF8))
 self.pushButton.setText(QtGui.QApplication.translate("Dialog", "Calculate Fare",
None, QtGui.QApplication.UnicodeUTF8))

What you need now is to create a Python script that imports the code to invoke the user interface
design and that computes and displays the fare on the basis of the number of persons and class
type selected. The script will also display the date, number of persons, and class type options

selected by the user. The Python script file will appear as shown here:

computefare.pyw
import sys
from reservform import *

class MyForm(QtGui.QDialog):
 def __init__(self, parent=None):
 QtGui.QWidget.__init__(self, parent)
 self.ui = Ui_Dialog()
 self.ui.setupUi(self)
 self.classtypes=['First Class', 'Second Class', 'Business Class', 'Economic Class']
 self.addcontent()

 QtCore.QObject.connect(self.ui.pushButton, QtCore.SIGNAL('clicked()'), self.
computefare)
 def addcontent(self):
 for i in self.classtypes:
 self.ui.comboBox.addItem(i)

 def computefare(self):
 dateselected=self.ui.calendarWidget.selectedDate()
 dateinstring=str(dateselected.toPyDate())
 noOfPersons=self.ui.spinBox.value()
 chosenclass=self.ui.comboBox.itemText(self.ui.comboBox.currentIndex())
 self.ui.Enteredinfo.setText('Date of journey: '+dateinstring+ ' , Number of persons:
'+ str(noOfPersons) + ' and Class selected: '+ chosenclass)
 fare=0
 if chosenclass=="First Class":
 fare=40
 if chosenclass=="Second Class":
 fare=30
 if chosenclass=="Business Class":
 fare=20
 if chosenclass=="Economic Class":
 fare=10
 total=fare*noOfPersons
 self.ui.Fareinfo.setText('Fare for '+ chosenclass +' is '+ str(fare)+ ' $. Total fare
is '+ str(total)+ '$')

if __name__ == "__main__":
 app = QtGui.QApplication(sys.argv)
myapp = MyForm()
myapp.show()
sys.exit(app.exec_())

In this code, you see that a classtypes list is defined with four elements: First Class, Second

Class, Business Class, and Economic Class. To make the elements of the classtypes list appear

as options in the Combo Box, the addcon-tent() function is invoked and adds the elements of

classtypes to the Combo Box with the addItem() function. Also, the clicked() signal of the Push

Button, Calculate Fare is connected to the computefare() method, which is invoked when the

user selects the Calculate Fare button after selecting the date of his the journey, number of persons
traveling, and the class type. In the computefare() method, you fetch the date from the Calendar

widget, the number of persons from the Spin Box, and the class type from the Combo Box and
display them through an Enteredinfo Label widget to indicate the options that are selected by the

user. Then the fare of an individual is determined on the basis of the class selected and is multiplied
by the number of persons to compute the total fare. The total fare is then displayed via Fareinfo as

shown in Figure 9.6.

Figure 9.6. The date, number of persons, and class type selected are displayed with a
Label widget, along with the total.

How about displaying information in tabular form? The information appears very organized and
readable when displayed in a table. Let’s learn more.

Displaying a Table

To display contents in a row and column format, you use a Table widget, which is an instance
of the QTableWidget class. The items displayed in a Table widget are instances of the

QTableWidgetItem class.

Note

To display a table that uses your own data model, you use the QTableView class.

Methods provided by QTableWidget are given in Table 9.9.

Table 9.9. Methods Provided by QTableWidget

Method Use

setRowCount() Used to specify the number of rows in the
Table widget.

setColumnCount()Used to specify the number of columns in the
Table widget.

rowCount() Returns the number of rows in the table.

columnCount() Returns the number of columns in the table.

clear() Clears the table.

setItem() Sets the item for a given row and column of
the table.

Displaying Items in the Table

The items displayed in the Table widget are instances of the QTableWidgetItem class. A Table

Item can be any content: text, an image, a checkbox, and so on. Methods provided by
QTableWidgetItem are shown in Table 9.10.

Table 9.10. Methods Provided by QTableWidgetItem

Method Use

setFont() Used to set the font for the text label of the
Table Item.

setCheckState()Used to check or uncheck a Table Item.

checkState() Used to determine if the Table Item is
checked or not.

Note

You can use the QTableWidgetItem() constructor to create a Table Item of the

specified type that does not belong to any table.

Let’s create an application to demonstrate how information is displayed with a Table widget.
Open Qt Designer and create a new application based on the Dialog without Buttons
template. Drag and drop a Table widget onto the form. To assign it the default size of three
rows and two columns, from the Property Editor window, set the value of rowCount and

columnCount to 3 and 2, respectively. To display the row and column headers, the

horizontalHeaderVisible and verticalHeaderVisible properties are already checked by

default. The Table widget will appear as shown in Figure 9.7.

Figure 9.7. The Table widget with showGrid, rowCount, columnCount,

horizontalHeaderVisible, and verticalHeaderVisible properties set.

[View full size image]

Save the application with the name tables.ui. The Python code generated through the

pyuic4 command utility is shown here:

tables.py
Form implementation generated from reading ui file 'tables.ui'

from PyQt4 import QtCore, QtGui
 try:
 _fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
 _fromUtf8 = lambda s: s

class Ui_Dialog(object):
 def setupUi(self, Dialog):
 Dialog.setObjectName(_fromUtf8("Dialog"))
 Dialog.resize(296, 236)
 self.tableWidget = QtGui.QTableWidget(Dialog)
 self.tableWidget.setGeometry(QtCore.QRect(20, 20, 256, 192))
 self.tableWidget.setRowCount(3)
 self.tableWidget.setColumnCount(2)
 self.tableWidget.setObjectName(_fromUtf8("tableWidget"))
 self.tableWidget.setColumnCount(2)
 self.tableWidget.setRowCount(3)
 self.tableWidget.verticalHeader().setVisible(True)

 self.tableWidget.verticalHeader().setCascadingSectionResizes(False)
 self.tableWidget.verticalHeader().setHighlightSections(True)
 self.retranslateUi(Dialog)
 QtCore.QMetaObject.connectSlotsByName(Dialog)

 def retranslateUi(self, Dialog):
 Dialog.setWindowTitle(QtGui.QApplication.translate("Dialog", "Dialog", None,
QtGui.QApplication.UnicodeUTF8))

Let’s move on to the next step and create a Python script file that imports the Python code
and enables us to invoke the user interface design and displays information in the Table
widget. The code in the Python script is as shown here:

calltables.pyw
import sys
from tables import *
from PyQt4.QtGui import *

class MyForm(QtGui.QDialog):
 def __init__(self, data):
 QtGui.QWidget.__init__(self)
 self.ui = Ui_Dialog()
 self.ui.setupUi(self)
 self.data=data
 self.addcontent()

 def addcontent(self):
 row=0
 for tup in self.data:
 col=0
 for item in tup:
 anitem=QTableWidgetItem(item)
 self.ui.tableWidget.setItem(row,col, anitem)
 col+=1
 row+=1

 data=[]
data.append(('John', 'johny@gmail.com'))
data.append(('Caroline', 'caroline@hotmail.com'))
data.append(('Bintu', 'bintu@yahoo.com'))
if __name__ == "__main__":
 app = QtGui.QApplication(sys.argv)
 myapp = MyForm(data)
 myapp.show()
 sys.exit(app.exec_())

If you want to display information in three rows and two columns of the Table widget, create
a list named data that stores three tuples, each of which consists of two elements, name and

email address. In addcontent(), you fetch one tuple at a time from the data list and assign

it temporarily to the tup variable. The tup variable contains two elements, name and email

address. With the help of another for loop, you fetch each element from the tup variable;

that is, you fetch name and email address and assign them to the variable item. The content

of item is converted into an instance of QTableWidgetItem and assigned to an item, which is

assigned and displayed in the Table widget at a particular row and column position using the
setItem() method. With the help of nested for loops, you display the information (Figure

9.8) of the data list in the Table widget.

Figure 9.8. The Table widget, displaying information from a list.

Displaying Web Pages

To view and edit web pages, you use a QWebView widget, that represents an instance of
QWebView class. It is the main widget component of the QtWebKit web-browsing module.

Methods of QWebView that are used for displaying web pages are shown in Table 9.11.

Table 9.11. QWebView Methods for Displaying
Web Pages

Method Use

load() Loads the specified URL and displays it
through QWebView widget. The view remains
unchanged until enough data is downloaded
to display.

setUrl() Same as load() method.

setHtml()To view HTML content.

Different signals are generated by QWebView while loading web pages. Some of them are shown in

Table 9.12.

Table 9.12. Signals Generated by QWebView While
Loading Web Pages

Signal Description

loadStarted() Emitted when the view begins loading.

loadProgress()Emitted whenever an element of Web View
completes loading, such as an embedded
image, video, or script.

loadFinished()Emitted when the view is loaded completely.

Create a new application of the Dialog without Buttons template and drag and drop Label, Line
Edit, Push Button, and QWebiew widgets onto the form. Set the text property of the Label and

Push Button widgets to Address and Go, respectively, as shown in Figure 9.9. Also, change the

objectName property of the Line Edit to siteURL. The URL of the web page to be viewed will be

entered in the Line Edit, and the web page will appear in a QWebView widget.

Figure 9.9. Form showing Label, Line Edit, Push Button, and QWebView widgets.

Save the application with the name webviewdemo.ui. The pyuic4 command utility converts the

.ui (XML) file into Python code:

webviewdemo.py
 # Form implementation generated from reading ui file 'webviewdemo.ui'
 from PyQt4 import QtCore, QtGui

try:
 _fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
 _fromUtf8 = lambda s: s

class Ui_Dialog(object):
 def setupUi(self, Dialog):
 Dialog.setObjectName(_fromUtf8("Dialog"))
 Dialog.resize(518, 495)
 self.webView = QtWebKit.QWebView(Dialog)
 self.webView.setGeometry(QtCore.QRect(10, 80, 491, 371))
 self.webView.setUrl(QtCore.QUrl(_fromUtf8("about:blank")))
 self.webView.setObjectName(_fromUtf8("webView"))
 self.label = QtGui.QLabel(Dialog)
 self.label.setGeometry(QtCore.QRect(10, 30, 46, 13))
 self.label.setObjectName(_fromUtf8("label"))
 self.siteURL = QtGui.QLineEdit(Dialog)
 self.siteURL.setGeometry(QtCore.QRect(60, 30, 351, 20))
 self.siteURL.setObjectName(_fromUtf8("siteURL"))
 self.pushButton = QtGui.QPushButton(Dialog)
 self.pushButton.setGeometry(QtCore.QRect(430, 30, 75, 23))
 self.pushButton.setObjectName(_fromUtf8("pushButton"))
 self.retranslateUi(Dialog)
 QtCore.QMetaObject.connectSlotsByName(Dialog)

 def retranslateUi(self, Dialog):
 Dialog.setWindowTitle(QtGui.QApplication.translate("Dialog", "Dialog", None,
QtGui.QApplication.UnicodeUTF8))
 self.label.setText(QtGui.QApplication.translate("Dialog", "Address", None,
QtGui.QApplication.UnicodeUTF8))
 self.pushButton.setText(QtGui.QApplication.translate("Dialog", "Go", None,

QtGui.QApplication.UnicodeUTF8))
from PyQt4 import QtWebKit

Let’s create a Python script that imports the code to invoke the user interface design and loads
the web page of the specified URL and displays it through a QWebView widget. The Python script
file will appear as shown:

callwebview.pyw
import sys
from PyQt4.QtCore import *
from webviewdemo import *

class MyForm(QtGui.QDialog):
 def __init__(self, parent=None):
 QtGui.QWidget.__init__(self, parent)
 self.ui = Ui_Dialog()
 self.ui.setupUi(self)
 QtCore.QObject.connect(self.ui.pushButton, QtCore.SIGNAL('clicked()'), self.
openURL)
 def openURL(self):
 if len(self.ui.siteURL.text())!=0:
 self.ui.webView.load(QUrl(self.ui.siteURL.text()))

if __name__ == "__main__":
 app = QtGui.QApplication(sys.argv)
 myapp = MyForm()
 myapp.show()
 sys.exit(app.exec_())

In this code, you can see that the clicked() signal of the Push Button is connected to openURL,

and when the user selects the Go Push Button, the openURL method will be invoked. In the

openURL method, you retrieve the URL of the web page supplied by the user in the Line Edit

widget and load and display it via a QWebView widget. On specifying the URL of my website,
http://bmharwani.com, in the Line Edit widget, the web page will appear as shown in Figure
9.10.

Figure 9.10. Home page of my website, http://bmharwani.com, displayed with a
QWebView widget.

In the next section, you will learn to display graphics in a GUI application through the Graphics
View widget.

Displaying Graphics

Graphics View is used for viewing and managing 2D graphical items. It displays a scene that
in turn acts as a container for several graphical items. A Graphics View scene is created with
QGraphicsScene, and items are created using QGraphics-Item. Graphics View provides

several standard items for typical shapes, such as rectangles, ellipses, and text items.

The graphics scene has no visual appearance of its own; its job is to manage graphical items.
To visualize the scene, Graphics View is used. Graphics View provides the view widget to
visualize the contents of a scene. The view receives input events from the keyboard and
mouse and translates them to scene events before sending the events to the scene. When
the scene receives a mouse press event at a certain position, it passes the event on to the
item at that position. To add items to a scene, you first create a QGraphicsScene object and

then add an existing QGraphicsItem object by calling the addItem() function. To remove an

item from the graphics scene, the removeItem() function is called.

Note

Graphics View also provides the transform() method to transform the scene’s

coordinate system to be used for applying zooming and rotation features.

To understand the Graphics View widget, create an application that displays an image.
Create a new application based on the Dialog without Buttons template and drag and drop a
Graphics View widget onto it. The form will appear as shown in Figure 9.11.

Figure 9.11. Form displaying a Graphics View widget.

Save the application with the name GraphicsViewdemo.ui. The pyuic4 command utility

converts the .ui (XML) file into Python code as shown:

GraphicsViewdemo.py
Form implementation generated from reading ui file 'GraphicsViewdemo.ui'
from PyQt4 import QtCore, QtGui

try:
 _fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
 _fromUtf8 = lambda s: s

class Ui_Dialog(object):
 def setupUi(self, Dialog):
 Dialog.setObjectName(_fromUtf8("Dialog"))
 Dialog.resize(400, 300)
 self.graphicsView = QtGui.QGraphicsView(Dialog)
 self.graphicsView.setGeometry(QtCore.QRect(60, 60, 281, 192))
 self.graphicsView.setObjectName(_fromUtf8("graphicsView"))
 self.retranslateUi(Dialog)
 QtCore.QMetaObject.connectSlotsByName(Dialog)

 def retranslateUi(self, Dialog):
 Dialog.setWindowTitle(QtGui.QApplication.translate("Dialog", "Dialog", None,
QtGui.QApplication.UnicodeUTF8))

You need to create a Python script that imports the code to invoke the user interface design
and loads an image from the disk and displays it through Graphics View. The Python script
file will have the following code:

callGraphics1.pyw
import sys
from GraphicsViewdemo import *
from PyQt4.QtGui import *
class MyForm(QtGui.QDialog):
 def __init__(self, pixmap, parent=None):
 QtGui.QWidget.__init__(self, parent)
 self.ui = Ui_Dialog()
 self.ui.setupUi(self)
 self.scene = QGraphicsScene(self)
 item=QGraphicsPixmapItem(pixmap)
 self.scene.addItem(item)
 self.ui.graphicsView.setScene(self.scene)

if __name__ == "__main__":
 app = QtGui.QApplication(sys.argv)
 pixmap= QtGui.QPixmap()
 pixmap.load("bmpic.jpg")
 myapp = MyForm(pixmap)
 myapp.show()
 sys.exit(app.exec_())

Note

In the preceding code, I used an image with the file name bmpic.jpg. You will need

to replace bmpic.jpg with the image file name that is available on your disk or else

nothing will be displayed on the screen.

These are the methods that are used:

QGraphicsView.setScene (self, QGraphicsScene scene): Sets the current scene

to scene. If scene is already being viewed, this function does nothing. When a

scene is set on a view, the QGraphicsScene.changed() signal is generated, and the

view’s scrollbars are adjusted to fit the size of the scene.

addItem(QGraphicsItem * item): Adds the specified item to the scene. If item is

already in a different scene, it will first be removed from its old scene and then
added to the current scene.

Note

An ItemSceneChange notification is generated by QGraphicsScene when an item is

added to the scene.

The procedure that you are following in this program is to use Graphics View to display an
image. You add a graphics scene to the Graphics View, and you add a QGraphicsPixmapItem.

If you want to add an image to the graphics scene, you need to provide it in the form of a
pixmap item. First you need to represent the image as a pixmap, and then you make it
appear as a pixmap item before adding it to the graphics scene. First you create an instance
of QPixmap and specify the image that you want to display through its load() method. Then

you tag the pixmap as pixmapitem by passing the pixmap to the QGraphicsPixmapItem’s

constructor. The pixmapitem is then added to the scene via addItem(). If pixmapitem is

bigger than QGraphicsView, scrolling is enabled automatically.

You also can add pixmap to the scene directly using the addPixmap() function, as shown in

the following program. The addPixmap() function creates and adds a pixmapitem to the

scene. The position of the item is initialized to (0, 0).

callGraphics2.pyw
import sys
from GraphicsViewdemo import *
from PyQt4.QtGui import *

class MyForm(QtGui.QDialog):
 def __init__(self, pixmap, parent=None):
 QtGui.QWidget.__init__(self, parent)
 self.ui = Ui_Dialog()
 self.ui.setupUi(self)
 self.scene = QGraphicsScene(self)
 self.scene.addPixmap(pixmap)
 self.ui.graphicsView.setScene(self.scene)

if __name__ == "__main__":
 app = QtGui.QApplication(sys.argv)
 pixmap= QtGui.QPixmap()
 pixmap.load("fig1.jpg")
 myapp = MyForm(pixmap)
 myapp.show()
 sys.exit(app.exec_())

Note

Remember, you will need to replace fig1.jpg with the image file name that is

available on your disk, or else nothing will be displayed on the screen.

Figure 9.12(a) displays an image smaller than the width and height of the Graphics View
widget. Figure 9.12(b) automatically includes scrollbars when an image larger than Graphics
View is displayed.

Figure 9.12. (a) A smaller image displayed with Graphics View. (b) A larger
image displayed with Graphics View appears with scrollbars.

[View full size image]

Summary

In this chapter you learned to access and display system clock time in LCD
digits. You also saw how to display a calendar and display a selected date
in different formats. You learned to create an application that displays
options with a Combo Box, displays information with a Table widget,
displays web pages, and displays graphic images.

In the next chapter you will learn to create menus and toolbars. You will
learn to store images and videos in a resource file. You will learn how to
create dockable windows and display information with the Tab widget and
enhance the appearance of a widget with the Style Sheet Editor. Finally,
you will learn to convert a Tab widget into a Tool Box or Stacked widget.

Chapter 10. Menus and Toolbars

Menus and toolbars are handy options for initiating any task in an
application.

This chapter covers the following:

Creating a menu

Creating a toolbar

Creating a resource file

Creating dockable windows with the Dock widget

Displaying a large volume of information with the Tab widget

Working with the Style Sheet Editor

Converting a Tab widget into a Tool Box or Stacked widget

Let’s begin the chapter with menus.

Understanding Menus

A menu bar consists of several menus, each of which consists of several entries, which in turn may
include submenu entries. The Main Window template of Qt Designer provides a main application
window that displays a menu bar and a toolbar by default. The default menu bar appears as shown
in Figure 10.1. We can always remove the default menu bar by selecting Remove Menu Bar from the
context menu. We can also add a menu bar later by selecting the Create Menu Bar option from the
context menu. The context menu pops up when you right-click in the main window. An application
can have several toolbars but only one menu bar.

Figure 10.1. The default menu bar in a main window-based application.

The menu and its entries are represented by menu text. Menu entries can be checkable. If a
shortcut key is assigned to a menu entry, it appears with the menu text.

Note

A toolbar displays icons instead of text to represent the task that it can perform.

A default menu bar contains Type Here placeholders. You can replace the Type Here placeholders
with text to be displayed in the menu bar. Click the placeholder to highlight it and type to modify
its text. When you add a menu, Type Here appears below the menu as its entry. Again, just click
the Type Here placeholder to select it and simply type the text for the menu entry. If you select the
right arrow key on any menu entry, a submenu entry appears with Type Here. When editing the text
for a menu or submenu entry, if you add an ampersand character (&) before any character, that

character in the menu entry will be displayed as underlined and will be treated as a shortcut key.
You also can assign a shortcut key to a menu entry explicitly. You can delete any menu entry by
right-clicking it and selecting the option Remove Action action_name from the context menu that

pops up. You also can access the properties of a menu and menu entries through the Property
Editor. The menu and menu entries in the menu bar can be arranged by dragging and dropping
them at the desired location.

Note

Menus can also be nested.

You can add separators after a menu entry by double-clicking the Add Separator option in the
context menu. To delete a separator, right-click on it and select Delete Item.

The menu entry added to a menu will automatically appear in the Action Editor. You can manipulate
the menu text, its shortcut key, and so on through the Action Editor.

Action Editor

An action is an operation that the user initiates through the user interface. Tasks such as saving a
file, giving a print command, and aligning text are actions. The action can be initiated by selecting a
toolbar button, selecting a menu entry, or pressing a shortcut key. On occurrence of an action, a
function is executed to serve the action. In Qt, an action is created as an object of the QAction class

and can be assigned to a menu or a toolbar button for the user to invoke.

To create and manage actions, use Qt Designer’s Action Editor. You can create new actions and
delete existing actions through the Action Editor. The Action Editor is usually enabled and displayed
below the Property Editor by default. Just click the Action Editor tab to activate it. If you can’t see
the Action Editor, open the View menu and check if the Action Editor option is not already checked.
The Action Editor has two views: Classic Icon view and Detailed view. The Action Editor also
provides a Filter search function to filter out undesired actions and display actions that you are
interested in. The Action Editor will appear empty at first, as shown in Figure 10.2(a).

Figure 10.2. (a) Action Editor. (b) Dialog for a new action.

[View full size image]

To create an action, use the New button in the Action Editor. You get the dialog box shown in Figure
10.2(b) to enter the information of the new action. In the Text box, enter the text that will appear
in the menu entry. The object name of the menu entry automatically appears in the Object Name
box, with the menu text prefixed by the text action. Enter text in the ToolTip box. The action can

be represented by an icon. You can provide different icons or pixmaps to represent different states
of the action.

An action can be in four states, which can be represented by icons:

Normal: Represents the icon’s image or pixmap when the user is not interacting with the

action and is in enabled mode.

Disabled: Represents the icon’s pixmap when the action is in disabled mode.

Active: Represents the icon’s pixmap when the action is enabled and the user is

interacting with it (moving the mouse over it or clicking it).

Selected: Represents the icon’s pixmap when the action is selected.

Select OK to create an action. The action created can be added to the menu or toolbar. To add an
action to a menu or a toolbar, select the action in the Action Editor and drag it to the desired place
in the menu or toolbar. A thick red line will appear in the menu bar when the action is dropped to
indicate where the new menu entry will appear.

Creating a Menu

The tools that you see in the toolbar are basically actions. The entries in the menu bar can be
created two ways:

By creating an action in the Action Editor and dragging and dropping it into a menu. Each

action dropped into the menu will act as an individual menu entry.

action dropped into the menu will act as an individual menu entry.

By typing text for menus and menu entries in the menu bar replacing the Type Here

placeholders. In that case, each menu entry will appear as an individual action in the Action
Editor, where you can configure its properties.

Open Qt Designer and create a new application based on the Main Window template. A menu bar
and toolbar will be provided by default. The menu bar that you want to create is shown in Figure
10.6(a). There will be two menus, with the text File and Edit. The File menu will have Open and

View entries with a separator between them. The View menu will have two submenu entries, Page
Layout Box and Format Box. The Edit menu will contain two menu entries, Cut and Copy. The
process to create the menu bar is very simple:

1. Double-click the Type Here placeholder and enter the menu text File.

2. The down arrow key on the File menu brings up the Type Here and Add Separator options.
Double-click Type Here and type Open for the menu entry.

3. The down arrow key on the Open menu provides the Type Here and Add Separator options.
Select Add Separator.

4. Below Add Separator, type View for the Type Here option.

5. Select the right arrow to add submenu entries to the View menu. Select Type Here and
enter Page Layout Box.

6. Select the down arrow and enter Format Box below the Page Layout Box submenu entry
as shown in Figure 10.3(a).

Figure 10.3. (a) Adding submenu entries to the View menu entry. (b) Cut and
Copy menu entries added to the Edit menu. (c) A Label widget added to indicate

which menu entry is selected. (d) All menu entries represented as actions in
Action Editor.

[View full size image]

7. Select the File menu and click the right arrow to indicate that you want to add a second
menu to the menu bar. Replace Type Here with Edit.

8. Select the down arrow and add Cut and Copy menu entries, as shown in Figure 10.3(b).

When the user selects any menu or submenu entry, you want a text message to appear on the form
indicating which menu entry has been selected. To display a message, drag and drop a Label widget
onto the form as shown in Figure 10.3(c). The actions for all menu entries will appear in the Action
Editor automatically as shown in Figure 10.3(d). You can see that the action names are generated
by prefixing the text action to every menu text and replacing the spaces with underscores. You will
use these actions to configure menu entries.

If you want a status bar message to appear when the user hovers over any menu entry, set it
through the statusTip property. For example, to assign a status bar message to the Open menu

entry of the File menu, select actionOpen in the Action Editor and set the statusTip property to

Opening a file, as shown in Figure 10.4(a). Similarly, you can assign status bar messages to other

menu entries. To assign a shortcut key to any menu entry, open its action from the Action Editor, as
shown in Figure 10.4(b), and click the Shortcut box. When the keyboard focus is at Shortcut, press
the key combination that you want to assign to the selected menu entry. For example, if you press
Ctrl with the O character in the Shortcut box, Ctrl+O appears in the box, as shown in Figure
10.4(b), indicating that Ctrl+O is assigned to the menu entry. You can have any combination of
shortcut keys, such as Shift+key, Alt+key, Ctrl+Shift+key, and so on.

