
www.allitebooks.com

http://www.allitebooks.org

LabVIEW Graphical
Programming
Cookbook

69 recipes to help you build, debug, and deploy
modular applications using LabVIEW

Yik Yang

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

LabVIEW Graphical Programming Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing and its dealers
and distributors, will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: January 2014

Production Reference: 1160114

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-140-9

www.packtpub.com

Cover Image by Zarko Piljak (zpiljak@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Yik Yang

Reviewers
Amit Dongol

Chris Larson

Qizhen Ruan

Justin Smith

Acquisition Editor
Rubal Kaur

Lead Technical Editors
Madhuja Chaudhari

Mandar Ghate

Technical Editors
Tanvi Bhatt

Dipika Gaonkar

Monica John

Neha Mankare

Copy Editors
Sayanee Mukherjee

Lavina Pereira

Project Coordinator
Venitha Cutinho

Proofreader
Amy Johnson

Indexer
Mehreen Deshmukh

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org

About the Author

Yik Yang is a test engineer living in Chicago who has specialized in automation and data
analysis. Having worked in multiple fields such as semiconductor, automotive, and power,
he has experience with different types of automation and understands what are the
industries' needs.

He started his career after receiving his Bachelor's and Master's degrees in Electrical
Engineering at Virginia Tech. In his career, he worked on automation projects that used
CompactDAQ, PXI, FPGA, and so on in LabVIEW. He has also spent a lot of time with Lean
Six Sigma and statistical analysis with JMP. He is a certified Professional Engineer (PE)
in North Carolina and a Certified LabVIEW Developer (CLD).

I would like to thank my wife Qian and my son Elijah. They have given me
a tremendous amount of love and support in the process of finishing this
book. Most importantly, I would like to thank God, as without him I would not
be alive and capable of writing this book after my terrifying bicycle accident,
when I was directly hit by a truck.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Amit Dongol is a Ph.D candidate (Physics). He is working on setting up a research lab
with LabVIEW interface for data acquisition.

Chris Larson has been using LabVIEW for nine years. Currently he is working as a
researcher and developer of cloud-based functionality for LabVIEW. He is an expert at
developing systems that take advantage of the connected world and Internet.

Chris learned LabVIEW while working at 3M's SEMS Research and Development lab. While
at 3M, he created numerous LabVIEW-based systems to develop and manufacture products
for 3M's divisions including safety and security, display and graphics, and health care.
His contributions include antenna designs for RFID file tracking, improved manufacturing
of retro-reflective materials, improved quality control for display brightening films, and
improved high-speed manufacturing of specialty medical tapes.

www.allitebooks.com

http://www.allitebooks.org

Qizhen Ruan is a software engineer. He has over 13 years of experience in LabVIEW
development. He has designed and developed many LabVIEW features.

Justin Smith has a degree in Computer Science from Tennessee Technological University,
and is currently a Systems and Solutions Integrator for an industrial IT firm in Nashville,
Tennessee. He develops core software for interfacing with third-party hardware and software
and has recently introduced this software as modules in LabVIEW. Primarily a Java developer,
Justin has been using open source tools to allow the code to be run from within LabVIEW.

Having grown up around computers in the '80s, Justin had always known that he wanted to
pursue a career in computing. After working as an intern in college and spending over a year
in Central Mexico for his company, he realized all the good that can be done by helping to
improve industrial processes (safety, quality, efficiency). This made him decide that he wanted
to continue working in a industrial IT and automation. He also felt that the manufacturing
industry has yet to see the same technological revolutions as other business sectors through
the advances of companies such as Facebook and Google.

Justin has been working for Summit Management Systems, Inc of Nashville Tennessee for
nearly 10 years. Celebrating its 20th anniversary in business, Summit Management Systems
offers custom integration and process solutions worldwide for the industrial and manufacturing
sector as well as several stand-alone software packages that aid in data acquisition from
industrial devices and software for manufacturing workflow management systems.

I would like to thank my father for all the opportunities that he has given
me to make me who I am. From allowing me to grow up around computers
to encouraging me to enter the software development field, he is the reason
I was able to work on this book and review it. Thanks Dad.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your
book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Understanding the LabVIEW Environment 5

Introduction 5
Configuring essentials 6
Configuring quick drop 9
Using debug tools 10
Creating custom probe 12
Compiling EXE 14
Debugging EXE 16
Compiling a standalone application 19

Chapter 2: Customizing the User Interface 21
Introduction 21
Customizing controls 22
Adding a menu for runtime 27
Creating a dialog 30
Sizing the dialog automatically 33
Using 2D picture control 38
Updating controls with an action engine 40
Creating a simple animation 44
Creating subpanels 45

Chapter 3: Working with Common Architectures 49
Introduction 49
Working with a case structure 50
Working with an event structure 52
Working with loops 57
Using the state machine architecture 59
Using the master slave architecture 64

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Using the producer consumer architecture 66
Creating a SubVI 69
Creating an action engine 71
Calling a VI by reference 74
Calling a VI dynamically 75
Creating a reentrant VI 77

Chapter 4: Managing Data 79
Introduction 79
Using error terminals 79
Using the flat sequence structure 81
Using the feedback node 82
Reusing memory 84
Manipulating an array 88
Using rendezvous 89
Using semaphore 90

Chapter 5: Passing Data 95
Introduction 95
Using a type-def cluster 95
Using an event structure to pass data 99
Using a queue to pass data 104
Using a notifier to pass data 106
Using a shared variable to pass data 109
Using Simple TCP/IP Messaging to pass data 111

Chapter 6: Error Handling 115
Introduction 115
Passing an error 115
Handling an error with an error file 118
Handling an error with a centralized VI 120
Creating an error queue 123

Chapter 7: Working with Files 127
Introduction 127
Working with INI files 127
Working with XML files 132
Working with ASCII files 139
Working with binary files 141
Working with TDMS files 143
Using Telnet and FTP with files 146
Working with a database 152

iii

Table of Contents

Chapter 8: Understanding Data Acquisition 155
Introduction 155
Using MAX 155
Working with VISA 161
Using the VISA servers 163
Controlling an oscilloscope 165
Using a simple DAQ device 172
Using a CompactDAQ 178

Chapter 9: Simplifying Code 183
Introduction 183
Using polymorphic VI 183
Simplifying logic selection 187
Using an array for computation 190
Formatting into string 192
Speedy array search 194
Using relative paths in EXE 196

Chapter 10: Working with External Code and Applications 199
Introduction 199
Compiling a DLL 199
Using a .NET DLL 204
Debugging a .NET DLL 208
Using a C-based DLL 213
Using ActiveX 217
Building a web service 221
Using SMTP to send e-mail 223

Index 231

Preface
LabVIEW is a graphical programming language by National Instrument. Mainly, it is used in
test and automation fields for instrument control, data acquisition, and so on. In this book,
we will cover different areas in LabVIEW programming with practical examples that follow
sound coding standard and design rules.

What this book covers
Chapter 1, Understanding the LabVIEW Environment, covers common settings and functions
in the LabVIEW environment.

Chapter 2, Customizing the User Interface, covers different functions used in creating an UI.

Chapter 3, Working with Common Architectures, covers common architectures in LabVIEW.

Chapter 4, Managing Data, covers how to use memory efficiently and control the data flow.

Chapter 5, Passing Data, covers different methods of passing data.

Chapter 6, Error Handling, covers different methods of error handling.

Chapter 7, Working with Files, covers how to work with different file types.

Chapter 8, Understanding Data Acquisition, covers acquiring data with different types
of instruments.

Chapter 9, Simplifying Code, covers ways to simplify code.

Chapter 10, Working with External Code and Applications, covers how to use external
code and application within LabVIEW.

Preface

2

What you need for this book
The examples in this chapter are written in the LabVIEW 2012 development environment, but
they also work in LabVIEW 2013. The development environment comes in different packages.
The highest package is the developer suite. Some examples in this book require toolkits
included in the developer suite. It is more economical to buy the developer suite than to buy
the toolkits individually. To purchase the developer suite, visit www.ni.com.

Who this book is for
The book is intended for readers who know the basic features of LabVIEW to advanced
LabVIEW programmers.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: " Create the
main VI that calls Coordinates.vi."

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: " Right-click on the picture
ring and select Add Item."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

http://www.ni.com

Preface

3

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report
them by visiting http://www.packtpub.com/submit-errata, selecting your book,
clicking on the errata submission form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded on our
website, or added to any list of existing errata, under the Errata section of that title. Any existing
errata can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors, and our ability to bring you valuable
content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

1
Understanding the

LabVIEW Environment

In this chapter, we will cover:

 f Configuring essentials

 f Configuring quick drop

 f Using debug tools

 f Creating custom probe

 f Compiling EXE

 f Debugging EXE

 f Compiling a standalone application

Introduction
This chapter explains how to configure LabVIEW and how to use its functions. The first two
recipes explain how to configure commonly-encountered settings, and the remaining recipes
explain how to use common functions in LabVIEW.

Understanding the LabVIEW Environment

6

Configuring essentials
Before using LabVIEW, it is important to set up the environment for maximum productivity.
There are a lot of settings in LabVIEW. We do not need to configure everything; the default
setting would usually suffice. However, we should at least configure the layout of the Controls
palette, the layout of the Functions palette, and the LabVIEW option, before we start coding.

How to do it...
We will start by configuring the Functions palette. Configuring the Controls palette is not
shown, but it is similar to configuring the Functions palette. Here are the steps to configure
the Functions palette:

1. To configure the Functions palette, right-click on the block diagram to get the palette
and left-click on the thumb pin to pin it down. On the palette, navigate to Customize
| View this Palette As, and select your preference on how the palette should be
arranged. For this example, select Category (Icons and Text).

2. In Customize, select Change Visible Palettes..., and then select which categories
should appear on the palette. Only the categories that are used frequently should
be selected. The unselected categories are still accessible by clicking on the double
arrow (pointed down) at the bottom of the palette. The following screenshot shows
the Functions palette pinned downed, with the Customize menu activated:

Chapter 1

7

3. Only the first category of the palette will stay open, so the category that is used the
most (Programming) should be at the top. When the palette is pinned down, there
is a pair of parallel lines (||) on the left of each category (left of right arrow). The
parallel lines are used to move the categories. The following screenshot shows how
the Functions palette looks like after the configuration:

www.allitebooks.com

http://www.allitebooks.org

Understanding the LabVIEW Environment

8

4. In the LabVIEW option, we can configure the LabVIEW environment in detail. The
readability and space utilization can be improved. In the block diagram, click on
Tools and Options. Under the Block Diagram category, deselect the Place front
panel terminals as icons to save space on the block diagram, and then select Use
transparent name labels for a cleaner block diagram. The size of controls and
indicators are reduced in the block diagram, and the name labels look cleaner in
the block diagram compared to the name labels that are opaque. The following
screenshot shows the LabVIEW option dialog:

How it works...
The palette settings and LabVIEW options are not saved locally in the VI (Virtual Instrument) file
that contains both the block diagram and front panel. They are saved globally, so every time a
new VI is created, the saved settings and options would apply. Inside the LabVIEW installation
folder, a file called LabVIEW.ini resides. The file contains all the saved settings and options
and is loaded when LabVIEW starts. If we wish to transfer the settings from one computer to
another, we can save this file and transfer it to the same location in the other computer.

For both the Controls and Functions palette, only what are necessary should be on them,
and the rest should be hidden. The Controls palette is for the front panel, and the Functions
palette is for the block diagram. We will only demonstrate how to set up the Functions palette,
but keep in mind that the same procedures apply for setting up the Controls palette.

Chapter 1

9

Configuring quick drop
The quick drop feature was introduced in LabVIEW 8.6. Previously, finding a function would
require navigating and searching through the palette. With quick drop, finding a function
can be done through a text-based search without going through the palette. To do a search,
the name of the function is entered and, as it is entered, a list of possible functions would
appear for the user to choose. To make searching easier, a function can be associated with
a keyboard shortcut, and to make quick drop even more amazing, repetitive tasks can be
associated with a keyboard shortcut.

How to do it...
We will start by associating the while loop function with a keyboard shortcut. Here are the
steps to do that:

1. Press Ctrl + spacebar to invoke quick drop and click on Shortcut. As an example,
we will associate shortcut W + L to the while loop. Under Diagram Shortcut, enter wl.
Under Diagram Shortcut Object, enter While Loop. If we are unsure about the name
of the function, we can always find the function inside the palette and look for its name.
Finally, we click on Add and then on OK to add the customized shortcut into the quick
drop configuration. The following screenshot shows how the shortcut is added:

Understanding the LabVIEW Environment

10

Besides finding functions quickly, we can assign a shortcut to a plugin that
accomplishes predefined tasks.

2. To execute a plugin via shortcut, we press Ctrl + Space and the shortcut of the plugin.
Built-in shortcuts are available for routine tasks. The following are a few examples of
built-in shortcuts:

 � Ctrl + Space and then Ctrl + D creates all controls and indicators for a subVI

 � Ctrl + Space and then Ctrl + R deletes a subVI, while also cleaning up all
unnecessary wires and re-connecting broken ones

 � Ctrl + Space and then Ctrl + T moves the labels of all controls and indicators
to their left and right

If built-in plugins are not adequate, we can customize our own plugin and assign a
shortcut to it.

3. To make a plugin, use the template in LabVIEW\resource\dialog\
QuickDrop\QuickDrop Plugin Template.vi as a starting point. After the
plugin is completed, it needs to be placed within LabVIEW\resource\dialog\
QuickDrop\plugins or LabVIEW Data\Quick Drop Plugins. If the plugin is
placed within the LabVIEW folder, it will only be available to that version of LabVIEW.
If the plugin is placed into the other path, versions of LabVIEW from 2010 and up can
use the plugin. Follow the previous step to assign a shortcut to a plugin.

How it works...
When a shortcut is associated with a function or a task, the shortcut is saved in the LabVIEW
configuration so that it can be used again.

See also
 f For useful plugins that are made by other LabVIEW users, please visit the

link https://decibel.ni.com/content/groups/quick-drop-
enthusiasts?view=documents.

Using debug tools
Many features exist in LabVIEW for debugging a program. Text-based programmers should
already be familiar with some of the features, such as step in, step out, and so on, but there
are some features that may sound unfamiliar.

Chapter 1

11

How to do it...
Before jumping into the code, let's check the obvious:

1. Examine the run button (a right arrow) on the block diagram to see if it is broken or not.
If it is broken, click on it to see a list of problems that we must fix. If we double-click on
an item of the list, LabVIEW will bring us to the location of the problem. We need to fix
all the problems first before we can go further. To see what a broken arrow looks like,
open a new VI and place an add node under the Numeric palette to it. Click on the
broken arrow to see what the cause of the broken arrow is.

2. After the run arrow turns solid, we can start debugging the program. First, we turn on
Retain Wire Values by clicking on its button on the block diagram toolbar. This will
enable us to examine the values in all the wires. Then we navigate to the location of
interest and set a breakpoint by right-clicking on the location, selecting Breakpoint,
and Set Breakpoint.

3. After we set up the program for debugging, click on the run arrow to run the program.
The program will pause at the breakpoint. If we placed our breakpoint on a SubVI, we
can choose to step over it, so that we stay on our current VI without going deeper; or we
can step into it, so that we go into the subVI for further investigation. If we are already in
a subVI and we want to get out, we can step out of it. To step into, step over, or step out,
we can click on the corresponding button on the block diagram toolbar. The following
screenshot shows the portion of the block diagram toolbar discussed:

4. To examine the value of a wire, right-click on the wire and select Probe. A dialog will
pop up and show the wire's value. When the program has not sent data through that
wire, the value is not populated. Once the value is populated, it will show up in the
dialog. With the probe, we can view the data within the wire, but we cannot modify it.

5. To activate Highlight Execution, we click on its button on the block diagram toolbar.
This feature allows us to view how the data is actually flowing in the program, but our
program will slow down. Many LabVIEW programmers find this useful because it
allows them to grasp how the data flows in a VI.

Be careful when you use this feature. Since it slows down the program,
it may create bugs that are timing-related.

Understanding the LabVIEW Environment

12

How it works...
Debugging tools allow programmers to look at a program in depth by offering features to
control the flow of the program.

Creating custom probe
Custom probe is an enhancement to the generic probe which only allows users to examine
the value of a wire. A custom probe is able to pause the program using conditional statements
inside the probe. By doing that, the custom probe acts like a conditional breakpoint. Also, it
can process and extract information from the raw data to facilitate the debugging process.

How to do it...
We will create a custom probe with a VI that is built-in to LabVIEW installation. The following
are the steps to do that:

1. We will use the code shown in the following screenshot to set up the custom probe.
The code contains an outer while loop that executes the inner for loop continuously.
The inner for loop would generate an array of 0 to 10 elements randomly, and each
element would contain a random number between 0 to 30. In this example, we want
the execution to pause when the array generation contains more than 9 elements.

Chapter 1

13

2. To create a custom probe, right-click on the wire feeding the U32 array indicator and
navigate to Custom Probe | New. When a dialog appears, select Create a probe
from an existing probe and click on Next. A dialog with a list of probes would appear.
From the list, in our example, we select the Conditional Unsigned32 Array Probe.
When a probe is selected, a detailed description about the probe is shown below the
list. This is how we determine whether an existing probe is suitable for our application
or not. When we click on Next, the next page appears, and we enter u32array as
Filename and leave all other options at the default setting. We click on Save. See
the following screenshot to initiate the setup:

3. We have created a custom probe for our application based on an existing one from
the LabVIEW installation. To try out the custom probe, we right-click on the wire
feeding the U32 array indicator and select Custom Probe | u32array.vi. The
Probe Watch Window appears; on the right side, it contains a tab control with two
tabs. The first tab shows the data and the size of the array. The size of the array is a
function for this custom probe. It is not present in a generic probe. The second tab
contains all the conditions that we can set to stop the execution of the program. For
our example, we will set the check box to make Number of element as the criterion,
and set the criteria to greater than nine. After we finish the custom probe setup, we
click on the run button to start the program. Since we put a Wait Until Next ms
Multiple node and set it at equal to 1000ms, the outer while loop will iterate once
every second. While the program is running, we can go to Probe Watch Window and
look at the data. Once the criterion is met, the program would pause, and we can
probe other wires on the block diagram if we want to.

Understanding the LabVIEW Environment

14

How it works...
When we created a custom probe based on an existing probe, we can use the probes located
in the vi.lib folder of the LabVIEW installation folder. To use a custom probe, we should
save the probe in the \default folder located at <LabVIEW>\user.lib_probes or the
Probes folder located at <Documents>\LabVIEW Data\. If the probe is saved in the first
path (the default folder), LabVIEW will use that custom probe as the default probe for that
particular data type.

Compiling EXE
The machine where we will deploy our code usually does not have LabVIEW development
software. To deploy our code, we need to install LabVIEW run time engine with the correct
version (free of charge), and deploy an executable instead of deploying a set of VI.

How to do it...
Before compiling an executable, we will create a project that contains both the VI and the
executable that is built from the VI. Here are the steps for creating a project:

1. To create a project, the easiest way is to select Create Project and then Blank Project
at the startup screen. Or, if we already have a VI, we can select Project | Create
Project | Blank Project. Within the project, right-click on My Computer and select New
| VI. Now the VI is within the project, we will create a VI called EXEvi.vi to calculate a
1 cycle sinusoidal waveform with given amplitude, phase, and frequency. It contains an
event structure with an event case that will execute when the Read File Boolean control
is clicked. See the following screenshot for the example:

Chapter 1

15

2. The subVI, SinWave.vi, in the preceding example takes the input parameters to
calculate the sampling rate and number of samples for one cycle of waveform before
using the Sine Waveform.vi to generate the waveform. Refer to Chapter 3, Working
with Common Architectures for creating a subVI. See the following screenshot:

3. To compile the executable, right-click on Build Specifications and select New |
Application (EXE) within the project. The My Application Properties dialog will pop
up and we will set up each category of the dialog. In the Information category, we
enter ExeExampleBuild under the Build Specifications name. That name would
appear under Build Specification within our project. We enter ExeExample.exe
under the Target filename, and that is the actual name of the executable. For the
Destination directory, enter a convenient location for development.

4. In the Source Files category, select EXEvi.vi, and click on the right arrow next to
Startup VIs so that the VI will appear when the executable is invoked. As for Always
Included, if the program calls VI dynamically or by reference, works with files, and
so on, we can include these dependencies that the program uses. Since the subVI,
SinWave.vi, is part of the program, the compiler knows that it needs to include the
subVI in the compilation without specification.

5. Under Destinations, we will leave everything as default. If we have dependencies
(subVIs, files, and so on), we can choose where to place them relative to the
executable. The dependencies can either go into the executable or into a support
directory. We can add additional destinations if we so desire. In this category,
we are configuring all the destinations where the files can go.

Understanding the LabVIEW Environment

16

6. Under Source File Settings, we can choose how the files are included with the
executable. If we click on EXEvi.vi, we see that Inclusion Type is Startup VI, since
we have already specified the same under the Source Files category. The destination
of Startup VI is the executable itself, which means the Startup VI is not located at
...\ExeExample.exe\EXEvi.vi. For SinWave.vi, we will use the default setting.
The default setting will put the subVI inside the executable as well. The following
screenshot shows how the project looks like with executable:

How it works...
For an executable to run on a computer, it must at least have LabVIEW runtime engine with
the correct version. Some other device drivers may be required as well. We will discuss this
topic in the Compiling a standalone application recipe in this chapter.

Debugging EXE
Sometimes, our code will work perfectly in the development environment, but will fail
miserably when we deploy and run its executable on another computer. When that happens,
we can put more indicators into the VI to display data at relevant locations of the program.
Then, we can re-compile the executable and use the extra data to find the bug. If that
still does not work, we can step through the executable similar to what we do in the
development environment.

Chapter 1

17

How to do it...
If our code works perfectly in development, but fails miserably after deployment in the
executable mode, how do we debug the executable?

1. We do not have the LabVIEW development software on the machine where we deploy
the executable, so how do we step through the executable? We will connect to the
machine where the EXE is deployed (EXE machine) from another computer that has
the LabVIEW development software installed (DEV machine). The two computers must
be on the same network; we verify their connection by issuing the ping command in
the command prompt with the EXE machine's IP address from the DEV computer. See
following screenshot for an example:

2. After we verify that we can ping the EXE machine from the DEV machine, we need to
recompile the executable with Enable debugging option selected, so that the block
diagram is compiled into the executable for debugging purposes. The option is inside
executable properties and under the Advanced category. Within Enable debugging
option, there is another option that we can select; it is Wait for debugger on launch.
If we select that option, when we double-click on the executable to run it, it will not
run and will wait for the debugger to connect. For our example, we will only select
Enable debugging option.

www.allitebooks.com

http://www.allitebooks.org

Understanding the LabVIEW Environment

18

3. On the EXE machine, double-click on your executable to run it. While it is running,
open the LabVIEW development system on the DEV machine. In the startup window,
select Operate | Debug Application or Shared Library. The Debug Application or
Shared Library dialog appears, and we enter the IP address of the EXE machine and
click on Refresh. Under Application or shared library, the name of the executable
that is running on the EXE machine will appear, click on Connect. See the following
screenshot for an example:

4. After the connection is established, the front panel of the executable will appear on
the DEV machine. On the front panel, we right-click and select Remote Debugging |
Show Block Diagram. See the following screenshot for an example. When the block
diagram is shown, we can use all the debugging tools in LabVIEW.

Chapter 1

19

5. If we cannot make the connection, the EXE machine could have a firewall that is
preventing the DEV machine from connecting. To resolve this problem, we can open
port 3580 through the Windows Firewall for NI Service Locator. If this approach fails,
we can install the LabVIEW development software in the EXE machine and connect
to the local host (to itself) for debugging.

How it works...
To debug an executable on a machine that does not have the LabVIEW development
environment installed, a debug version executable can be deployed and connected
to another computer, that is on the same network and with the LabVIEW development
environment installed.

Compiling a standalone application
After we compile an executable and deploy it on a machine, we cannot run the executable
immediately. We must set up the machine with the correct software before we can run the
executable. It is troublesome if we have to install multiple software on the machine before
we can run the executable. In this recipe, we will learn how to package the executable with
the required software into one installer, so that we only need to double-click on the installer
and everything will be installed automatically.

How to do it
A standalone application is just an installer that comprises an executable and drivers required
by the executable. We will use an executable that we created previously.

1. We will open the project ExeExample.lvproj from the recipe where we learned how
to compile an executable. We right-click on Build Specification and select New |
Installer; the My Installer Properties dialog, where we can set up the properties
of the installer, appears.

2. In the Product Information category, we specify the Build specification name
with ExeExampleInstaller, Product name with ExeExample, and Installer
destination with a convenient place for the example.

3. In the Destination category, we can set up where the content of our program will go.
We will use the default setting, and that will create a folder inside the Program Files
folder in your local drive.

4. In the Source Files category, we select the executable and all relevant files on the left
and transfer them to the right.

Understanding the LabVIEW Environment

20

How it works...
In a compiled standalone application, it can be sent as an installer to deploy onto another
machine. In the installer, everything that is needed to execute a program is included. The user
only needs to double-click on the received installer, and the program with all its dependencies
will be installed automatically.

In the Additional Installers category, we select all the additional installers that our program
needs during execution. At the very least, the NI LabVIEW Run-Time Engine is needed. If you
used other features such as DAQmx, VISA, FPGA, and so on, more installers will be needed. If
you are unsure about what is needed, click on each installer and read its description to see
whether the installer describes a feature in our code or not.

2
Customizing the

User Interface

In this chapter, we will cover:

 f Customizing controls

 f Adding a menu for runtime

 f Creating a dialog

 f Sizing the dialog automatically

 f Using 2D picture control

 f Updating controls with an action engine

 f Creating a simple animation

 f Creating subpanels

Introduction
This chapter presents tips on creating a user interface. We will demonstrate different UI
features in UI design, such as customizing a control, adding runtime menu, creating a dialog,
using 2D picture control, creating simple animation, and creating subpanels. Ways to manage
UI, such as sizing a dialog automatically and updating controls with action engine, will also
be demonstrated.

Customizing the User Interface

22

Customizing controls
In LabVIEW, there are different styles of controls to choose from. Control styles such as
classic, modern, and so on would fulfill the majority of UI design needs. In addition, there are
other styles that can be downloaded from OpenG. Nevertheless, at times, we need a control
to look in a particular way and we can customize such special controls in LabVIEW.

Getting ready
To complete this recipe, the LabVIEW development environment is required. In this example,
LabVIEW 2012 is used. To customize the numeric control, one picture of a blue car and one
picture of a yellow car are needed.

How to do it…
Follow the given steps to implement the recipe:

1. Open a new project and VI.

2. We will start building the front panel. To create a track with a race car, right-click
on the front panel and go to Classic | Numeric | Horizontal Slide.

3. Right-click on the control and select Make Type Def.

4. Right-click on the control and select Open Type Def.

5. In the type def, click on Change to Customize Mode (wrench icon).

6. Right-click on the knob and select Import from File at Same Size, as shown
in the following screenshot:

Chapter 2

23

7. Browse to the blue car image and adjust the size of the car.

8. Right-click on the control and select Change to Indicator.

9. Save the control and go to File | Apply Changes.

10. Repeat steps 2-8 for the yellow car image.

11. To create a signal that starts/stops the race, right-click on the front panel and
go to Modern | Boolean | Round LED.

12. Right-click on Round LED and select properties.

13. Keep the On color as green and change Off color to red.

14. Enable Show boolean text and Multiple strings.

15. For the On text, type GO, and for the Off Text, write STOP.

16. Left-click on LED and drag its corner to enlarge it.

17. Right-click on the control and select Change to Indicator.

18. To create a status indicator, right-click on the front panel and go to Classic | String
& Path | Simple String.

19. To make the surrounding of the Simple String transparent, press Ctrl + Shift +
right-click on the front panel and select the coloring tool.

20. With the coloring tool, right-click on the surrounding of the Simple String indicator
and select transparency for both background and foreground color. We get to see
the following screenshot for the front panel after executing steps 1-17:

21. The front panel is completed, and we will work on the block diagram. We will use the
state machine architecture. We will start by placing a while loop in the block diagram,
and place a case structure within the while loop.

22. Create and save a enum type def. with states: Initialize, Idle, Run, Done, and Quit.

Customizing the User Interface

24

23. For the while loop, create four shift registers by right-clicking and selecting Add Shift
Register; one for BlueCar, one for YellowCar, one for the Result, and one for the
State. Wire these four registers and set the state shift register to Initialize. Place a
Wait Until Next ms Multiple node inside the while loop and wire 500 ms
to it. Create a local variable for the Trigger Boolean control and set it to false to
initialize it. The stop condition is set with the Boolean default value, which is a false.
The state machine and its Initialize state are shown in the following screenshot:

24. Build the "Idle" state with an event structure, as shown in the following screenshot:

25. Build the second event case within the Idle state, as shown in the following
screenshot:

Chapter 2

25

26. Build the "Run" state, as shown in the following screenshot:

27. Build the "Done" state, as shown in the following screenshot:

Customizing the User Interface

26

28. Build the "Quit" state, as shown in the following screenshot:

How it works…
The program shown in the previous section is a racing simulation. Two customized controls
with yellow and blue race cars are created, and they are driven by random numbers. A big LED
is used to start the race, and the status of the race is shown with a simple string indicator.
The images of the race cars were obtained from the Internet and a free software called GIMP
(http://www.gimp.org/) was used to make the background of the images transparent.
For the status indicator, a Classic Simple String is used so that the background can be colored
as transparent; the background will not show up and surround the car. To work with images in
LabVIEW, Portable Network Graphics (png) format is preferred.

The program starts with the Initialize state to initialize all indicators and shift registers, and
it proceeds to the Idle state. In the Idle state, it has an event structure. The program will not
pass this state unless Trigger has a value change event. Once the Trigger value is changed,
the program moves to the Run state. If the Panel Close? filter event occurs instead, the
program will discard the Panel Close? event and stop the program. In this case, the Panel
Close? event is filtered out, so the panel will not close. In the Run state, two separate random
number generators are used to accumulate the distance traveled by each car. If either of
cars crosses the finish line (within 50 ms), the program moves to the Done state; if not, the
program comes back to the Run state. If the blue car wins, a Boolean value true is the
output. If the yellow car wins, a Boolean value false is the output. The Done state will output
the result based on the Boolean value and transit the program into the Quit state, where the
program wraps everything up.

See also
 f For more information on the state machine architecture, refer to Chapter 3, Working

with Common Architectures

Chapter 2

27

Adding a menu for runtime
To make a program more professional, runtime menu is essential. In this recipe, we will create
a program with runtime shortcut menu that is invoked by right-clicking on an indicator, and a
runtime menu that resides on the top menu bar of the program.

How to do it…
Follow the given steps to create the example for this recipe:

1. Open a new project and VI.

2. Create a chart indicator by right-clicking on the front panel and navigate to Modern |
Graph | Waveform Chart.

3. Create a Boolean stop by right-clicking on the front panel and navigating to Modern |
Boolean | Stop Button. First, we will start by creating a right-click shortcut menu for
the chart.

4. Right-click on the chart and go to Advanced | Run-Time Shortcut Menu | Edit....

5. In the editor, select Custom in the top menu bar.

6. Under Item Properties, select User under Item Type and enter Increment as the
Item Name.

7. Click on the add button on the top left to add another menu entry.

8. Under Item Properties, select User under Item Type and enter Decrement as the
Item Name.

9. Click on the add button on the top left to add another menu entry.

10. Under Item Properties, select Separator under Item Type.

11. Click on the add button on the top left to add another menu entry.

12. Under Item Properties, go to Application item | Visible Items | Entire Menu.

www.allitebooks.com

http://www.allitebooks.org

Customizing the User Interface

28

13. Navigate to File | Save | Save to file and save the menu as RunTimeShortcut.
rtm in the same folder as the VI. The following screenshot is of a completed
Shortcut Menu:

14. After we finish the right-click shortcut menu, we will proceed to adding a custom
top menu bar.

15. To create custom top menu bar for the front panel, go to Edit | Run-Time Menu....

16. In the editor, select Custom in the top menu bar.

17. Under Item Properties, select User under Item Type and enter Tasks as the
Item Name.

18. Click on the add button on the top left to add another menu entry.

19. Under Item Properties, select User under Item Type and enter Multiplied
by 2 as the Item Name.

20. Click the right arrow to make Multiplied by 2 a subitem of Tasks.

21. Click on the add button on the top left to add another menu entry.

22. Under Item Properties, select User under Item Type and enter Divided by 2
as the Item Name.

23. Click on the right arrow to make Multiplied by 2 a subitem of Tasks.

24. Go to File | Save and save the file as RunTimeTop.rtm in the same folder as the VI.

Chapter 2

29

25. Create the front panel as shown in the following screenshot:

26. Create the block diagram as shown in the following screenshot:

27. Create the second event case, "Chart": Shortcut Menu Selection (User), as shown
in the following screenshot. For the inner case structure, the "Decrement" case is
shown. The case structure has two more cases that are not shown: Increment and
Default. For the Increment case, use the increment node. For the Default case, just
wire the input wire through.

Customizing the User Interface

30

28. Create the last event case as shown in the following screenshot. For the inner case
structure, the "Divided by 2" case is shown. The case structure has two more cases
that are not shown. They are Multiplied by 2 and Default. For the Multiplied by 2 case,
use the multiply node with 2 and the input wire as inputs. For the Default case, just
wire the input wire through.

How it works…
The program generates random numbers and displays them on a chart. The user can choose
to scale or shift the numbers on the chart.

The event structure has three cases. The timeout case is triggered once every second, and it will
generate an array of 10 random numbers and displays them on a chart. If the user right-clicks
on the chart and selects Increment/Decrement, the shortcut menu selection event is triggered,
and the values of the chart are shifted accordingly. If the user selects the Tasks menu at the top
and selects Multiplied/Divided by 2, the menu selection event is triggered and the values of the
chart are scaled accordingly.

Creating a dialog
Dialog is a simple pop up that will gather information from user for the program. In this recipe,
we will create a simple dialog.

How to do it…
Dialog is a SubVI that would pop up to gather information. To create a simple dialog,
we need to execute the following steps:

1. Create a new project and VI.

2. Create the front panel as shown in the next screenshot. The set of controls on the
right are within a type-def. cluster and it needs to be created and saved.

3. To set the default values for all the controls, we can either write a value to each
control by using a local variable, or set a default value manually. To set a default
value manually, enter the default value into the control. Right-click on the control.
Select Data Operations and Make Current Value to Default.

Chapter 2

31

4. On the front panel, click on the upper-right corner of the 4 x 2 x 2 x 4 connector pane
and then click on Info Cluster to position the Info Cluster on the connector pane.

5. Create the block diagram as shown in the following screenshot:

Customizing the User Interface

32

6. On the front panel top menu bar, go to File | VI Properties. In the edit dialog,
select the Dialog option. Check the following screenshot. Under Window Run-Time
Position, we can select at what location of the monitor the dialog appears.

7. Resize the front panel so that the cluster is out of sight.

8. To use the dialog VI in other applications, we simply drop the dialog VI into the
application and wire up all the inputs and outputs. When the application execution
flow arrives at the dialog VI, it will pop up and gather the information intended.

How it works…
This VI is used as a SubVI inside a program. When the program calls this dialog VI, the dialog
pops up, and the program thread that depends on the data of the dialog stops. The user
would enter all the information and click on OK. The program populates a cluster and passes
the data out of SubVI and into the program that calls it.

To make the dialog pop up, its appearance must be set to dialog inside VI properties. The
option causes the VI to show it in the front panel during execution. Creating controls to get
data from users and use a cluster to pass this data seems redundant. It is possible to use
a cluster to get and pass the user data. However, when the controls are within the cluster,
it has less flexibility for decoration.

Chapter 2

33

See also
 f If dialog is used to display a message without needing to gather information from users

while allowing the program to continue, a dynamically-called dialog should be used. For
further reference on this topic, refer to the Calling a VI dynamically recipe in Chapter 3,
Working with Common Architectures

Sizing the dialog automatically
The size of the dialog is adjusted and saved manually, so that only what is intended to be seen
is shown when the dialog appears. However, every time when a dialog is modified, the size
may need to be adjusted again. To avoid the trouble of adjusting the front panel every time
when a change is made, this recipe provides a way to size a dialog automatically.

How to do it…
To start building the VI to size a dialog automatically, we need to execute the following steps:

1. We open a new project and VI.

2. Create the block diagram as shown in the following screenshots. The six values
contained in enum are Initialize, Find Max Height, Set Origin, Set Panel Bounds,
Center FP, and Shutdown. The first state Initialize gets the VI reference for the
front panel which we would like to autosize. The pane reference is obtained,
assuming that there is only one pane on the front panel. The references for all
the decorations on the front panels are obtained.

Customizing the User Interface

34

3. Create the next case, "Find Max Height". It examines the height of all the decoration
on the front panel and extracts the reference of the decoration with the maximum
height. Refer to the following screenshot:

4. Create the next case "Set Origin", as shown in the following screenshot. It sets the
origin of the front panel pane to the upper-left hand corner of the largest decoration:

Chapter 2

35

5. Create the next case "Set Panel Bounds", as shown in the following screenshot.
It sets the front panel bound to the largest decoration.

6. Create the next case "Center FP", as shown in the following screenshot. It centers
the front panel when shown on the monitor.

Customizing the User Interface

36

7. Create the final state "Shutdown", as shown in the following screenshot. It closes
all the references from property nodes used in previous states. It stops the state
machine by setting the stop condition to true.

8. In the front panel, connect the path control used in the Initialize state to the
upper-left hand corner of the terminals pattern. See the following screenshot:

9. Let's build a VI that uses the SubVI we built in steps 1-8. Build the front panel as
shown in the following screenshot:

Chapter 2

37

10. Build the block diagram as shown in the following screenshot:

How it works…
This recipe builds a SubVI AutoResizeVI.vi that is called by another VI to resize its front
panel around a decoration frame. It uses a simple state machine as its architecture.

First, the state machine enters the Initialize state to open the references of the caller VI,
caller VI's panel, caller VI's Pane, and caller VI's decorations on its front panel. The next Find
Max Height state, the reference for the decoration with the max height is extracted from the
decoration references array. In the next state Set Origin, the coordinates of the upper-left
hand corner of the decoration is set to be the Pane's origin. In the next state Set Panel Bounds,
the boundary of the decoration is set equal to the boundary of the front panel. In the Center
FP state, the front panel is moved to the center of the monitor. Finally, in the Shutdown
state, all references are closed, and the stop condition for the while loop is set to true
to exit the program.

In the caller VI, it calls AutoSize.vi to resize its front panel to the size of its decoration.
Then, it will wait for the user to click on exit to leave the program.

www.allitebooks.com

http://www.allitebooks.org

Customizing the User Interface

38

See also
 f This recipe uses the state machine. For more information on the state machine

architecture, refer to the Using the state machine architecture recipe in Chapter 3,
Working with Common Architectures

Using 2D picture control
In some test applications, it is beneficial to display test data in a real-time map, which
contains test results with location information. For example, if we were to test a batch of
products arranged in a rectangular grid, using a map to display data will provide a very good
visual to display the location of the product and its test result. In this recipe, we will create a
map that shows the test results for products in different coordinates, with the results shown
in different colors.

How to do it…
In this example, we will create a VI that calculates all the coordinates where we would like
to map our test results. First, we will create a VI to calculate the coordinates.

1. Create the Coordinates.vi VI to generate an array of coordinates used for Draw
Rectangle.vi. See the following screenshot:

2. Create the main VI that calls Coordinates.vi. See the following screenshot:

Chapter 2

39

3. Right-click on 2D picture control and deselect Erase First.

How it works…
The example creates a 1D array of information to draw 50 x 50 rectangles in a large
rectangular drawing area with Coordinates.vi. In each element of the array, it contains
the top, bottom, left, and right of the rectangle in pixel.

The 1D array is indexed by a for loop that randomly draws each rectangle in the array with
a different color. The 2D picture indicator is set to not erase every time it draws, so all
rectangles will show up in the 2D picture indicator. See the following screenshot for a map
drawn with rectangles with 8 pixels on each side:

Customizing the User Interface

40

Updating controls with an action engine
A complex application could consist of SubVIs that are multiple layers deep. It would be difficult
for such a SubVI to update an indicator of the main VI. In this recipe, we will demonstrate an
example to update controls of a main VI from a SubVI through an action engine.

How to do it…
Let's create the action engine. We will start with the Initialize command.

1. Create the action engine as shown in the following screenshot. The first command
is Initialize. It obtains the reference of the VI with controls which we would like
to update, obtains its panel reference, and the references of all the controls on
the front panel of the VI.

Chapter 2

41

2. Create the next command "Update Value" of the action engine, as shown in the
following screenshot. With the label of a control, it finds the reference associated with
the control, and update the value of the control. This is done on the control that the
user would like to update.