Figure 10.4. (a) Setting a status bar message through statusTip. (b) Action dialog

box demonstrating application of a shortcut key. (c) Action dialog box demonstrating
a checkable menu entry.

[View full size image]

Note

Once assigned, shortcut keys will appear automatically with the menu entry text on
execution.

Also, you can make any menu entry checkable. All you need is to select the action of the desired
menu and check the Checkable checkbox as shown in Figure 10.4(c). The figure shows the action of
the Page Layout Box menu entry, which confirms that the shortcut key is Shift+P and is checkable.

The actions of each menu entry along with its action name, menu text, shortcut keys, checkable
status, and tooltip appear in the Action Editor as shown in Figure 10.5.

Figure 10.5. All menu entries represented as actions, along with their text, shortcut
key, checkable and tooltip properties in Action Editor.

Save the application with the name menudemo.ui. The default location where the application will be

saved is C:\Python32\Lib\site-packages\PyQt4 folder. Then use the pyuic4 command line utility to

convert the .ui (XML) file into Python code as shown here:

C:\Python32\Lib\site-packages\PyQt4>pyuic4 menudemo.ui -o menudemo.py

The generated Python code will appear as shown here:

menudemo.py
Form implementation generated from reading ui file 'menudemo.ui'

from PyQt4 import QtCore, QtGui

try:

 _fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
 _fromUtf8 = lambda s: s

class Ui_MainWindow(object):
 def setupUi(self, MainWindow):
 MainWindow.setObjectName(_fromUtf8("MainWindow"))
 MainWindow.resize(800, 600)
 self.centralwidget = QtGui.QWidget(MainWindow)
 self.centralwidget.setObjectName(_fromUtf8("centralwidget"))
 self.label = QtGui.QLabel(self.centralwidget)
 self.label.setGeometry(QtCore.QRect(40, 60, 311, 16))
 self.label.setObjectName(_fromUtf8("label"))
 MainWindow.setCentralWidget(self.centralwidget)
 self.menubar = QtGui.QMenuBar(MainWindow)
 self.menubar.setGeometry(QtCore.QRect(0, 0, 800, 20))
 self.menubar.setObjectName(_fromUtf8("menubar"))
 self.menuFile = QtGui.QMenu(self.menubar)
 self.menuFile.setObjectName(_fromUtf8("menuFile"))
 self.menuPreference = QtGui.QMenu(self.menuFile)
 self.menuPreference.setObjectName(_fromUtf8("menuPreference"))
 self.menuEdit = QtGui.QMenu(self.menubar)
 self.menuEdit.setObjectName(_fromUtf8("menuEdit"))
 MainWindow.setMenuBar(self.menubar)
 self.statusbar = QtGui.QStatusBar(MainWindow)
 self.statusbar.setObjectName(_fromUtf8("statusbar"))
 MainWindow.setStatusBar(self.statusbar)
 self.actionOpen = QtGui.QAction(MainWindow)
 self.actionOpen.setObjectName(_fromUtf8("actionOpen"))
 self.actionPage_Layout_Box = QtGui.QAction(MainWindow)
 self.actionPage_Layout_Box.setCheckable(True)
self.actionPage_Layout_Box.setObjectName(_fromUtf8("actionPage_Layout_Box"))
 self.actionFormat_Box = QtGui.QAction(MainWindow)
 self.actionFormat_Box.setCheckable(True)
 self.actionFormat_Box.setObjectName(_fromUtf8("actionFormat_Box"))
 self.actionCut = QtGui.QAction(MainWindow)
 self.actionCut.setObjectName(_fromUtf8("actionCut"))
 self.actionCopy = QtGui.QAction(MainWindow)
 self.actionCopy.setObjectName(_fromUtf8("actionCopy"))
 self.menuPreference.addAction(self.actionPage_Layout_Box)
 self.menuPreference.addAction(self.actionFormat_Box)
 self.menuFile.addAction(self.actionOpen)
 self.menuFile.addSeparator()
 self.menuFile.addAction(self.menuPreference.menuAction())
 self.menuEdit.addAction(self.actionCut)
 self.menuEdit.addAction(self.actionCopy)
 self.menubar.addAction(self.menuFile.menuAction())
 self.menubar.addAction(self.menuEdit.menuAction())
 self.retranslateUi(MainWindow)
 QtCore.QMetaObject.connectSlotsByName(MainWindow)

 def retranslateUi(self, MainWindow):
 MainWindow.setWindowTitle(QtGui.QApplication.translate("MainWindow", "MainWin-
dow", None, QtGui.QApplication.UnicodeUTF8))
 self.label.setText(QtGui.QApplication.translate("MainWindow", "TextLabel", None,
QtGui.QApplication.UnicodeUTF8))
 self.menuFile.setTitle(QtGui.QApplication.translate("MainWindow", "File", None,
QtGui.QApplication.UnicodeUTF8))
 self.menuPreference.setTitle(QtGui.QApplication.translate("MainWindow", "View",
None, QtGui.QApplication.UnicodeUTF8))
 self.menuEdit.setTitle(QtGui.QApplication.translate("MainWindow", "Edit", None,
QtGui.QApplication.UnicodeUTF8))
 self.actionOpen.setText(QtGui.QApplication.translate("MainWindow", "Open", None,
QtGui.QApplication.UnicodeUTF8))

 self.actionOpen.setStatusTip(QtGui.QApplication.translate("MainWindow", "Open-
ing a file", None, QtGui.QApplication.UnicodeUTF8))
 self.actionOpen.setShortcut(QtGui.QApplication.translate("MainWindow", "Ctrl+O",
None, QtGui.QApplication.UnicodeUTF8))

self.actionPage_Layout_Box.setText(QtGui.QApplication.translate("MainWindow", "Page Lay-
out Box", None, QtGui.QApplication.UnicodeUTF8))
self.actionPage_Layout_Box.setStatusTip(QtGui.QApplication.translate("MainWindow",
"Setting page layout", None, QtGui.QApplication.UnicodeUTF8))

self.actionPage_Layout_Box.setShortcut(QtGui.QApplication.translate("MainWindow",
"Shift+P", None, QtGui.QApplication.UnicodeUTF8))
 self.actionFormat_Box.setText(QtGui.QApplication.translate("MainWindow",
"Format Box", None, QtGui.QApplication.UnicodeUTF8))

self.actionFormat_Box.setStatusTip(QtGui.QApplication.translate("MainWindow",
"Format toolbox for formatting", None, QtGui.QApplication.UnicodeUTF8))

self.actionFormat_Box.setShortcut(QtGui.QApplication.translate("MainWindow", "Ctrl
+Shift+F", None, QtGui.QApplication.UnicodeUTF8))
 self.actionCut.setText(QtGui.QApplication.translate("MainWindow", "Cut", None,
QtGui.QApplication.UnicodeUTF8))
 self.actionCut.setStatusTip(QtGui.QApplication.translate("MainWindow", "Cutting
text", None, QtGui.QApplication.UnicodeUTF8))
 self.actionCopy.setText(QtGui.QApplication.translate("MainWindow", "Copy", None,
QtGui.QApplication.UnicodeUTF8))
 self.actionCopy.setStatusTip(QtGui.QApplication.translate("MainWindow",
"Copying text", None, QtGui.QApplication.UnicodeUTF8))

The next step is to create a Python script that imports the code to invoke the menu and display the
text message with a Label widget when a menu entry is selected. You want a message to appear
that indicates which menu entry is selected. The Python script will appear as shown here:

callmenu.pyw
import sys
from menudemo import *

class MyForm(QtGui.QMainWindow):
 def __init__(self, parent=None):
 QtGui.QWidget.__init__(self, parent)
 self.ui = Ui_MainWindow()
 self.ui.setupUi(self)
 self.connect(self.ui.actionOpen, QtCore.SIGNAL('triggered()'), self.openmessage)
 self.connect(self.ui.actionPage_Layout_Box, QtCore.SIGNAL('triggered()'), self.
layoutmessage)
 self.connect(self.ui.actionFormat_Box, QtCore.SIGNAL('triggered()'),
self.formatmessage)
 self.connect(self.ui.actionCut, QtCore.SIGNAL('triggered()'), self.cutmessage)
 self.connect(self.ui.actionCopy, QtCore.SIGNAL('triggered()'), self.copymessage)

 def openmessage(self):
 self.ui.label.setText("Opening a File")

 def layoutmessage(self):
 self.ui.label.setText("You selected Page Layout option")
 def formatmessage(self):
 self.ui.label.setText("You selected Format option")

 def cutmessage(self):
 self.ui.label.setText("Cutting a text")

 def copymessage(self):
 self.ui.label.setText("Copying text")

if __name__ == "__main__":
 app = QtGui.QApplication(sys.argv)
 myapp = MyForm()
 myapp.show()
 sys.exit(app.exec_())

You see that the triggered() signal for each menu entry is connected to a method that performs

the desired task when the menu entry is selected. For example, the triggered() signal of the

actionOpen action (Open menu entry) is connected to openmessage(). Now, when the user selects

the Open menu entry from the File menu, the openmessage() function will be executed. In the

openmessage() function, the text Opening a File is displayed with a Label widget. Similarly, the

triggered() signals of other menu entries are connected to their respective methods to indicate

which menu entry is selected. The status bar messages will also appear (if defined with the
statusTip property) while hovering over a menu entry. Figure 10.6(a) shows the Setting Page

Layout status bar message when the user hovers over the View, Page Layout Box menu entry. On
selecting the Page Layout Box menu entry, You Selected Page Layout appears as shown in Figure
10.6(b). Again, Figure 10.6(c) displays Cutting a Text when the user hovers over the Edit > Cut
menu entry. Finally, Figure 10.6(d) displays Cutting a Text when the user selects the Edit > Cut
option.

Figure 10.6. (a) Selecting the Page Layout Box of View. (b) The message indicating
selection of the Page Layout Box sub-menu option. (c) Selecting the Cut menu entry

from the Edit menu. (d) Text message indicating selection of Cut.

[View full size image]

Creating a Toolbar

The toolbar represents different tools for tasks the user performs in an application. The tools are
usually represented as icons. When placing icons on the toolbar, you can pick icon images either
from the disk drive or from the resource file. Before you create a toolbar, let’s see how a resource
file is created.

Creating a Resource File

Qt Designer allows you to specify resources for an application when you design the form. You can
create a separate resource file for each form in the application. To specify a resource file, you
need a Resource Browser, which is visible by default below the Property Editor. If you cannot see
the Resource Browser tab, open the View menu and make sure that the Resource Browser menu
option is checked. You will see the screen shown in Figure 10.7.

Figure 10.7. The Resource Browser window, showing icons for the Edit Resources
and Reload options.

The Resource Browser window displays two icons at the top, Edit Resources and Reload. As the
name suggests, Edit Resources is used to create and edit new resources. The Reload option is for
reloading the current form’s resource files and images in case they have been modified outside Qt
Designer. On selecting Edit Resources icon, you get the screen shown in Figure 10.8.

Figure 10.8. Edit Resources dialog to add, edit, and remove resource files and their
resources.

The six icons that you see at the bottom of the Edit Resources dialog are explained in Table 10.1.

Table 10.1. Icons in Edit Resources

Icon Description

New resource
file

Creates a new resource file.

Open resource
file

Loads an existing resource file into the Edit
Resources dialog.

Remove Removes the selected resource file from the
Edit Resources dialog.

Add prefix Adds a prefix to the resource file for
categorizing resources.

Add files Adds a resource from the disk drive.

Remove Removes the selected resource from the
resource file.

On selecting New Resource File, you get a dialog that prompts you to provide a name for the new
resource file. Enter the filename tmpresource. The name will be stored with a .qrc extension, and

the file will appear in the Edit Resources dialog box. The next step is to add resources to the
resource file currently open.

To add a resource, add a prefix to the resource file. A prefix is a section or category name given to
a resource. Select the Add Prefix icon, and a prefix will be added with the default name
newPrefix. You can change the prefix name to indicate the type of resources assigned to it.

Change the prefix name to icon images.

Note

You cannot add a resource to the Resource Editor without adding a prefix.

Select the Add Files icon (marked with an ellipse) to add resources to the prefix category. Browse
your disk drive to select the resource you want to add. Add an image named plus.ICO. The Edit

Resources dialog will appear as shown in Figure 10.9(a).

Figure 10.9. (a) The Edit Resources dialog showing the resource file and the icon
image added to it. (b) The icon image appears in the Resource Browser window.

[View full size image]

Select OK, and the resource (image) added appears in the Resource Browser as shown in Figure
10.9(b). You can add more resources to the prefix by selecting the Add Files icon. Also, you can
add another prefix to represent another category of resources and add new resources to it.

Note

You can create any number of prefixes and add any number of resources to each prefix.

Let’s create a new application to understand the steps involved in creating a toolbar. Open Qt
Designer and create a Main Window-based application. To add a toolbar, right-click on the Main
Window and select Add Tool Bar from the context menu. A blank toolbar will be added below the
menu bar as shown in Figure 10.10.

Figure 10.10. The default toolbar in Main Window.

Toolbar buttons are created with actions. You need to create an action in the Action Editor for
each toolbar button you want to display. Then, drag each action from the Action Editor and drop it
on the toolbar to represent a button on the toolbar.

Invoke the Action Editor. To display and enable Action Editor, select View, Action Editor. Let’s
create a toolbar with icons to represent arithmetical operators such as plus, minus, multiply,
divide, and equal to symbols as shown in Figure 10.11(b). Assuming you have the .ico files for

these operations, select the New button in the Action Editor to create an action for the first
toolbar button. In the Text box, specify the name of the action, Plus. In the Object Name box,
the name of the Action object automatically appears, prefixed with the text action. In the ToolTip

box, enter the action name, though you can enter any descriptive text. The Icon drop-down list
shows two options, Choose Resource and Choose File as shown in Figure 10.11(a). Select Choose
Resource. You get the Select Resource dialog as shown in Figure 10.11(b).

Figure 10.11. (a) Adding a new action. (b) Using Select Resource to specify an

icon.

[View full size image]

On the left side of the Select Resource dialog are the prefixes in the current resource file, and on
the right side are the resources assigned to the prefix. Remember that you created a prefix
named icon images and assigned an image named plus.ICO to it. Select the Plus icon image

from the icon images prefix to assign it to the Plus action.

If the prefix doesn’t appear in the Select Resource dialog, it means the resource file is not loaded
in the current form. In that case, select the Edit Resources icon at the top of the dialog to open
the Edit Resources dialog (refer to Figure 10.8) and select the Open Resource File icon to select
and load the resource file that you created earlier, tmpresources.qrc. When the resource file is

loaded, you can see its prefixes and their respective resources.

Select Choose File to browse your disk drive and select the .ico image to represent the Plus

action. The action will appear as shown in Figure 10.12(a). Select OK to create the action. Repeat
the procedure to create actions for the minus, multiply, divide, and equal to operators. The Action
Editor will appear as shown in Figure 10.12(b).

Figure 10.12. (a) Action window showing creation of the Plus icon. (b) All actions
listed in Action Editor. (c) Tool Bar with all actions dropped in as toolbar buttons.

[View full size image]

Note

To add an icon to an action, you can also drag it from the Resource Browser and drop it
onto the action in the Action Editor window.

Now, you can drag an action from the Action Editor and drop it onto the default toolbar below the
menu bar. Each action will appear as a toolbar button.

To know which toolbar button is selected by the user, you need to add a Label widget to the form.
The Label widget will display a message indicating which button is selected in the toolbar. The
Tool Bar and Label (with its default text, TextLabel) widgets will appear as shown in Figure
10.12(c).

Save the application with the name toolbardemo.ui. The pyuic4 command line utility will convert

the .ui (XML) file into Python code, and the code will appear as follows:

toolbardemo.py

Form implementation generated from reading ui file 'toolbardemo.ui'

from PyQt4 import QtCore, QtGui

try:
 _fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
 _fromUtf8 = lambda s: s

class Ui_MainWindow(object):
 def setupUi(self, MainWindow):
 MainWindow.setObjectName(_fromUtf8("MainWindow"))
 MainWindow.resize(800, 600)
 self.centralwidget = QtGui.QWidget(MainWindow)
 self.centralwidget.setObjectName(_fromUtf8("centralwidget"))
 self.label = QtGui.QLabel(self.centralwidget)
 self.label.setGeometry(QtCore.QRect(50, 30, 291, 16))
 self.label.setObjectName(_fromUtf8("label"))
 MainWindow.setCentralWidget(self.centralwidget)
 self.menubar = QtGui.QMenuBar(MainWindow)
 self.menubar.setGeometry(QtCore.QRect(0, 0, 800, 20))
 self.menubar.setObjectName(_fromUtf8("menubar"))
 MainWindow.setMenuBar(self.menubar)
 self.statusbar = QtGui.QStatusBar(MainWindow)
 self.statusbar.setObjectName(_fromUtf8("statusbar"))
 MainWindow.setStatusBar(self.statusbar)
 self.toolBar = QtGui.QToolBar(MainWindow)
 self.toolBar.setObjectName(_fromUtf8("toolBar"))
 MainWindow.addToolBar(QtCore.Qt.TopToolBarArea, self.toolBar)
 self.actionPlus = QtGui.QAction(MainWindow)
 icon = QtGui.QIcon()
 icon.addPixmap(QtGui.QPixmap(_fromUtf8("plus.ICO")), QtGui.QIcon.Normal,
QtGui.QIcon.Off)
 self.actionPlus.setIcon(icon)
 self.actionPlus.setObjectName(_fromUtf8("actionPlus"))
 self.actionMinus = QtGui.QAction(MainWindow)
 icon1 = QtGui.QIcon()
 icon1.addPixmap(QtGui.QPixmap(_fromUtf8("minus.ICO")), QtGui.QIcon.Normal,
QtGui.QIcon.Off)
 self.actionMinus.setIcon(icon1)
 self.actionMinus.setObjectName(_fromUtf8("actionMinus"))
 self.actionMultiply = QtGui.QAction(MainWindow)
 icon2 = QtGui.QIcon()
 icon2.addPixmap(QtGui.QPixmap(_fromUtf8("multiply.ICO")), QtGui.QIcon.Normal,
QtGui.QIcon.Off)
 self.actionMultiply.setIcon(icon2)
 self.actionMultiply.setObjectName(_fromUtf8("actionMultiply"))
 self.actionDivide = QtGui.QAction(MainWindow)
 icon3 = QtGui.QIcon()
 icon3.addPixmap(QtGui.QPixmap(_fromUtf8("divide.ICO")), QtGui.QIcon.Normal,
QtGui.QIcon.Off)
 self.actionDivide.setIcon(icon3)
 self.actionDivide.setObjectName(_fromUtf8("actionDivide"))
 self.actionEqual = QtGui.QAction(MainWindow)
 icon4 = QtGui.QIcon()
 icon4.addPixmap(QtGui.QPixmap(_fromUtf8("equal.ICO")), QtGui.QIcon.Normal,
QtGui.QIcon.Off)
 self.actionEqual.setIcon(icon4)
 self.actionEqual.setObjectName(_fromUtf8("actionEqual"))
 self.toolBar.addAction(self.actionPlus)
 self.toolBar.addAction(self.actionMinus)

 self.toolBar.addAction(self.actionMultiply)
 self.toolBar.addAction(self.actionDivide)
 self.toolBar.addAction(self.actionEqual)
 self.retranslateUi(MainWindow)
 QtCore.QMetaObject.connectSlotsByName(MainWindow)

 def retranslateUi(self, MainWindow):
 MainWindow.setWindowTitle(QtGui.QApplication.translate("MainWindow",
"MainWindow", None, QtGui.QApplication.UnicodeUTF8))
 self.label.setText(QtGui.QApplication.translate("MainWindow",
"TextLabel", None, QtGui.QApplication.UnicodeUTF8))
 self.toolBar.setWindowTitle(QtGui.QApplication.translate("MainWindow",
"toolBar", None, QtGui.QApplication.UnicodeUTF8))
 self.actionPlus.setText(QtGui.QApplication.translate("MainWindow",
"Plus", None, QtGui.QApplication.UnicodeUTF8))
 self.actionPlus.setToolTip(QtGui.QApplication.translate("MainWindow",
"Plus", None, QtGui.QApplication.UnicodeUTF8))
 self.actionMinus.setText(QtGui.QApplication.translate("MainWindow",
"Minus", None, QtGui.QApplication.UnicodeUTF8))
 self.actionMinus.setToolTip(QtGui.QApplication.translate("MainWindow",
"Minus", None, QtGui.QApplication.UnicodeUTF8))
 self.actionMultiply.setText(QtGui.QApplication.translate("MainWindow",
"Multiply", None, QtGui.QApplication.UnicodeUTF8))

self.actionMultiply.setToolTip(QtGui.QApplication.translate("MainWindow",
"Multiply", None, QtGui.QApplication.UnicodeUTF8))
 self.actionDivide.setText(QtGui.QApplication.translate("MainWindow",
"Divide", None, QtGui.QApplication.UnicodeUTF8))
 self.actionDivide.setToolTip(QtGui.QApplication.translate("MainWindow",
"Divide", None, QtGui.QApplication.UnicodeUTF8))
 self.actionEqual.setText(QtGui.QApplication.translate("MainWindow",
"Equal", None, QtGui.QApplication.UnicodeUTF8))
 self.actionEqual.setToolTip(QtGui.QApplication.translate("MainWindow",
"Equal", None, QtGui.QApplication.UnicodeUTF8))

Now you need to create a Python script that imports the code to invoke the toolbar and displays
the text message with a Label widget when a toolbar button is selected from the toolbar. The
script file will appear as follows:

calltoolbar.pyw
import sys
from toolbardemo import *
class MyForm(QtGui.QMainWindow):
 def __init__(self, parent=None):
 QtGui.QWidget.__init__(self, parent)
 self.ui = Ui_MainWindow()
 self.ui.setupUi(self)
 self.connect(self.ui.actionPlus, QtCore.SIGNAL('triggered()'),
self.plusmessage)
 self.connect(self.ui.actionMinus, QtCore.SIGNAL('triggered()'),
self.minusmessage)
 self.connect(self.ui.actionMultiply, QtCore.SIGNAL('triggered()'),
self.multiplymessage)
 self.connect(self.ui.actionDivide, QtCore.SIGNAL('triggered()'),
self.dividemessage)
 self.connect(self.ui.actionEqual, QtCore.SIGNAL('triggered()'),
self.equalmessage)

 def plusmessage(self):
 self.ui.label.setText("You have selected Plus ")

 def minusmessage(self):
 self.ui.label.setText("You have selected Minus ")

 def multiplymessage(self):
 self.ui.label.setText("You have selected Multiply ")

 def dividemessage(self):
 self.ui.label.setText("You have selected Divide ")

 def equalmessage(self):
 self.ui.label.setText("You have selected Equal ")

if __name__ == "__main__":
 app = QtGui.QApplication(sys.argv)
 myapp = MyForm()
 myapp.show()
 sys.exit(app.exec_())

You see that the triggered() signal of the action of each toolbar button is connected to a

method. The method will be invoked when its toolbar button is selected. For example, the
triggered() signal of actionPlus (the plus icon) is connected to plusmessage(). When the user

selects the plus icon from the toolbar, the plus-message() method will be executed. In the

plusmessage() method, “You have selected Plus” is displayed with a Label widget. Similarly, the

triggered() signal of the actions of other toolbar buttons are connected to their respective

methods. If the Multiply icon is selected, “You have selected Multiply” is displayed, as shown in
Figure 10.13.

Figure 10.13. The toolbar displaying different toolbar buttons and a Label widget
indicating the button that is selected.

How about a detachable tool palette? To create a dockable or floating tool palette or widget panel,
you use a Dock Widget. Let’s see how it works.

Dock Widget

A Dock widget is created with the QDockWidget class. A Dock widget can be used to create

detachable tool palettes or widget panels. They can be closed or docked in the Dock area around the
central widget inside QMainWindow or floated as a top-level window on the desktop. Allowable dock

areas are LeftDockWidgetArea, RightDockWidgetArea, TopDockWidgetArea, and

BottomDockWidgetArea, where TopDockWidgetArea is below the toolbar. You also can restrict where a

Dock widget can be placed. For example, if you restrict the Dock widget to the left or right, you will
not be able to drag it to the top or bottom. A Dock widget has a title bar and buttons that are used to
float or close it. The appearance of the title bar and buttons depends on the style being used.
Widgets that you want to be available in dock areas or as floating windows are placed in Dock
widgets.

The user can drag a Dock window out of the dock area entirely so that it becomes a free-floating
window. The properties that control movement of the Dock widget and the appearance of its title bar
and other buttons are shown in Table 10.2.

Table 10.2. Properties of a Dock Widget

Property Description

DockWidgetClosable If selected, the Dock widget can be closed.

DockWidgetMovable If selected, the Dock widget can be moved
between dock areas.

DockWidgetFloatable If selected, the Dock widget can be detached
from the main window and floated as an
independent window.

DockWidgetVerticalTitleBarIf selected, the Dock widget displays a
vertical title bar on its left side.

AllDockWidgetFeatures If selected, automatically selects the
DockWidgetClosable, DockWidgetMovable,

and DockWidgetFloatable properties,

allowing the Dock widget to be closed,
moved, or floated.

NoDockWidgetFeatures If selected, the Dock widget cannot be
closed, moved, or floated.

Create a new Main Window application and drag and drop a Dock widget onto the form. We’ll drag
and drop widgets that you want to be available in dock areas or as a floating window in the Dock
widget. To enable all features in the Dock widget, select it and check its AllDockWidgetFeatures

property in the Features section of the Property Editor window (see Figure 10.14). The
AllDockWidgetFeatures property is to make the Dock widget closable and movable in the Dock and

floatable as an independent window. Also, set the title of the Dock window to Dock Window with the
windowTitle property. Check LeftDockWidgetArea in the allowedAreas section to restrict the Dock

widget to be docked in the left Dock widget area only.