3. Create FindControlRef.vi that is used in the preceding action case. It is used
in other action cases as well. It extracts the control reference of the user-specified
control. The build-in VI, called "Open VI Object Reference", can also perform the
same function. See the following screenshot:

Customizing the User Interface

42

4. Create the next action case "Update DisEnable", as shown in the following
screenshot. It finds the reference of the control with label that the user specified
and then enables/disables the control as specified by the user.

5. Create the next action case "Update InVisible", as shown in the following
screenshot. It finds the reference of the control with label that the user specified
and then makes the control invisible/visible as specified by the user.

6. Create the last action case "Shutdown", as shown in the following screenshot.
It closes all the references of the controls on the front panel.

Chapter 2

43

7. Create the example, as shown in the following screenshot, to use the action engine:

How it works…
The action engine performs three functions: update value, visible status, and enable status
of controls. It has two other functions as well: Initialize and Shutdown for configuration
purposes. To use the action engine, the Initialize function needs to be executed first, so that
all the references of the front panel controls are saved in the action engine. When the action
engine is no longer needed, the Shutdown function is executed to close all the references.
The other functions allow users to update the value, visible state, and enable state of a
control by referring to its name. The example shows how the action engine is used.

See also
 f To learn more about action engine, refer to the Creating an action engine recipe

in Chapter 3, Working with Common Architectures

Customizing the User Interface

44

Creating a simple animation
A picture is worth a thousand words, and an animation is worth even more. In this recipe,
we will create a simple animation with a picture ring.

Getting ready
To complete this recipe, the LabVIEW development environment is required. In this example,
LabVIEW 2012 is used. For the animation, a set of fan blades pictures that are differed by
30 degrees are needed from 0 to 330 degree (12 pictures total). The pictures must be sized
appropriately for the application.

How to do it…
We will start by creating the picture ring with snapshots of a blade's motion, which we will
iterate through to create the animation:

1. Create a picture ring by right-clicking on the front panel and navigating to
Classic | Ring & Enum | Pict Ring.

2. Drag the fan blade picture at 0 degree into the picture ring.

3. Right-click on the picture ring and select Add Item.

4. Repeat steps 2 and 3 until all pictures are added. For the last picture, step 3 is to
be omitted.

5. Right-click on the control and select Make Type Def. Open the type def. and save
it in the application folder.

6. Create the example, as shown in the following screenshot, to use the picture ring:

Chapter 2

45

7. The front panel of the example is shown in the following screenshot. Use the
decoration to create the base of the fan:

How it works…
The animation is created by looping through and displaying a series of pictures in a loop. The
example allows users to change the speed of the fan and to stop the fan with the stop Boolean.

Creating subpanels
Using subpanels allows the flexibility to embed multiple VIs into one at runtime. In this recipe,
we will demonstrate how to use subpanels.

Customizing the User Interface

46

How to do it…
We need to perform the following steps to make use of subpanels:

1. Create the state machine, as shown in the following screenshot. The first
state Initialize creates three VI references by opening the VI template
SimpleAnimationExample.vit three times. Only a VI template can
be opened in this manner to create three VI references.

2. Create the next state "Insert VIs", as shown in the following screenshot. It builds
an array with the references of the three subpanels that are on the front panels.
The for loop inserts the three VIs opened previously into the subpanels.

Chapter 2

47

3. Create the next state "Run VIs", as shown in the following screenshot. It runs the VIs
inserted into the subpanels.

4. Create the next state "Exit", as shown in the following screenshot. It contains
an event structure that will wait for the user to exit the program indefinitely.

www.allitebooks.com

http://www.allitebooks.org

Customizing the User Interface

48

 f In the previous recipe, open SimpleAnimationExample.vi and do a save as *.vit
in another file. This recipe will call this template into the memory three times for
three subpanels, and each time a new reference is generated. See the following
front panel of the example:

How it works…
This example loads three separate instances of SimpleAnimationExample.vi into memory
so that they can be executed independently. The example uses the state machine. It enters
into the Initialize state first, and uses the template file SimpleAnimationExample.vit created
previously to create three instances of the same VI. The next state, Insert Vis, inserts all the
subpanels references into an array and iterates through each element in the array to insert
the VIs into the subpanels. The next state, Run Vis, starts the VIs in each subpanel. Wait Until
Done is set to false, so the program will not wait for the reference VI to finish running before
proceeding. Auto Dispose Ref is set to false, so the main program that calls the reference VI
is responsible to dispose of the references of referenced VIs. The last state, Exit, waits for the
user to click on exit to terminate the program.

See also
 f This recipe uses a state machine and dynamically calls VI. For more information on

the state machine, refer to the Using the state machine architecture and Calling
a VI dynamically recipe in Chapter 3, Working with Common Architectures

3
Working with

Common Architectures

In this chapter, we will cover:

 f Working with a case structure

 f Working with an event structure

 f Working with loops

 f Using the state machine architecture

 f Using the master slave architecture

 f Using the producer consumer architecture

 f Creating a SubVI

 f Creating an action engine

 f Calling a VI by reference

 f Calling a VI dynamically

 f Creating a reentrant VI

Introduction
This chapter presents commonly-used architectures and tools. Basic building blocks such as
case structure, event structure, loops, SubVI, action engine, dynamically called VI, and reentrant
VI are covered in detail to ensure that we are proficient in using these building blocks in
LabVIEW. Common architectures such as state machine, master slave, and producer consumer
are covered to ensure that we can structure our code in a readable and efficient fashion.

Working with Common Architectures

50

Working with a case structure
Case structure is equivalent to a conditional statement in a text-based programming
language. We will create a few case structures that take different kinds of inputs, such as
Boolean, numeric, string, enum, and error, to present different features of a case structure.

How to do it...
We will start with a Boolean case structure.

1. The case structure in the following block diagram shows a case structure taking a
Boolean input. It consists of False and True cases. The select node is also in the
diagram to show that it can be used instead of a case structure when the input is
Boolean. The select node will choose which input to output based on the Boolean
input, similar to the case structure.

2. The case structure in the following block diagram takes an integer as input. Keep in
mind that when the input is a floating point value, it is converted into an integer. The
..-1 case will be executed when the input is less than or equal to 1. The 1, 2 case will
be executed when the input is 1 or 2. The 3..5 case will be executed when the input
value is between 3 and 5 inclusively. The 6.. case will be executed when the input is
greater than or equal to 6. The 0, Default case will be executed when the input is 0 or
does not meet the conditions of all the other cases, which is what Default means in
this case.

Chapter 3

51

3. The following block diagram shows a case structure with a string input. The ''a''..''f''
case will be executed when the ASCII hex value of the input string is between a and
f, including a, but excluding f. The ''f''..''j'' case will be executed when the ASCII hex
value of the input string is between f and j, including f, but excluding j. If the input
value does not meet the conditions of the previous states, the Default case will run.

4. The following block diagram shows a case structure with enum input. These cases
will be executed based on the input value. The Case 1 case is assigned as the default
case. If the input does not meet the condition of Case 2 and Case 3, Case 1 will run
by default. Enum is used for state machine, as it allows for self-documenting code.
The value of an enum is also part of its type, so if we add a value in an enum type-
def, the change will propagate to the rest of the block diagram.

5. The following block diagram contains an error cluster input. It has two cases: No Error
and Error. It is used extensively in a SubVI for bypassing input error, so that it doesn't
get corrupted inside the SubVI.

Working with Common Architectures

52

How it works...
Case structure is the main way to make decisions in LabVIEW's code. It can take different
types of input, such as Boolean, numeric, string, enum, and error cluster. For the Boolean
case structure, sometimes it is more convenient to use the select node. It is important to
note that the case structure should not be nested with too many layers and each case should
be documented. To reduce layers of a case structure, refer to the Simplifying logic selection
recipe in Chapter 9, Simplifying Code.

Working with an event structure
Event structure consists of one or more cases. Codes that are contained within a case
are executed when a control event (mouse click, key stroke, and so on) or a user event
(software-based event) occurs.

How to do it...
We will create an example that demonstrates using control event and user event for the
event structure.

1. The following example contains a numeric control (Input Num). When a number is
entered, an event is triggered. For the Input Text string control, if a string is entered,
an event is triggered, but no text will show up, as all the events (entering text) are
discarded. When the Switch Boolean control is clicked, an event is triggered. If any
event is triggered, the string indicator (Action) will update with a string that states
what event has occurred. The following screenshot shows the front panel of the
controls and indicator:

Chapter 3

53

2. The following screenshot shows the block diagram of the example. On the left, a
Create User Event node is used to create a user event that can be generated within
the code. The input user event data type is the data type used for data passing for
a user event. We will discuss the data passing aspect of an event structure in the
Using an event structure to pass data recipe of Chapter 5, Passing Data. The label
of the data type in our example is Stop User, which will be used as the name of
the user event. The while loop at the bottom iterates once every 500 ms, and it will
generate a user event if the stop Boolean control is set to true. The event reference
is registered with the Register for Events node and fed into the dynamic event
terminal, which needs to be enabled by right-clicking on the frame of the event
structure and then select Show Dynamic Event Terminals. In the top while loop, we
see the event case that handles the event when the value of the Boolean changes for
the Switch control. It is a good practice to put the control associated with the event
case into the case, so that the control is easy to find and it is read by the program
every time the event is triggered. When the Boolean value changes, the Action string
indicator will update to show what event has occurred.

3. The event case in the following screenshot will be executed when a key is pressed
within the Input Num numeric control. The Action string indicator will update and
show that the event has occurred.

Working with Common Architectures

54

4. To create the previous event case, right-click on the event structure and select Add
Event Case…. The following screenshot shows how to set up the case. Select the
Input Num numeric control under Event Source and then choose which type of event
to handle.

5. The event case in the following screenshot will execute when a key is pressed within
the string control, similar to the event case for the numeric control. However, notice
? behind the label of the Key Down event. This is a filter event which can discard the
outcome of the event, contrary to all the previous event cases which use notify event.
While our example runs as we enter values into the string control, we see that the key
down event happened at the string control in the Action string indicator. The entered
values do not appear in the string controls as the events are discarded.

Filter events give us the ability to trigger based on an event
while discarding the event as though it never happened.
Notify events will trigger based on an event without
interfering with the occurrence of the event.

Chapter 3

55

6. The event case in the following screenshot will execute when a timeout event occurs.
In this example, the timeout event will occur in 10000 ms, if no other events occur.
We can change the timeout value as we wish. If we do not want the timeout event to
trigger, we can wire a -1 to the timeout input.

7. The event case in the following screenshot will execute when a user event is generated
at the bottom while loop (refer to screenshot of the complete example). Recall that the
name of the user event is the label of the data type when we created the user event.
The user event is generated by the bottom loop when the stop Boolean control is set
to true. This way both loops can stop each other's execution.

Working with Common Architectures

56

8. If we have to create thirty event cases manually, it can be a lot of work. The following
screenshot shows an example with thirty Boolean controls. For the example, we
don't have to create thirty event cases for each Boolean control. The example gets
all the references of the controls on the front panel as an array and registers all the
references as a dynamic event. In this event case, if any of the Boolean controls
has a value change event, the case will trigger. To get more resolution, we get the
reference of the control for which the event originated from and print out a text.

How it works...
Whenever we find ourselves wanting to use a while loop to poll user for data, we should use
the event structure instead. When the event structure is waiting for an event, it does not
consume any CPU resources.

See also
 f There is more to event structure. Please proceed to the Using an event structure to

pass data recipe in Chapter 5, Passing Data to see how to use the event structure to
pass values.

Chapter 3

57

Working with loops
Loop is a common element in programming. In LabVIEW, there is for loop, while loop, and
timed loop with features that facilitate LabVIEW programming. We will go over the for loop.
For the while loop, its features are very similar to the for loop, so it is omitted.

How to do it...
The for loop is used when a predetermined number of iteration is needed. For an
undetermined number of iteration, use the while loop instead.

1. In the following screenshot, on the left, all the features of a for loop are shown; on
the right is shown the result of the example. The input of the for loop is an array with
elements 3 and 6. The entry point where the array enters the for loop is a [] symbol,
which means autoindexing. When the array is autoindexed, each iteration of the for
loop will get an element of the array in order. Since the loop is autoindexed, the N
symbol (number of iteration) at the upper-left hand corner does not need to be wired.
The loop will iterate through each element of the array. In our case, the for loop
will iterate two times. If multiple arrays with different lengths are wired into the
for loop through autoindex, the number of times that the for loop will iterate is the
size of the array with the least number of elements. The i would output the current
iteration of the loop, and the stop symbol allows the program to stop the loop before
completion. For enabling the conditional stop, right-click on for loop and enable the
Conditional terminal.

www.allitebooks.com

http://www.allitebooks.org

Working with Common Architectures

58

2. The example shows four output options. To select an option, right-click on the output
terminal, select Tunnel Mode, and then select the desired option. For the last value
option, the value at the very end of the array is outputted. For the Indexing option,
the same number of elements as the input is outputted. For the Conditional option,
we can create conditions for which elements are built into the output array. For the
Concatenation option, we can concatenate to the end of a 1D array.

How it works...
The for loop iterates over the same code for a predetermined number of times. If the
Conditional terminal is enabled, the for loop can be stopped prematurely. The for loop has
many features, such as outputting the value of last iteration, indexing through an array (with
and without a condition), and concatenating an array, that are useful for array processing.

See also
 f The for loop has an optimization feature called parallelism. If our code inside the

for loop could run in parallel, this feature would help us optimize the code. However,
this feature is beyond the scope of this book.

Chapter 3

59

Using the state machine architecture
State machine can transform a piece of sequential code into states with flexible transition
between states. In a state machine, the code is self-documented and easy to read. In this
recipe, we will use the state machine to program a simple rock-paper-scissors game simulator.

How to do it...
To start a state machine, it is a good idea to draw a flowchart first. Start by executing the
following steps:

1. To start, create a flowchart of the example program. See the following screenshot for
the flowchart:

Working with Common Architectures

60

2. Open a new VI and build a state machine, as shown in the following screenshot. Create
an enum type-def with values such as Initialize, Wait for input, Timing, Computer's
turn, and Shutdown. To create a type-def, refer to the Customizing controls recipe in
Chapter 2, Customizing the User Interface. In a state machine, an enum is usually
used, but a string is used frequently as well. Wait Until Next ms Multiple is used to
slow down state transition. The state machine starts at the Initialize state, which will
initialize indicators and shift registers. In this example, we are creating a state machine
from scratch, but we can also utilize the state machine template built-in to LabVIEW.
To use a template, create a VI by selecting File and New….

3. The next state is Wait for input. It contains an event structure that waits for the
user to click on the Start button, click on the Reset button, or close the panel.
When the Start button is clicked on, a timer action engine that acts as a timer
is started, as shown in the following screenshot:

Chapter 3

61

4. When the Reset button is clicked, all controls are reset to their default values:

Working with Common Architectures

62

5. When the panel is closed, the action is discarded and the program is stopped, as
shown in the following screenshot:

6. The next state is the "Timing" state. If a user has decided a hand or when 3 seconds
are up, the program transits into the next state. If not, the Timing state is revisited:

7. The next state "Computer's turn" decides the computer's hand and updates the
result. If the user selects a hand after three seconds, the computer's hand is
determined randomly, as shown in the following screenshot:

Chapter 3

63

8. However, if the user selects a hand too early, the computer will determine what hand
it needs to win the game and select that hand:

9. Finally, the state machine goes back to the Wait for input state.

Working with Common Architectures

64

How it works...
For this program, after the user starts the program, the user would click on Start to begin the
game. After the Start button is clicked on, the user has three seconds to select a hand or lose
the game. If the user selects a hand too early, the computer determines the winning hand and
selects it. If not, the computer's hand is determined randomly. After a game is completed, the
user needs to click on Reset before clicking on Start for a new game.

In the Initialize state, local variables are used to set all controls to their default values.
This is one of the few ways that are acceptable to use local variables. In LabVIEW, using
local variables to pass data could be dangerous, since a race condition can occur to cause
programs to behave erratically. However, to update user interface, local variables do come
in handy. In the while loop level, each iteration is slowed down to 100 ms per iteration.
If the state machine runs too fast, it can consume too much CPU resources.

In the Wait for input state, multiple actions are handled. If the Start button is clicked on,
a timer is started. This is when the game begins.

After the program transits to the Timing state, the program will continue to loop back to it until
the user decides a hand or until three seconds are up. The Boolean controls that represent
the user's hands are built into an array and converted into a number, so that 1 represents
Rock, 2 represents Paper, and 4 represents Scissors, based on binary math.

Next, the program transits into the Computer's turn state. The computer will decide a hand
and output the result. When a game is done, the program goes back to Wait for input for
another game.

See also
 f In this recipe, we used a timer action engine. For more details about the action

engine, please refer to the Creating an action engine recipe in Chapter 3, Working
with Common Architectures.

Using the master slave architecture
The master slave architecture consists of at least one master and one slave. The master will
notify the slave to perform a task with required information. If multiple slaves are used, the
master can notify multiple slaves with the same piece of information simultaneously. In this
recipe, we will see an example of how the architecture works.

How to do it...
The master slave architecture used in this example consists of three while loops that employ
one notifier for communication amongst themselves.

Chapter 3

65

1. Create the block diagram, as shown in the following screenshot. On the left of the
top while loop, the Obtain Notifier node is used to create a notifier and the reference
is passed to the loops. The top while loop (master) has an event structure with the
Send Notification node in the speak event case. In the other event case, it contains
the stop Boolean to terminate the loop. The bottom two while loops (slaves) both
output a string from the master, but the first slave would do it 1 second slower. In this
example, we are creating a master slave architecture from scratch, but we can also
utilize the master slave template built-in to LabVIEW. To use a template, create a VI
by selecting File and New….

Working with Common Architectures

66

2. The front panel should look like the following screenshot:

How it works...
This recipe demonstrates how a master/slave architecture works. The master handles
the user interface (UI) events. When the STOP Boolean is clicked on, the master loop stop
condition is met. After the master loop stops, the thread continues and releases the notifier.
When the notifier is released, it is no longer valid, so the slave loops that are waiting for
notification will send an error to stop the loops.

When the Speak button is clicked on, the master sends a message to both slaves. The first
slave will display the message in one second, and the second slave will display the message
immediately. Before the master sends a notification, the slaves are idle at the Wait on
Notification node.

If the user clicks speak once every few seconds, the display is updated as discussed. Even
if the user clicks on speak twice without a delay, the displays would still update accordingly,
since the ignore previous flags are set to false by default. The Wait on Notification node can
still receive a notification that happens before the waiting starts. For example, after slave 1
receives the first notification, it will go into the case structure to output the received string and
wait for one second. If during the wait time, another notification occurs, when slave 1 is back
to Wait on Notification, the miss event would trigger the slave to output the string and wait for
one second again. If the user clicks on Speak three times without delay, the second string
from the second notification is lost, since it is overwritten by the third notification. Notifications
can overwrite each other. If the master sends out more notification than a slave can process
in time, some notifications are overwritten. If that's not a big concern, this architecture would
be a good choice. If every notification must be addressed by the slaves, a queue-based
architecture such as producer and consumer should be considered.

Using the producer consumer architecture
The producer consumer architecture consists of at least one producer and one consumer. The
producer would use a queue to pass required information to the consumer and instruct the
consumer to start a task. If the consumer cannot attend the instruction, it is queued up and
addressed when the consumer is available.

Chapter 3

67

Imagine the consumer as a person sitting at a desk filling out forms, and the producer as
a person handing forms to the consumer to fill out. If the consumer is filling out a form and
another form is needed to be filled out, the producer will not interrupt the consumer, but
simply deliver the new form to the consumer's inbox. The consumer will start working on
the form in the inbox once the current form is completed. In contrast, for the master slave
architecture, the master can give the same form to two different slaves.

How to do it...
The producer consumer architecture, that is used for the example, consists of two while loops
and queue functions to pass data between loops.

1. Build the block diagram as shown in the following screenshot. It creates a queue with
string data type. The queue's reference is passed into the producer loop (top) and
the consumer loop (bottom). The producer loop contains an event structure, which
would enqueue the string element to trigger the consumer to perform a predefined
task when the Enqueue Element button is clicked on. Notice that the passed string is
not used by the consumer. The second event case (not shown) will stop the producer
loop when a user clicks on the Stop button. The consumer loop would exit when there
is an error. An error would occur by design when the user stops the program, the
producer loop proceeds to release the queue, and the consumer continues to access
the queue. The case structure within the No Error case in the consumer would check
how many elements are in the queue and increment a counter to keep track of time.

Working with Common Architectures

68

2. The False case within the No Error case dequeues an element from the queue and
checks how many elements are left in the queue, as shown in the following screenshot:

3. The front panel of the program contains a tank indicator that shows how many
elements are in the queue and buttons to enqueue and stop the program:

How it works...
This program shows how the producer consumer architecture works. When the user clicks
on Enqueue Element multiple times, the number of elements in the queue will increase and
will be shown in the tank. As the elements in the queue are addressed by the consumer, the
level of tank will decrease. One important feature of this architecture is that the elements
enqueued are not lost, unless there is an overflow condition. In the consumer, there are four
shift registers that pass the data from one iteration to another. The first two are for the queue
reference and the error cluster.

Chapter 3

69

The first Boolean decides entering either the true or false case. The False case is entered if
the counter counts to zero. Since the number of count is 10 and the loop timer is 100 ms,
the false case is entered about once every second. The main purpose of the false case is to
update the display with the number of elements in queue. The true case would dequeue an
element from the queue and update the display.

Creating a SubVI
A complex program should be divided into logical sections into SubVI, so that the program is
more manageable and easy to read. SubVI also allows for code reuse, which can save time. In
this recipe, we will create a SubVI that zips all files in folder.

How to do it...
We start the SubVI by creating a block diagram, as shown in the following screenshot:

1. Create the block diagram. It creates the ZIP file, adds files into the ZIP file, and closes
the ZIP file reference.

Working with Common Architectures

70

2. Arrange the front panel, as shown in the following screenshot and connect the
controls and indicators to the icon terminals:

3. Use the icon editor to create the icon, as shown in the following screenshot. The
boundary is created by double-clicking on the rectangle tool.

How it works...
When creating the SubVI, it should be loosely coupled and highly cohesive. Loosely coupled
means the SubVI is very independent and does not depend on other SubVIs very much. Highly
cohesive means all the elements inside the SubVI achieve the same goal.

A terminal pattern should be kept consistent for all your applications. The 4 x 2 x 2 x 4 is highly
recommended. The input should be on the left and the output on the right of the icon. At least a
simple icon art or text should be placed on the icon, so that its purpose is clear by looking at the
icon. Documentation should be placed inside VI properties, so that when a user hovers over the
icon with help enabled, documentation can be seen without going into the SubVI.

Chapter 3

71

Creating an action engine
In LabVIEW, using a local or global variable can create a race condition. A race condition is
created when a variable is overwritten before it can be read as intended. This happens in
LabVIEW, since the execution sequence of a variable cannot be controlled by itself. Functional
global variables are preferred for data transfer, which allow a user to set and get data by
calling a SubVI. Race condition in an action engine can be eliminated, since its execution
sequence can be controlled by wiring its error terminal to enforce data flow. An action engine
is a functional global variable with data processing capabilities. Instead of just setting and
getting a value, an action engine changes the value as well. In this recipe, we will create a
timer action engine.

How to do it...
An action engine is very similar to a state machine, except for the fact that only one state is
executed when called in an action engine.

1. Create an Enum input, the Timer Duration input, and the Time Elapsed output. The
enum has values such as Start Timer, Restart Timer, Check Timer, and Pause
Timer. The Start Timer and Restart Timer functions save the current time stamp into
a shift register. For Start Timer, it will reset Time Elapsed. For Restart Timer, Time
Elapsed is preserved by writing what is in the shift register back into the register. See
the following screenshot for details:

Working with Common Architectures

72

2. The next function is "Check Timer". It determines how much time has lapsed since
the Start Timer function was called. The Time Elapsed function is compared with
Time Duration. If Time Elapsed is greater, the Time Elapsed Boolean becomes true,
as shown in the following screenshot:

3. The next function "Pause Timer" calculates the time difference between Start Timer
and Pause Timer and saves it into a shift register:

Chapter 3

73

4. To test the action engine, an example is created. It starts the timer, waits for 2.1
seconds, and checks the timer, as shown in the following screenshot:

How it works...
Usually, an action engine only performs one action when it is called. Notice that the stop
condition of the while loop is set to true, so the while loop will only iterate one time and only
one case of the case structure is executed. The action engine prevents a racing condition,
since it needs to be called in order to set or get its value. Keep in mind that an action engine
uses shift register to store values, so its execution mode needs to be set to non-reentrant. If a
VI is reentrant, the VI may have multiple copies in the memory. It is possible that a value is set
in one copy and read in another, which will produce invalid results.

See also
 f To see how this timer action engine is used, refer to the Using the state machine

architecture recipe in Chapter 3, Working with Common Architectures. For another
example, refer to the Updating controls with an action engine recipe in Chapter 2,
Customizing the User Interface.

Working with Common Architectures

74

Calling a VI by reference
Calling a VI by reference is one way to load a VI into memory as needed. It is also very useful
that a VI can be loaded by its filename. In this recipe, we call two different VIs at runtime with
the same node.

How to do it...
To start, we will create a VI that will be loaded into memory by reference.

1. Create NumCapitals.vi for loading. It counts how many uppercase letters are in the
input string.

2. Create Stringlength.vi with the string length node.

3. Create the main VI that calls NumCapitals.vi and Stringlength.vi in a loop. The main
VI will build the output as an array of cluster, which shows the VI name and its result
next to each other.

Chapter 3

75

How it works...
By providing a different path to the same call by reference node, two different VIs can be
called, given that they have the same terminals arrangement.

The input of the program is YEES Automation, LLC. The program calls the NumCapital.vi
to first count how many upper case letters are in the string. After the path is built, it is used
to open a VI reference. The type specifier above the Open VI reference node provides the
terminal arrangement information to the VI reference. Having the terminals is like passing
values into a SubVI that is dropped directly into the main VI. The VI is loaded when needed
and unloaded immediately after its execution is done, so the referenced VI does not reside in
the memory for the entire runtime.

Calling a VI dynamically
Dynamically calling a VI is one way to load a VI into memory as needed. In this recipe, we
will launch a dialog to display some information. Comparing dynamic loading to loading a VI
by reference, it is harder to pass values to a VI that is loaded dynamically, but loading a VI
dynamically provides more options in loading.

How to do it...
We will start by creating the VI that will be loaded dynamically.

1. Create a dialog VI with a front panel, as shown in the following screenshot:

2. The dialog VI would execute a while loop for 1 iteration for 3 seconds and close
its front panel, as shown in the following screenshot:

Working with Common Architectures

76

3. To launch the dialog, a launch VI is created. It opens the dialog's VI reference,
opens the front panel, and runs it.

How it works...
When the dialog is launched, it will display for three seconds and close. The dialog has to
close its own front panel when it is dynamically called. The dialog is loaded into the memory
when needed. It is not loaded when the main program loads, so the memory usage is lowered.

In the launcher VI, it opens the VI reference of the dialog VI. The build-path information shows
that the dialog VI is located in the same folder as the launch VI. With the dialog reference, its
front panel is opened. Its front panel opens and becomes the active window. The VI starts with
the Run VI Invoke Node. By setting Wait Until Done to false, the launch VI will continue its
execution even though the dialog VI is still running. If the main VI is doing some initialization
that would take a while, we can launch an advertisement or a process bar to keep the user
occupied before the initialization begins, while the main program finishes its initialization.
With Auto Dispose Ref set to true, the dialog VI takes ownership in disposing itself from
memory when done.

See also
 f For more example, see the Creating subpanels recipe in Chapter 2, Customizing

the User Interface.

Chapter 3

77

Creating a reentrant VI
A reentrant VI is a VI that has a pool of data space shared among multiple instances of the
VI. In this recipe, we will create a recursive VI. It is a VI that executes itself. It will calculate
the factorial recursively.

How to do it...
To create a VI that will call itself (reentrant VI), we start by creating a case structure with
two cases.

1. The first case is shown in the following screenshot:

2. Create the second case, as shown in the following screenshot. The SubVI used is
self. Its input is n and output is n!. Connect the input and output to the terminals
of the SubVI.

Working with Common Architectures

78

3. Set the Execution setting in VI properties. The Reentrancy setting needs to be set to
Shared clone reentrant execution:

How it works...
For reentrant VIs, there are two settings: Shared clone reentrant execution and Preallocated
clone reentrant execution. For shared clone, if there are 10 instances of the VI, there are
10 or less data spaces, since some of the instances may be sharing data space. When data
space is shared, a value saved in a shift register in one instance of the VI may be overwritten
by another instance of the VI. This setting is required for recursive VIs. For preallocated clone,
if there are 10 instances of the VI, there are 10 data spaces. Each instance of the VI has its
own dedicated data space, so data spaces are isolated.

This recipe implements a recursive VI, a type of reentrant to calculate factorial. Since it calls
itself, it must contain a case structure with a case that would stop the cycle of calling itself.
In our example, the input will get decremented to zero to enter the zero case that doesn't do
self call.

A reentrant VI can be used to create recursive VIs. However, it is often used to create VIs that
can be called in parallel. If a SubVI is set as non-reentrant, and it is called in two parallel
loops, the loops cannot execute in parallel since they are sharing the same SubVI. To cause
the parallel loops to execute in parallel, the SubVI needs to become reentrant.

4
Managing Data

In this chapter, we will cover:

 f Using error terminals

 f Using the flat sequence structure

 f Using the feedback node

 f Reusing memory

 f Manipulating an array

 f Using rendezvous

 f Using semaphore

Introduction
This chapter presents tips on managing data. It presents how to create execution sequence
with error terminal and how to use flat sequence structure when truly needed. Rendezvous
and semaphore are presented for controlling the execution flow of parallel loops. Feedback
node and the In Place Element Structure reuse memory.

Using error terminals
Error terminals are used to pass error information downstream for further handling. However,
they can also be used to enforce sequence in LabVIEW.

Managing Data

80

How to do it…
To demonstrate how to use error terminals to enforce sequence, we will create a SubVI.

1. Create the SubVI as shown in the following screenshot. It adds two input numbers and
outputs the result. The error input connects directly to the error output. The error cluster
control/indicator is located in the front panel palette under Array, Matrix & Cluster.

2. Create the example, as shown in the following screenshot, with the SubVI in the
previous diagram. The example opens a configuration, puts the result of the SubVI into
the Number section with Num1 as the key, and closes the configuration file reference.

How it works…
The sequence of execution in LabVIEW is different comparing to a text-based language,
which executes everything sequentially one line at a time. LabVIEW is data driven. If a piece
of code has data, it will run, regardless of where it is on the block diagram. The preceding
SubVI shows that an error is fed through the SubVI directly. The SubVI will not execute until it
receives error information. Even though the error information is not used directly, it creates a
sequence. To see data flow in LabVIEW visually, we can turn on Highlight Execution on the
block diagram toolbar. Keep in mind that Highlight Execution slows down the program, so it
affects timing of the program, which can create bugs that only appear during debugging.

Chapter 4

81

In the preceding example, all sections of code wait for data from the left. Starting out with no
error as an input, the temp.ini file in c:\ is opened. The write ini file node and the add SubVI
will execute in parallel, since they both have all the data needed at the same time. Note that
if the error input of the add SubVI is not connected to the error output of the open ini file node,
the SubVI will execute at the beginning of the program, since it would have all the needed
input from the beginning. After the result of the add SubVI is written into the ini file, the file
is closed.

Using the flat sequence structure
Flat sequence structure enforces the sequence of a program. Many people use this excessively,
which goes against the data flow model of LabVIEW. In this recipe, we will see how to use this
structure appropriately.

How to do it…
We will create a small program that measures the execution time of a node:

1. The following screenshot shows a flat sequence structure with three frames. The
order of the sequence is from left to right. The first frame on the left uses the "Tick
(ms)" node to measure the start time. The second frame contains a "Wait (ms)" node
that waits for 1000 ms. The code in this frame is the code that we would like to
measure execution time on. The third frame uses the "Tick (ms)" node to measure
the time after the "Wait (ms)" node has executed and subtracts the tick from the first
frame to calculate the duration of the execution for the second frame.

Managing Data

82

2. Another common way in which a sequence structure is used is shown in the following
screenshot. It is a flat sequence structure with only one frame. The error input is
wired through the sequence structure directly to the error output. By doing this, a
sequence is created with the data flow of the error terminals.

How it works…
The first screenshot shows how the sequence structure is used to determine the execution
time of a SubVI. The second frame of the sequence structure has a wait node with 1000 ms.
In a real application, a SubVI will take its place, and the execution time of the SubVI will be
determined.

In the second screenshot, a single frame sequence structure is used to enclose the wait node.
An error cluster is fed through the frame. The code within the single frame will not execute
until the error cluster is available. By doing this, execution sequence is enforced by the error
terminals. The method is used to enforce sequence when there is a small section of code
that does not have data dependency, but it needs to be executed in a particular location of a
sequence without using flat sequence structure excessively.

Using the feedback node
The feedback node stores data from one VI execution or loop iteration to the next. It is very
similar to a shift register, but has additional features such as different modes of initialization.

How to do it…
We will demonstrate how to use a feedback node by building a simple program that multiplies
an input number by the value of a counter.

1. Build the following block diagram. The input Num to Multiply is a numeric input,
which is multiplied by the value of a counter created by a feedback node to
produce Result.

Chapter 4

83

2. The feedback node is initialized to zero. With the feedback node, we can specify when
the initialization occurs. Right-click on the feedback node and configure the node
to Initailize On First Call; refer to the following screenshot. The Initailize On First
Call option will cause the feedback node to initialize when it is executed for the first
time in a program. The Initialize On Compile Or Load option will cause the feedback
node to initialize when the program containing the feedback node is first loaded in
memory, that is, after we open the VI, the feedback node will initialize one time. After
that, it does not matter how many times we start or stop the program, the feedback
node will not initialize.

3. To achieve the same functionality of the preceding program with a shift register, refer
to the following screenshot. It contains a while loop, since a shift register can only
be created within a while loop or a for loop. The shift register is uninitialized, which
means a value is not wired to the left shift register. In that case, the shift register will
initialize to the default value of that data type, which is I32 in our example. To find
out what the default value of a particular data type is, just right-click on a control,
indicator, shift register, and so on of that data type and create a constant. The
constant will contain the default value of that type. Within the while loop, it contains a
case structure that will wire out a 0 at its true case. For the false case, the input and
output are connected directly.

Managing Data

84

To achieve the same functionality as the feedback node,
the initialization scheme contains more code for the shift
register approach.

How it works…
The feedback node is similar to a shift register, but it does not require a loop and it has
different initialization options. To initialize a shift register, a value can be wired to its input so
that the shift register initializes every time it runs; custom initialization logic can also be used
to initialize the shift register. For example, in an action engine, it can have an action dedicated
to initialize the shift register. For the feedback node, there are two initialization options:
Initialize On Compile Or Load and Initialize On First Call. If the feedback loop is inside a
loop, another initialization option, Move Initializer One Loop Out, is present. This option is
very similar to wiring a value to a shift register for initialization.

Reusing memory
To keep memory usage manageable, it is desirable to declare a chunk of memory for reuse.
LabVIEW does memory management automatically. However, for very large array, extra
caution is required to ensure that memory usage is efficient. In this recipe, we will develop a
timer array action engine.

How to do it…
To create an action engine, we start by placing a while loop on a block diagram and place a
case structure within the loop.

Chapter 4

85

1. In the action engine, the Initialize case will create a user-specified number of
data value references with the new data value reference node in a for loop.
The created references are saved in a shift register as an array, as shown in the
following screenshot:

2. The second case of the action engine implements the Start Timer and Unpause
Timer commands. It puts the current timestamp to the reference of the specified
index. The In Place Element Structure is used. It operates the values of memory
locations in place without allocating extra memory, as shown in the following
screenshot:

Managing Data

86

3. The next case of the action engine calculates elapsed time. It subtracts the current
timestamp from the stored timestamp to obtain elapsed time and adds it to the total
elapsed time.

4. The next case of the action engine pauses the timer by storing the current elapsed
time to the total elapsed time, as shown in the following diagram:

Chapter 4

87

5. The last case of the action engine is "Shutdown". It closes all the data references
created for the timers in a for loop:

How it works…
This action engine uses data reference to modify data in place with the In Place Element
Structure. To use the action engine, the user would first initialize how many timers are needed
and create the corresponding number of data references that are saved in a shift register for
later retrieval. After the timers are initialized, the user can use the Start Timer command to
save the start time into the specified data reference. After the timer is started, the user can
use the Pause Timer command to pause the timer, which will save the current elapsed time
into the shift register for total elapsed time. To unpause timer, the user issues the Unpause
Timer command, which would overwrite the start timestamp with the current timestamp.
The Shutdown command will clear all data references used for the timers.

Managing Data

88

Manipulating an array
Manipulating array improperly could be memory costly. This recipe demonstrates how to
manipulate array properly.

How to do it…
We will start by demonstrating how to add an element in front of an array efficiently.

1. Create the following block diagram to insert an element in front of an array. At the
top of the block diagram, use the build array node directly to add an element in the
beginning of an array. At the bottom of the block diagram, we see reversal of the
array, addition of the element, and reversal of the array again. The later approach is
more memory efficient, since no additional memory allocation is required. Reversing
the array only requires pointers change. When memory is allocated for an array, extra
memory is available at the end of the allocated memory, so adding an element to the
end of an array does not require additional memory allocation.

2. Build the block diagram as shown in the following screenshot. At the top of the
diagram, the second element of an array is multiplied by two. At the bottom of
the block diagram, an array is divided into two arrays at length 1. Both arrays
are multiplied by 2 and 3 respectively and combined back together into one array.

Chapter 4

89

How it works…
While inserting an element in front of an array, if it is done directly, memory is reallocated.
Instead, if the element is inserted in the front of the array by reversing the array, appending
the element to the end of the array, and reversing the array once more, memory is not
reallocated, so it is more efficient. Reversing an array doesn't require memory reallocation,
since only pointers are changing.

Using rendezvous
The rendezvous ensures that a section of code is executed only if multiple threads of code are
completed. In the following recipe, we will show an example of using the rendezvous.

How to do it…
We will create a program that uses rendezvous to synchronize three loops:

1. Create the following block diagram. It creates a rendezvous and feeds the reference
into three while loops in parallel threads. The case structures in the while loops
will execute its false case first, based on the initialized values of the shift registers.
The loops will wait for 1, 2, and 3 seconds in parallel. When the wait time is done,
the loops will display a string to indicate the status.

Managing Data

90

2. The true case is executed after the false case is executed, as shown in the following
screenshot. The false case will wait for all the loops using the rendezvous. When all
the loops have arrived, a string is outputted to indicate the status.

How it works…
The example creates a rendezvous for three while loops. Each loop waits for a different
amount of time, and they will wait for each other before they output a string that indicates all
has arrived. The rendezvous is used to synchronize multiple threads of a program by forcing
different threads to wait for one another before proceeding.

Using semaphore
Semaphore is used to limit the number of tasks that can operate on a shared or protected
resource. In this recipe, we demonstrate how the semaphore is used in a modified version of a
cigarette smoker's problem, described by S. S. Patil.

Chapter 4

91

How to do it…
The program will simulate three smokers manufacturing and smoking cigarette together.
When a smoker is smoking, the smoker will be too busy to help, on smoke break.

1. Create the following block diagram. First, an array of three semaphores is created.
A semaphore is randomly selected and the table string is updated accordingly. The
check release semaphore SubVI will check the status of each semaphore and update
the smoker string accordingly.

Managing Data

92

2. If the semaphore that a SubVI is responsible for is unavailable, the SubVI will update
the smoker string to indicate its status and keep the status for 3 seconds before
releasing the semaphore, as shown in the following screenshot:

3. The front panel in the following screenshot shows how the program will update the
status of the smokers and table:

Chapter 4

93

How it works…
In the program, three smokers are seated at a round table. One person has tobacco, one
has smoking paper, and one has matches of an unlimited quantity. A material handler will
randomly go to two smokers and put their supply on the table. The third smoker will take the
supply from the table, and along with his supply, he will make a cigarette and smoke it. While
he is smoking the cigarette, the material handler can take the smoker's supply. However, if
there are supplies on the table for him to make another cigarette, but he is smoking, he will
wait until he finishes his cigarette.

The example creates three semaphores, one for each smoker, and randomly selects one
to make the cigarette by taking the semaphore. The SubVI will check for the status of each
semaphore in parallel. If a semaphore is unavailable, the smoker will start smoking for 3
seconds and release the semaphore.

See also
 f For more details on the cigarette smokers' problems, refer to

http://en.wikipedia.org/wiki/Cigarette_smokers_problem

5
Passing Data

In this chapter, we will cover:

 f Using a type-def cluster

 f Using an event structure to pass data

 f Using a queue to pass data

 f Using a notifier to pass data

 f Using a shared variable to pass data

 f Using Simple TCP/IP Messaging to pass data

Introduction
This chapter presents tips on passing data in LabVIEW. Cluster, event structure, queue,
notifier, shared variable, and Simple TCP/IP Messaging (STM) are the ways of passing data
that we will discuss in this chapter.