Figure 10.14. A Dock widget with widgets and the Property Editor window showing
the Dock widget’s properties.

[View full size image]

The docked property plays a major role in making a Dock widget dockable. If the docked property is

not checked, you will not be able to dock the Dock widget to any of the allowable areas. Though you
have checked the LeftDockWidgetArea property, you will not be able to dock the Dock widget to the

left Dock widget area because you have not checked the docked property.

Save the application with the name dockdemo.ui. The .ui (XML) file generated with the pyuic4

command utility will appear as follows:

dockdemo.py

Form implementation generated from reading ui file 'dockdemo.ui'
from PyQt4 import QtCore, QtGui

try:
 _fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
 _fromUtf8 = lambda s: s

class Ui_MainWindow(object):
 def setupUi(self, MainWindow):
 MainWindow.setObjectName(_fromUtf8("MainWindow"))
 MainWindow.resize(212, 253)
 self.centralwidget = QtGui.QWidget(MainWindow)
 self.centralwidget.setObjectName(_fromUtf8("centralwidget"))
 self.dockWidget = QtGui.QDockWidget(self.centralwidget)
 self.dockWidget.setGeometry(QtCore.QRect(40, 10, 111, 191))
 self.dockWidget.setFloating(False)
 self.dockWidget.setFeatures(QtGui.QDockWidget.AllDockWidgetFeatures)
 self.dockWidget.setAllowedAreas(QtCore.Qt.LeftDockWidgetArea)
 self.dockWidget.setObjectName(_fromUtf8("dockWidget"))
 self.dockWidgetContents = QtGui.QWidget()
 self.dockWidgetContents.setObjectName(_fromUtf8("dockWidgetContents"))
 self.label = QtGui.QLabel(self.dockWidgetContents)
 self.label.setGeometry(QtCore.QRect(30, 20, 46, 13))
 self.label.setObjectName(_fromUtf8("label"))
 self.lineEdit = QtGui.QLineEdit(self.dockWidgetContents)
 self.lineEdit.setGeometry(QtCore.QRect(0, 40, 113, 20))
 self.lineEdit.setObjectName(_fromUtf8("lineEdit"))
 self.checkBox = QtGui.QCheckBox(self.dockWidgetContents)
 self.checkBox.setGeometry(QtCore.QRect(20, 70, 70, 17))
 self.checkBox.setObjectName(_fromUtf8("checkBox"))
 self.radioButton = QtGui.QRadioButton(self.dockWidgetContents)

 self.radioButton.setGeometry(QtCore.QRect(20, 100, 82, 17))
 self.radioButton.setObjectName(_fromUtf8("radioButton"))
 self.pushButton = QtGui.QPushButton(self.dockWidgetContents)
 self.pushButton.setGeometry(QtCore.QRect(20, 130, 75, 23))
 self.pushButton.setObjectName(_fromUtf8("pushButton"))
 self.dockWidget.setWidget(self.dockWidgetContents)
 MainWindow.setCentralWidget(self.centralwidget)
 self.menubar = QtGui.QMenuBar(MainWindow)
 self.menubar.setGeometry(QtCore.QRect(0, 0, 212, 20))
 self.menubar.setObjectName(_fromUtf8("menubar"))
 MainWindow.setMenuBar(self.menubar)
 self.statusbar = QtGui.QStatusBar(MainWindow)
 self.statusbar.setObjectName(_fromUtf8("statusbar"))
 MainWindow.setStatusBar(self.statusbar)
 self.retranslateUi(MainWindow)
 QtCore.QMetaObject.connectSlotsByName(MainWindow)

 def retranslateUi(self, MainWindow):
 MainWindow.setWindowTitle(QtGui.QApplication.translate("MainWindow", "MainWin-
dow", None, QtGui.QApplication.UnicodeUTF8))

self.dockWidget.setWindowTitle(QtGui.QApplication.translate("MainWindow", "Dock
Window", None, QtGui.QApplication.UnicodeUTF8))
 self.label.setText(QtGui.QApplication.translate("MainWindow", "TextLabel", None,
QtGui.QApplication.UnicodeUTF8))
 self.checkBox.setText(QtGui.QApplication.translate("MainWindow", "CheckBox",
None, QtGui.QApplication.UnicodeUTF8))
 self.radioButton.setText(QtGui.QApplication.translate("MainWindow", "RadioButton",
None, QtGui.QApplication.UnicodeUTF8))
 self.pushButton.setText(QtGui.QApplication.translate("MainWindow", "PushButton",
None, QtGui.QApplication.UnicodeUTF8))

As usual, the next step is to create a Python script that imports the code to invoke the Dock widget.
The Python script file will have the following code:

 calldock.pyw
 import sys
 from dockdemo import *

 class MyForm(QtGui.QMainWindow):
 def __init__(self, parent=None):
 QtGui.QWidget.__init__(self, parent)
 self.ui = Ui_MainWindow()
 self.ui.setupUi(self)
 if __name__ == "__main__":
 app = QtGui.QApplication(sys.argv)
 myapp = MyForm()
 myapp.show()
 sys.exit(app.exec_())

When the application is executed, you get a Dock widget in the Main Window (Figure 10.15), but you
cannot move it to any Dock area because you haven’t checked the docked property of the Dock

widget.

Figure 10.15. A Dock widget displaying the widgets it contains.

To allow the Dock widget to be dockable in all four Dock areas, select LeftDockWidgetArea,

RightDockWidgetArea, TopDockWidgetArea, and BottomDockWidgetArea in the allowedAreas section

of the Property Editor (see Figure 10.16). If you want the Dock widget to first appear as docked in
the right Dock widget area, check the docked property and set the value of the dockWidgetArea

property to RightDockWidgetArea. The Dock widget will immediately shift to the right Dock area as

shown in Figure 10.16.

Figure 10.16. Settings properties of the Dock widget to make it dockable and docked
to the right Dock area.

[View full size image]

To see the changes made in properties of the Dock widget, save the file and regenerate the Python
code with the pyuic4 command line utility. The calldock.pyw script will pick up the code on

execution. The Dock widget appears in the right Dock area as shown in Figure 10.17.

Figure 10.17. The Dock widget appears docked in the right dock area.

Now you can drag the widget to any area. If you drag it to the top, it will be docked as shown in
Figure 10.18(a). If you drag it to the left or bottom, it will be docked as shown in Figure 10.18(b)
and (c), respectively.

Figure 10.18. (a) Dock widget when docked at the top. (b) Docked on the left. (c)
Docked at the bottom.

[View full size image]

Note

You can drag the Dock widget outside the Main Window to make it an independent floating
window.

If you want the Dock widget to appear as an independent floating window, check its floating

property, as shown in Figure 10.19.

Figure 10.19. Setting properties of the Dock widget to make it a floatable window.

[View full size image]

If you check the floating property of the Dock widget, it will appear as an independent floating

window (Figure 10.20) and can be moved anywhere on the desktop. Also, the Dock widget can be
docked to any of the four dock areas.

Figure 10.20. Dock widget appears as a floating window.

With floating checked and docked unchecked, the Dock widget will initially be floating and can be

moved anywhere on the desktop but cannot be docked in any of the Dock areas. With
NoDockWidgetFeatures selected, all other properties in the Features section are unchecked

automatically; all buttons will disappear from the Dock widget, and you will not be able to close or
move it. Similarly, on selecting NoDockWidgetArea, all other properties in the allowedAreas section

are deselected automatically. You can move the Dock window anywhere on the desktop, but you
cannot dock it in the Dock areas of the Main Window.

Which widget should you use when you have a lot of information to be displayed? Let’s find out.

Tab Widget

The Tab widget is used to display information in chunks. It enables you to split information into
small sections and display each section when the Tab button is selected. When you drag a Tab
widget onto a dialog, it appears with two default Tab buttons labeled Tab1 and Tab2, as shown in
Figure 10.21. You can add more Tab buttons to the Tab widget and delete existing buttons if you
want.

Figure 10.21. A Tab widget with its default buttons.

Let’s create a new application based on the Dialog without Buttons template and drag and drop a
Tab widget onto the form. Assume that you run a restaurant that sells items in the categories
Food, Drinks, and Ice Creams. You will use the Tab widget to display a list of items sold under

the three categories. Using the currentTabText property of the Tab widget, change the text

displayed on each Tab button. Set the text of two buttons to Food and Drinks. To add a new Tab

button, right-click on either Tab button and select Insert Page from the context menu that
appears. You will see two suboptions, After Current Page and Before Current Page. Select After
Current Page to add a new tab after the Drinks tab. The new tab will have the default text Page,
which you will change to Ice Creams using the currentTabText property. Expand the Tab widget

by selecting and dragging its nodes to provide blank space below the Tab buttons. Select each Tab
button and drop the desired widgets into the blank space provided. For example, drop CheckBox
widgets onto the first Tab button, Food, to display the items available in the Food category as

shown in Figure 10.22. Similarly, place some widgets on the other two Tab buttons.

Figure 10.22. Widgets added to each tab to show content.

To enhance the appearance of the widgets on the form, you can apply fonts, change their
background and foreground colors, and so on. Let’s learn more about applying styles to widgets.

Working with the Style Sheet Editor

You can apply styles to any widget on a form to customize its appearance. Let’s apply styles to the
Tab widget through the Style Sheet Editor. To open the Style Sheet Editor, right-click the Tab
widget and select Change Style Sheet from the context menu. The Edit Style Sheet dialog box
appears that displays four drop-downs: Add Resource, Add Gradient, Add Color, and an Add Font
button, as shown in Figure 10.23. The large text box below the drop-downs acts as the Style Sheet
Editor; whatever style you apply through this dialog will appear in the form of code in the text box,
allowing you to edit the generated code. Clicking a drop-down list shows respective options that
you can select, which opens the related dialog for choosing images, gradients, colors, and fonts to
be applied to the selected widgets.

Figure 10.23. Options for adding a resource, gradient, color, or a font to the selected
widget.

On selecting the Add Resource drop-down, three options will be displayed: background-image,
border-image, and image. After choosing an option, you get the Select Resource dialog box shown
in Figure 10.24(a). The Select Resource dialog box displays two icons at the top, Edit Resources
and Reload. Remember that the Edit Resources icon is used for creating and editing new resources
(refer to Figure 10.11), and the Reload icon reloads the resources if the resource file or its images
were modified outside Qt Designer. Selecting the Add Gradient drop-down shows several options
like, color, background-color, alternate-background-color, border-color, border-top-color, border-
right-color, and so on. Selecting any of the displayed options brings up the dialog boxes shown in
Figure 10.24(b). You can modify a gradient or create a new one by selecting the Edit button.

Figure 10.24. (a) Dialog showing resources. (b) Dialog to select a gradient. (c)
Dialog to select a color.

[View full size image]

The Color dialog lets you apply a color to the selected widget. You also can create custom colors by
mixing different quantities of red, green, and blue and by setting Hue and Sat values as shown in
Figure 10.24(c). The Font dialog is the same as you see in other editors (see Figure 10.25) and can
be used to apply a font, style, and size to a widget.

Figure 10.25. Dialog to select and apply font to the selected widget.

To apply color to the Tab widget, select it in the form and select the background-color option from

the Add Color drop-down. Select green in the Select Color dialog box and click OK. The background
of the Tab widget will turn green, and the code for applying a green background color on the Tab
widget will appear in the Style Sheet Editor, as shown in Figures 10.26(a) and (b).

Figure 10.26. (a) The tab contents on application of a green background color. (b)
Code in the style sheet that adds green background color.

[View full size image]

Similarly, on changing the font, font size, or font style with the Font dialog box will cause the Tab
widget to appear as shown in Figure 10.27(a), and the code is added to the style sheet as shown
in Figure 10.27(b).

Figure 10.27. (a) The tab contents on changing the font and font size. (b) Code in
the style sheet that adds a green background color and font.

[View full size image]

Save the application with the name tabwidgetdemo.ui. The pyuic4 command utility converts the

.ui (XML) file into Python code as follows:

tabwidgetdemo.py

Form implementation generated from reading ui file 'tabwidgetdemo.ui'
from PyQt4 import QtCore, QtGui

try:
 _fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
 _fromUtf8 = lambda s: s
class Ui_Dialog(object):
 def setupUi(self, Dialog):
 Dialog.setObjectName(_fromUtf8("Dialog"))
 Dialog.resize(316, 199)
 self.tabWidget = QtGui.QTabWidget(Dialog)
 self.tabWidget.setGeometry(QtCore.QRect(20, 20, 261, 151))
 self.tabWidget.setStyleSheet(_fromUtf8("background-color: rgb(170, 255, 255);
\n"
"font: 75 10pt \"MS Shell Dlg 2\";"))
 self.tabWidget.setObjectName(_fromUtf8("tabWidget"))
 self.tab = QtGui.QWidget()
 self.tab.setObjectName(_fromUtf8("tab"))
 self.checkBox_2 = QtGui.QCheckBox(self.tab)
 self.checkBox_2.setGeometry(QtCore.QRect(20, 50, 91, 17))
 self.checkBox_2.setObjectName(_fromUtf8("checkBox_2"))
 self.checkBox_3 = QtGui.QCheckBox(self.tab)

 self.checkBox_3.setGeometry(QtCore.QRect(20, 80, 141, 17))
 self.checkBox_3.setObjectName(_fromUtf8("checkBox_3"))
 self.checkBox = QtGui.QCheckBox(self.tab)
 self.checkBox.setGeometry(QtCore.QRect(20, 20, 111, 17))
 self.checkBox.setObjectName(_fromUtf8("checkBox"))
 self.tabWidget.addTab(self.tab, _fromUtf8(""))
 self.tab_2 = QtGui.QWidget()
 self.tab_2.setObjectName(_fromUtf8("tab_2"))
 self.radioButton_6 = QtGui.QRadioButton(self.tab_2)
 self.radioButton_6.setGeometry(QtCore.QRect(20, 50, 111, 17))
 self.radioButton_6.setObjectName(_fromUtf8("radioButton_6"))
 self.radioButton_5 = QtGui.QRadioButton(self.tab_2)
 self.radioButton_5.setGeometry(QtCore.QRect(20, 80, 82, 17))
 self.radioButton_5.setObjectName(_fromUtf8("radioButton_5"))
 self.radioButton_4 = QtGui.QRadioButton(self.tab_2)
 self.radioButton_4.setGeometry(QtCore.QRect(20, 20, 82, 17))
 self.radioButton_4.setObjectName(_fromUtf8("radioButton_4"))
 self.tabWidget.addTab(self.tab_2, _fromUtf8(""))
 self.tab_3 = QtGui.QWidget()
 self.tab_3.setObjectName(_fromUtf8("tab_3"))
 self.checkBox_14 = QtGui.QCheckBox(self.tab_3)
 self.checkBox_14.setGeometry(QtCore.QRect(30, 40, 111, 17))
 self.checkBox_14.setObjectName(_fromUtf8("checkBox_14"))
 self.checkBox_12 = QtGui.QCheckBox(self.tab_3)
 self.checkBox_12.setGeometry(QtCore.QRect(30, 10, 81, 17))
 self.checkBox_12.setObjectName(_fromUtf8("checkBox_12"))
 self.checkBox_11 = QtGui.QCheckBox(self.tab_3)
 self.checkBox_11.setGeometry(QtCore.QRect(30, 70, 101, 17))
 self.checkBox_11.setObjectName(_fromUtf8("checkBox_11"))
 self.checkBox_13 = QtGui.QCheckBox(self.tab_3)
 self.checkBox_13.setGeometry(QtCore.QRect(30, 100, 111, 17))
 self.checkBox_13.setObjectName(_fromUtf8("checkBox_13"))
 self.tabWidget.addTab(self.tab_3, _fromUtf8(""))
 self.retranslateUi(Dialog)
 self.tabWidget.setCurrentIndex(2)
 QtCore.QMetaObject.connectSlotsByName(Dialog)

 def retranslateUi(self, Dialog):
 Dialog.setWindowTitle(QtGui.QApplication.translate("Dialog", "Dialog", None,
QtGui.QApplication.UnicodeUTF8))
 self.checkBox_2.setText(QtGui.QApplication.translate("Dialog", "Hot Dog 5$", None,
QtGui.QApplication.UnicodeUTF8))
 self.checkBox_3.setText(QtGui.QApplication.translate("Dialog", "Chicken Burger 10
$", None, QtGui.QApplication.UnicodeUTF8))
 self.checkBox.setText(QtGui.QApplication.translate("Dialog", "Pizza 25 $", None,
QtGui.QApplication.UnicodeUTF8))
 self.tabWidget.setTabText(self.tabWidget.indexOf(self.tab),
QtGui.QApplication.translate("Dialog", "Food", None,
QtGui.QApplication.UnicodeUTF8))
 self.radioButton_6.setText(QtGui.QApplication.translate("Dialog",
"Cold Drink 10$", None, QtGui.QApplication.UnicodeUTF8))
 self.radioButton_5.setText(QtGui.QApplication.translate("Dialog", "Coffee
5$", None, QtGui.QApplication.UnicodeUTF8))
 self.radioButton_4.setText(QtGui.QApplication.translate("Dialog", "Juice
15$", None, QtGui.QApplication.UnicodeUTF8))
 self.tabWidget.setTabText(self.tabWidget.indexOf(self.tab_2),
QtGui.QApplication.translate("Dialog", "Drinks", None,
QtGui.QApplication.UnicodeUTF8))
 self.checkBox_14.setText(QtGui.QApplication.translate("Dialog", "Strawberry
7$", None, QtGui.QApplication.UnicodeUTF8))
 self.checkBox_12.setText(QtGui.QApplication.translate("Dialog", "Vanilla 5$",
None, QtGui.QApplication.UnicodeUTF8))
 self.checkBox_11.setText(QtGui.QApplication.translate("Dialog", "Pineapple

8$", None, QtGui.QApplication.UnicodeUTF8))
 self.checkBox_13.setText(QtGui.QApplication.translate("Dialog", "Chocolate
10$", None, QtGui.QApplication.UnicodeUTF8))
 self.tabWidget.setTabText(self.tabWidget.indexOf(self.tab_3),
QtGui.QApplication.translate("Dialog", "Ice Creams", None,
QtGui.QApplication.UnicodeUTF8))

Let’s create a Python script file that imports the code to invoke the Tab widget. The file will have
the following code:

calltabwidget.pyw
import sys
from tabwidgetdemo import *

class MyForm(QtGui.QDialog):
 def __init__(self, parent=None):
 QtGui.QWidget.__init__(self, parent)
 self.ui = Ui_Dialog()
 self.ui.setupUi(self)

 if __name__ == "__main__":
 app = QtGui.QApplication(sys.argv)
 myapp = MyForm()
 myapp.show()
 sys.exit(app.exec_())

On execution of the program, you see that the Food Tab button is auto selected, and the widgets
assigned to it are displayed as shown in Figure 10.28(a). If any other Tab button is selected, the
widgets assigned to it will be displayed. For example, select Ice Creams and the widget in it will be
displayed as shown in Figure 10.28(b).

Figure 10.28. (a) The tab contents of the Food Tab button. (b) The tab contents of
the Ice Creams Tab button.

We can relocate the tabs to appear on any side of the Tab widget through tab-Position, which has

four options, North, South, West, and East (see Figure 10.29(a)) to make the Tab buttons appear
on the desired side of the Tab widget. Select the West option, and the Tab buttons will appear on
the left side of the Tab widget, as shown in Figure 10.29(b). Note that the scroll button appears if
all the Tab buttons are not visible in the Tab widget.

Figure 10.29. (a) The Tab buttons set to appear on the West side of the Tab widget
through tabPosition. (b) The scroll buttons appear when all Tab buttons are not

visible within the size of the Tab widget.

[View full size image]

The Tab widget can be converted into a Tool Box or Stacked widget. Let’s see how to do so.

Converting a Tab Widget

Before you learn to convert a Tab widget into a Tool Box or Stacked widget, let’s explain the
two terms:

Tool Box: A Tool Box is an instance of the QToolBox class and provides a column of

tabbed widget items, one above the next. The widgets of the current tab are displayed
below it. See Figure 10.31(a).

Stacked Widget: A Stacked widget is an instance of QStackedWidget and provides a stack

of widgets where only one widget is visible at a time. Again, it can be used to display large
chunks of information in the Tab widget. By default, the Stacked widget doesn’t have a
way to switch pages, so to switch pages, you must use another widget, such as a Combo
Box or a List widget. See Figure 10.32(a) to see a stacked widget.

Converting a Tab Widget into a Tool Box

To convert a Tab widget to a Tool Box, right-click on it and select the Morph Into option. You
will see two suboptions: QStackedWidget and QToolBox. Select QToolBox to convert the Tab
widget into a Tool Box. The Tab widget will be converted into a Tool Box widget. The Tab
buttons of the Tab widget will change to a column of tabs, and the widgets inside each Tab
button of the Tab widget will appear as widgets of the respective tabs in Tool Box. The default
text of each tab will be Page, as shown in Figure 10.30(a). Change the tab text to Food, Drinks,
and Ice Creams, using the currentItemText property. The Tool Box will appear as shown in

Figure 10.30(b).

Figure 10.30. (a) The Tab widget converted to Tool Box form (b) Setting the text
of the tabs through currentItemText property.

[View full size image]

Save the application with the name tabwidgettoolbox.ui. We don’t have to do anything else

to make the Tool Box functional. It’s already working perfectly. Widgets will be displayed when
a tab is selected from the Tool Box. For example, if you select Food, the items or widget
displayed will be as shown in Figure 10.31(a). Similarly, select Drinks and the widgets in it will
appear as shown in Figure 10.31(b). Select a tab in the Tool Box and the other tabs
automatically are collapsed, making their widgets invisible and creating space for displaying
widgets.

Figure 10.31. (a) The Tool Box displaying contents of Food. (b) Tool Box

displaying contents of Drinks. Other tabs automatically collapse.

[View full size image]

Now let’s convert a Tab widget into a Stacked widget.

Converting Tab Widget into Stacked Widget

To morph a Tab widget into a Stacked widget, right-click on it and select Morph Into,
QStackedWidget option from the context menu. The Tab widget will be converted into the
Stacked widget as shown in Figure 10.32(a). On execution of the application, the Food, Drinks,
and Ice Creams Tab buttons are converted into widgets, and the widgets of the first tab are
displayed by default. No page switching (or widget switching) is available (Figure 10.32(b)).
Recall that a Stacked widget doesn’t provide page switching, and you need to use another
widget to switch from one page (or widget) to another.

Figure 10.32. (a) The Tab widget converted to a Stacked widget. (b) The first
widget appears with no option for page switching.

[View full size image]

Note

Every widget in a Stacked widget has an index number, and a widget can be accessed
through its index number.

Let’s use a Combo Box to implement page switching to our Stacked widget. Drag and drop a
Combo Box just above the Stacked widget on the form as shown in Figure 10.33.

Figure 10.33. Adding a Combo Box above the Stacked widget.