Using a type-def cluster
A cluster is like an array, but a cluster can contain elements of different data types. A type-def
control is a centralized control that propagates its changes to the associated controls in the
program. A cluster is usually created as a type-def control to avoid rework, and it is used to
pass data in a program. It is a great way to anticipate data structure changes in the future.
If the appearance of the type-def needs to be preserved, with respect to the exact placement
of each element, a type-def should be made into a strict type-def. In this recipe, we will create
a program that passes data with a type-def cluster.

Passing Data

96

How to do it…
We will create a state machine that uses a cluster to pass data from one state to the next.

1. Create a type-def cluster that we will be using to pass data from one state to another
within the state machine. In a block diagram, navigate to File | New… | Custom
Control. A front panel will appear. Drop a cluster on the front panel and populate the
cluster with elements. Note that the label of each element will be used to bundle and
unbundle elements from the cluster. See the following screenshot for the cluster. The
cluster contains three floating point values and a string.

2. Build the following state machine. Outside the while loop, place a type-def cluster
with three floating point numbers (Random Num, Constant, and Result) and a string
(Result Str). A type-def enum feeding the state shift register from outside of the while
loop will initialize the state machine to start at that state. The enum contains all the
states of the machine. The Initialize state is also the default state. If an input of
the case structure is unaccounted for, this state is executed. This state bundles the
Constant input onto the cluster, passes the cluster to the next state, and goes to the
Generate Number state.

Chapter 5

97

3. The next state is "Generate Number". It generates a random number from 0 to
1, bundles the value onto the cluster, and goes to the next state, as shown in the
following screenshot:

4. The next state is the "Multiply Num" state. It unbundles values Random Num and
Constant from the cluster, multiplies them, and bundles the result onto the cluster
under Result, as shown in the following screenshot:

Passing Data

98

5. The next state is the "Compare Number" state. It unbundles Result from the cluster
and feeds the value into a case structure. The Default case is executed when the
input value does not match any condition from the other cases. In this case, the
string >50 is outputted and bundled onto the cluster under Result Str, as shown
in the following screenshot:

6. The following screenshot shows the other case of the case structure. If the input
is less than or equal to 50, the string <=50 is output.

7. The last state is the "Exit" state. It sets the stop condition of the state machine
to true. The state machine will exit in this state.

Chapter 5

99

How it works…
This recipe uses a state machine. To use the state machine, a cluster for data passing and
an enum with all states are created. The machine starts with the Initialize state, in which
the user input Constant is bundled into the cluster and passed to the next state Generate
Number. In the next state, a random number is generated and bundled into the cluster before
going to the Multiply Num state. In the Multiply Num state, Random Num and Constant
are unbundled from the cluster and multiplied. The result is bundled onto the cluster Result
and passed to the next state Compare Number. In the next state, Result Str is created and
bundled onto the cluster based on the value of Result. At the end, the machine transits to
the last state, Exit, where the state machine is shutdown. Instead of using local and global
variables to pass data, using a cluster is the main way in LabVIEW to pass data. Since only
one data structure, the cluster, is used to pass data, the code is very organized, and it follows
the data flow structure of LabVIEW.

Using an event structure to pass data
An event structure executes when events occur. When there is no event, event structures sit
idle, consuming no CPU resource, contrary to a while loop, which will execute constantly to poll
for events. In addition to executing code based on actual events, it can execute code based
on a software event (user event) that is triggered within the software. A user event can also be
used to pass data. This recipe demonstrates how to pass data to an event structure.

How to do it…
In this example, we will create a program that passes data between loops based on user events.

1. Place the Create User Event and Register For Events functions on the
block diagram to create and register an user event. See the following screenshot:

Passing Data

100

2. The Event Registration Refnum from the Register for Event node is fed into
the Dynamic Event Terminal of the event structure in the top loop. The User Event
Refnum from the Create User Event node is fed into the bottom loop to generate
a user event. The top loop contains an event structure to handle events, and the
bottom loop is a state machine that implements a task. The "Cheese": Value Change
event case is executed when the Cheese Boolean control is clicked on, and it would
output the string Cheese. The Initialize case at the bottom loop initializes values of
the program. See the following screenshot:

3. In the top loop, the next event case is "Hello": Value Change. It is executed when the
Hello Boolean control is clicked on, and the string Hello is outputted, as shown in the
following screenshot:

Chapter 5

101

4. In the top loop, the next event case is "Exit": Value Change. It is executed when the
Exit Boolean control is clicked on. It outputs the Exit without data string and sets the
stop condition of the top loop to true.

5. In the last event case, it is the <Exit Data>: User Event case. It is executed when a
software-based user event is generated. It compares Exit Data that is passed from
the bottom loop, where the user event is generated with the string check. If the string
passed is not equal to check, the string from Exit Data is outputted. Otherwise, the
string in the top loop shift register is passed.

Passing Data

102

6. In the bottom loop, the next case is "Add Random". It generates a random number,
multiplies it by 1.1, and adds it to the value in the shift register.

7. For the bottom loop, the next case is "Subtract Random". It generates a random
number and subtracts it from the value in the shift register.

8. For the bottom loop, the next case is "Check Number". It compares the value within
the shift register with the Stop Limit floating point number specified by users on the
front panel. If the value of the shift register is greater than Stop Limit, the next state
is Exit. Otherwise, the next state is Add Random. A user event is also generated to
pass the string check to the top loop. When the top loop gets the string check, it will
know that it does not have to exit.

Chapter 5

103

9. For the bottom loop, the last case is "Exit". It creates the string Exit with Num %0.2f,
with 0.2f being the input floating point number with two decimal points. The string
is sent to the top loop through a user event. When the top loop recognizes that the
string is not check, it will exit. The stop condition is also set to true to stop the loop.

10. Outside the top loop, place Unregister for Events and Destroy User
Event. They are used to free up resources occupied by references created that
are no longer needed.

How it works…
This recipe contains two loops. The top loop handles events and displays a string accordingly.
The bottom loop, starting from zero, adds and subtracts a random number until the result
reaches a user-specified limit. Once the limit is reached, it uses user events to send the result
to the top loop in a string.

When the user event is created with the Create User Event node, the name of the user
event data type input becomes the name of the user event. The user event case is activated
by the bottom loop every time when the bottom loop enters the Check Number or Exit state.
When the bottom loop enters the Check Number state, a check string is passed to the top
loop, and it signals the top loop to display previous values. When the check string is not sent,
the top loop will update the string indicator with a new string.

In this example, the user event is used to synchronize the exit behavior of both loops. This
is very important, since if one loop is terminated and the other one is not, the program will
not exit, as a loop is still running. When the top loop is terminated first, the user event is
unregistered and destroyed. When the bottom loop tries to generate a user event, an error
will occur, since the event is no longer available. The bottom loop will stop as well. When the
bottom loop is terminated first, a string that is not check is passed to the top loop. When the
top loops recognize that the string passed is not check, it will exit.

Passing Data

104

Using a queue to pass data
This recipe shows you how to use a queue to pass data between loops. In a queue, data
is preserved, unless the element is enqueued when the maximum number of elements is
reached for the queue and time allocated to wait for an available space is up. In that case,
data is lost.

How to do it…
We will create a program that generates waveform data in one loop and passes it to another
to display the data.

1. Create a queue with name Wave, 100 elements, and double data type. The queue
will have the capacity to hold 100 floating point numbers.

2. Create two while loops. The top loop contains an event structure. The Timeout event
case is executed once every 100 ms. It generates one point on a sine wave and
enqueues the data. To enqueue data means putting data on a queue. The bottom
loop dequeues the data and puts it on a chart once every 1000 ms. To dequeue
data means taking data off a queue. See the following screenshot. Note that data
is going on the queue faster than going off. Since the timeout terminal is not wired,
the enqueue operation will never timed out by default. When the enqueue node is
executed and the queue is full, the program will pause at the enqueue node until
a space is available by a dequeue operation.

Chapter 5

105

3. The next event case in the top loop is Exit. It is executed when the Exit Boolean
control is clicked on. It sets the stop condition of the while loop to the value of
the Exit Boolean control, which will be true and cause the loop to exit.

Passing Data

106

4. Outside the loop, the queue reference is destroyed. This is located outside of the top
loop. When the queue reference is destroyed, the bottom loop will exit as well, since
the stop condition of the bottom loop is wired with the error terminal of the dequeue
node. When the queue reference is destroyed, the dequeue node will generate an
error, which will cause the bottom loop to stop.

How it works…
This recipe contains two loops. The top loop generates a data point of a sine wave once every
100 ms. The data is passed to the bottom loop via a queue. The bottom loop dequeues the
data and displays it on a chart once every one second. Once the user clicks on exit, the top
loop is completed, and the destroy queue function is executed. At that point, the queue
reference becomes invalid. When the bottom loop tries to dequeue an element with an
invalid queue reference, an error occurs and it will stop the bottom loop. When the program
enqueues an element to the queue and the queue is full, the program will get stuck at the
enqueue node until an element is dequeued to free up a space, since no timeout is specified.

Using a notifier to pass data
A notifier allows for passing the same piece of data to multiple locations, contrary to a queue.
This recipe demonstrates how to use the notifier to pass data.

How to do it…
We will create a program that passes a user-specified amplitude to two different loops that
generate a sine and triangular wave.

1. Place the Obtain Notifier node with a double precision number as element data
type input.

Chapter 5

107

2. Create three while loops. The top loop contains an event structure that is executed after
the loop is executed once, which is when the First Call? function outputs false.
When a notification is received in the bottom loops, the Wait on Notification
node receives the new amplitude from the top loop and generates a data point on the
sine and triangular waves accordingly. The new amplitude is saved in the shift register.
Without getting a notification form the top loop, the Wait on Notification node in
the bottom loops will time out in 5 ms to generate points of a sine and triangular wave
to display them with the previous amplitude stored in the shift register.

Passing Data

108

3. For the top loop, the true case notifies the bottom loops of the initial amplitude when
the program starts.

4. The next event case of the top loop handles when the Exit button is clicked, as shown
in the following screenshot:

5. When the top loop exits, it proceeds to the Destroy Notifier node. After the
notifier is destroyed, the bottom loops, which wait for the notifier, will generate an
error, since the notifier is no longer available. The error will cause the bottom loops
to exit.

Chapter 5

109

How it works…
The recipe generates sinusoidal and triangular waves based on user-specified amplitude.
When a user clicks on update, the amplitude is sent to the bottom loops through a notifier.
The bottom loops will use the new amplitude to generate the waves accordingly. If the bottom
loops do not get a new amplitude in 5 ms, the Wait on Notification node will timeout
and the bottom loops will use the previous amplitude to generate the waves. Once the user
clicks on exit, the top loop will be completed and execute Release Notification, which will
invalidate the notifier's reference. When the bottom loops wait for a notification with an
invalid reference, errors occur and the loops are stopped.

Using a shared variable to pass data
A shared variable is used to pass data within a program, among different programs on the
same PC, and among programs that are deployed in different PCs within the same network.
It is very similar to a global variable, but contains features that can prevent racing condition.
This recipe demonstrates how to use shared variables to pass data.

How to do it…
We will create two VIs that run on the same PC that share data with a shared variable. This
variable type is called "single process". For a variable that is accessible to all PCs across the
same network, the variable type is called "network publish".

1. Create a project. Right-click on My Computer, and navigate to New | Variable. When
a dialog box appears, configure the variable to single process. See the following
screenshot to know how the project looks like after the variable is added.

Passing Data

110

2. Create the following block diagram. This acts as a server. It generates a point
on a sine wave with random amplitude and writes it to the shared variable
WaveformValue once every 500 ms. A user can stop the loop by clicking the
stop Boolean control.

3. Create the following block diagram. This is a separate VI, and it acts as a client.
It reads the WaveformValue node and the timestamp when the value was written.
This is executed once every 100 ms. A user can click on the stop Boolean control
to stop the loop.

How it works…
In this recipe, we created a single process shared variable. It is used like a global variable in
this recipe; the server and client VI are both on the same workstation. Shared variables can
also be configured in such a way that they can be accessed by any computer on the same
network. In this recipe, the server generates a data point on a sinusoidal wave and the client
gets the data and displays it on a chart. The timestamp information is also displayed in the
client, and it reflects when the new value is written to the variable.

Chapter 5

111

Using Simple TCP/IP Messaging to pass data
Simple TCP/IP Messaging (STM) is another way to pass data between programs within a PC
and programs running on different PCs on the same network. It is very similar to the shared
variable, but uses the TCP/IP protocol for communication. This recipe demonstrates how to
use STM to pass data.

How to do it…
In this example, we will create two programs that reside on the same PC, and they will
communicate via STM.

1. Create the server VI. The first state is Initialize. It waits for a TCP connection at port
55555 and sets up variable name for the connection. It sets up the metadata for
messaging, which is then sent to the other side for message decoding purposes. The
name of the variable Number is sent as the metadata. Since STM is communicating
via TCP/IP, firewall could present a problem for the communication. If that's the case,
make exception for the port where the communication takes place in the PC network
setup. Consult an IT professional for the configuration. See the following screenshot:

Passing Data

112

2. The next state is "Send Data". It contains an event structure. The "Send": Value
Change event case is executed when a user clicks on Send. It will send the
user-specified Number through the network. The number sent is specified by
the user through the control on the front panel. See the following screenshot:

3. The next event case is stop. It will transition the program to the Exit state, as shown
in the following screenshot:

4. The next state is "Exit". It gets the TCP reference and closes it.

Chapter 5

113

5. Create the client VI. It is a state machine. In the first state Initialize, it makes
a TCP/IP connection to localhost (itself) at port 55555 and reads the metadata
for message decoding purposes, as shown in the following screenshot:

6. The next state is "Get Data". It reads the actual data that is described by the
metadata and interprets it. When the STM Read Message node is not timed out, a
value is received. If the value has the metadata Number, which is what is expected,
the received string will be unflattened into a double-precision value. If the Exit
Boolean control is clicked on, the state machine transitions into the Exit state.
If not, the state machine will go to the Get Data state.

Passing Data

114

7. The next state is "Exit". See the following screenshot. It closes all the references that
were created. It sets the stop condition of the state machine to true to stop the loop.

How it works…
In this recipe, there is a server VI and a client VI. The server VI waits for the client VI to
establish a connection and transmits the metadata to the client once the connection is
made. The client will receive data every time the server clicks on send.

See also
 f LabVIEW does not come with the Simple TCP/IP Message (STM) library. Please

download stm_202_installer.zip from the following link for installer files:
http://zone.ni.com/devzone/cda/epd/p/id/2739. After installation,
you can access STM through the palette under User Libraries.

6
Error Handling

In this chapter, we will cover:

 f Passing an error

 f Handling an error with an error file

 f Handling an error with a centralized VI

 f Creating an error queue

Introduction
This chapter presents tips on different ways of handling errors properly. This topic is often
ignored, since LabVIEW can handle some errors automatically. However, designing our own
error handling scheme will make debugging much easier, since we can add custom error
information, logging, and so on to facilitate the debugging process.

Passing an error
This recipe demonstrates how an error is passed within a state machine. When an error
occurs, it should bypass all subsequent code, so that the error information is not corrupted.
The error information will finally arrive at an error handler that will show a dialog, log the error
in a file, and so on.

Error Handling

116

How to do it...
We will create a state machine with states that will generate an error at random. When an
error occurs, it will pass it to the error handling state and the error handler will cause an
error dialog to appear.

1. Create the state machine in the following block diagram. The enum is a type-def with
values Case 1, Case 2, Case 3, and End. All cases, except for Case 3 and End case,
call GenerateError.vi and transit to the next state. We will look into the SubVI in
later steps.

2. Case 2 is almost identical to Case 1, so it is not shown. The only difference is that
Case 2 will transition to Case 3 instead. For Case 3, the same SubVI is called, but if
an error has occurred, the next state is End; if not, the state machine goes back to
Case 1.

Chapter 6

117

3. For the "End" case, see the following screenshot. The error is handled by the Simple
Error Handler. If there is an error, it will cause an error dialog to appear to indicate
that an error has occurred.

4. The SubVIs used in Cases 1, 2, and 3 are shown in the following screenshot. If an
error happens upstream, the Error case (not shown) is executed. The case doesn't
do much, it only passes the error from the upstream through without corrupting it.
For the No Error case, the inputs Numeric and State are used to make the error
message more descriptive, so that we know when and where an error occurs. It
randomly generates an error by comparing a random number with the number 0.8.
If the random number is greater than 0.8, an error is created. It creates an error
message that indicates at what state and what iteration the error has occurred.
All errors get the error code 5000. In LabVIEW, the custom error code ranges are
-8999 through -8000, 5000 through 9999, and 500,000 through 599,999. We pick
5000 for simplicity, but we can make the error code as an input and make the error
generated by each state to have a different code. The error and false cases are blank
while feeding through the applicable terminals. There are error codes that are used
by LabVIEW. To find more information on these codes, visit http://zone.ni.com/
reference/en-XX/help/371361J-01/lverror/misc_lv_error_codes/.

Error Handling

118

How it works...
In this example, an error is generated randomly if a random number is greater than 0.8. In
the SubVI, an error case structure encloses all the code so that the code is bypassed if there
is an error upstream. This is an important aspect in error passing/handling. If an error occurs,
it should jump over all the subsequent code so that the error information is not corrupted,
and the error is handled downstream at a designated portion of the code.

Cases 1 to 3 generate an error at random. At Case 3, if no error has occurred, the program
will go back to Case 1. If an error has occurred, the program will go to the End state. In the
End state, the Simple Error Handler will generate a dialog that notifies the user of the error.

Handling an error with an error file
This recipe demonstrates how to handle errors through one central file. The file is text-based
and can be read without LabVIEW. The exact wording of the error can be updated easily,
and every error that is handled is clearly seen. When an application that uses an error
file is deployed, the error file must be deployed with the application as well.

How to do it...
The last example created both the error message and error code within the program. In this
example, the error code is still specified within the program, but the error message is captured
inside a text file.

1. In this example, we will use the state machine in the previous recipe, Passing an
error. Only the SubVI will be modified. Do a Save As on the previous recipe and
save it as another name.

2. The SubVI will randomly generate an error. The random number is converted to
integers between 5000-5009. The error code is converted to an error cluster
through the Error Cluster From Error Code VI.

Chapter 6

119

3. Create an error file that associates error code to error description. In the block diagram,
navigate to Tools | Advanced | Edit Error Codes. Create a new error file and save it
in the <version>\user.lib\errors folder. The format of the error file's name is
xxx-errors.txt, where xxx is the name of the file.

How it works...
Similar to the previous recipe, Passing an error, this example generates an error at random.
The difference is how the error information is packaged. In the previous recipe, the error
information is packaged inside the code. For this recipe, the error information is located in an
error file, and the code can extract information by using the corresponding error code. This is
a good method for centralizing error information, but it creates an additional file that must be
deployed properly at deployment time.

See also
When deploying an executable, the location of the error file associated with the executable
is different from the location of the file in development mode. For more information,
refer to the following link: http://www.ni.com/white-paper/3209/en/.

Error Handling

120

Handling an error with a centralized VI
This recipe demonstrates how to group all the error information in a VI. With this approach,
all error information is within one VI, and there is no need to keep track of an error file.

How to do it...
We will create a state machine that will generate an error randomly. When the error is
generated, it will bypass subsequent code and go to the error handler.

1. Build the state machine as shown in the following screenshot. The enum is a type-def
and it has the Initialize, Case 1, Case 2, Case 3, and End values. The Initialize case
sends all the possible error codes and messages into SubVI for handling.

2. Case 1 uses a SubVI to generate an error at random.

3. Case 2 is almost identical to Case 1, except that Case 2 transitions to Case 3,
so the screenshot for Case 2 is not shown. Case 3 would transit back to Case 1
if there is no error. It would transit to the End state if an error has occurred.
See the following screenshot:

Chapter 6

121

4. The "End" state calls a SubVI to handle the error.

5. The error handling SubVI is shown in the following screenshot. The Initialize state
saves the error information into shift registers.

Error Handling

122

6. The second state of the error handling SubVI handles the error.

7. The SubVI that generates errors at random is shown in the following screenshot. The
inputs Numeric and State are used to make the error message more descriptive, so
that we know when and where an error occurs. It randomly generates an error by
comparing a random number with the number 0.8. If the random number is greater
than 0.8, an error is created. It gives the error a message that indicates at what
state and what iteration the error had occurred. The Format Into String node is
used to create an error message with the given inputs. A different error code is given
depending on what state the error had occurred. An error code is associated with the
error cluster depending on which case the error occurred in.

How it works...
This example shows how to consolidate error information and put it inside the code. By doing
that, error information is centralized without having to use an error file. In the example, the
first case saves all the error information into the error handler SubVI. To make the program
more elegant, we can create a wrapper VI around it. After the Initialize state the program will
generate an error randomly. In Case 3, the program will go to the End state, if an error has
occurred. If not, the program will go back to Case 1. When the program arrives at the End
state, it means an error has occurred, and it will be handled by the error handling SubVI.

Chapter 6

123

Creating an error queue
This recipe demonstrates how to use an error queue in a parallel process for error handling.
This allows for handling errors across multiple VIs.

How to do it...
For this error handling method, the error handling VI runs in the background of the main
program to handle errors.

1. Build the state machine as shown in the following screenshot. The enum has the values
of Initialize, Case 1, Case 2, Case 3, and End. The Initialize state builds a path for
BackError.vi, assuming that the VI is in the same folder as the main VI and opens
the VI reference with the Open VI Reference node. The reference is wired to an
Invoke Node and the Run VI method is selected, which will call the VI dynamically in
the background. Outside the case structure, if there is an error, a SubVI will send the
error cluster to the background VI and change the main state to the End state.

2. Cases 1, 2, and 3 will generate an error at random. They are identical. See the
following screenshot for Case 1:

Error Handling

124

3. Case "End" terminates the queue that is used to pass data to the background VI.

4. The queuing error SubVI is shown in the following screenshot. When an error occurs
upstream and is passed into the SubVI, a reference to the error queue is obtained
with the Obtain Queue node and the error cluster is enqueued with the Enqueue
Element node. Refer to Chapter 3, Working with Common Architectures, to see
another application on how a queue is used.

5. In the error queuing SubVI, when the Done? Boolean is set to True, the reference
of the error queue is obtained and released. For the release queue function, be
sure to set force destroy to True, since many references of the queue exist.

Chapter 6

125

6. The true cases of the background error VI are shown in the following screenshot.
When the VI is called for the first time, the true cases are executed. It creates an
Error.txt file in the same folder as the main VI, sets up error information with
handle error SubVI, and obtains a reference for the error queue.

Error Handling

126

7. The false cases of the background error VI are shown in the following screenshot.
They are executed when the VI is not executed for the first time. It waits for an
element to dequeue indefinitely. When an element is available, it is dequeued
and written into a file.

8. If the error code is greater than 5001, an error dialog will appear to alert the user
of the error. See the following screenshot for the dialog:

How it works...
This program consists of a main VI and a background VI. The main VI starts the background
VI and generates an error at random. Once an error is generated, the main VI passes the
error to the background VI through an error queue. Once the background VI receives the error
information, it logs the information into a file. If the error code is greater than 5001, an error
dialog will appear to signify the severity of the error.

7
Working with Files

In this chapter, we will cover the following recipes:

 f Working with INI files

 f Working with XML files

 f Working with ASCII files

 f Working with binary files

 f Working with TDMS files

 f Using Telnet and FTP with files

 f Working with a database

Introduction
This chapter presents tips on working with different type of files, such as INI, XML, ASCII,
binary, and TDMS. We will also explore how to use Telnet, FTP, and database in this chapter.

Working with INI files
An INI file is a configuration file that stores constants used in a program. The file consists
of sections and keys. Keys are grouped in different sections. This recipe extracts the values
from all keys within an INI file and stores them in a cluster so that the values can be retrieved
within a program.

Working with Files

128

How to do it…
To read the values of all keys within an INI file, we create a state machine to iterate through
the file, using following steps:

1. Create the INI file to read. See the following screenshot for the content within the
INI file.

2. Create a state machine, as shown in the following screenshot. It starts in the Open
INI state to open an INI file located in the same folder as the VI. After this state is
completed, it transits to the Extract Values state.

Chapter 7

129

3. Create the "Extract Values" state, as shown in the following screenshot. It loops through
all sections and keys in the INI file. The value of each key is bundled into a cluster.

Working with Files

130

4. In the Extract Values state, it bundles the values of all the keys listed in the following
picture into a cluster. The case structure takes string input, which is the name of the
keys within the INI file.

5. After all the values in the INI file are bundled into a cluster, the state machine transits
to the "Exit" state. See the following screenshot, where the reference of the INI file is
closed and error is handled:

Chapter 7

131

6. The cluster that the state machine populates is shown in the following screenshot:

How it works…
This state machine reads an INI file in the same folder. It reads each section and key and
stores all values into a cluster for further processing. Instead of hard coding the constants
used directly into a program, using an INI file is the preferred way. If a value in the INI needs to
be changed, the file can be opened, understood, and modified easily by any user. In contrast,
if a value is hardcoded into a program, a code change is required. Furthermore, LabVIEW has
built-in functions that work with an INI file, making use of INI files more convenient.

Working with Files

132

Working with XML files
Extensible Markup Language (XML) files store information in such a way that is both human
and machine readable. In LabVIEW, there are many ways to work with XML, and this recipe
presents a way to modify a value in an XML file.

How to do it…
In this example, we will create an XML file based on data of different people and write a
LabVIEW application to modify a user-selected parameter in the file. This application comes
in handy when you need to modify the same parameter on a thousand XML files. In that case,
the application can be executed in a loop for all the files.

1. Create an XML file manually. The data for each person fall under student id. The
name, gender, age, and company details for each person are recorded in the file.
Have a look at the following screenshot:

2. Create the state machine, as shown in the following screenshot. The first state is
"User Input", which waits for users to click on Start or Exit. If a user clicks on Start,
the machine populates a cluster with values from the front panel controls and goes
to the Initialize state. If a user clicks on Exit, the machine transits to the Close Ref
state immediately.

Chapter 7

133

3. The next state is "Initialize". It opens the XML file with a user-specified path and
bundles the reference into the input cluster, as shown in the following screenshot:

Working with Files

134

4. The next state is "Document Element". It opens the reference of the element that is
one level lower in the XML structure and transits to the next state Match Node.

5. In the "Match Node" state, it takes an XPath expression (an XML search criteria)
and returns a search result. Next, it transits to the Child Node state.

Chapter 7

135

6. After the desired node is found, the "Child Node" state goes down one level in the
XML structure and transits to the Modify Value state.

7. In the "Modify Value" state, it modifies a value based on user input and transits
to the Save XML state, as shown in the following screenshot:

Working with Files

136

8. After changes are made to the XML file, the XML file is saved and transits to the
Display XML state.

9. In the "Display XML" state, it reads the XML file and outputs the content into a string
indicator. After that is done, it goes back to the User Input state to wait for the
user's input.

Chapter 7

137

10. If the Exit button is clicked on, the "Close Ref" state is entered into. This state closes
all XML references that are opened, as shown in the following screenshot:

11. After references are closed, the program arrives to the "End" state where the
program loop is stopped, as represented in the following screenshot:

Working with Files

138

12. The front panel of the program is shown in the following screenshot. The user needs
to enter the path of the XML file to be modified, the XPath expression, and New Value
before clicking on Start.

How it works…
The program searches for a value and modifies it. When a user clicks on Start, an XML file
opens, goes down the XML structure to the desired node with an XPath search, and the
associated value is modified. After the modification is done, the content of the XML is saved
to the same file and displayed in the string indicator on the front panel. The user can continue
to make changes to the XML file until the Exit button is clicked on.

See also
For more about XPath expression syntax, please refer to the link http://www.w3schools.
com/xpath/xpath_syntax.asp.

There are more XML add-ons out there if you need more features or ease of use, check the
following links:

 f http://zone.ni.com/devzone/cda/epd/p/id/6330

 f http://sine.ni.com/nips/cds/view/p/lang/en/nid/209021

Chapter 7

139

Working with ASCII files
An ASCII file is simply a text file. In this recipe, we will create a text file with a header for
multiple columns and random data underneath.

How to do it…
We will create a state machine to create and write in an ASCII file.

1. Create the state machine, as shown in the following screenshot. The first state is
Initialize. It replaces or creates a test.txt text file in the same folder as the calling
VI and passes the file reference to the next state. It also initializes the data point
counter to 0 and data string with an empty string.

2. The next state is "Write Header". It writes Time, Data, Result as header in the file.
See the following screenshot for reference:

Working with Files

140

3. The next state is "Generate Data". It generates a random number as test data with its
status as Pass or Fail. If the random number is less than 0.5, the result is Pass, else it
is Fail. The data and result are built into a string and passed into the next state.

4. The next state is "Write File". It writes the string generated by the previous state and
then writes it into a file. If the data point counter is greater than 99, the program
transits to the End state. If not, the program goes back to the Generate Data state
for more data points.

5. The last state is the "End" state. It closes the reference of the file and sets the
stop condition of the state machine to true to exit the program.

Chapter 7

141

How it works…
This recipe generates random numbers and puts them in an ASCII file. It creates or replaces
a file and writes a header to it. A random number is generated. If it rounds down to zero, its
result string is Pass. If it rounds up to one, its result string is Fail. With the random number
and test result, a string is created and written into a text file. The process will continue until
the number of test data is greater than 99. Once the limit is exceeded, the fail reference is
closed and the program exits. In our example, the file is a txt file. If the file type is changed to
Comma Separated Value (CSV) data type, it will recognize the data type and delimit the file
properly whenever the file is opened in Excel.

Working with binary files
A binary file contains ones and zeroes. It is not human readable, unless the reader is Neo
(there is no spoon). A binary file is used due to its small size and for security. This recipe
demonstrates how to read and write to a binary file.

How to do it…
We will use a state machine to read/write to a binary file.

1. Build the state machine, as shown in the following screenshot. The first state is
Initialize. It opens or creates an extensionless file called test in the same folder
as calling VI. Next, it goes to the User Input state.

Working with Files

142

2. The next state is "User Input". It waits for users to click on the Read, Write, or Exit
button and transit to the corresponding state. See the following screenshot for
your reference:

3. If the Write button is clicked on, the program transits into the "Write File" state. It
writes an I16 array into the binary file with little-endian format and closes the file
reference. Afterwards, the program goes back to the Initialize state, as represented
in the following screenshot:

4. If the Read button is clicked on, the program transits into the "Read File" state. It
determines the size of the binary file in bytes and divides it by 2 to find out how many
I16 numbers are contained in the file. After the program determines how many I16
numbers are in the file, it will read them all into an I16 array. When the operation
is done, the binary file reference is closed, and the program goes back to the
Initialize state:

Chapter 7

143

5. When the user clicks on the Exit button, the "End" state is entered, where the
stop condition of the state machine is set to true:

How it works…
This program allows a user to read or write an I16 array from/to a file. It opens or creates a
binary file called test. When the user clicks on write, the program writes the I16 array into
the binary file. When the user clicks on read, it reads the I16 array from the file. To read the
file, the program must know exactly what is in there and how it is formatted.

Working with TDMS files
Technical Data Management Stream (TDMS) is a LabVIEW file type for data storage. It has
its own format with three levels of structure: root, group, and channel. Each file can contain an
unlimited number of groups, and each group can contain an unlimited number of channels.

A TDMS file is in binary format, so it is smaller compared to ASCII. It organizes the data in
three groups, so that there is no need to create a custom structure. TDMS is selected when
the file size needs to be smaller than an ASCII file.

Working with Files

144

How to do it…
Create the state machine using following steps:

1. The first state is Initialize. It opens or creates the test.tdms file in the same folder
as the calling VI and transits to the next state.

2. The next state is "User Input". It waits for the user to click on the Read, Write, or Exit
button and transits to the corresponding state:

3. When the write button is clicked on, the program transits into the "Generate Data"
state. In this state, it generates 500 random numbers and marks them as Pass if a
number is greater than 0.5; else it is marked as False. After the data is generated,
it is passed to the next state. The program transits to the Write File state.

Chapter 7

145

4. After the data is generated, the next state is the "Write File" state. It writes the
random number in the Data channel under the Measurement group, and it writes
the test result in the P/F channel under the Result group:

5. If a user clicks on the read file button, the program transits into the "Read File" state.
In this state, it reads data from the Data channel and results from the P/F channel
under the Measurement and Result groups respectively. After reading the data,
the reference to the TDMS file is closed and the program transits back to the User
Input state:

Working with Files

146

6. If a user clicks on the exit button, the program transits into the "End" state, where the
state machine stop condition is set to true:

How it works…
This program allows a user to read and write to a TDMS file. When a user clicks on the write
button, it writes an array of double precision numbers and the corresponding test results
into a TDMS file. If the read button is clicked on, the program reads the array and result,
and displays both on the front panel. The data and result are stored in the Data and P/F
channels under Measurement and Result groups respectively.

Using Telnet and FTP with files
Telnet allows users to log in to another machine to perform file operations. File Transfer
Protocol (FTP) allows file transfer from one machine to another. In this example, we will
demonstrate how to use telnet to log in to a Unix machine and create a folder. With the
folder created, FTP is used for transferring a file to that folder.

How to do it…
We will create a state machine to use telnet and ftp for transferring files using the
following steps:

1. Create the state machine, as shown in the following screenshot. The first state
is "User input". It waits for the user to click on start and populate a cluster with
values from the front panel controls.

Chapter 7

147

2. The next state is "Initialize". It creates a telnet session with user input IP address
of the Unix machine:

Working with Files

148

3. The next state is "Wait for login". The state waits for the string login: to appear. If
it does, the program transits to the Send Login state. If not, after the user-specified
timeout has expired, the program transits to the Time out state. See the following
screenshot for reference:

4. After the string login: appears, the "Send Login" state sends the user-specified login
credential to the telnet session:

5. The next state is "Wait for PW". The state waits for the string Password: to appear.
If it does, the program transits to the Send PW state. If not, after the user-specified
timeout has expired, the program transits to the Time out state as shown in the
following screenshot:

Chapter 7

149

6. After the string Password appears, the program transits to the "Send PW" state.
In this state, the user-specified password is sent to the telnet session:

Working with Files

150

7. After logging in, the program arrives at the "Create Folder" state, which sends the
mkdir command with the user-specified folder name to the telnet session to create
a folder. See the following screenshot for reference:

8. The next state is "Transfer File". After the folder is created with a telnet session,
FTP is used to to transfer a file to the folder:

9. The "Time out" state is only entered if there is a time out condition for the telnet
session. A dialog box will appear to alert the user of the event. See the following
screenshot for reference:

Chapter 7

151

10. Finally, the program enters the "End" state, where the telnet session is closed
if it exists:

How it works…
This program waits for the user to specify the IP address, username, password, and so on.
With the user input, a telnet session is created with a Unix machine. During the session,
a folder is created. After the folder is created, a file is transferred to the folder through FTP.

Working with Files

152

Working with a database
A database is a common method to store a huge amount of data. It can group data
into different tables and relate the tables through keys. To retrieve data from a database,
a query can be used, which will make access to the data quick and easy. In this example,
we will demonstrate how to work with a database in LabVIEW.

How to do it…
We will implement functions for a database in an action engine, using the following steps:

1. Create a Universal Data Link (UDL) file. The file contains database connection
information. It is used when the database is initialized in the program. Create a file
and change its extension to udl. Configure the file based on the setting of the type of
database being accessed. The configuration detail is beyond the scope of this book.

2. Create the action engine, as shown in the following screenshot. To use the action
engine, the "Initialize" command must first be used to establish a database session
based on the specified UDL Path. The reference of the UDL file and the table name
of the table are stored in shift registers.

Chapter 7

153

3. The "Insert Row" command allows a user to insert data into the database. See the
following screenshot for reference:

4. The "Query Row" command allows the user to search the database for a person's
information with a given full name.

Working with Files

154

5. The "Close Ref" command closes the database session to free up resources:

How it works…
This example creates an action engine that works with a database. For the action engine to
run correctly, the Initialize command must first be executed to establish a database
session. After that, the user can add data and query data from the database.

8
Understanding Data

Acquisition

In this chapter, we will cover:

 f Using MAX

 f Working with VISA

 f Using VISA servers

 f Controlling an oscilloscope

 f Using a simple DAQ device

 f Using a CompactDAQ

Introduction
This chapter presents examples of doing data acquisition in LabVIEW. We will show how to
use LabVIEW to communicate with different instruments, such as an oscilloscope, an USB
DAQ, and a CompactDAQ. We will also explore MAX, VISA, and VISA server to see how they
enhance the communication between LabVIEW and an instrument.

Using MAX
Measurement and Automation Explorer (MAX) is a software used along with LabVIEW for
instrument management. In this recipe, we will demonstrate how to send hex number to
instrument, create a DAQMX task, and create a simulated instrument within MAX. A simulated
instrument can be used when we try to program an instrument, but we do not have the
instrument at hand.

Understanding Data Acquisition

156

How to do it…
We will start by using MAX to send hex number to an instrument. This is only applicable for
instruments that support hex number communication.

1. To send hex values to an instrument, plug in a serial instrument that communicates
with hex number and open MAX. Click on Open VISA Test Panel to start
communicating with the instrument. See the following screenshot to see where the
instrument will show up in MAX and the location of Open VISA Test Panel:

2. In VISA Test Panel, you can enter bytes of hex values, separated by \, and click
on Write to send it to the instrument. After the values are written, the actual
values written to the instrument and its status is displayed.

Chapter 8

157

3. On top of the VISA Test Panel, there is an option for NI I/O Trace, which is a tool
to trace the communication between the host PC and the instrument. The following
screenshot shows that a write action is being performed:

4. Another useful thing to do in MAX is to add a simulated instrument to a PC.
Right-click on Devices and Interfaces and select Create New.... as shown
in the following screenshot:

5. Double-click on Simulated NI-DAQmx Device or Modular Instrument, as shown in
the following screenshot:

Understanding Data Acquisition

158

6. For our example, select NI cDAQ-9191:

7. Click on Configure Simulated cDAQ Chassis... and add the module NI 9201 to it. See
the following screenshot. After we have added and configured the simulated device, we
can use it in MAX and LabVIEW, even though the instrument is not actually connected.

Chapter 8

159

8. Another useful thing that can be done in MAX is configuring a DAQ task. Right-click on
the simulated instrument that we just created, and click on Create Task....

9. Select Voltage under Analog Input, as shown in the following screenshot:

10. Select channel 0, ai0.

Understanding Data Acquisition

160

11. Now, the physical channel can be configured as needed.

12. After the task is created, the task shows up in MAX under Data Neighborhood.

13. The task will also show up when you put a task constant in a block diagram. See the
following screenshot for a simple way to start a task, to get samples from the channel
of the task, and to stop the task.

Chapter 8

161

How it works…
In this recipe, we covered three useful tasks that we can do in MAX: send hex values to an
instrument, create a simulated instrument, and create a task.

Sending hex values to an instrument is very valuable, since many older instruments still use
protocol that send and receive hex values. For NI VISA version newer than 5.1, each byte of
the hex value is preceded with \. For versions older than 5.1, each byte of the hex value is
preceded with \x.

Creating a simulated instrument is very useful when we want to try it out in a simulated
environment before actually making the purchase. This can potentially save a lot of development
time, since we don't have to wait for the instrument to arrive before we start programming. We
can create a simulated instrument and start programming with it immediately.

Creating a task allows us to set up a physical channel with ranges, sampling rate, and so on.
This way we don't have to set up the instrument in our LabVIEW program and programming
complexity is decreased. However, the task becomes another accessory that we need to
transfer when we move the program from one PC to another. Keep in mind that for some
instruments, creating a task is the only way to configure a channel.

Working with VISA
The Virtual Instrument Software Architecture (VISA) is a one stop for instrument
automation. VISA can be used to control any instruments that use Serial, GPIB, Ethernet,
PXI, VXI, and USB. VISA is already built-in for LabVIEW. In this recipe, we will create an action
engine with VISA functions.

Understanding Data Acquisition

162

How to do it…
We will start by creating an action engine that can be used to read and write through VISA.

1. Create the action engine, as shown in the following screenshot. The first function is
"Initialize". It creates a VISA session based on the VISA resource name, and saves
the reference to a shift register.

2. The next function is "Read". It reads the specified number of bytes from the buffer.

3. The next function is "Write". It writes the input string to the buffer.

Chapter 8

163

4. The last function is "End". It closes the VISA session.

How it works…
The Initialize function must be used first. After the function is used, a VISA session
is created and its reference is saved in a shift register. Subsequently, the Read, Write,
and End functions will use the saved session reference to perform their functions.

Using VISA servers
VISA servers allow a server and client relationship among PC on the same network.
The relationship will allow the PCs to control each other instrumentation. This recipe
will demonstrate how to set up and use VISA servers.