Save the file with the name tabwidgetstacked.ui and use pyuic4 to regenerate the Python

code. The Python code for displaying a Stacked widget and a Combo Box is as follows:

tabwidgetstacked.py
Form implementation generated from reading ui file 'tabwidgetdemo.ui'
from PyQt4 import QtCore, QtGui

try:
 _fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
 _fromUtf8 = lambda s: s

class Ui_Dialog(object):
 def setupUi(self, Dialog):
 Dialog.setObjectName(_fromUtf8("Dialog"))
 Dialog.resize(316, 223)
 self.stackedWidget = QtGui.QStackedWidget(Dialog)
 self.stackedWidget.setGeometry(QtCore.QRect(20, 50, 261, 151))
 self.stackedWidget.setStyleSheet(_fromUtf8("background-color: rgb(170, 255,
255);\n"
"font: 75 10pt \"MS Shell Dlg 2\";"))
self.stackedWidget.setObjectName(_fromUtf8("stackedWidget"))
self.stackedWidgetPage1 = QtGui.QWidget()
self.stackedWidgetPage1.setObjectName(_fromUtf8("stackedWidgetPage1"))
self.checkBox_2 = QtGui.QCheckBox(self.stackedWidgetPage1)
self.checkBox_2.setGeometry(QtCore.QRect(20, 50, 91, 17))
self.checkBox_2.setObjectName(_fromUtf8("checkBox_2"))
self.checkBox_3 = QtGui.QCheckBox(self.stackedWidgetPage1)
self.checkBox_3.setGeometry(QtCore.QRect(20, 80, 141, 17))
self.checkBox_3.setObjectName(_fromUtf8("checkBox_3"))
self.checkBox = QtGui.QCheckBox(self.stackedWidgetPage1)
self.checkBox.setGeometry(QtCore.QRect(20, 20, 111, 17))
self.checkBox.setObjectName(_fromUtf8("checkBox"))
self.stackedWidget.addWidget(self.stackedWidgetPage1)
self.stackedWidgetPage2 = QtGui.QWidget()
self.stackedWidgetPage2.setObjectName(_fromUtf8("stackedWidgetPage2"))
self.radioButton_6 = QtGui.QRadioButton(self.stackedWidgetPage2)
self.radioButton_6.setGeometry(QtCore.QRect(20, 50, 111, 17))
self.radioButton_6.setObjectName(_fromUtf8("radioButton_6"))
self.radioButton_5 = QtGui.QRadioButton(self.stackedWidgetPage2)
self.radioButton_5.setGeometry(QtCore.QRect(20, 80, 82, 17))
self.radioButton_5.setObjectName(_fromUtf8("radioButton_5"))
self.radioButton_4 = QtGui.QRadioButton(self.stackedWidgetPage2)
self.radioButton_4.setGeometry(QtCore.QRect(20, 20, 82, 17))
self.radioButton_4.setObjectName(_fromUtf8("radioButton_4"))
self.stackedWidget.addWidget(self.stackedWidgetPage2)

self.stackedWidgetPage3 = QtGui.QWidget()
self.stackedWidgetPage3.setObjectName(_fromUtf8("stackedWidgetPage3"))
self.checkBox_14 = QtGui.QCheckBox(self.stackedWidgetPage3)
self.checkBox_14.setGeometry(QtCore.QRect(30, 40, 111, 17))
self.checkBox_14.setObjectName(_fromUtf8("checkBox_14"))
self.checkBox_12 = QtGui.QCheckBox(self.stackedWidgetPage3)
self.checkBox_12.setGeometry(QtCore.QRect(30, 10, 81, 17))
self.checkBox_12.setObjectName(_fromUtf8("checkBox_12"))
self.checkBox_11 = QtGui.QCheckBox(self.stackedWidgetPage3)
self.checkBox_11.setGeometry(QtCore.QRect(30, 70, 101, 17))
self.checkBox_11.setObjectName(_fromUtf8("checkBox_11"))
self.checkBox_13 = QtGui.QCheckBox(self.stackedWidgetPage3)
self.checkBox_13.setGeometry(QtCore.QRect(30, 100, 111, 17))
self.checkBox_13.setObjectName(_fromUtf8("checkBox_13"))
self.stackedWidget.addWidget(self.stackedWidgetPage3)
self.comboBox = QtGui.QComboBox(Dialog)
self.comboBox.setGeometry(QtCore.QRect(120, 20, 69, 22))
self.comboBox.setObjectName(_fromUtf8("comboBox"))
self.label = QtGui.QLabel(Dialog)
 self.label.setGeometry(QtCore.QRect(30, 20, 81, 16))
 self.label.setObjectName(_fromUtf8("label"))
 self.retranslateUi(Dialog)
 self.stackedWidget.setCurrentIndex(2)
 QtCore.QMetaObject.connectSlotsByName(Dialog)

 def retranslateUi(self, Dialog):
 Dialog.setWindowTitle(QtGui.QApplication.translate("Dialog", "Dialog",
None, QtGui.QApplication.UnicodeUTF8))
 self.checkBox_2.setText(QtGui.QApplication.translate("Dialog",
"Hot Dog 5$", None, QtGui.QApplication.UnicodeUTF8))
 self.checkBox_3.setText(QtGui.QApplication.translate("Dialog",
"Chicken Burger 10$", None, QtGui.QApplication.UnicodeUTF8))
 self.checkBox.setText(QtGui.QApplication.translate("Dialog",
"Pizza 25 $", None, QtGui.QApplication.UnicodeUTF8))
 self.radioButton_6.setText(QtGui.QApplication.translate("Dialog",
"Cold Drink 10$", None, QtGui.QApplication.UnicodeUTF8))
 self.radioButton_5.setText(QtGui.QApplication.translate("Dialog",
"Coffee 5$", None, QtGui.QApplication.UnicodeUTF8))
 self.radioButton_4.setText(QtGui.QApplication.translate("Dialog",
"Juice 15$", None, QtGui.QApplication.UnicodeUTF8))
 self.checkBox_14.setText(QtGui.QApplication.translate("Dialog", "Strawberry
7$", None, QtGui.QApplication.UnicodeUTF8))
 self.checkBox_12.setText(QtGui.QApplication.translate("Dialog", "Vanilla
5$", None, QtGui.QApplication.UnicodeUTF8))
 self.checkBox_11.setText(QtGui.QApplication.translate("Dialog", "Pineapple
8$", None, QtGui.QApplication.UnicodeUTF8))
 self.checkBox_13.setText(QtGui.QApplication.translate("Dialog", "Chocolate
10$", None, QtGui.QApplication.UnicodeUTF8))
 self.label.setText(QtGui.QApplication.translate("Dialog", "Select Category",
None, QtGui.QApplication.UnicodeUTF8))

Let’s modify the calltabwidget.pyw file to display options for the Combo Box and to enable

page switching when user selects an option from the Combo Box. The modified Python script
will appear as follows:

calltabwidgetstacked.pyw
import sys

from tabwidgetstacked import *

class MyForm(QtGui.QDialog):
 def __init__(self, parent=None):
 QtGui.QWidget.__init__(self, parent)
 self.ui = Ui_Dialog()
 self.ui.setupUi(self)
 self.ui.comboBox.addItem("Food")
 self.ui.comboBox.addItem("Drinks")
 self.ui.comboBox.addItem("Ice Creams")
 QtCore.QObject.connect(self.ui.comboBox, QtCore.SIGNAL('activated(int)'),
self.ui.stackedWidget, QtCore.SLOT('setCurrentIndex(int)'))

if __name__ == "__main__":
 app = QtGui.QApplication(sys.argv)
 myapp = MyForm()
 myapp.show()
 sys.exit(app.exec_())

In the code, you see that the addItem() function adds Food, Drinks, and Ice Creams options to

the Combo Box. When any option is selected from the Combo Box, the index location of that
option is fetched, and the widget with that index value is opened in the Stacked widget to
display its contents. Every widget in the Stacked widget has an index number that can be used
to access it. For example, if the Food option is chosen from the Combo Box, its index value is
fetched. Being the first option in the Combo Box, its index value will be 0. In the Stacked
widget, there are three widgets, Food, Drinks, and Ice Creams, with the index values 0, 1, and
2, respectively. The activated() signal of the Combo Box is connected to setCurrentIndex()

of the Stacked widget, so the widget with index value 0 in the Stacked widget, Food, is
accessed and displayed as shown in Figure 10.34.

Figure 10.34. The contents of the item selected from a Combo Box displayed in a
Stacked widget, enabling page switching.

Summary

In this chapter you learned to create menus and toolbars. Also, you saw
the Action Editor and the role it plays in defining actions for menus and
toolbars and how to manage resources of an application at one place
through a resource file. You saw how to create dockable windows and how
to display information in small chunks with the Tab widget. Finally, you
learned to convert a Tab widget into a Tool Box or Stacked widget.

The next chapter focuses on MDI and layouts. You will learn to manage
multiple documents in a Main Window with MDI and how to organize
widgets in different layouts.

Chapter 11. Multiple Documents and
Layouts

Until now you have been dealing with a single-document interface. In this
chapter you will learn how to manage multiple documents in a main
window with MDI. Also, you will learn to organize widgets in different
layouts. This chapter covers the following:

A multiple-document interface

Layouts

Displaying widgets collectively through Group Box Let’s begin the

chapter with the concept of a multiple-document interface.

Multiple-Document Interface

Applications that provide one document per main window are said to be SDI (single-document
interface) applications. A multiple-document interface (MDI) consists of a main window
containing a menu bar, a toolbar, and a central QWorkspace widget. The job of the central

workspace is to display and manage several child windows. The child windows are widgets that
are added to the central workspace.

The MDI is a specification that enables you to display multiple documents at the same time,
with each document displayed in its own window. One document acts as a parent window, and
other documents are its child windows (contained in the parent window). The parent window
provides a workspace for the child windows in the application.

To implement an MDI, you will use an MdiArea widget, which is an instance of the QMdiArea

class. The MdiArea widget provides an area where child windows (also called subwindows) are
displayed. It arranges subwindows in a cascade or tile pattern. The subwindows are instances
of QMdiSubWindow. They are rendered within a frame that has a title and buttons to show, hide,

and maximize it. By default, the subwindows are deleted when closed in the MDI area.

First let’s look at the methods provided by QMdiArea. Table 11.1 shows the methods provided.

Table 11.1. Methods Provided by QMdiArea

Method Use

subWindowList() Returns a list of all subwindows in the MDI
area arranged in the order set through the
WindowOrder() function.

WindowOrder() Used to specify the criteria for ordering the
list of child windows returned by
subWindowList(). Following are the available

options:

 CreationOrder: The windows are returned in

the order of their creation. This is the default
order.

 StackingOrder: The windows are returned in

the order in which they are stacked, with the
topmost window last in the list.

 ActivationHistoryOrder: The windows are

returned in the order in which they were
activated.

activateNextSubWindow() Sets the focus to the next window in the list
of child windows. The current window order
determines the next window to be activated.

activatePreviousSubWindow()Sets the keyboard focus to the previous
window in the list of child windows. The
current window order determines the
previous window to be activated.

cascadeSubWindows() Arranges subwindows in cascade fashion.

ti1eSubWindows() Arranges subwindows in tile fashion.

closeAl1SubWindows() Closes all subwindows.

setViewMode() Sets the view mode of the MDI area. The
subwindows can be viewed in two view
modes, SubWindow view and Tabbed view:

 SubWindow view: Displays subwindows with
window frames (default). You can see the
content of more than one subwindow if
arranged in tile fashion. It is also
represented by a constant value 0.

 Tabbed view: Displays subwindows with tabs
in a tab bar. Only one subwindow’s content
can be seen at a time. It is also represented
by a constant value 1.

Note

The cascadeSubWindows() and tileSubWindows() methods arrange windows in the

order determined through WindowOrder() function.

To understand the multiple-document interface practically, let’s create a new Main Window
application and drop an MdiArea widget on the form. Right-click on the widget and select Add
Subwindow from the context menu to add a subwindow to the MdiArea. In Figure 11.1 you can
see a subwindow inside an MdiArea widget. The MdiArea widget appears in dark background.

Figure 11.1. The MdiArea widget with a subwindow.

Repeat the procedure to add one more subwindow. Drag and drop some widgets in the
respective subwindows to show some content. Drop Label and TextEdit widgets in the first
subwindow and a Label widget in another subwindow and set their text as shown in Figure
11.2. To change focus from one subwindow to another and arrange them in cascade and tile

11.2. To change focus from one subwindow to another and arrange them in cascade and tile
fashion, you need Push Buttons, so drag and drop seven Push Button controls onto the form
and set their text to Show Next, Show Previous, Close All, Cascade, Tile, SubWindow View, and
Tabbed View as shown in Figure 11.2.

Figure 11.2. A form displaying the MdiArea with two subwindows and seven Push
Buttons.

As previously stated, documents in the MdiArea can be viewed in two modes, Sub-Window view
and Tabbed view. SubWindow view is the default view mode. Subwindows can be arranged in
cascade or tile fashion, and the content of more than one subwindow can be seen
simultaneously if arranged in tile fashion. In Tabbed view, several tabs appear in a tab bar.
When a tab is selected, the subwindow associated to it is displayed. Only content of one
subwindow can be seen at a time.

Since you want to arrange and activate subwindows in the MdiArea through a menu, replace
the Type Here placeholder in the menu in the menu bar with Windows and add two entries to
it: First Window and Second Window.

Save the application with the name mdidemo.ui. The default location where the application will

be saved is C:\Python32\Lib\site-packages\PyQt4. Then use the pyuic4 command line utility to

convert the .ui (XML) file into Python code as shown here:

C:\Python32\Lib\site-packages\PyQt4>pyuic4 mdidemo.ui -o mdidemo.py.

The generated Python code will appear as follows:

mdidemo.py
Form implementation generated from reading ui file 'MDIdemo.ui'

from PyQt4 import QtCore, QtGui
try:
 _fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
 _fromUtf8 = lambda s: s

class Ui_MainWindow(object):
 def setupUi(self, MainWindow):
 MainWindow.setObjectName(_fromUtf8("MainWindow"))
 MainWindow.resize(775, 600)
 MainWindow.setWindowTitle(QtGui.QApplication.translate("MainWindow",
"MainWindow", None, QtGui.QApplication.UnicodeUTF8))
 self.centralwidget = QtGui.QWidget(MainWindow)
 self.centralwidget.setObjectName(_fromUtf8("centralwidget"))
 self.showNext = QtGui.QPushButton(self.centralwidget)
 self.showNext.setGeometry(QtCore.QRect(50, 430, 75, 23))
 self.showNext.setText(QtGui.QApplication.translate("MainWindow", "Show Next",
None, QtGui.QApplication.UnicodeUTF8))
 self.showNext.setObjectName(_fromUtf8("showNext"))
 self.cascadeButton = QtGui.QPushButton(self.centralwidget)
 self.cascadeButton.setGeometry(QtCore.QRect(50, 470, 75, 23))
 self.cascadeButton.setText(QtGui.QApplication.translate("MainWindow",
"Cascade", None, QtGui.QApplication.UnicodeUTF8))
 self.cascadeButton.setObjectName(_fromUtf8("cascadeButton"))
 self.SubWindowViewButton = QtGui.QPushButton(self.centralwidget)
 self.SubWindowViewButton.setGeometry(QtCore.QRect(200, 470, 101, 23))

self.SubWindowViewButton.setText(QtGui.QApplication.translate("MainWindow",
"SubWindow View", None, QtGui.QApplication.UnicodeUTF8))
 self.SubWindowViewButton.setObjectName(_fromUtf8("SubWindowViewButton"))
 self.closeAll = QtGui.QPushButton(self.centralwidget)
 self.closeAll.setGeometry(QtCore.QRect(300, 430, 75, 23))
 self.closeAll.setText(QtGui.QApplication.translate("MainWindow", "Close All",
None, QtGui.QApplication.UnicodeUTF8))
 self.closeAll.setObjectName(_fromUtf8("closeAll"))
 self.tileButton = QtGui.QPushButton(self.centralwidget)
 self.tileButton.setGeometry(QtCore.QRect(140, 470, 41, 23))
 self.tileButton.setText(QtGui.QApplication.translate("MainWindow",
"Tile", None, QtGui.QApplication.UnicodeUTF8))
 self.tileButton.setObjectName(_fromUtf8("tileButton"))
 self.mdiArea = QtGui.QMdiArea(self.centralwidget)
 self.mdiArea.setGeometry(QtCore.QRect(50, 20, 331, 401))
 self.mdiArea.setObjectName(_fromUtf8("mdiArea"))
 self.subwindow = QtGui.QWidget()
 self.subwindow.setWindowTitle(QtGui.QApplication.translate("MainWindow",
"Subwindow", None, QtGui.QApplication.UnicodeUTF8))
 self.subwindow.setObjectName(_fromUtf8("subwindow"))
 self.label = QtGui.QLabel(self.subwindow)
 self.label.setGeometry(QtCore.QRect(80, 10, 111, 16))
 self.label.setText(QtGui.QApplication.translate("MainWindow", "Enter your
views here", None, QtGui.QApplication.UnicodeUTF8))
 self.label.setObjectName(_fromUtf8("label"))
 self.textEdit = QtGui.QTextEdit(self.subwindow)
 self.textEdit.setGeometry(QtCore.QRect(20, 40, 231, 91))
 self.textEdit.setObjectName(_fromUtf8("textEdit"))
 self.subwindow_2 = QtGui.QWidget()

self.subwindow_2.setWindowTitle(QtGui.QApplication.translate("MainWindow",
"Subwindow", None, QtGui.QApplication.UnicodeUTF8))
 self.subwindow_2.setObjectName(_fromUtf8("subwindow_2"))
 self.label_2 = QtGui.QLabel(self.subwindow_2)

 self.label_2.setGeometry(QtCore.QRect(60, 20, 141, 16))
 self.label_2.setText(QtGui.QApplication.translate("MainWindow",
"<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0//EN\" \"http://www.w3.org/TR/
REC-html40/strict.dtd\">\n"
"<html><head><meta name=\"qrichtext\" content=\"1\" /><style type=\"text/css\">\n"
"p, li { white-space: pre-wrap; }\n"
"</style></head><body style=\" font-family:\'MS Shell Dlg 2\'; font-size:8.25pt;
font-weight:400; font-style:normal;\">\n"
"<p style=\" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px;
-qt-block-indent:0; text-indent:0px;\">This is
second Sub Window</p></body></html>", None, QtGui.QApplication.UnicodeUTF8))
 self.label_2.setObjectName(_fromUtf8("label_2"))
 self.showPrevious = QtGui.QPushButton(self.centralwidget)
 self.showPrevious.setGeometry(QtCore.QRect(170, 430, 91, 23))
 self.showPrevious.setText(QtGui.QApplication.translate("MainWindow",
"Show Previous", None, QtGui.QApplication.UnicodeUTF8))
 self.showPrevious.setObjectName(_fromUtf8("showPrevious"))
 self.TabbedViewButton = QtGui.QPushButton(self.centralwidget)
 self.TabbedViewButton.setGeometry(QtCore.QRect(320, 470, 75, 23))
 self.TabbedViewButton.setText(QtGui.QApplication.translate("MainWindow",
"Tabbed View", None, QtGui.QApplication.UnicodeUTF8))
 self.TabbedViewButton.setObjectName(_fromUtf8("TabbedViewButton"))
 MainWindow.setCentralWidget(self.centralwidget)
 self.menubar = QtGui.QMenuBar(MainWindow)
 self.menubar.setGeometry(QtCore.QRect(0, 0, 775, 21))
 self.menubar.setObjectName(_fromUtf8("menubar"))
 self.menuWindows = QtGui.QMenu(self.menubar)
 self.menuWindows.setTitle(QtGui.QApplication.translate("MainWindow",
"Windows", None, QtGui.QApplication.UnicodeUTF8))
 self.menuWindows.setObjectName(_fromUtf8("menuWindows"))
 MainWindow.setMenuBar(self.menubar)
 self.statusbar = QtGui.QStatusBar(MainWindow)
 self.statusbar.setObjectName(_fromUtf8("statusbar"))
 MainWindow.setStatusBar(self.statusbar)
 self.actionFirst_Window = QtGui.QAction(MainWindow)

self.actionFirst_Window.setText(QtGui.QApplication.translate("MainWindow",
"First Window", None, QtGui.QApplication.UnicodeUTF8))
 self.actionFirst_Window.setObjectName(_fromUtf8("actionFirst_Window"))
 self.actionSecond_Window = QtGui.QAction(MainWindow)

self.actionSecond_Window.setText(QtGui.QApplication.translate("MainWindow",
"Second Window", None, QtGui.QApplication.UnicodeUTF8))
 self.actionSecond_Window.setObjectName(_fromUtf8("actionSecond_Window"))
 self.menuWindows.addAction(self.actionFirst_Window)
 self.menuWindows.addAction(self.actionSecond_Window)
 self.menubar.addAction(self.menuWindows.menuAction())

 self.retranslateUi(MainWindow)
 QtCore.QMetaObject.connectSlotsByName(MainWindow)

 def retranslateUi(self, MainWindow):
 pass

Let’s create a Python script that imports the code to invoke the MdiArea to display the
subwindows created in it with their respective widgets. Also, the script will contain the code for
the Push Buttons to do different tasks, such as cascading and tiling the windows, changing the
focus from one subwindow to another, changing the view mode from SubWindow view to
Tabbed view and vice versa, and closing all subwindows. The Python script will be as follows:

callMDI.pyw
import sys
from mdidemo import *

class MyForm(QtGui.QMainWindow):
 def __init__(self, parent=None):
 QtGui.QWidget.__init__(self, parent)
 self.ui = Ui_MainWindow()
 self.ui.setupUi(self)
 self.ui.mdiArea.addSubWindow(self.ui.subwindow)
 self.ui.mdiArea.addSubWindow(self.ui.subwindow_2)
 QtCore.QObject.connect(self.ui.showNext, QtCore.SIGNAL('clicked()'),
self.displayNext)
 QtCore.QObject.connect(self.ui.showPrevious, QtCore.SIGNAL('clicked()'),
self.displayPrevious)
 QtCore.QObject.connect(self.ui.closeAll, QtCore.SIGNAL('clicked()'),
self.closeAll)
 QtCore.QObject.connect(self.ui.cascadeButton, QtCore.SIGNAL('clicked()'),
self.cascadeArrange)
 QtCore.QObject.connect(self.ui.tileButton, QtCore.SIGNAL('clicked()'),
self.tileArrange)
 QtCore.QObject.connect(self.ui.SubWindowViewButton,
QtCore.SIGNAL('clicked()'), self.SubWindowView)
 QtCore.QObject.connect(self.ui.TabbedViewButton, QtCore.SIGNAL('clicked()'),
self.TabbedView)
 self.connect(self.ui.actionFirst_Window, QtCore.SIGNAL('triggered()'),
self.displayNext)
 self.connect(self.ui.actionSecond_Window, QtCore.SIGNAL('triggered()'),
self.displayPrevious)

 def displayNext(self):
 self.ui.mdiArea.activateNextSubWindow()

 def displayPrevious(self):
 self.ui.mdiArea.activatePreviousSubWindow()

 def closeAll(self):
 self.ui.mdiArea.closeAllSubWindows()

 def cascadeArrange(self):
 self.ui.mdiArea.cascadeSubWindows()

 def tileArrange(self):
 self.ui.mdiArea.tileSubWindows()

 def SubWindowView(self):
 self.ui.mdiArea.setViewMode(0)

 def TabbedView(self):
 self.ui.mdiArea.setViewMode(1)

if __name__ == "__main__":
 app = QtGui.QApplication(sys.argv)
 myapp = MyForm()
 myapp.show()
 sys.exit(app.exec_())

In the code, you can see that the clicked() signals of the showNext, showPrevious,

closeAll, cascadeButton, tileButton, SubWindowViewButton, and TabbedViewButton Push

Buttons are connected to the, displayNext(), displayPrevious(), closeAll(),

cascadeArrange(), tileArrange(), SubWindowView(), and TabbedView() functions,

respectively. Also, the First Window and Second Window menu entries of the Windows menu
are connected to the displayNext() and displayPrevious() functions. The functions used in

the program are these:

displayNext(): Activates the next subwindow in the list. The subwindows list is

arranged in the order in which they were created.

displayPrevious(): Activates the previous subwindow in the list of subwindows.

closeAll(): Closes and deletes all subwindows. The subwindows are deleted by

default when closed in the MdiArea.

cascadeArrange(): Arranges subwindows in cascade fashion.

tileArrange(): Arranges subwindows in tile fashion.

SubWindowView(): Sets the view of MdiArea to SubWindow view mode.

TabbedView(): Sets the view of MdiArea to Tabbed view mode.

The subwindows initially appear in shrinked mode in the MdiArea. You can drag their borders to
the desired size. On selecting First Window from the Windows menu, a subwindow becomes
active; on selecting Second Window, the next subwindow will become active as shown in Figure
11.3(a). The same action will take place on selecting the Show Next and Show Previous buttons
at the bottom. On selecting Cascade, the subwindows are arranged in cascade mode, as shown
in Figure 11.3(b).

Figure 11.3. (a) Subwindows appear in shrinked form with the first subwindow
active. (b) The shrinked subwindows arranged in cascade pattern. (c)

Subwindows expanded and arranged in tile pattern.

[View full size image]

The subwindows will still be in shrinked mode, though you can drag their borders to expand
them. On selecting Tile button, the subwindows are expanded and tiled; both subwindows get
equal workspace, as shown in Figure 11.3(c).

Note

If windows are maximized, Cascade mode allows the top subwindow to take the whole
MdiArea, with other subwindows hidden behind it.

You can drag the boundaries of any subwindow to increase or decrease its size. Figure 11.4(a)
shows the first subwindow when its size is increased. You can also minimize a subwindow and
drag the boundaries of another subwindow to take the whole width of the MdiArea as shown in
Figure 11.4(b). If you select Maximize in any subwindow, it will take up all the space of the
MdiArea, making other subwindows invisible as shown in Figure 11.4(c).

Figure 11.4. (a) Size of first subwindow increased by dragging its boundaries.
(b) First subwindow minimized and second subwindow taking up the whole

width of the MdiArea widget. (c) Second subwindow maximized, taking up the
whole space of the MdiArea widget.

[View full size image]

On selecting the SubWindow View button, the view mode of the MdiArea changes to
SubWindow view, and the border of the maximized subwindow will appear, along with its title
and minimize, maximize, and close buttons as shown in Figure 11.5(a). The minimized
subwindow behind the maximized subwindow will not be visible. On selecting the Tabbed View
button, the MdiArea will change from SubWindow view to Tabbed view as shown in Figure
11.5(b). You can select the tab of any subwindow to make it active as shown in Figure 11.5(c).
If you select Close All, all subwindows will be closed.

Figure 11.5. (a) Second subwindow in maximized form in SubWindow view. (b)
The MdiArea in Tabbed view. (c) The content of the first subwindow appears

when the first tab is selected.

[View full size image]

Layouts

A layout is used to arrange and manage the widgets that make up a user interface within its container. Qt
Designer provides a number of layout managers: Horizontal Layout, Vertical Layout, Grid Layout, and
Form Layout. Each widget has a recommended size, and it reports its size requirement to the layout
through its sizeHint property. If the layout managers are applied, and you resize the window, the

widgets in the layout will also be resized to meet their sizeHint. That is, the layout managers

automatically adapt to a resize event. You can also set the range for a widget to expand or shrink by
implementing widget size constraints through the minimum-Size and maximumSize properties. By

specifying the values of the two properties in the Property Editor, you can override the default sizeHint

property.

On increasing the size of the window, the widgets in the layout also increase in size to use up the
increased space, so the widget sometimes may be too wide or long. To avoid excessive spreading of the
widgets when window size is increased, you use spacers. Spacers expand to fill empty space. Before
laying out the widgets, click the form to deselect everything and then select all the widgets you want to
be laid out with Shift+click. Once all the widgets are selected, click Layout Manager on the toolbar. The
widgets will be laid out in the selected layout, and the layout will be indicated by a red line around the
widgets that is not visible at runtime. To arrange more widgets, click the form to deselect again
everything and select the widgets you want to arrange in a layout.

Note

Layouts can be nested one inside the other.

When a layout is used, PyQt automatically reparents the widgets that are laid out; that is, the layout
manager gives ownership of the widgets and itself to the form in which they are placed. None of the
widgets will be a top-level window. To see whether the widgets are properly laid out, you can preview the
form by selecting Form, Preview or Ctrl+R. To break the layout, select Form, Break Layout, enter Ctrl +0,
or select the Break Layout icon from the toolbar.

Let’s look at the procedure of arranging widgets in horizontal box layout.

Horizontal Layout

A horizontal layout arranges widgets next to each other in a row. Let’s open the addtwonum.ui application

in Qt Designer and make a copy with the name addinlayout.ui. The application is for adding two

numbers entered by the user. Add a Push Button and set its text to Cancel. The widgets in the form will
now appear as shown in Figure 11.6(a).

Figure 11.6. (a) Initial layout of the widgets. (b) Label and the first Line Edit arranged in
horizontal layout. (c) All widget pairs arranged in horizontal layout.

[View full size image]

Select the Enter First Number Label and a Line Edit widget with Shift+click and select Lay Out
Horizontally from the toolbar as shown in Figure 11.6(b). The Label and Line Edit widgets will be laid out
horizontally, and a red boundary will appear around them to confirm it.

Similarly, select the Enter Second Number Label and another Line Edit and select Lay Out Horizontally

Similarly, select the Enter Second Number Label and another Line Edit and select Lay Out Horizontally
from the toolbar to lay them horizontally.

Repeat the procedure for the Add and Cancel Push Buttons. Now you have three sets of widgets laid out
horizontally as shown in Figure 11.6(c).

To apply a vertical layout to the three sets of horizontal widgets, select the three sets with Shift+click and
select the Lay Out Vertically icon from the toolbar as shown in Figure 11.7(a). The Add and Cancel Push
Buttons widen to use the available space. You can control the width of the widgets either by using the
minimumSize and maximumSize properties or by using Horizontal and Vertical Spacer widgets. Let’s use the

second technique.

Figure 11.7. (a) The horizontal widgets arranged vertically, allowing the Add and Cancel
buttons to spread. (b) Adding a horizontal spacer in front of the buttons. (c) Arranging

the widget pairs vertically.

[View full size image]

Break the vertical layout by selecting its red line boundary and selecting either the Form, Break Layout
option, the Ctrl+0 key combination, or the Break Layout icon from the toolbar. Also, break the horizontal
layout of the Push Buttons and drag a horizontal spacer from the Spacer section in the Widget Box and
drop it in front of the Add button. The spacers appear as blue springs on the form. Adjust the size of the
horizontal spacer by dragging its nodes to constrain the width of the buttons. Select all three widgets, the
horizontal spacer, and two buttons and place them horizontally, as shown in Figure 11.7(b). Now you can
select the three horizontal sets and lay them vertically by selecting the Lay Out Vertically icon. As you can
see in Figure 11.7(c), the Add and Cancel buttons will not spread; the empty space is filled by the
horizontal spacer.

Save the application with the name addinlayout.ui. The .ui (XML) file code on converting into Python

code with the pyuic4 command utility will appear as follows:

addinlayout.py

Form implementation generated from reading ui file 'addinlayout.ui'
from PyQt4 import QtCore, QtGui

try:
 _fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
 _fromUtf8 = lambda s: s
class Ui_Dialog(object):
 def setupUi(self, Dialog):
 Dialog.setObjectName(_fromUtf8("Dialog"))
 Dialog.resize(346, 183)
 self.layoutWidget = QtGui.QWidget(Dialog)
 self.layoutWidget.setGeometry(QtCore.QRect(21, 21, 276, 85))
 self.layoutWidget.setObjectName(_fromUtf8("layoutWidget"))
 self.verticalLayout = QtGui.QVBoxLayout(self.layoutWidget)
 self.verticalLayout.setMargin(0)
 self.verticalLayout.setObjectName(_fromUtf8("verticalLayout"))
 self.horizontalLayout = QtGui.QHBoxLayout()
 self.horizontalLayout.setObjectName(_fromUtf8("horizontalLayout"))
 self.label = QtGui.QLabel(self.layoutWidget)
 self.label.setObjectName(_fromUtf8("label"))
 self.horizontalLayout.addWidget(self.label)
 self.lineEdit = QtGui.QLineEdit(self.layoutWidget)
 self.lineEdit.setObjectName(_fromUtf8("lineEdit"))
 self.horizontalLayout.addWidget(self.lineEdit)
 self.verticalLayout.addLayout(self.horizontalLayout)
 self.horizontalLayout_2 = QtGui.QHBoxLayout()
 self.horizontalLayout_2.setObjectName(_fromUtf8("horizontalLayout_2"))

 self.label_2 = QtGui.QLabel(self.layoutWidget)
 self.label_2.setObjectName(_fromUtf8("label_2"))
 self.horizontalLayout_2.addWidget(self.label_2)
 self.lineEdit_2 = QtGui.QLineEdit(self.layoutWidget)
 self.lineEdit_2.setObjectName(_fromUtf8("lineEdit_2"))
 self.horizontalLayout_2.addWidget(self.lineEdit_2)
 self.verticalLayout.addLayout(self.horizontalLayout_2)
 self.horizontalLayout_4 = QtGui.QHBoxLayout()
 self.horizontalLayout_4.setObjectName(_fromUtf8("horizontalLayout_4"))
 spacerItem = QtGui.QSpacerItem(108, 20, QtGui.QSizePolicy.Expanding,
QtGui.QSizePolicy.Minimum)
 self.horizontalLayout_4.addItem(spacerItem)
 self.horizontalLayout_3 = QtGui.QHBoxLayout()
 self.horizontalLayout_3.setObjectName(_fromUtf8("horizontalLayout_3"))
 self.pushButton = QtGui.QPushButton(self.layoutWidget)
 self.pushButton.setObjectName(_fromUtf8("pushButton"))
 self.horizontalLayout_3.addWidget(self.pushButton)
 self.pushButton_2 = QtGui.QPushButton(self.layoutWidget)
 self.pushButton_2.setObjectName(_fromUtf8("pushButton_2"))
 self.horizontalLayout_3.addWidget(self.pushButton_2)
 self.horizontalLayout_4.addLayout(self.horizontalLayout_3)
 self.verticalLayout.addLayout(self.horizontalLayout_4)
 self.label_3 = QtGui.QLabel(Dialog)
 self.label_3.setGeometry(QtCore.QRect(40, 130, 271, 16))
 self.label_3.setText(_fromUtf8(""))
 self.label_3.setObjectName(_fromUtf8("label_3"))
 self.retranslateUi(Dialog)
 QtCore.QMetaObject.connectSlotsByName(Dialog)

 def retranslateUi(self, Dialog):
 Dialog.setWindowTitle(QtGui.QApplication.translate("Dialog", "Dialog", None,
QtGui.QApplication.UnicodeUTF8))
 self.label.setText(QtGui.QApplication.translate("Dialog", "Enter First Num-
ber", None, QtGui.QApplication.UnicodeUTF8))
 self.label_2.setText(QtGui.QApplication.translate("Dialog", "Enter Second Num-
ber", None, QtGui.QApplication.UnicodeUTF8))
 self.pushButton.setText(QtGui.QApplication.translate("Dialog", "Add", None,
QtGui.QApplication.UnicodeUTF8))
 self.pushButton_2.setText(QtGui.QApplication.translate("Dialog", "Cancel",
None, QtGui.QApplication.UnicodeUTF8))

You need to create a Python script to import the code to invoke the widgets, compute and display the
sum of the numbers entered, and close the application. The file will appear as shown below:

callnumadd.pyw
import sys
from addinlayout import *

class MyForm(QtGui.QDialog):
 def __init__(self, parent=None):
 QtGui.QWidget.__init__(self, parent)
 self.ui = Ui_Dialog()
 self.ui.setupUi(self)
 QtCore.QObject.connect(self.ui.pushButton, QtCore.SIGNAL('clicked()'),
self.dispsum)
 QtCore.QObject.connect(self.ui.pushButton_2, QtCore.SIGNAL('clicked()'),
self.reject)

 def reject(self):
 self.close()

 def dispsum(self):
 if len(self.ui.lineEdit.text())!=0:
 a=int(self.ui.lineEdit.text())
 else:
 a=0

 if len(self.ui.lineEdit_2.text())!=0:
 b=int(self.ui.lineEdit_2.text())
 else:
 b=0
 sum=a+b
 self.ui.label_3.setText("Addition: " +str(sum))

if __name__ == "__main__":
 app = QtGui.QApplication(sys.argv)
 myapp = MyForm()
 myapp.show()
 sys.exit(app.exec_())

The clicked() signal of the Add Push Button is connected to the dispsum() function, and that of the

Cancel Push Button is connected to the reject() method. In the reject() method, you simply close the

application. In the dispsum() function, you validate the two Line Edit widgets to see if the user left any of

them blank. The validation process assumes the value of a blank Line Edit to be 0. The addition of the two
values is then displayed through a Label widget after converting it into string data type, as shown in
Figure 11.8.

Figure 11.8. The widgets arranged in a combined layout.

Sometimes you need to collect certain widgets in a frame to show that they are meant to perform similar
tasks or belong to the same category. Let’s see how to do so.

Using a Group Box

A Group Box is used to represent information that is related in some way. For instance, information about
an assortment of laptops, smartphones, or audio CDs can be collected into individual Group Boxes. A
Group Box is an instance of the QGroupBox class and appears in a frame with a title. Child widgets within

a Group Box can be aligned and enabled or disabled collectively with a Check Box. That is, a Group Box
can be set to appear with its title, and all child widgets within it can be enabled or disabled just by
checking or unchecking the checkbox. A shortcut key can also be assigned to a Group Box so that the
focus of the keyboard can be set to one of the Group Box’s child widgets.

The properties of the Group Box are these:

checkable: Enable this property to display a checkbox in the Group Box’s title. The child widgets

in a checkable Group Box are enabled only when the checkbox is checked. By default, Group
Boxes are not checkable. If this property is enabled for a Group Box, it will be checked to ensure
that its contents are enabled.

flat: By enabling this property, the space consumed by the Group Box is reduced. The methods

supported by the QGroupBox class are these:

isCheckable(): This method returns true if the Group Box has checkbox in its title; otherwise it

returns false.

isChecked(): This method returns true if the Group Box is checked.

setChecked(): This method determines whether to display a checkbox in the Group Box’s title. A

Boolean true value to this method makes the Group Box checkable.

The Group Box generates a clicked() signal when the checkbox is selected or when its shortcut key is

pressed.

Let’s look at how to arrange widgets in a vertical layout.

Vertical Layout

Vertical layout arranges the selected widgets vertically, in a column one below another. In the following
application, you will learn the concept of using Group Box as well as the process of laying widgets in a
vertical layout.

Open Qt Designer and create a new application based on the Dialog without Buttons template and drag
and drop two Group Box widgets onto the form. Set their titles to Ice Creams and Drinks. Also, set the
checkable property of the Drinks Group Box to True, using the Property Editor. Add four Radio Buttons to

the Ice Creams Group Box and three Radio Buttons to the Drinks Group Box. Set the text properties of

the Radio Buttons in Ice Creams Group Box to Plain Vanilla $5, Black Sunday $10, Chocolate Chips $20,
and Strawberry $15. Similarly, set the text property of the Radio Buttons in the Drinks Group Box to

Coffee $5, Cold Drink $10, and Juice $15. To display the price of an item from the Group Boxes, drag and
drop a Label widget and delete its text property; you will assign text to it, i.e., total price of the items

selected, through programming. On deleting text property of the Label widget, it becomes invisible. Drag
and drop two Vertical Spacers on the form, one above and one below the Label widget. Finally drop a Push
Button on the form and set its text to Calculate Bill. To lay our the two Group Boxes, Ice Creams and
Drinks vertically, select both of them through Shift+click and select Lay Out Vertically icon from the
toolbar. Both the Group Boxes will be laid vertically as will be confirmed by a boundary of red line that
appears around them. After doing all these operations, our form will appear as shown in Figure 11.9.

Figure 11.9. The widgets arranged in vertical layout.

Note

Vertical spacers are used to avoid vertical spreading of any widgets as they use up the extra
vertical space.

Using the Grid Layout

The Grid Layout arranges widgets in a stretchable grid. Select the vertical Group Boxes, vertical spacers,
the invisible Label widget (its nodes will appear if you click its approximate location), and the Calculate
Bill Push Button with Shift+click and select the Grid Layout icon from the toolbar. All the widgets will be
laid in a grid layout and will be surrounded by a red boundary as shown in Figure 11.10. The figure also
shows the Object Inspector window.

Figure 11.10. Applying Grid Layout to the widgets on the form.

[View full size image]

Save the application under the name groupbx.ui. The python code generated on applying pyuic4

command utility on the .ui file will appear as shown below:

groupbx.py

Form implementation generated from reading ui file 'groupbx.ui'

try:
 _fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
 _fromUtf8 = lambda s: s

class Ui_Dialog(object):
 def setupUi(self, Dialog):
 Dialog.setObjectName(_fromUtf8("Dialog"))
 Dialog.resize(419, 291)
 Dialog.setWindowTitle(QtGui.QApplication.translate("Dialog", "Dialog", None,
QtGui.QApplication.UnicodeUTF8))
 self.layoutWidget = QtGui.QWidget(Dialog)
 self.layoutWidget.setGeometry(QtCore.QRect(20, 10, 311, 271))
 self.layoutWidget.setObjectName(_fromUtf8("layoutWidget"))
 self.gridLayout = QtGui.QGridLayout(self.layoutWidget)
 self.gridLayout.setMargin(0)
 self.gridLayout.setObjectName(_fromUtf8("gridLayout"))
 self.verticalLayout = QtGui.QVBoxLayout()
 self.verticalLayout.setObjectName(_fromUtf8("verticalLayout"))
 self.IceCreamBox = QtGui.QGroupBox(self.layoutWidget)
 self.IceCreamBox.setTitle(QtGui.QApplication.translate("Dialog", "Ice Creams",
None, QtGui.QApplication.UnicodeUTF8))
 self.IceCreamBox.setObjectName(_fromUtf8("IceCreamBox"))
 self.vanilla = QtGui.QRadioButton(self.IceCreamBox)
 self.vanilla.setGeometry(QtCore.QRect(20, 20, 131, 17))
 self.vanilla.setText(QtGui.QApplication.translate("Dialog", "Plain Vanilla $5",
None, QtGui.QApplication.UnicodeUTF8))
 self.vanilla.setObjectName(_fromUtf8("vanilla"))
 self.blacksunday = QtGui.QRadioButton(self.IceCreamBox)
 self.blacksunday.setGeometry(QtCore.QRect(20, 50, 121, 17))
 self.blacksunday.setText(QtGui.QApplication.translate("Dialog", "Black Sunday
$10", None, QtGui.QApplication.UnicodeUTF8))
 self.blacksunday.setObjectName(_fromUtf8("blacksunday"))
 self.chocolatechips = QtGui.QRadioButton(self.IceCreamBox)
 self.chocolatechips.setGeometry(QtCore.QRect(20, 80, 141, 17))

 self.chocolatechips.setGeometry(QtCore.QRect(20, 80, 141, 17))
 self.chocolatechips.setText(QtGui.QApplication.translate("Dialog", "Chocolate
Chips $20", None, QtGui.QApplication.UnicodeUTF8))
 self.chocolatechips.setObjectName(_fromUtf8("chocolatechips"))
 self.strawberry = QtGui.QRadioButton(self.IceCreamBox)
 self.strawberry.setGeometry(QtCore.QRect(20, 110, 121, 17))
 self.strawberry.setText(QtGui.QApplication.translate("Dialog", "Strawberry $15 ",
None, QtGui.QApplication.UnicodeUTF8))
 self.strawberry.setObjectName(_fromUtf8("strawberry"))
 self.verticalLayout.addWidget(self.IceCreamBox)
 self.DrinksBox = QtGui.QGroupBox(self.layoutWidget)
 self.DrinksBox.setTitle(QtGui.QApplication.translate("Dialog", "Drinks", None,
QtGui.QApplication.UnicodeUTF8))
 self.DrinksBox.setCheckable(True)
 self.DrinksBox.setObjectName(_fromUtf8("DrinksBox"))
 self.coffee = QtGui.QRadioButton(self.DrinksBox)
 self.coffee.setGeometry(QtCore.QRect(30, 30, 82, 17))
 self.coffee.setText(QtGui.QApplication.translate("Dialog", "Coffee $5", None,
QtGui.QApplication.UnicodeUTF8))
 self.coffee.setObjectName(_fromUtf8("coffee"))
 self.colddrink = QtGui.QRadioButton(self.DrinksBox)
 self.colddrink.setGeometry(QtCore.QRect(30, 60, 101, 17))
 self.colddrink.setText(QtGui.QApplication.translate("Dialog", "Cold Drink $10",
None, QtGui.QApplication.UnicodeUTF8))
 self.colddrink.setObjectName(_fromUtf8("colddrink"))
 self.juice = QtGui.QRadioButton(self.DrinksBox)
 self.juice.setGeometry(QtCore.QRect(30, 90, 82, 17))
 self.juice.setText(QtGui.QApplication.translate("Dialog", "Juice $15", None,
QtGui.QApplication.UnicodeUTF8))
 self.juice.setObjectName(_fromUtf8("juice"))
 self.verticalLayout.addWidget(self.DrinksBox)
 self.gridLayout.addLayout(self.verticalLayout, 0, 0, 4, 1)
 spacerItem = QtGui.QSpacerItem(20, 168, QtGui.QSizePolicy.Minimum,
QtGui.QSizePolicy.Expanding)
 self.gridLayout.addItem(spacerItem, 0, 1, 1, 1)
 self.label = QtGui.QLabel(self.layoutWidget)
 self.label.setText(_fromUtf8(""))
 self.label.setObjectName(_fromUtf8("label"))
 self.gridLayout.addWidget(self.label, 1, 1, 1, 1)
 spacerItem1 = QtGui.QSpacerItem(20, 18, QtGui.QSizePolicy.Minimum,
QtGui.QSizePolicy.Expanding)
 self.gridLayout.addItem(spacerItem1, 2, 1, 1, 1)
 self.CalculateButton = QtGui.QPushButton(self.layoutWidget)
 self.CalculateButton.setText(QtGui.QApplication.translate("Dialog", "Calculate
Bill", None, QtGui.QApplication.UnicodeUTF8))
 self.CalculateButton.setObjectName(_fromUtf8("CalculateButton"))
 self.gridLayout.addWidget(self.CalculateButton, 3, 1, 1, 1)
 self.retranslateUi(Dialog)
 QtCore.QMetaObject.connectSlotsByName(Dialog)

 def retranslateUi(self, Dialog):
 pass

Now you need to create a Python script that imports the code to display the user interface design, the
widgets that you laid in Vertical and Grid Layout. Also, you need to write code to inspect each Radio
Button and compute and display the bill on the basis of the Radio Buttons that are checked. The file will
have the following code:

callgroupbox.pyw
import sys
from groupbx import *

class MyForm(QtGui.QDialog):
 def __init__(self, parent=None):
 QtGui.QWidget.__init__(self, parent)
 self.ui = Ui_Dialog()
 self.ui.setupUi(self)

 QtCore.QObject.connect(self.ui.CalculateButton, QtCore.SIGNAL('clicked()'),
self.calculatebill)

 def calculatebill(self):
 bill=0
 if self.ui.vanilla.isChecked()==True:
 bill=bill+5
 if self.ui.blacksunday.isChecked()==True:
 bill=bill+10
 if self.ui.chocolatechips.isChecked()==True:
 bill=bill+20
 if self.ui.strawberry.isChecked()==True:
 bill=bill+15
 if self.ui.DrinksBox.isChecked()==True:
 if self.ui.coffee.isChecked()==True:
 bill=bill+5
 if self.ui.colddrink.isChecked()==True:
 bill=bill+10
 if self.ui.juice.isChecked()==True:
 bill=bill+15
 self.ui.label.setText("The bill is: "+str(bill)+"$")

if __name__ == "__main__":
 app = QtGui.QApplication(sys.argv)
 myapp = MyForm()
 myapp.show()
 sys.exit(app.exec_())

You see that the clicked() signal of the Calculate Bill Push Button is connected to the calculatebill()

method. When the Calculate Bill button is selected, the calculatebill() method will be invoked. In the

calculatebill() method, the status of each Radio Button is checked(). If the Radio Button is checked,

its amount will be added to the bill variable. Finally, the value in the bill variable is displayed with a

Label widget after converting it to string data type as shown in Figure 11.11(a). Figure 11.11(b) shows
how all the widgets contained in the Drinks Group Box are disabled when its checkbox is deselected.

Figure 11.11. (a) The widgets arranged in grid layout, displaying the bill of the selected
items. (b) All widgets of the Drinks Group Box are disabled on unselecting its Check Box.

[View full size image]

Summary

In this chapter, you learned to manage multiple documents in a Main
Window through an MDI. You saw how child windows in the MdiArea can be
arranged in cascade and tile fashions. You learned to place a collection of
widgets that do similar tasks in a Group Box. Also, you learned to organize
widgets in different layouts.

In the next chapter, you will learn to save the data entered by the user into
a database when running a GUI application. You will learn to install and use
the MySQLdb module. Also, you will learn to create Python scripts for
creating database tables. You will learn to maintain a database through
console-based programs and with GUI programs. Finally, you will learn to
insert, fetch, search, delete, and update information in database tables
with Python scripts.

Chapter 12. Database Handling

Sometimes you need to save data entered by the user for future use. There
are two ways to save data that is supplied by the user while running an
application. The first way is to use traditional file handling, which you saw
in Chapter 6, “File Handling.” The second way is to use a database
management system. A traditional file system lacks several features, such
as indexing, encryption, and joining or merging files. A traditional file
handling also is not efficient in handling large volumes of data. A database
management system is, and it also provides features such as auto backup,
indexing, data sharing, security, and integrity. You will focus on database
handling in this chapter, which covers the following:

Installing and using a MySQLdb module

Creating databases and tables

Database maintenance through console-based programs

Inserting, fetching, and searching rows in a database table

Updating and deleting information in a database table

Database maintenance through GUI programs

Displaying rows in a database table

Navigating rows of a table

Maintaining information in a database table

Let’s begin with MySQL and MySQLdb. To interface with a database using
Python, you need the Python database API, which supports a wide range of
database servers, such as MySQL, PostgreSQL, Informix, Microsoft SQL
Server 2000, and Oracle. You need to download a separate database API
module for each database you want to access. I will explain the procedure
to access MySQL Database Server through Python.

Why MySQL?

MySQL is one of the most popular relational database management
systems in use today. It’s open-source software released under the GNU
General Public License (GPL) and is fast, reliable, and very easy to learn.
Above all, it’s free for most uses on all supported platforms. An outline of
the benefits of MySQL are as follows:

MySQL is a very popular database system among web developers.

Under the General Public License, MySQL is an open-source system. So
that means a developer can work with this server without paying
anything.

MySQL takes less storage space in the disk drive and has remarkable

performance.

It is available for several platforms, including Windows, UNIX, LINUX,

FreeBSD, and Mac OS.

It is easy to maintain and upgrade.

MySQL is secure. It includes encryption/decryption functions as well as

other security measures.

It has an efficient query engine.

The benefits of storing information in databases are many. Fetching data is
much faster than with traditional file systems, as databases use indexing,
hashing, and other schemes to quickly find the desired data. Databases
usually have auto-backup and restore facilities, encryption for high
security, and built-in integrity constraints. For accessing MySQL Database
Server through Python, you need to download and install the MySQLdb
module.

Note

Before proceeding with installing the MySQLdb module, make sure
that MySQL database server is installed on your computer. You can
download the current version from the following URL:
http://dev.mysql.com/downloads/. The latest version at the time of

this writing is MySQL 5.5. Simply download the file mysql-

installer-5.5.16.0.msi, and double-click it to initiate the

installation procedure. Just follow the Setup wizard, and MySQL
server will be installed on your computer. Remember that while
installing MySQL, you will be asked to specify the password of the
root user of the MySQL server. I have used the root password mce in

the applications created for this chapter. If you specify some other
password for the root, then you will need to replace mce in the

chapter scripts with your own password.

MySQLdb

MySQLdb is an interface for connecting Python code to a MySQL database
server. You can insert, fetch, delete, and update database tables by writing
simple SQL statements and executing through Python code. MySQLdb
implements the Python Database API v2.0 and is built on top of the MySQL
C API. To install a MySQLdb module, download its latest version from the
Internet and proceed as explained below. There are many sites that provide
a Windows installer file for MySQLdb. I have downloaded the module from
http://www.lfd.uci.edu/~gohlke/pythonlibs/.

Installation of MySQLdb

Double-click the downloaded file, MySQL-Python-1.2.3.win32-py3.2.exe,

to initiate MySQLdb installation. You get a dialog box (Figure 12.1)
indicating that the wizard is going to install MySQL-Python on your

computer. Also, a brief introduction of MySQLdb will appear. Select Next.

Figure 12.1. The dialog box of the Mysql-Python Setup Wizard
with all description of MySQLdb.

The wizard will check your system for all the Python versions that are
installed on your computer and display them in list. You will be prompted
to select the Python version that you want to use with the MySQLdb
module. The wizard will also display where Python is installed on your
machine and where MySQLdb will be installed (Figure 12.2). You can
change the directory location if desired. Select Next.

Figure 12.2. Dialog box to select the Python version and specify
the installation directory for MySQLdb.

The MySQLdb module will be copied onto your system, and you get a dialog
to select Finish to exit the Setup Wizard.

Now you are ready to write SQL-based Python scripts to deal with MySQL
Database Server. In the examples you are going to see in this chapter,
assume that a dummy database named shopping exists on your MySQL

database server. Before you begin to write your first SQL-based Python
script, let’s first create a database.

Creating a Database

A database is a collection of information that is organized so that it can easily be accessed,
managed, and updated. A database stores tables, their indexes, foreign key constraints,
primary key constraints, and other necessary components. A database table consists of
columns and rows. Each column contains a single piece of information, and a row is a
collection of columns that contains complete information of an object, item, or entity. The
database houses all the information stored at the back-end of an application.

To create the shopping database to use in this chapter, launch the MySQL Command-Line

Client by selecting Start > MySQL 5.5 Command-Line Client. This client is an interface that
enables you to perform administrative tasks, such as connecting to MySQL server, creating
and modifying databases, and executing queries and viewing their results. You will be
asked to enter the root’s password that you specified while installing MySQL. On entering
the correct password, you get the MySQL prompt (mysql>) where you can input SQL
commands.