Understanding Data Acquisition

164

How to do it…
We will start by configuring the VISA server.

1. On the server computer that is actually connected with an instrument, open MAX.
Navigate to Tools | NI-VISA | VISA Options.

2. Under Security, put the IP address of the PC that is allowed to access the server.
In the example, * is used, which means that there is no access restriction.

Chapter 8

165

3. After the server is set up, the server PC and its instruments will be shown up under
Remote Systems in MAX of the client PC. The IP address of the server PC is crossed
out in this example for privacy reasons.

How it works…
In this example, we set up the VISA server on the server PC to share all of its instruments with
every PC on the same network. For security reasons, instead of granting universal access,
specific IP addresses can be entered to restrict access to certain PCs on network. Once the
VISA server is set up on the server machine, any client machine can address the instruments
connected to the server machine directly. People may say that we can use remote desktop to
connect to the server machine and use its instruments. However, to do this, we must have the
LabVIEW development environment installed on that server.

Controlling an oscilloscope
Controlling an instrument is a common task when writing a LabVIEW program. In this
recipe, we will demonstrate how to control a TDS3012 oscilloscope. For other instruments,
try to search for the corresponding driver. If a driver is not available, navigate to Tool |
Instrumentation | Create Instrument Driver Project to code the driver based on a NI
provided template.

How to do it…
To start creating an application to control the instrument, we will search and download the
applicable driver. The driver is written by people who are experienced with the instrument,
but keep in mind that there is no guarantee that it will work.

Understanding Data Acquisition

166

1. First, download the driver of our oscilloscope. Select Help and Find Instrument
Driver. The Configure Search dialog will appear, as shown in the following
screenshot. Now we perform a search. Click on Login to log into your NI account. If
you do not have an account already, you can get an account for free at www.ni.com.
If the instrument is connected to the PC, click on Scan for Instruments. If the
instrument is not connected, search with the criteria given.

2. The following screenshot shows the results of our search. Double-click on the driver
and follow the installation instructions. After installing and restarting LabVIEW, the
new driver is located in the Instrument I/O | Instr Drivers palette.

Chapter 8

167

3. Build the state machine, as shown in the following screenshot. It goes to the "User
Input" state to populate all user inputs to the input cluster when the Start button is
clicked on and transits to the Initialize state.

Understanding Data Acquisition

168

4. When the Exit button is clicked on, the program transits to the End state.

5. When the Start button is clicked on, the program transits to the "Initialize" state.
In the state, it initializes the TDS3012 oscilloscope.

6. The next state is "Auto Setup", where the auto set command is issued to TDS3012.

Chapter 8

169

7. The next state is "Setup Math Channel", which enables the math channel and
specifies which two channels will be used for the math operation.

8. The next state, "Actual Setting", reads the record length, sampling mode,
and sampling rate of the instrument and outputs them to the screen.

Understanding Data Acquisition

170

9. The next state reads the waveform from channel 1 and outputs it to a waveform
chart indicator.

10. The next state is "Wait Cursor". A dialog will appear to pause the program until the
user adjusts cursors on the physical oscilloscope and clicks on OK on the software
user interface.

Chapter 8

171

11. The next state is "Read Cursor". After the user finishes adjusting the cursors, this
state reads the delta of the cursors on the x axis. The program goes back to the
User Input state to wait for the input.

12. If the user clicks on the Exit button, the program goes to the "End" state. The state
closes the VISA session and sets the stop condition of the state machine to true.

Understanding Data Acquisition

172

13. The following screenshot shows the front panel of the program.

How it works…
This program controls a TDS3012 oscilloscope. It waits for the user input to set up the
oscilloscope. When the user enters the input and clicks on Start, the program sets up the
oscilloscope and captures the waveform. With the waveform, the program displays a dialog
and waits for the user to adjust the x axis cursors of the oscilloscope. Once everything is done,
the delta of the cursors is displayed.

Using a simple DAQ device
Buying a DAQ device does not have to be costly. The NI USB-6000 is a USB-based DAQ device
with 8 SE/4 DIFF analog input with 10 kS/s sampling rate and 12 bits resolution. It also has
4 DIO and a 32 bits counter. With so many features, it only costs $149. In this recipe, we will
use DAQmx to work with such a device.

Chapter 8

173

How to do it…
We will write an application that controls a NI USB-6000 with a state machine.

1. Build the state machine, as shown in the following screenshot. The first state is
"User Input". When a user clicks on the Start button, it puts all user inputs onto
a cluster and sends it to the next state.

2. The next state is "Create AI Task". It sets up an analog input channel for
data acquisition.

Understanding Data Acquisition

174

3. The next state is "Create DI Task". It sets up a digital input channel for data acquisition.

4. The next task is "Create DO Task". It sets up a digital output channel for outputting
a digital signal.

5. The next state is "Sampling Rate". It defines the sampling rate for both the analog
task and the digital task.

Chapter 8

175

6. The next state is "Read Digital Input". The state machine will continue to go back to
this state until the 0th and 1st bit of the digital input goes high. In this case, when
the 0th and 1st bit go high, the state machine will go to the next state.

Understanding Data Acquisition

176

7. The next state is "Read Analog Input". It reads one sample from the analog channel
and outputs it to a chart.

8. The next state is "Write Digital Output". It sets the specified digital line to true.

9. When the user clicks on Exit, both the analog and digital tasks are cleared,
and the stop condition of the state machine is set to true.

Chapter 8

177

10. The front panel of the program is shown in the following screenshot. It consists of AI
Channel, DI Channel, and DO Channel, which are analog and digital channels used
on the device. The chart displays the analog data acquired. The Start button is for
starting the program, and the Exit button is for terminating the program.

Understanding Data Acquisition

178

How it works…
This program sets up a very simple and inexpensive DAQ device. It sets up the device to
wait for a digital input and reads an analog input when the correct digital input is detected.
After the analog input acquisition is done, it sets the digital output to high to signal that the
acquisition is done.

Using a CompactDAQ
Relative to the NI USB-6000, the CompactDAQ is more complex and more expensive. However,
it allows users to buy different kinds of signal conditioning modules for different data
acquisition needs. In this recipe, we will demonstrate how to use a cDAQ-9138 with a NI 9211
thermal couple module and a NI 9234 acceleration module.

How to do it…
After working with a NI USB-6000, we will write a program that controls a CompactDAQ with
a thermal couple module and an acceleration module. Even though the instruments are
different, programming a USB-6000 and a CompactDAQ is very similar.

1. Build the state machine, as shown in the following screenshot. The first state is "User
Input". When the user clicks on Start, it populates the input cluster with user inputs
and sends the cluster to the next state.

2. If the user clicks on Exit, the exit event case is fired, and the state machine goes to
the End state.

Chapter 8

179

3. The next state is "Create Temperature Task". It sets up an analog input channel
on the thermal couple module for temperature data acquisition.

4. The next state is "Create Acceleration Task". It sets up an analog input signal
on the acceleration module for data acquisition.

Understanding Data Acquisition

180

5. The next state is "Sampling Rate". It sets up the sampling rate for the analog task
with both the channels.

6. The next state is "Read Analog Input". It reads both the temperature and
acceleration into a 1-D array. When this is done, the state machine goes back to the
User Input state to wait for the user input.

7. When the user clicks on Exit, the program enters the "End" state. It clears the task
and sets the stop condition of the state machine to true.

Chapter 8

181

8. The front panel of the program is shown in the following screenshot. It consists
of AI Temp Channel and AI Acc Channel, which are the selected channels for the
temperature and acceleration module. The two elements in the data array are
temperature and acceleration acquired from the modules. The Start and Exit
buttons are to start and terminate the program.

How it works…
This program uses a cDAQ-9138 with a NI 9211 thermal couple module and a NI 9234
acceleration module. It waits for the user input and sets up the modules to capture
temperature and acceleration data on demand.

9
Simplifying Code

In this chapter, we will cover:

 f Using polymorphic VI

 f Simplifying logic selection

 f Using an array for computation

 f Formatting into string

 f Speedy array search

 f Using relative paths in EXE

Introduction
Many people start programming in LabVIEW without knowing how to keep their code simple
and neat. At the end, they end up walking up a very steep slope or giving up altogether. This
chapter presents tips on simplifying LabVIEW code that will make programing in LabVIEW
easy and fun.

Using polymorphic VI
Polymorphic VI is a VI that can exist in different forms. It allows the grouping of multiple VIs
into one VI that can take different forms. In this recipe, we will demonstrate how to build a
polymorphic VI that can handle math operations, such as addition, subtraction, multiplication,
division, combination, and permutation.

Simplifying Code

184

How to do it...
1. Create a VI for the add function.

2. Create a VI for the subtract function.

3. Create a VI for the multiply function.

4. Create a VI for the division function. It calculates the result of the division in floating
point. It also calculate the quotient and remainder separately.

Chapter 9

185

5. Create a VI for the combination function.

6. Create a VI for the permutation function.

7. The VI for each function must have the same input and output connected in the icon
terminals. After a VI is created for each function, create a polymorphic VI. This VI will
group all the previous VIs together. See the following screenshot:

Simplifying Code

186

8. Add all the function VIs into the polymorphic VI, as shown in the following screenshot:

9. Create an example VI that uses the polymorphic VI. It has a while loop with an event
structure. Within the Calculate event case, there is a case structure consists of one
case per function. When the mode is selected and the Calculate button is clicked on,
the program will select the corresponding function and output the result.

Chapter 9

187

10. Another event case is Panel Close?. When a user closes the program, it will stop the
program by setting the stop condition to true and not discard the close panel event,
so that the panel will close.

How it works...
In this example, we implemented a polymorphic VI that can add, subtract, multiply, divide, and
calculate combination and permutation with inputs x and y. To avoid confusion, the connector
pane terminals for each function VI should be arranged in the same way.

In the example VI that uses the polymorphic VI, it waits for the user to select the function,
enter inputs, and click on Calculate. Inside the Calculate event case, another case structure
resides and contains the corresponding instance of the polymorphic VI in each case.
The correct case is selected based on the user input. This is a great way to clean up code,
but most importantly, to re-use code.

Simplifying logic selection
Many text-based programmers find the case structure in LabVIEW very hard to read, especially
when the case structure is nested with multiple layers. In this recipe, we will examine a
multiple-layers case structure and how to convert the multiple layers into one.

How to do it...
We will demonstrate how a nested case structure can be a concern by building a simple
program with a four-layers nested case structure.

Simplifying Code

188

1. Build the block diagram as shown in the following screenshot. It is a case structure
with four layers. The true case of each layer will give us access to the case structure
of the next layer. The output string is TRUE if ABCD = TTTT, TTFT, or TTFF. Otherwise,
the output string is FALSE.

2. The output of the third layer is a FALSE string constant.

Chapter 9

189

3. To convert the four-layers nested case structure into a single case structure, see
the following screenshot. All Boolean inputs are built into an array, and the array is
converted into a decimal number with the top Boolean being the least significant
bit. In the following case, it shows the conditions when a TRUE string constant is the
output. The Boolean controls are built into an array with the Build Array node,
and the array is converted into an unsigned long (U32) number with the Boolean
Array To Number node. The order of the bits are DCBA. If the binary number is
0001, A is true. If the binary number is 1000, D is true. If the binary number is 11,
it is equivalent to 0011.

4. To make the decimal number converted from the Boolean array more clear, we can
convert the radix of the case structure into binary. Right click on the case structure
and select the Binary option.

5. For all other conditions, the constant string output is FALSE.

How it works...
In this recipe, we simplify a four-layers case structure into a single case structure. To do this,
we combine all the Boolean inputs into an array, convert the array into a number, and use the
number as an input for the single case structure. To clarify it, we convert the display value of the
case structure into binary, so that the value for each case structure is explicit for each Boolean.

Simplifying Code

190

Using an array for computation
If the same mathematical operation is needed for a set of numbers, performing the operation
in an array is very efficient. However, if the operation is needed only for a subset of the
numbers that meet certain criteria, looping is still required. In this recipe, we will demonstrate
how to iterate through each element of an array and how to perform a mathematical operation
on an array.

How to do it...
We will start by creating a sinusoidal wave one element at a time, and add one to the data
point that is equal to the amplitude.

1. Create the block diagram, as shown in the following screenshot. With the amplitude
input, a sinusoidal array of one element is generated. If the element is equal to the
amplitude, the element increments by 1 and outputs to a waveform chart. If not,
the element is outputted to the waveform directly.

2. The front panel in the following screenshot shows that at the positive peaks
of the sinusoidal wave, there are additional spikes:

Chapter 9

191

3. The next example with input amplitude builds three waveforms: triangular, square,
and sinusoidal with 50 samples, each with a sampling rate of 1,000 samples
per second. The three waveforms are built into an array and all the elements are
multiplied by 2 and added to 6.

Simplifying Code

192

4. The front panel, in the following screenshot, shows the resulting waveform:

How it works...
In this recipe, we demonstrated how to iterate through an array and process the elements
based on criteria. For situations where a set of numbers need to be processed with the same
operation, building the numbers into an array and processing the array as a whole is more
efficient. In this case, there is no need to iterate through each element.

Formatting into string
To create a string with substrings converted from values of different data types, the values of
different types are converted into strings and concatenated. Another way is to use the Format
Into String node. In this recipe, we will demonstrate both methods.

How to do it...
We will start by combining multiple strings into one string with the Concatenate Strings.

1. The following block diagram converts different number types and enum into
strings and concatenates them together using the Concatenate Strings node.

Chapter 9

193

2. The front panel is shown in the following screenshot. It consists of the input Enum
and the output concatenated string.

Simplifying Code

194

3. To perform the same task with the Format Into String node, see the following
screenshot. We specify all conversions with the format string input of the Format
Into String node. The input string My name is is wired to the initial string input.
It will appear at the beginning of the resulting string. The Enum input corresponds
to the %s argument of the format string input, and the enum will get converted into
a string. Similarly, %d is used for decimal, %x for hexadecimal, %o for octal, %f for
floating point, %e for exponential notation, %^e for engineering, and %<%m/%d/%y>T
for month/date/year.

How it works...
In this recipe, we demonstrated how to use the Concatenate Strings node and the
Format Into String node. For simple strings, the Concatenate Strings node is used.
For more complex strings, the Format Into String node is used. For Format Into String, note
that enum, timestamp, and different number types do not need to be converted separately.
Also, to include a constant string to the resulting string, the constant string can be added into
the format string input directly.

Speedy array search
Array search is a common task in programming. In this recipe, we will demonstrate three ways
of searching for an element in an array and extract the element from another array with the
same location index.

Chapter 9

195

How to do it...
We will start searching an array by using a loop.

1. The following front panel applies to all examples. Array is the array that we are
searching with the Person parameter. The 1D array contains values corresponding
to Array.

2. The first way is a simple loop search. It is the most straightforward, but also the
slowest. It loops through each element of the search array, and when the search
element is found, the index is used to extract the element from another array.

Simplifying Code

196

3. The next method is using the Search 1D Array function built into LabVIEW. This is
a linear search similar to the loop approach, so there is not much performance
improvement, but it makes the code a lot more elegant.

4. The last method is the variant method. First, create a dummy variant value.
With a while loop, we will create attributes for the dummy variant. The name
of each attributes correspond to each element of Person Array. The value
of each attributes correspond to each element of Value Array. By doing this,
a relationship is built between the elements of Person Array and Value Array.
When this is a setup, the variant is used for searching.

How it works...
In this recipe, we demonstrated three ways of searching an array. We can iterate through an
array one element at a time. We can use the Search 1D Array function in LabVIEW. We can
also use the attributes in a variant, which is a lot faster.

Using relative paths in EXE
Path information is used to access files in software. Some programmer would hardcode
the path information directly into the software, which makes maintaining the software
troublesome. In this recipe, we will demonstrate how to use relative path to access files
stored in a relative location of the main VI or EXE.

Chapter 9

197

How to do it...
We will start by creating a text file that the EXE will access.

1. Create the text file and save it in the same folder as the caller VI or the EXE.
See the following screenshot:

2. Create the VI, as shown in the following screenshot. It has a while loop with an event
structure. When the Read File button is clicked on, it creates the path of the text file,
reads the text file, and outputs the content of the file into an array.

3. The path is different depending on the code being run is in the development mode or
in an EXE. See the following screenshot for how the path is modified when the code is
run in the development mode.

Simplifying Code

198

4. When the Exit button is clicked on, the stop condition of the while loop is set to true,
and the program stops.

How it works...
This recipe demonstrated how to read a file relative to the calling VI or EXE. In this example,
the current VI path constant is used. In the development mode, the current VI path is the
location where we save the VI. For EXE, the main VI is embedded into the EXE, so there is an
extra level to the path. The program must determine what mode it is running in and choose
how to process the current VI path information correctly.

10
Working with External
Code and Applications

In this chapter, we will cover:

 f Compiling a DLL

 f Using a .NET DLL

 f Debugging a .NET DLL

 f Using C-based DLL

 f Using ActiveX

 f Building a web service

 f Using SMTP to send e-mail

Introduction
This chapter presents examples on how to work with external codes and applications within
LabVIEW. Within LabVIEW, we will compile a DLL and work with different kinds of DLLs, that
are .NET and C-based. We will also work with ActiveX, web service, and SMTP.

Compiling a DLL
Dynamic Link Library (DLL) contains executable functions that can be accessed by other
programs in different platform. In this recipe, we will demonstrate how to compile a DLL
in LabVIEW.

Working with External Code and Applications

200

How to do it...
We will create a DLL within LabVIEW. First, we will create a project.

1. Create a project with a factorial function, a square function, and an example
that calls the functions from a DLL after the functions are compiled into one.

2. After we have created the project, we will create the square function. Create the block
diagram as shown in the following screenshot for the square function. It squares the
input and outputs the result.

3. On the front panel, connect the input and output to the icon terminals.

4. After we have created the square function, we will create the factorial function.
Create the following block diagram for the factorial function. At the top, it uses the
built-in factorial function in LabVIEW to calculate factorial. At the bottom, it calculates
the factorial with iteration. The default case is for any Num Input that is not less than
or equal to 1.

Chapter 10

201

5. For Num Input values less than or equal to 1, the output from the case structure is 1.

6. On the front panel, connect the icon terminals.

Working with External Code and Applications

202

7. After we have finished creating the functions, we will start building the DLL.
In the project, right-click on Build Specifications and build the DLL.

8. To set up the build, specify Exported VIs.

9. After we have compiled the DLL, we will try calling the functions. From the DLL,
we will use the Call Library Function node. See the following screenshot
for setting it up:

Chapter 10

203

10. Within the configuration, set up each input and output required for the functions.
See the following screenshot:

11. Wire the input and output for the node.

12. The Call Library Function node can be configured manually as described,
or it can be done automatically. With the DLL and corresponding header file, we can
navigate to Tool | Import | Shared Library (.dll) to import the DLL into VI, as shown
in the following screenshot:

Working with External Code and Applications

204

How it works...
In this example, we created a DLL with two functions, a function that takes the square of an
input value, and a function that calculates the factorial of the input with two methods. The
functions within the DLL are called with the Call Library Function node, which is set
up either manually or through the import function.

A DLL allows multiple platform access. For example, a DLL can be generated in LabVIEW
code and used in a C program. Also, a DLL provides a measure of security, since no one
can examine the code used to compile the DLL.

Using a .NET DLL
Calling a .NET DLL is different than calling a C-based DLL in LabVIEW. In this example,
we will demonstrate how to call functions in .NET DLL for .NET framework 4.

How to do it...
We will start by using a BinarySearch method of the Array class. In order to work with
.NET DLL based on framework 4 and above, we have to create a configuration file.

1. In order to use .NET DLL based on framework 4, the LabVIEW.exe.config file
needs to be created with content shown in the following screenshot. The file needs
to be placed in the same LabVIEW folder where LabVIEW.exe is located, inside the
LabVIEW installation folder.

2. After the configuration file is created, the code in the following block diagram
searches for the number 5 in the array [1,4,5,5,6] starting from index 0 and outputs
its index if found. For input parameters that are .NET objects, LabVIEW data types are
converted into .NET object and cast into a more specific class. To obtain the correct
specific class reference, simply right-click on the input of the Invoke Node, and
create a constant. The method called is static, so the constructor node is not needed.

Chapter 10

205

3. To select the method in the preceding diagram, see the following screenshot:

4. The code, in the following block diagram, overwrites the destination array with the
source array. For input parameters that are .NET objects, LabVIEW data types are
converted into. NET object, and cast into a more specific class. To obtain the correct
specific class reference, simply right-click on the input of the Invoke Node and
create a constant. The method called is static, so constructor node is not needed.
The Invoke Node doesn't have an output terminal. The destination array object
transform from an input to an output after the method is executed. Connecting
the error terminal is critical to ensure the correct sequence of execution. After the
method is executed, the object is converted back to an array and outputted.