To create a database, you would use the following syntax:

create database database_name;

Thus to create the example shopping database, enter the following at the MySQL command

prompt:

mysql> create database shopping;

Upon successful execution of the SQL command, MySQL displays a Query OK message, as
shown in Figure 12.3. You can, of course, use any other name you like.

Figure 12.3. SQL command to create a database.

Note

The semicolon (;) is essential after every SQL statement to indicate that the
statement is finished.

Creating a Database Table

A database table consists of several columns for storing data. For example, a school

database table may consist of columns named roll, name, and address that will be used

to store roll (student ID) numbers, student names, and their addresses. Each column of
the table has to be defined with a specific data type, which determines the type of data it
will be able to store. The data types are shown in Table 12.1.

Table 12.1. Data Types in MySQL

Data Type Stores

smallint,
mediumint, int,
bigint

Integer values

float Single-precision floating-
point values

double Double-precision floating-
point values

char Fixed-length strings up to
255 characters

varchar Variable-length strings up
to 255 characters

tinyblob, blob,
mediumblob,
longblob

Large blocks of binary data

tinytext, text,
mediumtext,
longtext

Long blocks of text data

date Date values

time Time values or durations

datetime Combined date and time
values

Let’s write a Python script that creates a table named products in our shopping database.

The products table will have four columns named prod_id, prod_name, quantity, and

price. The data type of the columns prod_id and quantity will be smallint, the

prod_name column will be of char type with its size set to 50, and price will be of float

type. The Python code for creating the table with these four columns is as follows:

createtable.py
import sys
import MySQLdb
conn=MySQLdb.connect(host="localhost", user="root", passwd="mce", db="shopping")
cursor=conn.cursor()
try:
 cursor.execute ("""
 create table products (prod_id smallint NOT NULL,
 prod_name char(50),
 quantity smallint,
 price float)
 """)
except MySQLdb.Error:
 print ("Error in creating products table")
 sys.exit(1)
cursor.close()

conn.close()

Note

Just a reminder: the password of the root user of MySQL server is mce. If you

specified a different password for the root, then you will need to replace mce with

your own password.

The methods used are these:

connect(): Connects to the database server. Takes four parameters: host name,

user name, password, and database name. The host name specifies the location
of our MySQL database server. For the remote database server, you specify its IP
address as the host name. For the MySQL Database Server that is locally installed
on your computer, you use the term localhost for the host name. The username

and password of the authorized user are provided, and the name of the database
you want is provided as the last parameter.

cursor(): Returns the cursor object from the connection. The cursor object is

used to traverse the records from the result set.

execute(): Used to execute the SQL statement.

close(): Disconnects the database connection.

As stated before, using the MySQLdb interface is a better way of working with the MySQL
Database Server. So first, import the MySQLdb module. Then connect to the MySQL
Database Server with the connect() method. Through the connect() method, you indicate

that you want to connect to the shopping database via the authorized user, root. When

the connection is established, the Connection object is returned and saved in the conn

variable. Through conn, you create a Cursor object to execute SQL queries. Since you want

to create a table named products with four columns, prod_id, prod_name, quantity, and

price, you write a SQL CREATE command including the data types and length of the four

columns and execute it with an execute() method. For exception handling, the execute()

method is written within a try block. If an exception or error occurs while creating the

table, an Error in Creating Products Table error message will be displayed on the screen.
Finally, you close the Cursor and disconnect the database connection.

The products database table will be created in the shopping database, and you can

confirm by opening the SQL prompt and using the use database, show tables, and

describe table name commands.

use database_name

This command loads the specified database into memory. The database loaded in memory
is the active or current database, and all SQL commands are executed on that database.
Only one database can be in use at any one time. When you use another database, the
previous database is automatically closed and unloaded from memory.

Syntax:
use database_name;
Example:
use shopping;

Here, the shopping database will be loaded in memory and you get a confirming message,

Database Changed (see Figure 12.4).

Figure 12.4. The structure of the products database table.

show tables

This command displays all the tables in the currently open database.

Example:
show tables

If the database is empty and has no tables, an Empty Set message is displayed.
Otherwise, the list of tables in the database is shown. Figure 12.4 displays the products

table, confirming that it was created successfully.

describe table_name

This command displays the structure of the specified table. When executed, a list of
columns is displayed, along with their data types. The output also shows if a column can
store a null value, its default value, and which column is a primary key.

Syntax:
describe table_name
Example:
mysql>describe products;

Figure 12.4 shows the structure of the products table.

Now that you have a database table, we will look at database maintenance, such as
inserting rows in table, fetching rows from a table, searching rows, updating information in
a table, and deleting rows. You will learn database maintenance with two types of
programs, console-based and GUI programs. Let’s start with console-based programs.

Database Maintenance Through Console-Based Programs

The programs you create in this section are not GUIs, so you won’t be able to use your mouse to
select or execute actions. You’ll need to use the keyboard for all tasks. Let’s begin with how rows
are inserted into a database table.

Inserting Rows in a Database Table

You learned from the previous program that you can use an execute() method of the cursor

object to execute any type of SQL statement. In the following example, you are going to use
execute() to insert a row in the products table that you just created. The code is as follows:

insertrec.py
import MySQLdb
conn=MySQLdb.connect(host="localhost", user="root", passwd="mce", db="shopping")
cursor=conn.cursor()
cursor.execute("""
INSERT INTO products (prod_id, prod_name, quantity, price)
VALUES (101, 'Camera', 100, 15)
""")
print('One row inserted into the products table')
cursor.close()
conn.commit()
conn.close()
Output:
One row inserted into the products table

The program establishes a connection to the MySQL server, creates the cursor object, and

executes a SQL INSERT statement to insert a row into the database table. One method that is

new here is commit().

commit()

To apply the modifications to the database table, use the commit() method. Once commit() is

executed, then it’s not possible to undo the changes.

Confirm if the row is inserted into the products table by accessing it with the MySQL prompt.

Use select to retrieve rows in the products table, and you find the newly inserted row, as

shown in Figure 12.5.

Figure 12.5. Displaying a new row in the products database table.

Let’s apply error handling to the program. To handle exceptions in Python, you put code in a try

statement and include an except clause that contains the error handling code. To detect

database-specific errors, you specify an exception class, MySQLdb.Error, in the except clause.

Besides MySQLdb.Error, you might also provide a variable e (any character) in which detailed

information of the error such as the error code and description are stored. The previous program
with exception handling applied will appear as follows:

insertrectry.py
import sys
import MySQLdb
try:
 conn=MySQLdb.connect(host="localhost", user="root", passwd="mce", db="shopping")
except MySQLdb.Error:
 print ("Error in establishing connection")
 sys.exit(1)
cursor=conn.cursor()
try:
 cursor.execute("""
 INSERT INTO products (prod_id, prod_name, quantity, price)
 VALUES (101, 'Camera', 100, 15)
 """)
 conn.commit()
 print('One row inserted into the products table')
except:
 conn.rollback()
cursor.close()
conn.close()

You can see that the code for establishing connection is enclosed within a try block. If an

exception occurs in establishing the database connection, such as database not found or the
wrong password is entered, an Error in Establishing Connection error message will appear, and
the application will terminate. If no exception occurs in the first try block, the program

continues to execute. Again, a SQL INSERT statement is written within a try block. If an

exception occurs because of a bad sector in the disk drive, the disk is full, the table doesn’t
exist, or something similar, the rollback() method will be executed to revert the database table

to its last saved version. With exception handling, you get an immediate and detailed message
of anything that goes wrong. A brief definition of the rollback() method follows in the next

section.

rollback()

The rollback() method cancels all the modifications applied to the database table. It keeps the

database table at the state it was when it was last saved.

The previous program has one drawback: The new row inserted in the products table had fixed

data; the user was not asked to supply the information for the new row, and instead some
dummy data was used. Let’s change the program in two ways :

Ask the user to enter information about the new product

Instead of just one row, allow the user to insert as many rows as he wants

To apply thesse features, use a while loop that inserts rows into the database table until the

user wants to stop. Secondly, instead of inserting a dummy product, you will ask the user to
enter information of the product to be inserted: the product ID, product name, quantity, and
price of the new product. The complete code applying the two features follows:

insertrecinput.py
import sys

import MySQLdb
conn=MySQLdb.connect(host="localhost", user="root", passwd="mce", db="shopping")
cursor=conn.cursor()
k="YES"
while k.upper()=="YES" :
 pid=int(input("Enter Product ID: "))
 pname=input("Enter Product Name: ")
 qty=int(input("Enter Quantity: "))
 price=int(input("Enter Price: "))
 try:
 cursor.execute("""
 INSERT INTO products (prod_id, prod_name, quantity, price)
 VALUES (%d, '%s', %d, %f)
 """ %(pid, pname, qty, price))
 conn.commit()
 k=input("Want to insert more products, yes/no: ")
 except:
 conn.rollback()
 sys.exit(1)
cursor.close()
conn.close()
Output :
Enter Product ID: 102
Enter Product Name: Phone
Enter Quantity: 100
Enter Price: 20
Want to insert more products, yes/no: yes

Enter Product ID: 103
Enter Product Name: Laptop
Enter Quantity: 100
Enter Price: 500
Want to insert more products, yes/no: yes

Enter Product ID: 104
Enter Product Name: Shirts
Enter Quantity: 100
Enter Price: 50
Want to insert more products, yes/no: no

You can see in the program that the information of the new product entered by the user is
inserted into the products table by executing a SQL INSERT statement via the execute()

method of cursor. In case of occurrence of an exception or error, the SQL INSERT command will

be cancelled via rollback(). After adding three more rows, your products table will show four

rows as shown in Figure 12.6.

Figure 12.6. Displaying rows in the products database table.

Fetching Rows from the Table

The next step is to learn how to fetch the inserted rows.

When the SQL SELECT statement is executed via execute() of the cursor object, a resultset

object is created that contains the rows from the database table that satisfy the specified SQL
SELECT criteria. From resultset, you can fetch rows with the following two methods:

fetchone(): Fetches the next row in resultset.

fetchall(): Fetches all the rows in resultset. If some rows have already been

retrieved from the resultset, the remaining rows will be retrieved.

You can also use fetchone() in a loop to retrieve all rows from a database table. The following

Python script does that. The fetchone() method is used within an infinite while loop to retrieve

and display all rows in the products table. Here is the complete code:

disprec1.py
import sys
import MySQLdb
conn=MySQLdb.connect(host="localhost", user="root", passwd="mce", db="shopping")
cursor=conn.cursor()
try:
 cursor.execute ("SELECT * from products")
 print ("Product ID\tProduct Name\tQuantity\tPrice")
 while(1):
 row=cursor.fetchone()
 if row==None:
 break
 print ("%d\t\t%s\t\t%d\t\t%f" %(row[0], row[1], row[2], row[3]))
except MySQLdb.Error:
 print ("Error in fetching rows")
 sys.exit(1)
cursor.close()
conn.close()
Output :
Product ID Product Name Quantity Price
101 Camera 100 15.000000
102 Phone 100 20.000000
103 Laptop 100 500.000000
104 Shirts 100 50.000000

The steps taken in the program are as follows:

1. Connection to the MySQL Database Server is established.

2. A cursor object is created using the connection object.

3. A SQL SELECT statement is executed using the execute() method of the cursor object,

and the result of the SQL QUERY, the resultset object, is created.

4. The column headings for the output are displayed.

5. An infinite while loop is executed.

6. One row from the resultset object is fetched and stored in the row variable. The row

variable will become an array with the size equal to the number of columns in the
fetched database row: row[0] will contain the data in the first column of the database

row, row[1] will contain the data in the second column of the database row, and so on.

7. If row is None, and all rows from the resultset object are fetched, break out of the

infinite while loop.

8. Display the contents of the first four elements in the row array; the information in the

prod_id, prod_name, quantity, and price columns of the fetched database row will

be displayed.

9. Display error message if an exception error occurs.

10. Close the cursor object.

11. Disconnect the database connection.

This program explains how to use the fetchone() method to fetch rows from a database table.

Now let’s use another method, fetchall(), for retrieving and displaying all rows of a database

table. The program is as follows:

disprec2.py
import sys
import MySQLdb
conn=MySQLdb.connect(host="localhost", user="root", passwd="mce", db="shopping")
cursor=conn.cursor()
try:
 cursor.execute ("SELECT * from products")
 print ("Product ID\tProduct Name\tQuantity\tPrice")
 rows=cursor.fetchall()
 for row in rows:
 print ("%d\t\t%s\t\t%d\t\t%f" %(row[0], row[1], row[2], row[3]))
except MySQLdb.Error:
 print ("Error in fetching rows")
 sys.exit(1)
cursor.close()
conn.close()

The only difference from the previous program is that here, all the rows from the resultset are

fetched and stored in a rows array, where each element represents a row of the products table.

Then, one element (row) at a time from the rows array is picked using a for loop, and

information in the four columns is displayed. The information of each product in the prod_id,

prod_name, quantity, and price columns will be displayed via each element of the rows array.

Instead of listing all rows from the table, can you search and retrieve only certain row(s) from
the database table?

Searching in a Database Table

Searching can be done in a database table with a SQL SELECT statement. By specifying search

criteria in a SQL SELECT statement, you can search and retrieve from the products table. The

following program displays a product with a specific product ID:

sqlenquiry.py
import MySQLdb
conn=MySQLdb.connect(host="localhost", user="root", passwd="mce", db="shopping")
cursor=conn.cursor()
p=int(input("Enter Product ID: "))
cursor.execute ("SELECT * from products where prod_id=%d" %p)
row=cursor.fetchone()

if row==None:
 print ("Sorry no Product found with ID %d" %p)
else:
 print ("Information of the product with ID %d is as follows:" %p)
 print ("Product ID: %d, Product Name: %s, Quantity: %d, Price: %f" %(row[0], row[1],
row[2], row[3]))
cursor.close()
conn.close()
Output :
Enter Product ID: 105
Sorry no Product found with ID 105

Let’s run the script again to try another product.

Enter Product ID: 103
Information of the product with ID 103 is as follows:
Product ID: 103, Product Name: Laptop, Quantity: 100, Price: 500.000000

This program is very simple. The initial steps are as usual, establishing connection with the
MySQL Database Server and creating a cursor object using the connection object. Then you ask

the user to enter the ID of the product whose information he wants to retrieve. The product ID
entered by the user is stored in a variable, p. Then, through the execute() method of the cursor

object, you execute a SQL SELECT statement to retrieve the product with the ID specified in p

from the products table. The result of the SQL statement is stored in the resultset object.

Using fetchone(), you retrieve a row from the resultset object and store it in row, which will

now appear as an array, where each element represents a column of the product table’s row. You
check to see if the value of the row variable is None, which means there was no row found in the

database table with the supplied product ID. In that case, you display a Sorry message saying
no product with the supplied product ID was found in the table. If the value in row is not None, it

means at least one product is found in the database table with the supplied product ID. The
product is fetched and stored in row array. Through the elements of the row array, you display

the information of the searched product. Finally, you close the cursor object and disconnect the

database connection.

Sometimes you need to update the information stored in a database table. Let’s look at the
procedure for doing so.

Updating Information in a Database Table

To update information in a database table, you will use a SQL UPDATE statement. All you need is

to supply the criteria of the rows to be updated and the new information. Let’s look at a program
that updates product information in the products table:

sqlupdate.py
import MySQLdb
conn=MySQLdb.connect(host="localhost", user="root", passwd="mce", db="shopping")
cursor=conn.cursor()
p=int(input("Enter Product ID: "))
cursor.execute ("SELECT * from products where prod_id=%d" %p)
row=cursor.fetchone()
if row==None:
 print ("Sorry no Product found with ID %d" %p)
else:
 print ("Information of the product with ID %d is as follows:" %p)
 print ("Product ID: %d, Product Name: %s, Quantity: %d, Price: %f" %(row[0], row[1],
row[2], row[3]))
 pname=input("Enter new Product Name: ")
 qty=int(input("Enter new Quantity: "))

 price=int(input("Enter new Price: "))
 cursor.execute ("UPDATE products set prod_name='%s', quantity=%d, price=%f where
prod_id=%d" %(pname, qty, price,p))
 print("Information of the Product with ID %d is updated." %p)
cursor.close()
conn.commit()
conn.close()
Output :
Enter Product ID: 105
Sorry no Product found with ID 105

Let’s run the script again to try some other product ID.

Enter Product ID: 103
Information of the product with ID 103 is as follows:
Product ID: 103, Product Name: Laptop, Quantity: 100, Price: 500.000000
Enter new Product Name: Motor bike
Enter new Quantity: 50
Enter new Price: 400
Information of the Product with ID 103 is updated.

The code in this program does the following:

Establishes connection with the MySQL Database Server.

Creates a cursor object using the connection object.

Asks the user to enter the ID of the product he wants to update. The product ID entered by

the user is temporarily stored in variable p.

Executes a SQL SELECT statement through the execute() method of the cursor object to

retrieve the product with the product ID specified in variable p. The result of the SQL

statement is stored in the resultset object.

A row is retrieved from the resultset using fetchone() and stored in row.

It checks to see if the value of the row variable is None, which means no product with the

supplied product ID was found in the products table. A Sorry message is displayed saying

no product with the supplied product ID was found in the table.

If the value in the row variable (array) is not None, a product with the supplied product ID

was found in the database table. Then, the existing information of the product is displayed
through elements of the row array. The row array is four elements that represent the

information in the products table.

Asks the user to enter new a product name, quantity and price for the product whose

product ID was supplied. The information entered by the user is stored temporarily in
variables pname, qty, and price, respectively.

The products table is updated by executing a SQL UPDATE statement via the execute()

method of the cursor object, and a message is displayed confirming that the product’s

information is updated.

The commit() method is invoked to apply the modifications to the underlying database

table.

Closes the cursor object and disconnects the database connection.

When displaying the products table, you find that the information of the product Laptop is

updated to Motor bike as shown in Figure 12.7.

Figure 12.7. Displaying updated rows in the products database table.

We have seen how to list, insert, search, and update the database table. Now let’s see the final
task required in database maintenance—deleting rows.

Deleting Information from a Database Table

To delete rows from the database table, you use the SQL DELETE command. The following

program deletes a product with the specified ID from the products table of the shopping

database:

sqldelete.py
import MySQLdb
conn=MySQLdb.connect(host="localhost", user="root", passwd="mce", db="shopping")
cursor=conn.cursor()
p=int(input("Enter Product ID: "))
cursor.execute ("SELECT * from products where prod_id=%d" %p)
row=cursor.fetchone()
if row==None:
 print ("Sorry no Product found with ID %d" %p)
else:
 print ("Information of the product with ID %d is as follows:" %p)
 print ("Product ID: %d, Product Name: %s, Quantity: %d, Price: %f" %(row[0], row[1],
row[2], row[3]))
 k=input("Confirm, Want to delete this record, yes/no: ")
 if k.upper()=="YES":
 cursor.execute ("DELETE from products where prod_id=%d" %p)
 print("Product with ID %d is deleted" %p)
cursor.close()
conn.commit()
conn.close()
Output:
Enter Product ID: 105
Sorry no Product found with ID 105

Let’s run the script again to try some other product ID.

Enter Product ID: 102
Information of the product with ID 102 is as follows:
Product ID: 102, Product Name: Phone, Quantity: 100, Price: 20.000000
Confirm, Want to delete this record, yes/no: no

On entering no, the product with ID 102 is not deleted. To confirm this, let’s run the script again
and enter the product ID 102. If the product information is displayed, it means the product is
not yet deleted.

Enter Product ID: 102
Information of the product with ID 102 is as follows:
Product ID: 102, Product Name: Phone, Quantity: 100, Price: 20.000000
Confirm, Want to delete this record, yes/no: yes
Product with ID 102 is deleted

On entering the option, yes, the product is deleted.

After the usual procedure of establishing connection to the MySQL Database Server and creating
a cursor object, the user is prompted to enter a product ID that he wants to delete. A SQL

SELECT statement is executed via the execute() method of the cursor object to see if the

product with the supplied product ID exists in the products table. If the product is found, its

information is displayed, and user is asked for confirmation to delete the product. If he enters
No, the product will not be deleted from the products table. If he confirms deletion by entering

Yes, the SQL DELETE statement is executed. Also, commit() is called to implement the changes

in the database table. Finally, cursor is closed and the database is disconnected.

After deleting the product with ID 102, the rows that are left in products are as shown in Figure

12.8.

Figure 12.8. Rows left in the products table after performing deletion.

The Python code that you saw up until now in this chapter has been console-based. What if you
want to create a GUI application that fetches and inserts information in a database table?

Database Maintenance Through GUI Programs

The database maintenance programs that you are going to create in this section are GUI
based. You will creating a user interface with Qt Designer and access Python code with scripts.
Before we proceed with developing an application in PyQt, let’s first discuss the QSqlDatabase

class, which will be required to integrate databases to PyQt.

QSqlDatabase Class

To integrate and access databases in PyQt, you use the QSqlDatabase class. To represent

connection to a database, an instance of QSqlDatabase is used. Methods of QSqlDatabase are

shown in Table 12.2.

Table 12.2. Methods of the QSqlDatabase Class

Method Use

addDatabase() Used to specify the database driver of
the database to which you want to
establish connection. It is through the
database drivers that the database is
accessed.

 Driver types:

 QDB2: IBM DB2 Driver

 QMYSQL: MySQL Driver

 QOCI: Oracle Call Interface Driver

 QODBC: ODBC Driver (includes Microsoft

SQL Server)

 QPSQL: PostgreSQL Driver

 QSQLITE: SQLite version 3 or above

setHostName() Used to specify the hostname.

setDatabaseName() Used to specify the name of the
database that you want to work with.

setUserName() Used to specify the name of the
authorized user through whom you
want to access the database.

setPassword() Used to specify the password of the
authorized user to access the database.

open() Opens the database connection using
the current connection attributes. The
method returns a Boolean true or false
value, depending on whether the
connection to the database is
successfully established or not.

lastError() Used to display error information that

may occur while opening connection
with the database through the open()

function.

Now that you know how to establish connection with the database in PyQt, let’s begin the
section with the task of displaying information in the database table.

Displaying Rows

To display the rows fetched from the database table, you will use a Table View widget. The
Table View widget will display database table information in tabular format. When fetching
and displaying information from a database, you want to use a model that is easy to deal with.
A model is a mirror image of the database table that the user can use to navigate and edit if
required. To create a model, you need to create an instance of the QSqlTableModel class.

QSqlTableModel Class

The class provides a model that can be set to display information of a database table. The
class also makes it easy to navigate the model and set editing strategy for the underlying
database tables. You can perform modifications in place in the model itself without having
knowledge of SQL syntax. The methods of QSqlTableModel are shown in Table 12.3.

Table 12.3. Methods of QSqlTableModel

Method Use

setTable() Used to specify the database table you want
the model to work with.

setEditStrategy()Applies the strategy for editing the database
table. The available strategies are these:

 OnFieldChange: All modifications made in

the model will be applied immediately to the
database table.

 OnRowChange: All modifications made to a

row will be applied to the database table on
moving to a different row.

 OnManualSubmit: All modifications will be

cached in the model and applied to the
database table when submitAll() is called.

 Also, modifications that are cached can be
cancelled or erased without applying to the
database by calling revertAll().

select() Used to populate the model with the
information of the database table specified
with setTable().

Let’s create an application that displays rows of the products database table. Open Qt

Designer and create a new application based on Dialog without Buttons. Name the application
showrec.ui and drag and drop a Table View widget onto the form as shown in Figure 12.9.

Figure 12.9. Form displaying the Table View widget.

Save the application with the name showrec.ui. The Python code of this .ui (XML) file will

appear as follows:

showrec.py
Form implementation generated from reading ui file 'showrec.ui'
from PyQt4 import QtCore, QtGui

try:
 _fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
 _fromUtf8 = lambda s: s

class Ui_Dialog(object):
 def setupUi(self, Dialog):
 Dialog.setObjectName(_fromUtf8("Dialog"))
 Dialog.resize(400, 300)
 self.tableView = QtGui.QTableView(Dialog)
 self.tableView.setGeometry(QtCore.QRect(70, 50, 256, 192))
 self.tableView.setObjectName(_fromUtf8("tableView"))
 self.retranslateUi(Dialog)
 QtCore.QMetaObject.connectSlotsByName(Dialog)

 def retranslateUi(self, Dialog):
 Dialog.setWindowTitle(QtGui.QApplication.translate("Dialog", "Dialog", None,
QtGui.QApplication.UnicodeUTF8))

Now let’s create a Python script that imports the code to invoke the Table View widget and
fetches the rows from the products table, creates a model, and displays the information in the

model with a Table View widget. The Python script file will appear as follows:

callshowrec.pyw
import sys
from showrec import *
from PyQt4 import QtSql, QtGui

def createConnection():
 db = QtSql.QSqlDatabase.addDatabase('QMYSQL')
 db.setHostName('localhost')
 db.setDatabaseName('shopping')
 db.setUserName('root')
 db.setPassword('mce')

 db.open()
 print (db.lastError().text())
 return True

class MyForm(QtGui.QDialog):
 def __init__(self, parent=None):
 QtGui.QWidget.__init__(self, parent)
 self.ui = Ui_Dialog()
 self.ui.setupUi(self)
 self.model = QtSql.QSqlTableModel(self)
 self.model.setTable("products")
 self.model.setEditStrategy(QtSql.QSqlTableModel.OnManualSubmit)
 self.model.select()
 self.ui.tableView.setModel(self.model)

if __name__ == "__main__":
 app = QtGui.QApplication(sys.argv)
 if not createConnection():
 sys.exit(1)
 myapp = MyForm()
 myapp.show()
 sys.exit(app.exec_())

The first thing you do is import the QtSql module into the program; it will be required to
integrate the database into the PyQt applications. The QtSql module includes classes and
drivers that help in accessing and interacting with the database.

Then you provide details of establishing the database connection. Since you want to access
the MySQL database, specify its driver with addDatabase(). In the connection, you also

specify the database name, user name, and password. Finally, the connection is opened to
perform operations on the database. You define a model and set it to display the products

table. The edit strategy for the model is set to OnManualSubmit, which means the changes

made in the model will not be applied to the database table until submitAll() is called. The

model is populated by the rows of the products table with the select() method. To display

the content of the model in the dialog box, apply it to the Table view, an instance of
QTableView.

The QTableView class is used to create a Table view that displays items from a model. That is,

information can be displayed in the Table view through the models that are derived from the
QAbstractItemModel class. The rows of the products table will appear in the Table View

widget as shown in Figure 12.10. You can navigate to any cell in the Table view by clicking on
it or using the arrow keys. You can also use the Tab key to move between cells.

Figure 12.10. products table information displayed with a Table View widget.

Navigating Through Rows of the Database Table

Now let’s create an application that displays the first row of the database table. The
application should also display navigation buttons that enable the user to navigate to the next
row, previous row, first row, and last row of the database table.

Open Qt Designer and create a new application based on Dialog without Buttons. Drag and
drop five Label, four Line Edit, and four Push Button widgets onto the form. Set the text

property of the five Labels to List of Products, Product ID, Product Name, Quantity, and

Price. Set the objectName property of the four Line Edit widgets to prodid, prodname, qty,

and price. Also, set the objectName property of the four Push Button widgets to FirstButton,

PreviousButton, NextButton, and LastButton. Also increase the point size of the List of

Products Label and make it bold so that it appears as a heading in the application. Also, set

the text property of the Push Buttons to First, Previous, Next, and Last. The form will appear

as shown in Figure 12.11.

Figure 12.11. Form to display one row of the products table at a time.

Save the application with the name DispProducts.ui. The Python code of the .ui (XML) file

generated with the pyuic4 command utility will appear as follows:

DispProducts.py
Form implementation generated from reading ui file 'DispProducts.ui'
from PyQt4 import QtCore, QtGui

try:
 _fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
 _fromUtf8 = lambda s: s

class Ui_Dialog(object):
 def setupUi(self, Dialog):
 Dialog.setObjectName(_fromUtf8("Dialog"))
 Dialog.resize(420, 194)
 self.label = QtGui.QLabel(Dialog)
 self.label.setGeometry(QtCore.QRect(140, 10, 131, 16))
 font = QtGui.QFont()
 font.setPointSize(11)
 font.setWeight(75)
 font.setBold(True)
 self.label.setFont(font)
 self.label.setObjectName(_fromUtf8("label"))
 self.label_2 = QtGui.QLabel(Dialog)
 self.label_2.setGeometry(QtCore.QRect(30, 40, 51, 16))
 self.label_2.setObjectName(_fromUtf8("label_2"))
 self.label_3 = QtGui.QLabel(Dialog)
 self.label_3.setGeometry(QtCore.QRect(190, 40, 71, 16))
 self.label_3.setObjectName(_fromUtf8("label_3"))
 self.label_4 = QtGui.QLabel(Dialog)

 self.label_4.setGeometry(QtCore.QRect(40, 70, 46, 13))
 self.label_4.setObjectName(_fromUtf8("label_4"))
 self.label_5 = QtGui.QLabel(Dialog)
 self.label_5.setGeometry(QtCore.QRect(230, 70, 31, 16))
 self.label_5.setObjectName(_fromUtf8("label_5"))
 self.FirstButton = QtGui.QPushButton(Dialog)
 self.FirstButton.setGeometry(QtCore.QRect(20, 130, 75, 23))
 self.FirstButton.setObjectName(_fromUtf8("FirstButton"))
 self.PreviousButton = QtGui.QPushButton(Dialog)
 self.PreviousButton.setGeometry(QtCore.QRect(120, 130, 75, 23))
 self.PreviousButton.setObjectName(_fromUtf8("PreviousButton"))
 self.NextButton = QtGui.QPushButton(Dialog)
 self.NextButton.setGeometry(QtCore.QRect(220, 130, 75, 23))
 self.NextButton.setObjectName(_fromUtf8("NextButton"))
 self.LastButton = QtGui.QPushButton(Dialog)
 self.LastButton.setGeometry(QtCore.QRect(320, 130, 75, 23))
 self.LastButton.setObjectName(_fromUtf8("LastButton"))
 self.prodid = QtGui.QLineEdit(Dialog)
 self.prodid.setGeometry(QtCore.QRect(90, 40, 71, 20))
 self.prodid.setObjectName(_fromUtf8("prodid"))
 self.prodname = QtGui.QLineEdit(Dialog)
 self.prodname.setGeometry(QtCore.QRect(270, 40, 131, 20))
 self.prodname.setObjectName(_fromUtf8("prodname"))
 self.qty = QtGui.QLineEdit(Dialog)
 self.qty.setGeometry(QtCore.QRect(90, 70, 51, 20))
 self.qty.setObjectName(_fromUtf8("qty"))
 self.price = QtGui.QLineEdit(Dialog)
 self.price.setGeometry(QtCore.QRect(270, 70, 61, 20))
 self.price.setObjectName(_fromUtf8("price"))
 self.retranslateUi(Dialog)
 QtCore.QMetaObject.connectSlotsByName(Dialog)

 def retranslateUi(self, Dialog):
 Dialog.setWindowTitle(QtGui.QApplication.translate("Dialog", "Dialog", None,
QtGui.QApplication.UnicodeUTF8))
 self.label.setText(QtGui.QApplication.translate("Dialog", "List of Products",
None, QtGui.QApplication.UnicodeUTF8))
 self.label_2.setText(QtGui.QApplication.translate("Dialog", "Product ID", None,
QtGui.QApplication.UnicodeUTF8))
 self.label_3.setText(QtGui.QApplication.translate("Dialog", "Product Name", None,
QtGui.QApplication.UnicodeUTF8))
 self.label_4.setText(QtGui.QApplication.translate("Dialog", "Quantity", None,
QtGui.QApplication.UnicodeUTF8))
 self.label_5.setText(QtGui.QApplication.translate("Dialog", "Price", None,
QtGui.QApplication.UnicodeUTF8))
 self.FirstButton.setText(QtGui.QApplication.translate("Dialog", "First", None,
QtGui.QApplication.UnicodeUTF8))
 self.PreviousButton.setText(QtGui.QApplication.translate("Dialog", "Previous",
None, QtGui.QApplication.UnicodeUTF8))
 self.NextButton.setText(QtGui.QApplication.translate("Dialog", "Next", None,
QtGui.QApplication.UnicodeUTF8))
 self.LastButton.setText(QtGui.QApplication.translate("Dialog", "Last", None,
QtGui.QApplication.UnicodeUTF8))

Let’s create a Python script that imports the code to invoke the user interface design and
implements navigation from one row to another. The Python script file will appear as follows:

callDispProducts.pyw
import sys

from DispProducts import *
from PyQt4 import QtSql, QtGui

def createConnection():
 db = QtSql.QSqlDatabase.addDatabase('QMYSQL')
 db.setHostName('localhost')
 db.setDatabaseName('shopping')
 db.setUserName('root')
 db.setPassword('mce')
 db.open()
 print (db.lastError().text())
 return True

class MyForm(QtGui.QDialog):
 recno=0
 def __init__(self, parent=None):
 QtGui.QWidget.__init__(self, parent)
 self.ui = Ui_Dialog()
 self.ui.setupUi(self)
 self.model=QtSql.QSqlQueryModel(self)
 self.model.setQuery("select * from products")
 self.record=self.model.record(0)
 self.ui.prodid.setText(str(self.record.value("prod_id")))
 self.ui.prodname.setText(self.record.value("prod_name"))
 self.ui.qty.setText(str(self.record.value("quantity")))
 self.ui.price.setText(str(self.record.value("price")))
 QtCore.QObject.connect(self.ui.FirstButton, QtCore.SIGNAL('clicked()'),
self.dispFirst)
 QtCore.QObject.connect(self.ui.PreviousButton, QtCore.SIGNAL('clicked()'),
self.dispPrevious)
 QtCore.QObject.connect(self.ui.LastButton, QtCore.SIGNAL('clicked()'),
self.dispLast)
 QtCore.QObject.connect(self.ui.NextButton, QtCore.SIGNAL('clicked()'),
self.dispNext)

 def dispFirst(self):
 MyForm.recno=0
 self.record=self.model.record(MyForm.recno)
 self.ui.prodid.setText(str(self.record.value("prod_id")))
 self.ui.prodname.setText(self.record.value("prod_name"))
 self.ui.qty.setText(str(self.record.value("quantity")))
 self.ui.price.setText(str(self.record.value("price")))

 def dispPrevious(self):
 MyForm.recno-=1
 if MyForm.recno <0:
 MyForm.recno=self.model.rowCount()-1
 self.record=self.model.record(MyForm.recno)
 self.ui.prodid.setText(str(self.record.value("prod_id")))
 self.ui.prodname.setText(self.record.value("prod_name"))
 self.ui.qty.setText(str(self.record.value("quantity")))
 self.ui.price.setText(str(self.record.value("price")))

 def dispLast(self):
 MyForm.recno=self.model.rowCount()-1
 self.record=self.model.record(MyForm.recno)
 self.ui.prodid.setText(str(self.record.value("prod_id")))
 self.ui.prodname.setText(self.record.value("prod_name"))
 self.ui.qty.setText(str(self.record.value("quantity")))
 self.ui.price.setText(str(self.record.value("price")))

 def dispNext(self):
 MyForm.recno+=1
 if MyForm.recno >self.model.rowCount()-1:
 MyForm.recno=0
 self.record=self.model.record(MyForm.recno)
 self.ui.prodid.setText(str(self.record.value("prod_id")))
 self.ui.prodname.setText(self.record.value("prod_name"))
 self.ui.qty.setText(str(self.record.value("quantity")))
 self.ui.price.setText(str(self.record.value("price")))

if __name__ == "__main__":
 app = QtGui.QApplication(sys.argv)
 if not createConnection():
 sys.exit(1)
 myapp = MyForm()
 myapp.show()
 sys.exit(app.exec_())

Before you start working on the code, let’s look at the class and the methods used in it.

QSqlQueryModel class: Provides a read-only model based on the specified SQL query.

setQuery(): Used to specify the SQL query.

record(int): Used to access individual records (rows) from the specified database

table.

record.value("column_name"): Used to retrieve the value of the specified column of

the current row of the database table.

In this code, as usual, you connect to the shopping database on the local host through the

MySQL driver. When establishing the connection, you specify the user name and password of
the user to the database. When the connection is established, you create a read-only model
and specify a SQL query to access all the rows of the products table and copy them to the

model. Since you want the application to display the first row of the products table, retrieve

the first row of the table with the record() method and access the data in the prod_id,

prod_name, quantity, and price columns and assign it to the Line Edit widgets as shown in

Figure 12.12.

Figure 12.12. First row of the products table displayed on startup.

The buttons on the form are connected to invoke the respective methods. To retrieve from the
database table, you use a static variable, recno. The recno variable is initially set to 0 to

display the first row. When you select Next, the value of the variable recno is incremented by

1 to display the next row. If the user selects Next on the last row of the table, the value of the

recno variable is reset to 0 to display the first row.

Similarly, the value of the recno variable is decremented by 1 each time the Previous button

is selected to display the previous row. If the user selects the Previous button on the first row,
the value of recno is set to the value of the last row number of the table to display the last

row of the table. The First and Last buttons set the value of recno to 0 and rowCount to

display the first and last rows of the table, respectively.

You have seen how to navigate among the rows in the database table. Now let’s look at how to
add rows, delete rows, update information in existing rows, and search rows in the database
table. These operations are known as maintaining the database table.

Maintaining the Database Table

Let’s create an application that displays all the rows of the database table. The application has
buttons that enable you to add new rows, delete existing rows, update existing rows, and
search the database table.

Open Qt Designer and create a new application based on Dialog without Buttons and drag and
drop a Label, a Line Edit, five Push Buttons, and a Table View widget on the form. Set the
text property of the Label to Enter Product Name. Set the text property of the Push Buttons

to Filter, Update, Cancel, Add, and Delete. Set the objectName property of the Line Edit

widget to prodname. Also, set the objectName property of the five Push Button widgets to

FilterButton, UpdateButton, CancelButton, InsertButton, and DeleteButton. The form

will appear as shown in Figure 12.13.

Figure 12.13. Form to display rows of the products table with the facility to add,

delete, update, and search.

Save the application with the name MaintainProducts.ui. The Python code of the .ui (XML)

file will appear as follows:

MaintainProducts.py
Form implementation generated from reading ui file 'MaintainProducts.ui'
from PyQt4 import QtCore, QtGui

try:
 _fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
 _fromUtf8 = lambda s: s

class Ui_Dialog(object):
 def setupUi(self, Dialog):
 Dialog.setObjectName(_fromUtf8("Dialog"))
 Dialog.resize(479, 317)
 self.tableView = QtGui.QTableView(Dialog)
 self.tableView.setGeometry(QtCore.QRect(20, 40, 441, 221))
 self.tableView.setObjectName(_fromUtf8("tableView"))
 self.UpdateButton = QtGui.QPushButton(Dialog)
 self.UpdateButton.setGeometry(QtCore.QRect(20, 270, 75, 23))
 self.UpdateButton.setObjectName(_fromUtf8("UpdateButton"))
 self.CancelButton = QtGui.QPushButton(Dialog)
 self.CancelButton.setGeometry(QtCore.QRect(140, 270, 75, 23))
 self.CancelButton.setObjectName(_fromUtf8("CancelButton"))
 self.InsertButton = QtGui.QPushButton(Dialog)
 self.InsertButton.setGeometry(QtCore.QRect(260, 270, 75, 23))
 self.InsertButton.setObjectName(_fromUtf8("InsertButton"))
 self.DeleteButton = QtGui.QPushButton(Dialog)
 self.DeleteButton.setGeometry(QtCore.QRect(380, 270, 75, 23))
 self.DeleteButton.setObjectName(_fromUtf8("DeleteButton"))
 self.FilterButton = QtGui.QPushButton(Dialog)
 self.FilterButton.setGeometry(QtCore.QRect(290, 10, 75, 23))
 self.FilterButton.setObjectName(_fromUtf8("FilterButton"))
 self.label = QtGui.QLabel(Dialog)
 self.label.setGeometry(QtCore.QRect(30, 10, 111, 16))
 self.label.setObjectName(_fromUtf8("label"))
 self.prodname = QtGui.QLineEdit(Dialog)
 self.prodname.setGeometry(QtCore.QRect(140, 10, 113, 20))
 self.prodname.setObjectName(_fromUtf8("prodname"))
 self.retranslateUi(Dialog)
 QtCore.QMetaObject.connectSlotsByName(Dialog)

 def retranslateUi(self, Dialog):
 Dialog.setWindowTitle(QtGui.QApplication.translate("Dialog", "Dialog", None,
QtGui.QApplication.UnicodeUTF8))
 self.UpdateButton.setText(QtGui.QApplication.translate("Dialog", "Update", None,
QtGui.QApplication.UnicodeUTF8))
 self.CancelButton.setText(QtGui.QApplication.translate("Dialog", "Cancel", None,
QtGui.QApplication.UnicodeUTF8))
 self.InsertButton.setText(QtGui.QApplication.translate("Dialog", "Add", None,
QtGui.QApplication.UnicodeUTF8))
 self.DeleteButton.setText(QtGui.QApplication.translate("Dialog", "Delete", None,
QtGui.QApplication.UnicodeUTF8))
 self.FilterButton.setText(QtGui.QApplication.translate("Dialog", "Filter", None,
QtGui.QApplication.UnicodeUTF8))
 self.label.setText(QtGui.QApplication.translate("Dialog", "Enter Product Name",
None, QtGui.QApplication.UnicodeUTF8))

The following Python script contains the code to import the Python code to invoke the user
interface design that adds, deletes, updates, and searches for information in the database
table:

callMaintainProducts.pyw
import sys
from MaintainProducts import *
from PyQt4 import QtSql, QtGui

def createConnection():
 db = QtSql.QSqlDatabase.addDatabase('QMYSQL')

 db.setHostName('localhost')
 db.setDatabaseName('shopping')
 db.setUserName('root')
 db.setPassword('mce')
 db.open()
 print (db.lastError().text())
 return True

class MyForm(QtGui.QDialog):
 def __init__(self, parent=None):
 QtGui.QWidget.__init__(self, parent)
 self.ui = Ui_Dialog()
 self.ui.setupUi(self)
 self.model = QtSql.QSqlTableModel(self)
 self.model.setTable("products")
 self.model.setEditStrategy(QtSql.QSqlTableModel.OnManualSubmit)
 self.model.select()
 self.ui.tableView.setModel(self.model)
 QtCore.QObject.connect(self.ui.UpdateButton, QtCore.SIGNAL('clicked()'),
self.UpdateRecords)
 QtCore.QObject.connect(self.ui.CancelButton, QtCore.SIGNAL('clicked()'),
self.CancelChanges)
 QtCore.QObject.connect(self.ui.InsertButton, QtCore.SIGNAL('clicked()'),
self.InsertRecords)
 QtCore.QObject.connect(self.ui.DeleteButton, QtCore.SIGNAL('clicked()'),
self.DeleteRecords)
 QtCore.QObject.connect(self.ui.FilterButton, QtCore.SIGNAL('clicked()'),
self.FilterRecords)

 def UpdateRecords(self):
 self.model.submitAll()

 def CancelChanges(self):
 self.model.revertAll()

 def InsertRecords(self):
 self.model.insertRow(self.ui.tableView.currentIndex().row())

 def DeleteRecords(self):
 self.model.removeRow(self.ui.tableView.currentIndex().row())
 self.model.submitAll()

 def FilterRecords(self):
 self.model.setFilter("prod_name like '"+self.ui.prodname.text()+"%'")

if __name__ == "__main__":
 app = QtGui.QApplication(sys.argv)
 if not createConnection():
 sys.exit(1)
 myapp = MyForm()
 myapp.show()
 sys.exit(app.exec_())

Let’s look at the methods that are used in the code:

submit(): Submits the currently edited row; applies the modifications to the

underlying database table if the edit strategy is set to OnRowChange or

OnFieldChange.

Recall that if the edit strategy is set to OnRowChange, all the modifications done to a

row in the model will be applied to the database table on moving on to a different
row. If the edit strategy is set to OnFieldChange, all modifications to the model will

be applied to the database table. If the edit strategy is set to OnManualSubmit, all

modifications will be cached in the model and applied to the database table when
submitAll() is called. Also, all cached modifications will be cancelled without being

applied to the database if revertAll() is called.

submitAll(): Used to submit all pending changes to the database table if the edit

strategy is set to OnManualSubmit. The method returns true if the modifications are

successfully applied to the database table; otherwise it returns false.

lastError(): Used to display detailed error information.

revertAll(): Used to cancel all the pending editing of the current database table if

the model’s editing strategy is set to OnManualSubmit.

revert(): Used to cancel the editing of the current row if the model’s strategy is set

to OnRowChange.

insertRow(): Inserts an empty row after the specified position in an open database

table. If the specified position is a negative value, the row will be inserted at the
end.

removeRow(): Removes the row at the specified index from an open database table.

You need to call submitAll()to apply the changes to the database table if
the edit strategy is set to OnManualSubmit.

setFilter(): Used to specify the filter condition for the database table. If the model

is already populated with rows of the database table, the model repopulates the
model with the filtered rows.

Note

The model will be repopulated automatically if submitAll() successfully submits the

pending changes.

On execution of the application, a model of the products database table is created, and its

editing strategy is set to OnManualSubmit. The model is populated with the rows of the

products table with a select() method. To display the information of the model on the form,

you need to apply it to the Table view. On applying the model to the Table view, it will display
all the rows of the products table as shown in Figure 12.14(a). You can select any cell of the

Table view to modify its contents. For instance, to modify the quantity of Motor bike to 75,

select the cell displaying the value 50 and change it to value 75 as shown in Figure 12.14(b).

When you are finished with the modifications, apply them to the database table by selecting
Update. The Update button calls the submitAll() method and applies modifications to the

database table. The information in the database table will be updated as displayed in Figure
12.14(c).

Figure 12.14. (a) All rows of the products table displayed in a Table View

widget. (b) Modifying contents of a column with a Table View widget. (c) A
Table View widget displaying the updated information.

[View full size image]

To insert a row in the products table, select the Add button. A blank row will appear in the

model after the row where the cursor was positioned. Enter the information for the new
product, as shown in Figure 12.15(a), and select Update. The new row will be appended to the
underlying database table, and the Table view will be repopulated to show the new row, as
shown in Figure 12.15(b). When Delete is selected, the row where the cursor is positioned in
the Table view will be deleted, and the Table view will be repopulated to display the changes.
To filter the rows in the database table with the specified product name, enter the beginning
characters of the product you are looking for in the Line Edit widget and select Filter. For
example, if you are searching for Motor Cycle, enter Mo in the Line Edit widget and select the
Filter button. The products that begin with the characters “Mo” will be displayed as shown in
Figure 12.15(c).

Figure 12.15. (a) Inserting a row with a Table View widget. (b) Table view
displaying the new row. (c) Table view displaying the row that satisfies the

filter condition “Mo.”

[View full size image]

This finishes our chapter on maintaining a database with console-based Python programs and
GUI programs.

Summary

In this chapter you learned to install and use the MySQLdb module, which
is required to access MySQL Database Server through Python. Also, you
learned to maintain a database through console-based programs and
through GUI programs. You learned to write Python scripts to insert, fetch,
delete, search, and update rows in a database table.

In this book, I have tried to keep things easy to understand. I hope you
agree. You now have all the necessary information to build and maintain
your own applications in Python.

Have fun creating your own applications, and thanks for reading!

INDEX

SYMBOL
!= comparison operator
hash sign
% format codes
%C format code
%d format code
%e format code
%f format code
%O directive
%O format code
%S format code
%X directive
%X format code
& (ampersand character)
& (intersection) set operation
& bitwise operator
(open parenthesis
** double asterisks
.0 component
.py extension
.pyw extension
// truncating division operator
; semicolon
©statiemethod decorator
[open bracket
\ backslash 2nd
\” escape character
\ ' escape character
\\ escape character
\a escape character
\b escape character
\f escape character
\n escape character
\r escape character
\t escape character
\V escape character
Abitwise operator
_add _method
_bases _class attribute
_del _method
_delattr _method
_delete method

_dict _class attribute
_doe _class attribute
_get _method
_getattr _method 2nd 3rd
_init _ () method
 defining default value parameters in
 overview
 passing arguments to
 string representation of instances
_module _class attribute
name class attribute
next() method
_set _method
setattr method 2nd 3rd
str method 2nd
{ open brace
\ (union) set operation
\ bitwise operator
~ bitwise operator
+ plus sign
< comparison operator
<< shifting operator
<= comparison operator
== comparison operator
 overview 2nd
 polymorphism
 properties
> comparison operator
>= comparison operator
>> shifting operator
>>> Python prompt
0J component
0O prefix
0X prefix
, comma

A
A mode option
a+ mode option
access control specifiers
 accessing methods of base classes from derived classes
 accessing private members
 accessing public members
 method overriding

 overview
Action Editor 2nd
actionTriggered() method
activated() method
activateNextSubWindow() method
activatePreviousSubWindow() method
Active state
add() function
Add files icon
Add prefix icon
Add Push button
Add radio button
addDatabase() method
addDays() method
addltem() method 2nd
addltems() method 2nd
addlist() function
addMonths() method
addMSecs() method
addPixmap() function
addSecs() method
addseq() function
addYears() method
Adjust Size icon
all() method
AllDockWidgetFeatures property 2nd
American Standard Code for Information Interchange (ASCII)
ampersand character (&)
AND logical operator
any() method
append() method
appending file content
append(object) method
app.exec_() method
applications
 connecting to predefined slots
 GUI
 in Qt Designer
area() class method 2nd
area() instance method
area of rectangle program (arearect.py)
area of triangle program (areatriangle.py)
arguments
 command-line

 function
 keyword
 passing to_init_() method
arithmetic operations
 coercion (auto conversion)
 data types

B
backslash (\) 2nd
basefunc.py program
bigint data type
binary files
 creating
 defined
binaryfilel.py program
bitwise operations
blob data type
block statements 2nd
blocks
 try/except,
 try/finally,
boolean variables
Booleans, defined
Break Layout icon
break statement
breakexl.py program
breaking.py program
Bring to Front icon
buddies
 overview
 setting tab order
Buddy Editing mode
buttons
 displaying
 radio
Buttons group