Working with External Code and Applications

206

5. To select the method in the preceding block diagram, see the following screenshot:

6. Previous steps involves calling static methods. We will not turn our attention to the
constructor node for method that require object instantiation. The code in the following
block diagram creates a string object with elements 65 and 66 in Unicode (represent
character A and B respectively). The object is converted back to a variant.

7. To select constructor, right-click on constructor and select the String object, as
shown in the following screenshot:

Chapter 10

207

8. The code in the following block diagram creates a String object with elements 65 and
66 in Unicode. With the string object, the Contains method is invoked to determine
if it does contain the character B.

9. To select the Contains method, refer to the following screenshot:

10. The code in the following block diagram creates a string object with elements 65
and 66 in Unicode. With the String object, the Length property is called to determine
how many characters the string has.

11. To select the Length property, refer to the following screenshot:

How it works...
In this example, we demonstrate how to use a .NET DLL based on framework 4 and above. To
call static methods and properties, a constructor node is not needed. Otherwise, a constructor
node is needed to create an object before a method or a property can be accessed. For some
input/output of a .NET DLL, its data type could be an object, which needs to be created before
being sent into the DLL call.

Working with External Code and Applications

208

Debugging a .NET DLL
Sometimes, a DLL may have a bug that will only show up when it is called in LabVIEW.
To debug such problem, LabVIEW and Microsoft Visual Studio can be used together for
investigation. In this recipe, we will demonstrate how to use Microsoft Visual Studio to
step through a DLL that LabVIEW is currently accessing.

How to do it...
In order to debug a .NET DLL, using Microsoft Visual Studio, we need to execute the
following steps:

1. Everything including the DLL and its source code must be in a Visual Studio project.
See the following screenshot for the source code of our example in C#. It contains
a class called Monsters with Name and Height as its properties; and Greeting
as a method.

2. Within Visual Studio, navigate to Build | Configuration Manager.

Chapter 10

209

3. Within the Configuration Manager dialog box, confirm that the DLL is going to be
complied in debug mode.

4. Build the following state machine that will call the DLL. It starts in the Input state
to wait for the user to click on Appear Button. Once the button is clicked on, the
program enters the Create Monster 1 state.

5. To exit the program, the user simply has to close the front panel.

Working with External Code and Applications

210

6. The next state is "Create Monster 1". It uses a constructor to create a Monsters
object. The properties of the object Height and Name are set to 3 and Jason.

7. The next state is "Create Monster 2". It creates another object with Name as Johnny
and Height as 44.

8. The next state is "Create Monster 3". It creates another Monsters object,
and set its Height and Name properties to 35 and Billy, respectively.

Chapter 10

211

9. The next state is "Monster Appear". It generates a random number between 0 to
100, and picks one of the three Monsters objects created based on the number.
After an object is selected, its Greeting method is invoked with its string displayed
in an indicator. Finally, it goes back to the Input state to wait for the user input.

10. When user closes the front panel to exit the program, the "End" state is entered.
The state closes the references of all objects created.

11. Include all VI and DLL in a project. If the DLL is not included, a VI will not be able
to access it.

Working with External Code and Applications

212

12. With DLL source code opened in Microsoft Visual Studio and DLL caller code opened
in LabVIEW, in Visual Studio navigate to Tools | Attach to Process.

13. In the Attach to Process dialog, select the LabVIEW.exe process. The following
screenshot shows the dialog with the Qualifier field blacked out, which is the name
of the computer in which the process is running. After that, place a break point in the
source code of the DLL and run the LabVIEW code. When the execution arrives at the
break point, we can proceed to step through the source code of the DLL.

How it works...
When calling a .NET DLL in LabVIEW, with the DLL's source code opened in Microsoft Visual
Studio, we can step through the code within the DLL. In the example, we created a Monsters
class with the Name and Height properties; and a Greeting method. The LabVIEW code
uses DLL to create three Monsters objects, and execute the method for one of the object at
random. If there is a problem and we suspect that the DLL has a bug, we can use the method
described previously to step through the source code that created the DLL one line at a time.

Chapter 10

213

Using a C-based DLL
Codes can be shared through DLL. There are many DLL built-in to the window operating
system. In this example, we will demonstrate how to access the built-in DLL for Windows.

How to do it...
We will create a program that can access C-based DLL in a loop:

1. Build the following block diagram. It has two loops. The top loop contains a
case structure that executes the GetSystemPowerStatus function within the
kernel32.dll. The bottom loop executes the Beep function within kernel32.dll
with frequency and duration input set to 100 ms.

Working with External Code and Applications

214

2. The input cluster for the GetSystemPowerStatus function is shown in the
following screenshot:

3. The False case of the loop is shown in the following screenshot. It displays the battery
life percentage in an indicator.

4. To set up the Call Library Function node for the GetSystemPowerStatus
function within the kernel32.dll, see the following screenshot. The Run in UI
thread is selected. Under this option, the Call Library Function nodewill
leave the thread that it is currently using and go to the user interface thread. If the
Run in any thread option is selected, the Call Library node can run in multiple
threads, so make sure that the function node is capable of being called by multiple
threads simultaneously.

Chapter 10

215

5. To set up the output, see the following screenshot:

Working with External Code and Applications

216

6. To set up the input, see the following screenshot:

7. To set up the Beep function within the kernel32.dll, see the following screenshot:

How it works...
The C-based DLL that are built-in to the Windows operating system allow the user to
access functions that interact with the PC. In this example, we demonstrate how to use
functions in kernel32.dll to look at the laptop battery level and output a beep tone
at user-specified frequency.

Chapter 10

217

Using ActiveX
ActiveX allows information sharing among different applications. In this example, we will
demonstrate how to use ActiveX in LabVIEW to access the functionality of the Microsoft
Excel application. In this recipe, we will create a LabVIEW program that would create a
workbook, and enter a value in a user specified cell through ActiveX.

How to do it...
We will create a program that works with Excel through ActiveX.

1. Create the state machine in the following block diagram. It starts in the User state.
In that state, when the Run Button is clicked on, the program would go to the Open
Excel, Add Workbook, or Get Worksheet state depending on what excel reference
is available.

Working with External Code and Applications

218

2. The next state is "Open Excel". It opens the excel application and gets the required
references for the next state.

3. The next state is "Add Workbook". It creates a workbook in the excel application
and gets the required references for the next state. See the following diagram.

Chapter 10

219

4. The next state is "Get Worksheet". It gets the reference of the specified worksheet.

5. The next state is "Add Value". It modifies the value of the specified cell.

Working with External Code and Applications

220

6. The last state is "Exit". It sets the stop condition of the state machine to true.

7. When opening the ActiveX session, select the object specified in the following
screenshot:

Chapter 10

221

8. See the following screenshot of the front panel. The user enters the Worksheet label,
Cell Reference (column and row), and Content to add for the cell. After all fields are
populated, the user has to click on Run to execute the program.

How it works...
This example interacts with the excel application by opening excel, creating a workbook, and
writing a string in a cell with user-specified location. The example uses ActiveX to access the
excel functionality in LabVIEW. ActiveX can also be used for other application as well such as
Word, PowerPoint, and Outlook.

Building a web service
Web Service allows communication between application through the Internet. In this recipe,
we will demonstrate how to build a web service in LabVIEW.

How to do it...
We will start by creating a web service that outputs a string from a string array at random.

1. Build the following block diagram. It selects an element from the string array
randomly and gives the outputs.

Working with External Code and Applications

222

2. Build the web service in the project by navigating to Build Specifications | New |
Web Service (RESTfull), see the following screenshot:

3. Set up the web service, as shown in the following screenshot:

4. After the web service is compiled, deploy it. The web service is now running in the
local PC.

Chapter 10

223

5. To access the web service, open an Internet browser. In the address bar, enter this
URL: http://localhost:8080/Fortune/Webservice. Fortune is the service
name, and Webservice is the VI name. They are set up under the properties of Build
Specifications. Other application can now access the web service through a web
browser. The output is encoded in XML.

How it works...
In this recipe, we created a VI that outputs a string at random, like a fortune cookie. After it
has been compiled into a web service and deployed, anyone can access the functionality of
the web service through the Internet given the appropriate access.

Using SMTP to send e-mail
Simple Mail Transfer Protocol (SMTP) is a standard to send e-mails. In this recipe, we will
use SMTP to send e-mail through a Gmail account.

How to do it...
We will build our e-mailing application based on a state machine architecture.

Working with External Code and Applications

224

1. Build the state machine as shown in the following screenshot. It starts in the User
Input state, and waits for the user to enter all required information and click on Send.

2. If the Exit button is clicked on, the state machine will go to the shutdown state.

3. The next state is "From/To". It creates the MailAddress object and sets
it properties, as shown in the following screenshot:

Chapter 10

225

4. The next state is "CC". It adds the e-mail address for the carbon copy field of
the e-mail.

Working with External Code and Applications

226

5. The next state is "Write Email". It sets the subject and content of the e-mail.

6. The next state is "Server Info". It sets up the SmtpClient object for logging on the
Gmail account.

Chapter 10

227

7. The next state is "Log In". It uses the specified username and password to log into
the Gmail server.

8. The next state is "Send Email". It sends the e-mail out to the recipient.

Working with External Code and Applications

228

9. The last state is "Shutdown". It sets the stop condition of the state machine to true.

10. The front panel of the program is shown in the following screenshot. It contains
information that is required to log into the Gmail server.

Chapter 10

229

How it works...
This example sends an e-mail out to a recipient through the Gmail server with SMTP. It uses a
built-in .NET DLL to accomplish such task. After the user composes an e-mail through the front
panel and clicks on start, the program sets up the SMTP objects, log into the Gmail server,
and then send the e-mail.

Index
Symbols
2D picture control

using 38, 39
.NET DLL

debugging 208-212
using 204-207

A
action engine

creating 40-42, 71-73
used, for controls updating 40-43

ActiveX
Add Value state 219
Add Workbook state 218
Exit state 220
Get Worksheet state 217
Open Excel state 218, 219
User state 217
using 217-221

Actual Setting state 169
animation

creating 44, 45
Appear Button 209
array

manipulating 88, 89
searching 196
searching, loop used 195
searching, Search 1D Array function

used 196
searching, variant method used 196
using, for computation 190-192

Array class 204

ASCII files
about 139
creating 139
End state 140
Generate Data state 140
working with 141
Write File state 140
Write Header state 139

Attach to Process dialog 212
Auto Setup state 168

B
Beep function 213, 216
binary files

about 141
End state 143
Initialize state 141
Read File state 142
User Input state 142
working with 141-143
Write File state 142

Binary option 189
BinarySearch method 204

C
Calculate button 186
Call Library Function node 202, 203
Call Library node 214
case structure

working with 50-52
C-based DLL

using 213-216
Center FP state 35

232

centralized VI
used, for error handling 120-122

Close Ref command 154
Comma Separated Value (CSV) data type 141
CompactDAQ

using 178-181
Compare Number state 98
components

formatting, into strings 192-194
computation

array, using for 190-192
Computer’s turn state 64
Concatenate Strings node

using 192-194
Conditional terminal 57
Configuration Manager dialog box 209
Contains method 207
controls

customizing 22-26
updating, action engine used 40-43

Controls palette 6
Create Acceleration Task state 179
Create AI Task state 173
Create DI Task state 174
Create DO Task state 174
Create Temperature Task state 179
custom probe

creating 12-14

D
DAQ device

using 172-178
database

about 152
working with 152-154

Debug Application or Shared Library
dialog 18

debug tools
using 10-12

dialog
creating 30-32
sizing, automatically 33-37

DLL
about 199
compiling 200-203
factorial function, creating 200

square function, creating 200
working 204

Done state 25
Dynamic Link Library. See DLL

E
e-mail

sending, SMTP used 223-229
End function 163
Enqueue Element button 67
error

handling, centralized VI used 120-122
handling, error file used 118, 119
passing, within state machine 115-118

error file
used, for error handling 118, 119

error queue
creating 123-126

error terminals
using 79-81

event structure
used, for data passing 99-103
working with 52-56

EXE
compiling 15, 16
debugging 16-19
relative paths, using in 196-198

Exit state 47
Extensible Markup Language files. See XML

files

F
feedback node

using 82-84
files

transferring, FTP used 146-151
transferring, Telnet used 146-151

File Transfer Protocol. See FTP
Find Max Height state 34
flat sequence structure

using 81, 82
FTP

about 146
used, for file transferring 146-151

Functions palette 6

233

G
Generate Number state 97
GetSystemPowerStatus function 213, 214
GIMP

URL 26

H
Highlight Execution 11

I
Idle state 24
INI files

Exit state 130
Extract Values state, creating 129, 130
Open INI state 128
working with 127-131

Initailize On First Call option 83
Initialize function 43, 162
Initialize command 154
Initialize On Compile Or Load option 83
Initialize state 24, 64, 168
Insert Row command 153
Insert VIs state 46

K
Key Down event 54

L
LabVIEW

controls, customizing 22-26
debug tools, using 10-12

LabVIEW data
passing, event structure used 99-103
passing, notifier used 106-109
passing, queue used 104-106
passing, shared variable used 109, 110
passing, STM used 111-114
passing, type-def cluster used 95-99

LabVIEW environment
essentials, configuring 6-8

LabVIEW.exe process 212
LabVIEW option dialog 8

Length property 207
loops

working with 57, 58

M
MailAddress object 224
master slave architecture

using 64-66
working 66

MAX
about 155
using 156-160
working 161

Measurement and Automation Explorer. See
MAX

memory
reusing 84-87

Monsters class
creating 208-212
Greeting method 211
Monsters object, creating 210

multiple-layers case structure
simplifying 187-189

Multiply Num state 97

N
NI LabVIEW Run-Time Engine 20
notifier

used, for data passing 106-109

O
oscilloscope

controlling 165-172

P
Pause Timer command 87
polymorphic VI

using 183-187
VI, creating for add function 184
VI, creating for combination function 185
VI, creating for division function 184
VI, creating for multiply function 184
VI, creating for permutation function 185
VI, creating for subtract function 184

234

producer consumer architecture
using 66-68
working 68

program
created, for C-based DLL accessing 213-216

project
creating 14, 15

Q
Qualifier field 212
Query Row command 153
queue

used, for data passing 104-106
quick drop feature

configuring 9, 10
Quit state 26

R
Read Analog Input state 176, 180
Read Cursor state 171
Read Digital Input state 175
Read function 162
reentrant VI

creating 77, 78
relative paths

using, in EXE 196-198
rendezvous

using 89, 90
Reset button 60
Retain Wire Values 11
Run in any thread option 214
Run state 25
runtime menu

creating 27-30
Run VIs state 47

S
Sampling Rate state 174
semaphore

using 90-93
Set Origin state 34
Set Panel Bounds state 35

Setup Math Channel state 169
shared variable

used, for data passing 109, 110
Shortcut Menu 28
Shutdown function 43
Shutdown state 36
Simple Error Handler 117
Simple Mail Transfer Protocol. See SMTP
Simple TCP/IP Messaging. See STM
SMTP

about 223
used, for e-mail sending 223-229

SmtpClient object 226
Speak button 66
standalone application

compiling 19, 20
Start button 60, 167
Start Timer command 87
state machine

error, passing within 115-118
state machine architecture

using 59-64
STM

about 111
used, for data passing 111-114

String object 206, 207
strings

components, formatting into 192-194
subpanels

using 45-48
SubVI

creating 69, 70

T
TDMS 143
TDMS files

Generate Data state 144
Initialize state 144
Read File state 145
User Input state 144
working with 143-146
Write File state 145

Technical Data Management Stream. See
TDMS

235

Telnet
about 146
used, for file transferring 146-151

Timing state 62, 64
type-def cluster

used, for data passing 95-99

U
Universal Data Link (udl) file 152
User Input state 167

V
VI

about 8
calling, by reference 74, 75
calling, dynamically 75, 76

Virtual Instrument Software Architecture. See
VISA

VISA
about 161
working with 162, 163

VISA servers
using 163-165

VISA Test Panel 156, 157
Virtual Instrument file See VI

W
Wait Cursor state 170
Wait for input state 64
web service

building 221-223
Write Digital Output state 176
Write function 162

X
XML files

about 132
Child Node state 135
Close Ref state 132, 137
creating 132

Display XML state 136
Document Element state 134
End state 137
Initialize state 133
Match Node state 134
Modify Value state 135
Save XML state 135
User Input state 132
working with 132-138

XPath expression syntax
URL 138

Thank you for buying
LabVIEW Graphical Programming Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.PacktPub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Netduino Home Automation
Projects
ISBN: 978-1-84969-782-8 Paperback: 108 pages

Automate your house, save lives, and survive the
apocalyse with .NET on a Netduino!

1. Automate your house using Netduino and a bunch
of common components

2. Learn the fundamentals of Netduino to implement
them in almost any project

3. Create cool projects ranging from self-watering
plants to a homemade breathalyzer

MATLAB Graphics and Data
Visualization Cookbook
ISBN: 978-1-84969-316-5 Paperback: 284 pages

Tell data stories with compelling graphics using this
collection of data visualization recipes

1. Collection of data visualization recipes with
functionalized versions of common tasks for
easy integration into your data analysis workflow

2. Recipes cross-referenced with MATLAB product
pages and MATLAB Central File Exchange
resources for improved coverage

3. Includes hand created indices to find exactly
what you need, such as application driven
or functionality driven solutions

Please check www.PacktPub.com for information on our titles

Image Processing with
ImageJ
ISBN: 978-1-78328-395-8 Paperback: 140 pages

Discover the incredible possibilities of ImageJ,
from basic image processing to macro and plugin
development

1. Learn how to process digital images using ImageJ
and deal with a variety of formats and dimensions,
including 4D images

2. Understand what histograms, region of interest,
or filtering means and how to analyze images
easily with these tools

3. Packed with practical examples and real images,
with step-by-step instructions and sample code

Raspberry Pi Home
Automation with Arduino
ISBN: 978-1-84969-586-2 Paperback: 176 pages

Automate your home with a set of exciting projects for
the Raspberry Pi!

1. Learn how to dynamically adjust your living
environment with detailed step-by-step examples

2. Discover how you can utilize the combined
power of the Raspberry Pi and Arduino for
your own projects

3. Revolutionize the way you interact with your home
on a daily basis

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Understanding LabVIEW Environment
	Introduction
	Configuring essentials
	Configuring quick drop
	Using debug tools
	Creating custom probe
	Compiling EXE
	Debugging EXE
	Compiling a standalone application

	Chapter 2: Customizing the User Interface
	Introduction
	Customizing controls
	Adding menu for runtime
	Creating a dialog
	Sizing dialog automatically
	Using 2D picture control
	Updating controls with an action engine
	Creating simple animation
	Creating subpanels

	Chapter 3: Working with Common Architectures
	Introduction
	Working with case structure
	Working with event structure
	Working with loops
	Using the state machine architecture
	Using the master slave architecture
	Using the producer consumer architecture
	Creating a SubVI
	Creating an action engine
	Calling a VI by reference
	Calling a VI dynamically
	Creating a reentrant VI

	Chapter 4: Managing Data
	Introduction
	Using error terminals
	Using the flat sequence structure
	Using the feedback node
	Reusing memory
	Manipulating array
	Using rendezvous
	Using semaphore

	Chapter 5: Passing Data
	Introduction
	Using a type-def cluster
	Using an event structure to pass data
	Using a queue to pass data
	Using a notifier to pass data
	Using a shared variable to pass data
	Using Simple TCP/IP Messaging (STM) to pass data

	Chapter 6: Error Handling
	Introduction
	Passing an error
	Handling error with an error file
	Handling error with a centralized VI
	Creating an error queue

	Chapter 7: Working with Files
	Introduction
	Working with INI files
	Working with XML files
	Working with ASCII files
	Working with binary files
	Working with TDMS files
	Using Telnet and FTP with files
	Working with a database

	Chapter 8: Understanding Data Acquisition
	Introduction
	Using MAX
	Working with VISA
	Using VISA servers
	Controlling an oscilloscope
	Using a simple DAQ device
	Using a CompactDAQ

	Chapter 9: Simplifying Code
	Introduction
	Using polymorphic VI
	Simplifying logic selection
	Using array for computation
	Formatting into string
	Speedy array search
	Using relative paths in EXE

	Chapter 10: Working with External Codes and Applications
	Introduction
	Compiling a DLL
	Using a .NET DLL
	Debugging a .NET DLL
	Using a C-based DLL
	Using ActiveX
	Building web service
	Using SMTP to send e-mail

	Index