C

calculate() method 2nd 3rd
Calculate Amount button
Calculate Bill Push Button
calculatebill() method
calculation() method

calendar
 Date Edit widget
 displaying
 overview
 QDate class
Calendar widget
calling functions
calltwonum.pyw script
capitalize() method/function
cascadeArrange() function
cascadeSubWindows() method 2nd
ceil(x) function
center(width) method/function
chaining comparison operators program (ifelschaining.py)
char data type
characterwise.py (Displaying first character in string program)
checkable property
checkboxes
 initiating actions without using push buttons
 overview
checkState() method 2nd
checkstr.py program
choice() function
Choose File option
Choose Resource option
class attributes
class body, defined
class variables, defined
classes
 class methods
 class statement
 attributes of class objects
 built-in class attributes
 defining functions in
 instances
 overview
 defined
 derived, accessing methods of base classes from
 descriptors
 garbage collection
 inheritance
 access control specifiers
 multilevel
 overview

 single
 operator overloading
 comparison operator (==)
 overview
 overview
 QDate
 QSqlDatabase
 QSqlTableModel
 static methods
Classic Icon view
Classic Python (CPython)
classmethd.py program
classname identifier
classstr.py program
cleanText() method
clear() method
 dictionary
 QComboBox class
 QLabel class
 QLineEdit class
 QListWidget class
 QTableWidget class
 sets
Click Me button
clicked() event 2nd 3rd 4th
clicked() method
clicked() signal 2nd 3rd 4th
close() method 2nd
closeAll() function
closeAllSubWindows() method
closed attribute
CLR; .NET (Common Language Runtime)
cls argument 2nd
coercion (auto conversion) 2nd
Column View widget
columnCount() method
columns, two-dimensional arrays
Combo Box 2nd
comma (,)
command line mode
 running programs from
 working with Python through
command-line arguments
commands 2nd 3rd 4th 5th

commit() method
Common Language Runtime (CLR; .NET)
comparison operator (==)
 overview
 polymorphism
 properties
comparison operators 2nd
complex numbers 2nd
compute() function
 globalvar.py program
 localvar.py program
concatenating
connect() method
console-based programs
constructor.py program
containers, defined
Containers group
continue statement
continueex.py program
copy() method
copying files
count (value) method
count() method
 finding occurrences of substrings in strings
 finding substrings in string
 QComboBox class
 QListWidget class
countvowel.py program
cPickle module
CPython (Classic Python)
createfilel.py program
createiter.py program
curly brackets
currentDate() method
currentlndex() method
currentIndexChanged() method
currentItem() method
currentItemChanged() method
currentItemText property
currentRow() method
currentRowChanged() method
currentText() method
currentTextChanged() method
currentTime() method

cursor() method
custom slots

D

data descriptors, defined
data members, defined
data types
 converting 2nd
 finding
 overview
databases [See also maintenance]
 creating
 MySQL
 installation of MySQLdb
 MySQLdb
 overview
 overview
date data type
dates
 Date Edit widget 2nd
 displaying calendar
 overview
 QDate class
datetime data type
Date/Time Edit widget
day() method
dayOfWeek() method
daysInMonth() method
daysInYear() method
daysTo() method
dd.MM.yyyy format
debugging
def statement
default value parameters
defaultcons.py program
del[n] method
delallitems() function
deleting
 file content
 information from database tables
delfilecontent.py program
delitem() function
derived classes (sub-classes), defined

describe table_name command
descriptors
descript.py program
destructor.py program
Detailed view
Dial widget
dialogs
 creating GUI applications
 overview
dictl.py program
dictexample.py (Merging dictionaries program)
dictionaries, defined
difference (-) set operation
dir() function
direx.py program
Disabled state
disp_message() static method
display() class method 2nd
Display widgets
displaying
 buttons
 calendar
 graphics
 input dialog box
 items
 LCD digits
 fetching and measuring system clock time
 overview
 using timers
 tables
 text
 web pages
Displaying first character in string program (characterwise.py)
Displaying list elements program (listl.py)
Displaying list elements program (list2.py)
displayNext() function
displayPrevious() function
dispsum() function
dispuser() method
dispvalue() function
Divide radio button
division operators
divmod function
Dock widget 2nd

DockWidgetClosable property
DockWidgetFloatable property
DockWidgetMovable property
DockWidgetVerticalTitleBar property
docstr.py program
documentation string
documents [See also multiple documents]
 layouts
 multiple-document interface
double asterisks (**)
double data type
Double Spin Box widget
Doublelnput option
double-quoted string
downloading Python

E
Edit Buddies icon
Edit Resources dialog 2nd
Edit Signals/Slots icon
Edit Tab Order option 2nd
Edit Widgets icon
editingFinished() method 2nd
editlist() function
editTextChanged() method
else statement
emitted events
endswith () method
EOFError exception 2nd
escape characters
escape sequences
evenodd.py program
event handling
evenval() function
exceptions
 handling
 overview 2nd
 using try/except block
 using try/finally block
 raising
 assert statement
 overview
exec_() method
execute() method

exit() method
expandtabs([tabsize]) method
exponentiation
extend (list) method

F
fact() functions
fetchall() method
fetchone() method
file methods
fileanyline.py program
fileappend.py program
fileattrib.py program
filecopy.py program
fileno() method
filenumerical.py program
filerandomread.py program
fileread2.py program
fileread.py program
filereadtry.py program
files
 accessing specific content in
 appending content to
 copying
 creating binary files
 creating resource
 deleting content from
 displaying information from file objects
 exception handling
 overview
 using try/except block
 using try/finally block
 opening
 overview
 performing actions on
 raising exceptions
 assert statement
 overview
 randomly reading content of
 reading from
 serialization (pickling)
 updating content of
filetryfinal.py program
filter() method

find() method
 displaying substrings in strings
 finding substrings in string
FirstApp.py code
FirstApp.py script file
flat property
float() function
float data type
float values
floating window
floating-point numbers
 defined
 using division operator with
floating-point variables
FloatingPointError exception
floor(x) function
flush() method
Font Combo Box widget
for loop
 choice() function
 generator expression
 iterators
 membership operators
 overview
 two-dimensional arrays
forloop.py program
Form Layout widget
format codes (%)
Frame widget
from_future _statement
from math import pi statement
fruits() function
funcl.py program
func2.py program
func3.py program
func4.py program
funcattrib.py program
function call, defined
functionname._code _attribute
functionname._defaults _attribute
functionname._dict _attribute
functionname._doc _attribute
functionname._module _attribute
functionname._name _attribute

functions
 applying to sequences
 attributes of
 def statement
 default value parameters
 defining
 differences between methods and
 dir()
 global variables
 keyword arguments
 lambda
 local variables
 overview
 return statement
functools module

G

garbage collection 2nd
General Public License (GPL)
generator expression
generator iterator, defined
generatorex.py program
generators
get() method
 dictionary
 Merging dictionaries program (dictexample.py),
get_name method
getsetattr.py program
global variables
globalvar.py program
GPL (General Public License)
graphical user interface (GUI) applications [See GUI applications]
Graphics View widget 2nd
Grid layout
gridVisible property
Group Box
 layouts
 widget
GUI applications
 creating application with code
 database maintenance through
 displaying rows
 overview

 QSqlDatabase class

H
hash
hash sign (#)
hex() function
hexa values, displaying
highlighted() method
horizontal layout
Horizontal Line widget
Horizontal Scrollbar widget
Horizontal Slider widget
Horizontal Spacer widget
HorizontalHeaderFormat property
hour() method

I

identifiers in global statements
IDLE (Integrated DeveLopment Environment)
 escape characters
 launching
 working with Python through
if statement
if...else statement 2nd
if-elif-else statement
ifelschaining.py (chaining comparison operators program)
ifelse4.py program 2nd
imaginary component of complex numbers
immutable objects
 defined
 dictionary keys
 tuples
immutable strings
import statement
in membership operator
in operator
 accessing list elements
 accessing tuple elements
indentation
independent floating window
index (value) method
index() method

 finding substrings in string
 lists
IndexError exception
inheritl.py program
inherit2.py program
inherit3.py program
inherit4.py program
inheritance
 access control specifiers
 accessing methods of base classes from derived classes
 accessing private members
 accessing public members
 method overriding
 overview
 multilevel
 multiple inheritance
 overview
 two classes inheriting from same base class
 overview
 single
input dialog box
input method
Input widgets
insert() method
insertItem() method
insertItems() method
insertRow() method
installing
 installation wizard
 MySQLdb
 PyQt
 Python
 Mac
 Microsoft Windows
 overview
 UNIX
instance methods 2nd
instance variables, defined
instances
 ___init___() method
 assigning to each other
 defined
 overview
int() function 2nd 3rd

int data type
integer variables
integers
 defined
 entering using Spin Box
Integrated DeveLopment Environment (IDLE)
 escape characters
 launching
 working with Python through
Interchanging names program (interchangenme.py)
interfaces
intersection (&) set operation
IntInput option
IOError exception 2nd
IronPython
isalnum() method/function
isalpha() method/function
isatty() method
isCheckable() method
isChecked() method 2nd 3rd
isdigit() method
isdigit() method/function
isHidden() method
isLeapYear() method
islower() method/function
isReadOnly() method
istitle() method/function
isupper() method/function
item() method
Item Views group
item-based interface
items, displaying
items() method
 dictionary
 Merging dictionaries program (dictexample.py),
ItemSceneChange notification
itemText() method
iter() method
iterating_var variable
iterators
 generator expression
 generators
 overview

J

Java Virtual Machine (JVM)
join(sequence) method/function
Jython

K

KeyError exception
keys() method
 dictionary
 Merging dictionaries program (dictexample.py),
key/value pairs 2nd
keyword arguments
keywordarg.py program
keywords, defined

L

Label widget
lambda functions
lastError() method 2nd
Lay Out Horizontally icon
Lay Out Horizontally in Splitter icon
Lay Out in a Form Layout icon
Lay Out in a Grid icon
Lay Out Vertically icon
Lay Out Vertically in Splitter icon
layouts
 Grid layout
 Group Box
 horizontal layout
 overview
 vertical layout
Layouts group
LCD digits, displaying
 fetching and measuring system clock time
 overview
 using timers
LCD format, displaying system clock time
LCD Number widget
leading zeros
len() function
 finding length of lists

 printing count of elements in list
 sets
Length of String program (stringl.py)
Line Edit widget
list variables
List View widget
List widgets
 adding items to
 overview
 performing operations on
 displaying input dialog box
 overview
 using
listl.py program
list2.py program
liste.py program
list7.py program
lists
 defined
 length of
 overview
 slicing
 use of square brackets
literals
ljust(width) method/function
load() method
loadFinished() method
loadProgress() method
loadStarted() method
local variables
localvar.py program
logical lines, defined
logical operators
long integers, defined
longblob data type
longtext data type
loops
 for loop
 choice() function
 membership operators
 overview
 overview
 while loop
 break statement

 continue statement
 indentation
 overview
 pass statement
 range() function
lower() method/function
lstrip() method/function

M

Mac, installing Python on
maintenance
 of databases through console-based programs inserting rows in
database tables
 overview
 of databases through GUI programs displaying rows
 overview
 QSqlDatabase class
make altinstall command
make install command
map() method
mappings, defined
math module
 command-line arguments
 dir() function
 overview
math.e constant
mathmethod.py program
math.pi constant
matrixl.py program
matter variable
max() method/function 2nd
maximum() method
maximumDate property 2nd
maxLength() method
MDI (multiple-document interface)
MdiArea widget 2nd
mediumblob data type
mediumint data type
mediumtext data type
member functions, defined
membership operators 2nd
menus
 Action Editor

 creating
 overview
Merging dictionaries program (dictexample.py),
methods [See also specific method by name]
 delattr
 getattr
 init()
 setattr
 accessing
 class
 commit()
 defined
 differences between functions and
 overriding
 rollback()
 static
Microsoft Windows, installing Python on
min() method/function 2nd
minimum() method
minimumDate property 2nd
minute() method
MMM d yy format
MMM d yyyy format
MMMM d yy format
modal dialogs
mode attribute
modeless dialogs
modules [See also specific module by name]
 math module
 overview
month() method
monthShown() method
msec() method
msecsTo() method
multilevel inheritance
 multiple inheritance
 overview
 two classes inheriting from same base class
multilevel.py program
multiple assignment statement
multiple documents
 layouts
 Grid Layout
 Group Box

 horizontal layout
 overview
 vertical layout
 multiple-document interface
 overview
multiple inheritance
 overview
 two base classes having methods with same name and signature
multiple-document interface (MDI)
multiple.py program
Multiply icon
mutable objects
 defined
 dictionaries
myException class
MySQL
 installation of MySQLdb
 MySQLdb
 overview
Mysql-Python Setup Wizard dialog

N

name attribute
nesting, if. else statements
New icon
New resource file icon
newline, embedding in string
newline character 2nd
NoDockWidgetFeatures property
non data descriptors, defined
noOfObjects() method
Normal state
not in membership operator
not logical operator
NULL character
numerical arrays
numericarr.py program

O

Object Inspector window
objects
 class

 file
oct() function
octal values, displaying
one-dimensional arrays
open() method 2nd
open brace ({)
open bracket ([)
Open icon
open parenthesis (()
Open resource file icon
open source model
opening files
openmessage() function
operations
 commonly applied to sequences
 performing on List widgets
 displaying input dialog box
 overview
 using
operator overloading
 comparison operator (==)
 overview
 polymorphism
 properties
overview
operatorovrl.py program
operatorovr2.py program
oprl.py program
optional parameters, function
or logical operator
OSError exception
OverflowError exception
override.py program

P

page control
paramcons.py program
parameters
 default value
 function
parentheses, tuples
partition() method

partition(separator) method
pass statement 2nd
passexl.py program
passex.py program
Phonon API
Phonon::SeekSlider widget
Phonon::VideoPlayer widget
Phonon::VolumeSlider widget
physical lines, defined
Pickle module
pickled files, defined
pickleprog2.py program
pickleprog.py program
pickling (serialization)
Plain Text Edit widget
Plus icon
plus sign (+)
plusmessage() method
polymorphism
polymorphism.py program
pop() method
 dictionary
 lists
 sets
pow() function
predefined slots
prefix, finding strings with
prefix=~
primes.py program
print() function
private members
privateaccess.py program
prodclasscount() class method
prodstatcount() static method
Progress Bar widget
Property Editor window
propertyex.py program
public members
publicaccess.py program
push buttons 2nd
PyQt
 buddies
 overview
 setting tab order

 converting data types
 creating GUI application with code
 custom slots
 event handling in
 fundamental widgets
 displaying buttons
 displaying text
 entering single-line data
 overview
 installing
 overview
 Qt Designer
 applications
 overview
 toolbar
 Widget Box
 Qt toolkit
 Setup Wizard dialog
 window and dialogs
Python
 comments
 continuation lines
 data types in
 features of
 implementations of
 installing
 Mac
 Microsoft Windows
 overview
 UNIX
 interacting with
 command line mode
 IDLE
 overview
 keywords
 literals
 overview 2nd
 printing
 running programs from command prompt
 variables
 writing simple programs with
Python Command Line window 2nd
Python prompt (>>>)
Python Shell window

pyuic4 command 2nd
pyuic4 utility

Q

QAbstractButton class
QAbstractItemModel class
QAbstractItemView class
QApplication object
QCalendarWidget class
QDate class
QDeclarativeView widget
QDialog superclass
QDoubleSpinBox class
QGraphicsView subclass
QGraphicsView.setScene() method
QRadioButton class
QsciScintilla widget
QSqlDatabase class
QSqlQueryModel class
QSqlTableModel class
Qt Designer
 applications
 connecting to predefined slots
 overview
 overview
 toolbar
 Widget Box
 Buttons
 Containers
 Display widgets
 Input widgets
 Item Views (item based)
 Item Views (model based)
 Layouts
 overview
 Phonon
 Spacers
Qt toolkit
QTableView class
QTableWidgetItem() method
QtCore module
QtGUI module
quit() method

quotes 2nd
QWebView widget 2nd
QWidget superclass 2nd

R

R mode option
r+ mode option
radio buttons
raise statement
raiseexcepclass.py program
raising exceptions
 assert statement
 overview
randomly reading file content
randomnumber.py program
range() function 2nd
range() method
range(x, y) function
range(x, y, step) function
range(x) function
read([n]) method
reading files
readline([n]) method
readlines([n]) method
record(int) method
record.value(”column_name”) method
rectarea() method 2nd 3rd
rectclassl.py program
rectclass2.py program
rectclass3.py program
recurfunc.py program
recursion
reduce() method
reject() method
remove () method/function
Remove icon
removeItem() method
removeRow() method
remove(value) method
replace() method
replace(sl, s2, n) method
replacing substrings
Resource Browser window 2nd

resource file
retranslateUi() method
return statement
returnPressed() method
reverse() method
reversed() function 2nd
revert() method
revertAll() method
rfind method
rjust(width) method
rollback() method
rowCount() method
rows
 database tables
 commit() method
 deleting information
 fetching rows from tables
 navigating
 overview
 rollback() method
 searching
 updating information
 displaying
 maintaining database tables
 navigating through rows of database tables
 overview
 QSqlTableModel class
 fetching from tables
 two-dimensional arrays
rstrip() method/function

S

Save icon
Scintilla component
Scroll Area widget
Scroll arrows
scroll bars
scrollhorizontal() function
SDI (single-document interface)
searching in database tables
searchstrl.py program
searchstr2.py program
seconds() method

secsTo() method
seek() method
seek(offset, location) method
select() method
selected checkboxes
Selected state
selectedDate() method
selectionChanged() method
selectionMode property
self parameter 2nd
semicolon (;)
Send to Back icon
Sentence splitting program (splitting.py)
sequences
 applying functions to
 dictionaries
 lists
 length of
 overview
 slicing
 overview
 sets
 difference (-)
 intersection (&)
 overview
 union (I)
 strings
 arrays
 how characters are stored in
 overview
 tuples
serialization (pickling)
set name method
setChecked() method 2nd 3rd
setCheckState() method
setColumnCount() method
setCurrentIndex() method
setCurrentItem() method
setCurrentRow() method
setDatabaseName() method
setDate() method 2nd
setDisplayFormat() method
setEchoMode() method
setEditable() method

setEditStrategy() method
setEnabled() method
setexample.py program
setFilter() method
setFirstDayOfWeek() method
setFocus() method
setFont() method
setGeometry() method
setHidden() method
setHostName() method
setHtml() method
setIcon() method 2nd 3rd
setItemText() method
setMaxCount() method
setMaximum() method 2nd
setMinimum() method 2nd
setMode() method
setNum() method
setPageStep() method
setPassword() method
setPixmap() method
setPrefix() method
setQuery() method
setReadOnly() method
setRowCount() method
sets
 defined
 difference (-)
 intersection (&)
 overview
 union (I)
setSingleShot(true) method
setSingleStep() method 2nd
setSuffix() method
setïable() method
setText() method 2nd 3rd
setïicklnterval() method
setTickPosition() method
setTristate() method
setupUi() method
setupUI() method
setUrl() method
setUserName() method
setValue() method 2nd

setViewMode() method
setWrapping() method
shifting operators
shopping database
show() instance method
show() method
show tables command
signals
Signals and Slots Editing mode
Signal/Slot Editor window
signatures
single inheritance
single-document interface (SDI)
single-line data
single-quoted string
singleShot(n) method
site-packages folder
sizeHint property
slicing lists
Slider handle control
sliderMoved() method
sliderPressed() method
sliderReleased() method
sliders
slots 2nd
smallint data type
sort() method
sorted() method 2nd
spacers
Spacers group
spaces
Spin Box 2nd
split() method
splitlines(boolean) method
split(separator, [n]) method
splitting.py (Sentence splitting program)
SQL DELETE command
SQL SELECT statement
SQL UPDATE statement
square() function
square brackets 2nd
Stacked widgets 2nd 3rd
stacks
start(n) method

startswith () method
stateChanged() method
stateChanged() signal
statements
 assert,
 class
 attributes of class objects
 built-in class attributes
 defining functions in
 instances
 overview
 def,
 return,
static methods
staticlassmethod.py program
staticmethod.py program
stderr variable
stdin variable
stdout variable
Stoplteration exception
str() function 2nd 3rd
string concatenation program (stringconcatl.py)
string variables
stringl.py program
string2.py program
string3. py program
stringfunc2.py program
stringjoin.py program
strings
 arrays
 one-dimensional
 overview
 two-dimensional
concatenating
defined
how characters are stored in
 length of
 overview
 represented by quotes
 space between
 use of quotes
strip() method
student grade division program (ifelse.py),
Style Sheet Editor

submit() method
submitAll() method
substrings
SubWindow View button
subWindowList() method
subwindows
SubWindowView() function
sum() function
sum() method
super classes (base classes; parent classes)
swapcase() method
sys.argv variable
sys.exit() method
system clock time

T

Tab Order Editing mode
Tab widget
 converting into Stacked widgets
 converting into Tool Boxes
 overview 2nd
 Style Sheet Editor
TabbedView() function
Table View widget 2nd
Table widget
tables
 database, inserting rows in
 commit() method
 deleting information from database tables
 fetching rows from tables
 overview
 rollback() method
 searching in database tables
 updating information in database tables
 displaying
 displaying items in
 overview
 fetching rows from
tabs 2nd
takeItem() method
tell() method
text, displaying
text() method 2nd

Text Browser widget
text data type
Text Edit widget
text editors
text files, defined
textChanged() method
TextInput option
tickInterval() method
tickPosition() method
tileArrange() function
tileSubWindows() method 2nd
time data type
Time Edit widget
timeout() signal
timers
tinyblob data type
tinytext data type
title() method/function
toggled() method
toggled() signal
Tool Box widget 2nd
toolbars
toPyDate() method
transform() method
Tree View widget
Tree widget
trigarea() method
triggered() signal 2nd
triple-quoted string
tristate checkboxes
truncating division operator (//)
try blocks
tryl.py program
try2.py program
tryelse.py program
try/except block
try/finally block 2nd
tupl.py program
tup2.py program
tuple variables
tuples
 defined 2nd
 use of parentheses
two-dimensional arrays

type() function
TypeError exception 2nd 3rd

U

UnboundLocal-Error exception
Unicode, defined
union (I) set operation
UNIX, installing Python on
unselected checkboxes
update() method
updatefilecont.py program
update(set) method/function
updating file content
updating information in database tables
upper() method/function
use database name command
user data, getting

V

value() method 2nd 3rd
valueChanged() method 2nd
ValueError exception
values() method
 dictionary
 Merging dictionaries program (dictexample.py),
van Rossum, Guido
varchar data type
variables
 defined
 displaying values in
 global
 local
vertical layout
Vertical Layout widget
Vertical Line widget
Vertical Scrollbar widget
Vertical Slider widget
Vertical Spacer widget
verticalHeaderFormat property
volume() function
volume of a sphere program (volsphere.py)

W

W mode option
w+ mode option
welcomemsg code
while loop
 break statement
 continue statement
 indentation
 overview
 pass statement
 range() function
whileloop.py program
white space 2nd
Widget Box
 Buttons
 Containers
 Display widgets
 Input widgets
 Item Views (item based)
 Item Views (model based)
 Layouts
 overview
 Phonon
 Spacers
Widget Editing mode
widget toolkit
widgets [See also specific widget by name; Widget Box]
 calendar and displaying dates in different formats
 Date Edit widget
 displaying calendar
 overview
 QDate class
 checkboxes
 initiating actions without using push buttons
 overview
 Combo Box
 Display
 displaying
 buttons
 graphics
 system clock time in LCD format
 tables
 text

 web pages
 Dock
 entering integer and float values using Spin Box
 entering single-line data
 Input
 List
 adding items to
 overview
 performing operations on
 overview 2nd 3rd
 radio buttons
 scroll bars
 sliders
 Tab
 converting into Stacked widgets
 converting into Tool Boxes
 overview 2nd
 Style Sheet Editor
WindowOrder() function
WindowOrder() method
windows [See also specific window by name]
 creating GUI applications
 floating
 overview
 subwindows
writelines(list) method
write(string) method

Y

year() method
yearShown() method
yield statement

Z

ZeroDivisionError exception

	Cover
	Copyright
	Acknowledgments
	About the Author
	Contens
	Intrduction
	Chapter 1 Python and Its Features
	1.1 Python
	1.2 Installing Python
	1.3 Interacting with Python
	1.4 Writing Your First Python Program
	1.5 Data Types in Python
	1.6 Basic Elements in a Program
	1.7 Comments
	1.8 Continuation Lines
	1.9 Printing
	Summary

	Chapter 2 Getting Wet in Python
	2.1 Performing Arithmetic Operations
	2.2 Bitwise Operations
	2.3 Complex Numbers
	2.4 Making Decisions
	2.5 Logical Operators
	2.6 Chaining Comparison Operators
	2.7 Loops
	Summary

	Chapter 3 Sequences
	3.1 Sequences
	3.2 Strings
	3.3 Lists
	3.4 Tuples
	3.5 Sets
	Summary

	Chapter 4 Functions and Modules
	4.1 Functions
	4.2 Function Attributes
	4.3 Recursion
	4.4 Iterators
	4.5 Modules
	Summary

	Chapter 5 Classes
	5.1 The Class Statement
	5.2 Class Methods
	5.3 Static Methods
	5.4 Garbage Collection
	5.5 Inheritance
	5.6 Multilevel Inheritance
	5.7 Operator Overloading
	5.8 Descriptors
	Summary

	Chapter 6 File Handling
	6.1 Exception Handling
	6.2 Raising an Exception
	Summary

	Chapter 7 PyQt
	7.1 Qt Toolkit
	7.2 PyQt
	7.3 Installing PyQt
	7.4 Window and Dialogs
	7.5 Creating a GUI Application with Code
	7.6 Using Qt Designer
	7.7 Understanding Fundamental Widgets
	7.8 Event Handling in PyQt
	7.9 First Application in Qt Designer
	7.10 Using Custom Slots
	7.11 Converting Data Types
	7.12 Defining Buddies
	Summary

	Chapter 8 Basic Widgets
	8.1 Using Radio Buttons
	8.2 Using Checkboxes
	8.3 Entering Integer and Float Values Using a Spin Box
	8.4 ScrollBars and Sliders
	8.5 Working with a List Widget
	Summary

	Chapter 9 Advanced Widgets
	9.1 Displaying System Clock Time in LCD Format
	9.2 Working with Calendar and Displaying Dates in Different Formats
	9.3 Using Combo Box
	9.4 Displaying a Table
	9.5 Displaying Web Pages
	9.6 Displaying Graphics
	Summary

	Chapter 10 Menus and Toolbars
	10.1 Understanding Menus
	10.2 Creating a Toolbar
	10.3 Dock Widget
	10.4 Tab Widget
	10.5 Converting a Tab Widget
	Summary

	Chapter 11 Multiple Documents and Layouts
	11.1 Multiple-Document Interface
	11.2 Layouts
	Summary

	Chapter 12 Database Handling
	12.1 Why MySQL?
	12.2 Creating a Database
	12.3 Database Maintenance Through Console-Based Programs
	12.4 Database Maintenance Through GUI Programs
	Summary

	Index

